IBM 5100
BASIC Introduction

o
S
S RS
S S
S
Q
- OO
‘ SR <
3B
L
&)
® @m.

SA21-9216-1

. ce

This manual introduces the IBM 5100 Portable
Computer that can be programmed with the BASIC
language. It is intended to provide persons using
the 5100 with the information necessary to operate
the 5100 using the BASIC language.

Related Publications
o /BM 5100 BASIC Reference Manual, SA21-9217
e /BM 5100 BASIC Reference Card, GX21-9218

® /BM 5100 Communications Reference Manual,
SA21-9215

Second Edition (December 1975)

This is a major revision of, and obsoletes, the previous edition SA21-9216-0.
Changes are continually made to the specifications herein; any such changes
will be reported in subsequent revisions or technical newsletters.

Requests for copies of IBM publications should be made to your IBM repre-
sentative or the 1BM branch office serving your locality.

A form for reader’s comments is at the back of this publication. If the form

has been removed, address your comments to IBM Corporation, Publications,
Dept 245, Rochester, MN 55901.

© International Business Machines Corporation, 1974, 1975

e

.

CHAPTER 1. INTRODUCTION
About This Manual
About BASIC .
About the 5100
Alphameric Keys .
Numeric Keys .
Operating Keys .
BASIC Command Keywords .
BASIC Statement Keywords .
Arithmetic Operator Keys .
Getting Started
Entering and Displaying Data
Correcting Keying Errors

CHAPTER 2. HOW YOUR 5100 HANDLES
ARITHMETIC

Arithmetic Operators
The Sequence of Arithmetic Operat|ons
Positive/Negative Operators

Arithmetic Constants

Finding Square Roots

Variables ;
Variables That Stand for Numbers .
Variables That Stand for Characters.
Using Calculation Results .,

CHAPTER 3. ENTERING, RUNNING, AND
STORING A PROGRAM.
Entering a Program
Correcting Your Keying Errors
Running the Program
Automatic Statement Numbermg
Storing the Program .
Tape Preparations
* SAVE Command .
LOAD Command . ..
A Review of What You've Done .

CHAPTER 4. HOW TO WRITE A PROGRAM .

The LET Statement .
Using Remarks.
Listing Program Contents .
Branches. .
The GOTO Statement
The |F Statement.
Loops.

-
TN OTWW W ==

16
16
21
17
22
23
23
23
27
28

30
30
31
31
35
35
35
38
39
39

a1
41
42
44
44
44
44
49

Contents

CHAPTER 5. OTHER WAYS TO PUT VALUES

INTO PROGRAMS
The READ, DATA, and RESTORE Statements
The INPUT Statement .
Prompting Your Input .

"Entering Character Variables into Programs

A Review of What You've Done .

CHAPTER 6. MAKING CHANGES TO YOUR
PROGRAMS .

Correcting Keying Errors

Inserting New Lines .

Replacing One Line with Another

Removing a Line . .

Renumbering Statement Llnes

CHAPTER 7. MORE ABOUT THE PRINT
STATEMENT

Making Headings . .

Math Calculations in PRINT Statements

CHAPTER 8. SETTING UP YOUR OWN FORMAT—
PRINT USING AND IMAGE STATEMENTS .

Example of Printing .

CHAPTER 9. MORE THINGS YOU CAN DO
WITH BASIC .o

Some General System Functions .

Conversion Functions and Constants

Trigonometric Functions

Logarithms and Exponents.

CHAPTER 10. TAPE DATA FILES
Activating and Deactivating Files
Creating a Tape File .

Retrieving a File .

Repositioning Files .

CHAPTER 11. ARRAYS .
Defining an Array.

DIM Statement for One- Dlmen5|ona| Arrays .
DIM Statement for Two-Dimensional Arrays .

Elements of Arrays . .
Assigning Values to Array Elements
Another Way to Assign Values to Arrays .

Assigning Values to an Entire Array at Once .

Working with Elements of Arrays

58
58
60
61
62
63

64
64
64
66
67
68

69
70
71

72
74

77
77
78
78
79

80
80 -
81
81
82

84
86
86
87
87
88
91
92
93

iii

Printing Arrays.
Putting One-Dimensional Arrays Together ina
Program . .
Two-Dimensional Array
Arithmetic with Arrays .
Addition and Subtraction W|th Arrays
Multiplication and Division . .
Averaging Two Sets of One-Dimensional Arrays

APPENDIX A. BASIC STATEMENTS AND
COMMANDS
BASIC Statements
BASIC System Commands
Editing Function .

INDEX .

93

94
95
96
97
97
98

100
100
102
102

103

S

O

Chapter 1. Introduction

ABOUT THIS MANUAL

This manua! will show you how to operate the 5100 using the BASIC
language. If you are already familiar with the BASIC language, you may
be able to skip most of the language-only topics and simply learn how to
operate the 5100. If you are not familiar with the BASIC language, you
should read the manual from cover to cover while performing the
suggested keying operations or examples on your 5100. Not all of the
features and functions of the BASIC language are covered in this manual.
For more information about the 5100 or the BASIC language, see the
IBM 5100 BASIC Reference Manual, SA21-9217.

This manual assumes that your 5100 has been installed and checked out.
If it’s not, use the setup procedure in the /1BM 5100 BASIC Reference
Manual before continuing with this manual.

ABOUT BASIC

BASIC is an interactive computer language, that is, whatever you enter
into the 5100 is processed immediately. BASIC has many built-in
functions that allow you to effectively solve your problems. BASIC also
allows you to write programs using BASIC language statements and
facilities. These programs can be stored on the tape cartridge for later
use.

BASIC is a good language to experiment with. Nothing you do from the

keyboard can damage the 5100; and the more you experiment, the more
you will fearn about BASIC and the 5100.

Introduction 1

REV ERSE ‘
\N PROCESS_ DlSPLAY : RESTART w S
\ndicator Switch Switch
PROCESS BAS\C/APL DISPLAY
CHECK indicator Switch REG\STERS/NORMAL
Exror Switch e
M.essage S
List
132 64 R32
gwitch
POWER
ON/OFF A
/ W A

gwitch _ Brightness

Display Tape
Screen ~_ /Cartr'\dge
CMD Key /
/Specia| Qperator Keys
Arithmetic
Operator

£5 / Keys
/
\

Numeric Keys

A\phamer'\c

Keys /

ghift Keys

EXECUTE Key

Figure 1. The 5100

ABOUT THE 5100

The 5100 (Figure 1) is a portable computer designed to help you solve
problems. The display screen and indicator lights communicate
information to you, and the keyboard and switches allow you to control
the operations the 5100 will perform.

Before you begin to use the 5100, you should become familiar with the
keys and the control panel (Figure 1). The control panel consists of a
series of switches, which will be explained later.

What follows is a brief description of the keys. How you use the keys
will be described later. For now, familiarize yourself with the names
and locations of keys on the 5100. Figure 2 shows a BASIC-only
keyboard, and Figure 3 shows a combined BASIC/APL keyboard.

Alphameric Keys

The alpha keys are similar to those on a standard typewriter, except that
there are no lowercase characters. The alpha characters are all uppercase,
even though they are in the Iower shift position on the key. Thus, you
do not use the shift key (P) for alpha characters.

If you want to enter an upper shift special symbol, such as ?, you must
hold down the shift key, then press the key to enter the special symbol,
just as you would to type an uppercase character on an ordinary
typewriter.

If your 5100 is equipped to operate either BASIC or APL programs,
you may be unfamiliar with the symbols appearing at the top of some
of the alphameric keys (Figure 3). For BASIC operations, even on a
BASIC-only machine (Figure 2) where they are not shown on the key
top, these symbols can be displayed or printed, although their APL
functions do not apply to BASIC operations. See the /BM 57100 BASIC
Reference Card, GX21-9218, for the APL characters and their locations.

Numeric Keys

Either the top row of alphameric keys or the special calculator
arrangement of numeric keys on the right of the keyboard can be used
to enter numbers.

Introduction

o = EEEE]]
ULOOOEBLBA0 '
HULUOULOLOOO o100
LUOLULLOOLOUOE UUO O
LUOULUUOOUOOE LU O
C —) - 0

Figure 2. BASIC-only 5100 Keyboard

asic (Croao Y (save J(Crun J(Coo J Cust) Curi J(Cauto) (renum) (Cro-_)(Rewino) CalcResut) Eom.' vetete [e
apt (hcoan) (Osave JCcont) (Cus Y (s J (O vars (O cory Y (Ciwsio]@u*rs&)[)nsww:a isplay

- <111 = 211 >t # v A - +
2 3 4 6 7 8 9 | {o + X
? w | [e ~ 1 (1 4 2 =1 [-
Q] 1w E T)}ly U 1 P « ’
a r L v) {a o 0 () e
A}l s D ¢ J|H J L [1 #
C Sl N]] u LT \ P 3
z x)Jlec)lv B J N /
C B -0 O

Figure 3. Combined BASIC/APL 5100 Keyboard

\

~

-

Operating Keys

The black key labeled CMD; the gray keys with the legend names
EXECUTE, ATTN, and HOLD; and the gray keys with the arrows are
special operating keys (Figure 4). The gray keys with the arrows and the
spacebar (used to enter blank characters) automatically repeat the
operation they perform when held down.

Backspace Key

Forward Space Key

Attention Key —————— /f you get an error,
press this key to make
Scroll Up Key the display stop flashing.

Scroll Down Key

HOLD Key
|

EXECUTE Key

Figure 4. 5100 Special Operating Keys

Introduction

5

BASIC Command Keywords

The words listed above the top row of alphameric keys (1-0) are
BASIC command keywords that you can enter by holding down the
CMD key and then pressing the number below the desired command.
For example, to enter the LOAD command keyword, hold down the
CMD key and press 1. These commands and their use are described
later. 'Y

BASIC Statement Keywords
The words printed on the front of some of the alphameric keys are
BASIC statement keywords. The words will appear on the display screen

if you press the key while holding down the CMD key. This permits you s
to enter an entire word, error-free, with one or two keystrokes.

Arithmetic Operator Keys
The four keys to the right of the calculator arrangement of numeric keys
are the arithmetic operator keys that are used to perform division,
multiplication, subtraction, and addition. There are also alphameric
keys that perform the same functions. In BASIC the symbol / is used
for division, and the symbol * is used for multiplication.

W
GETTING STARTED

Make sure the switches on your 5100 are set as follows:

Switch Setting
L32 64 R32 64
DISPLAY REGISTERS/NORMAL NORMAL
BASIC/APL (combined machines BASIC

only) : s

If your 5100 has the BASIC/APL switch, it can execute either BASIC or

APL language statements. The language used is selected only during the e
power up procedure or when the RESTART switch is pressed. Make sure W s
your 5100 is plugged in and turn the power on. If the power is already on,
press RESTART and wait a few seconds. During this time, the 5100
performs internal checks to make sure it is operating correctly.

o

If an error is detected during these checks, the PROCESS CHECK
indicator may come on. 1If the PROCESS CHECK indicator comes on,
press RESTART. The 5100 will again perform the internal checks.

If the light comes on again, call for service.

The IN PROCESS indicator comes on whenever the display screen is
blank, which indicates that the 5100 is doing internal processing.

ENTERING AND DISPLAYING DATA

First, let’s look at the display screen. Your display screen should look
like this: :

LOATL O

TREADY NNNNN
. s

If the READY message does not appear, press RESTART again, and
wait a few seconds. |If the READY message still does not appear, call
for service.

The LOAD 0 (zero) message indicates that the 5100 has a clear work area.
The flashing underline (—) between the LOAD 0 and READY messages is
called a cursor. It tells you where the next character you enter will be
displayed. The READY message indicates that the 5100 is ready to receive
your instructions. The number in the lower right corner, indicated by the
NNNNN on the display screen drawing, is the number of character
positions (bytes) in the work area available for your instructions and

data. This number changes during processing. The number is omitted

on the remaining display screen drawings in the manual.

Introduction

The display screen can contain up to 16 lines of data. The bottom line
indicates the status of the 5100 and specifies the number of bytes
available in the work area (NNNNN). The line next to the bottom
displays the input you are entering from the keyboard. The remaining
lines display the preceding 14 lines that have been entered and processed.
When the data on the input line is processed, that line is moved up one
line, leaving the input line empty so more data can be entered. Up to

64 characters of data can be entered per line.

Now let’s enter some data into the 5100. Enter the following problem
using the numeric keys and arithmetic operator keys:

Notice that the characters are displayed as each key is pressed. To
process the data you just entered, you must/press the EXECUTE key.
Press EXECUTE now.

The display screen shows:

LOAD 0
243

1
-~

4

T READY
N—

Notice that the instruction you entered, 2+3, is on the left margin of
the display screen, while the answer, 5, is indented one position from
the left margin on the next line.

Enter and execute 125+75 by pressing the following keys:

000000

This display screen shows:

LOADT 0
243

"
W
125+75

200

TREADY
-

The appearance of your display can be changed by switches on the
control panel. The REVERSE DISPLAY switch allows you to change
from black characters on a white background to white characters on a
black background, or vice versa. Change the switch and select the type
of display you feel most comfortable with. You may have to adjust the
BRIGHTNESS control switch as you change from one background to
the other.

Now watch the display as you set the L32 64 R32 switch to the LL32
position. With the switch in this position, the leftmost 32 characters
on each line are displayed with a space between each character. With
the switch in the L32 position, your display screen shows:

Now set the switch in the R32 position and notice that the display is
blank (except for the storage number). In the R32 position, the right-
most 32 characters are displayed with a space between each character.

Introduction

9

10

Return the switch to the 64 position, and notice that all characters are
displayed without the space in between. For the exercises in the
remainder of this book, keep the switch in the 64 position.

There are two gray keys with white arrows above the numeric keyboard.
These keys move the display lines (except the status line) up or down.
The scroll up key moves the display lines up one line, and the scroll

down key moves the display lines down one line. Both keys con-

tinue to move the display lines if they are held down. Now use the scroll
down key to move the display down two lines.

The display screen shows:

LOAD 1

w¥

2« The value 200 is now on the input line and
HEATTY can be used as input.

—

Use the forward space key and move the cursor to the right of 200.
Notice that the cursor (the underline) is replaced by a flashing character
as you space the cursor through the numeric characters. The flashing
character serves the same function as the cursor; it indicates the position
in the line where input from the keyboard will be displayed. Now, press
the following keys:

)

The display screen shows:

—
RE DY

C S

You are now familiar with the format of the display screen. From this
point on, only the line or lines being discussed will be shown.

Correcting Keying Errors

The 5100 has a number of very useful functions that allow you to
correct errors made while entering data. On a line-by-line basis, at any

C~ time, you can

1. Replace a character
2. Delete a character

3. Insert a character

Replace a Character

To replace a character, move the cursor with the backspace key

‘ , or forward space key §

cursor moves one character space in the direction of the arrow each
time the appropriate arrow key is pressed. These keys will continue to
move the cursor if they are held down. The incorrect character is then
replaced simply by keying the correct character over the incorrect
character. (In some instances, characters can be combined to form a
character not on the keyboard; for example, the period and quotation
mark combine to make an exclamation mark. If you want to replace
one of these characters (the . or ') with the other, you should backspace
to the character, press the spacebar to delete the character, backspace
0’1 again, then enter the desired character.)

L until it is at the incorrect character. The

®

Introduction

11

12

For example, you want to do the problem 22+12, but you press the
following keys:

OUUOdO

The display screen shows:

2l

To correct this error, the cursor must be moved back one position
(under the second 1) so that character can be rekeyed. Now, press the
backspace key once. To correct the keying error and execute the

problem, press the following keys:

Delete a Character

To delete a character, you also use the backspace key or the

forward space key to move the cursor. Once the cursor is in the

position of the character to be deleted (the character is flashing), hold
down the CMD key and press the backspace key once. The

character is then deleted, and any characters to the right are shifted one
position to the left to close up the space left by the deletion.

