Publication Number
GC31-2069-1

4700 Finance
Communication System

Controller Programming
Library

Volume 4
Loop and DCA Device
Programming

4700 Finance
Communication System

Controller Programming
Library

Volume 4
Loop and DCA Device
Programming

Publication Number File Number
GC31-2069-1 S370/4300/8100/S34-30

Second Edition (January 1984)

This edition applies to Release 3 of the 4700 Finance Communication System and
all subsequent releases and modifications until otherwise indicated in new editions
or Technical Newsletters (TNLs).

Changes occur often to the information herein; before using this publication in
connection with the installation or operation of IBM equipment, consult the latest
IBM System/370 Bibliography of Industry Systems and Application Programs,
GC30-0370, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM program product in this publication is not intended to
state or imply that only IBM’s program product may be used. Any functionally
equivalent program may be used instead.

Publications are not stocked at the address given below; requests for IBM
publications should be made to your IBM representative or to the IBM branch
office serving your locality.

A form for reader’s comments is provided at the back of this publication. Address
comments concerning the contents of this manual to IBM Corporation,
Information Development, Department 78C, 1001 W. T. Harris Blvd., Charlotte,
NC 28257, USA. IBM may use or distribute any information you supply in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1983, 1984

Preface

This is Volume Four of the 4700 Controller Programming Library—one of a set
of six volumes for the 4700 programmer. The table on page v summarizes the
topics covered in the other volumes. All six volumes are available from your IBM
representative or local IBM office under a single order number (GBOF-1387).

Who Should Read This Book

The manual is intended for those who must program terminal and device
functions. The device information is also intended for those operations specialists
who will create operation specifications for individual work stations and
operators.

How This Book is Organized

What Else to Read

This book has two parts. Part 1 is a general guide to device and terminal I/O
programming; it contains chapters for general types of loop or DCA device
programming, and ends with a chapter describing the 4700 assembler terminal
and device instructions you must use. Part 2 comprises device-oriented chapters
for each model device that attaches to the 4700 controllers. These chapters
discuss the unique programming aspects of each device.
Following Part 2 are the appendixes:

Appendix A describes the machine instruction formats.

Appendix B defines the COPY instruction parameter lists for device-related
operations.

Appendix C describes the program check codes.
Appendix D defines the terminal and device status codes and meanings.
Appendix E is a reference to the device statistical counter descriptions.
Appendix F describes the DATSM sample program and error codes.
The table at the end of this preface summarizes the topics covered in this and the
other Controller Programming Library volumes. All six volumes are available

from your IBM representative or branch office under the single order number
GBOF-1387.

Before using this book, you should be familiar with the following information:
1. OS/VS-DOS/VSE-VM/370 Assembler Language

2. IBM 4700 Finance Communication System, Controller Programming Library,
Volume 1: General Controller Programming

3. IBM 4700 Finance Communication System, System Summary

Preface il

iv 4700 Controller Programming Library, Volume 4: Loop/Device Programming

mmunication Machine Instruction Formats
VOLUME 4: LOOP AND DCA DEVICE PROGRAMMING (GC31-2069)

« General Protocols for Displays
« 4704 and 3604 Displays

« 3270-Compatible Displays and Devices

» 3606 and 3608 Financial Services Terminals
« General Protocols for Printers

« 4710 and 4720 Printers

« 3610, 3611, and 3612 Printers

« 3615 and 3616 Printers

« 3270-Compatible Printers

« 3624 Consumer Transaction Facilities

« Data Stream Mapping (DATSM) Protocols
« Device Status Codes

« Device Parameter List Reference

Figure 0-1.4700 Controller Programming Library (GBOF-1387)

Vi 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Summary of Amendments

| GC31-2069-1 (January, 1984)

This edition replaces GC31-2069-0. Significant changes and additions to this
manual are marked with the same change bar you see at the left of this summary
entry.

This edition supports the following device cluster adapter (DCA)-attached
devices that are new for Release 3:

« IBM Magnetic Stripe Reader (Model 600) for 75- and 210-bpi data.
« IBM Magnetic Stripe Reader/Encoder (Model 200) improvements.
e 16-2/3 condensed printing for the IBM 4720 Printer.

- IBM 3178 Display Station

o IBM 5210 Printer, Models GO1 and G02

o IBM Personal Computer and Personal Computer/XT

« IBM Displaywriter

This edition also describes the new 16-2/3 cpi printing capability on the
B-loop—attached 4720 printer.

Besides the above changes, this edition also includes many editorial changes and
corrections, particularly in the 3270 data stream processing information
(Chapters 4 and 5, and Appendixes C and F).

Summary of Amendments Vil

eve

Vil 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Contents

Part 1. Programming Guide

Chapter 1. General Terminal and Device Programming 1-1
Attaching Terminals and Devices to The Controller 1-1
Terminal Addressing 1-1
Physical Device Addresses 1-1
Setting Loop Addresses 1-2
Device Cluster Adapter (DCA) Device Addresses 1-3
Logical Device Addresses (LDA) 1-3
Assigning LDAs During Configuration 1-4
Device Pools 1-5
Assigning Terminals from The Free Pool 1-5
Device Sharing 1-6
Sharing Loop Addresses 1-6
Configuring Address-Sharing Devices 1-6
Points To Consider When Address Sharing 1-8
Controlling Device Operating Characteristics 1-9
Device- and Forms-Dependent Control 1-9
Data-Dependent Terminal Control 1-10
Terminal — Controller Data Flow 1-10
Processing Asynchronous Input Data 1-10
Programming for Asynchronous Interruptions 1-11
Translation Tables 1-11
Translating Output Data 1-11
Translating Input Data 1-12
Printing without Translation 1-12
Terminal Status Codes 1-12
Signaling Attention 1-12
Conditional Wait 1-13
Deferred Instructions 1-13
Terminal I/O Operations 1-13
Synchronizing ./O Operations 1-14
The WAIT Operand 1-14
The NOWAIT Operand 1-14
NOWAIT following WAIT 1-15
NOWAIT and LCHECK with TIO 1-15
Programmable Indicators 1-15
Loop Control 1-15

Chapter 2. Programming for Displays and Keyboards 2-1
Read Operations 2-1
Translation 2-2
Translating Between Scan and Character Codes 2-2
Defining Accented Characters 2-2
Tracking 2-3
Purge Mode 2-4
EOM/EOF Keys 2-4
Function Keys 2-5
Backspace Key 2-5
Double Backspace 2-5
Advance Key 2-5
Double Advance 2-6
Shift Keys 2-6
ALT (Alternative Function) Key 2-6
Repeat-Action Key 2-7
Reset Key 2-7
Examples of Reading From The Keyboard 2-8
Example 1. EOM Keys and EOM/EOF Set Selection Mask 2-8
Example 2. Space, Backspace, Advance, and Repeat-Action Keys 2-10
Example 3. Shift and Downshift Keys 2-11
Write Operations 2-12
Character Translation 2-12
Screen Management 2-13
Display Performance 2-14
Examples of Display Control 2-15

Contents

X

Example 1. Character Translation 2-15
Example 2. Screen Management 2-16
Magnetic Stripe Reader and Reader/Encoder 2-16
Description of The Magnetic Stripe 2-17
Reading Magnetic Stripe Data 2-18
Encoding Operations 2-19
PIN Keypad 2-20
Universal Translation Table 2-21

Chapter 3. Programming for Printers 3-1
Translating Data and Handling Control Characters 3-1
Printing Operations 3-1
Sharing of Printers 3-2
Types of Sharing 3-2
Programming Considerations 3-3
Address Sharing 3-3
Printing Chained Data from The Host 3-4
Printing Structured DCA Fields 3-4

Chapter 4. Processing 3270 Data Streams 4-1
Basic Data Stream Mapping Concepts 4-1
The DATSM Instructions 4-2
DATSM Terminology 4-3
DATSM Control Areas 4-4
DATSM Data Streams 4-5
DATSM Operation Modes 4-5
Data Stream Flows 4-6
Data Stream Types 4-7
The Field Control Table (FCT) 4-8
Field Control Table Header 4-8
Field Control Table Entries 4-9
DATSM Machine Segment 4-9
DMS Header 4-10
DMS Body 4-13
Using DATSM 4-15
Data Streams 4-17
Al - Display-bound SNA Character String (PUTFLD) 4-17
Field Entry Generation 4-18
SCS Positioning Orders 4-19
A2 - Processor-bound SCS (GETFLD) 4-22
B1 - 3270 Display-bound Data Stream (PUTFLD) 4-23
3270 Data stream 4-23
3270 Commands 4-23
3270 Orders 4-24
B2 - 3270 Processor-bound Data Stream (GETFLD) 4-25
C1 - SCS Display-bound Data Stream (GETFLD) 4-26
C2 - Processor-bound SNA Character String (PUTFLD) 4-27
DATSM Programming Considerations 4-27
Buffered Terminal Modes of Operation 4-28
Comparison of Controller and Local Tracking Modes 4-28
Emulating The 3270 Keyboard 4-29
Tab Key Emulation 4-32
User Flag 4-36
Presentation Size Adaptation 4-37
Programming Examples of Window Control 4-38
Overall View of Using Windows 4-38
Large Image Buffer, Small Actual Device 4-39
Small Image, Large Actual Device 4-41
Image Buffer Mapping 4-42
Display Design 4-45
Programming DATSM for APL and Color Displays 4-45
Graphic Escape 4-46
Start Field Extended 4-46
Set Attribute 4-46
Character Attribute Inheritance 4-47
PUTFLD--Outbound Operation 4-47
GETFLD-Outbound Operation 4-48
PUTFLD-Inbound Operation 4-48
GETFLD-Inbound Operation 4-49

4700 Controller Programming Library, Volume 4: Loop/Device Programming

Chapter 5. 4700 Loop and DCA Assembler Instructions 5-1
4700 Assembler Instructions 5-1
ASSIGN - Terminal Component Assignment 5-3
DCACTL - DCA Control 5-7
DEVPARM - Change Component Parameters 5-9
DPOOL -- Assign Device Pool Terminals and Components 5-19
LCHECK - Check the Status of a Terminal Component 5-25
LREAD - Read from Terminals 5-27
LWRITE -- Write to Terminals 5-31
SIGNAL -- Set/Reset Indicators 5-33
STPLPS - Stop Loops 5-35
STRLPS - Start Loops 5-37
SWAPTT -- Exchange (Swap) Translate Tables 5-39
WRTI ~ Write Immediate 5-41
DATSM Instructions 5-43
DATSM Instruction Condition, Status, and Error Codes 5-43
GETDMS -- Move Field Control Table 5-45
GETFLD - Retrieve Image Buffer Contents 5-47
PUTDMS - Modify Field Control Table 5-57
PUTFLD - Map Data to Image Buffer 5-61

Part II. Terminal and Device Reference
Terminals and Devices Available on the 4700
Terminal Attachment Unit

Device Cluster Adapter

Translation Table 5a References

Chapter 6. IBM 4704 Display Station Model 1 6-1
Functions and Features 6-2
Keyboard 6-2
Display Monitor 6-2
Control Module 6-2
PIN Keypad 6-2
Magnetic Stripe Device 6-2
Dual Intensity Capability 6-3
Controls and Indicators 6-4
Display Control Module Controls and Indicators 6-4
Power On/Off Switch 6-4
Power-On Lamp 6-4
Loop Ready Lamp 6-4
Test Lamp 6-4
Loop Address Switches 6-4
Loop Speed Switches 6-4
Keyboard Alarm Control and PIN Keypad Light 6-4
Audible Alarm 6-4
PIN Keypad Light 6-4
Display Monitor Controls and Indicators 6-5
Contrast Control 6-5
Brightness Control 6-5
Operation Indicators 6-5
Magnetic Stripe Reader and Reader/Encoder 6-5
Read Operation 6-6
Encode Operation 6-6
Programmed Disable 6-7
Personal Identification Number (PIN) Keypad 6-7
Terminal Control Characters 6-8
Statistical Counters 6-10
Keyboards and Translation Tables 6-11
Modifying Translation Tables 6-12
Defining The 4704-1 for Configuration 6-13

Chapter 7. IBM 4704 Display, Models 2 and 3 7-1
Models and Features 7-1
Keyboard Component 7-2
Display Monitor Component 7-2
Optional Display Devices 7-2
Dual Intensity 7-2
Controls and Indicators 7-3
Power and Operating Controls and Indicators 7-3

Contents

xi

Power On/Off Switch 7-3
Test Indicator 7-3
Keyboard Alarm Control and PIN Keypad Light 7-4
Audible Alarm 7-4
PIN Keypad Light 7-4
Display Monitor Controls 7-4
Contrast Control 7-4
Brightness Control 7-4
Operation Indicators on The Display 7-4
Not Operational 7-4
MSR Ready to Read 7-4
MSE Ready to Encode 7-4
MSR/E Check 7-4
Too Much Data 7-4
PIN Keypad Enabled 7-5
User-Programmable Indicators 7-5
Shift Indicators 7-5
Programming Considerations 7-5
Controller Tracking Mode 7-6
Local Tracking Mode 7-6
Program Operation with Local Tracking 7-6
Local Tracking Restrictions 7-6
Controller Configuration 7-7
Magnetic Stripe Reader and Reader/Encoder 7-7
Read Operation 7-7
Encode Operation 7-8
Programmed Disable 7-9
Personal Identification Number (PIN) Keypad 7-9
Terminal Control Characters 7-10
Statistical Counters 7-12
Keyboards and Translation Tables 7-13
Alternate Scan Codes for the 50-Key Keyboard 7-13
Modifying Translation Tables 7-20

Chapter 8. IBM 3604 Keyboard Display 8-1
Models and Features 8-1
Keyboard Component 8-1
Display Component 8-5
Special Features and Options 8-6
Controls and Indicators (3604 Models 1-6) 8-7
Power On/Off Switch 8-7
Dsbl Unit/Test Unit Switch 8-7
Ready Indicator 8-7
Check Indicator 8-7
Indicators 1,2, and 3 8-7
Log Message Indicator 8-8
Controls and Indicators (3604 Model 7) 8-8
Controls 8-8
Normal/Test 8-8
Audible Alarm Volume Control (Special Feature) 8-8
Intensity 8-8
Intensity Override 8-8
Contrast 8-8
Security Keylock (Special Feature) 8-8
Power On/Off 8-8
Indicator Lights 8-9
Ready 8-9
Light 1 8-9
Light2 89
Light 3 89
Screen Indicators 8-9
Controller Configuration Macro Instructions 8-10
Terminal Control Characters 8-11
Statistical Counters 8-13
Keyboards and Translation Tables 8-14

Chapter 9. IBM 3278 Display Station Model 2 9-1
Functions and Features 9-1
3278-2 Keyboard Component 9-2

Xil 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Cursor Blink 9-3
Alternate Cursor 9-3
Keyboard Clicker 9-3
Display Component 9-3
Dual Intensity 9-3
Special Features and Options 9-4
Magnetic Slot Reader 9-4
Security Keylock 9-5
Audible Alarm 9-6
Controls and Indicators 9-6
Operator Controls 9-6
Normal/Test 9-6
Audible Alarm Volume Control (Special Feature) 9-6
Intensity 9-6
Intensity Override 9-6
Contrast 9-6
Security Keylock (Special Feature) 9-6
Power On/Off 9-6
A,a/A 9-6
Lamp Indicators 9-7
Light 1 9-7
Light2 9-7
Light 3 9-7
Indicators for the Magnetic Slot Reader (Special Feature) 9-7
Screen Indicators 9-7
4700 9-7
X 9-8
1,2,3 9-8
Configuring the 3278 9-8
3278/3279 Substitution 9-10
Terminal Control Characters 9-11
Statistical Counters 9-13
Function Keys, Keyboards, and Translation Tables 9-14
Output Translation Tables 9-23
3278 APL Character Set (Output Translation Table) 9-23
3278A Keyboard Translation Table 9-25
3278A Keyboard Translation Table (continued) 9-26
Function Key Assignment 9-27

Chapter 10. IBM 3279 Display Station Model 2 10-1
Operating and Application Programming Characteristics 10-1
Color Selection 10-1
Convergence Feature 10-1
Compatibility with 327x Controller Utilities 10-1
Configuration 10-3
3278/3279 Substitution 10-3
Translation Tables 10-3

Chapter 11. IBM 3606 and 3608 Financial Services Terminals 11-1
Keyboard and Magnetic Stripe Reader 11-2
The Keyboard 11-3
The Clear and Send Keys 11-3
Numeric and Function Keys 11-3
The Keyboard Translation Table 11-3
The Magnetic Stripe Reader 11-4
Magnetic Stripe Reader Translation Table 11-4
Keyboard and Magnetic Stripe Reader Read Operations 11-4
The SMSTGU Field 11-4
Polling Terminals 11-5
Keyboard/Magnetic Stripe Reader Lock 11-5
The Display 11-5
The Indicator Lights 11-6
Display and Indicator Write Operations 11-6
The 3608 Printing Component 11-7
Operating Characteristics 11-7
Print Line and Page Definition 11-8
Variable Parameters 11-8
Data and Control Character Translation 11-9
Printer Write Operations 11-9

-Contents

xiii

Formatting the Data Stream 11-9
Position Control 11-10
Controller Configuration Macro Instructions 11-11
Terminal Control Characters 11-11
3608 Printer Control Characters 11-13
Statistical Counters 11-15
Keyboards and Translation Tables 11-16

Chapter 12. IBM 4710 Receipt/Validation Printer 12-1
Controls and Indicators 12-2
Power On/Off Switch 12-2
Start A and Start B Keys 12-2
Inhibit Print Key 12-2
Journal Advance Key 12-2
Test Switches 12-2
Journal Disable/Enable Switch 12-2
Ready Light 12-3
Check Indicator 12-3
End-of-Journal-Roll Indicator 12-3
Programmable Indicators 12-3
Document Printing 12-4
Cut-Form Printing 12-4
Journal Printing 12-4
Printing Modes 12-4
Cut-Forms Mode 12-5
Continuous-Forms Mode 12-5
Translating Data and Handling Contro! Characters 12-8
Variable Parameters 12-8
Validation Printing Parameters 12-8
Journal Printing Parameters 12-9
Terminal Control Characters 12-9
Programming Considerations 12-10
Controller Configuration Macro Instructions 12-11
Statistical Counters 12-11
Translation Tables 12-12

Chapter 13. IBM 4720 Forms and Passbook Printers, Models 1-4 13-1
Controls and Lights 13-2
Console Switches 13-2
Power On/Off Switch 13-2
Print A and Print B (+P1/+4P2) Keys 13-2
Forms Eject 13-2
Advance Journal (Models 2 and 4) 13-2
Console Lights 13-3
Ready 13-3
Check 13-3
End of Journal Form (Models 2 and 4) 13-3
Programmed Lights 13-3
Address, Subaddress, and Loop Speed Switches 13-4
4720 Forms 13-4
Passbook Dimensions 13-4
Cut Form/Envelope Dimensions 13-4
Journal Form Dimensions 13-4
Passbook Printing 13-5
Page Definition 13-6
End of Page 13-6
Center-Fold Detection 13-7
Document Printing 13-7
Cut Forms and Passbooks 13-7
Journals 13-7
Printing Modes 13-7
Cut-Forms Mode 13-7
Passbook Mode 13-9
Continuous-Forms Mode 13-9
Programming Considerations 13-10
Default Printer Status 13-10
Selecting The Types of Printing 13-10
Translating Data and Processing Control Characters 13-11
Suggestions for Faster Printing 13-11

Xiv 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Addressing 13-11
Defining Printed Characters 13-11
Control and Status 13-11
Setting the Skew Threshold for Passbooks and Cut Forms 13-11
Setting Passbook Parameters 13-12
Setting Cut Form Parameters 13-13
Setting Journal Parameters 13-14
Reading 4720 Parameters and Status 13-14
Terminal Control Characters 13-15
Controller Configuration for the 4720 13-17
Statistical Counters 13-17
Translation Tables 13-18

Chapter 14. IBM 3610 Document Printer 14-1
Controls and Indicators 14-3
Start Print Key 14-3
Stop Print Key 14-3
Document Printing 14-3
Translating Data and Handling Control Characters 14-4
Variable Parameters 14-4
Controller Configuration for The 3610 14-4
Terminal Control Characters 14-4
Statistical Counters 14-4
Status Bits 14-4
Output Translation Tables 14-5

Chapter 15. IBM 3611 Passbook Printer 15-1
Controls and Indicators 15-2
Start Print Key 15-2
Stop Print Key 15-2
Passbook and Cut-Forms Printing 15-2
Translating Data and Handling Control Characters 15-3
Variable Parameters 15-3
Controller Configuration for the 3611 15-3
Terminal Control Characters 15-3
Statistical Counters 15-3
Status Bits 15-3
Output Translation Tables 15-4

Chapter 16. IBM 3612 Passbook and Document Printer 16-1
Controls and Indicators 16-3
Power On/Off Switch 16-3
Start Print Key 16-3
Stop Print Key 16-3
Ready Indicator 16-3
Indicators 1 and 2 16-3
Cut Forms Stop Selector 16-3
Printing Types 16-4
Passbook Printing 16-4
Document Printing 16-6
Cut-Forms Printing 16-6
Journal Printing 16-6
Pin-Fed Forms 16-7
Printing Modes 16-7
Cut-Forms Mode 16-7
Continuous-Forms Mode 16-8
Passbook Mode 16-10
Character Sets 16-10
Translating Data and Handling Control Characters 16-11
Variable Parameters 16-12
Terminal Control Characters 16-13
Programming Considerations 16-14
Statistical Counters 16-15
Status Bits 16-15
Controller Configuration for the 3612 16-15
Translation Tables 16-15

Chapter 17. IBM 3615 Administrative Terminal Printer 17-1
Controls and Indicators 17-3

Contents

XV

Power On/Off Switch 17-3

Start Key 17-3

Stop Key 17-3

Ready Indicator 17-3

Indicators 1-4 17-3
Document Printing 17-3

Cut Forms 17-4

Continuous Forms 17-4
Printing Modes 17-4

Cut-Forms Mode 17-5

Continuous-Forms Mode 17-6
Character Set 17-7
Translating Data and Handling Control Characters 17-7
Variable Parameters 17-7

Terminal Control Characters 17-8

Programming Considerations 17-10

Statistical Counters 17-11

Controller Configuration Macro Instructions 17-11

Translation Tables 17-12

Chapter 18. IBM 3616 Passbook and Document Printer 18-1
Controls and Indicators 18-1
Power On/Off Switch 18-1
Start Print Key 18-1
Stop Print Key 18-2
Cut-Forms Insert 18-2
Ribbon Change Control 18-2
Journal Advance 18-2
Test Switches 18-2
Ready Indicator 18-3
Check 18-3
End-of-Journal-Roll Indicator 18-3
Load DPS 18-3
Load JPS 18-3
Indicators 1,2, and 3 18-3
Special Features 18-3
3616 Forms 18-4
Horizontal Fold Passbooks 18-4
Vertical Fold Passbooks 18-4
Passbook Cut Forms 18-4
Journal Roll Forms 18-4
Journal Cut Forms 18-4
Passbook Printing 18-4
Line Finding 18-5
Page Definition 18-6
End of Page 18-6
Center-Fold Detection 18-6
Document Printing 18-6
Cut Forms 18-6
Journal Printing 18-6
Printing Modes 18-7
Cut-Forms Mode 18-7
Continuous-Forms Mode 18-8
Passbook Mode 18-8
Character Set 18-9
Translating Data and Handling Control Characters 18-9
Variable Parameters 18-9
Controller Configuration for The 3616 18-12
Terminal Control Characters 18-12
Programming Considerations 18-13
Statistical Counters 18-14
Status Bits 18-15
Translation Tables 18-15

Chapter 19. IBM 3287 Printer Models 1 and 2 19-1
Translating Data and Handling Control Characters 19-1
Variable Parameters 19-1
Terminal Control Characters 19-2
Statistical Counters 19-2

Xvi 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Controller Configuration for The 3287 19-2
Translation Tables 19-3

Chapter 20. IBM 3262 Line Printer Models 3 and 13 20-1
Translating Data and Handling Control Characters 20-1
Variable Parameters 20-1
Terminal Control Characters 20-2
Programming Considerations 20-2
Statistical Counters 20-2
Controller Configuration for the 3262 20-3

Chapter 21. IBM 5210 Printer Models GO1 and G02 21-1
Translating Data and Handling Control Characters 21-1
Variable Parameters 21-2
Terminal Control Characters 21-2
Programming Considerations 21-2
Statistical Counters 21-2
Controller Configuration for the 5210 21-3

Chapter 22. IBM Personal Computer and Personal Computer/XT 22-1

Chapter 23. IBM Displaywriter 23-1
Display and Keyboard Emulation 23-1
Display Differences 23-1
Keyboard Differences 23-2
Operating The 4700 System Monitor 23-3
Other Unsupported 3278 Functions 23-3
Printer Emulation 23-4
Printer Differences 23-4
3287 Switch/Indicator Functions 23-4
Emulating DEVPARM and General Printer Control. 23-4
Reporting End of Forms 23-5
Deferred and Compressed Printing 23-5
Unsupported 3287 Functions 23-5

Appendix A. Machine Instruction Formats A-1

Appendix B. 4700 Fields and Parameter Lists B-1
Appendix C. Terminal and Device Status Codes C-1
Appendix D. Terminal and Device Statistical Counters D-1

Appendix E. DATSM Sample Program and Error Codes E-1
Sample Program E-1
DMSERCD Error Codes E-7

Glossary X-1

Index X-5

Contents XVii

Xviii 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Figures

0-1.
2-1.
. The Reader/Encoder Magnetic Stripe 2-17
2-3. Corresponding EBCDIC and ABA Codes for the Reader/Encoder Default Translation
2-4.
2-5.
2-6.
2-7.
4-1.
4-2.
4-3,
. Program Function (PF), Program Access (PA), and ENTER Keys 4-31
4-5.
4-6.
4-7.
4-8.
4-9.
4-10.
4-11.
4-12.
4-13.
. Device Parameter Lists Used by ASSIGN 5-4
. DEVPARM/SETRET Parameter List and Values 5-12
5-3.
. Reading from a Keyboard 5-29
. Printing a Passbook 5-32
. GETDMS Control Bytes 5-46
. GETDMS Status Codes 5-46
. GETFLD Control Bytes 5-48
. GETFLD Status Codes 5-53
5-10.
5-11.
5-12.
5-13.
5-14.
5-15.
6-1.
. 4704-2/3 Display 7-1

7-2.

8-1.

8-2.

8-4.
8-5.

9-1.
9-2.

11-1.
11-2.
11-3.
11-4.
12-1.
12-2.
13-1.
13-2.
13-3.
13-4.
13-5.
13-6.
13-7.
13-8.
13-9.

13-10,
13-11
13-12

4700 Controller Programming Library (GBOF-1387) v
3604 Numeric Keyboard 2-8

Tables 2-19

Default PIN Pad Translation Table 2-21

3604 Keyboards with Universal Translation Table 2-22

4704 Keyboards with Universal Translation Table 2-23
3278/3279 Keyboards with Universal Translation Table 2-23
Data Flow Diagram 4-6

DMS Diagram 4-10

Recommended DMSSTAT Test Sequences 4-11

Logical Space Definition 4-37

Original and Actual Displays Equal 4-38
Actual Display Smaller than Original 4-38
Original Display Smaller than Actual 4-39
Subarea of Image Buffer Displayed 4-39
Window Equal to Original Device 4-40
Window for Upper Left Quadrant 4-40
Window for Lower Right Quadrant 4-41
Window for Upper Right Quadrant 4-41

DEVPARM/EXTRACT Parameter List and Values 5-16

DMS Screen Status Flags (DMSFLAG) 5-58
PUTDMS Control Bytes 5-58

PUTDMS Mode Bytes 5-59

PUTDMS Status Bytes 5-59

PUTFLD Control Bytes 5-63

PUTFLD Status Codes 5-67

IBM 4704-1 Display Terminal 6-1

IBM 4704-2/3 Options and Features 7-1
IBM 3604 Keyboard Display Model 1 8-2
IBM 3604 Keyboard Display Model 2 8-3

. IBM 3604 Keyboard Display Models 5 and 6 8-4

IBM 3604 Models 5 and 6, 45-Key Alphameric Keyboard 8-4
IBM 3604 Administrative Keyboard Display, Model 7 8-5
3604-7 Operator’s Panel 8-9
IBM 3278 Display Station, Model 2 9-2
Sample 3278/3279 Configuration 9-9
IBM 3606 Financial Services Terminal 11-1
IBM 3608 Printing Financial Services Terminal 11-2
Numeric Display and Indicator Lights 11-6
Printer Output 11-9
IBM 4710 Receipt/Validation Printer 12-2
Actions That Change the State of the Document Printer 12-5
An Example of a Horizontal-Fold Passbook 13-6
Actions That Change Printing States 13-8
International Character ID Table 13-19
International Translation Table 13-21
Belgian Translation Table 13-22
Brazilian Translation Table 13-23
Canadian Translation Table 13-24
Danish/Norwegian Translation Table 13-25
Finnish/Swedish Translation Table 13-26
. French Translation Table 13-27
. German/Austrian Translation Table 13-28
. Italian Translation Table 13-29

Figures

XixX

13-13. Japanese Translation Table 13-30

13-14. Latin American Translation Table 13-31

13-15. Portuguese Translation Table 13-32

13-16. South African Translation Table 13-33

13-17. Spanish Translation Table 13-34

13-18. Turkish Translation Table 13-35

13-19. UK English Translation Table 13-36

13-20. United States Translation Table 13-37

13-21. Yugoslavian Translation Table 13-38

13-22. Arabic/Greek/Hebrew Character ID Table 13-39

13-23. Arabic Translation Table 13-40

13-24. Greek Translation Table 13-41

13-25. Hebrew Translation Table 13-42

13-26. Katakana Character ID Table 13-43

13-27. Katakana Translation Table 13-44
14-1. IBM 3610 Document Printer Model 1 (Models 2 and 3 are similar) 14-1
14-2. IBM 3610 Document Printer Model 4 (Model 5 is similar) 14-2
15-1. IBM 3611 Passbook Printer Model 2 15-1
16-1. IBM 3612 Passbook and Document Printer 16-1
16-2. Parameters of a Passbook with a Horizontal Center Fold 16-5
16-3. Actions That Change the State of the Document Printer 16-9
16-4. Actions That Change the State of the Passbook Printer 16-10
16-5. International Character Options 16-11
17-1. IBM 3615 Administrative Terminal Printer 17-2
17-2. IBM 3615 with Forms Tractor Installed 17-2
17-3. Actions That Change the State of the 3615 17-5
18-1. IBM 3616 Passbook and Document Printer 18-2
18-2. Parameters of a Passbook with a Horizontal Center Fold 18-5
18-3. Actions That Change the State of the Document Printer 18-7
18-4. Actions That Change the State of the Journal Printer 18-9
19-1. IBM 3287 Printer Models 1 and 2 19-1
20-1. IBM 3262 Line Printer 20-1
21-1. IBM 5210 Printer 21-1
22-1. PC and PC/XT Scan Codes for 4700 Attachment 22-1
23-1. Displaywriter Scan Codes for 4700 Attachment 23-2
F-1. DATSM Error Codes in DMSERCD F-7

XX 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Part I. Programming Guide

The chapters in this part of the book discuss general loop and DCA device
programming. Each chapter except the last describes programming concepts for a
general device type or function. The last chapter of Part I describes the 4700
Assembler instructions you use to perform loop and DCA control and
input/output (I/O) operations.

Part I. Programming Guide

4700 Controller Programming Library, Volume 4: Loop/Device Programming

Chapter 1. General Terminal and Device Programming

This chapter provides information about the instructions used to communicate
with terminals and the controller facilities that support those terminals. The 3674
Programmer’s Guide, GC66-0002, and the 3624 Programmer’s Guide,
GC66-0008, contain information about communicating with the 3614 and 3624.
For information on data stream mapping for the 3262, 3278, 3279, 3287, and
4704-2/-3, refer to Volume 3.

Attaching Terminals and Devices to The Controller

Terminal Addressing

Physical Device Addresses

Some 4700 terminals attach to the controller by a loop. Other terminals such as
the 4704 Models 2 and 3, 3262, 3278, 3279, and 3287 attach to the controller by
a device cluster adapter (DCA) and can operate through the 3270 Data Stream
Mapping (DATSM) facility. The loop provides a data path both to and from the
terminals or terminal components. These local loops can serve as remote loops
when 3603 Terminal Attachment Units provide the connections to the
telecommunication links. (You must specify the loop types—Ilocal or remote—and
remote loop speeds—600! or 1200 bps—when you order the controller.)

The local loop speeds (6001, 1200, 2400, and 4800 bps) are set by your service or
installation people, as directed by the financial institution during controller
installation.

The controller application program uses data transmission input/output (I/0)
instructions containing logical device addresses to send data to and receive data
from the terminals without being concerned with the physical address of the
terminal. However, the physical address is used by the controller to select a
component within a device.

Each terminal component attached to a controller has a unique physical address
comprising a loop number, a terminal address, and a component address. Devices
attached to the Device Cluster Adapter (DCA) are selected using loop “A”. A
4700 terminal may contain one or more addressable components. For example, a
4710 Document Printer is a single-component terminal, while a 4704 has a
keyboard and a display, and may also include a magnetic stripe encoder. .

The physical address of a terminal, terminal component, or loop device is in three
parts:

« The number of the loop to which the terminal attaches (X‘A’ for terminals
connected to the DCA).

e The address of the terminal, which is set in the terminal switches (0-15), or
the port number (0-7) for terminals connected by the DCA.

» The address of the terminal component, which is fixed for each compenent
type.

1 Not available in the United States.

Chapter 1. General Terminal and Device Programming 1-1

Setting Loop Addresses

The physical address of a DCA-attached terminal or component comprises the
following:

o The direct-attach identifier is X‘A’.
« The address of the port (0-7).

+ The address of the terminal component, which is fixed for each component
type.

You specify the variable parts of the physical addresses for each addressable unit
in the system during configuration.

Loop terminals have terminal address switches to set the terminal’s base address
on the loop. All terminals also have component address that is either fixed or can
be set by using additional switches. The following terminals have component
addresses as shown:

Component

Component: Address:
4704-1/3604 keyboard 1
4704-1/3604 display 2
4704-1/3604 magnetic stripe encoder 3
3610/3612 document printer 4
3615 administrative terminal printer 42
4710/4720/3616 passbook/document printer 43
3611/3612 passbook printer 5
3606/3608 keyboard/display and 6

} Financial Services
magnetic stripe reader Terminals
3608 printer 7

8

3614/3624 consumer transaction facility
You indicate base address 16 by setting 0 in the switches.

The 3612 and 3616 Passbook and Document Printers have two addressable
components: the passbook printer and the document printer. A 3608 Printing
Financial Services Terminal has two addressable components: the
keyboard-display-magnetic stripe reader and the printer. All keyboard/displays
have either two components (the keyboard and the display) or three components
with the magnetic stripe device. All other devices are single components.

The Financial Services Terminals are designed so that a collection of these
terminals (a terminal group) attached to a loop all share a common terminal
address on the loop. The common terminal address is set in each terminal through
the terminal address switches mentioned above. In addition, the financial services
terminals have a second set of switches that set a subaddress. This subaddress
identifies which terminal within the terminal group is assigned to the common
terminal address. More than one group can be on a loop.

2 If address sharing is used, the component address may be any value
ranging 1 through 15 to match the DEFADDR configuration macro.

3 The component address is any value ranging 2 through 15 to match the
DEFADDR configuration macro.

1-2 4700 Controller Programming Library, Volume 4: Loop/Device Programming

One 4704-1 Display and one 4710, 4720, 3610, 3611, or 3612 printer can share
the same loop address, but each 36nn device must have a special address~-sharing
terminal loop adapter.

Device Cluster Adapter (DCA) Device Addresses

DCA terminals attach directly by coaxial cable and have component addresses
similar to those for devices attached to the loops. The following directly-attached
terminals have fixed component addresses (binary numbers):

Component: Address:

4704-2,-3/3278/3279 keyboard 1
4704-2,-3/3278/3279 display 2
4704-2,-3 magnetic stripe encoder 3
3262 printer 4
3287 printer 4

A 4704 with the magnetic stripe encoder has three addressable components: the
keyboard, the display, and the encoder. A 3278 or 3279 has two addressable
components; the keyboard and the display.

Logical Device Addresses (LDA)

One or more terminal components may be assigned to a work station. When a
component is assigned to a station, it is given a logical device address (LDA). The
LDA allows your application program to refer to terminal components without
concern for their physical addresses.

Each station has eight LDAs, numbered from O to 7. Any terminal component can
be assigned to any LDA. This assignment can be done during the configuration
(CPGEN) procedure, or during program execution using the ASSIGN or DPOOL
instructions.

By following a convention of assigning a component to a given LDA (for
example, 4704s to LDA 1), an application program can be shared by more than
one station, even though the physical device addresses vary from station to
station. The ASSIGN, DEVPARM, LCHECK, LREAD, LWRITE, SIGNAL,
and WRTI instructions refer to the LDA rather than the physical device address.

For example, assume that each of three stations has a 4704 display, and each
display component has been assigned to LDA 1. All three stations share an
application program that uses LDA 1 to refer to the display. When a station
executing the program refers to LDA 1, the controller converts the LDA
reference to the physical address of the 4704 display component assigned to that
station, and transmits or reads data accordingly.

The LDA concept allows you to write application programs that can be shared
among controllers and stations without regard for physical component addressing,
providing that you follow the LDA-to-component addressing convention on all
controllers and stations.

Chapter 1. General Terminal and Device Programming 1-3

There is a set of default LDA assignment conventions and mnemonic LDA codes
supported by the configuration macros and the 4700 assembler instructions.
These default assignments and their corresponding mnemonics are:

Component: LDA: Mnemonic:
3614/3624 consumer transaction facility 0 CT
4704/3604/3278/3279 keyboard 0 KB
4704/3604/3278/3279 display 1 DS
4704 /3604 magnetic stripe reader/encoder 2 MS
4710/4720/3610/3612 document printer 3 P
3615 administrative terminal printer 3 P
3616 journal printer 3 JP
3611/3612 passbook printer 4 PB
3616 document/passbook printer 4 PB
3606/3608 keyboard/display magnetic

stripe reader 0 (none)
3608 printer 1 (none)
3262/3287 printer 6 (none)

Note: When like components of a terminal group — the Financial Services
Terminals — have the same LLDA, the subaddress identifying the specific terminal
component in the group is put in the work station’s segment 1 (SMSTGU). When
unlike terminal components — the 4704 and 4710, for example — share a
common terminal address, they cannot have the same LDA.,

The data transmission instructions DEVPARM, LCHECK, LREAD, LWRITE,
SIGNAL, and WRTI all have an operand used to specify the LDA of a terminal
or terminal component. The operand can be either a decimal number (0-7), the
label of an EQUATE instruction that specifies a decimal number, or one of the
mnemonics listed above. If the mnemonic is used, the applicable LDA is
generated in the instruction. For example, if KB (for the 4704 keyboard) is
specified, LDA O is generated in the instruction.

Assigning LDAs During Configuration

All terminals must be defined to the controller by DEFADDR/DEVnnnn or
DCAPORT/DCAnnnn pairs of configuration macros. For loop devices, the
configuration macros specify the loop number, the terminal base address portion
of the physical address, and the subaddress of the terminal address for variably
addressed terminals. The component addresses are not coded for terminals with
fixed addresses. For devices attached via the device cluster adapter (DCA), the
DCAPORT configuration macros specify the port number.

You use the STATION, DEFADDR, or DEV/DCAnnnn macros to relate LDAs
to actual devices by first relating the LDA to a physical address, and then relating
the physical address to a device. You can also assign the device to a device pool
for a certain station or set of work stations by specifying a common device pool
(DPOOL) name on those macros.

