jenue 9ousiaey 1dv
181ndwio?) a|qeriod

00LG WEI

% AN M. ENGEL

©
=
&
©
=
)
Q
=
o
B
7]
s
Q
oc
i
o
<

IBM 5100

o~N
™M
-
N
o
—
N
<
%

Preface

This publication is a reference manual that provides
specific information about the use of the IBM 5100
Portable Computer, the APL language, and installation
planning and procedures. It also provides information
about forms insertion and ribbon replacement for the
5103 printer. This publication is intended for users of
the 5100 and the APL language.

Prerequisite Publication

IBM 5100 APL Introduction, SA21-9212

Related Publications

® /BM 5100 APL Reference Card, GX21-9214

® APL Language, GC26-3847

Third Edition (May 1976)

This is a major revision of, and obsoletes, the previous edition SA21-9213-1 and Technical
Newsletter SN21-0258.

Changes have been made throughout, so this manual should be reviewed in its entirety.

Requests for copies of 1BM publications should be made to your IBM representative
or the IBM branch office serving your locality.

A form for readers’ comments is at the back of this publication. If the form is

gone, address your comments to IBM Corporation, Publications, Dept 245,
Rochester, MN 55901,

© | nternational Business Machines Corporation 1975, 1976

PN

CHAPTER 1. OPERATION

1BM 5100 Portable Computer Overview .,

Display Screen
Switches .

Power On or Restart Procedures

Display Screen Control .
Keyboard

Attention

Hold

Execute

Command

Positioning the Cursor and Informatlon on the

Display Screen .
Copy Display
Indicator Lights .
Process Check
In Process

CHAPTER 2. SYSTEM COMMANDS

System Overview .

System Command Descrvptnons
The)CLEAR Command
The JCONTINUE Command
The JCOPY Command .
The)DROP Command .
The JERASE Command
The }FNS Command
The)LIB Command
The JLOAD Command .
The JMARK Command .
The JMODE Command .
The JOUTSEL Command
The }PATCH Command
The)PCOPY Command
The JREWIND Command .
The)SAVE Command .
The)SI Command
The }SIV Command .
The }SYMBOLS Command
The)VARS Command .
The JWSID Command

CHAPTER 3. DATA

Variables . .

Data Representation
Numbers .

Scaled Representanon (Scnentlflc Notatlon)

Character Constants
Logical Data .
Scalar .
Arrays .
Generating Arrays
Finding the Shape of An Array
Empty Arrays
Catenation
Indexing

MO NTCTWNNN-—= =

O 000w owo,

10
10
13
13
14
15
15
16
16
18
18
20
20
21
25

26
27
27
28
28
29

30
30
30
30
31
31
32
32
32
33
35
36
37
39

CHAPTER 4. PRIMITIVE (BUILT-IN) FUNCTIONS . 43
Primitive Scalar Functions . . 43
The + Function: Conjugate, Plus . 44
The - Function: Negation, Minus 45
The x Function: Signum, Times . 46
The + Function: Reciprocal, Divide . 48
The [Function: Ceiling, Maximum . 49
The | Function: Floor, Minimum . . . 51
The | Function: . Magnitude, Residue 52
The % Function: Exponential, Power 54
The @ Function: Natural Log, Logarithm 55
The O Function: Pi Times, Circular . 56
The ! Function: Factorial, Binomial . 59
The ? Function: Roll 61
The A Function: And . 62
The VFunction: Or 63
The ~ Function: Not 64
The AFunction: Nand . 65
The VFunction: Nor . 66
The > Function: Greater Than 67
The = Function: Equal To 68
The < Function: Less Than 69
The = Function: Greater Than or Equal To 70
The <Function: Less Than or Equal To 71
The #Function: Not Equal To 72
Primitive Mixed Functions . 73
The p Function: Shape, Reshape (Structure) 75
The , Function: Ravel, Catenate, Laminate . 77
The / Function: Compress 81
The \ Function: Expand . 82
The zix Function: Grade Up 83
The § Function: Grade Down * 84
The 4 Function: Take . 86
The ¥ Function: Drop . 87
The 1 Function: Index Generator Index of 88
The ¢ Furiction: Reverse, Rotate . 89
The Q Function: Transpose, Generalized Transpose . 93
The ? Function: Deal 95
The 1 Function: Decode (Base Value) 96
The T Function: Encode(Representation) 99
The ¢ Function: Membership. . . 104
The] Function: Matrix Inverse, Matrix Dmde 105
The 2 Function: Execute . 107
The ¥ Function: Format . 108
APL Operators 111
Reduction Operator (/) m
Inner Product Operator (,) 113
Outer Product Operator {o,) 116
Scan Operator (\) 118
Special Symbols . 120
Assignment Arrow < 120.
Branch Arrow 21
Quad [] 121
Quad Quote [T] 122
Comment p . 122
Parentheses () 122

Contents

il

1

Chapter

2

-
Q
-
Q.
©
Lo
(&)

3

Chapter

4

Chapter

5

bl
]
-
Q
]
<
o

Chapter 10 Chapter 9 Chapter 8 Chapter 7 Chapter 6

>
9
©
n
3
=]

naex

CHAPTER 5. SYSTEM VARIABLES AND SYSTEM
FUNCTIONS

System Variables
Comparison Tolerance: D CT
Index Origin: []10 .

Printing Precision: []PP
Print Width: [JPW .
Random Link: [JRL

Line Counter: [JLC
Workspace Available: [JWA
Latent Expression: [JLX .
Atomic Vector: [JAV .

System Functions e e e e
The [JCR Function: Canonical Representation
The []FX Function: Fix
The [JEX Function: Expunge
The []NL Function: Name List
The []NC Function: Name Classification

CHAPTER 6. USER-DEFINED FUNCTIONS .
Mechanics of Function Definition
Function Header.
Branching and Labels
Local and Global Names
Interactive Functions
Requesting Keyboard lnput durmg Functlon
Execution
Arranging the Output from a User Defmed Functlon
Bare Output .
Locked Functions
Function Editing
Displaying a User-Defined Functlon
Revising a User-Defined Function
Reopening Function Definition
An Example of Function Editing .
Trace and Stop Controls
Trace Control
Stop Control

CHAPTER 7. SUSPENDED FUNCTION EXECUTION
Suspension
State Indicator

CHAPTER 8. TAPE AND PRINTER INPUT AND
QUTPUT

Establishing a Variable to be Shared .
Opening a Data File or Specifying Printer Output
Transferring Data .

Transferring Data to Tape (O UT or ADD

Operation) .

Transferring Data from Tape (IN Operatlon)

Transferring Data to the Printer (PRT Operation)
Closing a Data File or Terminating the Printer Output .
Retracting the Variable Name Being Shared .
Return Codes .
An Example Using Tape and Prmter Input/Output .

123
123
124
125
125
126
126
126
126
126
127
128
128
129
132
132
133

134
134
135
137
139
144

145
146
146
147
148
148
148
150
151

152
162
154

1565
1565
155

158
158
159
163

163
164
164
165
165
166
167

CHAPTER 9. MORE THINGS TO KNOW ABOUT
THE 5100
Data Security N
5100 Storage Capacity .
Storage Considerations .
Tape Data Cartridge Handling and Care

CHAPTER 10. THE 5103 PRINTER e e
How to Insert Forms

How to Adjust the Copy Control Dlal for Forms
Thickness .

How to Replace a Rlbbon .

CHAPTER 11. ERROR MESSAGES

APPENDIX A. SETUP PROCEDURES
Environment .

5100 Setup Procedure

Auxiliary Tape Unit Setup Procedure
Printer Setup Procedure

APPENDIX B. APL CHARACTER SET AND
OVERSTRUCK CHARACTERS

APPENDIX C. ATOMIC VECTOR

APPENDIX D. 5100 APL COMPATIBILITY WITH
I1BM APLSV

GLOSSARY .

INDEX

171
1m
172
173
175

176
177

179
179

182
191
191
192

197
199

201

202

206

210

215

Chapter 1. Operation

IBM 5100 PORTABLE COMPUTER OVERVIEW

The 5100 (Figure 1) is a portable computer. The 5100 has a display screen, key-
board, a tape unit, switches, indicator lights, and an adapter for black and white
TV monitors. The display screen and indicator lights communicate information
to the user. The keyboard and switches allow the user to control the operations
the system will perform.

Features available for the 5100 are an auxiliary tape unit, a printer, and a com-
munications adapter.

Display Switches Indicator Lights Switches Adapter for Black and
Screen White TV Monitors

/

)
My

o

Keyboard

Figure 1. I1BM 5100 Portable Computer

Tape
Unit

DISPLAY SCREEN

The display screen (Figure 2) can display 16 lines of information at a time, with w b
up to 64 characters in each line. Input (information supplied by the user) as well

as output (processed information) is displayed. The bottom two lines {lines 1 and

0) of the display contain information entered from the keyboard. The cursor

(flashing horizontal line} indicates where the next input from the keyboard will

be displayed. If the cursor is moved to a position that already contains a charac-

ter, the flashing line is replaced by the flashing character. As the 5100 processes

input, all lines of the display are moved up so that information can be entered on

the two bottom lines again. The top lines of the display are lost as the lines are
moved off of the display screen.

SWITCHES

The switches on the 5100 console (Figure 3) are used for turning power on,
restarting the system, and controlling how information is displayed.

Power On or Restart Procedures

The following switches are used when turning power on to the system or re-
starting the system operation.

Line Numbers

r)

15
14
13
12
11
10

©

3+2 <«— Input from the keyboard
5 «——— Qutput

L

_— e Cursor (flashing horizontal line)

O = N WH»OTIO N®

64 character positions ————)

Normally, to distinguish input from output, input from the key-
board is indented and output is displayed starting at the left edge
of the display screen.

Figure 2. The 5100 Display Screen

BASIC/APL

Only dual-language machines have this switch. The switch setting determines which
language will be in operation when power is turned on or after RESTART is

pressed. If the switch setting is changed after power is turned on or after RESTART

is pressed, the language in operation will not be changed.

Power ON/OFF

When this switch is in the ON position, power is supplied to the system. The
system performs internal checks and becomes ready in 15-20 seconds. When the
switch is put in the OFF position, no power is supplied to the system.

Note: The message CLEAR WS is displayed when the system becomes ready. If
this message is not displayed after 20 seconds, restart the system operation (the
RESTART switch is discussed next).

RESTART

This switch restarts the system operation. When it is pressed, the system performs
internal checks and becomes ready in 15-20 seconds. The message CLEAR WS is
displayed when the system is ready. If the system does not display the message
after 20 seconds, press RESTART again. If the system does not become ready
after several attempts, call your service representative.

The primary uses of this switch are to restart the system operation after a system
malfunction has occurred and to change the language in operation on dual-
language machines.

Note: Any information you had stored in the active workspace (see Chapter 2)
will be lost when RESTART is pressed.

Display Screen Control

The following switches are used to control how the information on the display
screen is displayed.

L32 64 R32

This three-position switch (positions 64, L32, and R32) operates as follows:

® 64 — Characters are displayed in adjacent positions, and up to 64 characters
can be shown on each line.

® | 32 — Characters are displayed in alternate positions (blanks between); only
the left 32 characters of the 64-character lines are shown.

® R32 — Characters are displayed in alternate positions (blanks between); only
the right 32 characters of the 64-character lines are shown.

w»
[+4]
<
o
het
=
w

a|0suoy 00 LS eyL 't ainbiy

| =
N—— J
(a
() BRIGHTNESS L3264 R32 IN PROCESS REVERSE DISPLAY BASIC RESTART DISPLAY REGISTERS
PROCESS CHECK APL NORMAL
POWER ON

POWER OFF
-

_ __J W,

.

S

sasic ((Loap)(save J(Cron (oo) (ost) Conc) (auro)(renum) (Cro-) (Rewino) Caicresu) [copy
At (hoap){0save JOconT J(True Y (ens) (0 vars J(0copy (O wsio Y(ourse)(rewno) (D) DISPLAY (oecere)(inserT) -

100000000800
HEUOCOLOOEOE
OO0 E UM
00O s OB O

C) 0 O

~

ololo

-
| I |

Shift Key Alphameric Keys Shift Key Numeric Keys

REVERSE DISPLAY

(This switch determines whether the display screen will display light characters
on a dark background or dark characters on a light background. The brightness
control may have to be adjusted when the switch setting is changed.

(DISPLAY REGISTERS
This switch is for the service representative’s use when servicing your 5100.

Note: When you use your 5100, this switch must be in the NORMAL position.

(, * KEYBOARD

The 5100 keyboard (Figure 3) has alphameric and numeric keys. The alphameric
keys are grouped together and are similar to those on a typewriter keyboard.
When the keys are pressed, the characters entered appear in the input line (one

of the bottom two lines) on the display screen. If either shift key is pressed and
held, the upper symbol on the key pressed is entered. The top row of alphameric
keys can be used to enter numbers; however, numbers can be conveniently en-
tered using the numeric keys on the right side of the keyboard. The arithmetic
symbols (+ - + x) located on the top row of the alphameric keyboard can also

be entered using keys to the right of the numeric keys.

performed by a typewriter. These keys are discussed in the following text. Uses
of the APL language symbols on the keyboard are discussed in the APL language
chapter (Chapter 4) of this manual.

Attention .
. ATTN

Pressing ATTN (attention) when entering information from the keyboard erases
. everything from the cursor to the end of line 0.

(The keyboard contains some keys that perform operations in addition to those

Pressing ATTN during execution of any expression or user-defined function stops
system operation at the end of the statement currently being processed. To re-
C start the execution of a user-defined function, enter »[]LC.
p

Output that was being generated before the system operation stopped may not be
displayed because there is a delay between the execution of the statement that
causes the output and the actual display of the output.

(”‘ When ATTN is pressed twice during the execution of a statement (either inside or

v outside a user-defined function), the execution of that statement stops as soon as
possible. Also, the message INTERRUPT, the statement, and a caret (A) that
indicates where the statement was interrupted are displayed.

Hold PN

When pressed once, HOLD causes all processing to stop; when pressed again, it
allows processing to resume. The primary purpose of HOLD is to permit reading
the display information during an output operation, when the display is changing
rapidly. When the hold is in effect (HOLD pressed once}, only the COPY DISPLAY
key is active.

Notes:

1. Holding down the CMD key and pressing HOLD is restricted to use by the
service personnel.

2. When the hold is in effect (HOLD pressed once), the use of the arithmetic
keys (+ - + x) on the right side of the keyboard are restricted to use by
service personnel.

Execute

When this key is pressed, the input line of information on the display screen is
processed by the system. This key must be pressed for any input to be processed.

Command

When this key is pressed and held, pressing an alphameric key in the top row *
causes the APL command keyword or character above that key to be entered .

in the input line. The command keywords are: }LOAD,)SAVE, JCONT,)LIB,:.

)FNS,)VARS, JCOPY, JWSID, JOUTSEL, and)REWIND. v

Note: Holding down the CMD key and pressing HOLD is restricted to use by the
service personnel.

Positioning the Cursor and Information on the Display Screen

The following keys are used to position the cursor and information on the display
screen:

Forward Space .
-

When this key is pressed once, the cursor moves one position to the right. When
this key is held down, the cursor continues to move to the right. When the cursor
reaches the last position on one input line (line 1 or 0), it wraps around to the
first position on the other input line.

C

Insert

When the CMD key is held down and the forward space key is pressed once, the
characters at and to the right of the cursor position (flashing character) are moved
to the right one position, and a blank character is inserted at the cursor position.
The cursor does not move. For example:
Flashing character
Before the insert operation: 123567

After the insert operation: 1237567

When these keys are both held down, the characters continue to move to the
right and blank characters continue to be inserted.

Note: If there is a character in position 64 of line 0, the insert operation will
not work. :

Backspace .
-

When this key is pressed once, the cursor moves one position to the left. When

it is held down, the cursor continues to move to the left. When the cursor reaches
position 1 on one input line (line 1 or 0), it wraps around to the last position on
the other input line.

Delete -
L

When the CMD key is held down and the backspace key is pressed once, the
character at the cursor position (flashing character) is deleted and all characters
to the right are moved over one position to the left to close up the space. The
cursor is not moved. For example:

Before the delete operation: 12344?/6§

After the delete operation: 123456 _

Flashing character

When these keys are both held down, the characters at the cursor position con-
tinue to be deleted and all the characters to the right are moved to the left.

Lights

Scroll Up

This key (located above the numeric keys) can be used only in execution mode.

When this key is pressed once, each displayed line is moved up to the next line.

As the lines are moved up, the top line is lost as it is moved off the display screen.
When this key is held down, the lines continue to move up.

Scroll Down

This key (located above the numeric keys) can be used only in execution mode.
When the key is pressed once, each displayed line is moved to the next lower line.
As the lines are moved down, the bottom line is lost as it is moved off the display
screen. When this key is held down, the lines continue to move down.

Copy Display
X

If there is a 5103 Printer, when the CMD key is held down and this key is pressed
once, all the information presently on the display screen is printed. COPY
DISPLAY is operational even when the system is in the hold state (the HOLD
key has been pressed once).

Note: The L32 64 R32 switch has no effect on what will be printed.

INDICATOR LIGHTS

The 5100 console (Figure 3) has the ‘following indicator lights:

Process Check

When on, this light indicates that a system malfunction has occurred. In this case,
press the RESTART switch to restart the system operation. [f the system opera-
tion cannot be successfully restarted after several attempts, call your service repre-
sentative.

In Process

When the system is processing input, generally the display screen is blank and the
IN PROCESS light is on. After the input is processed, the light goes off, the out-
put and flashing cursor are displayed, and the system waits for input.

Notes:

1. For some expressions or user-defined functions (see Chapter 5), output is
generated before thg expression or function has completed execution. In such
cases, even though the system is still processing data, the IN PROCESS light
goes off and the output is displayed. The flashing cursor is again displayed
when the system has finished processing the input (the expression or function
has completed execution).

2, If the display screen is blank {no data or cursor is present) and the
IN PROCESS light is off, check the brightness control before calling
your service representative.

=
o
=
]
2]
°
s -

Overview

Chapter 2. System Commands

10

SYSTEM OVERVIEW

The 5100 contains an active workspace, which is the part of internal storage where
the user’s data and user-defined functions (programs) are stored. When the power
is turned off or the RESTART switch is pressed on the 5100, all the data in the
active workspace is lost. However, the contents of the active workspace can be
saved on tape (stored workspace) and then read back into the active workspace
for use at a later time (see System Command Descriptions in this chapter). The
contents of the active workspace then exist in both the active workspace and on
tape.

The tape is your library; that is, it is a place where you can store data for later
use. Before a tape can be used, it must be formatted. A formatted tape contains
one or more files where data can be stored. Each file has a file header, which con-
tains information about the file. See the)LIB system command in this chapter

for a description of the file header.

The system commands, which are used to control and provide information about
the system, are discussed next. :

SYSTEM COMMAND DESCRIPTIONS

The following list shows how system commands are used to control and provide
information about the various parts of the system. Each system command is
described in detail later in this chapter.

Commands that Control the Active Workspace

Command Meaning

JCLEAR Clear the active workspace.

)COPY Copy stored objects (see note 1) into the active workspace.
JERASE Erase global objects (see note 1) from the active workspace.
JLOAD Replace the active workspace with a stored workspace.

)PCOPY Copy stored objects (see note 1) into the active workspace and pro-

tect objects in the active workspace from being destroyed.
)SYMBOLS Change the number of symbols allowed in the active workspace.

)JWSID Change the active workspace 1D.

Commands that Control the Library (Tape)

Command

JCONTINUE

)JDROP
JMARK

JSAVE

Meaning

Write the contents of the active workspace on tape. The active
workspace can contain suspended functions.

Drop a tape file.
Format the tape.

Write the contents of the active workspace on tape. The active
workspace cannot contain suspended functions.

Commands that Provide Information About the System

Command
JFNS
JLIB

)SI

)SIv

)SYMBOLS

)JVARS

JWSID

Meaning

Display the names of the user-defined functions.
Display workspace file headers.

Display the state indicator.

Display the state indicator and local names.

Display the number of symbols allowed and used in the active
workspace.

Display the names of the global variables.

Display the active workspace ID.

Other Commands that Control the System

Command

)JMODE

JOUTSEL

JPATCH

JREWIND

Notes:

Meaning
Place the 5100 in communications mode.
Select printer output.

Apply IMFs (internal machine fix) to the system or recover
data after a tape error.

Rewind the tape.

1. Objects refers to both user-defined functions and variables.

2. The system commands JCONTINUE, JCOPY, JPCOPY,)DROP, }LOAD, MARK,
JREWIND, and)SAVE will blank the top 8 or 9 lines on the display screen when

they are used.

1

Overview

12

All system commands {and only system commands) have as their first character
a right parenthesis. Each system command must begin on a new line. Para-
meters (required or optional information) for the system commands must be L
separated by blanks. System commands cannot be used within APL instructions

and cannot be used as part of a function definition {function definition is dis-

cussed in Chapter 6).

System commands can be entered two ways:

1. The system command can be entered one character at a time from the
keyboard.

2. The system commands)LOAD,)SAVE,)JCONT,)LIB,)FNS,)VARS,)COPY,
JWSID, JOUTSEL and JREWIND can be entered in one operation by holding
the CMD key while pressing the top-row key just below the label of the
command you want.

The parameters, if required, must be entered and the EXECUTE key pressed before
any operation will take place. Following is an explanation of terms and symbols
used as parameters for system commands:

® Device/file number specifies the tape unit and file to be used. The built-in tape
unit is tape unit 1 and the auxiliary tape unit is tape unit 2. |f the value speci-
fied is less than four digits, tape unit 1 is assumed and the value specified re-
presents only the file number. If the value specified is four digits, the right-
most three digits specify the file number and the leftmost digit specifies the
tape unit. For example:

Device/File Number Meaning
1 Tape 1, file 1
02 Tape 1, file 2
2002 Tape 2, file 2

® Workspace ID is any combination of up to 11 alphabetic or numeric characters
(with no blanks); however, the first character must be alphabetic. |If more than
11 characters are entered, only the first 11 are used.

® Password is any combination of up to eight alphabetic or numeric characters
(with no blanks). If more than eight characters are entered, only the first
eight are used.

® Objectis a user-defined function or variable name.

® Parameters enclosed in brackets can be optional in certain cases.

The JCLEAR Command

The JCLEAR command clears the active workspace. A cleared workspace has
no valid name and contains no user-defined variables or functions and no data.
The workspace attributes are set to:

Index origin -1
Workspace identification — CLEAR WS
Comparison tolerance — 1E713
Printing width — 64

Printing precision)

Random number seed — 16807
Data printed — ALL
Symbols - 125

When the command is successfully completed, CLEAR WS is displayed.

Syntax
JCLEAR

There are no parameters.

The JCONTINUE Command

The JCONTINUE command, using the specified workspace 1D, stores the contents
of the active workspace onto tape without changing the active workspace. Primarily,
this command stores active status, such as suspended functions, so an operation can
be resumed later on the same or a similar machine. When the command is
successfully completed, CONTINUED device/file number workspace 1D is displayed.

The JCONTINUE command on the 5100 is similar in function and format to the
)SAVE command (except as noted below) and is distinguished from the JCONTINUE
command on IBM APLSV.

Notes:

1. A clear workspace cannot be written on tape.

2. A workspace with suspended functions can only be written on tape using the
JCONTINUE command (it cannot be written to tape using the }SAVE com-
mand).

3. JCOPY and)PCOPY commands cannot specify stored workspaces that were
written on tape using the JCONTINUE command.

4. A stored workspace written to tape using the JCONTINUE command cannot be
loaded into a 5100 active workspace that is smaller than the original active
workspace.

5. If a stored workspace that was written to tape using the JCONTINUE command
is loaded into another 5100 with a larger active workspace, the workspace
available (see the [JWA system variable in Chapter 5) is the same as when the
workspace was written to tape.

6. i ATTN is pressed during a JCONTINUE operation, the system operation is
interrupted and the file is set to unused.

13

14

7. Shared variable execution status can be stored by using the JCONTINUE
command. A subsequent JLOAD allows the user to resume execution if the
media is restored to the same condition as when the workspace was stored
using JCONTINUE (that is, the tape containing the shared variable cannot be
repositioned or placed on a different drive).

8. If a workspace stored with the JCONTINUE command has an open shared
variable or a suspended function, the [JLX system command will not be
executed when the workspace is loaded.

9. Workspaces are stored and loaded into the active workspace faster using the
JCONTINUE command than using the }SAVE command. _

10. IMFs are not stored by)JCONTINUE. If an IMF is required for operation of
the stored workspace, it should be reapplied by the)PATCH command (if
the IMF is not already in the system) before the workspace is reloaded.

Syntax

JCONTINUE [device/file number] [workspace 1D] [:password].

where:

device/file number (optional) is the number of the tape unit and file on the
tape where the contents of the active workspace are to be written. If no de-
vice/file number is specified, the device/file number from which the active
workspace was loaded or specified by a previous)WSID command is used.

workspace |D (optional) is the name of the workspace to be stored. This

name must match the workspace D of both the active workspace and the

file to be used on the tape, unless the file is marked unused. If the file is
marked unused, the active workspace |ID and tape file workspace |D are changed
to this workspace ID. If no name is specified in the command, the name of
the active workspace is used.

:password (optional) is any combination of up to eight alphabetic or numeric
characters {without blanks), preceded by a colon. This sequence of characters
must be matched when the stored workspace is to be read back into the active
workspace. |f no workspace ID or password is entered, the password associa-

ted with the active workspace (if any) is assigned to the workspace being

stored. |f just the workspace ID and no password is entered, any password associated
with the active workspace is not used.

The)COPY Command

The)JCOPY command copies all or specified global objects from a stored work-
space to the active workspace. Only objects in stored workspaces that were
written on tape with the)SAVE command can be copied. When the command
is successfully completed, COPIED device/file number workspace |D is displayed.

Notes:
1. If the active workspace contains suspended functions, objects cannot be copied
into it.

2. If the ATTN key is pressed during a JCOPY operation, the system operation is
interrupted and the amount of information copied into the active workspace
is unpredictable.

Syntax

JCOPY device/file number workspace ID :password [object name(s)]

where:

device/file number is the number of the tape unit and workspace file the ob-
jects are copied from.

workspace ID is the name of the stored workspace on tape.

:password is the security password assigned by a previous JWSID or)SAVE
command. If no password was assigned previously, a password cannot be
specified by this command.

object name(s) (optional) is the name of the global object(s) to be copied from
the designated stored workspace. If this parameter is omitted, all global ob-
jects in the designated stored workspace are copied.

The)DROP Command

The)DROP command marks a specified file unused. After the file has been
marked unused, the data in the file can no longer be read from the tape. When
the command is successfully completed, DROPPED device/file number file 1D is

displayed.

Syntax

)DROP device/file number [file 1D]

where:

device/file number is the number of the tape unit and the file on the tape.

file ID (optional) is the name of the stored workspace file to be marked unused.
If the file number specified is a data file, any file 1D specified is ignored.

The JERASE Command

The)JERASE command erases the named global objects from the active work-
space. There is no message displayed at the successful completion of the com-
mand.

Notes:
1. When a pendent, function (see Chapter 7) is erased, the response S| DAMAGE

is issued.
2. If the object being erased is a shared variable (see Chapter 8), the shared vari-

able will be retracted.
3. Even after the object is erased, the name remains in the symbol table (the

part of the active workspace that contains all the symbols used).

15

Syntax
JERASE object name(s)
where:

object name(s) are global names separated by blanks.

The)FNS Command
The)FNS command displays the names of all global user-defined functions in the
active workspace. The functions are listed alphabetically. If the character para-
meter is specified, the names are displayed beginning with the specified character

or character sequence.

Note: You can interrupt the)FNS command by pressing the ATTN key.

Syntax
JFNS [character(s)]
where:
character(s) (optional) is any sequence of alphabetic and numeric characters

that starts with an alphabetic character and contains no blanks. This sequence
of characters determines the starting point for an alphabetic listing.

The)LIB Command

The)LIB command displays the file headers of the files on tape (library). The
file header contains the following information:

® File number. The files on tape are numbered sequentially, starting with 1.

® File ID. The file ID can be from 1 to 17 characters. If the file contains a
stored workspace, the file ID is the same as the stored workspace 1D.

® File type. The file type is a 2-digit code; the following chart gives the mean-
ing of each code:

File Type Description

00 Unused file

01 Exchange data file (see Chapter 8)

02 General exchange data file (see Chapter 8)
03 BASIC source file

16

File Type Description

04 BASIC workspace file

06 BASIC keys file

06 APL continued file (see)CONTINUE command in this
chapter)

07 APL saved file (see }SAVE command in this chapter)

08 APL internal data format file (see Chapter 8)

16 Patch, tape recovery, and tape copy file

17 Diagnostic file

19 IMF file

72 Storage dump file

® Size of the file. The files are formatted in increments of 1024-byte blocks of
storage.

® Number of unused contiguous 1024-byte blocks of storage in the file.

® Number of defective records (512-byte blocks) in the file; an asterisk (*) is
displayed if there are more than nine defective records.

Note: This value can indicate when you should relocate a file to avoid loss of
data due to defective areas on the tape.

Following is an example of a file header:

00& FILES 07 010,001 0
File type ___I
Size of the file

Available storage

Number of defective records

File ID

File number

The)LIB command operation can be interrupted by pressing the ATTN key.

17

Syntax
)LIB [device/file number]
where:

device/file_number (optional) is the number of the tape unit and the starting
file number. All file headers from that file to the end of the tape are displayed.
If no entry is made, the display begins with the first file following the file you
are currently positioned at on tape unit 1. For tape unit 2, the entry 2000 will
display the file headers beginning with the first file following the file you are
currently positioned at on tape unit 2.

The)LOAD Command

The)LOAD command loads the contents of a stored workspace from the tape
into the active workspace, completely replacing the contents that were in the
active workspace. When the command is successfully completed, LOADED
device/file number workspace |D is displayed.

Note: If the ATTN key is pressed during a load operation, the system operation
is interrupted and the active workspace is cleared.

Syntax

JLOAD device/file number workspace 1D :password

where:

device/file number is the number of the tape unit and the number of the file
on the tape.

workspace 1D is the name of the stored workspace.

:password is the security password assigned to the stored workspace by a pre-
vious)WSID, JCONTINUE, or)SAVE command. If no password was pre-
viously assigned, a password cannot be specified. If a password was assigned
to the stored workspace but is not specified, or if it is incorrectly specified
for this command, the error message WS LOCKED is displayed.

The YMARK Command

The)MARK command formats the tape so that the active workspace or data
can be saved on it. Each)JMARK command formats a specified number of files
to a specified size. Additional files of different sizes can be formatted by using
additional]MARK commands.

When the operation is successfully completed, MARKED
number of the last file marked size of the last file marked is displayed.

18

Notes:
. 1. The ATTN key is not operative during the J]MARK command operation.
((2. If the message ALREADY MARKED is displayed after a)MARK command
was issued, the specified file already exists on the tape. To re-mark the
specified file, enter GO. If the file is not to be re-marked, press EXECUTE

to continue.
) CAUTION
(If an existing file on tape is re-marked, the original information in the re-marked
h file and the existing files following the re-marked file cannot be used again.
Syntax
(”’“)JMARK size number of files to mark starting file number [device]
where:

size is an integer specifying the size of each file in 1024-byte (1K) blocks of
storage.

The following formulas can be used to determine what size a file should be

marked. The formula for a workspace file (the contents of the active workspace
- written to tape with a }SAVE or JCONTINUE command) is

MAXSIZE= 3+] (CLEAR-ACTIVE)+1024, where:

® MAXSIZE is the maximum amount of tape storage (number of 1024-byte
blocks) that would be required to write the contents of the active workspace

(: to tape.

® CLEAR is the value of [JWA (see Chapter 5) in a clear workspace.

® ACTIVE is the value of [JWA just before the contents of the active workspace
are written to tape.

The formula for a data file (data written to tape using an APL shared variable
—see Chapter 8) when all of the data is contained in the active workspace is

MAXSIZE=T (WITHOUT-WITH) 1024, where:

® MAXSIZE is the maximum amount of tape storage (number of 1024-byte
blocks) required to write the data to tape.

(® WITH is the value of [JWA (see Chapter 5) with the data in the active work-
space.

® WITHOUT is the value of [JWA before any data to be written to tape was
stored in the active workspace.

(There is no formula for determining what size to mark a data file when the data
- is written to tape as it is entered from the keyboard. The amount of tape storage
required depends upon how much data is entered from the keyboard and what
type of data is used. For information on how many bytes of storage are required
by the various types of data, see Storage Considerations in Chapter 9.

' ' Note: The file header for each marked file requires 0.5K bytes of storage. There-
- fore, the number of bytes of tape storage required for each file is the specified size
of the file plus 0.5K.

19

JOUTSEL

number of files to mark is an integer specifying the number of files of the
specified size to format.

starting file number is an integer specifying the file number where formatting
is to start.

Ay

device (optional) specifies the tape unit that contains the tape to be formatted.
An entry of 1 specifies tape unit 1 and 2 specifies tape unit 2. If no entry is
made, tape unit 1 is assumed.

To format a tape for four 12K files, two 16K files, and three 10K files, the
following commands are required:

JMARK 12 4 1

JIMARK 16 2 5>Starting file number

JMARK 10 3 7

The YMODE Command
The)MODE command is used to load the 5100 communications program or 5100
serial 1/0 adapter program from a tape mounted in tape drive 1. When the system
is in communications mode, APL is no longer available. For more information on
the communications feature or the serial 1/O adapter feature, see /BM 5100

Communications Reference Manual, SA21-9215, or IBM 5100 Serial 1/0 Adapter
User’s Manual, SA21-9239, respectively.

Syntax

JMODE COM

The JOUTSEL Command

The JOUTSEL command specifies which data on the display will go to the printer.

Syntax
JOUTSEL [option]
where:
option is one of the following:

® When ALL is specified, all subsequent information that is displayed will be
printed.

® When OUT is specified, only the output is sent to the printer; input is dis-
played, but it does not go to the printer.