For example, you want to do the problem 13+45, but you press the
following keys:

U000

The display screen shows:

Press the backspace key to move the cursor (flashing character) back to
the 2. Look at the labels that appear above the backspace and forward
space keys: Delete and Insert. To perform the delete function, hold
down the CMD key while you press { & . once.

The display screen shows:

13+0E

This character is flashing.

Now press EXECUTE to execute the problem. Pressing the EXECUTE
key processes the entire line regardless of the position of the cursor.

Insert a Character

To insert a character, position the cursor using the backspace key

or the forward space key then hold down the CMD key and press

the forward space key once. This operation moves the flashing

character (and all other characters to the right of it) one position to the
right, creating the space you need to insert one character. The cursor is
not moved and is now displayed as an underline. To insert the character,
simply press the character key. |f a character is in the last (64th)
position of the line, the insert function is ignored.

For example, you want to do the problem 123*6, but you press the
following keys:

oL

Introduction

13

14

The display screen shows:

To correct the error, press the backspace key to move the cursor
(flashing character) back to the 3. Look at the labels that appear
above the backspace and forward space keys: Delete and Insert.

To perform the insert function with the cursor position at the 3, hold
down the CMD key while you press once.

The display screen shows:

Lo 3wd

To correct the keying error and execute the problem, press the following
keys:

There is one more way to correct a keying error. If you make several
errors halfway through the line, you can backspace the cursor to the
character following the last correct character and then press the ATTN
(attention) key. This causes everything from the cursor position to the .
end of the line to be cleared from the display screen.

Since the data from the input line is not processed until the EXECUTE
key is pressed, you can visually verify any input before it is processed.
However, if you do press EXECUTE before you notice a mistake, you
must press ATTN; then you can simply enter the input again, or you
can use the scroll down key # to move the input back to the input

line and correct it. When the corrections have been made, press EXECUTE
again.

L

(""‘n»

‘ LI
¥
14

~

For example, you want to do the problem 135+280, but you entered
and executed 134+280. The display screen shows:

LAu+280
il

To correct the original input, press the scroll down key

three times to get the original input back to the input line. The display
screen shows:

LAWER0

I———This character is flashing.

You may now correct the error, and then process the data again by
pressing EXECUTE.

Introduction

15

Chapter 2. How Your 5100 Handles Arithmetic

The following examples show some common, simple arithmetic
operations you can do on the 5100.

ARITHMETIC OPERATORS

Before you begin these simple operations, you should know that some
of the arithmetic signs (called operators) you are accustomed to using
are different when you use the BASIC language. For example, the
multiply sign (x) is not used in BASIC. Instead, the asterisk (*) is used
for multiplication. Similarly, the divide sign (<) is replaced by the slash
{/) in BASIC. The sign for exponentiation (raising to a power) in BASIC
is 1 (the upper shift character on the Y key) or **. Now enter these
problems:

Arithmetic You Press The Dispiay Screen Shows

Add 5and 8 ‘] l] [l
5 + 8

Subtract 8 from b (J (J [] p—
(T READY
Multiply 5 times 8 683
[°] - E‘ 0
TREADY

16

Arithmetic You Press The Display Screen Shows

5 to the power of 2

(Hold down the
shift key and
press the Y key
to get T symbol.)

RiEainy

Lp3e 32
146

4 to the power of 2 ‘ . l[*][*JI) l

TREADY

THE SEQUENCE OF ARITHMETIC OPERATIONS
BASIC has a prescribed order of arithmetic execution called arithmetic
hierarchy. When two or more operators such as +, -, *, /, or 1 are used,
arithmetic is performed according to this hierarchy. That is, operators
with higher priorities are performed first, while operators with the same
priority are performed as they are encountered from left to right. The
arithmetic hierarchy in BASIC is:
1. Operations enclosed in parentheses
2. Mathematical functions (for example, sine, cosine, or square root)
3. Exponentiation (* or **)
4. Positive/negative operations, which are described later

5. Multiplication and division (*, /)

6. Addition and subtraction (+, -}, which have the lowest priority

How Your 5100 Handles Arithmetic

17

When an operation is enclosed in parentheses, it is performed first, even
though the operator enclosed in the parentheses may have a lower
priority than the operators outside the parentheses. As a result, the
prescribed order of execution can be changed if you use parentheses.
Operations enclosed in parentheses are executed in BASIC before
operations outside parentheses, regardless of the hierarchy of the
operators.

Some examples of arithmetic hierarchy are:
3+4/5
4/5+3

In both of these examples, the 4 is first divided by the 5 because the
divide operation has the highest priority. The .8 result is then added to
the 3, giving a final result of 3.8.

Another example is:
(3+4)/5

In this example, the 3 and 4 are first added because they are enclosed
in parentheses. The result, 7, is then divided by 5, giving a final result
of 1.4.

In the expression
16+23-4+133-8

addition and subtraction occur from left to right in the following
sequence:

16
+_23
39 Interim result
-4
35 Interim result
+133
168 Interim result
- 8

160 Final result

However, when parentheses are added, the sequence of operations can
change:

(16+23)-((4+133)-8)

18

In this example, the operations occur in the following sequence:

1. Proceeding from left to right, the 16
expression in the first set of + 23
parentheses is evaluated. 39 Interim result 1
2. The parenthetical éxpression within 4
the second set of parentheses is +133
evaluated next. 137 Interim result 2
3. The second set of parentheses 137
is now evaluated. - 8
129 Interim result 3
4. Finally, the subtraction (having the 39 Interim result 1
same priority as addition) is per- -129 Interim result 3
formed and the result is displayed. - 90 Final result

Although the numbers and operators in this expression are the same as
those in the previous example, the parentheses completely change the
order of the operations.

Now, determine the result of the following expression by entering the
numbers, then pressing the EXECUTE key:

41(3*(4-2))
The order of the arithmetic operations is: 4-2=2, 3x2=6, and 4°=4096.
The display screen shows:

W O (22000
ERE

Figure 5 shows other examples of arithmetic expressions.

How Your 5100 Handles Arithmetic

19

This is the Way it
Looks as Arithmetic:

atbtc
2

atbtc
2

3at+4

Figure 5. Examples of Arithmetic and BASIC Expressions

This is the Way

it Looks in BASIC:

(A+B+C)/2

A+(B+C)/2

3" A+4

3*(A+4)

X12+7

(X+7)12

(X+1)12/2

(X12/2)*(X+Y)/3

This is What it Means:

First add A, B, and C;
divide the sum by 2.

Add B and C, divide the
sum by 2; add the result
to A,

Multiply A by 3; then
add 4,

Add A and 4; multiply
the sum by 3. S

Square X and add 7.

Add X and 7; square the
quantity.

Add X and 1; square the
quantity; divide the
result by 2.

Square X and divide by 7
2;add X and Y and multiply

by the previous result; divide

that result by 3.

As you can see, the more complicated the arithmetic expression looks,
the more complicated the BASIC expression looks. When you are

writing BASIC expressions, remember that parentheses must always be c
in balanced pairs—as many right parentheses as left parentheses. If a A
statement gets too complicated, you can usually break it down into
several simpler statements.
s
“«
1
W

20

C

Positive/Negative Operators

The plus (+) and minus (-) signs indicate that a number is positive or
negative. When used for this purpose, the + and - signs have a higher
priority in the arithmetic hierarchy than they have when used for
addition and subtraction. In the following example:

-212-3

the 2 is raised to the second power, and the minus is assigned to the
result before the subtraction.

One rule that you must follow is that you cannot use two operators
sequentially, except ** which is the same as 1. Sequential operators
must be separated by parentheses. This rule applies to both the
arithmetic operators {+,-,*,/, and 1) and the positive/negative operators
(+ and -). For example, enter 773 as 7t-3. The flashing display screen
shows:

ERROR g

The lower arrow indicates the syntax error. Press ATTN to stop the
flashing screen, then enter the corrected expression, 71(-3). A complete
description of 5100 error messages is included in the /BM 5100 BASIC
Reference Manual, SA21-9217. Short descriptions of the error messages
are given on the pullout card above the display screen.

You must use parentheses to separate consecutive operators, as
in the following examples:

Invalid Valid
6+-4 6+(-4)
3*-1.5 3*(-1.5)
8--4 8-(-4)

Try to solve the following problems using the 5100. Remember to press
EXECUTE after entering each problem.

T3 51,28

AR D
Rt BPEPAVP

F.270-16% 1)

I‘..I

e : Answers
12?3*RX(MW.?1/////////////
3637 BIUTET

How Your 5100 Handles Arithmetic

21

22

ARITHMETIC CONSTANTS

BASIC has three built-in arithmetic constants to represent the values
of:

1. e (natural log) = 2.718281828459

2. = (pi) = 3.141592653590

3. \/E(square root of 2) = 1.414213562373

For example, if you want to use = in an gquation, you don’t need to

type in 3.14 You just use the special BASIC constant. Here are
the special symbols that BASIC recognizes for these constants:

For This Constant: Use This Symbol:
e (natural log) &E
7 (pi) &Pi

\/;(square root of 2) &SQR2

You might use one of these constants in a program that calculates the -
area of a circle (AREA = 7 R? is the formula). Your program statement
would read:

50 LET A = &PI*R12

You can use these constants anywhere in your programs. In addition,
there are special constants in BASIC that are used to convert pounds,
inches, and gallons to metric kilograms, centimeters, and liters respectively.
Normally, when you want to switch from the U.S. measuring system to
the metric system, you multiply the measured quantity by a fixed
constant to obtain the equivalent measurement in the metric system.

"~ For example, 1 Ib equals 0.454. . . kg, so 2 Ibs equal 2*0.454. . . kg.
With BASIC, instead of remembering what the conversion multipliers
are, the 5100 can provide them for you. These constants are:

o &INCM, which has a value of 2.54 (centimeters per inch)
e &LBKG, which has a value of 0.453592 (kilograms per pound)

e &GALI, which has a value of 3.785412 (liters per gallon)

=~

FINDING SQUARE ROOTS

O You can determine square roots automatically with your 5100. Instead

' of writing your own formula for determining the square root of a number,
you use the letters SQR, followed by the number whose square root you
want to know enclosed in parentheses. For example, SQR (X) finds the
square root of X, where X is O or a positive number.

‘) You can use SQR in any of your arithmetic expressions, and the
expressions inside the parentheses can involve any kind of arithmetic.
For example:
VX+Y is entered as SQR (X+Y)
m‘h’
() \/ X+Y+Z is entered as SQR ((X+Y+2Z)/5)
5
\/ A+X is entered as SQR(A+X/2)
2

Other conversion and trigopnometric functions and conversion constants
in BASIC are discussed in Chapter 9.

VARIABLES

",

0’ Algebraic formulas often contain variables to which you assign your
own values when using the formulas. In the formula 7R?, for example,
the R is a variable representing the radius. You must assign a value to
R when you use the formula.

Variables That Stand for Numbers

You can name a variable in BASIC with a single character of the extended
BASIC alphabet (A-Z, @, $, and #). A BASIC variable can also be named
with one of the preceding letters or symbols followed by a singie digit (O
' through 9). Typical variable names are A2, #9, and B1. You can name
C a maximum of 319 different variables in BASIC.

How Your 5100 Handles Arithmetic

23

24

Assigning Values to Variables

Variables are assigned values by using the equal (=) sign. After you

assign a value to a variable, you can use the variable in a calculation.
For example, if you enter

O

you assign the numeric value of 12 to the variable named B4.

To illustrate this, enter the following:

LG

and

You have named variables A and B and assigned them values of 12 and
4 respectively. You can now use them in the following calculation:

P

The display screen shows:

LN
12
He by
1
AT
. 5
REATY
C
i'd

Now press the following keys:

The answer is 64.

Press the following keys:

()]

How Your 5100 Handles Arithmetic 25

e Jer v

26

Notice that the second expression increases the value of C by 1. This
method of changing the value of a variable is commonly used in
programming for stepping through a process. This will be described
in detail later.

Displaying Variable Values

To find the current value of any variable, you can simply enter the variable
name and press EXECUTE. For example, key:

The display screen shows the variable and its current value:

A Note About Numbers
When you use numbers in BASIC, they can be:
® /ntegers (whole numbers) such as:
2, -76, 842, 10000000, or 999111
® Decimal numbers such as:
—1;5, 3.7772,0.00081, or -457.25
® Numbers in exponential format such as:

6E7 (meaning 6x107) or 5.4E-3 (meaning 5.4x1073)

®)

A Note About Names

"When you name variables in BASIC, they can be:

® A single character of the extended BASIC alphabet (A-Z, @, $, or #)
such as:

$,C,orV

® A ssingle character of the extended BASIC alphabet (A-Z, @, $, and #)
followed by a single number such as:

A4, $6, $3, or T3

Variables That Stand for Characters

While you usually think of variables as standing for numbers, in BASIC
you can let a variable stand for combinations of characters such as words
or names. - If a variable is going to represent a word or a name, it is called
a character variable. You name character variables with one letter of the
extended BASIC alphabet (A-Z, @, $, and #) followed by a dollar sign
($). The dollar sign tells the 5100 that the variable is a character
variable.

To assign a word or name to a character variable, you enclose the word

or name in single quotation marks following the equal sign. For example:

A$="HARVEY SMITH'

Here are the general rules:

® A character variable is named by a single letter of the extended BASIC
alphabet followed by a dollar sign ($).

® To assign a value to the character variable, enciose the words or names
you are assigning in single quotation marks following the equal sign.

® The character limit is 18. [f you require more than 18 characters,

assign the excess to a second variable. |f you enter more than 18
characters for a single variable, the excess is ignored.

How Your 5100 Handles Arithmetic

27

28

Using Calculation Results

When you are entering a series of expressions in which the result from
one expression is used in the next expression, you can use the

+

key (while holding down the CMD key) to insert the result of the last
expression. This is the calc result function. Notice that Calc Result is

listed above the key. For example, key the following:

| LY

A

®.

The display screen shows:

B Sk

21 &

Notice that the 5100 inserted the result of A*C into the second expression.

The calc result function will always insert the result of the /ast calculator
expression (character expressions as well as arithmetic expressions). You
must hold down the CMD key while you press for the calc result

+

function. Arithmetic results are enclosed in parentheses to avoid any
conflict with adjacent operators in case the result is negative. Character
results are enclosed in single quotation marks, just as they were when
they were assigned.

Up to this point, you have been operating the 5100 as a calculator. Any
of the operations described thus far can be performed any time the 5100
is waiting for you to enter input, with two exceptions:

1. When a BASIC program is in operation and it stops for keyboard
input required by an INPUT statement, you cannot perform any
calculator operations.

2. When you are entering data to create a keyboard-generated data
file, you cannot perform any calculator operations.

Any time, other than the exceptions listed, you can enter any of the
calculations described.

You can also stop a program during its operation, and change the values
of variables, then continue the program. This is extremely useful when
checking a program for proper operation.

The following chapters discuss how to program your 5100 using the
BASIC language.

How Your 5100 Handles Arithmetic

29

Chapter 3. Entering, Running, and Storing a Program

A program is your way to communicate with the 5100 to solve a
problem. The key words in this statement are communicate and to
solve a problem. All programming is oriented toward problem solving.
Problems can only be solved by first analyzing the problem, then by
formulating the solution. This involves communication. You can
communicate with the 5100 using the BASIC or APL language, as
opposed to your communicating with other people in the English
language. Thus, a program is little more than a means of translating
your instructions to solve a problem into a language that the 5100
understands. -

ENTERING APROGRAM

The following discussion shows you how to enter a BASIC program into
the 5100, and then how to execute that program. Also in this chapter,
you will learn how to save a program on a magnetic tape cartridge, then
load the program back into the 5100 for execution again.

The program you will enter calculates the volume of a-cylinder. The
volume of a cylinder is found by multiplying the length of the cylinder
times the area of the base. Enter the statements just as they are shown
in the following example. Don’t forget to press EXECUTE after entering
each statement. You can enter the statements character-by-character or
use the BASIC statement keyword keys with the CMD key. |f the 5100
detects an error in a statement you have entered, the keyboard becomes
inactive (except for ATTN and HOLD), and the display will flash. To
stop the flashing display, press ATTN, then correct the error.

