
IBM 5100
BASIC Introduction

,...
It)

ce

This manual introduces the IBM 5100 Portable
Computer that can be programmed with the BASI C
language. It is intended to provide persons using
the 5100 with the information necessary to operate
the 5100 using the BASIC language.

Related Publications

• IBM 5100 BASIC Reference Manual, SA21-9217

• IBM 5100 BASIC Reference Card, GX21-9218

• IBM 5100 Communications Reference Manual,
SA21-9215

Second Edition (December 1975)

This is a major revision of, and obsoletes, the previous edition SA21-9216-0.
Changes are continually made to the specifications herein; any such changes
will be reported in subsequent revisions or technical newsletters.

Requests for copies of IBM publ ications should be made to your I BM repre­
sentative or the I BM branch office serving your locality.

A form for reader's comments is at the back of this publication. If the form
has been removed, address your comments to IBM Corporation, Publications,
Dept 245, Rochester, MN 55901.

© International Business Machines Corporation, 1974, 1975

o

o

o

o

o

Contents

o
CHAPTER 1. INTRODUCTION 1 CHAPTER 5. OTHER WAYS TO PUT VALUES
About This Manual INTO PROGRAMS 58

C~:I' About BASI C . 1 The READ, DATA, and RESTORE Statements. 58
About the 5100 3 The INPUT Statement 60

Alphameric Keys. 3 Prompting Your Input 61
Numeric Keys. 3 Entering Character Variables into Programs 62
Operati ng Keys 5 A. Review of What You've Done. 63
BASIC Command Keywords 6

C
BASIC Statement Keywords 6 CHAPTER 6. MAKING CHANGES TO YOUR ~,

Arithmetic Operator Keys. 6 PROGRAMS. 64
Getting Started 6 Correcting Keying Errors 64
Entering and Displaying Data. 7 I nserti ng New Li nes . 64

Correcting Keying Errors 11 Replacing One Line with Another 66
Removing a Line . 67

CHAPTER 2. HOW YOUR 5100 HANDLES Renumbering Statement Lines 68
ARITHMETIC 16

Arithmetic Operators 16 CHAPTER 7. MORE ABOUT THE PRINT
The Sequence of Arithmetic Operations 21 STATEMENT 69
Positive/Negative Operators 17 Making Headings . 70

Arithmetic Constants 22 Math Calculations in PR I NT Statements 71

Finding Square Roots 23

C
Variables 23 CHAPTER 8. SETTING UP YOUR OWN FORMAT-

Variables That Stand for Numbers 23 PRINT USING AND IMAGE STATEMENTS 72

Variables That Stand for Characters. 27 Example of Printing. 74

Using Calculation Results 28

CHAPTER 9. MORE THI NGS YOU CAN DO
CHAPTER 3. ENTERING, RUNNING, AND WITH BASIC 77

STORING,A PROGRAM. 30 Some General System Functions. 77

Entering a Program 30 Conversion Functions and Constants 78

Correcting Your Keying Errors 31 Trigonometric Functions 78

Running the Program 31 Logarithms and Exponents. 79

Automatic Statement Numbering 35
Storing the Program. 35 CHAPTER 10. TAPE DATA FILES 80

Tape Preparations 35 Activating and Deactivating Files 80

SAVE Command. 38 Creating a Tape File. 81

C LOAD Command. 39 Retrieving a File 81

A Review of What You've Done 39 Repositioning Files 82

CHAPTER 4. HOW TO WRITE A PROGRAM 41 CHAPTER 11. ARRAYS 84

The LET Statement. 41 Defining an Array. 86

Using Remarks. 42 DIM Statement for One-Dimensional Arrays. 86

C Listing Program Contents 44 DIM Statement for Two-Dimensional Arrays. 87

Branches. 44 Elements of Arrays 87

The GOTO Statement 44 Assigning Values to Array Elements 88

The I F Statement. 44 Another Way to Assign Values to Arrays 91

Loops. 49 Assigning Values to an Entire Array at Once. 92

Working with EJements of Arrays 93

C
iii

Printing Arrays. 93
Putting One-Dimensional Arrays Together in a

Program 94 ;
Two-Dimensional Array. 95

Arithmetic with Arrays. 96
Addition and Subtraction with Arrays. 97
Multiplication and Division 97

Averaging Two Sets of One-Dimensional Arrays. 98

APPENDIX A. BASIC STATEMENTS AND
COMMANDS 100

BASI C Statements 100
BASI C System Commands 102

Editing Function. 102
,/ --"

INDEX 103 i

,/

iv

o

c

o

o

Chapter 1. Introduction

ABOUT THIS MANUAL

This manual will show you how to operate the 5100 using the BASIC
language. If you are already familiar with the BASIC language, you may
be able to skip most of the language-only topics and simply learn how to
operate the 5100. If you are not familiar with the BASIC language, you
should read the manual from cover to cover while performing the
suggested keying operations or examples on your 5100. Not all of the
features and functions of the BASIC language are covered in this manual.
For more information about the 5100 or the BASIC language, see the
IBM 5100 BASIC Reference Manual, SA21-9217.

This manual assumes that your 5100 has been installed and checked out.
If it's not, use the setup procedure in the IBM 5100 BASIC Reference
Manual before continuing with this manual.

ABOUT BASIC

BASIC is an interactive computer language, that is, whatever you enter
into the 5100 is processed immediately. BASIC has many built-in
functions that allow you to effectively solve your problems. BASIC also
allows you to write programs using BASIC language statements and
facil ities. These programs can be stored on the tape cartridge for later
use.

BASI C is a good language to experiment with. Nothing you do from the
keyboard can damage the 5100; and the more you experiment, the more
you will learn about BASIC and the 5100.