® When OFF is specified, none of the information displayed is printed, unless
it is assigned to an APL shared variable used by the printer (see Chapter 7).

If no parameter is specified, ALL is assumed. After a JLOAD or JCLEAR com-

mand or when the machine is first turned on, the ALL option is active.
20

The)PATCH Commqnd

The following is a list of the uses of this command. This command is used in con-
junction with specially devised programs on the customer support cartridge supplied
with the 5100. The uses are described in detail, following the list:

Copy IMFs (internal machine fix), the Copy IMF program, and the Load IMF
program onto another tape cartridge.

Load IMFs for the system program into the active workspace, then make the APL
language available again.

Display the EC version of each interpreter module.

Recover data on tape when tape read errors (ERROR 007 ddd—see Chapter 11)
occur during use of one of the following files:

1. Exchange (file type 01)
2. General exchange (file type 02)
3. BASIC source (file type 03)

4. APL internal data format (file type 08)

@ Copy the contents of one tape cartridge to another tape cartridge.

The customer support cartridge contains the following files:

File 1. The programs that copy or load IMFs and the program that displays
interpreter module EC versions.

File 2. The IMFs for the 5100.
File 3. The Tape Recovery program.
File 4. The Tape Copy program.

File 5. APL aids. This is a saved workspace file (WSID=APLAIDS) that con-
tains the following four functions:

1. AATRACE—Traces all the statements in a specified user-defined function.

2. AATRACEALL—Traces the first executable statement of each user-
defined function currently in the active workspace.

3. AATRACEOFF—Turns off all tracing.

4, AASHARED—Displays the shared variable names currently in the active
workspace.

The A ATRACE function requires as its right argument the name of the user-
defined function to be traced enclosed in single quotes. The other functions
do not require any arguments.

21

22

This workspace file also contains the following five variables that describe the func-
tions in the workspace:

1.

2.

3.

4.

5.

DESCRIBE
DESCRIBEAATRACE
DESCRIBEAATRACEALL
DESCRIBEA ATRACEOFF

DESCRIBEA ASHARED

These functions and variables can be copied into the active workspace using the
JCOPY command. For example, to copy the A ATRACE function into the active
workspace:

JCOPY 3 APLAING AATRACE

Note: The)PATCH command is not required for using the functions in file 5.

When the)PATCH command is used with the tape cartridge inserted in tape drive 1,
the following options are displayed:

ENTER OPTION NO.
COPY IMF TAPE
LOAD IMF’S

DISP EC VER.
KEY-ENTER IMF
END OF JOB
TAPE RECOVERY
TAPE COPY PGM

NogahRwwN

Flashing Cursor

To select an option, enter an option number (the tape cartridge must be inserted in
tape drive 1). If an option number other than those displayed is entered, the op-
tions will be displayed again. Once the option number has been entered, additional
prompting messages might be displayed for the selected option.

Option 1. Copy IMF Tape

The Copy IMF Tape option allows the following files to be copied from the tape:

® File 1, which contains the Copy IMF program, Load IMF program, and Display
EC Version program.

® Fiie 2, which contains the IMFs for the 5100. The IMFs can be copied from the
file as follows:

1. Copy all IMFs that apply to APL.
2. Copy all IMFs for APL that apply to the 5100 being used.
3. Copy specific IMFs by problem number.

4, Copy specified IMFs by problem numbers that apply to the 5100 being
used. (Ifa problem number is specified that does not apply to the 5100
being used, it is not copied.)

Note: The tape onto which files 1 and 2 are to be copied must be marked before
the copy operation is done. Use the)LIB command to determine what size the
files should be marked.

The Copy IMF Tape program will issue prompting messages and wait for the user
to respond to each message.

Copying IMFs allows tape cartridges containing only the IMFs that apply to your
5100 to be created.

Option 2. Load IMFs

The Load |MFs option allows IMFs to be loaded into the system program and then
makes the APL language available again. IMFs can be loaded as follows:

® | oad all IMFs that apply to the 5100 being used.

® | oad specified IMFs by problem numbers that apply to the 5100 being used.
(If a problem number is specified that does not apply to the 5100 being used, it
is not loaded.)

The Load IMFs program will issue prompting messages and wait for the user to respond
to each message.

Note: The IMFs occupy storage (space) in the active workspace and can also reduce
the performance of your 5100 significantly; therefore, IMFs should not be applied
to your 5100 if the problem does not affect your operation or if the problem can be
circumvented by an APL statement or command. The IMFs will remain in the active
workspace until the power is turned off or RESTART is pressed.

23

i

24

Option 3. Disp EC Ver.

/~

The Disp EC Ver. option is primarily for your service representative’s use. This
option will display a 4-digit code for each interpreter module. The first two digits
are the module identification and the next two digits are the EC version.

The EC Version program will issue prompting messages and wait for the user to
respond to each message.

Option.4. Key-Enter IMF

This option allows the service representative to enter IMFs from the keyboard. The
IMF is then written to file 2 on the tape containing the IMFs. The IMF can then be
loaded or copied from the tape. >

Option 5. End of Job

This option causes the APL language to be available again.

Option 6. Tape Recovery

The Tape Recovery option allows the user to recover data from a file or files on
which tape read errors (ERROR 007 ddd) are occurring. The Tape Recovery Pro-
gram can be used on the following files:

® Exchange (file type 01)

® General exchange (file type 02)

® BASIC source (file type 03)

® APL internal data format (file type 08)

The Tape Recovery program will issue prompting messages and wait for the user to
respond to each message.

The Tape Recovery program will recover as much data as possible in the file; some of
the data in the record where the tape read errors occur is not recoverable; some of
the data that precedes and follows that record may aiso not be recoverable.

-—

(

Option 7. Tape Copy Program

The Tape Copy option allows you to copy the contents (up to the end of marked
tape) of one cartridge to another cartridge. Tape copy can utilize the auxiliary tape
drive, if available. Tape copy also marks the tape being copied to.

Tape copy issues prompts and waits for you to respond to each prompt.

Syntax

The

)JPATCH

There are no parameters.

)JPCOPY Command

The)PCOPY command copies all or specified global objects from a stored work-
space into the active workspace. It is the same as the JCOPY command, except
that if the object name already exists in the active workspace, it is not copied from
a stored workspace. Therefore, the object in the active workspace is protected
from being overlaid and destroyed. Only objects in stored workspaces that were
written on tape with the)SAVE command can be copied.

When the command is successfully completed, COPIED device/file number
workspace 1D is displayed.

Notes:
1. If the active workspace contains suspended functions, objects cannot be copied
into it.

2. If the ATTN key is pressed during a JPCOPY operation, the system operation is
interrupted and the amount of information copied into the active workspace is
unpredictable.

3. If the specified object name already exists in the active workspace, the message
NOT COPIED:object name is also displayed.

Syntax

)PCOPY device/file number workspace ID :password [object name(s)]

where:

device/file number is the number of the tape unit and the stored workspace file.

workspace 1D is the name of the stored workspace on the tape.

:password is the security password assigned by the previous)WSID or }SAVE
command. [f no password was assigned, a password cannot be specified by
this command.

object name(s) {optional) is the name of the giobal object(s) to be copied from
the designated stored workspace. If omitted, all global objects in the designated
stored workspace are copied, except those already in the active workspace (if
any).
25

The)REWIND Command

The)REWIND command rewinds the specified tape. There is no message displayed
at the successful completion of this command. '

Syntax

)JREWIND [device number]

where:

device number (optional) is the tape (on drive 1 or 2) to be rewound. If the para-
meter is omitted, tape 1 is rewound.

The)SAVE Command

The)SAVE command stores the contents of the active workspace onto tape with-
out changing the contents of the active workspace. The stored workspace can be
loaded or copied on a machine with a larger or a smaller active workspace. Also,
individual global objects can be copied from the stored workspace to the active
workspace. When this command is successfully completed, SAVED

device/file number workspace ID is displayed. Do not remove the tape until
this message is displayed.

Notes:

1. A clear workspace or a workspace with suspended function cannot be written on
tape using the }SAVE command; however, a workspace with suspended functions
can be written to tape using the)CONTINUE command.

2. The)COPY and)PCOPY commands can specify stored workspaces that were
written on tape only if the)SAVE command was used.

3. Depending on the amount of data in the stored workspace, a stored workspace
that was written to tape using the }SAVE command can be loaded into another
5100 with a smaller active workspace.

4, 1f ATTN is pressed during a)SAVE operation, the system operation is interrupted
and the file is set to unused.

5. No open shared variables are stored in a }SAVE operation. Open shared variables
are stored with the)CONTINUE command.

6. IMFs are not stored by the)SAVE operation. If an IMF is required, it is necessary
to reload the IMF by using the }PATCH command (if the IMF is not already in
the system) before the stored workspace is reloaded.

26

Syntax

)SAVE [device/file number] [workspace ID] [:password]

where:

device/file number (optional) is the number of the tape unit and file on the
tape where the contents of the active workspace are to be written. If no
device/file number is specified, the device/file number from which the active
workspace was loaded or which was specified by a previous JWSID command
is used.

workspace ID (optional) is the name of the workspace to be stored. This
name must match the workspace ID of both the active workspace and the file
to be used on the tape unless the file is marked unused. If the file is marked
unused, the active workspace and tape file workspace ID will be changed to
this workspace ID. If no name is specified in the command, the name of the
active workspace is used.

:password (optional) is any combination of up to eight alphabetic or numeric
characters (without blanks), preceded by a colon. This sequence of characters
must be matched when the stored workspace is to be read back into the active
workspace. If no workspace ID or password is entered, the password associated
with the active workspace (if any) is assigned to the workspace being stored.

If just the workspace ID and no password is entered, any password associated
with the active workspace is not used.

The)SI Command

The)SI command displays the names of the suspended and pendent user-defined
functions (see State Indicator in Chapter 7). The suspended functions are indicated
by an ¥, with the most recently suspended function listed first, followed by the
next most recently suspended function, and so on.

Syntax

)SI

There are no parameters.

The)SIV Command

The)SIV command displays the names of the suspended and pendent user-
defined functions (see State Indicator in Chapter 7) and the names local to
each function. ‘The suspended functions are indicated by an *, with the most
recently suspended function listed first, followed by the next most recently
suspended function, and so on.

27

Syntax
)SIV

There are no parameters.

The }SYMBOLS Command

The)SYMBOLS command is used to change or display the number of symbols
(variable names, function names, and labels) allowed in the active workspace. The
number of symbols allowed can only be changed immediately after a)CLEAR com-
mand has been issued. In a clear workspace, the number of symbols allowed is
initially set to 125 by the 5100. When the command is used to display the number
of symbols allowed, IS the number of symbols allowed, number of symbols used

IN USE is displayed. When the command is used to change the number of symbols
allowed, WAS the former number of symbols allowed is displayed.

Note: When a stored workspace is loaded into the active workspace, the number
of symbols allowed in the active workspace will be the same as when the stored
workspace was written to tape.

Syntax
)SYMBOLS [n]
where:

n (optional) is an integer equal to or greater than 26 that specifies the number of
symbols allowed in the active workspace. Each symbol allowed requires eight bytes
of storage in the active workspace.

Notes:

1. The number of symbols allowed is assigned in blocks of 21; therefore the
actual number allowed can be larger than the number specified.

2. When a symbol is used in the active workspace, it remains in use even though the
object is erased or, in the case of "VALUE ERROR"’, never existed. When the
active workspace is written to tape with the }SAVE command and subsequently
reloaded, these unused names are removed from the symbol table; and the number
of symbols in use will be the same as the number of objects in the workspace.

3. The total number of allowed symbols remains the same after writing the werk-
space to tape with a)SAVE or JCONTINUE command and reloading the work-
space to the active workspace. The number of symbols in the active workspace
can be changed as follows:

a. Save the active workspace with the)SAVE command.

b. Clear the active workspace with the JCLEAR command.

c. Set the new number of symbols with the)SYMBOLS command.

d. Copy the stored workspace to the active workspace with the)COPY
command.

y;

The)VARS Command
The }VARS command displays the names of all global variables in the active work-

space. The variables are displayed alphabetically. If the character parameter is
included, the names are displayed beginning with the specified character sequence.

Syntax

)VARS [character(s)]

where:

character(s) (optional) is any sequence of alphabetic and numeric characters that
starts with an alphabetic character and contains no blanks. This entry can be
used to define the starting point for an alphabetic listing.

The)WSID Command

The)WSID {(workspace ID) command is used to change or display the tape device/

file number and workspace ID for the file where the active workspace contents will

be written if either a }SAVE or a)JCONTINUE command is used. The)WS!ID com-
mand is also used to change or assign the security password. When the)WSID com-
mand is issued without any parameters, device/file number workspace D is dis-
played. When the YWSID command is issued with parameters, WAS device/file number

workspace |D is displayed.

Note: The)WSID command only affects the active workspace; it cannot be used
to change any information on tape.

Syntax

)WSID [device/file number] [workspace 1D] [:password]

where:

device/file number (optional} is an integer that specifies the device/file number
where the active workspace will be stored when either the)JSAVE or JCONTINUE
command is issued.

Note: |f this parameter is omitted, the device/file number is cleared; a }JSAVE or
JCONTINUE command will not work unless a device/file number is specified in
that)SAVE or JCONTINUE command:

workspace 1D (optional) will be the new name for the active workspace. This
parameter must be entered if any other parameter is used.

password (optional) is any combBination of up to eight alphabetic or numeric
characters (without blanks), preceded by a colon. These characters will become
the security password for the tape file when the active workspace is written on
tape.

29

Chapter 3. Data

Data

'H‘\. J’
VARIABLES
You can store data in the 5100 by assigning it to a variable name. These stored
items are called variables. Whenever the variable name is used, APL supplies the
data associated with that name. A variable name can be up to 77 characters in
length with no blanks; the first character must be alphabetic and the remaining
characters can be any combination of alphabetic and numeric characters. Variable
names longer than 77 characters can be used, but only the first 77 characters are
significant to APL. The < (assignment arrow) is used to assign data to a variable:
LENGTHeA
WINTH8
AREAELENGTHXWIDTH *
To display the value of a variable, enter just the variable name: -
LENGTH
&
WIDTH
8
AREA
L&

DATA REPRESENTATION

Numbers

30

The decimal digits O through 9 and the decimal point are used in the usual way. The
character ~, called the negative sign, is used to denote negative numbers. It appears
as the leftmost character in the representation of any number whose value is less
than zero:

The negative sign, —, is distinct from - (the symbol used to denote subtraction) and
can be used only as part of the numeric constant.

o

Scaled Representation (Scientific Notation)

You can represent numbers by stating a value in some convenient range, then mul-
tiplying it by the appropriate power of ten. This type of notation is called scaled
representation in APL. The form of a scaled number is a number (multiplier) followed
by E and then an integer (the scale) representing the appropriate power of 10. For

example:
Number Scaled Form
Multiplier
66700 6.67E4
Scale
.00284 2.84E73

The E (E can be read times ten to the) in the middle indicates that this is scaled form;
the digits to the right of the E indicate the number of places that the decimal point
must be shifted. There can be no spaces between the E and the numbers on either

side of it.

Numeric Value Range

Numeric values in the 5100 can range from ~7.237005577332262E75 to
7.237005577332262E75. The smallest numeric value the 5100 can use is
+5.397604346934028E "79.

Numeric Value Precision

Numbers in the 5100 are carried internally with a precision of 16 significant
digits.

Character Constants

Zero or more characters enclosed in single quotes, including overstruck characters
(see Appendix B) and blank characters (spaces), is a character constant. The quotes
indicate that the, characters keyed do not represent numbers, variable names, or
functions, but represent only themselves. When character constants are displayed,
the enclosing quotes are not shown:

"ARCDEFG'
ABCDEFG
T123ARCT
123ARC
Me ' THE ANSWER 16:°
M
THE ANSWER 16:

When a quote is required within the character constant, a pair of quotes must be

entered to produce the single quote in the character constant. For example:

"DON''T GIVE THE ANSWER AWAY'
DON'T GIVE THE ANSWER AWAY

31

Logical Data

Logical (Boolean) data consists of only ones and zeros. The relational functions 1{ i.
(> 2= < <#) generate logical data as their result; the result is 1 if the condition was -
true and O if the condition was false. The output can then be used as arguments

to the logical functions (AAVV~) to check for certain conditions being true or false.

Logical data can also be used with the arithmetic functions, in which case it is

treated as numeric 1’s and 0’s.

SCALAR

A single item, whether a single number or single character constant, is called a scalar.
It has no coordinates; that is, it can be thought of as a geometric point. The follow-

ing are examples of scalars:

Scalar
Arrays

132.3
132.3

e
A

Scalars can be used directly in calculations or can be assigned to a variable name.
The variable name for the scalar can then be used in the calculations:

2x3
é

A

Bed

A+E
5
ARRAYS

Array is the general term for a collection of data, and includes scalars (single data
items), vectors (strings of data), matrices (tables of data), and arrays of higher
dimensions (multiple tables). All primitive (built-in) functions are designed to handle
arrays. Some functions are designed specifically to handle arrays rather than scalars.
Indexing, for example, can select certain elements from an array for processing.

32

One of the simplest kinds of arrays, the vector, has only one dimension; it can be
thought of as a collection of elements arranged along a horizontal line. The num-
bers that indicate the positions of elements in an array are called indices. An element
can be selected from a vector by a single index, since a vector has only one dimen-
sion. The following example shows assigning a numeric and a character vector to two
variable names, N and C; the names are then entered to display the values they re-
present:

MNel 6.2 73 888 925,12
N
9 4.2 T3 888 95,12
Ce ' ARCDEFG®
e

ARCIEFG

Generating Arrays

The most common way to generate an array is to specify the following: the shape
the array is to have—that is, the length of each coordinate; the values of the ele-
ments of the new array. The APL function that forms an array is the reshape
function. The symbol for the reshape function is p. The format of the function
used to generate an array is XpY, where X is the shape of the array and Y represents
the values for the elements of the array. For the left argument (X), you enter a
number for each coordinate to be generated; this number indicates the length of

the coordinate. Each number in the left argument must be separated by at least one
blank. The values of the elements of the new array are whatever you enter as the
right argument (Y). The instruction 70 A means that the array to be generated has
one dimension (is a vector) seven elements in length, and that seven values are to

be supplied from whatever values are found stored under the name A. It does not
matter how many elements A has, as long as it has at least one element. If A has
fewer than seven elements, its elements are repeated as often as needed to provide
seven entries in the new vector. |If A has more than seven elements, the first seven
are used. The following examples show generation of some vectors:

Tel 2 3
1231231

2p123
23 133

el 3

1.3 1.3 1.3 1.3 1.3

An array with two coordinates (rows and columns) is called a matrix.

Columns
P, R

1 2 3 4

5 6 7 9 Rows

33

=]
c

=
©
=
o
c
Y

Q

34

To generate a matrix, you specify X (left argument) as two numbers, which are the
lengths of the two coordinates. The first number in X is the length of the first co-
ordinate, or number of rows, and the second number is the length of the second
coordinate, or number of columns. The following example shows how a matrix is
generated:

Me2 3pl 2 3 4 05 6

(]
1 23
b5 &
Me? W ARCOEFGH'
M
ARBCD
EFGH
Mie2 3pM
Ml
AkC
NEF

Note that the values in the right argument are arranged in row order in the arrays. If
the right argument has more than one row, the elements are taken from the right
argument in row order.

The rank of an array is the number of coordinates it has, or the number of indices
required to locate any element within that array. Scalars are rank 0. Vectors have
arank of 1, matrices have a rank of 2, and N-rank arrays have a rank from 3 to 63
(where N is equal to the rank). N-rank arrays, like matrices, are generated by
providing as the left argument a number indicating the length for each coordinate
(planes, rows, and columns). The following examples show how to generate
3-rank arrays. Note that the elements taken from the right argument are arranged
in row order:

A ARCDEFGHI JKLMNOPORSTUVWXYZ®

203 hoh
ARCT \
EFGH ___ 2-plane, 3-row, 4-column array
T UKL
MMOP
GRST
LUYWX

W3 2pH

AR X
(B \ 4-plane, 3-row, 2-column array

EF

GH
1.
Kl

MN
ap
QR

5T
uv
WX

Finding the Shape of An Array

Once you have generated an array, you can find its shape (number of elements in
each coordinate) by specifying o (shape function) with only a right argument which
is the name of the array. If A is a vector with six elements and you enter p A, the re-
sult is one number because A is a one-dimensional array. The number is 6, the
length (number of elements) of A’s one dimension. The result of the shape function
is always a vector:

A1l 222 333 BLHY 555 4446
efh
&

The shape of a matrix or N-rank array is found the same way:

Me2 3pl 2 3 4 5 6

]
1 23
b 5 &
oM
23
Re2 3 Upl 2 3 4 5 4678
R
234
5 46 78
1 234
56 78
12304
D678
PR
234

In some cases, it might be necessary to know just the rank, the number of coordi-
nates (or indices) of an array. The rank can be found by entering pp (shape of the
shape) and a right argument, which is the name of the array:

A1l 222 333 4h4 555 666
Beld 3pl 2 3 4 5 6
Ce 3 hpl 2 3 4 5 67

A
6

pPPA
1

PR

epR
2

pC
234

PPl
3

35

The following table shows what the shapes and ranks are for the various types of

A&

7

arrays:
Data
Type Shape p X Rank p p X
Scalar No dimension (indicated by an empty vector). -0
Vector Number of elements. 1
Matrix Number of rows and the number of columns. 2
N-rank
arrays Each number is the length of a coordinate. N
Empty Arrays

Although most arrays have one or more elements, arrays with no elements also
exist. An array with no elements is called an empty array. Empty arrays are useful
when creating lists (see Catenation in this chapter) or when branching in a user-
defined function (see Chapter 6).

Following are some ways to generate empty arrays:

® Assign 10 to a variable name to generate an empty vector:

FEVECTOR® 10
EVECTOR An empty array is indicated
by a blank display.

pEMECTOR
{)
" The shape of the empty vector
is zero (zero elements).

® Use a zero length coordinate when generating a multidimensional array:

This matrix has three rows
and no (0) columns.

EMATRIX1¢3 0pi 00—
EMATRIXI

A blank output display
pEMATRIXL

® A function might generate an empty vector as its result; for example, finding the
shape of a scalar:

P

A blank output display.

36

(‘“"w»\

C

CATENATION

You can join together two arrays to make a single array by using the catenation
function. The symbol for this function is the comma. When catenating vectors,
or scalars and vectors, the variables are joined in the order in which they are speci-
fied, as the following examples show:

Acl 2

Belp 5

AR
Iuuy
B, A

&1

3

34
é

é

When catenating two matrices or N-rank arrays, the function can take the form
A[11B, where | defines the coordinate that will be expanded when A and B are joined.
If the coordinate is not specified, the last coordinate is used. When A and B are
matrices and [1] is [1], the first coordinate (number of rows) is expanded; when [1]

is [2], the last coordinate (number of columns) is expanded. The following examples
show how to catenate matrices:

10
40

10
4.0

10
0
11
m

Graphic Representation

A B
AED Zpl0 20 30 40 50 &0 10 20 30 11 22 33
Be? Ipll 22 33 44 S5 46 |40 50 60 44 55 66
AR
20 30 11 22 33 A B
G060 W4 O3 66 16 20 30 11 22 33
A, L2IR 40 50 60 44 55 66
20 30 11 22 33
50 60 4 55 46
A, L1k A 10 20 30
20 30 40 50 60
50 60
22 33 B 11 22 33
55 66 44 55 66

37

c
]
-
©
c
)
ot
33
O

Matrices of unequal sizes can be catenated, providing that the lengths of the co-
ordinates not specified are the same (see the first example following). If the co-
ordinates not specified are not the same, an error results (see the second example

following):
AeZ Zpl0 20 30 w0 50 &0 — |10 20 30 11 22 33 44
ReR Ball 22 33 44 55 46 77 88 40 50 60 55 66 77 88
AL L2IR A B
10 20 30 11 22 33 hy : 10 20 30 11 22 33 44
0 50 460 5% 4é6 77 88 40 50 60 55 66 77 88
A 10 20 30
A, DLIR 40 50 60
LENGTH ERROR
a:.01L1 B B 11 22 33 44
~ 56 66 77 88

A scalar can also be catenated to an array. In the following example, a scalar is
catenated to a matrix. Notice that the scalar is repeated to complete the coordinate:

A2 3pl0 20 30 40 50 60
A

10 20 30

Hl 50 40
ALL2T99

10 20 30 99

Lo 50 60 9%
A L1399

10 20 30

0 G50 &0

99 99 99

A vector can also be catenated to another array, provided the length of the vector
matches the length of the coordinate not specified. See the following examples:

A,99 BE s
10 20 30 99
40 50 40 88

20 [30 | 99
40 |50 | 60 | 88

A,IL1199 68 10 | 20 | 30
LENGTH ERROR ~——" 140 [50 | 60
ALY 99 88 99 | 88

A

L

The catenate function is useful when creating lists of information. Sometimes it is
necessary to use an empty array to start a list. For example, suppose you want to
create a matrix named PHONE where each row will represent a 7-digit telephone
number. First you want to establish the matrix, then add the telephone numbers
at a later time. The following instruction will establish an empty array named
PHONE with no {0) rows and seven columns:

PHONE+Q 7pa 0
i Blank display indicates an
p PHONE empty array.

Now, the telephone numbers can be added as follows:

PHONE€PHONE, [11° 33364846

PHONE

5336686
PHONE«PHONE , L1 4564771
FPHONE

H334686

US64T7T1
PHONE

2.7

X The list of telephone numbers
now contains two rows.
INDEXING

You may not want to refer to the whole array but just to certain elements.
Referring to only certain elements is called indexing. Index numbers must be
integers; they are enclosed in brackets and written after the name of the variable

to which they apply. Assume that A is assigned a vector as follows: A<11 1213
14 15 16 17. The result of entering A is the whole vector, and the result of entering
A[2] is 12 (assuming the index origin is 1; see Chapter 5 for more information on
the index origin).

Here are some more examples of indexing:
aell 12 13 14 15 16 17
AL3]
ALS 3 7 11
1% 13 17 11

2 ::;::] L% 6 Blank Character
13 11 14 16 l

Be ' ABCDEFGHIJKLMNOPQRSTUVHXYZ
BEW L 1% 271 1w & 27 3 12 1 9 18]
DAN AND CLAIR
Ce22 9 18 7 9 14 9 1
RLCI
VIRGINIA

39

=2}
c
x
4]
T
s

,40

If you use an index that refers to an element that does not exist in the array, the
instruction cannot be executed and INDEX ERROR results:

A
1112 13 14 195 16 17

ALCH]
INDEX ERROR
A8

A

You cannot index or do anything else with an array until after the array has been
specified. For example, suppose that no value has been assigned to the name Z;
then an attempt to store values in certain elements within Z would result in an
error, since those elements do not exist:

L03 1618 46
VALUE ERROR
L3 4le 18 ué

I

Indices (whatever is inside the brackets) can be expressions, provided that when
those expressions are finally evaluated, the results are values that represent valid

indices for the array:

i
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Xel 2 3 4 5
BEXx2T
BIOFH.
X
12345
BL1+Xx3
DGEJIMP

The array from which elements are selected does not have to be a variable. For
example, a vector can be indexed as follows:

23579 11 13 19 17 1907 2 4 21
13 37 3

"ARCREFGHIJKLMNOPARSTUVRXYZ 12 1% 15 11 27 16 1]
LODK P&

CARCDEFGHTIRKLANOPGRETUVWEYZ

NOM
MaRY "\/

The shape of the result is the same as the index.

Ay

)

Indexing a matrix or N-rank array requires an index number for each coordinate.
The index numbers for each coordinate are separated by semicolons. Suppose M is
a 3 by 4 matrix of consecutive integers:

Med Hpl 23 45 67 89 10 11 12

If you ask to see the values of M, they are displayed in the usual matrix form:

M
1 2 3 u
9 b6 708
? 10 11 12

If you want to refer to the element in row 2, column 3, you would enter:

¢

If you want to refer to the third and fourth elements in that row, you would enter:

ML2;3 41
T8

Similarly, to refer to the elements in column 4, rows 1, 2, and 1, you would enter:

MEL 2 1541
b 8 4

You can use the same procedure to select a matrix within a matrix. If you want the

matrix of those elements in rows 2 and.3 and columns 1, 2, and 1 of M, you would
enter:

ME2 351 2 11
9 6 5

9 10 9

If you do not specify the index number for one or more of the coordinates of the
array that you are indexing, APL assumes that you want the entire coordinate(s).
For instance, to get all of row 2, you would enter:

41

o
c
X
)
T
c

42

Or to get all of columns 4 and 1, you would enter:

MO 13
b1
g 95
12 9

Note: You stilt have to enter the semicolon to make clear which coordinate is which.
The number of semicolons required is the rank of the array minus one. If the correct
number of semicolons is not specified, RANK ERROR results:

Me3 Bprl2

M
3y
ML&TeD
RANK ERROR
ML&1e9
A

You can change elements within an array by assigning new values for the indexed
elements. (The rest of the array remains unchanged.)

AEX Bpl 23 8 5 6 7 8 9
A

123

86

a9
AL2; 2 31«10 20
A

1 2 3

W10 20

T8 9

v

s

APL functions are of two types: user-defined and those that are built into the APL

Chapter 4. Primitive (Built-ln) Functions

language. User-defined functions are discussed in Chapter 6. Built-in functions,
called primitive functions, are denoted by a symbol and operate on the data you

supply to them.

The value or values you supply are called arguments. Primitive functions that use

two arguments, such as A + B, are said to be dyadic; functions that use one argument
are said to be monadic, such as + B, which yields the reciprocal of B. Arguments can

be single data items (scalars), strings of data (vectors), tables of data (matrices), or

multiple tables of data (N-rank arrays). Arguments can also be expressions or user-

defined functions that result in a scalar, vector, matrix, or N-rank array.

There are two types of primitive functions: scalar functions and mixed functions.
There are also operators that operate on the primitive functions. Examples of the

functions and operators are provided throughout this chapter for easy reference and

are set up as they would appear on the display.

PRIMITIVE SCALAR FUNCTIONS

Scalar functions operate on scalar arguments and arrays. They are extended to
arrays element by element. The shape and rank (see Chapter 3) of the result de-
pend on the shape and rank of the arguments. For dyadic scalar functions, the re-
lation between the types of arguments and the shape of the result is shown in the
following table. Each scalar function is described following the table:

shape as A

Argument A Argument B Result
Scalar Scalar Scalar
Array Array with the same Array with the same

shape as the
arguments

Scalar or one-
element array

Array of any
shape

Array with the
same shape as
argument B

Array of
any shape

Scalar or one-
element array

Array with the same
shape as argument A

One-element
array

One-element array
with the rank
different from the
rank of A

One-element array
with the shape of
the array with the
greater rank

43

i
c
[=)
=
©Q
c
S
w

44

\«
/

The + Function: Conjugate, Plus
+

Monadic (One-Argument) Form: Conjugate +B

F

The conjugate function does not change the argument. The argument can be a
numeric scalar, vector, or other array, and the shape of the result is the same as that
of the argument:

+3

A+ TH
o4 ﬁ

]

If B is an array, the function is extended to each of the elements of B. The shape of
the result is the shape of B:

JRC T |

6 1 2
+R

3 T2 71

6 1 2

Dyadic (Two-Argument) Form: Plus A+B

The pfus function results in the sum of the two arguments. The arguments can be ;

numeric scalars, vectors, or other arrays. Arguments must be the same shape, unless .
one of the arguments is a scalar or single-element array. If the arguments have the

same shape, the result has the same shape as the arguments:

24+3

I+, T3
%.73

2.6+73%.,8

-y

If one argument is a scalar or single-element array, the shape of the result is the same
as that of the other input argument. The single element is applied to every element
of the multielement array:

Be2 3pl 2 3 4 0 6

B+3

The - Function: Negation, Minus -
+

Monadic {One-Argument) Form: Negation -B

c
2
=
©
>
& .
2

The negation function changes the sign of the argument. The argument can be a
numeric scalar, vector, or other array. The shape of the result is the same as that of
the argument:

If the argument is an array, the function is extended to each element of the array:

Be2 373 72 "L O L2

B
32 71
0 1 2
v B
3 2 1
0 "1 "2

45

Times

Dyadic (Two-Argument) Form: Minus A-B

The minus function subtracts argument B from argument A. The arguments can be
numeric scalars, vectors, or other arrays. The arguments must be the same shape un-
less one of the arguments is a scalar or any single-element array. If the arguments
are the same shape, the result has the same shape as the arguments:

B2
1

oo 15
“q

o 75
9

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other input argument. The single element is applied to every
element of the multielement array:

Bel2 3pl 2 3 4 5 6

E
123
W5 4
2 01 0
] m 3

B3
e B

102 3

The x Function: Signum, Times

Monadic (One-Argument) Form: Signum xB

The signum function indicates the sign of the argument: if the argument is negative,
T 1 is the result; if the argument is zero, then O is the result; if the argument is posi-
tive, 1 is the result. The argument can be a numeric scalar, vector, or other array.
The shape of the result is the same as that of the argument:

X725 0 37
101

46

If the argument is an array, the function is extended to each of the elements:

Bel 3p72 "1 0 1 23
E

2710

1 2 3
XR

1710

1 1

Dyadic (Two-Argument) Form: Times AxB

The times function result is the product of argument A times argument B. The
arguments can be numeric scalars, vectors, or other arrays. The arguments must be
the same shape, unless one of the arguments is a scalar or any single-element array.
Arguments of the same shape have the same shape result:

2x2.1

2.2 16

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other input argument. The single element is applied to every
element of the multielement array:

Beld Fpl 2 3 4 5 6

R
123
b5 6

3xE .
3 6 9
12 15 18

C

48

The +~ Function: Reciprocal, Divide M ‘

Monadic (One-Argument) Form: Reciprocal +B

The reciprocal function result is the reciprocal of the argument. The argument can be
a numeric scalar, vector, or other array. The shape of the result is the same as that of
the argument:

If the argument is an array, the function is extended to each of the elements:

Be2 2p2 05

B
i 0.%
2 0.5
& I{
0.5 2
0.5 2

Dyadic (Two-Argument) Form: Divide A+B

The divide function result is the quotient when argument.A is divided by argument B.
The arguments can be numeric scalars, vectors, or other arrays. The arguments must
be the same shape unless one of the arguments is a scalar or a single-element array.
Arguments of the same shape have the same shape result:

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other input argument. The single element is applied to every
element of the multielement array:

Bed 2p1 10 20 100

E
1 10
20 100
3+R
3 0.3
0.15 0.03

U

Note: There are two additional rules that apply to the divide function:

1. When zero is divided by zero, the result is 1:

00

2. Any value other than zero cannot be divided by zero:

3+0
DOMAIN ERROR
30

fal

-/

The [Function: Ceiling, Maximum

Monadic (One-Argument) Form: Ceiling [B

The ceiling function result is the next integer larger than the argument (the argument
is rounded up), unless the argument already is an integer. In this case, the result is
the same as the argument. The argument can be a numeric scalar, vector, or other
array. The shape of the result is the same as that of the argument:

3.5 "3.5

[

If the argument is an array, the function is extended to each of the elements:

I‘:{("B Epl 1.3 1'5 2

B
1 1.3
1.5 2
B
2
22

Note: The result of the ceiling function depends on the [JCT system variable (see
Chapter 5 for information on the [JCT system variable).