D010 REM CYLINDER VOLUME
Doz kR
D00 INPUT D

gOW0 IF D=0 GOTO 0110

0050 PRINT "LENGTH?'

00460 INPUT L

DO7F0 A=&PTRC0/2) T2

DOBD Veh*

0090 FPRINT *THE VOLUME IS ',V
0100 GOTD 00320

0110 END

30

Now read your entries on the display screen to see if you have entered

the program correctly. If you find a keying error, the next paragraph

describes how to correct the error before you run the program. If your

5100 has an attached printer, you can hold down the CMD key and

press the key below Copy Display to get a copy of the displayed
X

data. The copy display function provides you with printed copy of all
16 lines of data.

Correcting Your Keying Errors

To correct or change a statement line of a program already entered in
the 5100, use the gray scroll keys { 88 and &8) to position the

incorrect line to be changed on the input line right above the READY
message line. When pressed momentarily, these keys move all information
on the top 15 lines up or down one line position. When you hold these
keys down, the display lines will repeatedly move up or down. When the
line you want to change is positioned correctly, which is easy to identify
because the first character will be flashing, you can use the forward space
or backspace key to position the cursor at the character to be corrected.
You can then use the insert and delete functions to make the change.
Remember, these functions are activated only when you hold down the
CMD key and press (Insert) or {Delete). After all changes

have been made to the line, press EXECUTE to reenter the line.

RUNNING THE PROGRAM

After you have entered the statement lines of the sample program, you
are ready to run the program. To run the program, enter RUN, then
press EXECUTE. Any error during execution causes the display to flash;
the ATTN key must then be pressed. Press ATTN to stop the flashing
screen, then correct the error. You will have to enter RUN again to
execute the program. When you run the program, the display screen
shows:

RUN
DIAMETER?

<y

Entering, Running, and Storing a Program

31

You will recognize the prompting message DIAMETER? as part of the
second statement in the sample program. This is a PRINT statement,
which directs information to be displayed.

Note that the bottom question mark is flashing. The flashing question
mark is a result of the INPUT statement in the sample program. The
INPUT statement causes the question mark to be flashed to indicate
that you are to enter information from the keyboard for the program,.

Now respond to the request for data to be entered by keying a value for
- the diameter, then press EXECUTE. You can enter any number of
digits you want. The maximum number of digits that can be assigned
to any variable (your variable is D for diameter) is 13 digits. You can
include a decimal point, which does not count as a digit entry, but you
must not enter commas. (Commas indicate multiple variables to the
5100.)

If you enter a decimal number with more than six digits to the right of
the decimal point, any digits beyond the sixth are rounded when the
answer for volume is displayed. The 5100 is initialized to round numbers
at the sixth decimal position. However, the rounding position can be
changed to any position from 1 to 13 with the RD= command, which
sets the rounding position. To set the 5100 to round all displayed or
printed results and calculations at the second decimal position, you
would enter: R D=2,

The rounding command can also be included with the GO and RUN
commands as described in the /BM 5100 BASIC Reference Manual,
SA21-9217. Remember that whenever you turn the power on or press
RESTART, the rounding position is set at 6.

All examples in this manual are run with the rounding position set to
6 digits (RD=6). |f you change the rounding position, you will get
different results.

You must remember that when using any programming language, including
BASIC, you are communicating with the machine, tetling it what you
want it to do. Thus, you should define precisely what the machine does
not know to avoid unnecessary problems.

You can enter values for the cylinder volume program as many times as
you want. After you enter a value for the length in response to the
flashing question mark and press EXECUTE, the 5100 will display the
information you specified and compute the answer.

The statements in the sample program are described in the following
paragraphs. In addition, Appendix A contains a short definition of

0 all the BASIC statements used in the 5100.
Statement Meaning
‘ 10 REM CYLINDER VOLUME The REM (remark) statement can
0 appear anywhere in the program,

but has no effect on program
execution. This statement is used
to insert comments into the BASIC
program.

"

C’ 20 PRINT ‘DIAMETER?’ This PRINT statement specifies
that DIAMETER? be displayed.
The single quotation marks
around DIAMETER? indicate that
it is a character constant and that
the entire character string is to be
displayed.

30 INPUT D The INPUT statement allows you
to assign values from the keyboard
to variables when your program is

: running. !n this example, the
O variable D will receive the value
you enter. The 5100 displays a

question mark in position 1 of

the input line to indicate that
keyboard input is expected.

40 IF D=0 GOTO 110 The |F statement transfers

control to a specified statement
when a specified condition is met.
In this statement, the program
will terminate when you enter O
for the diameter. As long as you

O, : want to calculate volumes, you

’ : can enter values for the diameter

and length. When you are finished,
however, just enter O for diameter
and the program goes to statement

0 110 (END).

Entering, Running, and Storing a Program

33

34

Statement

50 PRINT ‘LENGTH?’

60 INPUT L

70 A=&P1*(D/2)12

80 V=A*L

90 PRINT ‘THE VOLUME IS’, V

100 GOTO 20

110 END

Meaning

This statement displays the
character string LENGTH?.

This statement specifies that the
variable L will receive the value
you enter for length. Again, a
question mark will be displayed
to indicate that keyboard input
is expected.

This is an arithmetic expression
indicating that the variable A will
receive the value of n times D
(your entry for diameter) divided
by 2, and raised to the power of
2.

This expression assigns a value to
a variable. In this statement, the
variable V will receive the value of
the variable A times the variable

L (your entry for length).

This statement indicates that the
characters enclosed in single
guotation marks (THE VOLUME
IS) are to be displayed, followed
by the value of the variable V. The
value of V was calculated in the
preceding statement and is the
volume,

The GOTO statement transfers
control to a specified statement.
In this statement, control is
transferred to statement 20. This
provides for a number of volume
calculations to be made
repetitively.

The END statement indicates the
end of execution of a BASIC

program and terminates operations.

After you have computed your last volume calculation, you can end the
program operation by entering O for the requested diameter and pressing

0{ EXECUTE.

The numbers preceding the statements are called statement numbers. They
are necessary so the 5100 knows the proper sequence of your instructions.
BASIC statement numbers in the 5100 can have values from 0001 through
h 9999. You can use consecutive numbers if you wish, but normally

0 expansion room is left between the statement numbers so that changes
can be made more easily (see Making Changes to Your Program). When
you enter statement numbers, you do not need to include the leading
zeros. They will be added by the 5100 when the statement is entered.

W,
C Automatic Statement Numbering

Instead of manually entering the statement numbers in a BASIC program,
you can instruct the 5100 to provide statement numbers for you. You
can do this with the AUTO command. Simply enter AUTO and press
EXECUTE. Notice that the word AUTO is displayed above statement
number 0010. From this point on, the 5100 numbers your statements

in increments of 10. Automatic numbering continues until you enter
anything other than the last statement number (a command word, for
example, LIST, in the input line). You can restore automatic numbering
by entering AUTO NNNN where NNNN is the statement number you

(j'\ want to begin with.

STORING THE PROGRAM

The 5100 magnetic tape cartridge allows you to conveniently store your
programs (or data) and have them available for use by following the
simple operations described in this section. Before using a tape cartridge,
check the tape cartridge security arrow in the corner of the cartridge.
Figure 6 shows the arrow pointing to SAFE. When the arrow is in this
position, the tape cannot be written on. To be able to write on the tape,
use a screw driver or a coin to turn the arrow away from SAFE. Figure 7
shows how a magnetic tape cartridge is loaded into the 5100. Press the
C‘ cartridge in until it is firmly seated.

Tape Preparations

Before you can use it for p’rogramming or data operations, the magnetic
tape cartridge must be prepared, which consists of marKing the tape to
define how much space is to be in each tape file. When used in relation
to the BASIC 5100, a file is the area on a tape that contains one program
or a collection of related data items.

Entering, Running, and Storing a Program

35

Figure 6. SAFE Arrow

Figure 7. Inserting a Cartridge

36

To prepare a tape with one file of any size, or several files of the same
size in the same operation, you enter a MARK command. The MARK
0' command can be entered anytime that READY is indicated on the
/ display screen. It will not interfere with your programs. For our
exercise, we are assuming that you are beginning a new tape (no files
have been marked). We will mark three files, each containing 2048
or 2K character positions (K is equal to 1024). This exercise provides
“ enough space on tape to contain three programs (one in each file) of
@ approximately 35 statements each. Tape files for the 5100 are numbered
sequentially beginning with 1. Should you later decide to add more
files, you can do so as long as you do not exceed the physical limits of
the tape. A tape contains space for approximately 200K of storage,
minus the leading and trailing data for each file, which equals 0.5K

C’"’* per file. Thus, a tape can contain approximately 132 1K files, 44 4K
files, or any combination of file sizes up to 200K, including the required
0.5K per file.

Note: 1f you are not using a new tape cartridge, you must first ensure
that your tape does not contain important data belonging to someone
else. This is necessary because any existing data is erased when you
remark the tape. The 5100 displays an error message when you attempt
a MARK command to a file that is already marked. To continue marking
the file, press ATTN to stop the flashing screen, press the scroll up key
once to move the display up one line, enter GO in positions 1 and 2, then
press EXECUTE. ‘

(J To mark the tape in our exercise, press the following keys:

You have now marked the tape for three files of 2K characters each,

O/ starting with file 1. The READY message is displayed when the tape
preparation is completed. We will now save the cylinder volume program
on the tape. If you want to mark additional files, remember that you
must begin with file number 4.

Entering, Running, and Storing a Program 37

38

SAVE Command

The cylinder volume program can be saved on tape with the SAVE

command. To save the sample program, enter SAVE, then enter the

number of the file you want to save it in. We will save the program in

file 1, so press 1, then press EXECUTE. The READY message will be

displayed to tell you when the program is saved on tape. (You needn’t

be concerned with the numbers following the READY message.) While

the program is being saved, you will notice the tape in the cartridge AR
moving back and forth. This is normal, because the 5100 is reading

each segment of data after it is written. This ensures that the information

is saved correctly.

To prove that the program has been stored on tape and that you can load
it back into storage, the program stored in the machine must first be -
erased.

There are three ways to do this:

1. Enter LOADO and press EXECUTE. This clears machine storage
and prepares it to accept input from the keyboard or programs
loaded from tape. This is the recommended way to clear machine
storage.

2. Press the RESTART switch. This restarts the machine to the same
status as when the power was turned on. The internal diagnostics A
are performed again; thus, this method requires 10-15 seconds R
depending on the amount of storage in your machine. This method
is recommended only when the PROCESS CHECK indicator comes
on, or when you change from BASIC to APL or APL to BASIC.

3. Set the power switch to OFF, then set it back to ON. The same
diagnostics are performed as during RESTART.

To clear the machine, enter LOADO and press EXECUTE. To prove the
program no longer exists in the machine, enter RUN and press EXECUTE.
The 5100 will respond with an error message to let you know this

cannot be done because there is no program in storage. Press ATTN to PN
continue.

In order to run the program again, it must first be loaded into storage from
where it was stored on the tape. The LOAD command is used to place
the program back into storage.

®

LOAD Command

To load the cylinder volume program back into 5100 storage, enter
LOAD, then enter the number of the file containing the program you
want to load (file 1). Complete this sequence by pressing EXECUTE.

The READY message tells you that the program is loaded and can be
executed again. Run the program again by entering RUN, then pressing

EXECUTE.

Practice the SAVE and LOAD commands by changing the file number
when you again save the sample program on tape and load it back into

the 5100.

The following commands have been discussed in this chapter:

AUTO

MARK

LOAD

SAVE

RD=

RUN

Automatically numbers BASIC statements.
Prepares a tépe cartridge for data to be saved.

Loads the 5100 storage with data from tape or data.
from the keyboard.

Saves the BASIC program in 5100 storage on tape.
Specifies rounding of decimal numbers.

Executes a BASIC program.

A REVIEW OF WHAT YOU'VE DONE

After reading this far and doing the exercises described, you should be
able to perform the following functions with your 5100:

o Use as a calculator:

— Addition
— Subtraction

— Multiplication

— Division

— Exponentiation

— Use of positive/negative operators

— Use of parentheses in arithmetic hierarchy
— Use of arithmetic constants

Entering, Running, and Storing a Program

39

40

Correct keying errors:

— Replace a character

— Delete a character

— Insert a character

— Make corrections in a line

Use variables:
— Assign values to variables
— Display variable values

Enter short, simple programs:

— Change program lines

— Run programs

— Erase programs

— Store programs on tape
— Load programs from tape

Clear the machine storage

N

o

Chapter 4. How to Write a Program

In the following pages, you are going to write more BASIC programs
and learn to use some fundamental tools for writing programs. From
this point on in the manual we will not show you the keys to press. We
will just say to enter and then give you the data you should enter.

The LET Statement

A LET statement consists of four parts: a statement number, a symbol
to the left of an equal sign, an equal sign, and a quantity or a computation
(called an expression) to the right of the equal sign. In BASIC
programming, a LET statement means:
1. To evaluate the expression on the right side of the equal sign, and
2. Assign that value to the symbol on the left side of the equal sign.
in BASIC, you can have statements such as

0030 LET X=X+1
while you couldn't in math. In BASIC this statement means to take
whatever value X now has, add 1 to it, and replace the old value of X

with this new value.

Incidently, you can omit the word LET from a LET statement in a
program. These two statements

0010 LET X=A+B
0010 X=A+B

mean exactly the same thing. In all our examples, we’ll show the word
LET, but it's not necessary to include it.

The following program uses simple arithmetic. Try to look at the
program as a step-by-step method for solving a particular problem.

Problem
Last month you went to the dentist and had an examination and X-rays.
That cost $25. You had two teeth filled. That cost $24. Your insurance

will pay for 75% of everything over $15. How much do you have to pay,
and how much does the insurance pay?

How to Write a Program

41

e e

42

What to Do
1. Find the total dentist bill (call it D).
2. Subtract $15 to find the amount eligible for insurance (call it E).

3. Take 75% of the result (call it 1). That’s how much the insurance
pays.

4. Subtract the insurance money from the total bill D to find out how
much money you owe (call this M).

5. Display how much you have to pay and how much the insurance
will pay (M and 1).

The following BASIC statements, which you will enter later, can be used
to solve this problem:

0010 LET D=25+24
0020 LET E=D-15
0030 LET I=.75*E
0040 LET M=D-I
0050 PRINT M,I
0060 END

Notice the PRINT statement. Since you want to know both your pay-
ment and the insurance payment, you can specify both M and | in the
same statement. Any time you want to display the value of more than
one variable, you can use a single PRINT statement if you list the
variables and separate them with commas.

USING REMARKS

You can make your programs easier to work with, and easier for other
people to use, if you include descriptions of what the statements do in
the program. These descriptions are known as remark statements. You
write remarks as if they were statements in the BASIC program, but
they don’t serve any function in the execution of the program. They
are solely for information. You can insert them anywhere in a program.

To include a remark in a program, you write a BASIC statement called
REM. It has a line number like any other BASIC statement. Following
the line number, you enter the letters REM followed by any remark you

want. Examples of REM statements are:

40 REM THIS PROGRAM COMPUTES BATTING AVERAGES

70 REM AT THIS POINT, PRINT OUT THE RESULTS

10 REM DENTBILL

You’ll see other examples of REM statements as you go through this

manual.

You should now be ready to enter the program from the keyboard of
your 5100. To enter and execute the program, follow the instructions
below. Remember to press EXECUTE after each line is entered.

Instructions Display Screen Shows
Clear storage LA3ED 0
Enter the statements g0nLo
Con02n
030
00u0
nosn L T
00aA01 PRINT M. 1
D070 END
Run the program RUM

Remember that the idea in this program, and any other programs you
write, is to break down what you want to do into logical sequential
steps. [t may help to use this tactic: Ask yourself what is the very first
thing | have to do? What is the next? And so on. You can make a list
of what you have to do and then convert each item in the list to a BASIC

solve the problem in an orderly step-by-step fashion.