Introduction

\\\\ ~\l.Oc€.SS
\nd\CatO(

~~oc€.SS Cr\E.C\<' \nd\Ca
tOf

'C,ffOf

\\I\essaCle

'2

f\£\lE.~S£
O\S?\",p-,<
S\N\tCh SP-S\CI p..~L

S\N\tCh

~~~~~~ \,\SII'lO \'\ t;1J',\. 
S\N\tCh 

~ .... --" 



o 

c' 

c 

c 

o 

ABOUT THE 5100 

The 5100 (Figure 1) is a portable computer designed to help you solve 
problems. The display screen and indicator lights communicate 
information to you, and the keyboard and switches allow you to control 
the operations the 5100 will perform. 

Before you begin to use the 51 00, you should become familiar with the 
keys and the control panel (Figure 1). The control panel consists of a 
series of switches, which will be explained later. 

What follows is a brief description of the keys. How you use the keys 
will be described later. For now, familiarize yourself with the names 
and locations of keys on the 5100. Figure 2 shows a BASIC-only 
keyboard, and Figure 3 shows a combined BASIC/APL keyboard. 

Alphameric Keys 

The alpha keys are similar to those on a standard typewriter, except that 
there are no lowercase characters. The alpha characters are all uppercase, 
even though they are in the lower shift position on the key. Thus, you 
do not use the shift key ( ) for alpha characters. 

If you want to enter an upper shift special symbol, such as ?, you must 
hold down the shift key, then press the key to enter the special symbol, 
just as you would to type an uppercase character on an ordinary 
typewriter. 

If your 5100 is equipped to operate either BASIC or APL programs, 
you may be unfamiliar with the symbols appearing at the top of some 
of the alphameric keys (Figure 3). For BASIC operations, even on a 
BASIC-only machine (Figure 2) where they are not shown on the key 
top, these symbols can be displayed or printed, although their AP L 
functions do not apply to BASIC operations. See the IBM 5100 BASIC 
Reference Card, GX21-9218, for the AP L characters and their locations. 

Numeric Keys 

Either the top row of alphameric keys or the ,special calculator 
arrangement of numeric keys on the right of the keyboard can be used 
to enter numbers. 

Introduction 3 



QCJCDCDCIJ(I)QJwGJGJOO 
GJGJGJGJGJCD[JQG]ITJOO 
Q[JGJGJGJGJ[JQCJOJOJ(I) 

GJGJGJGJGJGJGJCDOOCO 
( ) 

Figure 2. BASIC-only 5100 Keyboard 

BASIC ~~~~~~~(RENUM)~(REWIND)(CalcReSuI1 Copy BB 
Delete Insert 

APL ()LOAD)~~~~~~~GOUTSEL)(JREWIND)C!:) Display 

CJGJ CD CD CIJ(I)QJw [DCDOCD 
GJCDCIlOJGJCDrnCDCDITJQO 
CDCOCDGJ[)[)C]QaJOJOJCD 

(I) (IJQJCDCDCDGJCDOOJCO 
( ) 

Figure 3. Combined BASIC/APL 5100 Keyboard 

4 

a a • ,, __ .i 
CJQ8 CJ 
(J GJ GJ 0 /-~ 
008 0 "l,)" 

( 0 )0 [J 

• CJQ80 
(JGJGJ G 
[J080 
( 0 )0 [J 

\""-_/ 



o 

( '''' \ 
1'1 

c 

c 

c 

Operating Keys 

The black key labeled eM D; the gray keys with the legend names 
EXECUTE, ATTN, and HO LD; and the gray keys with the arrows are 
special operating keys (Figure 4). The gray keys with the arrows and the 
spacebar (used to enter blank characters) automatically repeat the 
operation they perform when held down. 

Backspace Key 

Forward Space Key 

Attention Key ------ If you get an error, 
press this key to make 

Scroll Up Key the display stop flashing. 

Scroll Down Key 

I HOLD Key 
I 

__ -------------------------EXECUTEKey 

Figure 4. 5100 Special Operating Keys 

Introduction 5 



6 

BASIC Command Keywords 

The words listed above the top row of alphameric keys (1-0) are 
BASIC command keywords that you can enter by holding down the 
CMD key and then pressing the number below the desired command. 
For example, to enter the LOAD command keyword, hold down the 
CMD key and press 1. These commands and their use are described 
later. 

BASIC Statement Keywords 

The words printed on the front of some of the alphameric keys are 
BASIC statement keywords. The words will appear on the display screen 
if you press thekey while holding down the CMD key. This permits you 
to enter an entire word, etror-free, with one or two keystrokes. 

Arithmetic Operator Keys 

The four keys to the right of the calculator arrangement of numeric keys 
are the arithmetic operator keys that are used to perform division, 
multiplication, subtraction, and addition. There are also alphameric 
keys that perform the same functions. In BASIC the symbol/is used 
for division, and the symbol * is used for multiplication. 

GETTING STARTED 

Make sure the switches on your 5100 are set as follows: 

Switch Setting 

L32 64 R32 64 

DISPLAY REGISTERS/NORMAL NORMAL 

BASIC/APL (combined machines 
only) 

BASIC 

If your 5100 has the BASIC/APL switch, it can execute either BASIC or 
APL language statements. The language used is selected only during the 
power up procedure or when the REST ART switch is pressed. Make sure 
your 5100 is plugged in and turn the power on. If the power is already on, 
pressRESTART and wait a few seconds. During this time, the 5100 
performs internal checks to make sure it is operating correctly. 

/ " 



c 

o 

c 

c· 

If an error is detected during these checks, the PROCESS CHECK 
indicator may come on. If the PROCESS CHECK indicator comes on, 
press REST A RT. The 5100 will again perform the internal checks. 
If the light comes on again, call for service. 

The I N PROCESS indicator comes on whenever the display screen is 
blank, which indicates that the 5100 is doing internal processing. 

ENTERING AND DISPLAYING DATA 

First, let's look at the display screen. Your display screen should look 
like this: 

L(),qD I) 

NNNNN 

If the READY message does not appear, press REST A RT again, and 
wait a few seconds. If the READY message still does not appear, call 
for service. 

The LOAD 0 (zero) message indicates that the 5100 has a clear work area. 
The flashing underline (_) between the LOAD 0 and READY messages is 
called a cursor. It tells you where the next character you enter will be 
displayed. The READY message indicates that the 5100 is ready to receive 
your instructions. The number in the lower right corner, indicated by the 
NNNNN on the display screen drawing, is the number of character 
positions (bytes) in the work area available for your instructions and 
data. This number changes during processing. The number is omitted 
on the remaining display screen drawings in the manual. 

Introduction 7 



8 

The display screen can contain up to 16 lines of data. The bottom line 
indicates the status of the 5100 and specifies the number of bytes 
available in the work area (NNNNN). The line next to the bottom 
displays the input you are entering from the keyboard. The remaining 
lines display the preceding 14 lines that have been entered and processed. 
When the data on the input line is processed, that line is moved up one 
line, leaving the input line empty so more data can be entered. Up to 
64 characters of data can be entered per line. 

Now let's enter some data into the 5100. Enter the following problem 
using the numeric keys and arithmetic operator keys: 

[JOG] 

Notice that the characters are displayed as each key is pressed. To 
process the data you just entered, you must 'press the EXECUTE key. 
Press EXECUTE now. 

The display screen shows: 

LOAD 0 

Notice that the instruction you entered, 2+3, is on the left margin of 
the display screen, while the answer, 5, is indented one position from 
the left margin on the next line. 

Enter and execute 125+75 by pressing the following keys: 

OOeJOOeJ 



o 

c 

c' 

c 

o 

o 

This display screen shows: 

LDI~n 0 
2+3 

:I. 2~5+ 7~5 
200 

REf~DY 

The appearance of your display can be changed by switches on the 
control panel. The REVERSE DISPLAY switch allows you to change 
from black characters on a white background to white characters on a 
black background, or vice versa. Change the switch and select the type 
of display you feel most comfortable with. You may have to adjust the 
B RIG HTN ESS control switch as you change from one background to 
the other. 

Now watch the display as you set the L32 64 R32 switch to the L32 
position. With the switch in this position, the leftmost 32 characters 
on each line are displayed with a space between each character. With 
the switch in the L32 position, your display screen shows: 

L J] A D 0 
:;.~ + 3 

1::-
.J 

:I. 
,.) 1::- + 

.. .., 
~.=:i ,: .. ,J 1 

2 0 (I 

I~ r· f~1 It ...... 
I 

Now set the switch in the R32 position and notice that the display is 
blank (except for the storage number). I n the R32 position, the right­
most 32 characters are displayed with a space between each character. 

Introduction 9 



10 

Return the switch to the 64 position, and notice that all characters are 
displayed without the space in between. For the exercises in the 
remainder of this book, keep the switch in the 64 position. 

There are two gray keys with white arrows above the numeric keyboard. 
These keys move the display lines (except the status line) up or down. 
The scroll up key. moves the display lines up one line, and the scroll 

down key a moves the display lines down one line. Both keys con­

tinue to move the display lines if they are held down. Now use the scroll 
down key. to move the display down two lines. 

The display screen shows: 

I...n(~D 0 
2+3 

I::· 
•• ..1 

20 0 -.-------The value 200 is now on the input line and 
-PEt,D\( can be used as input. 

Use the forward space key and move the cursor to the right of 200. 
Notice that the cursor (the underline) is replaced by a flashing character 
as you space the cursor through the numeric characters. The flashing 
character serves the same function as the cursor; it indicates the position 
in the line where input from the keyboard will be displayed. Now, press 
the following keys: 

o [] [_0 __ ) 



o 

C: 

c 

c 

c 

The display screen shows: 

I::· 
•••• 1 

:I. 2 ~.:.:.i + .. ? ~.:.:.; 
~? (} 0 + ~.;.:j 0 
?!50 

You are now familiar with the format of the display screen. From this 
point on, only the line or lines being discussed will be shown. 

Correcting Keying Errors 

The 5100 has a number of very useful functions that allow you to 
correct errors made while entering data. On a line-by-line basis, at any 
time, you can 

1. Replace a character 

2. Delete a character 

3. I nsert a character 

Replace a Character 

To replace a character, move the cursor with the backspace key 

or forward space key. until it is at the incorrect character. The 

cursor moves one character space in the direction of the arrow each 
time the appropriate arrow key is pressed. These keys will continue to 
move the cursor if they are held down. The incorrect character is then 
replaced simply by keying the correct character over the incorrect 
character. (I n some instances, characters can be combined to form a 
character not on the keyboard; for example, the period and quotation 
mark combine to make an exclamation mark. If you want to replace 
one of these characters (the. or ') with the other, you should backspace 
to the character, press the spacebar to delete the character, backspace 
again, then enter the desired character.) 

Introduction 11 



12 

For example, you want to do the problem 22+12, but you press the 
following keys: 

80000 
The display screen shows: 

;?;?+:I.:I ..... 

To correct this error, the cursor must be moved back one position 
(under the second 1) so that character can be rekeyed. Now, press the 
backspace key II once. To correct the keying error and execute the 

problem, press the following keys: 

o 

Delete a Character 

To delete a character, you also use the backspace key or the 

forward space key. to move the cursor. Once the cursor is in the 

position of the character to be deleted (the character is flashing), hold 
down the eM D key and press the backspace key once. The 

character is then deleted, and any characters to the right are shifted one 
position to the left to close up the space left by the deletion. 

For example, you want to do the problem 13+45, but you press the 
following keys: 

OO[JOO[J 

fl", , 



o 

( '" ~;, 

-' 

0' 

c 

c 
e'· 

·.·., ••. ~~,.·._,."."'"".-.'_~'m ____ . 

The display screen shows: 

Press the backspace key to move the cursor (flashing character) back to 
the 2. Look at the labels that appear above the backspace and forward 
space keys: Delete and Insert. To perform the delete function, hold 
down the CM 0 key wh i Ie you press once. 

The display screen shows: 

1. ::5 + 1+ ~:.:.i 

LThiS character is flashing. 

Now press EXECUTE to execute the problem. Pressing the EXECUTE 
key processes the entire line regardless of the position of the cursor. 

I nsert a Character 

10 insert a character, position the cursor using the backspace key. 

or the forward space key then hold down the CM D key and press 

the forward space key once. This operation moves the flashing 

character (and all other characters to the right of it) one position to the 
right, creating the space you need to insert one character. The cursor is 
not moved and is now displayed as an underline. To insert the character, 
simply press the character key. If a character is in the last (64th) 
position of the I ine, the insert function is ignored. 

For example, you want to do the problem 123*6, but you press the 
following keys: 

OO[]8 

Introduction 13 



14 

The display screen shows: 

To correct the error, press the backspace key to move the cursor 
(flashing character) back to the 3. Look at the labels that appear 
above the backspace and forward space keys: Delete and Insert. 
To perform the insert function with the cursor position at the 3, hold 
down the CMD key while you press once. 

The display screen shows: 

To correct the keying error and execute the problem, press the following 
keys: 

There is one more way to correct a keying error. If you make several 
errors halfway through the line, you can backspace the cursor to the 
character following the last correct character and then press the ATTN 
(attention) key. This causes everything from the cursor position to the 
end of the line to be cleared from the display screen. 

Since the data from the input line is not processed until the EXECUTE 
key is pressed, you can visually verify any input before it is processed. 
However, if you do press EXECUTE before you notice a mistake, you 
must press ATTN; then you can simply enter the input again, or you 
can use the scroll down key to move the input back to the input 

line and correct it. When the corrections have been made, press EXECUTE 
again. 



o 
(",~. ii, 

-' 

C'''' ~, 
, 

c' 

c 

c' 

For example, you want to do the problem 135+280, but you entered 
and executed 134+280. The display screen shows: 

:I. : .. :~; q. -{ .. :.? U 0 
1.j.:J. 1+ 

To correct the original input, press the scroll down key a 
three times to get the original input back to the input line. The display 
screen shows: 

l:.":)I.j·+:.:.::no 

L ThiS character is flashing. 

You may now correct the error, and then process the data again by 
pressing EXECUTE. 

Introduction 15 



Chapter 2. How Your 5100 Handles Arithmetic 

16 

The following examples show some common, simple arithmetic 
operations you can do on the 5100. 

ARITHMETIC OPERATORS 

Arithmetic 

Before you begin these simple operations, you should know that some 
of the arithmetic signs (called operators) you are accustomed to using 
are different when you use the BASIC language. For example, the 
multiply sign (x) is not used in BASIC. Instead, the asterisk (*) is used 
for multiplication. Similarly, the divide sign (~) is replaced by the slash 
(/) in BASIC. The sign for exponentiation (raising to a power) in BASIC 
is t (the upper shift character on the Y key) or * *. Now enter these 
problems: 

You Press The Display Screen Shows 

Add 5 and 8 GJOGJ ~.;j+B 

13 

Su btract 8 from 5 GJOGJ 

Multiply 5 times 8 

I~EADY 

!,:.:.i .•.• :::~ 

!:5')f8 

1+ 0 

I~E(.~DY 

,{ 

1.1~. .. 



c 

(
"',.0' 

j" 

o 

c 

c 

Arithmetic You Press The Display Screen Shows 

Divide 5 by 8 [JCJ8 

5 to the power of 2 

4 to the power of 2 

[Jmo 
/ 

(Hold down the 
shift key and 
press the Y key 
to get t symbol.) 

0000 

THE SEQUENCE OF ARITHMETIC OPERATIONS 

~::.; .,. 2 
~? ~:.:.; 

1+*11:2 
16 

REI~~DY 

BASIC has a prescribed order of arithmetic execution called arithmetic 
hierarchy. When two or more operators such as +, -, *, /, or t are used, 
arithmetic is performed according to this hierarchy. That is, operators 
with higher priorities are performed first, while operators with the same 
priority are performed as they are encountered from left to right. The 
arithmetic hierarchy in BASIC is: 

1. Operations enclosed in parentheses 

2. Mathematical functions (for example, sine, cosine, or square root) 

3. Exponentiation (t or * *) 

4. Positive/negative operations, which are described later 

5. Multiplication and division (*, /) 

6. Addition and subtraction (+, -), which have the lowest priority 

How Your 5100 Handles Arithmetic 17 



18 

When an operation is enclosed in parentheses, it is performed first, even 
though the operator enclosed in the parentheses may have a lower 
priority than the operators outside the parentheses. As a result, the 
prescribed order of execution can be changed if you use parentheses. 
Operations enclosed in parentheses are executed in BASIC before 
operations outside parentheses, regardless of the hierarchy of the 
operators. 

Some examples of arithmetic hierarchy are: 

3+4/5 

4/5+3 

In both of these examples, the 4 is first divided by the 5 because the 
divide operation has the highest priority. The.8 result is then added to 
the 3, giving a final result of 3.8. 

Another example is: 

(3+4)/5 

I n this example, the 3 and 4 are first added because they are enclosed 
in parentheses. The result, 7, is then divided by 5, giving a final result 
of 1.4. 

I n the expression 

16+23-4+133-8 

addition and subtraction occur from left to right in the following 
sequence: 

16 
+ 23 

39 

~ 
35 

+133 
168 

8 
160 

I nterim result 

Interim result 

I nterim result 

Final result 

However, when parentheses are added, the sequence of operations can 
change: 

(16+23)-{ (4+133)'-8) 

/' 



c 

c: 

o 

c 

c 

c 

In this example, the operations occur in the following sequence: 

1. Proceeding from left to right, the 16 
expression in the first set of + 23 
parentheses is evaluated. 39 I nterim result 1 

2. The parenthetical expression within 4 
the second set of parentheses is +133 
evaluated next. 137 Interim result 2 

3. The second set of parentheses 137 
is now evaluated. 8 

129 Interim result 3 

4. Finally, the subtraction (having the 39 I nterim result 1 

same priority as addition) is per- -129 Interim result 3 

formed and the result is displayed. - 90 Final result 

Although the numbers and operators in this expression are the same as 
those in the previous example, the parentheses completely change the 
order of the operations. 

Now, determine the result of the following expression by entering the 
numbers, then pressing the EXECUTE key: 

4t (3* (4-2)) 

The order of the arithmetic operations is: 4-2=2, 3x2=6, and 46 =4096. 

The display screen shows: 

1.\. "to ( :::) :.(. ( q ..... ::? ) ) 
I.,. (I S)(~ 

Figure 5 shows other examples of arithmetic expressions. 

How Your 5100 Handles Arithmetic 19 



20 

This is the Way it This is the Way 

Looks as Arithmetic: it Looks in BASIC: This is What it Means: 

a+b+c (A+B+C)/2 First add A, B, and C; --
2 divide the sum by 2. 

a+b+c A+(B+C)/2 Add Band C, divide the 

2 sum by 2; add the result 

to A. 

3a+4 3* A+4 Multiply A by 3; then 

add 4. 

3(a+4) 3*(A+4) Add A and 4; multiply 

the sum by 3. 

x2+7 Xt2+7 Square X and add 7. 

(X+7)2 (X+7)t2 Add X and 7; square the 

quantity. 

(x+1 )2 (X+1 )t2/2 Add X and 1; square the 

2 quantity; divide the 

result by 2. 

(x; ) 
(Xt2/2) * (X+Y)/3 Square X and divide by 

(x+y) 2; add X and Y and multiply 

3 by the previous result; divide 

that result by 3. 

Figure 5. Examples of Arithmetic and BASIC Expressions 

As you can see, the more complicated the arithmetic expression looks, 
the more complicated the BASIC expression looks. When you are 
writing BASIC expressions, remember that parentheses must always be 
in balanced pairs-as many right parentheses as left parentheses. If a 
statement gets too complicated, you can usually break it down into 
