GA21-9353-0
$5280-01

IBM 5280
Distributed Data

System

Functions Reference Manual

This reference manual is intended for people who need the
following information about the 5280:

® An overview of system programming and system function
® A description of system and partition data areas

® A description of machine addressing and object code
instructions

® How to use system diagnostic aids

In the appendixes are hexadecimal conversion and addition
tables, EBCDIC and ASCII charts, and SCS control codes.

Related Publications

® /BM 5280 Data Areas and Diagnostic Aids Handbook,
SY31-0595

® /BM 5280 Assembler Language Reference Manual,
SC21-7790

® [BM 5280 Communications Utilities Reference Manual,
SC34-0247

First Edition (February 1980)

Changes are periodically made to the information herein; these changes will be reported in
technical newsletters or in new editions of this publication.

Use this publication only for the purposes stated in the Preface.

It is possible that this publication may contain reference to, or information about, IBM products
(machines and programs), programming, or services that are not announced in your country.
Such references or information must not be construed to mean that IBM intends to announce
such IBM products, programming, or services in your country.

Publications are not stocked at the address below. Requests for copies of IBM publications and
for technical information about the system should be made to your IBM representative or to the
branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use the Reader’s
Comment Form at the back of this publication to make comments about this publication. tf the
form has been removed, address your comments to IBM Corporation, Product Information
Development, Department 997, 11400 Burnet Road, Austin, Texas 78758. I1BM may use and
distribute any of the information you supply in any way it believes appropriate without incur-
ring any obligations whatever. You may, of course, continue to use the information you supptly.

© Copyright international Business Machines Corporation 1980

CHAPTER 1.5280 FUNCTIONS AND STORAGE

OVERVIEW e e P |
System Controller 1
Main Storage v . i i i e e e e e e e e e 3

Main Storage Addressing 4
Common Area i i e e e e e e 5
System ControlBlock 6
Common Functionsand Help Text 8
Configuration Table 8
Error Recording Tables 8
Resource Allocation Table 9
ASCll Translate Table 9
Partitions e e e e e e e 9
Partition IOB e 10
Logical /O Table, 10
Keyboard/Display IOB 10
Registers and Indicators 10
PartitionWork Buffer 12
System Work Buffer 12
Foreground and Background Partitions 12
Inputand OutputBuffers 13
External Status Processing 13
Loadinga Partition 14
Partial Overlay 14
ErrorRecovery 14
SUBTOULINES o s e e e e e e e 15
Address Validity Checking 16
OpeningaDataSet 16
ShareDataSetOpens 18
Keyboard/Display 1/O Control 19
Keyboard/Display Storage 20
Screen Format Control Strings 20
FunctionsandModes 20
Magnetic Stripe Reader 21
Elapsed TimeCounter 21
Errors Detected by the Keyboard/Display Microprocessor . . 21
Diskette /O Control 21
Error Recovery and External Status 22
PrinterControl e 22
Error Recovery and External Status 22
CommunicationsControl 23
Error Recovery and External Status 24
Typical Operation, 24
CHAPTER 2. MAIN STORAGE DATAAREAS 27
System Control Block 28
Common Functions and Gilobal Tables 35
Global ConfigurationTable 36
Error Recording Tables 37
Hard Error Table Format 38
Soft Error Table Format 46
Resource Allocation Table 46
ASCIll Translate Table 438

Contents

Partition Area 49
Partition10OB 50
Logical /O Table 56
Keyboard/Display IOB 57
System Indicators within a Partition 75
System Registers within a Partition 77
Diskette IOB 78
Printer IOB 87

System Tables 94
System Table for Data Tables 95
System Tables for Edit Format Control Strings 96
System Tables for Screen Format Control Strings 97
System Tables for Prompts and Constant Inserts 93
System Tables for Main Storage Duplicate Areas 99

Screen Format Control Strings 100
ByteGroup D 101
Control ByteGroup 102
Data Field Byte Groups 107
Constant Insert Dataand Prompts 110
Display Attributes 111

Edit Format Control Strings 11
Header Bytes 112
Byte Groups i e e 113

CHAPTER 3. KEYBOARD/DISPLAY STORAGE 121

Refresh Buffer Area 123

Validity Table 123

Storage Area e e e e e e 124
Monocase Exception Table 125

DiacriticTable 126

Refresh Areas for the StatusLine 127

Display Control Area 127

Display Translate Table 129

Katakana Translate Table 129

Scan Code Translate Table 130

CHAPTER 4. OBJECT CODE INSTRUCTION FORMAT ... 131

Addressing Methods Within a Partition 131
Addressing a Byte Within a Partition 132
Addressing an Object Code Instruction 132
Instruction Displacement 132
Addressing a Decimal Register 133
Addressing a Binary Register 134
Indicator Addressing 135
Addressing Through aSystem Table 136

Addressing Methods Outside the Partition 136
Addressing Through a System Table 137

Constants e e 137

Instruction Format 138
Mnemonic to Op Code Conversion Chart 138
Unconditional Branch (GOTO/NOP) 140
Test Decimal Register for O {Zero) or Blank (IF Rn0) . .. 141
Test Format Number (IF fmt) 142

Test Binary Register for Zero (IFBRnO)
Test and Reset indicator {IFIR in)
Test Decimal Register for Negative (IF Rn-)
Decrement Binary Register and Test for Zero (DECR BRn).
Test Indicator {IF In}
Indexed Branch (GOTO BRn/GOTABBRn)
Subroutine Call (CALL/CALLTB)
Execution Sequence
Subroutine Return or Enable External Status
(RETURN/RETEXT/ENABLE)
Execution Sequence e e
Test Decimal Register for Absolute Number (IF Rn AN) . .
Test Decimal Register for Self-Check Digit (IF Rn CK) . . .
Test Decimal Register for Signed Number {IF Rn SN)
Decimal Register Add {+)
Decimal Register Subtract (<)
Decimal Double-Register Divide (/) e
Decimal Register Exchange (<=2>)
Decimal Register Copy (=}
Decimal Double-Register Multipty (*}
Decial Register Shift Right, Blank Pad (SR)
Decimal Register Divide (/)
Decimal Register Multiply {*}
Decimal Registers, Move Partial Contents (MVER)
Decimal Registers, Move Partial Contents with Offset
(MOFF) . . e e e e
Decimal Register Zone Modification (ZONE)
Decimal Register Shift Left, Blank Fill (SL)
Decimal Register Shift Left Signed {(SLS)
Decimal Register Shift Right Signed (SRS)
Decimal Register Shift Right and Round (SRR)
Read a Record from a Data Set (READ)
Formatted Read to Storage (REBF)
Open a Data Set or initialize Communications
(OPEN/TOPEN/TINIT)Y i
Ciose a Data Set or Terminate Communications
(CLOZ/TTERM) e
Search a Data Set (SEARCH)
Test Data Set Status Indicators (IFDSI}
Position Diskette (POSN)
Read from Communications {(TREAD)
Search Resource Allocation Table {SRAT)
System Lock (SYSLCK)
System Unlock {(SYSUNL)
Load a Partition (LOAD)
Exita Partition (EXIT)
Write a Record to a DataSet (WRT)
Insert a Record intoaDataSet (WRTHI)
Insert a Block of Records into a Data Set (INSBLK)
Initialize a Diskette (INIT)
Allocate a Data Set fALLOC)
Delete a Record from a Data Set (WRTS)
Wait for 1/O Comptletion (WAIT/TWAIT)
Write to Communications (TWRT)
Formatted Write from Registers (WRBF)
Device Control (DEVCTL)
Formatted Write to the Screen (WFMCRT)
Communications Close or Device Control
(TCLOZ/TCTL) e e e e
Set Indicator On {SON)
Set Indicator Off (SOFF)
Skip on AND, Exclusive-OR Mask (AND)

ann
144

145
146
146
147
148
149

Skip on Exclusive-OR, AND Mask (RXORW) 203
Constant insert f=constant} 202
Exchange Binary Register Contents (<=2 204
Immediate Load ot Positive Constant into Decimal Register
(Rn=+4n) 204

Immediate Load of Negative Constant into Decimal Register

(Rn=-n) . . 205
Generate Self-Check Number (GSCK) 205
Convert Binary to EBCDIC (BINHEX) 206
Convert EBCDIC to Binary (HEXBIN) 207
Skip If Not Equal (IFCNOT) 208

Skip If Equal (IFCISY 208
Debugging Aids (PDUMP/PAUSE/TROFF/TRON)
Search Ordered Table for Higher or Equai Entry (TBFH) . 210

Write Table Entry (TBWT/TBWE) 211
Read Table Entry (TBRD/TBRL) 212
Search Unordered Table far Equal Entry (TBFX) 213
Search Reverse Ordered Table for Lower Entry (TBFL) . . 214
Search Table Using Binary Search (TBBS) 215
Insert Table Entry (TBIN) 216
Delete Table Entry (TBDL) 216
Lock Shared Table {ITLCK) 217
Unlock Shared Table (TUNLCK) 217
Compare Decimal for Not Equal (IF RanNE) 218
Compare Decimal for Greater Than or Less Than

(IFRNGT/LT) e 219
Compare Decimal for Equal (IFRnEQ) 220

Compare Decimal for Greater or Equal, or Less Than or Equal

(FRNGE/LE) e e 221
Compare Decimal Digits for Not Equal (IFD Rn NE) 222
Compare Decimal Digits for Greater or Less Than

(HIFD RN GT/LT) e e e 223
Compare Decimal Digits for Equal (IFD RnEQ) 224
Compare Decimal Digits for Greater or Equal,

or Less Than or Equal (IFDRn GE/LE) 225
Compare Binary Half-Register for Not Equal

(IFHBRNNE) 226
Compare Binary Half-Register for Greater or Less Than

(FHBRN GT/LT) e 227
Compare Binary Half-Register for Equal

(IFHBRNEQ) e 228
Compare Binary Half-Register for Greater or Equal,

Less or Equal (IFHBRnGE/LE) 22¢
Compare Binary for Not Equal (IF BRnNE) 23C
Compare Binary for Greater or Less Than

UFBRNGT/LT) e 231
Compare Binary for Equal (tF BRnEQ) 232

Compare Binary for Greater or Equal, or Less or Equal
(IFBRNGE/LE) 238
t oad Decimal Register from Base-Displacement Address

(Rn=DILBRN) 23¢
Store Decimal Register into Base Displacement Address

(DILBRN) =RN) 23t
Load Decimal Register from Labeled Storage

(Rn=labelfl)) 23¢
Store Decimal Register into Labeled Storage

(fabelllen) =Rn} 23¢
Binary Add (BRn+=), 23¢
Binary Add Immediate Data (BRn+=) 237
Binary Subtract (BRn-=) 237
Binary Subtract Immediate Data (BRn-=) 23¢
Binary Double Register Add (BRn(4) +=) 23¢

Binary Double Register Add Immediate Data (BRn(4) +=)
Binary Double Register Subtract (BRn{4) -=
Binary Double Register Subtract Immediate Data
(BRn(4) -=)
Binary Register Load or Copy (BRn=)
Binary Register Load Immediate Data or Address
(BRn=CII'/ADDR)
Binary AND (BRn &=)
Binary AND with Immediate Data (BRn &=)
Binary OR (BRn V=)
Binary OR with Immediate Data (BRn V=)
Binary Exclusive OR (BRn X=)
Binary Exclusive OR with Immediate Data {(BRn X=)
Skip While Index Low or Equal Limit (SKIP WHILE)
Binary Register Shift or Rotate (SL/SR/RL/RR)
Store Binary Register Contents (label = BRn)
Store Binary Register Contents, Indexed
(D(L,BRa)=BRbIL))
Move Characters IMVCIBRn}/MVC(BRn{4))
Indirect Instruction Execution (INXEQ)
Convert Binary to Decimal {Rn =BRn or BINDEC)
Convert Decimal to Binary (BRn =Rn or DECBIN)
Translate (TRANS)
Translate and Test (TRT)
Binary Multiply, Single or Double Register
(BRn*=orBRn{4) *=)
Binary Divide, Single or Double Register
(BRn/=orBRn{4) /=)
Move Characters Within a Partition
(MVC/MVCR/MVCV)
Compare Character Strings (CLC)
Binary Register Add with Base Displacement Address {+=) .
Set Bits On with Mask {SETON)
Binary Register Subtract with a Displacement Address (-=) .
Set Bits Off with Mask (SETOFF)
Binary Double-Register Add with a Base Displacement
Address {+=)
Skip If Bitsare OFF (IFBOFF)
Binary Double-Register Subtract with a Base
Displacement Address (-=)
Skip If Bits are On {IFB ON)
Binary Register Load from a Base Displacement Address (=)
Insert Constant Into a Base Displacement Address
(= constant)
Binary Register AND with Base Displacement Address (&=)
Skip if Byte Equals Constant (IFB IS)
Binary Register OR with a Base Displacement Address (V=).
Duplicate a Character at Base Displacement Address (DUP) .
Binary Register Exclusive OR with a Base Displacement
Address {X=)
Replace Field on Screen (REPFLD)
Keyboard Attach (KATTCH)
Keyboard Detach (KDETCH)
Read Elapsed Time Counter
Cancel Current Enter Command (CNENTR)
Release Character and Field Edits (KEYOP)
Change Row Attribute (KEYOP)
Change Screen Position Pointer (KEYOP)
Accept Keystrokes and Store (KACCPT)
Pass Scan Code to Keyboard (KEYOP)
Pass EBCDIC to Keyboard (KEYOP)
Display Extra Line (DISPEX)

. 239

261
262

263
264
265

266
267
268
269
270

Display Status Line (DISPST)
Request Keyboard Error Mode (KERRST)
Reset Keyboard Error Mode (KERRCL)

Sound Buzzer (BUZZ)
Perform Keyboard Function (KEYOP)
Allocate Keyboard/Display Storage (KEYOP)
Click Keyboard (CLICK)
Open Keyboard/Display (KEYOP)
Reset Magnetic Stripe Reader (RSTMG)

Read Magnetic Stripe Reader (READMG)
Device Control Read (KEYOP)
Device Control Write (KEYOP)
Keyboard/Display External Register Read (KEYOP)
Keyboard/Display External Register Write (KEYOP)
Load Keyboard/Display Control Area (LCRTC)
Store Keyboard/Display Control Area (SCRTC)
Move Characters to Screen (CRTMM)
Move Characters from Screen (MMCRT)
Resume Data Entry {(RESUME/RESMXT/RESCAL)
Enter (ENTR)

CHAPTER 5. DIAGNOSTIC AIDS
Display/Alter Function
Display Main Storage
Alter MainStorage
Display the Beginning of a Partition or of an IOB
Move Keyboard/Display Storage
Search Storage
Test for a Change in a Byte or a Bit
Dump and Trace Console Functions
Dump Function
Trace Function
Address-Stop Mode
Main Storage Display
Forward Scroll
Backward Scroll
Replace Main Storage
Single Instruction
Loop
Main Storage Dump
Trace

CHAPTER 6. KEYBOARD FUNCTIONS

Keyboard Function Control

Functions Normally Handled by the 5280
Alpha Shift Function
Character Advance Function
Character Backspace Function
Clear Screen Function

The Command Key
Cursor Movement
Delete Function

Duplicate Function
Field Advance Function

Field Backspace Function
Field Correct Function
Field Exit Minus Function
Field Exit Minus/Dash Function
Hex Function

Insert Function

Katakana Alphameric Lowershift
Katakana Aiphameric Uppershiit
Katakana Shift Lock Function
Katakana Lowershift,
Katakana Uppershift
Record Advance Function
Record Backspace Function
Reset Function
Shift Function e
Shift Lock Function
Skip Function

APPENDIX A. HEXADECIMAL CODES AND CHARTS
EBCDIC Charts for Printable Characters

APPENDIX B. SCS CONTROL CODE CHARACTERS

APPENDIX C. KEYBOARD FUNCTIONS: EBCDIC CODES
AND BITNUMBERS

vi

331
331
331
331
332
332
332
333
333
333
334

Chapter 1. 5280 Functions and Storage Overview

Components of the 5280 system include the:

® 5281 Data Station

5282 Dual Data Station

5285 Programmable Data Station

5286 Dual Programmable Data Station

5288 Programmable Control Unit

5256 Printer
® 5225 Printer

All data stations and the control unit may contain diskette drives. The 5285 and
5288 can have an optional printer attachment. The 5285 and 5288 can contain an
optional communications attachment. A system controller contained in the 5285,
5286, and 5288 handles all system functions. The 5281 and 5282 data stations do
not have a controller and, therefore, must be attached to a data station or control
unit.

SYSTEM CONTROLLER
The 5280 system controller contains a main microprocessor, the partitioned main
storage, and the device attachments. The device attachments contain the device
microprocessors. The main microprocessor and the device microprocessors work

independently of each other but share the same main storage.

The following illustration shows the main components of the system controller.

5280 Functions and Storage Overview 1

!

The main microprocessor n performs all of the non-1/0 (input/output) operations,
such as mathematical computations and data movement. The main microprocessor
evice microprocessors [through [}

The device microprocessors control all the operations for the attached devices. The
main microprocessor communicates with the device microprocessors via |0Bs
(input/output control blocks) in main storage B and hardware attention lines
When the main microprocessor determines that work is required of a device micro-
processor, it puts information into the appropriate 10B and activates an attention
line to the device microprocessor. When the device microprocessor detects the
attention from the main microprocessor, it reads the 10B and performs the requested
work. The storage access control [J directs access to main storage for all the micro-
processors.

Attention
Lines\,
Main
MPU n : ROS
Keyboard/Display Attachment
~| SKBD/DispI
torage
Display .
@ [7:5 Adapters Displays
(4) - {up to 4)
e
MPU B
N ems—
4} Keyboard
Adapters Keyboards
KBD/Displ (4) - (up to 4)
ROS
Diskette Attachment
Main Storage Disk
Storage <::> Access '<:$ iskette

Control MPU Diskette
B B ﬁ Adapter

Diskette
Diskette Units
ROS (up to 4)

Printer Attachment

Printer

——

<::> Attachment

MPY ﬂ<:> Printer "> To Printer
Adapter

Printer
ROS

Communications Attachment

— " Comm Line
Communications Adapter Adapter |
<l——>{ meu 5| * 38LS Z

® DDSA

A Data * EIA

Trap

Communications

ROS

MAIN STORAGE

Main storage is divided into the areas illustrated in the following figure:

System Control Block
Common

Area n)

Common Functions and Tables

Partition
Partition
A ~d
Area |- ~
Partition
L
System

Work Area

The common area [§§ is always located at the beginning of main storage. It con-
sists of the system control block and the common functions and tables.

The partition area contains up to eight partitions. Except for the first and

last partition, each partition can be up to 64 K bytes in iength. The first partition
can be up to 64 K minus 256 bytes, and the last partition can be up to 64 K minus
768 bytes in length. Total main storage size can be up to 160 K. A program can
be loaded into each partition. After a program is loaded into a partition, the
partition contains the I0Bs, registers, indicators, formats, 1/O buffers, tables,

data areas, work area, and object code instructions required for the execution of
the program.

The last 256 bytes of main storage are used by the controller as a system work area

5280 Functions and Storage Overview 3

Main Storage Addressing

Main storage is divided into 64 K byte sections referred to as pages. There can be a2
maximum of 160 K bytes of main storage.

.
Page O 64 K Bytes
Maximum
Storage 1
Size Page 1 64 K Bytes
| Page 2 32 K Bytes

A partition cannot cross a page boundary, and therefore cannot be greater than
64 K bytes in length. Each byte within a partition can be uniquely addressed with
16 bits, from hex 0000 to FFFF.

Although the common area is always located on page O, a partition may be on any
main storage page.

When an application program addresses an area outside the partition, a 4-bit page
number precedes the 16-bit storage address. This 20-bit address is used when a
partition addresses an area within the common area.

COMMON AREA

The following is a general illustration of the system contro! block and common
functions and tables located in the common area of main storage.

Storage
Address

{in hex) 0 1 2 4 5 6 7 8 9 A B [D E
i 1 | | L 1 1 | | | | 1
0000 Partition 0 Partition 1 Partition 2 Partition 3
0010 Partition 4 Partition 5 Partition 6 Partition 7
- System Use Only by
0040 Diskette O Diskette 1 Diskette 2 Diskette 3
0050 Diskette 4 Diskette 5 Diskette 6 Diskette 7
o060 2 =
oogg | Printer 108 System Use Only
Pointer
0090
00A0 Communications
CCB Pointer System Use Only
0080 System Use Only bolnarguprgic:‘t;?ns l System Use Only
00c0 | pate Storage IPL| e System Use Only
Size Flag
Resource
00D0 System Flags Allocation System Use Only
Table @
Config- Self Edit
00EQ System Use Only Error Log Lockout Bytes uration Format
Tabte @ Check® | Table®
Config- Global p. Screen
00F0 uration System Use Only Table Nage Format ir;;:pé
Data Pointers @ |"U™ Table @
0100 = Common Function Pointers :p
System Use Only
:“: Global Table Pointers ~1:
I Common Function Routines (object code) l
.F Help Text T
N BN
Global Configuration Data Table
= : -
5 Error Recording Tables (variable length) *
Resource Aliocation Tabie {configuration option) .1‘1:
J. ASCI! Translate Table (configuration option) J‘
. T

5280 Functions and Storage Overview 5

Partition

108 Pointers

Diskette

108B Pointers
System
Control
Block

Common Function
Routines and
Global Tables

System Control Block

The system control block is located in the first 256 bytes of the common area. The
fields of the system control block are assigned to fixed locations; the fields contain
pointers to the partitions, device {OBs, and global system tables that are not assigned
to fixed locations. Other system control block fields contain date, timer, and
configuration information.

Partition Pointers

Each partition pointer is a 4-byte block of information about a partition. This
information includes whether a program has been loaded into the partition, whether
the partition is a foreground or background partition, and the address of the begin-
ning of the partition. The partition OB is always stored in the first 256 bytes of a
partition, so this address is also the absolute address of the partition 10B. The parti-
tion 10B contains information about the partition and the program loaded into the
partition. The main microprocessor uses the information in the partition pointer to
find the partition; it uses the information in the partition 0B to execute the object
code instructions stored within the partition.

Hex

Address

0000 Partition 0 | Partition 1 Partition 2 Partition 3 |} Partition
1 10B

System | 4510 Part}ion4 Part7i0n5 Partition 6 | Partition 7 || Pointers

Control 1
Block / o
/ Common Functions and Tables

Partition O

L ¢

| 00F0

Partition 1

Device I0B Pointers

Each device 10B pointer is a 4-byte block of information about a diskette drive, a
printer, or the communications attachment. The information indicates whether the
device is attached and includes the address of the first device 10B assigned to that
device. If more than one IOB is assigned to one 1/0 device, an 10B chain is used;
each device 10B contains the address of the next assigned device IOB. The device
10Bs are stored within the main storage partitions and describe the 1/0 to be per-
formed by each 1/O device. The device microprocessor uses the information in the
device 10B pointers to find the first device I0OB. They use the information in the
device 10B to perform the required 1/O and to find the next device IOB. The last
10B on the chain points back to the first 10B.

Hex
Address

\
0000 Partition O Partition 1 Partition 2 Partition 3 Partition
> 10B

0010 Partition 4 Partition 5 Partition 6 Partition 7 Pointers
J

System Use Only

System
Control ¢]]] -) Dick
Block 0040 Diskette O Diskette 1 Diskette 2 Diskette 3 I(i)sB ette
0050 Di?étte 4 Diskette 5 Diskette 6 Diskette 7 Pointers
—)
> / ~~] Printer
~ 1
L 0080 System Use Only I0B
Printer Pointer
N,
< = / ~
= | /
I0B
Partition 0 Chains
A—"1
- - I
/ H

- .

/Diskette 010B 7—/’/ /
- —

/ Printer 10B / 7/ -

= / // \'L~
-—/ .
Diskette 5 IOB
/
Diskette 0 IOB
Printer |IOB
~~ ~~

5280 Functions and Storage Overview

Pointers to Global System Tables

Each globa! system table pointer contains the address of a global system table.
System tables contain the addresses of prompts, formats, tables, and other data
areas. System tables are used within each partition to contain the addresses of the
data areas within that partition. The global system tables contain addresses of
global data areas that are stored within the common area rather than within a
partition. Data areas stored within a partition can be used only by that partition;
however, global data areas can be used by any partition. Global data areas include
a printer configuration table, screen formats, prompts for keyboard/display i/0,
edit formats for diskette, printer, or communications |/O, data tables for table
operations, and self-check data for self-check operations.

Common Functions and Help Text

Following the system control block is an area of variable length that contains
common function routines. These routines can be called from any partition; return
is made to the calling partition.

The routines stored in the common functions area depend upon the individual
system. A table of help text messages may be included in the common area. These
messages can be called from the keyboard in response to the Help key.

Configuration Table

A configuration table is included in the common area if one or more printers are
attached to the system. The address of the configuration table is stored in the
system control block.

The configuration table has one entry for each printer. Each entry has such informa-
tion as the device subaddress and the number of entries the printer has in the soft
error count table.

Error Recording Tables

Two error tables are stored in the common area as global tables 0 and 1: (1) the
system hardware error log, and (2) the soft error count table. The system error log
is of variable length and is used by the microprocessors to record system hardware-
related errors. Each table entry has information to identify the device, IOB and
program associated with the error. The soft error count table is used by the printer
microprocessor to record the number of soft printer errors that occur during pro-
gram executions. These error tables provide a history of system hardware-related
errors and 1/O errors that can be written to a diskette with a special error log

dump program. See the Data Areas and Diagnostics Aids Handbook for information
about communications error tables.

Resource Allocation Table

The optional resource allocation table specifies the logical devices that can be
accessed by each partition. Each table entry contains a logical device ID and the
physical address of the device. The logical device ID, a 2-character 1D assigned to
the device during system configuration time, can be used to address the device.
The main microprocessor uses the logical ID to find the physical address of the
device in the resource allocation table.

ASCII Translate Table

Data is stored in main storage in EBCDIC notation. However, data in another
notation can be translated to EBCDIC as it is read into an 1/O buffer. Or data can
be translated from EBCDIC to another notation as it is read from an 1/0 buffer.
The optional ASCII translate table can be used by any partition to translate data
to or from ASCil notation. The ASCII table is another global table.

PARTITIONS

There may be up to 8 partitions numbered sequentially from zero. There must be
at least one partition for each keyboard. A partition is of variable length, but it can-
not cross a 64 K byte boundary. The number, size, and location of the partitions

is defined at system configuration time. The first 256 bytes of each partition con-
tains control information at fixed displacements from the beginning of the partition.
The next 3840 bytes may be used as needed for indicators, decimal registers, or
binary registers. This area is followed by a variable length storage area. The last
256 bytes of each partition is used for a work area. Each byte of a partition is
addressable relative to the first byte of the partition. The following illustrates the
areas of a main storage partition.

Relative
Hex
Address
0000 Partition I0B
0040 Logical 1/0 Table
0080 Keyboard/Display 10B
0100 Indicators and Registers
1000
. Storage for Object Program, J
T Buffers, Device I0Bs, and N
Other Data Areas
Partition Work Area (256 bytes)

5280 Functions and Storage Overview 9

Partition IOB
The partition 10OB describes the partition and the program loaded into the partition.
The main microprocessor loads this information into the fields of the 10B, using
information from the common area and from the application program. During pro-
gram execution, the main microprocessor uses the information to determine the
partition status, the program status, the address of the next executable instruction,
and how long to execute instructions within the partition before going to the next
partition.

The absolute address of the beginning of the partition is stored in the I0B. The
main microprocessor adds this address to the reiative addresses stored in the parti-
tion to generate absolute addresses for the program instructions.

A timer is set when the main microprocessor enters a partition. The 10B specifies
how long the main microprocessor executes instructions within the partition. This
time is determined by the application program. The main microprocessor exits the
partition when the time limit is reached or when it encounters a nonoverlapped 1/0
instruction that is to be handled by a device microprocessor.

Logical 1/0 Table

The logical 1/0 table consists of one 4-byte entry for each 10B that is used in the
program. Each entry contains the address of the 10B, flags, and other information
describing the 10B. The entries are numbered sequentially from hex 00 to 15,
corresponding to the numbers assigned to the 10Bs. The keyboard/display is

always entry zero. When the main microprocessor encounters an 1/0 instruction
during program execution, the instruction specifies the number assigned to the IOB
that describes the work. The main microprocessor uses this number as an index into
the logical 1/0 table; the entry at this index contains the address of the |IOB and
specifies the 1/0 device that is to perform the work.

Keyboard/Display 10B

Every application program must have a properly initialized keyboard/display I0B.
The keyboard/display 10B contains information to control all 1/0 via the keyboard/
display to which the partition is assigned. This information includes the address of
the 1/O buffer, the address of the object code that controls the format of the records
on the screen and in the 1/O buffer, and the address of control tables located in key-
board/display storage. Keyboard display storage is not part of main storage; it is
located within the keyboard/display attachment. The keyboard/display storage
contains translate tables and other control information used by the keyboard/display
microprocessor to process keystrokes and to display characters on the screen.

Registers and Indicators

Immediately following the partition control area are bytes that can be used for
indicators, binary registers, and decimal registers. The first 32 bytes contain 255
indicators. The indicators are numbered sequentially from zero. The first 100
indicators are user indicators, and the remaining indicators are used by the system.
The indicators are iocated in the bytes that aiso can be used for the first 16 binary
registers or the first two decimal registers.

BR1
1016-1031

BR 2
1032-1047

BR3
1048.1063

BR4
1064-1079

BR S5
1080-1095

BR6
1096-1111

BR7
21127

BR9
11441158

BR 10
1160-1175

BR 11
11761191

BR 12
11921207

BR 13
1208-1223

BR 14
1224-1239

BR 15
1240-1255

The first 256 bytes of this area, including the bytes where the indicators are located,
can be used for 128 two-byte binary registers. The first 16 binary registers are used
for the indicators, and the next 16 binary registers are used by the system. The
remaining binary registers may be used for binary arithmetic or logical operations
bY the application program. The binary registers are located in the bytes that also
can be used for the first 16 decimal registers.

0100 BRO BR1 BR2 BR3 rﬂéR4 BRS5 - BR 6 BR7
1000-1015 1016-1031 1032-1047 1048-1063 1064-1079 1080-1095 1096-1111 1112-127

0110 :LY: BR9 BR 10 BR 11 BR 12 BR 13 BR 14 BR 15
5 1128-1143 1144-1159 1160-1175 1176-191 1192-1207 1208-1223 1224-1239 1240-1255

R2BR 16 BR 17 BR 18 BR 19 BR 20 BR 21 Bk 22 BR 23

01F0:

OFFQ

1000

BR 121

BR 122

8K 123

BR 124

5280 Functions and Storage Overview

BR 126

12

The remaining bytes of this area, up to relative address hex OFFF, can be used for
16-byte decimal registers. Counting the first 16 decimal registers, which can be
used for the binary registers, there are 240 decimal registers. Decimal registers R16
through R239 can be used for decimal arithmetic or logical operations by the appli-
cation program. Decimal registers store data in EBCDIC notation and can support

sign control.

Tero BR 1 BR 2 BR 3

B8R4

BR 6 BR7

BR 5
0100; ‘»R1°|ooo-|o15 10161031 | 10321047 | 10481063 | 10644079 | 10801095 | 10964111 | 11121127
0110 ?'31 BRS BRY BR 10 BR 11 BR 12 BR 13 BR 14 BR 15
~nzenas | naeise | 1160175 | 17eiter | 11921207 | 12084223 | 12204239 | 12404255 |
i
. R2BR16 BR17 BR 18 BR19 BR20 BR 21 BR 22 BR 23 :L

01F0° RI5BR 120 IBR121 Iamzz IBRIZB

|BR124 | BR 125

IBR126 I BR 127

Any of the bytes up to relative address hex OFFF that are not used for registers
are used for data storage. The bytes following hex OFFF can be used only for data

storage.

Partition Work Buffer

The last 256 bytes of a partition are used as a partition work buffer. This work
buffer is used during load operations, trace operations, decimal arithmetic opera-
tions, self-check, and formatting. The application program does not access this area.

System Work Buffer

The last 256 bytes of main storage are used as a system work buffer. This system
work buffer is not associated with any partition, and it is not accessed by an appli-

cation program.

Foreground and Background Partitions

One main storage partition is permanently assigned to each keyboard/display. A
partition that is permanently assigned to a keyboard is a foreground partition. Any
partition that is not permanently assigned to a keyboard is a background partition.

When a program executing in a background partition needs to use a keyboard, it
can cause an edge indicator to be displayed on the keyboard/display screen. This
indicator notifies the operator that a background partition needs the keyboard.
The operator can interrupt the program that is using the keyboard and attach the
background partition. When the background partition no longer needs the key-
board, the partition must be detached to give control of the keyboard back to the
interrupted program. Only one partition can be attached to a keyboard/display
at any given time.

INPUT AND OUTPUT BUFFERS

There must be at least one physical buffer in main storage for each 10B in a pro-
gram that has 1/0 instructions. The physical buffer length must be a multiple of

128 bytes. Double buffering can be used for minimal delays in interactive programs;

a second physical buffer is set up so the 5280 can process data in one while an input
or output operation is being performed with the other. Double buffers are also

required to duplicate fields of a previous record into the same field of a current
record. The 5280 keeps track of the buffers and the records that are in the buffers.

Data sets can be blocked for better utilization of diskette space; a logical buffer is
set up and the blocking and deblocking functions are performed automatically by
the 5280. Or the logical buffer can be omitted and logical records can be blocked
and deblocked directly to and from the physical buffer.

EXTERNAL STATUS PROCESSING

While an /0 device is processing 1/0, it may encounter a condition that the device
microprocessor cannot handle, such as an error condition or a condition that
requires operator intervention or execution of object code instructions. When this
occurs, the device microprocessor stops processing the 1/0, places a condition
code into the device I0B, sets an external status flag in the device I0OB, and sets an
attention line to the main microprocessor. The device microprocessor continues
to service the other 10Bs.

When the main microprocessor determines that an 10B has the external status flag
set, it enters the partition and executes appropriate object code instructions to
resolve the conditions. The instructions are determined by the application program.
When the application program has resolved the condition, the main microprocessor
resets the external status flag and goes to the next partition. The device micro-
processor returns to the 10B only when it again receives an I/0O command. The 1/0
command may be a reissue of the last /0O command.

5280 Functions and Storage Overview

LOADING A PARTITION

At IPL, a program can be loaded into any main storage partition. At any time after
IPL, a partition can be loaded by a program instruction or by the standard load
processor in the common function area. The standard load processor prompts for
load parameters to be entered from the keyboard. A program instruction can
prompt for load parameters to be entered from the keyboard, or can obtain the load
parameters from a storage area. The load parameters include the partition number,
the device ID or physical address, and the name of the data set to load. The load
operation can load a data set into another partition or can reload the same partition
with-the same or a different data set. After the main microprocessor obtains the
joad parameters, it attempts to ioad the data set from diskette into the partition.

Unless the diskette sector size is greater than 256 bytes, the first read will cause
256 bytes to be read into the partition. If the sector size is greater than 256 bytes,
the first read will cause one sector to be read into the partition. In either case, the
rest of the object data set will be read into the partition in 4 K byte blocks.

The data set is read from the diskette from the BOE (beginning of extent) to the
EOD (end of data). There must be no gaps of unused diskette space between BOE
and EOD. The first block that is read into the partition contains the partition 10B.
The main microprocessor checks the length specified in the partition 10B and then
checks the length of the partition being loaded. If the size of the partition being
loaded is sufficient for the data set, the load proceeds until all data in the data set
is read from the diskette. If the size of the partition being loaded is not sufficient,
a load error results.

Partial Overlay

A partial overlay can spot load a section of object code or data into a partition
without destroying the program object code already in the partition. A partial
overlay is initiated by a program instruction. The load parameters must include
the address where the partial overlay begins. When the partial overlay is completed,
control returns to the instruction following the load instruction that initiated the
partial overlay operation.

Error Recovery

There are two methods of error recovery that may be used when an error occurs
during a load operation. One method allows the main microprocessor to handle
error recovery. The other method uses error recovery procedures written by the
user. The load instruction indicates which method of error recovery is used.

User Defined Error Recovery

When a program instruction loads a data set into another partition, or if the load
takes place through a common function, the load instruction can indicate that user
defined error recovery procedures will handle error recovery. If the load operation
is successful, control returns to the second instruction following the load instruc-
tion. If an error occurs during the load operation, the main microprocessor places
the error code into a system binary register (BR16) and returns control to the first
instruction following the load instruction. This instruction usually branches to the
error recovery procedures.

Main Microprocessor Error Recovery

There are four types of error recovery procedures, depending on the type of load
taking place when the error occurred. When any type of error occurs, the main
microprocessor sends an error message to the screen and waits for the operator to
press the Reset key. After the reset, error recovery is as follows for the different
types of loads:

Global load, prompts for the load parameters to be entered from the keyboard.
After reset, the load prompt is redisplayed with the original information that was
entered. The operator can then enter the correct information.

Program instruction reloading the same partition, with the standard load prompt

in the common functions area available. After reset, the load instruction js replaced
with the standard load prompt, which prompts for the load parameters to be loaded
from the keyboard.

Program instruction reloading the same partition, with no standard load prompt
available. There is no way to retry this type of load. The main microprocessor

issues an exit instruction and goes to the next partition. The partition that was

being loaded is available to be loaded by another partition.

Program instruction loading another partition. After reset, the load instruction is
not retried. The partition that was being loaded is made available to be loaded by
another load instruction or by the standard load processor. Control returns to the
instruction following the load instruction.

SUBROUTINES

The 5280 supports a variable-length address stack for use during subroutine calls
and returns. The assembler places the address (relative to the start of the partition)
of the address stack into BR18. During program execution when a subroutine call
is executed, the main microprocessor places the 2-byte absolute address of the next
sequential instruction into the address stack pointed to by BR18. Then the content
of BR18 is incremented by 2 so that it points to the next available 2-byte entry in
the address stack. When a return is executed, the content of BR18 is decremented
by 2, and the address stored in the address stack at the location pointed to by BR18
is taken as the return address.

5280 Functions and Storage Overview

15

ADDRESS VALIDITY CHECKING

Addresses in assembler language instructions are specified in the following two ways:
(1) directly by a 2-byte address in the object code that was generated by a reference
to a label in the source code, and (2) indirectly by an address in a binary register
(this address is usually calculated), to which a displacement may be added to pro-
vide an offset into the base address. No validity checking is made for direct
addresses; because the 2-byte address in the object code is generated by a reference
to a label in the source code, the referenced label must be valid and within the parti-
tion for the code to assemble correctly. For indirect addresses (except addresses
that access areas within the common area), the 5280 checks the address to which
access is being made to verify that the address is within the partition. I a displace-
ment is included in the instruction, it is added to the base address and the resulting
address is checked to verify that it is within the partition. No validity checking is
made on addresses that access areas within the common area (20-bit addresses). No
additional checking is made to an address within an instruction that is modified by
the INXEQ instruction; if the INXEQ instruction modifies an address within an
instruction and the resulting address points to an area of storage outside the partition,
unpredictable results will occur.

OPENING A DATA SET I10B

The main microprocessor uses the OPEN instruction to prepare for 1/O processing.
When the main microprocessor executes an OPEN, it places the 10B on the 10B
chain, initializes (or updates) information in the I0B, and verifies data set sharing
capabilities.

To process an OPEN, the main microprocessor:

1. Obtains the I0OB pointer address from the logical 1/O table entry for this data
set.

2. If the 10B pointer address specified in the logical 1/O table is not between hex
40 and BC inclusive, or is not on a 4-byte boundary, the main microprocessor
uses the device ID (bytes hex 60 and 61 of the IOB) as a search argument and
searches the resource allocation table. If a match is made on the partition
number and device ID, the main microprocessor takes the physical address
given in the resource allocation table and uses it to open the data set IOB. If
the system does not have a resource allocation table, an external status (0736)
occurs. [f no match is made on the device ID, an external status (0725) occurs.
If the physical address that is found in the resource allocation table is invalid,
an external status (0726) occurs. There are two 10B pointers in this range
(address hex AQ and A4) that are used exclusively by the communications
access method to access the communications microprocessor; these {OB
pointers are not to be used by the application program. No checking is made
to ensure that the application program does not use these I0B pointers, and
unpredictable results may occur if they are used.

Determines the proper attention line to use, based on the 10B pointer address,
and checks to determine if the device to open is installed. The main micro-
processor does this by checking the third byte of the 0B pointer for a non-
zero value. After checkout, each device microprocessor places hex FF in this
byte to signal that the device is installed. During an open, the main micro-
processor detects this nonzero value and continues doing the open. When the
main microprocessor places the address of an 10B in the 10B chain, it leaves
bit 1 of the third byte on so that there will always be a nonzero value there
for later opens. If the device is not installed, this byte is left at hex 00 after
checkout; the main microprocessor interprets this zero value to indicate that
the device is not installed and will force an external status (0731) on any
attempt to open the device.

Checks to determine if the data set OB is already open. If it is already open,
skip to step 8.

Checks to determine if there are any other IOBs on the chain. If the new |0OB
is label update, and if there are other 10Bs on the chain, an external status
{0733) occurs. If there are no other 10Bs on chain, the address of the label
update 0B is placed on the chain and bit 3 of byte 0 of the OB pointer for
this 10B is set; this marks the 10B chain as nonshare. If the new I0B is not
label update, and if bit 3 of byte O of the 10B pointer is set, external status
(0733) occurs. If there are no other 10Bs on the chain, the main micro-
processor places the address of the IOB on the chain and goes to step 8.

If there are other 10Bs on the chain, the main microprocessor checks the
share specifications.

If the share/access specifications are valid, the main microprocessor places
the 10B on the chain. If they are not valid, external status (0727) occurs.

Saves the commands and operands in the 10B, turns on bits 0 and 1 in byte 0
of the 10B, and raises the attention line to the appropriate device
microprocessor.

Formatting is not supported during an open (or allocate). If the HDR1 label
should be formatted, a formatted read from the physical buffer should be executed
after the open.

5280 Functions and Storage Overview

17

18

Share Data Set Opens
When a request is made to open, data set sharing is verified. A testis made to
determine if the device subaddress of the new 10B matches that of the first IOB in
the chain. If they do not match, the test is made on the next IOB in the chain. If

there is a match, a test is made to determine if the IOB pointer address for the new
data set is between hex 40 and 7C, inclusive. If it is not within this range, a match

has been found and the share/access checking continues. If the 0B pointer address
is within this range, an additional check based on data set names is made. If the
data set name of the new 0B matches the data set name of the old 10B, the share/
access checking continues. If the new data set name does not match the data set
name of the old 10B, a mismatch has occuired and the next 1OB in the chain is
checked. For each match found, options based on read/write, share/don’t share
must compare. Four bits are assigned to contain the following access and share

information:
Bit Meaning
0 Read
1 Write
2 Read share allowed
3 Write share allowed

The following diagram shows how the main microprocessor compares the access
type to the share options:

Start
New share
Status=0 Yes ——Error

No
New share New share
Status = 11——No —— Status = Old =— No ———Error

Access type
Yes

Yes]

Old share

Status = 00 —— Yes ——Error

o

Old share Old share
Status = 11—— No — Status = New — No ——Error
Access type

Yes
Yes J

If the compare of options does not match according to the following diagram, an
external status {0727) occurs. The error code is saved in the 10B, the appropriate
external status code and external status bit are set, and a branch is taken to the
external status subroutine.