49

£
=1
£
%
©
=

50

Dyadic (Two-Argument) Form: Maximum A[B ,
AN
The maximum function result is the larger of the arguments. The arguments can be "“kk J“
numeric scalars, vectors, or other arrays. The arguments must be the same shape un-

less one of the arguments is a scalar or any single-element array. Arguments of the
same shape have the same shape result:

Wré
3ra

6L

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

Be2 Zpl 2 3 4 5 6
B

123

W 5 6
AR

333

b 5 &

N

The | Function: Floor, Minimum l L
D

Monadic (One-Argument) Form: Floor |B

The floor function result is the next integer smaller than the argument (the argument
is rounded down) unless the argument is already an integer. In this case, the result

is the same as the argument. The argument can be a numeric scalar, vector, or other
array. The shape of the result is the same as that of the argument:

If the argument is an array, the function is extended to each of the elements:

Be2 201 1.5 1.6 2
|3

1 1.5
1.6 2

Note: The result of the floor function depends on the [JCT system variable (see
Chapter 5 for information on the [JCT system variable).

Dyadic (Two-Argument) Form: Minimum A|B

The minimum function result is the smaller of the arguments. The arguments can be
numeric scalars, vectors, or other arrays. The arguments must be the same shape un-
less one of the arguments is a scalar or any single-element array. Arguments of the
same shape have the same shape result:

b6
I

3.2
2

“61.710
10

) 0 4

5.1 14

51

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

Be 3p1 2 3 4 5 6
B

The | Function: Magnitude, Residue

Monadic (One-Argument) Form: Magnitude |B
The magnitude function result is the absolute value of the argument. The argument

can be a numeric scalar, vector, or other array. The shape of the result is the same
as that of the argument:

7.9

3

If the argument is an array, the function is extended to each of the elements:

Beld 20751 7L 0 3.0

B
TSl "1
0 .14
B
el 1
0 .1y

Dyadic (Two-Argument) Form: Residue A |[B
The residue function result (when both argument A and argument B are positive) is
the remainder when argument B is divided by argument A. The following rules

apply when using the residue function:

1. If argument A is equal to zero, then the result is equal to argument B:

R

52

-

2. If argument A is not equal to zero, then the result is a value between
argument A and zero (the result can be equal to zero, but not equal to
argument A). The result is obtained as follows:

a. When argument B is positive, the absolute value of argument A is subtracted
from argument B until a value between argument A and zero is reached:

3G

3

b. When argument B is negative, the absolute value of argument A is added to
argument B until a value between argument A and zero is reached:

3175

The arguments can be numeric scalar, vectors, or other arrays. The arguments must
be the same shape, unless one of the arguments is a scalar or any single-element
array. Arguments of the same shape have the same shape result:

Q
T
S
x
c .
=
©
=

317
1

316
0

613
3

oty
K

THO
0

TE12.3
1.7

217123
0.3

217123
1.7

11,3859
0,385

L1723, 385
0.615

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

Be2 3pl 2 3 4 0 6

B
123
b 5 6

KB
120
120

53

=
+~
ot
@
c
Q
Q
x
w

The *= Function: Exponential, Power *

Monadic (One-Argument) Form: Exponential *B

The exponential function result is the Naperian base e (2.718281828459045) raised
to the power indicated by the argument. The argument can be a numeric scalar,
vector, or other array. The shape of the result is the same as that of the argument:

%* 1,
2.,7183

* X
20,086

If the argument is an array, the function is extended to each element of the array:

Be2 200 1 2 3
B

K

1 2.7183
7.3891 20.086

Dyadic (Two-Argument) Form: Power AxB

The power function result is argument A raised to the power indicated by
argument B. The arguments can be numeric scalars, vectors, or other arrays. The
arguments must be the same shape unless one of the arguments is a scalar,or any
single-element array. Arguments of the same shape have the same shape result:

2%3
a8
0.2%
3%0
1
%, 5
3
2%3
0,125 2% 3=1/22=1/8=.125

The root of a number can be found by raising the number to the power indicated
by the reciprocal of the root. For example, to find the square root:

1 W9 1o
12 34

<

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

Be2 2p1 203 4
[

12
B
i b
@ 14

The ¢ Function: Natural Log, Logarithm

The ®@symbol is formed by overstriking the O symbol and the x symbol.

Monadic (One-Argument) Form: Natural Log B

The natural log function result is the log of the argument B to the Naperian base e
(2.718281828459045). The argument can be a non-negative numeric scalar, vector,
or other array. The shape of the result is the same as that of the argument:

®2.,7183

®20, 086

If the argument is an array, the function is extended to each element of the array:

Be2 201 3 10 20

I
i3
10 20
53]
] 1.0986
2,302 2.9957

Dyadic (Two-Argument) Form: Logarithm AeB

The logarithm function result is the log of argument B to the base of argument A.
The arguments can be numeric scalars, vectors, or other arrays. The arguments must

be the same shape, unless one of the arguments is a scalar or any single-element array.

Arguments of the same shape have the same shape result:

e
3

3.1812.8
2,253

23 heg 9 16
322

[=2]
9 €

L
T E
D
3 ©
- o
c O
2 -l

w
%)
E
-
g

b
(S
3
o
=
(&)

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

Red 201 2 3 4

R
12
3 i
lLieR
0 0.30103
0.u7712 0.60206

The o Function: Pi Times, Circular

Monadic (One-Argument) Form: Pi Times OB

The pi times function result is the value of pi (3.141592653589793) times B. The
argument can be a numeric scalar, vector, or other array. The shape of the result is
the same as that of the argument:

ol
3.14L6
03

Q. 248
If the argument is an array, the function is extended to each element of the array:

Bed Z2p1 2 3 4

B
12
3 n
QR :
3.1416 6, 2832
7. 52u8 12,566

Dyadic (Two-Argument) Form: Circular AO B

The circular function result is the value of the specified trigonometric function
{argument A) for the specified radians (argument B). The arguments can be
numeric scalars, vectors, or other arrays. Arguments must be the same shape, un-
less one is a scalar or single-element array. Arguments of the same shape have the
same shape result. The following is a list of the values for the A argument and the
related functions performed. A negative argument A is the mathematical inverse
of a positive argument A; any values for argument A other than the following
will result in DOMAIN ERROR:

56

N/

Value of A
0oB
10B
208B
308
408
50B
60B
708B
“10B
T208B
“308B
“40B
“50B
“60B

“708B

IfBis 45°, here is how to solve for the sine, cosine, and tangent of B (45°

lent to pi radians divided by 4):

Operation Performed

{(1-B%2)%.5————
Sine B B
Cosine B

Tangent B

(1+B*2)*.53

Hyperbolic sine of B (sinh B)
Hyperbolic cosine of B {cosh B)
Hyperbolic tangent of B (tanh B)
Arcsin B

Arccos B

Arctan B

(T 14B*2) %x.56—s
Arcsinh B 1
Arccosh B

Arctanh B

Reosi
3] ‘The left argument specifies
0.7854 / the trigonometric function.
Lo .
0.70711 Sine of B
2OR
0.70711 Cosine of B
JoR

1

Tangent of B

is equiva-

57

If B is the sine of an angle, then 00B yields the cosine of the same angle, and con-
versely, if B is the cosine, 0OB yields the sine. Suppose you wanted the sine of
30°, which is equivalent to pi divided by 6:

Belo(o=4)

¢

0.5 Sine of 30°
ol

0.86603 Cosine of 30°
HeZ2o (b))
E

0.86603 Cosine of 30°
JoR .\

0.5 Sine of 30

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

»
&
5
o
=
o

Ae? 2pl 2 3 4

Beo+l
A
12
34
R
0.7854%
AOnR
0.70711 0.70711
1 1.2716

58

>

The ! Function: Factorial, Binomial D
K

The ! symbol is formed by overstriking the quotation mark (') and the period {(.).

Monadic (One-Argument) Form: Factorial !B

‘ The factorial function result is the product of all the positive integers from one to
= the number value of the argument. The argument can be a positive numeric scalar,
vector, or other array. The shape of the result is the same as that of the argument:

Iy
(LX2X3 X4
- 2
1L 2 345

12 6 24 120

The factorial function also works with decimal numbers and zero, but negative
integers are not allowed. When used in this way, factorial can be defined by use
of the mathematical gamma function — (!A) is equal to gamma (A-1):

® |
b
o]
-
(]
< -
w

13,14
71733

C L

If the argument is an array, the function is extended to each of the elements:

Be2 200 1 2 3
- J&]
01
23
- IR
1 1

2 b

59

Dyadic (Two-Argument) Form: Binomial A!B

The binomial function result is the number of different combinations of argument B
that can be taken A at a time. The result of A!B is also the (A+1)th coefficient of
the binomial expansion of the Bt power. The arguments can be numeric scalars,
vectors, or other arrays. The argument must be the same shape, unless one of the
arguments is a scalar or any single-element array. Arguments of the same shape

have the same shape result:

214
é

216 [Wx [y [z |]e—Aruments
15

310 WX
0 wyY

613 WZ |\ The combinations of
1 XY argument B taken

R XZ argument A(2) at a time
3 YZ

=
E
o
=
[as]

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

0 1 2 313
1 3 31
0 1 2 3 uiy
1w 64 i
Red 200 1L 2 3
E
i
0 3
RS
1 5
10 10

217 5 4.5 4
10 10 7.875 6

If noninteger arguments are used, this function relates to the beta function as
follows: Beta (P,Q) is equal to +Qx(P-1)! P+Q-1

60

- 1

The ? Function: Roll
1 @

Monadic (One-Argument) Form: Roll ?B

The roll function result is a randomly selected integer from O through B-1 or 1
----- through B (depending on the index origin). Each integer in the range has an equal
(chance of being selected. The argument can be a positive integral scalar, vector, or
‘ other array. The shape of the result is the same as that of the argument:

2300
202
(L 2300
3
5 79
B I
26 4
5y
- 26 &
b b

If the argument is an array, the function is extended to each element of the array:

Be2 Zpll 22 33 44 U5 46

- 11 22 33

W 55 &6
PR

217 16

20013 i

Dyadic {Two-Argument) Form

See the Deal function later in this chapter under Primitive Mixed Functions.

61

The A Function: And g]

Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: And AAB

The and function result is 1 when A and B are both 1; otherwise, the result is 0. The
value of the arguments must be either 0 or 1. The arguments can be scalars, vectors,
or other arrays. The arguments must be the same shape unless one of the arguments
is a scalar or any single-element array. Arguments of the same shape have the same
shape result:

0Al And Table

0 Operator
Lal \\\

1 A -«—— Argument A
1A0

0

0 06 1 1A0 1 0 1
0 001

_ Argument B

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

Bel2 200 1 1 0

B
1
10
LaR
01
10

62

The v Function: Or v9 '

(Monadic (One-Argument) Form

There is no monadic form.
- Dyadic (Two-Argument) Form: Or AVB

(The or function result is a 1 when either or both arguments are 1; otherwise, the
result is 0. The values of the arguments must be 1 or 0. The arguments can be
scalars, vectors, or other arrays. The arguments must be the same shape, unless
one of the arguments is a scalar or any single-element array. Arguments of the
same shape have the same shape result:

Or Table
v
- 1 Operator
vl
0 <«—— Argument A
- 0 0 1 1v0 1 0 1
0 1 11

Iy,

Argument B

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

- Bed 200 1 0 1

It
0 1
01
» 1vE
C/ 11
11

63

T

The ~ Function: Not

Monadic (One-Argument) Form: Not ~B

The not function result is 1 when B is 0 and 0 when B is 1. The values of the argu-
ment must be 1 or 0. The argument can be a scalar, vector, or other array. The shape
of the result is the same as that of the argument:

If the argument is an array, the function is extended to each element of the array:

Bed Zp0 1

B
010

101

~B

i 01

010

Dyadic (Two-Argument) Form

There is no dyadic form.

The A Function: Nand (/\ (~
0 T

The A symbol is formed by overstriking the and (A) and the not (~) symbols.

Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Nand AAB

The nand function result is 0 when both A and B are 1; otherwise, the result is 1.
The values of the arguments must 1 or 0. The arguments can be scalars, vectors, or
other arrays. The arguments must be the same shape, uriless one of the arguments
is a scalar or any single-element array. Arguments of the same shape have the same
shape result:

Nand Table
0%1 Operator —s= A «———— Argument A
i
LX3
0
0 0 1 1X0 1 0 1
1110

Argument B

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single elemenht is applied to every element
of the multielement array:

Eel 200 1
KB

01

01
1XB

10

10

65

Nor

66

The ¥V Function: Nor

The Vsymbol is formed by overstriking the or (v) and the not (~) symbols.

Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Nor AVB

The nor function result is 1 when A and B are both 0; otherwise, the result is 0. The
values of the arguments must be 1 or 0. The arguments can be scalars, vectors, or
other arrays. The arguments must be the same shape, unless one of the arguments

is a scalar or any single-element array. Arguments of the same shape have the same
shape result:

Nor Table

Operator —» V <———— Argument A
igo ‘
]
60
1
0 0 1 10 L 0 1
1 000

If one argument is a scalar or a single-element array, the shape of the result is the

same as that of the other argument. The single element is applied to every element
of the multielement array:

Bed 200 1
R

The >Function: Greater Than ,

Monadic {One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Greater Than A>B

The greater than function result is 1 when argument A is greater than argument B;
otherwise the result is 0. The arguments can be numeric scalars, vectors, or other
arrays. The arguments must be the same shape, unless one of the arguments is a
scalar or any single-element array. Arguments of the same shape have the same
shape result:

1,562 .
0 s
"2 .
0 g
B F) s
0
0 "4, 4
1
1.193%1,123
0
5,1 "R, iy

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

Be2 3Zpl 23 45 6
B

3

é

xR

0

0

P
[RN

=
o e

Note: The result of the > function depends on the [JCT system variable (see
Chapter 5 for information on the [JCT system variable).

67

Equal To

The = Function: Equal To @

N
Monadic (One-Argument) Form I JV

There is no monadic form.

Dyadic (Two-Argument) Form: Equal To A=B

The equal to function result is 1 when the value of argument A equals the value

of argument B; otherwise, the result is 0. The arguments (numeric or character)

can be scalars, vectors, or other arrays. The arguments must be the same shape,

unless one of the arguments is a scalar or any single-element array. Arguments ;
of the same shape have the same shape result:

0=5
0
1.65u321=1, 65432:

s A

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the muitielement array.

‘A= ARACADAEAFAG’
161010101010

Note: If the arguments are numeric, the result of the = function depends on the
[ICT system variable (see Chapter 5 for information on the [JCT system variable).

The < Function: Less Than ()
3

Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Less Than A<B

The /ess than function result is 1 when argument A is less than argument B; other-
wise the result is 0. The arguments can be numeric scalars, vectors, or other arrays.
The arguments must be the same shape, unless one of the arguments is a scalar or
any single-element array. Arguments of the same shape have the same shape result:

1.6522
1

2
1

"3e7R
1

074, b
0

1.123<1,123
0

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

Bel2 3pl 2 3 4 5 6

-3
-
el

o -
o

Note: The result of the < function depends on the [JCT system variable (see
Chapter b for information on the [JCT system variable).

69

[=
©
RS
=
vy
w
@
-

=}
b
©
3
=%
w
b
(s}

70

The > Function: Greater Than or Equal To

Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Greater Than or Equal To A>B

The greater than or equal to function result is 1 when argument A is greater than
or equal to argument B; otherwise, the result is 0. The arguments can be numeric
scalars, vectors, or other arrays. The arguments must be the same shape, unless one
of the arguments is a scalar or any single-element array. Arguments of the same
shape have the same shape result:

1,652
0
220
0
252
1

3x5.1 2

If one argument is a scalar or a single-element array, the shape of the result is the

same as that of the other argument. The single element is applied to every element
of the multielement array:

Be 3pl 2 3 4 § 6
B

123

b 5 6

Note: The result of the > function depends on the [JCT system variable (see Chapter
5 for information on the [JCT system variable).

(. The < Function: Less Than or Equal To [<
4
Monadic (One-Argument) Form
There is no monadic form.
(' Dyadic (Two-Argument) Form: Less Than or Equal To A<B

The /less than or equal to function result is 1 when argument A is less than or equal
to argument B; otherwise, the result is 0. The arguments can be numeric scalars,
vectors, or other arrays. The arguments must be the same shape, unless one of the
arguments is a scalar or any single-element array. Arguments of the same shape

(have the same shape result:
1.65:2
1
T2E0
- 1
3a"2
1
’ 072
0
RS

If one argument is a scalar or a single-element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

Ee2 3pl 2 345 6

R
2 3
b 5 64
) 3:R
001
111
(Note: The result of the < function depends on the [JCT system variable (see Chapter

5 for information on the [JCT system variable).

7

=
4]
<
[
o
2
[+4]
-~

SN

\«

The # Function: Not Equal To ‘ it
1 8

Monadic (One-Argument) Form
There is no monadic form.
Dyadic (Two-Argument) Form: Not Equal To A#B

The not equal to function result is 1 when argument A is not equal to argument B;
otherwise, the result is 0. The arguments {numeric or character) can be scalars,
vectors, or other arrays. The arguments must be the same shape unless one of the
arguments is a scalar or any single-element array. Arguments of the same shape
have the same shape result: :

0#5
1

10123#1 123
0

ATETAT
0

If one argument is a scalar or a single element array, the shape of the result is the
same as that of the other argument. The single element is applied to every element
of the multielement array:

"ATETABACADAEAFAG”
0101031010101

Note: If the arguments are numeric, the result of the #function depends on the
[JCT system variable (see Chapter 5 for information on the [JCT system variable).

The not equal to function can also be used as an exclusive or function. When used
in this manner, the value of the arguments must be either O or 1:

Exclusive Or Table

Operator————# Argument A

\]

~———Argument B

PRIMITIVE MIXED FUNCTIONS

The mixed functions differ from scalar functions because the shape of their results
depends on the particular mixed function rather than exclusively on the shape of
the arguments. The following list gives a brief description of each of the mixed
functions. Following the list, each function is discussed in detail:

Monadic

Mixed

Functions Name

oB Shape

B Ravel

AB Grade up

¥ B Grade down

1B Index
generator

OB or Reverse

¢r1is

or eB

&B Transpose

EB Matrix
inverse

B Execute

7B Format

Dyadic

Mixed

Functions Name

ApB Reshape
(structure)

AB Catenate

or

AlllB

AlllB Laminate

Result

The length of each coordinate of the
argument.

A vector containing the elements of B
in the order they exist in the rows of B.

The index values that would select the
elements of B in ascending order.

The index values that would select the
elements of B in descending order. -

B consecutive integers starting from
the index origin.

The elements of the argument are
reversed.
The coordinates of the argument are

reversed.

The inverse of a square matrix or the
pseudoinverse of a rectangular matrix.

Argument B executed as an expression.

Argument B converted to a character
array.

Result

An array of a shape specified by A,
using elements from B.

The two arguments joined along an
existing coordinate ([l] is a positive

integer).

The two arguments joined along a new
coordinate ([1] is a fraction).

73

v
c
.0
=
7]
c
S
w

74

Dyadic
Mixed
Functions

A/B or
A/{1]1B or
A/B

A\B or
A\[I]Bor
AXB

A+B
AyB

A1B

AdB or
AblI1B
or AeB

ARB

A?B

A1B

ATB

AcB

ALIB

ATB

Name

Compress

Expand

Take

Drop

Index of

Rotate

Generalized
transpose

Deal

Decode
(base value)

Encode
(representation)

Membership

Matrix
divide

Format

Result l M

The elements from B that correspond
to the 1's in A.

B is expanded to the format specified
by A; 1 in A inserts an element from
B;a0in A inserts a 0 or blank element.

The number of elements specified by A
are taken from B.

The number of elements specified by A
are dropped from B.

The first occurrence in A of the elements
in B.

The elements of B are rotated as specified
by A. If A is positive, the elements of B
are rotated to the left. If A is negative,
the elements of B are rotated to the right.

The coordinates of B interchanged as
specified by A.

The number of elements specified by A
are randomly selected from B, without
selecting the same number twice.

The value of argument B expressed in
the number system specified by
argument A.

The representation of argument B in
the number system specified by
argument A.

A 1 for each element of A that can be
found in B and a O for each element
not found.

Solution to one or more sets of linear
equations with coefficient matrix
{matrices) B and right-hand sides A or
the least squares solution to one or
more sets of linear equations.

Argument B converted to a character
array in the format specified by
argument A.

“

The ; Function: Shape, Reshape (Structure) C
R

Note: The mixed functions reverse, rotate, compress, and expand, and the operators
(see Operators later in this chapter) reduction and scan can be applied to a specific
coordinate of an array. This is done by using an index entry [I] which indicates the
coordinate to which the mixed function or operator is applied. The value of the
index entry can be from 1 to the number of coordinates in the array; the leftmost
coordinate (first coordinate) has an index value of 1, the next coordinate has an
index value of 2, and so on. A matrix, for example, has an index value of 1 for the
row coordinate and an index value of 2 for the column coordinate. If an index entry
is not specified, the last coordinate (columns) is assumed. If a - (minus) symbol is
overstruck with the function symbol or operator symbol, the first coordinate is
assumed (unless an index value was also used). When a function or operator is ap-
plied to a specific coordinate, the operation takes place between corresponding ele-
ments in the specified coordinate. For example; assume you have a 3-rank array:

® When the first coordinate (planes) is specified, the operation takes place between
corresponding elements in each plane.

® When the second coordinate (rows) is specified, the operation takes place between
the corresponding elements in each row per plane.

® When the third coordinate (columns) is specified, the operation takes place be-
tween the corresponding elements in each column per plane.

Monadic (One-Argument) Form: Shape pB

The shape function result is the shape of the argument; it has one element for each
coordinate of the argument, which indicates the length of that coordinate. The
argument can be any variable or constant:

p ARCDH A Vector with Four Elements
3
el 2
2
pl 23
3
AeD 3pl 2 3 4 5 6
&
123
bW 5 6 N
PA
I) 3

The shape function applied to a scalar yields an empty vector, since a scalar has no
coordinates. An empty vector is indicated by a blank result line:

p2

M

Blank Result Lines

75

The instruction p pB yields the rank (shape of the shape, or, number of coordinates)
of B:

Be2 2 3p' CARBARFARARE '
R

CAR
BAR

FAR
ARE

Dyadic (Two-Argument) Form: Reshape (Structure) ApB

The reshape function forms an array of the shape specified by argument A using
element(s) from argument B. The elements of argument B are placed into the
array in row order. |f there are not enough elements in argument B to fill the
array, the elements are repeated. |If there are more elements in argument B than
are required to fill the array, only the required number of elements are used.
Argument A must be a nonnegative integer or vector of nonnegative integers. The
number of elements in argument A is equal to the number of coordinates, or the
rank, of the result. Argument B can be any variable or constant. If all of the
elements of argument A are nonzero, then B cannot be an empty array:

2 3p1 234 5 6

123
b+ 5 6
b 2p' ABCREFGH'
AR
Ch
EF
GH

a0 " MOUSETRAP®
MOUSE
3 Wpl23
123 123 123 123
123 123 123 123
123 123 123 123
Atl 2p1 2 3 4 5 & 7 8
A

L EAR
£

2 3pA

Fary
«
.3
O

76

The , Function: Ravel, Catenate, Laminate E]

Monadic (One-Argument) Form: Ravel ,B

The ravel function results in a vector containing the elements of argument B. |If
argument B is an array, the elements in the vector are taken from argument B

in row order. Argument B can be a scalar, vector, or other array. The resulting
vector contains the same number of elements as argument B:

Al 2 Ppl 23 4 G 678

A
12
3 u
95 4
78
' A
1234 8 678
Bed 3p ARCDEF®
B
ARC
DEF
o1
ARCOEF

Dyadic (Two-Argument) Form: Catenate or Laminate A,[l]B

The function is catenate when the [I] entry (index entry) is an integer and laminate
when the {I] entry is a fraction.

7

78

Catenate (The Index [I] Entry Is an Integer): The catenate function joins two items along
an existing coordinate. (See the /aminate function following for a description of how
to join two items along a new coordinate). The index [I1, if given, specifies which
coordinate is expanded. The index entry must be a positive scalar or one-element
array. If no index [I] is specified, the last coordinate is used. Matrices of unequal
sizes can be joined, providing the lengths of the coordinate not specified are the
same (see Catenation in Chapter 3):

Al W
RBe? @05
AR
1 w7948
A2 Bpl 2 3 4 5 6
Red 3p7 8 9 10 11 12

A
123
b 5 6

E
v 8 9
10 11 12

AR

1 2 3 7 8 9

b 5 6 10 11 12
A, L1IR
12 3
L 5 4
7T 8 9
10 11 12
ASL2IR
1 2 3 7 8 9
b 5 6 10 11 12

ALL2110 20
12 3 10
5 6 20

10 20 30,0114

10 20 30
12 3
B 5 6

®)

Laminate {The Index [I] Entry is a Fraction): The Jaminate function joins two items by
creating a new coordinate, specified by the index entry [1] which must be a posi-
tive fraction. If the index entry is between 0 and 1, the new coordinate becomes
the first coordinate; if the index entry is between 1 and 2, the new coordinate is
placed between existing coordinates 1 and 2 (the new coordinate that is added al-
ways has a value {(or length) of 2). The following chart shows the positions of a
new coordinate in the shape vector (see the following examples) when two 3 by
3 matrices are laminated: .

Positions of New
Coordinate in the Shape

Index Value Vector
a-.9 3

1.1-1.9 3

2.1-29 3

Lamination requires either that arguments A and B are the same shape or that one
of the arguments is a scalar:

Al Apl 234 5 4789
Be3 3pll 22 33 44 55 446 TV a8 99
A

123

b5 6.

7T 8 9!
&

11 22 33

B 3% 46

7T 88 99
Cen, L. 81R

G
2 3
L &5 6
T8 9

1 22 33
Wi 58 466
TP 88 99
ol
23 3 Shape Vector

79

o]
Pt
©
c
£
]
-l

Ceas DL BIR
"

2 3

22 33

506

5866

a8 9
8aa 9w
e

3=

Cen, D20 10R
G

1 11
Lot T Rov d
Koo e Koo
R
[+5]
< TR
c . os
< RRE]

’

b

s
a
99
pC
)

oo

Shape Vector

Shape Vector

The following examples show the result when the twio matrices in the preceding example
are catenated instead of laminated:

A,L1IER

1 2 3
b 5 4
T 8 ¢
11 22 33

Hh
77

1
m
7

80

5% 66
88 99

A, LRIk

2 03 11 22 33
96 uh BE b6
8 9 77 88 99

The / Function: Compress
/

Monadic (One-Argument) Forn

See Reduction later in this chapter under APL Operators.

Dyadic (Two-Argument) Form: Compress A/[1]Bor A/B or A/B

The compress function selects elements from argument B corresponding in sequence
to 1's in argument A. Argument A must be a logical scalar or vector having the
values 0 or 1. Argument B can be any scalar, vector, or other array. Both arguments
must have the same number of elements unless:

® One of the arguments is a scalar or single-element array.

® Argument B is a multidimensional array; then the number of elements in argument
A must be the same as the length of the argument B coordinate being acted on.

73
»
e}
=
Q
£
e}

&)

When argument B is a multidimensional array, the [I] index entry is used to specify
the coordinate that is acted on. If the index entry is omitted, the last coordinate
{columns) is assumed. If the A/£B form is used, the first coordinate is assumed. The
rank of the result is the same as the rank of argument B:

/Blank Display Line (empty array)

Bed Upl 23 4 5 6789 10 11 12

E
12 3 %
3 06 7 8
910 11 12
A 1 f; 1 ;’; L1IB The first coordinate (rows) is specified;

the first and third rows, as specified by
argument A, are selected.

10 11 12
0 1 1 0702108
2

- 3 \ The second coordinate {columns) is specified;

i ‘g 1 ; the second and third columns, as specified by
) T 10 1R argument A, are selected.
1 2 3 4
9 10 11 12
011 0/E
2 3
6 7
10 11
1/R
2 3 4
5 & 7
10 11 12
0/R

Blank Display Line {empty array)

81

The \ Function: Expand { \
l /

Monadic (One-Argument) Form

See Scan later in this chapter under APL Operators.

Dyadic (Two-Argument) Form: Expand A\[I]Bor A\B or A\B

The result-of the expand function is argument B expanded as indicated by
argument A. Each 1 in argument A selects an element from argument B and each
0 in argument A inserts a O (or blank for character data) in the result. Argument A
must be a logical scalar or vector having the values 0 or 1. Argument B can be any
scalar, vector, or other array. |f argument B is a vector, argument A must have the
same number of 1's as the number of elements in argument B, If argument B is

a multidimensional array, argument A must have the same number of 1’s as the
length of the argument B coordinate being acted on.

When argument B is an array, the [I] index entry is used to specify the coordinate
that is acted on. If the index entry is omitted, the last coordinate (columns) is
assumed. If the AXB is used, then the first coordinate is assumed.

If argument B is a scalar or single-element array, it is extended to a length equal to
the number of 1's in argument A. |f argument B is not a scalar or single-element
array, the rank of the result is the same as the rank of the B argument.

10 1 1 0NL 23

102 30
Be2 3pl 23 4 5 6
&
1 23
b 3 é
100 INCLOR
L D03 \ The first coordinate (rows) is
0 0 0 expanded; a row is inserted be-
b5 & tween the first and second row.
11 0 INC2IB
1L 203 \ The second coordinate {columns) is
b5 0 6 expanded; a column is inserted
w 31 0 IxB between the second and third columns.
0 00
b 35 6
/

82

The 4 Function: Grade Up A] (l
H M

The Asymbol is formed by overstriking the A symbol and the | symbol.

Monadic (One-Argument) Form: GradeUp AB

(, The grade up function result is the index values that would select the elements of
argument B in ascending order. That is, the first element of the result is the index
of the smallest element in argument B, the next element is the index of the next
smallest element in argument B, and so on. Argument B must be a numeric vector.

o When two or more elements in the vector have the same numeric value, their posi-

() tion in the vector determines their order in the result (the index value of the first
occurrence appears first in the output). The number of elements in the result is the
same as the number of elements in the argument:

A3 1 5 2 4
: 2153
dAE6 25 1w 3
w2653 1
' ' A3 6 3105 2
b 61 35 2

. The following example shows how the grade up function can be used to sort a vec-
(tor into ascending order:

Acil 12 16 18 15 11
A LadAald
11 12 1% 15 16 18

The result of the grade up function is not the reverse of the grade down function
. because of the way equal elements are handled; see The ¥ Function: Grade Down
for an example using the grade up and grade down functions with equal elements.
Note: The result of the A function depends on the [JIO system variable (see Chap-
(ter 5 for information on the [0 system variable).
7

Dyadic (Two-Argument) Form

There is no dyadic form.

83

The ¢ Function: Grade Down | v l Ln l

The ¥ symbol is formed by overstriking the Vsymbol and the | symbol.

Monadic (One-Argument) Form: Grade Down ¥

The grade down function result is the index values that would select the elements
of the numeric vector of argument B in descending order. That is, the first element
of the result is the index of the largest element in argument B, the next element is
the index of the next largest element in argument B, and so on. Argument B must
be a numeric vector. When two or more elements in the vector have the same
numeric value, their position in the vector determines their order in the result (the
index value of the first occurrence appears first in the output). The number of
elements in the result is the same as the number of elements in the argument:

$3 105 2 W
351w
gAaes 205 1 4 3

135 6 24
$3 6 3 L F 2
2313604

The following example shows how the grade down function can be used to sort a
vector in descending order:

Al 12 146 18 185 11
ALYAT
18 16 15 1w 12 11

The following example shows how equal elements are handled when using the grade
up and grade down functions:

Aen 28 7 3 % 10 1 2 3

A

oo 7 % 4 10 1 2 3-<— Positions2and9and5and 10 are equal.
YA

73 n 16 8

8 37

84

Because the indices for the equal elements are in the same order (first occurrence
first) for both the grade down and grade up function, the grade down function is
not the reverse of the grade up function:

ALYAl
1087354 33221

ALAA
12233457810

Note: The result of the ¥ function depends on the []IO system variable (see Chap-
ter 5 for information on the [JIO system variable).

Dyadic (Two-Argument) Form

There is no dyadic form.