several simpler statements. 

/ 



c 

'I' C'" 
II 
I, 

(1' 

c 

c 

c 

Positive/Negative Operators 

The plus (+) and minus (-) signs indicate that a number is positive or 
negative. When used for this purpose, the + and - signs have a higher 
priority in the arithmetic hierarchy than they have when used for 
addition and subtraction. In the following example: 

-2t2-3 

the 2 is raised to the second power, and the minus is assigned to the 
result before the subtraction. 

One rule that you must follow is that you cannot use two operators 
sequential/y, except * * which is the same as t. Sequential operators 
must be separated by parentheses. This rule applies to both the 
arithmetic operators (+,-, *,1, and t) and the positive/negative operators 
(+ and -). For example, enter 7-3 as 7t-3. The flashing display screen 
shows: 

l7t oo

3 71"·· .. 3 
"t EF{kc)l~ :1.00 

The lower arrow indicates the syntax error. Press ATTN to stop the 
flashing screen, then enter the corrected expression, 7t (-3). A complete 
description of 5100 error messages is included in the IBM 5100 BASIC 

Reference Manual, SA21-9217. Short descriptions of the error messages 
are given on the pullout card above the display screen. 

You must use parentheses to separate consecutive operators, as 
in the following examples: 

Invalid Valid 

6+-4 6+(-4) 

3*-1.5 3*(-1.5) 

8--4 8-(-4) 

Try to solve the following problems using the 5100. Remember to press 
EXECUTE after entering each problem. 

7~(·:3 I ~:5·-:I. . ?B 

:3 . ~? / <: .... :I. 6~'; . q. ) 

How Your 5100 Handles Arithmetic 21 



22 

ARITHMETIC CONSTANTS 

BASIC has three built-in arithmetic constants to represent the values 
of: 

1. e (natural log) = 2.718281828459 

2. 1f (pi) = 3. 141592653590 

3. ~2 (square root of 2) = 1.414213562373 

For example, if you want to use 1f in an equation, you don't need to 
type in 3.14 .... You just use the special BASIC constant. Here are 
the special symbols that BASIC recognizes for these constants: 

For This Constant: Use This Symbol: 

e (natural log) &E 

1f (pi) &PI 

~2 (square root of 2) &SQR2 

You might use one of these constants in a program that calculates the, 
area of a circle (AREA = 1f R2 is the formula). Your program statement 
would read: 

50 LET A = &PI* Rt2 

You can use these constants anywhere in your programs. In addition, 
there are special constants in BASIC that are used to convert pounds, 
inches, and gallons to metric kilograms, centimeters, and liters respectively. 
Normally, when you want to switch from the U.S. measuring system to 
the metric system, you multiply the measured quantity by a fixed 
constant to obtain the equivalent measurement in the metric system. 
For example, 1 Ib equals 0.454 ... kg, so 2 Ibs equal 2*0.454 ... kg. 
With BASIC, instead of remembering what the conversion multipliers 
are, the 5100 can provide them for you. These constants are: 

• &1 NCM, which has a value of 2.54 (centimeters per inch) 

• &LBKG, which has a value of 0.453592 (kilograms per pound) 

• &GALI, which has a value of 3.785412 (liters per gallon) 



c 

C' , II 

0' 

c 

c 

FINDING SQUARE ROOTS 

You can determine square roots automatically with your 5100. Instead 
of writing your own formula for determining the square root of a number, 
you use the letters SOR, followed by the number whose square root you 
want to know enclosed in parentheses. For example, SOR (X) finds the 
square root of X, where X is 0 or a positive number. 

You can use SOR in any of your arithmetic expressions, and the 
expressions inside the parentheses can involve any kind of arithmetic. 
For example: 

~X+Y is entered as SOR (X+Y) 

~x+~+z is entered as SOR ((X+Y+Z)/5) 

~A+~ is entered as SOR(A+X/2) 

Other conversion and trigonometric functions and conversion constants 
in BASIC are discussed in Chapter 9. 

VARIABLES 

Algebraic formulas often contain variables to which you assign your 
own values when using the formulas. In the formula 7r R2 , for example, 
the R is a variable representing the radius. You must assign a value to 
R when you use the formu la. 

Variables That Stand for Numbers 

You can name a variable in BASIC with a single character of the extended 
BASIC alphabet (A-Z, @, $, and #). A BASIC variable can also be named 
with one of the preceding letters or symbols followed by a single digit (0 
through 9). Typical variable names are A2, #9, and B 1. You can name 
a maximum of 319 different variables in BASIC. 

How Your 5100 Handles Arithmetic 23 



24 

Assigning Values to Variables 

Variables are assigned values by using the equal (=) sign. After you 
assign a value to a variable, you can use the variable in a calculation. 
For example, if you enter 

you assign the numeric value of 12 to the variable named B4. 

To illustrate this, enter the following: 

~ttt~:~:~:: 0 [] [] ;.;.;.;.;.;.;.;.;.;. 1 2 
A = 

and 

~oo 

You have named variables A and B and assigned them values of 12 and 
4 respectively. You can now use them in the following calculation: 

'\. / 



c 

(,' .. 

("'~ 

'J'" 

o 

C
~\ 

./ 

c 

The display screen shows: 

f~=:::I. 2 
:1.2 

B::::I+ 

LJ· 
i:~/B 

Now press the following keys: 

The answer is 64. 

Press the following keys: 

How Your 5100 Handles Arithmetic 25 



26 

Notice that the second expression increases the value of C by 1. This 
method of changing the value of a variable is commonly used in 
programming for stepping through a process. This will be described 
in detail later. 

Displaying Variable Values 

To find the current value of any variable, you can simply enter the variable 
name and press EXECUTE. For example, key: 

The display screen shows the variable and its current value: 

c 

A Note About Numbers 

When you use numbers in BASIC, they can be: 

• Integers (whole nu mbers) such as: 

2,-76,842,10000000,or999111 

• Decimal numbers such as: 

-1.5,3.7772,0.00081, or -457.25 

• Numbers in exponential format such as: 

6E7 (meaning 6x107) or 5.4E-3 (meaning 5.4x10- 3
) 



o 

C: 

o 

c 

c 

A Note About Names 

'When you name variables in BASIC, they can be: 

• A 'single character of the extended BASIC alphabet (A-Z, @, $, or #) 
such as: 

$, C, or V 

• A single character of the extended BASIC alphabet (A-Z, @, $, and #) 
followed by a single number such as: 

A4,$6,$3,orT3 

Variables That Stand for Characters 

While you usually think of variables as standing for numbers, in BASIC 
you can let a variable stand for combinations of characters such as words 
or names. If a variable is going to represent a word or a name, it is called 
a character variable. You name character variables with one letter of the 
extended BASIC alphabet (A-Z, @, $, and #) followed by a dollar sign 
($). The dollar sign tells the 5100 that the variable is a character 
variable. 

To assign a word or name to a character variable, you enclose the word 
or name in single quotation marks following the equal sign. For example: 

A$='HARVEY SMITH ' 

Here are the general rules: 

• A character variable is named by a single letter of the extended BASIC 
alphabet followed by a dollar sign ($). 

• To assign a value to the character variable, enclose the words or names 
you are assigning in single quotation marks following the equal sign . 

• The character limit is 18. If you require more than 18 characters, 
assign the excess to a second variable. If you enter more than 18 
characters for a single variable, the excess is ignored. 

How Your 5100 Handles Arithmetic 27 



28 

Using Calculation Results 

When you are entering a series of expressions in which the result from 
one expression is used in the next expression, you can use the 0 
key (while holding down the CMD key) to insert the result of the last 
expression. This is the calc result function. Notice that Calc Result is 
listed above the 0 key. For example, key the following: 

and o 

". 

/ ' 



o 

C
"~' 

!I 

c 

c 

c 

The display screen shows: 

(~I :::: (~l 

() 

l:{::::'+ 

'+ 
C::::9 

9 
i:~')(-C 

~7.i 4-

:0 ·)f ( ~.=51+) 

2:1.6 

Notice that the 5100 inserted the result of A *C into the second expression. 

The calc result function will always insert the result of the last calculator 
expression (character expressions as well as arithmetic expressions). You 
must'hold down the CMD key while you press 0 for the calc result 

function. Arithmetic results are enclosed in parentheses to avoid any 
conflict with adjacent operators in case the result is negative. Character 
results are enclosed in single quotation marks, just as they were when 
they were assigned. 

Up to this point, you have been operating the 5100 as a calculator. Any 
of the operations described thus far can be performed any time the 5100 
is waiting for you to enter input, with two exceptions: 

1. When a BASIC program is in operation and it stops for keyboard 
input required by an I NPUT statement, you cannot perform any 
calcu lator operations. 

2. When you are entering data to create a keyboard-generated data 
file, you cannot perform any calculator operations. 

Any time, other than the exceptions listed, you can enter any of the 
calcu lations described. 

You can also stop a program during its operation, and change the values 
of variables, then continue the program. This is extremely useful when 
checking a program for proper operation. 

The following chapters discuss how to program your 5100 using the 
BASIC language. 

How Your 5100 Handles Arithmetic 29 



Chapter 3. Entering, Running, and Storing a Program 

30 

A program is your way to communicate with the 5100 to solve a 
problem. The key words in this statement are communicate and to 
solve a problem. All programming is oriented toward problem solving. 
Problems can only be solved by first analyzing the problem, then by 
formulating the solution. This involves communication. You can 
communicate with the 5100 using the BASIC or APL language, as 
opposed to your communicating with other people in the English 
language. Thus, a program is little more than a means of translating 
your instructions to solve a problem into a language that the 5100 
understands. 

ENTERING A PROGRAM 

The following discussion shows you how to enter a BASIC program into 
the 5100, and then how to execute that program. Also in this chapter, 
you will learn how to save a program on a magnetic tape cartridge, then 
load the program back into the 5100 for execution again. 

The program you will enter calculates the volume of a cylinder. The 
volume of a cylinder is found by multiplying the length of the cylinder 
times the area of the base. Enter the statements just as they are shown 
in the following example. Don't forget to press EXECUTE after entering 
each statement. You can enter the statements character-by-character or 
use the BASIC statement keyword keys with the CMD key. If the 5100 
detects an error in a statement you have entered, the keyboard becomes 
inactive (except for ATTN and HOLD), and the display will flash. To 
stop the flashing display, press ATTN, then correct the error. 

o [1:1. 0 F=:Efo') C'{L., I NDE F~ VDI...I.../ME 
0020 PRINT 'DIAMETER?' 
o O::~)O INPUT It 
o 0 1.10 0 I F D :::: 0 G C) roo 11 0 
OO~o:o:jO PRIN°r 'LENGTH?' 
OObO INPI...IT I... 
0070 A=&PI*(D/2)t2 
o () B 0 \l ::;: (:°1 *' L 
o 0 ("lOP F~ 1 NT' or H E V (] 10" U MEl :::) '} V 
0:1.00 GOrD 00::;::0 
0:1.:1.0 END 



c 

c 

c 

c 

Now read your entries on the display screen to see if you have entered 
the program correctly. If you find a keying error, the next paragraph 
describes how to correct the error before you run the program. If your 
5100 has an attached printer, you can hold down the CM D key and 
press the CD key below Copy Display to get a copy of the displayed 

data. The copy display function provides you with printed copy of all 
16 lines of data. 

Correcting Your Keying Errors 

To correct or change a statement line of a program already entered in 
the 5100, use the gray scroll keys ( • and • ) to position the 

incorrect I ine to be changed on the input line right above the READY 
message line. When pressed momentarily, these keys move all information 
on the top 15 lines up or down one line position. When you hold these 
keys down, the display lines will repeatedly move up or down. When the 
line you want to change is positioned correctly, which is easy to identify 
because the first character will be flashing, you can use the forward space 
or backspace key to position the cursor at the character to be corrected. 
You can then use the insert and delete functions to make the change. 
Remember, these functions are activated only when you hold down the 
CMD key and press (Insert) or (Delete). After all changes 

have been made to the line, press EXECUTE to reenter the line. 

RUNNING THE PROGRAM 

After you have entered the statement lines of the sample program, you 
are ready to run the program. To run the program, enter RUN, then 
press EXECUTE. Any error during execution causes the display to flash; 
the ATTN key must then be pressed. Press ATTN to stop the flashing 
screen, then correct the error. You will have to enter RUN again to 
execute the program. When you run the program, the display screen 
shows: 

RUN 
It I I~ j'<"j E T E I~"? 

Entering, Running, and Storing a Program 31 



32 

You will recognize the prompting message DIAMETER? as part of the 
second statement in the sample program. This is a PR I NT statement, 
which directs information to be displayed. 

Note that the bottom question mark is flashing. The flashing question 
mark is a result of the I NPUT statement in the sample program. The 
I NPUT statement causes the question mark to be flashed to indicate 
that you are to enter information from the keyboard for the program. 

Now respond to the request for data to be entered by keying a value for 
the diameter, then press EXECUTE. You can enter any number of 
digits you want. The maximum number of digits that can be assigned 
to any variable (your variable is D for diameter) is 13 digits. You can 
include a decimal point, which does not count as a digit entry, but you 
must not enter commas. (Commas indicate multiple variables to the 
5100.) 

If you enter a decimal number with more than six digits to the right of 
the decimal point, any digits beyond the sixth are rounded when the 
answer for volume is displayed. The 5100 is initialized to round numbers 
at the sixth decimal position. However, the rounding position can be 
changed to any position from 1 to 13 with the R D= command, wh ich 
sets the rounding position. To set the 5100 to round all displayed or 
printed resu Its and calcu lations at the second decimal position, you 
would enter: R D = 2. 

The rounding command can also be included with the GO and RUN 
commands as described in the IBM 5100 BASIC Reference Manual, 
SA21-9217. Rememberthat whenever you turn the power on or press 
RESTART, the rounding position is set at 6. 

All examples in this manual are run with the rounding position set to 
6 digits (RD=6). If you change the rounding position, you will get 
different results. 

You must remember that when using any programming language, including 
BASIC, you are communicating with the machine, telling it what you 
want it to do. Thus, you should define precisely what the machine does 
not know to avoid unnecessary problems. 

You can enter values for the cylinder volume program as many times as 
you want. After you enter a value for the length in response to the 
flashing question mark and press EXECUTE, the 5100 will display the 
information you specified and compute the answer. 

/ 
/ 

\,. 



o 

c 

o 

c 

c 

c 

The statements in the sample program are described in the following 
paragraphs. In addition, Appendix A contains a short definition of 
all the BASIC statements used in the 5100. 

Statement 

10 REM CYLINDER VOLUME 

20 PRINT 'DIAMETER?' 

30lNPUTD 

40 IF 0=0 GOTO 110 

Meaning 

The R EM (remark) statement can 
appear anywhere in the program, 
but has no effect on program 
execution. This statement is used 
to insert comments into the BASIC 
program. 

This PRINT statement specifies 
that DIAMETER? be displayed. 
The single quotation marks 
around DIAMETER? indicate that 
it is a character constant and that 
the enti re character stri ng is to be 
displayed. 

The INPUT statement,allows you 
to assign values from the keyboard 
to variables when your program is 
running. In this example, the 
variable 0 will receive the value 
you enter. The 5100 displays a 
question mark in position 1 of 
the input line to indicate that 
keyboard input is expected. 

The I F statement transfers 
control to a specified statement 
when. a specified condition is met. 
I n this statement, the program 
will terminate when you enter 0 
for the diameter. As long as you 
want to calculate volumes, you 
can enter values for the diameter 
and length. When you are finished, 
however, just enter 0 for diameter 
and the program goes to statement 
110 (END). 

Entering, Running, and Storing a Program 33 



Statement Meaning 

50 PRINT 'LENGTH?' This statement displays the 
character string LENGTH? 

60 INPUT L Th is statement specifies that the 
variable L will receive the value 
you enter for length. Again, a 
question mark will be displayed <" 

, 
to indicate that keyboard input 
is expected. 

70 A=&PI*(D/2)t2 This is an arithmetic expression 
/ 

indicating that the variable A will 
'~', )1' receive the value of 1T times D 

(your entry for diameter) divided 
by 2, and raised to the power of 
2. 

80 V=A* L This expression assigns a value to 
a variable. In th is statement, the 
variable V will receive the value of 
the variable A times the variable 
L (your entry for length). 

90 PRINT 'THE VOLUME IS', V This statement indicates that the / 

characters enclosed in single "-
quotation marks (TH E VO LU M E 
IS) are to be displayed, followed 
by the value of the variable V. The 
value of V was calculated in the 
preceding statement and is the 
volume. 

100 GOTO 20 The G OTO statement transfers 
control to a specified statement. 
In th is statement, control is 
transferred to statement 20. Th is / " 
provides for a number of volume 

'~,. -" 
calcu lations to be made 
repetitively. 

110 END The END statement indicates the 
end of execution of a BASIC /' 

program and terminates operations. ' . . ' 

34 



o 

0: 

c 

c 

c 

After you have computed your last volume calculation, you can end the 
program operation by entering 0 for the requested diameter and pressing 
EXECUTE. 

The numbers preceding the statements are called statement numbers. They 
are necessary so the 5100 knows the proper sequence of your instructions. 
BASIC statement numbers in the 5100 can have values from 0001 through 
9999. You can use consecutive numbers if you wish, but normally 
expansion room is left between the statement numbers so that changes 
can be made more easily (see Making Changes to Your Program). When 
you enter statement numbers, you do not need to include the leading 
zeros. They will be added by the 5100 when the statement is entered. 

Automatic Statement Numbering 

Instead of manually entering the statement numbers in a BASIC program, 
you can instruct the 5100 to provide statement numbers for you. You 
can do this with the AUTO command. Simply enter AUTO and press 
EXECUTE. Notice that the word AUTO is displayed above statement 
number 0010. From this point on, the 5100 numbers your statements 
in increments of 10. Automatic numbering continues until you enter 
anything other than the last statement number (a command word, for 
example, LIST, in the input line). You can restore automatic numbering 
by entering AUTO NNNN where NNNN is the statement number you 
want to begi n with. 

STORING THE PROGRAM 

The 5100 magnetic tape cartridge allows you to conveniently store your 
programs (or data) and have them available for use by following the 
simple operations described in this section. Before using a tape cartridge, 
check the tape cartridge security arJOW in the corner of the cartridge. 
Figure 6 shows the arrow pointing to SAFE. When the arrow is in this 
position, the tape cannot be written on. To be able to write on the tape, 
use a screw driver or a coin to turn the arrow away from SAF E. Figure 7 