R=Read Old
W=Write
S=Share | New

R/ | R/R| R/ | R/ | W/ | WR |W/ | W | RRW/ | R&W/ | R&W/ | R&W
RS | &WS] WS | NS | RS} &WS | WS | NS | RS R&WS | WS /NS

R/RS | OK | OK

R/R
&WS | OK| OK OK | OK oK OK

R/NS

W/RS OK } OK

W/R
&WS OK | OK OK | OK OK oK

W/WS OK | OK

W/NS

R&W
/RS oK

R&W/
R&WS OK OK OK

R&w
/WS OK

R&wW
/NS

KEYBOARD/DISPLAY 1/0 CONTROL

The keyboard/display attachment consists of a keyboard adapter, a display adapter,
keyboard/display storage, and the keyboard/display microprocessor. Optional A
magnetic stripe readers and an optional elapsed time counter may also be included.

The keyboard/display microprocessor handles all data entry via the keyboard. It can
handle up to four keyboards. For each keyboard it processes keyboard functions
and data entry, and detects keystroke errors. It processes keystrokes and handles
the character display according to the keyboard/display storage information. It uses
a screen format control string, which is generated from the application program, to
control the format of the input record as it is displayed on the screen and entered
into the 1/0 buffer.

5280 Functions and Storage Overview

Keyboard/Display Storage

Each display has an assigned keyboard/ /display storage area. Within this areais a
refresh buffer for the screen, and translate tables and other control information
used by the keyboard/display microprocessor to interpret keystrokes and to display
characters. The translate tables include the: (1) scan code translate table, which
translates each keystroke scan code to a corresponding EBCDIC value that can be
placed into the main storage 1/0 buffer; (2) display translate table, which trans-
lates each EBCDIC value to a display code before it is displayed on the screen; (3)
validity table, which defines such things as the EBCDIC codes that are valid for
each character set; and (4) diacritic table, which defines diacritic character combina-

+isns. Othor contrao! information in the kevhoard ,dte lav storace area defines con-
UONS. UTHCT CONTrCH invormation in tne Xeyoseard 12y STOrage area gevines Cor

figuration of the lines on the screen and the symbols displayed on the status line
for particular field definitions. The keyboard/display 0B specifies the address in
keyboard/display storage of the storage area assigned to the keyboard.

Screen Format Control String

A source statement in the application program generates a string of object code,
referred to as a screen format control string, that describes the format of each input
record. This screen format control string specifies the length and valid characters for
each input field, and describes prompts, display attributes, duplication fields and
constant insert fields. It indicates the position on the screen where each field and
prompt is to be displayed, and the position in the 1/O buffer where each field is to
be placed. The application program specifies the screen format control string and
the 1/0 buffer to use, and the addresses of the string and buffer are stored in the
keyboard/display 10B.

As the keyboard/display microprocessor processes each field of the screen format
control string, it places the input data into the 1/0 buffer and displays it on the
screen. However, the keyboard/display microprocessor cannot move the data from
the 1/O buffer to other main storage locations, or to another 1/0 device. When a
screen format control string is completed, the keyboard/display microprocessor
places a record advance condition code into the |0OB and reports external status to
the main microprocessor. The main microprocessor must process the contents of
the 1/0 buffer according to the application program instructions.

Functions and Modes

When a function key is pressed, the keyboard scan code is translated by the key-
board/display storage translate tables to an EBCDIC code. This EBCDIC code
initiates the appropriate function. The function may be processed by the key-
board/display microprocessor, by the application program, or by both.

The data entry mode may affect the way the function is processed. The keyboard/
display microprocessor supports several modes of entry. (See the keyboard flags at
hex displacement 3E in the keyboard/display OB for a list of the modes.) The
modes are selected by the application program, which must set the assigned mode
flags in the keyboard/display 10B. The keyboard/display microprocessor controls
the keyboard/display 1/0 and functions in the mode specified by the mode flags.

Magnetic Stripe Reader

The optional magnetic stripe reader reads a character string that is stored on a
badge. When the badge is inserted into the reader, the character string is read into a
buffer within the reader. The keyboard/display microprocessor reports an external
status condition to the main microprocessor. The main microprocessor then exe-
cutes the application program subroutine that reads the character string into main
storage and processes it.

Elapsed Time Counter

The optional elapsed time counter records elapsed real time. The keyboard/display
microprocessor maintains a timer that increments a 2-byte field in the system con-
trol block every 1.6 seconds. A program instruction can read this 2-byte field and
the 1-byte timer value into a main storage area to measure the time elapsed during
a job or during a portion of a job.

Errors Detected by the Keyboard/Display Microprocessor

The keyboard/display microprocessor detects keystroke errors and keyboard/display
hardware errors. Most keystroke errors are handled by the keyboard/display micro-
processor, which displays an error code on the screen and waits for the operator to
press the Reset key. All hardware errors are entered into the error recording table
in the common area. In addition, certain conditions cause the application program
to be notified via external status.

DISKETTE 1/0 CONTROL

The diskette attachment consists of a diskette adapter and the diskette micro-
processor. Each diskette microprocessor can handle up to 4 diskette drives.

The diskette microprocessor handles all data 1/0 functions for the diskette drives.
These functions include reading and writing data set records, blocking and deblock-
ing records, searching data set records, and managing shared data sets. The diskette
microprocessor also handles allocating data sets, opening data sets, and closing data
sets. It can also change data set labels on a diskette and insert or delete records.

Although all data is stored within main storage in EBCDIC notation, the diskette
microprocessor can read data set records in another notation and translate them to
EBCDIC, or it can translate EBCDIC records to another notation and then write
the translated records to a diskette. The translation requires translate tables, which
may be within a main storage partition or within the common area.

5280 Functions and Storage Overview

\

ol

Initial attempts to recover from errors are tried by the diskette microprocessor.
When an error occurs during an 1/0 operation, the operation may be retried a cer-
tain number of times; the number depends on the operation and the type of error.
If the error is not resolved by the diskette microprocessor, the diskette micro-
processor places a 4-digit condition code in the diskette |OB and reports external
status. When the main microprocessor determines that an external status condition
is pending in the diskette OB, it uses the condition code to find the appropriate
subroutine in the application program to resolve the condition.

Error Recovery and External Status

PRINTER CONTROL

The printer attachment consists of a printer adapter and a printer microprocessor.
The printer microprocessor can handle up to four 5256 printers and one 5225
printer. The 5256 printer is a tabletop matrix character printer. The 5225 is a floor
standing line printer.

The format of the printed output may be modified by SCS (standard character
string) control characters. The SCS control characters may be placed in the printer
output data stream by the application program unless the program is using an SCS
conversion data set or unless no modification is desired. Each data set is described
with a control statement in the source program. If the data set description specifies
the data set type as an SCS conversion data set, the main microprocessor places the
SCS control characters in the printer output data stream.

The printer microprocessor handles blocking and deblocking of output records. it
also handles data sets that specify share attributes. For the printer, share attributes
indicate that more than one data set can use the same printer.

Error Recovery and External Status

Initial attempts to recover from certain errors are tried by the printer micro-
processor or by the printer. If the error or external status condition is not resolved
by the printer or printer microprocessor, the printer microprocessor places a 4-digit
condition code in the printer |I0B and reports external status. When the main
microprocessor determines that an external status condition is pending in the printer
10B, it uses the condition code to find the appropriate subroutine in the application
program to resolve the condition.

The printer microprocessor records errors in the error tables, which are located in
the common area.

COMMUNICATIONS CONTROL

The communications attachment consists of communications adapter, a communi-
cations data trap, and the communications microprocessor. The communications
microprocessor supports one communications line. The adapter can provide data
link support for BSC or SDLC protocol. The data trap is used by the communica-
tions microprocessor to store diagnostic information. See the Data Areas and Diag-
nostic Aids Handbook and the Communications Utilities Reference Manual for
information about communications.

The communications microprocessor handies communications 1/0, including send-
ing status information and data to the host, receiving data and status information
from the host, and blocking and deblocking records. The communications micro-
processor uses a communications access method, which may be an IBM program
product or a program written by the user, to control communications operations.
The communications microprocessor interfaces with the communications access
method through the communications control block. The communications access
method, in turn, interfaces with the application program through the communica-
tions 10B. The communications |0B is described by a control statement in the
source application program. The communications access method and communica-
tions control block must be loaded into a main storage partition. The application
program and communications |0B are loaded into another main storage partition.

Error Recovery and External Status

The communications microprocessor attempts to recover from certain 1/O errors
and records errors in an error recording table located within the communications
access method partition. If the error or condition is not resolved by the communi-
cations microprocessor, the communications access method places a 4-digit condi-
tion code in the communications I0B and reports external status.

5280 Functions and Storage Overview 23

TYPICAL OPERATION

Thic illuctrat
IRAIH at

pages.

ion it

e u v n

3+
-+
<
3
(%]
©
[#]
3
1]
2
144
ot
©
3
Q.
<D
W
(%]
3
ke
o
Q
3
Q

n the followinn
n he 1oliowing

n Partition)
10B Pointers

System

Control ﬁ

Device 10B
Block n Pointers)

Additional Device |OB Pointers

Additional System Control Information
(configuration, date, etc.)

Common
Functions
and
Tables

<

Partition Storage

(1/0 buffers, formats,
device 10B:s, tables, J
data areas, object
code instructions)

Logical 1/0 Table B}

Keyboard/Display |0B

Partition O

24

Partition 1 ~

The main microprocessor checks the partition 10B pointer n until it finds a
pointer that indicates that a program is loaded in the partition. If there are no
active attention lines pending, the main microprocessor goes to the address indi-
cated in the partition OB pointer . The first 256 bytes of the partition holds
the partition 108 [E} .

The partition OB contains such information as the partition size and the address
of the object code instruction to execute next. When the main microprocessor
enters the partition, it sets a timer. This timer controls how long the main micro-
processor is to remain within the partition. The main microprocessor then goes to
the object code instruction address in the partition storage area n It executes
instructions in the storage area until the time limit is up or until it encounters a
nonoverlapped 1/0 instruction. If the timer times out, the main microprocessor
completes the execution of the instruction it is currently working on, returns to the
partition IOB and stores the address of the next instruction to execute when it
returns to this partition, and goes back to the system control block. If no active
attention lines are pending, it continues checking the partition 1OB pointers; when
it finds a partition 10B pointer that indicates that a program is loaded in the parti-
tion, it goes to that partition and performs the same steps as described above.

If the main microprocessor encounters an 1/0 instruction before the timer times
out, it uses the data set number specified in the instruction as an index into the
logical 1/0 table . It goes to the appropriate entry in the logical 1/0 table to
find the address ﬂ of the device 10B that describes the /O operation. The main
microprocessor then goes to the device |0B , loads the instruction into the
I0B, and activates the device attention line to the appropriate 1/0O device. If the
1/0 instruction specified overlapped 1/0, the main microprocessor continues exe-
cuting instructions within the partition while the 1/O device is performing the
1/0. If the instruction specified nonoverlapped 1/0, the main microprocessor exits
the partition. The instruction following the 1/0 instruction is not executed until
the 1/0 instruction is completed by the device.

When a device microprocessor senses an active device attention line, it checks the
device I0OB pointers ﬂin the system control block until it finds a pointer that
contains an 10B address. It then goes to the address n and performs the work
described in the IOB. The OB contains the instruction op code and parameters,
the address of the 1/0 buffer or buffers, and other information such as format
addresses and data set type. When the device microprocessor encounters a condi-
tion that it cannot handle, it clears the first two bits of the status byte and sets the
external status bit in the status byte of the device 0B, and activates an attention
line to the main microprocessor. if the device microprocessor finishes the 1/0
work in a normal way, it clears the first 2 bits of the status byte in the device |0B.
The device microprocessor then checks the device 10B to determine the address of
the next 10B on the 0B chain for this device m . It processes the 10Bs on the
chain until it encounters an 10B that is marked as the first on the chain. Except
for the printer microprocessor, which has only one 0B pointer, the device micro-
processor then returns to the system control block and checks the next device

I0B pointer. If it finds another device 10B pointer that contains an IOB address,
it goes to the 10B and uses the 1/0 device associated with the 10B pointer to
process the 10B chain as described above.

5280 Functions and Storage Overview

25

This page intentionally left blank

This section describes the 5280 main storage data areas.

the main storage organization for the 5280.

Storage
Address
(in hex)
0000

0010

0040
0050
0060

0080

00F0

0100

Relative
Storage
Address
(in hex)
0000
0040

0080

0100

0110

0120

01F0

OFF0

1000

Chapter 2. Main Storage Data Areas

The following figure shows

[} 1 2 3 4 3 6 7 8 9 A B [D E F
| |] 1 1 I 1 1 i | | 1 I -
Partition 0 Partition 1 Partition 2 Partition 3
Partition
Partition 4 Partition 5 Partition 6 Partition 7 108 Pointers
oy System Use Only -
Diskette 0 Diskette 1 Diskette 2 Diskette 3 Diskette
. . . . 10B Pointe
Diskette 4 Diskette 5 Diskette 6 Diskette 7 olnters
~~ -~
T -
Printer 0B
Pointer System Use Only
System
Control
Communications Block
CCB Pointer I System Use Only
System Use Only °°.'E‘,'é“f>';'i°n‘fe'?"’ l System Use Only
Storage IPL .
Dat
ate [Size Flag Time System Use Only
Resource
System Flags Allocation System Use Only
Table @
Config- Self Edit
System Use Only Error Log Lockout Bytes uration Format
Tape@ | SM**@ | Tabee@
Config- Global Screen
uration System Use Only Table Page Format ?%Tpé
Data Pointers @ [NUM Table @ able
by Common Function Pointers =
System Use Only
sy Global Table Pointers :;:
Common Function Routines (object code) J.
:: Common Function
_________________________________ Routines and
Help Text Global Tables
by Global Configuration Data Table X
I 1
Error Recording Tables (variable length)
L ul
Resource Allocation Table (configuration option)
T T
L ASCI1 Translate Table (configuration option) x J
- ~~
Beginning of first partition area (eight partitions maximum) | T T T
Partition 108
J =
a
I Logical 1/0 Table
Keyboard/Display 108
BR O BR1 BR2 BR3 BR 4 BRS BR6 BR7
1000-1015 1016-1031 1032-1047 1048-1063 1064-1079 1080-1095 10961111 11121127 RO
Indicators
BR8 BR9 BR 10 BR 11 BR 12 B8R 13 BR 14 BR 15 R1
1128-1143 1144-1159 1160-1175 1176191 1192-1207 1208-i223 1224.1239 1240-1255 .
Partition
BR 16 BR 17 BR18 BR 19 BR 20 BR 21 BR 22 BR 23 R2 Binary Area
Registers
9= P~
~ ~—r
BR 120 I B8R 121 IBR 122 | BR 123 | BR 124 | BR 125 [BR 126 |BR127 R15
J ~~ Decimal
- ~ 3
L1
nz:ol
Object program, buffers, tables, and so on
- >
Microprocessor work area in the last 256 bytes of the partition
Beginning of the next partition

Main Storage Data Areas 27

SYSTEM CONTROL BLOCK

The system control block occupies the first 266 bvtes of main storage and contains
partition pointers, device I0OB pointers, and pointers to system tables.

Hex Length in

Displace- Bytes (in

ment Hex) Description

0000 20 Partition Pointers: {(one 4-byte block for each possible

partition). Each 4-byte block has the following meaning:

Byte O
Bit(s) Meaning
0 1 = A program is being loaded into the
partition.
1 1 = The partition is being attached to the
keyboard.
2 System use only.

3 1 = Akeyboard attention occurred during a
nonoverlapped, nonkeyboard-1/0
operation.

4-7 System use only.

Byte 1

Bit(s) Meaning
0 0 = Background partition.

1 = Foreground partition.
1 1 = There is no program in this partition; there-
fore, a program can be loaded.
2 1 = An attention from the main microprocessor
to the keyboard/display microprocessor is
pending.

3 1 = An attention from the keyboard/display
microprocessor to the main microprocessor
is pending.

4-7 When not 0000, the main microprocessor is
accessing the partition.

Byte 2 High-order address of the beginning of the
partition. Hex FF indicates this partition is
not defined.

Byte 3 Page number in storage where this partition

is located.

Hex

Displace-

ment

0020

0040

0060

0080

0084

Length in
Bytes (in
Hex)

20

20

20

1C

Description
System use only.

Diskette I0B Pointers (eight 4-byte blocks). Each 4-byte
block has the following meaning:

Byte 0 Flag Byte

Bit(s) Meaning

0 1 = The diskette microprocessor has locked the
10B pointer; the main microprocessor can-
not use the 10B pointer while this bit is on.

1-2 System use only.

1 = A label update data set is open. The main
microprocessor cannot put another 10B on
this chain.

4-7 When not 0000, the main microprocessor
is using the 10B chain.

Byte 1 The high-order address of the first IOB on
the chain.

Bit(s) Meaning

0 The low-order bit of the 0B address.
1 1 = The diskette drive is installed for this IOB
pointer.
2-3 System use only.
4-7 The page number in storage where the 10B
is located.
Byte 3 Diskette microprocessor save area.

System use only.

Printer 10B pointer (same meaning as a diskette 10B
pointer, displacement 0040).

System use only.

Main Storage Data Areas

29

Hex Length in

Displace- Bytes {in
ment Hex) Description
00A0 4 Communications CCB pointer (one 4-byte block). The

4-byte block has the following meaning:
Byte O

Bit(s) / Meaning When 1

0 The CCB pointer is valid for use by the
communications feature.

1 The CCB pointer is available for CAM use.

2 The CAM load parameter list is located at
the address specified in bytes 1 and 2.

3 The CAM is loaded and ready to accept
commands from the application program.

4-7 The partition number of the partition that
initiated the loading of CAM.

Byte 1 When bits 0 or 1 of byte 0 = 1, this byte
contains the high-order byte of the CCB
address (relative to the beginning of the
page). When bit 2 of byte 0 = 1, this byte
contains the page number of the load
parameter list.

Byte 2

Bit(s) Meaning

0-3 System use only.

4-7 When bit 1 of byte 0 = 1, this byte contains
the page number of the CCB storage location.
When bit 2 of byte 0 = 1, this byte contains
the high-order byte of the address of the load
parameter list.

Byte 3 Hexadecimal FF if the communications

microprocessor is installed.

00A8 10 System use only.

Hex

Displace-

ment

00B8

00BC

ooco

00C5

00C7

Length in
Bytes {in
Hex)

4

5

2

1

Description
Communications 10B Pointer:
Byte O

Bit(s) Meaning

0 The CAM has locked the IOB pointer; the
main microprocessor cannot use the 10B if
this bit is 1.

1-3 System use only.

4-7 If not 0000, the main microprocessor is

accessing the chain.

Byte 1 The high-order address of the first I0B on
the chain.

Byte 2

Bit(s) Meaning

0 The low-order 10OB address.
1-2 System use only.
3 1=CAM is optional.
4-7 The page number of the 10B location.
Byte 3 Hex FF if the CAM is operational.

System use only.

Date information as follows:

Byte O Year minus 1900.

Bytes 1-2 Day of the year.

Byte 3 Month (date is invalid if this byte = 00).
Byte 4 Day of the month.

Storage size as follows:

Byte O Number of 64 K-byte pages of storage.

Byte 1 Number of 256-byte blocks of storage on the
last page.

IPL Flag.

Main Storage Data Areas

31

32

Hex
Displace-

00CA

00D0

00D6

00D8

00E3

Length in
Bytes (in
Hex)

2

2

Description

High-order 2 bytes of time (1.6 seconds per count) since the
system was powered on (if the elapsed time counter is
installed). Updated by the keyboard/display microprocessor.

System use only.

System flags as follows:

Byte O
Bit(s) Meaning
0-3 System use only.
4 1 = The resource allocation table is in storage.
5-7 System use only.

Byte 1 During IPL, hexadecimal FF indicates the
main microprocessor is ready for IPL data to
be loaded. Not hexadecimal FF indicates
that a diskette microprocessor is loading IPL
data.

Byte 2 The device address of the IPL diskette.

Byte 3 The IPL device subaddress.

Bytes 4-5 System use only.

The address of the resource allocation table, relative to the
beginning of page 0.

System use only.

Error log lockout bytes: Each device |IOB pointer is
assigned a bit in the first-level lockout bytes. Up to 8 device
I0B pointers share a bit in the second-level lockout byte.
For entry to the error log, all bits in the first-level byte con-
taining the device 0B pointer fockout bit must be 0, and all
bits in the second-level lockout byte must be 0. To use the
table, the microprocessor must: (1) Set the bit in the first-
level lockout byte corresponding to the 10B pointer of the
device that has the error. All other bits in that byte must
be 0. (2) Set the bit in the second-level lockout byte. All
other bits in that byte must be 0. (3) Set bits 4-7 of byte 1
of the pointer to system table 0 to hex FF. This half-byte
must have been zero.

Hex
Displace-
ment

00E3
(cont.)

00E9

00EA

00EC

00EE

Length in
Bytes (in
Hex)

2

2

2

Description
First-level error lockout bytes:

Partition O
Partition 1
Partition 2
Partition 3
Partition 4
Partition 5
Partition 6
Partition 7

Byte E3

NO TS WN =0

Byte E4 System use only {must be zero).
Byte EB 0 Diskette O
1 Diskette 1
2 Diskette 2
3 Diskette 3
4 Diskette 4
5 Diskette b
6 Diskette 6
7 Diskette 7

Byte E6 Printer
Byte E7 System use only {must be zero).
Byte E8 System use only (must be zero).

Second-level error lockout byte:

Bit(s) Use

o] Partitions 0-7.

1 System use {(must be 0).

2 Diskettes 0-7.

3 Printer and system use only (must be zero).
4-7 System use only (must be zero).

Address of the global configuration table, relative to the
beginning of page 0. The address is set by the configuration

utility.

Address of global self check control block, relative to the

beginning of page 0.

Address of the global edit format table, relative to the

beginning of page 0.

Main Storage Data Areas

33

34

Hex
Displace-
ment

00F0

00F1

00F2

00F9

FB

FC

FE

Length in
Bytes (in
Hex)

Description
System use only.

Main microprocessor configuration data; initialized by the
configuration program as follows:

Bit(s) Meaning
03 The number of partitions to scan.
4-7 The number of the partition at which to

start scanning.
System use only.

Address of the system table pointers, relative to the begin-
ning of page 0.

The page number of the global screen format table and the
global prompt table.

The address of the global screen format table, relative to
the beginning of the page specified in displacement FB.

The address of/the global prompt table, relative to the
beginning of the page specified in displacement FB.

COMMON FUNCTIONS AND GLOBAL TABLES

The common functions and global tables begin at address hexadecimal 0100, and
may include different areas depending on the system and whether the user selected
IBM options. The following diagram is a general description of the common func-
tions and global tables as they are if the common area SYSDPRT2 (the default area)
is selected. If the user writes this code instead of using the IBM code, the addresses
and areas are not required to be the same as described in the diagram. Following the
general description is a complete description of the global tables.

(78
4§

Common Function Pointers

System Use Only

Global Table Pointers

Common Function Routines (object code)

Help Text

— %

Global Configuration Data Table

Error Recording Tables {variable length)

Resource Allocation Table (configuration option)

ASCII Translate Table (configuration option)

dyebgeboelgelLgeLog

TS ST

Main Storage Data Areas 35

Global Configuration Table

The address of the giobai configuration tabie is at hexadecimal EA, EB in main
storage. This table contains information about the printer for the printer micro-
processor. There are two header bytes, followed by an 8-byte entry for each printer
configured. Hexadecimal FFFF indicates the end of the table. The following is the
format of the 2 header bytes, and of the 8-byte entry.

Hex Length in
Displace- Bytes (in
ment Hex) Description
2 Header Bytes:
Byte 1 The address of the printer |OB pointer
(hexadecimal 0080).
Byte 2
Bits Meaning
0-3 The number of entries in the configuration
table minus 1.
4-7 The length of a table entry minus 1 (hex 7).
8 Printer Entry:
Byte 1 Device subaddress.
Bits Meaning
0-2 System use only.
34 Printer port number.
5-7 Printer station address.

Bytes 2-3 Displacement into the table to this entry
(must be nonzero).

Byte 4 Table length (hexadecimal 14).

Byte 5 Printer error encoding type:

A0 = Bit encoding
20 = Byte encoding

Byte 6 Must be zero.
Byte 7 Number of 128-byte blocks in printer buffer
{hex 02).

Byte 8 Must be zero.

Error Recording Tables

A system hard-error table and a soft-error table are stored in the common area.

The system hard-error table is used by the microprocessors to record system hard-
ware-related errors. The soft-error table is used by the printer microprocessor to
record the number of 1/0O errors that occur during program execution. These error
tables provide a history of system hardware-related errors and 1/0 errors that can be
written to a diskette with a special error table dump program.

How to Find the Error Recording Tables

The error recording table pointers are stored in the common area, in the format of
a system table. The 2-byte address of the error recording table pointers is located
in the system control block, at displacement hex F9. The first pointer always con-
tains the address of the hard error table, and the second pointer always contains the
address of the soft error table. The pointers are 10 bytes in length, in the following

format:

Lock Control —
(X'10" indicates
partition not
using table)

Bits 0-3 hold the
page number of the
error recording table
address.

Error Recording
Table Address

—

Number of Entries
for the System
Error Recording
Table

or
Number of Bytes
for the Soft Error
Counter Table

_

s

F9 FA

L_Jt_ | (address of the first pointer)

First Pointer

Second Pointer

I——

(points to hard error table)

(points to soft error table)

_F-or the System Error Recording Table:

Number of Entries
10 for base system
+5 for diskette drives 2, 3, 4
+5 for diskette drives 5,6, 7, 8
|__ +5 for printer(s)
_ or
For the Soft Error Counter Table:

Number of bytes

Set to X'00'.

l_—_Length of Entry Minus 1

Main Storage Data Areas

37

38

Hard Error Table Format

The hatd-error tabie can contain up 1o 25 entries. Each entry contains up to 26
bytes of error information in the following format:

6 6 66 6 o

Error Code: See Error Code Format.

Address of 0B Pointer?
Device Subaddress (printer only)*

Program Name

10B Identification:
Bits 0-3 = The logical unit number from the logical 1/O table.!

Bits 4-7 = The partition number in which the 10B is stored.
Device Status: See Device Status for a description.

Data Set Name!

Number of Duplicate Errors: Maximum is X‘FF'.

1This field contains all Os for the keyboard/display MPU.

2For the keyboard/disptay MPU, this field points to the foreground partition associated with this
keyboard. If the partition is a background partition, this field points to the foreground partition
with which this background is associated.

Error Code Format

XXXX

&

o Device Identification as Follows:

0 = Main microprocessor

1 = Keyboard/display microprocessor
2 = Printer microprocessor

3 = Diskette microprocessor

4 = SNA
5=BSC
6-8 Not used

9 = Application program
C = Previous data set (SNA)
D = Previous data set (BSC})

Q Error Category as Follows:

1 = Intervention required

2 = Hard error {operation is not retried)

3 = Retriable error (retried x times)

4 = |OB error {user error)

5 = Soft error (retried successfully)

6 = Exception status (such as the Cancel key pressed on the 5256 printer)
7 = Warning error (user can continue)

8 Not used

9 = User program terminated

0 Specific Error Condition: See the /BM 5280 Message Manual, GA21-9354, for
a description of specific conditions.

Main Storage Data Areas 39

40

Device Status

For the Keyboard jdispiay MPU: The device status bytes have the foiiowing mean-
ing for error codes 1200, 1201, and 1202. For 1204 all status bytes are undefined.

Status Bytes

ocC 10 19
Hard Error
1.2, XX, {1 Ll /l ., |90000000,] Table Entry
H 77 7 Ny I[
Error Code / ~ Error Count
~N
/ ~
N,
/ ~
/ ob OE OF \
Iol [Y S I | l7| S N T N .) I [T N W TR WO B 1 I

© o0 o600

0 For error codes 1200 and 1201, status OD has the following meaning:

Bit(s) Meaning

0 1 = A keyboard/display feature card is installed.
1 1 = Keyboard/display storage selected is on a feature storage card.
(see Note)
2 1 = Keyboard/display storage selected is on the keyboard/display MPU

card. (see Note)
3-7 Keyboard/display storage access status as follows:
01111 = Accessed by the keyboard/display MPU or by a translate cycle.
10111 = Storage accessed by display 1 hardware.
11011 = Storage accessed by display 2 hardware.
11101 = Storage accessed by display 3 hardware.
11110 = Storage accessed by display 4 hardware.

For error code 1202, byte 0D contains the invalid scan code.

@ Forerror codes 1200 and 1201, byte O has the following meaning:
Bit(s) Meaning

0-2 High-order bits of the keyboard/display storage address when the error
occurred.

3 0 = The error occurred when translating and writing to the display
refresh buffer.

4 0 = The last storage access was for a read operation.

1 = The last storage access was for a write operation (diagnostic use

only).
5 Parity is even (should be even for a read; can be either for a write).
6-7 indicates model as follows:
00 = 5288
01 = Not Used
10 =5286
11=5285

For error code 1202, byte OE contains the EBCDIC translation for the invalid
scan code.

O Not Used
© oo

e Number of Keyboards Detected (as attached) By the Keyboard/Display MPU

Note: For error codes 1200 and 1201, if bit 1 and bit 2 of status OD are both 0, an
invalid address was accessed.

Main Storage Data Areas

41

42

For the Diskette MPU: The device status bytes have the following meaning.

04 0C 0D 11 19
A S I A A N B RS A S A A A A
] / < I
/ ~
/ \\ Number Minus 1 of
/ Duplicate Errors:
// \\Maximum is X'FF'.
J/ ~N
J Data Set Name™ “
/s
/ AN
r,/’ 0D 0E OF! 10
Ol 1 i 1

o
o

® 0

Failing Head Number:

0=Head 0
1= Head 1

Failing Track Number

0=FM
1=MFM

Sector Size:

00=128
01 =256
10=512
11=1024

66 6 %ot o

Failing Sector Number—valid for the following codes:

3301 3501
3302 3502
3303 3503
3306 3506

CRC error occurred
ID found during search
01 = Control address mark (AM) was detected

10 = Missing address mark
11 = Bad track accessed

Storage overrun: The diskette MPU was unable to obtain the required storage
cycles to transfer data.

Error during a verify read operation.

Command not complete: The diskette MPU has not completed the operation
requested.

When 1, the write or erase gate was active during a read operation; or the write
or the erase gate was not active during a write operation.

@ Command sent to the diskette adapter by the diskette MPU.?

Ly byte OF is equal to FF, the track contains no IDs.
21f the command is hex Ax or 2x, bytes OD and OE may not be valid.

For the Printer Attachment MPU: The status bytes have the following meaning.

04 oc 13 19 Dusli

(1 I) WY TV SO T T W | l l N T T Y T | I 111 1 I] Number of _uDllca.te

J P ~— | T————Errors: Maximum is

v - Notused. y:Ff",
Ve ~—
Vd ~—
/ ~—
7 \\.\
// ~
\\
7 ~-

< op oF oF 10 1 12—
low v oo v w2t v v v v v v b v v v e b e e b e e b

© o e) ° °

e Not used.
@ First Poll Response Byte

Bit(s) Meaning

0 The printer MPU is busy.

1 The prin;cer received bad data—parity error.

2 The printer is not ready.

3 The printer has outstanding status, which must be read by the printer
attachment MPU.

Main Storage Data Areas

43

a4

4-6

Exception status from the printer:

000 = Ng exception status.

010 = The printer received an invalid activate command. A read
command must be followed by a read activate command and a
write command must be followed by a write activate command.

011 = Undefined exception status.!

100 = The printer received an invalid command.

101 = Printer storage overrun: The printer received too much data or
too many commands.

110 = Undefined exception status.!
111 = The printer was powered off and then powered on.

Not used by the 5280.

Second Poll Response Byte

Bit

0

Meaning When 1

The printer received an invalid SCS character (usually a programming
error).

The printer received an invalid SCS parameter (usually a programming
error).

The printer receive buffer is full.
The printer operation is complete.
The Cancel Request key was pressed on the printer.

The printer mechanism is not ready (usually a voltage missing at the
printer).

End of forms

The printer received an unprintable character (this bit should only be
on if the SGEA command is set to stop}.

Q Outstanding Status from Printer

Bit

0

7

Meaning When 1

Print wire check

Emitter slow speed check
Emitter fast speed check
Emitter sequence check

No emitter pulses

Emitter overrun: Printer MPU cannot keep up with the emitter pulses.

Forms stopped

Forms position check

G Encoding Type:

A0 = bit encoding
20 = byte encoding

e Must be 00.

LThis exception status should not be received from the printer. If it s, it usually indicates a line hit.

Main Storage Data Areas

45

Soft Error Table Format

The printer soft error recording table contains a count for each printer soft error

that occurred. The table contains one entry for each printer on the system. Each
entry is 20 bytes long, and each byte is assigned to a specific error code as follows:

Byte: 9 10 Soft Table Entry

Error Codes 2500 through 2509

Error Codes 25|30 through 2539 5225 Printer

I
Error Codes 2540 through 2549—-5256 Printer

If a count byte reaches 255 (hexadecimal FF), the error is stored in the hard-error
table and is no longer counted.

Resource Allocation Table

The resource allocation table defines the physical address of each logical device
that can be used by each partition. The table is created and initialized as a user
option during the system configuration portion of the SCP. If a resource allocation
table has been created and placed into the common area, the system flag at address
hex DO, bit 4 is 1; the address of the table is at hex D6-D7 in the system control
block.

The resource allocation table consists of a 4-byte partition header for each partition,
followed by a 4-byte device entry for each device that can be used by that partition.
When the main microprocessor attempts to open an 10B that specifies a logical
device ID instead of a physical address, it uses the resource allocation table to find
the physical address. The main microprocessor searches the table until it finds the
first entry for that partition or the first global partition entry. It then searches the
device entries for a matching device ID. If no match is found, it continues search-
ing the partition headers for another entry for the partition or another global parti-
tion entry. The search continues until the matching device ID is found or until the
table is exhausted. If no match is found, an error is reported. If a match is found,
the device at the physical address specified in the table is used to open the data set.

The format of the partition header records and the device entries are as follows.

Partition Header

Byte: 0 1 2 3

Partition ID Number of Entries

Bytes Meaning

0 Partition 1D Number:
FO = Global entry (each device entry applies to all partitions)
FF = (see the description for bytes 2 and 3))

Bit(s) Meaning

3 1 = The partition number in bits 4 through 7 is not valid.
0 A valid partition number is in bits 4 through 7.
4-7 The number {0 through 7) of the partition to which the
entries apply.

]

1 The number (0 through 255) of device entries for this partition.

2-3 If bytes 0 and 1 contain hexadecimal FFFF (indicating the end of the
table), bytes 2 and 3 indicate the number of bytes still available in the
table.

If byte O is hex FF and byte 1 is not, byte 1 contains the page number

and bytes 2 and 3 contain the remainder of the address of the next
section of the resource allocation table.

Main Storage Data Areas

47

Device Entries

Byte: 0 l3
Device ID Device "
Physical Address
Bytes Meaning
0-1 Device ID: The EBCDIC code for the logical device ID. This ID is

compared to the ID specified in the 10B during an open, and when
they are equal, the device with that physical address is opened.

2-3 Physical address: Byte 2 is the address of the 10B pointer for this
device. During an open, tl)e main microprocessor moves byte 2 into

the logical 1/0 table, and byte 3 to the I0B.

ASCI! Translate Table

The ASCIHI translate table contains two 256-bytes sections. The first section is used
for input, to translate EBCDIC notation to ASCIl. The second 256-byte section is
used for output, to translate ASCII notation to EBCDIC. The hex value of each
character is used as an offset into the appropriate translate table, and the original

hex value is replaced with the hex value at that offset.

PARTITION AREA

The partition area contains the program executed by the main microprocessor and
the information required to execute these programs.

All addresses shown in the following description are relative to the beginning of the

partition area.

Hex
Displacement

0000
0040

0080

0100

0120

Variable
(0200 if all
binary
registers are
assigned)

Variable
{pointed to
in the
partition
10B)

Variable

Length in
Bytes (in Hex)

40
40

80

80

Variable (224
if all binary
registers are
used)

Variable
(3584 if all
decimal
registers are
used)

Variable

256

Description
Partition 10B (see Partition 10B).
Logical 1/O table (see Logical 1/0 Table).

Keyboard/display |OB (see Keyboard/Dis-
play 10B).

Indicators 1000 through 1254, binary registers
BRO through BR15, and/or decimal registers
RO and R1. (See System Indicators Within a
Partition for a list of indicators that are used
by system microprocessors.)

Binary register BR16 through BR127 and/or
decimal register R2 through R15. (See
System Registers Within a Partition for a list
of registers that are used by system
microprocessors.)

Decimal registers R16 through R239.

Object code, buffers, tables, diskette and
printer 10Bs (see Diskette /0B and Printer
/0B later in this chapter), work areas, and
other user program areas.

The last 256 bytes of a partition area are
used as a microprocessor work area.

Main Storage Data Areas

49

Partition |I0B

The following is a general description of the partition I0B. Following this general
description is a complete description of each field of the IOB. All addresses shown
are hexadecimal displacements from the beginning of the partition. No validity
checking is made on any of the values in the bytes of the following IOB. If any of
these bytes are modified by the application program, unpredictable results may
occur.

08

10

20

28

30

38

DA WN =

Program Name

4
Partition Control Flags Main Micro- System Use Program Start | Absolute System Use
Length processor Only Address, High | Address of [Only
Error Code Program
5 36 236 6 34 3,6 6
Instruction Address Pointer |Common Area {Page and Cur- | Partition Program Address of Program
Page Number rent Instruc- | Page Number | Length Check Routine
tion Flags
34 135 35 2,36 234 2,34
Address of System Table Main Microprocessor Save Program Number of Currency Edit Characters
for Data Tables Area Execution Last Edit
Timer Format
1.34 36 2,34 2,36 3.4
Decimal Edit [Comma Edit | Edit Count Partition Address of System Table Address of Self Check
Character Character Number for Edit Formats Control Block
34 34 ‘3.4 2,36 1.34 1,34
System Use Only Load Flags Save Area For Save Area |Remaining
Subroutine Return Address for Trace Number of
Bytes to Load
6 3.6 36 36 36
Page of 10B Address | Address of Part. Number | OB Pointer 1/O Flags Current Instruction
Partition Be- | of Partition {Partition Work |of Partition Address for Address
ing Loaded | Being Loaded|Buffer Being Loaded | Diskette
3,6 36 36 3.6 36 36 3,6
Page Number | Address of Number of Trace Flags Address-Stop Instruction Configura- | System Use
of Data to Data to Bytes to Dump Address tion Infor- |Only
Dump Dump, High mation
36 36 36 36 36 3.6 6

. Application program can read or write this field.

. Application program can only read this field.

. Used by the main microprocessor.

. This field must be initialized by the object modute.
. This field must be initialized at IPL time.

. This field must be zero in the object module.

Hex
Displace-
ment

00

09

0A

0B
oC
0D

OE

OF

10

Length in
Bytes (in
Hex)

8

Description

Program Name (eight EBCDIC characters that identify the
program in this partition).

Partition length in number of 256-byte blocks minus 1.
Control Flags:

Bit(s) Meaning

0 1 = 10B is initialized (a program is loaded).
1 1 = Keyboard is attached to this partition.
2-7 System use only.

Control Flags:

Bit(s) Meaning

0 1 = Tracing through a Call or Return instruction,
to or from the common function area.

1 System use only.

2 1 = Processing a newly invoked Cmd, C key
sequence. (Waiting for keystroke after the
Cmd and C keys have been pressed.)

3-6 System use only.

7 1 = Waiting for a response (ENTR) for the
global load prompt.

Main microprocessor error code.
System use only.
High-order part of the program start address.

Absolute program start address. Used by the micro-
processor when returning from a common area subroutine.

System use only.

Points to the next instruction to be executed when the
microprocessor begins executing code in the partition.
When the microprocessor begins executing code in this par-
tition for the first time, it adds the value in byte 0D of this
IOB to this address to make it an absolute address. The
microprocessor then updates this address before leaving the
partition.

Main Storage Data Areas

51

Hex
Dispiace-
ment

12

13

14

15

16

18

1A

1C

1D

62

Length in
Bytes {in
Hex) Description
1 Page number of the common functions as follows:
Bit(s) Meaning
0-3 Page number of common function area 1.
4-7 System use only.
1 Page and current instruction flags as follows:
Bit(s) Meaning
0-1 01 = Instructions being executed are in the
common function area.
10 = Instructions being executed are in the
partition.
11 = System use only.
2-3 System use only.
4-7 Page number for the instruction currently
being executed.
1 Number of the page where this partition is located {range
0-2).
1 Length of the program in this partition (in 256-byte
blocks).
2 Address of program-check subroutine.
2 Address of the system table that contains 8-byte entries,
each of which defines a table in this partition. (See
System Table for Data Tables under System Tables for the
format of the table entries.)
2 Microprocessor save area
1 Program execution time (time slice timer) as follows:
Bit(s) Meaning
0 1 = lIgnore attentions.
1 1 = Keyboard external status occurred after a
RESUME or CNENTR operation.
2 1 = Keyboard external status occurred during a
nonoverlapped, nonkeyboard operation.
3 System use only.
4-7 Length of time divided by 4 (in milliseconds)
to execute instructions in the partition
(initialized by the assembler).
1 Binary number assigned to the last edit format index used.

Hex

Displace-

ment

1E

20

21

22

23

24

26

28

2A

Length in
Bytes (in
Hex)

2

Description

Characters used as the edit currency characters during
formatted read or write operations.

Character used as the edit decimal character during
formatted read or write operations.

Character used as the edit comma character during format-
ted read or write operations.

Number of characters between edit commas during
formatted read or write operations.

The partition number assigned to this partition (00-07;
set by the microprocessor at load time).

Address of the edit format system table (table that con-
tains 2-byte entries that point to the local edit format
strings stored within the partition).

Address of the self check control block.

System use only.

Load Flags as follows:

Byte 2A
Bit Meaning
0 1 = Foreground partition is loading the program.