85

c
3
o
a
QD
o
o
Qo

The + Function: Take { t]
Y

Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Take A4B

The take function result is the number of elements specified by argument A, taken
from argument B. Argument B can be a scalar, vector, or other array. Argument A
must be a scalar or vector of integers. If argument B is a vector, argument A must
be a scalar. Argument A must be a vector with an element for each coordinate

of argument B. When argument A is positive, the first elements of argument B

are taken; when argument A is negative, the last elements are taken. |f argument

A specifies more elements than the number of elements in argument B, the result

is padded with Q’s (or blanks for character data). The shape of the result is the

value of A;

REL

3 U

1
]
? 10 11 12
2 3R
123
967
Beld 2 3p1 2 3 4
E
1 2 3
L S)
T 8 9
10 11 12
11 1tk
1
21 1B
1
7
1 2 3tE
123
b 5 6
102 3tk
7T 8 9
10 11 12

86

G678 9 10 11 12

967 89 10 11 12

.5

The + Function: Drop
U

Monadic (One-Argument) Form

There is no monadic form.

(,v Dyadic (Two-Argument) Form: Drop A4B

The drop function result is the remaining elements of argument B after the number
of elements specified by argument A is dropped. Argument B can be a vector or
other array. Argument A must be a scalar if argument B is a vector.

(- When argument B is an array, argument A must have one element for each coordi-
nate of argument B. When argument A is positive, the first elements of argument B
are dropped from the result; when argument A is negative, the last elements are

dropped:

361 2 3 405

Be3 Wpl 2 3 4 5 67 8 9% 10 11 12
B
2 3 4
6 7 8
10 11 12
1 24E
7 8
11 12

N LT e

T1OT2R

£
o~ M

87

The 1 Function: Index Generator, Index of

Monadic (One-Argument) Form: Index Generator B

The index generator function result is a vector containing the first B integers, start-
ing with the index origin {see []1O system variable in Chapter 5). The argument can
be a nonnegative integer that is either a scalar or a single-element array.

1}¥]
12345
At b
A
1 234 56
%+ «——Each of the generated integers is added to 5.

67 89 10

Dyadic (Two-Argument) Form: Index of A1B

=
o
=
©
e
8]
c
4]
©
x
D
©
c

Index of

The index of function result is the index of the first occurrence in argument A of
the element(s) in argument B. Argument A must be a vector. Argument B can be

a scalar, vector, or array. The result is the same shape as argument B. If the element
in argument B cannot be found in argument A, the value of the index for that ele-
ment is one greater than the largest index of A ([]JIO + pA):

Je Second Element
"ARBCREFG ' C7

3
Aell 22 33 Ly 55
A2

=
A3

é
A 2.8 8 2 6 4 8
Be2 3pl ¢ 8 1 5 2
R

19

15 2
AVE

1 3

¢ 92

Note: The result of the 1 function depends on the [J10 system variable (see Chapter
5 for information on the [J1O system variable).

88

The ¢ Function: Reverse, Rotate @

The ¢ symbol is formed by overstriking the O symbol and the | symbol. A special
form of the function symbol is e, formed by overstriking the © symbol and the -

symbol.
Monadic (One-Argument) Form: Reverse &[1]B or $B or ©B

The reverse function reverses the elements of argument B. Argument B can be any
expression.

89

Reverse
Rotate

20

When argument B is a multidimensional array, the index entry [1] can be used to
specify the coordinate that is acted on. If the index entry is omitted, the last co-

ordinate (columns) is acted on. If the ©B form is used, then the first coordinate

is acted on

b 3
EVIL
32

b 5

SAVE
MUCH
MORE
TIME

MORE
TINME

SAVE
MUCH

MUCH
SAVE
TIME
MORE

EVAas
HCUM

EROM
EMIT
EVAS
HCUM

EROM
EMIT

MORE
TIME

SAVE
MUCH

2

1

A2 2 Hp "SAVEMUCHMORETIME'

hl 2 3 4
1

& LIVE”
02 Ipré
A

@rllA
DE21A
HL31A

DA

~—

ah

~

The first coordinate (plane) is specified;
the planes are reversed.

The second coordinate (rows) is specified;
the rows in each plane are reversed.

The third coordinate {(columns) is
specified; the columns in each plane are
reversed.

The last coordinate is acted on.

The first coordinate is acted on.

Dyadic (Two-Argument) Form: Rotate Ad[I]1Bor AdBor AeB

The rotate function rotates the elements of argument B the number of positions
specified by argument A. If argument A is positive, then the elements of
argument B are rotated to the left (rows), or upward {columns). If A is negative,
the elements are rotated to the right (rows), or downward {columns). Argument B
can be any expression. The shape of the result is the same as that of argument B.

When argument B is a multidimensional array, the index entry [l] can be used to
specify the coordinate that is acted on. If the index entry is omitted, the last co-
ordinate {column) is acted on. If the AeB form is used, then the first coordinate
is acted on.

If argument B is a vector, then argument A must be a scalar or single-eiement array.
If argument-B is a matrix, then argument A must be a scalar or vector. When
argument A is a vector, the number of elements in argument A must be the same as
the number of elements in the coordinate being rotated. For example, if Bisa 3
by 4 matrix (each row has four elements) and the row coordinate is specified, A
must have four elements:

201 2 3 4 5w

3 4 5
Iy 512
d RMl 2 345 <;2-—'%———:>

4 5 1 2 3
TRl 2 3 4 0§
I 51 2
Bed 4p 1 2 3 45 &7 8 9 10 11 12
" 3 . The first coordinate (rows) is specified;
I therefore, the rotation is between rows.
3 & 1 08
9 10 11 12 5 2 7 12
10 1 200178 (
5002 7 12 9 6 1 [4
9 4 i1 4 \J \J \J
110 3 8 L 103)8
0 1 200218
1 2 3 u
& g 5 The second coordinate (columns) is specified;
11 12 % 10 therefore, the rotation is between columns.
0 1 20R _
1 2 3 4 . .
&6 7 8 5 The last coordinate is acted on.
11 12 9 10
1 0 1 2eR
5 2 7 12
9 46 311 4 The first coordinate is acted on.
110 3 8
ae~-1L 0 1L 2
A
10 71 T2
AGLLIRB
9 211 8
1 6 3 12
510 07 4

91

92

1
i
7

10
13
16

19
22

"
25

19

L el

Ko Ko

e

Kowd

If argument B is an N-rank array, argument A must be a scalar or an array with a
rank that is one less than the rank of argument B. The shape of argument A must
be the same as argument B less the coordinate being acted on: W

Red 3 Zpa 27

3]
2 3
5 6
8 9
11 12
1y 15
17 18
20 21
23 2
26 27
pR
2
A3 Jpl 0 0 0 2 0 0 0 0
A
00 / The shape of argument A must be the same
20 as argument B less the coordinate being
00 acted on,
PA
AOGLLIB
r)‘f! 3 The first coordinate {planes) is specified;
iy 6 therefore, the rotation is between planes.
8 9 ~
11 12 The first element 1 o O Argument A
ot 1;:. in each plane is
1:;. :'”é rotated one position 0 24 0
oo between planes.
20 21 0 0 0 ~ The middle
{'q ,“',q . . element in each
" 6 :? plane is rotated two
o et positions between
“
, A(D,,I;‘““IB planes.
5 06
8 9
The second coordinate (rows) is specified;
17 12 therefore, the rotation is between the rows.
1 5
1}’ 1‘ ;3 /———-—— Argument A
1 0 0 Rotation between rows of
20 21 the first plane
23 24 Rotation between rows of
0 2 0
nG 2 the second plane
0 0 0 Rotation between rows of
the third plane P

The § Function: Transpose, Generalized Transpose
/

- The & symbol is formed by overstriking the O symbol and the \ symbol.

Monadic (One-Argument) Form: Transpose &B

The transpose function reverses the coordinates of argument B. Argument B can be
any expression. |f argument B is a scalar or vector, the argument is unchanged by
the function:

wny
7

®'ARCHY
ARCT

Be2 3pl 2 3 4 0 6
R

2-row 3-column matrix.

@
wr
o
Q.
w
c
I
-

-

3-row 2-column matrix.

i
18

A
A AL

Rl o

15 The coordinates are reversed.
19

23

= i 0

16
20

2y

C

[l s P~

93

ranspose

94

Dyadic {Two-Argument) Form: Generalized Transpose A&{B

The generalized transpose function interchanges the coordinates of argument B as
specified by argument A. Argument B can be any expression. Argument A must

be a vector or a scalar, and must have an element for each coordinate of argument B;
also, argument A must contain all the integers between 1 and the largest integer
specified. For example, to transpose the rows and columns of a matrix, argument A
would be 2 1:

Be2 3pl 2 3 4 5 6
B

123

b 5 6
2 lup

bt S N

3 4

To transpose the rows and columns of a 3-rank (three-coordinate) array, argument A
wouldbe 1 3 2:

Be2 3 el

B
2 3 4
3 06 7T 8
9 10 11 12

An array with two planes, three rows, and four columns.
13 14 15 16
17 18 19 20

21 2n 9% oy

~e A VI O o

13 28p
5 9
2 6 1
3 711 |
W8 12 The second and third coordinates have been interchanged,
o forming an array with two planes, four rows, and three
13 17 21 columns,

w18 22
15 19 23
16 20 24

C

~

The ? Function: Deal

Monadic (One-Argument) Form

See the Roll function earlier in this chapter under Primitive Scalar Functions.

Dyadic {Two-Argument) Form: Deal A?B

The deal function randomly selects numbers from 0 through B-1 or 1 through B
(depending on the index origin), without selecting the same number twice. Both
arguments must be single positive integers. Argument A must be less than or equal
to argument B; argument A determines how many numbers are selected.

177
Y
277
73
7
a2 17364
777
93217 604
7
2764 351 3

95

ecode

96

The 1 Function: Decode (Base Value)

Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument} Form: Decode A1B
The decode function result is the value of argument B expressed in the number

system specified by argument A. For example, to convert 1776 to its value in the
decimal number system (base 10):

10 10 10 1021 7 7 6
17%4

The following illustration shows how it was done:

Argument A (number system) specifies the following:

Ten units in each of these positions
equals one unit of the next position
to the left.
Argument B is a vector with these values:

1 7 7 6

The result is the same as doing the following:

6 The units position always represents itself.

70
700 \The value in the next position is multiplied
x10x10x10 = 1000 by the rightmost value in argument A.
1776

The value in the next position is multiplied
by the two rightmost values in argument A,
and so on.

The arguments must be numeric. |f one argument is a scalar or single-element array,
the other argument can be a scalar, vector, or other array. The result will have the
rank of the larger argument minus one.

If either argument A or B is not a scalar, they both must have the same length, or
an error results.

Note: The value of the leftmost position of argument A can be zero, because even

though there must be a value in that position, it is not used when calculating the
result. For example:

0 10 10 1011 7 7 &
17764

If either argument is a scalar, the value of that argument is repeated to match the
length of the other:

10 0 325

10 10 10 a0 7

If argument A is a vector and argument B is a matrix, argument A must have an
element for each row of B:

Re2 3pl 5 27 9 4

If argument A is a matrix and argument B is a vector, each row of argument A is a
separate conversion factor; argument B must be the same length as a row of
argument A. The result will be a vector with one element for each row of
argument A:

A2 3p10 10 10 0 10 5

A
10 10 10
010 &
ALl 23 x10x5 = 50
123 63 63
AL2 3 4
23k 119

97

Decode

If both arguments are matrices, each row of A (conversion factor) is applied to each
column of B. The result is a matrix containing the converted values for each column

of B:

A2 3pl0 10 10 20 10 5
Be3 201 2 24 3 3
A

10 10 190

20 10 05
¢

12

24

33
ALR

123 243

63 123

The following examples convert hours, minutes, and second to all seconds:

24 60 6041 30 15

The following illustration shows how it was done:
Argument A (number system)

24 60 60
} L—-—————SO units (seconds) equals one unit of

the next position to the left.

60 units (minutes) equals one unit of the
next position to the left.

24 units (hours) equals one unit of the
next position.

Argument B
1 (hour) 30 (minutes} 15 (seconds)

The result was obtained as follows:

15 = 15 seconds

30x 60 = 1800 seconds
1x60x60 = 3600 seconds
5415 seconds

98

The T Function: Encode (Representation)

Monadic Form

There is no monadic form.

(Dyadic Form: Encode ATB

This function is the reverse of the decode function. The encode function result is
the representation of argument B in the number system specified by argument A.

i Note: Be sure argument A is long enough to completely represent argument B or
an incorrect answer results.

For example, the representation of 1776 in the decimal number system (base 10):

) 10 10 10 10v1776
17 7.6

The following illustration shows how it was done:
Argument A (number system) specifies the following:

(10 10 10 10
- } f 1‘ f Ten units in each of these positions
equals one unit of the next position to the

left.

Argument B 'has this value:

1776

99

Encode

The result is the same as doing the following:

10x10x10 = 1000 [1776
1000
776

10x10 = 100 [776
700

Note: The value of the leftmost position of argument A can be zero. For example:

6 10 10 1071776
177 6

If both arguments are vectors, the result is a matrix. Each column in the result con-
tains the representation for each element of argument B expressed in the number

system specified by argument A:

24

24

5 [17

100

If argument A is a matrix and argument B is a scalar, then the result is a matrix.
Each column of the result contains the values of argument B expressed in the
(number system specified by the corresponding column of argument A:

AE3 2p10 20 10 10 10 S

The result can be transposed so that
each row represents the values of
argument B expressed in the number
systems specified by argument A.

If argument A is a scalar or vector and argument B is a matrix, the result is a matrix
or N-rank array, with one plane for each element of argument A:

A«10 10 10
(iu Be2 20123 456 789 000
A
10 10 10

101

102

If both arguments are matrices, the result is an N-rank array, with one plane for
each element of argument A. Each column of argument A represents a number
system:

A2 2p10 20

10 20
10 2

20 99 88 77 66

Result of the number system in
column 1 of argument A

Result of the number system in
column 2 of argument A

The following example converts seconds to seconds, minutes, and hours:

2% 60 A0 v G41SG
1 30 15

y

The following illustration shows how it was done:

Argument A (number system)

24 60 60

I———GO units (seconds) equals one unit of the

next position to the left.

Argument B

5415 (seconds)

60 units (minutes) equals one unit of the

next position to the left.

24 units (hours) equals one unit of the

next position to the left.

The result was obtained as follows:

60 x 60 =3600 [5415

60

103

104

The « Function: Membership

m®

Monadic (One-Argument) Form

There is no monadic form.

Dyadic (Two-Argument) Form: Membership AcB

The membership function result is a 1 for each element of argument A that can be
found among the elements of argument B and a O for every element that cannot be
found. The shape of the result is the same as the shape of argument A,

Arguments A and B can be any scalar, vector, or array:

1

fx-‘H
PERCH

12
U3
78

1

0

I

hel 2 3 805
1.5<1 2 3 4 5
A s " BANNA'
"ABC ' ¢ ' BANANA®
Ae2 201l 3 5 7

Bel Bpl2 45 78
A

B
9 78 12

T8 12 ulb

1

2 45 78

12 wE 78 12

U Y

PR

=d N

PR OO

£ F

& L0 R L

]
ex)

Ack

Bel bpl 24 05
A

=t
=

>

v 8

The B Function: Matrix Inverse, Matrix Divide

The & symbol is formed by overstriking the [] and the + symbols.

Monadic (One-Argument) Form: Matrix Inverse [

The matrix inverse function inverts a nonsingular matrix or computes the pseudo-
inverse of a rectangular matrix. The result is a matrix. Argument B must be a
numeric matrix, and the number of columns must not exceed the number of rows.
The number of columns in the argument is the number of rows in the result, and
vice versa.

If argument B is a nonsingular matrix, B is the inverse of B. 1f the matrix does
not have an inverse, then DOMAIN ERROR results:

Aed 2pl 3 5 7

A
13
5 7
Etey
0,875 0,375
0,625 0,125
Ae2 20l 23 6
)
12
3 4
Ea
DOMATIN ERROR
HA
A

If argument B is a rectangular matrix, EB is the pseudoinverse of the matrix (least
squares solution):

A3 2p3 5 1 2 2 4
A
35
1 2
24
HA
2 1 -

"1 0.6

L]
3

Dyadic (Two-Argument) Form: Matrix Divide AJEB

The matrix divide function solves one or more sets of linear equations with co-
efficient matrices. Argument B must be a numeric matrix. The number of columns
in B must not exceed the number of rows. Argument A must be a numeric vector or
a matrix. The length of the first coordinate of argument A must equal the length

of the first coordinate of argument B.

Q
@
-
> -
> .
<
x
=
-
s

The rank of the result is the same as the rank of argument B. The length of the
first coordinate of the result is the same as the number of columns in argument B.
If argument A is a matrix, then the second coordinate of the result is the same
length as the second coordinate of argument A.

If argument B is a square matrix and argument A is a vector, then the result is
the solution to the set of linear equations with coefficient matrix B and right-hand

sides A:
Aed 3
Be2 R2p1 2 3 71
AER
23 :
Be2 203 5 1 2
B
35
12
26 FHR
!

| @
f T
2z
(@]
x
=
=
b ©
p=

If argument B is a square matrix and argument A is a matrix, then the columns of the
result are the solution to the sets of linear equations with coefficient matrix B and
right-hand sides equal to the columns of A:

Aed 2p26 16 9 6

Be2 203 5 1 2

A
26 16
9 4
K
35
12
AEE
7 2
1 2

If argument B is rectangular, then the result is the least squares solution to one or
more sets of linear equations:

Ae3 3pld 14 T2 4 7 71
Bed 2p3 5 1 2 2 4

A
11 1% 72
4 771
11 14 72
R
35
12
24
ARE
i o7 1
4.6 7 “1

106

LN
('//

C

The 2 Function: Execute ' L ° l
B J

The ¢ symbol is formed by overstriking the 1 and the o symbols.

Monadic (One-Argument) Form: Execute B

The execute function evaluates and executes argument B as an APL expression.
Argument B can be any character scalar or vector.

fet 1+2
4]
142
4+ A ——————The character vector in the variable A is executed.

Ce" ((AX2I+(R%2)r% .5’
Ae3

Bel

+C

Aeb

hef

+C
10

el
Bed

2 LA=RY /T ATES
s >A + B is executed only when A equals B.
2 (A=RY /T AER S

Dyadic (Two-Argument) Form

There is no dyadic form.

107

108

The ¥ Function: Format | T °
‘ ‘ N J_‘

The ¥ symbol is formed by overstriking the T and the o symbols.

Monadic (One-Argument) Forms: Format vB

The monadic format function result is a character array that is identical in appear-
ance to the one displayed when the value of argument B is requested:

Bed bprl2

B
i 2 3 L
9 & v 8
¢ 10 11 12
XeF R
X
i1 2 3 4
% & 7 & -<e—————This matrix is a character matrix.
9 10 11 12

Dyadic {Two-Argument) Form: Format A7 B

The dyadic format function result, like the monadic format function result, is a
character array. However, argument A is used to control the format (the spacing and
precision) of the resuit. Argument A is a pair of numbers: the first number deter-
mines the total width of the format for each element and the second number deter-
mines the precision used.

If the precision number is positive, the result is in the decimal form, with the number
of decimal places specified by the precision number. If the precision number is
negative, the result is in scaled form, with the number of digits to the left of the E
specified by the precision number:

Bed 2pl2.34 734,567 0 12 T0.26 T123.45

12,34 T34, 567
] 12
026 TLAZNG
Xe9 2%R
X
12,34 T3 57
, 00 12.00
| - 226| 123, '4-?5J
NN N NN
X— AN Width of nine positions
(left margin)
Ce? "27R
G

1,201 73.5E01
0.0E"01L 1.,2E01
[T2.6E701 "L 2E02 |

%/ \/\O/ . . .
\ Width of nine positions

(left margin)

If the width entry in argument A is zero, the 5100 uses a field width such that at
least one space will be left between adjacent numbers. If only a single number is used,
a width entry of zero is assumed.

Ee2%R
E
12,34 734,57
.00 12.00
| T.26] T123. 45
R

\ \ Width of eight positions

(left margin)

If you get a DOMAIN ERROR when using the format function, increase the width
(left digit) of the left argument.

109

110

Each column of an array can be formatted differently by using a control pair in
argument A for each column of the array. N

W J

Feb 26 1¥R
F

2.3 T34, 4
l'} g 12.0
61 123, LI1 o
\ Width of six positions
(left margin)
Notes:

1. 1 the [JPW system variable is set to an invalid value, (JPW IMPLICIT ERROR will

result when the format function is used.
2. Even if the specified format causes all of the significant digits to be truncated,
the sign of the original number is retained. For example:

b 2% 7. 0004
f.ﬂﬂ

The sign is retained.

3. If the format function is used with a shared variable during input operations (see
Chapter 8), alternate records are skipped if the input data is already in character
form.

APL OPERATORS

An APL operator applies one or more dyadic primitive scalar functions to arrays.
The operators are reduction, inner product, outer product, and scan.

Reduction Operator (/)

The symbol for the reduction operator is /. The forms of reduction are: (£)/[11B or
@/B or@,‘B, where@can be any primitive dyadic scalar function that is applied
between each of the elements of a single vector.

The rank of the result is one less than the rank of argument B, unless argument B

is a scalar or a single-element vector; then the result is the value of the single element
of argument B. When argument B is a vector, the reduction of that vector is the same
as putting the primitive dyadic function between each of the elements:

Bel 2 3 4
+/R
10
L+243 44
10

If argument B is an empty vector (see Chapter 3), then the result is the identity
element, if one exists, for the specified function. The identity elements are listed
in the following table:

Identity Element Table

Dyadic Identity
Function Element

Times

Plus

Divide
Minus
Power
Logarithm
Maximum
Minimum
Residue
Circular
Binominal
Or

And

Nor

Nand

Equal to
Not equal to
Greater than
Not less than
Less than
Not greater than

+ X

lo
—_ O = O -

77.237...E75
7.237...E75
0

-0 —r— @ *

-—

Apply for
logical
arguments
only

AN AV YV T >I<U> <

-0 - 0O O =

11

c
]
=
o
=]
T
o
o

When argument B is a multidimensional array, the [I] index entry is used to specify
the coordinate acted on. If the index entry is omitted, the last coordinate (columns)
is acted on. 1f the(® #B form is used, the first coordinate is acted on. Indexing along a “ s
nonexistent coordinate will result in INDEX ERROR.

When argument B is a multidimensional array, the coordinate of argument B that is
acted on is eliminated:

Re2 3pl 2 3 4 5 4

&
123
5 4
+ /R
6 15 ha The last coordinate (columns) is assumed;
/70238 therefore, the reduction is between columns:
& 15
+/R 1+2+3=6
5 79
+/010R The second coordinate (in this case, columns)
57 9

is specified.
Be2 3 Yo 24
R The first coordinate (rows) is specified;

3 L therefore, the reduction is between rows:
: s 78
2 10 11 12 1 2 3
4 5 6
14 1% 16 5 7 0
18 19 240
22 23 24
+/01 08
14 18 20 ————The first coordinate
2y R4 28 (planes) is specified;
30 I b therefore, the reduction
Ben is between planes.
R
+ /R
0
=/
1
/B

YL R23ITETS

{f argument B is an array that has a coordinate whose dimension is zero, then reduc-
tion along that coordinate yields an array whose elements are equal to the identity
element for the function. The identity element for each function is given in the

preceding table.

112

Inner Product Operator (.) D

The symbol for the inner product operator is , {period). The inner product opera-
tor is used to combine any two primitive scalar dyadic functions and cause them to
operate on an array. An example of its use would be in matrix algebra, in finding
the matrix product of two matrices. The form for inner product is: A @ @ B,
where@and are any primitive scalar dyadic functions. Function@is performed
first and then()reduction is applied between the results of function@.

The result is an array; the shape of the array is all but the last coordinate of

argument A catenated to all but the first coordinate of argument B ("N poA),(14pB).

If argument A and argument B are matrices, the elements in each row of argument A
are acted on by the elements in each column of argument B:

Aav2 2p1 2 3 4
Be2 205 6 7 8
A

(1x5) + (2x7) = 19

The above example is the same as doing the following for each element in the result:

(1x5)+(2x7)

19

(1x6)+(2x8)
22

(3xT)+(4X7)
43

(3x6)+ (4 X8)
S0

113

Product

114

The shapes of arguments A and B must conform to one of the following conditions:

1. Either A or B is a scalar.

e 20l 2 3 4

BeS
A
B

(1x56) + {2x5) = 15

/m.xB
35

The last coordinate of argument A is the same length as the first coordinate
of argument B. (If both are matrices, the column coordinate of argument A

is the same length as the row coordinate of argument B.)

2.

Aed 2l 2 3 4 0 6
Be2 3p7 8 9 10 11 12

A
]
?
10 11 12
At XB

&1 75
?% 106 147

if argument A and argument B are N-rank arrays, the elements in each row of

(argument A are acted on by the elements in each plane of argument B:
Ae2 2 2pm8
1)
12
I u

—
N
o o

Be2 2 20848
E
? 10

(' 11 12

13 1y
15 16
A+, XB
. 3538
1 Wy

77 86
?3 100

123 134

(’” 1435 156

167 182
197 212

115

" QOuter Product Operator (o ,) J I D

The symbols for the outer product operator are o, . The outer product operator
causes a specified primitive scalar dyadic function to be applied between argument A
and argument B so that every element of argument A is evaluated against every ele-
ment of argument B. The form of the function is: Ao .@B, where@is a dyadic
primitive scalar function. Arguments A and B can be any expressions. Unless
argument A is a scalar, the shape of the result is the shape of argument A catenated
to the shape of argument B. If argument A is a scalar, the shape of the result is the
same as the shape of argument B:

Aed
Bel 23 4

1234

2 h 468

3
&

Ae XB
b5
8 10

1215

The above example is the same as doing the following for each element in the result:

1x3
3

1xh
I

1x5
::3

ax3

2%l
8

2x5
10

3x3
@

Ixl
12

3IxE
15

116

More examples:

fe2
Re2 3pl 2 3 4 5 6
Ao +R

- I 4G

(‘ & 7 8
Ae2 201 2 3 4
Be3 3o 9
A

Zeho +R
pZ
2233
M1+1=2
T 4
- 5 & 7

jﬂ/——2+1=3

10 W4+1=5
6 7
8 9 10
11 12 13

(‘M

C

117

Scan

118

Scan Operator (\)

The symbol for the scan operator is \. The forms of scan are:@\[l] B,@\B or
@kB, where@can be any scalar dyadic primitive function and argument B is a
numeric vector or other array. The scan operator, like the reduction operator,
operates on the elements of a single vector, and is the same as putting the primitive
dyadic function between each of the elements. But the scan operator accumulates
the results as the operation is repeated along the vector. The shape of the result is
the same as that of the input argument:

+\1 2 3 4 5

1 3 6 10 135 <«———————— Thisresult is the same as doing the
1 following for each element in the
1 result. The first element in the
1+3 result is the first element of the
3 argument.
14243
é
1 4 :) 4 _'5 4 |+
10
L4243+ 45
15

When argument B is a multidimensional array, the [1] index entry is used to specify
the coordinate the scan is to proceed along. If the index entry is omitted, the last
coordinate (columns) is acted on. If the@ XB form is used, the first coordinate

is acted on.

Be3 bpal2

B
12 3 4
9 6 7 8
¢ 10 11 12

+\ 1 1 1B <4—————The first coordinate (rows) is specified; therefore,

2 3 4 the scan is between rows.

8 10 12
18 21 24
+\ [2]t «——————The second coordinate (columns) is specified;
therefore, the scan is between columns.

+\B

13 6 10

5 11 18 26

9 19 30 42
+XB

1 2 3 4

6 8 10 12

15 18 21 24

N

—

£

1
a

?

2

13
17

21

RrRAiE

ey

Lo &

3

Ae2 3 U424
A
2 3 4
& 7 8
10 11 12

14 15 16
18 19 20
22 23 24

+N\[1 1A «———————The first coordinate (planes) is specified;

2 3 4 therefore, the scan operation is between planes.
& 7 8
10 11 12

16 18 20
24 26 28
32 34 34
+\ 2 1A -——————The second coordinate (rows) is specified;

2 3 4 therefore, the scan operation is between rows
8 10 12 for each plane.

18 21 24

1 15 16
32 34 36

B4 57 40

+N\[3 1A «—————— The third coordinate (columns) is specified;

3 6 10 therefore, the scan operation is between columns
11 18 26 for each plane.
19 30 u2

27 42,58
35 54 74
43 66 90

119

SPECIAL SYMBOLS

Assignment Arrow < “
N b

The assignment arrow causes APL to evaluate everything to the right of the arrow
and associate that value with the name to the left of the arrow. For example,
A<2+3 means that 2+3, or 5, is assigned to the name A. When A is used in a later
APL statement, it has a value of 5.

Notes:

1. When a value assigned to a variable is used as the argument for a function,
the value assigned to the variable is used by the function, regardless of
any previous or future value assigned to the variable. For example:

Al
(Ae3)+A

é

@ A
a > (AC3) +AtL

7
A .

3

2. To avoid confusion, a variable should not be referenced in the same expression
it is assigned, except directly to the right of the assignment. For example:

e
fen+l

120

Branch Arrow -

The branch arrow is used for the following:

® To change the order in which the statements are executed in a user-defined
function. See Branching in Chapter 6 for more information on branching.

® To resume execution of a suspended function (see Suspension in Chapter 7).

® To clear the state indicator (see State /ndicatar in Chapter 7).

Quad]

The quad is used to ask for input and to display output. To display output, the quad
must appear immediately to the left of the assignment arrow. The value of the APL
expression to the right of the arrow is assigned to the quad and will be displayed.

For example:

GH]el+3

foa
3

The 7 displayed is the value assigned to the quad. The 12 is the final evaluation of
the APL expression.

When used to ask for input, the quad can appear anywhere except to the immediate
left of the assignment arrow. Execution of the expression stops at the quad and re-

sumes when an expression is entered to replace the quad. When a quad is encountered,

the quad and colon symbols ([] ;) are displayed to indicate that input is requested.
For example:

28x0
[1:

Iy
100

See Chapter 6 for more information on quad input or output within a user-defined
function.

121

Quad Quote M

The quad quote symbol is formed by overstriking the quote symbol ' and the quad
symbol []. The quad quote operates the same way as the quad when requesting
input, except that the data entered is treated as character data. For example:

Xef]
CAN'T

X
CAN'T

Xel]
CANTTTY

X
"CAN''T®

Note: If asystem command is entered for a quad quote input request, the system
command is treated as a character string and will not be executed.

See Chapter 6 for more information on quad quote input or output within a user-
defined function.

Ia) °
Comment g ; ‘

The comment symbol is formed by overstriking the n symbol and the o symbol.
The comment symbol must be the first nonblank character in a line and indicates
that the line should not be executed. For example:

VPLUSCLIIV
V ONE PLUS TWO
C11 aTHE PURPOSE OF THIS FUNCTION IS
E27 aTO ADD TWO NUMBERS TOGETHER!
L3l ONE+TWO
v
12 PLUS 34
kb

Parentheses ()

Parentheses are used to specify the order of execution. The order of execution is
from right to left with the expressions in parentheses resolved (right to left) as they
are encountered. For example:

3+4xb
27
(3443 X6

122

Chapter 5. System Variables and System Functions

i SYSTEM VARIABLES
(: System variables provide controls for the system and information about the sys-
tem to the user. These variables can be used by a function as arguments the same

as any variable.

The following is a list of the system variables and their meanings. A complete des-

(b . cription of each follows the list:
Variable Name Meaning
gcT Comparison tolerance
. oo Index origin
Opp Printing precision
OpPw Printing width
- OJRL Random link
Lc Line counter
OWA Workspace available
oLx Latent expression
(K 0OAV Atomic vector
B Notes:

1. To find the value assigned to a system variable, enter the variable name. The
value assigned to the [JCT, [JIO, [JPP, [JPW, [JRL, and [JLX system variables
can be changed by using the assignment arrow (<). For example, entering
[J10<0 assigns the value 0 to the [JIO system variable.

2. The use of any system variable causes an entry to be made in the symbol table
for that symbol. Therefore, if the symbol table is full, a SYMBOL TABLE FULL
error is genérated.

C

123

ystem
Variables

124

Comparison Tolerance: [JCT

The value of this variable determines the maximum tolerance (how different the two
numbers must be to be considered unequal) when using any relational function and
at least one argument is a noninteger. For example, two numbers are considered un-
equal if the relative difference between the two numbers exceeds the comparison
tolerance value. The following illustration shows how the comparison tolerance
works with the relational functions:

HICTxA'

/_/\/\/ Value of argument A
{/ Real number line

A<B—>»

The relationship of
any value (argument B)
to argument A

A<B ——»

q-——A:B —_—]

- A=B

- A>B —

A’ is the next lower integer power of 16 for the largest argument. For example:

16%0 1 2 3 44 «————The first five integer powers of 16.
L 16 256 w094 65534

CT+ . 1
Ih=1%, Next lower integer power (A’) is 1; therefore,
0 the difference between the arguments exceeds
+[CTxA’ (.1x1 =.1).
15=16, Next lower integer power (A’) is 16; therefore,
1 the difference between the arguments does not
exceed + [JCTxA' (.1x16 = 1.6).
2w NG, Next lower integer power (A’) is 16; therefore,
Q the difference between the arguments exceeds
+[JCTxA" (.1x16 = 1.6).
25%=287, Next lower integer power (A’) is 256; therefore,
1 the difference between the arguments does not

exceed + [JCTxA’ (.1x256 = 25.6).

Note: The [JCT function considers any number in decimal form a noninteger. For
example, 1000 is an integer and 1000. is a noninteger.

The value of the comparison tolerance variable also affects the floor and ceiling
functions. The comparison tolerance is added to the argument for the floor function
and subtracted for the ceiling function. For example:

[CYe. 03

L2.98 2.98 + .03 = 3.01 (The integer 3 is in the range of
3 2.98 +.03.)

L2.96 2.96 +.03 = 2.99
i

[3,03 3.03 - .03 = 3 (The integer 3 is in the range of
3 3.03 -.03.)

F3.0u 3.04 - .03 = 3.01

In a clear workspace, the comparison tolerance value is set to 1E 13 (see
Chapter 3 for an explanation of scaled representation).

Index Origin: IO

The value of this variable determines the index origin. The value can be either O
or 1, which means that the first component of a vector or array is indexed with
a 0 or 1, depending on what the value is set to. In a clear workspace, the value
is set to 1.