- statement. Thus, you will always have a sequence of statements that will

The dentbill program is not a typical program because it works on only
one set of data that is a part of the program. Most programs are
written to use many sets of data and use data that is not a direct part
of the program. Later program examples will explain this in detail.

How to Write a Program

43

44

LISTING PROGRAM CONTENTS

Since the dentbill program is currently in the 5100 work area, we can
now list the statements of the program on the display screen with the
LIST system command. Enter LIST, then press EXECUTE. The

statements of the dentbill program now appear on the display screen.

A LIST command causes the first 14 lines of the program to be displayed.
You can then use the scroll up and down keys to view additional lines
of the program.

It isn’t necessary to list the entire program each time you want to see

a particular part of it. You can list any 14-line portion of the program
by entering the last line number you want displayed after the command
keyword LIST. For example, LIST 30 woulid display statement numbers
10, 20, and 30 of the dentbill program.

BRANCHES

The 5100 normally executes programs line by line according to the line
numbers of the statements. However, you can vary this sequential

order and transfer control to a line number other than the next sequential
one. This is called branching. Two of the statements you can use for
branching are the GOTO and | F statements.

The GOTO Statement
This statement tells the 5100 to go to a specific line number. A GOTO
statement at line 20 of a program that tells the 5100 to go to line
number 60 would look like this:

0020 GOTO 0060

A

The |F Statement
0; An |F statement can test whether a variable is equal to, greater than, or
less than another variable or constant of the same data type. The IF
statement includes a GOTO statement. The |F statement operates this
way:

('m 1. The IF statement tests the condition you define.

2. If the answer to the test is yes, the condition is true; the 5100 will
go to the line number that you entered in the | F statement.

. 3. If the answer is no, the 5100 ignores the rest of the |F statement
C and goes directly to the next sequential line in the program.

Here's an example of an |F statement:
0040 IF X=0 GOTO 0080

In this statement, if X is 0, the 5100 goes to line 80. If X is not 0, it goes
on to the next line in the program.

The six tests you can make with the |F statement are:
1. Equal to, =
0 2. Notequal to, # or <>
3. Greater than, >
4. Lessthan, <
5. Greater than or equal to, > or >=
6. Lessthan orequal to, < or <=

The 5100 stores <> as #, > = as >, and < = as <; thus, even though
you enter <>, the 5100 will display # when you list the statements.

®

How to Write a Program 45

46

Some examples of |F statements are:

This 1F Statement: Means:

0130 IF X>10 GOTO 0040 If the value of X is greater than
10, go to line 40.

0190 IF Y<21 GOTO 0010 If the value of Y is less than 21,
go to line 10.

0010 IF A1>5 GOTO 0060 if the value of A1 is greater than

or equal to 5, go to line 60.

0030 IF A2£ X GOTO 0075 ~ If the value of A2 is not equal to
the value of X, go to line 75.

The following program examples describe more about how to break down
a problem into the BASIC statements required to use your 5100 to solve
a problem. Again, as opposed to most typical programs, the sample
programs will use data internal to the programs. After you've seen how
data within a program can be manipulated, you’ll be shown how to
supply program data from outside the program.

Although it may not be necessary in all instances, it is a good idea to
enter a LOADO command before entering any program statements. This
ensures that the 5100 work area is clear. Remember also that you can
use the AUTO command to provide automatic statement numbering.

Program Example 1

You are in charge of billing people for orders of dresses. There are two
styles, one at $108 a dozen, and one at $136 a dozen. On orders of
$500 or over, there is a 10% discount. For the account you are now
working on, there are two dozen orders for the first dress, and three

dozen orders for the second dress.

The program to determine the bill is:

0010 REM PROGRAM TO FIGURE
anzo
0030 2

BouD LEY T=A®l08+Ex134
0050 IF T<500 GOTO 0070
00460 LET D=, 1#T

G070 PRINT T,0,T-D

0080 END

OUT DISCOUNTS ON ORDERS

®

This program solves the problem in the following steps:
1. It finds the total order (line 40).

2. It tests to see if the total is less than $500 (line 50). If it is, the
program goes to line 70 and displays the total. The discount D will
be O in this case, and the totals will be displayed.

3. For orders of $500 or over, the program computes the 10% discount
on line 60. Then it continues to line 70 to display the total.

Note: D will be 0 when the order is less than $500 because each time
the 5100 starts to execute a program after a RUN command, it
automatically sets the value of all the variables in the program to 0.
Character variables are set to blanks. This is called initialization. The
values remain zeros or blanks until a statement in the program assigns a
different value. This means that you never have any problem with values
being left over from the last time you ran the program. Variables
specifically stored in a reserved area of storage, however, retain the last
value assigned to them. These values can be passed from one program
to another (see USE in the /BM 5100 BASIC Reference Manual,
SA21-9217).

Upon execution of this program, the display screen shows:

G2 & M HaH1 .05

Thus, the total order is $624, the allowable discount is $62.40, and the
amount to be billed is $561.60. The cents columns in the dollar figures
do not print because the 5100 has no way of determining how many
significant digits you want printed. You will be shown how to have
numbers printed in the exact format you want in a later chapter.

Program Example 2

You are moving. You get estimates from two movers and want to know
which mover will be cheaper. Mover A charges $40 an hour and
estimates the work will take 5 hours. Mover B charges $32.50 an hour

How to Write a Program

47

48

and estimates the work will take 8 hours. |f both movers cost the same,
you'll hire mover B because he has a better reputation. Here is the
program:

0010 LET A=S5x4i

G020 LET B=@g%32.5

D30 REM TEST TO SEE WHD IS CHEAPER
0040 TF A<R GOTO 0100

0050 REM GO HERE IF B CHEAPER
00460 PRINT 'R CHEAPER OR EqQUAL
0070 PRINT R

oea0 STOR

0070 REM G0 HERE IF & CHEAPER
G100 PRINT 'A CHEAPER'

DLLD PRINT &

0120 END

Here is how this program works:
1. Inlines 10 and 20, it figures the total cost for each mover.

2. Inline 40, it tests to determine which one of two paths to take.
Either the program will go to line 100, or it will continue with lines
50, 60, 70, and 80. This test determines which mover is cheaper.

3. If Mover A is cheaper, the program goes to line 100. Line 100 lets
you know that Mover A has the contract and displays the total
price. Notice line 100. It is a PRINT statement, but it has single
quotation marks around the words A CHEAPER. You can write
a PRINT statement that displays the words entered if you enclose
the words in single quotation marks. If line 100 is executed, the
words A CHEAPER will be displayed. Line 110 has no quotation
marks. It isa PRINT statement for variable A, and will display the
value of variable A. After the PRINT statements, the program ends
at line 120.

4. If Mover B is cheaper, the program continues with line 50. Line 60
is a PRINT statement containing the words B CHEAPER OR
EQUAL in single quotation marks. If line 60 is executed, the words
B CHEAPER OR EQUAL will be displayed. Line 70 will display
the value of variable B. After the PRINT statements, the program
comes to line 80, a STOP statement, which ends the program.

»

After you run the program, the display screen shows:

RUN
A CHEAPER
200

Loops

Here is a new problem. You are a rug salesman. All your rugs come in
rolls 12 feet wide. Your customers buy rugs in varying lengths

depending on how long their rooms are. You want to make a chart of
how many square yards of rug are required for rooms of different lengths,
The most popular room sizes start at 9 feet long (a 12 by 9 foot rug) and
increase a foot at a time (12 by 10, 12 by 11, and so on) until they reach
12 by 20. ‘

You will write a program that computes the number of yards in a 12 by
9 rug, then a 12 by 10 rug, on up to a 12 by 20 rug.

To compute the number of square yards in each of the 12 different
sized rugs, you have to find the number of square feet and divide by 9.
The main computation step is:

0020 LET Y=(12*X)/9

where Y is the number of square yards, and X is the length of each different
rug. To display the value of Y, you would use this statement:

0030 PRINT Y

The value of X has to increase by 1, from 9 to 10 on up to 20. You could
write a program like this:

0010 LET X=9

0020 LET Y=(12*X)/9
0030 PRINT Y

0040 LET X=10

0050 LET Y=(12*X)/9
0060 PRINT Y

and so on until X=20

How to Write a Program

49

This program uses a LET statement to increase the value of X.
However, there is a better way. You can make a loop. A loop is just
what it sounds like. [t is a series of program steps that are repeated.
It looks like this: :

Start of loop

Go back and

Carry out the start again

instructions

End of loop

Two things have to happen to this loop to make it work. It has to have

some way to change the values it uses before it loops up to the top and
starts again. And it has to have some way to know when to stop, or the
program will run indefinitely.

First Loop Method

So far you have these program statements:

0020 LET Y=(12*X)/9
0030 PRINT Y

You want to start with X equal to 9, so put a LET statement ahead of
these two statements assigning 9 as the first value of X. It will also help
if you print the value of X with the computed value of Y, so the table
will be more self-explanatory. Now, the program looks like this:

0010 LET X=9
0020 LET Y=(12*X)/9
0030 PRINT X,Y

To avoid specifying X=10, X=11, and so on, write a general statement
that will keep increasing the value of X by 1. That statement is:

0040 LET X=X+1

50

(mm

U, e e g

Remember that while this statement looks peculiar in a mathematical
sense, it's perfectly valid in BASIC. It says, “’Assign the value of X to
be equal to the old value of X plus 1",

By adding statement 40 to the program, you‘ve changed the value of X
and completed the steps required to make the loop operate once. Now
you have to add a GOTO statement to go back to the beginning of the

loop:

0050 GOTO 20

You go to line 20 because you only have to go back to the computation
step, not to line 10 where you originally set X equal to 9.

After the 5100 goes to line 20, it computes and displays the yardage
again, but this time for X equal to 10. It arrives at line 40 again and
changes X to 11; then it goes back to line 20 to compute the next
yardage. This process continues, increasing the value of X by 1 after
each loop.

Ending a Loop

One thing is missing from an otherwise perfect loop. It never ends. Not
at X=20, not at X=30, because X just keeps increasing. |f you are sitting
in front of your 5100 while this program is running, you can stop this
loop whenever you want to by pressing ATTN. But this is obviously not
an ideal method. You can make the loop stop automatically if you
build in a test with an IF statement to see when you've processed
enough values of X. In this program, you want the loop to stop when
the value of X passes 20. Consider this |F statement:

0050 IF X>20 GOTO 70
Line 70 will be an END statement.

The IF test goes before the GOTO statement that branches to line 20.
If you put it after the GOTO statement, it will never be executed. This
is the finished program:

0010 LET X=9

0020 LET Y=(12*X)/9
0030 PRINT X,Y

0040 LET X=X+1

0050 IF X>20 GOTO 0070
0060 GOTO 0020

0070 END

How to Write a Program

51

Looking at this program, you should be able to see that lines 50 and 60
can be combined to make a more efficient program that looks like this:

0010 X=9

0020 Y=(12*X)/9

0030 PRINT X,Y

0040 X=X+1

0050 IF X<20 GOTO 0020
0060 END

Now, enter and run the program. After you run the program, the display
screen shows:

RUN
9 12
1a 13333333
11 LU AH666T
12 ‘ L&
13 17,3
Th 18.
15 20
1é 21
17 2286868
18 24
12 T X 3
20 2H.,6H6HLT

You can press HOLD to stop the upward movement of the data. To
continue, press HOLD a second time.

There is another way to make a loop in a program. At the beginning of
the loop, instead of setting X equal to its first value, you enter the
entire range of values that X will use. In the rug example, you would
write

0010 FOR X=9 TO 20

Then you write the statements that solve the problem and print the
results:

0020 LET Y=(12*X)/9
0030 PRINT X,Y

®

Then you tell the 5100 to go to the next value of X and repeat the loop:
0040 NEXT X

FOR and NEXT statements always go in pairs: FOR at the beginning
of the loop and NEXT at the end. The 5100 automatically repeats the
loop as many times as you told it to in the FOR statement. When it
finishes, it goes on to the statement following the NEXT statement.

Using the FOR and NEXT statements, the rug program looks like this:

0010 FOR X=9 TO 20
0020 LET Y=(12*X)/9
0030 PRINT X,Y
0040 NEXT X

0050 END

In a FOR statement, you can name any arithmetic variable to be the
control variable, and you can make its range of values anything you
want. The control variable is to the left of the equal sign. The range
(to the right of the equal sign) doesn’t have to be given in numbers.
You can use other variables for the range, for example:

0060 FOR J=ATO B

0120 NEXT J

When you write a FOR statement, the 5100 increases the value in steps
of 1 (for example, 1 to 2to 3, or 18 to 19 to 20 to 21). However,
sometimes you may want to use just even numbers, or odd numbers, or
every tenth number. If your loop requires a value other than steps of 1,
you can specify the step value whether you are using FOR and NEXT
statements or a LET statement to control the loop.

If you write a loop that uses a LET statement, you can write these LET
statements:

0100 LET X=X+2 To change X in steps of 2

0050 LET X=X+10 To change X in steps of 10

How to Write a Program

53

54

If you're using FOR and NEXT statements for the loop, you add the

word STEP and the size of the step to the FOR statement. For example:

0010 FOR X=1TO 25 STEP 2
gives you odd values of X from 1 to 25 (1,3,5,7. . .).
0030 FOR D=10TO 100 STEP 10
gives you 10, 20, 30, up to 100.
For even values of D from 1 to 20, you would write:
0020 FOR D=2 TO 20 STEP 2
Notice that D is set to 2 because the first even number you want is 2.
If you omit the word STEP and the value from the FOR statement, you
automatically get steps of 1. You can also include fractional steps, for

example:

0030 FOR I1=1 TO 3 STEP .1

Loops Within Loops

Here’s a problem where two values change: Find the annual amount of
interest (A) at the interest rates (1} of 5%, 6%, 7%, 8%, 9%, and 10% on
principals (P) ranging from $100 to $1000 in steps of $100.

This problem can be solved by a program that uses two loops—one for
changing the interest and one for changing the principal. Do the
interest loop first:

FOR I=6to 10
LET A=(1/100)*P This computes This creates a
and displays A, ¢ loop for | to vary
PRINTP, I, A P, and 1. ~ from 5% to 10%.
NEXT |

Now all that's left is to define P, since the program doesn’t know where
to find the values for P. The P loop has no computations of its own; it
only defines the values for P:

FOR P=100 TO 1000 STEP 100

NEXT P

LN 4

#

C

Wy,

The P loop goes around the | loop:

Giza

LLoop Loop

— D050
0
0050

(&1

0070
0080

FOR P=100 T
FiR T
LET ¢

PRINT P LA

b 3000 STER (00

1

LA 00w

You must put one loop entirely inside thé other so that the 5100 will
stay in one loop and finish it completely (compute a// the values for |
for a single value of P) before it goes on to the next value of P. In this
program, the 5100 starts with P equal to $100, then it comes to the |
loop and sets | equal to 5%. It goes on to compute the interest on $100
at 5%, 6%, 7%, 8%, 9%, and 10% because it keeps repeating the | loop
until | equals 10. When it finishes all the different interests on $100,
it goes to line 70, which is the bottom of the P loop. Here, control
loops back to line 20, which increases P to $200, and starts on the |
loop again, this time with P equal to $200 and with | again ranging
from 5% to 10%. The program continues in these loops until all of the
values of P have been used. Then you have all the amounts of interest

you wanted.

To run the program:

When the display screen shows
READY, enter the statements:

L.oan
ALITD
a01a
RN
0030
0040
0650
no&n
an7a
goao

PEM INTEREST
FOR P=t00 T
FUOrR =5 710

Oodnnn STER 1oi
iat

LET @=0l 000 %p
PRINT P. Y. A
NEXT 1

NEXT P

ENTI

How to Write a Program

55

Run the program RLIN

To see a portion of the
program results, press
HOLD. To continue
execution, press HOLD
again.