0 = Background partition is loading the program.
1 1 = Program is being loaded in a foreground

partition.
0 = Program is being loaded in a background
partition.
2 0 = Program is loading a program into this same
partition.
1 = Program is loading a program into another
partition.
3 1 = The loader issued an ENTR command.
4 1 = Partial load.
0 = Regular load.
5 1 = Attach a background partition if possible.
6 System use only.
7 1 = User error recovery specified.

Main Storage Data Areas

53

54

Hex Length in
Displace- Bytes {in

ment Hex)
2A

(cont.)

2C 2
2E 1
2F 1
30 1
31 1
32 1
33 1
34 1
35 1

Description
Byte 2B
Bit Meaning When 1
0 User external status routines are not
available.
1 One automatic retry was attempted.
2 Close was issued by the loader.
3 Closing open data sets.
4 Error message requested by the loader.
5 Global screen format used.
6 EXIT in foreground partition.
7 Detach the background partition at the end

of the load operation.
Microprocessor save area.
Trace save area.
Number of 256-byte blocks left to load.
Storage page number in which partition is being loaded.

Address of partition 10B for partition being loaded (used
only while loading a program).

Address of partition work buffer for partition being loaded
(used only during load operation).

Partition pointer address of the partition being loaded.

Address of diskette |OB Pointer for diskette doing the load
operation (used only while loading a program).

1/0 Flags:

Bit Meaning When 1

0 Nonoverlapped 1/0 pending.

1 Nonoveriapped ENTR pending.

2 Formatted read requested.

3 System use only,

4 Keyboard operation pending.

5 During SCS conversion, the logical buffer has
data remaining to be converted.

6 Console function request pending.

7 ENTR issued by loader.

Hex
Displace-
ment

36

39

3A

3B

3C

3E

3F

Length in
Bytes (in
Hex)

2

Description

Address of current instruction {used during trace).
Page number of data to dump.

High-order address of data to dump.

Number of 256-byte blocks of data to dump.
Trace Flags:

Bit Meaning When 1

Address-stop address reached.

Address-stop request pending.

First time through trace or address-stop.
Dump flag.

Request trace of binary instructions.
Request trace of miscellaneous instructions.
Request trace of decimal instructions.
Request trace of branching instructions.

NO S WN-20

Instruction address after which execution stops during step-
stop mode.

Configuration information:

Bit(s) Meaning

0-3 Number of partition pointers remaining to
scan.
4-7 Number of the partition pointer at which the

main microprocessor begins scanning.

System use only.

Main Storage Data Areas

55

Logical I/0 Table

Tha taninal 1/ $ahla ic laratad at ralative Aienlaramant hoav AN thraiinh heav 7F Af
[R lval\aul TN LUMIV 19 TULULUU UL T UIULI VU WMV IV L i T LRl Naygi e ioss s ~
each partition. Each data set OB is represented with a 4-byte entry in the logical
1/0 table. The table entries are stored within the table in the order of the data set

numbers.

The logical 1/0 table entries have two formats: one format is used for the keyboard/
display I0B and the other format is used for diskette |OBs and printer |OBs.

The following is a general description of the logical 1/0 table. Following the general
Ancarimtline o n Ammanlada doaaviceiam AF Slha $iaen £ nén that ava tiand fav tha laniaal
UTDOUI T LIV 1D @ LUITTINITLE UCOUI IMLIVEL Ui LHIT Lvwu 10rm‘ll5 LIIdL QIT UJdTU Ui LG wyivai
1/0 table entries. The address of each table entry is the data set number times 4 plus
hex 40.

Keyboard/Display Format

Byte Meaning
0 Not used (initialized to hexadecimal 00).
Flags:

Bit(s) Meaning

0 1 = Special processing is required. This bit is set on when
an external status condition is detected during a
RESUME, CANCEL, or ENTR operation and indicates
that external status processing is required after these
operations have completed.

1 1 = An ENTR command is pending.

2-3 Not used, set to zero.

4 1 = A keyboard/display operation is pending.

b-7 Not used, set to zero.

2-3 Address of the keyboard/display 0B (always 0080).

Diskette and Printer Format

Byte Meaning
0 10B pointer address.
1 1/0 Class:
Bit(s) Meaning
01 1/0 type:
01 = Output only
10 = Input only
11 Input and output
2 1 = The main microprocessor is waiting to remove an 10B
from an {OB chain.
3 1 The main microprocessor is waiting to add an 10B to an
10B chain.
4 1 The main microprocessor is waiting to lock the first |IOB
on a chain during an open.
5 Not used
6 1 The 10B is on an 108 chain.
7 1 An 1/0 request is pending for this device.
2 The high-order address of the 10B.
3 Flags:
Bit(s) Meaning When 1
0 Low-order address of the 10B.
Device type as follows:
1 1 Diskette
2 Not used
3 1 Printer
4 1 Not used
5 1 Communications
6-7 Not used

Note: Only one of bits 1-7 may be on at any one time.

Keyboard/Display 10B

The keyboard/display I0B is located at relative displacement hex 80 through hex
FF of each partition.

The following is a general description of the keyboard/display 10B. Following this
general description is a complete description of each field of the I0B. All addresses
shown are hexadecimal displacements from the beginning of the 10B. To find the
address relative to the beginning of the partition, add hex 80 to the displacement.
No validity checking is made on any of the values in the bytes in the following 10B.
If any of these bytes are modified by the application program, unpredictable results

may occur.

Main Storage Data Areas

57

00

08

18

20

28

30

38

40

48

50

58

60

68

10B System |Foreground |[IOB Pointer |IOB Lockout | Error Code Next Instruction Address
Status Backgrouind jAddiess
Flags
2 2,789 289 2 2 2
Command Current Screen Format Current Prompt Table Partition Prompt Table External
Op Code Control String Byte Address Address Status
Address
2 2 2 36,7 2
External Status Routine Keyboard Keyboard System Use | Last Save Area for Address of
Address Flags Flags Only Diacritic Current Screen Format
Character Control String Byte
27 2 2 2 2
Keyboard Bit Map Return Operation
Key Code |Code
1.7 2 2
Operation Parameter 1 Operation Parameter 2 Operation Parameter 3 Last Key |Last Key
Scan Code | EBCDIC
2 2 2 2 2
Current Field Address Current Field Address Current Record Buffer Previous Record Buffer
in Main Storage in Keyboard/Display Address Address
Storage
2 2 34,7 34,7
Displacement to Current Address of the Current Alphabetic Numeric Address of Storage
Character in the Buffer Cursor Position Right-Adjust| Right-Adjust | Duplication Table
Character Character
2 2 6,7 6,7 34,7
Keyboard Flags Keyboard Flags Keyboard Keyboard Keyboard
Flags Flags Flags
5 2 5 2 5
Picture Information from Screen Format bontrol String
Check
Displacement
2 2
Information Picture Fixed Prompt |Keystroke Counter Verify Correction
(Continued) Check Line Keystroke Counter
Subfield
Counter 2 34,7 6.8 6.8
Address of Storage Area Address of Diacritic Address of Status Line Address of | Address of
in Keyboard/Display Translate Table Refresh Buffer Katakana [Scan Code
Storage Trans. Tbl.{Trans. Tbl.
2,8 28 2,8 28 28
Address of Screen Number of Number of Keyboard Configuration Address of | Display
Refresh Buffer Lines on Characters Information Validity Line Map
Screen per Line Table
28 2,8 2,8 28 28 2,8
Display Line Map {continued) Language Address of Address of Address of | System Use
Group Cursor Address { Control Area| Display Only
Register Control
28 28 28 28 Register2,8
Current Character Position | Current Field Number Address of the Fixed Current Position Counter
within the Field Prompt Line
2 2 2 2

70 | Positions Remaining in

the Field

2

Current Record Buffer Normal Display] High Inten- | Microprocessor Save

Position

Attribute sity Display| Area
Attribute
2 34,7 347 2

78 | EBCDIC for

Address of Partition

EBCDIC for] EBCDIC for Micropro- | Micropro- | Main

Blank Check Screen Format Control Verify Mis- | Duplication cessor Save | cessor Work | Micropro-
String Table match Mismatch Area Area cessor Lock-
34,7 34,7 2 2 2 2|out 2
1. An application program can change this field at any time.
2. An application program should not change this field.
3. Normally, an application program will not change this field.
4. An application program can change this field, but only when an ENTR command is not being processed.
5. See field descriptions for restrictions.
6. An application program can change this field, but only when an ENTR command is not being processed or when

EXTR processing is suspended, such as during external status processing (before a resume is issued}.

~

. Initialized by the assembler.

8. Initialized during IPL.

©

. Initialized by the program loader.

Description

Hex Length in
Displace- Bytes (in
ment Hex)

00 1

IOB System Status:

Bitf(s)
o1 M1
01
00
2 1
3 1
4 1

Meaning

Main microprocessor sent a command to the
keyboard/display microprocessor: It cannot
send another until the keyboard/display micro-
processor sets the bits to 00.
Keyboard/display microprocessor accepted
the command; however, processing is not yet
complete.

No command pending.

Keyboard/display microprocessor is await-
ing an operator response to a keyboard opera-
tion. The keyboard/display microprocessor
sets this bit on if bit 4 of this byte is on and
the operation code is hexadecimal 09 (place
key-entered data in main storage).

External status sensed; the keyboard/display
microprocessor sets this bit to 1 when it
senses an external status condition. The
main microprocessor clears the bit when it
begins processing the external status. See
also bit 7 in this byte.

Main microprocessor has requested a key-
board/display operation. The keyboard/
display microprocessor clears the bit after it
completes the operation.

Main Storage Data Areas

59

60

Hex
Displace-
ment

00
(cont.)

01

Length in
Bytes (in
Hex)

Bits

5

6 1
7 1

Meaning

System use only.

Current command processing has been
temporarily interrupted. The keyboard/dis-
play microprocessor sets this bit on when a
command is interrupted (time slice elapsed)
and clears the bit when it resumes processing
the command.

An external status condition is pending or is
being processed. The keyboard/display micro-
processor sets the bit when it senses an
external status. The main microprocessor
clears the bit after it has processed the
external status condition, or the keyboard/
display microprocessor clears the bit when it
receives a RESUME operation that requests
enable external status.

Foreground and Background Flags:

Bits
0 0

I

Meaning

Keyboard data is for the foreground
partition.
Keyboard data is for the background
partition.

Bit O is meaningless in a background partition.

1 1

Keyboard operation in progress that requires
input from the keyboard. When the opera-
tion is complete, the keyboard/display micro-
processor sets the bit to 0.

Bit 1 is meaningless in a background partition.

2 1
3 1
47

Background partition is attached; meaning-
less in a background partition.

Bits 4-7 do not contain a valid partition
number.

In a foreground partition, bits 4-7 contain
the number of an attached background parti-
tion (bit 2 = 1 and bit 3 = 0) or the number
of the background partition that has a key-
board operation in progress (bit 2=1o0r 0
and bit 3 =0).

In a background partition, bits 4-7 contain
the foreground partition number with which
this background is associated.

Hex
Displace-
ment

02

03

08

09

Length in
Bytes (in
Hex)

Description

The low-order byte of the address (in the system control
area) of the 4-byte 10B pointer for this partition.

10B Lockout:

Bit(s) Meaning

0 1 = Keyboard/display microprocessor is using
this IOB. The main microprocessor cannot
use this IOB while this bit is on.

1-3 System use only.

4.7 When bits 4-7 are not 0, the main micro-
processor is using the 108B.

The keyboard/display microprocessor uses these 2 bytes to
store keyboard error codes. (Error codes are stored in 4-digit,
zone-stripped format.)

The absolute address of the next sequential instruction
following the command or operation issued to the keyboard/
display microprocessor.

The op code of the command currently being processed by
the keyboard/display microprocessor. When this byte = 00,
no ENTR command is being processed.

During the processing of the ENTR command, bytes 09 and
0A contain the address {relative to the beginning of the parti-
tion or to the beginning of the page that contains the global
table) of the first byte in the screen format byte group that is
currently being processed. Before the keyboard/display micro-
processor begins processing the ENTR command, bytes 09 and
0A have the following meaning:

Byte 9
Bit Meaning
1 0 = Screen format control string is in the
partition.
1 = Screen format control string is in the
global area.
Byte OA The table entry number of the screen format
control string to be used for this ENTR
command.

Main Storage Data Areas

61

Hex Length in
Displace- Bytes (in

ment Hex) Description

0B 2 While an ENTR command is being processed, these bytes
contain the address of the first byte of the current prompt
table. |f the prompt table is in the partition, the address is
relative to the beginning of the partition.

If the prompt table is in the giobal area, the address is rela-
tive to the beginning of the storage page that contains the
giobai area.

oD 2 Address of the partition prompt table relative to the start
of the partition.

OF 1 External Status Information:
Bit(s) Meaning
0-1 System use only.

2 1 = Indicates that the keyboard/display and
main microprocessors are operating in diag-
nostic mode, such as dump or trace.

37 External status condition number (see the
Assembler Language Reference Manual for
a description of external status conditions).

10 2 Address, relative to the beginning of the partition, of the
table or subroutine that is used when processing external
status conditions.

12 1 Keyboard Flags:
Bit(s) Méaning
0 0 = There is more than one external status sub-
routine. They are accessed via a subroutine
table.
1 = External status is handled by one subroutine.
1-4 System use only.

0 = If byte 13, bit b is 1, Katakana keyboard
lock is alphameric lowercase.

1 = If byte 13, bit 5is 1, Katakana keyboard
lock is Katakana lowercase.

6-7 00= Katakana keyboard shift default is alpha-

meric lowercase.

01= Katakana keyboard shift default is alpha-
meric uppercase.

10= Katakana keyboard shift default is Katakana
lowercase.

11 = Invalid value.

Hex Length in
Displace- Bytes (in
ment Hex) Description

13 1 Keyboard Flags:

Bit(s) Meaning

0 0 = Katakana Shift Lock key is up.
1 = Katakana Shift Lock key is held down.
1 0 = Katakana Uppershift key is up.
1 = Katakana Uppershift key is held down.
2 0 = Katakana Lowershift key is up.
1 = Katakana Lowershift key is held down.
3 0 = For Katakana, alphameric uppershift key is

up. For non-Katakana, numeric shift key
is up.

1 = For Katakana, alphameric uppershift key is
held down. For non-Katakana, numeric
shift key is held down.

4 0 = For Katakana, alphameric lowershift key is
up. For non-Katakana, alpha shift key is up.

1 = For Katakana, alphameric lowershift key is
held down. For non-Katakana, alpha shift
key is held down.

5 0 = For Katakana, keyboard shift is not locked.
For non-Katakana, shift default is lowercase.

1 = For Katakana, keyboard shift is locked. The
type of lock is specified in byte 12, bit 5. For
non-Katakana, shift default is uppercase.

6-7 Current shift for all keyboards:

00= Alphameric lower

01= Alphameric upper

10= Katakana lower

11 = Katakana upper

Main Storage Data Areas 63

64

Hex
Displace-
ment

14

15

16

18

1E

1F

20
22
24

26

28

Length in
Bytes (in
Hex)

Description
System use only.
EBCDIC of the last diacritic character entered.

Save area for the address of the current format control
string (bytes 09 and 0A) while a secondary format control
string is being processed.

Keyboard bit map: contains a bit for each function key
that can be processed either partially or totally by the key-
board/display microprocessor or by an object code program.
If the bit is 1, the corresponding function key is processed
by the object code program. See Appendix C, Keyboard
Functions: EBCDIC Codes and Bit Numbers for a descrip-
tion of the bit map and corresponding functions.

EBCDIC of the key that caused a return from screen format
processing to the object code program.

Op code of the keyboard/display operation issued by the
main microprocessor (see Chapter 4).

Parameter 1 for the op code in byte 1F.
Parameter 2 for the op code in byte 1F.
Parameter 3 for the op code in byte 1F.

Contains the scan code {byte 26) and EBCDIC value (byte
27) of the last key pressed as follows:

® The function key during external status condition 1.
® The first character of a hexadecimal pair.

® The keystroke following the Command key during
external status condition 8.

® The keystroke that caused the error during external
status condition 8.

® The function key when the microprocessor processes a
function key other than the Command, Reset, or Shift
key.

Address in main storage (relative to the beginning of the
partition) of the first byte of the field currently being
entered or processed.

Hex
Displace-
ment

2A

2C

2E

30

32

35

36

Length in
Bytes (in
Hex)

2

Description

Address in the refresh buffer (keyboard/display storage) of
the first byte of the field currently being entered or
processed.

Address (relative to the beginning of the partition) in main
storage of the first byte of the current record buffer for
data being entered.

Address (relative to the beginning of the partition) in main
storage of the previous record buffer that normally contains
the previous record entered (used for record duplication).

Displacement from the beginning of the current record
buffer to the current character position.

The absolute address of the current cursor position or
screen position pointer within the refresh buffer in key-
board/display storage. (The cursor is displayed within data
entry fields only. The screen position pointer is maintained
between fields.)

The EBCDIC character that is inserted into the nondata
positions of an alphabetic, right-adjust field when the right-
adjust is performed.

The EBCDIC character that is inserted into the nondata
positions of a numeric, right-adjust field when right-adjust
is performed.

Address in main storage, relative to the beginning of the
partition, of the storage duplication table.

Main Storage Data Areas

65

66

Hex
Displace-
ment

38

Length in
Bytes (in
Hex)

Descripiion

Keyboard Flags:

Bit(s)
0

35

6-7

1

00

01

10

1

Meaning

Operation is continued; the keyboard/display
microprocessor sets this bit on when a key-
board operation {such as a data movement) is
executed by separate, successive operations.
The application program should not change
this bit.

Set by the keyboard/display microprocessor
to indicate that the key code is from an object
code program instead of the keyboard. Indi-
cates that the microprocessor must perform
functions that are not performed when the
code is from the keyboard. The application
program should not change this bit.

At least one field of the record has been
processed. Used to determine if a record
advance operation should be performed.

The application program should not change
this bit.

Used by the keyboard/display microprocessor
to keep track of format control string process-
ing when check indicator for bypass specifica-
tions aré encountered in the string. The
application program should not change these
bits.

Meaning of the current position displayed on
the status line. Normally, no change is made
in these 2 bits by the application program. If
the application program does change these
bits, it should not change them while an
ENTR command is being processed.

Position of the next character to be entered
relative to the first character of the record.
Position in the current record buffer in main
storage (relative to the beginning of the
buffer) in which the next character will be
stored.

Relative position of the cursor on the screen
(from the first position).

Position in-the current field (relative to the
beginning of the field) in which the next
character will be stored. For format level 0,
the position of the current 1-byte field rela-
tive to the beginning of the format level O
field.

Hex
Displace-
ment

39

Length in
Bytes (in
Hex)

Description

Keyboard Flags:

Bit

0

1 1

2 1

3 1

4 1
0

5 1

6 1

7

Meaning

Set to 1 by the keyboard/display micro-
processor when the object code program
issues the request for error operation
{(KERRST). Reset to 0 when the object
code program issues the request error reset
operation (KERRCL). The application pro-
gram should not change this bit.

The keyboard/display microprocessor
detected a keying error. The bit is turned
off when the reset key is pressed. The appli-
cation program should not change this bit.
Keyboard is open for data entry. Set when
an ENTR command or RESUME instruction
is executed. Cleared when a CNENTR com-
mand is executed or when an external status
condition is detected. The application pro-
gram should not change this bit.

The cursor is within a field.

If a keying error occurs, the keyboard/dis-
play microprocessor checks the status line.
If the status line is not displayed, it displays
it. When the error is reset, it replaces the
status line with the extra line from the
refresh buffer.

Do not check the status line. Normally, no
change is made in this bit by the application
program. If the application program does
change this bit, it should not change it while
an ENTR command is being processed.
Status line is displayed. Indicates that the
extra line must be displayed when the error
is reset. The application program should not
change this bit.

A mismatch error occurred while verifying

a constant insert field. The application
program should not change this bit.

Set by the keyboard/display microprocessor
when the perform keyboard operation (hex
11) is issued by the object program. It indi-
cates that the EBCDIC code came from the
object code program; therefore, the micro-
processor does not check the keyboard bit
map. TFhe application program should not
change this bit.

Main Storage Data Areas

67

Hex Length in
Displace- Bytes (in

ment Hex} Description
3A 1 Keyboard Flags:

Bit Meaning When 1

0 System use only.

1 The command key was the last key pressed.

2 The last two keys pressed formed a command
key sequence.

3 Data being entered is in hexadecimal format
following a hexadecimal command key
sequence.

4 One hexadecimal digit has been entered follow-
ing a hexadecimal command key sequence.

5 System use only.

6 One hexadecimal digit has been entered into
the current position of a hexadecimal field.

7 The last key entered was diacritic.

3B 1 Keyboard Flags:
Bit(s) Meaning
0 Set by the keyboard/display microprocessor

—_ W N -

when it sets external status condition 11 (mag-
netic stripe reader data in buffer). Reset when
the object code program reads the data or
resets the reader.

Indicates the screen size for which the pro-
gram was written:

1=1920
1 =960
1=480

Special verify mode.

Displacement minus 2 from the address of
the first byte of the picture check screen
format group to the address of the first
picture check subfield byte.

Hex Length in
Displace- Bytes (in

ment Hex) Description

3C 1 Keyboard Flags:

Bitf(s)
0

4.7

1

Meaning When 1

Activate the clicker for function keys.
Normally, no change is made to this bit by
the application program. If the application
program does change this bit, it should not
change it while an ENTR command is being
processed.

The home (Record Backspace) key was
pressed with the cursor in the first position
of the record. The application program
should not change this bit.

Secondary screen format being processed.
The application program shouid not change
this bit.

Screen format control string is outside the
partition. The application program should
not change this bit.

When bit 3 = 1, bits 4 through 7 contain
the page number of storage in which the
screen format control string is stored. The
application program should not change this
bit.

3D 1 Keyboard Flags:

Bit

Meaning When 1

During a verify operation, the digit entered
in the last position of a field exit required
field in which the Field- key is allowed does
not match the digit currently in the record.
Dup key enable flag: The Dup key is not
allowed. (See note.)

Monocase enabled flag: Characters that may
be monocase, as defined in the validity table,
are displayed and stored in the buffer in
uppercase. See note.

Field exit minus key enable flag: The Field-
key is not allowed in a numeric field. (See
note.)

Special verify enable flag: 1f the 5280 is in
verify mode, data entry is allowed without
verify checking against the current record
contents. When the field is exited, normal
verify mode is restored. (See note.)

Note: This flag is set to O when the keyboard/display microprocessor begins exe-
cuting an ENTR command but can be changed by the change-keyboard-controi-fiag
control group in the screen format control string.

Main Storage Data Areas 69

70

Hex

Displace-

ment

3D
(cont.)

3E

Length in
Bytes (in
Hex)

Description
Bit
5
0

ey

Meaning

When screen format processing is interrupted
by a return to the object program, this bit
indicates the direction the format should be
processed when format processing resumes,
as follows:

Forward processing when interrupt occurred.
Backward processing when interrupt
occurred.

Meaningless if byte 1E is 0.

6
0
1
7 1

During a verify operation:

The sign of the last position of a field exit
required field has not been verified.

The entire last position of a field exit
required field has been verified.

Indicates to the microprocessor not to per-
form character edit checks or perform checks
for data required, mandatory enter, manda-
tory fill, and blank check fields. The bit is
turned on when keyboard operation hexa-
decimal 06 is executed. Resets to 0 when
each field is advanced into or backspaced
into.

Keyboard Flags:

Bit

H»WN-=0

Meaning When 1

Keyboard is in enter mode. (See note.)
Keyboard is in update mode. (See note.)
Keyboard is in rerun mode. (See note.)
Keyboard is in verify mode. (See note.)
Keyboard is in insert mode. The application
program should not change this bit.
Keyboard is in field correct mode. The
application program should not change this
bit.

Keyboard is in display mode. (See note.)
Fixed prompts are not displayed. Normally,
no change is made to this bit by the applica-
tion program. If the application program does
change this bit, it should not change it while
an ENTR command is being processed.

Note: An application program can change bits 0, 1, 2, 3, and 6, but only when an
ENTR command is not being processed. After program load, these bits are main-
tained by the application program to determine the current mode for formatted
data entry. When an ENTR is outstanding, one and only one of bits 0, 1, 2, 3, and
6 must be set.

Hex Length in
Displace- Bytes (in

ment Hex) Description
3F 1 Keyboard Flags:
Bit Meaning
0 Set to 0 when the cursor enters a field. Set

to 1 when data is entered into the field.
When the cursor leaves the field, the micro-
processor ORs this bit with the modified
data indicator that is assigned to this field:
See System Indicators within a Partition.
{See Note 1.)

1 1 = The last position of a field exit required field
has been entered. A nondata key is required
to exit the field. The application program
should not change this bit.

2 1 = Awaiting a record advance key. The applica-
tion program should not change this bit.

3 1 = Auto dup/skip is enabled. (See Note 1.}

4 1 = Auto enter is enabled. (See Note 1.)

5 1 = Alternate record advance is enabled. (See
Note 1.)

6 1 = Data is displayed when in rerun mode. (See
Note 2.)

7 1 = A verify mismatch error is pending. The
application program should not change this
bit.

40 1 Displacement from the first byte of the current screen for-
mat picture check group to the current subfield format
byte.

Notes:

1. The application program can change this bit, but only while an ENTR command
is not being processed or when ENTR processing is suspended, as during external
processing before the RESUME is issued.

2. The application program can change this bit, but only while an ENTR command
is not being processed.

Main Storage Data Areas

71

72

Heyx
Displace-
ment

41

49

4A
4B

4E

52

54

56

57

58

B5A

58

Lenath in
Bytes (in
Hex)

8

Description

Contains information about the current field as shown in
the following bytes (from the format control string) while
the field is'being processed: (See Screen Format Control/
Strings for more information.)

Byte Meaning

41 First byte of the field group.

42-43 Field length minus 1.

44 Field attribute byte.

45 Field attribute extended byte.

46-47 Storage duplicate table displacement.
48 Screen format picture check (PIC) byte.

The number of bytes accumulated in a picture-check sub-
field; picture check processing ends when bits 1 through 3
of this byte equal the subfield length in bits 1 through 3 of
the picture check byte.

Screen line on which fixed prompts are displayed.
Nonverify-correction keystroke counter.

Verify-correction keystroke counter.

Address, in keyboard/display storage, of the storage area
that contains keyboard control information (see Chapter 3).

Address, in keyboard/display storage, of the diacritic trans-
late tables.

Address, in keyboard/display storage, of the status line
refresh buffer.

High-order byte of the address, in keyboard/display storage,
of the Katakana translate table.

High-order byte of the address, in keyboard/display storage,
of the scan code translate table.

Address, in keyboard/display storage, of the main refresh
buffer.

Number of lines on the screen.

Number of characters per screen line.

Hex Length in
Displace- Bytes (in
ment Hex) Description

5C 1 Keyboard Configuration Information:

Bit(s) Meaning

0 0 = Single screen
1 = Dual screen
1 0 = Single screen or station 0 of dual screen.
1 = Dual screen, station 1.
2-3 System use only.
4 1 = Katakana keyboard.
5 1 = Proof keyboard.
6 1 = Typewriter keyboard.
7 1 = Data entry keyboard.
5D 1 Keyboard Configuration Information:
Bit(s) Meaning When 1
0 Not used.
1 Maximum screen size is 1920.
2 Maximum screen size is 960.
3 Maximum screen size is 480.
4-7 Not used.
5E 1 High-order byte of the address in keyboard/display storage

of the validity table.

5F 4 Display line map: Bits 0-25 of the 4-byte group indicate
which screen lines are displayed (lines 0-25 respectively).
Bits 26-31 are 0.

63 1 Language group; the number selected from the language/
keyboards-type table during configuration.

64 1 Low-order byte of the address in keyboard/display storage
of the cursor address register.

65 1 High-order byte of the address in keyboard/display storage
of the control area.

66 1 Low-order byte of the address in keyboard/display storage
of the display control register.

67 1 System use only.

68 2 Displacement into the current field (0 to field length minus
1) to the current character position.

Main Storage Data Areas

Hex
Displace-

meiit

6A

6C

6E

70

72

74

75

76

78

79

78

7C

7D

7E

7F

The relative field number (0 to maximum number of fields
minus 1) of the field within the screen format control string
currently being processed. A format level O specification
equals one field.

Address, in keyboard/display storage, of the fixed prompt
line.

Value of the current position counter (4-digit, zone-stripped
format) displayed on the status line during keyboard entry.

Number of positions (4-digit, zone-stripped format) remain-
ing in the field. The low-order two digits are displayed on
the status line.

The relative position (in binary format) minus 1 in the
current record buffer where the next character entered, if
valid, will be stored.

Normal display attribute from .KBCRT (NMIN) statement.
Highlight display attribute from .KBCRT (HLIN) statement.

Microprocessor save area.

EBCDIC value used to check blank-check fields (usually
hexadecimal 40).

Address, relative to the start of the partition, of the screen
format control string table that is used to locate the format

control strings with the partition.

The EBCDIC character for the key that caused the last
verify mismatch error.

The EBCDIC character for the dup data that caused a verify
mismatch.

Microprocessor save area.
Microprocessor work area.

Main microprocessor lockout byte. When nonzero, the
main microprocessor is using the 10B.

System Indicators Within a Partition

The first one hundred indicators within a partition may be used as the user wishes.
The other indicators, however, are assigned a specific purpose for use during pro-
gram execution. The indicator assignments are as follows:

Indicator Condition

1100

1101

1102

1103

1108
1109
1110
1115
1116
117
1118

1119

1120
1121
1122
1123
1124

1125

Table search
TRT
CcLC
Table search
TRT
CLC
Table search
TRT
CLC

External status

Program check

SCS

Self check
SRAT

HEXBIN

Decimal divide
Edit format

Arithmetic

Decimal multiply

Decimal arithmetic

Table search

Meaning If Set to 1

System use only

Result is higher

Byte not found

String 1 greater than string 2
Result is lower

Byte is found

String 1 is less than string 2
Result is equal

Byte found in last position (EOF)
String 1 is equal to string 2
Restricted external status processing
Program check error

Background partition

LSTLN overflow

System use only

Self check error

Resource allocation table search error

Attempt to convert invalid hex EBCDIC to
binary

Divide error (denominator=0)

Invalid edit forma‘t conversion request
Decimal to binary conversion error
Multiply overflow (+, *, /)

Decimal arithmetic overflow

Entry not found

Main Storage Data Areas

75

76

Indicator

1126

1127

1128-159

1160-191

1192-254

Condition

Table write

Table instruction

ENTR

Meaning If Set to 1

Attempt to extend table heyond its limit

Table instruction error
Reserved

Field modification indicators. Each indicator
represents a field in the screen format, up to

32 fields. If there are more than 32 fields in
the screen faormat, each indicator represents
every 32nd field. 1160 represents field O, field
32 and so on. A format level zero specification
is represented with one indicator for the entire
group of 1-byte fields. All field modification
indicators are set to 0 when an ENTR is en-
countered. While the ENTR is being processed,
each time the cursor is advanced or backspaced
into a field, bit 0 of byte hex BF of the key-
board/display 10B in the partition is set to 0.

If data is entered into the field, bit O of the byte
at hex BF is set to 1. When the cursor exits
the field, bit 0 of the byte at hex BF is ORed
with the field modification indicator that
represents the field.

Used by SYSKEU, DE/RPG, and other programs
to communicate with common function routines.

System Registers Within a Partition

Several binary registers are used by the system during program execution. These
registers are listed below, with the conditions or instructions that affect each

register.
Register

BR16

BR16

BR17

BR18

BR19

BR20

BR21

BR22

BR23

BR24

BR25

BR26-31

Condition

LOAD

TRT

TRT

Subroutine

Keyboard
external
status

Keyboard
external
status

Keyboard
external
status
External

status

External
status

LOAD

Register Contents

Relative record number for relative record read; also
contains error code after a load error.

Address of the last position that translated to a non-
zero character.

Function byte.

Address of next available entry position in the partition
subroutine stack.

Current field starting address, relative to the beginning
of the partition, of the field within the current record
buffer,

Current field starting address within the screen refresh

buffer in keyboard/display control storage.

Field definition and field length minus 1 of the current
field.

Relative address of the last data set 10B to report
external status. Not used for keyboard/display external
status.

External status condition code, to be used as the index
into the external status error table of subroutine
addresses.

Used by SCP for PTF log.

Physical device address of the device performing the
load.

System use only.

Main Storage Data Areas

77

78

Diskette 10B

Following is a general description of the diskette 10B. Following this general
description is a complete description of each field of the IOB. Addresses shown are
hexadecimal displacements from the beginning of the 10B. No validity checking is
made on any of the values in the bytes of the following IOB. If any of these bytes

are modified by the application program, unpredictable results may occur.

00 | 10B System 10B Chaining Information | Page Data and | Error Code Next Instruction Address
Status Flage
1 1 1 1
08 | Command Command Operands Logical Buffer Address | Translate External
Op Code Table Num- | Status
ber
1 1 1.2
10 | Address of External Status | Main Micro- | Data Set Address of Data Set System Use | Partition
Subroutine or Subroutine processor Flags Name Only Address,
Table Fiags High
1,23 123 1,2 1
18 | Physical 1/0 Buffer 1 PBI Track P8I Sector Logical Record Length | Block Length
(PB1) Address and Length
1,2 1 1 1,2,3 123
20 | Physical 1/0 Buffer 2 PB2 Track PB2 Sector Defective Sector Count | Microprocessor Save Area
(PB2) Address and Length
1,2 1 1 1,3 1.3
28 | Displacement to Next Microprocessor Save Area
Record Space
1,3 1.3
30 | Pointer to HDR1 Label Sector Number of Number of |Number of | Track and Sector Number of
Address Length Additional Index|Sectors per |Sectors per | Beginning of Extent (BOE)
Cylinders Bilock Track
1,3 1.3 1,3 1,3 1,3 1,3
38 | Relative Record Number of Relative Record Number of Track and Sector Number of
End of Data (EOD) End of Extent (EOE) End of Data (EQD)
1,3 1,3 1.3
40 | System Use Table Num-} Number of Records Between Key Position Key Length | System Use
Only ber of Key | Keys Minus 1 Only
Index File
4 1,24 1234 124 1,24 4
48 | Microprocessor Save Area Data Set Type Adapter Micropro-
Error Status | cessor
Save Area
1.3 1,2 1 1
50 | Number of Bytes to Microprocessor Save Area Seek Count | Microprocessor Save Area
Read or Write
(PB1)
1 1,3 1 13

58 | Number of Bytes to Number of Nulis Microprocessor Save Area
Read or Write Between Blocks
(PB2)
1 1.3
60 | Device identification Diskette Deleted Record| Microprocessor Save Area Current
108 Character Record
Identifier Pointer
13 1.3 1,3
68 | Current Record Pointer Microprocessor Save Area
{continued)
1,3 1.3
70 | Microprocessor Save Area
1.3
78 | Microprocessor Save Area System Use Only
1.3 1.3
1. An application program must not alter this field while the tOB is active.
2. Initialized by the assembler.
3. Initialized by the device at open time.
If both 2 and 3 are specified for a field, it indicates that the field can be initialized by either the assembler or the
device, except for bytes 12 and 13, which are initialized by both the assembler and the device.
4. These values apply only to keyed data sets. For SCS conversion data sets, these bytes have a different meaning.
See the complete description of the fields for the SCS values.
Hex Length in
Displace- Bytes (in
ment Hex) Description
00 1 10B System Status:

Bit(s)
01 1=
10=
01=
00=
2 1 =
3 1 =
4 1 =
5
6 1 =
7

Meaning

The main microprocessor sent a command to
the diskette MPU. It cannot send another
command until the diskette microprocessor
sets the bits to 00.

System use only.

Diskette is executing the command; buffers
are now in use.

No command pending.

The diskette microprocessor has work to do.
The diskette microprocessor sets this bit on
when it senses an error or external status.
The main microprocessor clears the bit after
the external status or the error condition
has been processed.

The diskette microprocessor is performing

a physical operation for this data set.
System use only.

The OB is first in chain.

System use only.

Main Storage Data Areas

79

80

Hex Length in
Displace- Bytes (in

ment Hex)
01 1
02 1
03 1
04 2
06 2
08 1
09 3
0oC 2
OE 1
OF 1
10 2

Description

I0B Chaining Information:

Bit(s) Meaning

0 1 = Diskette microprocessor is processing the
chain pointer. The main microprocessor
cannot use the chaining information when

this bit is on.
1-3 System use only.
4-7 When nonzero, the main microprocessor

is accessing the chain pointer flags.

High-order byte of the address of the next 10B in the
chain.

Page Data and Flags:

Bit(s) Meaning

0 Low-order address of the next 10B in the
chain.

1-3 System use only.

4-7 Number of the page in main storage where

the next 10B on the chain is located.

External status error code in 4-byte packed decimal format
(not reset by the system).

The absolute address of the next sequential instruction
following the operation issued to the diskette MPU.

Op code, see Chapter 4.
Instruction operand. These bytes contain the rightmost 3
bytes of the object code instruction. See Chapter 4 for the

meanings of these bytes.

Address of the logical I/O buffer relative to the beginning
of the partition.

The number of the table used to translate EBCDIC
characters to ASCII, ASCII characters to EBCDIC, or other
character set translations. Hex FF indicates no translation
requested.

External status category.

Address of the external status subroutine table.

Hex
Displace-
ment

12

13

14

16

17

Description
Main Microprocessor Flags:

Bitf(s) Meaning

0 0 = There is more than one external status sub-
routine. They are accessed via a subroutine
table.

1 = External status conditions are handled by
one subroutine.

1 1 = An error occurred when opening a data set.

2 1 = SCS conversion data set; logical buffer is
empty.

3 = SCS conversion is in progress fer this 10B.

4 1 = SCS last line status flag.

5 1 = An error detected by the main micro-
processor is outstanding.

6 1 = CLOZ operation logically complete.

7 1 = SCS purge in progress, set during CLOZ

operation.
Data Set Flags:

Bit Meaning When 1

0 The I0B is operi.

1 Logical buffer is within the physical buffer.

2 Diskette is using double physical buffers.

3 Diskette microprocessor is waiting for a
shared data set conflict to be resolved. The
shared data set is being used by another |0B.

4 On open, the logical record and block size
are set to equal the sector size.

5 1/0 MPU requires repeat of last command.
The main MPU decrements the external
status table return address for repeat when
a RETURN instruction is used.

6 Not used.

7 SCS continuation of transparent data across

physical buffers, or data set keys are in
ascending order.

Address of.data set name.

System use only.

Partition address, high-order byte: The value in byte 17
is added to each address in the 10B to convert it to an
absolute storage address. This byte also points to the

beginning of the partition 0B and is used to find table
addresses.

Main Storage Data Areas

81

82

Hex
Displace-

1C

1E

20

Length in
Bytes (in
Hex)

4

Description
Physical 1/O Buffer 1:

Byte 18 and bit 0 of byte 19 contain the address, relative
to the beginning of the partition, of the beginning of
physical 1/0 buffer 1.

Byte 19, bits 1 through 7 contain the number of 128-byte
blocks allocated to the buffer in main storage.

Byte 1A contains the head and track number where
physical I/O buffer 1 starts on diskette (bit 0 = head
number).

Byte 1B contains the sector number where physical 1/0
buffer 1 starts on diskette (set to hexadecimal 00 anytime
the buffer is invalid, such as: quick release, early write, or
if an error occurs).

The logical record length of the records in the data set. Not
used by diskette MPU in SCS conversion processing.

Block length for blocking logical records on diskette.
Physical 1/0 Buffer 2:

Byte 20 and bit O of byte 21 contain the address, relative to
the beginning of the partition, of the beginning of physical
1/0 buffer 2.

Byte 21, bits 1 through 7 contain the number of 128-byte
blocks allocated to the buffer in storage.

Byte 22 contains the head and track number where physical
1/0 buffer 2 starts on diskette (bit 0 = head number).

Byte 23 contains the sector number where physical 1/0
buffer 2 starts on diskette (set to hexadecimal 00 anytime
the buffer is invalid, such as: quick release, early write, or
if an error occurs).

Hex Length in
Displace- Bytes (in

ment Hex) Description

24 2 The number of defective sectors encountered.

26 2 Microprocessor save area.

28 2 Negative displacement to the next available record space

from the end of the last block.

2A 6 Microprocessor save area.
30 2 Relative record number of the HDR1 address label for this
data set.

32 1 The diskette sector length as follows:
Hex Meaning
01 128-byte sector length for diskette 1 or 2,
02 256-byte sector length for diskette 1, 2, or 2D.
04 512-byte sector length for diskette 1, 2, or 2D.
08 1024-byte sector length for diskette 2D.

33 1 The number of additional index cylinders on the diskette.

For example, if this number is 4, there are five index
cylinders on this diskette.

34 1 The number of sectors per block, which is block length
divided by sector length plus 1 if there is a remainder.

35 1 The value 26, 15, or 8 to indicate the number of sectors per
track.
36 2 The BOE track and sector number: For diskette 1, byte 36

= cylinder number and byte 37 = sector number. For disk-
ette 2 and 2D; byte 36, bits 0-6 = cylinder number, and bit
7 = head number; byte 37 = sector number.

38 3 The relative record number of the last logical record in the
data set.
3B 3 The relative record number of the last logical record space

available in the data set.

3E 2 The EOD track and sector number: For diskette 1, byte 3E
= cylinder number and byte 3F = sector number. For disk-
ette 2 and 2D; byte 3E, bits 0-6 = cylinder number, and bit
7 = head number; byte 3F = sector number.

Main Storage Data Areas 83

84

41

42

46

47

48

Length in
Bytes (in
Hex)

Descrintion

Used only for SCS conversion data sets; a pointer into the
physical 1/O buffer where the data is formatted.

For keyed data sets, the table number of the keyed index
file in main storage. Hex FF cannot be used. See Address-
ing Through a System Table, in Chapter 4, for information
about finding tables in storage.

For SCS conversion data sets, the line number of the
current line.

For keyed data sets, the number of logical records between
key entries on indexed files.

For SCS conversion data sets, the line that generated
external status (42) and the page size (43).

For keyed data sets, the location of the index key within
the logical record.

For SCS conversion data sets, the address of the format
table entry being processed on open, which contains the
SGEA (set graphic error action) parameters. After open,
byte 44 has the number of blanks processed, and byte 45
has the number of bytes processed in the logical buffer.

For keyed data sets, the length minus one of the index key.

For SCS conversion data sets, the number of characters
processed in the line.

Used only for SCS conversion data sets; the number of
characters per line.

Microprocessor save area.