shows how a magnetic tape cartridge is loaded into the 5100. Press the 
cartridge in until it is firmly seated. 

Tape Preparations 

Before you can use it for programming or data operations, the magnetic 
tape cartridge must be prepared, wh ich consists of marKi ng the tape to 
define how much space is to be in each tape file. When used in relation 
to the BASIC 5100, a file is the area on a tape that contains one program 
or a collection of related data items. 

Entering, Running, and Storing a Program 35 



36 

F' '9Ure 7 . , I1serti "9 a C artridge 

F' '9ure 6 . SAFE Arrow 



o 

o 

o 

c 

c· 

To prepare a tape with one file of any size, or several files of the same 
size in the same operation, you enter a MA R K command. The MA R K 
command can be entered anytime that READY is indicated on the 
display screen. It will not interfere with your programs. For our 
exercise, we are assuming that you are beginning a new tape (no files 
have been marked). We will mark three files, each containing 2048 
or 2K character positions (K is equal to 1024). Th is exercise provides 
enough space on tape to contain three programs (one in each file) of 
approximately 35 statements each. Tape files for the 5100 are numbered 
sequentially beginning with 1. Should you later decide to add more 
files, you can do so as long as you do not exceed the physical limits of 
the tape. A tape contains space for approximately 200K of storage, 
minus the leading and trailing data for each file, which equals 0.5K 
per file. Thus, a tape can contain approximately 132 1 K files, 44 4K 
files, or any combination of file sizes up to 200K, including the required 
0.5K per file. 

Note: If you are not using a new tape cartridge, you must first ensure 
that your tape does not contain important data belonging to someone 
else. This is necessary because any existing data is erased when you 
remark the tape. The 5100 displays an error message when you attempt 
a MARK command to a file that is already marked. To continue marking 
the file, press ATTN to stop the flashing screen, press the scroll up, key 
once to move the display up one line, enter GO in positions 1 and 2, then 
press EXECUTE. 

To mark the tape in our exercise, press the following keys: 

You have now marked the tape for three files of 2K characters each, 
starting with file 1. The READY message is displayed when the tape 
preparation is completed. We will now save the cylinder volume program 
on the tape. If you want to mark additional files, remember that you 
must begin with file number 4. 

Entering, Running, and Storing a Program 37 



38 

SAVE Command 

The cylinder volume program can be saved on tape with the SAVE 
command. To save the sample program, enter SAVE, then enter the 
number of the file you want to save it in. We will save the program in 
file 1, so press 1, then press EXECUTE. The READY message will be 
displayed to tell you when the program is saved on tape. (You needn't 
be concerned with the numbers following the READY message.) While 
the program is being saved, you will notice the tape in the cartridge 
moving back and forth. This is normal, because the 5100 is reading 
each segment of data after it is written. This ensures that the information 
is saved correctly. 

To prove that the program has been stored on tape and that you can load 
it back into storage, the program stored in the machine must first be 
erased. 

There are three ways to do this: 

1. Enter LOADO and press EXECUTE. This clears machine storage 
and prepares it to accept input from the keyboard or programs 
loaded from tape. This is the recommended way to clear machine 
storage. 

2. Press the R,EST ART switch. This restarts the machine to the same 
status as when the power was turned on. The internal diagnostics 
are performed again; thus, this method requires 10-15 seconds 
depending on the amount of storage in your machine. This method 
is recommended only when the PROCESS CHECK indicator comes 
on, or when you change from BASIC to APL or APL to BASIC. 

3. Set the power switch to 0 F F , then set it back to ON. The same 
diagnostics are performed as during REST ART. 

To clear the machine, enter LOADO and press EXECUTE. To prove the 
program no longer exists in the machine, enter RUN and press EXECUTE. 
The 5100 will respond with an error message to let you know this 
cannot be done because there is no program in storage. Press ATTN to 
continue. 

I n order to run the program again, it must firs~ be loaded into storage from 
where it was stored on the tape. The LOAD command is used to place 
the program back into storage. 

./. 



o 

0' 

c 

c 

c 

LOAD Command 

To load the cylinder volume program back into 5100 storage, enter 
LOAD, then enter the number of the file containing the program you 
want to load (file 1). Complete this sequence by pressing EXECUTE. 

The READY message tells you that the pfogram is loaded and can be 
executed again. Run the program again by entering RUN, then pressing 
EXECUTE. 

Practice the SAVE and LOAD commands by changing the file number 
when you again save the sample program on tape and load it back into 
the 5100. 

The following commands have been discussed in this chapter: 

AUTO Automatically numbers BASIC statements. 

MARK Prepares a tape cartridge for data to be saved. 

LOAD Loads the 5100 storage with data from tape or data. 
from the keyboard. 

SAVE Saves the BASIC program in 5100 storage on tape. 

RD= Specifies rounding of decimal numbers. 

RUN Executes a BASIC program. 

A REVIEW OF WHAT YOU'VE DONE 

After reading this far and doing the exercises described, you should be 
able to perform the following functions with your 5100: 

• Use as a calculator: 
- Addition 
- Subtraction 
- Multiplication 
- Division 
- Exponentiation 
- Use of positive/negative operators 
- Use of parentheses in arithmetic hierarchy 
- Use of arithmetic constants 

Entering, Running, and Storing a Program 39 



40 

• Correct keying errors: 
- Replace a character 
- Delete a character 
- I nsert a character 
- Make corrections in a line 

• Use variables: 
- Assign values to variables 
- Display variable values 

• Enter short, simple programs: 
- Change program lines 
- Run programs 
- Erase programs 
- Store programs on tape 
- Load programs from tape 

• Clear the machine storage 

/ 

( 

'\, 



o 

c 

c 

o 

c 

Chapter 4. How to Write a Program 

In the following pages, you are going to write more BASIC programs 
and learn to use some fundamental tools for writing programs. From 
this point on in the manual we will not show you the keys to press. We 
will just say to enter and then give you the data you should enter. 

The LET Statement 

A LET statement consists of four parts: a statement number, a symbol 
to the left of an equal sign, an equal sign, and a quantity or a computation 
(called an expression) to the right of the equal sign. In BASIC 
programming, a LET statement means: 

1. To evaluate the expression on the right side of the equal sign, and 

2. Assign that value to the symbol on the left side of the equal sign. 

In BASIC, you can have statements such as 

0030 LET X=X+1 

while you couldn't in math. In BASIC this statement means to take 
whatever value X now has, add 1 to it, and replace the old value of X 
with this new value. 

Incidently, you can omit the word LET from a LET statement in a 
program. These two statements 

0010 LET X=A+B 

0010 X=A+B 

mean exactly the same thing. In all our examples, we'll show the word 
LET, but it's not necessary to include it. 

The following program uses simple arithmetic. Try to look at the 
program as a step-by-step method for solving a particular problem. 

Problem 

Last month you went to the dentist and had an examination and X-rays. 
That cost $25. You had two teeth filled. That cost $24. Your insurance 
will pay for 75% of everything over $15. How much do you have to pay, 
and how much does the insurance pay? 

How to Write a Program 41 



42 

What to Do 

1;' Find the total dentist bill (call it D). 

2. Subtract $15 to find the amount eligible for insurance (call it E). 

3. Take 75% of the result (call it I). That's how much the insurance 
pays. 

4. Subtract the insurance money from the total bill D to find out how 
much money you owe (call this M). 

5. Display how much you have to pay and how much the insurance 
will pay (M and I). 

The following BASIC statements, which you will enter later, can be used 
to solve this problem: 

0010 LET D=25+24 
0020 LET E=D-15 
0030 LET 1=.75*E 
0040 LET M=D-I 
0050 PRINT M,I 
0060 END 

Notice the PRINT statement. Sinc~ you want to know both your pay­
ment and the insurance payment, you can specify both M and I in the 
same statement. Any time you want to display the value of more than 
one variable, you can use a single PR I NT statement if you list the 
variables and separate them with commas. 

USING REMARKS 

You can make your programs easier to work with, and easier for other 
people to use, if you include descriptions of what the statements do in 
the program. These descriptions are known as remark statements. You 
write remarks as if they were statements in the BASIC program, but 
they don't serve any function in the execution of the program. They 
are solely for information. You can insert them anywhere in a program. 

/ 



o 

C" 
II~ 

c 

c 

c 

To include a remark in a program, you write a BASIC statement called 
REM. It has a line number like any other BASIC statement. Following 
the line number, you enter the letters R EM followed by any remark you 
want. Examples of R EM statements are: 

40 REM THIS PROGRAM COMPUTES BATTING AVERAGES 

70 REM AT THIS POINT, PRINT OUT THE RESULTS 

10 REM DENTBI LL 

You'll see other examples of R EM statements as you go through this 
manual. 

You should now be ready to enter the program from the keyboard of 
your 5100. To enter and execute the program, follow the instructions 
below. Remember to press EXECUTE after each line is entered. 

Instructions 

Clear storage 

Enter the statements 

Run the program 

Display Screen Shows 

LOAD 0 

0010 F~[M DENTlJILI... 
0020 L.ET D::::2!5+2'l 
01]:3 0 LE'r [::::[1 .... :1. ~.;,; 

0040 LET 1=.75*[ 
OO!.=:i (} LET j'1::::D-.. :t: 
0060 PI~INT ,1,I 
0070 END 

PUN 

Remember that the idea in this program, and any other programs you 
write, is to break down what you want to do into logical sequential 
steps. It may help to use this tactic: Ask yourself what is the very first 
thing I have to do? What is the next? And so on. You can make a list 
of what you have to do and then convert each item in the list to a BASIC 
statement. Thus, you will always have a sequence of statements that will 
solve the problem in an orderly step-by-step fashion. 

The dentbill program is not a typical program because it works on only 
one set of data that is a part of the program. Most programs are 
written to use many sets of data and use data that is not a direct part 
of the program. Later program examples will explain this in detail. 

How to Write a Program 43 



44 

LISTING PROGRAM CONTENTS 

Since the dentbill program is currently in the 5100 work area, we can 
now I ist the statements of the program on the display screen with the 
LIST system command. Enter LIST, then press EXECUTE. The 
statements of the dentbill program now appear on the display screen. 

A LIST command causes the first 14 lines of the program to be displayed. 
You can then use the scroll up and down keys to view additional lines 
of the program. 

It isn't necessary to list the entire program each time you want to see 
a particular part of it. You can list any 14-line portion of the program 
by entering the last line number you want displayed after the command 
keyword LIST. For example, LIST 30 would display statement numbers 
10, 20, and 30 of the dentbi II- program. 

BRANCHES 

The 5100 normally executes programs line by line according to the line 
numbers of the statements. However, you can vary this sequential 
order and transfer control to a line number other than the next sequential 
one. This is called branching. Two of the statements you can use for 
branching are the GOTO and I F statements. 

The GOTO Statement 

This statement tells the 5100 to go to a specific I ine number. A GOTO 
statement at line 20 of a program that tells the 5100 to go to line 
number 60 would look like this: 

0020 GOTO 0060 

/ 

'1(" ,/ 



0 1 

c 

c' 

The I F Statement 

An I F statement can test whether a variable is equal to, greater than, or 
less than another variable or constant of the same data type. The IF 
statement includes a GOTO statement. The I F statement operates this 
way: 

1. The I F statement tests the condition you define. 

2. If the answer to the test is yes, the condition is true; the 5100 will 
go to the I ine number that you entered in the I F statement. 

3. I f the answer is no, the 5100 ignores the rest of the I F statement 
and goes directly to the next sequential line in the program. 

Here's an example of an I F statement: 

0040 IF X=O GOTO 0080 

In this statement, if X is 0, the 5100 goes to line 80. If X is not 0, it goes 
on to the next line in the program. 

The six tests you can make with the I F statement are: 

1. Equal to, = 

2. Not equal to, t= or <> 

3. Greater than, > 

4. Less than, < 

5. Greater than or equal to, 2 or >= 

6. Less than or equal to, :::; or <= 

The 5100 stores <> as t=, > = as,2::, and < = as :::;; thus, even though 
you enter <>, the 5100 will display t= when you list the statements. 

How to Write a Program 45 



46 

Some examples of I F statements are: 

Th is I F Statement: 

0130 IF X>10 GOTO 0040 

0190 IF Y<21 GOTO 0010 

0010 I F A lz5 GOTO 0060 

0030 J F A2t= X GOTO 0075 

Means: 

If the value of X is greater than 
10, go to line 40. 

If the value of Y is less than 21, 
go to line 10. 

If the value of A 1 is greater than 
or equal to 5, go to line 60. 

If the value of A2 is not equal to 
the value of X, go to line 75. 

The following program examples describe more about how to break down 
a problem into the BASI C statements required to use your 5100 to solve 
a problem. Again, as opposed to most typical programs, the sample 
programs will use data internal to the programs. After you've seen how 
data within a program can be manipulated, you'll be shown how to 
supply program data from outside the program. 

Although it may not be necessary in all instances, it is a good idea to 
enter a LOADO command before entering any program statements. This 
ensures that the 5100 work area is clear. Remember also that you can 
use the AUTO command to provide automatic statement numbering. 

Program Example 1 

You are in charge of billing people for orders of dresses. There are two 
styles, one at $108 a dozen, and one at $136 a dozen. On orders of 
$500 or over, there is a 10% discount. For the account you are now 
working on, there are two dozen orders for the first dress, and three 
dozen orders for the second dress. 

The program to determine the bill is: 

001.0 F:~Et'l PI~~OGH(.~M TO FItJURE OUT DIBC()UNT~3 UN ORDEI:<f:> 
o 0 2 (} LET ,~:::: 2 
00 :.3 0 I...E·r B:::::3 
0040 LET T=A*108+B*136 
0050 IF T<500 GOTD 0070 
o 0 l> 0 LET D :::: I 1:.* T 
0070 PRINT T,D,T-D 
0080 END 

\ ... , 



o 

c 

c 

o 

This program solves the problem in the following steps: 

1. It finds the total order (line 40). 

2. It tests to see if the total is less than $500 (line 50). If it is, the 
program goes to line 70 and displays the total. The discount D will 
be 0 in this case, and the totals will be displayed. 

3. For orders of $500 or over, the program computes the 10% discount 
on line 60. Then it continues to line 70 to display the total. 

Note: D will be 0 when the order is less than $500 because each time 
the 5100 starts to execute a program after a RUN command, it 
automatically sets the value of all the variables in the program to O. 
Character variables are set to blanks. This is called initialization. The 
values remain zeros or blanks until a statement in the program assigns a 
different value. This means that you never have any problem with values 
being .Ieft over from the last time you ran the program. Variables 
specifically stored in a reserved area of storage, however, retain the last 
value assigned to them. These values can be passed from one program 
to another (see USE in the IBM 5100 BASIC Reference Manual, 
SA21-9217). 

Upon execution of this program, the display screen shows: 

6~? I '+ 

Thus, the total order is $624, the allowable discount is $62.40, and the 
amount to be billed is $561.60. The cents columns in the dollar figures 
do not print because the 5100 has no way of determining how many 
significant digits you want printed. You will be :shown how to have 
numbers printed in the exact format you want in a later chapter. 

Program Example 2 

You are moving. You get estimates from two movers and want to know 
which mover will be cheaper. Mover A charges $40 an hour and 
estimates the work will take 5 hours. Mover B charges $32.50 an hour 

How to Write a Program 47 



48 

and estimates the work will take 8 hours. If both movers cost the same, 
you'll hire mover B because he has a better reputation. Here is the 
program: 

001.0 L.ET f~::::5*·4·0 

0020 LET B=8*32,5 
0030 F~EN 'I-EST TO SEE L~H() If:) CHE(:~PEI=< 
OO~O IF A<B GOlD 0100 
0050 REM GO HERE IF B CHEAPER 
0060 PRINT 'B CHEAPER OR EGUAL 
0070 PI~INT B 
0080 STOP 
0090 REM GO HERE IF A CHEAPER 
0100 PRINT 'A CHEAPER' 
01:1.0 Pf<~INT f:~1 

0:1.20 END 

Here is how this program works: 

1. I n lines 10 and 20, it figures the total cost for each mover. 

2. In line 40, it tests to determine which one of two paths to take. 
Either the program wi II go to line 100, or it wi II conti nue with lines 
50, 60, 70, and 80. This test determines which mover is cheaper. 

3. If Mover A is cheaper, the program goes to line 100. Line 100 lets 
you know that Mover A has the contract and displays the total 
price. Notice line 100. It is a PRINT statement, but it has single 
quotation marks around the words A CHEAPER. You can write 
a PR I NT statement that displays the words entered if you enclose 
the words in single quotation marks. If line 100 is executed, the 
words A CH EAPE R will be displayed. Line 110 has no quotation 
marks. It is aPR I NT statement for variable A, and will display the 
value of variable A. After the PR I NT statements, the program ends 
at line 120. 

4. If Mover B is cheaper, the program continues with line 50. Line 60 
is a PRINT statement containing the words B CHEAPER OR 
EQUAL in single quotation marks. If line 60 is executed, the words 
B CHEAPER OR EQUAL will be displayed. Line 70 will display 
the value of variable B. After the PR I NT statements, the program 
comes to line 80, a STOP statement, which ends the program. 



o 

c 

c 

o 

c 

c 

c 

After you run the program, the display screen shows: 

Loops 

F~UN 

A CHEl'-lPElx 
200 

Here is a new problem. You are a rug salesman. All your rugs come in 
rolls 12 feet wide. Your customers buy rugs in varying lengths 
depending on how long their rooms are. You want to make a chart of 
how many square yards of rug are required for rooms of different lengths. 
The most popular room sizes start at 9 feet long (a 12 by 9 foot rug) and 
increase a foot at a time (12 by 10,12 by 11, and so on) until they reach 
12 by 20. 

You will write a program that computes the number of yards in a 12 by 
9 rug, then a 12 by 10 rug, on up to a 12 by 20 rug. 

To compute the number of square yards in each of the 12 different 
sized rugs, you have to find the number of square feet and divide by 9. 
The main computation step is: 

0020 LET Y=( 12*X)/9 

where Y is the number of square yards, and X is the length of each different 
rug. To display the value of Y, you would use this statement: 

0030 PRINT Y 

The value of X has to increase by 1, from 9 to 10 on up to 20. You could 
write a program like this: 

0010 LET X=9 
0020 LET Y=( 12*X)/9 
0030 PRINT Y 
0040 LET X=10 
0050 LET Y=( 12*X)/9 
0060 PRINT Y 

and so on until X=20 

Howto Write a Program 49 



50 

This program uses a LET statement to increase the value of X. 
However, there is a better way. You can make a loop. A loop is just 