The display screen shows
a portion of the output
when you pressed HOLD.
For example:

1oao
1o0a
L0a0
1oon
1Loon

Loops within loops must always be nested like this:

FOR X...
FORY...
Outside Inside
Loop Loop
NEXTY
NEXT X

so that the inner loop is fully completed each time before the outside
one is begun again. Two loops must never overlap like this:

— FOR X...

— FOR Y...

NEXT X

— NEXT Y

Remember, one loop must always be completely enclosed by the other.

Here is another example of loops. This isa program to find X2, X3, X?,

and X5 with X equal to 1 to 10.

noLo

The outside The inside loop
loop changes changes Y from
X from 1 to 10. 2 to b.

= 0020

— 030

0oun

0150

(060

Rt

FOR X=1

T 10
2T 5
NT XL XY

Notice that the inside Y loop is fully contained in the outside X loop.

Run the program as shown:

When the display screen shows
READY, enter the statements:

Run the program

The display screen shows

(use the HOLD key to display
any 15-line portion of the
displayed results):

N0 REM
G020 FOR X=1
0030 FOR Y=32
0040 PRINT
0050 NMEXT
nosn NEXT X
G070 END

RUN

&
3
2
e

9
Q
9
10
1o
10
10

16807
&4
510
W9s
A2V68

S 81

ety
6561
SPONY
oo
rono
1o000
URIRVRERERY

How to Write a Program

57

Chapter 5. Other Ways to Put Values into Programs

In all the programs we've written, we've tried to:
e Write a program to solve the problem using general expressions.

e Supply specific values for the expressions and run the program with
the specific values.

The advantage of programming in this way is that the bulk of the
program doesn’t change every time you want to solve the same problem
with different numbers. You only need to change the numbers, not the
programmed expression, when you want to run the program using
different numbers.

We are now going to look at other ways to supply specific numbers for
programs.

THE READ, DATA, AND RESTORE STATEMENTS

To assign 10 values, say the numbers 1 through 10, to 10 variables, you
could use 10 LET statements:

0010 LET A=1
0020 LET B=2
0030 LET C=3

0100 LET J=10

Using 10 LET statements can be tedious. Another way to enter these
numbers is with one DATA statement:

0200 DATA 1,2,3,4,5,6,7,8,9,10

The DATA statement causes values to be placed in an internal data table.
You can use one or several DATA statements to do this. Values in DATA
statements are put into the data table sequentially, in the order in which
they are entered. The values must be separated by commas. The following
set of statements would have the same effect as the single preceding DATA
statement:

0200 DATA 1,2,3

0210 DATA 4,5,6
0220 DATA 7,8,9,10

58

C

Once the values are in the table, you use the READ statement to assign
them to variables. Here's an example:

0200 DATA 1,2,3,4,5,6,7,8,9,10
0210 READ A,B,C,D,E,F,G,H,I,J

The READ statement locates the values in the data table and assigns
them (in order) to the variables—the value 1 to the variable A, 2 to B,
3 to C, and so on.

You don’t have to assign all of the values in the data table at one time. ’ .
For example:

0200 DATA 1,2,3,4,5,6,7,8,9,10
0210 READ A,B,C

will cause the first three values in the table to be assigned to A, B, and
C, respectively. Another READ statement will take up where the last
one left off. Thus:

0420 READ D,E,F,G

will assign the values 4, 5, 6, and 7 to D, E, F, and G, respectively.

You must be careful, though, not to try to read more values than the
table contains. For example, still another READ statement:

0440 READ H,I,J,K

would be requesting values for four variables when only three numbers
(8, 9, and 10) are left in the table. This will cause an error.

If you want, you can use the values in the data table more than once.
At any point in your program, you can instruct that values be assigned
from the beginning of the table again, even if you haven’t read all the
values in the table. To go back to the beginning of the table, use the
RESTORE statement:

0100 RESTORE

Other Ways to Put Values into Programs 59

60

Let’s assume that you want to assign the values 1, 2, and 3 to three
variables A, B, and C, in that order. Then later in the program you want
to assign the same values to D, E, and F. These statements will do just
that:

0030 DATA 1,2,3,4,5,6
0060 READ A,B,C

0100 RESTORE READ FROM START OF DATA TABLE
0110 READ D,E,F

Notice that you can include a comment in the RESTORE statement.
The words READ FROM START OF DATA TABLE have no effect on
what your program is doing; they merely serve as a reminder to you,
when you look at the program, of what the RESTORE statement is
doing. Your comment can say anything you want it to say, as long as
it fits on one line with the RESTORE statement.

It's important to remember, when using READ and DATA statements,
that no matter how many DATA statements you include in your
program, only one data table is created before any READ statement

is executed. The table is created from all the DATA statements in your
program, regardless of where they appear—at the beginning, at the end,
or scattered throughout. Each of the following three sets of statements
has the same effect: ‘ ‘

0200 DATA 1,2,3
0210 DATA 4,5,6
0220 READ H,1,J,K,L,M

0200 READ H,I,J,K,LM
0210 DATA 1,2,3
0220 DATA 4,5,6

0200 DATA 1,2,3
0210 READ H,1,J,K,L,M
0220 DATA 4,5,6

THE INPUT STATEMENT

Both the assignment statement (LET) and the DATA statement use
constants—unchanging data items that are part of your program—to
assign values to variables. You have to know, at the time you're writing
your program, what values you want to assign.

“‘l[‘

The INPUT statement allows a little more flexibility. This statement
names the variables that are to receive vatues, but allows you to wait
until you are running your program to actually supply the values. For
example:

0050 INPUT X,Y,Z

means that you will supply values from the keyboard for X, Y, and Z
when your program is run. You’ll know when it’s time to supply the
values because a flashing question mark will be displayed. When you see
this, you should enter your values, one for each variable in the INPUT
statement—in this case, three. The values are entered all on one line,
separated by commas. Thus, when you‘ve entered the information, the
display screen shows:

185,205,121

By entering these numbers, you've assigned 185 to X, 205 to Y, and 191
to Z.

You have to be certain, when entering your values, to enter exactly the
same number of values as there are variables in the INPUT statement in
your program. The question mark will keep flashing until the correct
number of values is entered. If you enter too many values, the excess
values are ignored. After the last value is entered, press EXECUTE to
continue program execution.

Prompting Your Input

Since a lot of time can elapse between the time you write a program and
the time you run it, you may have difficulty remembering exactly how
many values you have to enter. This is especially true when your
program contains more than one INPUT statement. Then you have to
keep track of which one comes first.

You can have your program keep track for you by reminding you what
has to be entered. All you have to do is include a PRINT statement
immediately before the INPUT statement in your program. For example,
if your program averages bowling scores, you could use these statements:

0045 PRINT ‘ENTER THREE BOWLING SCORES’
0050 INPUT X,Y,Z

Other Ways to Put Values into Programs

61

62

Then, when the program is run, instead of just a question mark
appearing when it’s time to enter your values, these lines will be
displayed:

ENTER THREE BOWLING SCORES

When you've entered your values, the display screen will show:

185, 205, 191

You can write any reminder message that you want in the PRINT
statement, as long as you enclose it in single quotation marks.

You also have to remember that the PRINT statement has to fit
entirely on one line. |f your message is so long that it doesn't fit,
you might consider using several consecutive PRINT statements:

0040 PRINT ‘ENTER 12 AVERAGE TEMPERATURES’
0050 PRINT ‘FOR JANUARY TO DECEMBER’
0060 INPUT M,N,0,P,Q,R,S,T,U,V,W,X

ENTERING CHARACTER VARIABLES INTO PROGRAMS

You've been entering numeric variables into programs in this section, but
any of the methods you’ve used will let you supply values for character
variables as well. You have already seen how to do this with a LET
statement. For INPUT and READ statements, you just use valid
character variables where we’ve been using numeric variables. Also, you
must put single quotation marks around the value you're supplying for
character variables when you enter the DATA statement or respond to
the flashing question mark.

For example, if you want a program to keep track of a person’s height
and weight, you can enter the person’s name, height, and weight with
these READ and DATA statements:

0010 READ N$,H,W
0020 DATA ‘TOM JONES’,6.1,184

mn_ K4

A

O

You could also use an INPUT statement:
0010 INPUT N$,H,W
and then respond to the flashing question mark like this:

‘TOM JONES',6.1,184

A REVIEW OF WHAT YOU'VE DONE
All of the following methods of assigning values to variables are useful:
e LET statements
e READ, DATA, and RESTORE statements
e INPUT statements with data supplied from the keyboard
You can use a combination of these methods if you have a program where

some values don’t change, some change occasionally, and others change
often.

Other Ways to Put Values into Programs 63

Chapter 6. Making Changes to Your Programs

64

It is very important that you be able to make changes in your programs.
You may have to change a program to supply values for variables, to
make corrections, to add lines, or to remove lines. There are several
ways You can change a program, either as you write it or after you write
it.

CORRECTING KEYING ERRORS
If you make mistakes while entering your program statements or
commands, you already know how to fix them. As you catch the errors,

you can:

e Use the backspace or forward space key to position the cursor at the
incorrect character, then simply enter the correct character.

e Use the insert or delete function to insert or delete characters.

e Use the scroll up and scroll down keys to position a line to be corrected.

e Press ATTN to delete all characters starting with and to the right of the

cursor position.

INSERTING NEW LINES

The following program, called phone, computes charges for local
telephone calls. The rate for local calls in this example is 10 cents for
the first three minutes or less, and 2 cents for each additional minute
or fraction of a minute. We'll write a general program, but we'll
purposely omit the actual length of any cail. These are the variables

we’ll use:
T — Total length of the call in whole minutes
T1 — Amount of time over 3 minutes
Cc - Charge for the call

W,

o~

e

DoLo
nozn
Ho3a
IRIER
050
a0
0o7o
Do
noeo
gLan

The program is:

TFT=3 GAOTO 0040

PRIMT "OaALL LESRS THAN OR Eoual. 3 MIN,
GOTO 01010

LET Ti=T7T-3

LET C= L+, 02%T1

PRINT CLENGTH OF Call’

PRINT T

PREINT "OHARGE FOR CalL’

PRINT

EL NI

Enter this program. After we add a statement to assi
you'll be able to run the program.

L QENT CHARGE'

gnavalueto T,

To assign a value to T, you can use READ and DATA statements:

READ T

DATA 8 {for an 8 minute call)
You can insert these statements before line 10.
Now enter:

5READT
Press EXECUTE and enter:

6 DATA S8
and press EXECUTE again.

To see what has been done with these statements, en
command.

ter the LIST

Making Changes to Your Programs

65

66

0

D006 I

go1n0
iz
00340
00ug
LRI
0040
povan
aogn
AT
aLon

The display screen shows:

o THAN OR Ealal. 3 MIM, 10 CEMT CHARGES

3

LET ThmT-
LET o, L+, 02%T1

PRINT ‘LEMGTH OF Call’

PRINT T

PRIMNT "OHARGE FOR Cald.’
PRINT

kM

The 5100 has taken the two lines and inserted them in the program (as
lines 5 and 6) before line 10. By entering a line number and any valid
BASIC statement, you have given an instruction. This instruction starts -
with a line number, and tells the 5100 you are adding a line and where

to add it.

Now you can see why it is convenient to have the line numbers increase
by 10’s; it gives you the chance to insert up to nine new lines between

every two original lines.

You can now run the phone program by entering the RUN command.

REPLACING ONE LINE WITH ANOTHER

Let’s try a different value for T in the phone program. This time T is
21 minutes. You’ll have to change line 6, the DATA statement, to use
this new value.

Enter the following statement, then press EXECUTE:

6 DATA 21

o,

N

@

pons
RRIE
goln
002
gn3n
ALY
0050
D0AD
D7
0080
noen
Dilon

If you list the program now, the display screen shows:

REAT T
nATA 21

TF T=3 GOTO 004D .

PRINT 'CALL LESS THAN DR EQUAL 3 MIN, 10 CENT CHARGE
GOTO 0100

LET TisT-3

LET Cw, 1+, 02%T1

PRINT 'LENGTH OF CALL

PRINT T

PRINT ‘CHARGE FOR CalL

PRINT ©

N

See what happened? The 5100 replaced the old line 6 with the new
line 6. ‘

When you want to replace a line, simply enter the same line number as
the line you want to replace and enter the new line. The 5100 replaces
the old line in storage with the new one after you press EXECUTE.

Remember that you can use the SAVE command if you want to save
the program on tape.

REMOVING A LINE

0005
no1a
nn20
0030
004D

D0E0

0G40
novo
0080
0090
4100

In the phone program, we will now include an INPUT statement so we
can run the program with many changing values for T. We can replace
the READ statement with an INPUT statement, but the DATA
statement must be deleted. To do this, first list the program. Now enter
the number of the line you want to delete, then enter DEL and press
EXECUTE. To delete line 6, enter 6 DEL, then press EXECUTE.

Line 5 can be replaced by the following procedure: enter 5 INPUT T,
and press EXECUTE. List the program again, and the display screen
shows:

INPUT T

IF T3 GOTO 0040 .
PRINT ‘"CALL LESS THAN OR EQUAL 3 MIN, 10 CENT CHARGE'
GOTO 0100

LET T1=T-3

LET C=,1+,02%T1

PRINT "LENGTH OF CaALL’

PRINT T

PRINT "CHARGE FOR Call’

PRINT O

END

Making Changes to Your Programs

67

68

a0l
noz2an
030
Qoun
0050
0040
novn
nnso
Hoso
niot
n11n

 The 5100 has replaced line 5 and deleted line 6.

When you want to delete a line, simply enter the statement number,
then enter DEL, and press EXECUTE. A new listing of the program
will show the line deleted. You can also use the DEL function to delete
several lines. For example, you could delete lines 0070 through 0090
by entering:

0070 DEL 0090

RENUMBERING STATEMENT LINES

In the phone program, the statement numbers are not sequential by 10's.
If you want the numbers to start with 0010 and increase by 10, you can
simply use the RENUM command. This command will assign the number
0010 to the INPUT T statement and number the remaining statements
from 0020 to 0110. '

In addition, the GOTO statements {original lines 10 and 30) will be
altered to transfer execution to the appropriate renumbered statement.
To see the result of a renumber operation, list the phone program, then
enter RENUM and press EXECUTE. After you list the program again,
the display screen shows:

INPUT T

IF T=3 GOTO 0050

PRINT “CALL LESS THAN OR EQUAL 3 MIN, 10 CENT CHARGE
GOTO 0110

LET TimT-3

LET Cs, 14, 0271

PRINT 'LENGTH OF CALL"
PRINT T

PRINT "CHARGE FOR DALL:
PRINT ©

ENT

Chapter 7. More About the PRINT Statement

We've seen the PRINT statement used to display the values of variables
and to display comments exactly as entered in the statement. We've
also seen that to display a comment exactly as you entered it, you must
enclose the comment in single quotation marks. You should remember,
then, that if you include this line in a program:

0050 PRINT ‘X’

when line 50 is executed, the display screen will show:
X

and not the value of X, which would be displayed if line 50 were-
0050 PRINT X

Within a single PRINT statement, you can mix character and arithmetic
variables and constants. You must use commas or semicolons to
separate the values to be displayed. These separators {(delimiters)
control spacing of the displayed data. For this example, no separator
is required between the variables and character constants. The only
instance in which a comma or semicolon is not required is between a
character constant and a variable, as in this example.