Hex
Displace-
ment

4C

4E

4F

50

52

Length in
Bytes (in
Hex)

2

Description
Data set types as follows:
Byte 4C:
Bit Meaning When 1
0 Read allowed.
1 Write allowed.
2 Read shared.
3 Write shared.
4 Label update data set.
5 Diskette microprocessor builds an index table
when opening keyed data sets. -
6 Keyed data set.
7 Set EOD equal to BOE when opening.
Byte 4D:
Bit(s) Meaning When 1
0 Early write.
1 Quick release.
2 Translation of HDR1 labels required.
3 Diskette MPU does not check for overlapped
extents or duplicate data set names.
4 Standard character string conversion is
requested.
5 Pointer mode data set.
6-7 System use only.
Used to store temporary status information.

Microprocessor save area.

Number of bytes to read or write; used in conjunction with
physical buffer 1.

Microprocessor save area.

The number of tracks to seek as follows:

Bit(s) Meaning
0 1 = Seek high.
0 = Seek low.
1-7 The number of remaining tracks to seek for

this data set. (Seek operations can be over-
lapped with either a read or a write
operation.)

Main Storage Data Areas

85

86

Hex
Displace-
ment

55

58

5A

62

67

6A

7E

Length in
Bytes (in
Hex)

3

2

14

Description
Microprocessor save area.

Number of bytes to read or write; used in conjunction with
physical buffer 2.

Number of nulls between blocks.

Logical device identification from the resource allocation
table.

Diskette 10B Identifier:

Bits Meaning
03 The logical 1/0O table number.
4-7 The partition number for the partition in

which this 1OB is located.

The user specified character that indicates a logically
deleted record for | or E exchange data sets.

Microprocessor save area.
A record number used as a pointer to keep track of positions
within the data set. It is not necessarily the same as the
record number of the record in the logical buffer.

Microprocessor save area.

System use only.

Printer IOB

00

08

10

18

20

28

30

40

48

50

Following is a general description of the printer IOB. Following this general descrip-
tion is a complete description of each field of the IOB. The addresses shown are
hexadecimal displacements from the beginning of the IOB. No validity checking is
made on any of the values in the bytes of the following 10B. If any of these bytes

are modified by the application program, unpredictable results may occur.

|0B System I0B Chaining Information |Page Data and | Error Code Next Instruction Address
Status Flags
1,2,3 1,2 1.3 1
Command Command Operands Logical Buffer Address Translate External
Op Code Table Status
Number
1.2 123 123 - 2 13
Address of External Status | Main Micro- |Data Set Address of Data Set Printer Partition
Subroutine Table processor Flags Name Subaddress | Address,
Flags High
1 1 1,23 1 1,23 1,2
°
Physical /0O Buffer 1 Buffer Remainder Logical Record Length Block Length
Address and Length
123 1234 12 1234
Physical 1/O Buffer 2 Number of Printer Buffers Number of Bytes Sent Number of Bytes of Buffer
Address and Length Remaining to Transmit in Last Transmission Being Used
23 234 234 234
Information From the Global Configuration Table Device System Use Only
Physical
Buffer
Size 2,3
System Use Only Physical Printer Line Busy Timer Close Timer
Record Length
Length
1,234 234 2,34 234

Microprocessor |System Use
Save Area Only

234

Number of Records Remain-
ing to be Sent to Physical
Buffer

2,34

Number of Printer Buf-
fers to Transmit

234

Number of Logical Records
to Transfer to Buffer

234

SCS Parameters

Microprocessor Save Area

Data Set Type

1.2

Last Poll Response Before
an Error

234

Status from
Printer

234

Response to Last Poll

Status from
Last Read

234 2,34

Microprocessor Save Area

Command Flag

Main Storage Data Areas

87

88

60

68

70

78

System Use Only

Number of Bytes of Physi-
cal Buffer Being Used in

Pointer Mode

Printer Identification Printer IOB | Microproces- Error Code Build Area System Use |Current Record
Identifier sor Save Area Only Number
1 1 234 2,34 1234
Current Record Number Microprocessor Save Area Number of Logical System Use Only
(continued) Records Remaining in
Pointer Mode
2,34 234

System Use Only

System Use Only

1. Accessed by the main microprocessor.

2. Read by the printer microprocessor.

3. Written by the printer microprocessor.
4. Initialized by the printer microprocessor.

The main microprocessor sent a command
to the printer attachment microprocessor.
The main microprocessor cannot send
another command until the printer micro-
processor sets the bits to 00.

The printer attachment microprocessor has
completed logical work for the command
but is still doing physical work.

System use only.

No command pending. (Printer may still be

The printer attachment microprocessor has
physical work to do.

The printer attachment microprocessor sets
this bit on when it detects an error or
external status. The main microprocessor
clears the bit and processes the external
status with the subroutine indicated.
System use only.

This is the first I0OB on the chain.

Hex Length in
Displace- Bytes (in
ment Hex) Description
00 1 I0B System Status:
Bit(s} Meaning
o1 1=
10=
01
00=
busy.)
2 1 =
3 1 =
4-5
6 1 =
7

System use only.

Hex
Displace-
ment

01

02

03

06

08

09

OE

OF

10

Length in
Bytes (in
Hex)

Description
10B Chaining Information:

Bit(s) Meaning

0 The printer attachment microprocessor is
processing the chain pointer. The main
microprocessor cannot use the chaining
information when this bit is 1.

1-3 System use only.

4-7 When nonzero, the main microprocessor is
accessing the chain pointer.

High-order byte of the address of the next 10B in the chain.

Page Data and Flags:

Bit(s) Meaning

0 The low-order address bit of the next I0B
in the chain.

1-3 System use only.

4-7 Page number where the next I0B in the

chain is located.

External status error code in 4-byte packed decimal format
(only valid if byte 0, bit 3 is 1).

The absolute address of the next sequential instruction
following the operation issued to the printer attachment
MPU.

Command op code. See Chapter 4.

Command operand. These bytes contain the rightmost 3
bytes of the object code instructions. See Chapter 4 for the

meanings.

Address of the logical buffer, relative to the beginning of the
partition.

Number of the table used to translate EBCDIC characters to
ASCII, ASCII characters to EBCDIC, or other character set
translation. Hex FF indicates no translation required.

External status category.

Address of the external status subroutine table.

Main Storage Data Areas

Hex Length in
Displace- Bytes (in

ment Hex} Description
12 1 Main Microprocessor Flags:
Bit Meaning When 1
0 All external status conditions handled by
one subroutine.
1 An error occurred while opening the data
set.
2 SCS conversion data set; logical buffer is
empty.
3 SCS conversion is in progress for this 10B.
4 SCS last line status flag.
5 An error detected by the main micro-
processor is outstanding.
6 CLOZ operation is logically complete.
7 SCS purge in progress, set during CLOZ

operation.

Bits 2-7 are set and maintained by the main micro-

processor.
13 1 Data Set Flags:
Bit Meaning When 1
0 108B is open.!
1 Logical buffer is within physical buffer.
2 Double physical buffers are used.
34 Not used.
5 1/0 MPU requires repeat of last command.
Main MPU decrements the external status
table return address to cause the repeat when
a RETURN instruction is used.
6-7 System use only.
14 2 Address of the storage area that contains the data set name.
16 1 Device Subaddress:
Bit(s) Meaning
0-2 Not used.
34 Port address.
5-7 Station address.

Lig you issue a second open to a data set without closing the data set, this bit is no longer a

valid indicator that the data set is open.

90

Hex
Displace-
ment

17

18

1A
1C

1E

22

24

26

28

Length in
Bytes (in
Hex)

1

Description

High-order byte of the address of the beginning of the par-
tition. The printer microprocessor adds this address to all
relative addresses to form the absolute address.

Byte 18 and byte 19, bit 0 contain the address of the
beginning of the physical I/O buffer 1 relative to the
beginning of the partition. Byte 19, bits 1-7 contain the
number of 128-byte blocks aliocated to the buffer in main
storage.

Number of bytes of physical buffer not being used.
Logical record length of records in the data set.

Block length; can be either 128 or 256. If not specified in
program, the block length is set to physical 1/0 buffer 1 size
(maximum length is 256).

Address of the start of the physical 1/0 buffer relative to the
beginning of the partition, and buffer length; same format as
bytes 18-19.

Number of printer buffers remaining to transmit.

Number of bytes to be sent to the printer in the last
transmission.

Number of bytes of the physical buffer being used.

Information for the printer attachment MPU from the global
configuration table:

Byte 28 Displacement from the beginning of the soft
error log to the first entry for this printer.
Byte 2A Number of entries allocated to the soft
error log for this printer.
Byte 2B Error encoding type as follows:
AO = Bit encoding
20 = Byte encoding
Byte 2C Always 00.
Byte 2D Number of 128-byte blocks in device physical
buffer (2). '

Main Storage Data Areas

91

92

Moy

Displace-
ment

2E

32

33

34

36

38

3A

3C

3E

40

Length in
Bytes (in
Hex)

4

Description

System use only.

Physical record length.

Printer line length; set to logical record length at open time.
If the logical record length is longer than the maximum print
line, zero record length is transmitted to cause the printer
to use its default line length.

Busy timer (busy time-out results in 2291 error).

Close timer (close time-out results in a 2292 error).
Microprocessor save area.

System use only.

Number of logical records remaining to be transferred to
the physicai buffer.

Number of printer buffers that will be transmitted.

Number of logical records that will be transferred to the
physical buffer.

SCS conversion parameters, used only with SCS conversion
data sets.

Byte(s) Meaning

40 A pointer into the physical /O buffer where
the data is formatted.

41 The line number of the current line.

42 The line that generates external status.

43 The page size.

44-45 The address of the format table entry being

processed on open, which contains the SGEA
(set graphic error action) parameters.

After open, byte 44 has the number of
blanks processed, and byte 45 has the number
of bytes processed in the logical buffer.

46 The number of characters processed in the
line.

47 The number of characters per line.

48-4B Microprocessor save area.

Hex Length in
Displace- Bytes (in
ment Hex) Description

4C 1 Data Set Type:

Bit(s) Meaning

0 1 = Read allowed (causes error code 2402).
1 1 Write allowed.

2 Not used.

3 Write shared. (A printer may be used by
more than one I0B.)

-
[}

4-7 Not used.
4D 1 Data Set Type:
Bit(s) Meaning
0 1 = Early write data set. (Transmit a logical

record each time it is transferred to the
physical buffer.)

Not used.

Always 0.

Not used.

= SCS conversion requested.

Pointer mode data set.

-7 Not used.

O D WN =
- -
won

4E 2 Last poll response that occurred before an error was
detected; also placed in the system hard error table.

50 1 Status from the printer; also placed in the system hard
error table.

51 2 The response to the last poll command.

53 2 Status from the last read status command.

b5 2 Microprocessor save area.

57 1 Command flag; indicates the last command issued.

58 6 System use only.

5E 2 : Number of bytes of the physical buffer being used in

pointer mode.

60 2 Printer ID.

62 1 Printer 10B identifier.

Main Storage Data Areas 93

94

Hex Length in
Displace- Bytes (in

ment Hex) Description

63 1 Microprocessor save area.

64 2 Used to build the error code before it is transferred to
bytes 04-05.

66 1 System use only.

67 3 Current record number: initialized 1o hexadecimal 00 at

open time and used during pointer mode to indicate the
number of records transferred to the buffer since open.

6A 2 Microprocessor save area.

6C 2 The number of logical records remaining to be transferred
to the physical buffer in pointer mode.

6E 12 System use only.

SYSTEM TABLES

System tables contain the addresses of certain data areas. When an assembler source
program allocates and labels one of these data areas, the system stores the address of
the area in the appropriate system table. When a source program instruction refers
to one of these data areas, the instruction specifies the label assigned to the area.
Then when the source program is assembled, the assembler converts the labe! to the
index into the system table where the address of that data area is stored. During
program execution, when an object code instruction contains a system table index,
the system finds the address of the area at that index into the appropriate system
table.

System tables may be located within a main storage partition or within the common
area. System tables within the partition contain addresses of data areas within the
partition. System tables within the common area contain addresses of global data
areas located in the common area. The partition or device |OB contain the addresses
of the system tables within the partition. The system control block contains the
addresses of the system tables in the common area.

The data areas that are addressed through a system table are the:
® Data tables

® Edit format control strings

Screen format control strings
® Prompts and constant inserts

® Main storage duplicate areas (cannot be in the common area)

System Table for Data Tables

The system table for data tables is built by the assembler when it processes the
.TABLE control statements; one system table entry is generated from each .TABLE
control statement. The address of the system table for data tables that are located
within the partition is in the partition 10B at relative address hex 18. The address
of the system table for global data tables is in the system control block at absolute
address hex F9.

The system table for data tables within the partition consists of one 8-byte entry for
each data table. The format of the 8-byte entry is as follows:

Bytes Meaning

0-1 Table address: the relative address of the data table

2-3 Entry number: the number of the last table entry used

4 Entry length: the number of bytes minus 1 of a table entry

5 Bypass length: the length of the bypass portion of the table entry

6-7 Maximum entries: the maximum number of entries the table can have

The index for the system table for tables within the partition must be in the range
0 through 127. The index for the system table for global tables must be in the
range 128 through 254. The first two global tables are reserved for system error
tables; one global table may be an ASCIHi translate table.

The system table for global tables must always be located on storage page zero. The
entries are 10 bytes long, in the following format:

Bytes Bits Meaning

0 0 Lock bit
0 = Table locked only for 1 table instruction.
1 = Table locked by TLCK instruction until TUNLCK
instruction is issued.
1-2 Not used

3 0 = Valid partition number in bits 4-7.
1 = No valid partition number in bits 4-7.
4-7 Partition number of partition using the table
1 0-3 Storage page number where the table is located

4-7 Always 0001

29 As for bytes 0-7 of system table for data tables within the
partition.

Main Storage Data Areas

95

96

An object code table instruction contains the system table index for the table to
access in the second byte of the 4-byte instruction. The following illustration shows
hiow the system table index is used io access a data table within the partition. The
data table labeled TABO2 was the second table set up with a .TABLE control
statement.

Source: R14 = TBRD(TABO02,BR60);
Bytes 18 and 19 of

Object: |52,01,78,E1 the Partition 10B

] Yo a0
((

{ System Table

Data Table in Storage

= {1 I

&deO

System Table for Edit Format Control Strings

The system table for edit format control strings is built by the assembler when it
processes the .FMT control statements; one system table entry is generated by

each series of .FMT control statements. The address of the system table for edit
format control strings that are located within the partition is stored in the partition
0B, at relative address 24. The address of the system table for global edit format
control strings is stored in the system control block at absolute address hex EE.
The system table for global edit format control strings must always be located on
storage page 0.

The system table for edit format control strings located within a partition consists
of one 2-byte entry for each control string. The 2-byte entry contains the address,
relative to the beginning of the partition, where the control string is located. There
may be up to 127 edit format control strings within a partition, represented by
system table indexes 0 through 126. The last entry in the system table for edit
format control strings always contains hex FFFF. If no edit formats are set up
with the .FMT control statement series in a source program, a system table for edit
format control strings is built; the only 2-byte entry in the table contains FFFF,

The system table for global edit format control strings consists of one 3-byte entry
for each global edit format control string. The 3-byte entry contains the storage
page number in the first byte, and the control string address (relative to the begin-
ning of the storage page) in the second and third bytes. There may be up to 127
global edit format control strings {numbered 128 to 254), represented in the system
table with indexes O through 126, where index O represents format 128. The last
entry in the system table always contains hex FFFF,

When a source program instruction refers to an edit format, it includes the format
label. The assembler converts the label to a format number from 0 to 127.

The following illustration shows how the system table is used to find an edit format
control string that is located within the partition. In the illustration, FMTO02 is
the second edit format set up with a .FMT control statement series.

Source: READ(3,FMT02,0,N)
Bytes 24 and 25 of

Object:]20,03,01,08 the Partition 10B

System Table

Edit Format Control String

= 2 2! |

(Last entry) FF FF -

0
1
2
3

System Table for Screen Format Control Strings

The system table for screen format control strings is built by the assembler when it
processes the .SFMT control statements; one system table entry is generated froin
each series of .SFMT control statements. The address of the system table for screen
format control strings that are located within the partition is stored in the keyboard/
display |0B at hex 79, relative to the start of the IOB. The address of the system
table for global screen format control strings is stored in the system control block,
with the storage page number at hex FB and the address at hex FC.

The system table for screen format control strings that are located within the parti-
tion consists of one 2-byte entry for each control string. The 2-byte entry contains
the address, relative to the beginning of the partition, where the control string is
located. There may be up to 256 control strings within a partition, represented by
system table indexes O through 255.

The system table for global screen format control strings consists of one 2-byte
entry for each global control string. The 2-byte entry contains the address, relative
to the beginning of the storage page (in hex FB), where the control string is located.
There may be up to 256 global control strings represented by system table indexes
0 through 255. The first global screen format control string is used by the system
for the standard load prompt.

The ENTR command in the source program includes the label of the screen control
format to use. The assembler converts the label to the system table index, and

also determines whether the control string is within the partition or in the common
area. If the control string is within the common area, bit 9 of the 4-byte object
code instruction is set to 1. During program execution, if bit 9 equals 1 the address
of the system table is taken from the system control block. If bit 9 equals O the
address of the system table is taken from the keyboard/display 10B within the
partition.

Main Storage Data Areas

97

98

The following illustration shows how the system table is used to find a screen
format contro! string that is located within the partition. In the illustration, the
scieen format labeled SFMT02 was the second screen contro! format set up with 2

series of .SFMT control statements.

)

Source: ENTR(SFMT02);
Bytes 79 and 80 of
Object: {CF 00 01 00 the Keyboard/Display 10B

e

System Table

Screen Format Control String

Ay

y W N = 0O

System Table for Prompts and Constant Inserts

The system table for prompts and constant inserts is built by the assembler when

it processes .DC control statements with the parameter TYPE=PRMT. The address
of the system table for prompts and constant inserts that are located within the
partition is stored in the keyboard/display 108 at hex 7D, relative to the start of the
I0B. The address of the system table for global prompts and constant inserts is
stored in the system control block at absolute address hex FE. The storage page
number where the system table is located is stored in the system control block at
hex FB. (It must be on the same storage page as the system table for global screen
format control strings.)

The system table for prompts and constant inserts that are located within the parti-
tion consists of one 2-byte entry for each prompt or constant insert. The 2-byte
entry contains the address, relative to the beginning of the partition, where the
prompt or constant insert is located. The first entry in the system table always
contains 2 bytes of zeros. The address of the first prompt or constant insert is at
index 1 in the table.

The system table for global prompts and constant inserts consists of one 2-byte
entry for each global prompt and constant insert. The 2-byte entry contains the
address, relative to the beginning of the storage page, where the prompt or constant
insert is located. The first entry contains 2 bytes of zeros. The first prompt or
constant insert is at index 1 in the table. During program execution, if the screen
format control string that referred to the prompt or constant insert is a global

screen format control string (indicated by bit 9 of the object code ENTR command),
the system table for global prompts and constant inserts is used.

In a source program, a prompt is referred to in a .SFMTPMT control statement; a
constant insert is referred to in a .SFMTCNS control statement. The assembler
converts the labels included in the control statements to system table indexes.
During program execution, when a screen format control string refers to a prompt
or constant insert system tahle index, the system finds the address of the prompt
or constant insert in the system table at that index.

The following illustration shows how the system table is used to find a prompt that
is located within the partition. The prompt labeled PMP02 was the second prompt
set up by a .DC control statement with the TYPE=PRMT parameter.

Source: .SFMTPMT PRMT=SP,PMP02:
Bytes 7D and 7E of
Object: ?FF ? ?07| 02? the Keyboard/Display {OB

(Screen ?"—‘—'—'—3

format
control System Table
string) 0 00 00
1
2 Prompt
3 - 1}

System Table for Main Storage Duplicate Areas

The system table for main storage duplicate areas is built when the assembler
processes the .DC control statements that have the parameter TYPE=MDUP. The
address of the system table for main storage duplicate areas that are located within
the partition is stored in the keyboard/display 10B at hex displacement A6. Global
main storage duplicate areas cannot be specified.

The system table for main storage duplicate areas consists of one 2-byte entry for
each main storage duplicate area within the partition. The 2-byte entry contains
the address, relative to the beginning of the partition, where the area is located. The
address of the first main storage duplicate area is in the system table at index 0.

In a source program, a main storage duplicate area is referred to in an .SFMTFLD
control statement with an MD=label (duplicate from the label) or an MS=label (store
to the label) parameter. The assembler converts the labels to system indexes. Dur-
ing program execution, when a screen format control string refers to a system table
index, the system finds the address of the main storage duplicate area in the system
table at that index.

Main Storage Data Areas 99

The following illustration shows how the system table is used to find a main storage
duplicate area. In the illustration, the area labeled DUPO2 is the second main stor-

ann diinlianta

arna eot un bu a DO agntrgl statament with 2 TYDE=MDUID narameter
uyge uuyn\'uu. arvua ovL “ ot e " te

UpP Uy O Jrw VUBILTUL JLUtGitiviie veitll [V 1) G A IGLT
Ldiad J

Source: .SFMTFLD FLDF=A,9,AD MD=DUPO02:
Bytes A6 and A7 of

Object: ?FF ??01 08 22 81? the Keyboard/Display 0B

(screen format
control screen)

1/ System Table Main Storage
0 Duplicate Area
; (¢]
3
~~o -~

SCREEN FORMAT CONTROL STRINGS

The keyboard/display microprocessor uses screen format control strings to format
and check data that is entered via the keyboard, displayed on the screen, and stored
in the current record buffer in main storage. Screen format control strings are
assembled as specified in the source program. For example, with the assembler
language, screen formats are specified by the .SFMTST, .SFMTCNS, .SFMTPMT,
SFMCTL, .SFMTFLD, and .SFMTEND statements.

Control information, data fields, prompts, and display attributes are specified by a
byte or a byte group in the control string. The order in which the control string is
assembled is the order in which the string is processed. The following diagram is a
generation description of the contents of the control string. Following this general
description is a complete description of each type of specification that can be in the
control string.

Start of End of
String Byte Groups String
Lr_F] N N) 1 2 1 J_() F L A]

@ . o o

° Each screen format control string must begin with hex FF, followed by a byte
group ID and control byte that indicates the start of the screen format control
string. See Start of Control String under Contro/ Byte Group.

Q Each byte group contains an ID (see Byte Group /D) and other bytes to describe
a control specification (see Contro/ Byte Group), data field (see Data Field Byte
Groups), prompt (see Constant Insert Data and Prompts), or display attribute
(see Display Attributes).

O A byte group ID and control byte that indicates the end of the screen format
control string. See End of Control String under Contro! Byte Group.

100

Byte Group ID

The type of format specification in each byte group in the control string is identified
by the first byte of the group as follows:

—

66 6

1 = This is the last byte of the group.?
1 = Return control to the object code program.?

00 = Field is neither right-adjust nor field exit required.
01 = Field is right-adjust, alphabetic fill.!

10 = Field is field exit required.

11 = Field is right-adjust, numeric fill.!

0000 = Field is picture check field.!

0001 = Field is alphabetic.

0010 = Field is numeric.

0011 = Field is hex.

0100 = Field is Katakana.

0101 = Format level zero.

0110 = Fixed position prompt.

0111 = Standard prompt or constant insert data.
1000 = Invalid specification.?

1001 = Field is alphabetic only.

1010 = Field is numeric only.

1011 = Field is digits only.

1100 = Field is Katakana only.

1101 = Invalid specification.?

1110 = Display attribute.

1111 = Control specification (see Control Byte Group).

Ly picture check is specified, the field cannot be right-adjust or processed right to left.

2Bit values 1000 and 1101 cause external status for invalid format control string to be posted.

3¢ bit 1 is on, the keyboard/display microprocessor returns control to the object code program.
When the control string is processed forward, control returns after the format group is processed.
When the control string is processed backward (a backspace key was pressed), control returns
before the format group is processed.

4Bit 0 of each byte in the control string indicates whether this byte is the last byte of a group.

Main Storage Data Areas

101

102

Control Byte Group

Control (such as start of contro! string and end of contro! string) is specified in th
control string by one or more control bytes. The control byte(s) always follow a
control string byte group ID.

8
g

Byte Group ID Control Byte

1010101011111111[L1419

-
06 6 o

1 = Last byte of this control byte group.

Control Code Modifiers: See Control Code Description.

Control Code (see Control Code Description):

000 = Invalid code.

001 = Change pointer position.
010 = Start of control string.

011 = End of control string.

100 = Check indicator for bypass.
101 = Execute secondary format.
110 = Invalid code.

111 = Change keyboard flags.

@ Additional Control Bytes: Used for codes 001, 100, 101.

Control Code Description

000 Invalid Code: Control code 000 or 110 causes external status for invalid con-
trol string to be posted.

001 Change Pointer Position: Control code 001 causes the microprocessor to
change the screen position pointer and/or the current record buffer pointer as

follows:
Byte Group ID Control Code 1 = Last byte of the control group.
{0,0,0,0,1,1 | | l |
oo 0 vyrytfo, e ft v b v v

2 .)

1 = Change the screen position pointer.

1 = Change the current record buffer position pointer.

0 = Add the number of positions to the pointer if the string is processed forward;
subtract the number of positions if the string is processed backward.

1 = Subtract the number of positions from the pointer if the string is processed
forward; add the number of positions if the string is processed backward.

Not used.

Number minus 1 of positions to move the pointer if less than 128; otherwise
this byte contains 7F and the next 2 bytes indicate the number minus 1 to move
the pointer.

® 0o

G Number minus 1 of positions to move the pointer if the previous byte = 7F.

Main Storage Data Areas 103

010 Start of Control String: Control code 010 indicates the start of a screen format
control string, as follows:

Byte Group ID Control Code
’ A ~ e —
losoroourpnpnnfr, .O.uOI%

LY
(D

1 = Begin this screen format at the current screen position.

0 = Begin this screen format at row 2, column 1.

Not used.

1 = In enter mode, move prompts and display attributes to the screen, and

move data from the current record buffer to the screen. (In modes other
than enter, this function is performed automatically.)

@0 ©

Q 1 = Clear the screen (except the status line) before any function is performed.

011 End of Control String: Code 011 indicates the end of the format control string

as follows:

Byte Group ID Control Code
- e

0|0|0|0|1|1:1|1I1| L1 1011|1I%

Not used.
1 = Sound the buzzer.
1 = Clear the screen except for the status line.

Not used.

©0006

For a primary format, end of control string is processed at record advance time and
during a cancel ENTR operation {CNENTR). The status line counters, field shift,
and hex display are set to blanks and external status condition 6 is posted to the
object program. For a secondary format, end of control string modifiers are ignored;
end of control string indicates the end of the secondary format.

104

100 Check Indicator for Bypass: A check indicator for bypass control group is
located at the beginning of and at the end of the end of the section of control string
to be conditionally bypassed. if the indicator has the value specified for bypass, all
field, display attribute, constant insert, and prompt specifications are bypassed.
However, the cursor and current record buffer pointer are moved past the space

on the screen and in the current record buffer where the bypassed fields, display
attributes, constant inserts, and prompts would have appeared. If the bypass
specifications are encountered in a forward direction, the current field counter is
incremented by the number of fields bypassed. If the bypass specifications are en-
countered in a backward direction, the current field counter is decremented. If a
return to program (RG), change buffer position pointer (BFPS), change screen
position pointer (CSPS), or controt specification to change status is encountered
during bypass, it is processed as normal. |f an execute secondary format (ES)
specification is encountered, the fields and control specifications of the secondary
format are processed as described above for a bypass.

The check indicator for bypass control group has the following format:

Byte Group iD Control Code
~ A ~ e,
0|°|0L01LL1|1|1|0 L L1t |1|°10l1l THE T T N | J_)

o8 e
1 = Beginning of format string byte groups to bypass.

0 = End of format string byte groups to bypass.

1 = Bypass if the indicator is off.

0 = Bypass if the indicator is on.

Not used.

Not used.

Indicator Number (0-127)

@06 o0 ©

Main Storage Data Areas

105

101 Execute Secondary Format: The execute secondary format control group
causes the keyboard/display microprocessor to interrupt processing this string,

process a secondary controi string, and return to this string. The format of the
execute secondary format control group is as follows:

Byte Group ID Control Code 1= Last byte of the control group.
———
R O L N L .JJ()

0) e

Not used.

e Index into the system table for screen format control strings, where the
address of the secondary format is stored, if the index is less than 128;
otherwise this byte contains 7F and the index is specified by the following 2
bytes.

Q If the previous byte is 7F, these bits specify the index into the system tabie,
where the address of the secondary format is stored.

111 Change Keyboard Flags: The change keyboard flags control group causes the

microprocessor to change the status of the keyboard flags. That is, if the flag is on,
it is turned off; if it is off, it is turned on. The keyboard flags are turned off at the
start of the processing of each ENTR command.

Byte Group ID Control Code
le A aY m—
10101010111111|1I1| 111 |1|1|1I()

1 = Change the status of the Dup key enable/disable flag.
1 = Change the status of the monocase enable/disable flag.

1 = Change the status of the Field Exit key enable/disable flag.

000600

1 = Change the status of the special verify mode enable/disable flag.

106

Data Field Byte Groups

A data field byte group specifies the format of a data field as it is entered via the
keyboard, displayed on the screen, and stored in the current record buffer. The
field starts at the current screen position and current record buffer pointer position.
Data fields longer than 1 byte require a length specification in the data field format
group as shown in the following diagram:

Byte Group ID 1= Last byt? of the group.

llllllllOLlnllll

o o — 0

0 Byte Group ID—Must specify one of the following:

0000 (picture check) 0101 (format level 0)

0001 (alphabetic) 1001 (alphabetic only)
0010 (numeric) 1010 (numeric only)
0011 (hexadecimal) 1011 (digits only)
0100 (Katakana) 1100 (Katakana only)

e Field length minus 1 if the field length is less than 128; otherwise, this byte
contains 7F and the following 2 bytes specify the length minus 1.

o If the previous byte is 7F, these bits specify the length minus 1 of the field.

A data field with only the following attributes requires only the byte group 1D and
(if the field is longer than 1 byte) the field length byte(s) to describe the field in the
screen format control string:

® Basic field

® Format level zero field

® Right adjust field

Field exit required field
® Manual duplicate field from the previous buffer

A data field with additional attributes requires additional bytes to specify field
attributes, storage duplication areas, or picture specifications.

Main Storage Data Areas 107

108

Field Attributes and Storage Duplication Group

Field atiributes may be specified with 1 or 2 byies, as necessary. For siore and
duplicate fields, the attribute byte(s) must be followed by additional byte(s) that
specify where to find the address of the duplicate or store area. The format is as
follows:

Byte Group ID
and Length byte(s) I———1 = Last byte of the group.

/o N 1

D
l1

S I LA L
T 9%%%6 %%

1 = Another attribute byte follows this attribute byte.

1 = Main storage duplicate field.!
1 = Verify bypass field.
1 = Signed numeric field.

1 = Data required field.

QO0O0O0O

00 = Field is not auto dup, auto skip, or bypass.
01 = Auto skip field.

10 = Auto dup field.

11 = Bypass field.

Not used.

1 = Main storage store field.!

1 = Right to left field.

1 = Absolutely automatic field.

1 = Blank check field.

1 = Mandatory enter field.

1 = Mandatory fill field.

00000060

1For main storage duplicate and store fields, an index specification must follow the attribute byte(s).
The index specification is 1 byte long if the index is less than 126; it is 3 bytes long if the index is
126 or greater (see Execute Secondary Format) under Control Byte Group for the format of the
index specification. The index specified is the entry number into the system table for main storage
duplicate areas, where the address of the duplicate area is located. The address of the system table is

in bytes hex 46 and 47 of the keyboard/display 10B.

Picture Check Subfield Group

Following are the specifications for picture check subfields:

Byte Group ID Picture Check Subfield Byte
and Length Byte(s) (1 byte for each subfield)

l..gLUJ...Io,..)
\ 1\

Field Attribute Byte(s): See Field Attributes and Storage Duplication Group,
the previous topic in this section.

A

~

1 = Last byte in this group.
‘Subfield Length Minus 1 (0-7).

0001 = Subfield is alphabetic.
0010 = Subfield is numeric.

0011 = Subfield is hex.

0100 = Subfield is Katakana.

1001 = Subfield is alphabetic only.
1010 = Subfield is numeric only.
1011 = Subfield is digits only.
1100 = Subfield is Katakana only.

006 ©

Main Storage Data Areas

109

Constant Insert Data and Prompts

Constant insert format groups specify the iocation and the iength of constant insert
data to be moved to the screen and inserted into the current record buffer. Prompt
format groups specify the length and location of a prompt to be moved to the
screen fixed prompt line or to current screen position. Following are the control
string specifications for constant insert and prompts:

Byte Group 1D 1 = Last byte of the group.
—_—]
P L DO T 1 P T S | A

6 o6 o6 - o6 o 06

e 0110 = Fixed position prompt.
0111 = Standard prompt or constant insert.

Index into the system table for prompts, where the address of the prompt is
stored if the index is less than 126; otherwise this byte is 7F and the index is
specified in the following 2 bytes. For constant inserts, this byte must be 7F.2

If this byte is xx000000, the fixed prompt line is cleared.!

1 = Specification is for constant insert data.
0 = Specification is for prompt.

If the previous byte is 7F, these bits specify the index into the system table,
where the address of the constant insert or prompt is stored.

Length minus 1 of the constant insert or prompt if the length is less than 128;
otherwise, this byte is 7F and the length minus 1 is specified by the following
2 bytes.!

° ~|f the previous byte is 7F, these bits specify the length minus 1.1

LI clear the fixed prompt line is specified, the prompt line is cleared (the number of positions
specified in the length bytes of the format group) beginning with the first position of the line. If the
length is not specified in the format group, the full line is cleared.

2|f the constant insert or prompt is stored within the partition, the address of the system table is in
bytes hex 0D and OE {(address hex 8D and 8E relative to the start of the partition) of the keyboard/
display 10B. If the constant insert or prompt is stored within the common area, the address of the
system table is in bytes hex FE and FF of the system control block.

Display Attributes
A display attribute format specification consists of 2 bytes, the format identifier

and a display attribute byte, as shown below. The display attribute is moved to the
screen at the current screen position.

Byte Group ID If 111, display is inhibited.
7 A " /—L\

NIRRT IS L) B B I
65 6566

1 = Last byte in the group.

Not used.

1= Column separators displayed.
1 = Blink.

1 = Underline.

1 = High intensity.

1 = Reverse image.

00060

EDIT FORMAT CONTROL STRINGS

Control information and field descriptions are specified by groups of bytes in an
edit format control string. The order in which the control string is assembled is the
order in which the string is processed. The following diagram is a general descrip-
tion of an edit format control string. Following this general description is a descrip-
tion of each type of specification that can be in the control string.

Main Storage Data Areas 111

112

Byte Groups: Repeated for each field in
the edit format controi string.

l 1 1 (] 1 ' 1 1 1 I 1 1 1 I

6 60 0 0o
Header bytes: 3 header bytes always begin a format control string. If data
directed formatting is used, these bytes specify the condition character

information.

End Flag and Dispiacement: 1 or 3 bytes that indicate the last control string
in a series and specify the displacement of the field from the previous field.

Edit Flags: 1 byte that indicates data types and edit control information.

Buffer and Storage Specifications: 4 bytes indicate buffer length and the
length and address of the storage area to which, or from which, data is moved.

Optional Bytes: See Second Optional Edit Control Byte and Picture
Specification under Byte Groups.

®@ 0660 0 ©

Header Bytes

The first 3 bytes of a control string are header bytes. If a condition character is used
for data directed formatting, the header bytes specify the condition character and
the position in the record where the condition character is located.

0 Condition Character Position: The displacement minus 1 from the left of the

1/0O buffer where the character is located. If no condition character is specified,
these bytes contain hex FFFF.

e Condition Character: If no condition character is specified, this byte contains a
blank (hex 40).

The header bytes are followed by a series of field description and edit control
bytes. Each field in the record is represented by one group of bytes, which begin
with the end flag and displacement bytes.

Byte Groups
End Flag and Displacement

One or three bytes specify the displacement from the rightmost position of the
previous field to the rightmost position of the current field. The displacement byte
also contains a flag that indicates the end of the format control string series. |f the
displacement is less than 32, 1 byte contains the displacement and the end flag. If
the displacement is greater than or equal to 32, 3 bytes are used: the first 2 bytes
specify the displacement, and the third byte contains the end flag.

Displacement These bytes are used only if the
Byte 1 displacement is 32 or more.

A A
/ N/

Le v v v v v v b e v v v loyo, 40,0,0,0,0]
0P o PN

o Displacement Length:

0 = Displacement is less than 32; displacement value is specified by bits 3 to 7
of this byte.

1 = Displacement is 32 or greater; displacement value is specified by bits 3 to 7
of this byte and bits 0 to 7 of the next byte. A third byte is used for the
end flag.

o

Displacement direction:

0 = Forward displacement.
1 = Backward displacement.

End flag: 1 = last in this series.

Displacement: If bit O of this byte is 0, this is the displacement. If bit 0 of this
byte is 1, this is the high-order 5 bits of the displacement.

Displacement Byte 2: The low-order 8 bits of a displacement of 32 or more.

End Flag:

e 006

0 = Not last in series.
1 = Last in this series.

Main Storage Data Areas 113

114

Edit Flags
The edit flags specify the data tvpe of the data that is moved to or from the 1/0

buffer, and the type of the I/O buffer. They also indicate whether the optional
bytes are used to specify edit or picture descriptions.

lo, + v, ,0,0]

0 Data Type:

0 = Binary.
1 = Decimal.

Q 1/0 Buffer Type:

00 = Binary buffer.

10 = Decimal buffer.

11 = Hexadecimal buffer.
01 is not valid.

G Optional Bytes specification:
00 = No optional edit bytes or picture specifications are used.
01 = One optional edit byte is used.
10 = Two optional edit bytes are used.
11 = Picture specification is used.

Buffer and Storage Specifications

Four bytes specify the number of positions in the I/0 buffer and in the storage area
the field uses, and the address of the storage area.

v

1/O buffer positions: The number minus 1 of positions the field uses in the 1/0
buffer.

Storage positions: The number minus 1 of positions the field uses in the storage
area.

Storage Address: The address of the beginning of the storage area to which, or
from which, data is moved.

®@ © ©

First Optional Edit Control Byte

This edit control byte may be used only when a decimal buffer is used. if a picture
specification is used for the field, this edit control byte is not used, the picture
specification follows the storage area address in the edit format control string. The
decimal control character, comma control character, and currency control character
are found in the partition 10B.

L o v
%é o
e Comma Control:

0 = No comma control.
1 = Insert the comma control character to separate groups of digits.

e Decimal Control:

0 = Insert blank (hex 40) between the decimal and fraction portions of a

number.
1 = Insert decimal control character between the decimal and fraction portions of
a number,
@ il Character:
00 = Blank fill.
01 = Zero fill.

10 = Asterisk (*) fill.
11 = Floating currency character.

Q Displacement from the right of the field to the position where the decimal
control character is to be inserted, or 0000 if decimal control is not being used.

Main Storage Data Areas

115

116

Second Optional Edit Control Byte

specification is used for the field, this edit control byte is not used; the picture
specification follows the storage area address in the format control string. The
decimal control character, comma control character, and currency control character
are found in the partition 10B,

This edit control byte may bhe used only when a decimal buffer is used. If 2 picture

L.0l
o 940%
o Sign control:

000 = Do not change sign zone in the buffer.
001 = Change sign zone in the buffer to positive (hex F).
100 = Insert blank or minus sign in the field.
101 = Insert a minus or plus sign in the field.
110 = Insert two blanks or the characters CR in the field.
111 = Insert two blanks or the characters DB in the field.

Q Zero Suppress Control: Valid only with insert decimal.

0 = Force 0 to the left of the decimal control character if the field is 0.
1 = Blank fill if result is O.

@ DateEdit Control:

0 = No date edit.
1 = Date edit (bit 5 may be 0 or 1, and all other bits must be 0).

@ Date Edit Control Character:

0 = Use a slash for data edit (mm/dd/yy).
1 = Use a period for date edit {(mm.dd.yy).

G Currency Control Character:

0 = No fixed currency character.
1 = Fixed currency character.

Picture Specification

Picture specifications are used only to write to a decimal buffer. If a picture
specification is used, the optional edit control bytes are omitted; in the format
control string, the first picture byte follows the storage area address.

A picture specification consists of a series of 1-byte hex codes. Each hex code
pertains to the corresponding byte in the decimal buffer. Each series of hex codes,
ending with an end of string byte, describes one subfield of the current field
description. Picture specifications are of variable length; however, a picture
specification for a global format is limited to 10 bytes, including the end of string
byte.

Hex Code Meaning

00 Decimal digit. A decimal digit is accepted in the corresponding
position of the buffer. Example:

Subfield Input Hex Codes Output to Buffer
12345 0000000000 12345
01 Suppress leading zeros. |If the character in this subfield position is

a leading zero, it is replaced with a blank in the buffer. Example:

Subfield Input Hex Codes Output to Buffer
00123 0101010000 123

02 Insert blank. A blank is inserted into this position in the buffer.
Example:
Subfield Input Hex Codes Output to Buffer
12345 0000020000 12 345

03 Insert blank if zero. If the character in this subfield position is zero,

it is replaced with a blank in the buffer. Example:

Subfield Input Hex Codes Output to Buffer
10203 0303030000 1 203
04 Insert asterisk. If this subfield position is a leading zero, it is

replaced with an asterisk in the buffer. Example:

Subfield Input Hex Codes Qutput to Buffer
00123 0404040404 **123

Main Storage Data Areas 117

118

Hex Code

07

08

Meaning

insert comma character. A comma character is inserted into the
buffer at this position unless zero suppression has occurred. If zero
suppression has occurred, a blank is inserted. Examples:

Subfield Input Hex Codes Output to Buffer
00123 010105000000 123
00123 000005000000 00,123

Insert slash. A slash is inserted into the buffer at this position unless
zero suppress has occurred. If zero suppression has occurred, a blank
is inserted. Examples:

Subfield Input Hex Codes Output to Buffer
000285 0101060101060101 2/85
000285 0000060000060000 00/02/85

Insert decimal character. A decimal character is inserted into the
buffer at this position unless zero suppression has occurred. If zero
suppression has occurred, a blank is inserted. Examples:

Subfield Input Hex Codes Output to Buffer
123456 0005000000070000 1,234.56
0001 0101070101 1

Stop zero suppression. Zero suppression is stopped at this position
in the buffer. This code must be followed by a 05, 06, or 07 code.
The 08 code does not insert a blank or any character into a buffer
position. Example:

Subfield Input Hex Codes Output to Buffer
0001 010108070000 .01

Insert currency character. A fixed currency character is inserted into
the buffer if only one 09 code is used. If an 09 code is placed into
every leading digit position of the subfield, a floating currency
character is placed into the buffer at the left of the most significant
digit. The currency character requires two bytes of buffer space.
Examples:

Subfield Input Hex Codes Output to Buffer
01234 09010101070101 $ 1234
01234 090909070000 $12.34

Hex Code

0A

0B

oC

0D

OE

OF

Meaning

Insert minus sign. If the field value is negative, a minus sign is
inserted into this position of the buffer. Example:

Subfield Input Hex Codes Output to Buffer
00012 0A0101010101 - 12

Insert plus sign. If the field value is positive, a plus sign is inserted
into this position of the buffer. Example:

Subfield Input Hex Codes Output to Buffer
12345 0B0000000000 +12345

Insert sign. The appropriate sign is inserted into this position of
the buffer. Example:

Subfield Input Hex Codes Output to Buffer
12345 0C00000000 -12345

Insert CR. If the value of the subfield is negative, the characters CR
are inserted into the buffer. If the value is positive, the two buffer
positions are blank. Example:

Subfield Input Hex Codes Output to Buffer
00123 0101010101010D 123CR

Insert DB. If the value of the subfield is negative, the characters DB
are inserted into the buffer. If the value is positive, the two buffer
positions are blank.