LDAs and the physical device addresses of a DCA terminal are related through
the DA operand of the STATION macro. The label of a DCAPORT macro and
the LDA to be assigned to the terminal component are specified in the DA
operand. For terminals having more than one component (the 3278, for
example), the DA operand allows assignment of any logical device address to any
component. :

1-4 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Device Pools

Note: Financial Services terminal components of the same type sharing a terminal
address are treated as one logical device, for example, all have the same LDA.

You can assign devices to groups, or pools, to make them available only to certain
work stations. This is useful if you want to use a specific device type, but are not
concerned with which physical device your program uses. Device pools also allow
a work station to have exclusive use of a physical device (components of that
device may be assigned only to that work station) or to share a physical device
with other work stations having the same device pool.

You assign components using the component ID. This ID eliminates the need for
knowing the actual physical device address. Individual components of a physical
device can be assigned to different work stations, but each component can be
assigned to only one work station.

To assign devices to a device pool, you must specify a common device pool name
on the DEVnnnn or DCAnnnn macro for the restricted device as well as on the
STATION macros for the station or stations allowed to use that device. The
program you create for those work stations then acquires and releases devices by
issuing the DPOOL instruction. DPOOL, which recognizes components and
devices by their configuration-assigned component IDs, assigns devices to and
releases them from the work station LDAs.

All devices and components not assigned to either a work station LDA or defined
as part of a device pool are in the free pool. Your program can assign and release
devices in the free pool using the ASSIGN instruction, described later in this
section.

Assigning Terminals from The Free Pool

Controller-attached terminals do not have to be assigned to stations or to a device
pool, nor must a station keep one set of terminals. Terminals not assigned to
stations or a device pool are in the free pool. Your program issues the ASSIGN
instruction to acquire terminals from the free pool, place a terminal in the free
pool, or transfer a free pool terminal from one work station to another. The
controller rejects an ASSIGN instruction if data is being sent or received from the
related device, when status is pending for the device, when the device is shared
and ownership has been established, when the assignment is to an LDA already
being used, or if the device is in a device pool.

The ASSIGN instruction refers to a parameter list that contains the loop number,
terminal address, component address, shared indicator for shared devices, number
of the station to receive the terminal (O for the terminal pool), and LDA to which
the component is to be assigned. When the reassignment is completed, the
controller replaces the station number and LDA in the parameter list with those
assigned to the terminal before it was reassigned. The same parameter list can
then be used to return the terminal to its original assignment.

Refer to the appropriate macro descriptions in Volume 6 of the 4700 Controller
Programming Library for information about assigning logical device addresses.

Chapter 1. General Terminal and Device Programming 1-5

Device Sharing

Sharing Loop Addresses

Any component with the ability to distinguish between operators (Operator A and
Operator B keys, for example) can be assigned to two different stations
simultaneously. This ability, which must be ordered as a feature on some devices,
allows both stations to share the component without having to assign and reassign
it. Refer to Chapter 3, “Programming for Printers.”

The two stations that share the component are known as the A and B stations.
When a shared component is assigned to a station, either during controller
configuration or by means of the ASSIGN instruction, the A or B designation for
the station must be specified.

During operation, each station regards the shared component as its own. In the
case of a shared printer, for example, the operator for station A inserts a form or
passbook and then presses the Operator A (or equivalent) key, signaling the
appropriate program to continue. Work station B, recognizing only it’s own key,
remains idle. This prevents the transactions from becoming confused. In this
way, the two stations can share the same device and loop resources concurrently.

To define a component as being shared, the DEVnnnn configuration macro
describing that component must specify the SHARED=Y operand. Volume 6
contains detailed information about the device descriptor macros (DEVnnnn and
DCAnnnn).

Loop devices can, with some restrictions, share the same transmission frame slots.
In this case, each sharing terminal has the same loop address, but a different
subaddress. Address sharing, also known as slot sharing, allows more terminals to
connect to a loop. This group of terminals, called the slot group, must meet the
following requirements:

1. Address sharing terminals must either have implied address sharing capability,
or be defined as address sharing devices during configuration. The DEVnnnn
configuration macros for 3600 series devices must specify MG1586 for the
OPTIONS keyword if they are other than 3606, 3608, or 3616. These and
the non-DCA 4700 series terminals have implied address sharing capability.

2. All address sharing terminals without implied address sharing ability must
contain address sharing function RPQ MG1586 or 8K0610. Before
attempting to share such a terminal, contact your marketing representative for
guidance.

Configuring Address-Sharing Devices

The DEVnnnn macro describes terminals, and the DEFADDR macro assigns
terminals to loop addresses, or loop slots. For address-sharing devices, the
DEFADDR macro for the shared address must assign multiple terminals to the
same address. Multiple component terminals require an even/odd pair of
subaddresses.

1-6 4700 Controller Programming Library, Volume 4: Loop/Device Programming

The STATION configuration macro’s TERM= operand either lists the terminals
for that station, or points to the DEFADDR macro to associate all terminals
assigned to that address with the station. The TERM= operand also assigns up to
eight logical device addresses (LDAs) to the terminal components. Any
components with unassigned LDASs receive default LDAs beginning with the last
LDA, plus one, assigned by TERM=.

In the following example, several terminals for work station 2 share the slot 3
address on loop 1:

STA2 STATION ID=2,SS=1,APBNM=MYPROG,CPU=N, STARTUP=Y,
DELSET=X'FF',INSTR=50000,TERM=(SHARE(O,1,6,7,3))

SHARE DEFADDR T3604S,(T3608,6),T3610,ADDR=(L1,3,8)
T3604S DEV3604 OPTIONS=MG1586, ...
T3610 DEV3610 OPTIONS=MG1586, . ..

T3608 DEV3608

Programs operating on work station 2 refer to the assigned terminals as follows:
3604 keyboard: LDA O
3604 display: LDA 1
3610 document print station: LDA 3
3608 keyboard/display: LDA 6
3608 printer: LDA 7

If TERM= points to LDA configuration macros, multiple address-sharing

terminals can be assigned to the same or to different work stations. The LDA

macro operands can point to a single component. The LDA operands are:

e The label of a DEFADDR macro.

o The label of a DEVnnnn macro referenced by the DEFADDR macro.

« The position of the DEVnnnn component within the component string
defined by the DEFADDR macro. If no position is specified, all components
are assigned. The same DEVnnnn macro can appear more than once in the
DEFADDR macro.

« The LDA for the component. If omitted, LDA assigns the default LDA.

o The shared device (operator A/B) designation.

Chapter 1. General Terminal and Device Programming 1-7

In the next example, two 3616 printers share an address at loop 1, slot 2. Work
station 2 is assigned the 3616 having subaddresses 2 and 3; work station 3 is
assigned the 3616 with subaddresses 4 and 5:

STA2 STATION ID=2, TERM=(. ..,JP2,DP2)
STA3 STATION ID=3, TERM=(. .. .JP3.DP3)

Jp2 LDA DFA,T3616, 1

DP2 LDA DFA ., T3616, 2

JpP3 LDA DFA,T3616,3

DP3 LDA DFA,T3616 4

DFA DEFADDR (T3616,2),(T3616,4) ,ADDR=(L1,2,4)

73616 DEV3616

Work station 2 and 3 each refer to their assigned components as:
Journal print station: LDA 3
Document print station: LDA 4

Note that both stations use the default LDAs defined by the LDA macro.

Points To Consider When Address Sharing

Terminals sharing one address can be in either a single work station or in different
work stations. In addition, programs written for terminals with separate addresses
can operate on those terminals when they share a loop address. However, loop
performance can be degraded if you do not consider the following configuration
and programming points:

Configuring a Shared Terminal for Address Sharing: Sharing a terminal with
“operator A/B” capability is not allowed. On terminals where address sharing is
a feature, the combination of the shared terminal feature and address sharing
functions cannot be ordered on terminals requiring the address sharing function
RPQ. Sharing a terminal having implied address sharing and the shared terminal
(“operator A/B”) ability can cause operator contention when one operator (B,
for example) attempts to continue with a printing operation but the printer, which
shares addresses with operator A’s keyboard display, cannot operate because that
keyboard display is active.

Switching Power On and Off: Switching power off and then on again for one
terminal in a slot group only causes incorrect device status to occur in SMSDST.
To ensure correct restarting, all terminals in the slot group must be switched off
for at least 30 seconds before being switched on.

1-8 4700 Controller Programming Library, Volume 4: Loop/Device Programming

If power is left off for all terminals in the group, the controller steps statistical
counter 2 for the first (lowest numbered) component in the group because the slot
does not acknowledge L.eave Pass Mode commands. The controller issues Ieave
Pass Mode periodically when no activity occurs on a slot, allowing the terminal to
present attention.

1/ 0 Conflicts on Address-Sharing Devices: 1/0 that occurs simultaneously on
separately addressed terminals is done sequentially on address-sharing terminals.
As aresult, keying at a keyboard while the program writes to a shared printer
causes undisplayed, or “blind”, keying. Data overrun can also occur if keying is
too fast.

A write operation issued to the printer after keying has begun is delayed until
either keying stops for three seconds or the controller detects an end-of-message
(EOM) character in the input data. However, a keying delay of more than three
seconds can allow another printer operation to begin. When keying then resumes,
a keyboard overrun can occur.

Controlling Device Operating Characteristics

Each terminal has operating characteristics that must be set by the financial
institution. These characteristics include such things as the size of the forms or
passbook, and how the passbook should be aligned. Most of the initial terminal
characteristics are specified in the DEVnnnn or DCAnnnn configuration macro
instructions described in Volume 6. Some characteristics such as printing modes
and fonts are effective during some or all of a transaction, and are therefore
controlled by the application program using the DEVPARM instruction. Others
depend on the data being sent to the device; these controls must be imbedded
within the data itself.

For more information on the device characteristics controlled by the DEVnnnn
and DCAnnnn configuration macros, refer to the individual device chapters in
Part II and the configuration macro descriptions in Volume 6.

Device- and Forms-Dependent Control

Such factors of terminal operation such as forms size, margins, print character and
line density depend on the type of form to be printed and the varying limits of the
devices themselves. These and other device-dependent parameters are read and
set by issuing the DEVPARM instruction in your application program before I/0
actually begins.

By issuing a DEVPARM instruction with the SETRET=RETURN operand, your
program can read the operating characteristics of most terminals into a parameter
list. This parameter list, also defined by DEVPARM, varies depending on the
device addressed and the options specified. The ability to read device parameters
is particularly useful if, for example, you need to know the cursor position of a
keyboard/display before you write to the display. A DEVPARM specifying
SETRET=RETURN and EXP=Y returns an expanded parameter list containing
cursor position as well as the line and character density of the display.

DEVPARM also allows you to control device characteristics that cannot be

specified or predicted during configuration, such as the centerfold spacing for
varying forms or passbooks, or the form size itself.

Chapter 1. General Terminal and Device Programming 1-9

Data-Dependent Terminal Control

You control the data-dependent aspects of terminal operation such as character
and line spacing, carriage returns, and finding a new print position. You do this in
your program by inserting hexadecimal control values in the output data stream.
These terminal control characters are hexadecimal values ranging X‘00’ through
X3F’; however, not all of those values are valid control characters, and all control
characters are not valid on every terminal or device.

Where possible, control characters are device-independent, or cause
device-dependent but similar operations. For example, a new-page control
character causes a 4704-1 to erase the screen and then position the cursor at line
1, column 1; the same control character causes a 4710 printer to release a cut
form or skip to a new page when using a journal roll and causes the 3611 or 3612
to release the passbook.

Refer to the device chapter in Part II that describes a given device for descriptions
of the control characters the device accepts.

Terminal -- Controller Data Flow

The controller contains an input buffer that is approximately 80 bytes long for
each attached keyboard display, and a shared input buffer for each terminal group
of financial services terminals. Data passes from the terminal to the buffer and
then to the logical work station when the station becomes active and issues an
LREAD instruction.

The system translates the data when it moves the data from the input buffer to the
logical work station’s storage. It reads data directly from a 3624 into the logical
work station’s storage. This data transfer does not take place, however, until the
applicable station issues the read.

The controller contains one buffer for each output terminal or terminal group,
except the 3614, 3616, 3624, and 4710. Data goes directly to these devices from
the station’s storage. The buffer size for the other devices is approximately equal
to the line length for the particular device.

Processing Asynchronous Input Data

Data received at the controller from a terminal or terminal group causes the
controller to set a bit in the LDA’s attention summary field (SMSSAM) of the
receiving work station. The bit that is set (0-7) corresponds to the logical device
address of the terminal transmitting the data. The bit is set whether the station is
active or idle, and whether the LDA is able to cause asynchronous interruptions
or not.

An active station can test the SMSSAM field periodically and read from the
LDAs if their bits are set. When dispatched, an idle station can test the field and
issue read instructions to the appropriate LDAs.

The LDA’s attention summary field determines when terminals assigned to LDAs
that cannot cause asynchronous interruptions have data to transmit to the work
station. When the controller performs the read instruction, it turns off the
attention request bit for that LDA and transfers the data from its own buffer to
the station’s segment storage.

1-10 4700 Controller Programming Library, Volume 4: Loop/Device Programming

If the terminal signaling attention is a 3614 or 3624, the controller receives an
indication that the terminal is ready to transmit. The controller allows the
terminal to transmit after the station has been dispatched and the read has been
issued.

Programming for Asynchronous Interruptions

Translation Tables

Translating Output Data

You can specify an asynchronous terminal entry point in the application program.
When an idle work station receives data from a terminal with an LDA capable of
asynchronous interruptions, the controller places the data in a buffer and
dispatches the station at the next opportunity.

You specify the LDAs that can cause asynchronous interruptions in the
STATION configuration macro instruction describing the logical work station.
When the conuroller dispatches that work station, the program starts executing at
the label defined by the BEGIN instruction’s ATD operand.

The bytes of data that appear on a loop as a result of pressing a keyboard key are
referred to as scan codes. The bytes of data sent to a display are referred to as
character positions; the bytes of data sent to a printer are referred to as print wheel
positions or character matrix positions.

Translation tables, either standard tables supplied by IBM or tables specified by
the programmer, are used by the controller to translate all data passing between
terminals and work stations.

Translation tables are specified during controller configuration. A translation
table for each type of keyboard is defined using the INTRTBL and TRTBHDR
configuration macros. A translation table for each type of output device is defined
using the OUTRTBL or OUTSPEC configuration macros. A translation table for
data entered via the magnetic stripe readers or written to the magnetic stripe
encoder is defined using the MSTRTBL configuration macro. The translation
table for a terminal is selected by the DEVnnnn or DCAnnnn configuration
macro describing the terminal. See Volume 6.

The controller begins creating an output translation table when an OUTRTBL or
OUTSPEC macro occurs in the configuration. The controller then creates a table
that contains one position for each possible byte that can be equated to a print
position. Each table position is first set to X‘FF’, and then modified to include the
standard character set specified in the macro. The next step is to further modify
the table to correspond to the additional positions specified in the macro by your
program.

If, during execution, the application program tries to print a translation table
position that has not been modified (that is, that still contains hex FF), a
translation check occurs. You can avoid translation checks by specifying the DEF
parameter. The table generator changes all undefined (X‘FF’) table positions to
the output position specified with the DEF parameter. Specifying DEF ensures
that the table can contain no undefined positions and that no translation check
can occur. During operation, the translation table converts any data stream
characters not defined by the translation table to the character at the DEF
position.

Chapter 1. General Terminal and Device Programming 1-11

Translating Input Data

The 4710, 4720, and 3616 passbook/document printers use the standard
EBCDIC character set. In this case, no translation occurs; the controller sends the
data directly to the device. Besides the standard 3616 and 4710 character set,
you can also select either a 13-character optional character set from one of the
IBM Data Processing National Use Graphics tables or a 16-character user-defined
translate table. This user-defined table, which is also possible on the 4720, is
created during controller configuration. The DCA-attached 3262 and 3287
printers and the 3614 and 3624 do not use configuration- generated translation
tables; They also use the standard EBCDIC character set. Refer to the 3674
Programmer’s Guide and the 3624 Programmer’s Guide for additional information
about 3614 /3624 character sets and their specification.

Input translation tables are generated in the following manner. As a result of
specifying a keyboard type, a 2-byte entry is created for each scan position from
00 to the highest scan code on the keyboard. This table is then modified to
include the character set indicated by the CASE operand. The macro then further
modifies the table to include your specifications for single-character,
multicharacter functions, and EOM/EOF keys. The controller adds one byte for
each character in a multicharacter specification. When all tables are generated,
the CPGEN assembles the TRTBHDR or TRTLIST macros containing the tables
for each shift case. Refer to Chapter 2, “Programming for Displays and
Keyboards” for a description of the universal translation table.

Printing without Translation

Terminal Status Codes

Signaling Attention

Your program can stop translation of normally translated output data by including
a transparent write control character in the data stream. The data specified with
transparent write contains the actual print positions to be printed or display
positions to be displayed. For example, to display position 94 (a rising arrow) on
the 3604 without translation, you send the following control and data character
sequence:

X'35015E"

Status is returned after execution of LREAD, LWRITE, LCHECK, WRTI,
DEVPARM, or SIGNAL instruction to indicate a failure or exceptional condition.
Status is checked by coding a branch instruction that checks for a condition code
of hex 02. The status is returned in segment 1 in the 2-byte field named
SMSDST. Refer to Appendix B for a detailed explanation of the status bits and
suggested actions.

If a logical work station has a keyboard assigned to LLDA 0, and if the station is
not idle, the operator can send an attention signal to that station by pressing the
reset key twice.

This action sets the attention bit in the station’s SMSIND field unless a read
operation for the keyboard is pending when the attention signal is sent (in this
case, the X‘0800’ cancel status code is returned for the read operation, and
SMSIND is not set). In addition, it may break the station out of a conditional
wait state, and may result in the interruption or inhibition of a deferred data
transmission instruction issued to a shared device.

1-12 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Conditional Wait

Deferred Instructions

Terminal I/0 Operations

Your program can test the attention bit in SMSIND. If the bit is on, the program
should reset it before issuing any additional I/O instructions. The attention bit is
always reset by an LEXIT instruction.

A conditional wait state is indefinite; ending such a state requires some action
outside of the controller (for example, operator intervention).

A station enters a conditional wait state if it issues an LWRITE or WRTI after
receiving intervention required status (X‘8000’) from any printer except the
3608. The station will not enter the conditional wait if LCHECK for the device is
issued after receiving the intervention required and before issuing the write.

The first write instruction completes with condition code X‘02’ and intervention
required status set in SMSDST. The second write places the station in the
conditional wait state. This condition ends and the write executes if the operator
makes the device ready. The wait condition also ends and the write operation
completes with condition code X‘02’ and attention status in SMSDST, if the
operator signals attention from the keyboard.

A station enters a conditional wait state if it issues an LREAD instruction for the
host, or a 3614/3624, when no data is pending.

A logical work station enters a deferred state if it attempts to refer to a shared
device that is in use by another station. Deferred means that the instruction is
repetitively retried until the device is free for use by this station. Each retry is
followed by a controller dispatching cycle to give other stations a chance to
process. At each retry, the controller tests the attention bit in SMSIND. If the
attention bit is on (even if set by the application program), the controller
completes the instruction rather than deferring it, sets condition code B‘02’, and
stores status in SMSDST.

The LWRITE, WRTI, LREAD, and LCHECK instructions are used to transfer
data between the controller application program and the terminals.

The LWRITE and WRTI instructions can be used to send data, control
characters, or a combination of data and control characters to a terminal.
Hexadecimal values from X‘00’ to X‘3F’ are reserved for control characters,
X‘40’ to X‘FF’ for data; thus data and control characters may be intermixed and
transmitted as a unit. WRTI is used primarily for sending control characters since
it is limited to transmitting either one or two bytes of information.

The LREAD instruction reads data from the keyboards and magnetic stripe
readers.

The LCHECK instruction checks for completion of an I/O operation and puts the
logical work station in a wait state if the operation is not complete. When the
operation is complete, LCHECK sets the condition code, sets the status (if any)
in SMSDST, and resumes program execution at the instruction following
LCHECK. LCHECK has a test operand, TIO, that prevents the logical work
station from entering a wait state, even though the pending I/O operation is
incomplete.

Chapter 1. General Terminal and Device Programming 1-13

Synchronizing 1/0 Operations

The WAIT Operand

The NOWAIT Operand

Synchronization (serialization or overlap) of 1/O operations with application
program processing is accomplished by use of the WAIT/NOWAIT operands in
the I/0 instructions, the LCHECK instruction, and by issuing two successive I/0
requests to the same device with the NOWAIT operand.

Use of the WAIT operand in the LREAD, LWRITE, and WRTI instructions
(WALIT is the default operand for LREAD) causes application program execution
to halt while the controller processes the I/0 function. The logical work station is
again dispatched on completion of the I/O operation and posting of the condition
code and status. Program execution resumes at the next sequential instruction.
LWRITE and WRTI with WAIT may be used where processing cannot continue
until the write operation is completed. The need for an LCHECK instruction to
serialize program flow is eliminated.

By specifying NOWAIT on the LREAD, LWRITE, and WRTI instructions
(NOWALIT is the default for LWRITE and WRTI) you allow your program to
continue execution (following the normal dispatch cycle taken after each I/O
instruction) while the controller processes the 1/0 function.

Note: When your program issues multiple I/O NOWAIT commands to different
devices, do not reuse input or output segment areas until the instructions to which
they were assigned have been completed and— in the case of LREAD—until the
application program has processed the input.

Issuing two successive I/0 instructions with NOWAIT to the same device
(without an intervening LCHECK) causes execution of the second instruction to
be deferred until the first instruction completes. Only immediate status (command
reject, cancel, conditional wait) is posted on the first instruction when issued.
Other status (if any) is posted when the second instruction is issued. If the first
instruction failed, execution of the second instruction is aborted immediately, and
the prior operation bit is set in the status field (SMSDST) along with the other
status information.

Note: If you issue LREAD NOWALIT to a 3604, 4704, 3278, or 3279; the data
transfer is not complete; and you then issue LEXIT; the controller does not allow
the work station to exit until the data transfer ends.

If LWRITE data output is still operating and an LEXIT is executed, the station
waits at the LEXIT instruction until the LWRITE completes. If the LWRITE fails
and the station does not issue LCHECK, no status is set until the next time the
station issues another data I/O instruction to that component. If the component is
shared, status returns to the station that issues the next I/O instruction to that
component, even if the station did not issue the failing write. Hence, a program
should always clear an outstanding write with LCHECK before executing LEXIT,

1-14 4700 Controller Programming Library, Volume 4: Loop/Device Programming

NOWAIT following WAIT

When an I/0O instruction with NOWAIT is followed by one with the WAIT
operand, both operations can be considered successful and complete when a
condition code of X‘01’ is returned from the second operation. If a failure
occurred, the prior operation bit in the status field will indicate which instruction
failed (not on = 2nd failed, on = 1st failed) and, if the first instruction failed, the
second instruction is not executed.

NOWAIT and LCHECK with TIO

Programmable Indicators

Loop Control

The combination of the NOWAIT operand in I/0O instructions and the LCHECK
instruction with the TIO operand may be used to completely avoid any waits for
1/0 completion when handling terminals. The application program must,
however, provide synchronization of I/O with processing where needed.

All loop and DCA devices have program-controlled indicators and lights.
Indicators on the 3278/9, 3604, 3610, 3612, 3616, 4704, 4710, and 4720 and
attached magnetic stripe and PIN devices are controlled by the SIGNAL
instruction; indicators on the 3606, 3608, and 3615 terminals are controlled by
embedding program operator control sequences in the data sent to the terminal.

During configuration, one of the 3604 or 4704 programmable indicators can be
designated as the magnetic stripe device indicator. This indicator then comes on
automatically when a read or write operation to the device is issued. Terminals
having programmable indicators also control the PIN keypad feature by issuing
SIGNAL to turn on indicator 3. One of the indicators on the control operator’s
4704 or 3604 may also be specified during configuration as the
unsolicited-message light; this indicator comes on when a message having a
second byte of X‘F1’ is written to the controller log.

Two instructions control the operation of failing loops; STPLPS and STRLPS.
STPLPS is used to stop one or all loops that are currently in error recovery.
STRLPS is used to start one or all stopped loops.

Chapter 1. General Terminal and Device Programming 1-15

1-16 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Chapter 2. Programming for Displays and Keyboards

Read Operations

This chapter provides general programming information for reading data from and
writing data to 4700 keyboard displays. Refer to Part II for specific information
about each device.

The controller application program reads data from the keyboard by issuing
LREAD instructions. The controller reads the incoming data and places it into
the specified segment starting at the primary field pointer (PFP). Unless the
NOTRACK operand is specified, the controller also displays the incoming data on
the display component. When you press function keys (such as backspace, shift,
or reset) or EOM Kkeys, the appropriate control actions are performed by the
controller. Unless the NOWAIT operand is used, the application program waits
until the read operation is completed and status is stored. (TRACK and WAIT
are the default values.)

The LREAD instruction is ended by the controller when one of the following
events occurs:

1. You press an EOM key and the resulting EOM character is encountcred
during translation.

2. The end of the input field is reached (if the FLI is nonzero and less than, or
equal to, the length between the PFP and the end of the segment).

3. The end of the segment is passed (if the FLI is zero).

4. The input segment provided for the operation is full and ERTLS=Y was
specified on the device configuration (DEVnnnn or DCAnnnn) macro
instruction.

5. The reset key is pressed twice in succession to signal an attention (if the
keyboard component is assigned to LDA 0).

6. A loop error, terminal address card error, or DCA error is detected.

If the end of a segment is passed (if FLI is greater than the length between PEP
and the end of segment), a program check occurs immediately and LREAD does
not start. After the read operation has been completed, you can test the condition
code using a conditional branch instruction, and the message length can be found
in SMSIML. If the read operation was not completed normally, status bits are set
in SMSDST (if an attention occurred, an attention bit is also set in SMSIND.)

If a scan code results in a multicharacter string during translation and there is
insufficient room in the input segment for the entire string, the LREAD ends with
incorrect length status, and the input character is saved for the next LREAD. If,
on the subsequent LREAD, there is sufficient space for the character string,
processing continues normally. If there is insufficient space for the character
string again, LREAD ends with incorrect length and the input byte is discarded to
prevent looping on the same byte. The controller application program should
check the condition code and (if the code is X‘02’) the status bits before
processing the message from the read operation. Status bits and suggested actions
are listed in Appendix D, “Terminal and Device Status Codes” on page D-1.

Chapter 2. Programming for Displays and Keyboards 2-1

Translation

Each key on a keyboard component (except the 4704-1 ALT key) generates a
translatable scan code. The controller translates the scan codes into hexadecimal
values representing graphics (alphameric characters or other symbols) according
to a header and one or more input translation tables generated for the keyboard
component by the TRTBHDR and INTRTBL configuration macro instructions.
Refer to the individual device chapters for the specific scan codes and the keys
they represent.

Translating Between Scan and Character Codes

Defining Accented Characters

You must specify at least one translation table for each type of keyboard
component in the system (that is, for each different keyboard feature number in
the system). Up to four translation tables, each associated with a case and
activated by a shift key, can be defined for each individual keyboard. The same
translation table used for a larger keyboard could be used for a smaller keyboard
that is a subset of the larger, but adhesive labels would normally have to be placed
over engraving on one of the keyboards. The standard translation tables for each
device are shown later in the chapters for individual devices.

If you choose, you can redefine the meanings of keys by specifying their scan
codes and new equivalent values when the INTRTBL macro creates the
translation tables during configuration. However, the scan codes of keys defined
as numeric (0 through 9) and as plus (+) and minus (-) keys must translate into
the equivalent EBCDIC characters (X‘FO’ through X‘F9’, X‘4E’ and X‘60’) to
allow instructions such as LDFLDC, LDSEGC, and VERIFY to execute properly.

Any key on most keyboards can be defined so that its scan code is translated into
any one or string of from two to seven characters. Translation into multicharacter
strings can support special keys (such as deposit and double or triple zero) and
convert characters (such as Kanji to Katakana).

Keys that cannot be translated into multiple character strings are those that have
fixed functions when engaged with the ALT key, and all keys on the 4704-2 or
4'704-3 when operating in local tracking mode. Refer to “DATSM Programming
Considerations” on page 4-27 for a description of local tracking mode.

Characters requiring accents (acute, grave, circumflex, cedilla, diaeresis, and
tilde) can be entered from any terminal having an accent hold table defined for it.
The accent hold table defines the accent character scan codes, their hexadecimal
values, and the scan codes and hexadecimal values for the associated letters
allowed for those accents. When the operator enters a valid accent character, the
controller holds the cursor in that position. The operator must then enter one of
the allowed alphameric characters for that accent before the cursor moves to the
next position.

2-2 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Tracking

Your program can use a default accent hold table, or you can define a table of
your own. To use the default table, the INTRTBL macro for the input case
containing the desired accent must define the accent key scan code, its
hexadecimal value, and the operand, ‘DKA’. The “DKA="" (dead key accent)
operand selects the default accent hold translation table; each time an operator
enters that accent, only the characters allowed by the default table can be
entered.

To define your own accent hold table, you must also code a DKATBL
configuration macro to define the table content and then select it by name with
the DKATBL = operand of the TRTBHDR macro. Refer to Volume 6 of the
4700 Controller Programming Library for more detailed information on coding
these macros and defining the accent hold table.

Note: When you have defined the accent key and the accent hold table, you must
change the output translation table to display the composite character (character
and accent) in the OUTRTBL configuration macro.

If the TRACK operand is specified in an LREAD instruction, the controller
performs tracking in the following manner:

1. The scan codes sent from the keyboard are compared with the scan codes in
the input translation table.

2. The character or characters equated to each scan code are placed in the input
buffer.

3. Each character in the input buffer is compared with the characters in the
output translation table. If the character in the input buffer is not defined in
the output translation table or is a device control character (X‘00’ through
X*‘3F’), the controller substitutes a blank for that character position.

4. The position codes found for each character in the output translation table are
then sent to the display where they appear as indicated by the cursor. The
cursor automatically moves to the first position of the next line when a line
fills.

Tracking does not take place until the application program issues an LREAD.
Any characters entered before tracking is requested are held and displayed after
the LREAD instruction is issued. Tracking begins at the current output position
for the display component; the controller application program can select a
character position before issuing the LREAD instruction. A new line operation
occurs automatically when the last character of a line has been tracked. Any
additional characters are then tracked. The application program can also begin a
new line by sending the new line control character. Tracking does not take place
while the keyboard display is in purge mode.

Chapter 2. Programming for Displays and Keyboards 2-3

Purge Mode

EOM/EOF Keys

Purge mode is the keyboard state during which characters from keys other than
the Reset key are discarded. When the keyboard display is in purge mode, the
Check indicator is on. Purge mode means that the data entered previously either
could not be handled soon enough by the controller or contained an error
according to the application program. Pressing the Reset key takes the keyboard
display out of purge mode and returns it to its normal state.

Purge mode results from the following conditions:

1. The keyboard buffer was overrun because the controller could not receive the
input data fast enough. This may occur if data is written to the display at the
same time that data is entered at the keyboard.

2. The input buffer for the keyboard in the controller was overrun because more
than 47 characters were entered before the controller application program
issued an LREAD instruction to read from the keyboard.

3. An error was detected during a read from the magnetic stripe reader. Pressing
the Reset key once takes the keyboard display out of purge mode but does not
end the read operation (which can be ended by pressing the Reset key twice
to cause an attention).

4. The controller application program detected an error and placed the keyboard
display in purge mode by the SIGNAL instruction. Purge mode forces the
operator to acknowledge the error by pressing the reset key, thereby clearing
any characters entered since the last EOM or EOF key was pressed. The next
LREAD instruction issued by the application program reads data entered
after the Reset key was pressed.

The application program can issue a keyboard purge request with an outstanding
LREAD NOWAIT. This ends the outstanding read request and allows the
program to continue without waiting for the operator to complete a message. The
program can then write to the display, exit, or perform any other operation.

An end-of-message (EOM) key is any key that translates into an EOM character.
You must define at least one EOM key for each keyboard. When the controller
encounters an EOM character for a keyboard, it ends the physical read operation
from the keyboard, and the LREAD instruction, allowing the application program
to read the data. An end-of-field (EOF) key is any key that translates into an
EOF character. EOF ends the LREAD but does not end the physical read from
the keyboard. This saves loop overhead involving starting and stopping physical
terminal read operations when reading data as a series of fields. If no additional
input occurs within approximately three seconds of receipt of an EOF value, the
read is ended, allowing the resumption of faster display output.

Each EOM or EOF key has associated with it a mask that is used to check
whether the key currently represents EOM or EOF for the keyboard. If any bit in
the mask for the key matches a corresponding bit in another mask called the
EOM/EOF set selection mask, the key represents a valid EOM or EOF. Define
EOM and EOF keys and their masks with the INTRTBL macro. Specify the
EOM/EOF set selection mask by the EOMSET operand of the device
configuration macro instruction, and modify it with the DEVPARM instruction.

2~4 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Function Keys

Backspace Key

Double Backspace

Advance Key

An EOM or EOF key can also translate into a character or character string, as
defined by the INTRTBL macro. The character or character string is placed into
the application program’s input segment, and the number of characters placed into
the segment is stored in SMSECT. The character or character string can be used
by the application program to distinguish among EOMs and EOFs.

When you specify the EID option for EOM/EOF in the INTRTBL macro, a
one-byte character of the EOM/EOF (only one byte of a multiple character
EOM/EOQOF) is returned to SMSEID, but is not translated to the input segment.
The EOM length (SMSECT) is zero. A value of X‘00’ is not allowed for EID.
When SMSEID is not zero, it contains the EID character; when SMSEID is zero,
no EID was specified and EOM is returned with its length in SMSECT.

Two EOM keys, defined as EOMA and EOMB by the INTRTBL macro, can also
indicate which operator is using a shared station. The first time that the program
reads from the keyboard after controller load or an LEXIT command, these keys
indicate to the controller which segment zero (application registers) to use for the
station. If the program senses neither EOMA or EOMB at message end, the
controller uses the segment zero last selected for the station.

When the station translates the EOMA or EOMB key, it places a X‘FA’ or X‘FB’
into the application program’s input segment to indicate which operator entered
the message. The EOMA or EOMB key can translate into an additional character
or character string, which is placed into the segment ahead of the X‘FA’ or X‘FB’.

The INTRTBL macro also allows specification of EOF, EOFA, and EOFB keys in
place of the EOM designations.

Most of the 4700 keyboard/displays have the function keys described in this
section. The transient shift, downshift, and repeat-action keys are not available
on keyboards attached to the secondary port of a 4704-2/-3.

A Backspace key moves the cursor and the location in the application program’s
segment backward one character at a time, nondestructively, as far as the
beginning of the current message. Attempting to backspace beyond the beginning
of the current message results in no operation. A Backspace key is defined as
BKSP in the INTRTBL macro. Its definition is optional.

This key moves the cursor, and the location in the program’s segment, backwards
two spaces at a time, nondestructively, as far as the beginning of the current
message. If you try to backspace past the beginning, the request is ignored.
Define the Double Backspace as BKSP2 in the INTRTBL macro instruction; it is
optional.

An Advance key moves the cursor and the location in the application program’s
segment forward one character at a time, nondestructively, as far as the end of the
application program’s segment. Attempting to advance beyond the end of the
segment results in a segment overflow error condition. An Advance key is
defined as ADVAN in the INTRTBL macro; its definition is optional.

Chapter 2. Programming for Displays and Keyboards 2-5

Double Advance

Shift Keys

ALT (Alternative Function) Key

This key advances the cursor and the location in the program’s segment two
spaces at a time, nondestructively, as far as the end (or one character from the
end) of the program’s segment. If you try to advance past the end, a segment
overflow results. Define a Double Advance key as ADVAN?2 in the INTRTBL
macro instruction; it is optional.

You can define up to four input translation tables to convert keyboard data, and
the keyboard keys to select those tables. Figure 2-1 shows the types of case shift
keys you can define and what they do.

SHIFT KEY HOW
TYPE: FUNCTION: DEF INED:
Locking Selected case remains active CASn parameters
until another shift key is of INTRTBL macro
pressed.
Transient Selected case is active only CASn parameters
Shift while key is pressed. of INTRTBL macro

and SHFT parameter
of TRTBHDR macro.

Downshift Pressing and releasing the key | SHFT parameter of

once returns to previous case. TRTBHDR macro only.
Pressing and releasing the key
twice or more makes the first
case (CAS1) active.

You can define from one to four locking shift and transient shift keys for each
translation table (case) and one or more downshift keys for almost any keyboard.
However, you cannot define a total of more than 16 downshift and repeat-action
(typematic) keys for any keyboard. In addition, you cannot define either
transient or downshift keys for a keyboard attached to the secondary port of a
4704-2/3.

There are restrictions for using a downshift key on a 3278 or 3279. Also, you
cannot define downshift or transient shift keys for keyboards attached to the
secondary port of a 4704. For more information on these restrictions, refer to the
appropriate device chapter in Part II of this manual and to the descriptions of the
macro instructions in Volume 6 of this programming library.

This key, available on the 4704 model series, provides alternative functions for
certain other keys on the keyboard such as cursor type and display selection, and
unit self-test functions. The 4704-1 sends a translatable scan code of X‘3F’ to
the controller, as do the 4704-2 and 4704-3 when operating in controller tracking
mode; however, translating the ALT key code on these 4704 models can cause
the operator to lose certain display functions and may disconnect the display from
the controller. Translating the X‘3F’ scan code is therefore not recommended.

2-6 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Repeat-Action Key

Reset Key

A repeat-action (typematic) key repeats its function continuously until it is
released. Repeat-action keys can be specified by the TRTBHDR macro; their
specification is optional. Once defined, a repeat-action key remains in effect
regardless of the case being used. You can specify no more than 16 repeat-action
and downshift keys, total. You also cannot define a repeat-action key for a
keyboard attached to the secondary port of a 4704-2/3.

Repeat-action keys are a function of the 3278 and 3279; they may not be defined
by TRTBHDR for those devices. In addition, you cannot define repeat-action
keys for a keyboard attached to the secondary port of a 4704.

A Reset key must be defined for each keyboard by the TRTBHDR macro; it is the
same for all cases of the keyboard. The Reset key can cause the controller to
carry out any of the following actions:

Resetting Error Conditions: When the Check or System Check indicator is on to
indicate purge mode, pressing the Reset key once resets the error condition and
allows normal input to resume from the point of error.

Cancelling Input: When the Check indicator is not on, pressing the Reset key once
resets the current message by discarding all characters entered since the last EOM
or EOF character; the characters are changed to blanks (a X‘40’) in the
application program’s segment, and any tracking of the characters (described
below) is erased from the display component.

Sending Attention: Pressing the Reset key twice for an active station assigned to
LDA 0 sends attention to the controller.

The application program detects the attention by testing the attention indicator
(SMSIND). The controller then takes appropriate action. It does not end the
transaction because unpredictable results can occur; however, attention does
cause the controller to cancel some wait conditions if data transfer has not yet
started because the length of these conditions is unlimited.

The controller ends a keyboard, 3614/3624, or host READ WAIT operation and
indicates the abnormal read operation ending in the condition and status codes.
Attention causes the controller to also cancel a write wait (intervention required)
condition for a printer or a check wait condition for the magnetic stripe
reader/encoder (although the reader/encoder remains ready to encode a stripe
unless reset by the application program).

If the controller detects the attention after data transfer begins, the wait operation
is not cancelled since it is now a limited (conditional) wait. This removes the
need for unnecessary application program processing.