Here's an example of a prograrn that computes annual interest for any
rate and principal that you enter:

Lo INPUT B, P
20 LET Is(R/Z1005#p
A0 PRINT CTHE aNnNUal, INTERESYT &Y "R PERCENT ON %P I8 41

%
0040 END

When you run this program and use values of 7 and 825, here’s what

you see:
Ruin
TLE2G
THE anNNUAL TNTEREST ay 7 PERCENT 0N $ 825 o & 57,75

More About the PRINT Statement 69

If your 5100 has the attached printer, you can specify that the data be

printed by entering PRINT FLP in place of PRINT irrline 30. All of

the capabilities of and restrictions for the PRINT statement also apply ~
to PRINT FLP. A comma must separate the FLP and the first value. W

MAKING HEADINGS

Suppose you have a loop in a program that computes mileage allowances

(at 12 cents a mile) for company auto trips (of 10 to 50 miles in steps of A
b miles):
0010 FOR X=10 TO 50 STEP 5 S
0020 PRINT X, .12*X N
0030 NEXT X
0040 END
When you run this program, the display screen shows:
Rl
10 1.2
15 1.8
20 204)
3 g
A0 3.4 +
X5 LA
1) .8
W 5ol
aL &
You can make headings for these columns by entering a PRINT statement
before the loop:
'0005 PRINT ‘MILES’, ‘MILEAGE ALLOWANCE’ -
NS
e
N5
«
A

70

When you run the program again, the display screen shows:

MILEAGE Al O NCE

1.

You will be shown later how you could change the mileage allowance
column to include trailing zeros, which will make it more readable as

dollars and cents.

MATH CALCULATIONS IN PRINT STATEMENTS

The PRINT statement allows you to include math calculations along
with variables and words. Therefore, if you just want a calculation
Q‘ done and the result displayed, you can do it in a single PRINT statement.
For example, you can write

0010 INPUT X
0020 PRINT X,X12

instead of writing
0010 INPUT X

0020 LET Y=X1*2
0030 PRINT XY -

More About the PRINT Statement

71

Chapter 8. Setting Up Your Own Format—PRINT USING and Image Statements

72

A more flexible way to display results is to use a statement called
PRINT USING. This statement allows you to display variables using
a particular format. You specify the format in a separate BASIC
statement called an image statement. The PRINT USING statement is
used together with an image statement. The image statement can
appear anywhere in a program and can be used by any number of
PRINT USING statements.

The image statement is a BASIC statement, but it looks different from
the other BASIC statements. Following the statement number is a
colon (:). After the colon, you enter the exact wording and format
that you want your results to have. You leave room for any variable
values by using # signs where the values belong. When the program is

‘run, the 5100 substitutes real values for the # signs and displays the

data in the image statement (including any blank spaces you leave).
A sample PRINT USING statement and its image statement are:

0020 PRINT USING 30,G,N
0030 :GROSS SALES ARE ###.## AND NET PROFITS ARE ###.##

Notice that single quotation marks were not used around the character
data in line 0030. This is true of all image statements, unless, of course,
you want quotation marks to appear in the displayed or printed data.

This is the way these two statements work together:

0020 PRINT USING 30,G,N

t

The line number of A comma, which The variables, separated by commas,

the image statement. s required. whose values are going to be displayed
or printed in the format specified in
the image statement.

0030 :GROSS SALES ARE ###.## AND NET PROFITS ARE ###.##

This identifies the image The value of G will be The value of N will be

statement; it does not inserted here when the inserted here when the

appear when the state- line is displayed or line is displayed or

ment is executed. printed instead of printed instead of
FHHE A FHHE A

~

If these two statements were part of a program, with G equal to 103.72
and N equal to 21.45, at the time you ran the program, the 5100 would
display:

GROSS SaliE9 ARE 103,72 AND MET PROFITH ARE 21,43

I—D\isplay Position 1

An image statement always begins with a colon. When you enter the #
signs, as stand-ins for variable values, you are really telling the 5100 how
many spaces to leave for the values. If a value needs more space than
you indicated, a row of asterisks will be displayed or printed instead of
the value when the statement is executed. In these statements:

0040 PRINT USING 50,2,Z13
0050 :Z IS ## AND Z CUBED IS ##

there are only two spaces indicated for each value. If Zis 3, the
displayed result would be:

L0Ts 3 AaND F CUBED IH 2Y

But if Z is b, then 53 is 125, which is three spaces long. The displayed
result would be:

oIS 0w AND Z OUURED I5 %

The asterisks mean that the answer was too long for the space you
indicated.

When you use # signs to indicate space for your variable values in an
image statement, you can also control how many decimal places you
want the value to have when it is displayed or printed. You do this by
inserting a decimal point in the string of # signs wherever you want the
decimal point to go in the result. For example, when you are using
dollars and cents, insert a decimal point two places from the right, as
in this example:

0100 PRINT USING 110,S :
0110 :THE SERVICE CHARGE FOR YOUR ACCOUNT IS $###.##

Setting Up Your Own Format—PRINT USING and Image Statements

73

74

If S were 23.47, the result would be displayed as follows when you
ran the program:

THE SERYICE CHaRGE FOE YOUR ACCOUNT 5 4 23 47

If your system has a printer, you can use the PRINT USING FLP
statement to format your data. All the capabilities of the PRINT
USING statement also apply to the PRINT USING FLP statement.

Example of Printing

There are three sales representatives in your department, and you are
responsible for making a monthly report showing their sales figures
for each week of the month. You can write a program that will
automatically print the report for you in an attractive format.

This is how the variables in the program are named. Each sales
representative is assigned a letter: A, B, and C. Starting with th
first sales representative, the variables are: '

A$ — Name

A1 — Sales total for week 1
A2 — Sales total for week 2
A3 — Sales total for week 3
A4 — Sales total for week 4

A5 — Sales total for the month

and so on for sales representatives B and C
There are these other variables:

M$ — Name of the month

W$, X$, Y$,and Z$ — Last day of each week in the month
T1,T2,T3,and T4 — Totals for everybody for each week
TS5 — Total for everybody for the month

For this program, you have to supply the month's sales figures, the
name of the month, and the last day of each week covered. The report
is then printed automatically. Now enter the following program:

LY

4

O

0010
Supply sales no2a0
representatives < 130
names. 00u0
Enter dates 0050
for the weeks. 0060
0070
nogn
Supply sales 0940
figures. 0100
0110
0120
Compute 0130
monthly 0140
totals. (1150
0140
0170
0160
3190
0200
0210
0220
0230
Print figures 0240

and sales 0250
representatives){)2& ()

names. 0270

0280
Compute 0;3‘?[]
weekly and 0300

. grand totals. 0310

\E20

0330

. 0310
Print totals. {U 351
1340

REM PROGRAM FOR PRINTING MONTHLY SALES REPDRY
LET At ADLER '
LET Bé='RIPPLE"
LET C#=' CURRING
PRINT “ENTER MONTH, LAST DAY OF EACH WEEK'
INPUT M%, WS, X%, Y%, 7%
PRINT "ENTER FIGURES FOR ADLER®
INPUT A1l,A2.A3, A4
PRINT "ENTER FIGURES FOR RIPPLE"
INPUT E1,R2,B3,RY4
PRINT "ENTER FIGURES FOR CUBBING'
INPUT C1.C2.C3%,CH
LET AS=a1+A2+A%+Al
LET BS=El+B2+R3+RY
LET CHsC1+0R+03+0k
PRINT USING FLF,0170,M%
PMONTHLY SALES REPORT FOR MONTH OF H###ihiE
PRINT FLP
PRINT USING FLP, 0200
: SALESMAN WEEK ENDTNG TOTAL
PRINT USING FLP,0220,W%. X$,Y%,Z%
: Ht #it Hit i
PRINT FLP
PRINT USING FLP, 0270, 4%, 81,A42,A43, Ak, A%
PRINT USING FLP,0270,E%,RE1,E2, B3, By, BS
PRINT USING FLP,0270,C%,C1,C2, 03, 00,05
HUHHBE RN B BHES HE BEHEHE O BHSH BE HHeE 88
LET TimAl+Bi+C1
LET T2=AR+R2+02
LET T3=A3+RI+03
LET TusA4+E4L+CY
LET TH=A%5+RE+05
PRINT FLF
PRINT USING FLP, 0350, T1L, T2, T3, T, 15
CTOTALS HEHSH HE SHEEH . U3 HHEHE HE SBREH . HH BEH8E . 88
END .

Note that a PRINT FLP statement with nothing after it causes a blank
line to be printed. This form of the statement is used in lines 0180,
0230, and 0330 to include blank lines in the printed report.

If your system has a printer, you can run the program by entering a
RUN command and pressing EXECUTE. If your system does not have
a printer, enter a RUN command, then enter P=D. For example:

RUN P=D, then press EXECUTE. This command directs all printed
output to the display screen.

Settiné Up Your Own Format—PRINT USING and image Statements 75

76

During a sample running of this program, the display screen showed:

RUN
ENTER MONTH, LAST DAY OF EACH WEEK

L e e 2 T
ENTER FIGURES FDOR AIHLER

12.50,500.00.400,00,8%%,50
ENTER FIGURES FOR BIPPLE

I E0,.78.90,800.00.100,00
ENTER FIGURESD FOR CUBRING

F00.00.800.00.700,00,43,209

For this program the printed or displayed output was:

MONTHLY SalES REPORT FOR MONTH OF JULY

SALESMAN WEEK ENDING
7 L 21 28

ADLER 12,80 a0n.00 400,00 g5, 50
BIPPLE 350 Ty, 90 200,00 100,00
CUBRING 300.00 800.00 700.00 W3, 235

]

TOTALS 3uE. 00 1378.920 1ann. 0o Lo3a,vh

TOTAL

1808.00
713,40
1843, 25

BAASE, &5

O

Chapter 9. More Things You Can Do With BASIC

SOME GENERAL SYSTEM FUNCT!ONS

The following system functions provide you with the functions
described:

ABS(X) Gives the absolute value of X.

INT(X) Gives the integer part of X.

RND or Generates a random number between 0 and 1.
RND(X)

SGN(X) Determines the sign of variable X, and returns a

value of -1, 0, or +1, depending on whether X is
negative, zero, or positive.

To use these functions, you just substitute the name of your own
variable for the X inside the parentheses. You can also include
expressions inside the parentheses, for example:

INT(X12+Y*12)
You might use SGN(X) to find out if X is positive:
SGN(X)

The RND function is a little different from the other functions. You
can use RND alone, without a value, to generate a random number
between 0 and 1. Each subsequent use of RND in the program will
generate a new random number. However, if you rerun the program
with a new RUN command, the random numbers generated will be
the same as the numbers generated the first time you ran the program.
To avoid this, you can use RND(X) to generate different sets of
random numbers each time you run your program. The value of X

is used by the process that develops the random number. If you
want a random number that is a whole integer instead of a decimal
number between 0 and 1, multiply the result of RND or RND{X) by
a constant (depending on what range you want the random numbers
to have); and then use the INT function to make the result an
integer.

More Things You Can Do with BASIC

77

78

For example:

INT(RND*10) Produces a random number between 0 and 9.
INT(RND*100) , Produces a random number between 0 and 99.
INT(RND*1000) Produces a random number between 0 and 999.

CONVERSION FUNCTIONS AND CONSTANTS

BASIC has some buiit-in ways to convert values from one measuring
system to another. In addition to &LBKG, &GALI, and &INCM,
which were discussed in Chapter 2, BASIC provides:

DEG(X) —

RAD(X) —

Gives the number of degrees in X radians.

Gives the number of radians in X degrees.

TRIGONOMETRIC FUNCTIONS

BASIC has functions that automatically perform trigonometric
operations for you. Just substitute your own variable or expression
where the variable X appears in the following list:

SIN(X) —
COS(X) —
TAN(X) —
COT(X) —
SEC(X) —
CSC(X) —
ASN(X) —
ACS(X) —

ATN(X) —

Gives the sine of X radians.

Gives the cosine of X radians.

Gives the tangent of X radians.

Gives the cotangent of X radians.
Gives the secant of X radians.

Gives the cosecant of X radians.
Gives the arc sine (in radians) of X.
Gives the arc cosine (in radians) of X.

Gives the arc tangent (in radians) of X.

‘JL‘ 7

These functions deal in radians. |If your program measures angles in
degrees instead of radians, combine the RAD or DEG functions with

0‘ these functions to keep the results in degrees. For example, to find the
sine of D degrees, you can use this statement:

0040 LET S=SIN(RAD(D))

("'”‘ Or to find the arc sine of X in degrees instead of radians, you can use
- this statement:

0070 LET A=DEG(ASN(X))

(: LOGARITHMS AND EXPONENTS

BASIC also has functions that automatically take logarithms and
~ calculate exponents for you:

EXP(X) — Gives the natural exponent of X (eX).
LGT(X) — Gives the logarithm of X to the base 10.
LOG(X) — Gives the logarithm of X to the base e.
LTW(X) — Gives the logarithm of X to the base 2.

C

More Things You Can Do with BASIC 79

Chapter 10. Tape Data Files

A file is a collection of related data items that are stored together.
All the items are stored in sequential order.

ACTIVATING AND DEACTIVATING FILES

Files must be activated or opened before they can be used within a
program. A file must be opened by an OPEN statement in a program.
The following example shows the format of an OPEN statement:

0050 OPEN FL1,'E80',2,IN

FL1 is the file reference, which can be from FLO to FL9, but must be
the same as the file reference in the GET or PUT statement. This

file reference does not identify the file being read or written. 'E80' is
the device address of the tape unit built in the 5100. The number 2
specifies which physical file on tape is going to be used. This number
can be from 1 through 132, and can be specified as a variable. The
word IN indicates that the file is to be used for retrieving data items
from the file for use in the program.

if a file were to be used with PUT statements, it could be opened as an
output file with this statement:

0100 OPEN FL1,'E80',2,0UT

Normally, a file is deactivated or c/osed by the system after execution
of your program. However, if you want to switch an input file to
output (or vice versa) and continue to use it in the same program, you
must deactivate it by using the CLOSE statement before reopening it.
(If you did not use the CLOSE statement and attempted to use an
output file for input or vice versa, execution of your program would

be terminated.) The CLOSE statement deactivates the file; a subsequent
OPEN statement opens (reactivates) the file for its new use and
repositions it at its beginning. Under ordinary circumstances, the
CLOSE statement is optional, and the system will close a file at the end
of program execution. The one time that the CLOSE statement is
required is if you use the same file for both input and output operations
in the same program.

80

LN

CREATING A TAPE FILE

The following compound interest program can be used to produce an
output listing containing 600 values in 200 lines:

G010 PRINT "ENTER PRINCIPAL’

0020 INPFUT P

0030 PRINT FLP, TIME': "RATE", "AMOUNT'
0040 FOR T=1 TO 10

4050 FOR R=1 TO 20

D040 LET A=PxCl+RA7100317T

0070 PRINT FLP, T.R.A

0080 NEXT R

0090 MNEXT T

0100 END

The PRINT statement in this program is executed 200 times to produce
an output listing containing the values. These values could be grouped
as an output file on tape. In fact, instead of printing them, you could
store them in the file and use them later. By adding an OPEN statement
and substituting a PUT statement for the PRINT statement (line 0070),
you can create a tape file; for example:

0025 OPEN FL1,'E80',2,0UT
0070 PUT FL1,T,R,A

This PUT statement instructs the 5100 to put the values contained in
the variables T, R, and A into the file that is defined in the OPEN
statement with the same file reference (FL1)}. As far as the 5100 is
concerned, both PUT and PRINT mean output; the only difference is
whether the output goes to a tape file or to the printer or display
screen. Semicolons cannot be used to separate variables in a PUT
statement; use only commas.

RETRIEVING A FILE

To access data in a tape file, you use the GET statement, which is the
input counterpart to the PUT statement.

To access the first set of values from the file created with the preceding
PUT statement, you can use the following GET statement:

0020 GET FL1,T,R,A

Tape Data Files 81

82

This statement assigns the first three values contained in the file to the
variables T, R, and A. It is not necessary to use the same variable names
that were used when the file was created; for example, we could assign
these values to variables X, Y, and Z. The important requirement is
that the values in the file and the variables to which they are assigned
must be of the same type—arithmetic variables for arithmetic values,
and character variables for character values.