End of string flag. The hex code string for each subfield must end
with OF.

Main Storage Data Areas

119

This page intentionally left blank

120

Chapter 3. Keyboard/Display Storage

The keyboard/display storage provides control information and refresh buffers for
processing keystrokes and for displaying characters on the display screen. Each
keyboard/display unit uses a separate portion of keyboard/display storage. The
total size of the portion of keyboard/display storage used by each keyboard/display
unit depends on the size of the refresh buffer necessary for the keyboard/display
unit’s screen.

The keyboard/display storage is loaded during system IPL from the IPL diskette.
The keyboard/display 10B in each partition contains the addresses of the keyboard/
display storage areas used by that partition’s keyboard/display unit.

The following is a general description of the data areas and refresh buffer areas with-
in keyboard/display storage. The addresses for each keyboard/display unit begins
with an x, which represents hex F, B, 7, and 3 for keyboard/display units 1 through
4 respectively. For example, if all keyboard/display units have a screen size of 1920
characters, the keyboard/display storage for unit 1 begins at hex F400, for unit 2

at hex B400, for unit 3 at hex 7400, and tor unit 4 at nex 3400. There is also
additional storage in a fifth section, which starts at hex 0000 and which is shared

by the four units.

On a dual unit, the two keyboards share the same keyboard/display storage section.
The first keyboard (keyboard 0) uses the lower-numbered rows of the refresh
buffer, control register 0, cursor address register 0, and status line refresh buffer 1.
The second keyboard (keyboard 1) uses the higher-numbered rows of the refresh
buffer, control register 1, cursor address register 1, and status line refresh buffer 2.

The following illustration shows the format of keyboard/display storage as it is
generated for IPL bv the system configuration program (SYSCON).

Keyboard/Display Storage 121

00, 20, 40, 60 80 AO CO EO

| 5 |
Keyboard/Display Storage uI\X400 . . s
Assigned Addresses , 1
—————————— — —— —
0000 | 1
Available for | Refresh Buffer for
:at“ :(:ode and | 1920-Character
atakana trans. :
4 Single or 960-
tables if required ’ Character Dual
(:ggoF by configuration. ,] Displays
>~ Invalid ~~ T
“T" Address Tl
33FF ’ e o
3400 | Assigned to | x800
Station ’ Refresh Buffer for
srrr| R 3 | 1 960-Character
4000 Single or 480-
J=Invalid QJ Character Dual
~~Address
73FF Tn‘ xAQO} ™~ T T T T T T T T T T
7400 | Assigned to
Stat?on Refresh Buffer
7EFF n 2 T for 480-Character
8000 | Single Displays Storage
Jinvalid U Area
~~ Address i xC00 Monocase
B3FF \ Validity Table Exception
B400 | Assigned to \ Table
Station xD00
gFFF ! \\ Not Assigned Diacritic Tables
000
= Invalid . \ xE00]
~~ Address ~ Status Line 2 | Status Line 1| Display Control
F3FF \ Refresh Area | Refresh Area | Area
F400 | Assigned to \ xF00
Station \ Display Translate Table
FII I 1 | 0 |
1
Addresses assigned Katakana Translate Table
in keyboard 10B
according to 3
configuration. Scan Code Translate Table
"

Notes:
n Station is either single or dual display. Keyboards for a dual share one block of storage.
ﬂ x = F for station 0; B for station 1; 7 for station 2; 3 for station 3.

122

Because the keyboard/display 10B in each partition contains pointers into the
keyboard/display storage, the validity table, storage area, diacritic table, scan code
translate table, and the Katakana translate table (if required) can be located any-
where in keyboard/display storage as long as the tables that require alignment on a
256-byte boundary are properly aligned. However, the refresh buffer, status line
refresh area, and display translate table for a particular keyboard must all be located
in the same section of keyboard/display storage (section F, B, 7, or 3). The display
translate table must always begin at address xF0O, and the display control area must
begin at address xEAO of the appropriate section of keyboard/display storage.

REFRESH BUFFER AREA

The keyboard/display storage contains refresh buffers for each keyboard/display
unit. These buffers act as refresh areas for display characters. The refresh area for
the status line(s) is separated from the refresh area for the remainder of the screen.
This separate area is in addition to the refresh area appropriate for a particular
screen size. ' o

When a keystroke is processed by the keyboard/display microprocessor, it is trans-
lated from the keystroke scan code to EBCDIC code. The EBCDIC code is placed
into the current record buffer in main storage within the partition associated with
the keyboard, and translated to display code. The display code is then placed into

the refresh buffer in order to be displayed on the screen. The hexadecimal repre-
sentations of screen attributes are also placed into the refresh area.

VALIDITY TABLE

The validity table defines:

® The EBCDIC values used in the alphabetic only, numeric only, and Katakana
only character sets.

® The EBCDIC values of keys defined as diacritics.

® The EBCDIC values that have to be translated to uppercase when the monocase
function is enabled.

® The scan codes of keys that are not typamatic.
® The scan codes of keys that can be shifted from lowercase alphameric only if a

shift key (not including the Shift Lock key) is simultaneously pressed, such as
the function keys to the left of the keyboard.

Keyboard/Display Storage 123

124

The validity table contains 1-byte entries that are in the following format:
Rit Meaning When 1

lgnore the typamatic action in the scan code.

Shift only if the shift key is pressed.

System use only (initialized to 0).

Translate EBCDIC code to uppercase if monocase function is enabled.
EBCDIC code used for diacritic.

EBCDIC code belonging to Katakana-only character set.

EBCDIC code belonging to numeric-only character set.

EBI‘I’\I{‘ nn.-lc bclr\r\n:v\ +~ !

~ a
(I PSRV 0 01 WYy tv

N A WN=O

nhahntin Aanlu clharantar cot
phabetic only character set.,

Bits 0 and 1 in the table are used when the table is accessed using a scan code. The
7-bit scan code is an index into the validity table to retrieve the corresponding 1-byte
entry.

Bits 3 through 7 are used when the table is accessed using an EBCDIC. The value
hex 40 is subtracted from the EBCDIC code to establish the offset into the table
in order to retrieve the corresponding 1-byte entry.

STORAGE AREA

The storage area holds information needed for interpreting keystrokes and main-
taining the status line, and a monocase exception table. Following is a description
of the first 16 bytes of this storage area:

Byte Description

Display code for the insert mode indicator.
Display code for the alphabetic shift symbol.
Display code for the numeric shift symbol.
Display code for the hexadecimal shift symbol.
Display code for the Katakana shift symbol.
Scan code for the Hex key function.

Scan code for the Power On Reset key function.
Scan code for the Console key function.

Not used.

Display code for the alphabetic-only shift symbol.
10 Display code for the numeric-only shift symbol.
11 Display code for the digits-only shift symbol.

12 Display code for the Katakana-only shift symbol.
13-15 Not used.

OO NDOODUULHLE WN 2O

Display codes for the shift symbols are displayed on the status line to show the
keyboard shift status of the current field.

Scan codes for the command (function) keys in bytes 5, 6, and 7 are processed by
the system. These functions are initiated by pressing the Cmd key first, then the
command key.

Monocase Exeeption Table

Following the first 16 bytes is a monocase exception table. The monocase excep-
tion table contains character values that cannot be conveniently converted from
lowercase to uppercase. (See the logic shown below.) The table begins at displace-
ment hex 10 into the storage area. The table contains pairs of bytes (lowercase
code/uppercase code) that provide translation from lowercase EBCDIC to upper-
case EBCDIC. The byte pairs are in ascending order of the EBCDIC for the lower-
case values. The length of the table is variable, depending on the number of entries
required. The table always ends with hex FFFF; if the table contains no other
entries, it contains only hex FFFF.

Exception Exception
EBCDICs, EBCDICs,
Lowercase Uppercase

ae AE

FF FF

A bit in the validity table is used to specify that an EBCDIC can be monocase. If
the monocase flag is set and an EBCDIC value is entered (by a keystroke or dia-
critic or hex key sequence during formatted data entry, or by keyboard operation
hex OA [pass scan code] or OB [pass EBCDIC], or by the KACCPT instruction) that
can be monocase, the system translates the lowercase EBCDIC to its corresponding
uppercase EBCDIC. The following shows how the system translates the EBCDIC

to monocase:

Set bit 1 of
EBCDIC value Yes EBCDIC to trans-
late to monocase
EBCDIC
No
the EIBSCDIC\ Translate to mono-
in the monocase Yes case EBCDIC
exceptiV entry in table
table

No

|

Translate to monocase
EBCDIC by setting
bit 2 in original EBCDIC

Keyboard/Display Storage 125

126

DIACRITIC TABLE

The diacritic tahle nrovidaec comnacite ERCDIC codeg that renrecent the diacritic-
the cracnitic taple proviges compoesite =BUDIC coges that represent the qiacritic

character pairs for characters defined as diacritic in the validity table.

The diacritic table is in two parts. Part 1 contains 2-byte entries for each diacritic
defined. Byte 1 is the EBCDIC code for each diacritic and byte 2 is a pointer into
part 2 of the table.

Part 2 of the diacritic table contains the EBCDIC code for each character that can
be used with a diacritic-character pair and also contains the composite EBCDIC

AnAda shant vaneacants slan A:—\nv:t:n Alhavandae maiea
LULIC LHIGL ITHICOTIIL LHic uiasiiliv eiiaiacicl paii .

The following shows how the diacritic table is used:

Part 1 Part 2
n Diacritic B Pointer B Character Combination
EBCDIC into Part 2 EBCDIC EBCDIC
| 1
79 (grave) 81() | 440
85 (e) 54 (\é)
BE (acute) — 89 (i) 58 (i)
i 96 () | CDb)
o~ o~ A4 (u) DD (u)
™ ~
— P
Birr —— 81 (a) 45 (4)
85 (e) 51 (6)
89 (i) 55 (i)
P~ ~4
T T
L J

n EBCDIC for valid diacritics, arranged in ascending order of diacritic EBCDIC
value.

B Displacement (from the beginning of part 1) into part 2 of the table, where
the EBCDIC for the Tirst of the characters that can be vaiidiy combined with
the diacritic is stored.

a EBCDIC values for characters that can be validly combined with the diacritic.

B3 EBCDIC of the combined character and diacritic. For each diacritic, this
section is arranged in ascending order of the character EBCDIC value.

B The last entry in part 1 contains hex FF, in the first byte, and a pointer to the
byte following the last combination EBCDIC in part 2 of the table.

REFRESH AREAS FOR THE STATUS LINES

There are two status line refresh buffers in keyboard/display storage for each unit.
These buffers are referred to as status line 1 buffer and status line 2 buffer. The
status line 1 buffer is used as a refresh area for the status line of a single data

station or station 0 of a dual-display data station. The status line 2 buffer is used

as a refresh area for the status line of station 1 of a dual data station. The status

line is usually displayed on row one of the screen. However, if a screen format

uses all of the rows on the screen, the status line can be removed from the screen

so that row one of the format can be displayed on row one of the screen. The status
line is maintained in the status line refresh buffer whether or not it is being displayed
on the screen.

DISPLAY CONTROL AREA
The display control area contains:
® Display attributes for the beginning of each row on the display screen.

® The refresh buffer address of the first position of the row.

® Control registers that provide control for the upper and lower halves of the
display screen.

® Cursor address registers that provide the current refresh buffer address of the
cursor.

The display control area begins with strings of 3-byte entries; one entry for each
row on the display screen.

The first byte of a 3-byte entry contains the display attributes for each row. The
format of the first byte is:

Bits Attribute Description

0-1 System indicator:
00 = None
01 = None
10 = Dash

11 = Solid rectangle

2 Valid row starting attribute. This bit must be 1 in order for bits 3
through 7 to be effective.

3 1 = Column separator.
4 1 = Blink.

5 1 = Underscore.

6 1 = High intensity.

7 1 = Reverse image.

Note: If bits 5, 6, and 7 are all on (111), no data is displayed.

Keyboard/Display Storage 127

128

The second and third byte contain the refresh buffer address of the first position
of the row.

The first 3-byte entry in the display control area describes row 1, the second entry
row 2, and so on through row 25. Row 0 is described by the twenty-sixth entry.

For dual display stations, rows 0 through 11 are assigned to display station O; rows
14 through 25 are assigned to display station 1.

Control registers 0 and 1 foliow the strings of 3-byte entries. Control register 0 is
used for the display screen of a single display station, or for display station 0 of a
dudi dispiay station. Controi register 1 is used for dispiay station i of a duai
display station.

The format of control register O is:
Bits Meaning When 1

Inhibit display of upper half of screen if single, station O if dual.

Not used (initialized to 0).

Blink cursor for display station O.

Blink upper half of the display screen if single, station O if dual.

Reverse image of upper half of screen if single, station 0 if dual.
7 Not used (initialized to 00).

b WN = O

The format of control register 1 is:
Bits Meaning When 1

Inhibit display of lower half of screen if single, station 1 if dual.

Not used (initialized to 0).

Blink cursor for display station 1.

Blink lower half of screen if single, station 1 if dual.

Reverse image of lower half of screen if single, station 1 if dual.
-7 Not used (initialized to 000).

A WN -=O

Following the control register bytes there are two 2-byte cursor address registers.
These registers contain the current refresh buffer address of the cursor. Cursor
address register O stores the cursor address for a single display station or for display
station O of a dual display station. Cursor address register 1 stores the cursor
address for display station 1 of a dual display station.

xEAO

Row starting attribute
Row starting address high
Row starting address low

xEA3

Row starting attribute
Row starting address high
Row starting address low

(

xEES8

Row starting attribute
Row starting address high
Row starting address low

PN) NN

))

xEEB | Row starting attribute

Row starting address high

Row starting address low
xEEE | Not used

oy

xEF2 | Control register 0
xEF3 | Control register 1
xEF4 | Cursor address register 0, high
xEF5 | Cursor address register 0, low
xEF6 | Cursor address register 1, high
xEF7 | Cursor address register 1, low

DISPLAY TRANSLATE TABLE

Row 1

Row 2

Row 25

Row 0

The display translate table converts EBCDIC code to display code so characters are
displayable on the display screen. The display translate table must be located in the
last 2566 bytes of the keyboard/display storage area assigned to the unit.

KATAKANA TRANSLATE TABLE

The Katakana translate table is required for a display station with a Katakana key-
board. Some keytops on the Katakana keyboards have more than two characters.
The right side of the keytop has Katakana characters; the left side has alphameric

symbols.

The translate table converts scan codes to EBCDIC for the Katakana characters.

The table is divided into two 128-byte segments. The lowerhalf of the table (offset
hex 00 to 7F) is used when the keyboard is in Katakana lowershift. The upper half
of the table (offset hex 80 to FF) is used when the keyboard is in Katakana

uppershift.

Keyboard/Display Storage

129

130

SCAN CODE TRANSLATE TABLE

T A+ 1
1 1ie 3Can CoGe trans:

t
Katakana keyboards also us

The scan code translate table is divided into two 128-byte segments. The lower
half of the table (offset hex 00 to 7F) is used when the keyboard is in alphameric
lowershift. The upper half of the table (offset hex 80 to FF) is used when the
keyboard is in alphameric uppershift.

Bits 1 through 7 of the 8-bit scan code are used as an offset into the table, either
into the lower haif oi into the upper half, depending on the Keyboard shift status.
For example, a scan code of hex 09 locates the EBCDIC in the tenth byte of the
lower half of the table if the keyboard is in lowershift.

Chapter 4. Object Code Instruction Format

Each object code instruction is 4 bytes long. The first byte always contains the
operation code. The other three bytes contain flags, addresses and other data.

ADDRESSING METHODS WITHIN A PARTITION

In a source program instruction, a storage area or another instruction is referred to
by a label. A register is referred to by a label or by a number. When source instruc-
tion is converted to object code, these labels and numbers are converted to
addresses. An address in an object code instruction is always relative to the begin-
ning of the partition. When the object code instruction is executed, the relative
address is added to the absolute address of the beginning of the partition. The
absolute address of the beginning of the partition is stored in displacement hex 0D
in the partition 10B.

Because instructions and registers must begin on specific boundaries, the 16-bit
address can be compressed. The bits in the object code instruction that are not
used for the address are used for other purposes, such as flags. A relative address
in an object code instruction is in one of the following formats:

® 16-bit address to locate any byte within a partition

® 14-bit address to locate an instruction

® 8-bit address to locate a decimal register

® 7-bit address to locate a binary register

In addition to the relative addresses, an object code instruction may contain the
following types of data:

® 8-bit instruction displacement, used with certain branch instructions to locate
an instruction.

® 8-bit indicator number to locate an indicator.

® 8-Hit index into a system table to locate the address of a format, prompt, dupli-
cation area, or table.

® (Constant.

Object Code Instruction Format 131

132

Addressing a Byte Within the Partition

The size of the paitition cannot be gieaier than 64 K byies; iherefore, any byte
within the partition can be addressed with 16 bits (hex 0000 through FFFF). A
16-bit address is stored in the third and fourth byte of an object code instruction.

Example:

16-Bit Address

4 N

Op Code 00100100 { 01100001

\)

Hexadecimal 2461

Addressing an Object Code Instruction

Because object code instructions begin on 4-byte boundaries, the last 2 bits of the
16-bit address are always zeros. These 2 bits can be used for flags; the high-order
14 bits are used to address the instruction. In an object code instruction, a 14-bit
address is stored in the high-order 14 bits of the third and fourth bytes as follows:

Hexadecimal 1394
14-Bit Address

L AN

J]
Op Code 00010011 | 10010100

Flag Bits

Instruction Displacement

In certain branch instructions, the label in the source instruction is converted to a
displacement rather than to an address. An instruction displacement is the number
of 4-byte object code instructions from the next sequential instruction to skip

if the branch is taken. An instruction displacement is 8 bits iong and is stored in
the fourth hyte of an ahject code instruction. A positive displacement can cause

a forward jump of up to 128 object code instructions. A negative displacement

is stored in the twos complement of the dispiacement value. A negative dispiace-
ment causes a backward jump of up to 128 object code instructions from the
instruction following the branch instruction.

Addressing a Decimal Register

Each decimal register begins on a 16-byte boundary from hexadecimal 0100 to
OFFO (relative to the beginning of the partition).

In a source program, a decimal register is specified by a register number or a label,
which is converted to a 16-bit address in the object code. All 16-bit addresses for
decimal registers begin and end with zero, as the following chart shows:

R62 is stored at location hex 04EO.

Hex

00

10

20

30

40

50

60

70

80

920

Ao| Bo| co| po (EO! Fo |

01

2

3

4

6

7

8

9

10 11} 124 13} 14] 15

02

16

17

18

19

20

22

23

24

25

26] 27| 28| 29| 30| 31

03

32

33

34

35

36

38

39

40

41

42| 43| 44| 45| 45| 47

-3

40.

f~ga¥

5a

(4

C4

LA

58-59+-601-61+462)] 63

GO

i~

o

~

Tl s

5h4

-5

05

64

65

66

67

68

70

71

72

741 75| 76} 77| 78] 79

80

81

82

83

84

86

87

88

90] 91] 92| 93] 94| 95

07

96

97

98

99

100

102

103

104

105

106] 107] 108{ 109 110{111

08

112

113

114

115

116

118

119

120

121

122]123]124}125] 126127

09

128

129

130

131

132

134

135

136

137

138[139]140(1411142(143

0A

144

145

146

147

148

150

151

152

163

1641155|156§167|168 | 159

0B

160

161

162

163

164

166

167

168

169

170§171|172[173[174 175

0ocC

176

177

178

179

180

182

183

184

185

186187 188] 189 190191

oD

192

193

194

195

196

198

199

200

201

2021203 {204 {205 {206 {207

OE

208

209

210

211

212

214

215

216

217

218219(220]221]222 223

OF

224

225

226

227

228

230

231

232

233

234|235{236{2371238 |239

Following is an alternative method to convert a register number (using R62 as an
example) to a 16-bit address:

1. Multiply the register number by 16: 16 x 62 =992

2. Convert the product to hexadecimal: decimal 992 = hexadecimal 03EQ

3. Add hexadecimal 0100: 03EQ0 + 0100 = 04EQ

When the program is assembled, the 16-bit address is compressed to an 8-bit address:

1. Remove the zeros from
the beginning and end

of the 16-bit address.

16-Bit 8-Bit

Address Address

04E0—4E E4
I

2. Reverse the remaining
two digits.

Object Code Instruction Format

133

134

Addressing a Binary Register

Each binary register begins on a Z-byte boundary from hexadecirai 0100 to O1FE
(relative to the beginning of the partition). In a source program, a binary register is
specified by a register number or a label, which is converted to a 16-bit address in
the object code. All 16-bit addresses for binary registers begin with 01, as the
following chart shows:

BR62 is stored at location hex 017C.
a4

Hexi| 0| 2| 4| 6| 8| Al4Cl E
o10] o] 1| 2| 3| 4| 5 E 7
on| 8] ol 10l 11] 12] 13 15
012f 16] 17

14

18] 19| 20| 21| 23| 23
013 24| 25| 26| 27| 28] 20| 3p] 31
014]| 32| 33} 34| 35| 36| 37| 38| 39
015][40| a1 42] 43| aa] a5] 6] 47
016/ 48] 49| 50| 51| 52| 53| 54| 55
B [(017} 564571 581-591-60 |-64162) 63
o18][64| 65| 66| 67| 68] 69| 70| 71
019 72| 73| 74| 75| 76| 77| 78] 79
01A]l 80| 81] 82| 83| 84| 85] 86] 87
o018 88| 89 90| 91| 92| 03] 04| 95
o1c][96| 97| 98| 99[100 [101 [102 103
010}}104 |105 [106 | 107 [108 [109 |110]111
o1ef12 113 J114]115|116 117|118 110
01F[120 121 [122}123 [124 [125 |126 |127

Following is an alternative method to convert a binary register number (using BR62
as an example) to a 16-bit address:

1. Multiply the register number by 2: 62 x 2 = 124
2. Convert the result to hexadecimal: decimal 124 = hexadecimal 007C
3. Add hexadecimal 0100: 007C + 0100 =017C

if a binary double register is referred to in a source instruction, the address in the
object code is the address of the rightmost register.

When the source program is assembled, the 16-bit address for a binary register is
compressed to a 7-bit address:

16-Bit 7-Bit
Address Address
e, e ——

017C—7C—0111 1100
T T

1. Remove 01
N\
2. Because the last bit of
the binary representation
of the remaining two
digits is always 0, that
bit can be used as a flag.

Indicator Addressing

An indicator is specified in a source instruction with a label or a decimal number
(10 to 1264}. This label or decimal number is converted to the hexadecimal repre-
sentation of the indicator number in the object code.

For example:
Binary Value
Indicator Hex Stored in the
Number Value Instruction
147 2F 00101111
106 06 00000110
1126 7E 01111110

Object Code Instruction Format 135

136

Addreccina throuah a ¢
4 at ugh a

System Tahle
In a source program, a format, prompt, data table, or main storage duplication area

is referred to with a label. In the object code, this label is converted to an index

into a system table. This system table holds the addresses of the labeled data areas,
and the index specifies the position in the system table where the appropriate address
is stored. The index for a format or table is stored in one byte of the object code
instruction; however, the index for a prompt or main storage duplication area is
stored within the screen format control string. Except for prompts, the first address
in a system table is at index 0. The following chart shows the valid range for the
system table index for each type of data area:

Valid
Index
Type Values
Screen format 0-255
Edit format 0-127
Data table 0-127
Prompt 1-(see note)

Duplication area 0-{see note)

Note: The number of prompts and duplication areas is limited only by storage
size and performance considerations.

The formats of the system tables are described in Chapter 2 under System Tables.

ADDRESSING METHODS OUTSIDE THE PARTITION

A 10-bit address must be used to address any location outside the partition. The
format of a 20-bit address is a 16-bit address preceded by a 4-bit storage page
number. Main storage is divided into storage pages; each storage page is 64 K bytes
(K = 1024 bytes). A page with less than 64 K bytes is a partial page. The 16-bit
address can address any byte within the page; therefore, the 20-bit address that
includes the page number can address any byte within main storage.

An instruction never contains a 20-bit address. In a source program, the 20-bit
address must be stored in a double binary register. When a source instruction refers
to the 20-bit address, it specifies the label or number of the leftmost register of the
double hinary reagister that holds the address. The assembler converts the register
specification to a 7-bit compressed address of the rightmost register of the double
register that holds the address. For example, a source program has a 20-bit address
stored in BR100 and BR101. The source instruction specifies BR100(4), where
the 4 represents a length of 4 bytes. The assembler stores the 7-bit compressed
address of BR101 in the object code instruction; the flag bit is set to 1 to indicate
that the register is part of a double register that holds a 20-bit address. BR101 holds
the 16-bit address and the low-order 4 bits of BR100 specify the page number.

BR100 BR101

L——— 16-Bit Address

Page Number (0 to 3)

Addressing through a System Table

Format and tables stored in the common area are available to any partition. When a
source program specifies that the format or table is in the common area {with an
XTRN control statement), the format or table is assigned a system table index

that is greater than a valid index for a table or format within the partition. The
following chart shows the range for a system table index for data areas outside the

partition:
Valid
Index
Type Values
Screen format 256-512
Edit format 128-254
Data table 128-254

For edit formats and data tables, the index is stored in one byte of the object code

instruction. For screen formats, a bit is set in the object code for the enter instruc-

tion (hex CF) to indicate that the screen format is in the common area.
CONSTANTS

In a source program, a constant can be specified (1) as a decimal, hexadecimal, or

binary value, (2) as a character, or (3) with a label that is equated to a value. In the

object code, any form of constant is stored in the object code as immediate data.

The following list shows the kinds of constants that are used in a source program.

® Data set number: The number of the current data set. The number can be any
number from hexadecimal 1 to F and requires 4 bits of object code.

® /ength: The length of data being used by the instruction.

® Displacement: The displacement into a data area; usually an optional parameter
in a data movement instruction.

® Mask: A pattern of bits used in skip operations. Each mask requires 8 bits.

Object Code Instruction Format 137

138

INSTRUCTION FORMAT

Mnemonic to Op Code Conversion Chart

The object code instructions in this chapter are in op code (hexadecimal) order. If
it is necessary to find an object code instruction by assembler language mnemonic,
use the following chart to find the op code. The mnemonics in the chart are listed

in alphabetic order.

Mnemonic

ALLOC

AND

BINDEC

BINHEX

BRa = BRb

BRa <=> BRb
BRn = constant
BRn(4) -=

BRn(4) + =nn
BRn(4) - =nn
BRn(4) +=

BRn [(4)] /=

BRn &=

BRn &= d{len,BRn)
BRn &= nn

BRn V=

BRn V=d(len,BRn)
BRn V=nn

BRn X=

BRn X=d(len,BRn)
BRn X=nn

BRn +=

BRn -=

BRn * =

BRn + =d(len,BRn)
BRn - = d{len,BRn)
BRn = (indexed)
BRn-=n

BRn +=n

BRni4) + =dlien,BRnj
BRn(4) - = d{len,BRn)
BRn = Rn

BUZZ

CALL

CALLTB

CcLC

CLICK

CLOZ

CNENTR

CRTMM

Op
Code

34
42
A6
49
98
45
99
96
95
97

AB
9A
BA
9B
9C
BC
9D
9E
BE
9F
90
92
AA
BO
B2
B8
93
o1
B4
B6
A7
c7
OB
OB
AE
Cc7
23
Cc7
CA

Mnemonic

d{len,BRa) = BRb
d(len,BRn) = constant
d,Rn = constant
d(len,BRn) = Rn
DECBIN

DECR BRn
DISPEX
DISPST

DUP

DVCTL
ENABLE

ENTR

EXIT

GOTAB BRn
GOTO

GOTO BRn (indexed)
GSCK

HEXBIN

IF BRn EQ

IF BRn GE/LE
IF BRn GT/LT
IF BRn NE

IF BRn O

IF FMT

IF Rn AN

IF Rn CK

IF Rn EQ

IF Rn GE/LE

IF Rn GT/LT
IF Rn NE

IF Rn SN
IFRnO

IF Rn -

IFB IS

IFB OFF

IFB ON

IFC IS

IFC NOT

IFD Rn EQ

Op
Code

A3
B9
44
7n
A7
06
Cc7
c7
BD
3D
ocC
CF
2F
08
00
08
48
4A
6E
6F
6D
6C
03
02
oD
OE
62
63
61
60
OF
01
05
BB
B5
B7
4E
4C
66

Mnemonic

IFD Rn GE/LE
IFD Rn GT/LT
IFD Rn NE
IFDSI

IFH BRn EQ
IFH BRn GE/LE
IFH BRn GT/LT
IFHI

IFl In

IFIR In

IFLO

INIT

INSBLK
INXEQ
KACCPT
KDETCH
KERRCL
KERRST
KEYOP

label = BRn
label = constant
label = Rn
label = SL n
LCRTC

LOAD
MMCRT
MOFF

MVvC
MVC(BRn(4))
MVCR

MvCVv

MVER

NOP

OPEN

PAUSE
PDUMP

POSN

READ
READMG
REBF
REPLFD
RESCAL
RESMXT
RESUME
RETEXT
RETURN

RL

Rn =

Rn <=>

Op
Code

67
65

25
6A
6B
69
42
07

42
33
32
A5
c7
C5
c7
c7
c7
A2
44
8n
Al
C8
2E
CB
1A
AC
A4
AC
AC
19
00
22
4F
4F
26
20
c7
21
C3
cD
CD
cD
oc
oc
Al
14
13

Mnemonic

Rn -

Rn +

Rn *

Rn/

Rn (32) *
Rn (32) /
Rn = BRn
Rn =d{len,BRn)
Rn = label
Rn = +nn
Rn =-nn
RR
RSTMG
RTIMER
RXORW
SCRTC
SEARCH
SETOFF
SETON
SKIP WHILE
SL (binary)
SL (decimal)
SLS

SOFF

SON

SR (binary)
SR (decimal)
SRAT

SRR

SRS
SYSLCK
SYSUNL
TBBS
TBDL
TBFH
TBFL
TBFX
TBIN
TBRD
TBRL
TBWE
TBWT
TCLOZ
TCTL
TINIT
TLCK
TOPEN
TRANS
TREAD

Op
Code

11
10
18
17
15
12
A6
7n
8n
46
47
Al
Cc7
Cc7
43
Cc9
24
B3
B1
AO
Al
1C
1D
41
40
A1l
16
2B
1F
1E
2C
2D
55
57
50
54
53
56
52
52
51
51
3F
3F
22
58
22
A8
2A

Object Code Instruction Format

139

Op Op

Mnemonic Code Mnemonic Code
TROFF 4F WAIT 36
TRON 4F WFMCRT 3E
TRT A9 WRBF 3C
TTERM 23 WRT 30
TUNLCK 59 WRTI 31
TWAIT 36 WRTS 35
TWRT 3A ZONE 1B

Unconditional Branch (GOTO/NOP)

So . GOTO
urce: NOII’ instruction label
Object: 00 00
0 8 15 31

o
/
(1]

Branch address: Branch to the instruction at this address. For NOP, this is the
address of the next instruction.

The microprocessor branches to the branch address.

140

Test Decimal Register for 0 (Zero) or Blank (IF Rn 0)

Source: IF Rn [:\'S 01] 0 GOTO instr.uction label
S
! N
Object: 01 .@ @
0 8 15 / 29 3

7 7
a

Test register address: Test the register at this address.

Branch address: Branch to the instruction at this address.

Bits:
00=1S
01=NOT
The microprocessor branches to the branch address if:

® The test register contains zeros (hex FOs) or blanks (hex 40s) and 1S is specified.

® Any byte of the test register contains a value other than blank or zero and NOT
is specified.

Object Code Instruction Format 141

Test Format Number (IF fmt)

Source: IF fmt label [:\ISO'I] FMT GOTO instruction label
|
1
Object: 02 f ‘@ ;
0 8 / 15 / 29 / 31

(3]

BB Format: The number (hex 01-FE) of the format to use.

Branch address: Branch to the instruction at this address.

Bits:
00=1S
01 =NOT
The microprocessor branches to the branch address if:
® The format number is equal to the last format used and IS is specified

® The format number is not equal to the last format used and NOT is specified

The format number of the last format used is in the partition |0B at displacement
hex 1D.

142

Test Binary Register for Zero (IF BRn 0)

Source: IF BRn [:\fO'I] 0 GOTO instruction label
l K
Object: 03 @ 10 @ ,
0 8 / /15 / 29 / 31
a

Test register address: Test the register at this address.
Bit 15is 0.

Branch address: Branch to the instruction at this address.

opniB

Bits:
00=1S
01=NOT

The microprocessor branches to the branch address if:
® The register contains zeros (hex 00s) and IS is specified

® The register contains a value other than zeros and NOT is specified

Object Code Instruction Format 143

Test and Reset Indicator (IFIR In)

IS
S : F i i
ource IFIR In [NOT] ON GOTO instruction label
i
Object: 04 S @ f
0 g | 15] 29 | 31
(1] (3]

n Indicator: The indicator number (hex 00-FE) of the indicator to test. The
indicator number is mandatory.

Branch address: Branch to the instruction at this address.

Bits:

00=1S

01=NOT
The microprocessor branches to the branch address if:
® The indicator is on and IS is specified

® The indicator is off and NOT is specified

The microprocessor turns off {resets) the indicator whether it branches or not.

144

Test Decimal Register for Negative (IF Rn-)

Source: IF

Object: 05

n Test register address: Test the register at this address.

Branch address: Branch to the instruction at this address.

Bits:
00=1S
01=NOT

The microprocessor branches to the branch address if:

® The zone portion of the rightmost byte in decimal register is hex D and IS is

specified

® The zone portion of the rightmost byte in the register is not hex D and NOT is

specified

Object Code Instruction Format

145

Decrement Binary Register and Test for Zero (DECR BRn)

Source: DECR BRln GOTO instruction label
Object: 06 @ 0 @ 00
0 g8 [|5 / 29 [31
H E a

n Test register address: Test the register at this address.

H sBit15iso.

Branch address: Branch to the instruction at this address.

3 Bits 30 and 31 are 00.

Each time this instruction is executed, the contents of the test register decrement

by one and are then tested for zero. If the contents are not zero, the microprocessor
branches to the branch address.

Test Indicator {IF In)

IS . .
Source: IFI In [N(I)T] QMUctuon label
I l i
Object: 07 ; /

@

0 s |/ 15 / 29 [31
[1] (3]
n Indicator: The indicator number (hex 00-FE) of the indicator to test.

Branch address: Branch to the instruction at this address.

K sits:
00=1S
01 =NOT
The microprocessor branches to the branch address if:

® The indicator is on and IS is specified

® The indicator is off and NOT is specified

146

Indexed Branch (GOTO BRn/GOTAB BRn)

GOTO BRn
Source: GOTO BRn , instruction label
GOTAB BRn , table label
I 1 1
Object: 08 @ @
0 8 [s / 31
(1] (3]

BB 'ndex register address: The address of the register that contains the index.
BRO cannot be used as an index register.

H sitis:
0=GOTO
1=GOTAB

Note: If bit 15 is 1, the microprocessor uses the table address and branches
via that table.

Branch address or table address: Branch to the instruction at this address, or
use this table to find the branch address.

Note: This addiess is all zeros if a GOTO is specified with no instruction label
operand.

If bit 15 is 0, the microprocessor adds the contents of the index register to the
branch address and branches to the resulting address. If no label is specified, an
indirect branch is made to the address in the index register n

If bit 15 is 1, the microprocessor branches to the address in the table entry indicated

by the index register, using the table indicated by . If the index is O, the first
address in the table is used.

Object Code Instruction Format

147

Subroutine Call (CALL/CALLTB)

CALL BRn
Source: CALL BRn , instruction label
CALLTB BRn , table label
1) l 1
Object: 0B @ ,
0 8 5 / 29 [

'
/
a8 8 0O

Index register address: The address of the register that contains the index.

Bit 15:
0=CALL
1=CALLTB

Branch address for CALL: Branch to the instruction at this address.
Note: This address is all zeros if no instruction is specified.
Table address for CALLTB: The address of the table.

3 Bits 30 and 31 for CALL:
00 = Current area
01 = Common function area 1
10 = Base area
11 = Common function area 2

Bits 30 and 31 for CALLTB: The last 2 bits of the table address.

Note: Bits 0-15 of the table entry correspond to bits 16-31 of the CALL instruc-
tion. Bits 14 and 15 of the table entry may contain the common function flags
described for bits 30 and 31 of the CALL instruction,

If bit 15 is 0, the microprocessor adds the contents of the index register to the
branch address and branches to the resulting address. If bit 15 is 1, the micro-
processor branches to the address in the table entry indicated by the index
register, using the table indicated by . If the index is O, the first address in the
table is used.

148

Execution Sequence

The CALL or CALLTB instruction causes the microprocessor to stop executing
instructions in the main program and branch to a subroutine.

Following is the main microprocessor execution sequence for the CALL and

CALLTB instructions:

Start

|

Place the next sequential instruction address
into the subroutine stack at the location

pointed to by BR18.

Add 2 to the value in BR18.

Is the instruction a CALL instruction

Get the subroutine address
from the table addressed

BRn contains the index into
the table that contains the

(bit 15 =0)?
Yes I No
Are bits 8 through 15
all zeros?
Yes No
in bits 16 through 31.
Branch to the Add the contents of
instruction BRn to the address in
addressed in bits 16 through 29 and subroutine address.
bits 16 through branch to the resulting
29. address.

Are common function flags zero?

No

Branch to the
common area.

Yes

|

Branch within the
partition.

Object Code Instruction Format

149

Subroutine Return or Enable External Status (RETURN/RETEXT/ENABLE)

RETURN Esnn)
(

Source: RETEXT BRn)
ENABLE (instruction label [,POP])
3
Object: ocC

; @
] 29

@ /
/ /
1 (4

31

n Index register address for RETURN and RETEXT: The address of the
register that contains the index.

Note: This address is all zeros if no index register is specified, or if ENABLE
is specified.

Bit 15:
0= RETURN
1= RETEXT or ENABLE

Branch address for ENABLE: Branch to the instruction at this address.
All zeros for RETURN and RETEXT.
n Bits 30 and 31:
00 = RETURN and RETEXT

00 = ENABLE, if POP is specified
01 = ENABLE, if POP is not specified

150

Execution Sequence

The RETURN instruction causes the microprocessor to stop executing the sub-
routine and return to the main program. RETEXT causes a return to the main
program, and the main microprocessor turns off the external status outstanding
bit in the status byte of the keyboard/display I0B. ENABLE causes the micro-
processor to turn off the external status bit and, if POP is specified, to decrement
the subroutine stack pointer, BR18.

Following is the main microprocessor execution sequence for the RETURN,
RETEXT, and ENABLE instructions:

Start

Is this a RETURN instruction?

Yes No

Turn off the external status
bit in the data set |0OB.

Is this a RETEXT instruction?
(Bits 16 through 29 all zeros?)

Yes Nlo
Decrement BR18 contents by 2 Is POP coded?
to point to the return instruction (Bits 29-31=007)
address in the subroutine stack. L
| 1]
Yes No

Is an address in bits 16-29?

Decrement BR18

Yes l No

| contents by 2.
Use this address as Use the address from
the base address to the subroutine stack
return to. as the base address

Branch to the
address in
bits 16-29.

to return to.

Is this a nonindexed instruction?

Yes No
Return to the Add the contents of BRn to the
base address. base address and return to the
instruction at the resulting
address.

Object Code Instruction Format 151

152

Test Decimal Register for Absolute Number (IF Rn AN)

29 [31

/
(3

15

IS . .
Source: IF RII [N(l)j] AN GOTO instruction label
| —
Object: oD I @ r @)
0 g8 |/

n Test register address: Test the register at this address.

B Branch address: Branch to the instruction at this address.

Bits:
00=1IS
01 =NOT

The microprocessor branches to the branch address if:

® The test register contains a valid positive number or all blanks (hex 40), and 1S
is specified

® The test register does not contain a valid positive number, and NOT is specified

Test Decimal Register for Self-Check Digit (IF Rn CK)

IS . .
Source: IF Rn [NOT] CK GOTO instruction label
| |
A J
Object: OE @

@

/ 29 [31
[1] a
n Test register address: Test the register at this address.

Branch address: Branch to the instruction at this address.

ﬂ Bits:
00=1S
01=NOT

The microprocessor branches to the branch address if:

® The self-check number in the test register is correct when it is checked by the

self-check algorithm, and IS is specified

® The self-check number in the test register is not correct and NOT is specified

Object Code Instruction Format

153

Test Decimal Register for Signed Number (IF Rn SN)

IS , .
Source: IF Rn [NOT] SN GOTO instruction label
l | =
1
Object: OF J@ ,
0 8 / 15

Test register address: Test the register at this address.

Branch address: Branch to the instruction at this address.

Bits:
00=1S
01 =NOT
The microprocessor branches to the branch address if:

® The test register contains a valid signed numeric value and IS is specified

® The test register does not contain a valid signed numeric value and NOT is
specified

154

Decimal Register Add (+)

0-9 Re
= [Rb * 0-9]

Source: Rall
Object: 10 @ @ @
0 8 / 15 / 23 / 31
(1)

ll Result decimal register address: The address of the decimal register that will
contain the result of this operation.

Note: If a carry results out of the high-order position in this register, the
overflow indicator 1124 is set on.

Factor 1 decimal register address: The address of the decimal register that
contains factor 1, or a single-digit constant (hex 0-9) followed by hex 0.

a Factor 2 decimal register address: The address of the decimal register that
contains factor 2, or a single-digit constant (hex 0-9) followed by hex 0.

This instruction algebraically adds the factor 1 value to the factor 2 value and stores

the sum in the result register.

Object Code Instruction Format

155

Decimal Register Subtract (-)

-9
Source: Ra = [

Object: 1

|
8]@ 15
g

n Result decimal register address: The address of the decimal register that will
contain the result of this operation.