Logging On the System Monitor: Pressing the Reset key three successive times
causes the idle station to try logging on the system monitor facility. If the system
monitor facility is unavailable, the Check light comes on; otherwise, a logon
message appears on the display to indicate that the monitor is operating.

Chapter 2. Programming for Displays and Keyboards 2-7

Shifting Case: Depending on the configuration of the terminal, pressing the Reset
key can cause the terminal to return to case 1 from another case. If the terminal’s
configuration macro specifies the NSCC option parameter, the terminal remains
in the current case when the Reset key is pressed.

Examples of Reading From The Keyboard

Example 1. EOM Keys and EOM/EOF Set Selection Mask

The keys on the 30-key numeric 3604 keyboard (see Figure 2-1) could be defined
by specifying the TRTBHDR and INTRTBL macros as follows:

CALC 03 04 05

/ D RESET 0B ocC (1]}

MSG 10

1D

+ A ENTER OF 1F 17

8000
HEECEIE
FHEEEE

0000
(DHOE)
DAL

Figure 2-1. 3604 Numeric Keyboard

KYBD TRTBHDR CANCEL=0D, INTRTBL=CASE

CASE INTRTBL (1e,Cc'00'),(OE,C'."),(OF,C"'+"' ,EOF,X'04"),
(1B,C'-',EQF,X'04"'),(13,C'*' ,EOF,X'04"),
(0OB,C'/',EOF,X'04"'),(03,C'E"',EOM,X'03"),
(1F,C'A' ,EOF,X'01"),(1C'C'B' ,EOF,X'01"),
(14,C'C',EOF,X'01'),(0C,C'D',EOF,X'01"),
(1D,C'F',EOM,X'07'"),(15,C'M' ,EOM,X'07"),
KYBD=4661,CASE=1

Keys 0 through 9 are defined as character keys, and ENTER is defined as an
EOM key in the default translation table for this type of keyboard. RESET, with
scan code 0D, is defined as the Reset key. The double zero and decimal point
keys, with scan codes 1E and OE, are defined as character keys. The +, -, *, and
/ keys, with scan codes OF, 1B, 13, and 0B, are character keys and, depending on
the mask, also EOF keys. CALC, scan code 03, is a character key with the value
C‘&’ and, depending on the mask, also an EOM key. The A, B, C, and D keys,
scan codes 1F, 1C, 14, and 0C, are character keys and, depending on the mask,
also EOF keys. FLD and MSG, scan codes 1D and 15, are character keys with
the values C‘F’ and C‘M’ and also EOM keys.

Also, the EOM/EOF set selection mask could be set initially to X‘01’ by
specifying EOMSET=X‘01’ in the device configuration macro. When the
EOM/EOQOF set selection mask is X‘01’, the A, B, C, and D keys are EOF keys.
When the mask is X‘04’, the +, -, *, and / keys are EOF keys.

2-8 4700 Controller Programming Library, Volume 4: Loop/Device Programming

A transaction involving a credit of 50 and a debit of 100 to a balance of 500 in
account 1234 could be handled in the following different ways:

o Transaction processing by field with EOF field delimiting. could be pressed to
indicate processing by field to the controller application program, which could
set the EOM/EOF set selection mask to X‘01°. The application program
expects each field to be followed by an EOM or EOF. The group of fields
making up a transaction is followed by an ENTER. The following sequence
of keys could be pressed:

1234A500B50C 100D ENTER

The application program would receive the fields as the following separate
messages:

C1234A°
C500B’
cso0C
C‘100D’

The application program would probably read from the keyboard without
tracking, format each field, and write the formatted field to the display
component. (ENTER could be detected as a message with zero message
length and no EOM characters.)

o Transaction processing by field with FLI field delimiting (used only with
fixed-length fields). FLD could indicate processing by field and cause the
EOM/EOF set selection mask to be set to X‘01°. The controller application
program knows the field lengths and uses the FLI rather than an EOM or
EOF to read each field. The group of fields making up a transaction is
followed by an ENTER. The following sequence of keys could be pressed:

12340500+ 0050+0 100 - ENTER

By proper manipulation of the FLI, the application program could receive the
fields as the following separate messages:

Ci1234

C‘0500+’

C0050+’

C‘0100-
The FLI would be set to 4 for the first read operation, which ends when the
fifth key is pressed; the FLI would be 5 for the other read operations, which
end when the sixth key since the last read is pressed. The application program
would anticipate a wrong-length indication after the read operations and

would read the next field from the keyboard. ENTER could be detected as a
message with zero message length and no EOM characters.

Chapter 2. Programming for Displays and Keyboards 2-9

o Transaction processing by message with program-defined field delimiting. MSG
could be pressed to indicate processing by message to the controller
application program, which could set the EOM/EOQOF set selection mask to
X‘02'. The application program expects each group of fields making up a
transaction to be followed by an ENTER.

1234A500B50CT1T0 0D ENTER

The application program would receive the following message containing all
the transaction fields:

C'1234A500B50C100D"

The application program would probably read from the keyboard with
tracking. The application program would use its own delimiters A, B, C, and
D to recognize the fields within the message. (Because ENTER is EOM for
the whole message, it would not have to be detected by the application
program.)

« Adding machine processing. CALC could be pressed to indicate adding
machine processing to the controller application program, which could set the

EOM/EOF set selection mask to X‘04°. The following sequence of keys
could be pressed:

500+50+ 100 -

The application program would receive the fields as the following separate
messages:

C500+’
C50+’
C100~
As each field is received, the application program could perform the

appropriate computation and write it to the display component. FLD or MSG
could be pressed to return to transaction processing.

Example 2. Space, Backspace, Advance, and Repeat-Action Keys

2-10

Repeat-action, space, backspace, and advance keys can be defined for all
keyboards by specifying the TRTBHDR and INTRTBL macros as follows:

KYBD TRTBHDR CANCEL=31, INTRTBL=CASE,TYPA=(40,0E,04)
CASE INTRTBL (04,ADVAN),KYBD=47US62, CASE=1

The spacebar, with scan code 40, is defined as X‘40’ and the backspace key, with
scan code OE, is defined as BKSP in the detault translation table 1or this type of
keyboard. The key with scan code 04 is defined to be an advance key. All three
keys are defined to be repeat-action keys.

4700 Controller Programming Library, Volume 4: Loop/Device Programming

The advance and backspace keys change the position for the next character in the
application program’s segment and (if tracking is done) on the screen. When
EOM is pressed, any characters at or past the current character position are not
included in the message read by the controller application program.

If the application program’s segment contains the following:

X'FOF9F9F9F9F9F9'

and keys were pressed in the following sequence:

1 3 2 ADVAN A B C

the segment would then contain:

X'F1F3F2F9C1C2C3"'

and the screen would display:

1329ABC

If keys were then pressed in the following sequence:

BKSP BKSP BKSP BKSP BKSP BKSP 2 3

the segment would contain:

X'F1F2F3FoC1C2C3’

and the screen would display:

1239ABC
If an EOM Kkey is then pressed, the application program receives the following
message in the segment:

X'F1F2F3"'
Example 3. Shift and Downshift Keys

A translation table with two shift cases could be defined for an alphameric 4704
keyboard by specifying the TRTBHDR and INTRTBL macros as follows:

KYBD TRTBHDR CANCEL=31, INTRTBL=(CASE1, CASE2),SHFT=(30,3D)

CASE1 INTRTBL (30,CAS2),(3D,CAS2),(20,CAS2),...,
KYBD=47US112,CASE=1

CASE2 INTRTBL (20,CAS1),KYBD=47US112,CASE=2

The keys with scan codes 30 and 3D are transient shift keys in CASE1 and
downshift keys in CASE2; they are defined in both the TRTBHDR and
INTRTBL macro instructions for CASE1. The key with scan code 20 is defined
as a locking shift key for CASE2. a

Chapter 2. Programming for Displays and Keyboards 2~11

Write Operations

Character Translation

Initially, CASE1 is in effect for the keyboard (that is, scan codes are translated
using the translation table associated with CASE1). While key 30 or 3D is
pressed, CASE2 is in effect; when the key is released, CASE1 is back in effect.
When key 20 is pressed, CASE2 is in effect and remains in effect until key 30 or
3D is pressed and released. In the CASE2 translation table, keys 30 and 3D are
defined as shift keys to CASE2; pressing the key causes no operation, but
releasing the key causes a downshift. For CASE2, these keys could have been
defined as a NOOP or data key with the same effect. The shift and downshift
keys in this example allow the keyboard to be shifted in the same way a normal
typewriter is shifted; key 20 is the locking shift key and keys 30 and 3D are the
transient shift keys.

The controller application program writes data to the display component by
issuing LWRITE or WRTI instructions. LWRITE is used for data characters or
control characters or both; WRTI is used primarily for control characters, since
only one or two bytes can be written. The outgoing data is translated and sent to
the display component by the controller, starting at the secondary field pointer
(SFP) and continuing up to (but not including) the primary field point (PFP).
The controller application program manages the screen (indicates character
positions and writes multiple lines) by preceding or embedding control characters
that cause the controller to perform the appropriate control actions.

The outgoing data must not be modified until the write operation is complete. An
LCHECK instruction or a second LWRITE or WRTI instruction (using another
buffer) should be issued to the same display component, so that the controller
application program waits until the write operation has been completed and status
has been stored. The WAIT operand could also be used, immediately causing a
similar wait with no further processing.

The controller application program should check the condition code and (if the
code is X‘02’) the status bits before processing further. (Appendix A lists the
status bits with suggested actions.) The condition code (in SMSCCD) can be
tested by a conditional branch instruction. If the write operation did not complete
normally, status bits in SMSDST indicate the error (if bit 3 of SMSDST is 1, the
status bits are for a prior write operation, and the current operation was not
initiated).

Write operations to the display component and read operations from the keyboard
may affect one another, because of their interaction on the loop. Data written
back to the display by an LREAD TRACK issued to the keyboard displays more
slowly than display data written by a write operation; data is also displayed at a
slower speed if keys are being pressed during a write operation.

The EBCDIC characters that make up the message written by your application
program represent data to be displayed, or are control commands that cause
appropriate actions to be taken.

2-12 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Screen Management

EBCDIC characters with a value in the range X‘00’ to X‘3F’, are control
characters; characters in the range X‘40’ to X‘FF’ are data characters. Except
during a transparent write operation, the controller translates data characters
using the translation table created for the display component by the OUTRTBL
configuration macro instruction. If the data character is not defined in the
translation table or the control character is invalid for that particular display, a
translation error occurs. During a transparent write operation, the controller
sends that data to the display without translation.

The standard translation tables for the specific devices are shown in the device
chapters. These tables define values for all of the standard EBCDIC characters.
You can change table entries by specifying the hexadecimal value of the EBCDIC
character and the decimal table position of the character you want the
hexadecimal value to represent; this is done on the OUTRTBL macro before the
table is generated during configuration. You can define different or additional
EBCDIC values for any of the display characters.

For those output characters requiring accents, your program can either use a
default accent hold table or define its own. Refer to “Translation” on page 2-2
for a description of the processing and requirements for accented characters.

All screen management for the display component is done by the controller
application program using control characters to establish the initial line and
column position for a write or read with tracking operation, to update the position
for subsequent operations, and to erase the screen.

A write or read using tracking changes only the part of the screen involved in the
operation; the rest of the screen remains unchanged. The application program
must explicitly clear any parts of the screen that are to be cleared.

Immediately after a read operation, the message on the screen matches the
message in the application program’s segment; subsequently changing the
contents of the segment does not change the contents of the screen. The
application program must rewrite any messages that are to reflect changes made
to them in the segment. For example, a message may be rewritten before having
the operator make corrections to it. The controller follows each write operation
with an automatic new line control action, unless the message written ends with a
control character. This automatic new line can be suppressed by ending the
message with a skip control character (X‘0400°).

When data is displayed in the last position of a line, the current line position is not
advanced until a subsequent data character is displayed or the position is explicitly
changed by control characters from the controller application program.

The upper left corner of the screen corresponds to line 1, column 1 of an x-line by
y-column matrix. The screen wraps from the bottom line to line 1 and from the
last position to position 1. Absolute screen references are based on line 1
(vertical), and column 1 (horizontal); relative screen references are based on the
current cursor position. A character, line, or column request changes the
character, line, or column relative to the base (the current position).

A character position request greater than the highest advances the position p

character positions relative to the base, where p is the modulus of total positions
on the screen.

Chapter 2. Programming for Displays and Keyboards 2-13

Display Performance

A line position request greater than the maximum number of lines advances the
position q lines relative to the base, where q is the modulus of total lines available.
The horizontal position remains unchanged.

For the 4704, a column request beyond the end of the screen results in the next
position being at the end of the current line.

For the 3604, a column position request greater than the maximum columns on a
line advances the position r lines and s columns relative to the base, where r is the
number of times the maximum column count can be divided into the request and s
is the remainder of the division.

For a write or read with tracking operation, the first character, or the cursor, is
displayed at the current output position for the display component.

A parameter of the device configuration macro allows specification of cursor
operations: always present, not used, or present only during a read operation.

Data written on the display can be positioned using control bytes. Consider these
control bytes when the application program is designed. The control bytes are
sent out in series with the data bytes and can affect the response and elapsed time
of a transaction.

When control characters do not appear at the end of data in the application
program’s segment, a ‘“‘new line” control action will be assumed. Two bytes will
be added to the data sent over the loop to the terminal. This control action can be
suppressed by adding a skip control character (X‘0400’) to the segment data.

To determine the actual number of bytes to be sent over the loop, you must know
both the current screen position and the new screen position desired. Vertical and
horizontal movement is accomplished by separate commands to the display
screen. These commands are of the following types:

1. Vertical or horizontal movement--two bytes for each.

2. FErase--two bytes for every 255 bytes or fraction thereof. Erase advances the
cursor position, and no explicit position need be sent to the display.

3. FErase and restore cursor--four or six bytes, a combination of 1 and 2 above.
Erase advances the cursor, and a “position cursor” restores it to the original
position.

The actual number of commands required to accomplish a position change is
found by computing the difference between the current position and the new
position, and then eliminating those commands not causing a position movement.
For example, no horizontal position command is required if the current and new
column positions are the same.

There are two modes of transferring data to a display on the loop: echo mode and
redundant mode. Echo mode transfers data at the rate assigned to the terminal
(at two data bytes per slot). Redundant mode speed is one half the assigned
speed (each data byte is duplicated and goes to the terminal in one slot).

2-14 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Redundant mode is automatically selected if the keyboard is being read at the
time the application program issues an LWRITE to the display. This allows input
while output is in progress.

Redundant mode is also used to transfer data to the display as the result of an
LREAD with tracking.

If field processing (multiple LREADs for a single keyboard message) is used, and
LWRITES to the display are issued between fields, it is possible to overrun the
keyboard buffer. An EOM character causes the keyboard to leave the read
selected state. An EOF (end-of-field) character causes the data to be passed to
the application program’s segment but leaves the keyboard read selected. The
terminal remains in this state for 3 seconds or until an EOM character is sent from
the terminal.

Examples of Display Control

Example 1. Character Translation

The display characters [and] could have the values X*70” and X‘71’ defined for
them (in addition to their standard values X‘C0’ and X‘D0’) in the output
translation table for the display component by specifying the OUTRTBL macro as
follows:

DISP OUTRTBL (91,'70'),(93,'71"'),DEVICE=3604,CHARSET=175

The characters [[3604 KD]] could then be displayed beginning at line 1, column
1 by writing the following message to the display component:

X'0C 70 CO F3 Fo6 FO F4 40 D2 C4 71 DO'

X‘0C’ is the new page control character. X“70’ and X‘C0’ are both defined as the
[display character, and X‘71” and X‘DO0’ are both the] character.

The display character $ could have the value X‘5B’ defined for it by specifying
the OUTRTBL macro as follows:

DISP OUTRTBL (36,X'5B'),DEVICE=3604,CHARSET=175

The characters ($ 3604 KD $) could then be displayed beginning at line 1,
column 1 by writing the following message:

X'OC4D5BF3F6F0F440D2C45B5D

The same characters could be displayed without defining a value for the $
character by making use of the transparent write in writing the following message:

X'0C4D350124F3F6F0OF440D2C435015E4D"
X‘35’ is the transparent write control character. X‘01’ indicates that the length of

the transparent write is 1 byte. X‘24’ is the hexadecimal representation of the
position number of the $ display character.

Chapter 2. Programming for Displays and Keyboards 2-15

Example 2. Screen Management

The character K could be displayed at line 4, column 10 and the character D
could be displayed at line 5, column 10 by writing the following message to the
display component:

X'0C34040434000AD2340C013408EFC4 "

X‘0C’ is the new page control character; X‘34’ is the position control character.
The characters X‘0404’ are the flag and positioning bytes for absolute vertical
positioning to line 4; X‘000A’, the bytes for absolute horizontal positioning to
column 10; X‘0C01’, the flag and positioning bytes for relative vertical
positioning from line 4 to line 5; X‘O8EF’, the bytes for relative horizontal
positioning from line 5, column 11 to line 5, column 10.

The characters [3604 KD] could be written on one line by making use of new
line suppression in writing the following two messages:

X'OCCOF3F6F0F4400400'
X'D2C4D0"

X‘0400’ is the skip control character sequence, which suppresses the new line
control action that would otherwise be performed by the controller.

Magnetic Stripe Reader and Reader/Encoder

The magnetic stripe reader and reader/encoder are special features of the
keyboard display. The magnetic stripe reader is read only; however, data is both
read and written to the reader/encoder. The application program and the
controller operate the magnetic stripe reader as an extension of the keyboard; the
magnetic stripe encoder is handled separately. See the specific keyboard display
chapters in Part II for detailed information about attaching magnetic devices.

The magnetic stripe reader/encoder has two operating states: read state and
encode state. Read state, when the reader is ready to read a magnetic stripe, is
the normal state. Encode state exists after the application program has issued a
successful LWRITE instruction and the encoder is ready to encode a magnetic
stripe. While the reader/encoder is in encode state, an indicator is on to notify
the operator. (When configuring a 3604, specify this indicator in the DEV3604
device configuration macro.) The MSTRTBL configuration macro defines the
input and output translation tables for the magnetic stripe reader/encoder.

When a document with a magnetic stripe is passed through the reader/encoder,
the reader reads the stripe data if the device is in read state, and the encoder
writes encoded data on the stripe in encode state. The reader/encoder returns
from the encode state to read state after a document has been successfully
written. After an unsuccessful encoding operation, the reader/encoder remains
ready to encode until one of the following occurs:

An encode operation is successful.
The user presses the ALT and Reset keys on the associated keyboard.
The application program writes a message that has a reset control character

(X‘0C’) as the first byte (any other message characters are ignored).

2~16 4700 Controller Programming Library, Volume 4: Loop/Device Programming

You can find more information about the 4704 magnetic devices in
Chapter 1, “General Terminal and Device Programming.”

Description of The Magnetic Stripe

The IBM standard magnetic stripe used with the magnetic stripe reader/encoder
is 12.7 mm (0.5 in.) wide. The IBM Model 100 magnetic stripe reader reads
magnetic stripe data encoded at a density of 75 bits-per-inch (75-bpi) only; this is
the American Banking Association (ABA) standard. The IBM Model 600 reader
and Model 200 reader/encoder read data encoded at either 75 or 210 bpi. The
IBM Model 200 reader/encoder encodes data at 210 bits per inch. You can use
either the Model 600 reader or Model 200 reader/encoder to read data encoded
at 210 bpi. You can use any of the 4700-attached magnetic stripe devices to read
data encoded by another 75-bpi encoder on the ABA track of an American
National Standard stripe.

The Model 200 encoder writes the same data twice on the magnetic stripe. If the
encoder fails to write both times successfully, status is returned to the controller
application program and the operation ends. If, during read operation, the reader
reads the data correctly at least once, the operation is considered successful.
Figure 2-2 shows the magnetic stripe used with the reader/encoder and the logical
placement of data on the stripe.

1-&
92.2 mm\
(3.63 in.);
Passbook —d Magnetic Stripe _ _ 1 2"7 mm
BA Fe BA Fe (0.5 in.)
Py '
6.35 mm)< / \\ / —
(0.25 in.)
2.36 mm
(0.093 in.)

data [C]

Figure 2-2. The Reader/Encoder Magnetic Stripe

Magnetic stripes on adhesive backing are available from IBM. You can use either
these stripes (IBM PN 428650) or their equivalent. In either case, attach the
stripes according to Figure 2-2, or the instructions provided with the stripes.

A “Mr” size (CR 80) plastic card with an American National Standard stripe can
be used by tellers or branch supervisors to identify themselves to the controller
application program. If these cards are encoded by the magnetic stripe encoder,
they are limited to 36 bytes of data including the X‘BA’ that precedes the optional
data and the X‘F’ or X‘C’ and LRC characters that follow the optional data.

Chapter 2. Programming for Displays and Keyboards 2-17

Reading Magnetic Stripe Data

The controller application program reads data from the magnetic stripe
reader/encoder by issuing LREAD instructions to the associated keyboard
component. Data from the magnetic stripe and from the keyboard can be in the
same message, or data from the magnetic stripe can be in a separate message.

The data on a magnetic stripe is in the 4-bit American Banking Association
(ABA) standard code or the 4-bit IBM Specifications code, and has the following
format:

B A 1-36 characters (0-9, D, or E) F or CLRC

Stripes always start with B which is the start-of-stripe (SOS) character. An A is
always included as the second character of magnetic stripes encoded in the IBM
code, but is not included in the ABA code. Either C or F may be used as the
end-of-stripe (EOS) character. The longitudinal redundancy check (LRC) tests
the integrity of the stripe data. The controller translates each 4-bit code, between
EOS and SOS inclusively, and places the translated values in the application
programs segment. Default magnetic stripe data input translation tables are
generated, and optionally modified, by the MSTRTBL configuration macro.

In the default MSTRTBL translation table, (Figure 2-3) B, A, and F have no
assigned EBCDIC value, so no corresponding value is placed in the application
program’s segment. Note the difference between the two EOS characters. C by
default is an end-of-message (EOM) character that, when encountered during an
LREAD operation, ends the operation the same way that pressing the EOM key
does when reading from the keyboard. F by default is not an EOM; therefore,
additional data can be entered from the keyboard or magnetic stripe before
LREAD ends. C also has a default output value (X“7C’) which appears in the
application program’s segment. This value can be used by the application program
to indicate that the data came from the reader/encoder instead of the keyboard.

EID values may also be defined. They act as EOM indicators, but also return the
character value in SMSEID. The EOM length (SMSECT) will be 0. Use the
MSTRTBL macro to define EID.

2-18 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Encoding Operations

Character: EBCDIC: ABA Code: Meaning:

0 X‘FO’ 0 Numeric
1 XF1’ 1 Numeric
2 XF2 2 Numeric
3 X‘F3’ 3 Numeric
4 XF4 4 Numeric
5 X‘F5’ 5 Numeric
6 X‘F6’ 6 Numeric
7 XF7’ 7 Numeric
8 X‘F8’ 8 Numeric
9 X‘F9’ 9 Numeric
A First four bits after SOS
B Start of stripe (SOS)
X7 C End of stripe and end of message
X7D’ D Field separator
= XTE’ E (Undefined)
F End of stripe (EOS)

Figure 2-3. Corresponding EBCDIC and ABA Codes for the Reader/Encoder Default Translation
Tables

Encoding a magnetic stripe involves two steps. A message is written to the buffer
of the magnetic stripe reader/encoder, placing the reader/encoder in encode state
and lighting an indicator. Then the magnetic stripe on a document is encoded by
passing the stripe through the reader/encoder, returning the reader/encoder to
read state.

The controller application program writes data to the magnetic stripe
reader/encoder by issuing LWRITE instructions to the reader/encoder. One
message can contain from one to 36 EBCDIC characters. The controller
translates the EBCDIC characters into the four-bit ABA codes and places the
ABA codes BA in front and the 4-bit LRC in back (that is, following the EOS
code). The longest translated message is therefore 20 bytes long. Use the
MSTRTBL macro to define and modify the translation table.

If a reset control character (X‘0C’) is the first EBCDIC character encountered
while translating the message, the controller ignores the rest of the message and
simply sends a command that causes the reader/encoder to be returned to read
state and the indicator to be turned off. While translating, the first EBCDIC
character encountered that translates into an end of stripe code (C or F) causes
the controller to put the code (C or F) into the translated message and stop
translation. If no EBCDIC character is encountered that translates intc an EOS
code, the controller puts F into the translated message for the EOS code.

Chapter 2. Programming for Displays and Keyboards 2-19

PIN Keypad

After an LWRITE instruction has been issued, the controller application program
should issue an LCHECK instruction to the reader/encoder to wait for
completion of the encoding operation. (The application program should not issue
an LEXIT instruction before the encoding operation is completed because the
station waits indefinitely until the reader/encoder is reset to read state by having
a document passed through it.) After completion, the application program should
check the condition code by a conditional branch instruction and. if an error
occurred (indicated by a code of X‘02”), check the status bits. If the operator
pressed the Reset key twice to signal an attention (indicated by an attention bit in
SMSIND), the application program should reset the reader/encoder to read state
(otherwise, the reader/encoder remains in encode state, and a magnetic stripe
might be encoded inadvertently or incorrectly).

Note: To avoid conflicts in the device, the reset (X‘0C’) should be issued only
when the operator has indicated that the encode operation should be ended.

The PIN (personal identification number) keypad is a small keyboard that the
customer uses to enter a PIN for identification during a transaction.

The application program enables the PIN keypad by switching on programmable
indicator 3 using the SIGNAL instruction. The terminal places a X‘7F’ in the
data stream, indicating an unencrypted keypad (a X'7E’ is inserted for an
encrypted keypad). As the customer enters data, each scan code is sent to the
controller. If the customer makes an error, the field can be restarted using the
Erase key on the PIN keypad. When this occurs, the terminal inserts a X‘OB’ in
the data stream to cause the controller to ignore the preceding data. When the
customer finishes entering the PIN, the terminal adds a X“7F’ signifying the end
of the PIN data. The PIN keypad is set off, allowing no further entry, when:

« The customer presses the End key.

« The operator presses the Reset key once, ending the PIN prematurely.

« The application program turns the PIN keypad off with SIGNAL.

An encrypted PIN keypad sends no data to the controller until the customer
presses the End key, sending all PIN data from X‘7E’ to X‘7F’. If the customer

presses Reset, only the X‘7E’ and X‘7F’ are sent; the PIN keypad read operation
completes successfully, but without recording PIN data.

2-20 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Note that while the PIN keypad is enabled on a 4704, all other keyboard keys
except Reset are disabled. Figure 2-4 shows the default scan codes for all PIN

pads.

Key: EBCDIC: Meaning:

0 XFO’ Numeric

1 X‘F1’ Numeric

2 X‘F2’ Numeric

3 X‘F3 Numeric

4 X‘F4’ Numeric

5 X‘FS’ Numeric

6 X‘F6’ Numeric

7 XFT Numeric

8 XF8’ Numeric

9 X‘F9’ Numeric
XTE’ Beginning of encrypted PIN
X“TF’ Beginning of clear PIN
X“TF’ End of PIN
X5C Fill character for tracking

Figure 2-4. Default PIN Pad Translation Table

Universal Translation Table

When you order a keyboard display, you can choose among many keyboards and
you can assign meanings to the keys through the translation tables. However, if
you do not select a translation table, or when you are using the system monitor, a
standard universal translation table is used. The following pages illustrate the
various keyboards for the 4704, 3604, 3278, and 3279 keyboard displays; they
show the way the universal translation table handles the various keys. Note that
keys A through F are included so you can enter hexadecimal data.

Chapter 2. Programming for Displays and Keyboards 2-21

BC = blink cursor** SP = space

BS = backspace AV = advance/clear key™
FR = free key™ AC = alternate cursor™®
RE = reset CK = clicker**

end of message
return to normal keyboard = 045

RE |BS |SP Al Bl X .

TsTs -To motor bar available

‘: 2 2 ELFIAV *availlableonlywithdiskfilefacilitiesdiskette

**available only with DCA 3278 devices

0 00| EM
45-Key Keyboard

G I I R

N O O O AEE

AL olFl T T T T T 1] 5 e

[el Tl T T T] IBE

[~ SP [em | 0 [oo[em EM
74-Key Keyboard

re | | L L1 T 0 T 1 1 [[]

[T Tel I T T T T T T 1

I O

[el Te] T T T LT 11

[~ne] SP [em |
77-Key Keyboard

Re | [I T T I T T T T T TTT] BS |sP

| I Jel A [[T T T T T AEE

[a]l Jole] T T T T T T T T1 s [5[6

[IxJe] o] [[[[T T 1 1123

Lk | SP [em | 0 |00 [EM EM
92-Key Keyboard

re] T T T T T I T T T T1T BS [SP

I N O B AEE

[Al [olfl T T T T T T1 5 [e

[x[cl el T T T 11 ARE

|~k | SpP [em | 0 |00 [EM EM
94-Key Keyboard

re | | L L L L T 0T 1T T 1T BS[sP

{1 Jel favf [T T 1 1 1 ABE

[a]l Jofe] T [1T I [[T BRE

[Ixfc] I8 [| | | | 1|23

LNKI SP IEM] 0 |00 |em EM

99-Key Keyboard

Figure 2-5.3604 Keyboards with Universal Translation Table

2-22. 4700 Controller Programming Library, Volume 4:

Loop/Device Programming

RE|||BS|||SP A B X
RESET
7 8 9 [} D ||[FR
TEST
4 5 6 E F AV NK
CURSR
1 2 3
BLINK
0 00| [EM EM
RE|][1 2 4 5 6 7 9 00|||FR BS BS|||sP
E AV 7 8 9
[l D F 4 5 6
(] B 1 2 3
NK [sP] EOM o ||| oo]|[eom
SP||| 4 RE||] 1 2 3 4 7 8 9 0 (|]oof[|FR ! BS
9 6 E AV
eml|[o A ol|l]F D 5
BS X c B ! 1 2
718 NK [I sP W] [Em | 00
Figure 2-6.4704 Keyboards with Universal Translation Table
RE 1 2 3 5 6 9 0 00 I BS I SP 9
SP E I 6
BC A D F 3
AC CK X C B BS AV EM
o] - (]
Figure 2-7.3278/3279 Keyboards with Universal Translation Table
Chapter 2. Programming for Displays and Keyboards 2-23

2-24 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Chapter 3. Programming for Printers

This chapter describes the general programming information you need to control
and print data on the printers attached to the 4700 controller. For information
about a particular printer model, refer to the device chapter in Part II.

Translating Data and Handling Control Characters

Printing Operations

The application program sends data and control characters to the printer by
issuing LWRITE or WRTI instructions. The output stream specified by these
instructions can consist of data only, control characters only, or data and control
characters in any combination.

In response to a write instruction, each byte of the output stream is inspected to
determine if it is data or a control character. A data byte is any byte having a
value of X‘40’ or greater. A control character is any byte having a value less than
X‘40’. Within these two categories, not all hexadecimal values are valid.

Data bytes in the output stream are used to find the character representation in
the printer. Control characters are processed according to the rules defined for
each printer.

A data check occurs if an invalid character, data or control, is detected.
Translation is suspended. Any valid data preceding the untranslatable character
is printed, with no carriage return or indexing. Status bits indicating a data check
are set for the application program. By using the residual count in SMSIML, the
application program can find the invalid character in the output segment.

When an LWRITE or WRTI instruction is issued to a printer in the ready state,
the instruction is completed by setting the condition code (SMSCCD) to X‘01’
and setting SMSDST to 0’s. If the motors in the printer are already running, or
the printer does not require start motors, data transmission begins immediately. If
the motors are not running, the motors are started before data transmission
begins.

When an LWRITE or WRTI instruction is issued to a printer in a not-ready state,
or to a printer that appears not ready to the station for which the write instruction
is issued, the instruction is completed by setting the condition code to X‘02’ and
setting intervention-required status in SMSDST. Refer to Appendix D, “Terminal
and Device Status Codes.”

If the instruction is completed with a condition code of X‘01’, the outgoing data
must not be modified until the operation is known to be completed. Issue an
LCHECK to determine if the operation is complete, or issue another LWRITE
instruction using a different output area.

Chapter 3. Programming for Printers 3-1

Sharing of Printers

Types of Sharing

A printer, or a component of a dual-component printer, can be assigned
simultaneously to two different logical work stations so that both stations can
share the component without the need for assigning and reassigning it. Either
component of a 3612 or 3616 can be shared between two stations. The 3610,
3615, 4710, and 3616 journal print station can be shared in the same way as the
document portion of the 3612. The 4720, 3611, and 3616 document print station
can be shared in the same way as the passbook portion of the 3612. The two
stations that share the component are known as the A station and the B station.

A terminal can be shared in this manner if the SHARED=Y operand is coded on
the configuration macro that defines the terminal.

In operation, the first station to refer to a shared component by means of a
DEVPARM, SIGNAL, LWRITE, WRTI, or LCHECK instruction acquires
temporary ownership of that component. When ownership is established in this
manner, if the other station attempts to refer to the same component, the
instruction is deferred until the owning station relinquishes ownership; that is, the
instruction issued to the component by the second station is repetitively retried,
with each retry followed by an implied PAUSE instruction to give other stations a
chance to process. If the attention bit is set in SMSIND when the instruction is
tried, retrying of the instruction is inhibited or interrupted, and the instruction is
completed by setting a condition code of X‘02’ and setting attention status in
SMSDST.

Note: If a passbook component or a document component in cut-forms mode is
to be shared, the terminal must be ordered with the shared terminal feature. This
feature consists of separate START PRINT A and START PRINT B keys.
Pressing one of these keys makes the component ready for its corresponding
station, but makes it appear not ready to the other station.

The 3262 and 3287 cannot be shared between stations.

The shared operation can be either concurrent or nonconcurrent. The type of
sharing desired for a device component can be specified during the controller
configuration by the DEVxxxx configuration macro. It can also be changed
during execution of the controller application program by the DEVPARM
instruction. Only printers in continuous-forms mode can be shared concurrently.
The effect of concurrent sharing is that output from the two stations can be
interleaved on the printer. The messages are printed in the sequence in which the
write operations from both stations occur.

The difference between concurrent and nonconcurrent sharing is the way in
which ownership is relinquished. With concurrent sharing, ownership is implicitly
relinquished at the successful completion of the operation initiated by the owning
station. (Successful completion means that the operation was completed with
zero status.) If the operation results in any error status, ownership is retained
until the owning station receives that status through another instruction referring
to the component, or until the owning station explicitly relinquishes ownership by
issuing an ASSIGN or an LEXIT instruction. If an owning station explicitly
relinquishes ownership without receiving its error status, that status is returned to
the next station that refers to the failing component.

3-2 4700 Controller Programming Library, Volume 4: Loop/Device Programming

With nonconcurrent sharing, ownership must be explicitly relinquished by the
owning station by the ASSIGN or LEXIT instruction. Operating with
nonconcurrent sharing enables a station to have the exclusive use of the
component for the duration of a transaction.

Programming Considerations

Address Sharing

When a printer is shared between two stations, a “race’ condition can develop if
both stations require the use of the printer at the same time. There are two ways
to resolve this condition. The application program can resolve this race, or it can
enable the operator to determine the ‘‘winner” by using the START PRINT keys.

The application program can acquire ownership and indicate the owning station
by using the SIGNAL instruction to turn on one programmable indicator light for
the A4 station and the other light for the B station. By issuing an ASSIGN
instruction with the device address specified as X‘FFFF’, the application program
can determine whether the A4 or B side of the printer is assigned to the logical
work station.

The first station to issue an I/0 instruction such as SIGNAL acquires ownership
of the printer, and the light notifies the operator to insert the correct form.
Following the SIGNAL instruction, the application program issues its first write
instruction. If intervention-required status results, the write instruction can be
issued again to put the station into a wait state until the operator inserts the
document and presses the appropriate START PRINT key. Before issuing an
LEXIT instruction, the station should issue another SIGNAL instruction to turn
the light off. The second station, attempting to turn its light on, defers until the
first station finishes with and releases the printer.

To enable the operator to determine the owning station with the START PRINT
keys, the application program issues its first write instruction to the printer. If
intervention-required status results, the program should issue LCHECK to inhibit
the sharing station from entering a wait state on its next write instruction. The
program then issues an ASSIGN instruction to release ownership, followed by a
PAUSE instruction to give the other station a chance to process. You should then
reattempt the LWRITE instruction.

This programmed loop should include instructions to zero the instruction
threshold count (SMSLTC) to avoid a program check. It can also include a
switch to display a message to the operator notifying him the first time the
intervention-required condition occurs, and can check SMSIND for an attention
in case the operator at a keyboard display pressed Reset to cancel the operation.
When the operator presses one of the START PRINT keys, the program for that
station succeeds in its write instruction attempt and does not reenter the loop.
The other station continues to loop until the operator presses its START PRINT
key.

Some terminals and components can use the same slots in the loop transmission
frame; for example, a 4710 printer can use the same loop slots as the keyboard
display for the same or another work station. For a description of address, or
“slot”, sharing refer to “Sharing Loop Addresses” on page 1-6.

Chapter 3. Programming for Printers ~ 3-3

Printing Chained Data from The Host

Data chaining is a technique for grouping related host link messages together in a
series. Chaining allows the receiving station to stay attached to the sending
program until all related messages are received.

You can write an application program that passes chained data through to a

DCA —attached printer with minimum interruption, allowing the printer to run at
the fastest possible rate. To print a data chain, your program must issue
DEVPARM to indicate the first—in—chain message, and follow it with an
LWRITE to write that message to the printer. Following the first—in—chain
message, issue another DEVPARM to indicate the first middle—in—chain
message, then issue an LWRITE for each of the following middle—in—chain
messages. Issue one final DEVPARM indicating the last—in—chain message
before issuing LWRITE to write that message to the printer.

If you choose not to perform data chaining to the printer, you can first issue a
DEVPARM indicating only—in—chain. All following LWRITES are regarded as
one—block chains.

Printing Structured DCA Fields

3-4

You can print structured DCA level 2 (text) data streams on a DCA printer if you
first specify the correct SNA FM header type with DEVPARM. The printer
supports only one FM header, and rejects all other types. Refer to the printer’s
Component Description manual for a definition of the allowable FM header type.

4700 Controller Programming Library, Volume 4: Loop/Device Programming

Chapter 4. Processing 3270 Data Streams

The 4700/3270 Data Stream Mapping (DATSM) facility is an option for the
controller of a 4700 Finance Communication System. This option allows the use
of existing Systems Network Architecture (SNA) Secondary Logical Unit Type 2
(SLU-2) 3270 host application programs—without change—to interact with
terminals attached to a 4700 system.

To do this, DATSM provides a set of high-level instructions that translate a
stream of output data for a 3270 to an output data stream that devices attached as
part of a 4700 system can process. DATSM can also translate input data from a
4700 terminal to input data from a 3270 terminal.

DATSM therefore permits a 4700 application program to cause a 4700 display to
appear to VTAM or TCAM as, for example, a 3277 or 3278 terminal.
Specifically, the application program uses the SNA and synchronous data link
control (SDLC) link interfaces for SLU-2 communication with the host system.
It is this type of communication that lets the 4700 display appear as an SLU-2
device (such as a 3277 or 3278). Appendix F, “DATSM Sample Program and
Error Codes” shows a sample data stream application program. Refer to this
appendix when the text of this chapter refers to the sample program.

Basic Data Stream Mapping Concepts

The process of data stream mapping consists of the following steps for converting
data from one format to another:

1. Initializing the DATSM control areas (PUTDMS).

2. Obtaining the display-bound data stream.

3. Passing the data stream to DATSM for conversion (PUTFLD).
4. Retrieving the converted data stream from DATSM (GETFLD).

5. Checking status information to determine the next action and normally,
sending the converted data stream on to the display.