what it sounds like. It is a series of program steps that are repeated. 
It looks like this: 

Start of loop 

Carry out the 
instructions 

End of loop 

Go back and 
start again 

Two things have to happen to this loop to make it work. It has to have 
some way to change the values it uses before it loops up to the top and 
starts again. And it has to have some way to know when to stop, or the 
program will run indefinitely. 

First Loop Method 

So far you have these program statements: 

0020 LET Y=( 12* X)/9 
0030 PRINT Y 

You want to start with X equal to 9, so put a LET statement ahead of 
these two statements assigning 9 as the first value of X. It will also help 
if you print the value of X with the computed value of Y, so the table 
will be more self-explanatory. Now, the program looks like this: 

0010 LET X=9 
0020 LET Y=(12*X)/9 
0030 PRINT X,Y 

To avoid specifying X=10, X=11, and so on, write a general statement 
that will keep increasing the value of X by 1. That statement is: 

0040 LET X=X+1 

/ ' 



o 

c 

c 

c 

Remember that while this statement looks peculiar in a mathematical 
sense, it's perfectly valid in BASIC. It says, " Assign the value of X to 
be equal to the old value of X plus 1 ". 

By adding statement 40 to the program, you've changed the value of X 
and completed the steps required to make the loop operate once. Now 
you have to add a GOTO statement to go back to the beginning of the 
loop: 

0050 GOTO 20 

You go to line 20 because you only have to go back to the computation 
step, not to line 10 where you originally set X equal to 9. 

After the 5100 goes to line 20, it computes and displays the yardage 
again, but this time for X equal to 10. It arrives at line 40 again and 
changes X to 11; then it goes back to line 20 to compute the next 
yardage. This process continues, increasing the value of X by 1 after 
each loop. 

Ending a Loop 

One thing is missing from an otherwise perfect loop. It never ends. Not 
at X=20, not at X=30, because X just keeps increasing. If you are sitting 
in front of your 5100 while this program is running, you can stop this 
loop whenever you want to by pressing ATTN. But this is obviously not 
an ideal method. You can make the loop stop automatically if you 
build in a test with an I F statement to see when you've processed 
enough values of X. In this program, you want the loop to stop when 
the value of X passes 20. Consider this I F statement: 

0050 IF X>20 GOTO 70 

Line 70 will be an END statement. 

The I F test goes before the GOTO statement that branches to line 20. 
If you put it after the GOTO statement, it will never be executed. This 
is the finished program: 

0010 LET X=9 
0020 LET Y=(12*X)/9 
0030 PRINT X,Y 
0040 LET X=X+1 
0050 IF X>20 GOTO 0070 
0060 GOTO 0020 
0070 END 

How to Write a Program 51 



52 

Looking at this program, you should be able to see that lines 50 and 60 
can be combined to make a more efficient program that looks like this: 

0010 X=9 
0020 y=( 12* X)/9 
0030 PRINT X,Y 
0040 X=X+1 
0050 IF X::;20 GOTO 0020 
0060 END 

Now, enter and run the program. After you run the program, the display 
screen shows: 

9 
10 
:I. :1. 
1 ':) 
1 :::~ 
:/.'+ 
:I. ~::j 

:1.6 
:1.7 
:1.0 
:I. (? 
20 

:I.;? 
:1.:3 I 3~:~:::~:.333 

16 

20 

You can press HOLD to stop the upward movement of the data. To 
continue, press HOLD a second time. 

There is another way to make a loop in a program. At the beginning of 
the loop, instead of setting X equal to its first value, you enter the 
entire range of values that X will use. In the rug example, you would 
write 

0010 FOR X=9 TO 20 

Then you write' the statements that solve the problem and print the 
results: 

0020 LET Y=( 12*X)/9 
0030 PRINT X,Y 

'1\. 

,/ 

/ 



o 

Steps 

c 

c 

Then you tell the 5100 to go to the next value of X and repeat the loop: 

0040 NEXT X 

FOR and NEXT statements always go in pairs: FOR at the beginning 
of the loop and NEXT at the end. The 5100 automatically repeats the 
loop as many times as you told it to in the FOR statement. When it 
finishes, it goes on to the statement following the N EXT statement. 

Using the FOR and NEXT statements, the rug program looks like this: 

0010 FOR X=9 TO 20 
0020 LET Y=(12*X)/9 
0030 PRINT X,Y 
0040 NEXT X 
0050 END 

In a FOR statement, you can name any arithmetic variable to be the 
control variable, and you can make its range of values anything you 
want. The control variable is to the left of the equal sign. The range 
(to the right of the equal sign) doesn't have to be given in numbers. 
You can use other variables for the range, for example: 

0060 FOR J=A TO B 

0120 NEXT J 

When you write a FOR statement, the 5100 increases the value in steps 
of 1 (for example, 1 to 2 to 3, or 18 to 19 to 20 to 21). However, 
sometimes you may want to use just even numbers, or odd numbers, or 
every tenth number. If your loop requires a value other than steps of 1, 
you can specify the step value whether you are using FOR and NEXT 
statements or a LET statement to control the loop. 

If you write a loop that uses a LET statement, you can write these LET 
statements: 

0100 LET X=X+2 To change X insteps of 2 

0050 LET X=X+1 0 To change X in steps of 10 

How to Write a Program 53 



54 

If you're using FOR and NEXT statements for the loop, you add the 
word STEP and the size of the step to the FO R statement. For example: 

0010 FOR X=1 TO 25 STEP 2 

gives you odd values of X from 1 to 25 (1,3,5,7 ... ). 

0030 FOR D=10 TO 100 STEP 10 

gives you 10, 20, 30, up to 100. 

For even values of D from 1 to 20, you would write: 

0020 FO R D=2 TO 20 STEP 2 

Notice th'at D is set to 2 because the first even number you want is 2. 

If you omit the word STEP and the value from the FOR, statement, you 
automatically get steps of 1. You can also include fractional steps, for 
example: 

0030 FOR 1=1 TO 3 STEP .1 

Loops Within Loops 

Here's a problem where two values change: Find the annual amount of 
interest (A) at the interest rates (I) of 5%, 6%, 7%, 8%, 9%, and 10% on 
principals (P) ranging from $100 to $1000 in steps of $100. 

This problem can be solved by a program that uses two loops-one for 
changing the interest and one for changing the principal. Do the 
interest loop first: 

FOR 1=5to 10 

LET A=(1/1 OO)*P 

PRINTP,I,A 

NEXTI 
I This computes 

and displays A, 

P, and I. 

This creates a 

loop for I to vary 

from 5% to 10%. 

Now all that's left is to define P, since the program doesn't know where 
to find the values for P. The P loop has no computations of its own; it 
only defines the values for P: 

FOR P=100 TO 1000 STEP 100 

NEXT P 

\. l 



o 

o 

c 

c 

C", 
/ 

The P loop goes around the I loop: 

o I] ::.:.:: 0 F C) F: P :::: :l (I 0 'r fJ :l. (I 0 0 ~:::; 'r F P :I. 0 0 

P 
Loop C

oo::~)O 

I 001+ 0 
Loop 0 0 ~5 0 

0060 
1..-_______ () o·? 0 

OOBO 

F IJ PI:::: ~.:.:.i 'r U :I. 0 
I...E''j' (:'1:::: ( J .,,/:1. 0 0 ) .j(- p 
PF:Ji'--IT P .. I .. i:~ 
NF}::''j' I 
j\!E:\''j' P 
END 

You must put one loop entirely inside the other so that the 5100 will 
stay in one loop and finish it completely (compute all the values for I 
for a single value of P) before it goes on to the next value of P. I n this 
program, the 5100 starts with P equal to $100, then it comes to the I 
loop and sets I equal to 5%. It goes on to compute the interest on $100 
at 5%, 6%, 7%, 8%, 9%, and 10% because it keeps repeating the I loop 
until I equals 10. When it finishes all the different interests on $100, 
it goes to line 70, wh ich is the bottom of the P loop. Here, control 
loops back to line 20, which increases P to $200, and starts on the I 
loop again, this time with P equal to $200 and with I again ranging 
from 5% to 10%. The program continues in these loops until all of the 
values of P have been used. Then you have all the amounts of interest 
you wanted. 

To ru n the program: 

When the display screen shows 
REA 0 Y, enter the statements: I...DI~D 0 

f'iI...ITO 
00:1. 0 RE~i IN lE F<E~:)T 
I) 0 :.:.~ 0 FOP P :::: 1 (I 0 'r [I :I. 0 0 0 f) T E P :I. (I 0 
o 0 ~':) 0 FO P I :::~.:.:i TO :I. 0 
o () LJ· 0 I... E T i; :::: ( I / :L 0 0 ) 1(. p 
o O~50 PRINT P., I! I:~ 
O{)f.:.O NEXT J 
0070 NE><T P 
o OBO END 

How to Write a Program 55 



56 

Run the program 

To see a portion of the 
program resu Its, press 
HOLD. To continue 
execution, press HOLD 
again. 

The display screen shows 
a portion of the output 
when you pressed HOLD . 
. For example: 

BOO 
900 
'?O 0 
900 
900 
900 
':?O 0 
1000 
1000 
1000 
tOOO 
1000 
:1.000 

RI..JN 

Loops within loops must always be nested like this: 

,---------- Fa R x ... 

.-------- FOR Y ... 

Outside Inside 

Loop Loop 

'----- NEXT Y 

'--------- NEXT X 

:1.0 

••• J ,. 

:1.0 

:1.0 

so that the inner loop is fully completed each time before the outside 
one is begun again. Two loops must never overlap like this: 

FOR X ... 

r---- FOR Y . : . 

NEXT X 

L....-_ NEXT Y 

no 
q.!:-.; 

-\ ~.:.;.;I+ 

I ."'}" 

C\·.::· 
7:? 
8 :I. 
(.;"'0 
!:;o 
60 ..., 

0 ( 

GO 
(?O 

:I. 0 0 

~: 



o 

( ...... " 
,I, 

,.J,! 

o 

o 

c 

c 

Remember, one loop must always be completely enclosed by the other. 

Here is another example of loops. This is a program to find X 2 
, X 3 

, X 4 
, 

and X S with X equal to 1 to 10. 

00:1. 0 I~Et1 PO I}.I E I~S 
,..---------.... 0020 FOR X:::::/' TO 10 

The outside 

loop changes 
The inside loop ·If}:··:~il FOI~ y'::::~? TO !.=5 

changes Y from C ~~~ii PIHNT X, Xty 
X from 1 to 10. 2 to 5. I.J IJ .:."1 0 NEXT Y' 

L--_______ ...... (I I] bONE x'r )( 
0070 END 

Notice that the inside Y loop is fully contained in the outside X loop. 
Run the program as shown: 

When the display screen shows 
READY, enter the statements: 

Run the program 

The displav screen shows 
(use the HO LD key to display 
any 15-line portion of the 
displayed results): 

00 :/. () REi'1 P(JI,..JE h~S 
0020 FOR X=1 TO 10 
0030 FOR Y=2 TO 5 
() 0 1+ CI P I~ I NT X.' >< l' Y 
() 0 ~5 0 NEXT Y 
0060 NEXT :x: 
0070 END 

RUN 

-~r 

I 

B 
B 
B 
B 
<,;; 

9 
<.i> 

9 
10 
:1.0 
10 
1.0 

16B07 
61.f· 
~:5:1. ;? 
1.f·(I<?l) 
:3;.:.~76B 

B:I. 
72(.:; 
6~::.i61 

~.:.:j <,;; 0 t+ 9 
:1.00 
:1.000 
10000 
:1.00000 

How to Write a Program 57 



Chapter 5. Other Ways to Put Values into Programs 

58 

I n all the programs we've written, we've tried to: 

• Write a program to solve the problem using general expressions. 

• Supply specific values for the expressions and run the program with 
the specific values. 

The advantage of programming in this way is that the bulk of the 
program doesn't change every time you want to solve the same problem 
with different numbers. You only need to change the numbers, not the 
programmed expression, when you want to run the program using 
different numbers. 

We are now going to look at other ways to supply specific numbers for 
programs. 

THE READ, DATA, AND RESTORE STATEMENTS 

To assign 1 0 values, say the numbers 1 through 1 0, to 1 a variables, you 
could use 1 a LET statements: 

0010 LET A=l 
0020 LET 8=2 
0030 LET C=3 

0100 LET J=l a 

Using 10 LET statements can be tedious. Another way to enter these 
numbers is with one DATA statement: 

0200 DATA 1,2,3,4,5,6,7,8,9,10 

The DATA statement causes values to be placed in an internal data table. 
You can use one or several DATA statements to do th is. Values in DATA 
statements are put into the data table sequentially, in the order in which 
they are entered. The values must be separated by commas. The following 
set of statements would have the same/effect as the single preceding DATA 
statement: 

0200 DATA 1,2,3 
0210 DATA 4,5,6 
0220 DATA 7,8,9,10 

'\" ) 

/ 



o 

c' 

c 

c' 

Once the values are in the table, you use the READ statement to assign 
them to variables. Here's an example: 

0200 DATA 1,2,3,4,5,6,7,8,9,10 
0210 READ A,B,C,D,E,F,G,H,I,J 

The READ statement locates the values in the data table and assigns 
them (in order) to the variables-the value 1 to the variable A, 2 to B, 
3 to C, and so on. 

You don't have to assign all of the values in the data table at one time. 
For example: 

0200 DATA 1,2,3,4,5,6,7,8,9,10 
0210 READ A,B,C 

will cause the first three values in the table to be assigned to A, B, and 
C, respectively. Another READ statement will take up where the last 
one left off. Thus: 

0420 READ D,E,F,G 

will assign the values 4, 5, 6, and 7 to D, E, F, and G, respectively. 

You must be careful, though, not to try to read more values than the 
table contains. For example, still another READ statement: 

0440 READ H,I,J,K 

would be requesting values for four variables when only three numbers 
(8, 9, and lO) are left in the table. This will cause an error. 

If you want, you can use the values in the data table more than once. 
At any point in your program, you can instruct that values be assigned 
from the beginning of the table again, even if you haven't read all the 
values in the table. To go back to the beginning of the table, use the 
RESTORE statement: 

0100 RESTORE 

Other Ways to Put Values into Programs 59 



60 

Let's assume that you want to assign the values 1, 2, and 3 to three 
variables A, B, and C, in that order. Then later in the program you want 
to assign the same values to D, E, and F. These statements will do just 
that: 

0030 DATA 1,2,3,4,5,6 

0060 READ A,B,C 

0100 RESTORE READ FROM START OF DATA TABLE 
0110 READ D,E,F 

Notice that you can include a comment in the RESTORE statement. 
The words READ FROM START OF DATA TABLE have no effect on 
what your program is doing; they merely serve as a reminder to you, 
when you look at the program, of what the RESTO REstatement is 
doing. Your comment can say anything you want it to say, as long as 
it fits on one line with the RESTO REstatement. 

It's important to remember, when using READ and DATA statements, 
that no matter how many DATA statements you include in your 
program, only one data table is created before any READ statement 
is executed. The table is created from all the DATA statements in your 
program, regardless of where they appear-at the beginning, at the end, 
or scattered throughout. Each of the following three sets of statements 
has the same effect: 

0200 DATA 1,2,3 
021 0 DATA 4,5,6 
0220 READ H,I,J,K,L,M 

0200 READ H,I,J,K,L,M 
0210 DATA 1,2,3 
0220 DATA 4,5,6 

0200 DATA 1,2,3 
0210 READ H,I,J,K,L,M 
0220 DATA 4,5,6 

THE INPUT STATEMENT 

Both the assignment statement (LET) and the DATA statement use 
constants-unchanging data items that are part of your program-to 
assign values to variables. You have to know, at the time you're writing 
your program, what values you want to assign. 

,/ , 



o 

C: 

o 

c 

c 

The I NPUT statement allows a little more flexibility. This statement 
names the variables that are to receive values, but allows you to wait 
until you are running your program to actually supply the values. For 
example: 

0050 INPUT X,Y,Z 

means that you will supply values from the keyboard for X, Y, and Z 
when your program is run. You'll know when it's time to supply the 
values because a flashing question ,mark will be displayed. When you see 
this, you should enter your values, one for each variable in the INPUT 
statement-in this case, three. The values are entered all on one line, 
separated by commas. Thus, when you've entered the information, the 
display screen shows: 

lB~} I ?O~.:;., :I. (.'):1. 

By entering these numbers, you've assigned 185 to X, 205 to Y, and 191 
to Z. 

You have to be certain, when entering your values, to enter exactly the 
same number of values as there are variables in the I NPUT statement in 
your program. The question mark will keep flashing until the correct 
number of values is entered. If you enter too many values, the excess 
values are ignored. After the last value is entered, press EXECUTE to 
continue program execution. 

Prompting Your Input 

Since a lot of time can elapse between the time you write a program and 
the time you run it, you may have difficulty remembering exactly how 
many values you have to enter. This is especially true when your 
program contains more than one I NPUT statement. Then you have to 
keep track of which one comes first. 

You can have your program keep track for you by reminding you what 
has to be entered. All you have to do is include a PRINT statement 
immediately before the I NPUT statement in your program. For example, 
if your program averages bowling scores, you could use these statements: 

0045 PRINT 'ENTER THREE BOWLING SCORES' 
0050 INPUT X,Y,Z 

Other Ways to Put Values into Programs 61 



62 

Then, when the program is run, instead of just a question mark 
appearing when it's time to enter your values, these lines will be 
displayed: 

E i'.! T F R T H F~ E E B D t~ LIN [, G C 0 I:~ E ~3 

When you've entered your values, the display screen will show: 

ENTE R TH HEE ))D/"~L. I NC, ~JCO I~E~:) 

You can write any reminder message that you want in the P R I NT 
statement, as long as you enclose it in single quotation marks. 

You also have to remember that the PRINT statement has to fit 
entirely on one line. If your message is so long that it doesn't fit, 
you might consider using several consecutive P R I NT statements: 

0040 PRINT 'ENTER 12 AVERAGE TEMPERATURES' 
0050 PRINT 'FOR JANUARY TO DECEMBER' 
0060 INPUT M,N,O,P,Q,R,S,T,U,V,W,X 

ENTERING CHARACTER VARIABLES INTO PROGRAMS 

You've been entering numeric variables into programs in this section, but 
any of the methods you've used will let you supply values for character 
variables as well. You have already seen how to do this with a LET 
statement. For I NPUT and READ statements, you just use val id 
character variables where we've been using numeric variables. Also, you 
must put single quotation marks around the value you're supplying for 
character variables when you enter the DATA statement or respond to 
the flash ing question mark. 

For example, if you want a program to keep track of a person's height 
and weight, you can enter the person's name, height, and weight with 
these READ and DATA statements: 

0010 READ N$,H,W 
0020 DATA 'TOM JON ES',6. 1,184 

/' ' 

/ " 



o 

c 

c 

c 

c 

You could also use an I NPUT statement: 

0010 INPUT N$,H,W 

and then respond to the flashing question mark like this: 

'TOM JONES',6.1, 184 

A REVIEW OF WHAT YOU'VE DONE 

All of the following methods of assigning values to variables are useful: 

• LET statements 

• READ, DATA, and RESTORE statements 

• I NPUT statements with data supplied from the keyboard 

You can use a combination of these methods if you have a program where 
some values don't change, some change occasionally, and others change 
often. 

Other Ways to Put Values into Programs 63 



Chapter 6. Making Changes to Your Programs 

64 

It is very important that you be able to make changes in your programs. 
You may have to change a program to supply values for variables, to 
make corrections, to add lines, or to remove lines. There are several 
ways you can change a program, either as you write it or after you write 
it. 

CORRECTING KEYING ERRORS 

If you make mistakes while entering your program statements or 
commands, you already know how to fix them. As you catch the errors, 
you can: 

• Use the backspace or forward space key to position the cursor at the 
incorrect character, then simply enter the correct character. 

• Use the insert or delete function to insert or delete characters. 

• Use the scroll up and scroll down keys to position a line to be corrected. 

• Press ATTN to delete all characters starting with and to the right of the 
cursor position. 

INSERTING NEW LINES 

The following program, called phone, computes charges for local 
telephone calls. The rate for local calls in this example is 10 cents for 
the first three minutes or less, and 2 cents for each additional minute 
or fraction of a minute. We'll write a general program, but we'll 
purposely omit the actual length of any call. These are the variables 
we'll use: 

T 
T1 
C 

Total length of the call in whole minutes 
Amount of time over 3 minutes 
Charge for the call 

/ 

" / 



o 

c 

c 

c' 

The program is: 

o 0 :I. 0 1FT ::- : .. :~ U (J T D 0 0 Lj. 0 