Note: If a carry results out of the high-order position in this register, the
overflow indicator 1124 is set on.

Factor 1 decimal register address: The address of the decimal register that
contains factor 1, or a single-digit constant (hex 0-9) followed by hex 0.

Factor 2 decimal register address: The address of the decimal register that
contains factor 2, or a single-digit constant (hex 0-9) followed by hex 0.

This instruction algebraically subtracts the factor 2 value from the factor 1 value
and stores the result in the result register.

156

Decimal Double-Register Divide (/)

Source: Rajn l c
Obiject: 12 @ @ @
0 8 / 15/ 23 3

Result decimal register address: The address of the decimal register that will
contain the result of this operation.

Factor 1 decimal register address: The address of the double decimal register
that contains factor 1.

Note: Factor 1 is replaced with the remainder,

Factor 2 decimal register address: The address of the decimal register that
contains factor 2, or a single-digit constant (hex 0-9) followed by hex 0.

This instruction divides the factor 1 value by the factor 2 value. The result is
stored in the result register; the remainder is stored in the factor 1 register.

Note: If division by zero is attempted, the overflow indicator 1124 and the divide
error indicator 1120 are set on.

Decimal Register Exchange (<=>)

Source: Ta <=> Tb
Object: 13 J@ ‘@ F
0 8 [15 / 23 3
1] (1)

n Decimal register addresses: The addresses of the decimal registers that
exchange contents.

Set to hex FF.

This instruction swaps the contents of the specified decimal registers.

Object Code Instruction Format 157

158

Decimal Register Copy (=)

Source: Ra = Tb
Object: 14 '@ @ FIF
0 8 [15] 23 [31

Result decimal register address: The address of the copied-to decimal register.

Factor 1 decimal register address: The address of the decimal register that
contains data to copy or a constant 0-9.

Note: [f a constant is used, it is placed in bits 16 through 19, and bits 20
through 23 are filled with zeros.

B Set to hex FF.
The constant is copied into the result decimal register. The contsnt is placed into

byte 15 of the decimal register, and bytes O through 14 are filled with blanks (hex
40s).

Decimal Double-Register Multiply (*)

Rb * 09
Source: Ra i32) = [0_9 % Rc]
Object: 15 @ @
0 8 / 15 23 31

@
Vi
8
n Result decimal register address: The address of the double decimal register

that will contain the result of this operation.

B Factor 1 decimal register address: The address of the decimal register that
contains factor 1, or a single-digit constant (hex 0-9) followed by hex 0.

B Factor 2 decimal register address: The address of the decimal register that
contains factor 2, or a single-digit constant (hex 0-9) followed by hex 0.

This instruction multiplies the factor 1 value by the factor 2 value and stores the
product in the result double decimal register.

Decimal Register Shift Right, Blank Pad (SR)

Source: Ra SR 1

= :i(b SR [%-c]
p
/

0 8 15 23

/l 31

Ta

Object: 16 o
/

(1)

ll Result decimal register address: The address of the decimal register that will
contain the shifted data upon completion of this operation.

Shift decimal register address: The address of the decimal register that con-
tains the data to shift, or a constant 1 if you want to blank the result register.

Note: If a constant 1 is used, must also be 1. This is the quickest way to
blank a decimal register.

Shift count: The number of bytes to shift the data. The shift count can be
specified as a constant (hex 0-F) followed by hex 0, or as a decimal register
that contains the shift count in the digits portion of the low-order byte of the
register.

The bytes of the shift register are shifted right the number of bytes indicated by the
shift count, and the shifted result is placed into the result register. The high-order
bytes of the shifted result contain blanks (hex 40) for the number of, positions
shifted. If a negative number is shifted right, the D-zone is shifted out of the register
and the register contents are no longer negative.

If a constant 1 is specified for the shift register, the bytes are shifted as though
were a decimal register with decimal 1 in the rightmost byte, and bytes 0-14 were
blanks. The rightmost byte is shifted out of the register so the register contains
only blanks. These blanks replace the contents of the result register.

Object Code Instruction Format 159

160

Decimal Register Divide

Source: Ra = Rb / 0‘9]
l Re
Object: 17 @ go) 1@
0 g] 1] 23 [3
(1] 3]

n Result decimal register address: The address of the decimal register that will

contain the result of this operation.

Factor 1 decimal register address: The address of the factor 1 decimal register.

Note: Factor 1 is replaced by the remainder.

Factor 2 decimal register address: The address of the decimal register that
contains factor 2, or a single-digit constant (hex 0-9) followed by hex 0.

This instruction divides the factor 1 value by the factor 2 value and stores the result
in the result register.

Note: If division by zero is attempted, the overflow indicator 1124 and the divide
error indicator 1120 are set on.

Decimal Register Multiply (*)

Source:

Object:

l

- [

T

18

@

R
|
—7

@
/

23

/

31

n Result decimal register address: The address of the decimal register that will

contain the result of this operation.

Note: If a carry occurs out of the high-order position in this register, the
overflow indicator 1124 and the multiply overflow indicator 1123 are set on.

Factor 1 decimal register address: The address of the decimal register that
contains factor 1, or a single-digit constant (hex 0-9) followed by hex 0.

Factor 2 decimal register address: The address of the decimal register that
contains factor 2, or a single-digit constant (hex 0-9) followed by hex 0.

This instruction multiplies the factor 1 value by the factor 2 value and stores the
product in the result register.

Object Code Instruction Format

161

162

Decimal Registers, Move Partial Contents (MVER)

Source: MVER (Ra, Rb, 0-15, 1-16)
|1 =
Object: 19 @ @ [/
0 8] 15 f 23 [31
(1] a

Result decimal register address: The address of the decimal register that will
contain the moved data upon completion of this operation.

From decimal register address: The address of the decimal register from
which data is moved. Data is moved left-to-right, starting with the byte that
is specified in the MVER instruction. The contents of the from register
remains unchanged.

Byte count: The number minus 1 (hex 0-F) of bytes to be moved (that is,
the length operand minus 1).

Note: If this number of bytes plus the displacement n is greater than 16,
some of the data is moved into the register that follows the result register.

Displacement: The offset (hex O-F) into both registers of the leftmost byte
of data to move.

This instruction moves all or part of the contents of the from register into the
result register. The movement is from the specified offset in the from register to
the same offset in the result register.

Decimal Registers, Move Partial Contents with Offset (MOFF)

Source: MOFF (Ra, Rb, 0-15, 1-16)
| | | L=
Obiject: 1A @ @ e
0 & | 15 | 23] 31
a

84

n Result decimal register address: The address of the decimal register that will
contain the moved data.

From decimal register address: The address of the decimal register from
which data is moved. The contents of the from register remain unchanged.

B Byte count: The number minus 1 {hex 0-F) of bytes to move. (That is, the
length operand, minus 1.)

Note: If this number of bytes, plus the displacement n is greater than 16,
some of the data is moved into the register that follows the result register.

n Displacement: The offset (hex O-F) into the result register of the leftmost
byte of moved data.

The rightmost number of bytes specified by are moved from the register to
the result register. The data is moved from left to right and placed in the result

register at the byte specified by offset.

The offset applies only to the resuit register (Ra), so the move is not limited to
corresponding byte positions.

Note: If the sum of offset and length is greater than 16, bytes are moved into the
register following the result register.

Object Code Instruction Format 163

Decimal Register Zone Modification (ZONE)

Source: ZONE (Ra, [g-;s] , 015, 1-16)
A N S =
Object: 18 @ [
0 8 |/ 15 23 [[3

—t
[~ 8
2

Il Result decimal register address: The address of the decimal register that con-
tains bytes to modify. The contents of this register are modified with either
the zone modifying digit or the zone portion of the rightmost character in
the specified register.

Zone modifying digit: The digit (hex 0-F) followed by hex 0, or the address
of the decimal register that contains the modifying digit.

Length: The number minus 1 {hex 0-F), of bytes to modify.

ﬂ Displacement: The offset (hex 0-F) into the result register of the leftmost
byte to modify.

The byies of the decimal result register (Ra) are modified, starting at the byte
specified by offset and continuing to the right for the number of bytes specified by
length. The hex character specified by the operand replaces the original zone of
each byte specified. If the offset plus length exceeds 16 bytes, the bytes of the
next register are also modified.

164

Decimal Register Shift Left, Blank Fill (SL)

Source: a = b SL 0:]

Object: 1C

T
@
0 8 [s [238 [31

Result decimal register address: The address of the decimal register that will
contain the shifted data upon completion of this operation. The low-order
bytes of the result register are filled with blanks (hex 40). Data that is
shifted out of the high end of the register is lost.

Shift decimal register address: The address of the decimal register that con-
tains the data to shift. The contents of this register remain unchanged.

Shift count: The number of bytes to shift the data. The shift count can be
specified as a constant (hex 0-F) followed by hex 0, or as a decimal register
that contains the shift count in the digits portion of the low-order byte of
the register.

The bytes of the shift register are shifted left the number of bytes‘indicated by the
shift count, and the shifted result is placed into the result register. The low-order
positions of the shifted result contain blanks (hex 40s) for the number of positions
shifted. If a negative number is shifted left, the D-zone is shifted out of the units
position, and the register contents are no longer negative.

Object Code Instruction Format 165

166

Source: Ra = Rb SLS [O'F]
LT
Object: 1D @ @ count
0 8 / 15] 23 / 31
(1]

n Result decimal register address: The address of the decimal register that will
contain the shifted data upon completion of this operation. The low-order
bytes of the result register are filled with zeros (hex FQ). Data that is shifted
out of the high end of the register is lost.

Shift decimal register address: The address of the decimal register that con-
tains the data to shift. The contents of this register remain unchanged.

Shift count: The number of bytes to shift the data. The shift count can be
specified as a constant (hex 0-F) followed by hex 0, or as a decimal register
that contains the shift count in the digits portion of the low-order byte of
the register.

The bytes of the shift register are shifted left the number of bytes indicated by the
shift count, and the shifted result is placed into the result register. The low-order
bytes of the shifted result contain zeros (hex FOs) for the number. of positions
shifted. If a negative number is shifted left, the units position of the result register
retains the D-zone.

Decimal Register Shift Right Signed (SRS)

Source: Ra = Rb SRS [:1:]
Object: 1E count

0 8 15

@
/

n Result decimal register address: The address of the decimal register that will
contain the shifted data upon completion of this operation. The high-order
bytes of the result register are filled with zeros (hex FO). Data that is shifted
out of the low end of the register is lost.

Shift decimal register address: The address of the decimal register that con-
tains the data to shift. The contents of this register remain unchanged.

Shift count: The number of bytes to shift the data. The shift count can be
specified as a constant (hex 0-F) followed by hex 0, or as a decimal register
that contains the shift count in the digits portion of the low-order byte of
the register.

The bytes of the shift register are shifted right the number of bytes indicated by the
shift count, and the shifted result is placed into the result register. The high-order
bytes of the result register contain zeros {hex FOs) for the number of positions
shifted. Any blanks present are shifted without change. If the unshifted contents
of the shift register contained a negative value, the result register contains a hex D
in the zone portion of the rightmost byte. All other zones remain unchanged.

Object Code Instruction Format 167

168

Nooion ol Doaia
Ueciina negister onitt Righ

er Shift Right and Round (an)

Source: Ra = Rb SRR [O-F

Object: 1F

Result decimal register address: The address of the decimal register that will
contain the shifted data upon completion of this operation. The high-order
bytes of the result register are filled with zeros (hex F0). Data that is shifted
out of the low end of the register is lost.

To round the result, a 5 is used with the same sign as the sign that is in the
shift register; the 5 is added to the last byte of data that is shifted out of the
result register.

ﬂ Shift decimal register address: The address of the decimal register that con-
tains the data to shift. The contents of this register remain unchanged.

Shift count: The number of bytes to shift the data. The shift count can be
specified as a constant (hex 0-F) followed by hex O or as a decimal register
that contains the shift count in the digits portion of the low-order byte of the
register.

The bytes of the shift register are shifted right the number of bytes indicated by
the shift count, and the shifted result is placed into the result register. The high-
order bytes of the shifted result contain zeros (hex F0Os) for the number of bytes
shifted, and the units position of the shifted result retains the zone of the original
contents of the shift register. The result is rounded by adding 5 of like sign to the
last byte shifted out of the right end of the result register.

Read a Record from a Data Set (READ)

Rn
So READ () o 0
urce: dsn, fmt | - f I'n)
- Nl
[l
. B LD
Object: 20 , ! format record

0 8 [1 15 [23 /31

L
/
O B B 0O

n Bits:
8 0= Sequential record access method
1 = Relative record or key access methods
9 0= Overlap mode (O specified)
1 = Nonoverlap mode (N specified)
10 Not used, always zero
11 Not used, always zero

Data set number: The number (hex 1-F) of the data set to be read.
Format number: The number (hex 01-FE) of the format to use. If no for-
mat number is specified, this is hex FF. For a data directed read, this is hex

00.

n Record to read: The current record number in the 10B is set to the record
number that is to be read. The location of the record to be read can be:

® Rn for the address of the decimal register that contains the key to the
record.

® BRn for the address of the binary register that contains the relative record
number of the record.

® Hex 07 (- specified) for reading the previous record.

® Hex 08 (0 specified) for reading the current record.

® Hex 09 (+ specified) for reading the next record.
The current record number in the 10B is set to the record number that is to be
read. The specified record is read from diskette and put into the logical 1/0O buffer.

If formatting (fmt) is specified, data is formatted, moved from the logical 1/0
buffer, and put into the storage indicated by the format.

Object Code Instruction Format 169

170

Formatted Read to Storage (REBF)

Source:

Object:

n Read address: The address of the binary register that contains the address of
the leftmost byte of data to read into the storage.

Format number: The number (hex 01-FE) of the format to use. For data
directed formatting, the * is specified and bits 16 through 23 contain hex 00.

Data is moved into the register specified by the DCLBL parameters of the format.
The number of bytes moved is determined by the LEN parameter, with editing

REBF

|

(BRa,

_th])

21

forrlnat

00

=\~@ e—————

/

controlled by the EDIT parameter of the format.

Open a Data Set or Initialize Communications (OPEN/TOPEN/TINIT)

TINIT (dsn)
Source: TOPEN (dsn)
OPEN (dsn ,,.BRn)
1 §
Object: 22 ’ : F F g@
0 8 /’11 15 23]" 31

a8 sis
8 0 =TINIT, or OPEN for a diskette or printer.
1=TOPEN
9-11 Always 100

Data set number: The number (hex 1-F) of the data set to be accessed.

Binary register address: The ID option for OPEN where the binary register
contains the storage address of the owner ID information. This optional
owner ID is stored on the volume label and is compared with the owner ID
in storage. [f the diskette is secure, the ID information in storage must match
the owner ID on the volume label in order for the OPEN operation to exe-
cute. |f the diskette is not a secure diskette, the binary register is ignored.
The owner ID information may be up to 14 characters long; if less than 14
characters are used, the owner ID must be followed by a blank (hex 40). If
the binary register is omitted, or if this isa TINIT or TOPEN instruction,
this byte contains hex 00.

Note: Two commas must precede the binary register if it is included. If the
register is omitted, the commas are also omitted.

TINIT establishes the communications link and begins the line connection for
communications.

TOPEN sets the open flag in the communications 0B to indicate that the IOB is
open.

OPEN sets the open flag in the diskette or printer data set 0B to indicate that the
data set is open. It adds the address of the data set IOB to the OB chain, and
validates the .DATASET parameters in the 0B,

When the open has completed, the data set’'s HDR1 label will be located in the first
128 bytes of the physical buffer except for pointer 1/0 and SCS data sets that have
the SW or ERS parameter specified in the .DATASET control statement. For a label
update data set, the VOL 1 label will be saved instead of the HDR1 label. The op
code byte in the data set 10B is replaced with hex 00. If there is an external status
for insufficient physical buffer size (3430), or two physical buffers specified with
unequal sizes (3435}, or if any group 7 warning message is presented, the minimum
number of 128-byte blocks required for sufficient buffer size is placed into hex 78
of the data set I0B. If any other external status occurs, this number is not placed
into the 10B.

Object Code Instruction Format

171

172

Close a Data Set or Terminate Communications (CLOZ/TTERM)

TTERM (dsn)

R
Source: E [W] * *
CLOZ (dsn, D{.LPJ.JC1. C |,BRn)
| n] L—lv L
l—
- |
Object: 23 ! BN

w

~ [N§

31

/ 1 1E
(2f3]4al5]6 M7

Close option for CLOZ

Bits: For a printer, bit 8 = 0 and bits 9-32 are ignored.
0100 = No label update, N specified; HDR1 label is not updated.
0101 = Normal close, no option specified.
0110 = Close and erase, E specified; EOD is set to BOE.
1100 = Close and release, R specified; EOE is set to EOD-1.
1110 = Close and delete, D specified; label is marked deleted.
0100 = TTERM

Data set number: The number (hex 1-F) of the data set to be accessed.

Write protect option for CLLOZ. This affects the write-protect position on
the HDR1 label.

Bits 16 and 17:
00 = Leave write protect as is, no option specified
01 = Clear write protect, W specified
10 = Set write protect, P specified
00 = TTERM

n Verify and copy option for CLOZ. This affects the verify/copy position on
the HDR1 label.

Bits 18 and 19:
00 = Leave verify and copy as is, no option specified
01 = Clear verify and copy, * specified
10 = Set verify, V specified
11 = Set copy, C specified
00 = TTERM

Multivolume option for CLOZ. This affects the multivolume positions on the
HDR1 label.

Bits 20 and 21:
00 = Leave multivolume as is, no option specified
01 = Clear multivolume, * specified
10 = Set continued volume, C specified
11 = Set last volume, L specified
00 = TTERM

B Bits 22 and 23: Not used, always 00.

Multivolume number for CLOZ: The address of the binary register that con-
tains the volume number, or hex 00 if the multivolume option is not specified.
Hex 00 is also for TTERM.

The TTERM instruction terminates the logical connection between the application
program and the communications access method.

The CLOZ instruction removes the data set IOB from the 10B chain and resets the
apen-flag in the IOB. If any records have been added, the EOD is updated as
appropriate. Any functions specified in the operand fields of the CLOZ instruction
are performed. When the CLOZ is completed, the op code in the IOB is reset to 0.

For an erase type data set, the block length, record length, and EOD are updated on
the HDR1 label to the values in the 10B.

Object Code Instruction Format 173

174

Search a Data Set (SEARCH)

B
Source: SEARCH (dsn, BRn, :;)
L
e
! T
Obiject: 24 , : / forznat @
0 8/ 11 / 15 / 23 / 3
[1] 4]

Type of search

Bits 8 through 11:
0100 = Binary search, B specified
0101 = Forward search, F specified
0110 = Reverse search, R specified
1110 = Logical record search, L specified

Data set number: The number (hex 1-F) of the data set that the diskette
microprocessor is to search for a specified record. When the record is found,
it is placed in the 1/0 buffer.

The assembiler sets this byte to hex FF; however, you can change it to a
format number, or to hex 00 for data directed formatting.

Parameters’ address: The address of a binary register that contains the address
of the search parameters. The search parameters must be prepared and stored
in main storage before the SEARCH instruction is issued. The format of the
search parameters is described fo||oWing the purpose statement.

The search operation searches a data set for a record that agrees with the mask
specifications. If a match is found, the matching record is placed into the logical
record buffer and the search ends. If no match is found, the contents of the logical
buffer depend on the type of search performed.

A binary search operation searches for the relative record position within the data
set of a logical record that matches the mask. If a match is not found, the record in
the relative record position following the position where the record would have been
located is placed into the logical buffer and an external status (3702) is reported. If
the record would have been beyond EQOD, an external status (3703) is reported, and
the last record is placed into the logical buffer.

A sequential search operation searches a data set for a record that matches one or
more mask specifications. Multiple mask specifications include the relational
operators. AND and OR, with AND having priority over OR. If no match is
found, the last logical record (for a forward search) or the first logical record (for
a reverse search) is placed into the logical record buffer and an external status
(3702) is reported.

The format of the search parameters is as follows:

For a Binary Search
Byte Contents
0-1 Length of the mask
2-3 Field position in which to begin search
4-n Mask

Only one mask specification may be used.

Example: The following mask specification uses a binary search to search a data
set for a record containing 137 in position 15.

Length Mask
——

N
X’0003000FF1F3F7’
N

Position

For a Forward Search, Reverse Search, or Logical Record Search

Byte Contents
0-1 Length of the mask
2 Relative and logical operators. The 5280 does not check bits 0 and

1 when it processes the first mask specification. However, every
following mask specification must have either bit 0 or bit 1 (but not
both) turned on. Each mask specification can have one, and only
one, of bits 2-7 turned on. If more than one is on, an external
status (3417) is presented.

®
b

Meaning if 1

Logical AND

Logical OR

LT (less than)

GT (greater than)

LE (less than or equal)
GE (greater than or equal)
EQ (equal)

NE (not equal)

NOOs,WN=0

Object Code Instruction Format

175

176

Byte Contents

24 Field position in which to begin search.
5-6 Field position in which to end search.
7-n Mask.

The mask specification can be repeated from byte 0. Follow the mask in the last
specification with X'0000’ to indicate the end.

Example of a Forward Search:

The following mask specifications search a data set for a record that satisfies one of
the following three conditions:

1. Contains ‘ABC’ in positions 1-5.
2. Contains ‘DE’ in positions 1-10 AND ‘FGH’ is not in positions 1-5.

3. Contains ‘ABCDE’ in positions 6-20.

Mask OR Mask AND Mask OR Mask
EQ End EO End NE End EQ End

~
X:00030200010005C1 02020002420001 000Ac4c5000381ooo1 0005csc7cs00054200050014c1czcscacsoooo

A N’
Start Start Start Start End of
Specification
Length 4 Length Length ~L

ength————
of Mask of Mask of Mask of Mask

Test Data Set Status Indicators (1FDSI)

Source: IFDSI In, dsn [II\ISOT] ON GOTO instruction label
Object: 25 P @ .
0 8] 1[5] 29 [31

/
+
(4]

n Data set status indicator number: The number of the status indicator (hex
0-F) to be tested. Indicator numbers Q-7 test bits 0-7 of I0B byte 0. Indicator
numbers 8-F test bits 0-7 of |0B byte 13.

Data set number: The number (hex 1-F) of the data set to be accessed.

mo

Branch address: The address of the instruction the microprocessor branches
to if the diskette data set status conditions are met.

B Bits30and 31:
00 = IS—branch to the instruction if the specified indicator n is on.
01 = NOT—branch to the instruction if the specified indicator n is
not on.
The microprocessor branches to the branch address if:
® The specified indicators are on and IS is specified.

® The specified indicators are off and NOT is specified.

® This instruction does not implicitly check for external status.

Object Code Instruction Format 177

178

Position Diskette (POSN)

BOE
CURR (0]
Source: POSN (dsn, LAST | - [N])
EOD l
1
! Y
Obiject: 26 vy 00 00
0 8/ 1 / 15 23 31

2 B8

n Record pointer: Position the data set pointer by the diskette microprocessor
to the record specified or read a specified record into the buffer.
Bit
Settings Meaning

0x00 Set the current record counter to zero, BOE specified.

0x01 Read a new copy of the current record from diskette, CURR
specified.

0x10 Set the current record counter to the number of the last logical
record in the data set, and read it from the diskette, LAST
specified.

1x00 Set the current record counter to the record number following

the last record, EOD specified.

x=0 Overlapped (O specified).
x=1 Nonoverlapped (N specified).

Data set number: The number (hex 1-F) of the data set to be accessed.

This operation modifies the contents of the current record counter. If CURR or
LAST is specified, the logical record indicated is read into the physical buffer.

Read from Communications (TREAD)

Source: TREAD (dsn, [iormat] - [8] -
r I r’ I r
b 3 ‘—1—J
T H
Object: 2A . 1 dsn format | 1001001
0 8 / 11 / 15 /] 23 [25 31
1] (4
n Bits:
8 Not used, always zero

9 0= Overlap mode (O specified)
1 = Nonoverlap mode (N specified)
10 Not used, always zero
11 Not used, always zero

Data set number: The number (hex 1-F) of the data set to access. This

number is assigned by the DSN parameter of the .COMM control statement.

Format number: The number (hex 01-FE) of the format to use. If an aster-

isk (*) is coded, this will be hex 00 for data directed formatting. If no

format entry is coded, this will be hex FF.

Bits:
24 0= Read the next logical record.
1 = Read the entire block (minus sign coded).
25 0= Read data.

1 = Return control immediately with status if data is not available

for the read.

Object Code Instruction Format

179

180

Search Resource Allocation Table (SRAT)

Source: SRAT (dsn, Bllﬂn)
|
Object: 2B 4 ! ds:n F F @

n Data set number: The number (hex 1-F) of the data set 10B to access.

Binary register address: The binary register will be loaded with the physical
device address of the data set, which the 5280 finds in the resource allocation
table.

This instruction searches the resource allocation table within the partition to find

the physical address of the logical device ID. The logical ID is stored in the data set

10B. If the physical address is found, it is stored in the specified register.

1118 is set on if one of the following is true:

® No logical device identifier is present in the set 10B.

® No match is found in the resource allocation table.

® No resource allocation table is available. -

When 1118 is set on, the physical address that is currently stored in the 10B and
logical 1/0 table is placed in the specified binary register.

System Lock (SYSLCK)

Source: SYSLCK

Object: 2C FF 00 00

This instruction sets a bit in the partition I0B. This flag will signal the main micro-
processor to ignore all hardware attentions such as time-out attention and keyboard
attention. The main microprocessor will not exit the partition to execute instruc-
tions in another partition until the flag is turned off via a SYSUNL instruction.

System Unlock (SYSUNL)

Source: SYSUNL [(*)]
| L .
Object: 2D 00 00 00000001
0 8 15 23

ll Partition exit option:

0
1

Exit partition immediately; * not specified.
Execute instructions for the normal time limit, then exit partition;
* specified.

This instruction turns off the system lock bit to allow the main microprocessor to
resume normal operation. It may also be used to relinquish the remaining time in a
time slice.

Object Code Instruction Format 181

182

Load a Partition (LOAD)

Source: LOAD {label, P, A, E)
T A N A |
Object: 2E 0000 : paLOe .@
0 8 11 / 15 / 23 3

Load parameters:

Bits:

12 0= Load a full partition; P is not specified.
1= Load a partial overlay; P is specified.

13 0= Do not attempt a background attach; A is not specified.
1= Attempt a background attach; A is specified.

14 Not used, always 0.

15 0= System is providing error handling; E is not specified.
1 = Program is providing error handling; E is specified.

Load parameters address: The address of data area that contains the load
parameters, or all zeros if the data area label is not specified. If the label is
omitted the operator will be prompted to enter the load parameters from
the keyboard.

This instruction loads a partition according to the load parameters. The load param-
eters may be entered from the keyboard or may be read from a data area. If the
parameters are to be read from a data area, they must be stored in the following
format:

Partition number; 2 bytes in length. The partition number may contain: (a)
the number (hex 0-7) in the first byte and blank (hex 40) in the second byte,
(b) the 2-byte logical ID assigned to the partition in the resource allocation
table, or (c) two blanks (hex 40) if the current partition is to be reloaded.

Device address; 4 bytes in length. The device address may contain: (a) the
4-byte physical address of the device that contains the data set to load, or (b)
the 2-byte logical device ID assigned to the device in the resource allocation
table, followed by two blanks (hex 40).

Start address; 2 bytes of hex digits, used only for a partial overlay. The
address must be on a 256-byte boundary and must be greater than hex 100.

4, Data set name; up to 32 bytes in length. The data set name may include a
volume (D if volume checking is desired. The volume ID may be up to 6
alphameric characters long, preceded by an asterisk and followed by a
period. The name of the data set follows the period if the volume ID is
included. The name may be up to 8 alphameric characters long for an H, I, or
basic exchange data set. For an E exchange data set the name may be up to
17 bytes long, consisting of one or more simple names of up to 8 alphameric
characters each, and with each simple name separated by a period. No blanks
are allowed within a data set name, but the data set name must end with a
blank.

If a partial overlay is loaded, the load parameters must include the relative address
where the overlay begins. The original contents of the partition remain unchanged
except in the area of the overlay. The first 8 bytes of a partial overlay contain
information added by the assembler. The first 2 bytes contain the length of the
overlay, the next 2 bytes contain the last 2 bytes of the overlay name, and the
remaining 4 bytes are reserved for a patch log. The last 2 bytes of the program
name are replaced with the second 2 bytes of the overlay.

If an error occurs during a load, error recovery can be handled by the system or by
the application program.

If an error occurs and the application program is handling error recovery, the main
microprocessor places an error code into a system binary register (BR16) and
returns control to the first instruction following the load instruction. If the load
operation is successful, the main microprocessor returns controt to the second
instruction following the load instruction.

If an error occurs and the systém is handling error recovery, the system sends a
message to the screen and waits for the operator to press the Reset key. After the
reset, error recovery depends on the kind of ioad being performed as follows.

® |f the standard load processor from the common functions area was performing
the load, the load prompt is redisplayed with the load parameters previously
entered. The operator then rekeys the correct information.

e |f a program instruction was reloading the same partition and the standard load
prompt is available in the common functions area, the standard load prompt is
displayed. The operator then enters the load parameters.

® |f a program instruction was reloading the same partition and no standard load
prompt is available, the load cannot be retried. The main microprocessor issues
an exit instruction and goes to the next partition.

® If a program instruction was loading another partition, the load is not retried.
Control returns to the instruction following the load instruction.

Do not put error recovery procedures in a storage area that is to be overlayed with
a partial overlay.

Object Code Instruction Format

183

184

Exit a Partition (EXIT)

Source: EXIT

Object: 2F | 00 0 [oo |
23 31

This instruction detaches a partition if it was attached to a keyboard, closes all

open data sets, and executes a system unlock operation in case the partition was
locked when the exit instruction was issued (see op code 2D). If the exit instruc-
tion is issued in a background partition, bit 1 of byte 1 of the partition 10B pointer
in the system control block is turned on to make the partition available to be loaded.
This bit must be on for the partition to be loaded by another partition. If the exit
instruction is issued in a foreground partition, a flag is set in the partition 10B (bit

6 byte 2B) to indicate that the partition is available to be loaded; the bit in the
partition 0B pointer is not turned on, so keystrokes can be processed in the

exited partition.

Write a Record to a Data Set (WRT)

BRn
+
Source: WRT (dsn, [fmt], _ , [z] ,B)
o 41|
- 1
Object: 30 , ! , ,
0 gf 1 [15 [23 [&

n Bits:
8 0 =Sequential record access method. For a printer, bit 8 must be O
and bits 10-23 are ignored.
1 = Relative record access method.
9 0= Overlap mode.
1 = Nonoverlap mode.
10 Not used, always zero.
11 0= 1/0 buffer is not blanked.
1 = 1/0 buffer is blanked at the start of the operation (B is specified)
if edit formatting is specified.

Data set number: The number (hex 1-F) of the data set to be written.

I~

Format number: The number (hex 01-FE) of the format to use. If no
format number is used, this will be a hex FF.

n Record to write: The location of records to write can be:

® BRn for the address of a binary register. |f the data set is an SCS data set,
the register contains the address of an area where SCS command characters
are stored. If the data set is not an SCS data set, the register contains the
record number.

® Hex 07 (- specified) for writing the previous record.

® Hex 08 (0 specified) for writing the current record. For a printer, it must
be hex 08.

® Hex 09 (+ specified) for writing the next record.

This instruction writes the contents of the logical buffer into the specified record
position of the physical buffer. The contents of the physical buffer may be written
to the diskette. If an edit format is specified, data is moved into the logical

buffer as indicated by the edit format before it is written to the physical buffer.

If this instruction is issued when the current record counter is at EOD, the record

is written into the EOD space and the EOD and current record counter are incre-
mented; otherwise, the current record number is never changed by a write
instruction.

Object Code Instruction Format 185

Insert a Record into a Data Set (WRTI)

Source: WRTI {dsn, [fmt], [] B)
=
Object: 31 !, 08

0 8711/15 fzs / 31

n Bits:

8 Not used, always zero.
9 0= Overlap mode (O specified).
1 = Nonoverlap mode (N specified).
10 Not used, always zero.
11 0= /O buffer is not blanked.
1 = 1/O buffer is blanked at the start of the operation (B is specified)
if a format is specified.

ﬂ Data set number: The number (hex 1-F) of the data set to be accessed.

Format number: The number (hex 01-FE)} of the format to use. if no format
is specified, this will be hex FF.

n Record to access: Always the current record (hex 08).

This instruction writes the current logical record to the physical buffer, into the
current record position. The record that was in the current record position, and all
records beyond the inserted record, are moved down one position until EOD or a
deleted record is encountered. If the record is inserted as the last record in the data
set, this instruction acts as a write instruction (op code 30).

Note: Two physical buffers and one logical buffer must be available for this
instruction.

186

Insert a Block of Records into a Data Set (INSBLK)

07
Source: INSBLK (dsn y BRn,[N }
| ="

Object: 32 , ! FF e,

Bits:
8 Not used, always 0.
9 0= Overlapped mode (O specified).
1 = Nonoverlapped mode (N specified).
10-11 Not used, always 00.

Data set number: The number (hex 1-F) of the data set to access.

Records to insert: The address of the binary register that contains the number
of logical records to be inserted. Two commas must precede the binary
register in the source instruction.

The records from (and including) the current record to the end of the data set are
moved down to make room for the specified number of records to be inserted. The
inserted records are treated as deleted records and may be written with the WRTI
instruction (op code 31). The current record counter is modified to point to the
first inserted record.

Note: Two physical buffers and a logical buffer must be available for this instruc-
tion.

Object Code Instruction Format

187

188

Initialize 2 Dickette (INIT)

Source: INIT (dsn ,BRn)

Object: 33 I X'EF’

@
15 23 T 31

0100 (Always nonoverlapped mode.)
Data set number: The number (hex 1-F) of the data set to be accessed.

Parameters’ address: The address of the binary register that contains the
address of the initialization parameters.

This instruction initializes the diskette with information from the data set I0B.
The data set 10B must have previously been opened as a write-only label update
data set (TYPE = INI). The initialization parameters must be stored in a data area
before the initialization instruction is issued. The format of the initialization
parameters is:

Bytes Bits Information
1 0 Head number
1-7 Track number
2 0 0=FM{1o0r2)
1=MFM (2D)
1 0 = 1-sided
1 = 2-sided
2-7 Number minus 1 of 128-byte blocks that make up the
sector size.
3-28 Sequence of sector numbers. If byte 3 = hex FF, the track

specified by byte 1 is flagged as a defective track.

Allocate a Data Set (ALLOC)

Source:

Object:

a

ALLOC (dln Ve BTn)
34 a1 FF @
—.
23

Data set number: The number (hex 1-F) of data set to allocate.

Parameters’ address: The address of the binary register that contains the

address of the allocate parameters. The binary register must be preceded by
two commas in the source instruction.

This instruction is always executed in nonoverlapped mode. For a printer, this
instruction is executed as an open instruction. For diskette, when the ALLOC
operation is executed the data set is allocated in the physical space following

the last valid data set existing on the diskette, provided sufficient extent and label
space exists. A data set cannot be allocated between existing data sets and always
originates on a physical track/sector boundary.

The data set HDR 1 label is placed in the first deleted HDR1 iabel space. If there
are no deleted HDR 1 label spaces, the allocation cannot take place, and an external
status (3229) is presented. The HDR1 information is taken from the data set IOB
and from the parameter string in storage. The binary register (BRn) in the ALLOC
instruction contains the address of the fifth byte of the parameter string. The
format of the parameter string is as follows:

Byte

24

Meaning

Data set exchange type. A hex number that corresponds to the

appropriate exchange type:

00 = Basec exchange
01 = H exchange

02 = | exchange (this is the type normally used)
03 = E exchange, unblocked and unspanned

04 = E exchange, blocked and unspanned
05 = E exchange, blocked and spanned

The number of logical records to allocate. Hex 000000 allocates
the maximum number of records that can be placed on the remain-

ing diskette space.

The first of up to 14 characters of an optional owner identification,
required for allocating on a secure diskette. The address stored in
the binary register always points to this byte. If the owner identifi-
cation is omitted, the address points to the end blank.

Object Code Instruction Format

189

190

RByte Meanina

Byte ning

end The last byte in the parameter string must aiways be a biank {hex 40)
unless a 14-character owner 1D is specified.

Note: This parameter string can also be used to open a data set on a secure
diskette; the OPEN instruction does not use the bytes before the fifth byte.

The information that is taken from the data set 10B is as follows:
Parameter Explanation

DATA set name (NAME) The data set name is mandatory for allocating
a diskette data set. It is optional for a printer.

Logical record length (RECL) If this option .DATASET parameter is
omitted, the length is set to equal to block
size.

Block size (BS1Z) Except for blocked and spanned data sets, the
block size must equal, or be a multiple of, the
logical record length. For blocked and spanned
data sets, BSIZ is an optional parameter; if
specified it must equal sector size, and if
omitted the 5280 sets it to sector size.

Delete Character (DFLG) Delete flag; the character that is placed in the
HDR1 label during the allocate, and which will
be used to indicate a deleted record. Optional
for | and E exchange; ignored for basic and H
exchange. Valid characters can be A-Z, 0-9, or
one of the following symbols: . , - / % #
@:$ &

During the allocation operation, the data set organization byte of the HDR1 label is
set to blank (hex 40) for basic and H exchange data sets. It is setto D for | and E
exchange data sets. It is invalid to allocate a data set with the ALLOC instruction
when the data set type is label update.

Upon completion of the ALLOC operation, the allocated data set is also opened.
The op code in the data set OB is replaced with hex 00. Upon completion of the
ALLOC, or if an external status for insufficient physical buffer size (3430) or for
two physical buffers specified with unequal sizes (3435) occurs, or if any group 7
warning message is presented, the minimum number of 128-byte blocks required
for sufficient buffer size is placed into hex 78 of the data set IOB. If any other
external status occurs, this number is not placed into the 108B.

The HDR1 label is placed into the first 128 bytes of the physical buffer except for
pointer /O and SCS data sets that have the SW or ERS parameters specified in the
.DATASET control statement.

Delete a Record from a Data Set (WRTS)

Source: WRTS (dsn, [fmt], O, [z], B)
l_ -l
{
Object: 35 . , , 08
o 5/ 1]® | =] 3
(4]

B sis
8 Not used, always zero.
9 0= Overlap mods (O specified).
1 = Nonoverlap mode (N specified).
10 Not used, always zero.
11 0= 1/O buffer is not blanked.
1 = 1/O buffer is blanked at the start of the operation (B is specified)
if a format is specified.

Data set number: The number (hex 1-F) of the data set to be accessed.

Format number: The number {hex 01-FE) of the format to use. If no
format was specified, this is hex FF,

u Record to access: Always the current record (hex 08).

When this instruction is executed, the record indicated by the current record
counter is written as for the write instruction (op code 30). In addition, the record
is flagged as deleted. For a basic or H exchange data set, a special address mark is
used to flag a deleted record. For an I or E exchange data set, the delete character
in the data set 0B is used to flag a deleted record.

Object Code Instruction Format 191

192

Wait for 1/0 Completion (WAIT/TWAIT)

Source: TWAIT (dsn)
) WAIT {dsn)
1]
Object: 36 000! , 00 00
0 3 11 / 15 23 3

1]

B s:s

0 = Data set numbera was specified.
1 = No data set number was specified.

When the main microprocessor executes a wait instruction, it waits until all
1/0O operations are complete for the specified data set before executing the
next sequential instruction. If no data set number is specified, all data sets
are checked for completed /O operations.

Data set number: The number (hex 0-F) of the data set to check for com-
pleted 1/O operations. |f data set number zero is specified, it indicates the
keyboard/display |10B.

Write to Communications (TWRT)

Source: TWRT (dsn, [fmt], F, [(I\)l] ,B)
|
! !l
Object: 3A flags ! dsn format | 0001001
0 8 / 1" / 15 / 23/ 25 31

a8 B 0

B s
8 Not used, always zero.
9 0= Overlapped mode (O specified).
1 = Nonoverlapped mode (N specified).
10 Not used, always zero.
11 0= The I/O buffer is not blanked.
1 = The |/O buffer is blanked at the start of the operation (B is
coded) if a format is specified.

ﬂ Data set number: The number (hex 1-F) of the data set to access.

Format number: The number (hex 00-FE) of the format to use. If no
format is specified this is hex FF.

n Bit 24:

0 = Normal write
1 = Final write (F coded) in an SNA application

This instruction transmits a record from the data set specified to the host system.

If an edit format is specified, data is placed into the logical buffer as indicated by
the format.

Object Code Instruction Format 193

Formatted Write from Registers (WRBF)

Source: WRBF (BRa, [fmt], BRb)
Object: 3C @ 0 / @
0 8 15 / 23 / 31

Write address: The address of the binary register that contains the address of
the leftmost byte of the data area to write into.

Format number: The number (hex 01-FE) of the format to use. This is hex
FF if no format is specified.

B Blank option: The address of the binary register that contains the number of
bytes that are blanked before formatting begins. If BRb is not specified, no

bytes are blanked, and this will contain hex FF.

This instruction moves the data indicated by the format, or blanks if no format and
a binary register is specified, into the data area pointed to by the write address.

194

Device Control (DEVCTL)

o A
Source: DEVCTL (dsn, X [, N] ,C1)
D_
r |
—
Object: 3D ! d'sn [
0 8 / 11 15 / 31

n Bits:

8 0= A omitted (device dependent)
1 = A specified (device dependent)
9 0= Overlap mode (O specified)
1 = Nonoverlap mode (N specified)
10 0= C omitted (device dependent)
1 = C specified (device dependent)
11 0= D omitted (device dependent)
1 = D specified (device dependent)

Data set number: The number (hex 1-F) of the data set 0B to access.

B Control parameters: 2 bytes of hex digits that specify the control operation,
The hex digits and operations depend upon the different devices.

This instruction is intended for diagnostics use only.

For diskette device control there are write-defective-sector or diagnostic operations.

Object Code instruction Format

195

Diagnostic operations are used for reading or writing data in diskette microprocessor
or adapter registers. (These registers are not the decimal or binary registers used in
an application program.) If A is specified when writing registers, the data to be
written is taken from the binary register specified by bits 24-31. If A is specified
when reading registers, the data that is read is placed into the binary register speci-
fied by bits 24-31. If A is not specified when writing registers, the data to be
written is taken from bits 24-31. If A is not specified when reading registers, the
data is read into bits 24-31.