6. Retrieving the current field and placing it into the buffer into which the
keyboard data will be read (GETFLD).

7. Reading the keyboard associated with the device and returning the previcusly
retrieved field with the keyboard changes to DATSM (step 6 or step 8 next)
(PUTFLD).

8. Retrieving the converted data stream and sending it to a host program or
processing it in the 4700 controller (GETFLD).

Chapter 4. Processing 3270 Data Streams 4-1

The DATSM Instructions

If the 4700 system configuration includes data stream mapping, an image buffer is
generated during startup for each station using the facility. The size of the image
buffer is defined in the system configuration macros and can be any size, although
for a 3270 data stream application, the buffer typically consists of 1920 positions
arranged in 24 rows by 80 columns. The image buffers are allocated from the
upper end of user storage. If the configuration includes extended user storage, the
first image buffers are allocated in the extended storage. Additionally, a table
called the field control table (FCT) is generated in user storage (not accessible by
the controller application program).

After initialization, the application program reads display-bound data from the
communication line (alternatively, this data can be created by the 4700
application program), and passes the data to the data stream mapping facility
(DATSM) using a 4700 application instruction (PUTFLD). The instruction
causes the data to be placed in the DATSM image buffer in the same arrangement
as it would have taken on the originally intended display screen, with attribute
positions identified by a start field code, X‘1D’. The instruction also causes the
attributes related to the data to be recorded in the FCT.

After the application program has presented all display-bound data to DATSM, it
can retrieve the data using another instruction (GETFLD). Execution of this
instruction causes the SNA character string (SCS) data stream for the
4700-attached display to be placed in a user segment. The application program
should then use the appropriate I/0 instructions to write this data to the display.

The user’s I/O buffer can be shorter than the SCS data stream returned by the
instruction. In this case, the user should write the data in the buffer to the display
and reissue the instruction. This continues until all data is written to the display.

For maximum response time, the user’s I/O buffer should be large enough to
contain the longest data stream that will be processed. Hence, the user must
weigh storage requirements against requirements of display interaction.

In the same way that display-bound data is placed in the image buffer,
processor-bound data (that is, data read from the 4700 display) is placed in the
image buffer. Subsequently, an application program can remove selected data
from the image buffer for processing in a controller application program or for
transmission to a host computer.

An additional function, ‘“windows”, allows a display-bound data stream intended

for a specific display screen size to be mapped to the 4700-attached display screen
of a different size.

The DATSM instructions are:

PUTDMS initializes the field control table.

GETDMS retrieves information from the field control table.

PUTFLD passes data streams to DATSM for mapping into the image buffer.

GETFLD reads data streams from the DATSM image buffer.

4-2 4700 Controller Programming Library, Volume 4: Loop/Device Programming

DATSM Terminology

These instructions perform all communication between the application program
and DATSM. A detailed description of each instruction is in Chapter 5, “4700
Loop and DCA Assembler Instructions.”

You use the PUTDMS instruction in the 4700 application program to move
mapping information from the DMS into the FCT header. You use the GETDMS
instruction to reconstruct the DMS from the appropriate FCT fields at a location
you define.

You use the PUTFLD and GETFLD instructions to move the data streams to and
from DATSM, as described in the rest of this chapter.

Other terms that are essential to an understanding of DATSM follow:
Buffered operation

Transferring data between the controller and the display by allowing the image
buffer, when full, to steal a write cycle from normal controller I/O operation.
Unbuffered operation is the same as normal 3270 operation.

DMS Header

The first 16 bytes of the DMS. The content can change with each use of a
DATSM instruction.

Keytracking

The 4704-2/-3, when operating in local tracking mode, processes input data
within the terminal. This is called local tracking. When operating in unbuffered
or 3270 compatibility mode, input data is rewritten to the display through the
controller. This is called controller tracking.

Window

A rectangular area in the image buffer defined to be the size of the data area to
be displayed. The window must be smaller than or equal to the image buffer;
otherwise, status is returned. The dimensions of the window must also be smaller
than or equal to the corresponding dimensions of the actual display; otherwise,
the displayed image appears distorted.

FLI

Field length indicator for a segment.

PFP

Primary field pointer for a segment.

SFP

Secondary field pointer for a segment.

Chapter 4. Processing 3270 Data Streams 4-3

DATSM Control Areas

Original Display and Actual Display

The original display is the display for which the display-bound data stream was
originally made by the host application (or a 4700 application program that
generates display-bound data streams). The actual display refers to the terminal
with which the controller application program is actually communicating. If the
program is receiving a data stream from a 3270 oriented host application program
and sending the converted data stream to a 4704 terminal, for example, the 3270
is the original display and the 4704 is the actual display.

Actual Display Coordinates

The content of a field that shows the location of the top left character of the
“window” area on the actual device screen.

Image Buffer Window Coordinates

The content of a field that shows the location of the top left character of the
“window” area in the image buffer.

Presentation Position Field (PPF)

The row-column address in the image buffer that corresponds to the cursor
position. This character is the target location for PUTFLD operations and the
source location for GETFLD operations. When the controller application
program issues a PUTFLD instruction, DATSM moves the data in the data buffer
into the image buffer beginning at the row and column position indicated by the
presentation position field. When the controller application program issues a
GETFLD instruction to get the current field, DATSM moves the image buffer
field designated by the PPF into the user’s data buffer.

Three separate control areas are required for each 4700 work station using the
DATSM instructions:

1. DATSM machine segment (DMS)
2. DATSM image buffer
3. Field control table (FCT)

The DATSM machine segment (DMS) is a communication area used by both the
4700 application program and the DATSM instructions to pass mapping, control,
and status information. There is one image buffer for each logical work station
that uses DATSM. The image buffer resides in user storage and is not directly
accessible to the controller application program. The PUTFLD instruction places
the data stream (from the A1, B1, and C2 flows -- see Figure 4-1 on page 4-6)
into the image buffer in the same arrangement as it would have taken on the
originally intended display screen with the attribute positions identified by a start
field character, X‘1D’. With the GETFLD instruction, you can retrieve fields of
data one at a time, all at once, or all of a given class.

4-4 4700 Controller Programming Library, Volume 4: Loop/Device Programming

DATSM Data Streams

DATSM Operation Modes

The image buffer is an area where DATSM lays out, or “maps” data stream data
before displaying it at or after receiving it from the terminal. You must define the
necessary storage for one or more image buffers. You can define a single image
buffer for all stations, separate image buffers for each station, or both. You must
define a separate buffer for each station that processes 3270 data streams in
controller tracking mode. Refer to “Using DATSM” on page 4-15 for more
information on specifying the image buffers.

The field control table (FCT) is a control block used by the DATSM instructions
to control data stream mapping and conversion. The controller generates the
FCT for a work station during CPGEN if the STATION configuration macro
instruction specifies the DATSM parameter. Your program initializes the FCT by
issuing the DATSM instruction, PUTDMS. The FCT itself is an internal control
table for DATSM,; you cannot control its contents from your program. The
DATSM instructions control the FCT contents during program operation as it
processes the data from the data streams and the image buffer.

A data stream, as input to or output from DATSM, is either a mixture of
commands, orders, and data that produces an image on a display screen, or is a
mixture of addresses and data that is returned to the application program from a
display device. Each time a 4700 application program requests a data stream
mapping by DATSM, it must specify whether the data stream is a 3270 or SCS
data stream. It must also specify whether the destination of the data stream is a
display or a processor.

DATSM operates in several modes. They are:
« Base attribute mode

« Kanji mode

« Extended attribute mode, including APL

o Local tracking mode (buffered operation)

Base attribute mode is the default. In this mode, no additional attribute buffer is
required. Kanji mode supports the Kanji data stream, and extended attribute
mode supports APL and extended color and highlighting. You must specify any
mode other than base mode in the PUTDMS instruction before you process data
streams.

As far as the physical properties of the 4700 terminal permit, DATSM emulates
the field attributes of the 3270 terminal in the 4700 data stream that it prepares.
You can use the 4704-2/-3 in either base mode or as in local tracking mode. In
base mode, you can program the 4704-2/3 as a 3278. In local tracking mode,
keyboard data is written directly to the display rather than through the controller.

Chapter 4. Processing 3270 Data Streams ~ 4-5

Data Stream Flows

4-6

Figure 4-1 shows the possible data transfers between the user buffers and the
image buffer.

C1

c2

D1

4700
Display/
Keyboard
Terminal

4700
Host Controller
Computer Al PF GF
SCS o] - -
Oriented < .
A2 GF Image PF
Data Buffer Data
Buffer (Screen Buffer
B1 . PF Image)
j — -
Host T o
Computer -
3270 B2 GF GF
Oriented

*Defined in user segment space
GF= the GETFLD instruction
PF = the PUTFLD instruction

Figure 4-1. Data Flow Diagram

Printer

The labels for the boxes show the possible sources and destinations of data
processed by the data stream mapping instructions. The arrows between the
boxes show the direction of data flow. The labels for the arrows between the
4700 controller and the computer and terminals are used as reference keys in
other sections of this publication.

4700 Controller Programming Library, Volume 4: Loop/Device Programming

Data Stream Types

A display-bound data stream is a data stream whose destination is a display device,
regardless of whether the data stream originates from a host application program
or from the 4700 application program.

A processor-bound data stream originates from a display device and whose
destination is a host application program or a 4700 application program.

A 3270 data stream is a series of commands, orders, addresses, attribute
characters, and data that is exchanged between an application program and a
remote 3270 display (in DATSM, the image buffer). This data stream is defined
in the 3270 Information Display System Component Description, GA27-2749.

An SCS data stream is a series of orders and data that is exchanged between an
application program and a remote SCS display (for DATSM, the image buffer).

The data streams used for 4700 displays are a subset of SCS defined in the SNA
publications.

A user-defined data stream is a subset of SCS. It is a mixture of character data
and user defined delimiters. Such a data stream can be used only after fields have
been defined by use of one of the preceding types of data stream.

A display-bound data stream can be either a 3270 or SCS data stream when it is
the input to DATSM but is always an SCS data stream when retrieved from
DATSM. Conversely a processor-bound data stream is always an SCS data
stream when it is the input to DATSM but can be either a 3270 or SCS data
stream when retrieved from DATSM. Figure 4-1 on page 4-6 illustrates
processor-bound and display-bound flows.

Input Data Streams: The following data streams can be the input to DATSM for
mapping into the station image buffer when an application program issues a
PUTFLD instruction with the appropriate control information initialized in the
DMS (see the flow diagram in Figure 4-1). PUTFLD is the only instruction by
which data streams can be put into DATSM.

e Al: An SCS display-bound data stream received from a host computer or a
4700 application program or an SCS display-bound data stream that contains
user-defined field delimiters received from a host computer or a 4700
application program.

« Bl1: A 3270 display-bound data stream received from a host computer or a
4700 application program. '

e C2: One or more SCS processor-bound fields of data received from a 4700
display.

Chapter 4. Processing 3270 Data Streams ~ 4-7

Output Data Streams: The following data streams can be retrieved from the station
image buffer and placed into a user’s segment when an application program issues
the DATSM GETFLD instruction (see the flow diagram in Figure 4-1). The
appropriate control information must be specified in the DMS. A data field can
also be placed in a user’s data buffer because of PUTFLD instruction processing.
For a more complete explanation of this function, see the sections titled
“Emulation of 3270 Keyboard” and “Tab Key Emulation”.

e A2: An SCS processor-bound data stream or a data stream with fields
separated by user-defined delimiters for transfer to a host computer or for use
by a 4700 application program.

o B2: A 3270 processor-bound data stream for transfer to a host computer or
for use by a 4700 application program.

+ CI1: An SCS display-bound data stream for transmission to a 4700 display.

e« DI1: A printer-bound data stream for transmission to a 4700 printer.

The Field Control Table (FCT)

The FCT is a control block used by the DATSM instructions to control the
process of data stream mapping and conversion. There is one FCT for each
logical work station using the DATSM instructions. The FCT is generated during
the CPGEN process by specifying the DATSM operand on the STATION
configuration macro. It is initialized with mapping specifications when the
DATSM PUTDMS instruction is issued by the controller application program for
a logical work station. The FCT resides in user storage not directly accessible to
the controller application program.

The FCT consists of:

« A header that contains work information about the areas and data processed
by the DATSM instructions

o A body that consists of an individual entry for each field defined in the image
buffer

Field Control Table Header

The FCT header contains internal DATSM work pointers, work areas, coordinate
positions, counters, window dimensions, image buffer dimensions, and locations
of several control areas.

The PUTDMS instruction is used by the controller application program to move
mapping information from the DMS into the FCT header. The GETDMS
instruction is used by the controller application program to reconstruct the DMS
at a user-specified location. The reconstruction is made from the appropriate
fields of the FCT. All communication between the controller application program
and DATSM is done using four instructions: PUTDMS, GETDMS, PUTFLD and
GETFLD.

4-8 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Field Control Table Entries

DATSM Machine Segment

Each data field defined in the image buffer is described by a corresponding entry
in the FCT body. An entry is generated by the PUTFLD instruction when it
processes a data stream; either 3270 or SCS, when the control bit in the DMS is
set to select a display-bound data stream. The entry contains:

» The location in the image buffer of the first byte of the field in row, column
form

« The length of the field
« A flag byte
« An attribute byte.

The length of the field is set by the PUTFLD instruction by computing the
number of bytes between the beginning locations of adjacent fields.

The DATSM machine segment (DMS) is a communication area consisting of a
header and body. The DMS is used by both the application program and the
DATSM instructions to pass mapping, control, and status information.

There is one DMS (at a given time) for each work station that uses DATSM. The
DMS resides in user storage in a segment selected by the user (segment 14 is
invalid). Its location is passed to DATSM in the segment PFP when the
application program initializes the control areas with the PUTDMS instruction.
Figure 4-2 is a diagram of the DMS.

If a DATSM instruction is issued before PUTDMS has established the address of
the DMS, a program check with code 11 (X‘OB’) results. Since the address of the
DMS is stored each time PUTDMS is issued, the address of the DMS can be
altered dynamically by issuing another PUTDMS.

When GETDMS is issued, a copy of DMS is built by DATSM with all fields filled

in from the values currently held in the FCT. GETDMS does not reconstruct the
DMS header.

Chapter 4. Processing 3270 Data Streams ~ 4-9

10
12
14
16
18
20
22
24
26
28
30
32
34
36

38

(0)

(02)

(04)

(06)

(08)

(OA)

(0C)

(OE)

(10)

(12)

(14)

(16)

(18)

(1A)

(1C)

(1E)

(20)

(22)

(24)

(26)

Control Byte 1

Control Byte 2

Status Byte 1

Status Byte 2

Error Code Byte

SMSEID Value

Print Line Seq

User Delimiter

SMSIML Value

Field Sequence Number

DMSFLG (work state flags)

DMSMOD (Mode Field)

DMS

HEADER

Presentation Position

Actual Display Dimensions

Actual Display Window Coordinates

Image Buffer Window Coordinates

Window Size

Original Display Dimensions

Image Buffer Address

Field Control Table Address *

Reserved

DMS Segment Nr *

DMS Displacement in Segment

*

Reserved

Reserved

DMS

BODY

Figure 4-2. DMS Diagram

Note: These fields provide DATSM information to the 4700 application
programmer for program debugging use.

DMS Header

The DMS header is 16 bytes long. It is used by all the data stream mapping
instructions as a user interface by which the application program communicates
control information, and the instructions return status, sequence and error
information. The general purpose of each byte in the DMS, other than the
second, is the same for all DATSM instructions, but the meanings assigned to the
control and status bits differ for each instruction. Detailed definitions for these
bit assignments are in Chapter 5, “4700 Loop and DCA Assembler
Instructions” with the descriptions of the DATSM instructions.

4-10 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Control Bytes (DMSFLAG)

For all instructions other than GETDMS, both bytes contain flags. See Chapter 5,
“4700 Loop and DCA Assembler Instructions” for separate bit assignments for

all DATSM instructions. In addition, the control flags used to specify parameters
to be transferred from the DMS to the FCT are identified in the descriptions of
the DMS parameter fields given below.

Status Bytes (DMSSTAT)

This field is set by DATSM to show the result of a DATSM instruction execution.
It can suggest the next action that the application program should take. Refer to
the individual instruction descriptions beginning at “DATSM Instructions” on
page 5-43 for the meanings of the status bits for each DATSM instruction.

More than one status bit can be set in DMSSTAT by a single DATSM instruction,
so the order in which you test the status bits is important. Figure 4-3 shows the
recommended order of testing for each DATSM instruction.

DATSM RECOMMENDED
INSTRUCTION: TEST ORDER:

Bit 07
Bit 06
Bit 11
GETFLD Bit 12
Bit 05
Bit 00
Bit 14

GETDMS and Bit 07
PUTDMS Bit 06

Bit 07
Bit 06
Bit 11
Bit 12
Bit 05
PUTFLD Bit 00
Bit 01
Bit 02
Bit 08
Bit 10
Bit 03
Bit 09

Figure 4-3. Recommended DMSSTAT Test Sequences
Error Code (DMSERCD)

This field identifies certain particular error conditions. See error code definitions
in Appendix F, “DATSM Sample Program and Error Codes.”

Chapter 4. Processing 3270 Data Streams 4-11

SMSEID Value (DMSEID)

The EID identifies the interrupting key used for mapping data in the DATSM
image buffer, and as the attention ID (AID) byte for the 3270 data stream
produced by GETFLD on the B2 flow (Figure 4-1 on page 4-6). Your program
must store the SMSEID value in DMSEID after performing an LREAD
instruction.

If SMSEID contains a null character, the operator entered a character into the last
field position, causing an automatic read break. If the resulting null enters the
DMSEID field on the C2 flow, the PUTFLD instruction executes an autoskip or
performs a tab to the right. Otherwise, a null character is invalid in DMSEID. If
DMSEID contains zero on the B2 flow, DATSM replaces it with an AID byte of
X‘60’ (no operator action).

Print Line Sequence Number (DMSLSEQ)

This byte contains a line sequence number set by the application program for
GETFLD to use to retrieve the corresponding row from the image buffer window.
The application program uses this number to retrieve lines of data for the printer.
If the sequence number is zero when the GETFLD instruction is invoked, it is set
to one, and the image buffer access is to row one of the image buffer window.

After each access, the GETFLD instruction increases the line sequence number
by one. When the last line of the window is retrieved, the instruction resets the
line sequence number to zero.

User Delimiter Character (DMSDELM)

This byte is a character defined by the application program to be used for
delimiting each field in the data stream. The data stream must contain no other
orders and can be used only when field characteristics for a buffer image have
been predefined by the application program.

SMSIML Value (DMSIML)

If data is being read from a keyboard and the data received is to be passed to
DATSM, then the SMSIML value must be stored in this field immediately after
the LREAD from the keyboard completes. IML provides the input message
length for mapping of the present cursor position. Note that after the SMSIML
value is saved, it can be changed by other I/O activity.

Field Sequence Number (DMSFSEQ)

The content of this field can be set by the application program to show the next
field to be retrieved. The GETFLD instruction updates this field as follows:

« If this is not a request for the current field (located by the presentation
position field), GETFLD increases this field sequence number by one before
each entry in the FCT is scanned. This sequence number is increased by one
whether the field satisfies the criteria for retrieval or not. Thus DATSM sets
the sequence number to the number of the field last retrieved, except in
requests for every class of field. In that case, the field sequence number is set
to zero when all fields have been retrieved.

4-12 4700 Controller Programming Library, Volume 4: Loop/Device Programming

One exception is when GETFLD is used to access the current field that is
defined by the presentation (cursor) position. In this case, the sequence
number is not used, but is set to the number for the field retrieved.

To step through all the fields of an image, set the field sequence number to
zero, and the application program makes repeated field requests until the
GETFLD instruction returns the “field not found” status.

Work State Flags (DMSFLG)

This field provides work state flags besides those provided in the status flags
bytes. It is a two-byte field with all bits reserved except the following:

+ Bit 1 (DMS byte 12) set to B‘1’ shows that the image buffer is formatted.
Bit 1 set to B‘O’ shows that the image buffer is unformatted.

o Bit 2 (DMS byte 12) set to B‘1’ shows that there is an unprotected area in the
image buffer because one or more unprotected fields have been defined by
use of an appropriate data stream, or the image is unformatted. Bit 2 set to
B‘0’ shows that there is no unprotected area in the image buffer.

« Bit 6 (DMS byte 12) set to B‘1’ shows insert mode. Bit 6 set to B‘0’ shows
normal mode.

Mode Field (DMSMOD)

This field records the operating modes of any 4704 Model 2 or Model 3 attached
to this station. The mode field records whether or not the attached 4704 is
operating in local or controller tracking mode, as well as other states unique to the
DCA-attached 4704.

DMS Body

The DMS body is 24 bytes long and is used primarily by PUTDMS to initialize
and change the mapping specifications in the FCT. The PUTDMS control flags
determine which DMS fields are moved into the FCT. The DMS body also
contains application program debugging aids. This debugging information
[marked by an (*) in Figure 4-2 on page 4-10] is filled in when each GETDMS
instruction is issued. Other fields in the DMS body are left unchanged.

Presentation Position (DMSPPF)

This field contains the presentation position in row, column form. When
PUTDMS is issued, this value is copied into the FCT header. This allows the
user’s programs to adjust the presentation position dynamicaily. Both PUTFLD
and GETFLD set DMSPPF to the current presentation position on instruction

completion.

The control bit is DMSPPFL. The startup default value is row 1, column .

Chapter 4. Processing 3270 Data Streams 4-13

Actual Display Dimensions (DMSACT)

This field contains the dimensions of the actual display in row, column form. This
value can be set by the application program.

The control bit is DMSACTF. The startup default values are the image buffer
dimensions. Example: for 3604, Model 4 (X‘1040’).

Actual Display Window Coordinates (DMSACD)

This field contains the coordinates of the upper left character of the window for
the actual display in row, column form. These window coordinates must fall
within the actual display dimensions. If they do not, status is returned. If the
location specified by this field causes the window area to extend beyond the
boundaries of the image buffer, the image that appears on the display is skewed.

The control bit is DMSACDF. The startup default is row 1, column 1.
Image Buffer Window Coordinates (DMSBCD)

This field contains the coordinates of the upper left character of the window in
the image buffer in row, column form. The coordinates specified must be within
the image buffer or status is returned by DATSM. This value is set by the
application program.

The control bit is DMSBCDEF. The startup default is row 1, column 1. Example:
upper left (X0101°).

Window Size (DMSWIN)

This field contains the window dimensions in row, column form. One window
size is used for both the image buffer and the actual display. The window
specified must be totally within the image buffer, or status is returned.

The window size contained in this field is used in transmitting data between the
image buffer and the display. When transmitting data between the host and the
image buffer, the window size used is coincident with the original device size.

The control bit is DMSWINF. The startup default is equal to the image buffer
dimensions. Example: For the 3604 Model 4, the window size is X‘1040°.

Original Display Dimensions (DMSORG)

This field contains the dimensions of the original display in row, column form.
When PUTDMS is issued, it moves the value for the original device dimensions
from the FCT header into this field of the DMS, because the original device size is
equal to the image buffer. If the original device and image buffer sizes are to be
changed dynamically in response to an erase write alternate command, setting the
control bit for this parameter causes the instruction to replace the values in the
FCT with those from the DMS.

The control bit is DMSORGF. The default is the size of the image buffer
established by the CPGEN. Example: for a 3604 Model 7 the size is X‘1850°.

4-14 4700 Controller Programming Library. Volume 4: Loop/Device Programming

Using DATSM

Image Buffer Address (DMSIBF)

This field contains the true storage location of the image buffer. The image buffer
is accessible to the application program only through the DATSM instructions.
This value (the true storage location of the image buffer) is set by PUTDMS
during initialization so that a programmer will be able to find the image buffer if
he wants to examine it directly using the system monitor.

Field Control Table Address (DMSFCT)

This field contains a halfword address of the FCT. This pointer is not of use to
the application program, but it can be used by the application programmer to find
the FCT during debugging. It is set by PUTDMS during initialization.

DMS Segment Number (DMSDMSEG)

This byte contains the number of the segment in which the DMS is located. The
application programmer can use the value to find the location of the DMS during
debugging. This field is set by PUTDMS and reconstructed by GETDMS in the
specified user area.

DMS Displacement in Segment (DMSDMSPL)
This field contains the displacement of the DMS from the beginning of the
segment in which it is located. This value is an aid when debugging application

programs. This field is set by PUTDMS and reconstructed by GETDMS in the
specified user area.

Before you can use DATSM, you must include the following steps in the
configuration process:

1. Specify “ERTLS=Y" for any 4700 terminal that is to be used with DATSM.
This must be specified in CPGEN DCAnnnn macro instruction.

2. Specify the DSM parameter on the STATION configuration macro instruction
to allocate FCT and image buffer space. DSM determines:

« The largest number of field entries needed at any time in the station’s field
control table (FCT).

« The size of the station’s normal image buffer (in row/column form).

s The size of the station’s alternative image buffer, used with the
“Erase/Write Alternate” command.

e Any required extended attribute buffer.
The image buffer size must be as large as the largest display area to be

processed by DATSM (that is, the target screen size) and must be as large as
the largest display image found in the data streams sent to DATSM.

Chapter 4. Processing 3270 Data Streams 4-15

At CPGEN, the space requirement for FCT is generated. At startup, space is
allocated for the FCT and the image buffer in user storage. The application
program must perform the following steps:

1. Initialize the DMS, FCT, and image buffer. The controller application
program must pass the address of the DMS to DATSM by issuing the
PUTDMS instruction with the segment PFP set to the first byte of the DMS
and the FLI set to its length. If no parameters are to be changed from the
startup defaults, all control bits should be zero.

This initialization step establishes the DMS address in the FCT header. At
this time, you can also set the field and table dimensions and coordinates. If
they are not set, DATSM assumes the original and actual device sizes are
equal to the image buffer. DATSM also assumes all coordinates are 1,1 and
that the window size is equal to the smaller of each of the corresponding
dimensions of either the image buffer or the actual device (if you specified the
latter). The presentation position is set to 1,1 at startup. You can change any
of these values with PUTDMS.

a. The DMS is in the user’s segment; its location is passed to DATSM in the
segment PFP when the application program issues PUTDMS.

b. DATSM saves the DMS location for the station in the FCT and moves the
mapping specifications into the FCT. The field entries in the FCT remain
empty since no data stream fields are mapped at this time.

2. Pass the user’s data stream to DATSM (Flows A1, B1, or C2). After
obtaining the input data stream, the application program must set the
appropriate flags and fields in the DMS header, set the PFP and FLI to find
the data buffer, and issue the PUTFLD instruction:

a. The PUTFLD instruction passes the buffer’s segment number to DATSM.
The segment PFP and FLI give the displacement and length of the input
data stream in the segment.

b. DATSM has the location of the station FCT and therefore the location of
the station image buffer and DMS.

c. DMS gives the mapping specifications: such as SCS or 3270 data stream,
processor or display-bound, treatment for modified data tags and user
flags, presentation position, and field sequence number.

d. PUTFLD arranges, or “maps”’, the DATSM input data stream from the
user’s buffer into the image buffer by coordinating control information
from the instruction, FCT, DMS header and controls imbedded in the
data stream.

e. PUTFLD places status flags (and error codes when applicable) in the
DMS header and returns control to the application program at the next

sequential instruction (the condition code is unchanged).

f. The application program should test the status flags for successful
completion or react to specific status or error conditions.

4-16 4700 Controller Programming Library, Volume 4: Loop/Device Programming

g. The application program can repeat Step 2d on page 4-16 until the full
display or processor image, as required by the program, is mapped into the
image buffer.

h. When PUTFLD executes, it produces a six-byte field entry in the FCT for
each new field that is mapped. This control information is subsequently
used for control of the data retrieval when the GETFLD instruction
executes, or for changing the data if a PUTFLD is issued.

3. Retrieve the data stream from DATSM (Figure 4-1 on page 4-6, Flows A2,
B2, C1, D1). The application program must place appropriate flags and fields
in the station DMS header, provide a receiving buffer of at least 50 bytes in
its segment, set the PFP and FLI, and issue the GETFLD instruction:

a. The GETFLD instruction passes the user’s segment number to DATSM.
The segment PFP and FLI give the displacement and length of the user’s
receiving buffer in the segment.

b. DATSM has the location of the station FCT and therefore the location of
the station image buffer and DMS.

c. The FCT and DMS give the mapping specifications for retrieval: such as
type of data stream, processor or display-bound, window size and
coordinates, presentation position, field sequence number, field attributes.

d. GETFLD does the retrieval of the data stream from the station image
buffer into the user’s buffer by coordinating the control information from
the instruction, FCT (header and field entries in the body), and DMS
header.

e. GETFLD places status flags, and error codes when appropriate, in the
station DMS header and returns control to the controller application
program at the next sequential instruction.

f. The application program should test the status flags for successfui
completion or react to specific status or error conditions.

g. The application program can repeat Step 2e until the fuil display or
processor-bound image as required by its application is retrieved and
processed.

Data Streams

This section provides detailed information about data stream input to and output
from DATSM. Figure 4-1 on page 4-6 shows data flows with DATSM
processing.

Al -- Display-bound SNA Character String (PUTFLD)

The SNA character string (SCS) display-bound data stream is received from the
host or from the controller-resident application program when the DATSM
instructions are being used. Two types of data streams are supported by DATSM:
The first consists of data and the subset of SCS orders that are supported by the
4700. The second consists of data and user-defined field delimiters.

Chapter 4. Processing 3270 Data Streams 4-17

Field Entry Generation

After the display-bound SCS has been either built or received in the user’s data
buffer, the application program issues the PUTFLD instruction to map the data
into the image buffer.

The DMS control bytes must be set by the application program to show the
characteristics of the string:

« SCS display-bound flow
e SCS orders or user delimiters

In processing a data stream, whether it contains SCS orders or user-defined
delimiters, the first byte of data found either at the beginning of the string or
following an order or delimiter is treated by DATSM as the first byte of a field.
All the data from the first byte either to the end of the string or to the next order
or delimiter belong to the same field. If there are no orders or delimiters
interrupting the data characters, the complete string is treated as one field. The
length of a field is determined not by the length of the data, but by the beginning
position of the next field.

DATSM supports attributes in SNA Character Strings when X‘28C0aa’ is found
in the data stream where:

« 28CQ0 is the attribute command and
« aais the 3270 attribute byte.

Such an attribute byte is stored by DATSM in the FCT entry exactly as are the
attribute bytes from 3270 data streams.

The first byte of data following a positioning order is interpreted by DATSM as
the beginning of a field, and an entry is generated in the FCT. Because DATSM
support is field oriented, attribute bytes and positions are generated for each field.
The byte position immediately preceding the first data position in the field is
preempted for that purpose. If two fields of data are placed in the buffer
contiguously, the last byte of the first field will be lost. For this reason, if fields
are to be generated without the use of positioning orders, the last byte of each line
of data should be padded with a blank.

If the attribute command sequence is encountered, its attribute byte is stored in
the FCT entry and the remainder of the data is moved to the image buffer. The
attribute byte is subsequently interpreted as a 3270 attribute byte.

If the data stream consists only of fields and user-defined delimiters, FCT entries
for the transmitted fields must be generated before the application program
presents this data stream to DATSM for processing. Thus the application program
must previously present to DATSM another data stream containing orders for
field definition before the data stream with user delimiters can be mapped into the
image buffer. If this operation has not been done, DATSM returns a status bit to
the application program specifying that the required field does not exist.

4-18 4700 Controller Programming Library. Volume 4: Loop/Device Programming

SCS Positioning Orders

The SCS positioning orders recognized by the 4700 displays are a subset of SNA
orders. The following are supported for DATSM operation. Any hexadecimal
values under X‘40’ that are not listed below are flagged as invalid orders. The
PFP is set to the location of the invalid byte and the FLI is set to the residual
length of the data stream in the user’s segment.

e New line

« Form feed (clear screen)

» Line feed

o Carriage return

« Presentation positioning horizontal absolute

« Presentation positioning horizontal relative

« Presentation positioning vertical absolute

» Presentation positioning vertical relative

o Presentation positioning with erase

« Attribute Sequence

e Select (Treated as a No-op)

e POC (Treated as a No-op)

Print Position Orders

New Line X‘15°: The new line order causes PUTFLD to erase the remainder of
the current line in the image buffer and set the presentation position to the first
byte of the next line.

Form Feed (Clear Screen) X‘0C’: The form feed order causes PUTFLD to clear
the image buffer of its contents, to erase all field entries from the FCT, and causes
the next data stream retrieved from the image buffer on the C1 flow to be
prefixed with the command necessary to clear the display. After this operation,
PUTFLD sets the presentation position to the location specified by DMSBCD, the

window coordinate for the image buffer.

Line Feed X‘25°: This order advances the presentation position one line, the
column position remains the same.

Carriage Return X‘0D’: This order returns the presentation position to the start of
the current line.

Chapter 4. Processing 3270 Data Streams 4-19

Image Buffer Positioning Orders: Positioning orders cause DATSM to reset the
presentation position. If a positioning value exceeds the maximum permitted for
the image buffer, the pointer is wrapped in the image buffer.

The X34’ control character is followed by a flag byte and a 1-byte positioning
value.

Flag byte:
Bits 0-3 are reserved.

Bit 4. 0 = Position is an absolute value.
1 = Position is relative to the present position.

Bit 5: 0 = Position change is horizontal.
1 = Position change is vertical.

Bits 6-7: 00 = Move cursor to new position without erasing.

01 = Leave cursor at the current position, but erase from the
current position the number of bytes or lines specified by
the position value.

10 = Move cursor to new position and erase from the old
position up to, but not including, the new position.

11 = Reserved.

The positioning byte shows a line or column number. It contains an unsigned
binary value ranging from 0 to 255 to be used under direction of the flag byte; a 0
results in no operation.

Note: The flag bits (and the functions they control) can occur in any
combination shown above.

Absolute Horizontal Positioning X 3400xx’: This order causes PUTFLD to replace
the column field of the presentation position with the value contained in the third
byte of the order. If the resulting value exceeds the maximum column number of
the image buffer, DATSM reduces the value repetitively by the maximum number
of columns until the resulting value no longer exceeds that number. The new
value is then used as the column position.

Relative Horizontal Positioning X 3408xx’: This order causes PUTFLD to add the
value contained in the third byte of the order to the column position for the image
buffer. If the resulting value exceeds the length of a row of the image buffer, the
row position is advanced to the next row, and the column position is set to the
value minus the length of one row. If the final sum of the column field exceeds
the length of a row, the process is repeated until the column position no longer
exceeds the maximum permitted value. If at any time in this process the row field
exceeds the maximum number of rows in the image buffer, the row position is set
to 1 and the process continues.

4-20 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Absolute Vertical Positioning X ‘3404yy’: This order causes PUTFLD to adjust the
row position to the value contained in the third byte of the order. If the resulting
value exceeds the maximum row number of the image buffer, DATSM reduces the
value repetitively by the maximum number of rows until the resulting value no
longer exceeds that number. The new value is then used as the row position.

Relative Vertical Positioning X ‘340Cyy’: This order will cause PUTFLD to add the
value contained in the third byte of the order to the row position. If the resulting
value exceeds the maximum row number of the image buffer, the value is
repetitively reduced by the maximum number of rows until the resulting value no
longer exceeds that number. The new value is then used as the row position.

Presentation Positioning with Erase X3401xx’, X"3402xx’: This bit is used with
the preceding positioning bits to cause an erase and also change the presentation
position. It will cause PUTFLD to set the indicated number of bytes or lines to
nulls (X‘00%), and position the internal pointer appropriately. If the middle byte is
X‘01’ the presentation position will be left at the last byte erased +1. If the
middle byte is X‘02’, the presentation position will be reset to the position it
occupied when the order was encountered. These two options can be used only in
combination with one of the four image buffer positioning requests above.

Attribute Sequence Orders

Set Attribute X°28C0aa’: This order causes PUTFLD to search the FCT for a field
beginning at the current presentation position (set by positioning orders or by
data mapping). If there is no FCT entry for this position, PUTFLD generates
one. PUTFLD places the byte ‘aa’ in the FCT entry for the current presentation
position. The byte ‘aa’ must correspond to a 3270 attribute byte.

Set Attribute X 284xaa’: This order causes PUTFLD to define the character
attribute of type ‘4x’ for the current character position and all succeeding
character positions written into the image buffer. The attribute types are defined
in detail in “Programming DATSM for APL and Color Displays” on page 4-45.

Start Field Extended X 29ccttaa...ttaa’: The byte ‘cc’ specifies the number of the
type-attribute pairs ‘ttaa’ contained in the order. This order causes PUTFLD to
search the field control table for an entry for a field beginning at the current
location. If one is found, the base and extended ficld attributes are reset
according to the attributes specified in the order. Any attributes not specified are
set to their default values. The types of attributes that may be specified are:

o X‘CO’ base 3270 field attributes

o X471’ extended highlighting

o« X‘42’ extended color

o X‘43’ programmable character set.

Note: The attribute types are defined in detail in Appendix F, “DATSM Sampic
Program and Error Codes™ on page F-1.

Chapter 4. Processing 3270 Data Streams ~ 4-21

Graphic Escape X°08’: This order causes PUTFLD to interpret the following
character to be an APL character. It sets the programmable character set bits in
the extended attribute byte for the current character position to B‘001’, the value
defined for the APL character set. This attribute is applied only to the character
it precedes, not to succeeding characters.

Select X ‘04xx’: This order is treated as a no-op by DATSM.
POC X‘I7xxxx’: This order is treated as a no-op by DATSM.
The section “Programming DATSM for APL and Color Displays” on page 4-45

contains more information on the attribute sequence orders discussed in this area,
particularly for programming APL./color displays.

A2 -- Processor-bound SCS (GETFLD)

4-22

The GETFLD instruction permits retrieval of processor-bound data from the
image buffer one field at a time or all fields of a class at a time. The DMS control
flags must show the following:

« SCS processor-bound flow
o SCS orders or user delimiters
e All changed fields

Then, GETFLD moves all changed fields from the image buffer to the user’s
buffer beginning each field with the proper SCS positioning order or user-defined
delimiter to enable sorting by the application program or host. A changed field is
any field altered by data from keyboard (C2 flow —see Figure 4-1 on page 4-6).

Data can also be retrieved from the image buffer a field at a time so that
processing can overlap communication line time or to let the application program
to process the processor-bound data before it sends the data to the host
application. In this case, the controller application program can use GETFLD to
retrieve the data fields in sequential order. The field to be retrieved for single
field retrieval is determined by the field sequence number in the DMS header.
The application program specifies the number of the field to be retrieved in the
DMS field sequence number field.

When the application program uses GETFLD to retrieve fields within a specified
class, rather than a specific field, the search in the FCT begins with the entry
corresponding to the field sequence number plus one. If the complete table is to
be searched, the number must be set to zero.

For all retrieval except getting a current field, the instruction increases the field
sequence number by one before it examines each field so that after completion of
the retrieval, the sequence number is set to the number of the last field retrieved
or it is zeroed if all fields of a type were requested.

When data is retrieved one field at a time, the application program can specify
whether the data is to be preceded by an address. Depending on the uses the
application is to make of the data, either form can be useful.

4700 Controller Programming Library. Volume 4: Loop/Device Programming

The application program can also specify that the field to be retrieved is the one
containing the current presentation position. The field so retrieved can be
preceded by an address or not as the application program shows in the GETFLD
control bytes. If the presentation position shows the middle of a field, data is
retrieved from that location to the end of the field.