The functions affected by index origin are indexing ([]), index generator (1),
index of (1), roll (?), deal (?), grade up (4), and grade down (V).

1100
LY S ¥ A T Y SR 1)
01 15 231 234 The index values represented by the

he B uoH result start from O rather than 1.
1230

vl
0123
(1101

Note: All other examples in this manual are shown with the index origin set to 1.

»
2
el

<
‘=

<
>

Printing Precision: [1PP

The value of this variable determines the number of significant digits displayed for
decimal numbers and for integers with more than 10 digits. The value of this var-
iable does not affect the internal precision of the system. The value can be from
1 to 16. In a clear workspace, the value is set to 5. This means that the number
of significant digits displayed for decimal numbers or for integers with more than
10 digits is limited to 5 and scaled representation (see Chapter 3) is used (if re-
quired). For example:

Decimal Number Examples

\J
12345, 6

123446 Five digits are displayed and the
B e { TR A least significant digit is rounded off.
12346
123456 .7
1. 2346ES

Integer Examples

1234567890
1234567890

12335678901
1. 2346E10

125,

Print Width: [PW

The value of this variable determines the length of the output line for both the
display and printer. The value can be from 30 to 390. In a clear workspace,
the value is 64. If this variable is set to a value greater than the length of one
line across the display or printer, the output will overflow onto the next line.

Note: During function definition mode (see Chapter 6), the print width variable
is automatically set to 390. The variable returns to its original value when the
function is closed.

Random Link: [JRL

The value of this variable is used in generating random numbers. The value can
be from 1 to 231-2. In a clear workspace, the value is 7%x5 (16807). This value

is changed by the system each time a random number is generated.

Line Counter: [JLC

This variable is a vector. The first element is the function statement number
currently being executed. The next element is the number of the statement

{in another function) that invoked the function being executed. The remaining
elements follow the same pattern. The user cannot set this variable but can dis-
play it. Attempts to modify []LC are ignored by the system. For more informa-
tion on [JLC, see Chapter 7.

»n
2
el

1]
=

3]
>

Workspace Available: [JWA

The value in this variable indicates the amount of unused space (the number of
unused bytes} in the active workspace. The user cannot set the value for this
variable but can display it. Attempts to modify [JWA are ignored by the system.

Latent Expression: [JLX

A character vector assigned to the latent expression variable is automatically
executed as an expression by the execute (&) function when a stored workspace
containing the latent expression is loaded into the active workspace.

Uses of the latent expression variable include the form [JLX<'G’, where a func-

tion named G is executed when the stored workspace is made active. The form

[JLX<""MESSAGE WHEN WORKSPACE IS MADE ACTIVE*" displays the mes-
sage MESSAGE WHEN WORKSPACE IS MADE ACTIVE when the stored work-
space is loaded into the active workspace.

126

£11
£21
K31
Ll
£S5
[4]
L7
L8
£97
£107
[113
[127
133
C143
L1517
£163

v

v

Atomic Vector: [JAV

The atomic vector is a 256-element vector that includes all possible APL charac-
ters. The following example shows it can be used to determine the indices of any
known characters in the vector (assuming [J1O is 1):

AV aRC!
g7 88 89

Appendix C contains a list of the characters in the atomic vector. The most com-
mon use of the atomic vector is for generating line feed and cursor return charac-
ters to arrange output. The following example shows how the atomic vector can
be used to generate these characters.

The function called NAMES will display your first and last name. Each name will
start at the left margin and each character in the name will be one line lower than
the previous character:

YNAMESTIIV

A NAMES B, OUTPUT,; I, J; 010

(10

JeCp, By+1lep, A

ASTATEMENT 5 CATENATES THE ARGUMENTS TOGETHER

AAND ALS0O PUTS A BLANK CHARACTER BETWEEN EACH CHARACTER
QUTPUTe((2x e 1 ONGAY, (LI

ASTATEMENT 8 PLACES A4 LINE FEED CHARACTER ([JAVI1601)
AIN EACH BLANK ELEMENT OF OUTPUT

QUTPUTE2x U-11¢0AVE1460]

ASTATEMENT 11 PLACES A CURSOR RETURN CHARACTER ([IAVLIST?I1)
AAFTER THE FIRST NAME

OUTPUTEZXT1+0AVILS7]

ANOW WHEN THE CHARACTER VECTOR QUTPUT IS DISPLAYED,
AAPL RESPONDG WITH THE APPROPRIATE ACTION WHEN A LINE
AaFEED CHARACTER ([JAVL1601) OR CURSOR RETURN CHARACLTER
ACAVELS?1) 14 ENCOUNTEREDR IN THE CHARACTER STRING
QUTPUT

"VIRGINIA® NAMES 'WINTER'

127

v
<
el
&

—

T
>

SYSTEM FUNCTIONS

System functions are used like the primitive (built-in) functions; they are monadic
(one argument) or dyadic {two arguments) and have explicit results.

Following is a list of the system functions and their meanings. A complete des-
cription of each follows the list:

System Function Meaning
[JCR name Canonical representation
OFX name Fix
[JEX name Expunge
[ONL class Name list
character [JNL class Name list beginning with the specified character
[OJNC name Name classification

The [JCR Function: Canonical Representation

The [JCR function formats a user-defined function into a character matrix. This
function is monadic (takes one argument); the argument for the [JCR function

é must be a scalar or vector of characters representing the name of an unlocked
5 user-defined function. For example, you have the following user-defined function:
&
V ReCINTG A
13 Re¢Ap(
L21 Tel

L33 START:RLI1eA
N Tel+l
£S53 H(LEAY/BTARTV

The function INTG is used to create a vector whose length and contents are spe-
cified by the input argument:

INTG 4
o4 ooy

INTG 7
A B B B

128

To format the function INTG into a character matrix and assign the matrix to a
variable named VAR, the following instruction would be entered:

VARE[ICR "INTG'®

VAR is displayed as follows:

VAR
ReINTEH A<—————First row is line 0 of the function.
ReApO
Tei
START:RLI1eA
T¢I+l
+(1iA)Y/START

PV AR +—————Indicates VAR is a 6-row, 12-column matrix.

6 12

Notice that the line numbers are removed along with the opening and closing V.
Also, labels within the function are aligned at the left margin.

Now matrix VAR can be changed by simply indexing the elements:

VAREY; 1276 1" The element in row 4, column 12
VAR is changed to |I.

REINTG A

ReAp(

Tel -

START:RLIJ1eT

Tel+i

HLTEA)/START

To format a matrix created by the [JCR function into a user-defined function, use
the [JFX function. The [JFX function is discussed next.

The JFX Function: Fix

The [JFX function forms (fixes) a user-defined function from a character matrix
(that was most likely formed using the [JCR function). This function is monadic
(takes one argument); the argument for the [JFX function is the name of a matrix
to be formed into a user-defined function. If an error is encountered (invalid char-
acter, missing single quote, etc) as the matrix is being formed into a user-defined
function, the operation is interrupted, the number of the row in error minus one
is displayed, and no change takes place in the active workspace (the user-defined
function is not formed).

129

To show how the [JFX function WOrks, we will use the matrix created in the pre-
vious example (see the [JCR function). To form matrix VAR into a user-defined
function, the following instruction would be entered:

X VAR APL responds with the name of
INTGe———"" the user-defined function.

The [JFX function produces an explicit result (the array of characters that repre-
sents the name of the user-defined function), and the original definition of the
user-defined function (if there was one} is replaced.

Now the function INTG can be displayed and executed:

VINTGLIIV
Vv ReINTG A

C11 ReppDd

£231 Ied

31 START:RLINCT

L4l TeI+dl

51 4(L3AY/START
v

INTG 5
123435

INTG 8
12345678

v
=
.2
-
©
<
5
e

Following is an example that shows how the [JCR and [JFX functions can be
used to modify the definition of a function within another function. This
example will use the following user-defined function:

VINTGLIY ,
V ReINTHG A
£13 Retpl

130

e
31
NN
£51

TN

Ted
START:RLET1+A
Tel+l
F(CLEAY/8TART
v

INTG 4
TN

Format the function into a matrix:

Me[JCR ' INT({G '-=——Canonical Representation
M

R+INTG A

ReApl

Il
(. START:REI1¢A
T+l
3 (T2A)/START

o Now, define a function called CHANGE, which, when performed, will execute a
(modified version of INTG.

INTG is made a local function so that the
— . global version will not be change (the local
V. CHANGE ; INTG; Y2 orgon will not exist after the execution of

) E,L%' 32‘6%;2;:4“ T CHANGE is complete).
. !:33 INTG L"':”7"\Assign the explicit result of the [JFX function
v to Y so that it will not be displayed.

Execute the modified version of INTG.

(INTG Y4 «————————Execute INTG.
b4 un
CHAMNGE <«———————Execute CHANGE.
1 234
INTG 4 «————Execute INTG again.
by oy

131

The [JEX Function: Expunge

The [JEX function erases global objects or active local objects specified by the
argument from the active workspace (unless the object is a pendent or suspended
function). This function is monadic (takes one argument); the argument must be
a scalar, vector, or matrix of characters.

Thus, if object AB is to be erased, the following instruction would be entered:

[(EX "ap!

Note: Even after the object is erased, the name remains in the symbol table (the
part of the active workspace that contains all of the symbols used). To clear out
the symbol table, save and then reload the workspace.

The [JEX function returns an explicit result of 1 if the name is available and a 0 if
it is not available or if the argument does not represent a valid name. When the
JEX function is applied to a matrix of names (each row represents a name), the
result is a logical vector (zeros and/or ones) with an element for each name. The
JJEX function is like the) ERASE command, except that it applies to the active
referent (see Chapter 6, Local and Global Names) of a name.

Note: If the object being expunged is a shared variable (see Chapter 8), it will
be retracted.

w
c
.2
=
©
<
s
w

The JNL Function: Name List

The [ONL function yields a character matrix; each row of the matrix represents
the name of a local {active referent) or global object in the active workspace.

The ordering of the rows has no special significance. The [JNL function can be
either monadic (takes one argument) or dyadic (takes two arguments); in both the
monadic and dyadic forms, the right argument is an integer, scalar, or vector that
determines the class(es) of names that will be included in the result. The values
for the input argument and associated classes of names are:

Argument Name Class

1 Names of labels
2 Names of variables
3 Names of user-defined functions

It does not make any difference in what order the class of names appears in the
argument. For example, [JNL 2 3 or [JNL 3 2 results in a matrix of all the vari-
able and user-defined function names.

In the dyadic form, the left argument is a scalar or vector of alphabetic charac-
ters that restricts the names produced to those with the same initial character
as that of the argument. For example, ‘AD’ [JNL 2 results in a matrix of all
the variable names starting with the character A or D.

132

Uses of the [JNL function include:

® Erasing objects of a certain class (and also beginning with a certain character).
For example:

[EX "B [ONL 2
erases all the variables whose names start with B.

® Avoiding the choice of a name that already exists.

The JNC Function: Name Classification

The [JNC function is monadic (takes one argument); the argument is a scalar or
array of characters. The result of the function is a vector of numbers represent-
ing the class of the name given in each row of the argument. The classes of names
are as follows:

Result Meaning
0 Name is available for use
1 Name of a label
2 Name of a variable
3 Name of a function
4 Name is nonstandard (not available for use)

133

Chapter 6. User-Defined Functions

APL provides an extensive set of primitive functions; nevertheless, you may want
a function to solve a special problem. APL provides a way to create a new func-
tion, called function definition. During function definition, you use existing APL
functions to create new functions called user-defined functions.

Normally, the 5100 is in execution mode; that is, after a line has been entered
and the EXECUTE key pressed, the 5100 executes that line. To define a func-
tion, the mode must be changed to function definition mode; after the function
is defined, the mode must be changed back to execution mode before the func-
tion can be executed. The mode is changed by entering the V (del) symbol. The
first V changes the mode to function definition mode; the second V indicates the
end of function definition and changes the mode back to execution mode.

No statement error checking is performed during function definition mode. That
is, all error checking is performed when the statement is executed.

MECHANICS OF FUNCTION DEFINITION

The following steps are required to define a new function:

1. Enter a V followed by the function header (see Function Header in this
chapter). After the function header is entered, APL responds with a
[1] and waits for the first statement of the function to be entered:

c
=]
=
c
£
Q
[m]

VHOME SCORE VISITOR (function header)
£1l

2. Enter the statements that define the operations to be performed by the
function. As each line is entered, APL automatically responds with the
next line number:

¥ HOME SCORE VISITOR

L1l "THE FINAL SCORE I%:
LN +/HOME
L3 O

£hll +/VISITOR

Note: During function definition mode, the print width (see []PW system vari-
able in Chapter 5) is automatically set to 390. The print width returns to its
original value when the function is closed. This prevents problems that occur

when editing statements that exceed the print width. Editing statements are
discussed later in this chapter. If a user-defined function contains a statement
that is greater than 115 characters in length, that statement cannot be edited and
the function cannot be written on tape. (See [JCR and [JFX in Chapter 5 for

information on changing a user-defined function to a matrix.)
134

(:"

3. Enter another V when the function definition is complete. The closing V
may be entered alone or at the end of a statement. For example:

Lu +/VIGSITORV

or

L&l v

Note: If the closing V is entered at the end of a comment statement, which

begins with a @ symbol, the V will be treated as part of the comment and
the function will not be closed.

Function Header

The function header names the function and specifies whether a function has no
arguments (niladic), one argument {monadic), or two arguments (dyadic).

Note: Function names should not begin with SA or TA, because SA and TA are

used for stop and trace control (Stop Control and Trace Control are discussed
later in this chapter).

The function header also determines whether or not a function has an explicit
result. If a function has an explicit result, the result of the function is tempor-
arily stored in a result-variable (names in the function header) for use in calcula-
tions outside the function. The result variable must be included in the result
statement (the statement that determines the final result of the function) as well
as the function header. For example:

/\

¥ RESULTeX PLUS Y .
F11 RESULTEX+YV Result Variable
3 pLUs b—
? The result of the function is
LO0+3 PLUS LL‘/ temporarily stored in the re-
17 sult variable so that it can
be used by another function.

User-defined functions that do not have an explicit result cannot be used as part
of another expression. For example:

V X PLUSL Y
[11 X+Yy
, 1043 PLUSL 4
VALUE ERROR

1043 PLUSL 4

fal

c
.2
=
©
c
=
s

135

The following table shows the possible forms of the function header:

Number of Format of Header
Arguments | Type No Explicit Result Explicit Result
0 Niladac VNAME ¥ R<NAME
1 Monadic VNAME B vV R<~NAME B
2 Dyadic VA NAME B vV R<A NAME B

There must be a blank between the function name and the arguments. Also, the
same symbol cannot appear more than once in the function header; thus,
Z<FUNCTION Z is invalid.

For user-defined functions, the order in which the arguments are entered is
important. For example, assume that Z<X DIVIDE Y represents a function in
which Z is the result of X+Y. Now if 20 DIVIDE 10 is entered, the result is 2.
However, if 10 DIVIDE 20 is entered, the result is 0.5.

136

Branching and Labels

(, Statements in a function definition are normally executed in the order indicated
by the statement numbers, and execution terminates at the end of the last state-
ment in the sequence. This normal order can be modified by branching.

i Branching is specified by a right arrow (—) followed by a label (name) that speci-
(fies the statement that is to be branched to. For example, the expression
->START means branch to a statement labeled START. When assigning a label
to a statement, the label must be followed by a colon (:) and must precede the
statement. The colon separates the label from the statement:

L21 BTART:NeN+1

: LS 28TART

. In the previous example, the label START is assigned to the second statement in
(' the function. In other words, START has a value of 2; however, if the function
is edited and the statement is no longer the second statement in the function,
START will automatically be given the value (or ,statement number) of the new
statement. (See Function Editing later in this chapter.)

o
c
<
&
c
©
joe
m

137

138

Labels are local to a function—which means they can only be used within that
function. Following are some additional rules that apply to the use of labels:

® They must not appear in the function header.
® You cannot assign values to them.

® They can be up to 77 characters in length.

® They cannot be used on comments.

® When duplicate labels or labels that duplicate a local name are used, the first
use of the label or name is the accepted use.

If the branch is to zero (=0) or any statement number not in the function, the
function is exited when the branch statement is executed. If the value to the right
of the —> is a vector (for example, >L1,L2,L3), the branch is determined by the
vector’s first element. If the vector is an empty vector (there are no elements), the
branch is not executed, and the normal sequence of statement execution continues.
For example, the conditional branch —(1>=N)/START is evaluated as follows:

1. First, the conditjon (I>N) is evaluated; the result is 1 if the condition is
true and O if the condition is false.

2. The result of step 1 is then used as the left argument for the compress
(A/B) function:
a. If the result of step 1 was 1, START is selected from the right argument
and a branch to the statement labeled START is taken.
b. If the result of step 1 was 0, nothing is selected from the right argument
(an empty vector is the result) and the sequence of execution falls through
to the next statement.

Following are three examples of defining and using a function to determine the
sum of the first N integers. Each function uses a different method of branching.
Remember, the expression to the right of the = is evaluated and the result deter-
mines to what statement the branch is taken:

V S«5UML N

K1 Qe

£21 el

L3131 CHECK:-LARELX]T iNe——-Branch to LABEL if I<N; otherwise,
Ll LAREL :S¢8+1 exit the function.

&5 Tel+]

L6l HCHECKY

SUML &

15

Wb

V Se5UM2 N

£11 Se0

L21 Tel

L3171 CHECK:3(I*N)/0-<——Branch to 0 (terminate the function)
Cul G541 or fall through.

L& Tel+]

Lal SCHECKV

aUM2 5

15

V 8¢5UM3 N
L1l Hel
L2l Te0
L31 CHECK:Se8+1
£ull Tel+l

| +(LEND /CHECKY <——Branch to CHECK or fall through.

SUM3 3
1%

Several forms of the branch instruction are shown in the following table:

Branch Instruction Result
+LAREL Branches to a statement labeled LABEL =
40 Exits function s
HLAREL X X=Y Branches to LABEL or exit function B
XYY, AX=Y), (XY /L1 L2, L3 Branches to L1, L2, or L3 5
LT L2201 +X=Y] Branches to L1 or L2
Y {X=Y)/0 Exits function or falls through to next statement
+{X=Y) /LAREL

Branches to LABEL or falls through
4+ (X=Y) pLAREL } ranches to g

Note: Branching will also work if a specific statement number is specified to the
right of the »>. For example, >3 means branch to statement 3; or >I1<3xA means
| is assigned the value of 3 times the value of A, and the value of | is then used as
the branch to statement number. However, these forms of branching (using
statement numbers instead of labels) can cause problems if the function is edited
and the statements are renumbered.

Local and Global Names

A local name is the name of a variable or user-defined function that is used only
within a particular user-defined function. A global name is the name of a variable
or user-defined function that can be used within a user-defined function and can
also be used outside of it. An example of the use of a local variable name would
be the name of a counter used in a user-defined function (which is not required
for any use outside the function).

139

«»
(Y]
£
T
P
©
L0
L
)

140

To make a name local to a user-defined function, it must be contained in the

function header. For example, the function header VZ<EXAMPLE X;J;| estab-

lishes the result variable Z, the argument X, and variables J and | as local variables. w4
Notice that the local names, other than the result variable and arguments, follow

the right argument (if any) and are preceded by semicolons.

A local name can be the same as a global name (variable or user-defined function)
or a local name in another function. However, any reference to the name local
to the function will not change the values of any other global or local objects
{variables or user-defined functions) or cause them to be used.

After a user-defined function has executed, the following rules apply to the local
and global variables used by the function:

® Any value assigned to a local variable is lost.

® If a local variable had the same name as a global variable, the value of the glo-
bal variable remains unchanged.

® If the value of a global variable was changed by the function, it retains the
new value.

For example:

LOC«100
GLORE100
VRESUL T EXAMPLE; LOC; X
C11 LOC«S0
L21 Xe2d
F33 GLOR«1O
Ehl RESULTeLOC+BLOR+HXY

EXAMPLE
8%

X «————— X has no value after the function
vValuUE ERROR has executed.

X

A

LocC The global value associated with this
100 name was unchanged by the function.

GL.Q} <——— The global value was changed by the
10 function, since GLOB was not made
local name to the function.

1M

T
c
[3+]

©
o
o

-

»
L))
£
©
2
©
L
2
&}

Since the value of a local name disappears as soon as execution of the function
finishes, the only time you can use or display the value of a local name is while
the function to which it belongs is still executing. is suspended, or is pendent.

Note: If a name is local to a function that calls another function, the value of
that local name can also be used by the called function.

A name local to a function that has not completed execution or that is suspended
(see Chapter 7) will be inaccessible if the name is also local to a more recently
called function. Putting it another way, the value of a name that you can use or
display is always the most recent local value of the name. Of course, as execu-
tion of the more recently called functions is completed, the next earlier value of
each local variable will again be accessible. A name can therefore be said to have
one active referent or value, and possibly several /atent referents or values. For
example:

V DIIAN; XX
F11 XXel00
L20 CTHE FUNCTION DAN GIVES XX THE VALUE'
£33 XX
[H] "AND CALLS THE FUNGCTION DAVE'
51 ~DAVE
E6T | "WHEN DAVE I8 THROUGH EXECUTING AND EXECUTION RETURNS'~—
L71 | "TO DAN, XX ONCE AGAIN HAS THE VALUE'
L8l | xxv

\
Vv DAVE; XX

L1l XXe200

£21 "THE FUNCTION DAVE GIVES XX THE VaLUE®

£31 XX

Cul "AND CALLS THE FUNCTION JERRY'®

L3 JERRY

L6l "WHEN JERRY I8 THROUGH EXECUTING AND EXECUTION RETURNS =

£el "TO DAVE, XX ONCE AGAIN HAH THE VALUE'®

L8l XX\

w
)
£
<
P4
®
L0
L
Q

V JERRY ;XX
£11 XX+300
L2 "THE FUNCTION JERRY GIVES XX THE VALUE'
£33 XX
Cul "AND RETURNS TO DAVE 'V

142

IIAN
THE FUNCTION DaN GIVES XX THE VALUE
100
AND CALLS THE FUNCTION DAVE
THE FUNCTION DAVE GIVES XX THE VALUE
200
ANIT CALLS THE FUNCTION JERRY
THE FUNCTION JERRY GIVES XX THE VaALUE
00
ANIY RETURNG TO DAVE
WHEN JERRY IS THROUGH EXECUTING AND EXECUTION RETURNS
TO DAVE, XX ONCE AGALIN HAS THE VALUE
200
WHEN DAVE IS THROUGH EXECUTING AND EXECUTION RETURNS
TO DAN, XX ONCE AGAIN HAS THE VaLUE

100
XX
VALUE ERROR
XX
A

The)SIV command causes the SIV list (state indicator with local variables and

local user-defined functions listing) to be displayed. The SIV list contains a com-

plete set of referents of a name.

Note: See System Functions in Chapter 5 for an example of a local user-defined
function using the [JFX system function.

If the SIV list is scanned downward, the first occurrence of a variable name is its
active referent. If the name appears again, it is a latent referent. Global names
are not found in this list; they can be displayed with the)VARS command and
)JFNS command.

In the following SIV display, variable P has referents as follows:

ISIV
L7 wZ X 1 ‘
FEW] P .} «——— Active referent of P is local to function F.
QL3T »C X T
RL21 P First latent referent of P
G311 7 X I is local to function R.

As the state indicator is cleared (see Chapter 7), latent referents become active.

143

b
c
T
®
Q
S
-

Functions

144

INTERACTIVE FUNCTIONS

User-defined functions can display messages and/or request input from the key-
board. The messages (character data) in the user-defined function are enclosed in
quotes. The [] (quad) and [1] (quad quote) symbols are used to request input from
the keyboard during function execution. The following function is an example of
an interactive function that computes the amount of interest on a capital amount

for a given number of years:

v CI

N "ENTER THE CAPITAL AMOUNT IN DOLLARS'

L2 B[]

TSI R

L51 CENTER THE PERIOD IN YEARS'
L6 Yell

E71 THE RESULT I8

[T AX(1+0,01xI)*YV

CI
ENTER THE CAPITAL AMOUNT IN DOLLARS
I
100
ENTER THE INTEREST IN PERCENT
f:
8
ENTER THE PERIOD IN YEARS
[
2
THE RESWULT IS
116, 64
I
ENTER THE CAPITAL AMOUNT IN NOLLARS
[1:
laoo
ENTER THE INTEREST IN PERCENT
(1
&8.88
ENTER THE PERIOD IN YEARS
I

5

THE RESULT I8
1530, 2

Requesting Keyboard Input during Function Execution

(The [] (quad) appearing anywhere other than immediately to the left of the assign-
ment arrow indicates that keyboard input is required. When the [] is encountered
in the function, the two symbols [J: (a quad symbol followed by a colon) are dis-
played, the display is moved up one line, and the cursor appears. The quad and

colon symbols are displayed to alert the user that input is required. Any valid

(expression entered at this point is evaluated and the result is substituted for the
quad. You can escape from a quad input request by entering the right arrow —>.

An invalid entry in response to request for input results in an appropriate error
message and the request for input is made again. Any system commands entered
. will be executed, after which the request for input will again be made. An empty
(input (no keying)} is rejected and the 5100 again displays the symbols []: and
- awaits input.

When the quad quote [T (a quad overstruck with a quote) is used, input from the
keyboard is treated as character data. The input begins at the left margin of the
display; quotes do not need to be entered to define the data as character data.
When [input is requested, the symbols []: do not appear as they did with a [J
input request. The input is entered after the flashing cursor appears on the screen.
For example:

X[
CAN'T
X

(: , CAN'T
) Xl

"CAN' T
X
CAN' T

o
c

=
w
@
S
o3
o

o

Anything you enter in response to a quad quote request for input is considered
character input. Therefore, if you enter a system command or a branch arrow
() to terminate the function, the entry is treated as character data for the
function and the system command or branch will not be executed. This can be"
a problem if you are trying to escape from a quad quote input request. There-
fore, APL provides an escape for this situation. To escape from a quad quote
input request, enter the symbol by holding.the CMD key and pressing the
(G key. The function is interrupted and the function name and the line num-
.

ber being executed are displayed. You can then modify the function or termi-
nate it by entering the right arrow —.

145

ARRANGING THE OUTPUT FROM A USER-DEFINED FUNCTION

The output from user-defined functions can be arranged by using the format func-
tion (see the ¥ function in Chapter 4) or bare output. Bare output is discussed
next.

Bare Output

After normal output, the cursor is moved to the next line so that the next entry
(either input or output) will begin at a standard position. However, bare output,
denoted by the form <X (X can be any expression), does not move the cursor
to the next line. Therefore, more than one variable or expression can be displayed
on the same line. For example:

¥V X TIMES Y

£1a MeX

e M TIMES °
[X1 ey

N fe' I& °
£&3 KXYV

2 TIMES 4
2 TIMES 4+ I8 8

Since the cursor does not return to the next line after bare output, when quad
quote (1) input is entered following the bare output, the input starts after the
last character of the bare output. Then when the input is processed, it is pre-
fixed by any bare output on the input line. For example:

¥ OUTPUTAINPUT
L1 fMe"THIS IS BARE QUTPUTIEE?
L2 aTHE NEXT STATEMENT REQUEST IT INPUT
L3 INe
LT aNOW DISPLAY THE INPUTY
OUTPUTAINPUT
THIS I8 BARE OQUTPUT! P! 27 The cursor appears here. Now
enter THIS IS [INPUT.

TS I8 RBARE QUTPUTHIITHIS I8 11 IN PUT'<—I

After EXECUTE is pressed,
the output line looks like
this.

146

i Therefore, if quad quote input follows bare output (but only the input is to be
(processed), the bare output must be removed from the input line. Following is
an example of a function that will remove the bare output:

Vv RERAREAQUTPUT MSBG;I0;J
L1l 10«1
: £21 MeMSG
(~ [31 aCHECK THE RARE QUTPUT FOR EMBEDDED CURSOR RETURNS
- Lyl JETLHCOMEE) I1AVELE 7]
£%1 alIROP ANY RARE QUTPUT PREFIX FROM THE INPUT
L6 ReCCHHTI-10+1)30V

(This is how the function works:
VOUTAIN The Bare Output
. C11 BAREAQUTPUT 'THIS 18 Rrare olTeur: b
L2131 v

OUTAIN This function will remove the bare output.

THIS I8 BARE QUTPUT !V !_e—The cursor appears here. Now
enter THIS IS [T iINPUT.

THIS I8 RARE QUTPUTHIHITHIS IS 11 INPUT

THIS I8 11 INPUT

This is the final result.

(” LOCKED FUNCTIONS

A locked function can only be executed, copied or erased; it cannot be revised or
displayed in any way, nor can trace control and stop control (see Trace Control
and Stop Control later in this chapter) be changed. A function can be locked, or
protected, by opening or closing the function definition with a V (Voverstruck
with ~), instead of a V.

“ When an error is encountered in a locked function, execution of that function is -
abandoned (not suspended). If this function was invoked by another locked
function, execution of the second function is abandoned also, and-so on, until
either (1) a statement in an unlocked function or (2} an input statement is

(‘“’”\ reached, Then an error message is displayed. In the first case, the execution of

Y the unlocked function is suspended at the statement; in the second case, the 5100
waits for input.

Note: A locked function cannot be unlocked; therefore, if the function contains
an error, the function cannot be edited and the error corrected.

147

FUNCTION EDITING

Several methods are used when in function definition mode to display and revise
a user-defined function. Also, after a function definition has been closed, the
definition can be reopened and the same methods used for further revisions or
displays. (See Reopening Function Definition in this chapter.)

Displaying a User-Defined Function

Once in function definition mode, part or all of a user-defined function can be
displayed as follows:

® To display the entire function, including the function header and the opening
and closing V , enter [[]]. APL responds by displaying the function, then wait-
ing for the entry of additional statements. ‘

® To display from a specified statement to the end of the function, enter [[]n],
where n is the specified statement number. APL responds by displaying the
function from statement n to the end of the function, then waiting for the
last statement displayed to be edited (see Editing Statements in this chapter).

® To display only one statement of the function, enter [n[]], where n is the
statement number to be displayed. APL responds by displaying statement n
and waiting for the statement to be edited (see Editing Statements in this
chapter).

The following table summarizes function display when in function definition mode:

Entry Result

[n[] Displays statement n

[On] Dis‘p|ays all statements from n onward
[0} Displays all statements

Revising a User-Defined Function

Statements in a user-defined function can be replaced, added, inserted, deleted, or
edited as follows:

® To replace statement number n, enter [n] and the replacement statement. If
just [n] is entered, APL responds with [n], then waits for the replacement
statement to be entered. If the function header is to be replaced, enter [0]
and the new function header.

® To add a statement, enter [n] (n can be any statement number beyond the
last existing statement number) and the new statement. APL will respond
with the next statement number, and additional statements can be entered if
required.

148

® To insert a statement between existing statements, enter [n] and the new state-
ment. n can be any decimal number with up to 4 decimal digits. For example,
to insert a statement between statements 8 and 9, any decimal number be-
tween 8.0000 and 9.0000 can be used. APL will respond with another deci-
mal statement number and additional statements can be inserted between
statements 8 and 9 if required. (These and the following statements are auto-
matically renumbered when the function definition is closed.)

Note: The statement number 9999.9999 is the last valid statement number.
® To delete statement n, enter [An].

Note: The [An] and closing V cannot be entered on the same line. If the func-
tion definition is to be closed immediately after a staternent has been deleted,
the closing V must be entered on the next line.

® To edit a specific statement, use the following procedure:
1. Enter [n[J] (where n is a statement number). Statement n is displayed.

2. Choose one of the following options:
a. To change a character, position the cursor (flashing character) at the
character to be changed. Enter the correct character.
b. To delete a character, position the cursor at the character to be
deleted. Then press the backspace () key while holding the

command (CMD) key. The character at the cursor is deleted from
the line and the characters that were to the right of the deleted char-
acter are moved one position to the left.

c. To insert a character, position the cursor to the position where the
character is to be inserted. Then press the forward space ()

key while holding the command (CMD) key. The characters from the
cursor position to the end of the line are moved one position to the
right. For example: [1] A<1245 should be [1] A<12345. Position
the cursor at the 4 and press the forward space and command (CMD)
keys simultaneously. The display will look like this: [1] A<12_45.
Now enter the 3.

d. To delete all or part of a line, press ATTN to delete everything from
the cursor position to the end of the line.

3. Press EXECUTE. The next statement number is displayed.

Note: If more than one statement number is entered on the same line, only the
last statement number is used. For example, if a line contained
[31[8] [4] ‘'NEW LINE’, only statement 4 is replaced when EXECUTE is pressed.

c
L
o]
13}
c
S
L.

149

c
S o
- O
o .=
c X
> T
W ow

150

Reopening Function Definition

If you want to edit a function that has previously bezn closed, the function defini-
tion must be reopened. For example, if function R is already defined, the function
definition for function R is reopened by entering VR. The rest of the function
header must not be entered or the error message DEFN ERROR is displayegj
and the function definition is not reopened. The 5100 responds by displaying
[n+1], where n is the number of statements in R. Function editing then pro-
ceeds in the normal manner.

Function definition can also be reopened and the editing or display requested on
the same line. For example, VR[3]S<S+1 edits the function by entering the new
line 3 (S<S+1) immediately. Then the 5100 responds by displaying [4] and
awaiting continuation. The entire process can be accomplished on a single line:
VR[3]S+S+1Vopens the definition of function R, enters a new line 3, and termin-
ates function definition. VR[[J]V causes the entire definition of R to be displayed,
after which the 5100 returns to execution mode.

Note: You cannot reopen the definition of a function, delete a statement, and
close the function (for example, VR[A4]V) on the same line, since the closing V
cannot be on the same line as the [An].

When an error occurs in a function, the function name, the line number, and the
statement in error are displayed. A caret on the following line indicates where the
5100 stopped execution of the statement. The statement in error can be corrected
as follows:

1. Scroll down until the caret is removed from the screen.

2. Scroll up one line.

3. Insert a Vbefore the function name.

4, Correct the error in the statement.