The file reference (FL1) must be the same as the file reference in the
OPEN statement that defines the specific tape file. You must first close
the output file and reopen it for input:

0010 CLOSE FL1
0050 OPEN FL1, 'E80',2,IN

After the first GET statement is executed, the file is positioned at the
next value. Thus, a second GET statement referring to FL1 would
access the next three values in the file. |f we wanted to access all the
values stored previously, we could issue the GET statement 200 times,
or enclose one GET statement in a loop as follows:

0050 OPEN FL1,'E80",2,IN
0060 FOR X=1 TO 200
0070 GET FL1,T,R,A
0080 PRINT T,R,A

0090 NEXT X

These statements would print the 200 values for each T, R, and A.

REPOSITIONING FILES

You may have an occasion to use an input file or an output file more
than once in the same program. The RESET statement allows you to
reposition the file without deactivating it (deactivation is necessary
only when the function of a file is changed from input to output or
vice versa). For example:

0020 OPEN FL4,'E80',4,IN
0030 GET FL4,X,Y,Z,Q,R,S

0100 RESET FL4
0110 GET FL4,X,Y,Z,Q,R,S

0150 RESET FL4
0160 GET FL4,X,Y,Z,Q,R,S

......

Between statements 0030 and 0100, the variables X, Y, Z,Q, R, and S
could be used in one set of calculations and their values changed. By
repositioning the file, the original values in the file could again be made
available and put into variables X, Y, Z, Q, R, and S for different
calculations or uses between statements 0110 and 0150, and again
between statement 0160 and the end of the program. Actually, the
RESET statement used in this way functions for files in the same way
that the RESTORE statement functions for the data table created by
the DATA statement.

To add data to the end of the file, you can reset it to its end by using
the RESET statement with the END keyword:

0200 RESET FL1 END

This statement positions FL1 to the end of the last data item in the
file. PUT statements appearing after statement 0200 will place
additional values in the file. In effect, RESET END allows you to build
onto a file.

Tape Data Files

83

Chapter 11. Arrays

With the BASIC language, you can keep groups of similar data
(arithmetic or character) together by organizing them into arrays. An
array is a collection of data items that is referred to by a single name.

Arithmetic arrays are named by a single letter of the extended alphabet.
Thus, the letter A can stand for a single arithmetic variable or an
arithmetic array or both, while the symbol A2 can only stand for a
single arithmetic variable. A single letter stands for an array only when
it has been defined in a DIM (dimension) statement, which is described
later. All elements of an arithmetic array are initially set to O when the
program is executed. ‘

Character arrays, like simple character variables, are named by a single
letter of the extended alphabet followed by the dollar sign ($). Each
element of a character array is 18 characters in length. Each element
is initially set to 18 blank characters when program execution begins.

BASIC arrays can be either one or two dimensions. A one-dimensional
array can be thought of as a row of successive data items. A two-
dimensional array can be thought of as a rectangular matrix of rows and
columns. A representation of a one-dimensional array A containing
four elements is:

Array A
L A | A2 | A | A4) |

A representation of a two-dimensional array B with four rows and
three columns is:

Array B
B(1,1) B(1,2) B(1,3)
B(2,1) B(2,2) B(2,3)
B(3,1) B(3,2) B(3,3)
B(4,1) B(4,2) B{4,3)

To illustrate the use of one- and two-dimensional arrays, suppose you
are keeping weather statistics on the average temperature and the inches

of rainfall for 12 months. You can write a program to keep each set of
that data in arrays:

® Names of the months
® Average temperature for each month
e Total rainfall for each month

You can arrange the data as three one-dimensional arrays:

Array 1 Array 2 Array 3
Average
Names of Months Temperature'\ Rainfall
January 28 3.47
February 31 2.10
March 35 2.95
April 49 4.82
May 60 3.02
June 64 2.87
July 75 2.04
August 81 . 1.89
September 71 2.74
October 59 2.90
November 46 1.85
December 37 2.35

Or as one two-dimensional array:

Array 1 .
Month [Temp [Rainfall

1 28 3.47

2 31 2.10

3 35 2.95

4 49 4.82

5 60 3.02

6 64 2.87

7 75 2.04

8 81 1.89

9 71 2.74
10 59 2.90
11 46 1.85
12 37 2.35

Arrays

85

86

The second example is really a modified combination of the three one-
dimensional arrays. The first column has been changed to the numeric
representation of the months because the names of the months
(character data) cannot be included in the same array with numeric
data. .

It will be much easier to use the weather data if we keep it together in
three one-dimensional arrays, or in one two-dimensional array, than it
would be if we considered it as 36 separate variables. This chapter
will show you how to work with arrays in BASIC programs.

DEFINING AN ARRAY

When you want to work with an array, you must first tell the 5100
that you are using an array and not ordinary variables. This is called
defining your array. Defining the array merely involves telling the 5100
how big the array is going to be so the 5100 can leave room for it, and
telling the 5100 what kind of data will be in it. (Later on you enter the
data, but this is not part of defining the array.)

The data for your arrays can be numeric data or character data. You
can define an array to contain either kind of data, but it must contain
only one kind of data. You can't mix characters and numbers in a
single array. That's why we used the numbers of the months instead of
their names when we put the weather data in a two-dimensional array.

An array composed of numbers is called an arithmetic array. It is named
by a single letter of the extended alphabet such as Aor T.

An array composed of character data is called a character array. |t is
named by a single letter of the extended alphabet followed by a dollar
sign ($); for example, N$ or Q$.

To define either kind of array, you use a statement called DIM. In the
D‘IM statement, you name the array and include the size of it in
parentheses after the name.

DIM Statement for One-Dimensional Arrays

For a one-dimensional array, the size is a single number. Thus, to define
an arithmetic one-dimensional array A with 12 elements, your DIM
statement is:

0010 DIM A(12)

“k‘
| WW

To define character array N$ with 20 elements, your statement is:
0010 DIM N$(20)
To define both together, your statement is:

0010 DIM A(12), N$(20)

DIM Statement for Two-Dimensional Arrays

For two-dimensional arrays, the size is two numbers, one for each
dimension. The first number is the number of rows in the array; the
second number is the number of columns in the array.

To define array W with 12 rows and 3 columns, the DIM statement is:

0010 DIM W(12,3)

- Character array A$ with 3 rows and 4 columns is defined by:

0010 DIM AS$(3,4)

You can define all your arrays in a single DIM statement. You can also
mix definitions of one- and two-dimensional arrays in a single DIM
statement.

ELEMENTS OF ARRAYS

Each individual item in an array is called an elfement of the array. When
you want to refer to a particular element of an array, instead of to the
whole array itself, you talk about the position of that element in the
array. For example, if you want to refer to the third element of one-
dimensional array H, you would refer to it as H(3). To refer to the
element in the first row and third column of array W, you use W(1,3).
The position goes in parentheses after the name of the array. For two-
dimensional arrays, the first number is always the number of the row,
the second number is always the number of the column.

I1f we look at the weather example as three one-dimensional arrays, we
can call the array with the names of the months M$, the array of
temperature data T, and the array of rainfall data R. |f we consider the
weather data as one two-dimensional array, called W, the numbers of
the months are in column 1, the temperature data is in column 2, and
the rainfall data is in column 3. If you wanted to refer to January in a
program statement, you would refer to either M$(1) or W(1,1).

Arrays

87

Here are all the months and the way you refer to them in arrays M$

and W:
\U&ur
Is in this Position:
This Month: In Array M$ In Array W:
1 (January) M$(1) w(1,1)
2 (February) MS$(2) W(2,1)
3 (March) M$(3) w(3,1)
4 (April) M$(4) W(4,1)
5 (May) M$(5) Ww(5,1)
6 (June) M$(6) W(e6,1)
7 (uly) M$(7) w(7,1)
8 (August) M$(8) w(8,1) L
9 (September) M$(9) W(9,1)
10 (October) M$(10) w(10,1)
11 (November) M$(11) W(11,1)
12 (December) M$(12) W(12,1)
Note that the month names are not used in array W.
If we include the temperature and rainfall data, the first element in each
one-dimensional array—M$(1), T(1), R(1)—or the first row in array W—
W(1,1), W(1,2), W(1,3)—will be data for January; the second element in A
each one-dimensional array, or the second row in W, will be data for 1
February; and so ori.
So far, however, there is no data in any of the arrays. We have only
defined the names and sizes. After you define an array, the 5100 sets
the values of a// its elements to O (for arithmetic arrays) or blanks (for
character arrays).
Assigning Values to Array Elements
To assign values to array elements (the names of the months, the
temperatures, or the rainfall), you use the methods of assigning values .
that you've been using all along. .
LET Statements
You can use a LET statement to assign a value to an element of an %
array. So if the average temperature for January is 28°, you could

C

C

write either of these statements:

0020 LET T(1)=28
0020 LET W(1,2)=28

This method is acceptable if you only have a few values to assign, but it
will take forever if the array is large. In the weather example, we would
need 36 separate LET statements to assign all the data to the arrays.
Nevertheless, the LET statement is handy if you only want to assign a
few values, or if you want to change a value you have already assigned.

Remember that if you are assigning a value to an element of a character

array, you enclose the characters you are assigning in single quotation
marks. For example:

0020 LET M$(1)="JANUARY"

DATA and READ Statements

Another way to assign values is to use DATA and READ statements.
You use these the same way you do for variables. For example:

0020 READ M$(1),M$(2),M$(3)
0030 DATA 'JANUARY','FEBRUARY",'MARCH'

or

0020 READ W(1,1),W(2,1) W(3,1)
0030 DATA 1,23

Again, when you are using large amounts of data, listing them all
separately in a READ statement is not practical. In this example, you
can take advantage of a FOR-NEXT loop to assign values:

0020 FOR I=1 TO 12

0030 READ T(I)

0040 NEXT 1

0050 DATA 28,31,35,49,60,64,75,81,71,59,46,37

or
0020 FOR I=1TO 12
0030 READ W(l,2)

0040 NEXT |
0050 DATA 28,31,35,49,60,64,75,81,71,59,46,37

Arrays

89

90

These statements assign all the average temperature data to array T or
to the second column of array W. (For array W, since we are assigning
values only to the second column, we used a constant of 2 in the
READ statement.) You can't avoid specifying 12 values in the DATA
statement, but a loop like this makes the READ statement easier to
handle.

When assigning values to array W, you could, in fact, use one READ
statement and two loops to assign a// the data at once. It would look
like this:

0020 FOR 1=1TO 12
0030 FOR J=1TO 3
0040 READ W(l,J)
0050 NEXT J

0060 NEXT |

Arranged this way, the loops let you enter the data for each row of the
array in succession. Your DATA statements might look like this:

0070 DATA 1,28,3.47
0080 DATA 2,31,2.10
0090 DATA 3,35,2.95

We've entered the data for each row of array W in a separate DATA
statement because it is easier to visualize the data that way. You could,
however, string out the data so that more than one row appears in a
DATA statement like this:

0070 DATA 1,28,3.47,2,31,2.10,3,35,2.95 . . .
This way you could enter as many data items in each DATA statement

as will fit on a line. The important thing is that the data must appear in
the same order as if you were entering it row by row.

INPUT Statements

You can use INPUT statements to assign values from the keyboard to
array elements. You can list all the array element names in the INPUT
statement, or you can write a FOR and NEXT loop—similar to the ones
for READ—to specify the names of the elements that are to receive
values.

=

s

For example, you can assign values to the one-dimensional rainfall
array R with this statement:

0020 INPUT R(1),R(2),R(3),R(4),R(5)
or with these statements:

0020 FOR 1=1TO 12
0030 INPUT R(1)
0040 NEXT I

You can assign the rainfall data to the third column of array W with
these statements:

0020 FOR I1=1TO 12
0030 INPUT W(1,3)
0040 NEXT |

As with the READ statement, you can write a double loop for an INPUT
statement so that you can supply all the data for array W at once. In

all instances, the 5100 flashes a question mark on the display.screen
when the system is ready for you to enter the data from the keyboard.
However, if your INPUT statement is in a loop, the 5100 flashes a
question mark each time the loop is executed. This means you supply
one item of data, wait for the next question mark, supply the next item
of data, and so on. You will have to enter the data one item at a time,
waiting for a question mark between each entry.

Another Way to Assign Values to Arrays

Instead of using a loop with a READ or INPUT statement to assign
values, you can write a READ or INPUT statement such as:

0020 MAT READ M
0030 MAT INPUT N

These statements tell the 5100 to read in values for the entire array.
The letters MAT stand for the word matrix.

This method of assigning values with a MAT READ statement has no
effect on your DATA statements. Thus, to assign the temperature data

to one-dimensional array T, you could write these statements:

0020 MAT READ T
0030 DATA 28,31,35,49,60,64,75,81,71,59,46,37

Arrays

91

92

If you use a MAT READ W statement, you would have to enter the
data for the entire array in DATA statements. You assign the data row
by row with these statements:

0020 MAT READ W

0030 DATA 1,28,3.47
0040 DATA 2,31,2.10
0050 DATA 3,35,2.95

or with these statements:

0020 MAT READ W
0030 DATA 1,28,3.47,2,31,2.10,3,35,2.95

If you use a MAT INPUT statement to assign values to an array, the
5100 will signal you with a flashing question mark, as usual, when it

is ready for you to enter data from the keyboard. |f you are supplying
values for a one-dimensional array, just type in all the values on a
single line. If you are supplying values for a two-dimensionat array,
type in all the data row by row. Remember that the values must be
separated by commas.

Assigning Values to an Entire Array at Once
If you want every element of an array to have the same value, such as
all 1'sorall 0's, you can assign that value to each element of the array
with the following statement:

0030 MAT A=(0)

You could also assign to every element of an array the value of a
variable or the value of an arithmetic expression with this statement:

0050 MAT T=(X)
or this statement:
0060 MAT M=(X+Y*Z)

The value you are assigning must be enclosed in parentheses so that the
5100 knows it is not the name of another array.

If you omit the parentheses, you can make one array an identical copy
of another array by using this statement:

0070 MAT R=S

X

C

In this statement, you don't use parentheses because you are, in fact,
referring to another array in this assignment statement.

This method of assigning values is limited, however. You can't use the
following statement:

0040 MAT R=-S
to set the values of the elements of array R equal to the negative values
of the elements of array S. To do that, you would have to write this
statement: :

0040 MAT R=(-1)*S

(See Arithmetic with Arrays later in this chapter for more information.)

Working with Elements of Arrays

After you assign values to elements of arrays, you can perform
calculations with individual array elements. You use elements of arrays
just as you use any variable in any BASIC statement. Nothing is

_ different except that you are keeping a set of variables together for

your own convenience in organizing data. Each element still has a
value and can act as an independent variable.

Printing Arrays

Elements of arrays, like ordinary variables, can be used in any PRINT
or PRINT FLP statement. Some examples of PRINT and PRINT USING
statements that include array elements are:

0020 PRINT T(3),T(4),M$(2),W(10,2),X,Y,Z

0030 PRINT FLP, 'THE AVERAGE RAINFALL FOR JANUARY IS:',W(1,3)
0080 PRINT USING FLP,20,M$(3),R(3)

0090 :FOR THE MONTH OF ########## THE RAINFALL WAS #.##

In addition, you can print an entire array if you insert MAT before the
PRINT statement. For example, the statement

0090 MAT PRINT FLP, T

will print the entire one-dimensional temperature array T. The
statement

0060 MAT PRINT FLP,W

will print the entire two-dimensional weather array W. It will be
printed row by row.

Arrays

93

94

nrLo
nozo
A
{10
000
0040
NI
B0
(s
100
110
120
G130
0140
HLE0
0140
I
0180
0120
(] AL

12400

Putti

LA T
T
AT 5

T

UﬁTn
OaTH
TenT iy
PRI

IUP

T
=10 T0 12
" T

You cannot enter arrays and ordlnary variables together in a MAT
PRINT statement.

ing One-Dimensional Arrays Together in a Program

Now we'll put the three one-dimensional weather arrays, M$, T, and R,
together in a sample program that will keep all the data and display it
when you run the program:

THIS PROGRAIN KEE
M)

RO WEATHER DaTaA

L) RO

(K 2 NS IR IO N I A

) l)i l" | L.
MY :&U:h.
CALINE (\ b

T Uﬂlﬂh lIP,UIW

MOMTH AV TEMP R TNF AL FOR
L= 700 132

T USING FLP, Q230 M0, T4y RO

BB HHY i "

This program uses FOR and NEXT loops to simplify handling the large
number of values involved in these arrays. Notice that instead of
writing a FOR and NEXT loop for each array when we were assigning
values to the members, we wrote a single loop that worked across the
three arrays instead of completing each 12-element array individually.