B1 -- 3270 Display-bound Data Stream (PUTFLD)

3270 Data stream

3270 Commands

The PUTFLD instruction maps the content of a display-bound 3270 data stream
into the image buffer. PUTFLD scans the data stream for 3270 control
characters. These control characters determine the manner in which PUTFLD
builds the image buffer and the type of information that is returned to the
controller application program at the completion of the PUTFLD operation. This
section describes the actions taken by PUTFLD when it meets the 3270
commands and orders during processing.

The first two bytes of the 3270 display-bound data stream are the command code
(CC) and the write command code (WCC) respectively.

CC |wCC | DATA AND ORDERS

3270 Data Stream Format

Write X‘F1’

PUTFLD places the data stream into the image buffer, beginning with the first
byte following the WCC. The FCT entry for each field placed into the image
buffer is marked as being display-bound-modified. The output data tag (ODT)
associated with the entry is set to B‘1’ to show that the field content has been
changed on the display bound path. If the reset changed data tag (MDT) flag is
on in the WCC, PUTFLD turns off the input changed data tags (MDT) in all
entries in the FCT.

Erase-Write X‘F5’

PUTFLD clears the complete image buffer to null characters, then moves the data
stream into the image buffer. PUTFLD also sets a bit in the FCT header flag
field so that when the controller application program requests that a data stream
be created for the display on the C2 flow, PUTFLD will prefix the data stream
with the necessary order or command to clear the display screen.

Erase-Write Alternate X‘7E’
In DATSM, this command performs the same function as the Erase-Write (X‘F5’)

command. It uses the current screen size specified by PUTDMS as the alternate
screen size.

Chapter 4. Processing 3270 Data Streams ~ 4-23

3270 Orders

Erase All Unprotected X‘6F’

DATSM replaces the data in all unprotected fields in the image buffer with null
characters (X‘00’). DATSM also sets the output data tag for each field cleared,
so that a later GETFLD for all output-modified fields can be issued to change the
display.

Read Modified X‘F6’

The PUTFLD instruction sets a bit in the DMS status byte to notify the
application program to issue the GETFLD instruction to generate the required
processor-bound data stream.

Read Modified All X‘6E’

The PUTFLD instruction sets a bit in the DMS status byte to notify the
application program to issue the GETFLD instruction to generate the required
processor-bound data stream.

Read Buffer X‘F2’

The PUTFLD instruction sets a bit in the DMS status byte to notify the
application program to issue the GETFLD instruction to generate a full buffer
read for a processor-bound data stream, as described in the 3270 Component
Description manual.

TREATMENT of 3270 WCCs

DATSM supports the WCC for reset-modified data tags. All other WCCs must
be supported by the application program.

The 3270 orders processed by DATSM are as follows:

Start Field X‘1Daa’: The byte following the order, “aa’”, is an attribute byte. The
PUTFLD instruction stores this byte in the FCT if an entry exists for the current
buffer address. If no entry for that address exists, PUTFLD creates one and
stores the attribute byte in that entry. PUTFLD places the start field code byte,
X‘1D’, in the image buffer at the position that would be occupied by the attribute
byte in an equivalent regeneration buffer on the 3271.

Set Attribute X ‘284xaa’: Refer to the description under “Attribute Sequence
Orders” on page 4-21.

Start Field Extended X‘29ccttaa...ttaa’: Refer to the description under “Attribute
Sequence Orders” on page 4-21.

Graphic Escape X‘08’: Refer to the description under “Attribute Sequence Orders”
on page 4-21.

Set Buffer Address X‘11’: PUTFLD alters the form of the address contained in the
next two bytes by eliminating the two high-order bits in each byte and combining
the remaining bits into a single twelve-bit address. The resulting value is
converted into row, column form and used as the current buffer address.

4-24 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Repeat to Address X‘3C’: This order is followed by a two-byte base-64 (6 bits)
address, which in turn is followed by the character to be repeated. PUTFLD
propagates the repetition character through the image buffer, starting with the
position currently set in the presentation position field, and continuing up to but
not including the position addressed by the second and third bytes of the order. If
the order causes defined fields in the image buffer to be overwritten, the FCT
entries for those fields are deleted. If the character propagation began in the
middle of a field, that field is flagged as display-bound with the MDT flag on.

Erase Unprotected to Address X‘12’: This order causes the contents of all
unprotected fields in the image buffer to be set to null characters, beginning with
the current presentation position and continuing up to but not including the
character position indicated by the second and third bytes of the order. The ODT
is set to B1’ in the FCT entry for each cleared field.

Insert Cursor X‘13’: PUTFLD places the row-column form of the current image
buffer address into the presentation position (cursor address) field of the FCT
header.

Program Tab X‘05’: PUTFLD sets the presentation position field to point to the
first data byte of the next unprotected field in the image buffer. If the program
tab order follows a data byte, PUTFLD also sets the remainder of the field to null
characters.

B2 -- 3270 Processor-bound Data Stream (GETFLD)

AID | CURSOR POS | SBAs and DATA

3270 Data Stream Format

A data stream generated for this flow can take any of three forms. All three
begin with a one byte Attention Identifier (AID) and a two byte base 64 cursor
position.

A data stream generated as the result of a full buffer read request follows the AID
and cursor address with the complete content of the image buffer, including nulls
and attribute bytes. Each attribute byte is preceded by a start field order, X‘1D’.

A data stream generated as the result of a GETFLD that specifies a
read-modified-all request, consists of AID byte, cursor address, and the addresses
of all changed fields in SBA form, each address followed by the data from its
field. A data stream generated as the result of a GETFLD that specifies neither a
full buffer read nor a read changed all, will depend on the content of the
DMSEID. The PA keys, the CLEAR key, and the TEST REQUEST key cause a
“short read” data stream, consisting of only the AID and cursor position, to be
generated. For all other values of DMSEID, the data stream contains the SBA
orders, addresses and data of all changed fields.

Chapter 4. Processing 3270 Data Streams 4-25

The DMS control byte must specify:

e A 3270 processor-bound flow
« Type of fields wanted
« The type of read, example: read changed all.

Note that the AID byte is the SMSEID value related to this data stream. Since
the SMSEID value in the station machine segment (SMS) can change with other
I/0 actions, the controller application program must move this value from the
SMSEID field into DMSEID immediately after each LREAD for the data streams
being processed. If the value in DMSEID is zero, DATSM generates an AID of
X‘60’ (no operator action) for the B2 flow.

C1 -- SCS Display-bound Data Stream (GETFLD)

4-26

For this GETFLD request, the application program must specify:

« SCS display-bound .
o Wanted fields. For example: all, modified.

If the clear display bit has been set because of the prior receipt of some order that
would clear the display screen, the SCS data stream is prefixed with clear screen
order (X‘0C’). After this, if required, GETFLD will build the data stream in the
user’s data buffer as follows:

« Each field is preceded by two positioning orders to show the correct location
of the data on the screen:

- one vertical absolute positioning order.
- one horizontal absolute positioning order.
o The data follows the positioning orders.
« A second pair of orders follows the data to show the cursor position.

[f the data stream includes orders or is intended for the printer, when data stream
generation is interrupted in the middle of a data field because of a short buffer,
GETFLD appends a SELECT (X‘0400’) to the data stream to prevent an
automatic new line when the partial data stream is written to the display or
printer. If the data stream generation is interrupted after an order, no automatic
new line will occur, so the SELECT is then not appended. After such an
interruption because of a short buffer, the instruction can be reissued to complete
the data stream.

If the appropriate flag bit in the DMS control bytes is set, GETFLD includes the
attributes stored in the FCT in the data stream it generates from the image buffer
for transmission to the display. GETFLD effects the non-display attribute by
replacing the data from the non-displayable field in the data stream with blanks.
Attributes are effected by the inclusion of the hexadecimal string X‘28C0aa’
where ‘aa’ is the 3270 attribute byte. If only one field is requested and it is
non-displayable, GETFLD returns the field as requested and sets the status flag
to show that the field is non-displayable.

4700 Controller Prc\;gr:mnning Library, Volume 4: Loop/Device Programming

w)\

C2 -- Processor-bound SNA Character String (PUTFLD)

The PUTFLD instruction processes data from the keyboard in the same manner
as a data stream from the host processor (A1l flow) except:

+ No FCT entries are generated.

« The MDT flag for the entry corresponding to the incoming data is set to B‘1’
to show that the field content has been changed on the processor-bound path.

PUTFLD enters the data into the image buffer beginning at the location indicated
by the presentation position field. After the data is entered, PUTFLD updates the
presentation position field to reflect the change of the cursor position caused by
the data entry from the display. Processor-bound data streams from the 4700
display contain data only. There are no orders to be interpreted. There is one
field at a time. EIDs play an important role in this flow and must be passed to
DATSM by the application program in the DMSEID field of the DMS
immediately after the associated LREAD from the keyboard.

Note: DATSM supports a specific list of EID values for keyboard and tab key
emulation. See “Emulating The 3270 Keyboard” on page 4-29 and “Tab Key
Emulation” on page 4-32 for detailed EID descriptions. For any other EIDs
passed to DATSM, a status bit (DMSEOM) is set to tell the application program
that such an EID was received.

A zero value in the DMSEID field has a specific meaning to DATSM. It shows a
read break, and in the C2 flow, it causes an autoskip operation.

DATSM Programming Considerations

This section discusses the following considerations:

« Buffered terminal modes of operation
+ Emulation of the 3270 keyboard

« Emulation of the TAB key

o Use of the user flag

o Adapting the size of the presentation
« Examples of window control

» Storage estimates

« Storage and response time

Chapter 4. Processing 3270 Data Streams ~ 4-27

Buffered Terminal Modes of Operation

A buffered terminal may be driven in either of two modes of operation. The two
modes are local tracking mode and controller tracking mode. In controller
tracking mode, there is no difference in DATSM instruction usage from standard
terminal programming. In local tracking mode there are some differences:

« I/O

In controller tracking mode, I/O is implemented by the LREAD and
LWRITE instructions.

In local tracking mode, I/O is implemented as follows:

On an initial PUTFLD, if the command code causes the image buffer to be
cleared, there is no I/0. Otherwise, the controller reads the DATSM image
buffer.

If the ‘force write’ bit is on in the PUTFLD control bytes, the image buffer is
written at the completion of the PUTFLD operation. Otherwise, the image
buffer is written when a GETFLD (all fields of a class with addresses/display
bound) is issued.

e« Mode change

To enter controller tracking mode, the mode bit in the DMS (DMSBFM) is
set to B0’ before PUTDMS is issued.

To enter local tracking mode, DMSBFM is set to B‘1’ before PUTDMS is
issued. If the device is not a buffered terminal, the bit will be reset to B0’
and operation will continue.

o Error checking.
In controller tracking mode, no I/O status is to be expected.

In local tracking mode, I/O status may be returned after any PUTFLD or
GETFLD. The error code byte in the DMS is set to X‘08’, the DMS status
flags are set to X‘0200’. When this error is detected, the device error code
appears in the SMSDST field.

Comparison of Controller and Local Tracking Modes

In local tracking mode, no data is placed into the user’s segment. The new cursor
address is placed into the SMS, the EOM/EID is placed into the SMSEID field.
SMSIML is set to zero. A processor-bound PUTFLD is still required in order to
pass DATSM the EID, the IML and the new cursor address.

After a display-bound GETFLD for all of a class, the header of the user’s segment
is set for a zero length LWRITE. This is essentially a NO-OP and if the
application is supporting only local tracking mode, the LWRITE may be omitted.

In local tracking mode, EOM/EID values between X‘00’ and X‘40’ are rejected

with status, since these values are defined for keyboard emulation which is
unnecessary in local tracking mode.

4-28 4700 Controller Programming Library, Volume 4: Loop/Device Programming

In controller tracking mode, the application is started at the asynchronous entry
point when the first keystroke is tracked. At this time an application may be
doing such things as clearing the display before tracking the data. This is possible
because the incoming data is being stored in the device buffer, not on the display.
In local tracking mode the application is started at the asynchronous entry point at
the time of the first keystroke, but the incoming data is being directed to the
display, not to the controller’s device buffer. Therefore, the application’s ability
to manipulate the display without destroying incoming data is restricted since the
data will not be read into the controller until the EOM Kkey is pressed.

Emulating The 3270 Keyboard

A controller application program could be written in such a way that the display
operator is unaware that the program is communicating with a 3270-oriented host
application program. On the other hand, the controller application program could
emulate many of the functions of a 3270 terminal, so that an operator already
familiar with a 3270 application would find it easy to switch to a 4700 display.
The same procedure could serve as a basis for screen management by a
4700-oriented application program.

DATSM emulation of a 3270 keyboard by keyboard and display devices attached
to a 4700 Finance Communication System is a matter of:

« Assigning keys on the keyboard device to be equivalent to the keys on a 3270
keyboard.

« Setting up the 4700 translation tables to produce the 3270 attention ID (AID)
codes and data from the assigned keys.

The installation can select any of the 4700 display keys and define them as being
the equivalent of 3270 keys. As the controller application program obtains the
data from the display and passes it to DATSM (by means of PUTFLD), DATSM
manipulates the data stream in the image buffer and in some cases, prepares a
data stream for transmission to the display, or takes other actions that help
simplify the program’s task of emulating a 3270 keyboard.

The PUTFLD instruction processes data from the keyboard on the C2 flow
(processor-bound data stream from the keyboard). Processor-bound data streams
from the 4700 display contain data only. There are no orders to be interpreted.
There is one field at a time. EIDs play an important role with this flow. They are
passed to PUTFLD by the application program in the DMSEID field of the DMS
with each PUTFLD request involving the C2 flow. If the EID is one that
DATSM handles (see the list below), PUTFLD will process it as described below.
All other EIDs are passed by DATSM to the application program to handle.

For DATSM to provide this emulation support, the application programmer must
include each key value in the 4700’s translation table in this manner:

INTRTBL (scancode,character, ,EOM,EID)

where “scancode” represents an arbitrarily selected 4704 key position, a
“character” is one of the key values listed on the next page.

Chapter 4. Processing 3270 Data Streams ~ 4-29

Some of the key values are those defined by 3270 architecture; the remainder are
hardware function keys for which 3270 has no transmission definition, and which
are defined by DATSM.

X‘00’ Autoskip (result of read break only)
X‘01’ TAB right key

X‘02’ TAB left key

X‘03’ TAB up key

X‘04’ TAB down key

X‘05’ Insert mode key
X‘06’ Insert Reset key
X‘07’ Delete key

X‘08’ Erase to EOF key
X‘09’ Erase input key
X‘0A’ Cursor left

X‘0B’ Cursor right

X‘0C’ Cursor up

X‘0D’ Cursor down

X‘OF’ Magnetic stripe input

Key value for 3270 transmission:

X‘6D’ Clear key
The following table contains the AID bytes that are required to emulate the 3271.
With the exception of the CLEAR key, they cause no action on the part of

DATSM, but they are included in the data stream prepared for the host processor
if the value listed is placed in the DMSEID field.

4-30 4700 Controller Programming Library, Volume 4: Loop/Device Programming

AID DEFINITIONS
Graphic Command
AID EBCDIC Character Operation
No AID 60 — Rd Mod
ENTER key 7D ! Rd Mod
PF 1 key F1 1 Rd Mod
PF 2 key F2 2 Rd Mod
PF 3 key F3 3 Rd Mod
PF 4 key F4 4 Rd Mod
PF 5 key F5 5 Rd Mod
PF 6 key F6 6 Rd Mod
PF 7 key F7 7 Rd Mod
PF 8 key F8 8 Rd Mod
PF 9 key F9 9 Rd Mod
PF 10 key 7A : Rd Mod
PF 11 key 7B # Rd Mod
PF 12 key 7C @ Rd Mod
PF 13 key Cc1 A Rd Mod
PF 14 key Cc2 B Rd Mod
PF 15 key C3 C Rd Mod
PF 16 key C4 D Rd Mod
PF 17 key C5 E Rd Mod
PF 18 key (o5} F Rd Mod
PF 19 key Cc7 G Rd Mod
PF 20 key Cc8 H Rd Mod
PF 21 key C9 | Rd Mod
PF 22 key 4A ¢ Rd Mod
PF 23 key 4B — Rd Mod
PF 24 key 4C < Rd Mod
PA 1 key 6C % Short Read
PA 2 key 6E > Short Read
PA 3 key 6B , Short Read
CLEAR key 6D — Short Read

Figure 4-4. Program Function (PF), Program Access (PA), and ENTER Keys

DATSM processes the EIDs defined for keyboard emulation. All other EIDs are
passed to the application program with the appropriate status flag set on. When
the application program issues the GETFLD instruction for a 3270
processor-bound data stream, DATSM uses the value from the DMSEID field as
the AID byte in the 3270 data stream. It is the responsibility of the application
program to make sure that any value in DMSEID that is so used is recognizable to
the host program. DATSM converts a DMSEID value of X‘00’ to X‘60’ (no
operator action when using it to produce an AID byte.) The application program
must issue the GETFLD instruction to specify what kind of data stream is to be
produced for data flow A2 or B2.

Enter Key, EID = X‘7D’

Chapter 4. Processing 3270 Data Streams 4-31

When PUTFLD receives the EID value for the enter key, it sets a status bit to
inform the application program that the end of a logical message has been reached
and that the content of the image buffer is ready for processing by the application
program in the controller, or for transmission to the application program in the
host computer. PUTFLD also resets the insert mode, if on. This treatment is
much like that given for the EID values for the PA and PF keys.

CLEAR Key, EID = X‘6D’

PUTFLD fills the image buffer with nulls, clears the FCT entries and generates a
clear screen character followed by cursor positioning orders to clear the 4700
display and position the cursor to the upper left corner of the window. PUTFLD
resets insert mode, if on, and then sets the status bytes to indicate an EOM and to
indicate that an LWRITE of the clear screen character to the display is required.

Tab Key Emulation

TAB key emulation requires a double exchange between the application program
and the PUTFLD instruction. When DATSM recognizes the EID as one of the
TAB key characters:

« It sets the presentation position field to the tabbed-to field.

« It generates an SCS data stream in the user buffer to reset the cursor position
to the beginning of the tabbed-to field on the display.

« It sets flags to indicate to the application program that there is data to be
written to the display.

o It sets the segment PFP and SFP in anticipation of an LWRITE by the
application program.

The application program should issue an LWRITE to the display without an
intervening LREAD. This causes the cursor to be positioned to the tabbed-to
field. Then the application program reissues the PUTFLD instruction. This is the
first exchange.

Upon being reissued, PUTFLD moves the contént of the newly located field from
the image buffer to the user’s data buffer so that new data from the keyboard can
be written over the old data. Note that PUTFLD has performed the same

- function as a GETFLD instruction to move the tabbed-to data field into the user’s
buffer. PUTFLD sets a flag in the status byte of the DMS to indicate that a read
from the display is to be issued by the application program and returns control to
the application program. For this operation PUTFLD moves only data located in
the display window.

The application program performs the LREAD to the display. This completes the
second exchange.

In both exchanges, the segment header is set appropriately by PUTFLD so that an
LWRITE or LREAD can be issued by the application program without further
action. For this purpose, PUTFLD uses as much of the segment area as is
required from the beginning of data pointer (PFP) to the end of the segment,
without reference to the FLI setting for the incoming data. For this reason, it is
the responsibility of the application program to ensure that sufficient segment
space is available for this use.

4-32 4700 Controller Programming Library, Volume 4: Loop/Device Programming

When tabbing and if there is no unprotected field in the image, PUTFLD sets the
pointer to 1,1 and returns to the application program with an error code in the
DMS header.

AUTOSKIP Tabbing Function

The 4700 controller automatically terminates an LREAD when the last character
position of the read is filled. When this occurs the EID is set to zero. After
processing the last byte of data, PUTFLD tabs right and sets up the segment
pointers for an LREAD of the next unprotected field. If field segmenting was in
effect and the read break was caused by reaching the end of a window row, the
cursor is positioned to the next row of the field in the window, or to the beginning
of the next field. The user must code the operand ERTLS=Y on the DEVxxxx
configuration macro so that an LREAD processes correctly for DATSM use in
emulating the 3270.

TAB Right Key, EID = X‘01’

PUTFLD sets the presentation position field to point to the next unprotected field
to the right of the current presentation position in the image buffer. If there are
no unprotected fields in the image buffer when this or any of the other tab key
orders are encountered, PUTFLD sets the presentation position field to point to
the beginning of the image buffer (Row 1, Column 1).

TAB Left Key, EID = X‘02’

PUTFLD sets the presentation position field to point to the first data byte of the
nearest unprotected field to the left of the current position. If the current position
happens to be the first byte of the field, PUTFLD moves the pointer to the
beginning of the next unprotected field to the left. If the current pointer is
pointing elsewhere in the field, PUTFLD moves the pointer to the beginning of
the same unprotected field.

TAB Up Key, EID = X‘03’

PUTFLD sets the presentation position field to point to the first byte of data in
the leftmost unprotected field in the first line above the current line that contains
an unprotected field. If there is no unprotected field defined above the current
line, the search moves (wraps) to the bottom line and continues upward.

TAB Down Key, EID = X‘04’
PUTFLD sets the presentation position field to point to the first byte of data of
the leftmost unprotected field in the line immediately before the current line. if

there is no unprotected field located below the current line, the search moves
(wraps) to the top of the image and proceeds downward.

Chapier 4. Processing 3270 Data Streams ~ 4-33

Insert Mode Key, EID = X‘05’

When PUTFLD receives an insert mode key command (X‘05”) in a 3270 data
stream it enters insert mode processing as follows:

1. Sets the PFP and FLI for a one character LREAD KB by the application
program.

2. Passes control to the application program with status flags set as follows:
a. Application program should issue LREAD KB.

b. Application program should then reissue PUTFLD to pass the one
character to DATSM.

3. When the application program has done the processing outlined above,
PUTFLD processes the character to be inserted as follows. It inserts the
character received from the application program into the image buffer,
starting at the current presentation position. As PUTFLD inserts each
character, it increases the presentation position by one. It shifts the
characters to the right of the current position to make room for the new
character. A null character is removed from the right end of the field for each
character that is inserted. PUTFLD then returns to Step 1, which continues
the insert process.

The processing of insert mode continues until there are no more available nulls in
the field or an INSERT RESET key EOM is received.

The DEV4704 configuration macro must specify ERTLS=Y.
Insert Reset Key, EID = X‘06’

PUTFLD terminates the insert mode process described above.
Delete Key, EID = X‘07’

PUTFLD shifts the characters that are to the right of the current presentation
position one byte to the left, eliminating one character. A null character is
inserted in place of the vacated right-most byte of the field. If the field exceeds
one line of the screen, data on succeeding lines are not affected. The field is
flagged in the FCT entry as being display-bound-modified. A 4700
display-bound data stream is generated for the field and placed in the data buffer
to be written to the display.

Erase to End-of-Field Key, EID = X‘08’

PUTFLD replaces existing characters in a field with null characters beginning at
the current presentation position and continuing through the end of the field. If
the screen is unformatted, PUTFLD clears the image buffer from the current
presentation position to the end of the buffer. The presentation position will be
unchanged. PUTFLD generates a 4700 display-bound data stream for
transmission to the display.

4-34 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Erase Input Key, EID = X‘09’

PUTFLD replaces the contents of all unprotected fields with nulls. A data stream
is generated by PUTFLD that when written to the display clears the affected
fields. PUTFLD sets the presentation position to the first data byte of the first
unprotected field. If there are no unprotected fields defined, the presentation
position is set to 1, 1. If the screen is unformatted, the entire screen is cleared
and the presentation position is set to 1, 1.

Cursor Movement keys:

The cursor movement keys differ from all other keyboard emulation EIDs in that
as a result of their use, the presentation position may rest on an attribute byte or
in a protected field. The application program must detect this condition and
protect against improper alteration of the screen contents of the field thus
entered. In the case of the presentation position lying on an attribute byte, status
bit 12 will be set to B‘1°, the same indication that is used for the field not found
condition. If the position lies within the data area of a protected field, bit 14 will
be set to B‘1°.

CURSOR LEFT KEY, EID = X‘0A’

The column number of the presentation position is reduced by one. If the
resulting column number is less than that of the left side of the image buffer
window, it is replaced with the maximum column number of the image buffer
window, and the row number is decreased by one. If the resulting row number is
lower than that of the top row of the window, it is set to the number of the last
row of the image buffer window.

CURSOR RIGHT KEY, EID = X‘0B’

The column number of the presentation position is increased by one. If the
resulting column number is greater than the maximum column number of the
window, it is replaced with a value of one, and the row is increased by one. If the
resulting row number exceeds the maximum number of rows in the window, it is
changed to the number of the top row of the image buffer window.

CURSOR UP KEY, EID = X‘0C’

The row number of the presentation position is reduced by one. The column
number is unchanged. If the resulting line number is less than that of the top line
of the image buffer window, it is replaced with that of the last line of the image
buffer window.

CURSOR DOWN KEY, EID = X‘0D’
The row number of the presentation position is increased by one. The column
number is unchanged. If the resulting line number is greater than that of the last

line of the image buffer window, it is replaced by that of the top line of the
window.

Chapter 4. Processing 3270 Data Streams ~ 4-35

User Flag

MAGNETIC STRIPE INPUT, EID = X‘OF’

To emulate 3270 magnetic stripe support, the start of stripe character may be
defined as EOM/EID X‘OE’. When this EID is received by PUTFLD on the
processor-bound path, it will generate a non-displayable attribute for the current
cursor position if no field already exists at that location and then set up a read for
the resulting field.

Inconsistencies with 3270

The use of the characteristics of the terminal hardware, DATSM 3270 keyboard
emulation is inconsistent in some operations with the 3271. The following list
describes the inconsistencies.

« Entry of invalid characters into numeric fields on the 3270 causes the
keyboard to lock and refuse to accept the invalid character. DATSM does not
see the invalid character until the completion of the read. For that reason, the
invalid characters are mapped into the image buffer, but the presentation
position is set to the location of the leftmost invalid character and DATSM
will refuse to recognize any EOM/EID character such as a tab, ENTER, or
INSERT until the invalid character has been replaced by a valid one.

« In addition to the keyboard reset, a separate INSERT RESET Kkey is required
to leave insert mode.

» Insert mode is terminated by the receipt of an EOM/EID.

« There is no automatic signal light for insert mode. An application program
can use the indicators for this purpose.

« Autoskip is enforced for all protected fields. Autoskip is extended to the
cursor movement keys such as cursor left and cursor right. DATSM does not
move the presentation position into a protected field.

The user flag is for use by application programs that require local processing of
fields in the controller before the programs transmit them to either the host
processor or to the terminal. The user flag can be used as a search argument by
GETFLD. The flagis set by PUTFLD. When the application program sets this
flag in the DMS prior to issuing the PUTFLD instruction for display-bound flow,
PUTFLD turns on the user flag in the corresponding FCT entries. If more than
one field is processed by PUTFLD, each field is flagged.

The user flag can be turned off only by removing the field entry, which occurs
each time an erase-write or clear screen order is sent to DATSM or when the field
beginning is overwritten by data from a display bound data stream.

4-36 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Presentation Size Adaptation

The data stream conversion instructions aid a controller application program that
is presenting a data stream intended for one screen size to a device having a
different screen size.

Using parameters initially supplied by the controller application program, DATSM
keeps track of the rectangular boundaries of the two screens. When a data stream
for a large screen (such as the 3270 Model 2) is to be sent to a smaller screen
(such as the 4704 Model 4 or the 3270 Model 1), the controller application
program selects which rectangular subset of the larger display is to be used. When
the data stream is converted, DATSM prepares a data stream that has the correct
dimensions for the smaller screen.

The controller application program could, for example, define a protocol between
itself and the operator of the smaller display in which the operator requests that
the display be shifted up and down or from side to side.

When a data stream for a small screen is to be presented on a larger screen, the
controller application program selects which rectangular subset of the larger
display is to receive the data.

The rectangular boundaries and subareas that are used by the controller and the
controller application program can be visualized as three rectangular areas.

Image Actual
Original Display Buffer Display
and its
Window Area Window Window
area area

Figure 4-5. Logical Space Definition

The outer rectangle of each part of the figure represents the total area of the
described space. This size is set in the field control table header by means of the
PUTDMS instruction, and is set in row, column form. The inner rectangle
represents the area of each space that is to be addressed by the data stream
conversion instructions. In this publication, the smaller area is referred to as the
“window,” and it is described by two parameters set by means of the PUTDMS
instruction. They are the window coordinates and the window size. Both are
maintained in row, column form. The window coordinates specify the position of
the upper-left corner of the window.

The leftmost rectangle represents the display area for which the data stream was
originally intended and is used for processing data streams to and from the host or
the application program. The center rectangle represents the internal display
image, and the rightmost rectangle represents the display area of the device to
which the data stream is actually being sent.

Chapter 4. Processing 3270 Data Streams 4-37

The window size is meaningful when a data stream is being retrieved from the
image buffer and prepared for a terminal device. The window determines the
positioning of display-bound data. The window process uses three values. Two of
the values are the row, column positions of the upper left corner of the window
for each of the logical areas, image and actual. The third value is the size of the
window.

The window size and position must be adjusted by the application program if it is
necessary to make changes, since DATSM will make no assumptions concerning
device size or positioning. The application program has maximum flexibility in
sub-setting data and positioning it, as long as the areas addressed are in a

rectangular form.

Programming Examples of Window Control

Overall View of Using Windows

4-38

The following diagrams illustrate various uses of the window function. The

diagrams use the following conventions:

////// represents data mapped from the data stream
XXXXXX represents data prepared as a window for display

The window area can be adjusted for display. The window used to map data to or

from the host processor is always the same size as the original device.

L1117 0070777787) PRXXXXXXXRXXXXRXXKX] | XKXXXXXXXXXXXXXXXX
JI117777777777777) PXXXXXXXXXXXXXXXXX] | XXXXXXXXXXXXXXXXX
L1177 7777777777771 | XXXXXXXXXXXXXXXXX] | XXXXXXXXXXXXXXXXX
[1177777777777777] PXXXXXRXXXXXXXXXXX] | XXXXXXXXXXXXXXXXX
LI717771077777777 1 [XXXXXXXXXXXXXXXXX] | XXXXXXXXXXXXXXXXX
LIP17777777777777 1 | XXXXXXXXXXXXXXXXX [[XXXXXXXXXXXXXXXXX
ORIGINAL DISPLAY IMAGE BUFFER ACTUAL DISPLAY
24 X 80 24 X 80 24 X 80
Figure 4-6. Original and Actual Displays Equal

L1001 177777077777) [XXXXXXXXXXXXXX///] | XXXXXXXXXXXXXX
L1117 1777777777] [XXXXXXXXXXXXXX///Z| | XXXXXXXXXXXXXX
LI7707777777777771 PRXXXXXXXXXXXXX///] [XXXXXXXXXXXXXX
JI117117777777777) PRXXXXXXXXXXXXX///Z 1 | XXXXXXXXXXXXXX
L171117777777777, \17777777777717777

LI777171070107¢877) (111777 77777777777

ORIGINAL DISPLAY
24 X 80

IMAGE BUFFER
24 X 80

Figure 4-7. Actual Display Smaller than Original

4700 Controller Programming Library, Volume 4: Loop/Device Programming

ACTUAL DISPLAY
16 X 64

ORIGINAL DISPLAY

IMAGE BUFFER

(1171717777177 XXXXXXXXXXXXXX

1111177711177/ XXXXXXXXXXXXXX XXXXXXXXXXXXXX

1777117717777/ XXXXXXXXXXXXXX XXXXXXXXXXXXXX

1111117117777/ XXXXXXXXXXXXXX XXXXXXXXXXXXXX
XXXXXXXXXXXXXX

ACTUAL DISPLAY

16 X 64 16 X 64 24 X 80
Figure 4-8. Original Display Smaller than Acrual

AR nnan
LILIITLTELLITELTEE) \£1777711777XXXXX/
LILLITLILETIL P77 (1111771777 7XXXXX/ XXXXX
IILIITITELIIETLIE (1111171177 7XXXXX/ XXXXX
LILIITITIIIIE07) \11121771177717717 XXXXX
L1ETIITI72777707 \111077177777777177

ORIGINAL DISPLAY
24 X 8o

IMAGE BUFFER
24 X 80

Figure 4-9. Subarea of Image Buffer Displayed

Large Image Buffer, Small Actual Device

ACTUAL DISPLAV
24 X 80

Assume that the display for which the data stream was originally intended for a

1920 character display (24 rows high and 80 columns wide), and that the device
to which the data stream is actually being sent is a 1024 character 4700 (16 rows
high and 64 columns wide). The image buffer has been defined to match the size
of the largest area addressed, 1920 bytes, 24 X 80 characters.

Values in the DMS are in hexadecimal format. Addresses and sizes are expressed
as row, column numbers with a maximum value of 255 decimal (X‘FF’). The
following values are set by the application program by means of the PUTDMS
instruction:

I-Buffer coordinates 1,1
Actual coordinates 1,1
Original dimensions 24,80
Actual dimensions 16,64
Window dimensions 16,64

Values in the DMS are of one origin. Transferred to the field control table, most
of the values remain so with the exception of the coordinate positions. These
values are altered to zero origin numbers only in the field control table. When
DATSM receives data from the terminal, it must set the window size to 16,64. If
the coordinate position for the target area plus the length of the window area
exceeds the maximum size of the target area, DATSM returns an error status bit
with an accompanying error code to specify the error.

Chapter 4. Processing 3270 Data Streams 4-39

Coord 1,1

Coord 1,1

ABCDEFGH | JKLMNOPQRST
UVWXYZ0123456789ABCD
EFGH I JKLMNOPQRSTUVWX
YZ0123456789ABCDEFGH
| SKLMNOPQRSTUVWXYZ01
23456789ABCDEFGH | JKL

ABCDEFGH I JKLMNOPQRST
UVWXYZ0123456789ABCD
EFGHI JKLMNOPQRSTUVWX
YZ0123456789ABCDEFGH
| JKALMNOPQRSTUVWXYZ0 1
23456789ABCDEFGH I JKL

ORIGINAL DISPLAY
24 X 80

IMAGE BUFFER
24 X 80

Figure 4-10. Window Equal to Original Device

PUTFLD has mapped the entire data stream into the image buffer, it returns a
status code of X‘0100’ to indicate the successful completion of the operation.

Assume that the application writes the received data to the 4700 display. Since
the display area is too small to receive all of the information, the choice is made
first to display the left quadrant of the image buffer. For this purpose, the
coordinates are not changed, but the window size is reduced to the dimensions of
target device. The application program issues PUTDMS to set the window size to
16, 64.

Coord 1,1 Window 16,64 Coord 1,1
ABCDEFGH I JKLMNOPQRST ABCDEFGH | JKLMNOP
UVWXYZ0123456789ABCD UVWXYZ0123456789
EFGH I JKLMNOPQRSTUVWX EFGH I JKLMNOPQRST
YZ0123456789ABCDEFGH YZ0123456789ABCD
| JKLMNOPQRSTUVWXYZO1

23456789ABCDEFGH I JKL

IMAGE BUFFER ACTUAL DEVICE
24 X 80 16 X 64

Figure 4-11. Window for Upper Left Quadrant

If the application needs to display the lower right quadrant of the image buffer, it
sets the coordinates of the image buffer to 16,64 and the window size to 8,16
which is the size of the image buffer area to be displayed without having the
quadrants overlap. The application issues PUTFLD with flags set to request all
fields in the image buffer and a 4704 display-bound data stream.

4-40 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Coord 16,64 Window 8,16 Coord 1,1

ABCDEFGH | JKLMNOPQRST YZ01
UVWXYZ0123456789ABCD 1JKL
EFGHI JKLMNOPQRSTUVWX

YZ0123456789ABC
I JKLMNOPQRSTUVW ' YZO1
I JKL

23456789ABCDEFG
IMAGE BUFFER ACTUAL DEVICE
24 X 80 16 X 64

Figure 4-12. Window for Lower Right Quadrant

Since the request is for all fields, PUTFLD precedes the generated data stream
with a clear screen character to clear all presently displayed data and replace the
screen image with the data from the defined window. If the application program
were to display the upper right quadrant, the arrangement might be to set the
coordinates for the image buffer to 1,64, the window size to 16,16, and the
coordinates for the target display to 1,1. This would result in the upper right
quadrant of the image buffer being displayed in the left hand side of the actual
device.

Coord 1,64 Window 16,16 Coord 1,1

ABCDEFGH | JKLMNO |QRST QRST
UVWXYZ012345678 | ABCD ABCD
EFGH I JKLMNOPQRS | UVWX UVwX
YZ0123456789ABC |EFGH EFGH
| JKLMNOPQRSTUVW
23456789ABCDEFGH I JKL

IMAGE BUFFER ACTUAL DISPLAY
24 x 80 16 X 64

Figure 4-13. Window for Upper Right Quadrant

If only one window at a time is sent to the actual device, the processor-bound
data from the terminal is mapped to the image buffer with identical settings for
coordinates as are used for the display-bound strings. In this way, the incoming
data will be put into the correct positions in the image buffer.

Small Image, Large Actual Device

The data within a field occupying more than one line of a window can be
retrieved in either of two modes. In the standard mode, all of the data that
appears within the window is retrieved. In segmented mode, the data contained
within the window portion of the field is retrieved one line at a time. This
function is useful when data is to be read from a field occupying more than one
line of a window that is smaller than the actual device on which it appears.

Chapter 4. Processing 3270 Data Streams 4-41

Internally, a sample field might lock like this:

THIS |S A FIELD THA| RUNS
FOR M|RE THAN ONE L|INE.

Image Buffer Mapping

4-42

A GETFLD current without field segmenting will have the following data in its
buffer:

IS A FIELD THARE THAN ONE L]

The precise form of the data is determined by the fact that GETFLD retrieves
data only from within the window area in the image buffer. Data typed into the
keyboard is laid over this data as follows:

| XXXXFIEXXXXHARXXXXAN XXXXL |

This data is mapped into the image buffer in the following manner:

THIS |XXXXFIEXXXXHA| RUNS
FOR M|RXXXXAN XXXXL |INE.

4700 Controller Programming Library, Volume 4: Loop/Device Programming

As the example shows, the data is mapped into the correct position in the image
buffer. Because the hardware is unaware of the window size, however, the
display screen looks like this after the input operation:

S A FIELD THA XXXXFIEXXXXHA | XXXX
RE THAN ONE L XXXX|RE THAN ONE L
BEFORE INPUT AFTER INPUT

You can restore the display appearance by issuing a GETFLD ALL FIELDS and
writing the resulting data stream to the display. The distortion of the display
contents can be avoided by use of field segmentation. If the segmenting control
bit in both GETFLD and PUTFLD is set to B‘1’, the GETFLD operation moves
only one line of the field at a time. This means that each line is a separate read
operation, and between read operations, the cursor is positioned at the left side of
the window. The resultant tracking preserves correspondence between the display
contents and the image buffer:

THIS |S A FIELD THA| RUNS
FOR M|RE THAN ONE L|INE.

IMAGE BUFFER MAPPING. Using the same sample field as in the prior

example, the user data buffer contains only one line of the field when a GET LD
CURRENT FIELD with segmenting is issued.

[s A FIELD THA | [XXXXF IEXXXXHA |

BEFORE LREAD AFTER LREAD

Chapter 4. Processing 3270 Data Streams 4-43

4-44

When an LREAD is issued for this portion of the field, the display has the
following appearance:

Coord 1,1 Coord 1,1
S A FIELD THA XXXXFIEXXXXHA
RE THAN ONE L RE THAN ONE L
BEFORE INPUT AFTER INPUT

If field segmenting is specified, following the read break at the end of the line, the
application program issues a PUTFLD instruction to map in incoming data into
the image buffer. After mapping the data, PUTFLD performs a tabbing
operation, producing an address string to be written to the display to position the
cursor at the start of the next line of the window. A status bit is set to instruct the
application to write the address string to the display and to reissue the instruction.
Upon reissue, PUTFLD performs a GETFLD CURRENT function which
produces the following contents in the user’s data buffer. It also sets a status bit
to instruct the application program to read from the keyboard into the prepared
segment.

| RE THAN ONE L| [RXXXXAN XXXXL |

BEFORE LREAD AFTER LREAD

4700 Controller Programming Library, Volume 4: Loop/Device Programming

Display Design

Before and after the second LREAD, the display has the following appearance.