Bits 16-31 have the following meaning:
Bits Meaning

16 0 = Read register
1 Write register

17

o
1

Diskette microprocessor register
Adapter register

-
1

18-19

8

= Diagnostic command
20-23 = Register 16
= Register 17
= Register 18
= Register 19
= Register 20
= Register 21
= Register 22
= Register 23
Register 24
= Register 25
= Register 26
= Register 27
= Register 28
= Diskette microprocessor register 13!
= Diskette microprocessor register 25!
Diskette microprocessor register 26!

i

MTMOO ®POONODADWN-=O
It

24-31 Binary register address if option A is specified; immediate data if
option A is not specified.

These specifications always indicate a diskette microprocessor register regardless of what bit
17 indicates.

196

Write-defective-sector is used for marking the sector specified by the current record
pointer as a defective sector. This instruction can only be used in a data set where
a sector is also a logical record. Write-defective-sector is specified by setting both
bits 18 and 19 to 1.

For printer device control, bits 16 through 31 are:

Hex
Digits

FFOO

FEOQO

0Dxx

19xx

1AXX

8D xx

99xx

9AXx

Option

A

Operation

Wrap test: The POR wrap test is run once each time this
instruction is executed. Any errors encountered are
reported.

Line quality check: This test performs a single poll
command without looking for a response.

Read external register 13: This operation reads the con-
tents of register 13 into the fourth byte of the instruc-
tion (xx).

Read external register 25: This operation reads the
contents of register 25 into the fourth byte of the
instruction (xx).

Read external register 26: This operation reads the
contents of register 26 into the fourth byte of the
instruction (xx).

Write external register 13: This operation writes the
contents of the fourth byte of this instruction (xx)
into register 13.

Write external register 25: This operation writes the
contents of the fourth byte of this instruction (xx)
into register 25.

Write external register 26: This operation writes the
contents of the fourth byte of this instruction (xx) into
register 26.

Object Cnde Instruction Format

197

198

Formatted Write to the Screen (WFMCRT)

B
Source: WFMCRT {BRa, [fmt] [,BRb], _ADD])
[|
r
Object: 3E @ . @
0 8 / / 23] 31
(1] (4]

n Screen address: The address of the binary register that contains the row
number to begin the write.

Bit 15:
0 = Data between fields is blanked; B is specified.
1 = Data between fields remains on the screen; ADD is specified.

Format number: The number (hex 01-FE) of the format to use.

n The address of the binary register that contains the number of bytes to blank
or add in the screen buffer before formatting begins.

Data is moved to the screen, beginning at column 1 of the row specified by the low-
order byte of the screen address register. Data is moved from the locations speci-
fied by the labeled edit format, for the number of bytes specified by the format.
The format also specifies any punctuation that should appear on the screen, such as
a dollar sign, decimal point, or minus sign. The format must not use more than 200
screen positions. If row 0 is specified, data is moved to the status line; if row 1 is
specified, data is moved to the extra line.

If the binary register n is included, the contents of this register are taken as the
number (1-200) of screen positions to alter before the formatted data is moved to
the screen. If B is coded in the source instruction, all characters on the screen
between the data fields that are defined in the edit format are blanked for the
number of bytes specified in the binary register. 1f ADD is coded in the source
instruction, only the fields that are defined in the edit format are changed on the
screen; the characters between the edit format fields remain on the screen for the
number of bytes specified by the binary register. |f the binary register and B/ADD
are omitted, and if the edit format does not account for all of the positions on the
screen within the edit format, the results are unpredictable.

The fields of the format must be in the order of their appearance on the screen.

Communications Close or Device Control (TCLOZ/TCTL)

Source:

TCLOZ (dsn) - o)
TeTL (dsn) 0 X! [T]T’

Object:

B sis

10
1

3F 1 1 Jn L
8711 /15 /
(1]
0=TCLOZ
1=TCTL

0 = Overlap mode (O specified).

1 = Nonoverlap mode (N specified).
Not used, always zero

0 = Normal operation

1 = Diagnose operation, D specified (on TCTL onty)

a Data set number: The number (hex 1-F) of the data set to access.

) Data type: Hex 0000 for TCLOZ. A hex constant data for TCTL.

The TCLOZ instruction is used with BSC. It closes the specified 10B and signifies
the end of communications operations.

Object Code Instruction Format

199

200

The TCTL instruction performs the control operatio

as follows:

Constant

0100
0300
0400
0500
0600

0700
0800
0900
0A00
0B0O

0001
0002
0003
0004
0005

0006

0007
0001
0002
0003
0004

0005
0006
0008

+ oo bhav An
Ne nNex constant,

i}

Operation Valid for BSC

Write status

Transmit EOT

Transmit RVI

Transmit header (SOH-heading-STX)
Transmit header (SOH-heading-ETB)

Transmit header (SOH-heading-ITB)
Transmit header (SOH-heading-STX-ETX)
Execute wrap test

Transmit online test message

Received online test message

Set compression (Expand blank-compressed data)

Reset compression (Do not expand blank-compressed data)
Set transparent mode on

Reset transparent mode off

Set trace on

Reset trace off
Operation valid for SNA

Transmit signal command to the host
Cancel

Chase

LU Status

Request shutdown

Positive response
Negative response
Shutdown complete

Set Indicator On (SON)

Source: SON {[1al [,Ib] [,ic])

|

Object: 40
0 8

15 23 31

, ;
/] f
2 B

[l 'ndicator numbers: The numbers of specified indicators that are set on. An
indicator number from hex 00-FE can be specified. If no indicator is speci-
fied, the contents are hex FF.

This instruction sets the specified indicators on. When the main microprocessor

encounters the first byte that contains hex FF, it stops checking for more
indicators.

Set Indicator Off (SOFF)

Source: SOFF ([1a] [,Ilb] (,lc])
Object: 41 /

0 8 [15 23 31

=7
g B8 o

fB ndicator numbers: The numbers of specified indicators that are set off. An
indicator number from hex 00-FE can be specified. If no indicator is speci-
fied, the contents are hex FF.

This instruction sets the specified indicators off. When the main microprocessor

encounters the first byte that contains hex FF, it stops checking for more
indicators.

Object Code Instruction Format 201

Skip on AND, Exclusive-OR Mask (AND)

IFHI . .
Source: [IFLO} BRn AND X‘II" IS X“II’ SKIiP
. |
i
Object: 42 ‘@ , J /
0 8 [J15] 23 [3

(4]

Test register address: Test the binary register at this address.

Test mask:
0 = Mask the leftmost byte
(IFHI specified) in the binary register.
1 = Mask the rightmost byte
(IF LO specified) in the binary register.

B AND mask: 2 hex digits that AND with the specified test mask byte of a
binary register.

n Exclusive-OR mask: 2 hex digits that exclusive-OR with the result of the
AND operation.

This instruction applies the AND mask against the specified test mask byte, then
applies the OR mask against the result of the AND operation. If the result of
both operations is zero, the main microprocessor skips the next sequential
instruction. If the result is not zero, the next sequential instruction is executed.
The register contents remain unchanged.

202

Skip on Exclusive-OR, AND Mask (RXORW)

Source: RXTRW (X1, BRn(4), X“11)
Object: 43 s @ s |
0 g8 |/ 15 [[23 [31

(2 [3 4

ﬂ Exclusive-OR mask: Two hex digits that exclusive-OR the byte specified by
the address in the binary register.

Test register address: The address of the binary register that contains the
address of the byte to test.

ﬂ Address bit:
0 = BRa contains a 16-bit address.
1 = BRa(4) contains a 20-bit address of a storage location outside the
partition.

n AND mask: Two hex digits that are ANDed with the original contents of
the byte specified by the address in the binary register.

This instruction applies the exclusive-OR mask against the byte in the binary
register. Then the microprocessor ANDs the original contents of the byte with the
AND mask. If the result of the AND operation is 0, the next sequential instruction
is skipped. If the result is not 0, the storage position is restored to its original value
and the next sequential instruction is executed.

Constant Insert (= constant)

Source: label]5 onstant
: displ, Rn | ~ © l

i A
2
15]

Object: 44 /
0 g8 |/

Constant: The binary representation of the constant to insert.

Insert address: The address of the byte in storage, or the byte in a decimal
register, where the constant is inserted.

This instruction inserts the specified 1-byte constant into the indicated byte.

Object Code Instruction Format 203

204

Exchange Binary Register Contents (<=>>)

_ label
Source: BRa <=> [BRb]

Object: 45
0 8

15 31

|
o o
/ /
(1]

n Binary register address: The address of the binary register that exchanges

contents with .

Binary register or storage address: The address of the area that exchanges
contents with n .

This instruction exchanges the contents of the two specified data areas.

immediate Load of Positive Constant into Decimal Register (Rn = +n)

Source: Tn = +0-65535
Object: 46 @ H
0 8 / 15 / 31
(1]

n Decimal register address: The address of the decimal register that is loaded
with the constant.

Constant: The 2-byte constant (hex 0-FFFF) that is converted to the
decimal EBCDIC and placed into the decimal register.

This instruction places the constant into the decimal register. The constant is
padded on the left with hex zeros (FO0).

Immediate Load of Negative Constant into Decimal Register (Rn = -n)

Source: n = -0-65535

Object: 47

R
|
@
0 8 / 16
1

ol

Decimal register address: The address of the decimal register that is loaded
with the constant.

Constant: The 2-byte constant (hex 0-FFFF) that is converted to the decimal
EBCDIC and placed into the decimal register.

This instruction places the constant into the decimal register. The constant is

padded on the left with hex zeros (FO). The zone of the rightmost byte in the
register is changed to hex D.

Generate Self-Check Number (GSCK)

Source: GSCK n

Object: 48 00 00

T
a

0 8] 15 pK 3
B

Decimal register address: The address of the decimal register or decimal
double register that contains data to which the self-check digit (from the
algorithm defined in the .SELFCHK control block) is added.

This instruction uses the self-check control block to generate a self-check number
from the foundation characters contained in the decimai register(s), and inserts
the self-check number into the register(s) as specified by the self-check control
block.

Object Code Instruction Format 205

Convert Binary to EBCDIC (BINHEX)

Source: BINHEX (tabel (len), BRn)

E—1

Object: 49 :@ , @
0 CIY B 15] 3
B a (3]

BB Binary register address: The address of the binary register that contains the
binary data to convert to EBCDIC.

Bit 15:
0 = Data area length is 4 bytes.
1 = Data area length is 2 bytes.

Data area address: The address of the data area where the converted data is
stored upon completion of thi$ operation.

This instruction converts the contents of the low-order byte of the specified register
from binary to 2 bytes of EBCDIC, or the contents of the 2-byte binary register to
4 bytes of binary register to 4 bytes of EBCDIC. The result is stored in the specified
data area. Each half-byte is converted into EBCDIC hex characters 0-9, A-F.

206

Convert EBCDIC to Binary (HEXBIN)

Source: HEXBIN (BRn, label (len))

@
15 3

2)
/ [
a

Object: 4A
¢ 8

n Binary register address: The address of the binary register where the converted
data is stored upon completion of this operation.

Bit 15:

0 = Data area length is 4 bytes.
1 = Data area length is 2 bytes.

Data area address: The address of the data area that contains the EBCDIC data
to convert to binary.

This instruction converts the contents of the specified data area from 2 bytes of
EBCDIC to 1 byte of binary and places it in the low-order byte of the specified
register, or from 4 bytes of EBCDIC to 2 bytes of binary and piaces it in the speci-
fied binary register. If the characters are not A-F or 0-9, an error results.

Object Code Instruction Format 207

Skip If Not Equal (IFC NOT)

Source: IFC label] NOT C'I’ SKIP
ource: [disp] Rn
Object: 4C @
4] 8 15 / 31

n Test character: The binary representation of the byte of hex, binary,
character, or decimal test data that is compared to the test byte.

ﬂ Test byte address: The address of the byte of data to compare to the test
character.

If the test byte is not equal to the test character, the microprocessor skips the next
sequential instruction; otherwise, it executes the next sequential instruction.

Skip if Equal (IFC IS)

label
Source: IFC [disp] Rn IS C‘I’ SKIP

Object: 4E @
0 8 7 15 f 31

n Test character: The binary representation of the byte of hex, binary,
character, or decimal test data that is compared to the test byte.

B Test byte address: The address of the byte of data to compare to the test
character.

If the test byte is equal to the test character, the microprocessor skips the next
sequential instruction; otherwise, it executes the next sequential instruction.

208

Debugging Aids (PDUMP/PAUSE/TROFF/TRON)

PDUMP [(number)]
PDUMP ([label], len)
Source: PAUSE (label) L
TROFF
TRON (mask)
Object: 4F / @ @
0 8 / 15 [23 [31
(1)

o
B:0
a

Hex 10 = PDUMP (label, len)
08 = PDUMP (number) or PDUMP

20 = PAUSE
40 = TROFF

80 = TRON

For PDUMP (labei, len): The address, divided by 256, of where to start the
dump. If no address (iabel) is specified, this is hex 00; the dump starts at the
beginning of the partition.

For PDUMP (number): The partition number of the partition to dump. If
no partition is specified, this is hex FF and the current partition is dumped.

For TRON: The trace options.

For PDUMP (label, len): The number of 256-byte blocks to dump.

For PDUMP (number): All zeros.

For TRON: All zeros.

For PAUSE: The address of where to stop the program.

For TROFF: Alf zeros.

Object Code Instruction Format

209

Search Ordered Table for Higher or Equal Entry (TBFH)

Source: BRn = TBFH (table label, Rn, [N])
| E—

I

@

L

23/ 3

B0

Object: 50
0 8

15

m\~@ ==

1
a

n Table: The index into the system table that contains the address and param-
eters for the table to be searched.

a Index register address: The address of the binary register into which the table
index where the index of the higher or equal entry is placed upon completion
of this operation.

Bit 23:
0 = Begin the search in the table with the first entry (N not specified).
1 = Begin the search in the table with the next entry after the entry in the

index register (N specified).

n Search argument address: The address of the decimal register that contains
the search argument.

The labeled table is searched for an entry equal to or higher than the contents of
the decimal register. The search ends when the first higher or equal entry is found
or when the last table entry has been searched. [|f an equal or higher entry is found,
the index of that entry is placed into the binary register. If no equal or higher
entry is found, the binary register remains unchanged and 1125 and 1127 are set
on.

210

Write Table Entry (TBWT/TBWE)

TBWT
. = R
Source: [TB}NE] (table label, BRn) n
i A
Object: 51 ‘@
0 8 15

3 / 3
4

B+

; a
/ /
1 I 2

Table: The index into the system table that contains the address and param-
eters for the table to be written into.

B Index register address: The address of the binary register that contains the
index into the table.

E sit23:
0 = Write the entry to the table at the index contained in the index register
(TBWT specified).
1 = Extend the table and add the entry at the end of the table (TBWE
specified).

n Argument address: The address of the decimal register that contains the
argument to be written.

An entry is written into the table at either the end of the table for a TBWE instruc-
tion, or at a specified location into the table for a TBWT instruction.

Object Code Instruction Format 211

Read Table Entry (TBRD/TBRL)

S : [TBR (BR
ource: TBRL table label, BRn)

} I‘_J R}
Object: 52 @

31

“ Table: The index into the system table that contains the address and param-
eters for the table to be read.

(™)

Index register address: The address of the binary register that contains the
index into the table.

Bit 23:

0 = Read the entry in the table at the index contained in the index
register {TBRD specified).
1 = Read the last entry in the table (TBRL specified).

n Argument address: The address of the decimal register where the table argu-
ment is placed upon completion of this operation.

An entry is read from the table and placed into the argument address.

212

Search Unordered Table for Equal Entry (TBFX)

Source: BRn = TBFX (table label, Rn, [N])
I 1
Object: 53 @ ,
0 8

31

n Table: The index into the system tabie that contains the address and param-
eters for the table to be searched.

Index register address: The address of the binary register into which the
table index where the index of the equal entry is placed upon completion
of this operation.

Bit 23:

0 = Begin the search in the table with the first entry (N not specified).
1 = Begin the search in the table with the entry after the entry in the index

register (N specified).

n Search argument address: The address of the decimal register that contains
the search argument.

The labeled table is searched for an entry that is equal to the search argument. If an
equal entry is found, the index for that entry is placed in the binary register. If no
equal entry is found, the binary register remains unchanged and 1125 and 1127 are

set on.

Object Code Instruction Format

213

214

Search Reverse Ordered Table for Lower Entry (TBFL)

Source: BRn = TBFL (table label, Rn, [N])
—

L
@ |,

15 / 23

1
g B8

Object: 54
0 8

31

u*h@

n Table: The index into the system table that contains the address and param-
eters for the table to be searched.

Index register address: The address of the binary register into which the table
index of the lower entry is placed upon completion of this operation.

Bit 23:

0 = Begin the search in the table with the first entry (N not specified).
1 = Begin the search in the table with the entry before the entry in the
index register (N specified).

n Search argument address: The address of the decimal register that contains
the search argument.

The table is searched for an entry that is lower than the search argument. If a lower
entry is found, the index of that entry is placed into the binary register. If no

lower entry is found, the binary register remains unchanged and 1125 and 1127 are
set on.

Search Table Using Binary Search (TBBS)

Source:

Object:

BRn = TBBS (table label, Rn)
3
55 , @ [o] e
8 |/ 15 [23 [31

n Table: The index into the system table that contains the address and paran,

eters for the table to be searched.

Index register address: The address of the binary register into which the table
index of the equal entry is placed upon completion of this operation.

Search argument address: The address of the decimal register that contains
the search argument.

The labeled table is searched for an entry equal to the search argument. If an equal
entry is found, the index of that entry is placed into the binary register and 1103 is
seton. If no equal entry is found, the binary register remains unchanged and 1125
and 1127 are set on.

Object Code Instruction Format

215

216

Insert Table Entry (TBIN)

Source: TBIN (table label, BRn) = Rln
Object: 56 , @ 0] @
0 8 / 15 / 23 [31

n Table: The index into the system table that contains the address and param-
eters for the table to be modified.

a Index register address: The address of the binary register that contains the
table index where the entry is inserted.

B Argument address: The address of the decimal register that contains the argu-
ment to insert.

The argument is inserted into the table at the table index specified in the binary
register. All entries below the inserted entry are moved downward.

Delete Table Entry (TBDL)

Source: TBDL (table label, BRn)

Object: 57

15 23 31

) @
[/
g Ba

Table: The index into the system table that contains the address and param-

eters for the table to be modified.

E Index register address: The address of the binary register that contains the
table index where the entry is deleted.

The entry in the labeled table is deleted and all other entries move up to replace the
deleted entry.

Lock Shared Table (TLCK)

Source: TLCK (table label)

Object: 58 ’ 00 6o
0 8§] 15 23 31

n Table: The index into the system table that contains the address and param-
eters for the table to be locked.

The specified table is locked for exclusive use by the program that issues the
TLCK instruction.

This instruction can be used only with tables in the common area.

Unlock Shared Table (TUNLCK)

Source: TUNLCK (table label)

Object: 59 ; 00 00
0 8 [15 23 31

Table: The index into the system table that contains the address and param-
eters for the table to be unlocked.

This instruction frees the table that was locked by the TLCK instruction.

Object Code Instruction Format 217

218

Compare Decimal for Not Equal (IF Rn NE)

Source: IF Rla NE [g:] GOTO instruction label

Obiject: 60
0 8

23 / 31

.
a

15

o
/
o

n Test register: The address of the decimal register that contains the data to
compare.

Compare data: The constant (hex 0-9) followed by hex 0, or the address of
the decimal register that contains the compare data. |f a constant is used, the
bytes on the left are padded with blanks (hex 40s) before the compare.

Branch instruction: The number minus 1 of 4-byte object code instructions
from the next sequential instruction to skip if the branch is taken (+128
object code instruction from the next instruction). 1f bit 23 is 1, the number
is a negative displacement in twos complement form.

The branch is taken if the content of the test register is not equal to the compare
data.

Compare Decimal for Greater Than or Less Than (IF Rn GT/LT)

GT}|o0-9 . .
Source: IF Ra [LT][Rb] GOTO instruction label

Object: 61 ;

0 8 / 15 é’ 23
[1]

GT. The test register: The address of the decimal register that contains data
to compare.

31

H*~

LT. Compare data: The constant (hex 0-9) followed by hex 0, or the address
of the decimal register that contains the compare data. If a constant is used,
the bytes on the left are padded with blanks (hex 40s) before the compare.

GT. The compare data: The constant (hex 0-9) followed by hex 0, or the
address of the decimal register that contains the compare data. If a constant
is used, the bytes on the left are padded with blanks (hex 40s) before the
compare.

LT. The test register: The address of the decimal register that contains the
data to compare.

Branch instruction: The number minus 1 of 4-byte object code instructions
from the next sequential instruction to skip if the branch is taken (128
object code instructions from the next instruction). If bit 23 is 1, the number
is a negative displacement in twos complement form.

The branch is taken if:

® The content of the test register is greater than the compare data and GT is
sBecified.

® The content of the test register is less than the compare data and LT is specified.

Object Code Instruction Format 218

220

Campare Decimal for Equal (1F Rn EQ)

Source: IF Rla EQ [?q:] GOTO instruction label

Object: 62
0 8

15 23 31

l@ . /
/ / [
(1 (3]

n Test register: The address of the decimal register that contains the data to
compare.

Compare data: The constant (hex 0-9) followed by hex 0, or the address of
the decimal register that contains the compare data. |f a constant is used, the
bytes on the left are padded with blanks (hex 40s) before the compare.

n Branch instruction: The number minus 1 of 4-byte object code instructions
from the next sequential instruction to skip if the branch is taken (+128
object code instructions from the next instruction). If bit 23 is 1, the number
is a negative displacement in twos complement form.

The branch is taken if the content of the test register is equal to the compare data.

Compare Decimal for Greater or Equal, or Less Than or Equal (IF Rn GE/LE)

Source: IF Ra [GE] [0-9] GOTO instruction label

Object: 63

GE. The test register: The address of the decimal register that contains
data to compare.

LE. Compare data: The constant (hex 0-9) followed by hex 0, or the address
of the decimal register that contains the compare data. If a constant is used,
the bytes on the left are padded with blanks (hex 40s) before the compare.

GE. The compare data: The constant (hex 0-9) followed by hex 0, or the
address of the decimal register (RB) that contains the compare data.

LE. The test register: The address of the decimal register that contains the
data to compare. If a constant is used, the bytes on the left are padded with
blanks (hex 40s) before the compare.

Branch instruction: The number minus 1 of 4-byte object code instructions
from the next sequential instruction to skip if the branch is taken (£128
object code instructions from the next instruction). If bit 23 is 1, the number
is a negative displacement in twos complement form.

The branch is taken if:

® The content of the test register is greater than or equal to the compare data and
GE is specified.

® The content of the test register is less than or equal to the compare data and LE
is specified.

Object Code Instruction Format 221

Compare Decimal Digits for Not Eaual (IFD Rn NE)

0-9

S : IFD R NE
ource a [Rb

] GOTO instruction label

Object: 64
o] 8

15 23 31

7L
(3]

(~ BN

e
Ji
L1

n Test register: The address of the decimal register that contains the data
to compare.

n Compare data: The constant (hex 0-9) followed by hex 0, or the address of
the decimal register that contains the compare data.

B Branch instruction: The number minus 1 of 4-byte object code instructions
from the next sequential instruction to skip if the branch is taken (128
object code instructions from the next instruction). If bit 23 is 1, the number
is a negative displacement in twos complement form.

The branch is taken if the digit portion and the units zone (sign) of the content

of the test register is not equal to the digit portion of the compare data. If the
zone portion of the rightmost byte of a decimal register contains hex D, the
contents of the register are negative. If it is not hex D, the contents of the register
are positive.

222

Compare Decimal Digits for Greater or Less Than (IFD Rn GT/LT)

GT 0-9 . .
Source: IFD Ra [LT][Rb] GOTO instruction label
Object: 65
0 8 15 23 31

E\~

[/
/ /
(1]

n GT. The test register: The address of the decimal register that contains data
to compare.

L7. Compare data: The constant (hex 0-9) followed by hex 0, or the address
of the decimal register that contains the compare data.

GT. The compare data: The constant (hex 0-9) followed by hex 0, or the
address of the decimal register that contains the compare data.

LT. The test register: The address of the decimal register that contains the
data to compare.

B Branch instruction: The number minus 1 of 4-byte object code instructions
from the next sequential instruction to skip if the branch is taken (*128
object code instructions from the next instruction). If bit 23 is 1, the number
is a negative displacement in twos complement form.

The branch is taken if:

® The digit portion of the content of the test register is greater than the digit
portion of the compare data and GT is specified. R

® The digit portion of the content of the test register is less than the digit portion
of the compare data and LT is specified. If the zone portion of the rightmost
byte of a decimal register contain hex D, the contents of the register are negative.
If it is not hex D, the contents of the register are positive.

Object Code Instruction Format 223

Compare Decimal Digits for Equal (IFD Rn EQ)

Source: IFD Rla EQ 2:] GOTO instruction label

!

Object: 66
0 8

15 23 31

/
/
(3]

[~ N

@
/
(1]

n Test register: The address of the decimal register that contains the data to
compare.

ﬂ Compare data: The constant (hex 0-9) followed by hex 0, or the address of
the decimal register that contains the compare data.

Branch instruction: The number minus 1 of 4-byte object code instructions
from the next sequential instruction to skip if the branch is taken (128
object code instructions from the next instruction). If bit 23 is 1, the number
is a negative displacement in twos complement form.

The branch is taken if the content of the low-order byte of the test register is not
equal to the compare data. If the zone portion of the rightmost byte of a decimal
register contains hex D, the contents of the register are negative. If it is not hex
D, the contents of the register are positive.

224

Compare Decimal Digits for Greater or Equal, or Less Than or Equal (IFD Rn GE/LE)

GE] [o-9]) .
Source: IFD Ra E—E] [Rb‘ GOTO instruction label
Object: 67 , .
0 8 15 / 23 / 31

B4
()
2

n GE. The test register: The address of the decimal register that contains data
to compare.

LE. Compare data: The constant (hex 0-9) followed by hex 0, or the address
of the decimal register that contains the compare data.

GE. The compare data: The constant (hex 0-9) followed by hex 0, or the
address of the decimal register that contains the compare data.

LE. The test register: The address of the decimal register that contains the
data to compare.

Branch instruction: The number minus 1 of 4-byte object code instructions
from the next sequential instruction to skip if the branch is taken (128
object code instructions from the next instruction). If bit 23 is 1, the number
is a negative displacement in twos complement form.

The branch is taken if:

® The digit portion of the content of the test register is greater than or equal to the
digit portion of the compare data and GE is specified.

® The digit portion of the content of the test register is less than or equal to the
digit portion of the compare data and LE is specified. If zone portion of the
rightmost byte of a decimal register contains hex D, the contents of the register
are negative. If it is not hex D, the contents of the register are positive.

Object Code Instruction Format 225

Compare Binary Half-Register for Not Equal (IFH BRn NE)

Source: IFlH BRn NE 0-255 GOTO instruction label
Object: 68 g 0 s
3

0 8 T 15 7 23

fl
1] B B

n Test register: The address of the binary register that contains data to
compare.

u Compare constant: Hex 00-FF.

Branch instructions: The number minus 1 of the 4-byte object code instruc-
tions from the next sequential instruction to skip if the branch is taken (128
object code instructions from the next instruction). If bit 23 is 1, the number

is a negative displacement in twos complement form.

The branch is taken if the content of the low-order byte of the test register is not
equal to the compare constant.

226

Compare Binary Half-Register for Greater or Less Than (IFH BRn GT/LT)

Source: IFH

BR

Object: 69

@

-

L

]
1]

15

/
/

23

/
4]

3

n [f.;l_-] 0-255 GOTO instruction label

n Test register: The address of the binary register that contains data to

compare.

Bit 15:
0=GT.
1=LT.

Compare constant: Hex 00-FF

Branch instructions: The number minus 1 of the 4-byte object code instruc-
tions from the next sequential instruction to skip if the branch is taken (128
object code instructions from the next instruction). If bit 23 is 1, the number

is a negative displacement in twos complement form.

The branch is taken if:

® The content of the low-order byte of the test register is greater than the compare
constant and GT is specified.

® The content of the low-order byte of the test register is less than the compare
data and LT is specified.

Object Code Instruction Format

227

Compare Binary Half-Reqister for Equal (IFH BRn EQ)

Source: IFH BRtl\ ET 0-1255 GOTO instruction label
Object: 6A @1 0
0 8 15 23 3

m\N

/ !
[1]
Test register: The address of the binary register that contains data to compare.

(1]
a Compare constant: Hex 00-FF.

Branch instructions: The number minus 1 of the 4-byte object code instruc-

tions from the next sequential instruction to skip if the branch is taken (+128
object code instructions from the next instruction). If bit 23 is 1, the number
is a negative displacement in twos complement form.

The branch is taken if the content of the low-order byte of the test register is equal
to the compare constant.

228

Compare Binary Half-Register for Greater or Equal, Less or Equal (IFH BRn GE/LE)

Source: IFJH l [] 0- 255 GOTO instruction label
Object: 6B @ |
0 8 7 15 23 3

~ g

#

n Test register: The address of the binary register that contains data to
compare.

Bit 15:
0=GE.
1=LE.

Compare constant: Hex 00-FF.

n Branch instructions: The number minus 1 of the 4-byte object code instruc-
tions from the next sequential instruction to skip if the branch is taken (128
object code instruction from the next instruction). If bit 23 is 1, the number
is a negative displacement in twos complement form.

The branch is taken if:

® The content of the low-order byte of the test register is greater than or equal to
the compare data and GE is specified.

® The content of the low-order byte of the test register is less than or equal to the
compare constant and LE is specified.

Object Code Instruction Format

229

Source: |1F BRa NE Ble GOTO instruction label
Obiject: 6C @ @
) 8 [15 [23 31

E\L

B Test register: The address of the binary register that contains the data to
compare.

Compare register: The address of the binary register that contains the com-
pare data.

Branch instructions: The number, minus 1 of the 4-byte object code instruc-
tions from the next sequential instruction to skip if the branch is taken (+128
object code instructions from the next instruction). If bit 23 is 1, the number
is a negative displacement in twos complement form.

The branch is taken if the content of the test register is not equal to the compare
data.

230

Compare Binary for Greater or Less Than (IF BRn GT/LT)

Source: I!F BRa [f:rr] BRb GOTO instruction label
Object: 6D f

15 / 23 31

Bl
(]
Bl

n GT. The test register: The address of the binary register that contains the
data to compare.

LT. The compare register: The address of the binary register that contains
the compare data.

GT. The compare register: The address of the binary register that contains
the compare data.

LT. The test register: The address of the binary register that contains the
data to compare.

B Branch instruction: The number minus 1 of the 4-byte object code instruc-
tions from the next sequential instruction to skip if the branch is taken (£128
object code instructions from the next instruction). If bit 23 is 1, the number
is a negative displacement in twos complement form.

The branch is taken if:

® The content of the test register is greater than the compare data and GT is
specified.

® The content of the test register is less than the compare data and LT is specified.

Object Code Instruction Format 231

Compare Rinary for Equal (IF BRn EQ)

Source: IF BRa EQ B’Rb GOTO instruction label

Object: 6E

15 23 3

@ /
/ /
a (3]

o
2]
B,
\~©

n Test register address: The address of the binary register that contains the
data to compare.

Compare register: The address of the binary register that contains the compare
data.

n Branch instructions: The number minus 1 (hex 00-7F) of the 4-byte object
code instructions from the next sequential instruction to skip if the branch is
taken (£128 object code instruction from the next instruction). f bit 23 is 1,
the number is a negative displacement in twos complement form.

The branch is taken if the content of the test register is equa! to the compare data.

232

Compare Binary for Greater or Equal, or Less or Equal (IF BRn GE/LE)

[GE
Source: IF BRa [G] BRb GOTO instruction label
'l'-.E |

-

Object: 6F
0 8

15 23

i f
B

H\N

n GE. The test register: The address of the binary register that contains the
data to compare.

LE. The compare register: The address of the binary register that contains
the compare data.

ﬂ GE. The compare register: The address of the binary register that contains
the compare data.

LE. The test register: The address of the binary register that contains the
data to compare.

Branch instruction: The number minus 1 (hex 00-7F) of the 4-byte object
code instructions from the next sequential instruction to skip if the branch
is taken (128 object code instruction from the next instruction). If bit 23 is
1, the number is a negative displacement in twos complement form.

The branch is taken if:

® The content of the test register is greater than or equal to the compare data and
GE is specified.

® The content of the test register is less than or equal to the compare data and LE
is specified.

Object Code Instruction Format 233

Load Decimal Register from Base-Displacement Address {(Rn = D(L, BRn))

Source: Rn= di;spl (len, BRn)
Object: 7L @ @ |0 /
0 / 8 15 [23 [3
a

Length: The number of bytes minus 1 (hex 0-F) of data to load.

(~ -

Load register address: The address of the decimal register where data is
loaded.

[

Base address register: The address of the binary register that contains the base
address.

Displacement: The number of bytes (hex 00-FF) from the base address where
the bytes to load begin.

The decimal ioad register is filled with blanks (hex 40s). Then the microprocessor

adds the displacement (if any exists) to the base address register contents and loads
the data at that address to the specified decimal register. The data is right-justified
in the register.

234

Store Decimal Register into Base Displacement Address (D(L,BRn) = Rn)

Source: dilspl (klan, Ban) = Rn

1’] r——1J
1 1 i |
Object: 7L @ @ I1 f
0 / 8 / 15 / 23 / 31
(1) 4]

n Length: The number of bytes minus 1 (hex 0-F) of data to store.

Store register address: The address of the decimal register where data is
stored.

Base address register: The address of the binary register that contains the base
address.

n Displacement: The number of bytes (hex 00-FF) from the base address where
the bytes to store begin.

The microprocessor adds the displacement (if any is specified) to the base address

register contents and stores the contents of the specified decimal register at that
address. Data is taken from the rightmost bytes of the register.

Load Decimal Register from Labeled Storage {Rn = label(L))

Source: Rn = label (lej'n)
Object: 8L @ 0 @
0 / 8 / 15 17] 31

Length: The number of bytes minus 1 (hex O-F) of data to load.

Load register address: The address of the decimal register where data is
loaded.

Storage address: The storage address (hex 0000-7FFF) of data to load.
The microprocessor loads the specified decimal register with blanks (hex 40s), then

loads it with data from the specified storage address. Data is right-justified in the
register.

Object Code Instruction Format 235

Store Decimal Register into Labeled Storage (label (len) = Rn)

Source: IalI)el (I?n) = R'n
Object: 8L @, 1 @
0

/ 8 / 15 17 / 3
0

BB Length: The number of bytes minus 1 (hex 0-F) of data to store.

Load register address: The address of the decimal register where data is
stored.

Storage address: The storage address (hex 0000-7FFF) of data to store.
The microprocessor stores the data in the specified decimal register at the speci-

fied storage address. Data is taken from the rightmost bytes of the register.

Binary Add (BRn +=)

. _ | 1abel (ten)
Source: BRa += [BRb (len)
—

—

Object: 90

, @

—r
A
3]

Q
00
fet—
Ble

Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

Bit 15:
0 = Length of factor 2 is 2.
1 = Length of factor 2 is 1.

Factor 2: The address of the leftmost byte of the binary register (BRb) or
labeled (label) area that contains factor 2.

Factor 2 is added to factor 1, and the result is placed in the factor 1 register.

236

Binary Add immediate Data (BRn +=)

Source:

BRn

4=

constant

Object:

91

@

/

]
1]

0
15

]

Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

Bit 15=0.

Factor 2: The binary representation (hex 0000-FFFF) of the binary, hex,
decimal, or character constant.

The factor 2 immediate data is added to factor 1, and the result is placed into the

factor 1 register.

Binary Subtract (BRn —=)

Source:

BT = [

label (len)

BRi(_Ifn)

Object:

92

H\\@

I1E

g
/

31

n Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

Bit 15:

0 = Length of factor 2 is 2.
1 = Length of factor 2is 1.

Factor 2: The address of the leftmost byte of the binary register (BRb) or
labeled (label) area that contains factor 2.

Factor 2 is logically subtracted from factor 1, and the result is placed in the factor

1 register.

Object Code Instruction Format

237

238

Binary Subtract Immediate Data (BRn —=)

Source: BRn -= constant

Object: 93

31

Ble
[~
H\~

n Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

Bit 15 = 0.

Factor 2: The binary representation (hex 0000-FFFF) of the binary, hex,
decimal, or character constant.

The factor 2 immediate is subtracted from factor 1, and the result is placed in the
factor 1 register.

Binary Double Register Add (BRn(4) +=)

. _ | tabel (len)
Source: BFl{a(4)+ [BRb_(Iﬁn)
—t
Obiject: 94 A

0 8 J15

i @
/ /
1]

Bl Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

Bit 15:
0 = Length of factor 2 is 2.
1 = Length of factor 2 is 1.

Factor 2: The address of the leftmost byte of the binary register (BRb) or
labeled (label) area that contains factor 2.

Factor 2 is added to factor 1, and the result is placed in the factor 1 register.

Binary Double Register Add Immediate Data (BRn(4) +=)

Source: BRn(4) += constant
Object: 95 @ ly
0 8]] 3

-]
(]
E\\

Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

Bit 15=0.

Factor 2: The binary representation (hex 0000-FFFF) of the binary, hex,
decimal, or character constant.

The factor 2 immediate data is added to factor 1, and the result is placed in the
factor 1 register.

Binary Double Register Subtract (BRn{4) —=)

Source: BRal(d) -= label (len)

BRb (len)

Object: 96 @
0 8 5 31

i
(3]

B-le
M-

n Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

Bit 15:
0 = Length of factor 2 is 2.
1 = Length of factor 2 is 1.

Factor 2: The address of the leftmost byte of the binary register (BRb) or
labeled (label) area that contains factor 2.

Factor 2 is logically subtracted from factor 1, and the result is placed in the factor
1 register.

Object Code Instruction Format 239

Binary Double Register Subtract Immediate Data (BRn(4) —=)

Source: BRn{4) -== constant
Object: 97 @1 / /
0 8 / /15 / 31
(1) (3]

n Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

Bit 15 =0.

Factor 2: The binary representation (hex 0000-FFFF) of the binary, hex,
decimal, or character constant.

The factor 2 immediate data is subtracted from factor 1, and the result is placed in
the factor 1 register.

Binary Register Load or Copy (BRn=)

label (I
Source: BRa = [Ball;b ((I::))
-
Obiject: 98 @1 , @
0 8 / / 15 / 31
(1]2

n Result/factor 1: The address of the binary register that contains factor 1 and
the result of this instruction.

EH sits:
0 = Length of factor 2 is 2.

1 = Length of factor 2 is 1. (The leftmost register is set to zeros, and the
rightmost byte is loaded.)

Factor 2: The address of the leftmost byte of the binary register (BRb) or
labeled (label) area that contains factor 2.

Factor 1 is loaded with factor 2.

Binary Register Load Immediate Data or Address (BRn = C’lI’/ADDR)

.
Source: BRn = [ADDR (label + disp)

constant

Object: 99

/15 31

[=)
[o o]
-]
~®
H\N

n Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

Bit 15 = 0.

Factor 2: The binary representation (hex 0000-FFFF) of the binary, hex,
decimal, character constant, or a storage address.

The factor 2 constant or address is loaded into the factor 1 register.

Binary AND (BRn &=)

Source: BRa &= ['abel (len)

BRb (len)

Object: 9A e |, @
0 8 /15 / 31

Bl

Resuit/factor 1: The address of the binary register that contains factor 1 and
will contain the resuit of this instruction.

Bit 15:

0 = Length of factor 2 is 2.
1 = Length of factor 2 is 1. (The leftmost byte of the register is set to
zeros.)

Factor 2: The address of the leftmost byte of the binary register (BRb) or
the labeled (label) area that contains factor 2.

Factor 2 is logically ANDed with factor 1, and the result is placed in the factor 1
register.

Object Code Instruction Format 241

242

Binary AND with Immediate Data (BRn &=)

Source: BRn &= constant

Object: 98B ,

/15 /

31

=\~@

n Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

Bit 15:
0 = Length of factor 2 is 2.
1 = Length of factor 2 is 1.

Factor 2: The binary representation (hex 0000-FFFF) of the binary, hex,
decimal, or character constant.

The factor 2 immediate data is ANDed with factor 1, and the resuit is placed in the

factor 1 register.

Binary OR (BRn V=)

label (len)

Source: BRa V= [BRb (len)
—J

Object: 9C @,

Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

EH sit1s:
0 = Length of factor 2 is 2.
1 = Length of factor 2 is 1.

Factor 2: The address of the leftmost byte of the binary register (BRb) or
iabeled (label) area that contains factor 2.

Factor 2 is logically ORed with factor 1, and the result is placed in the factor 1
register.

Binary OR with immediate Data (BRn V=)

Source: BRn V= constant

Object: 9D

5 31

H\\

S
[N
(1] 2]

n Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

Bit 15 = 0.

Factor 2: The binary representation (hex 0000-FFFF) of the binary, hex,
decimal, or character constant.

Factor 2 is logically ORed with the factor 1, and the result is placed in the factor 1
register.

Binary Exclusive OR (BRn X=)

Source: BRa X= ['Ba;:: ((:::))
[Loy
Object: 9E @ |, @
0 8 [% / 31
(1]

n Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

Bit 15:
0 = Length of factor 2 is 2.
1 = Length of factor 2is 1.

B Factor 2: The address of the leftmost byte of the binary register (BRb) or
labeled (label) area that contains factor 2.

Factor 2 is logically exclusive ORed with factor 1, and the result is placed in the
factor 1 register.

Object Code Instruction Format 243

Binary Exclusive OR with Immediate Data (BRn X=)

Source: BRn X= constant

Object: 9F @ o0

4

0 8 / /15 /l

b~

31

n Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

Bit 15 = 0.

Factor 2: The binary representation (hex 0000-FFFF) of the binary, hex,
decimal, or character constant.

Factor 2 is logically exclusive ORed with factor 1, and the result is placed in the
factor 1 register.

Skip While Index Low or Equal Limit (SKIP WHILE)

Source: SKIP WHILE BRa LE BRb STEE255
P
Object: A0 @ @
0 8 15 [23 [31

(N8

Increment value: The number (hex 00-FF) that is added to the contents of
the test register.

Test register address: The address of the binary register that contains the
value that is incremented and compared with the limit value.

Limit register address: The address of the binary register that contains limit
value,

The increment value is added to the contents of the test register. The result is
placed into the test register and then compared with the value in the limit register.
If the value in the test register is less than or equal to the value in the limit register,
the microprocessor skips the next sequential instruction.