5. Place a V after the statement.

6. Press EXECUTE.

This procedure works only if the complete statement is displayed.

4

An Example of Function Editing

In this example, the user-defined function AVERAGE is used to show how the
methods used to revise and display functions work:

VAVERAGE X - Define the function.
L1 "THIS FUNCTION CALCULATES AVERAGES'
E21 +/X+(+/X=X)V

AVERAGE 2 4 & 8= Execute and test the function.
THIS FUNCTION CALCULATES AVERAGES
5

VAVERAGELL .71 'THE AVERAGE IS Insert a statement
£1.81 C10] = ‘/’ﬂ”#,,———Dmmwsmmmth
L1l 'THIS FUNCTION CALCULATES AVERAGES'
L1l "THIS FUNCTION CQLCULQTEQkﬁVERQGES AND SUMS' Statement 1 was edited
L23 31 "THE HuM I8’ to look like this.
T4+ e
Lad +/7XV Add statements 3 and 4.

VAVERAGEL[1IV

¥ AVERAGE X T Display the function.

£1l "THIS FUNCTION CALCULATES AVERAGES AND SUMS'’
£23 "THE AVERAGE I8°
£33 +/ X+ (H/X=X)
Lyl ‘THE SUM I8°
£al +/X
v

AVERAGE 2 U 6 8 < Execute average.
THIS FUNCTION CALCULATES AVERAGES AND SUMS
THE AVERAGE I8

[

5
THE SUM IS
20
VAVERAGE [3] +/X+pXe Replace statement 3.
Fdd TAL] - Delete statement 1.
L2171 LOIAVERAGEASUM XV Replace the function header.
VAVERAGEASUMLIIIYV - Display the function.
vV AVERAGEASUM X
L1l "THE AVERAGE I8

£23 +/ X+ pX
£31 "THE SUM I8°
Cul +/X
v
AVERAGEASUM 2 4 6 8
THE AVERAGE I8

w)
THE SUM IS
20

VAVERAGEASUM L1321V . Display the function from
[3] CTHE SUM 18 statement 3 to the end.
£ul +/X

151

Trace

TRACE AND STOP CONTROLS

APL provides the ability to trace or stop execution of user-defined functions, pro-
viding the functions are not locked (see Locked Functions in this chapter).

Trace Control

Trace control is used to display the results of selected statements as a function
executes. The display consists of the function name followed by the number and
results of the selected statement. For example:

STEVE[1] 2 «——
/ (1] Result

Function ™~ Statement
Name Name

Statements to be traced are specified by a trace vector. The format of the trace
control function is TA STEVE<YV, where STEVE is the name of the function and
V is the vector specifying the statement numbers to be traced. For example, if

TA STEVE<2 3 5 is entered, the statements 2, 3, and 5 are traced each time
function STEVE is executed. TA STEVE<« 10 must be entered to discontinue
the tracing of function STEVE. To trace each statement of the function, enter
TA STEVE<« 1N, where N is the number of statements in the function:

STEVELIIV
V STEVE 1
L1l felxl
£21 Re2xl
£371 Cedxd
LWl Dl x]
LS ArB+C+H

=3

STEVE 2
20

TASTEVE &}

STEVE 2
STEVEL1T 2 \Trace the first four statements
STEVEL2] W in function STEVE.
STEVEL31 6
STEVELWT 8

20
TASTEVE €2 «<——Trace statement 2 in function STEVE.
STEVE 2

STEVEL21 4

20
TASTEVE €\ () =——Discontinue tracing in function STEVE.
STEVE 2

20

162

Trace control can also be set by statements within a function. These statements
initiate tracing when a variable contains a certain value. For example:

(‘ VSTEVELLIY
V STEVE T
L1l felxd
21 TASTEVE ¢ 3XA=2<—Trace statement 3 in function STEVE
. L33 Ce3xl when A equals 2.
(Lyl Dedpx ¥
- a5l A+
vV

STEVE 2
STEVEL31 6
16

(f BTEVE 3
- 24

Note: The following instruction will establish trace control for the first statement
" of each user-defined function in the active workspace:

) 73S0 e T AT COUINL B et),)L

This instruction can be used to find out what functions are called by another
function.

(-~ g The following user-defined function named TRACE will establish a trace vector
for each statement in a specified user-defined function:

VTRACELDIV
V TRACE NAME
C1l £ TA S NAME, "ex1telJCR" ' L NAME, " "
v

183

top

154

When executing the function TRACE, the argument must be entered in single
quotes. For example:

STEVELDIV
¥ STEVE T
L1 fslxl
L2 Bedx X
L3 Ce3xlI
Ll Neux ¥
IR ArB+CHD

TRACE 'STEVE ' <«———Establish a trace vector for each
STEVE 2 statement in function STEVE.
STEVEL1L]
STEVEL2]
STEVEL3]
STEVELY]
STEVELST 20
TASTEVE« ()
STEVE 2

Each statement of function
STEVE has been traced.

20

Stop Control

Stop control is used to stop the execution of a function just before specified
statements. At each stop, the function name and statement number of the state-
ment to be executed next is displayed. The statements are specified by a stop
vector. The format of the stop control function is SA STEVE<«V, where STEVE
is the name of the function and V is the vector specifying the statements. After
the stop, the system is in the suspended state (see Chapter 7); execution is
resumed by entering >[JLC (see Chapter 5). SASTEVE<« 10 (STEVE is the
function name) must be entered to discontinue the stop control function.

Stop control can be set by statements within a function. These statements
initiate halts when a variable contains a certain value. For example,

SA STEVE<4xN >8 means stop before statement 4 in function STEVE when
N is greater than 8.

Trace control and stop control can both be used in the same user-defined function.
An attempt to set trace contro! or stop control for a nonexistent function creates
a variable and causes a syntax error. For example:

YCLEAR
CLEAR WS

SAFel 2 3
SYNTAX ERROR

GAFe 1 2 3

A

YVARS

Y

Chapter 7. Suspended Function Execution

SUSPENSION
(’ The execution of a user-defined function can be interrupted (suspended) in a var-
B iety of ways: by an error message {see Chapter 11), by pressing ATTN (see

Chapter 1), or by using the stop control vector (see Chapter 6). In any case, the
suspended function is still considered active, since its execution can be resumed.
Whatever the reason for the suspension, when it occurs, the statement number of
- the next statement to be executed is displayed. A branch to the statement num-
(,,_ ber that was displayed or a branch to [JLC (*[JLC, see Chapter 5) causes normal
continuation of the function, and a branch out (—=0) exits the function.

When a function is suspended, the 5100 will:
® Continde to execute system commands except)SAVE, JCOPY, and)PCOPY.
® Resume execution of the function at statement n when —n is entered.
® Reopen the definition of any function that is not pendent. A pendent func-
tion is a function that called the suspended function. If a function called a
function that called a suspended function (and so on), it is also pendent
(see State Indicator in this chapter).
(V ® Execute other functions or expressions.
Note: The display of output generated by previous statements might have been
interrupted when the suspension occurred. - This would be caused by the delay
between execution of the statement and the display of the output.
STATE INDICATOR
The state indicator identifies which functions are suspended (*) and at what point

normal execution can be resumed. Entering)SI causes a display of the state indi-
cator. Such a display might have the following form:

c
o
@
c
9
[o}
«n
>
(%]

)81
HE71 %
GL21]
FL31

(This display indicates that execution was halted just before statement 7 of func-
tion H, that the current use of function H was invoked in statement 2 of function
G, and that the use of function G was invoked in statement 3 of F. The *
appearing to the right of H[7] indicates that function H is suspended; the func-

o tions G and F are said to be pendent.

155

During the suspension of one function, another function can be executed. Thus,
if a further suspension occurred in statement 5 of function Q, which was invoked
in statement 8 of G, a display of the state indicator would be as follows:

)81
QLE1 =
GL81
HE73 %
GL2]
FL31

An S| DAMAGE error (see Chapter 11) indicates that a suspended function has been
edited or a pendent function has been erased and the normal execution of the suspended
function can no longer be resumed. Therefore, when an S| DAMAGE error occurs, the
state indicator display will not include the damaged function name (however, the
asterisk is still displayed). For example, if function Q is edited and the modification
causes an S| DAMAGE error, the display of the state indicator would be as follows:

b RN
¥*
(5!:8.']‘\ No suspended function name is displayed.
HE?D ®
GL21
FL31

-
O
ot
8
T
=

156

A suspension can be cleared by entering a branch with no argument (that is, —).
One suspended function is cleared at a time, along with any péndent functions
(for that suspended function. The first branch clears the most recently suspended
function, as the following example shows:

-3
— 35T
(HME?1 %
GLa.
FL31
s It is a good practice to clear suspended functions, because suspended functions
(use available storage in the active workspace. Repeated use of = clears all the

suspended functions; as the functions are cleared, they are removed (cleared) from
the state indicator. When the state indicator is completely cleared, the state indi-
cator display is a blank line.

- Note: To display the state indicator with local names, enter the)SIV command
(see Local and Global Names in Chapter 6 for more information on the SIV list).

C

157

Chapter 8. Tape and Printer Input and Output

Input and output involving the tape or printer can be done with an APL shared
variable, which is a specific variable shared between the active workspace and the
tape or printer. During output operations, the data assigned to the shared variable
is printed, or is written on tape. During input operations, data is read from tape
and assigned to the shared variable; the shared variable can then be used in an ex-
pression in the active workspace. To do tape or printer input or output, the
following steps must be performed:

1. Establish a variable to be shared.

2. Open a data file on tape or specify printer output.

3. Transfer the data.

4, Close the data file or terminate the printer output.

5. Retract the variable being shared.

ESTABLISHING A VARIABLE TO BE SHARED

The [JSVO function is used to establish the variable name(s) to be shared. The
[JSVO function is dyadic (requires two arguments) and is entered as follows:

[EV0 "NAME(5) The left argument must be a 1.

The right argument NAME(S) can be up to eight variables to be shared. If more
than one name is required, the names must be entered as a character matrix with
each row representing a name. For example:

SHARE+Z Jp ' ONETWOTHR'

SHARE
ONE
1}1‘:2 ~—Each row represents a separate variable name.

158

Following are three examples of how the [JSVO function can be entered:

e 1 [ISVD "IIATA®

o A+"TIATA’
1 {16v0 A

o SHARE«3Z 1p'ARC: ‘Establishes three names (A, B,
1 118V0 SHARE and C) to be shared.

The 5100 will respond with a 2 for each shared variable that is successfully estab-
lished and a 0 or 1 for each variable that is not. If a 1 is displayed, a value other
than 1 was specified as the left argument for the [JSVO function. In this case, the
variable name must be retracted (see Retracting the Variable Name being Shared
later in this chapter) and reestablished as a shared variable before it can be used
for input/output. If a O is displayed, an error message (see Chapter 11) will also
be displayed.

Note: The instruction +/02[JSVO [JNL 2 will display the existing number of
shared variables in the system, and the instruction (0=[JSVO [JNL 2)/[1] ONL 2
will display the existing shared variable names.

OPENING A DATA FILE OR SPECIFYING PRINTER OUTPUT

The first value assigned to the shared variable must be information required to
open a data file on tape or to specify printer output. When opening a data file,
this information specifies the following:

® Data to be transferred to tape or from tape

® Device/file number

® File ID

® Data format to be used

Note: {if this information has already been assigned to a variable name that is
being used as the right argument for the []SVO function, the 5100 will establish

the variable name to be shared, then open the data file or specify printer output.
The return codes are described later in this chapter.

159

160

This information must be character data (enclosed in single quotes) and must be

entered with a blank between each parameter, as follows:

IN
or
ouT
name < ' or device/file number [ID=(file ID)] [MSG=0OFF]
ADD
or
PRT

where:

name is the name of the variable being shared.

or

TYPE=or
11
or
12

IN specifies that the data is to be transferred from tape into the active

workspace.

OUT specifies that the data is to be transferred to a tape file.

ADD specifies that the data is to be transferred to an existing tape file,

following the last record in that data file.

PRT specifies that the data is to be printed.

Note: When PRT is specified, the only other information that can be speci-

fied is MSG=0OFF (which is defined later).

device/file number specifies the tape unit and file number. For example:

1003

b

1——— File Number 3

Tape Unit 1

Note: |f fewer than four digits are used, tape unit 1 is assumed, and the

value entered represents only the file number.

ID=(file ID) (optional) specifies from 1 to 17 characters enclosed in
parentheses:

® For an IN or ADD operation, the entry (file ID) is compared to the file ID in

the file header; the open fails if they do not match.

® For an OUT file, the entry {file ID) is put in the file 1D field of the file header
(see the)LIB command in Chapter 2). If the ID=(file ID) parameter is not

specified, the characters DATA are put in the file ID field.

It is a good practice to give the data files meaningful names; for example, a
file that contains sales data could be named SALES. Also, any blanks within

the 17 characters become part of the file ID.

Note: To do an OUT operation to an existing data file (write new data
over the existing data), the file ID specified must match the existing file

ID for the data file or the data file must be dropped using the)DROP command

(see Chapter 2).

— —_

by, - :

MSG=0FF (optional) specifies that no error message is to be displayed for
nonzero return codes (see Return Codes in this chapter).

A
or
|
TYPE=or (optional) can only be specified for OUT operations. It specifies the
B
or
12

data format to be used when writing data to tape:

® When TYPE=A is specified, the APL internal data format is used; that is,
the data is written on tape in the same format that it is stored in, in the
active workspace.

® When TYPE=l or TYPE=I1 is specified, the exchange data format is used.
When the exchange data format is used, only character scalars or vectors
can be assigned to the variable being shared. Therefore, when storing numeric
data or arrays on tape using the exchange data format, the data must first be
changed to a character scalar or vector (see the ¥ function in Chapter 4).

The following items apply to an exchange data file that is used by both the
5100 APL and BASIC languages:

1. All data items must be separated by commas. For example, the numeric
vector 1 3 b 6 must be changed to character data, then commas placed in
the blank positions.

2. Negative signs must be replaced by minus signs.

3. Enclosing single quotes must be part of any data that represents character
constants. Also, any embedded quotes in the character constant must be
represented by double quotes.

Note: The 5100 BASIC language accepts only the first 18 characters in
each character constant.

4. The 5100 BASIC language creates a logical record for each PUT statement
or each row of an array with a MAT PUT statement.

® When TYPE=12 is specified, the general exchange data format is used; it is the
same as TYPE=I| (and TYPE 11) except that the data file can also be used as
a BASIC language source file.

Note: The data format can be specified only for an OUT operation. For IN
or ADD operations, the data format is specified by the data file type (see
)LIB command in Chapter 2). If the data format is not specified for an OUT
operation, the APL internal data format (TYPE=A) is used.

CAUTION

If the tape cartridge is removed from the 5100 when an OUT or ADD file is open,
the file will be unusable. If another tape is inserted at this point, one of its files
may be destroyed. See Closing a Data File or Terminating the Printer Output in
this chapter for information on how to close a data file.

161

j=2]
c
c
Q
a
@)

162

The following four examples, using an APL shared variable named EXAMPLE,
show how the information required to open a data file or specify printer output
can be entered:

1. EXAMPLEe ' IN 1001 ID=(TEST)

1—The value TEST will be compared
to the file header field.

File 1 on tape unit 1 is to be opened.

Data is to be transferred from tape
into the active workspace.

2. EXANMNPLE«'QUT 003 IN=(TEST2) TYPE=I"

) [

Exchange data format.
is to be used.

The value TEST2 will be placed
in the device header field.

Data is to be transferred to tape
from the active workspace.

3. EXAMPLEeADD 3°

File 3 on tape unit 1 (assumed) is to be opened.

Data is to be transferred into an existing file on tape.

Note: Since the file ID was not specified, no value is compared to the file
header field.

4. EXAMPLE®'PRT MSG=0FF"

No error messages will be displayed
for nonzero return codes.

Data is to be printed.

After the information has been entered, a code (2-element vector) that indicates
whether the operation was successful or not is assigned to the shared variable. A
return code of 0 O indicates the operation was successful, and a nonzero return
code indicates that the operation failed. See Return Codes in this chapter for a
description of each return code.

——File 3 on tape unit 1 (assumed) is to be opened.

TRANSFERRING DATA

(After the data file has been opened or printer output specified, data can be trans-
ferred using the shared variable. (An example using tape and printer input/output
is shown later in this chapter.)

(' Transferring Data to Tape (OUT or ADD Operation)

When data is assigned to the shared variable, the data i$ written on tape and a
return code is assigned to the shared variable. A O O return code means the data
was transferred successfully and a nonzero return code means the transfer of

data failed. See Return Codes in this chapter for a description of each return code.

For OUT operations to an existing data file (writing new data over the existing data),
any existing data following the new data cannot be used again.

For ADD operations, the new data is written to the data file starting at the 512-byte

boundary following the last record in the file. This might cause some tape storage
to be unused, for example:

512-Byte Boundaries

‘.
Wi
(|] > \ Y Data File
L A / — N ———
t Unused Tape
Start of the data for Storage Start of the
an OUT operation data for an

ADD operation

| End of the data for
an OUT operation

The unused tape storage that results from an ADD operation is unavailable for use.
However, you can make all the unused tape storage available for use (compress the

(data), as follows:

1. Transfer the data from the data file.

1]
=
-
b
Q
=t
wn
c
3]
—
b—

2. Perform an OUT operation to write all the data back on tape.

gy
(.-/

C

163

Transferring Data from Tape (IN Operation)

When data is transferred from tape, the data is read from tape and is assigried to
the shared variable in the same sequence as it was written to tape. New data is
read from the tape file and assigned to the shared variable each time the shared
variable is used. (There is no return code assigned to the shared variable after an
IN operation.)

Using the format function (¥) directly on a character shared variable when doing
input operations causes alternate records to be skipped.

When doing an IN operation with an exchange data file, the following conditions
occur if a cursor return character {X‘9C’) or end-of-block character (X'FF’) was
embedded in a character vector that was written to tape:

® if a cursor return character was embedded in the character vector, the data
will be read from tape in a different sequence than it was written to tape.
This condition occurs because as the interchange data is written to tape, the
system writes an end-of-record character (X'9C’) after each character vector
(record) that was written to tape. The end-of-record character and the cursor
return character are the same. When used on tape, this character separates the
data (records) so that it can be read from tape in the same sequence as it was
written to tape. However, if a cursor return character is embedded in the data
that was written to tape, the system will recognize it as an end-of-record char-
acter when the data is read from tape.

® If an end-of-block character was embedded in the character vector, any data
from the embedded end-of-block character to the next physical record is not
read from tape. This condition occurs because the system looks at the tape in
512-byte segments (one physical record}. A physical record can be terminated
by an end-of-block character (X‘FF’}). When the system is reading data from
the tape and an end-of-block character is encountered, the system skips to the
next physical record and continues reading data. Therefore, if an X'FF’ char-
acter is embedded in the data that was written to tape, the system recognizes
it as an end-of-block character when the data is read from tape and skips
ahead to the next physical record.

Transferring Data to the Printer (PRT Operation)

When data (character scalars or vectors only) is assigned to the shared variable, it is
printed and a return code is assigned to the shared variable. A 0 0 return code indicates
the data was printed successfully and a nonzero return code indicates the opera-

tion failed. See Return Codes in this chapter for a description of each return code.

Note: The JOUTSEL OFF command is automatically issued by the system when
doing PRT operations. The JOUTSEL option will return to its previous setting
after the PRT operation has been terminated (PRT termination is discussed next).

164

CLOSING A DATA FILE OR TERMINATING THE PRINTER OUTPUT

Transferring an empty vector will close the data files or terminate the printer out-
put and a final return code will be issued. A 0 O return code indicates the file
was closed or printer output was terminated successfully. See Return Codes in
this chapter for a description of each return code. Also, for an IN operation, the
file is closed and a return code is issued if an error occurs due to the device or if
an end-of-file empty vector is returned.

CAUTION
For OUT and ADD operations, if the tape cartridge is removed from the 5100
before a data file is closed, the data in the file will be unusable.

After a data file has been closed, another data file can be opened by assigning

the information required to open a file to the shared variable. Once the tape and
printer input and output operations are done and the data files are closed or print-
ing is terminated, the variable name being shared should be retracted. How to re-
tract the variable name is discussed next.

RETRACTING THE VARIABLE NAME BEING SHARED

The [JSVR function is used to retract a variable name being shared. That is, once
the [JSVR function has been used successfully, the variable name still exists as

an APL variable, but it cannot be used to transfer data to tape or printer, unless
it is reestablished as a shared variable. The [JSVR function is monadic (takes one
argument) and is entered as follows:

[ISVR "NAME(S)'

where NAME(S) can be the names of up to eight variables. If more than one name
is required, the names must be in a character matrix with each row representing a
name (see Establishing a Shared Variable earlier in this chapter).

The 5100 will respond with a 2 (or a 1 if the left argument for the [JSVO func-
tion was not a 1—see Establishing a Variable to -be Shared in this chapter) for each
variable name that is successfully retracted and a O for each variable name that is
not successfully retracted. Normally, if a variable name cannot be successfully
retracted, it was never properly established as a shared variable.

Note: If the [JSVR function is used before a file is closed, the system will auto-
matically close the file.

L
w
o)
oy
‘&
[=]
5

165

Codes

166

RETURN CODES

Return codes assigned to the shared variable when doing input/output operations
indicate whether or not the operation was successful. If the return code is non-
zero and MSG=0FF was not specified, an error message is also displayed.

Operation of the system does not stop when a nonzero return code is assigned.
Therefore, if you have a user-defined function that is doing input/output opera-
tions, the user-defined function should check the return code that was assigned

to the shared variable to make sure each operation is successful. When you are check-
ing the return code, the shared variable cannot be referred to more than once.

Following is a description and/or user’s response for each return code and error

message:

Code

00

1 eee

20

30

40

50

60

70

80

Error Message

INVALID FILE

INVALID DEVICE
or
INVALID DEVICE NUMBER

INVALID FILE NUMBER

NOT WITH OPEN DEVICE

INVALID PARAMETER

WS FULL

DEVICE NOT OPEN

Description and/or User’s Response
Operation successful.

Device error; the second element
(eee) is the error code (see
ERROR eee ddd in Chapter 11).

The specified file cannot be used
for input/output operations.

Enter the information required to
open the file again, using device
number 1 or 2.

Enter the information required to
open the file again, using a valid
file number.

The specified device is already being
used for input/output operations;
the existing open file must be closed
before another file can be opened.

The information required to open
the file was entered incorrectly;
enter it again, correcting any key-
ing errors.

Use the)JERASE command to erase
any unwanted objects; then enter
the information required to open
the file again.

Open the file.

Code

90

100

110

Error Message Description and/or User's Response

This return code is only a warning;
an empty vector was read from tape,
but the empty vector is not the
end-of-file empty vector.

EXCEEDED MAXIMUM This error was probably caused by
RECORD LENGTH the tape being removed before the
file was closed. The remaining data
in the file cannot be read.

INVALID DATA TYPE The wrong type of data was used;
for example, noncharacter data was
sent to an exchange file, noncharacter
data was used as the information
required to open a file, or non-
character data was sent to the
printer.

AN EXAMPLE USING TAPE AND PRINTER INPUT/OUTPUT

In this example, file number 11 on tape unit 1 will be used as a data file. First,
a variable name must be established to be shared and the data file opened so that
data can be written to the file (OUT operation):

File 11 is an unused file.

JWLIR 11
011 00 016 . .
Establish a variable name
1 [15v0 'SHARE '«—m
e 1S ? to be shared.
e Open the data file.
SHARE« ' QUT 1011 IN=(INVENTORY)'
1 o
00 SHARE T Check the return code
~The file was opened that was assigned to

successfully. the shared variable.

167

Now, as data is assigned to the shared variable, it is transferred (written) to the

data file:

SHARE+ ' 2456300 SCREW ®5000°
SHARE

0o
SHARE« 2456400 NUT Tooa!
SHARE

00
SHARE ¢ 24546550 WASHER 500
SHARE

00
SHARE« ' S5357800 CIRC RN 10
SHARE

00
SHARE ¢ v) «—————— After all the data has been transferred,

0 0 SHARE the file must be closed.

If more data is to be added to an existing data file but the file is closed, a vari-
able name must be established to be shared and the data file opened again:

Note: In this example, the variable name SHARE has not been retracted and can
still be shared.

/Open the data file again.
SHARE« "AND 1011 ID=(INVENTORY)'
SHARE

SHARE ¢ ' 5357950 RBOARD &'
SHARE >These records are added

s b g e g gy B , 7 following the existing
2::2:35(. M35 PGl AW 1 records in the file.

00

00

SHARE ¢ 0 The file is closed.
SHARE

Since no more data is to be written on tape, the shared variable should now be
retracted:

[J5VR ' GHARE"®

e

168

L1l
L2
31
Cul
£al
Lal
L7131
£agl
L9l
rial
N
L N
K133
iyl
L1181
L1661
L1l
1181
L1911
L2201l
L2171
£221
L231

Now, assume that at a later time you want to read the data from file 11 and
print it on the printer, using the following user-defined function:

VPRINTLIV

V PRINT,; WORK

AREAD DATA FROM THE DATA FILE AND ASSIGN IT TO WORK
LOOP : WORKeDATA

ACHECK FOR AN EMPTY VECTOR (INDICATING AN END OF FILE OR
AaTAPE ERROR)—-AN EMPTY VECTOR HAS A SHAPE OF 0 (NO ELEMENTS)
+(0=pWORK) /LHONE

ADTISPLAY AND PRINT THE VALUE ASSIGNEDN TO WORK
PRNT&[J¢WORK

ACHECK THE RETURN CODE FOR THE PRINT OPERATION
(0 0 #+/WORKEPRNT)I/PRINTAERROR

+L.00P

PRINTAERROR: PRINT ERROR--THE RETURN CODE 1§:
WORK

o} (}
A TERMINATE THE PRINTER OUTPUT

DONE : PRNT&x 0

ACHECK THE RETURN COLES TO MaAKE SURE AlL TAPE INPUT
ADPERATIONS WERE SUCCESSFUL AND THE SHARED VARIABLE
APRINTER QUTPUT IS TERMINATED '

(0 0 #+/WORKeDATA) /TAPEAERROR

A0 0 #+/WORKEPRNTY /PRINTAERROR

+0
TAPEAERROR: "TAPE ERROR-~THE RETURN COIE IS:
WORK

v

The variable names to be shared must be established again and the data file
opened. Also, printer output must be specified:

NAMES¢2 Lo ' DATAPRNT®

NAMES
DATA Establish the variable names
PRNT 4/////’////}obeﬁwm¢
1 [I8V0 NAMES
22
» Open the data file for input.
DATA«"IN 1011 ID=(INVENTQRY)'
DIATA
nao
PRNT& ' PRT® = Specify printer output.
PRNT
400

169

Now, when the function PRINT is executed, the data file is read, displayed, and

printed:
PRINT
2456300 SCREW 5000
24546000 NUT 7000
2UG4550 WASHER]
S357800 CIRC RD 10
SRGTS0 ROARD 5
357951 AW 1

After the operation is complete, the shared variable names should be retracted:

[15¥R NAMES

170

Chapter 9. More Things to Know About the 5100

DATA SECURITY

You are primarily responsible for the security of any sensitive data. After you
are through using the 5100, the data in the active workspace can be removed by
one of the following:

® Using the JCLEAR command to clear the active workspace
® Pressing the RESTART switch
® Turning the POWER ON/OFF switch to off

There are several methods available for protecting or removing sensitive data on a
tape. These methods are:

® Assigning & password to the workspace when writing the active workspace on
tape.

® Rewriting a tape file, which makes the old data inaccessible.

® Filling a data file with meaningless data. For example, the following user-
defined function fills file 4, a data file named DATA on tape 1, with zeros:

VSECURITYL[IV

V SECURITY
L1114 [8vo ‘A :
E21 A« OUT 4 ID=(DATA)
L31 Ee 10 1000 p0
[l WR:A+R
[51 +(ACLI=0)/WR

K’

Note: ERROR 010 ddd will be displayed after the data file has been filled with
zeros. When this error is displayed, enter

Aerd
[ISVR ‘A’

3

>
-~
=
=
[3]
Q
(%]

Data

171

5100 STORAGE CAPACITY

The base 5100 (Model A1) has a storage capacity of 16K (K = 1024 bytes).
Figure 4 shows how this storage is allocated for various requirements. Notice
that the workspace available to the user (active workspace) is 10,600 bytes,
while the remaining bytes are used for internal purposes. The storage capacity
is increased in the following models of the 5100:

Model A2 is 32K
Model A3 is 48K
Model A4 is 64K

In these models, all additional storage is allocated to the active workspace.

For example, on the Model A4, the active workspace is approximately 60,000
bytes.

Active Workspace

10,600
Bytes

’ Symbol Table (see note)

5784 5100 Internal Storage Requirements for Pointers,
Bytes Counters, etc

Note: The symbol table requires eight bytes of storage for
each symbol allowed in the active workspace (see }]SYMBOLS
in Chapter 2).

Figure 4. Storage Allocation for a Model A1 5100

172

Storage Considerations

(‘ The following list shows how many bytes of storage are required for each data
type that can be in the active workspace:
Data Type Number of Bytes Required
Character constant or variable name 1 byte per character
(. Whole numbers that are equal to or 4 bytes

less than 23!-1

Whole numbers that are greater than 8 bytes
231
(v, Decimal numbers 8 bytes
Logical data 1/8 byte (1 byte can contain 8

ones or zeros)

Because the 5100 active workspace contains a fixed amount of storage, it is good
practice to conserve as much storage as possible. Following are some considera-
tions that can be used to conserve storage:

® Make all objects (variables and user-defined functions) not required for use out-
side of a user-defined function local to the function.

‘ ® Store data in data files on the tape, and use an APL shared variable (see
C Chapter 8) to transfer the data into the active workspace when required.

® Clear suspended functions (see Chapter 7) from the active workspace.

® Group user-defined functions by related operations and store each group into
a workspace file on tape. Then when a certain group of related functions is
required to process data in the active workspace, the stored workspace contain-
ing these functions can be copied into the active workspace. When the pro-
cessing is done, the functions can be expunged (see Chapter 5) and another

. group of functions (one workspace) can be copied into the active workspace.

® |f a value consists of all 1’s and 0O's, store the value as logical data. For example,
you have the following vector:

(VECTOR&10p(2~1)
VECTOR
11311111111

2

The result is a vector of ten 1's, and each 1 requires four bytes of storage. 8

C, However, the vector can be changed to a logical vector as follows: :Tj

T

- VECTORe1AVECTOR g
VECTOR

1111111111

‘ Y The result looks just like the previous result; however, only 2 bytes of storage
- was required.

173

w
c
o
=
T
=
%]
=
5
c
o
O

174

® Since each data item requires at least 12 bytes of overhead, an array of six
elements would require approximately 60 bytes less storage than six scalars.

® Names of 3 characters or less require 8 bytes of storage in the symbol table

(the symbol table is part of the active workspace where the names of all the
symbols, including variables, user-defined functions, and labels, are stored).
Names of 4 characters or more require an additional 8 bytes plus 1 byte for
each character in the name.

Note: Even if an object is erased from the active workspace, the storage used
for its name will not be available for use unless the contents of the active
workspace are written to tape with a)SAVE command and then loaded or
copied back into.the active workspace.

® [dentical names that are local to more than one user-defined function do not
require additional symbol-table space for each function.

When the contents of the active workspace are written to tape using the
JCONTINUE command, then the stored workspace is loaded into a 5100

with a larger active workspace, the amount of available workspace (see [JWA
system variable in Chapter 5) remains the same as it was when the contents of
the active workspace were originally written to tape. To take advantage of the
additional storage in the larger active workspace, write the contents of the active
workspace to tape using the)SAVE command, then load the stored workspace
back into the 5100.

The following formula shows how much storage in the active workspace is required
to perform an input or output operation to tape using an APL shared variable (see
Chapter 8):

REQUIREDA STORAGE = BUFFER + SHAREDAVARIABLE

where:

e REQUIREDASTORAGE is the amount of storage that must be available in the
active workspace (see [JJWA in Chapter 5) before an input or output operation
to tape can be performed. If there is not enough available storage, a WS FULL
error occurs.

® BUFFER is the amount of storage in the active workspace reserved by the 5100 for
input and output operations. This storage is reserved when the data file is opened.
For all output operations and input operations using an internal data file (file type
8), BUFFER is about 650 bytes. For input operations using an exchange data file
(file types 2 and 3), BUFFER is about 650 bytes plus the storage required for the
largest record in the data file.

® SHAREDAVARIABLE is the amount of storage required for the data assigned to
the shared variable.

TAPE DATA CARTRIDGE HANDLING AND CARE

(:

Protect the tape data cartridge from dust and dirt. Cartridges that are not
needed for immediate use should be stored in their protective plastic envelopes.

Keep data cartridges away from magnetic fields and from ferromagnetic mater-
ials that might be magnetized. Information on any cartridge exposed to a
magnetic field could be lost.

Do not expose data cartridges to excessive heat {more than 130° F) or sunlight.

Do not touch or clean the tape surface.

If a data cartridge has been exposed to a temperature drop exceeding 30° F since
the last usage, move the tape to its limits before using the tape. The procedure
for moving the tape to its limits is:

1. Use the) LIB command to move the tape to the last marked file.

2. Use the JMARK command to mark from the last marked file to the end of
the tape. For example:

JMARK 200 1 n
where n is the number of the last marked file, plus one.

3. When ERROR 012 (end of tape) is displayed, use the) REWIND command
to rewind the tape.

175

Chapter 10. The 5103 Printer

176

The IBM 5103 Printer is available as a feature attachment and has these
characteristics:

Bidirectional printing (left to right, then right to left). The 5103 bidirectional
printing operates as follows:

The print head moves from the left margin and prints a line. Succeeding lines
will be printed in either direction depending on which end of the new line is
closest to the current position of the print head. The print head will be
returned to the left margin periodically when printing is not imminent.

132 characters across the print line.

Note: |f the width of the forms is less than 132 characters and the [JPW
system variable (see Chapter b} is greater than the width of the forms,
loss of data will occur as the print head leaves the form.