Coord 1,1 Coord 1,1
XXXXFIEXXXXHA XXXXFIEXXXXHA
RE THAN ONE L RXXXXAN XXXXL
BEFORE INPUT AFTER INPUT
THIS IS A CONTINUOUS THIS IS A CON
FIELD TINUOUS FIELD
DISPLAY APPEARANCE IMAGE BUFFER MAPPING

The amount of time required to process each field on the display screen is directly
proportional to the length of the field. Regardless of the number of characters
entered into a field by the operator, the entire field must be processed by
DATSM. Because of this, fields ought to be defined to be only as necessary as for
the data expected.

Note that the Insert and the Delete functions require that the entire field be
processed from the current presentation position to the end of the field for every
character inserted or deleted. Additional I/O exchanges are also necessary for
each character, which results in poorer response time.

Programming DATSM for APL and Color Displays

DATSM instructions and DCA support the Graphic Escape (X‘08’) for APL, and
the Start Field Extended (X‘29%), and the Set Attribute (X‘28’) data stream
orders. (DATSM also supports Modify Field, X‘2C’.) The formats of the
instructions follow.

Chapter 4. Processing 3270 Data Streams 4-45

Graphic Escape

Start Field Extended

Set Attribute

| 08 ‘ char. I

The Graphic Escape order indicates that the following byte in the data stream is
to be read as an APL character, and causes both the DATSM instructions and the
DCA code to set the programmable character-set bits to B‘001’ in the
currently-addressable, extended-character attribute byte. This attribute is not
inheritable when specified by means of the Graphic Escape order.

I 29 ' count] type I attr I I type] attr

The following types are supported for the Start Field Extended order:

X‘CO* 3270 type attribute

X‘C1’ (reserved)

X‘41’ Highlighting attribute
X‘42> Color attribute

X‘43> Programmed Character Set

The Start Field Extended order generates a standard field attribute byte in the
regeneration/image buffer, and generates an extended field attribute byte in the
extended attribute buffer. Any attributes that are not expressed in the order are
given their default values (nulls). That is, all bits that represent the unexpressed
attribute are set to 0. If the count is 0, the system sets field attributes and
extended field attributes to their default values. If the count is zero, DATSM sets
all attribute bytes to zero.

L28 J type | attr l

The following types are supported for the Set Attribute order:

X‘00’ Reset (the attribute following must also be X‘00’)
X‘CO* 3270 type field attribute

X‘41’> Highlighting character attribute

X‘42’ Color character attribute

X‘43” Programmed Character Set character attribute

Note: The three character sets available are basic 3270, APL, and Kanji.
Loadable character sets are not supported.

Attributes specified in a character attribute byte in the extended attribute buffer
cancel the attributes specified in the extended field attribute byte. When no
attribute is specified in the character attribute byte, the field attribute is the
default. If neither the field nor the character attribute bytes specify an attribute,
the default value is used.

4-46 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Character Attribute Inheritance

Every 8-bit attribute byte contains three attribute specifications as follows:
Bits 0,1 Highlighting

00xXxXXXXX Normal (no highlighting)
0 1XXXXXX Blink

10XXXXXX Reverse video

T TXXXXXX Underline character

Bits 2-4 Color

xx000xxx Base color
xx001xxx Blue
xx010xxx Red
xXxX011xxXxX Pink
xxX100xxxX Green
xx101xxx Turquoise
xx110xxx Yellow
xx111xxx White

Bits 5-7 Programmed Character sets

xxxxx000 Base ROS (184 character)
xxxxx001 APL ROS (128 character)
Others Reserved

Character attributes are inheritable. That is, when an attribute is specified for a
given character, all characters in the data stream following are given the same
attribute until another attribute specification of the same type either resets it by
specifying a null value or changes it by specifying a different value.

Note: Although DATSM supports types X‘41’, X‘42’, and X‘43’, there is no
support for loadable character sets.

PUTFLD--Outbound Operation

PUTFLD supports the set of orders required for extended attributes for both
3270 and SNA data streams.

Erase Orders: All commands and orders that clear the image buffer also cause
PUTFLD to clear the extended attribute buffer.

Start Field Extended: When the Start Field Extended order is encountered in the
display data stream, PUTFLD performs the same consolidation procedure on the
field attribute that it performs on the character attribute. The extended field
attribute is placed in the extended attribute buffer after all attribute pairs in the
Start Field Extended string have been combined. If any attributes are not
specified in the string, they are set to their default values before being stored.
Attributes are placed in both the image buffer and the extended attribute buffer.

Set Attribute Order: PUTFLD combines the attribute bits for the type specified
(highlighting, color, or character set) with the existing current character attribute.

Chapter 4. Processing 3270 Data Streams 4-47

GETFLD--Outbound Operation

PUTFLD~-Inbound Operation

Character Data: PUTFLD determines whether the mode of operation is extended
attribute or normal. If the mode of operation is extended attribute, PUTFLD
locates the corresponding position in the extended attribute buffer and writes the
accumulated character attribute to that location. PUTFLD then stores the
character data and advances the image buffer pointer, wrapping to the start of the
buffer if necessary.

Graphic Escape: When a graphic escape control character is detected in the data
stream, PUTFLD retrieves the saved character attribute byte and ORs in the APL
bit. PUTFLD stores the attribute byte into the position in the attribute buffer
corresponding to the current image buffer position. The image buffer pointer is
unchanged after this operation. The byte with the ORed bit is not saved; it is not
inheritable if it was set because of Graphic Escape.

When DATSM is operating in extended attribute mode, field attributes are sent to
the DCA device processor by means of the Start Field Extended code, X‘29°.
When an attribute is to be generated, DATSM GETFLD code has already reset
the address to the attribute position from the location of the first byte of data. At
this point, GETFLD retrieves the extended attribute byte and generates the Start
Field Extended code to communicate both the extended and the normal
attributes. The Start Field Extended code causes the image /regeneration buffer
address to be increased by one after the attribute bytes have been inserted.

When GETFLD retrieves a byte of data from the image buffer, if operation is in
the normal mode, GETFLD places the byte in the data stream. If operation is in
extended attribute mode, GETFLD compares the new character attribute to the
saved character attribute and, if there is a difference, generates the necessary
attribute definition strings to signal the change in the data stream. If the APL bit
is on in the new character attribute, the called subroutine generates a graphic
escape character in the data buffer.

Keyboard Input. When data is received from the keyboard in APL mode without a
preceding Graphic Escape order, the APL bit is reset in the corresponding
extended attribute byte. If there is a Graphic Escape order in the data stream, the
APL bit is set.

The rules for attribute inheritance on input from the keyboard are the same as
those for output. If no set-attribute order is received from the keyboard, all
incoming data is paired with null extended attributes.

4-48 4700 Controller Programming Library, Volume 4: Loop/Device Programming

GETFLD--Inbound Operation

Set Attribute: To avoid three-byte control strings from the input translation table
(X‘284xnn’), the scan codes for the Extended Attribute Set keys are defined as
EOM/EID. The values for each of the attributes is given below.

Highlighting
X‘10’ Normal (no highlighting)
X‘11’ Blink

X‘12’ Reverse
X‘13> Underline

Programmed Symbol Set

X220’ Base EBCDIC character set
X‘21’ APL character set

Color

X‘30° Base color
X31’ Blue
X‘32° Red

X33’ Magenta
X34’ Green
X35’ Turquoise
X336’ Yellow
X377 White

When an EID that specifies an attribute is received, the corresponding bits are
saved. When data is mapped into the image buffer, the attribute bits replace the
attribute byte already located in the extended buffer position corresponding to the
data position.

Graphic Escape: When a Graphic Escape character is detected in a data stream
received from a device, DATSM retrieves the current character attribute, OR the
APL bit onto it, and stores the resulting attribute byte in the attribute buffer
position corresponding to the current image buffer location. The image buffer
pointer is not advanced after the attribute byte is stored. When the APL bit is set
because of the receipt of a Graphic Escape order, it will not be saved; in this case
it is not an inheritable attribute.

GETFLD processes the APL bit and the character attributes on the data going to
the host in the same way it processes data going to the terminal; the data streams
produced are identical.

If you code EAB in the DSM operand of the STATION macro, the system
allocates the extended attribute buffer at startup.

The APL On/Off key is defined in the translation table for case 3 of both the
EBCDIC table and the APL table as (X‘01’,X‘C1’), which causes DCA to change
to the APL input translation table. This key is not passed to the application
program.

Chapter 4. Processing 3270 Data Streams ~ 4-49

The other attribute keys are identified as a combination of a control bit for DCA
and EOM/EID for DATSM, as shown below:

EID/EOM Definition

CASE 1:

Scan code EOM/EID Attribute
X2D’ x‘11’ Blink highlighting
X‘1D’ x‘12’ Reverse highlighting
X‘3D’ x‘13’ Underlined highlighting
X422’ x21 Blue
X50° x22’ Red
X‘60’ x24’ Green
X‘52’ x27 White

CASE 2:

Scan code EOM/EID Attribute
X550 x23’ Magenta
X‘60’° x26’ Yellow
X42’ x25’ Turquoise
X‘OF’ x‘10° Cancel highlighting
X522 x20° Cancel color

Communication Programming Considerations

This section is intended for users who normally write the controller application
programs in 4700 assembler language. It presents several important
considerations for writing FCL programs to control communication to and from a
4700 system that uses DATSM.

When using DATSM, you might want to receive the 3270 data stream using the
same SNA protocol as supported by the 3274 or 3276 control units (SLU-2). If
S0, you must write an application program that communicates in the same way as
a 3274 or 3276. This operation is described in the SNA-SDLC communications
section of the 3270 Information Display System Component Description,
GA27-2749.

The complexity of the program depends on the extent to which the 3274 or 3276
is to be emulated. Basically, however, the main considerations are the SNA
protocols, since the 4700 controller handles the SDLC line protocols.

The 3274 or 3276 controls I/0O devices without application programming. The
3274/76 responses are designed to cover all error conditions and possible misuse
of the device as well as the normal protocol sequences. When setting up the
communications discipline, your major concern is processing the exception and
error conditions.

4-50 4700 Controller Programming Library, Volume 4: Loop/Device Programming

If the network with which you must deal is already established, you can normally
assume that the SNA error logic in the attached devices is not heavily used. You
should, therefore, write your application program with very little error recovery or
BIND recognition capability. Your program can ignore small inconsistencies, but
can record the more significant ones and end the session when they occur. If the
network has frequent problems, you can write additional error recovery within the
SNA session (defined by the SNA architecture).

Because the 3274 or 3276 controls I/O devices, the state of an attached device is
reflected in the SNA protocol. If, for example, a 3278 display is not connected
and the 3274 or 3276 control unit receives a BIND request for the SLU
associated with the head, the control unit generates a negative response (X‘08).
The 4700 SLU, however, has no device restraints and therefore issues no negative
response. This example illustrates that many of the states within a 3274 or 3276
related to specific hardware are not necessarily applicable to a particular 4700
application. Further examples of the differences you can choose to exercise are:

o The 3274 or 3276 must respond to a switched-off 3278 display by issuing an
error response, but your program can process the transaction either by
switching the message to another 4700 station or by making an entry in the
log about the transaction.

o If you want your program to emulate the 3274 or 3276 attachment by using a
4704 assigned to a particular station (4700 SLU), then the powered-off state
is of concern, and a negative response must be generated.

Functions of the 4700 Controller

Because the 4700 controller, like the 3274 or 3276 control units, uses SNA
protocol, the 4700 controller processes some of the requirements of SNA protocol
so that your program need not provide the code to handle them. For example, the
4700 controller controls the SSCP-PU and SCP-LU sessions, including the
processing of the ACTPU, DACTPU, ACTLU, and DACTLU session control
commands. The controller also enforces valid command sequences for these
session flows.

When the SSCP-LU session is established, the application program receives a
ready indication. When the SSCP-LU session terminates, the application program
receives an indication of a loss of control. You can use the activate and
deactivate logical unit commands (ACTLU and DACTLU) as specified in the
SSCP-LU flow. If you transmit the activate logical unit command, your
application can receive a procedure error command on the same flow.

The 4700 controller also takes care of the following functions:

+ Enforces the traffic (Reset - Active) state and the quiescent state for
messages sent by the application in the 4700. Although you could add code
to the application program to enforce these states on messages the program
receives, the responsibility for enforcement belongs to the sender.

o Presents only valid commands on the L.U-LU session and the procedure error
command in the SSCP-LU session to the application program. The
transmission header (TH), request header (RH), and the command portion of
the RU have been verified by the controller so that you can assume them to
be correct.

Chapter 4. Processing 3270 Data Streams 4-51

¢ Can send and receive all the commands that the 3274 or 3276 can send or
receive.

« Verifies the sequence numbers on sequential message flow in the LU-LU
session.

« Controls both inbound and outbound pacing (see 4700 documentation for the
description of this support).

« Supports outbound segmenting but not inbound segmenting. If your FCL
program is to perform 3274 or 3276 emulation, the BIND command’s
parameters must specify an RU size equal to or smaller than 256 bytes, and
the program should transmit RUs only within that size range to the host
application program.

« Detects the error conditions resulting in path error sense code X‘80xx’ as does
the 3274 or 3276. Your FCL program need not concern itself with this sense
code for negative responses.

» Handles the following additional error conditions:

- X‘0201’ - Sequence number error

X‘0202’ - Chaining error

X1003’ - Function not supported (for invalid commands only)

X‘0805’ - Session limit exceeded

Responsibilities of the Application Program

Your program must perform the following functions:

« Bind parameter checking with the exception of inbound pacing parameters.

+ Processing of all commands and data received on the LU-LU session flow.

¢ Sending any necessary commands and data on the LU-LU session flow.

« Managing the bracket state, including the protocol and its states. The size of
this function depends on the amount of error checking required by the
messages received.

» Controlling the change direction indicator.

Finally, you must consider the host application program and the amount of

support it provides for a 3274 or 3276. The amount of support you must provide

in the application program increases with the support provided in the host
program.

4-52 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Chapter 5. 4700 Loop and DCA Assembler Instructions

This chapter describes the 4700 assembler instructions you must use to read from,
write to, and control the various 4700 terminals, devices, and ports. These
descriptions often refer to DEVnnnn and DCAnnnn configuration macros
described in Volume 6 of this library.

The first section of this chapter describes the normal 4700 assembler instructions;
the second part describes the 3270 Data Stream Compatibility (DATSM)

assembler-level instructions. For coding and syntax rules, refer to the 4700
Controller Programming Library, Volume 1.

4700 Assembler Instructions

The instructions that are described on the pages immediately following are used in
both DATSM and normal 4700 terminal/device 1/0 programming. The
instructions described in this chapter are:

ASSIGN Assign device/components.

DCACTL Control the device cluster adapter (DCA) ports and devices.
DEVPARM Control device/component operating parameters.

DPOOL Control device/component pool assignment.

GETDMS Move the DCA field control table (FCT).

GETFLD Get DCA image buffer contents.

LCHECK Test terminal/component write status.

LREAD Read data/status from a device/component.

LWRITE Write (send) data to a device/component.

PUTDMS Change the DCA field control table (FCT).

PUTFLD Lay out (“map”) data into DCA image buffer.

SIGNAL Switch on/off device indicators or PIN keypad.

STPLPS Stop a device/component loop (“B—loop”).

STRLPS Start a device/component loop (“B—loop”).

SWAPTT Exchange (“swap”) translation tables.

Chapter 5. 4700 Loop and DCA Assembler Instructions 5-1

5-2 4700 Controller Programming Library, Volume 4: Loop/Device Programming

ASSIGN assigns a terminal component to either an available logical device
address (LDA) in a specified station, or to a “free pool” of unassigned devices.
Unassigned devices are those defined by configuration (CPGEN) but not in any
work station or device pool.

ASSIGN -- Terminal Component Assignment

ASSIGN changes only the station ID and LDA assignments. If the component is
shared, one side (either A or B) must be specified.

The physical device address, the shared device indicator, the station ID, and LDA
for the component to be assigned are specified in a parameter list; the ASSIGN
instruction points to this list. Refer to Figure 5-1, which shows the ASSIGN
parameter list for LDA assignment for loop and DCA devices.

If the assignment is completed successfully, ASSIGN changes the station ID and
LDA fields in the parameter list to show the previous assignment of the
component. To assign the component to its previous state (either the station or
free pool), issue a second ASSIGN instruction using the same parameter list (the
list updated by the first ASSIGN instruction).

Name Operation Operand

defld2
[label] ASSIGN seg2,disp2

(reg2)

(defrf2)

operand 2
Defines the start of the parameter list. A DEFRF instruction label must
always be in parentheses. The length of this operand is ignored and the
first 5 bytes are assumed to be the parameter list. The parameter list is
illustrated in Figure 5-1 on page 5-4. The segment number cannot be 14.

Chapter 5. 4700 Loop and DCA Assembler Instructions 5-3

5-4

Loop Device:

Byte: 0 1 2 3 4
DCA Device:
Byte: o 1 2 3 4

Loop
The four-bit binary loop number, or set to X‘A’ for DCA.

Terminal
This four-bit binary value in the terminal’s address switches.

Port
This is the four-bit binary address X‘F’ ‘15’ of the DCA port to which the
component (3262, 3278/3279, 3287, or 4704-2/3) is connected.

Component
Is the 4-bit terminal component address, as described in Chapter 1, ‘‘General
Terminal and Device Programming.”’

Modulus Value
Is the four-bit base modulus value returned only if X‘FFFF’ was specified
for the device address. For DCA, set this field to X‘0’.

Shared Indicator
Is the shared device indicator (C‘A’ or C‘B’); if the device is not shared, this
byte must contain a C‘A’.

Station ID
This eight-bit field contains the station ID.

LDA
Is the 8-bit binary number specifying the logical device address (LDA).

Figure 5-1. Device Parameter Lists Used by ASSIGN

4700 Controller Programming Library, Volume 4: Loop/Device Programming

Condition Codes: One of the following is set:

Hex Code: Explanation:
01 The assignment was successful.
02 Unsuccessful assignment: The LDA specified already

has a device assigned to it, or—for an earlier release
having no LEXIT—the LDA has no device assigned to
it.

04 The device was busy (it was being used by another

station or the controller requested an early release with
the device still busy); or your program attempted to
assign a 3614 /3624 with its front panel open.

08 The parameter list was invalid (station ID, A/B field, or

device specification). The station ID was specified as 0
or X‘FF’.

Program Checks: 1, 2, or 27 can be set.

Programming Notes

Specifying a receiving station ID of 0 assigns the terminal component to the
free pool.

If bytes 0 and 1 of the parameter list contain X‘FFFF’, ASSIGN returns the
parameter list with the first two bytes set as described in Figure 5-1, and
returns the shared device indicator of the LDA for the specified station. If no
device was assigned to the specified LDA, the parameter list is not changed.

If bytes 0 and 1 of the parameter list contain X‘0000’, ASSIGN permits the
program’s station to give up the specified terminal. A station using ASSIGN
this way can release the terminal without issuing an LEXIT instruction. Early
release will not take place, however, unless you first issue LCHECK to test
both for any data transmission instructions that may be pending for the
terminal, and to ensure that the device is available.

Chapter 5. 4700 Loop and DCA Assembler Instructions 5-5

5-6 4700 Controller Programming Library, Volume 4: Loop/Device Programming

DCACTL -- DCA Control

The DCACTL instruction controls the DCA adapter and the associated adapter
ports. DCACTL uses the following three-byte parameter list:

Byte 1: Contains the request code.
Bytes 2-3: Contain data required by the instruction.

The contents of the parameter list are as follows:

Request Code Port Number Reserved
Function: (Byte 1): (Byte 2): (Byte 3):
Start DCA Adapter 00 00 00
Stop DCA Adapter 01 00 00
Enable Port 02 00-07 00
Disable Port 03 00-07 00

Name Operation Operand

defcon2
defld2
[label] DCACTL seg2,disp?2
(reg2)
(defrf2)

operand 2
Defines the parameter list. The length must be 3.

Condition Codes: The following may be set:

Hex Code: Explanation:
01 The instruction executed successfully.
02 Status is stored.
04 The device was busy. DCACTL was not executed.

Program Checks: 1,2, or 27 can be set.

Chapter 5. 4700 Loop and DCA Assembler Instructions 5-7

5-8 4700 Controller Programming Library, Volume 4: Loop/Device Programming

DEVPARM

DEVPARM sets or returns either the device operating parameters and
characteristics in a nine-byte parameter list, or the component’s identifier,
assignment status, and user-defined data in an eight-byte parameter list.
Operand 2 defines the parameter list location in either case.

DEVPARM -- Change Component Parameters

When setting or returning operating parameters, DEVPARM dynamically changes
the characteristics of the 3616, 4710, and 4720; you must issue DEVPARM to set
any needed document print station (DPS) parameters before actual printing
begins. When DEVPARM specifies SETRET=SET for the 3610, 3611, 3612, or
3615, the component’s registers are reset to line 1, column 1. For a 3610, 3611,
or 3612, DEVPARM opens the platen and stops the motors.

If you specify SETRET=SET, the new characteristics are contained in a 9-byte
list referred to by DEVPARM. All parameters for the component, whether
changed or not, must be specified in the list. If the parameter list contains fewer
parameters than required for the component, none of the parameters are changed
and DEVPARM sets a condition code of X‘02’ and returns a status code
indicating command reject in SMSDST. (See Figure 5-2 on page 5-12 for the
format of the list and the parameters required for each component.)

For the SETRET=RETURN option, DEVPARM returns the terminal operating
parameters to the parameter list in the same format as required for SET,
permitting the characteristics to be restored easily after being changed.

Name Operation Operand

defld2
(defrf2) WAIT
[label] DEVPARM {lda } seg2,disp2,len2 ,
mnem (reg2) NOWAIT
seg?2
(defcon2)

- — [{H “

SETRET=
SET ?

RETURN }

EXTRACT= \

\ SET

lda
Is a decimal number (0-7) indicating the logical device address assigned to
the terminal.

mnemonic

Is the code of the component referred to in the instruction. Each
mnemonic sets the LDA used as a default during controller configuration.
Refer to Chapter 1, “General Terminal and Device Programming’ on
page 1-1 for the mnemonics and their LDAs.

operand 2
Defines the start of the parameter list. The label of a DEFRF instruction
must always be in parentheses. The length associated with this operand is
ignored, and the first 1 to 9 bytes (depending on the device type) are
assumed to be in the parameter list. The parameter list is defined in
Figure 5-2 on page 5-12 . When you specify the RETURN option for
either SETRET= or EXTRACT=, do not specify the label of a DEFCON
statement.

WAIT
Specifies that the application program waits until the DEVPARM
instruction is completed and status is stored before execution continues
with the next sequential instruction.

NOWAIT
Specifies that the application program continues execution after issuing a
DEVPARM instruction without waiting for the DEVPARM instruction to
be completed.

SETRET
Sets or returns the operating characteristics of the selected device.
SETRET=RETURN sets the current characteristics of the terminal to the
specified parameter list area in the same format required for the SET option
(see Figure 5-2 on page 5-12). The operand is invalid for the 3616.

SETRET=SET is the default if you specify no DEVPARM operand except
the device or component. SETRET=SET causes the new characteristics
stored in the parameter list to become the new set of characteristics for the
specified terminal. SET is the default option.

EXP

Specifies whether or not expanded display status is returned. If you code
EXP=Y with SETRET=RETURN, the display returns the number of
characters per line, lines per screen, the cursor line position, and the cursor
column position in bytes 2 through 5 (see Figure 5-2 on page 5-12, part 1).
Specifying EXP=N (the default) causes only the indication ““8” for the
3278 or 3279 to be returned in byte 1. Do not specify EXP=Y with

I SETRET=SET or with the EXTRACT= parameter, or an assembly error
occurs.

EXTRACT
When EXTRACT specifies SET, DEVPARM sets an eight-byte
device/component definition parameter list selected by Operand 2.
Specifying RETURN cause DEVPARM to read device/component status
I into the parameter list. Do not specify EXTRACT with the SETRET EXP
option.

5-10 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Condition Codes: One of the following is set:

Hex Code:

01

02

Explanation:

The component parameters were changed.

Status returned; the status code is contained in
SMSDST. Refer to Appendix D, “Terminal and Device
Status Codes” for an explanation of the status code.

The following are invalid characteristic specifications that set a condition code of
X‘02’ and return a status code of 0480 in SMSDST:

Device:

3610, 4710, or 3612
Printer

3612 Passbook Printer

3615 Administrative
Terminal Printer
3616 Journal Printer

3616
Passbook/Document
Printer

4710 Printer

Invalid Specification:

1.

2.

hadi bl e

W=

N = O\ L

» W

Flag byte indicating forms type is not X‘01” or hex
02.

Page size or warning line is negative (a value greater
than 127 produces a negative number).

Flag byte is hex 02, but the printer uses only
cut-forms mode.

Page size is 0.

Page size, center fold begin, center fold skip, step
offset, or line offset is negative (a value greater than
127 produces a negative number).

The sum of the page size, center fold skip, and line
offset is greater than 42.

Page size is negative (a value greater than 127
produces a negative number).

Flag byte not X‘02’ or X‘82’.

Warning line greater than page size.

Line length greater than 57 at 12 characters per inch,
or 47 at 10 characters per inch.
SETRET=RETURN

Flag byte not X‘00’ or hex 01.

Auto-start and shared both specified.

Line length greater than 100 at 12 characters per
inch, or 83 at 10 characters per inch (Note: For
vertical-fold passbooks, skip is included in line
length).

Page size greater than 72 at 6 lines per inch; or 60 at
5 lines per inch.

SETRET=RETURN

Page size is 0.

Flag byte not X‘01’°, X‘02’, X‘20’, or X‘82’.

Flag byte not X‘01’ or X*2(’, and “journal not
present” switch is set.

Both “autostart” and “shared” are specified.

Line length greater than allowed.

Program Checks: 1 or 2 can be set.

Chapter 5. 4700 Loop and DCA Assembler Instructions 5-11

4704/3604/ 4704/3604/ 3615
3278/3279 3278/3279 3608 Printer 3610 or 3612 3611 or 3612 Administrative
. Document Printer Passbook Printer . .
Keyboard Display Terminal Printer
Flag Byte EOM-set selection —reserved— First line print Forms types: —reserved— Forms types:
mask (if set to types: X‘01'—cut-forms X‘01"—cut-forms
X'00’, mask is not X’00'—do not mode mode
altered) change line one X'02'—continuous- X'02'—continuous-
print type forms mode forms mode (no
X'80"'—first line (restricts con- concurrent
is ten pitch current sharing) sharing)
X'CO'—first line X'41'—cut-forms X‘41'—cut-forms
is seven pitch mode (specifies mode (specifies
automatic start) automatic start)
X'82'—continuous- X'82'—continuous-
forms mode forms mode (con-
(specifies con- current sharing)
current sharing)
Data Byte 1 | —reserved— model number* | Maximum form Page size in lines Page size in lines Page size in lines
width (0.1 inch)
Data Byte 2 | —reserved— —reserved* Initial offset Warning line Center fold begin Warning line
(0.1 inch) number line number number
Data Byte 3 | —reserved— —reserved* Page spacing —reserved— Center fold skip —reserved—
(0.1 inch) in number of
lines
Data Byte 4 | —reserved— —reserved™ —reserved— —reserved— Step offset in —reserved—
number of steps
Data Byte 5 | —reserved— —reserved* —reserved— —reserved— Line offset in —reserved—
number of lines

*The number 8 should be set, or will be returned, for a 3278 Model 2. If EXP=Y, DEVPARM with SETRET=RETURN presents characters
per line for any display in byte 2, lines per screen in byte 3, cursor line position in byte 4, and cursor column position in byte 5.

3262/3287 DCA Printers

Bit O (unused)

Bit 1 = 0: no data chaining*

Bit 1 = 1: data chaining*

Bits 2—6 = unused

Bit 7= 0: no FM header follows

in data stream

FM header for structured

fields follows* *

Bit7=1:

Flag Byte X'02’ Continuous-forms mode X’'08' Activate time-out. X'09’ Deactivate time-out.
Timer set during 1/0. Timer not set during 1/0.
Data Byte 1 Device Characteristics (reserved) (reserved)

Notes:

*3262 data chaining is necessary to achieve rated printing speed. Refer to “Chapter 3, Programming for Printers,”’ to determine how data
should be used. Data chaining is not necessary on the 3287 printer.

**{f bit 7 is 1, the data stream that follows this DEVPARM is an FM header defining the data format and length. Refer to the appropriate
printer’s Component Description manual.

Figure 5-2 (Part 1 of 4). DEVPARM/SETRET Parameter List and Values

5-12

4700 Controller Programming Library, Volume 4: Loop/Device Programming

Bits 0-3: reserved
set to zeros
Bits 4-5: print pitch:
00 = use bit 7 of
byte 4
01 = 10 cpi
10 = 12 cpi
11 = 16-2/3 cpi
Bits 6-7: reserved
set to zero

of lines (must be non-
zero) (see device
chapter)

chapter)

3616, 4710, and 4720 3616 and 4720 3616, 4710, and 4720 Any 3616 | Any 3616, 4710,
Journal Printers Document Printers Printers Printer or 4720 Printers
Flag Byte X’02’ continuous X'00’ Passbook Mode X'01’ Cutforms Mode X’'08"’ X’'20’ Table
forms mode/no concurrent activate load —
sharing timeout — load special
timer is set | character table
during 1/0 (National Use
Graphics or
X’82’ continuous forms X'09’ user-defined)
mode/allow concurrent deactivate
sharing timeout—
timer is
not set
during 1/0
Data Byte 1 Page size in lines (see Page size in lines (see Page size in lines (see reserved Table ID —
device chapter) device chapter) device chapter) see note 1
Data Byte 2 | Warning line number (see Centerfold begin Warning line number (see reserved reserved
device chapter) column/line number device chapter)
(see device chapter)
Data Byte 3 | Line length (see device Centerfold skip in Step offset in number of reserved reserved
chapter) number of lines/char’s steps (4710: reserved) —
(see device chapter) see device chapter
Data Byte 4 Device characteristics: Step offset in number of Line offset in number of reserved reserved
(Journal Bits O- 1: unused steps. lines
control bits Bit 2=0: nonshared This value must be less
0-3 & b are =1: shared than the total steps per
unused by Bit 3=0: start key line (<12 for 5 Ipi,
4720; bits required <10 for 6 Ipi). See
0-6 are =1: autostart byte 8, bit 06
unused by Bits 4-5: unused (4720 only) Specify
4710) (except 4720) up to 255 steps
Bit 4 (4720 only:)
= 1: extension
in byte 5
= 0: no extension
Bit 6 (4720 only):
=0:5 Ipi
=1: 6 lines per inch
Bit 7=0: 10 cpi
=1:12 cpi
Data Byte 5 | 4720 characteristics Line offset in number Line length (see device reserved reserved

Figlire 5-2 (Part 2 of 4). DEVPARM/SETRET Parameter List and Values

Chapter 5. 4700 Loop and DCA Assembler Instructions

5-1

3

Any 3616, 4710,

cut forms mode bit 1)

Bit 0 =O: horizontal fold
=1:vertical fold

Bit 1: ‘unused

Bit 2 =1: shared
=0: non-shared

Bit 3 =0: start key req.
=1: autostart

Bit 4 (4720 only):
=0: no extension
=1: extension in

byte 9

Bit 56 =0: no auto new line

=1:auto new line

Bit 6=0: 5 Ipi
=1: 6 Ipi
Bit 7=0: 10 cpi

=1: 12 cpi

3616, 4710, and 4720 3616 and 4720 3616, 4710, and 4720 Any 3616
Journal Printers Document Printers Printers Printer or 4720 Printers
Data Bye 6 | reserved Left margin column Device Characteristics: reserved reserved
(cut form number (see device Bit O: unused
control bits chapter) Bit 1 = 0: no data chaining
1 and 6 (see note 4)
unused by = 1: data chaining
4710) Bit 2 = 0: non-shared
= 1: shared
Bit 3 = 0O: start key required
= 1: auto start
Bit 4 (4720 only):
= 1: extension in
byte 7
= 0: no extension
Bit 5 = O: no auto new line
= 1: auto new line
Bit 6 = O0: 5 cpi
= 1: 6 cpi
Bit 7 = 0: 10 Ipi
=1: 12 lpi
Data Byte 7 | reserved Line length (see device | 4720 extended definition: reserved reserved
chapter) Bit O -Print font:
=0: regular font
=1: quality font —
see nocte 5
Bit 1: -Model 2/4
Journal control:
=1: advance journal
=0: no advance
Bits 2-3: unused
Bits 4-5: print pitch:
00 = use byte 6,
bit 7
01 = 10 cpi
10 = 12 cpi
11 = 16-2/3 cpi
Bits 6-7 - Forms skew:
00=1.37mm/100mm
(.05 in./4 in.)
01=2.05mm/100mm
(0.08 in./4 in.)
10=2.74mm/100mm
(.11 in./4in.)
11=3.42mm/100mm
(.13 in./4 in.)
Data Byte 8 reserved (for 4720, see Device characteristics: reserved reserved reserved

Figure 5-2 (Part 3 of 4). DEVPARM/SETRET Parameter List and Values

5-14

4700 Controller Programming Library, Volume 4: Loop/Device Programming

3616, 4710, and 4720 3616 and 4720 3616, 4710, and 4720 Any 3616 | Any 3616, 4710,
Journal Printers Document Printers Printers Printer or 4720 Printers
Data Bye 9 | reserved 4720 extended definition: | reserved reserved reserved
Bits 0-3: reserved
Bits 4-5: print pitch:
00 = see byte 8,
bit 7
01 = 10 cpi
10 = 12 cpi
11 = 16-2/3 cpi
Bits 6-7 - skew:
00 = 1.37mm/
100mm
(.05 in./4 in.)
01 = .68mm/100mm
(.03 in./4 in.)
10,11 = 2.05 mm/
100 mm
(0.08 in./
4 in.)
Notes:
1. Table ID is ID of either user-defined special characters table or IBM Table 5A: National Use Graphics Special Character Table:
07 User-defined 13 Belgium 18 ltaly 23 Hebrew 1A Portugal
(normal print) 14 Brazil 19 Japan 24 Arabic 1B Spain
10 U.S. 15 Denmark/Norway 20 Yugoslavia 25 Greek 1C Spanish Speaking
11 International 16 Finland/Sweden 21 Turkey 47 User-defined 4720 1D United Kingdom
12 Austria/Germany 17 France 22 South Africa quality print. 1E Canadian French
1F Katakana
2. Refer to the appropriate device chapter in part 2 for characters generated for the IBM Table 5A: National Use Graphics.
3. The table must be specified, for the terminal, via the OUTBHDR, OUTSPEC, and/or CHARSET macros.
4. Combining cut-form mode with data chaining causes complete overlapping of data transmission and printing. LWRITEs are

posted as complete before completion of printing. This permits subsequent LWRITE to be transmitted while the previous
LWRITE is still printing. Issuing an LWRITE containing a form feed ensure completion of printing. Data chaining does not apply to

the 4710 or 4720.
5. Specifying quality printing on a Katakana 4720 or with 16-2/3 cpi causes DEVPARM format errors.

Figure 5-2 (Part 4 of 4). DEVPARM/SETRET Parameter List and Values

Chapter 5. 4700 Loop and DCA Assembler Instructions ~ 5-15

1

2

7

8

Byte 5
Component ID. These binary IDs are:

Byte 6
User data defined during configuration of the device’s DEVnnnn or
DCAnNnnnn macro, using the UDD . . . = parameter. This can be any
value ranging X’00’ to X‘FF’.

Byte 7
Assignment status:

Bytes O and 1
Four-digit device type, in hexadecimal. For example, a 4710 is
represented in these two bytes as X’4710’. Refer to the rest of this
figure for the type codes allowed and returned.

Bytes 2-4
Device model, encoded as characters (one character per byte), or “’C’".
For example, a device model ‘‘BO2’’ is specified as X'C2F0OF2’, and a
device model ‘“12’" with a leading blank (* ') as X’"40F1F2’. Refer to the
rest of this figure for the model codes allowed and returned.

Keyboard, or KB

Display, or DS

Magnetic stripe device, or MS
Printer/first or only component
Printer/second component

Financial Services terminal (3606/08)
Document processor

Consumer transaction facility (3614/3624)

X'20" Device or component is sharing concurrently.

X‘40" Device or component is sharing nonconcurrently with another

station.

X‘80’ Device or component is assigned to this station’s device pool.

Figure 5-3 (Part 1 of 3). DEVPARM/EXTRACT Parameter List and Values

5-16

4700 Controller Programming Library, Volume 4: Loop/Device Programming

Loop-Attached Devices

Device: Model: Component: | Description:
3604 1 01 Keyboard (with or without magnetic stripe reader and PIN keypad)
02 Display
03 Mag Stripe (magnetic stripe reader/encoder)
2 01 Keyboard (with or without magnetic stripe reader and PIN keypad)
02 Display
03 Mag Stripe (magnetic stripe reader/encoder)
3 01 Keyboard (with or without magnetic stripe reader and PIN keypad)
02 Display
03 Mag Stripe (magnetic stripe reader/encoder)
4 01 Keyboard (with or without magnetic stripe reader and PIN keypad)
02 Display
03 Mag Stripe (magnetic stripe reader/encoder)
5 01 Keyboard (with or without magnetic stripe reader and PIN keypad)
02 Display
6 01 Keyboard (with or without magnetic stripe reader and PIN keypad)
02 Display
7 01 Keyboard (with or without magnetic stripe reader and PIN keypad)
02 Display
3606 06 (keyboard, display, magnetic stripe reader)
3608 04 Printer
06 (keyboard, display, magnetic stripe reader)
3609 1 01 Keyboard (with or without magnetic stripe reader and PIN keypad)
02 Display
03 Mag Stripe (magnetic stripe reader/encoder)
2 01 Keyboard (with or without magnetic stripe reader and PIN keypad)
02 Display
03 Mag Stripe (magnetic stripe reader/encoder)
3 01 Keyboard (with or without magnetic stripe reader and PIN keypad)
02 Display
03 Mag Stripe (magnetic stripe reader/encoder)
3610 1 04 Document Printer
2 04 Document Printer
3 04 Document Printer
4 04 Document Printer
5 04 Document Printer
12 04 Document Printer
13 04 Document Printer
3611 1 04 Passbook Printer
2 04 Passbook printer

Figure 5-3 (Part 2 of 3). DEVPARM/EXTRACT Parameter List and Values

Chapter 5. 4700 Loop and DCA Assembler Instructions 5-17

Loop-Attached Devices
Device: Model: Component: | Description:
3612 1 04 Document Printer
05 Passbook Printer
2 04 Document Printer
05 Passbook Printer
3 04 Document Printer
05 Passbook Printer
12 04 Document Printer
05 Passbook Printer (CPGEN: MODEL=12P)
13 04 Document Printer
05 Passbook Printer (CPGEN: MODEL=13P)
3614 08 Consumer Transaction Facility
3615 1 04 Administrative Printer
2 04 Administrative Printer
3616 04 Journal Print Station
05 Document Print Station
3624 08 Consumer Transaction Facility
4704 1 01 Keyboard (with or without magnetic stripe reader and PIN keypad)
(CPGEN: MODEL=11 or 12)
02 Display (CPGEN: MODEL=11 or 12)
03 Mag Stripe (magnetic stripe reader/encoder)
(CPGEN: MODEL=11 or 12)
4710 04 Receipt/Validation Printer
4720 1 04 Cut form Printer
2 04 Cut form Printer with Journal
3 04 Cut form/Passbook Printer
4 04 Cut form/Passbook Printer with Journal

Figure 5-3 (Part 3,of 3). DEVPARM/EXTRACT Parameter List and Values

5-18 4700 Controller Programming Library, Volume 4: Loop/Device Programming

DPOOL assigns components back and forth between the work station and its
device pool. DPOOL performs basically the same operations as the ASSIGN
instruction; however, instead of specifying the physical device address, you
specify a component type; DPOOL then searches for a component of that type.