Of course, the DATA statements had to have their data in the same order.

Le 7

-

£

10
URIpEY
0030
0040
0050
0040
IRINAY
noao
0020
0100

We also used a loop to display the data. [t lets us use a single PRINT
USING statement with a single image statement to print out 12 lines
of data.

After you enter the statements and run the program, the display screen
shows:

MONTH
JaNUARY
FE R

P
i

AVG TERP Ré T MF ALL FOR 157

B

IARY
H

Two-Dimensional Array

Now we'll do the same thing with the two-dimensional array W. This
time we'll use MAT READ W and MAT PRINT FLP, W statements
instead of using loops to assign the weather data and print it. |f your
system does not have a printer, skip this program because the output
exceeds the limits of the screen:

REM THIE PROGREAM
DM Wil 3
MAaT REATD W

KEEPS DaTe T & 2 DM aRRAY

OaTe 1,283,052, 31,2 103,305, 3 0o w900 8,5, 60,3,
OGATA &, 68, 2.9, 7,075,288, 1,9,9, 712,77, 10,59,2.9
..... 5oy

NaTA

PRINT UBING FLP., GOS0
MONTH AV G

MAT PRINT FLPLW

END

TEMP RalhFalL, Fom

187

Arrays 95

The printed output is:

~

PMORNTH AVE TEMP Rl all FOR 1974

L} I W, 2

] &l 3

ARITHMETIC WITH ARRAYS

Suppose, instead of weather data for one year, you have weather data
for two years. This data can be in two arrays. You are interested in
averaging the temperatures and rainfall over the two years and making
new arrays to contain the two-year averages. To see how to do this,
let's look at the two sets of temperature data. If you assume that they
are in two one-dimensional arrays called A and B, then to find the
average temperature for each month over the two years, you have

to add the two temperatures for January and divide by 2, add the
temperatures for February and divide by 2, and so on.

A

96

A

O

Addition and Subtraction with Arrays

You can do all the addition in one step, adding the entire array A to
the entire array B, with this statement:

0010 MAT C=A+B

Again, the letters MAT stand for matrix. The preceding statement
causes each element of array A to be added to the corresponding element
of array B and the result to be stored in the corresponding element of
array C.

The same kind of addition statement works if you want to add two-
dimensional arrays. If all the weather data for the first year is in
two-dimensional array T and for the second year in two-dimensional
array U, and you want the result in array V, the statement is:

0040 MAT V=T+U

Each element of array T is added to the corresponding element of
array U. This includes the columns with the numbers of the months
and the columns with the rainfall.

Similarly, if you want to subtract each element of an array from the
corresponding element of another array, you would write this
statement: ‘

0050 MAT C=A-B

The letters MAT always tell the 5100 to work with an entire array.
Just remember that you must define all the arrays, including the one
which is receiving the results, in a DIM statement at the start of your
program. Also, you can only add or subtract when all the arrays
named have the same dimensions. You can't, for example, add a
14-element array to a 12-element array.

Multiplication and Division

We have seen how to add and subtract array elements. Now what
about dividing by 2? Before we can divide, we must see how to
multiply, because BASIC doesn't let you divide arrays directly; you

can only multiply. You can multiply each element of an array

(called A, for example) by a constant, a single variable, or an arithmetic
expression with this statement:

0030 MAT C=(2)*A

Arrays

97

The multiplier a/lways goes in parentheses so the 5100 knows it is not
another array, and it must always go before the *. For division, you
merely multiply the array by 1 over the divisor, or by a decimal
number such as 0.5. Therefore, to divide each element of array A by 2,
you would use this statement:

0080 C=(1/2)*A

Averaging Two Sets of One-Dimensional Arrays

If the weather data is kept in two sets of one-dimensional arrays, A and
B for temperature and C and D for rainfall, a program for averaging the
two sets of data and assigning the results to master arrays T and R
might look like this:

G010 DIM MECL2), ALY B2, CCL2), L2y, T 12, ROL2)
0020 MAT REAL M%

D030 DATA “JAaN', "FER', "MAR', "APR ™, "MAY ", "JUNE" ., " JULY " TAlUG?
000 DATA CSEPT', "0CT ', "NOV', "DEC’

0050 MAT READ AR, C, D

D060 DATA 20,21,22,23,24,25,26,27.28,29,30. 31

D070 DATA L0, 12,14, 14,18,20,22,24,26,28,30, 32

0080 DATA 2.2,2,2,3:,3,3,4,4,4,5.0

00920 DATA 5,5, %, 4, 08,4,2,2.2,1,3,2

0100 MAT T=A+R

DLLD MAT T=0L/2)%T

0120 MAT R=C+D

0130 MAT R=(1/72)%R

0140 FOR I=I1 TO 12

0LS0 PRINT FLP,M$CI) . TCL),RCD)

0160 NEXT T

0170 END

We defined arrays T and R in the DIM statement on line 10, as well as
arrays M$, A, B, C, and D. Note that we only need one array for the
names of the months, no matter how many years of data we have
stored in other arrays.

Averaging Two-Dimensional Arrays

If the two sets of weather data are stored in two-dimensional arrays
X and Y, a program for averaging the data might look like this:

HiLa
pozo
noEo
URIEERE
0050
(RIFRY
(RINE
fog
Rt
NI RY

(NN RO I (N BEFRCH I TR BN Y

MaT BEaT X%
DéTa

Data for Arrays A, B, C, and D
é T i
Té T

M Y

EECR N R T
MaT PERINT FLP.W
fL

We defined array W along with arrays X and Y in the DIM statement
at the start of the program. Note that the numbers of the months,
which-are in column 1 of both arrays X and Y, are added in statement
0070 along with the rest of the data in arrays X and Y. But when we
divide by 2 in statement 0080, we get back the original numbers

1 through 12.

Arrays

99

Appendix A. BASIC Statements and Commands

100

A complete list of the statements and commands in the BASIC

language that are used for the 5100 is shown below. A brief description

of each statement and command is included. Although all the
statements and commands are not discussed in this manual, each is
described in detail in the /BM 57100 BAS/IC Reference Manual,

SA21-9217.

BASIC STATEMENTS

CHAIN

CLOSE
DATA

DEF

DIM
END

FNEND

FOR
GET

GOSuB

GOTO

Image

INPUT

Ends a program, then loads and begins executing
another program.

Deactivates open files.
Creates an internal data table of values.

Defines an arithmetic function to be used in the
program.

Specifies the size (dimensions) of an array.
Ends a program.

Ends an arithmetic function defined in a DEF
statement.’

Begins a loop.
Assigns values from a file to variables.

Branches the program to the beginning of a
subroutine.

Branches the program to a specific statement.

Branches the program depending on specific
conditions.

Specifies the format of printed or displayed data.

Assigns values from the keyboard to variables
during program execution.

~

N

L

LET

MAT

MAT GET
MAT INPUT
MAT PRINT
(FLP)

MAT PRINT
USING (FLP)

MAT PUT

MAT READ

NEXT

OPEN

PAUSE

PRINT (FLP)

PRINT USING
(FLP)

PUT

READ

REM
RESET

RESTORE

Assigns values to variables.
Assigns values to all elements of an array.
Assigns values from a file to elements of an array.

Assigns values from the keyboard to elements of
an array.

Displays or prints the values of all elements of an
array.

Displays or prints the values of all elements of an
array in a format specified in an image statement.

Writes the values of all elements of an array into a
tape file.

Assigns values from the internal data table (see
DATA) to elements of an array.

Ends a loop (see FOR).
Activates files for input or output.
Interrupts program execution.

Displays or prints the values of specified variables,
expressions, or constants.

Displays or prints the values of specified variables,
expressions, or constants in a format defined in an

image statement.

Writes the values of specified variables into a tape
file.

Assigns values from the internal data table (see
DATA) to variables or array elements.

Inserts comments or remarks in a program.
Repositions a tape file to its beginning.
Causes values in the internal data table (see DATA)

to be assigned starting with the first value in the
table.

BASIC Statements and Commands 101

RETURN

Ends a current subroutine.

STOP Ends a program. ;
USE Saves variables to be used by many programs.

BASIC SYSTEM COMMANDS .
AUTO Automatically numbers BASIC statements.)
GO Resumes execution of a MARK command or pro-

gram that was halted.
P
LIST Displays or prints the contents of storage. v A\
LOAD Loads storage with data from tape or data from the
keyboard. Also see Function Keys in the /IBM 5100
BASIC Reference Manual, SA21-9217.
MARK Prepares a tape cartridge for programs or data to be
saved.
MERGE Combines programs on tape with programs in storage
or data on tape with data in storage.
PATCH Allows loading of patch program or tape recovery Y
program or tape copy.
RD= Specifies the number of digits at which rounding
occurs for displayed or printed results.
RENUM Renumbers the statements in storage.
REWIND Rewinds the tape cartridge.
RUN Executes a BASIC program.
SAVE Saves the contents of storage on tape. "/
UTIL Displays or prints a directory of the contents of the
tape. Also transfers control to the communications
feature. '
.
*

Editing Function

DEL Deletes a statement or a group of statements from
storage. ’ V
1
KEYXx, Allows editing of key groups, where x=0 to 9. Y

j\

ABS(x) absolute value of x 77
ACS(x) arc cosine of x (in radians}) 78
adding to a tape file 83

addition 6, 16, 97

APL symbols 3,4

array dimensions 84

array elements 84, 87, 93

arrays 84

arithmetic arrays 84, 86

arithmetic constants 22

arithmetic hierarchy 17

arithmetic operator keys 6

arithmetic operators 16

arithmetic with arrays 96

ASN(x) arc sine of x (in radians) 78
assigning values 24, 41, 58, 88, 92
ATN(x) arc tangent of x (in radians) 78
ATTN key 5, 14,21, 30

AUTO command 35

automatic statement numbering 35

backspace key 11
BASIC/APL switch 6
branching 44
brightness control 9

calc result function 28
centimeters per inch (&INCM) 22
character arrays 84, 86

character variables 27, 47, 62
clearing storage 38

CLOSE statement 80

closing tape files 80

CMD key 5,12,13,29

command keywords 6, 102
conversion constants 22,78
conversion functions 78

copy display function 31

COS(x) cosine of x radians 78
COT(x) cotangent of x radians 78
CSC(x) cosecant of x radians 78
cursor 7

Index

DATA statement 58, 89
defining arrays 84, 86

DEG(x) degrees in x radians 78
DEL function 67

delete function 13

deleting characters 12

device address 80

DIM statement 84, 86
DISPLAY REGISTERS/NORMAL switch 6
display screen 7

displaying variable values 26
division 6, 16, 97

editing functions 67, 102

END statement 34

error correction 11, 30, 64
EXECUTE key 5,30

EXP(x) natural exponent of x 79
exponentiation 16, 17
exponents 79

flashing question mark 32, 61, 92
FOR statement 53, 90
formatting output 72

forward space key 10, 11

GET statement 80
GO command 37
GOTO statement 34, 44

HOLD key 5, 30, 52, 66

Index 103

IF statement 33, 45, 51 OPEN statement 80
image statement 72 opening tape files 80
IN PROCESS indicator 7

initializing variables 47

INPUT statement 32, 60, 90

insert function 13

inserting characters 13 parentheses 17,18
inserting program statements 64 pi () 22
INT(x) integer part of x 77 positive operations 17, 21

POWER ON/OFF switch 6, 38
PRINT statement 32, 42, 61, 69
PRINT USING statement 72
printing arrays 93
keys 3,4 printing blank lines 75
kilograms per pound (&LBKG) 22 PROCESS CHECK indicator 7
prompting message 61
PUT statement 80

LET statement 41, 88
LGT(x) logarithm of x to the base 10 79

LIST command 44 RAD(x) radians in x degrees 78
liters per gallon (&GALI) 22 raising to a power 16

LOAD command 7, 38, 39 RD=command 32

LOG(x) logarithm of x to the basee 79 READ statement 58, 89
logarithms 79 ready message 7

loops 50, 90 relational operators 45, 51
LTW(x) logarithm of x to the base 2 79 REM (remark) statement 33, 42

L3264 R32 switch 6,9 removing program statements 67

RENUM command 68

replacing characters 11

replacing program statements 66
RESET statement 82

MARK command 37 RESTART switch 6, 7, 38
MAT INPUT statement 91 RESTORE statement 58
MAT PRINT statement 93 REVERSE DISPLAY switch 9
MAT READ statement 91 RND[{x)] random number 77
mathematical functions 17 rounding 32

multiplication 6, 16, 97 RUN command 31, 38

RUN P=D command 75

naming arrays 84, 86
natural log (e) 22
negative operations 17, 21
nested loops 54

NEXT statement 53, 90
numeric keys 3, 4
numeric variables 23, 47

104

-

O

SAVE command 38

scroll down key 10

scroll up key 10

SEC(x) secant of x radians
SGN(x) sign of x 77

shift key 3

SIN(x) sine of x radians 78
special characters 3, 11
square root 22,23
statement keywords 6, 30,
statement numbers 35, 68
status line 8

steps 54

STOP statement 48
storage capacity 7
subtraction 6, 16, 97
system functions 77

TAN(x) tangent of x radians
tape cartridge 35
tape files 35, 37, 80

variables 23, 86

78

100

78

Index

105

A 4

A

LR

READER’'S COMMENT FORM

1BM 5100 ' SA21-9216-1
BASIC Introduction

YOUR COMMENTS, PLEASE . ..

Your comments assist us in improving the usefulness of our publications; they are an important
part of the input used in preparing updates to the publications. All comments and suggestions
become the property of 1BM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the response. Instead, direct your inquiries or requests to your |BM
representative or to the |BM branch office serving your locality.

Corrections or clarifications needed:

Page Comment

| would like a reply. [:]

Name
Address

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

SA21-9216-1

BUSINESS REPLY MAIL

NGO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY . . .

IBM Corporation

General Systems Division
Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

flun)
KK

International Business Machines Corporation
General Systems Division

5775D Glenridge Drive N.E.

Atlanta, Georgia 30301

(USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

FIRST CLASS
PERMIT NO. 387
ROCHESTER, MINN.

uoipnponul JISvd 00LS NGl

po—

"¥'S"N Ul paruug
AN

e

1-9126°12VS

READER’S COMMENT FORM

I1BM 5100 SA21-9216-1
BASIC Introduction

YOUR COMMENTS, PLEASE . ..

Your comments assist us in improving the usefulness of our publications; they are an important
part of the input used in preparing updates to the publications. All comments and suggestions
become the property of IBM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the response. instead, direct your inquiries or requests to your |BM
representative or to the | BM branch office serving your locality.

Corrections or clarifications needed:

Page Comment

1 would like a reply. D

Name
Address

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

SA21-9216-1

Fold Fold
FIRST CLASS
PERMIT NO. 387
ROCHESTER, MINN.

- L]
L.]

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY [F MAILED IN THE UNITED STATES]
|
POSTAGE WILL BE PAID BY . . . —
]
R
|
.]
IBM Corporation o ——
General Systems Division ——

Development Laboratory
Publications, Dept. 245
Rochester, Minnesota 55901

Fold Fold

International Business Machines Corporation
General Systems Division

5775D Glenridge Drive N.E.

Atlanta, Georgia 30301

(USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

uononponu] JiSvE 00LS Wal

‘¥'S'N ut pajuid

F

L-9L26°LZVS

R

~

PN

N

SA21-9216-1

uononposu] JiSvd 00LS W8I

‘V'S'N ui pajuld

L-91LZ6°L2VS

International Business Machines Corporation
General Systems Division

5775D Glenridge Drive N.E.

Atlanta, Georgia 30301

(USA Only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International) :