Capability of using individual or continuous forms. Maximum number of
copies is six, but for optimum feeding and stacking, I1BM recommends a
maximum of four parts per form,

Adjustable forms tractor that allows the use of various width forms. The
forms can be from 3 to 14.5 inches (76.2 to 368.3 mm) wide for individual
forms and from 3 to 15 inches (76.2 to 381 mm) wide for continuous forms.

Print position spacing of 10 characters per inch and line spacing of six lines
per inch.

Stapled forms or continuous card stock cannot be used.

The character printing rate is 80 characters per second. The throughput in
lines per minute is function-dependent.

A vernier knob (located on the right side of the printer) that allows for fine adjust-
ment of the printing position. This knob should only be used when the print head
is in its leftmost position.

How to Insert Forms

Form Guide Rack

Plastic Shield 7

Paper-Advance Knob
Vernier Knob

Forms Path for Singlepart Forms

Rollersy//;—:_\\,

w4
N

Forms Path for Multipart Forms

Rollers

P

Platen /
\d
7

Friction Feed Rolls

o]

\

g

Rollers

Paper Release Lever

Forms Guide Rack
(in lower position)

~—Forms Guide Rack

o

Pivot the plastic shield forward.
Push the print head to the extreme left position.

For single part forms, pivot the form guide rack
up and forward to a vertical position. For multi-
part;forms, leave the form guide rack in the
horizontal position.

The diagrams below and to the left show the proper
forms path for singlepart and multipart forms.

Push the paper release lever to the rear to acti-
vate the friction feed rolls.

Place the forms on the table behind the printer.

Note: The forms must be positioned behind the

printer so that the forms feed squarely into the printer.

Thread the paper down, over the rollers, behind the
tractors, and behind the platen.

Turn the paper-advance knob to move the paper around

the platen until you can grasp it with your fingers.

177

Tractor Cover and Pins

17.

18.

10.

11.

12

13.

14.

15.

16.

Open both tractor covers.

Pull the paper release lever forward to disengage the
friction feed rolls.

Pull the paper up and place the left margin holes over the
tractor pins. Be sure the left tractor is in its leftmost
position.

Close the left tractor cover.

Squeeze the two knobs on the right tractor and slide the
tractor to align the pins with the right margin holes.

Place the right margin holes over the tractor pins.
Close the right tractor cover.

For singlepart forms, pivot the form guide rack to a
horizontal position

Turn the paper-advance knob to position the form
for the first line to be printed. The paper should exit
over the form guide rack.

Note: To move the form backward, turn either paper-
advance knob backward and pull the form from be-
hind the printer to keep the form from buckling at the
print head.

Close the plastic shield.

The plastic guides on the rear of the wire rack should
be positioned (one on each side of the forms) so as to
aid in guiding the forms for proper feeding. These
guides are positioned by sliding them back and forth.
If you are installing the printer, return to step 7 of
the Printer Installation Procedure.

CAUTION

The switch that senses end of forms is deactivated when the
friction feed rolls are engaged. Thus, the print wires could
hit the base platen if no forms are in the printer.

178

How to Adjust the Copy Control Dial For Forms Thickness

Copy Control Dial

If you are using singlepart forms, set the copy
control dial on 0.

If you are using multipart forms and the last sheet
is not legible, rotate the copy control dial toward O
one click at a time to obtain the legibility you desire.

If you are using multipart forms and the ribbon is
smudging the first sheet, rotate the copy control
dial toward 8 one click at a time until smudging
stops.

How to Replace a Ribbon {Part Number 1136653)

POWER ON Switch

X

Printer Cov\

Forms Tractor

Turn off power to the printer.

Tilt the forms tractor back by lifting both sides at the
front.

Raise the printer cover.

179

-
)
e
c
‘=
a

Ribbon Box Cover

Feed Roll 4,
Print Head Release Knob
5.

7.

9.

Ribbon Loop

Print Head

Ribbon Box

Loop

Printer

180

10.

1.

12.

13.

Be sure that the print head is to the extreme left.

Turn the feed roll release knob counterclockwise until
it points to the right.

Open the ribbon box cover.
Put on the gloves supplied with the new ribbon.

Remove the old ribbon from the guides being careful to
disengage it from the clip on the print head.

Lay the ribbon loop on the top of the ribbon in the rib-
bon box. Pick up the entire ribbon and discard it.

Disk

Ribbon Holder

Eject the new ribbon from its holder into the ribbon
box by pressing on the disk.

Remave the disk from the ribbon and discard the disk
and the holder.

Hold the coil lightly with one hand and pull about 10
inches (254 mm) of ribbon from the coil.

Form a loop from the ribbon across the print head.

b

Upper
Guide Post

Platen

Feed Rolls

Horizontal
Guides

Left \

Guide Post Guide Shoe

Slot

| I R4
Print Head X‘ l // j
A

®<_ Feed Roll

Release Knob

N\

Ribbon Box

14.

15.

16.

21.

22,

23.

Thread the part of the loop nearest the platen between
the feed rolls and on the inside of the upper guide post.

Turn the feed roll release knob clockwise to close the

feed rolls.

Thread the ribbon between the print head and the platen.

Be sure the ribbon is under the clip on the print head.

Thread the other part of the loop through the slot i
bottom of the ribbon box.

n the

Thread the ribbon through the guide shoe and around

the left guide post.

Insert the horizontal part of the ribbon twist {bottom

edge first) between the two horizontal guides.

Move the print head back and forth across the
platen to remove the slack from the ribbon. Con-
tinue moving the print head until you are sure
that the ribbon feeds properly. Leave the print hea
at the extreme left.

Close the ribbon box cover.
Close the printer cover and turn the power on.

Reposition the form tractor.

d

181

Chapter 11. Error Messages

Error messages can result when using APL primitive (built-in) functions, user-
defined functions, system commands, system variables, or input/output opera-
tions. The following list contains the APL error messages along with some pos-
sible causes for the error condition and a suggested user’s response:

Error Message

ALREADY MARKED

CHARACTER ERROR

DEFN ERROR

DEVICE NOT OPEN

DEVICE TABLE FULL

182

Cause

The specified file was previously marked.

An invalid character was entered.

An invalid request to ue the function
definition mode was made:

® A V symbol was erroneously used in
a statement.

® An attempt was made to reopen a
locked function.

® An attempt was made to reopen a
function using more than just the
function name.

® An attempt was made to open a new
function definition using the name of
a previously defined global variable name.

® An invalid edit request was made in
function definition mode.

® An attempt was made to edit a pen-
dent function.

An attempt was made to read a data file
and the file is not open.

An attempt was made to establish more
than eight variable names to be shared
for tape or printer input/output.

User‘s Response

If the file is to be remarked, enter GO.
Note: Any existing data in the files
following the last re-marked file will no

longer be available.

Enter a corrected statement.

If the statement was intended to open or
close a function, the V is valid only in the
beginning and ending positions.

Enter a corrected statement.

Enter a different function name or erase
the global variable.

Enter a valid edit request.

If the suspended function execution can be
terminated, clear the state indicator (see
Chapter 7), then edit the function.

Assign the information required to open the
file to the shared variable.

Retract any unused shared variable names.

(

Error Message

DOMAIN ERROR

ERROR eee ddd

ERROR 002 ddd

ERROR 003 ddd

ERROR 004 ddd

ERROR 005 ddd

ERROR 006 ddd

ERROR 007 ddd

ERROR 008 ddd

Cause User’s Response

The function indicated by the caret (A) Determine the correct arguments for the
cannot operate on the arguments given: function in error. Then correct the state-
ment in error.
® The result exceeds the capacity of
the 5100 (<~ 7.237.. .E75 or
>7.237. . .E75).

® A character argument cannot be used
in an arithmetic operation.

® The argument is not mathematically
defined for the function (that is, 122 0).

® Numeric and character data cannot
be joined together.

® An error occurred in a locked function.

® Format length is incorrect.

eee is the error code for an input/output device operation and ddd is the device number.
The device numbers are: 500—printer; 001—built-in tape unit; 002—auxiliary tape unit.
Following is a list, cause, and user’s response for the input/output device error messages:

Command error. Performing tape operations with an un-
‘ MARKed cartridge will cause error 004.
Tape error. Otherwise, try the operation again. If the
error occurs a second time, call your ser-
Tape error or second tape not ready. vice representative.
Uneven winding of the tape. Move the tape to its limits using the procedure

described under Tape Data Cartridge Handling
and Care, in Chapter 9.

The tape cartridge is not inserted in Insert a tape cartridge and try the

the indicated tape unit. operation again.

An attempt was made to write on a tape If you want to write on the tape, turn the
that is file-protected. (The SAFE switch SAFE switch on the tape cartridge off of
on the tape cartridge is in the SAFE the SAFE position.

position.),

Tape read error. Use the)PATCH command and Tape

Recovery program (see Chapter 2) to
recover as much data as possible.

The tape cartridge was probably removed Try the operation again. |f the error

from the tape unit when data or a work- occurs again, copy the files following the

space was being written to tape. The file that caused the errors onto another

data in the file cannot be used. tape. Then use the]MARK command and
re-mark the tape from the file that caused
the error.

183

rror
Messages

Error Message

ERROR 010 ddd

ERROR 011 ddd

ERROR 012 ddd
ERROR 013 ddd

ERROR 014 ddd

ERROR 050 ddd

ERROR 051 ddd

ERROR 052-059 ddd

EXCEEDED MAXIMUM
RECORD LENGTH

IMPLICIT ERROR

INCORRECT COMMAND

184

Cause

Data is to be written to a data file, but
all the space in the file has been used.

An attempt was made to write the active
workspace on tape with a JSAVE
command, but the specified file could
not contain all the information from the
active workspace.

A file number was specified that has
not been marked.

The end of the tape has been reached.
The specified device is not attached.

Device error.

The printer has run out of forms.

The printer POWER ON/OFF switch is
turned off.

Printer errors.

The tape was removed before the data
file was closed during a tape input/
output operation.

The system variable that precedes the
error message was previously assigned
an invalid value or was undefined in a
function due to the system variable
being made local to the function.

Note: This error message is not displayed
until the system variable in error is used
by the APL system.

A system command was entered
incorrectly:

® The command keyword was not a
valid keyword.

® One of the parameters was entered
incorrectly.

® Too many parameters were entered
for the command.

User’s Response

Use the JMARK command to format a

larger file and do the operation again. X

Use a larger file to save the active
workspace.

Specify the correct file number or use the
JIMARK command to mark the tape.

Use another tape cartridge.

Try the operation again. If the error
occurs a second time, call your service
representative.

Insert forms in the printer (see Chapter 10).

Turn the POWER ON/OFF switch on.

Try the operation again. |f the error
occurs a second time, call your service
representative.

The data in the file cannot be used.

Assign a valid value to the system variable
(see Chapter 5).

Enter the command in its correct form.

(

®

A 3
\~ -

Error Message

INDEX ERROR

INTERFACE QUOTA
EXHAUSTED

INTERRUPT

INVALID DATA TYPE

INVALID DEVICE

INVALID DEVICE
NUMBER

INVALID FILE

Cause

The index values given are outside the
boundaries of the array or a primitive
function or APL operator being sub-
scripted by index [1] has been given
an argument that does not have an it
dimension.

An attempt was made to establish more
than eight variable names to be shared
for tape or printer input/output.

Attention was pressed twice when the
5100 was processing data or an invalid
tape input/output operation was
attempted.

Only exchange data can be used, but
there was an attempt made to use data
that is not a character scalar or vector.

An attempt was made to open a data
file with other than character data.

A device was specified that does not
exist or is incorrect for the operation
to be performed.

A device number that does not exist
was specified.

The file type is not valid for the
attempted operation. For example,
an attempt was made to load a.data
file or read a workspace file.

An attempt was made to load or copy
a damaged file. The file was probably
damaged by the tape being removed
from the tape unit before a save
operation was complete.

The wrong file ID was specified.

User’s Response

If a variable is being indexed, check its
shape (p A} against the index values.

0%
%]
f=2/
]
»
7]
Y]

=

If a primitive function or operator is being
indexed, determine the rank(s) (p pA) of
its argument(s); then check the index to
see if it is equal to or less than the re-
quired rank.

Check the index origin ([]IO) to ensure
that it is consistent with the statement

being executed.

Retract any unused shared variable names.

If an invalid tape input/output operation
was attempted, check the file open infor-
mation to make sure the file was opened
correctly.

Change the data to a character scalar or
vector.
Enclose the information required to open

the data in single quotes.

Specify the correct device number.

Specify the correct device number.

Use the)LIB command to determine the
file type.

The data in the file is unusable. The file
can be dropped (use the DROP command).
and reused.

Use the }LIB command to find the correct
file ID and reenter the statement.

185

rror

Messages

Error Message

INVALID FILE NUMBER

INVALID OPERATION

INVALID PARAMETER

LENGTH ERROR

LINE TOO LONG

NONCE

NOT COPIED: names

186

Cause

The file number 0 was specified for a
}LOAD,)SAVE,)CONT,)DROP,
JCOPY or)PCOPY command.

An attempt was made to open a data
file, but the file number was not valid.

An invalid tape input/output operation
was attempted. This message is followed
by an INTERRUPT error message.

A keying error was made or ar incorrect
parameter was specified when entering
the information required to open a data
file or specifying printer output.

A keying error was made when entering
the parameters for a system command.

The shapes of the two arguments are
not valid for the function indicated by
the caret (A).

An attempt was made to edit a statement
{in-a user-defined function) that is greater
than 115 characters.

An attempt was made to save a work-
space that contained a user-defined func-
tion with a statement having more than
115 characters. In this case, the error
message is preceded by the function name
and the statement number that caused
the error.

An |-beam function was used. These
functions are not used in the 5100 APL
system.

An attempt was made to index a portion
of an array with a rank greater than 14.

An attempt was made to use a take or
drop operator on an array with a rank
greater than 9.

An attempt was made to laminate an
array with a rank greater than 20.

A }PCOPY was issued, but each object
named in the message was not copied.
The active workspace already contained
a global object with the same name.

User’s Response

Reenter the command specifying the
correct file number.

Use the)LIB command to find the correct
file number. Then reenter the information
required to open the data file.

Check the file open information to make
sure the data file was opened correctly
or make sure you are using the shared
variable correctly.

Enter the file open information or system
command again, correcting the keying
errors.

Make sure the arguments are valid for the
function. Then reshape (restructure) the
arguments.

Break the statement up into two state-
ments or use the [JCR and [JFX functions
to edit the statement.

Use the [JCR function to make the user-

defined function a matrix; then save the
workspace on tape.

Do not use the I-beam functions.

Display entire array or break the
array into smaller sections.

Break the array into smaller rank
arrays.
Break the array into smaller rank

arrays and reshape.

Issue a JCOPY command if the named
objects should be copied.

Error Message

NOT FOUND: names

NOT SAVED, THIS WS
IS workspace 1D

NOT WITH OPEN DEVICE

NOT WITH SUSPENDED
FUNCTION

NOT WITH SYSTEM
ERROR

RANK ERROR

Cause

A JERASE command was issued, but
the global objects named in the message
were not found in the active workspace.

A JCOPY or)PCOPY command was
issued, but the specified global object
does not exist in the specified workspace.

A)SAVE or)CONTINUE command was
issued but the stored workspace ID is
not the same as the active workspace ID.

An attempt was made to issue a system
command or open a file on a tape unit

that is already being used for input/out-
put operations.

A JOUTSEL command was issued, but
printer output has been specified for a
shared variable.

An attempt was made to do a)SAVE,
JCOPY, or)PCOPY operation and the
active workspace contains a suspended
function or an open request for quad
input.

An attempt was made to do an opera-
tion other than JCLEAR after a
SYSTEM ERROR occurred.

An attempt was made to use a function
that requires the rank of the arguments
to conform, but they do not. For
example, a function requires the rank
of the arguments to be the same, but
they are not.

An attempt was made to use an argument
whose rank is too large for the operation.

The number pf semicolons in the index
does not equal the rank minus 1.

User’s Response

Reissue the command using the correct
object names.

Reissue the command using the correct
object name or stored workspace.

Use the correct ID or change identifica-
tion of the active workspace, using the
)JWSID command; then reissue the }SAVE
command.

Close the data file or wait until the input/
output operation is complete before
issuing the command or the file open
information again.

Retract the printer shared variable.

Clear the suspended function or request

for quad input by using > (right arrow).

(see SYSTEM ERROR)

Make sure the arguments are valid. Then
reshape (restructure) the arguments so that
they have the correct rank (p pA).

Use the correct number of semicolons.

187

w
@
=)
®
4
o
]
=

rror
Messages

Error Message

S| DAMAGE

SYMBOL TABLE FULL

SYNTAX ERROR

SYSTEM ERROR

VALUE ERROR

188

Cause

The state indicator was made invalid
because one of the following occurred:

® A function exists in the state indica-
tor list, but the function was erased.

® A suspended function’s header was
changed.

® A label was removed or changed
on the suspended statement.

® Statements were added to or erased
from a suspended function.

More symbols were used than the number
of symbols allowed.

The symbol table in the stored work-
space is full and a load operation was
attempted. This error is caused by the
latent expression variable even if it

has not been assigned.

The part of the statement indicated by
the caret (A) is syntactically invalid.

A malfunction occurred in the APL sys-
tem program and the data in the active
workspace is lost.

The object indicated by the caret (A)
has not been given a value:

® |f the object is a variable name, the
variable was not previously assigned
a value.

® [f the object is a function name, the
function header did not specify a
result, the function did not assign
a value to the result variable, or the
function does not exist.

User’s Response

Use the)SI or }SIV command to display
the state indicator. Clear out the state
indicator by entering —> repeatedly.

)JSAVE the workspace, JCLEAR the active
workspace, increase the number of sym-
bols allowed by using the)SYMBOLS
command, then JCOPY the stored work-
space into the active workspace.

Note: Erasing a symbol from the active
workspace does not remove it from the
symbol table; however, saving the active
workspace and loading it again will remove
any unused symbols from the symbol table.

Enter a corrected statement.

Enter the)CLEAR command; if the error
continues to occur, call your service
representative.

Note: 1f SYSTEM ERROR occurred on a
load or copy operation, the error may be
caused by a bad stored workspace file.
Try loading or copying another stored
workspace file to see if the error occurs
again.

Assign a value for the indicated variable or
correct the function so that it has an ex-
plicit result. The value must be assigned
before the object is used.

C"

Error Message

WS FULL

WS LOCKED

Cause

One of the following conditions occurred:

® A)COPY or)PCOPY command was
issued, but the active workspace could
not contain all the objects requested.

® The active workspace could not con-
tain all the information required to
build a defined function.

® The active workspace could not con-
tain the intermediate results of an
APL expression.

® The active workspace could not con-
tain the final results of an APL
expression.

® The active workspace could not con-
tain the information required to do
input/output operations.

® A workspace was written to tape
with a)SAVE command, but the
extra storage required when loading
the stored workspace back into the
active workspace exceeds the avail-
able storage.

® Too many symbols were specified
in a }JSYMBOLS command

The workspace is password-protected,
but no password or the wrong pass-
word was specified in the command.

The workspace is not password-protected
and a password was specified.

User’s Response

Erase unnecessary objects. If there is still
not enough space:

Partition the workspace into two or
more workspaces with related
functions.

Store data in a separate workspace or
in a shared variable file,

Reprogram using smaller intermediate
results.

Clear the state indicator with - if
suspended functions exist.

Reduce the size of the symbol table.
See note under)]SYMBOLS.

Use the)COPY command to make the
stored workspace into two workspaces.

Reenter the command with fewer symbols
allowed specified.

Reenter the command with the correct
password specified.

Enter without a password.

189

7]
L8]
j=2)
1]
A
173
"]

=

o
4]
[=2]
©
v
n
5

=

Error Message

WS NOT FOUND

WS TOO BIG

190

Cause

A JLOAD,)DROP,)COPY, or

)JPCOPY command was issued, but
there is no stored workspace with the
identification specified in the command.

One of the following conditions occurred:

® An attempt was made to load a work-
space stored with the JCONTINUE
command into a 5100 with less in-
ternal storage.

® An attempt was made to load a work-
space stored with the JCONTINUE
command into the active workspace,
but IMFs have been applied reducing
the available internal storage.

® An attempt was made to write the
active workspace (using the JCONTINUE
command) into a file that is too small.

User’s Response

Reenter the command with the correct
workspace identification.

Use a 5100 with enough internal storage.

Restart to clear the IMF, load the stored
workspace into the active workspace,
)SAVE the active workspace, apply the
IMFs, then load the stored workspace again
or copy only the required objects.

Use a file that is large enough.

Appendix A. Setup Procedures

ENVIRONMENT

The 5100 Portable Computer and associated units are designed for these
environments:

-
c
S
£
c
<)
I
g
c

w

Operating Environment Nonoperating Environment
Dry bulb temperature 60°-90° F (16°-32° C) 50°-105° F (10°-43° C)
Relative humidity 8%-80% 8%-80%

Maximum wet bulb

temperature 73° F (23° C) 80° F (27° C)

You should not expose the machine to extreme temperatures for an extended time. For
example, do not store the machine in the car trunk when the weather is very warm or very
cold. If you must expose the machine to extreme temperatures, the machine should be
acclimated to the operating environment before turning it on:

® |f the machine was exposed to heat, allow it to cool enough so that you can place your
hand on the surface without discomfort before turning it on.

® If the machine was exposed to cold and there is no frost or moisture on the external
surfaces or visible on the internal parts, the machine can be turned on.

® |f the machine was exposed to cold and there is frost or moisture on the external-sur-
faces or visible on the internal parts, acclimate the machine for 8 hours after the frost
and moisture disappears. This is to make sure all internal moisture evaporates before
turning the machine on; otherwise, the machine may be damaged.

191

Setup

5100 SETUP PROCEDURE
After you have placed the 5100 where you intend to use it, make sure the red POWER
ON/OFF switch (located on the front panel) is in the OFF position. Plug the power
line into a grounded electrical outlet.
Note: For proper operation, the 5100 must be plugged into a grounded outlet.

Set the POWER switch to ON, and be sure that the fan is operating:

® |f your machine location is not too noisy, you should hear the fan motor
operating.

® |f you are not sure, hold a light piece of paper near the air intake on the back of
the machine. The loose end of the paper should be pulled toward the machine.

If the fan does not appear to be operating, check your power outlet. If it is OK, set
the POWER switch to OFF and call for service. Do not continue with these

instructions.

If the fan is operating, wait for about 20 seconds and your 5100 will be ready for
operation.

APL Checkout Procedure

01 After power has been on 20 seconds, the display screen should show:

CLEAR WS

The underline (cursor) flashes on and off.

If the display screen does not show the above information, check the

following top panel switches:

a. Turn the BRIGHTNESS control to get the best character definition.

b. Set the DISPLAY REGISTERS switch to the NORMAL position.

c. Set the L32 64 R32 switch te the center (64) position.

d. Set the BASIC/APL switch (combined machines only) to the APL
position.

e. If information displayed is not as shown above, press the RESTART
switch. This recycles a portion of the power-on sequence. If the infor-
mation displayed is still not as shown above (after the 20-second delay),
call for service.

192

,‘ = \\
e

0 3.

If the display screen does not show the correct results in the remaining steps
of this procedure, press RESTART once, go back to step 1 and try again. If
the correct result is still not shown, call for service.

Enter the data shown by the key drawings below. The data will be displayed
as the keys are pressed.

If you make a keying error, you can press the backspace key

EXECUTE) to backspace the cursor, then press the correct key.

Where the bottom portion of the key is shown shaded, hold the shift key

down while you press the character key. (Enter the unshaded character.)

Press the following keys in sequence line by line:

The display now shows:

CLEAR WS
VTEST
L3 -

Be sure to use the multiply
key and not the alphabetic
X.

Below the lines of the test program that you just entered, the answer of 27
will be displayed {the program multiplies 3 times 9):

VTEST
L1l Ae3
21 Be9
£31 CeAXE
Ll CV

TEST
27

193

JU
Setup

O 4. If you checked out the tape operation under the BASIC checkout procedures,
insert the tape cartridge into the 5100 and go to step 6. Remove an unused or
scratch tape cartridge from its package. Check that the arrow is pointing away
from the word SAFE as shown in the illustration. Insert a coin or screwdriver
into the slot *f you must turn the triangular arrow away from the word SAFE,

Note: Do not use any prerecorded tape cartridges that were shipped with your

machine.

This edge goes into machine first. \

A y A

© \

O 5A. Insert the tape cartridge into the 5100 {metal bottom down), and press it in
until it seats firmly. Then press the following keys (you must leave a space

before each number):

5B. The previous step initialized the tape to h9ld information. If a message of
MARKED is displayed, go to step 6. If a message of ALREADY MARKED is
displayed, the tape is already marked. To re-mark the tape, press:

O e. Press the following keys:

194

B4

0 7. The last step wrote the program onto tape, but it is still recorded in the
storage workspace. To prove the program can be read from tape, the program
must be erased from the workspace. To do this, press the following keys:

a s. To read the program from tape into the 5100, press the following keys:

ado. When LOADED 1002 WS is displayed, press these keys:

The display screen should again show:

TEST

27
L
\ \
Position 1,

Position 7

This completes the APL checkout procedure.

195

196

a 10.

Check to see that you received all the items on the Contents Checklist.

If the words above the top row of numeric keys are labeled on the left with:

APL , you have an APL machine without the communications feature.
BASIC , you have a BASIC machine without the communications feature.
BASIC

APL , you have a combined machine.

COMM
BASIC } , you have a combined machine with the communications feature.
APL

igt/lM , you have an APL machine with the communications feature.
gil\sﬂll\é‘ } , you have a BASIC machine with the communications feature.

If you have not checked out BASIC on a combined machine, set the
BASIC/APL switch to the BASIC position, press RESTART, and go to the
BASIC Checkout Procedures in Appendix C of the /BM 5100 BASIC
Reference Manual, SA21-9217. If you already did the BASIC checkout
procedures, continue with step 11.

If the auxiliary tape unit is to be installed, unpack the tape unit and pro-
ceed to the Auxiliary Tape Unit Setup Procedure which follows. After
installing the auxiliary tape unit, return to step 12.

If the printer is to be installed, unpack the printer, and proceed to Printer
Setup Procedure, which comes later in this appendix. After installing
the printer, return to step 13.

If your 5100 is equipped with any other feature, use the manual supplied
with that feature to set up and check out the feature, then return to
step 14 in this manual.

When the preceding devices or features are installed, or if none are, begin
reading the /BM 5100 APL Introduction to learn how to operate your 5100.

—~—

(W(A
-

AUXILIARY TAPE UNIT SETUP PROCEDURE

01

0 2.

Set the 5100 and auxiliary tape unit power switches to OFF.

Remove the shipping tape from the signal cable (flat cable) and connect the
signal cable into the back of the 5100. Make sure the connector fits squarely.

Turn the knob in a clockwise direction until the connectors fit together firmly:

Storage Position for Terminator Plug

.

/]

) ° (D |

4

@

@

Tape Signal
Cable Connector

Terminator Plug

The terminator plug connects
into the lower position.

O 3.

O 4.

0 s.

O 6.

Power Line Plugs

Check that the terminator plug is in place on the rear panel as shown in the
preceding diagram.

Remove the shipping tape from the power line and plug the power line into
a grounded electrical outlet.

Set the auxiliary tape unit POWER switch to ON, and be sure that the fan

is operating.

a. If your locatioh is not too noisy, you should hear the fan motor operating.

b. If you are not sure, hold a light piece of paper near the air intake on the
left side of the tape unit. The loose end of the paper should be pulled
toward the tape unit.

If the fan does not appear to be operating, check your power outlet. If it is
OK, set the POWER switch to OFF and call for service. Do not continue with

these instructions.

Set the 5100 POWER switch to ON and continue to the checkout procedure.

197

Setup

Tape Unit Checkout Procedure
Note: The following steps assume you are using the same cartridge that you used
to check the 5100. If you are not, write any program onto the cartridge in the

auxiliary tape unit and read it back.
Insert a tape cartridge into the auxiliary tape unit after checking that the

0.
arrow is pointing away from the word SAFE.
Press the following keys to read in the program that was stored on tape during

0o 2.
the 5100 checkout procedure:

After the message LOADED 2002 WS appears on the display screen, press

0 3.

the following keys:

space space

O 4. The message CONTINUED 2002 WS appears on the display to verify that
the program was written back to tape and was checked by the 5100.

This completes the checkout procedure for the auxiliary tape unit.

Return to step 12 of the 5100 checkout procedure.

198

LN 4

Storage Position for 5100 Portable
Terminator Plug Computer (rear)

PRINTER SETUP PROCEDURE
1. Set the 5100, 5103, and 5106 (if attached) POWER switches to OFF.

0 2. If you have an auxiliary tape unit, remove the terminator plug from the
bottom position and insert it into the top position (storage position).

O 3. Remove the shipping tape from the printer signal cable (fiat cable) and
connect the signal cable to the back of the auxiliary tape unit, if it is
attached, or to the back of the 5100. Make sure the connector fits
squarely. Turn the knob in a clockwise direction until the connectors
fit together firmly:

BNC Connector
for TV Monitor

Forms Tractor

Printer (rear)

Auxiliary Tape
Unit (rear)

¥

ﬂ A A SN
]

© il

/
—
®
@
}

@ T C L ST T

Connector

Position

The printer signal connects to the back of the
5100 if the auxiliary tape unit is not attached.

0 a. Remove the shipping tape from the printer power line and plug the power
line into the back of the auxiliary tape power plug or into a grounded elec-
trical outlet.

199

Setup

200

O s. Unpack the forms tractor and set it in place on top of the printer as shown
in the drawing.

Forms Guide Rack

a. Position this part of the
forms tractor first. Press
down firmly to snap into
place.

—— b. Then rock the forms

tractor forward and

Forms Tractor snap this part into place.

Must be in this position.

O 6. Insert paper in the printer. Use the printer information in this manual if you
need help in inserting the paper (see Chapter 10).

O 7. Set both the printer and 56100 POWER switches to ON and continue on to
the checkout procedure.

Printer Checkout Procedure

Press several alphameric keys to display some information. Then, hold down the

CMD key ~ and press the key below Copy Display on the
X

command word strip. The printer will provide a copy of the information on the
display screen.

Return to step 13 of the 5100 checkout procedure.

Appendix B. 5100 APL Character Set and Overstruck Characters

Overstruck characters are formed by entering one character, backspacing, and enter-
ing the other character. The 5100 APL character set consists of all the characters
represented on the 5100 keyboard plus the following overstruck characters:

Function Character Keys Used

Comment A
(Execute 2

Factorial, combination

.-

Format ‘ ¥
v Grade down ¥
Grade up A
(\" Logarithm ®
| Matrix division]
Nand A
Nor v
: Protected function v
N Quad quote M
(/ Rotate, reverse ¢
Transpose ®
-~
() Compress # (see note)
Expand \ (see note)
Rotate, reverse e (see note)
C Note: These are variations of the symbols for these functions; they ae used when

the function is acting on the first coordinate of an array.

201

Vector

Appendix C. Atomic Vector

202

The following chart shows the character, the character name, and the index of
that character in the atomic vector:

Character

Character Name

RESERVED., . .

ERVED, .

RESERVEL . .
LEFT ERACKET.
RTGHT ERACKET

LEFT PARENTHESIS.

RIGHT PARENTHES

SEMICOLON
alasH oo,
BACK SlabH,
LEFT ARROW. .
RIGHT ARROW
EGERVED .,
RVED,

&

'

DIERESIS (UPPERSHIFT 1)

P l..a l..l :J 1 ' . ' :
MINUS

DIvVInE. . . .
STar. . . o .
MaXimMuM . . .
MINIMUM . .
RESTOUE . .
AND .,

THAN

lQUﬁL

.

THAN OR P~0llﬁl..

GREATER THAN OP IQUAL

GREATER THAN.
NOT EqQUaL. . .

Index
((J10<1)

Iﬂ

N

Index
Character Character Name ((J10<1)

o ALPHA o o 0 0 0 s s 3
« EPSTLON o o o v v 0 0 e bt
1 TOTAES 0 %
» RHO o v o 0 0 0 s o e &
o QMEGHA v v v 0 0 o e e e 7
. COMMA 0 o v v 0 0 0 g
! SHRIEK (EXCLAMATIONY.+ . . LY
th REVERSAL . « o « « v v« v 0 o a4
i ENCODE (RASEY . o o o o« o o 1
T DECODE (REPRESENTATIONY . ., . . G

o CIRCLE., « o v o v v 0 o 5
? QUERY o v o 0 o s s Sy
NOT o v 0 v 0 s e S

¥ UP ARROW. . . .+ . . 0 0 0 Hé
4 DOWN ARROW.+ « .+ . oY
o SQURBSET. . . . 0 0 s e e s 58
] RIGHT SUBSET. . .+« + + v . 5Y
f1 Car o 0 0 0 sy e e &l
U CUr . . o 0 s s e e e &1
- UNDOERSCORE ., v v v v+« o o &
] TRANSPOSE + « .+ . ., &H3
A w-REAM. . 0 . . . o &l
o NULL (SFALL CIRCLE . . .+ + .+ . &
i1 QuaAl, . v o o0 s s e bhb
M QUal QUOTE. » . « . . o o 0, &7
] 1 &8
4 NANDL. . . . s s e e &Y
¢ NOR ., s s s e 70
1 LAMP-COMMENT ., . . . « + « + + . el
th GRADE LGP o 0 0 0 0 s e s s T
¢ GRADE BOWN. T3
1) OVERSTRUCK CIRCLE~MHYPHEN., T
OVERSTRUCK SLASH-HYPHEN . . ., . . T
® OVERSTRUCK BACKSLASH-MYPHEN , . . Téh
1 MATRIX OIvIDE . o« « « « .« . s
¥ FORM&T, o o v v v v o5 e TH
4 EXECUTE o v v 0 o s e Y
& AMPERSAND ., e 80
@ & a1
POUND o o 0 v 0 0 0 a2
4 noLLar., o . 0 0 0 0 s s 83

UNUSED, . o o o v v v 84
TA TRACE T ELTAY o o o v 0 o 8%
84 STOP 5 DELTAY ., o o o o o 0 86
& 2 a7
R . 838
C 15 89
It 0 . e e e e e e e QN
) Eoe e s e s e e e e e Q1
F Foo e e e e r e e P2

G G . v 0 s s e e 93

203

Index
Character Character Name (010<1)

H Hooo o o o 0 s s P
I Lo v v 0 o e s e e e Kaw]
N T “é
K Koo o 0 0 s e e 97
Lo oo o s e e e Kt
M Moo e e o
N N oo o 0 v e e e e 1Loo
0 1 1ol
f P v v e s s s s e e a2
@ L 103
R o v 0 s 1ou
& - LO%
T T o 0« v v 0 0 s s e e e e 108
W o o e e 1o

Voo 0 s e e e e o8
w L * * ’ . 3 1 . L] L] . 3 3 L] L L] :}, 0 f..;)
X v 0 0 e e e e e e e e 110
\r. 1 L 1 L] L . L * 1 L ’ \

Z

A-UNDERSCORE.,« « .+ + . .
B-UNDERSCORE, . . .