DPOOL -- Assign Device Pool Terminals and Components

DPOOL transfer components between the station and the device pool according
to the operands you specify and the 19—byte parameter list selected by

Operand 2. You can define a DPOOL parameter list with the format shown in
Appendix B, “4700 Fields and Parameter Lists” using the COPY DEFPOL
instruction. The device pool itself is created during configuration by the DPOOL
operand of the STATION macro, and by the DEFADDR/DCAPORT macros.

DPOOL performs the following operations:
o Assigns a component to the work station (GET and GETX).
« Reassigns a component to the device pool (RETURN).

« Allocates or deallocates a device for assignment eligibility (ACT and
DEACT).

« Requests information about a component in the device pool (QUERY).

Name Operation Operand

GET

GETX defld2
[label] DPOOL RETURN seg2,disp2

QUERY , (reg2)

ACT (defrf2)

DEACT

GET and GETX
These operands make DPOOL search the station’s device pool for a
component with the component identifier defined by the parameter list, and
assign the component to the work station. GET/GETX use only the first
seven component identifier bytes in the search. GET can be used to assign
components of a multi-component device to different work stations.
GETX gives the work station exclusive use of the component or device.
GET and GETX do not assign devices that were deactivated by DPOOL
DEACT.

DPOOL performs a priority search that depends on the type of assignment
you request. DPOOL GET searches first for an available component of a
terminal with other components already assigned to any work station, and
assigns that component to the work station. DPOOL GETX searches first
for a component of a terminal with other components already assigned to
this same work station.

If neither DPOOL GET or GETX find their preferred components during
the first search, they search the device pool once again for the first
available requested unassigned component, and assign it to the work
station.

Chapter 5. 4700 Loop and DCA Assembler Instructions 5-19

Before issuing DPOOL GET/GETX, you must set the parameter list as

follows:

Byte 0
Set to X‘00°.

Byte 1
Set to the logical device address (LDA) to be assigned to the
component.

Bytes2 — 9

The identifier of the component being searched for in the
device pool. Refer to Figure 5-3 on page 5-16 for a
description of the component ID.

The rest of the parameter list should be zero. After DPOOL GET/GETX
executes, the parameter list contains the following information about the
requested component:

Bytes 0 — 9
Unchanged

Bytes 10 and 11
The physical identifier for the component, comprising the
component’s physical address and modulus (refer to Figure 5-1
on page 5-4).

Byte 12
The DPOOL status code. If DPOOL returns a condition code
of X‘02’, the execution was unsuccessful; the program should
test this byte for the cause:
Status Code: Cause:

X902’ The specified LDA is already assigned.

X110 The specified component is unavailable for
exclusive assignment with GETX.

X330 Invalid parameter list (byte O was not zero,
LDA invalid, and so on).

X400’ The specified component is already assigned.

X‘50° The component is either not in the station’s
device pool, or was deactivated.

X‘60’ The station has no device pool.

The last six parameter list bytes have no meaning.

5-20 4700 Controller Programming Library, Volume 4: Loop/Device Programming

RETURN
This operand makes DPOOL return a component (specified by the LDA in
byte 1 of the parameter list) to the station’s device pool. You must first set
the parameter list as follows:

Byte 0
Set to X‘00’.

Byte 1
Set to the logical device address (LDA) of the component to

be reassigned to the device pool.

After DPOOL RETURN executes, the parameter list contains the

following:

Bytes 0 — 11
Unchanged.

Byte 12

The DPOOL status code. If DPOOL returns a condition code
of X‘02’, the execution was unsuccessful; the program should
test this byte for the cause:

Status Code: Cause:

X‘04’ The selected device was busy, or its front
panel was open.

X0 The specified LDA has no assigned
component.
X30° Invalid parameter list (byte 0 was not zero,

LLDA invalid, and so on).

X‘50° The component is either not in the station’s
device pool, or was deactivated.

X“60’ The station has no device pool.
The last six parameter list bytes must be zero.

ACT and DEACT
These operands make a device in the issuing station’s own pool eligible
(ACT) or ineligible (DEACT) for assignment with GET or GETX.

ACT and DEACT search the device pool for a device with a physical
address matching the one you specify in the DPOOL parameter list. If
DPOOL finds a matching address, it turns on or off the component
deactivated flag in component identifier byte 8. DPOOL returns the
deactivated device to the station’s device pool if the device was assigned to
the station.

Chapter 5. 4700 Loop and DCA Assembler Instructions 5-21

ACT and DEACT have the following DPOOL parameter list format:

Byte 6
Set to X‘00’.

Bytes 1-9
These reserved bytes must be zero.

Bytes 10 and 11
The physical device address for the desired component. This
address comprises four 4~bit fields: loop, slot, address, and
modulus. When searching for the component, the modulus is
unused.

The last six parameter list bytes must be zerc.

After DPOOL ACT or DEACT completes, the parameter list contains the
following:

Bytes 0—11
Unchanged.

Byte 12
The DPOOL status code. If DPOOL returns a condition code
of X‘02’, the operation failed. Your program should test this
byte for the cause:

Status Code: Cause:

X04’ The selected device was busy, or its front
panel was open (DEACT requcst).

X3¢0’ Invalid parameter list (byte 0 was not zero,
LDA invalid, and so on).

X‘40° The specified component is already assigned.

X50° The component is not in the station’s device
pool.

X‘60’ The station has no device pool.

5-22 4700 Controller Programming Library, Volume 4: Loop/Device Programming

QUERY
DPOOL QUERY provides information about components in the station’s
device pool. To execute DPOOL QUERY, you must first set the parameter
list as follows:

Byte 0
Set to X00’.

Byte 1
Set to the station ID of the device pool being queried. Specify
X‘00’ for this station.

Bytes2 — 9

Reserved—set these bytes to zero.

Bytes 10 and 11
Set to the physical identifier of the last device queried.
Specifying X‘0000’ selects the first device in the selected
device pool.

After DPOOL QUERY executes, the parameter list contains the following
information about the selected device:

Bytes 0 and 1
Unchanged

Bytes2 — 9
Contain the component identifier for the queried device. This
identifier is assigned to the device during configuration.

Bytes 10 and 11
Contain the physical identifier for the queried device. If this
value is X‘FFFF’, the DPOOL QUERY operation searched to
the end of the pool.

Byte 12
The DPOOL status code. If DPOOL returns a condition code
of X‘02’, the execution was unsuccessful; the program should
test this byte for the cause:

Status Code: Cause:

X30° Invalid parameter list (byte 0 was not zero,
LDA invalid, and so on).

X‘60° The station has no device pool.
Byte 13
Set to the station ID where the component is currently

assigned. If this value is X‘00’, the component is not assigned.

Byte 14
The LDA of the component if it is assigned to a station.

Chapter 5. 4700 Loop and DCA Assembler Instructions 5-23

Byte 15
The number of components in the queried component’s
terminal.

Byte 16
The use indicator, which has the following meanings:

X000’ All components of the queried component’s terminal
are available.

X‘FF’ One or more of the terminal’s components are
assigned. The assigned components may be shared
between stations.

X‘nn’ One or more components of the terminal are
assigned for the exclusive use of station X‘nn’.

The last two parameter list bytes are reserved, and have no meaning.
Operand 2
Specifies the address of the DPOOL parameter list. The length of the list is

assumed to be 19 bytes. The parameter list cannot be in segment 14.

Condition Codes: One of the following is set:

Hex Code: Explanation:
01 DPOOL executed successfully.
02 DPOOL completed unsuccessfully. The DPOOL status

code in byte 12 of the returned parameter list defines
the reason for the failure. Refer to each DPOOL
function description, above, for the appropriate DPOOL
status codes.

Program Checks: 1, 2, or 27 can be set by DPOOL.

Programming Notes

1. A DPOOL instruction issued to a device assigned during configuration or an
ASSIGN instruction issued to a device in the device pool will not execute.

2. For DPOOL to operate, the OPTMOD macro must specify “P42”.

5-24 4700 Controller Programming Library, Volume 4: Loop/Device Programming

LCHECK determines the status of a terminal component attached to the
controller and synchronizes data transmission between the terminal and
application program.

LCHECK -- Check the Status of a Terminal Component

Before LCHECK operation completes, it stores the status in SMSDST and sets
the condition code accordingly. If there is no outstanding write operation,
LLCHECK returns a zero status code and a condition code of X‘01°.

IF LCHECK did not specify TIO and a write operation to the terminal is still not
completed when LCHECK is issued, LCHECK places this work station in wait
state until the write operation ends. If TIO was specified, LCHECK sets the
condition code to indicate whether or not the write operation was successful.
LCHECK also resets any intervention required indication.

Name Operation Operand

[label] LCHECK lda [,TIO]

lda
Is the logical device address (.LDA) assigned to the terminal during the
controller configuration procedure. The default LDA values are described
at the beginning of this chapter.

TIO

indicates that a test I/O operation is to be performed. The application
program retains control whether the I/O operation being checked has
completed or not.

Condition Codes: One of the following is set:

Hex Code: Explanation:
01 1/0 has completed, zero status is returned.
02 1/0 has completed, nonzero status is returned; the

status code is contained in SMSDST. (See Appendix
D, “Terminal and Device Status Codes” for an
explanation of the status codes.)

04 1/0 has not completed (applies only for TIO option).

Program Checks: None are set.

Chapter 5. 4700 Loop and DCA Assembler Instructions 5-25

5-26 4700 Controller Programming Library, Volume 4: Loop/Device Programming

LREAD -- Read from Terminals

LREAD reads data from input terminals. The data read from the

keyboard/displays can come from either the keyboard, PIN keypad, or the
magnetic stripe reader although only the keyboard is specified in the LREAD
instruction.

LREAD reads data into the specified segment beginning at the fixed field address
or the primary field pointer (PFP), and continuing for the length of the fixed field
or field length indicator (FLI} or until one of the other ending conditions listed
below occurs:

1. The coatroller detects a CPGEN-defined EOM character (keyboard/display,
3606, 3608) or receives the last message byte (3606, 3608, 3614/24).

2. The read operation reaches the end of the data field.
3. The read operation passes the end of the segment, and the FLI is O.

4. The input buffer is full and ERTLS=Y was specified on the terminal’s
DEV/DCAnnnn macro (no status is returned).

5. The operator signals attention.

Data read from a 3614 or 3624 goes directly to the station’s storage. This
EBCDIC data requires no translation. If the read stops before all data has been
read, LREAD sets status in SMSDST and the unread data is lost.

In the case of the 3606, 3608, 3614, or 3624, the read completes with error status
if the device or slot group (depending on the setting of SMSTGU) has not
presented an attention. At the end of the operation, the PFP is unchanged, and
the controller stores the message length in SMSIML..

Name Operation Operand

seg2
defld2
[label] LREAD lda, seg2,disp2,len2
(reg2)
(defrf2)

[(™) [™]

Ida
Is the logical device address (0-7) for the input device. If LDAs were
assigned by default during the configuration procedure, the LDA values are
as described in Chapter 1, “General Terminal and Device Programming.”
operand 2

Is the location of the data that is read. The segment number cannot be 14.

Chapter 5. +/00 Loop and DCA Assembler Instructions 5-27

TRACK
Indicates that data read from the keyboard will be displayed immediately,
or tracked. When you specify KB, tracking is assumed unless you also
specify NOTRACK. If you specify a mnemonic other than KB, no tracking
is assumed unless you also specify TRACK. Do not specify TRACK when
reading from the 3606, 3608, 3614/24, or from the 4704-2/3 when it
operates in local tracking mode.

NOTRACK
Indicates that data read from the keyboard is not to be displayed. Do not
specify this operand when reading from a 3606, 3608, 3614 /3624, or from
a 4704-2/3 while it is operating in local tracking mode.

NOWAIT
Specifies that the application program continues processing after issuing an
LREAD instruction without waiting for the LREAD to be completed. If
you specify NOWAIT, you should follow the LREAD with an LCHECK
instruction before performing another 1I/0 operation on the device.

WAIT
Specifies that the application program waits until the LREAD is completed
and status is stored before processing continues with the next sequential
instruction.

Condition Codes: One of the following is set:

Hex Code: Explanation:
01 The instruction was executed successfully.
02 Status is returned; the status code is contained in

SMSDST. (See Appendix D, “Terminal and Device
Status Codes” for an explanation of the status codes.)

Program Checks: 1 or 2 can be set.
Programming Notes

1. You must set SMSTGU before issuing LREAD if reading is from specific
3606 or 3608 keyboards; however, you can set SMSTGU to zero if your
program accepts data from any 3606 or 3608 using that loop slot.

2. When 3606 and 3608 terminals share a loop address and your program
performs consecutive LREAD operations from those devices without
performing an intervening LWRITE, your program may have to save the
SMSTGU value resulting from the first LREAD for any subsequent LWRITE
to the first device, or that SMSTGU value could be lost.

3. AnLREAD to a 4704-2/3 in local tracking mode completes when the
operator presses an EID—generating key. No data returns to the controller,
but the SMS holds the EID and the current cursor address for use by DATSM.
Refer to “Comparison of Controller and Local Tracking Modes” on page 4-28
for specific DATSM local tracking information.

5-28 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Figure 5-4 is an example of an instruction sequence for reading from a keyboard.

TELLINPT DEFLD INPUTSEG, 0, 100 1

ATDEN'I'RY WRTI DS,X'0C' 2
SETFPL TELLINPT 3
LREAD KB, INPUTSEG 4
BRAN ST,KBERR 5

1 Define the input area.

2 Clear the display and set the cursor to line 1, position 1.

3 Set the PFP of INPUTSEG.

4 Read up to 100 bytes and track it on the display.

5 Check for status.

Figure 5-4. Reading from a Keyboard

Chapter 5. 4700 Loop and DCA Assembler Instructions 5-29

5-30 4700 Controller Programming Library, Volume 4: Loop/Device Programming

- LWRITE

LWRITE -- Write to Terminals

LWRITE sends data to the display or output components attached to the
controller. The data is written from Operand 1.

Operand 1 can specify either a segment (variable field) or fixed field:

1. LWRITE selects the variable field with the segment’s primary (PFP) and
secondary (SFP) field pointers. The SFP points to the beginning of the
output area and the PFP points one byte beyond the output area.

2. For fixed fields, LWRITE specifies the specific segment, length, and
displacement of the data to be written.

If the length of the data to be written is defined as 0, no operation takes place.
When writing to a slot-sharing device, the terminal group unit field (SMSTGU)
must be set prior to issuing the LWRITE.

After your program issues LWRITE and a dispatch cycle passes, execution
continues with the next sequential instruction (NSI). If LWRITE specified the
WALIT option, the application program waits until the LWRITE completes and
stores status before processing the NSI. When WAIT is not specified, you must
either issue LCHECK or another LWRITE to the same device to obtain
completion status for the write operation. The output data area should not be
changed until the program receives completion status.

Name Operation Operand

defconi
defldl

[label] LWRITE lda segl,displ,lenl [{ NOWAIT]
(regl) WAIT }
seqgl
(defrf1)

Ida
Is a decimal number (0-7) indicating the logical device address (LDA)
assigned to the terminal. If the LDAs were defaulted during the controller
configuration procedure, they are as described in Chapter 1, “General
Terminal and Device Programming” on page 1-1.

operand 1
Defines the data to be written.
When segl is coded as the second operand, a 2-byte machine instruction is
generated; otherwise, the machine instruction is 6 bytes long.

WAIT

Specifies that the application program waits until the LWRITE is completed
and status is stored before processing continues with the next sequential
instruction.

Chapter 5. 4700 Loop and DCA Assembler Instructions 5-31

NOWAIT
Specifies that the application program will continue processing after an
LWRITE is issued without waiting for the LWRITE to be completed. The
status of the completion of the operation is obtained when an LCHECK
instruction or another LWRITE to the same terminal is-executed.

Condition Codes: One of the following is set.

Hex Code: Explanation:
01 The write operation was successful.
02 Status is returned; the status code is contained in

SMSDST. (See Appendix D, “Terminal and Device
Status Codes” for an explanation of the status codes.

Program Checks: 1,2, or 27 can be set.
Programming Notes

1. Refer to the appropriate device chapter for an explanation of terminal control
characters that can be embedded in the data stream.

2. If status in SMSDST contains bit 03 (prior operation), the status pertains to a
previous failing operation for that device, and not to the current LWRITE.
Refer to “Synchronizing I/O Operations™ on page 1-14.

3. Writing data with a length greater than zero to a 4704-2/3 that is operating in
local tracking mode causes a condition code of X‘02’ and status in SMSDST
of X‘0480’.

Figure 5-5 is an example of writing a variable field to a printer.

PRNTRTN WRTI PB,X'15" 1
BRAN ST, PBERR 2
SETSFP PRNTOUT 3
SETFPL PRNTEND 3
LWRITE PB, PRNTSEG 4
BRAN ST, PBERR 2
LCHECK PB 5
BRAN ST, PBERR 2

1 Request a new line.

2 Check status.

3 Set PFP and SFP (PFP points to end, plus one).

4 Write the data to the passbook printer.

5 Wait for completion status so same data area can be reused.

Figure 5-5. Printing a Passbook

5-32 4700 Controller Programming Library, Volume 4: Loop/Device Programming

SIGNAL sets or resets the indicators of the terminal component specified in the
parameter byte addressed by operand 1. The parameter byte comprises a 1-bit
on/off action indicator and a bit map of the indicator lights which are to be set or
reset:

SIGNAL -- Set/Reset Indicators

Bit: Explanation:

0 On/off action indicator:
1 = switch on specified indicators
0 = switch off specified indicators
-3 Reserved
System/check indicators
Indicator 3
Indicator 2
Indicator 1

~N NG A

Indicators 1, 2, and 3 are meaningful for the display and magnetic stripe encoder;
indicators 1 and 2 are meaningful for the 3610, 3611, and 3612. If the
corresponding indicator bit is not set in the parameter byte or if the indicator bit is
set but the indicator does not exist, SIGNAL completes with a successful
condition code.

When SIGNAL refers to a keyboard, the parameter bits are ignored. The check
indicator (bit 4) is turned on, and the keyboard is set into purge mode. Purge
mode causes all input to be discarded until the operator presses the Reset key.
Refer to Chapter 2, “Programming for Displays and Keyboards” for more
information on purge mode operation.

The SIGNAL parameter byte for the 4710, 4720, and 3616 is as follows:
Bir: Explanation:

0 On/off action indicator
1 = switch on specified indicators
0 = switch off specified indicators
-2 (reserved)
Journal print station forms insert (4710 and 4720: reserved)
Document print station forms insert (4720: reserved)
Indicator 3 (4710: reserved)
Indicator 2
Indicator 1

NN B W=

Name Operation Operand

defconl

defldil WAIT
[label] SIGNAL lda, segl,displ , { l

(regl) NOWAIT

(defrf1)

Chapter 5. 4700 Loop and DCA Assembler Instructions 5-33

lda
Is a decimal number (0-7) indicating the logical device address (LDA)
assigned to the terminal component. If the LDAs were assigned by default
during the controller configuration procedure, the I.LDA values are as
defined at the beginning of this chapter.

operand 1
Defines the parameter byte described earlier.

WAIT
Specifies that the application program waits until the SIGNAL instruction is
completed and status is stored before execution continues with the next
sequential instruction.

NOWAIT
Specifies that the application program continues execution after issuing a
SIGNAL instruction without waiting for the SIGNAL instruction to be
completed.

Condition Codes: One of the following is set:

Hex Code: Explanation:
01 The instruction executed successfully.
02 Status is returned; the status cude is contained in

SMSDST. (See Appendix D, “Terminal and Device
Status Codes” for an explanation of the status codes.)

Program Checks: 1, 2, or 27 can be set.

5-34 4700 Controller Programming Library, Volume 4: Loop/Device Progiamming

STPLPS deactivates one or all loops that are currently in error recovery. STPLPS
uses a 3-byte parameter list that names all loops or the individual loop to be
stopped. The parameter list is in the following format:

STPLPS -- Stop Loops

Byte: Explanation:
0 X‘00’—Stop all inoperative loops.
X‘08’—Stop the loop indicated in byte 2.
1 Reserved.
2 If byte 0 equals hex 08, this byte contains

the binary loop number. If this loop
number is invalid, no operation takes place.

Name Operation Operand

Jefcont
defldl
[label] STPLPS segl,disp?
(regl)
(defrf)

operand 2
Defines that the start of the parameter list. The length associated with this
operand is ignored, and the first 3 bytes are assumed to be the parameter
list.

Condition Codes: The code is not changed.

Program Checks: 1, 2, or 27 can be set.

Chapter 5. 4700 Loop and DCA Assembler Instructions 5-35

5-36 4700 Controller Programming Library, Volume 4: Loop/Device Programming

STRLPS activates one or all deactivated loops. STRLPS uses a 3-byte parameter
list that names all loops or the individual loop to be started. The parameter list is
in the following format:

STRLPS -- Start Loops

Byte Explanation:
0 X‘00’—Start all inoperative loops.
X‘08’—Start the inoperative loop indicated in byte 2.
1 Reserved.
2 If byte 0 is hex 08, this byte contains the binary

loop number. If the loop number is invalid, no
operation takes place.

Name Operation Operand

defconl
defldl
[label] STRLPS segl,displ
(regt)
(defrf?)

operand 2
Defines the start of the parameter list. The length associated with this
operand instruction is ignored, and the first 3 bytes are assumed to be the
parameter list.

Condition Codes: The code is not changed.

Program Checks: 1, 2, or 27 can be set.

Chapter 5. 4700 Loop and DCA Assembler Instructions 5-37

5-38 4700 Controller Programming Library, Volume 4: Loop/Device Programming

CSwapTT

This instruction exchanges, or “swaps”, the input or output translate table for an
LDA in this program’s work station with another that you define. The table name
and the LDA to which it applies are in a parameter list that you must define.

SWAPTT -- Exchange (Swap) Translate Tables

Name Operation Operand

defld2
[label] SWAPTT seg2,disp?2
(reg2)
(defrf2)
operand 2
Defines the location of a nine-byte parameter list with the following
format:
Byte: Explanation:
Byte 1 LDA whose table is exchanged, in binary
(X‘00’—X‘07’) or character (C‘O’—C*7’) form.
Bytes 2—9 The label of an input (TRTBHDR) or output

(OUTRTBL) translate table that is exchanged for the
table currently assigned to the LDA.

You must define and initialize the parameter list. When SWAPTT is completed,
the parameter list contains the name of the translate table removed from the
LDA. A later SWAPTT instruction can then restore the old table. An identifier
less than eight bytes long is padded in the high-order positions with blanks (C*).

Condition Codes: The following codes are set:

Hex Code: Explanation:
01 Successful completion
02 Translate table not found

Program Checks: 1,2, or 27 can be set.

Programming Note: Do not issue a SWAPTT instruction to a device with a
PSSLST macro defined during CPGEN.

Chapter 5. 4700 Loop and DCA Assembler Instructions 5-39

5-40 4700 Controller Programming Library, Volume 4: Loop/Device Programming

WRTI -- Write Immediate

WRTI
WRTI writes 1 or 2 bytes of data to the specified terminal. Refer to the

appropriate device chapter for control characters that can be sent to a terminal.
When writing to a 3606 or 3608, you must first set the terminal group unit
(SMSTGU) field before issuing WRTI.

When SPLIT=Y is specified, the WRTI instruction expands to a DEFCON and
an LWRITE instruction.

Name Operation Operand

[label] WRTI { lda } ,immdata?2 , { WAIT }
| mnemonic NOWAIT

lda
Is a decimal number (0-7) indicating the LDA assigned to the terminal. If
LDAs were assigned by default during the controller configuration
procedure, the LDA values are as defined at the beginning of this chapter.

operand 2
Is 1 or 2 bytes of immediate data.

WAIT
Specifies that the application program waits until the WRTI instruction is
completed and status is stored before execution continues with the next
sequential instruction.

NOWAIT
Specifies that the application program will continue processing after issuing
a WRTI instruction without waiting for the WRTI instruction to be
completed.

Condition Codes: One of the following is set:

Hex Code: Explanation:
01 The WRTI instruction completed successfully.
02 Status was returned in SMSDST. Refer to Appendix D,

“Terminal and Device Status Codes” for an
explanation of the status codes.

Program Checks: None are set.

Chapter 5. 4700 Loop and DCA Assembler Instructions 5-41

Programming Notes

« If the WRTI s located so that the generated DEFCON instruction is beyond
the 4K fixed addressing limit, then the LWRITE instruction will produce an
assembly error.

¢ Only one DEFCON instruction is generated within each program section for
the same immdata value.

« Figure 5-4 on page 5-29 and Figure 5-5 on page 5-32 show WRTI examples.

5-42 4700 Controller Programming Library, Volume 4: Loop/Device Programming

DATSM Instructions

These instructions require that optional modules P23 and P70 be specified by the
OPTMOD configuration macro. The instruction descriptions in this section each
begin on a new page so they can be easily removed and reorganized according to
your particular site procedures.

(DATSM Instruction Condition, Status, and Error Codes

The DATSM instructions set condition codes just as other 4700 instructions, but
there are additional conditions that the codes represent for DATSM that do not
apply to other instructions. Refer to Appendix C, “Program Check Codes™ for
the descriptions of all programming checks.

Each DATSM instruction can set its own status codes. These codes are in
DMSSTAT, the DATSM status field. Don’t confuse these codes with the status
returned by 4700 assembler instructions in SMSDST, which is not affected by the
DATSM instructions. The DATSM status codes define actions to take, depending
on the conditions that result from issuing a DATSM instruction.

Each of the instruction descriptions in this section defines the possible DMSSTAT
status codes that the instruction can set, and their meanings. The status is
significant by bit. A DATSM instruction can return more than one DMSSTAT
bit. Your program should therefore test the DMSSTAT bits in the order shown in
Figure 4-3 on page 4-11 .

DATSM also returns error codes in the DMSERCD field under certain conditions.
The error code depends on both the value you specify in the control bytes for the
instruction, and on the instruction’s operation. If the control byte descriptions for
a given DATSM instruction say that an error code can occur, your program should
test for that condition in DMSERCD. Appendix F, “DATSM Sample Program
and Error Codes” describes the DATSM error codes and their meanings.

Chapter 5. 4700 Loop and DCA Assembler Instructions 5-43

5-44 4700 Controller Programming Library, Volume 4: Loop/Device Programming

' GETDMS
GETDMS -- Move Field Control Table

GETDMS reconstructs the content of the DMS body of any station generated to
use DATSM. It reconstructs the DMS control area from the contents of the Field
Control Table (FCT) header (not from the current DMS) so that if a comparison
between contents of the user’s DMS and those of the FCT is required, it can be
made easily. GETDMS does not return the DMS header.

The 4700 application program must provide a receiving data buffer that is equal
to or larger than the DMS control area. A program check will result if the data
buffer length in the FLI is of insufficient length.

The PFP and the FLI are unchanged. The DMS constructed from the FCT by
GETDMS can be used as an active DMS for instruction control only if the user
ensures the presence of the necessary DMS header bytes. The DMS can be put in
any segment except segment 14. The newly constructed DMS is not used by the
DATSM instructions unless its location is communicated to the instructions by use
of PUTDMS.

The application program must set the segment PFP to the beginning of the area
that will receive the reconstructed DMS, and the FLI must be equal to or greater
than the length of DMS or to zero. From the PFP to the end of segment must be
greater than or equal to the DMS length. The application program can set the FLI
to zero and PUTDMS will then assume the length of the area to be from the PFP
to the end of segment. Failure to set the FLI correctly will cause a program check.

Name Operation Operand

[label] GETDMS { seg2 }
(reg2)

operand 2
Selects the area to receive the contents of the FCT. Do not specify
segment 14, or a refreshable object.

Condition Codes: The code is not changed.
Program Checks and Error Codes: GETDMS can set program checks 3, 11, and
DATSM error codes in DMSERCD. Refer to Appendix F, “DATSM Sample

Program and Error Codes” for a description of the error code meanings.

Status Codes: Figure 5-7 defines the possible status codes set by GETDMS. Refer
to Figure 4-3 on page 4-11 for the recommended test sequence of the status bits.

Chapter 5. 4700 Loop and DCA Assembler Instructions 5-45

XXxXxxnnnn Xxxxxxxx

0000xxxx 00000000

Station number

Bits 8-15 specify the number of the station for which the DMS

is reconstructed. A zero value in this byte specifies the current
station. GETDMS does not use the DMS control byte flags. If the
application program addresses a station whose configuration does

not permit the use of DATSM, DATSM returns error code 10 with bit
6 of the status byte set.

Reserved.

Figure 5-6. GETDMS Control Bytes

000000xx XXXXXXXX

xXXXXXX1X XXXXXXXX
XXXXXX0X XXXXXXXX

xxxxxxx1 XXXXXXXX
XXXXXXX0 XXXXXXXX

xxxxxxxx 00000000

Reserved.

Error code byte set.
No error code byte set.

Bit 6 set to 1 indicates that an error condition exists and
that an error return code has been set in the DMS header.

Error code 10 can be set.

Successful completion.
Status returned.

Bit 7 set to 1 indicates that the instruction has completed
its task successfully and that no additional status was returned.

Reserved.

Figure 5-7. GETDMS Status Codes

5-46 4700 Controller Programming Library, Volume 4: Loop/Device Programming

GETFLD locates and transfers a field or set of fields in the image buffer to the
user data buffer specified in the segment operand of the instruction. The data
form is specified by the data definition control bytes located in the DMS header.

GETFLD -- Retrieve Image Buffer Contents

The PFP of the segment indicates the first byte of the user area. The FLI contains
the length of the user area which receives the data. If the FLI equals zero, the
area from the PFP to the end of segment is used. At least 50 bytes of segment
space must be available, or a program check will result.

GETFLD can retrieve the following data streams (refer to Figure 4-1 on,
page 4-6):

e A2—An SCS processor-bound data stream or a processcr-bound data stream
with user delimiters

« B2—A 3270 processor-bound data stream
¢« C1—An SCS display-bound data stream
e DI1—A printer-bound line of data

After execution of the instruction to retrieve the content of a single field, the PFP
is unchanged, and the FLI indicates the length of data moved.

After execution of the instruction to retrieve all fields of the indicated class, the
SFP points to the first byte of the generated string, the PFP points one byte
beyond the end of the generated string, and the FLI is set to zero.

Name Operation Operand

[label] GETFLD { seg?2 }
(reg2)

operand 2
Selects the user area to receive the moved data. Do not specify segment 14,
or a refreshable object.

Condition Codes: The code is not changed.
Program Checks and Error Codes: PUTDMS can set program checks 3, 11, and
DATSM error codes in DMSERCD. Refer to Appendix F, “DATSM Sample

Program and Error Codes” for a description of the error code meanings.

Status Codes: Figure 5-9 defines the possible status codes set by GETDMS. Refer
to Figure 4-3 on page 4-11 for the sequence in which status bits should be tested.

Chapter 5. 4700 Loop and DCA Assembler Instructions 5-47

00XXXXXX XXXXXXXX

01XXXXXX XXXXXXXX

10XXXXXX XXXXXXXX

11XXXXXX XXXXXXXX

Summary of GETFLD Segment Pointer Operation:
Case 1 = when the GETFLD is for one field of any class.

Case 2 = when GETFLD is for all fields of any class or when “generate cursor
address only” is specified.

Field Before Execution After Execution

Case 1 PFP start of data unchanged
FLI length or O for end- length of returned data field
of-segment
SFP used unchanged

Case2 PFP EOD + 1, up to FLI length
FLI (same as above) FLI-(PFP-SFP), or zero
SFP equal to PFP

Produce display-bound SCS.

Bits 0 and 1 set to 00 indicate that a display-bound SNA
Character String should be produced (C1 flow).

Produce processor-bound SCS.

Bits 0 and 1 set to 01 indicate that a processor-bound
SNA Character String should be produced (A2 flow).

Reserved. Flagged as error.
Produce processor-bound 3270 data.

Bits 0 and 1 set to 11 indicate that a processor-bound
3270 data stream should be produced (B2 flow).

Note: The only valid control bytes for this flow are X‘C080’,
X‘CA00’, and X‘EAO0OQ’. The reissue bit may

also be set; in this case, all other bits are ignored.

Any other combination is rejected with status. The data

stream produced begins with the attention ID (AID) byte and is
followed with the cursor address (two bytes).

Figure 5-8 (Part 1 of 5). GETFLD Control Bytes

5-48 4700 Controller Programming Library, Volume 4: Loop/Device Programming

XX IXXXXX XXXXXXXX
XX0XXXXX XXXXXXXX

XXX I XXXX XXXXXXXX
XXX0XXXX XXXXXXXX

XXX I XXX XXXXXXXX
XXXX0XXX XXXXXXXX

Produce read-modified all data stream.
Do not produce read modified all data.

Bit 2 set to 1 causes GETFLD to generate a processor-bound
3270 data stream of all modified fields (MDTs set

to 1) regardless of the EID value. See the 3270 Component
Description manual for data stream definicion.

Produce data only, no orders.
Produce a normal data stream.

Bit 3 set to 1 causes order generation to be suppressed for
SNA character strings only; 3270 order generation cannot

be suppressed. If this control flag is set for a GETFLD on the
C1 flow, the data is returned to the application

program as it is found in the image buffer, nulls (X‘00’)
included, no orders. For the A2 flow, blanks (X‘40%),

are substituted for 4 controls the data stream produced.

Get all fields of the requested class.
Get one field of the requested class.

Bit 4 set to ‘1’ indicates that GETFLD is to scan the

FCT for all fields having the specified attributes. When set to
‘0, bit 4 causes GETFLD to return all fields with the
specified attributes to be returned in the order of their
positions on the display.

For operations other than “get current presentation

position field”’, DMSFSEQ determines the first field obtained.

If the request is for the field selected by the current field
sequence number, that field is obtained. Otherwise, DMSFSEQ
increments by one and GETDMS searches until the

requested field or fields are found. When completed,

GETDMS sets the sequence number of the last field

obtained into DMSFSEQ if the request was for one field. When
requests are for more than one field, GETDMS sets DMSFSEQ to
Zero.

If all fields in a particular class are requested, DMSFSEQ
must be set to zero before GETDMS is issued. This ensures that
the first field is selected.

Figure 5-8 (Part 2 of 5). GETFLD Control Bytes

Chapter 5. 4700 Loop and DCA Assembler Instructions

5-49

xxxxx000 xxxxxxxx

xxxxx001 XXXXXXXX
xxxxx010 XXXXxXXXx
xxxxx011 xXxxxxxx
xxxxx100 xxxxxxxx
xxxxx101 XXXXXXXX
xxxxx111 xxxxxxxx

XXXXXXXX IXXxxxxx
XXXXXXXX OXXXXXXX

Get current field

If the current field is specified, bit 4 controls the data

produced. If bit 4 is set to B‘1°, the SFP will be set

to the beginning of the stream and the PFP will be set to the

end plus one. If bit 4 is set to B‘0’, the PFP will

be set to the beginning of the field and the FLI will be set to

the length. In either case, the data from the current field only
will be returned. The current field is the field in which the cursor
is currently positioned. If the cursor is positioned at an

attribute byte when the current field is requested, a status
indication of ““field not found” (bit 3) is returned.

Get display-bound modified fields.
Get processor-bound modified fields.
Get user flagged fields.

Get unprotected fields.

Get the field sequence number field.
Get all classes.

Read full buffer required.
Read full buffer not needed.

Bit 8 set to 1 causes GETFLD to produce the data stream
required for a 3270 full buffer read command. All data is
read out of the image buffer. GETFLD places a Start Field
(X‘1D’) character in front of each attribute byte

and all bytes of data, including nulls, into the data stream.

The application program should issue a GETFLD instruction with
this flag set if PUTFLD returns status (X‘0080%)

indicating that a full buffer read is requested (B1 flow). The
application program should send the data received from the
GETFLD to the host. This control bit is valid only on the B2 flow;
it is ignored on the C1 and A2 flows. This bit is valid only

if bits 0 and 1 are set to B‘11°.

Figure 5-8 (Part 3 of 5). GETFLD Control Bytes

5-50 4700 Controller Programming Library, Volume 4: Loop/Device Programming

XXXXXXXX xIxxxxxx
XXXXXXXX X0XXXXXX

XXXXXXXX XX Ixxxxx
XXXXXXXX XX0XXXXX

XXXXXXXX XXX IXXXX
XXXXXXXX XXX0XXXX

This is a reissue of GETFLD.
This is not a reissue.

Bit 9 set to 1 indicates that GETFLD is being reissued in
response to a GETFLD buffer overflow (X‘0010%). This
control bit signals to continue processing at the point where
interrupted. If this bit is set, all other control bits are
ignored.

Provide attributes for SCS fields.
Do not provide attributes for SCS.

Setting bit 10 to 1 indicates that GETFLD should include
attributes in a display-bound SNA character string. In this

case, all SCS fields begin with the attribute string, X‘28C0aa’,
where “aa’ is a 3270-type attribute byte. DATSM processes the
nondisplayable attribute byte by replacing any data from a
nondisplayable field with blanks. Refer to the description

of GETFLD status bit for nondisplayable fields. This bit has
meaning only on the C1 flow (see Figure 4-1 on page 4-6).
DATSM ignores this bit on the C2 flow, and it causes
DMSSTAT status on the B2 flow.

Retrieve data for printer.
Printer format is not requested.

This bit indicates output intended for a printer. GETFLD
moves a single image buffer line, without addressing orders,
to the data buffer and appends a “new line” order

to the end. Blanks and nulls are suppressed, beginning with
the rightmost non-blank, non-null character and continuing
to the end of the line. GETFLD translates nulls within the
line to blanks (X‘40’). GETFLD uses the line sequence
number field (DMSLSEQ) in the DMS to determine the line to
retrieve. A value of O or 1 in the line sequence number

field identifies the first line. GETFLD increases the line
number by one after each line is returned. After returning the
last line, GETFLD sets this value to zero.

As for all GETFLD operations, the line sequence number is
applied to the window area currently defined for the image
buffer. This control bit should be the only control bit set, but if
bit 9 is set, that function takes precedence.

Figure 5-8 (Part 4 of 5). GETFLD Control Bytes

Chapter 5. 4700 Loop and DCA Assembler Instructions

5-51

XXXXXXXX XXXX1xxx Insert user delimiters.
XXXXXXXX XXXX0xxx Do not insert delimiters.

Bit 12 set to 1 indicates that GETFLD will precede each
data field with the DMS delimiter found in DMSDELM when
placing the output data stream into the user’s data buffer.
Effectively, the delimiter is replacing the control

orders. This control bit has value only on the A2 flow.

Status is returned on the B2 flow. and the bit is ignored

on the C1 flow.

XXXXXXXX XXXxXx1xx Produce cursor address only.
XXXXXXXX XXXXX0XX Produce full data string.

Bit 13 set to 1 causes GETFLD to generate a string
consisting only of the cursor address in 4700 form. Upon
completion, the PFP is set to the first byte beyond the string,
the SFP is set to the first byte of the string. This control

bit has meaning only on the C1 flow: Itisignored

on the A2 flow and status is returned if it is set

on a B2 flow request. This bit should be the only control

bit set, but if bits 9 or 10 are set also, they will take
precedence respectively.