() 0 ::? 0 P F~ :I: i'-.,! T'C {~ L I... L E ~:) ~:) 'r H (2'1 N (] R I::, (~U (~ L :.-5 1'1 IN) :/. 0 C E i\! T C H (~i P n E . 
00:.30 GOlU 0:1.00 
o () q. 0 L E 'r T 1. :::: T ~ .. :::) 
o 0 5 0 L. E'J' C :::; . :I. + I 0 ::.:~ .j(- T :I. 
00 () 0 P I:"~ T j',!I" I LENGTH OF CI':\LL I 

o 0 7 0 P I~ I N'r T 
OOBO PRINT · CHi:~RGE FOH Cf:~L.1... I 

0090 PHli\!'r c 
0:1.00 [ND 

Enter this program. After we add a statement to assign a value to T, 
you'll be able to run the program. 

To assign a value to T, you can use READ and DATA statements: 

READ T 

DATA 8 (for an 8 minute call) 

You can insert these statements before line 10. 

Now enter: 

5 READ T 

Press EXECUTE and enter: 

6 DATA 8 

and press EXECUTE again. 

To see what has been done with these statements, enter the LIST 
command. 

Making Changes to Your Programs 65 



66 

The display screen shows: 

(} 0 0 ~j P E (:i D T' 
o 0 Oc'~ DtiTt', u 
o 0 1 I] 1 F 'r ::- :?> C, [I T I] 0 0 ,+ 0 
o 0 ~? 0 P R I i'-.! T 'C (11...1... I... E ~:) S T H {i N 0 F: EO U (.~ I... 3 i1 IN.. :I. 0 C; E N "I' C H ?II~: [, E I 

0030 GOlD 0100 
o 0 ,+ 0 I... E T 'r t :::: 'r .... ::::) 
OO~:,=jO L.ET C::::, 1+. O::'?')(-Tl 
00-:,:>0 PPINl 'LENGTH OF C(::',I...I...' 
00'(-'0 rr,:INT T 
OOBO PF~INT 'CH(:~I~GE FOP C(.~LI...' 

OO?O PHINT r: 
0:1.00 END 

The 5100 has taken the two lines and inserted them in the program (as 
lines 5 and 6) before line 10. By entering a line number and any valid 
BASIC statement, you have given an instruction. This instruction starts 
with a line number, and tells the 5100 you are adding a line and where 
to add it. 

Now you can see why it is convenient to have the line numbers increase 
by 1 D's; it gives you the chance to insert up to nine new lines between 
every two original lines. 

You can now run the phone program by entering the RUN command. 

REPLACING ONE LINE WITH ANOTHER 

Let's try a different value for T in the phone program. This time T is 
21 minutes. You'll have to change line 6, the DATA statement, to use 
this new value. 

Enter the following statement, then press EXECUTE: 

6 DATA 21 

/ 



o 

c' 

0 1 

o 

c 

If you list the program now, the display screen shows: 

00 I} ~5 PE:(.~I[t l 
o 0 O':~) DI::)TI~ 21 
00:1.0 IF T>:::) GOlD 004·(} 
OO;.~O PRINT 'Ci:~LI... LEGf-; THAN OR EHU(.~L :3 MIN, :1.0 eENl' CHi:~PGE' 

0030 GOTO 0:1.00 
o 0 4· () LET T:I. :::: T _ .. ::5 
0050 LET C=,:I.+,02*T1 
o 0 6 I) P I~ 1 NT' I... ENG I" H () F C (:i I... L ' 
0070 PPINT T 
o () BOP I~ I NT' C H i~ R G E F I] r~ C (11... L . 
0090 PI~INT C 
0:1.00 END 

See what happened? The 5100 replaced the old line 6 with the new 
line 6. 

When you want to replace a line, simply enter the same line number as 
the line you want to replace and enter the new line. The 5100 replaces 
the old line in storage with the new one after you press EXECUTE. 

Remember that you can use the SAVE command if you want to save 
the program on tape. 

REMOVING A LINE 

I n the phone program, we will now include an I NPUT statement so we 
can run the program with many changing values for T. We can replace 
the READ statement with an I NPUT statement, but the DATA 
statement must be deleted. To do this, first list the program. Now enter 
the number of the line you want to delete, then enter DE L and press 
EXECUTE. To delete line 6, enter 6 DEL, then press EXECUTE. 
Line 5 can be replaced by the following procedure: enter 5 INPUT T, 
and press EXECUTE. List the program again, and the display screen 
shows: 

o (} O~5 INPUT T 
00:1.0 IF T>3 GOTO 0040 
0020 PRINT 'CALI... LEGS THAN OR EQUAL 3 MIN, 10 CENT CHARGE' 
0030 GDTD 0100 
00 1+0 LET T1=1" .. ··3 
0050 LET C=.1+.02*Tl 
0060 PRINT 'LENGTH OF Cf~LI...' 
OO"?O pr~INT T 
0080 PRINT 'CHARGE FOR CALL· 
0090 PRINT C 
OlOO END 

Making Changes to Your Programs 67 



68 

The 5100 has replaced line 5 and deleted line 6. 

When you want to delete a line, simply enter the statement number, 
then enter DEL, and press EXECUTE. A new listing of the program 
will show the line deleted. You can also use the DE L function to delete 
several lines. For example, you could delete lines 0070 through 0090 
by entering: 

0070 DE L 0090 

RENUMBERING STATEMENT LINES 

I n the phone program, the statement numbers are not sequential by 10's. 
If you want the numbers to start with 0010 and increase by 10, you can 
simply use the RENUM command. This command will assign the number 
0010 to the INPUT T statement and number the remaining statements 
from 0020 to 0110. 

I n addition, the GOTO statements (original lines 10 and 30) will be 
altered to transfer execution to the appropriate renumbered statement. 
To see the result of a renumber operation, list the phone program, then 
enter RENUM and press EXECUTE. After you list the program again, 
the display screen shows: 

0010 INPUT l 
0020 IF T>3 GOTD OO~:.;O 
o 0 :3 0 P P I r··,! 'r 'C tiLl... I... E ~:) ~:) T H (.~ N I] P F (~I...I (i I... :3 1'1 IN.. 1 0 C E NT C H (l F:~ (J E: . 
o 0 '+ 0 G () T [) (}:I.:I. 0 
o 0 !.5 0 I... E 'r T 1 :::: T -'. 3 
o 0 6 0 LET C :::: . :J. + , 0::2 .)~ T :I. 
o 0 '/ 0 P PIN T 'L E N (J T H D F C ()II... L ' 
OOBO PPINT T 
o O?O PPJNT 'CH(~lxGE FOI~ C(:iLI...' 
I] :I. 0 0 P 1\ I NT C 
0:1.:1.0 END 

/ 

, .. j 



o 

C, 
.v 

c 

c 

c 

Chapter 7. More About the PRINT Statement 

We've seen the PR I NT statement used to display the values of variables 
and to display comments exactly as entered in the statement. We've 
also seen that to display a comment exactly as you entered it, you must 
enclose the comment in single quotation marks. You should remember, 
then, that if you include this line in a program: 

0050 PRINT 'X' 

when line 50 is executed, the display screen will show: 

X 

and not the value of X, which would be displayed if line 50 were 

0050 PRINT X 

Within a single PR I NT statement, you can mix character and arithmetic 
variables and constants. You must use commas or semicolons to 
separate the values to be displayed. These separators (delimiters) 
control spacing of the displayed data. For this example, no separator 
is required between the variables and character constants. The only 
instance in which a comma or semicolon is not required is between a 
character constant and a variable, as in this example. 

Here's an example of a program that computes annual interest for any 
rate and principal that you enter: 

o 0 1 0 I N PUT 1-< I P 
OO;~~O LET J::::(P/100)":I!-P 
() 0 :.3 0 PRJ N l . THE .-:~ N N U A LIN T E HE U l ('I T . P' P E I~ C E N l I] N "=1;' P' 1 ~> "=1;' J 
00 '+ 0 END 

PUN 

When you run this program and use values of 7and 825, here's what 
you see: 

"""/ 
( 

More About the PR I NT Statement 69 



70 

If your 5100 has the attached printer, you can specify that the data be 
printed by entering PRINT FLP in place of PRINT in line 30. All of 
the capabi lities of and restrictions for the P R I NT statement also apply 
to PR I NT F LP. A comma must separate the F LP and the first value. 

MAKING HEADINGS 

Suppose you have a loop in a program that computes mileage allowances 
(at 12 cents a mile) for company auto trips (of 10 to 50 miles in steps of 
5 miles): 

0010 FOR X=10 TO 50 STEP 5 
0020 P R I NT X, . 1 2 * X 
0030 NEXT X 
0040 END 

When you run this program, the display screen shows: 

RUN 
:I. 0 :I. ,") 

~.::. 

1 \::' :I. 8 ..... 1 

~? I) 
... ) 
Ao-:. !.t, 

:~~ ~.=.; -,' 
-.::' 

:::~O :3 " 0 

3~::,i '+ 
.") 

I ,.::. 

'+0 q. B 
'+~i r.:' '+ ,J 

~,:,:j 0 (. 

You can make headings for these columns by entering a PR I NT statement 
before the loop: 

0005 PRINT IMILES', IMILEAGE ALLOWANCE' 

/ 

'<l 



o 

o 

c 

c 

When you run the program again, the display screen shows: 

h~I..JN 

j'·iII...Eb 
1 [I 
:I. ~.:.:j 

::? (I 
• .... rl=:· 
.. :: •.. ..1 

30 
",',::­
")".1 

'+0 
q.~.::i 

!SO 

j···1 I l...[i:~lr;E tII...I...OI,· . .I(~f···.!CL 
:I. . :::.) 
1.U 
~.:.:~ • I.j. 

q'l ::.:? 

I.f. I B 
~5 . 1.1. 

You will be shown later how you could change the mileage allowance 
column to include trailing zeros, which will make it more readable as 
dollars and cents. 

MATH CALCULATIONS IN PRINT STATEMENTS 

The PRINT statement allows you to include math calculations along 
with variables and words. Therefore, if you just want a calculation 
done and the result displayed, you can do it in a single PR I NT statement. 
For example, you can write 

0010 INPUT X 
0020 PR INT X,Xt2 

instead of writing 

0010 INPUT X 
0020 LET y=Xt2 
0030 PRINT X,Y , 

More About the PRINT Statement 71 



Chapter 8. Setting Up Your Own Format-PRINT USING and Image Statements 

72 

A more flexible way to display results is to use a statement called 
PR I NT USI NG. This statement allows you to display variables using 
a particular format. You specify the format in a separate BASIC 
statement called an image statement. The PRINT USING statement is 
used together with an image statement. The image statement can 
appear anywhere in a program and can be used by any number of 
PRINT USING statements. 

The image statement is a BASIC statement, but it looks different from 
the other BASIC statements. Following the statement number is a 
colon (:). After the colon, you enter the exact wording and format 
that you want your results to have. You leave room for any variable 
values by using # signs where the values belong. When the program is 
run, the 5100 substitutes real values for the # signs and displays the 
data in the image statement (including any blank spaces you leave). 
A sample PRINT USING statement and its image statement are: 

0020 PRINT USING 30,G,N 
0030 :GROSS SALES ARE ###.## AND NET PROFITS ARE ###.## 

Notice that single quotation marks were not used around the character 
data in line 0030. This is true of all image statements, unless, of course, 
you want quotation marks to appear in the displayed or printed data. 

This is the way these two statements work together: 

0020 PRINT USING 30,G,N 

The line number Of! 1 c~The variables, separated by commas, 
the image statement. is required. whose values are going to be displayed 

or printed in the format specified in 
the image statement. 

0030 :GROSS SALES ARE ###.## AND NET PROFITS ARE ###.## I / _____________ 
This identifies the image The value of G will be The value of N will be 
statement; it does not 
appear when the state­
ment is executed. 

inserted here when the 
line is displayed or 
pri nted instead of 
###.##. 

inserted here when the 
line is displayed or 
pri nted instead of 
###.##. 

" j 



o 

c 

c 

c 

If these two statements were part of a program, with G equal to 103.72 
and N equal to 21.45, at the time you ran the program, the 5100 would 
display: 

G P U 3 S b (.~II... L S A F~ E 1 0 : .. :~ I""? ::? (.~ N D NET F) I~ 0 F 1 T G (:~ 1< E 2:/' I '+!5 

LDiSPlay Position 1 

An image statement always begins with a colon. When you enter the # 
signs, as stand-ins for variable values, you are really telling the 5100 how 
many spaces to leave for the values. If a value needs more space than 
you indicated, a row of asterisks will be displayed or printed instead of 
the value when the statement is executed. I n these statements: 

0040 PRINT USING 50,Z,Zt3 
0050 :Z IS ## AND Z CUBED IS ## 

there are only two spaces indicated for each value. If Z is 3, the 
displayed result would be: 

But if Z is 5, then 53 is 125, which is three spaces long. The displayed 
result would be: 

The asterisks mean that the answer was too long for the space you 
indicated. 

When you use #.signs to indicate space for your variable values in an 
image statement, you can also control how many decimal places you 
want the value to have when it is displayed or printed. You do this by 
inserting a decimal point in the string of # signs wherever you want the 
decimal point to go in the result. For example, when you are using 
dollars and cents, insert a decimal point two places from the right, as 
in this example: 

0100 PRINT USING 110,5 
0110 :THE SERVICE CHARGE FOR YOUR ACCOUNT IS $###.## 

Setting Up Your Own Format-PRINT USING and Image Statements 73 



74 

If S were 23.47, the result would be displayed as follows when you 
ran the program: 

If your system has a printer, you can use the PRINT USING FLP 
statement to format your data. All the capabilities of the PR I NT 
USING statement also apply to the PRINT USING FLP statement. 

Example of Printing 

There are three sales representatives in your department, and you are 
responsible for making a monthly report showing their sales figures 
for each week of the month. You can write a program that will 
automatically print the report for you in an attractive format. 

This is how the variables in the program are named. Each sales 
representative is assigned a letter: A, B, and C. Starting with the 
first sales representative, the variables are: 

A$ 
A1 
A2 
A3 
A4 
A5 

Name 
Sales total for week 1 
Sales total for week 2 
Sales total for week 3 
Sales total for week 4 
Sales total for the month 

and so on for sales representatives Band C 

There are these other variables: 

M$ - Name of the month 
W$, X$, Y$, and Z$ - Last day of each week in the month 
T1, T2, T3, and T4 - Totals for everybody for each week 
T5 - Total for everybody for the month 

For this program, you have to supply the month's sales figures, the 
name of the month, and the last day of each week covered. The report 
is then printed automatically. Now enter the following program: 

" .. , 



nOlO 

0 Supply sales 10020 
representatives 0 030 
names. 0040 
Enter dates 0 0 5 0 
for the weeks. 0 060 

007!} 

C 
0080 

Supply sales 0090 
figures. 0100 

() :1.1. 0 
0120 

Compute rno 
monthly 01'+ 0 

(~I' totals. Ol!:iO 
!II 0160 

0:1.70 
0180 
0:1.90 
0200 
02:1.0 
0220 
0230 

Print figures f21fO and sales 02~50 
representatives 0260 
names. 0270 

0 f280 Compute 0290 
weekly and 0300 
grand totals. 0310 

\0320 
0:330 

Print totalS. 
{() 31+ 0 

0350 
0360 

c 

c 

I~EM PI~OGI=<p.IM FOR PRINTING MONTHL. ) .. , GI~)LEf.) I~EPUR1' 
I ... ET I~~;::::' ADL..Er~ . 
LET B$::::' E{I PPI ... E· 
L.ET C$::::' CUBBINS' 
PRINT · ENTER MONTH I L(:~ST D{~Y OF E(.~CH I/~EEI<.· 
INPUT M$IW$,X$,Y$,Z$ 
PRINT 'ENTER FIGURES FOR ADLER' 
INPUT Al1A2,A3,A4 
PRINT 'ENTER FIGURES FOR BIPPLE' 
INPUT B1JB2;B3,B4 
PRINT 'ENTER FIGURES FOR CUBBINS' 
INPUT Cl,C2,C3IC4 
LET A5=Al+A2+A3+A4 
LET B5=Bl+B2+B3+B4 
LET C~'=;::::C:l. +C;.:,~+C3+Cq, 

PRINT USING FLP,0170,M$ 
: MONTHLY SI~)LES I~EP(H~T FOI~ MONTH OF ti#tHHt#tHH*** 
PI~INT FLP 
PRINT USING FLPI0200 
: SALESMAN WEEK ENDING 
PRINT USING FLP,0220IW$,X$,Y$,Z$ 

"" "" H" pr~INT FI...P 
p I~ I NT US I NG FL P , 0270 } (:~~;, (:):1. ) i~2 .. i~:,:), i:~4 1 ("i~,:i 

PRINT USING FLP,0270IB$IB:I.,B2IB3IB4,B5 
PRINT USING FLP,0270,C$IC1IC2,C3IC4,C5 
: "####"# "#"H.ffM #"MM.#M ##H".H" 
LET Tt::::f~:I.+B:I.+C:l. 

LET T2::::A2+B?+C2 
LET T3::::f'~3+B3+C:3 

LET T'+::::A'++BI++CL~ 
LET T5::::(.~5+B~,)+C~.=i 

PRINT FL.P 
P I~ I NT l.J SIN G F L P I 0:350 , T:I. " T 2 I T:3 J T L~ I T ~i 

tt# 

TO l f)!... 

: TOTAL.S #####.## #####.## #####.## """"M."" ##»##,## 
END 

Note that a PR I NT F LP statement with nothing after it causes a blank 
line to be printed. This form of the statement is used in lines 0180, 
0230, and 0330 to include blank lines in the printed report. 

If your system has a printer, you can run the program by entering a 
RUN command and pressing EXECUTE. If your system does not have 
a printer, enter a RUN command, then enter P=D. For example: 
RUN P=D, then press EXECUTE. This command directs all printed 
output to the display screen. 

Setting Up Your Own Format-PRINT USING and Image Statements 75 



76 

During a sample running of this program, the display screen showed: 

RUN 
ENTEI~: j'·"JNlH 1 I...(.~HT D(.~ Y OF E'::\CH I,·H::EI< 

• ..J U I... ··f • 1 • -l · J • :f.ll· . .. . 2:1. • 1 • 2 B · 
ENTEI~ F It:3U RE~::) FO I~ i:~DI...ER 

12.50,500.00 .. 400.00,895.50 
ENTER FIGUPE~:) FOR HI PPI...E 

34.50 .. 78.90,500.00 .. 100.00 
ENTEI~ FIGUHEB FOR CUBBINS 

300.00,800.00,700.00,43.25 

For this program the printed or displayed output was: 

MONTHLY SALES REPORT FOR MONTH OF JULY 

SAL.ESMI~N ~JEEK ENDING T()T~~L 

"7 :1. 1+ 2:1. 2B 

~)[tI...ER 12.50 500.00 1+00 .00 89~:.;. 50 :1.808.00 
HIPPLE 3 L/ .• !.:.=;O 7B.CJO !500.00 :1.00.00 71.3.lf·O 
CUBBINS 300 .00 800.00 700.00 L~3 . 25 :I. Bt/·3 . 2~j 

rOT(.'LS 3 1+7.(}0 1.37B.90 :1.<:'>00.00 :1.038.75 436~.65 

\,, 



o 

c 

o 

c 

Chapter 9. More Things You Can Do With BASIC 

SOME GENERAL SYSTEM FUNCTIONS 

The following system functions provide you with the functions 
described: 

ABS(X) 

INT(X) 

RND or 
RND(X) 

SGN(X) 

Gives the absolute value of X. 

Gives the integer part of X. 

Generates a random nu mber between 0 and 1. 

Determines the sign of variable X, and returns a 
value of -1, 0, or +1, depending on whether X is 
negative, zero, or positive. 

To use these functions, you just substitute the name of your own 
variable for the X inside the parentheses. You can also include 
expressions inside the parentheses, for example: 

INT(Xt2+Y* 12) 

You might use SGN(X) to find out if X is positive: 

SGN(X) 

The RND function is a little different from the other functions. You 
can use RND alone, without a value, to generate a random number 
between a and 1. Each subsequent use of RND in the program will 
generate a new random number. However, if you rerun the program 
with a new RUN command, the random numbers generated will be 
the same as the numbers generated the first time you ran the program. 
To avoid this, you can use R N D(X) to generate different sets of 
random numbers each time you run your program. The value of X 
is used by the process that develops the random number. If you 
want a random number that is a whole integer instead of a decimal 
number between a and 1, multiply the result of RND or RND(X) by 
a constant (depending on what range you want the random numbers 
to have); and then use the I NT function to make the resu It an 
integer. 

More Things You Can Do with BASIC 77 



78 

For example: 

INT(RND*10) Produces a random number between 0 and 9. 

IN T ( R N D * 1 00) Produces a random number between 0 and 99. 

IN T ( R N D * 1 000) Produces a random number between 0 and 999. 

CONVERSION FUNCTIONS AND CONSTANTS 

BASI C has some built-in ways to convert values from one measuring 
system to another. In addition to &LBKG, &GALI, and &INCM, 
which were discussed in Chapter 2, BASI C provides: 

DEG(X) Gives the number of degrees in X radians. 

RAD(X) Gives the number of radians in X degrees. 

TRIGONOMETRIC FUNCTIONS 

BASIC has functions that automatically perform trigonometric 
operations for you. Just substitute your own variable or expression 
where the variable X appears in the following list: 

SIN(X) Gives the sine of X radians. 

COS(X) Gives the cosine of X radians. 

TAN(X) Gives the tangent of X rad ians. 

COT(X) Gives the cotangent of X radians. 

SEC(X) Gives the secant of X radians. 

CSC(X) Gives the cosecant of X radians. 

ASN(X) Gives the arc sine (in radians) of X. 

ACS(X) Gives the arc cosine (in radians) of X. 

ATN(X) Gives the arc tangent (in radians) of X. 

'iii, 

/ 

" l 

"Il_ I 

""' 



o 

o 

c 

c 

c 

These functions deal in radians. If your program measures angles in 
degrees instead of radians, combine the RAD or DEG functions with 
these functions to keep the results in degrees. For example, to find the 
sine of 0 degrees, you can use this statement: 

0040 LET S=SIN(RAD(D)) 

Or to find the arc sine of X in degrees instead of radians, you can use 
this statement: 

0070 LET A=DEG(ASN(X)) 

LOGARITHMS AND EXPONENTS 

BASIC also has functions that automatically take logarithms and 
calculate exponents for you: 

EXP(X) Gives the natural exponent of X (ex). 

LGT(X) Gives the logarithm of X to the base 10. 

LOG(X) Gives the logarithm of X to the base e. 

LTW(X) Gives the logarithm of X to the base 2. 

More Things You Can Do with BASIC 79 



Chapter 10. Tape Data Files 

80 

A file is a collection of related data items that are stored together. 
All the items are stored in sequential order. 

ACTIVATING AND DEACTIVATING FILES 

Files must be activated or opened before they can be used within a 
program. A file must be opened by an OPEN statement in a program. 
The following example shows the format of an OPEN statement: 