, CUNDERSCORE,

I D-UNDE RS CORE

- : .
E S-UNDERSCORE.
b H-UNDERSCORE

i I-UNDERSCORE.

J JRUNDERSCORE

i K-UNDERSCORE.

{ N-UNDERSCORE
0 O-~UNDERSCORE ,
P P-UNIERSCORE
§ Q- UNIERSCORE ,

T T-UNDERECORE
U U-UNIIERSCORE
i V- UNDERECORE
i W-UNDERSCORE
% X~UNDERSCORE
g
Fa)

Y-UNDERSCORE

Z-UNDERSCORE ., .
£ DELTA-UNDERSCORE,
0 0 G

:I .l. . ' ’ ' 0

-y -y

e A . ' ' ' ' [' . ' ' ' ’

\5 \5 0 . ® : 0 ' . 1 . . . 0 ’ 0

204

Character

o]

&

(&)
¥4

<%

Note: The remaining elements (187-256) are unused.

Character Name

T
W ' ' * ' 1 ' : 1
& * ' : . ' s . 1
Foooa o 0 0
T

g .. Co
PERYIOD,
OVERRAR
BLANK . . .

QUOTE

COLON .o
LEL (FN DEF CHARD
CURSOR RETURN . . .
EMIN OF BLOCK{CANNOT
BACKSPACE
) FEED. o0
PROTECTED DEL . .
UNUSED, Co
UMUSEDR,« .
UNUSED,
UNUSEDRY,
UNUSEDR,
UNUSED, o o . o
UNUSED,

LENGTH OF Z-8SYMROL TaBLE. .
O-U-T FOR COMMUNICATION TaPE.

LOGICAL NOT . .
DOURBLE QUOTE.
PERCENT Ca
PROTECTED DELTA
BULLS EYE
A UMLAUT,,
0 UMk.aur, . . .,

u uMLauT, . .
ANGSTROM, . . .

AE DIAGRAPH

pPasurT o0 0
N TILDME o 0 0 o
POUNT STERLING., . .
CENT. o o« v v v
O TILDE . o o 0
A TILME o . o 0

.

RE

El

.

.

. .
.
' '
.
:
.
.
3

.

:

1
v .
. T
i .
: '
i '
i :
t
3
.]
T :
[t
¢ ’

DISPLAYEID

: 3
t '
t ’
'
.
s
s *
’

[[
’ :
' '
.] 0
] : '
s .
: 1
'
'
. '
: g
' s
1
’
. ’ '
s ' :
. t .
. .

Index
(010<1)

TuS
1lé
u
148
iue
150
151
152
153
154
155
156
L&
158
159
160
lél
162
1463
164
169
166
147
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
18%
1846

205:

Appendix D. 5100 APL Compatibility with IBM APLSV

206

The 5100 APL system differs from the IBM APLSYV system primarily because the
5100 is a single user system with different input/output devices and it has display
screen output rather than typewriter output. The differences are as follows:

Turning power on signs the user on; therefore, no sign-on or 1D number is
required.

The 5100 active workspace is generally smaller than APLSV active workspace.
It is further limited by the shared variable processor which uses it for input/
output buffers and work areas.

The default number of symbols is 125 instead of 256, which increases the avail-
able workspace for most users.

The library number that appears in system commands has been redefined to a
device/file number. It is a 1- to 5-digit number that specifies the device and
file number where a workspace is to be }SAVE‘d or)LOAD’ed. If the number
is less than 4 digits, it is only the file number; device 1 is assumed; otherwise,
the high-order 1 or 2 digits is the device number.

The)LOAD,)COPY,)PCOPY commands require the library (device/file) num-
ber and workspace ID parameters. The JDROP command requires the library
(device/file) number and if the specified file is a stored workspace file, the
workspace 1D parameters. These requirements protect the user from inadver-
tently destroying his or her saved workspaces.

The following commands are not supported because they apply only to multi-
terminal systems and remote systems:

JOFF; JOFF HOLD; JCONTINUE HOLD; JPORTS;.)MSGN;)MSG; JOPRN;
JOPR,; all special system operator commands

The following commands are not supported because the function is not
supported:

JGROUP;)GRPS;)GRP
The following commands are not supported:
JORIGIN;)WIDTH;)DIGITS

They are available with the system variables []10, [JPW, and [JPP, respectively.

® The following commands have been added to support the 5100 processor and

(L its input/output devices:
JMARK — To format tape files
JOUTSEL - To specify which transactions are to be printed
(JREWIND — To rewind the tape unit -
-)JMODE — To select communications mode
)JPATCH — To load an IMF or Tape Recovery program into storage

from an IBM-supplied tape

(® The JCONTINUE command has been changed to save workspaces with sus-
pended functions. The parameters are the same as }SAVE but the stored work-
space cannot be JCOPY‘ed, or }LOAD’ed into a 5100 with a smaller active

workspace.

® Since the 5100 system is not in a communications environment, the RESEND
message will not occur.

L 2
®)SAVE and)LOAD have to be implemented with only one workspace area *_-'_>
(no spare); therefore, the following error messages have been added: =
3]
[X
1. Function name [statement number] LINE TOO LONG — Cannot save E
(:% functions with statements greater than 115 characters. 8
’ 2. WS TOO BIG — Workspace is too big to fit in the active workspace.

3. NOT WITH SUSPENDED FUNCTION — Only the JCONTINUE command
will work to write the workspace to tape.

® For diagnostic reasons, occurrence of SYSTEM ERROR does not clear the
workspace. The following message occurs when attempting anything other than
)JCLEAR after a system error:

NOT WITH SYSTEM ERROR

® Saved workspaces are not time-stamped and dated because that information is
" not available in this system; therefore, the following messages now occur after
library operations:

COPIED device/file wsid

LOADED device/file wsid

SAVED device/file wsid

" CONTINUED device/file wsid
(DROPPED device/file wsid

207

® The }LIB command does more than list the saved workspaces. It lists all the
files on the specified device. The response, therefore, contains more informa-
tion (see)LIB command in Chapter 2).

@ The following system messages have been added for the new system commands
and input/output operations:

ALREADY MARKED
DEVICE NOT OPEN
DEVICE TABLE FULL
ERROR eee d

EXCEEDED MAXIMUM RECORD LENGTH
INVALID DATA TYPE
INVALID DEVICE
INVALID DEVICE NUMBER
INVALID FILE

INVALID FILE NUMBER
INVALID OPERATION
INVALID PARAMETER
MARKED b n

NOT WITH OPEN DEVICE

® The shared variable processor on the 5100 is designed to provide an interface
between only one APL user and one 1/O processor. Thus, only one processor
number is supported (1).

>
=
x
-
©
Q
=
Q
(&)

The response to [JSVO is 2, since, if it is a valid share, it is always accepted
before the APL user regains control. (If an unsupported processor is specified,
the response is 1.)

The response to [JSVR is the same as the response to [JSVO.
Being strictly a sequential machine, the only mode of interaction is reversing
half-duplex; that is, the 1/O processor always responds to each action by the

APL user. Therefore, the access control vector ((JSVC) is always 1 1 1 1.

Since there are never any outstanding offers, [JSVQ always returns an empty
vector.

® This is a single user system without an internal clock; therefore, the following
system variables and functions are not supported:

[J7TS — Time stamp

[JAl — Accounting information
OTT — Terminal type

[JUL — User list

(DL — Delay

® The I-beam functions have been replaced with system variables or system func-
tions and are not supported.

® Catenation using semicolons has been replaced by format, but it is still supported
on the 5100.

208

® Data can be exchanged between APL and BASIC or other systems via commun-

ications; therefore, the following characters have been added to the APL char-
acter set:

$’ #l @l &I l—l %I "

® The display screen is 64 characters wide; therefore, the initial values for [JPW

and PP system variables are 64 and 5 instead of 120 and 10.

If the print width is altered to something greater than 64, any output that ex-
ceeds 64 characters is wrapped to another line on the display screen.

® Bare ([) output followed by bare ([Y]) input yields a different reply. For

APLSYV, the [1] input is prefixed by the same number of ‘blanks as the previous
M output. For 5100 APL, the [7) input is prefixed by the previous [output.
(See Chapter 6 for more information on bare output followed by bare input.)

® The display screen provides the ability to edit lines of data directly; therefore,

the following changes were made to function definition:

[N[O] — Now displays line N in the display screen lines 1 and 0 for
editing.

[NOM] — Has the same result as [N[]]; the M is erased when execute is
pressed.

[AN] — Allows line N to be deleted. N must be a single line number.

The use of the ATTN key to delete a line works, but only in function de-
finition mode, not while entering function definition mode.

To prevent problems when displaying or editing statements in a user-defined
function, the print width ({JPW) is automatically set to 390 when the 5100
is in function definition mode. The print width automatically returns to its
previous setting when the function definition is closed.

There is only limited editing space; therefore, function statements that are
greater than 115 characters cannot be edited, and the message
LINE TOO LONG is displayed.

® The 5100 will insert a quote if an uneven number of quotes is entered.

3
3
S
<3
€
8

Glossary

IBM is grateful to the American National Standards
Institute (ANSI) for permission to reprint its definitions
from the American National Standard Vocabulary for
Information Processing (Copyright © 1970 by American
National Standards Institute, Incorporated), which was
prepared by Subcommittee X3K5 on Terminology and
Glossary of the American National Standards Committee
X3.

ANSI definitions are identified by an asterisk. An asterisk
to the right of the term indicates that the entire entry is
reprinted from the American National Standard Vocabulary
for Information Processing.

active referent: The usage of a name that was most recently
localized, or the. global usage if the name is not localized.

active workspace: A part of internal storage where data and
user-defined functions are stored and calculations are

performed.

ADD operation: Using a shared variable to add informa-
tion to an existing data file.

alphameric keys: The keys on the left side of the keyboard
that are arranged similar to a typewriter keyboard.

APL internal data format: See internal data format.
arguments: Data supplied to APL functions.

array: A collection of data that can range from a single
item to a multidimensional data configuration. Each ele-
ment of an array must be the same type as the other ele-

ments (all characters, all numeric, or all logical).

assign: To use the < (assignment arrow) to associate a
name with a value.

available storage: The number of unused 1024-byte blocks
of storage in a file on tape. :

210

bare output: To display output without the cursor return-
ing to the next line.

branch instruction: An instruction that modifies the nor-
mal order of execution indicated by the statement mem-
bers. Branch instructions always begin with a - (branch
arrow).

branching: Modifying the normal order of execution indi-
cated by the statement numbers.

built-in function: See primitive function.

byte: A unit of storage. For example, a character takes
one byte of storage.

character constant: Characters that do not represent num-
bers, variables, or functions. Character constants are en-
closed in single quotes when they are entered (except for
[(Minput); however, the single quotes do not appear when
the character constants are displayed.

command keyword: The name of a system command in-
cluding the right parenthesis. For example, the command
keyword for the)]MARK command is]MARK.

comment: An instruction or statement that is not to be
executed. A comment is indicated by a g as the first
character.

conditional branch: A branch that is taken only when a
certain condition is true.

coordinate: A subset of data elements in an array. For
example, a matrix has a row coordinate and a column
coordinate.

cursor: The flashing character on the display that indicates
where the next input from the keyboard will be displayed.

C

C

data file: A file on tape (file type 01, 02, or 08) where
data was stored using a shared variable.

defective record: A 512-byte block of storage on tape that
cannot be read.

device/file number: Specifies the tape unit and file to be
used when doing tape input or output operations.

dual-language machine: A 5100 that can execute either
APL or BASIC statements.

dyadic functions: Functions that require two arguments
(a right and a left argument).

editing: Modifying an instruction or statement that already
exists.

element: The single item of data in an array.

empty array: A variable that has a zero in its shape vector.
The array has no (zero) elements.

exchange data file: The data in the file is in the exchange
data format.

exchange data format: The data consists of all character
scalars or vectors.

execute: To press the EXECUTE key to process data on
the input line.

execution: The processing of data.

execution mode: The mode that is operative when state-
ments or functions are executed. Contrast with function
definition mode.

explicit result: The result of a function that can be used in
further calculations. The function must contain a result
variable if it is to have an explicit result.

file: A specified amount of storage on tape. The tape is
formatted into files by using the)JMARK command.

file ID: The name of a file on tape. If the file contains a
stored workspace, the file ID is the same as the stored
workspace 1D.

file number: The files on tape are sequentially numbered
starting from one.

file type: ldentifies the type of data stored in a file.

function body: Consists of the statements within a user-
defined function. These statements determine the opera-
tion(s} performed by the function.

function definition: Defining a new function (a user-
defined function) to solve a problem.

function definition mode: The mode that is used when
defining or editing user-defined functions. The V symbol
is used to change the mode of operation. Contrast with
execution mode.

function header: Defines the function name, number of
arguments, local names, and whether or not the function
will have an explicit result.

general exchange data file: The data in the file is in the
general exchange format.

general exchange data format: The data consists of all
character scalars or vectors.

global names: The value or function associated with
these names can be used within or outside of a user-
defined function unless the name has been made local
to a user-defined function that is executing, suspended,
or pendent. Contrast with local names.

identity element: The value that generates a result equal
to the other argument of a function.

IN operation: Using a shared variable to read informa-
tion from a data file.

index entry [11: (1) A value or values enclosed in brackets
that select(s) certain elements from an array. (2) A value
enclosed in brackets that determines the coordinate of an
array to be acted on by a primitive mixed function.

211

index origin: Either 0 or 1 and is the lowest value of an index.

The index origin is set to 1 in a clear workspace and can be
changed by using the []10 system variable.

input: Information entered from the keyboard or read
from tape using a shared variable.

input line: Consists of the 128 positions on lines 0 and 1
of the display screen. Any information on the input line
will be processed when the EXECUTE key is pressed.

instruction: A function or series of functions to be
performed.

integer: A whole number.

interactive function: A user-defined function that requests
input from the keyboard as it executes.

internal data file: The data in the file is in the internal
data format.

internal data format: The format in which the data is stored
in the 5100.

keyword: See command keyword.

labels: Names that are placed on statements in a user-
defined function for use in branching.

latent referent: The usage of a name that has been made
unavailable by a more recently called function. The usage
for that name cannot be accessed.

length: (1) The length of a vector is the number of ele-
ments in the vector. (2) The length of a coordinate of
other arrays is the number of items specified by that coor-
dinate. For example, a matrix has a row coordinate with
the length of 2, therefore, the matrix has two rows.

212

library: A tape cartridge where data is stored for future
use.

local name: A name that is contained in the function
header and has a value only during the execution of that
user-defined function.

locked function: A function that cannot be revised or dis-
played in any way. The opening or closing V was over-

struck witha ~.

logical data: (Boolean data) Data that consists of all ones
and zeros.

matrix: A collection of data arranged in rows and columns.

mixed function: The results of mixed functions may
differ from the arguments in both rank and shape.

monadic functions: Functions that require one argument.
The argument must be to the right of the function symbol.

multidimensional array: An array that has two or more
coordinates.

n-rank array: An array that has more than two coordin-
ates (a rank of more than 2).

niladic function: A user-defined function that does not
require any arguments.

numeric keys: The keys on the right side of the keyboard
that are arranged similar to a calculator keyboard.

object: A user-defined function or variable name.

operators: Have as their arguments dyadic primitive
scalar functions. These arguments are applied to
arrays in a specified way.

OUT operation: Using a shared variable to write infor-
mation into a data file.

Iy

output: The results of statements processed by the 5100.

overstruck character: A character formed by entering one
character, backspacing, and entering another character.
Only certain combinations of characters can form over-
struck characters.

parameter: (1) Information needed by a system command
(such as device/file number). (2) Information required to
open a data file or specify printer output.

password: A sequence of characters that must be matched
before the contents of a stored workspace can be loaded or

copied into the active workspace.

pendent function: Any function in the state indicator list
that is not a suspended function.

physical record: A 512-byte block of storage on tape.

plane: The coordinates of an n-rank array other than the
rows and columns.

primitive function: The functions that are part of the APL
language (such as , + - + x).

PRT operation: Using a shared variable to output data on
the printer.

rank: The number of coordinates of an array {pp).
record: Data assigned to a shared variable.

result variable: A variable to the left of the assignment
arrow in the function header where the results of the func-
tion are temporarily stored for use in further calculations.

return code: Assigned to a shared variable after a PRT,
OUT, or ADD operation. This code indicates whether or
not the operation was successful.

scalar: A single data item that does not have a dimension
(pp=0)

scalar function: The results of the scalar functions are the
same shape as the arguments. The function is applied to
corresponding elements in the arguments.

scale: An integer representing the power of ten in scaled
representation.

scaled representation: Stating a value in a convenient
range and multiplying it by the appropriate power of ten.

scroll: Moving the information on the display screen up or
down.

shape: The length of each coordinate of an array.

shared variables: A variable shared by the active workspace
and the tape or printer. Used to transfer data during IN,
OUT, ADD, or PRT operations.

significant digit: * A digit that is needed for a certain pur-
pose, particutarly one that must be kept to preserve a spe-
cific accuracy or precision.

single-element array: An array with a shape of all 1’s.
For example, a matrix with one row and one column,

state indicator: Contains information on the progress
{statement number of the statement being executed) of
user-defined function execution. Can be displayed to
show all suspended and pendent user-defined functions
and localized names.

statement: A numbered instruction within a user-defined
function.

statement number: The number of a statement within a
user-defined function.

stop control (SA): Stopping execution of a user-defined
function before the execution of a specified statement.

stop vector: Specifies the statements when using stop
control.

stored workspace: The contents of the active workspace
stored on tape.

213

suspended: See suspended function.
suspended execution: See suspended function.
suspended function: Execution has stopped because of an

error condition, ATTN being pressed, or stop control being
used.

system commands: Are used to manage the active workspace

and tape or printer operations.

system functions: Are used to change or provide informa-
tion about the system.

system operation: Processing input data.

system variable: Provides controls for the system and infor-
mation about the system to the user.

trace control (TA): Displaying the results of specified
statements during the execution of a user-defined function.

trace vector: Specifies the statements when using trace
control.

transferring data: Using a shared variable to write data to
tape, read data from tape, or output data to the printer.

214

user-defined functions: New functions defined using the
primitive functions. See function definition mode.

variable name: A name associated with the value of a
variable.

variables: Data stored in the 5100.

vector: An array with one dimension (pp = 1).

workspace: See active workspace.

workspace available: The amount of unused storage
(number of unused bytes) in the active workspace.

workspace ID: A name given to the contents of the active
workspace. A stored workspace has the same name as the
active workspace when the contents of the active work-
space were written to tape.

~—

Index

o)CLEAR command 10, 13 | function 52
JCONTINUE command 11,13, 18, 26, 173 * function 54
JCOPY command 10, 13, 25 ® function 55
)JDROP command 11,15, 160 Ofunction 56
JERASE command 10, 15 t function 59
}JFNS command 11, 16 ? function 61,95
)LIBcommand 11, 16 Afunction 62
""""" -)LOAD command 10, 18 Vfunction - 63
(JMARK command 11, 18 ~ function 64
)MODE command 11, 20 ‘A function 65
JOUTSEL command 11, 20, 164 V function 66
)JPATCH command 11, 21 > function 67
)PCOPY command 10, 13, 25 = function 68
JREWIND command 11, 26 <function 69
')SAVE command 11, 13, 18, 25, 26, 173 >function 70
})SI command 11, 27, 1565 <function 71
)SIV command 11, 27, 143 #function 72
.)SYMBOLS command 10, 28 p function 75
})WARS command 11, 28 , function 77
)WSID command 10, 14, 18, 27,29 / function 81
[1]index entry 75 \ function 82
(0] 148 A function 83
[On] 148 ¥ function 84
- [r] 148 4 function 86
([An] 149 4 function 87
~ 137 1 function 88
[J: 145 ¢ function 89
(Jinput 145 & function 93
AV system variable 127 ‘ 1 function 96
[JCT system variable 124 T function 99
[JCR function 128 € function 104
[JEX function 132 & function 107
[JFX function 129 ¥ function 108
[J10 system variable 125 / operator 111
[JLC system variable 126 \ operator 118
N [JLX system variable 126 . operator 113
[JNC function 133 o,operator 116

[ONL function 132
[]PP system variable 125
[JPW system variable 126

[JRL system variable 126
y [JSVO function 158 abandoned execution 147
g [ISVR function 165 absolute value 52
[JWA system variable 126 active referent 132, 142
[Minput 145 active workspace 10
Moutput 146 adapter for TV monitors 1
EJfunction 105 ADD operation 160, 163
"y, ‘e’ raised to a power 54 add statements 148
(Vsymbol 134 alphameric keys 4
- -0 138 alternate records 110
[character 145 amount of unused space 126
* 155 and function A 62
¢ password 12,14, 18, 25, 29 APL character set 200
+ function 44 APL characters 126
"y, - function 45 APL command keyword 6
c/ x function 46 APL internal data format 161
+ function 48 APL language symbols 5
[function 49 APL operators 111

| function 51
215,

APL shared variable 20, 158, 174
arguments 43

arranging output 146

arrays 32

assignment arrow < 120

atomic vector [JAV 127, 201
attention key 5, 155
automatically execute expression 126
auxiliary tape unit 1

available storage 17,174
available workspace 126

backspace key 7

bare output 146

bare output prefix 146

base value 96

BASIC/APL switch 3

binomial function! 60

branch arrow -~ 121, 137

branch instructions 139

branch to a specific statement number 139
branch to zero 138

branching 137
brightness control 9

BUFFER 174

built-in functions 43
byte boundary, 512 163
bytes of storage 173

canonical representation [JCR 128
catenate function, 37,77
catenation 37
ceiling function [49
change an array to a character array 108
change the device/file number and workspace ID 29
change the number of symbols allowed 28
change the sign 45
icharacter constant 31, 173
character set 201
checkout procedure
APL 192
printer 200
tape unit 198
circular function O 56
clear suspended functions 157, 173
clear workspace attributes 13
clearing suspended functions 157
close data files 165
coefficient matrices 105
combinations of B 60
command key 7
command keyword 7
commands that control the active workspace 10
commands that control the library (tape} 11
commands that provide information about the system
commands, system 10

216

11

comment @ 121,135
communications adapter 1
communications mode 20

communications program 20 S

comparison tolerance [|CT 124

compress data 163

compress function/ 81

conditional branch 138

conjugate function + 44

consecutive integers 88 -
conserve storage 173

coordinate 33, 75 ~
copy display 8

copy display key 6

copy objects into the active workspace 14, 25

creating a new coordinate 79

creating lists 39 P
customer support tape 21

cursor 2,6

cursor return character (X'9C') 164

dark characters 5

data file 159,173,174

data representation 30

data security 171

data to be printed 20

deal function ? 95

decode function 1 96

defective records 17

defining a function 134

del Vsymbol 134

delete characters 7

delete statements 148

device/file number 12, 160

display characters in alternate positions 5
display device/file number and workspace ID 29
display file headers 16

display local names 142

display messages 144

display names of suspended functions 27
DISPLAY REGISTERS switch 5

display screen 1

display screen control 3

display the existing shared variable names 159
display the number of symbols allowed 28
display the variable names 28

display user-defined function names 16
display value of a variable 30

displaying a user-defined function 148
displaying more than one value on the same line 146
divide function + 48

drop elements from an argument 87

drop function ¥ 87

drop tape file 11,15, 160

dual-language machines 3

dyadic 43

dyadic functions 135

dyadic mixed functions 73

edit statements 148

editing statements 134

empty array 36, 39

empty vector 138

encode function T 99

end of block character (X'FF'} 164
entering system commands 12
equal to function = 68

erase information 5

erase objects from the active workspace 15, 132
error message 155, 182

error message displayed 166

escape from []input 145

escape from [T input 145

establish a variable to be shared 158
examples of function editing 151
exchange data format 161, 164, 174
exclusive or 72

execute function & 107

execute key 6

executes the argument 107
execution mode 134

expand arguments 82

expand function \ 82

explicit resutt 135

exponential function * 54

expunge 132

factorial function! 59

fall through 138

file header 10,16, 19

file ID 16

file number 16

file size formula 19

file type 16

files 10

fix function [JFX 129

flashing character 2

floor function | 51

form a matrix into a function 129
format 108

format a function into a matrix 128
format function ¥ 108, 146
formats the tape 18

formatted tape 10

forms an array 76

forms thickness 179

formula for file size 19

forward space key 6

function definition 134
function definition mode 134
function definition, reopen 148
function editing 147

function header 135, 139
functions, primitive 32

gamma function 59

general interchange data format 161
generalized transpose function § 94
generate empty arrays 36
generating arrays 33

global names 139

global variable 140

grade down function § 84

grade up function 4 83

greater than function > 67

greater than or equal to function > 70

hold key 6,8

ID = (file ID) 160
identity elements 111
IMF 23
IN operation 160, 164, 174
index entry

decimal 79

integer 78
index entry [I] 75
index entry assumed 75
index generator function 1 88
index of function 1 88
index of specified elements 88
index origin []I0 125
index values

in ascending order 83

in descending order 84
indexing 32, 39
indicate thesign 46
indicator lights

process check 8

in process 9
indices 34
information printed 8
inner product operator 113
input 2
input line 2
input, processed - 6
insert characters 7
insert forms, printer 177
insert statements 148
integers 173
interactive functions 144
interchanges the coordinates of the argument 94

217

internal checks 3

internal data format 161
internal machine fix (IMF) 23
interrupted function 155
invert a nonsingular matrix 105

join two arrays 37, 78
join two items 37,78

keyboard 5
keys b

keyword 6
labels 137

laminate function, 77,79
language in operation 3

larger of two arguments 49

last valid statement number 149
latent expression [JLX 126
latent referent 142

least squares solution 106
length of the output line 126
less than function < 69

less than or equal to function < 71
library 10

light characters 5

line counter [JLC 126

load a stored workspace into the active workspace
local function 131

local names 27, 139

local names, display 142

local objects 132, 173

local user-defined functions 143
local variable 139

locked functions 147

log of B to base ‘e’ 55

log of B to base A 55

logarithm function ® 55

logical data 32,173

L32 64 R32 switch 3

magnitude function | 52
mark a file unused 15
matrices 32

matrix divide function] 105
matrix inverse function f] 105
matrix product 113
maximum function [49
membership function ¢ 104
minimum function | 52
minus function - 46

mixed functions 43

218

models 172

monadic 43

monadic functions 135
monadic mixed functions 73
MSG = OFF 161,166
multiplier 31

N-rank array 34
name classification [J[NC 133
name list [JNL 132
names of the objects in the active workspace 132
nand function A 65
natural log function @ 55
negation function - 456
negative sign 30
new coordinate, creating 79
next larger integer 49
next smaller integer 51
niladic functions 135
nonsingular 105
nor function V66
not equal to function z 72
not function ~ 64
numbers 30

decimal 173

range 31

precision 31

whole 173
numeric keys 5

objects 11

opening a file 159

operators 43, 111

or function V. 63

order of execution 122

other commands that control the system 11
OUT operation 160, 163,174
outer product operator o, 116
output 2

output line, length 126
overstruck characters 200
overview, system 10

parameters for system commands 12
parentheses () 122

password 12, 14,18, 25,27, 29
pendent function 156

physical record 164

pi times B 56

pi times function O 56

plane 75

plus function + 44

portable computer 1
positioning information 6
positioning the cursor 6

power function * 54

(w“\
-

(’/‘ln»

power on procedure 3

power ON/OFF switch 3

power on/off, printer 176
precision 108

primitive functions 32, 43
primitive mixed functions 73
primitive scalar functions 43
print data 160

print information 8

print input and output 20

print output 20

print width [JPW 126

printer 20,176

printer characteristics 176
printer output 158

printer power on/off switch 176
printing precision [JPP 125
process input 6

processing 6

processing input 9

product of A times B 47
product of all positive integers 59
protect objects 25

protecting sensitive data 171
PRT operation 160, 164
pseudoinverse of a rectangular matrix 105

quad [] 120

quad input 145

quad quote [Y] 121

quad quote input 145
quotient of A divided by B 48

radians 56

raise A to the B power 54

random integer 61

random link [JRL 126

random numbers 61, 95, 126

range 31

rank 35, 42

ravel function, 77

reciprocal function + 48

reduction operator / 111

remainder 53

remove bare output 147

removing sensitive data 171

reopening function definition 148, 160
replace ribbon 179

replace statements 148

representation of an argument in a specified number system 99
representation of the class of names 133
request input 144

reshape function 33,76

residue function 53

restart procedure 3

RESTART switch 3,8

restart system operation 3

result variable 135

resume execution 155

retract shared variable 16, 165

retract the variable name being shared 165
return codes 162

REVERSE DISPLAY switch 5

reverse function ¢ 89

reverses the coordinates of the argument 93
reverses the elements of the argument 89
revising a user-defined function 148
rewind the tape 26

ribbon, printer 179

roll function ? 61

rotate function ¢ 91

rotates the elements of the argument 91

scalar 32
scalar functions 43
scale 31
scaled representation 31
scan operator \ 118
scroll 8
scroll down 8
scrollup 8
select elements from arguments 81
sensitive data 171
serial 1/0 adapter program 20
setup procedure
auxiliary tape unit 197
printer 199
5100 192
shape function p 75
shape of an array 35
shape of the argument 75
shared variable 158, 174
shiftkey 5
significant digits displayed 125
signum function x 46
SIV display 143
size of files 17
skip alternate records 110
smaller of two arguments 52
solution to one or more sets of linear equations
sort vector
in ascending order 83
in descending order 84
special symbols 120
specify order of execution 122
specifying printer output 11, 20, 164
state indicator 27, 143, 165
state indicator with local names 143
stop control 147, 154
stop control vector 155
stop processing 5, 6
stop system operation 5,6
stop vector 154
storage capacity 172
storage considerations 173
store data 10, 30
structure 76
subtract 46
sum of two arguments 44
suspended function execution 155
suspended functions 155
suspended functions, cleared 157
suspension 155

105

219

switches
BASIC/APL 3
DISPLAY REGISTERS 5
L3264 R32 3
POWER ON/OFF 3
RESTART 3
REVERSE DISPLAY 5
symbols 5
system command description
commands that control the active workspace 10
commands that control the library 11
commands that provide information about the system 11
other commands that control the system 11
system command parameters
brackets 12
device/file number 12
object 12
password 12
workspace ID 12
system commands
contro! the active workspace 10
control the library 11
provide information about the system 11
other commands 11
system commands, entering 12
system commands, parameters 12
system functions 128
system malfunction 8
system operation 2,8
system overview 10
system ready 3
system variables 123

take elements from an argument 86
take function 4+ 86
tape 10

220

tape cartridge

care 175

handling 175
tape error recovery program 24, 25
tape input and output 158
tape storage 19
tape unit, auxiliary 1,12
tape winding 183
terminate printer output 165
times function x 47
trace control function 147, 162
TRACE user-defined function 152
trace vector 152
transfer data from tape 160, 163
transfer data to tape 160,164
transferring data 163
transpose function § 93
trigonometric functions 56
TV monitor adapter 1
TYPE= 161

uneven tape winding 183

unused space 126

unused storage 17, 163
user-defined function, revising 148
user-defined function 134

value expressed in a specified number system 96
variable name 30, 173

variables 30

vectors 32

workspace available [JWA 126

wrap around 6

write the active workspace to tape 13,26

write the contents of the active workspace to tape 13, 26
WS FULL error 174

512 byte boundary 163

READER’S COMMENT FORM

o IBM 5100 SA21-9213-2
APL Reference Manual

YOUR COMMENTS, PLEASE . ..

(Your comments assist us in improving the usefulness of our publications; they are an important
- part of the input used in preparing updates to the publications. All comments and suggestions
become the property of {BM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the response. Instead, direct your inquiries or requests to your I1BM
representative or to the | BM branch office serving your locality.

(/ Corrections or clarifications needed:

Page Comment

D

2

®

| would like a reply. D

Name
Address

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

SA21-9213-2

FIRST CLASS

x
o
0O
T 3
& =
m
& 3
ES
@©
zZ S

g

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY {F MAILED IN THE UNITED STATES

POSTAGE WiILL BE PAID BY . . .

1BM Corporation

General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

_——— e — e e e e e —aun

fuojy 1INy — — — — -

e e o e e e e e meame e o m— o —— o m— — —— — e e e —mme e e e e o tee wmmm e e om—

International Business Machines Corporation
General Systems Division

5775D Glenridge Drive N.E.

Atlanta, Georgia 30301

{USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
{International)

lenueyy adusiajey 1dV 0NLS WAL

N

Z;SLZG-I,ZVS "V'S'N ul pajung

\
N—

SA21-9213-2

Yol
Kl
II|!|

o
&I

International Business Machines Corporation
General Systems Division

5775D Glenridge Drive N.E.

Atlanta, Georgia 30301

(USA Only)

1BM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

lenuely aduaieyay 1dV 00LS WaI

Z-ELZ6-LEVS 'V'S'N ul pajuld

Y-