XXXXXXXX XXXXxX1x Set PPF address to address of field.
XXXXXXXX XXXXXX0x Do not change PPF address.

Bit 14 set to 1 instructs GETFLD to set the presentation
position field in the FCT header to the address of the

first byte of data of the last field accessed. This is valid on
all flows.

XXXXXXXX XXXXXxX 1 Segment field retrieved.
XXXXXXXX XXXXxxx0 Do not segment field retrieved.

Bit 15 set to 1 causes GETFLD to segment the current field
one window row at a time. This function applies only to

the retrieval of the current field. The bit is ignored

for all other GETFLD operations. It is primarily useful when
the window to be displayed is smaller than the actual device.
Reading one line of a multi-line field at a time enables

the input to be tracked within the boundaries of the window.

A further description appears under “Programming Examples of
Window Control.”

PUTFLD must also set this bit.

Figure 5-8 (Part 5 of 5). GETFLD Control Bytes

5-52 4700 Controller Programming Library, Volume 4: Loop/Device Programming

IXXXXXXX XXXXXXXX
0XXXXXXX XXXXXXXX

x000xxXX XXXXXXXX

xxxx 1 XXX XXXXXXXX
XXXX0XXX XXXXXXXX

xxxxx1XX XXXXXXXX
XXXXX0XX XXXXXXXX

XXXXXX1X XXXXXXXX
XXXXXX0X XXXXXXXX

Requested field was non-displayable.
Field requested was displayable.

Bit 0 set to 1 indicates that data from a non-displayable
field has been placed in the user’s data buffer. If bit 4

in the control bytes is set to 1 (get all fields of a requested
class), this status flag will not be set. This flag is

set for any flow and may be set along with bit S.

Action: No action is needed.
Reserved.

Write to host required.
Write to host not required.

Bit 4 set to 1 indicates that a data stream is placed into
the data buffer for the host. The data stream is the result
of input to the PUTFLD instruction that required data
transmission to the host. This flag is set only on the C2
flow and can be set with Bit 2 or 3.

Action: The segment pointers are set up for an
LWRITE CP to the host. The application program should issue
the LWRITE CP to send the prepared data stream to the host.

User flag turned on for field.
User flag was not turned on.

Bit 5 set to 1 indicates that the user flag was turned on
for the field just retrieved for a single field request.

Action: Presented for informational purposes only; no
action required.

Error code set.
No error code set.

Bit 6 set to 1 indicates that an error condition was found

by GETFLD and that the error code byte of the DMS header
contains an identifying number. GETFLD sets this flag on for
any flow without accompanying bits.

Action: The program can test the error code to determine
the type of error; but in most cases, no dynamic recovery is
possible.

Figure 5-9 (Part 1 of 3). GETFLD Status Codes

Chapter 5. 4700 Loop and DCA Assembler Instructions

5-53

XXXXXXX] XXXXXXXX
XXXXXXX0 XXXXXXXX

xxxxxxxx 000xxxxx

XXXXXXXX XXX IXxXXX
XXXXXXXX XXX0XXXX

Successful completion, no status.
Completion, status returned.

Bit 7 set to 1 indicates that GETFLD successfully completed,

and no additional status was returned. If this flag is set to O,

other status is available, and your program must perform additional
checks. GETFLD sets this flag for any flow without accompanying
bits..

Action: No action required.
Reserved.

Buffer overflow.
No buffer overflow.

Bit 11 set to 1 indicates that the user buffer is not long

enough for the data being returned. This indicator can segment
data from the image buffer, reducing the storage requirements
of the application program. If this status is detected when
requesting a single field (bit 4 equal to 0), there is a good chance
that an application program problem exists. The user buffer
should be large enough to permit handling of the largest field

to be processed.

Action: If the current field is requested with no

orders to initialize an area for an LREAD operation (C1 flow),
and this error occurs, only that portion of the field that fits

in the user buffer is returned for use on the LREAD. Field
segmenting can be used to avoid this condition. If the
application program uses multiple fields for initializing

the LREAD area, it is up to the user to take the appropriate
action. When this indicator is returned when requesting all
fields of a class, the application program should write the

data to the host using a chaining protocol (A2 or B2 flow).
Reissuing a GETFLD instruction with the reissue flag set continues
the process. For the C1 flow, the application program should
write the data to the screen followed by another GETFLD
instruction with the reissue flag set.

Figure 5-9 (Part 2 of 3). GETFLD Status Codes

5-54 4700 Controller Programming Library, Volume 4: Loop/Device Programming

XXXXXXXX xxxxIxxx
XXXX¥XXX XXxx0xxx

XXXXXXXX XXXXX0xx

XXXXXXXX XXxxxx1x
XXXXXXXX XXXXxx0x

XXXXXXXX xxxxxxx1
XXXXXXXX XXXXxxx0

Field not found.
Field found or not requested.

Bit 12 set to 1 indicates that the field specified by
DMSFSEQ was not found during the GETFLD operation. This
can be caused by one or more of the following:

1. The application program requested the next field of
a class and no more fields of that class existed.

2. The application program searched past the last field
without realizing it.

3. The PPF was pointing at the attribute byte of a field
when the GETFLD was issued.

Action: User-defined. This status bit can be set
by either normal operation, or to indicate a program problem.

Reserved.

Field is protected.
Field is unprotected.

Bit 14 set to 1 indicates that the field retrieved is
protected. If bit 4 in the control bytes (get all fields

of the requested class) was set to 1, this status flag is not
set. '

Action: Presented for information purposes only;
no action is required.

The field retrieved was marked KANIJIL
The field retrieved was not KANIJI.

Bit 15 set to 1 indicates that GETFLD has retrieved a KANIJI
field. This flag is set when a single field has been requested
by the application program.

Action: The application program should take appropriate
action to permit correct processing of the KANIJI field.

Figure 5-9 (Part 3 of 3). GETFLD Status Codes

Chapter 5. 4700 Loop and DCA Assembler Instructions

5-55

5-56

address only” is specified.

Segment Addressing:
Field Before Execution

Case 1 PFP start of data
FLI length or O for end-
of-segment
SFP unused

Case2 PFP
FLI (same as above)
SFP

Register Addressing:
Field Before Execution

Case 1: Displacement: start of data
Length: length or 0 for End-
of-segment

Case 2: Displacement: (same as above)
Length: (same as above)

4700 Controller Programming Library, Volume 4: Loop/Device Programming

Summary of GETFLD Segment Pointer Operation:

Case 1 = when the GETFLD is for one field of any class.

Case 2 = when GETFLD is for all fields of any class or when “generate cursor

After Execution

unchanged
length of returned data field

unchanged

EOD + 1, up to FLI length
FLI-(PFP-SFP), or zero
equal to PFP

After Execution

unchanged
length of returned data field

start of data
length of returned data field

PUTDMS
PUTDMS -- Modify Field Control Table

The Field Control Table (FCT) controls DATSM, and is not accessible by the
application program. The content of the FCT is produced by the PUTDMS
instruction, which communicates user-supplied values to DATSM, and by the
DATSM instructions themselves as they process the data from the data streams
and the image buffer.

The program must issue PUTDMS to set the required values from the DATSM
machine segment (DMS) into the FCT before issuing any of the other DATSM
instructions. Your program can also issue PUTDMS any time to change the data
mapping specifications.

The DMS control bytes determine the initial settings and later changes to the
FCT. Each bit in a DMS control byte corresponds to a DMS field. When your
program issues PUTDMS with a DMS control bit set to 1, the instruction transfers
the values in the corresponding DMS field to the related FCT field. The
application program can later set or change any or all of the DMS fields that
PUTDMS moves into the FCT.

Note: To prevent the change of selected fields, leave the appropriate control bits
set to 1.

PUTDMS saves the address of the DMS in the FCT. If any other DATSM
instruction is issued before the location of the DMS has been so established,
DATSM returns a program check of 11.

The application program must set the segment PFP to the beginning of DMS and
the FLI equal to or greater than the length of DMS or zero (from the PFP to the
end of segment must be greater than or equal to the DMS length). An incorrect
FLI setting causes a program check of 3.

Name Operation Operand

[label] PUTDMS {seg2 }
(reg2)

operand 2
Selects the segment containing the DMS. Do not specify segment 14 or a
refreshable object.

Condition Codes: The code is not changed.

Program Checks and Error Codes: PUTDMS can set program checks 3, 11, and
DATSM error codes in DMSERCD. Refer to Appendix F, “DATSM Sample
Program and Error Codes” for a description of the error code meanings.

Status Codes: Figure 5-13 defines the possible status codes set by GETDMS.
Refer to Figure 4-3 on page 4-11 for the sequence in which status bits should be
tested.

Chapter 5. 4700 Loop and DCA Assembler Instructions 5-57

IXXITIXY ITYTITIT

X0XXXXXX XXXXXXXX
XIXXXXXX XXXXXXXX

xx0XXXXX XXXXXXXX
XX IXXXXX XXXXXXXX

XXXXXX0X XXXXXXXX
xxxxxxIx XXXXXxXxx

Reserved bits (indicated as “r”’).

Screen is not formatted.
Screen is formatted.

No unprotected areas on screen.
Unprotected areas exist on screen.

Normal mode (not insert) of operation.
Insert mode of operation.

Figure 5-10. DMS Screen Status Flags (DMSFLAG)

0XXXXXXX XXXXXXXX
IXXXXXXX XXXXXXXX

XIXXXXXX XXXXXXXX
XOXXXXXX XXXXXXXX

XX0XXXXX XXXXXXXX

XXX I XXXX XXXXXXXX
XXX0XXXX XXXXXXXX

XXXX0XXX XXXXXXXX

XXXXX1XX XXXXXXXX
XXXXX0XX XXXXXXXX

XXXXXX1X XXXXXXXX
XXXXXX0X XXXXXXXX

xxxXxxx1 XXXXXXXX
XXXXXXX0 XXXXXXXX

xxxxxxxx 00000000

Presentation position not present.
Presentation position present.

Original display size present.
Original display size not present.

Reserved.

Actual display dimensions present.
Actual display dimensions not present.

Reserved.

Actual display window coordinates present.
Actual display window coordinates absent.

Image buffer window coordinates present.
Image buffer window coordinates not present.

Window size present.
Window size not present.

Reserved.

Figure 5-11. PUTDMS Control Bytes

4700 Controller Programming Library, Volume 4: Loop/Device Programming

0000xxXX XXXXXXXX Base attribute mode of operation.
100xXXXX XXXXXXXX Kanji mode

010xxXXXX XXXXXXXX Extended attribute mode
001xxxxx xxxxxxxx 4704-2/-3 local tracking mode

XXX XXXX XXXXXXXX SCS default field generation

Figure 5-12. PUTDMS Mode Bytes

00000xxx XXXXXXXX Reserved.

XXXXXX1X XXXXXXXX Error code byte set.
XXXXXX0X XXXXXXXX No error code byte set.

Bit 6 set to 1 indicates that an error condition exists and
that an error return code has been set in the DMS header (DMSERCD).

Coordinate positions must not exceed the dimensions of

the associated area. The window dimensions to be applied
to the image buffer, when positioned according to the buffer
coordinates must not overrun the image buffer area in either
dimension.

An error code of 12 will be returned for any of the conditions
above. When an invalid parameter is detected, PUTDMS processing
stops, leaving the rest of the parameters unexamined. When an
error is returned, DATSM marks the field control table as
uninitialized and a valid PUTDMS must be issued before other
DATSM instructions can be issued successfully.

XXXXXXX1 XXXXXXXX Successful completion.
XXXXXXX0 XXXXXXXX Bit 6 was set to B‘1°.

Bit 7 set to 1 indicates that the instruction has completed
successfully and that no additional status was returned

xxxxxxxx 00000000 Reserved.

Figure 5-13. PUTDMS Status Bytes

Chapter S. 4700 Loop and DCA Assembler Instructions

5-59

5-60 4700 Controller Programming Library, Volume 4: Loop/Device Programming

PUTFLD
PUTFLD -- Map Data to Image Buffer

PUTFLD maps DATSM input data streams from a user’s data buffer into the
image buffer. It accepts the following input data streams (see Figure 4-1 on
page 4-6):

Al — A display-bound SNA character string or a display-bound data stream
with user-defined field delimiters

B1 — A 3270 display-bound data stream
C2 — A processor-bound SNA character string (see Figure 7-1)

Your program must ensure that data stream mapping controls are complete before
issuing a PUTFLD instruction. This responsibility comprises three areas:
following for each invocation of PUTFLD:

« The DMS control byte flags.
« The DMS header fields (including DMSIML and DMSEID for the C2 flow).
« The fields in the DMS body in effect from the last PUTDMS.

To send data on the C2 flow, the DMSIML and DMSFEID values must reflect the
values of SMSIML. and SMSEID, respectively, at the termination of the LREAD
KB operation. PUTFLD uses the DMSIML. value to determine the current cursor
position and DMSEID to determine the action to be taken.

Your program must set the PFP to select the first data byte and set the FLI to the
data length. If your program performs tabbing or keyboard emulation, the area
from the PFP to the end of segment must be available for PUTFLD use. This area
must always be at least 50-bytes long, or a PUTFLD program check occurs.

If you issue PUTFLD as a result of status from a preceding PUTFLD (the reissue
flag is set in the DMS control field), the PFP and FLI are ignored. If the
PUTFLD reissue passes a middle- or last-in-chain block on the A1 or Bl flows,
PUTFLD uses the PFP and FLI values you set to define the input data area.

The length specified in the FLI for PUTFLD use on the C2 flow should be equal
to the current field length from the PPF to the end. The contents of the current
field from the PPF to the end should have been placed in the user buffer (using
GETFLD) prior to issuing a read to the keyboard (see DATSM Programming
Considerations established earlier in this chapter).

After execution of the instruction, the PFP, SFP, and the FLI remain unchanged
if an LREAD, LWRITE, or a reissue is not requested by return status. If any of
these actions are requested in status returned, the PFP, SFP, and FLI will be
altered depending on the status bit set (see status field description to determine
which segment values are affected).

Chapter 5. 4700 Loop and DCA Assembler Instructions 5-61

5-62

Depending on the data passed to DATSM, status bits will be set in the DMS
header by PUTFLD to indicate the next action, if any, to be taken by the
application program. If the application program issues a PUTFLD instruction
before DMS has been initialized, program check 11 is returned.

Name Operation Operand

[label] PUTFLD { seg?2 }
(reg2)

operand 2
Selects the area containing the data stream or character string being
mapped into the image buffer. Do not specify segment 14 or a refreshable
object.

Condition Codes: The code is not set.

Program Checks: PUTDMS can set program checks 3, 11, and DATSM error
codes in DMSERCD. Refer to Appendix F, “DATSM Sample Program and Error
Codes” for a description of the error code meanings.

Status Codes: Figure 5-15 defines the possible status codes set by PUTFLD.
Refer to Figure 4-3 on page 4-11 for the sequence in which status bits should be
tested.

4700 Controller Programming Library, Volume 4: Loop/Device Programming

00XXXXXX XXXXXXXX

01xxXXXXX XXXXXXXX

10XXXXXX XXXXXXXX

1IxXXXXXX XXXXXXXX

XX0XXXXX XXXXXXXX

xxx1XxXXX XXXXXXXX
xXX0XXXX XXXXXXXX

xXXXIXXX XXXXXXXX
XXXX0XXX XXXXXXXX

SCS display-bound (A1 flow).

PUTFLD constructs a field entry in the FCT for every
field of data following an order, and for every attribute
definition in the character string.

Field entries are not constructed for data streams with
user-defined delimiters. Field services for this stream
must be constructed and entered into the FCT previously.

DATSM does not permit mixing of user delimiters and positioning
orders in this stream. An error code (invalid order or command)
is set if mixing is found by PUTFLD.

SCS processor-bound (C2 flow).

PUTFLD does not generate field entries in the FCT. Instead,

the previously generated field entries are available for

this data. The program must initialize DMSIML and DMSEID before
issuing PUTFLD with this control bit combination.

3270 display-bound flow.

PUTFLD generates field entries in the FCT for every
start field order X‘1D’ in the data stream.

Invalid combination.

PUTFLD will return an error code if this combination of
bits is encountered.

Reserved.

Reset modified data tags.
Do not reset modified data tags.

PUTFLD returns error status if bits 0-1 are set to

B‘10’ (3270 display-bound flow) and this bit is set

to 1; otherwise, bit 3 set to 1 causes all modified

data tags (MDT) to be reset. This facility is available for
use with SCS field oriented display management.

Set user flag in FCT entry.
Do not set user flag.

Bit 4 set to 1 causes PUTFLD to turn on the user flag for
each field addressed by PUTFLD. This flag is detected by both
PUTFLD and GETFLD.

Figure 5-14 (Part 1 of 3). PUTFLD Control Bytes

Chapter 5. 4700 Loop and DCA Assembler Instructions

5-63

XXXXX1XX XXXXXXXX
XXXXX0XX XXXXXXXX

XxXXxXX1x XXXXxxxx
XXXXXX0X XXXXXXXX

Use sequence number to find field.
Do not use sequence number.

Bit 5 set to 1 causes PUTFLD to use the field sequence number
in the DMS (DMSFSEQ) to locate the field entry for the data
passed to the instruction. The first string of data in the data
stream is placed into the location for that field. If there are

user delimiters mixed with the data, the DMSFSEQ field is
increased by one for each delimiter. When PUTFLD completes,
DMSFSEQ is set to the number of the last field that was accessed.

A programmer who uses this facility must understand the

field structure, DATSM does not check for protected or numeric
fields when it maps display-bound data streams into the image
buffer.

This string has user delimiters.
This is not a delimited string.

If bits 0-1 are set to B‘01’ (3270 display-bound

flow) and this bit is set to 1, error status is returned;
otherwise, bit 6 set to 1 indicates that the user-defined
delimiter found in DMSDELM is to be used. This delimiter
is used to separate fields. Data streams containing user
delimiters must not contain SCS positioning orders;
additionally, this data stream cannot be used to define fields.

A programmer who uses this facility must understand the

field structure because DATSM makes no checks for protected
or numeric fields when it maps display-bound data streams into
the image buffer.

Figure 5-14 (Part 2 of 3). PUTFLD Control Bytes

5-64 4700 Controller Programming Library, Volume 4: Loop/Device Programming

XXXXXXX0 0XXXXXXX Reserved.
XXXXXXXX XIXXxxxx This is a PUTFLD reissue.
XXXXXXXX X0OXXXXXX This is not a reissue.

Bit 9 set to 1 indicates a reissue. It is set by the application
program when it reissues PUTFLD as a result of previous reissue
status. This occurs on the C2 flow. It can be used when processing
a screen image in segments (SNA communication protocol refers
to these as chains). When processing chains (segments), the
first-in-chain is passed with this indicator set to 0;

all remaining elements of the chain are passed with this

indicator set to 1. All orders that span elements of the chain

are resolved correctly. This is used on the A1 and B1 flows.

It has little use for the C2 flow.

Errors in the data stream when PUTFLD resumes processing
of broken orders are undetectable by DATSM, since the data
values following 3270 or SCS orders are unpredictable. If
PUTFLD is interrupted in the middle of processing an order,
the first bytes of the continuing data stream are treated by
PUTFLD as if they are the continuation of the order that was
being processed.

XXXXXXXX XX 1XxXXXX Insert attribute in current FCT entry.
XXXXXXXX XX0XXXXX Do not insert attribute in FCT.

When both the field sequence number bits 05 and 10 are
set to 1, PUTFLD places the data byte in the user segment
in the attribute byte field of the FCT entry currently
being addressed. This process occurs on the A1l flow
(SCS display-bound data).

XXXXXxxxx xxx0000x Reserved.

XXXXXXXX XXXXXxX1 Segment current field.
XXXXXXXX XXXXXxXx0 Do not segment.

Bit 15 set to 1 causes PUTFLD to retrieve only one segment

of the current field at a time when PUTFLD performs a GETFLD
function. This bit must be left on as long as current field
segmenting is in effect.

Figure 5-14 (Part 3 of 3). PUTFLD Control Bytes

Chapter 5. 4700 Loop and DCA ‘Assembler Instructions 5-65

Summary of PUTFLD Segment Pointer Operation:

Case 1 = PUTFLD status bits do not indicate that LREAD, LWRITE, or reissue
is required by the application program.

Case 2 = PUTFLD status bits indicate an LREAD is required by the application
program.

Case 3 = PUTFLD status bits indicate an LWRITE is required by the application
program.

Case 4 = PUTFLD reissued as a result of reissue status from the previous

PUTFLD.
Segment Addressing:
Field Before Execution After Execution
Case 1 PFP start of data unchanged
FLI length of data unchanged
SFP unused unchanged
Case 2 PFP start of data unchanged
FLI length of data length of read through end of segment
SFP unused unchanged
Case 3 PFP start of data end of data +1
FLI length of data residual length in segment
SFP unused start of data (PFP)
Case 4 PFP ignored case 1, 2, 3, results possible

FLI ignored
SFP ignored

Field Before Execution After Execution
Case 1 Displacement: start of data unchanged
Length: length of data unchanged
Case 2 Displacement: start of data unchanged
Length: length of data length of read through end of segment
Case 3 Displacement: start of data unchanged
Length: length of data length of data
Case 4 Displacement: ignored case 1,2,0r3
Length: length of data results are possible

5-66 4700 Controller Programming Library, Volume 4: Loop/Device Programming

IXXXXXXX XXXXXXXX
0XXXXXXX XXXXXXXX

XIXXXXXX XXXXXXXX
XOXXXXXX XXXXXXXX

XX IXXXXX XXXXXXXX
XX0XXXXX XXXXXXXX

Issue LREAD NOTRACK to terminal.
Do not issue LREAD NOTRACK to terminal.

Bit O set to 1 indicates that PUTFLD has placed the
current field into the user’s buffer and that the

program should issue a keyboard read instruction to read
into this area with the NO TRACK option. This action is
indicated during TAB and INSERT key processing for
nondisplayable fields (see ‘“Emulation of 3270 Keyboard”
and “Tab Key Emulation”). This flag is set by PUTFLD
only on the C2 flow and can be set along with bit 2 or 9.
This flag is not set when buffer overflow has occurred.

Action: PUTFLD has set the PFP and FLI in the

segment header to read the data from the keyboard into

the field in the user’s buffer. Your program should issue

an LREAD KB with the NO TRACK option so that no data is displayed.

Issue LREAD TRACK to terminal.
Do not issue LREAD track to terminal.

Bit 1 set to 1 indicates the same as bit 0 (LREAD KB
NO TRACK) except that the TRACK option should be used for
the keyboard read.

Action: PUTFLD has set the PFP and FLI in the segment
header to read the data from the keyboard into the field in
the user’s buffer. The application program should issue an
LREAD KB TRACK so that the data entered is displayed correctly.

Reissue PUTFLD.
Do not reissue PUTFLD.

Bit 2 set to 1 indicates that all operations required by

the data in process are not complete. This occurs during TAB
and INSERT key processing. This flag is set only on the C2
flow and is set along with bits 0, 1, or 5.

Action: The application program should set the

Reissue PUTFLD bit in the DMS control byte to 1,

and reissue the instruction for the same segment as for the
original invocation. The application program should reissue
PUTFLD only after the LREAD or LWRITE status requests are
satisfied.

Figure 5-15 (Part 1 of 5). PUTFLD Status Codes

Chapter S. 4700 Loop and DCA Assembler Instructions

5-67

XXX IXXXX XXXXXXXX User EID processing required.
XXX0XXXX XXXXXXXX No EID processing required of user.

Bit 3 set to 1 indicates that the DMSEID field contained

a CLEAR key (X‘6D’) EID or an EID not supported by

DATSM when PUTFLD was issued after an LREAD from the keyboard.
PUTFLD sets this flag only on the C2 flow and can also set bit 5.

Action: The application program should in most cases,

issue GETFLD to generate a data stream for the host. If the user
has defined EOM’s not supported by host processing, they

“must be processed by the program. Note that you issue GETFLD
for a 3270 processor-bound data stream, the DMSEID field

is used for an attention ID (AID) byte.

XXXX IXXX XXXXXXXX Write to host required.
xxxx0xxx xxxxxxxx No write to host required.

Bit 4 set to 1 indicates that a data stream is placed

into the data buffer for the host. The data stream was
the result of a PUTFLD instruction that transmitted to
the host. This flag is set only on the B1 flow and can be
set with bit 2, 3, or 11.

Action: The segment pointers are set up for an
LWRITE CP to the host, which should be issued by the program.

XXXXXIXX XXXXXXXX Issue LWRITE to display.
XXXXX0XX XXXXXXXX Do not issue LWRITE to display.

Bit 5 set to 1 indicates that a data stream is in the data
buffer for the terminal. The data stream is the result of
input to the PUTFLD instruction that required a display
screen action such as clearing the screen or tabbing to

the next unprotected field. The display performs the action.
This flag occurs only on the C2 flow and can be set with
bits 2 or 3.

Action: The segment pointers are set to issue an
LWRITE DS instruction to the display; the application program
can issue the instruction to write the data stream.

Figure 5-15 (Part 2 of 5). PUTFLD Status Codes

5-68 4700 Controller Programming Library, Volume 4: Loop/Device Programming

XXXXXXIX XXXXXXXX
XXXXXX0X XXXXXXXX

xxxxxxx1 xxxxxxxx
XXXXXXX0 XXXXXXXX

XXXXXXXX IXXXXXXX
XXXXXXXX OXXXXXXX

Error code byte set.
No error code byte set.

Bit 6 set to 1 indicates that an error condition has been
detected and that the error code byte of the DMS header
contains an identifying number. PUTFLD sets this flag on any
flow without accompanying bits.

Action: The application program should test the
error code byte; however in many cases, no recovery
is possible.

Successful completion, no status set.
Status returned.

Bit 7 set to 1 to indicate that PUTFLD operated

successfully. If this flag is 0, other status is available

and should be checked. PUTFLD sets this flag without any other
bits. This flag is not set on the C2 flow after processing

a Reset Insert Mode EOM.

Action: Issue GETFLD to obtain the current C2 flow

data, and then read from the keyboard. This is recommended
on the C2 flow any time DATSM does not specify the function
required next.

Issue GETFLD for read full buffer.
No read full buffer needed.

Bit 8 set to 1 indicates that a read full buffer command
code was received in the data stream. PUTFLD sets this flag
only on the B1 flow and without any other bits.

Action: Issue a GETFLD for a full
read and use an LWRITE instruction to write it to the host.

Figure 5-15 (Part 3 of 5). PUTFLD Status Codes

Chapter 5. 4700 Loop and DCA -Assembler Instructions

5-69

XXXXXXXX XIXXXXXX
XXXXXXXX XOXXXXXX

XXXXXXXX XX 1xxxxx

XXXXXXXX Xxx1xxxx
XXXXXXXX XXX0xxxx

This field has the user flag set.
This field has no user flag set.

Bit 9 set to 1 indicates that PUTFLD encountered a field
with a user flag set during tab processing. PUTFLD sets this
flag only on the C2 flow and always with bits 0 and 1.

Action: None, unless defined by your program.

Read modified required.
No read modified required.

Bit 10 set to 1 indicates that a read modified command
code was received in the input to the PUTFLD
instruction. This flag is set only on the B1 flow and is
set without any other bits.

Action: Issue GETFLD for all modified fields.

Depending on the EID value (in DMSEID) supplied by the
program, the data stream you read contains either the AID
and the cursor address only (short read); or the AID, the
cursor position, and the contents of all fields marked as
input-modified (MDTs set to 1). Issue an LWRITE instruction
to write the result to the host.

Buffer overflow.
No buffer overflow.

Bit 11 set to 1 indicates that the user buffer is not
long enough for the data being retrieved after a tabbing
operation.

Action: This can be a program problem. This bit

setting is not an error code since the program can read data
into a partial field. The write-to-terminal bit, which is
normally set as the result of the tabbing operation, is not
set when buffer overflow has occurred. When single fields
extend beyond one line of the display, field segmenting can
be used to avoid this condition.

Figure 5-15 (Part 4 of 5). PUTFLD Status Codes

5-70 4700 Controller Programming Library, Volume 4: Loop/Device Programming

XXXXXXXX XXXX1xxx
XXXXXXXX XXXX0xxx

XXXXXXXX Xxxxx1xx
XXXXXXXX XXxxx0xx

XXXXXXXX XXXXxx1x
XXXXXXXX XXXXxx0x

XXXXXXXX XXXxxxx1
XXXXXXXX XXXXXXX0

Field not found.
Field found or not requested.

Bit 12 set to 1 indicates that the field specified by

DMSFSEQ could not be found. PUTFLD returns this status only

if bit 5 of the control bytes (use sequence number to find the

field) was set to 1 before PUTFLD instruction was issued, or

when PUTFLD performs a “GETFLD-type” operation during keyboard
emulation. This flag is set for all flows without accompanying

bits.

Action: The action is user-defined. This status
could indicate a program problem or simply that the field
did not exist.

Read modified all required.
Read modified all not required.

Bit 13 set to 1 indicates that a command code of read
modified all was received in the input to the PUTFLD
instruction. This flag is set only on the B1 flow and is
set without accompanying bits.

Action: The application program should:
1. Issue GETFLD all input-modified.
2. Use an LWRITE to write the resulting data stream to the host.

Field is protected.
Field is unprotected.

Bit 14 set to 1 indicates that PUTFLD has performed the
GETFLD function on a protected field because of receiving
an EID specifying one of the cursor movement keys. This bit
occurs in conjunction with bits 0 or 1 and bit 2.

Action: The application program should take appropriate

action to protect the contents of the protected field when issuing
the LREAD KB indicated by bits O or 1 then reissue PUTFLD as
indicated by bit 2.

The field retrieved was marked KANJI.
The field retrieved was not KANIJI.

Bit 15 set to 1 indicates that PUTFLD has performed

a GETFLD function on a KANII field as the result of a
keyboard emulation operation. This bit occurs with

bits 0 or 1 and bit 2.

Action: The application program should issue an
LREAD KB with tracking or not as indicated by bits O or 1
and then reissue PUTFLD as indicated by bit 2.

Figure 5-15 (Part 5 of 5). PUTFLD Status Codes

Chapter 5. 4700 Loop and DCA Assembler Instructions

5-71

5-72 4700 Controller Programming Library, Volume 4: Loop/Device Programming

Part II. Terminal and Device Reference

This second part of the 4700 loop and DCA device volume contains
device-oriented programming information. Where appropriate, each device type
has its own chapter beginning with an introduction to the basic device features
and continuing with configuration, data translation, device control, and other
programming information unique to that device. For device status code, condition
code, and DEVPARM device control parameters, refer to the appendixes at the
back of the book.

Terminals and Devices Available on the 4700

The terminals that you can attach to a 4700 controller are:

« The IBM 4704 Display, Models 1 - 3, comprising one or two numeric or
alphameric keyboards or an administrative keyboard and one of three 480- or
1920-character display monitors with optional tinted antiglare filters and
adjustable holding cradle. Model 1 displays attach to the banking loop;
Models 2 and 3 attach over the Device Cluster Adapter (DCA) feature.
Optional attaching devices are a magnetic stripe reader or reader/encoder,
and a normal or encrypting personal identification number (PIN) keypad.

« The IBM 4710 Document Printer, a combination of a receipt/validation
printer and a journal printer. It can print a 96-character set in standard or
bold sizes, and can be shared between two work stations.

« The IBM 4720 Printer, Models 1 - 4, providing cut-form, journal, and
passbook printing capability. All models provide either normal dot matrix
printing suitable for most transactions, or an optional high-resolution printing
for administrative needs. These table-top printers operate at up to 120
characters per second.

« The IBM 3604 Keyboard Display, a combination of a numeric or alphameric
keyboard and a 120-, 240-, 480-, 1024~ or 1920-character display.

The display character set is a fixed set of up to 153 unique characters
(including characters for all supported languages). Magnetic stripe readers
and reader/encoders can also be attached. A program-controlled audible
alarm is available on Models 5 and 6.

o The IBM 3606 and 3608 Financial Services Terminals, which are designed for
payment processing at the point of sale (charge card/credit card verification,
account validity and status, and capture of sales data are examples). The IBM
3606 Financial Services Terminal has a keyboard, indicator lights, an
8-position numeric display, and a magnetic stripe reader. The IBM 3608
Printing Financial Services Terminal has the same configuration as the 3606,
but with a printer capable of printing one to three lines on cut forms of one to
three parts, card stock, and single-part cut forms. The printer has a standard
printing set of 45 alphameric characters. An Optical Character Recognition
(OCR) 7B font may be ordered for printing the top line of the three print
lines. Ten numeric characters compose the OCR 7B font.

¢ The IBM 3610 Document Printer, which can be ordered as a cut-forms. a

continuous-forms, or a journal-roll printer. It can print a 48-, 64-, 96-, or
128-character set (customized by country).

Part II. Terminal and Device Reference

e The IBM 3611 Passbook Printer, which is a passbook printer that can also be
used to print single or multipart cut forms. Form width can vary. Printing
character sets of 64 or 96 characters are available (customized by country).

e The IBM 3612 Passbook and Document Printer, which is a combination of a
document printer and a passbook printer. The two units are separately
addressable and operate independently; however, data is transferred to only
one printer at a time. The same character sets and printing capabilities
available with the 3610 (with the exception of the 48-character set) are
available with the 3612.

» The IBM 3614 Consumer Transaction Facility is used by the customers of a
financial institution to perform transactions. The 3614 has numeric and
transaction keypads, a credit card magnetic stripe reader, 40-character
display, and a cash dispenser. Optional features are a receipt printer and
depository. The 3614 can attach directly to the controller or through a
communication link and 3704 or 3705 to the host. Refer to the 3614
Programmer’s Guide and Reference, GC66-0005, for detailed information
about the 3614.

« The IBM 3615 Administrative Terminal Printer, which is a medium-speed,
tabletop, matrix printer, can be used to print on a variety of cutforms and
fanfold continuous forms. A character set of 128 alphameric characters can
be obtained in U.S. English, Canadian English, and Canadian French.

« The IBM 3616 Passbook and Document Printer, which combines two logically
independent matrix print stations, passbook and journal, into one terminal.
The passbook station can handle multiple sizes of passbooks and cut forms.
The journal station allows the use of one-part or two-part journal forms. In
addition, the journal station prints cut forms that require printing for
validation. The 3616 can print 120 characters per second at 10 or 12
characters per inch.

e The IBM 3624 Consumer Transaction Facility, which is used by the
institution’s customers, is similar to the 3614 but with an more function and
features. The 3624 uses portable cartridges to make loading and issuing
currency easier. With minor programming changes, the 3624 attaches to the
same system as a 3614. Refer to the 3624 Programmer’s Reference and
Component Descriptions, GC66-0009, for detailed information about the
3624.

o The IBM 3262 Line Printer is available in two models, depending on the
printing speed desired. The Model 3 prints 132-character lines at up to 650
lines per minute. The Model 13 prints 132-character lines at up to 325 lines
per minute. Both models attach to an IBM 4700 Finance Communication
System controller through the Device Cluster Adapter (DCA) feature.

« The IBM 3178 Display Station, which attaches to the 4700 device cluster
adapter (DCA). The 3178 operates identically with a 3278, Model 2. Refer
to the 3178 operating instructions, which includes procedures for operating
the 3178 when attached to a 4701 controller.

4700 Controller Programming Library, Volume 4: Loop/Device Programming

The IBM 3278 Display Station Model 2 comprises a cathode ray tube (CRT)
display component that displays up to. 1920 characters, a 75- or 87-key
keyboard that attaches with a cable to the display component, and an optional
magnetic slot reader and accompanying control feature for reading American
Banking Association (ABA) 10-character/“F”-BQS magnetic stripes. All
components of the 3278 are separate, movable, tabletop units. Program
control for the 3278-2 is the same as for the 3604 units. The 3278-2 attaches
to the IBM 4700 Finance Communications System controller through the
Device Cluster Adapter (DCA) feature. Refer to the IBM 3270 Information
Display System Component Description, GA27-2749, for detailed information
on the 3278-2.

The IBM 3279 Display Stations, Models 2A-2B, are 1920-character color
displays comprising a four- (Model 2A) or seven-color (Model 2B) display
component, a standard or data entry keyboard, and the same optional
magnetic slot reader and control available on the 3278 Display Station. Refer
to the IBM 3270 Information Display System Component Description,
GA27-2749, for detailed information on the 3279-2A ‘and 3279-2B.

The IBM 3287 Line Printer, Models 1 and 2, are compact, movable, tabletop
printers. -They are bidirectional wire matrix printers that can print up to 132
characters per line at up to 80 characters per second (Model 1) or up to 120
characters per second (Model 2). The printer is attached to an IBM 4701
controller via the Device Cluster Adapter (DCA) feature. Refer to the IBM
3287 Printer Models 1 and 2 Component Description, GA27-3153. for
detailed information regarding the 3287 printers.

The IBM 5210 Printer, which attaches to the 4700 device cluster adapter
(DCA).

The following devices and systems also attach to the 4700 Device Cluster
Adapter (DCA) feature:

— The IBM Personal Computer and Personal Computer/XT with the
3278/3279 Emulation Adapter, allowing the computer to emulate the
3278 U.S. English keyboard and 3278 Model 2 or the 3279 Model 2A
Display Station.

— IBM Displaywriter that supports the 3270 AW feature and 3274/3276
Dual Attachment (FC 8332). When operating in communications mode,
the Displaywriter operates as a 3278 Model 2 Display Station, and the
attached printers operate as IBM 3287 Model 1 or 2 printers.

Refer to the appropriate device chapter later in this part of the manual for

restrictions and differences from the normal operation when operating thes
devices when linked to the 4701 controller.

Part II. Terminal and Device Reference

Terminal Attachment Unit

The IBM 3603 Terminal Attachment Unit connects remote locations to the 4700
controller. The 3603 is designed for unattended operation and has no impact on

programming support. The IBM 3603 Terminal Attachment Unit is not discussed
elsewhere in this publication.

Device Cluster Adapter

The Device Cluster Adapter (DCA) attaches the following terminals to the 4700
controller: the 4704 Display Station Models 2 and 3, the IBM 3287 Printer
Models 1 and 2, the IBM 3278 Keyboard/Display Model 2, the IBM 3279
Display Station Models 2A and 2B, and the IBM 3262 Line Printer.

Translation Table 5a References

The term “Table 5a” is used throughout this manual to refer to the Data
Processing National Use Graphics Table 5a.

4700 Controller Programming Library, Volume 4: Loop/Device Programming

Chapter 6. IBM 4704 Display Station Model 1

The IBM 4704-1 Display (Figure 6-1) attaches to the banking loop and comprises
one of two display monitors (the screen), one or two of four keyboards, and a
power/logic control module. This display subsystem can also include a personal
identification number (PIN) keypad and a magnetic stripe device.

(-
-
Control Module
Mode! 1
Display Monitor
Keyboard(s) (One or
Two Can Be Attached)
.
Magnetic Stripe Unit (Optional)

PIN Keypad
(Optional — Not Shipped With The Display)

Figure 6-1. IBM 4704-1 Display Terminal

Chapter 6. IBM 4704 Display Station Model 1 6-1

Functions and Features

Keyboard

Display Monitor

Control Module

PIN Keypad

Magnetic Stripe Device

The 4704 has:

o Two display screen sizes: the 140 mm (5.5 in.) screen can display 480
standard characters; the 230 mm (9 in.) screen can display 1920 standard
characters or 480 large characters.

« Uppercase and lowercase characters

« Normal and intensified display characters

« Optional antiglare filters and support cradles
« Four keyboards: 50, 62, 77, and 107 keys

« A 112-key keyboard combination conprising the 62- and 50-key keyboards
attached to the primary and secondary ports
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>