0050 OPEN FL 1,'E80',2,IN 

F L 1 is the file reference, which can be from FLO to F L9, but must be 
the same as the file reference in the GET or PUT statement. This 
file reference does not identify the file being read or written. 'E80' is 
the device address of the tape unit built in the 5100. The number 2 
specifies which physical file on tape is going to be used. This number 
can be from 1 through 132, and can be specified as a variable. The 
word IN indicates that the file is to be used for retrieving data items 
from the file for use in the program. 

If a file were to be used with PUT statements, it could be opened as an 
output file with this statement: 

0100 OPEN FL 1,'E80',2,OUT 

Normally, a file is deactivated or closed by the system after execution 
of your program. However, if you want to switch an input file to 
output (or vice versa) and continue to use it in the same program, you 
must deactivate it by using the CLOSE statement before reopening it. 
(If you did not use the CLOSE statement and attempted to use an 
output file for input or vice versa, execution of your program would 
be terminated.) The CLOSE statement deactivates the file; a subsequent 
OPEN statement opens (reactivates) the file for its new use and 
repositions it at its beginning. Under ordinary circumstances, the 
CLOSE statement is optional, and the system will close a file at the end 
of program execution. The one time that the CLOSE statement is 
required is if you use the same file for both input and output operations 
in the same program. 

/ 

/ 



c 

c 

CREATING A TAPE FILE 

The following compound interest program can be used to produce an 
output listing containing 600 values in 200 lines: 

0010 PRINT 'ENTEI~ PHINCIP~~L' 
0020 INPUT P 
OO~30 PRINT FI...P, 'TI~1E'" 'l~f~ITE', 'i:~MOUNf' 

OO~O FOR T=1 TO 10 
() 0 5 0 F () I~ R:::: :I. T (] 2 0 
0060 LET A=P*(1+R/l00)tT 
() I] '7 0 P R 1 NT F I... p} T I I~ " (~ 
(I (lBO NEXT I~~ 

0090 NEXT T 
0100 END 

The PR I NT statement in this program is executed 200 times to produce 
an output listing containing the values. These values could be grouped 
as an output file on tape. In fact, instead of printing them, you could 
store them in the file and use them later. By adding an OPEN statement 
and substituting a PUT statement for the PR I NT statement (line 0070), 
you can create a tape file; for example: 

0025 OPEN FL1,'E80',2,OUT 

0070 PUT F L 1 ,T, R,A 

This PUT statement instructs the 5100 to put the values contained in 
the variables T, R, and A into the file that is defined in the OPEN 
statement with the same fi Ie reference (F L 1). As far as the 5100 is 
concerned, both PUT and PR I NT mean output; the only difference is 
whether the output goes to a tape file or to the printer or display 
screen. Semicolons cannot be used to separate variables in a PUT 
statement; use only commas. 

RETRIEVING A FILE 

To access data in a tape file, you use the GET statement, which is the 
input counterpart to the PUT statement. 

To access the first set of values from the file created with the preceding 
PUT statement, you can use the following GET statement: 

0020 GET FL1,T,R,A 

Tape Data Files 81 



82 

This statement assigns the first three values contained in the file to the 
variables T, R, and A. It is not necessary to use the same variable names 
that were used when the file was created; for example, we could assign 
these values to variables X, Y, and Z. The important requirement is 
that the values in the file and the variables to which they are assigned 
must be of the same type-arithmetic variables for arithmetic values, 
and character variables for character values. 

The file reference (F L 1) must be the same as the file reference in the 
OPEN statement that defines the specific tape file. You must first close 
the output file and reopen it for input: 

0010 CLOSE F L 1 

0050 OPEN FL 1, 'E80 ',2,IN 

After the first GET statement is executed, the file is positioned at the 
next value. Thus, a second GET statement referring to F L 1 would 
access the next three values in the file. If we wanted to access all the 
values stored previously, we could issue the GET statement 200 times, 
or enclose one GET statement in a loop as follows: 

0050 OPEN FL 1,'E80',2,IN 
0060 FOR X=1 TO 200 
0070 GET F L 1 ,T,R,A 
0080 PRINT T,R,A 
0090 NEXT X 

The~e statements would print the 200 values for each T, R, and A. 

REPOSITIONING FILES 

You may have an occasion to use an input file or an output file more 
than once in the same program. The RESET statement allows you to 
reposition the file without deactivating it (deactivation is necessary 
only when the function of a file is changed from input to output or 
vice versa). For example: 

0020 OPEN FL4,'E80',4,IN 
0030 GET FL4,X,Y,Z,O,R,S 

0100 RESET FL4 
0110 GET FL4,X,Y,Z,O,R,S 

0150 RESET FL4 
0160 GET FL4,X,Y,Z,O,R,S 



c 

c 

o 

o 

c 

Between statements 0030 and 01 DO, the variables X, Y, Z, Q, R, and S 
could be used in one set of calculations and their values changed. By 
repositioning the file, the original values in the file could again be made 
available and put into variables X, Y, Z, Q, R, and S for different 
calculations or uses between statements 0110 and 0150, and again 
between statement 0160 and the end of the program. Actually, the 
RESET statement used in this way functions for files in the same way 
that the RESTO REstatement functions for the data table created by 
the DATA statement. 

To add data to the end of the file, you can reset it to its end by using 
the RESET statement with the END keyword: 

0200 RESET F L 1 END 

This statement positions F L 1 to the end of the last data item in the 
file. PUT statements appearing after statement 0200 will place 
additional values in the file. In effect, RESET END allows you to build 
onto a file. 

Tape Data Files 83 



Chapter 11. Arrays 

84 

With the BASIC language, you can keep groups of similar data 
(arithmetic or character) together by organizing them into arrays. An 
array is a collection of data items that is referred to by a single name. 

Arithmetic arrays are named by a single letter of the extended alphabet. 
Thus, the letter A can stand for a single arithmetic variable or an 
arithmetic array or both, while the symbol A2 can only stand for a 
single arithmetic variable. A single letter stands for an array only when 
it has been defined in a DIM (dimension) statement, which is described 
later. All elements of an arithmetic array are initially set to 0 when the 
program is executed. 

Character arrays, like simple character variables, are named by a single 
letter of the extended alphabet followed by the dollar sign ($). Each 
element of a character array is 18 characters in length. Each element 
is initially set to 18 blank characters when program execution begins. 

BASIC arrays can be either one or two dimensions. A one-dimensional 
array can be thought of as a row of successive data items. A two-
di mensional array can be thought of as a rectangu lar matrix of rows and 
columns. A representation of a one-dimensional array A containing 
four elements is: 

Array A 
A(l) A(2) I A(3) A(4) 

A representation of a two-dimensional array B with four rows and 
three columns is: 

Array B 
8( 1,1) 8(1,2) 8(1,3) 

8(2,1) 8(2,2) 8(23) 

8(3,1 ) 8(3 2) 8(33) 

8(4,1 ) 8(4 2) 8(4 3) 

To illustrate the use of one- and two-dimensional arrays, suppose you 
are keeping weather statistics on the average temperature and the inches 



o 

o 

c' 

c 

of rainfall for 12 months. You can write a program to keep each set of 
that data in arrays: 

• Names of the months 

• Average temperature for each month 

• Total rainfall for each month 

You can arrange the data as three one-dimensional arrays: 

Array 1 Array 2 Array 3 

Average 

Names of Months Temperature' Rainfall 

January 28 3.47 

February 31 2.10 

March 35 2.95 

April 49 4.82 
May 60 3.02 

June 64 2.87 

July 75 2.04 

August 81 1.89 

September 71 2.74 

October 59 2.90 

November 46 1.85 

December 37 2.35 

Or as one two-dimensional array: 

Array 1 

Month I Temp I Rainfall 

1 28 3.47 
2 31 2.10 

3 35 2.95 

4 49 4.82 

5 60 3.02 

6 64 2.87 

7 75 2.04 

8 81 1.89 

9 71 2.74 

10 59 2.90 

11 46 1.85 

12 37 2.35 

Arrays 85 



86 

The second example is really a modified combination of the three one­
dimensional arrays. The first column has been changed to the numeric 
representation of the months because the names of the months 
(character data) cannot be included in the same array with numeric 
data .. 

It will be much easier to use the weather data if we keep it together in 
three one-dimensional arrays, or in one two-dimensional array, than it 
would be if we considered it as 36 separate variables. This chapter 
will show you how to work with arrays in BASIC programs. 

DEFINING AN ARRAY 

When you want to work wit'h an array, you must first tell the 5100 
that you are using an array and not ordinary variables. This is called 
defining your array. Defining the array merely involves telling the 5100 
how big the array is going to be so the 5100 can leave room for it, and 
telling the 5100 what kind of data will be in it. (Later on you enter the 
data, but this is not part of defining the array.) 

The data for your arrays can be numeric data or character data. You 
can define an array to contain either kind of data, but it must contain 
only one kind of data. You can It mix characters and numbers in a 
single array. Thatls why we used the numbers of the months instead of 
their names when we put the weather data in a two-dimensional array. 

An array composed of numbers is called an arithmetic array. It is named 
by a single letter of the extended alphabet such as A or T. 

An array composed of character data is called a character array. It is 
named by a single letter of the extended alphabet followed by a dollar 
sign ($); for example, N$ or 0$. 

To define either kind of array, you use a statement called DIM. In the 
01 M statement, you name the array and include the size of it in 
parentheses after the name. 

DIM Statement for One-Dimensional Arrays 

For a one-dimensional array, the size is a single number. Thus, to define 
an arithmetic one-dimensional array A with 12 elements, your 0 I M 
statement is: 

0010 DIM A(12) 

..~- / 



c 

('~ 
I " 

o 

c\ 

c 

To define character array N$ with 20 elements, your statement is: 

0010 DIM N$(20} 

To define both together, your statement is: 

0010 DIM A(12), N$(20) 

DIM Statement for Two-Dimensional Arrays 

For two-dimensional arrays, the size is two numbers, one for each 
dimension. The first number is the number of rows in the array; the 
second number is the number of columns in the array. 

To define array W with 12 rows and 3 columns, the DIM statement is: 

0010 DIM W(12,3) 

Cha(acter array A$ with 3 rows and 4 columns is defined by: 

0010 DIM A$(3,4} 

You can define all your arrays in a single DIM statement. You can also 
mix definitions of one- and two-dimensional arrays in a single 0 I M 
statement. 

ELEMENTS OF ARRAYS 

Each individual item in an array is called an element of the array. When 
you want to refer to a particular element of an array, instead of to the 
whole array itself, you talk about the position of that element in the 
array. For example, if you want to refer to the third element of one­
dimensional array H, you would refer to it as H(3). To refer to the 
element in the first row and third column of array W, you use W(1 ,3}. 
The position goes in parentheses after the name of the array. For two­
dimensional arrays, the first number is always the number of the row, 
the second number is always the number of the column. 

If we look at the weather example as three one-dimensional arrays, we 
can call the array with the names of the months M$, the array of 
temperature data T, and the array of rainfall data R. If we consider the 
weather data as one two-dimensional array, called W, the numbers of 
the months are in column 1, the temperature data is in column 2, and 
the rainfall data is in column 3. If you wanted to refer to January in a 
program statement, you wou Id refer to either M$( 1} or W( 1,-1). 

Arrays 87 



88 

Here are all the months and the way you refer to them in arrays M$ 
andW: 

Is in this Position: 

This Month: In Array M$ In Array W: 

1 (January) M$(l) W(l,l) 

2 (February) M$(2) W(2,1) 

3 (March) M$(3) W(3,1) 

4 (April) M$(4) W(4,1) 

5 (May) M$(5) W(5,1) 

6 (June) M$(6) W(6,1) 

7 (July) M$(7) W(7,1) 

8 (August) M$(8) W(8,1) 

9 (September) M$(9) W(9,1) 

10 (October) M$(10) W(10,1) 

11 (November) M$(11 ) W(11,1) 

12 (December) M$(12) W(12,1) 

Note that the month names are not used in array W. 

If we include the temperature and rainfall data, the first element in each 
one-dimensional array-M$( 1), T( 1), R (1 )-or the first row in array W­
W( 1,1), W( 1 ,2), W( 1 ,3)-will be data for January; the second element in 
each one-dimensional array, or the second row in W, will be data for 
February; and so on. 

So far, however, there is no data in any of the arrays. We have only 
defined the names and sizes. After you define an array, the 5100 sets 
the values of all its elements to 0 (for arithmetic arrays) or blanks (for 
character arrays). 

Assigning Values to Array Elements 

To assign values to array elements (the names of the months, the 
temperatures, or the rainfall), you use the methods of assigning values 
that you've been using all along. 

LET Statements 

You can use a LET statement to assign a value to an element of an 
array. So if the average temperature for January is 28° , you cou Id 



o 

c 

c 

0' 

write either of these statements: 

0020 LET T( 1 )=28 
0020 LET W( 1,2)=28 

This method is acceptable if you only have a few values to assign, but it 
will take forever if the array is large. In the weather example, we would 
need 36 separate LET statements to assign all the data to the arrays. 
Nevertheless, the LET statement is handy if you only want to assign a 
few values, or if you want to change a value you have already assigned. 

Remember that if you are assigning a value to an element of a character 
array, you enclose the characters you are assigning in single quotation 
marks. For example: 

0020 LET M$(l )='JANUARY' 

DATA and READ Statements 

Another way to assign values is to use DATA and READ statements. 
You use these the same way you do for variables. For example: 

or 

0020 READ M$( 1) ,M$(2) ,M$(3) 
0030 DATA 'JANUARY','FEBRUARY','MARCH' 

0020 READ W(1,1),W(2,1),W(3,1) 
0030 DATA 1,2,3 

Again, when you are using large amounts of data, listing them all 
separately in a READ statement is not practical. In this example, you 
can take advantage of a FOR-NEXT loop to assign values: 

or 

0020 FOR 1=1 TO 12 
0030 READ T( I) 
0040 NEXT I 
0050 DATA 28,31,35,49,60,64,75,81,71,59,46,37 

0020 FOR 1=1 TO 12 
0030 READ W(I,2) 
0040 NEXT I 
0050 DATA 28,31,35,49,60,64,75,81,71,59,46,37 

Arrays 89 



90 

These statements assign all the average temperature data to array T or 
to the second column of array W. (For array W, since we are assigning 
values only to the second column, we used a constant of 2 in the 
READ statement.) You can't avoid specifying 12 values in the DATA 
statement, but a loop like this makes the READ statement easier to 
handle. 

When assigning values to array W, you could, in fact, use one READ 
statement and two loops to assign all the data at once. It would look 
like this: 

0020 FOR 1=1 TO 12 
0030 FOR J=1 TO 3 
0040 READ W(I,J) 
0050 NEXT J 
0060 NEXT I 

Arranged this way, the loops let you enter the data for each row of the 
array in succession. Your DATA statements might look like this: 

0070 DATA 1,28,3.47 
0080 DATA 2,31,2.10 
0090 DATA 3,35,2.95 

We've entered the data for each row of array W in a separate DATA 
statement because it is easier to visualize the data that way. You could, 
however, string out the data so that more than one row appears in a 
DATA statement like this: 

0070 DATA 1,28,3.47,2,31,2.10,3,35,2.95 ... 

This way you could enter as many data items in each DATA statement 
as will fit on a line. The important thing is that the data must appear in 
the same order as if you were entering it row by row. 

I NPUT Statements 

You can use I NPUT statements to assign values from the keyboard to 
array elements. You can list all the array element names in the INPUT 
statement, or you can write a FOR and NEXT loop-similar to the ones 
for READ-to specify the names of the elements that are to receive 
values. 

--- ----------- -

,/ 



o 

o 

c 

c 

()' 

For example, you can assign values to the one-dimensional rainfall 
array R with this statement: 

0020 INPUT R (1),R (2),R (3),R (4),R (5) 

or with these statements: 

0020 FOR 1=1 TO 12 
0030 INPUT R(I) 
0040 NEXT I 

You can assign the rainfall data to the third column of array W with 
these statements: 

0020 FOR 1=1 TO 12 
0030 INPUT W(I,3) 
0040 NEXT I 

As with the READ statement, you can write a double loop for an INPUT 
statement so that you can supply all the data for array W at once. In 
all instances, the 5100 flashes a question mark on the display.screen 
when the system is ready for you to enter the data from the keyboard. 
However, if your INPUT stateme-nt is in a loop, the 5100 flashes a 
question mark each time the loop is executed. This means you supply 
one item of data, wait for the next question mark, supply the next item 
of data, and so on. You will have to enter the data one item at a time, 
waiting for a question mark between each entry. 

Another Way to Assign Values to Arrays 

Instead of using a loop with a READ or INPUT statement to assign 
values, you can write a READ or INPUT statement such as: 

0020 MAT READ M 
0030 MAT INPUT N 

These statements tell the 5100 to read in values for the entire array. 
The letters MAT stand for the word matrix. 

This method of assigning values with a MAT READ statement has no 
effect on your DATA statements. Thus, to assign the temperature data 
to one-dimensional array T, you could write these statements: 

0020 MAT READ T 
0030 DATA 28,31,35,49,60,64,75,81,71,59,46,37 

Arrays 91 



92 

If you use a MAT READ W statement, you would have to enter the 
data for the entire array in DATA statements. You assign the data row 
by row with these statements: 

0020 MAT READ W 
0030 DATA 1,28,3.47 
0040 DATA 2,31,2.10 
0050 DATA 3,35,2.95 

or with these statements: 

0020 MAT READ W 
0030 DATA 1,28,3.47,2,31,2.10,3,35,2.95 

If you use a MAT I NPUT statement to assign values to an array, the 
5100 will signal you with a flashing question mark, as usual, when it 
is ready for you to enter data from the keyboard. If you are supplying 
values for a one-dimensional array, just type in all the values on a 
single line. If you are supplying values for a two-dimensional array, 
type in all the data row by row. Remember that the values must be 
separated by commas. 

Assigning Values to an Entire Array at Once 

If you want every element of an array to have the same value, such as 
all 1 's or all O's, you can assign that value to each element of the array 
with the following statement: 

0030 MAT A=(O) 

You could also assign to every element of an array the value of a 
variable or the value of an arithmetic expression with this statement: 

0050 MAT T=(X) 

or this statement: 

0060 MAT M=(X+Y*Z) 

The value you are assigning must be enclosed in parentheses so that the 
5100 knows it is not the name of another array. 

If you omit the parentheses, you can make one array an identical copy 
of another array by using this statement: 

0070 MAT R=S 

",'II.. 

/ 

.. " . 



o 

c 

c 

c 

In this statement, you don't use parentheses because you are, in fact, 
referring to another array in this assignment statement. 

This method of assigning values is limited, however. You can't use the 
following statement: 

0040 MAT R=-S 

to set the values of the elements of array R equal to the negative values 
of the elements of array S. To do that, you would have to write this 
statement: 

0040 MAT R = (-1 ) * S 

(See Arithmetic with Arrays later in this chapter for more information.) 

Working with Elements of Arrays 

After you assign values to elements of arrays, you can perform 
calculations with individual array elements. You use elements of arrays 
just as you use any variable in any BASIC statement. Nothing is 

. different except that you are keeping a set of variables together for 
your own convenience in organizing data. Each element still has a 
value and can act as an independent variable. 

Printing Arrays 

Elements of arrays, like ordinary variables, can be used in any PR I NT 
or PRINT FLP statement. Some examples of PRINT and PRINT USING 
statements that include array elements are: 

0020 PR I NT T(3),T(4) ,M$(2),W{ 1 0,2),X,Y,Z 
0030 PRINT FLP, 'THE AVERAGE RAINFALL FOR JANUARY IS:',W{l,3) 
0080 PRINT USING FLP,90,M$(3},R{3) 
0090 :FOR THE MONTH OF ########## THE RAINFALL WAS #.## 

In addition, you can print an entire array if you insert MAT before the 
P R I NT statement. For example, the statement 

0090 MAT PRINT FLP,T 

wi" print the entire one-dimensional temperature array T. The 
statement 

0060 MAT PRINT FLP,W 

wi" print the entire two-dimensional weather array W. It wi" be 
pri nted row by row. 

Arrays 93 



94 

You cannot enter arrays and ordinary variables together in a MAT 
PR I NT statement. 

Putting One-Dimensional Arrays Together in a Program 

Now weill put the three one-dimensional weather arrays, M$, T, and R, 
together in a sample program that will keep all the data and display it 
when you run the program: 

o J:I. 0 F~ I::: i···, T H I ~::; p n 0 U I~ (:., j··1 1< E E P ~:) l .... 1 E:: t, THE F~ D (:1 T '~i 
OO::? [I DIN ,··1·:1; ( :I. :::.~ ) .. T ( :I. ::.:.:~ ) .. R ( :I.~? :> 

o 0 3 0 F C) F~ I :::: :I. T U :I. ::? 
o 0 1+ 0 I~~ E (:i :0 j .... , ~~ ( I ) .. ·r ( I ) .. H ( 1 ) 
o 0 ~::.; 0 j"--~EXT I 
0060 DATA 'JANUARY' .. 28 .. 3,47· 
0070 DATA 'FEBRUARY' .. 3:1. .. 2,:1. 
o 0 n 0 :0 p, T (:i 'j .... , (:~, I:"~ C H ' .. :::~; ~:5 .. ::.:.:: , (? ~.:5 

(I 0 (.:} 0 D (~:, T (:., '(l P F~ I L. ' .' I.f. 9 , 1.1· .. 1.1· , B :~.:~ 
0:1. 0 0 D(:·,T(:l ',· .. ,t,'y"., 1:>0.,3,02 
o 1 :I. 0 :0 j:) T (:., '..J 1...1 NF' ... , 61.1· .. :;:.:~ , B ··l 
o 1 ~.:.~ 0 :0 t, T (:., ' .. .1 1...1 I... Y I .' "/ ~:.:.; .. :;:.~ , 0 I.f. 
0:1.::::)0 Dt,Tti 't,I...IGU~::;T' .. Bl .. :I., n(? 
() 11.1· 0 :Ot·,T (:1 I ~:)E PTEHBE R' .. ··l:l. .' :2 , ·ll.f· 
0:1.50 DATA 'OCTOBER' .. 59 .. 2,9 
(} :I. /:' 0 :0 t, T (l I ,···10 V F jvj )J E I~ I .. 1.j·6.. :I. , B ~:5 
o :I. ·l 0 II (:., T (:i ':0 [: C F h B E F~ I .' ;·::)·7 .' ::.:.:~ , :3 ~~.; 
o :I. n 0 P F< I (1 ·r 1...1 GIN G F L. P .. 0:1. 9 0 
0:1.90 '· .. 10j····1TH (:., \l (3 TE'·1P P(·II"IFt,L.L. 
o ::~:~ 0 0 F 0 F~ 1 :::::1. T D :I. ? 
o ::.:.:~ :I. 0 P P I j····l T 1...1 ~:) I N G F I... P .. 0 2 :::) 0 .. ,VI ~~ ( I ) .. ·r ( I ) .. F~ ( :r ) 
O:?20 NE)<T I 
o ::? 3 0 : ~* H H *:~ H H ** ** *t H *~: H U *~ :~t , :if 
o :;:.~I.f. 0 [;---·ID 

FDI~ :I. <?.,"I.f. 

This program uses FOR and NEXT loops to simplify handling the large 
number of values involved in these arrays. Notice that instead of 
writing a FOR and NEXT loop for each array when we were assigning 
values to the members, we wrote a single loop that worked across the 
three arrays instead of completing each 12-element array individually. 
Of course, the DATA statements had to have their data in the same order. 



o 

C 

c 

We also used a loop to display the data. It lets us use a single PR I NT 
USI NG statement with a single image statement to print out 12 lines 
of data. 

After you enter the statements and run the program, the display screen 
shows: 

t"IDNTH (:-,\/I::-) 

.• ..1 (:ll···l U (:) P 'y ::.:.~ ::::: ' 

F[BPUt,I~Y 3:1. 
1"1(:', PCH :~) !:.:.; 

(',p 1:< I I... 1+9 
j''1(i ... ( 60 
. ..Jl...lj\.!E {::,I+ 
JUL.Y· "l!!5 
(iUG u~:)'r B:I. 
SE PTErliBE H 71 
DCT(]HEF~ ~.:S9 

ND'v'EI"l:BE F! '+b 
DECEi··lBER U_.' "'1 

I • • ' 
.... , I 

Two-Dimensional Array 

TEHP 

::.? , :I. 
:3, [I 

,+. n 
::~:; , 0 

::.:.~ . 0 
:I. . (.r' 
... ··1 ···.t 
.. ;:., ( 

:'i "", 
.. ::., '.i' 

:I. . (? 
~? . ,+ 

Now weill do the'same thing with the two-dimensional array W. This 
time weill use MAT READ Wand MAT PRINT FLP, W statements 
instead of using loops to assign the weather data and print it. If your 
system does not have a printer, skip this program because the output 
exceeds the limits of the screen: 

OJ:l.O REM THIS PROGRAM KEEPS DATA IN A 2 DIM ARRAY 
0020 DIh ~J (:I.:::.~ .. 3) 
0030 j\'lt",T I~Ef::'D l,J 
OO~O DATA l,28,3.5 .. 2,31,2.1 .. 3 .. 35 .. 3 ... 4,49 .. 4.8,S .. 60 .. 3. 
0050 DATA 6,64 .. 2.9 .. 7 .. 75 .. 2.,8,81,1.9 .. 9 .. 71 .. 2,7 .. 10,59,2.9 
0060 DATA 11,46 .. 1.9 .. 12,37,2.4 
0070 PRINT USING FLP .. 0080 
0080 : MONTH AVG TEMP FD I~ :1.97

'
+ 

0090 MAT PRINT FLP,W 
0:1.00 END 

Arrays 95 



:I. 

''') 
,': .. 

::~) 

I.j. 

I::' 
,..I 

() 

"l 

B 

.:,;> 

:I. 0 

1 1 

:I. -") 
0': •• 

96 

The printed output is: 

::,:,~B :'3 I::' 
, .. ,I 

·'i:." :I. ". 1 \. .. ' ,,::. 

3~:,:,i .'" 
.. ~) 

I.j.<) ,+ B 

..- 0 "Y 
C) .. J 

6 1.j. 0") 
,': .. <? 

7~:,:,i o"j 
,': .. 

C) 
\." :I. - :I. .:.;:. 

{ 1 :::.~ 'r} 

I::'q 
\.J " ;.:.:~ 9 

'-1,6 :I. (? 

3'/ 0") '-I, ,': .. 

ARITHMETIC WITH ARRAYS 

Suppose, instead of weather data for one year, you have weather data 
for two years. This data can be in two arrays. You are,interested in 
averaging the temperatures and rainfall over the two years and making 
new arrays to contain the two-year averages. To see how to do this, 
let's look at the two sets of temperature data. If you assume that they 
are in two one-dimensional arrays called A and B, then to find the 
average temperature for each month over the two years, you have 
to add the two temperatures for January and divide by 2, add the 
temperatures for February and divide by 2, and so on. 

.~ .. 
'" 

" 

f "-

.. ,1 

'\ / 



o 

c 

c 

o 

Addition and Subtraction with Arrays 

You can do all the addition in one step, adding the entire array A to 
the entire array B, with this statement: 

0010 MAT C=A+B 

Again, the letters MAT stand for matrix. The preceding statement 
causes each element of array A to be added to the corresponding element 
of array B and the result to be stored in the corresponding element of 
array C. 

The same kind of addition statement works if you want to add two­
dimensional arrays. If all the weather data for the first year is in 
two-dimensional array T and for the second year in two-dimensional 
array U, and you want the result in array V, the statement is: 

0040 MAT V=T+U 

Each element of array T is added to the corresponding element of 
array U. This includes the columns with the numbers of the months 
and the columns with the rainfall. 

Similarly, if you want to subtract each element of an array from the 
corresponding element of another array, you would write this 
statement: 

0050 MAT C=A-B 

The letters MAT always tell the 5100 to work with an entire array. 
Just remember that you must define all the arrays, including the one 
which is receiving the resu Its, in a DIM statement at the start of your 
program. Also, you can only add or subtract when all the arrays 
named have the same dimensions. You can It, for example, add a 
14-element array to a 12-element array. 

Multiplication and Division 

We have seen how to add and subtract array elements. Now what 
about dividing by 2? Before we can divide, we must see how to 
multiply, because BASIC doesn't let you divide arrays directly; you 
can only multiply. You can multiply each element of an array 
(called A, for example) by a constant, a single variable, or an arithmetic 
expression with this statement: 

0030 MAT C=(2)*A 

,--------_ ........... _-_ ...... _ ......... _. __ .... -._._ .. __ ...... _ ... 

Arrays 97 



98 

The multiplier a/ways goes in parentheses so the 5100 knows it is not 
another array, and it must always go before the *. For division, you 
merely multiply the array by 1 over the divisor, or by a decimal 
number such as 0.5. Therefore, to divide each element of array A by 2, 
you would use this statement: 

0080 C=( 1 /2)* A 

Averaging Two Sets of One-Dimensional Arrays 

If the weather data is kept in two sets of one-dimensional arrays, A and 
B for temperature and C and D for rainfall, a program for averaging the 
two sets of data and assigning the results to master arrays T and R 
might look like this: 

o () 1 0 DIM M ~~ ( :I. 2) , (.~ ( l;?) .' B ( :I. 2 ) I C ( :I. 2 ) I I.I( :I. 2 ) I 1 ( 12) , H ( :I. 2 ) 
0020 MAT READ M$ 
0030 DATA 'JAN', 'FEB', 'MAR' I 'APR', 'MAY' I 'JUNE', 'JULY', 'AUG' 
o 0 1+ 0 II A T A'S E P T ' , '0 C T ' , 'N [] V ' I 'II E C ' 
0050 MAT READ A,B/C,D 
0060 DATA 20,21,22,23,24}25}26}27,28}29,30,31 
0070 DATA :l.O,12/14,:l.6,18,20/22,24,26,28}30,32 
0080 DATA 2,2,2,2,3,3,3,4,4,4,5,5 
o 0 9 0 D A T ,~ ~.) I ~:; , 5 I 1+ I 1+ , J.t. , 2 , 2 I 2 I :I. , 3 , 2 
0100 MAT T::::A+B 
o :l :I. 0 M~~ T T:::: ( :I. 12 ) ~(. T 
0120 MAT R::::C+[/ 
01:30 MAT [<::::( :l./2)~·R 

0140 FOR I=l TO 12 
0150 PRINT FLP,M$(I),T(I),R(I) 
O:L60 NEXT I 
0:1. 7.0 END 

We defi ned arrays T and R in the DIM statement on Ii ne 10, as well as 
arrays M$, A, B, C, and D. Note that we only need one array for the 
names of the months, no matter how many years of data we have 
stored in other arrays. 

,'". ) 

/ " 



o 

c 

o 

c 

c 

Averaging Two-Dimensional Arrays 

If the two sets of weather data are stored in two-dimensional arrays 
X and Y, a program for averaging the data might look like this: 

o J:I. 0 
o o;? 0 
00:30 
00'-1· 0 
() 0 ~.:.:.; 0 
0060 
o O·l 0 
0080 MAT W=(ll)*W 
o 0 .:/ 0 n (:1 T P PIN ·r F I... P .' kl 
0010 Ei'-..JD 

We defined array W along with arrays X and Y in the DIM statement 
at the start of the program. Note that the numbers of the months, 
which- are in column 1 of both arrays X and Y, are added in statement 
0070 along with the rest of the data in arrays X and Y. But ~hen we 
divide by 2 in statement 0080, we get back the original numbers 
1 through 12. 

Arrays 99 



Appendix A. BASIC Statements and Commands 

100 

A complete list of the statements and commands in the BASIC 
language that are used for the 5100 is shown below. A brief description 
of each statement and command is included. Although all the 
statements and commands are not discussed in this manual, each is 
described in detail in the IBM 5100 BASIC Reference Manual, 
SA21-9217. 

BASIC STATEMENTS 

CHAIN 

CLOSE 

DATA 

DEF 

DIM 

END 

FNEND 

FOR 

GET 

GOSUB 

GOTO 

Image 

INPUT 

Ends a program, then loads and begins executing 
another program. 

Deactivates open files. 

Creates an internal data table of values. 

Defines an arithmetic function to be used in the 
program. 

Specifies the size (dimensions) of an array. 

Ends a program. 

Ends an arithmetic function defined in a DE F 
statement. ' 

Begins a loop. 

Assigns values from a file to variables. 

Branches the program to the beginning of a 
subroutine. 

Branches the program to a specific statement. 

Branches the program depending on specific 
conditions. 

Specifies the format of printed or displayed data. 

Assigns values from the keyboard to variables 
during program execution. 

"", ,I 

/ ' 



LET Assigns values to variables. 

0 MAT Assigns values to all elements of an array. 

MAT GET Assigns values from a file to elements of an array. 

MAT INPUT Assigns values from the keyboard to elements of 

("': an array. 

MAT PRINT Displays or prints the values of all elements of an 
(F LP) array. 

MAT PRINT Displays or prints the values of all elements of an 

CI' USING (FLP) array in a format specified in an image statement. 

MAT PUT Writes the values of all elements of an array into a 
tape file. 

MAT READ Assigns values from the internal data table (see 
DAT A) to elements of an array. 

NEXT Ends a loop (see FOR). 

OPEN Activates files for input or output. 

C PAUSE Interrupts program execution. 

PRINT (FLP) Displays or prints the values of specified variables, 
expressions, or constants. 

PRINT USING Displays or prints the values of specified variables, 
(F LP) expressions, or constants in a format defined in an 

image statement. 

PUT Writes the values of specified variables into a tape 
file. 

C 
READ Assigns values from the internal data table (see 

DAT A) to variables or array elements. 

REM Inserts comments or remarks in a program. 

RESET Repositions a tape file to its beginning. 

0 RESTORE Causes values in the internal data table (see DATA) 
to be assigned starting with the first value in the 
table. 

O· 
BASIC Statements and Commands 101 



RETURN Ends a current subroutine. 

/ 

STOP Ends a program. 
'~ )1 

USE Saves variables to be used by many programs. 

BASIC SYSTEM COMMANDS " 
~ 

AUTO Automatically numbers BASIC statements. 

GO Resumes execution of a MA R K command or pro-
gram that was ha Ited. 

¢'" 

" 

LIST Displays or prints the contents of storage. l 

LOAD Loads storage with data from tape or data from the 
keyboard. Also see Function Keys in the IBM 5100 
BASIC Reference Manual, SA21-9217. 

MARK Prepares a tape cartridge for programs or data to be 
saved. 

MERGE Combines programs on tape with programs in storage 
or data on tape with data in storage. 

/" 

PATCH Allows loadi ng of patch program or tape recovery \( 

program or tape copy. 

RD=: Specifies the number of digits at which rounding 
occurs for displayed or printed results. 

RENUM Renumbers the statements in storage. 

REWIND Rewinds the tape cartridge. 

RUN Executes a BASIC program. 

/ 

SAVE Saves the contents of storage on tape. 
'<" 

UTIL Displays or prints a directory of the contents of the 
tape. Also transfers control to the communications 
feature. 

,-< 

""-
Editing Function 

DEL Deletes a statement or a group of statements from 
storage. 

~" 

KEYx, Allows editing of key groups, where x=Q to 9. " 
102 



o 
('~,' 

v 

c~: 

c 

o 

o 

ABS(x) absolute value of x 77 
ACS(x) arc cosine of x (in radians) 78 
adding to a tape file 83 
addition 6, 16, 97 
APL symbols 3,4 
array dimensions 84 
array elements 84, 87, 93 
arrays 84 
arithmetic arrays 84, 86 
arithmetic constants 22 
arithmetic hierarchy 17 
arithmetic operator keys 6 
arithmetic operators 16 
arithmetic with arrays 96 
ASN (x) arc sine of x (in radians) 78 
assigning values 24,41, 58, 88, 92 
ATN(x) arc tangent of x (in radians) 78 
ATTN key 5,14,21,30 
.A.UTO command 35 
automatic statement numbering 35 

backspace key 11 
BASIC/APL switch 6 
branching 44 
brightness control 9 

calc result function 28 
centimeters per inch (&INCM) 22 
character arrays 84, 86 
character variables 27, 47, 62 
clearing storage 38 
CLOSE statement 80 
closing tape fi les 80 
CMD key 5,12,13,29 
command keywords 6, 102 
conversion constants 22, 78 
conversion functions 78 
copy display function 31 
COS(x) cosine of x radians 78 
COT(x) cotangent of x radians 78 
CSC(x) cosecant of x radians 78 
cursor 7 

DATA statement 58, 89 
defining arrays 84, 86 
OEG(x) degrees in x radians 78 
DEL function 67 
delete function 13 
deleting characters 12 
device address 80 
01 M statement 84, 86 
DISPLAY REGISTERS/NORMAL switch 6 
display screen 7 
displaying variable values 26 
division 6, 16, 97 

editing functions 67, 102 
END statement 34 
error correction 11, 30, 64 
EXECUTE key 5,30 
EXP(x) natural exponent of x 79 
exponentiation 16, 17 
exponents 79 

flashing question mark 32,61, 92 
FO R statement 53, 90 
formatting output 72 
forward space key 10, 11 

GET statement 80 
GO command 37 
GOTO statement 34, 44 

HO LD key 5, 30, 52, 56 

Index 

Index 103 



IF statement 33,45,51 
image statement 72 
IN PROCESS indicator 7 
initializing variables 47 
INPUT statement 32,60,90 
insert function 13 
inserting characters 13 
inserting program statements 64 
INT(x) integer part of x 77 

keys 3,4 
kilograms per pound (&LBKG) 22 

LET statement 41, 88 
LGT(x) logarithm of x to the base 10 79 
LIST command 44 
liters per gallon (&GALI) 22 
LOAD command 7, 38, 39 
LOG (x) logarithm of x to the base e 79 
logarithms 79 
loops 50,90 
L TW(x) logarithm of x to the base 2 79 
L32 64 R32 switch 6,9 

MAR K command 37 
MAT INPUT statement 91 
MAT PRINT statement 93 
MAT READ statement 91 
mathematical functions 17 
multiplication 6, 16,97 

naming arrays 
natural log (e) 

84,86 
22 

negative operations 17,21 
nested loops 54 
NEXT statement 53,90 
numeric keys 3, 4 
numeric variables 23, 47 

104 

OPEN statement 80 
opening tape files 80 

parentheses 17, 18 
pi (1T) 22 
positive operations 17, 21 
POWER ON/OFF switch 6,38 
PRINT statement 32,42,61,69 
PR I NT USI NG statement 72 
printing arrays 93 
printing blank lines 75 
PROCESS CHECK indicator 7 
prompting message 61 
PUT statement 80 

RAD(x) radians in x degrees 78 
raising to a power 16 
RD= command 32 
READ statement 58,89 
ready message 7 
relational operators 45, 51 
REM (remark) statement 33,42 
removing program statements 67 
RENUM command 68 
replacing characters 11 
replacing program statements 66 
RESET statement 82 
RESTART switch 6,7,38 
RESTORE statement 58 
REVERSE DISPLAY switch 9 
RND [(x)] random number 77 
rounding 32 
RUN command 31, 38 
RUN P=D command 75 

/ 



o 

c 

c' 

c 

o 

o 

SAVE command 38 
scroll down key 10 
scroll up key 10 
SEC(x) secant of x radians 78 
SGN (x) sign of x 77 
shift key 3 
SIN(x) sine of x radians 78 
special characters 3, 11 
square root 22, 23 
statement keywords 6, 30, 100 
statement numbers 
status line 8 
steps 54 
STOP statement 

35,68 

48 
storage capacity 7 
subtraction 6, 16, 97 
system functions 77 

TAN (x) tangent of x radians 78 
tape cartridge 35 
tape fi les 35, 37, 80 

variables 23, 86 

Index 105 



/ 

~ , 

~. ./ 

( 



o 

o 

o 

o 

READER'S COMMENT FORM 

IBM 5100 SA21-9216-1 
BASIC Introduction 

YOUR COMMENTS, PLEASE .•. 

Your comments assist us in improving the usefulness of our publications; they are an important 
part of the input used in preparing updates to the publications. All comments and suggestions 
become the property of IBM. 

Please do not use this form for technical questions about the system or for requests for additional 
publications; this only delays the response. I nstead, direct your inquiries or requests to your IBM 
representative or to the IBM branch office serving your locality. 

Corrections or clarifications needed: 

Page Comment 

I would like a reply. D 
Name __________________________________________________________ __ 

Address 

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



SA21-9216-1 

Fold 

Fold 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE Will BE PAID BY ... 

I BM Corporation 
General Systems Division 
Development Laboratory 
Pu bl ications, Dept. 245 
Rochester, Minnesota 55901 

International Business Machines Corporation 
General Systems Division 
57750 Glenridge Drive N.E. 
Atlanta, Georgia 30301 
(USA Only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

Fold 

FIRST CLASS 

PERMIT NO. 387 

ROCHESTER, MINN. 

Fold 

/ " 



o 

c 

o 

o 

o 

() 

READER'S COMMENT FORM 

IBM 5100 SA21-9216-1 
BASIC Introduction 

YOUR COMMENTS, PLEASE ... 

Your comments assist us in improving the usefulness of our publications; they are an important 
part of the input used in preparing updates to the publications. All comments and suggestions 
become the property of IBM. 

Please do not use this form for technical questions about the system or for requests for additional 
publications; this only delays the response. Instead, direct your inquiries or requests to your IBM 
representative or to the I BM branch office serving your locality. 

Corrections or clarifications needed: 

Page Comment 

I would like a reply. 0 
Name ____________________________________________________________ _ 

Address 

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



SA21-9216-1 

Fold 

Fold 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY ... 

IBM Corporation 
General Systems Division 
Development Laboratory 
Pu bl ications, Dept. 245 
Rochester, Minnesota 55901 

International Business Machines Corporation 
General Systems Division 
57750 Glenridge Drive N.E. 
Atlanta, Georgia 30301 
(USA Only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
{International} 

Fold 

FIRST CLASS 

PERMIT NO. 387 

ROCHESTER, MINN. 

Fold 

() 

S 
» 
0 
~ 
Ie 

r 
3· 
(1) 

" 
'~ 

~ 
N 
-a 

cb 
N 

,£ 

.. ' '..,. 

0;(,,-
.:ai,<.\. 

I, 
,) 