244

Binary Register Shift or Rotate (SL/SR/RL/RR)

label (len) | SL 116
Source: BRn SR 18
’ BRn(1) RL
1-32
BRn(4) RR l
]
r— 1
Object: A1l , / @
0 /8 11 [15 / 31
1] a

Shift or rotate, bits 8 and 9:
00 = SL (shift left)
10 = SR (shift right)
01 = RL (rotate left)
11 = RR (rotate right)

Register type, bits 10 and 11:
00 = Binary half-register (BRn(1)) of 1 byte
01 = Binary full register (BRn) of 2 bytes
10 = Binary double register (BRn(4)) of 4 bytes, with the high-order bit
of the shift/rotate count =0
11 = Binary double-register (BRn(4)) of 4 bytes, with the high-order bit
of the shift/rotate count = 1

Shift or rotate count: For a full register, the number minus 1 (hex 0-F) of bits
to shift/rotate. For a half register, the number minus 1 (hex 0-7) of bits to
shift/rotate. For a double register, the low-order 4 bits of the number minus 1
(hex 00-1F) of bits to shift/rotate.

n Result register address: The address of the binary register or labeled area that
contains the data to shift/rotate and that will contain the shifted/rotated data.

The contents of the result register is shifted or rotated as specified. Shift operations
move the contents of the register out of one end of the register and set the bits from

which data was shifted to zero.

Rotate operations move the contents of the register out of one end and into the
other end of the register.

Object Code Instruction Format 245

246

Store Binary Register Contents (label = BRn)

/15

Source: lalbel (len) = BI|Rn
e
Object: A2 @ |, @
0 8 / 31
B

H\

Binary register address: The address of the binary register that contains data
to be stored at the storage address.

a Storage location length:
0 = Storage location length is 2 bytes.
1 = Storage location length is 1 byte. (The rightmost byte of the binary
register is stored.)

Storage address: The address of the storage location where the contents of
the binary register are stored.

The contents of the binary register are stored in the labeled area.

Store Binary Register Contents, Indexed (D{L ,BRa) = BRb(L))

Source:

Object:

diﬂ)l (len, BRa) = BIIRb
I |
f }
A3 @ | 0
/ [15 23 31
(1]

H\s@

7[

n Binary register address: The address of the binary register that contains data
to be stored.

Storage location length:

0 = Storage location length is 2 bytes.
1 = Storage location length is 1 byte. (The low-order byte of the binary
register, BRb, is stored.)

Base register address: The address of the binary register that contains the base

address.

Il Address bit:

0 = BRa contains a 16-bit address.
1 = BRa{4) contains a 20-bit address of a storage location outside the
partition.

B Displacement: The number of bytes (hex 00-FF) from the base address where

the cantents of the binary register are stored.

The displacement is added to the base address, and the contents of the binary register
are stored in the resulting address.

Object Code Instruction Format

247

248

Move Characters (MVC(BRn) / MVC(BRn(4))

Source: Myc _gg:'m]' [§_§EZ4)j 1-256
i Y5 1
Object: A4 / ‘@ N @ ’
0 8 / 15 / /23 / /31
B HBDODBA

Length of move: The number minus 1 (hex 00-FF), of bytes to move from
register to register.

To register address: The address of the binary register (BRa), or the rightmost
register of a double register (BRa(4)), that contains the address of the storage
location into which data is moved.

Address bit:
0 = BRa contains a 16-bit address.
1 = BRa(4) contains a 20-bit address of a storage location outside the
partition.

From register address: The address of the binary register {BRb), or the right-
most register of a double-register (BRb(4)), that contains the address of the
storage location from which data is moved.

Addressing bit:
0 = BRb contains a 16-bit address.
1 = BRb(4) contains a 20-bit address of a storage location outside the
partition.

The characters are moved from left to right, into the area specified. Either the to
register (BRa) or the from register (BRb) must be a double binary register.

Indirect Instruction Execution (INXEQ)

Source: INXEQ (BRn, instruction label, 0-3)
©INXEQ (BRn{4), instruction label)
{
T
Object: A5 0 @ H
0 8

/15 / 7 3
(2] a

=\1 ©)

II Instruction modifier address: The address of the single binary register (BRn),
or the leftmost register of a double register (BRn(4)), that contains the data
needed to modify the instruction.

If a single binary register is specified, then the contents of the low-order byte
of the 2-byte register are logically ORed with the contents of the specified
byte of the instruction.

If a double binary register is specified, then the contents of all 4 bytes of the
register are ORed with the contents of all 4 bytes of the instruction, except
that bits 30 and 31 are ignored.

Address bit:
0 = BRa contains a 16-bit address.
1 = BRal(4) contains a 20-bit address of a storage location outside the
partition.

Instruction address: The address of the instruction to modify and execute.

>

Instruction byte modifier, bits 30 and 31:
11 = Modify byte O of the instruction (op code)
00 = Modify byte 1 of the instruction
01 = Modify byte 2 of the instruction
10 = Modify byte 3 of the instruction

The specified instruction is modified as indicated, and then the modified instruction
is executed. Control then returns to the instruction following the INXEQ instruc-
tion unless the modified instruction causes a branch. If a skip instruction is modi-
fied, and the modified instruction causes a skip, the instruction skipped is the
instruction foliowing the INXEQ instruction. The object code of the modified
instruction is not changed.

If a short branch instruction is modified with INXEQ, the displacement is calculated
from the INXEQ instruction rather than from the branch instruction. No additional

validity for valid addresses is made with the INXEQ instruction.

If an INXEQ instruction is in the common area, the executed instruction is also in
the common area.

Object Code Instruction Format 249

250

Convert Rinary to Decimal (Rn = BRn or BINDEC)

label
Source: BINDEC (Rn , [BRn])
Rn = BRn
Object: A6
0 8 15 31

B-{,
~ N

ll Decimal register address: The address of the decimal register that will contain
the result of the binary to decimal conversion.

Binary register address: The address of the binary register or labeled area that
contains the data to convert to decimal.

The contents of the binary register or {abeled area are converted to decimal and
placed into the decimal register.

Convert Decimal to Binary (BRn = Rn or DECBIN)

Source: pecein(BF" | gn)
label
BRn = Rn
L——
1 R)
Object: A7 '@ @
o g] 1 —] 3

n Decimal register address: The address of the decimal register that contains
the data to convert to binary.

B Binary register address: The address of the binary register or labeled area that
will contain the result of the decimal to binary conversion.

The contents of the decimal register are converted to binary and placed into the
binary register or labeled area.

Translate (TRANS)

[BRb,
Source: TRANS (BRa LBRb(4),] 1-2|56)
=
f
Object: A8 0
0 8 15 23

HN~@
B

2
/

=\~

n Length: The number minus 1 (hex 00-FF) of bytes to translate.

Data to translate address: The address of the binary register that contains
the address of the data to translate.

Translate table address: The address of the binary register (BRb), or of the
rightmost register of a double binary register (BRb(4)), that contains the
translate table address.

n Addressing bit:
0 = BRb contains a 16-bit address.
1 = BRb(4) contains a 20-bit address of a translate table outside the
partition.

The data is translated, character by character, through the specified 256-byte trans-
late table. The EBCDIC représentation of the character is used as a displacement
between 0 and 255 into the translate table. The character at that displacement into
the translate table replaces the original character.

Object Code Instruction Format 251

252

Translate and Test (TRT)

BRb,
Source: TRT (BRa | BRb(4), | 1-56, R)
—— =
Object: A9 ,

Length: The number minus 1 (hex 00-FF) of bytes to test.

o a

Data to test address: The address of the binary register that contains the
address of the data to test.

Scanning bit: ‘
0 = Forward scanning (R not specified)
1 = Reverse scanning (R specified)

n Translate table address: The address of the binary register (BRb}, or of the
rightmost register of a double binary register (BRb(4)), that contains the
translate table address.

Addressing bit:
0 = BRb contains a 16-bit address.
1 = BRb(4) contains a 20-bit address of a translate table outside the
partition.

The data is translated, character by character, through the specified 256-byte trans-
late table. The EBCDIC representation of the character is used as a displacement
between 0 and 255 into the transiate table. If the character at that displacement

in the translate table is zero, the next character is translated until the first nonzero
translation is found or until all the characters have been tested. When the first non-
zero translation is found, binary register BR16 is set to the address of the tested
character, the low-order byte of binary register BR17 is set to the nonzero translate
table entry, and the operation ends. |f no nonzero translation is found BR16 and
BR17 contain zeros when the operation is completed. The original characters are
not changed.

Binary Multiply, Single or Double Register (BRn *= or BRn(4)*=)

, BRa(4)] ._ [Iabel]
Source: [BRa BRb
| I
Object: AA ® I,

0 8 / /15 /@ 31
(1] 2]

n Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction.

Bit 15:
0 = Single register result.

1 = Double register result. (The result/factor 1 address is the address of
the leftmost register.)

Factor 2: The address of the leftmost byte of the binary register (BRb) or
labeled (label) area that contains factor 2.

Factor 1 is multiplied by factor 2, and the result is placed in the factor 1 register.

For a double register multiply, the first register contains factor 1 and both registers
will contain the result.

Object Code Instruction Format

253

254

Binary Divide, Single or Double Register (BRn /= or BRn(4) /=)

) BRa(4)] ,_ [label
Source: [BRa]/" [BRb]
| | L—~ |
Obiject: AB @ |, @

0 8 / /15 / 31

(1] 2]

n Result/factor 1: The address of the binary register that contains factor 1 and
will contain the result of this instruction. (Factor 1 is always 16 bits, even if
a double binary register is specified.)

B siis

0 = Single register result.
1 = Double register result. (The result/factor 1 address is the address of the
leftmost register.}

Factor 2: The address of the leftmost byte of the binary register (BRb) or
labeled (label) area that contains factor 2.

Factor 1 is divided by factor 2, and the result is placed in the factor 1 register. For
a double register divide, the remainder is in the rightmost register, and the result is
in the leftmost register. No remainder is provided unless a double binary register is
used.

Move Characters Within a Partition (MVC/MVCR/MVCV)

mMvc
Source: MVCR (BRa, BRb, 1-256)
Mvev] | '
1 ¥ 3
Object: AC ‘@ N :@ /
0 8 15 / 23 / /3
n .

/
/

Length: The number minus 1 (hex 00-FF) of bytes to move.

~ I

Move to address: The address of the ’binary register that contains the address
of storage of where the data is moved to.

Bits 23 and 31:
00 = Move characters, left to right (MVC).
10 = Move characters, right to left (MVCR).
11 = Move characters, reverse fill (MVCV).

n Move from address: The address of the binary register that contains the
address of storage of where the data is moved from.

The characters are moved as specified from the from address to the to address.

Object Code Instruction Format 255

Compare Character Strings (CLC)

. BRa, BRb
Source: CLC ([BRa(4), BRb (4)] 1 2 6)

P e l_L
L @ 1 ¢
[1 [J3 [[
(1] B 0O

Object: AE

Length: The number minus 1 (hex 00-FF) of bytes to compare.

(-

Character string 1 address: The address of the single binary register (BRn), or
of the rightmost register of a double binary register (BRn(4)), that contains
the address of string 1.

Bits 23 and 31:
0 = BRn contains a 16-bit address.
1 = BRn(4) contains a 20-bit address.

ﬂ Character string 2 address: The address of the single binary register (BRn), or
of the rightmost register of a double binary register {BRn(4)), that contains
the address of string 2.

The microprocessor compares the two character strings and sets one of the
following indicators on:

256

Indicator Meaning
1101 Character string 1 is greater than character string 2.
1102 Character string 1 is less than character string 2.

1103

Character string 1 is equal to character string 2.

Binary Register Add with Base Displacement Address {+=)

Source: Bil?a += distl (I?n, BIIRb(4))

Object: BO

31

|

9 /
/ /

B0 B

o
o
H\-@ |

n Result/factor 1: The address of the binary register that contains factor 1
and will contain the result of this instruction.

Bit 15:
0 = Length of factor 2 is 2.
1 = Length of factor 2 is 1.

B Base address register: The address of the binary register that contains the
base address.

n Address bit:
0 = BRa contains a 16-bit address.
1 = BRa(4) contains a 20-bit address of a storage location outside the
partition.

B Factor 2 displacement: The number of bytes (hex 00-FF) from the base
address where factor 2 is stored.

The factor 2 displacement is added to the contents of the base register, then the
data at the resulting address is logically added to factor 1.

Object Code Instruction Format

257

258

Set Bits On with Mask (SETON)

i BRn .
Source: SETON (displ [BRn(4],)Lll)
-] -
t 1
Object: B1 @l l
0 8 1/ /23 VAL

/l
(1]

Mask constant: A 1-byte constant to OR with the byte at the base displace-
ment address.

Base address register: The address of the single binary register (BRn), or of
the rightmost register of a double register (BRn(4)), that contains the base
address. '

Addressing bit:
0 = BRn contains a 16-bit base address.
1 = BRn(4) contains a 20-bit base address.

Displacement: The number of bytes (hex 00-FF) from the base address
where the byte, with the bits to set on, is stored.

The displacement is added to the contents of the base address register, then the
data at the resulting address is logically ORed with the mask constant. The result
is stored at the original storage location.

Binary Register Subtract with a Displacement Address (-=)

-= displ (lfn, BRb(4))

Source: BRa

| —

Object: B2 @’ , @ ‘0 ’
0 8 | [| |23] 3

a

Result/factor 1: The address of the binary register that contains factor 1
and will contain the result of this instruction.

Bit 15:

0 = Length of factor 2 is 2.
1 = Length of factor 2 is 1.

Base address register: The address of the binary register that contains the

base address.

ﬂ Address bit:
0 = BRa contains a 16-bit address.

1 = BRa(4) contains a 20-bit address of a storage location outside the

partition.
Displacement: The number of bytes {(hex 00-FF) from the base address where

factor 2 is stored.

Factor 2 is subtracted from factor 1, and the result is placed in the factor 1 register.

Object Code Instruction Format

259

Set Bits Off with Mask {SETOFF}

BRn
Source: SETOFF (displ ,[],X‘II')
i LY
l— i — 3
Object: B3
0 8 15 31

JEE

H\s
E\h@
=\~

n Mask constant: A 1-byte constant to convert to the ones complement, then
AND with the byte at the base displacement address.

Base address register: The address of the single binary register (BRn), or of
the rightmost register of a double register (BRn(4)), that contains the base
address.

Addressing bit:
0 = BRn contains a 16-bit base address.
1 = BRn(4) contains a 20-bit base address.

n Displacement: The number of bytes (hex 00-FF) from the base address where
the byte to mask is stored.

The displacement is added to the contents of the base address register, and then the

data at the resulting address is logically ANDed with the ones complement of the
mask constant. The result replaces the original data in storage.

260

Binary Double-Register Add with a Base Displacement Address (+=)

Source: BRia (4) += displ (len, BRb(4))
Object: B4 @ |, e |1
0 §] |5] |3 3
(1)

Il
a a

n Result/factor 1: The address of the binary register that contains factor 1
and will contain the result of this instruction.

n Bit 15:

0 = Length of factor 2 is 2.
1 = Length of factor 2 is 1.

ﬂ Base address register: The address of the binary register that contains the
base address.

n Address bit:
0 = BRa contains a 16-bit address.
1 = BRa(4) contains a 20-bit address of a storage location outside the
partition.

a Factor 2 displacement: The number of bytes (hex 00-FF) from the base address
where factor 2 is stored.

The factor 2 displacement is added to the contents of the base register, then the
data at the resulting address is logically added to factor 1.

Object Code Instruction Format

261

Skip if Bits are OFF (IFB OFF)

) (BRn)
Source: IFB dl?pl ‘B“['L“,’L OFF oonlstant SKIP
[! }
Object: B5 @} f
0 8 B] |23 3

r
B O

Mask constant: A 1-byte constant that specifies the bits to test in the byte
at the base displacement address.

Base address register: The address of the single binary register (BRn), or of
the rightmost register of a double register (BRn(4)), that contains the base
address.

Addressing bit:
0 = BRn contains a 16-bit base address.
1 = BRn(4) contains a 20-bit base address.

n Displacement: The number of bytes (hex 00-FF) from the base address where
the byte to test is stored.

The displacement is added to the contents of the base address register, then the ones

complement of the data at the resulting address is tested with the mask constant. If
any of the test bits are off, the next sequential instruction is skipped.

262

Binary Double Register Subtract with a Base Displacement Address (—=)

Source: BRa(4) -= displ (Ie|n, BRb(4))
l =]
Object: B6 @A_; e |, s
0 8 / 15 / JEE L
(1] B0 B8

II Result/factor 1: The address of the binary register that contains factor 1
and will contain the result of this instruction.

Bit 15:
0 = Length of factor 2 is 2.
1 = Length of factor 2is 1.

Base address register: The address of the binary register that contains the
base address.

n Address bit:
0 = BRa contains a 16-bit address.
1 = BRa(4) contains a 20-bit address of a storage location outside the
partition.

B Factor 2 displacement: The number of bytes (hex 00-FF) from the base address
where factor 2 is stored.

The factor 2 displacement is subtracted from the contents of the base register, then
the data at the resulting address is logically subtracted from factor 1.

Object Code Instruction Format 263

264

Skip ¥ Bits are On {IFB ON)
)) (BRr) K
Source: IFB dalspl (Bffn(?)) ON cojnsltant SKIP
' | I} ¥
Object: B7 @ |,
0 8 15 23 31

B,

[/
(2] 3]

(- RN

n Mask constant: A 1-byte constant that specifies the bits to test in the byte
at the base displacement address.

Base address register: The address of the single binary register (BRn), or of
the rightmost register of a double register (BRn(4)), that contains the base
address.

B Addressing bit:
0 = BRn contains a 16-bit address.
1= BRn{4) contains a 20-bit address.

n Displacement: The number of bytes (hex 00-FF) from the base address where
the byte to test is stored.

The displacement is added to the contents of the base address register, then the data
at the resulting address is tested with the mask constant. If any of the test bits are
on, the next sequential instruction is skipped.

Binary Register Load from a Base Displacement Address (=)

Source: BRa = dilspl (Ifn, BFIRb)
Object: B8 @l , @ p ;
0 8 / /15 / /23 / 3
a g 0

The factor displacement is added to the base address register contents, and factor 2

Result/factor 1: The address of the binary register that contains factor 1
and will contain the result of this instruction.

Bit 15:
0 = Length of factor 2 is 2.
1 = Length of factor 2 is 1.

Base address register: The address of the binary register that contains the
base address.

Address bit:
0 = BRa contains a 16-bit address.
1 = BRa(4) contains a 20-bit address of a storage location outside the
partition.

Factor 2 displacement: The number of bytes (hex 00-FF) from the base
address where factor 2 is stored.

is loaded from that address to the specified binary register.

Object Code Instruction Format

265

Insert Constant Into a Base Displacement Address (= constant)

. . (BRn) =
Source: dllspl [(BR.n(4)) cons'tant
l 1 1
1 [
Object: B9 f @1 P ;
0 8 / 15 / 23] 3
(4]

Constant: A 1-byte constant to insert into the base displacement address.

~ I -

Base address register: The address of the single binary register (BRn), or of
the rightmost register of a double register (BRn{4)), that contains the base
address.

B Addressing bit:
0 = BRn contains a 16-bit base address.
1 = BRn(4) contains a 20-bit base address.

n Displacement: The number of bytes (hex 00-FF) from the base address
where the character is inserted.

The displacement is added to the base address, and the constant is loaded into the
resulting address.

266

Binary Register AND with Base Displacement Address (&=)

Source: BRa &= di|sp| (I?n, Bl:lb)
Object: BA , @ 10
0 8 15 [/23 31

9 ;
/ /
OB BDn

n Result/factor 1: The address of the binary register that contains factor 1
and will contain the result of this instruction.

Bit 15:
0 = Length of factor 2 is 2.
1 = Length of factor 2 is 1.

Base address register: The address of the binary register that contains the
base address.

n Address bit:
0 = BRa contains a 16-bit address.
1 = BRa(4) contains a 20-bit address of a storage location outside the
partition.

Factor 2 displacement: The number of bytes (hex 00-FF) from the base
address where factor 2 is stored.

The factor 2 displacement is added to the base address register contents, factor 1

is ANDed with the contents of the resulting address, and the result is placed into
the factor 1 register.

Object Code Instruction Format

267

Skip if Byte Equals Constant (IFB IS)

. (BRn)
Source: IFB dTpl [(BRnM),) 1S corjtant SKiP
I | _—
4 ¥ Y)
Object: BB , @9 , ,
0 8 / 15 / /23 / 3

(1] BH O

n Constant: A 1-byte constant that is compared with the contents of the byte
at the base displacement address.

Base address register: The address of the single binary register (BRn), or of
the rightmost register of a double register (BRn(4)}), that contains the base
address.

Addressing bit:
0 = BRn contains a 16-bit base address.
1 = BRn(4) contains a 20-bit base address.

n Displacement: The number of bytes (hex 00-FF) from the base address where
the byte to compare with the constant is stored.

The displacement is added to the contents of the base address register, the contents

of the resulting address is compared with the constant, and the next instruction is
skipped if they are equal.

268

Binary Register OR with a Base Displacement Address (V=)

Source: BRa V= disipl (I?n, BRb(4))
—=
Object: BC
0 8 15 /23 3

=\~©
E\s
H\~©
ﬂ\\

Result/factor 1: The address of the binary register that contains factor 1
and will contain the result of this instruction.

Bit 15:
0 = Length of factor 2 is 2.
1 = Length of factor 2 is 1.

Base address register: The address of the binary register that contains the
base address.

Address bit:
0 = BRa contains a 16-bit address.
1 = BRa(4) contains a 20-bit address of a storage location outside the
partition.

Factor 2 displacement: The number of bytes (hex 00-FF) from the base
address where factor 2 is stored.

The factor 2 displacement is added to the base address register contents, factor 1
is ORed with factor 2, and the result is placed in the factor 1 register.

Object Code Instruction Format

269

270

Duplicate a Character at Base Displacement Address (DUP)

. BRn
Source: DllJP dli'pl, l Tﬂ.] , 1-256
\

L4 1 K)

Object: BD

L
/22

15

(~ MU
-~ Y

1
/

Length: The number minus 1 (hex 00-FF) of times to duplicate the byte at
the base displacement address.

Base address register: The address of the single binary register (BRn), or of
the rightmost register of a double register (BRn{4)}), that contains the base
address.

Addressing bit:
0 = BRn contains a 16-bit base address.
1 = BRn(4) contains a 20-bit base address.

n Displacement: The number of bytes (hex 00-FF) from the base address where
the byte to duplicate is stored.

The displacement is added to the contents of the base address register and the
contents of the resulting address is duplicated into the succeeding bytes.

Binary Register Exclusive OR with a Base Displacement Address (X=)

o)

Source: BRa X= disp! (len, BRb(4))

|

L
@ |9
AN
(3§ 4]

®

Obiject: BE

e’

B
N\d‘h

31

u\ws

n Result/factor 1: The address of the binary register that contains factor 1
and will contain the result of this instruction.

Bit 15:
0 = Length of factor 2 is 2.
1 = Length of factor 2 is 1.

ﬂ Base address register: The address of the binary register that contains the
base address.

ﬂ Address bit:
0 = BRa contains a 16-bit address.
1 = BRal4) contains a 20-bit address of a storage location outside the
partition.

B Factor 2 displacement: The number of bytes (hex 00-FF) from the base
address where factor 2 is stored.

The factor 2 displacement is added to the contents of the base address register,

factor 1 is exclusively-ORed with the factor 2, and the result is placed in the factor

1 register.

Object Code Instruction Format

271

272

Replace Field on Screen (REPFLD)

Source: REPFLD

Object: C3 00 00 00

When the REPFLD instruction is executed, the main microprocessor does the
following:

Stores the keyboard operation code C3 and the operation parameters in the
keyboard/display OB starting at hex displacement 1F,

Moves the contents of register BR19, BR20, and BR21 into the op code instruc-
tion to use as parameters. {During keyboard/display external status, BR19 holds
the address of the current field in the 1/0O buffer; BR20 holds the address of the
current field in the refresh buffer in keyboard/display storage; and BR21 holds
the character set definition, the length minus 1 of the current field, and character
set information about the last field processed.

Notifies the keyboard/display microprocessor of the service request (keyboard
operation). The keyboard/display microprocessor then moves the data, specified
in the operation parameters, from main storage into the keyboard/display stor-
age main refresh buffer. The bytes are translated through the display translate
table; EBCDIC values between hex 20 and 2F are changed to hex 1F and dis-
played as solid rectangles. The codes in main storage remain unchanged.

If the signed numeric bit is on in parameter 3 (from BR21) and the rightmost
byte moved is DO-D9, a minus sign is displayed in the sign position of the field
(to the right of the rightmost byte). If the rightmost byte is not D0-D9, a blank
is displayed in the sign position.

If the character set bits indicate a numeric only or digits only field and the signed
numeric bit is not on, and if the rightmost byte moved is D0-D9, the negative
graphic corresponding to the digit is displayed in the rightmost position of the
field.

Keyboard Attach {(KATTCH)

Source:

Obiject:

KATTCH

c4

00

00

00

15

23

31

The KATTCH instruction provides temporary control of a keyboard/display unit,
attaching the partition to its associated keyboard. This instruction is in effect until
a KDETCH instruction is executed. |f the attach is successful, the next sequential
instruction is skipped.

This operation will fail if:

® There is an outstanding keystroke error

® There is an outstanding request for software error mode (KERRST)

Keyboard Detach (KDETCH)

Source:

Obiject:

KDETCH

There is an outstanding ENTR

Another partition is attached

Cb

00

00

00

15

23

The KDETCH instruction detaches the keyboard/display unit from the current
partition. If the detach is successful, the next sequential instruction is skipped.

This operation will fail if:

® There is an outstanding keystroke error

® There is an outstanding request for software error mode (KERRST)

® There is an outstanding ENTR

Object Code Instruction Format

273

274

Read Elapsed Time Counter

Source: RTIMER (BRa)

Obiject: Cc7

15 23 31

/l
(2]

o
H\J-w

Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display 108 starting at hex displacement 1F.

B To address: The address of the binary register that contains the main storage
.address where the timer value is to be stored.

This instruction stores the timer value into a 3-byte storage area. The high-order 2
bytes are taken from a 2-byte counter in the system control block (see E/apsed
Time Counter in Chapter 1). These 2 bytes of the count indicate the number of
1.6 seconds that have elapsed since power on. The low-order byte is taken from a
keyboard/display timer. Bits 0-3 of the low-order byte are always zero. Bits 4-7
indicate the number of tenths of a second since the last count indicated in the
high-order 2 bytes.

Cancel Current Enter Command (CNENTR)

Source: CNEN[’R
Object: C7 0‘5 00 00
0 8 T 15 23 31

n Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display 0B starting at hex displacement 1F.

This instruction cancels the current ENTR command. The end of screen format
control string functions are performed, and data is no longer accepted from the

keyboard. On the status line, the counters, insert mode symbol, keyboard shift,
and hex display position are set to blanks. In the |0B, the command op code is
set to zeros.

If this operation is issued in an external status subroutine during the processing
of a nonoverlapped ENTR command, the return issued in the subroutine is made
to the interrupted ENTR if the interrupted ENTR was not made complete by the
external status condition. The ENTR is reissued and processing begins at the
start of the screen format control string.

Release Character and Field Edits (KEYOP)

Source: KEYOP

{06)

fe——a

Object: c7

00

00

Bis

n Keyboard operation number: The number that the main microprocessor
stored in the keyboard/display I0B starting at hex displacement 1F.

The following character and field edit checks are discontinued for the current field:

® Character set check

® Data required

Blank check

® Mandatory enter

Mandatory fill

The checks are discontinued only until the field is exited in the forward or back-
ward direction. If the same field is later advanced or backspaced into, the checks

will be in effect.

Object Code Instruction Format

275

Change Row Attribute (KEYOP)

Source: KEYOP (Ol7, Bj‘!a, BRb)
Object: c7 07 @ @
! / !
(1]

n Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display 10B starting at hex displacement 1F.

Row: The address of the binary register that contains the low-order byte,
the number of the row on the screen that is effected.

Masks: The address of the binary register that contains two 1-byte masks to
be used for control information.

In keyboard/display storage, there is a 1-byte attribute specification for each row
on the screen. This attribute specification determines how the row is displayed.
The format of the attribute specification is as follows:

Bit Meaning
0-1 01 = No system indicator
10 = Dash

11 = Solid rectangle

Valid row starting attribute. This bit must be 1 for bits 3-7 to be valid
Column separators are displayed

Blink the row?

Underscore the row! 2

High intensity!

Reverse image’

NoodswN

When this keyboard operation is executed, the attribute specification for the row is
ANDed with the mask in the high-order byte of the binary register that holds the
masks. The result of the AND is then exclusively-ORed with the mask in the low-
order byte of the register. The attribute specified with bits 3-7 stays in effect until
the next row starting attribute or character attribute.

Li¢ bits 5, 6, and 7 equal 111, the display of the row is inhibited.
2These attributes remain in effect until any attribute is encountered.

276

Change Screen Position Pointer (KEYOP)

Source: KEYOP (08 BTa)
Object: Cc7 0‘8 @ 0 00
0 g§] 1B] 23 31

n Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display 10B starting at hex displacement 1F.

Screen position pointer modifier: The address of the binary register that
contains the modifier.

The contents of the screen position pointer are replaced with the modifier. The
binary register that holds the modifier contains the row number in the leftmost
byte and the column number in the rightmost byte.

If this operation is performed prior to an ENTR command and the format control
string for the ENTR specifies that the format should be continued at the current
screen position, the format will be initialized at the position specified by this opera-
tion rather than at row 2, column 1.

If this operation is performed during the processing of an ENTR command (for
example, during an RG exit), all screen definitions such as fields and prompts
encountered after this operation is executed originate from the position specified
by this operation. The cursor is not moved over intervening fields and prompts;
it causes them to be displaced on the screen.

Note: It is not recommended to use this operation during the processing of an
ENTR. No checking is made on the specified screen position.

Object Code Instruction Format 277

278

Accept Keystrokes and Store (KACCPT)

Source: KACCPT (BRa, BRb[(4)])

Object: c7

15 / 23 / 31

o
=\ L.©
(|
]

n Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display 10B starting at hex displacement 1F.

Length: The address of the binary register that contains the main storage
address where the keystrokes are stored.

Length and options: If a 2-byte binary register is specified, this byte contains
the address of the binary register. The register contains the information
described in bytes 0 and 1 below. The keystrokes are not displayed as they
are entered.

Byte Bit Meaning

0 Option Flags:
0=1 The keyboard sounds a response click for each keystroke.
1 Not used.
5=1 The monocase function is enabled; keystrokes are con-
verted to their uppercase equivalent as they are entered.
6-7 Keyboard Shift Flags:
00 for Alpha shift.
01 for Num shift.
10 for Katakana shift.

11 is invalid.
1 Number minus 1 of keystrokes to accept.
2 Row number where keystroke display begins.
3 Column number where keystroke display begins.

The scan code and its EBCDIC translation are stored for each keystroke accepted
from the keyboard. The codes are stored in pairs. For multiple keystrokes the
scan code and EBCDIC are stored sequentially in the order they are entered.

The keystrokes are not applied to any outstanding ENTR command. If a shift key
is pressed during this operation, the keyboard shift is changed but the scan code
and EBCDIC for the shift key are not stored; the shift key does not effect the key-
stroke count. If a function key is pressed during this operation, the scan code and
EBCDIC are stored but the function is not performed and external status does not
result. If a command key sequence is entered during this operation, the codes are
stored and external status does not result except if the Cmd key is followed by the
C key. In this case, the codes for the Cmd key are stored and then the function for
the Cmd, C key sequence is performed; the KACCPT operation is made complete
regardless of the keystroke count.

The keyboard must be attached when this operation is performed.

Pass Scan Code to Keyboard (KEYOP)

Source: KE\IIOP (OIA BRa)
Object: Cc7 0/’5\ @ 0 00
0 8 / 15 / 23 31

—

1]

I'l Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display 10B starting at hex displacement 1F.

Scan code address: The address of the binary register that contains the main
storage address of the scan code.

When this operation is executed, the specified scan code is passed to the keyboard/
display associated with the partition. The scan code is processed as though it

originated from the keyboard.

The keyboard must be attached when this operation is performed.

Object Code Instruction Format 279

Pass EBCDIC to Keyboard (KEYOP)

Source: KEYOP (OT BRa)
Object: Cc7 08 @ 0] oo
0 8 / 15 / 23 31

n Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display 10B starting at hex displacement 1F.

ﬂ EBCDIC Code address: The address of the binary register that contains the
.main storage address of the EBCDIC code.

When this operation is executed, the specified scan code is passed to the keyboard/
display associated with the partition. If the EBCDIC corresponds to a data key or

function key, it is processed as though it originated from the keyboard. The scan
byte in the 10B is set to zeros.

Note: 29 (clear screen) and 2A (clear status line) are ignored because they are not

function key EBCDICs. These functions can be performed with keyboard opera-
tion 11.

The keyboard must be attached when this operation is performed.

280

Display Extra Line (DISPEX)

Source: DISPEX
Object: Cc7 QC 00 00
4] 8 F 15 23 31

Il Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display OB starting at hex displacement 1F.

The instruction displays the extra line, replacing the display of the status line.
The row starting address for the status line is set to the address of the extra line

in the keyboard/display storage main refresh buffer area. The status line
information is not available when using this instruction.

Display Status Line (DISPST)

Source: DISPST

Object: c7 D 00 00

ll Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display 10B starting at hex displacement 1F,

The instruction displays the status line, replacing the display of the extra line.
The row starting address for the extra line is set to the address of the status
line in the keyboard/display storage main refresh buffer area.

Object Code Instruction Format

281

282

Request Keyboard Error Mode (KERRST)

Source: KERRST (Bl'r BRb)
Obiject: c7 QE @ 0] @ 0
0 8 |/ 15 [23 [31

Keyboard operation number: The number that the main microprocessor
stores in the keyboard/CRT |08 starting at hex displacement 1F.

Message: The address relative to the start of the partition of the binary
register that contains the main storage address of the message to move to

the status line refresh buffer.

B Attribute mask and control information: The address of the binary register
that contains the attribute mask in byte 0 and control information in byte 1.

Byte Bit Meaning if 1

0 Attribute Mask:
0-2 Reserved
3 Column separators displayed
4 Blink
5 Underscore!
6 Highlight!
7 Reverse image'
1 Control Information:
0 0 = Do not check for display of status line.
1 = Display status line if it is not currently displayed.
1 Start in column 1. (If bit 1 =0, start in column 3.)
2-7 Message length minus 1, up to 63. If 63 is specified, it

indicates O bytes.

! If bits 5, 6, and 7 equal 111, data will not be displayed.

This operation places the keyboard in software error mode. When the keyboard/
display is in software error mode, all data keys, function keys, and command key
sequences are ignored. However, if the KEYOP instruction for operation hex 11
(perform keyboard function) is issued, the function is performed as long as the
keyboard is in an appropriate state.

Bits 3-7 of the attribute mask are exclusively-ORed with bits 3-7 of the row attri-
bute byte (which determines the display of the row) for the top row of the screen.
If the status line is not displayed on the screen, the extra line will have the indicated
attributes.

Bytes are moved from the address specified to the status line. The bytes are trans-
lated through the display translate table, and attributes are translated and passed.
The bytes moved from storage overwrite the original status line data, and the
original status line data destroyed.

If the status line is currently being displayed when this instruction is executed

the indicated message is displayed in column 1 or column 3, according to byte 1,
bit 1 of the control information. If the status line is not being displayed, the
message is not displayed unless byte 1, bit Ois 1.

This operation is invalid if the keyboard/display is already in software error mode,

or if issued from an unattached background partition.

Reset Keyboard Error Mode (KERRCL)

Source: KERRCL (BRa)

Object: c7

15 23 3

a\ Lo
E\ o)

n Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display 0B starting at hex displacement 1F.

B Attribute mask and control information: The address of the binary register
that contains the attribute mask in byte 0 and control information in byte 1.
See keyboard operation OE for the format.

This operation takes the keyboard/display out of software error mode. It is valid
only after a KERRST operation, and only when issued from an attached partition.
When this operation is executed, if an ENTR command is outstanding and bits 2-7
of the control information do not equal zero, the field shift, hex display, current
position counter, insert motle, and positions remaining in current field counter are
restored in the status line. An attribute change is allowed, as for KERRST. Bits
2-7 of the control information specify the number minus 1 of positions to replace
with blanks when the KERRCL operation is executed.

Object Code Instruction Format

283

284

SOUNC DLRLZICY DL

Source: Buzz
Object: C7 1‘0 00 00
0 8 / 15 23 31

n Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display 10B starting at hex displacement 1F.

This instruction sounds the alarm on the keyboard associated with the partition.
The duration of the alarm is approximately 180 milliseconds.

Perform Keyboard Function (KEYOP)

Source: KEYOP (11 BRa)

|

Object: Cc7 1'1 ‘@ 0 00
0 g] 5] 23 31
(2]

n Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display |0B starting at hex displacement 1F.

B Function address: The address of the binary register that contains, in the
rightmost byte, the EBCDIC code for a function.

When this operation is executed, the function specified by the function EBCDIC
is performed, with the following exceptions:

® The keyboard bit map is not checked to determine if the application program
normally handles the function.

® |f the keyboard is in software error mode, the function is executed if the key-
board is in an appropriate state. If the function is 29 (clear screen) or 2A (clear
status line), the function is executed regardless of the state of the keyboard. If a
function EBCDIC other than hex 01 through 2C is specified, an invalid operation
external status condition occurs. The keyboard must be attached when this oper-
ation is performed.

See Appendix C for a list of the function codes.

Allocate Keyboard/Display Storage (KEYOP)

Source: KEYOP (12 BRa)

Object:

c7

23 31

E\m@

'l Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display IOB starting at hex displacement 1F,

Length address: The address of the binary register that contains, in the right-

most byte,

Bits

0-1
2-3
45
6-7

the length in K-bytes to allocate for each area, as follows:
Meaning

Number of K bytes (in binary) to atlocate to section F (unit 1).
Number of K bytes (in binary) to allocate to section B (unit 2).
Number of K bytes (in binary) to allocate to section 7 (unit 3).
Number of K bytes (in binary) to allocate to section 3 (unit 4).

This instruction should be issued only at IPL time to allocate keyboard/display stor-
age. The storage address range for one to three K bytes is as follows if the specified
amount of storage is available:

Binary
Specification

01
10
1

Number of K Address Range in

Bytes Keyboard/Display Storage
1 xC00 through xFFF
2 x800 through xFFF
3 x400 through xFFF

Where x is hex F, B, 7, or 3 for keyboard/display units 1, 2, 3, or 4 respectively.

If 3 K of storage is specified for a section and only 1 or 2 K is available, the storage
is allocated beginning at x400. If 2 K of storage is specified for a section and only
1 K of storage is available, the storage is allocated beginning at x800.

If the amount of storage specified for allocation to sections F, B, 7, and 3 is less
than the total amount available, the remaining storage is allocated in section 0
starting at address hex 0000 to a maximum of 4 K bytes.

Notes:

1. Certain 5280 models have keyboard/display storage that is not dynamically
allocatable. On these models, execution of this instruction does not change
the storage allocation.

2. Regardless of how the allocation is specified, the hardware will not allocate
storage in a section if that section does not have a corresponding display

attachment.

See Chapter 3 for more information about keyboard/display storage.

Object Code Instruction Format

285

286

Click Kevhoard (CLICK)

Source: CLICK
Object: Cc?7 14 00 00
0 8 / 15 23 31

n Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display 10B starting at hex displacement 1F.

This instruction clicks the keyboard associated with the partition.

Open Keyboard/Display (KEYOP)

Source: KEYOP (15)
Object: c7 15 00 00
0 8 / 15 23 31

Il Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display 10B starting at hex displacement 1F.

This instruction initializes the keyboard/display unit.
® The clear screen function (29) is performed.

® The clear status line function is performed.

® The cursor is erased from the screen,

® The blink attribute for the top line displayed on the screen is cleared unless a
keystroke error or software error mode is outstanding.

This operation is performed automatically during a load operation; it should not
normally be issued by an application program. {f this operation is issued from an
unattached partition, an external status condition for invalid operation occurs.

Reset Magnetic Stripe Reader (RSTMG)

Source: RSTMG
Object: C7 16 00 00
0 8 / 15 23 31

Il Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display 10B starting at hex displacement 1F.

This instruction resets the magnetic stripe reader to read data from a badge.

Read Magnetic Stripe Reader (READMG)

Source: READMG (BRa BRb)
Object: Cc7 17 @ 0 @ 0
0 8 15 [23] 31
(1)

n Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display 10B starting at hex displacement 1F.

ﬂ To address: The address of the binary register that contains the main stor-
age address within the partition where data is read into from the magnetic
stripe reader buffer.

Length: The address of the binary register that contains the number, minus
1, of bytes to read.

When a badge is inserted into a magnetic stripe reader, the badge characters are

read into a buffer in the reader. External status condition 11 occurs in the partition
associated with the reader. After badge data is read into the buffer, no other badge
data is accepted until the buffer data is read with the READMG instruction or until
the reader is reset with the RSTMG instruction. After the execution of the
READMG instruction, the reader is automatically reset to enable the reader to
accept another badge.

Object Code Instruction Format 287

288

The magnetic stripe data consists of a string of from 3 to 128 characters. The first
character must be a start of message (SOM) control character. The next-to-the-last

S~ ma

must be a longitudinal redundancy check (LRC) control character of even parity for
the entire data group. Any character can be placed in the other positions except an
EOM character.
The reader control characters and data characters are as follows:

Bits Meaning if 1

0 Device flag: A magnetic stripe reader is installed on the system.

1 Error flag: One of the following conditions has occurred:

® Parity error

® |RCerror

® EOM missing

Improper badge insertion or removal
® Speed error

® Buffer address overflow

2 LRC control character.
3 Parity bit: Odd parity for bits 4-7.
4-7 Data or control character: If hex O through 9, a data character. If

hex B, a SOM control character. If hex F, an EOM character.

If any byte has an error, the error flag is set in all bytes.

Device Control Read (KEYOP)

Source: KEYOP (11F) Bra , BRb)
Object: c7 1'F ‘@ 0 ‘@ 0
0 §] B] =] 3

1

Il Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display 10B starting at hex displacement 1F.

Command address: The address of the binary register that contains, in the
low-order byte, the attachment command.

a To address: The address of the binary register that contains the main stor-
age address where external register 5 contents are stored.

When this instruction is issued, external register b is set to 0, the command is
loaded into external register 13, and external register 5 contents are sorted at the
main storage address specified. (For some EAR commands the 10D contents
remain unchanged.) The command must be one of the following:

Hex Value
41,C1,45,C5
51,D1, 55, D5
61, E1,65, ES
43,C3,47,C7
49,C9,4D, CD
69, E9, 6D, ED
4C, CC

4E

7A

6A
CA,EA,DA, FA
4B,5B,CB

FF

4F, CF

Command

Read keyboard data

Read keyboard status
Activate keyboard click
Activate keyboard buzz
Magnetic strip read data
Magnetic strip error reset
Read extended sense register
Read interval timer

Read mar hi

Read mar lo

Enable translation
Keyboard/display storage read
Power on reset

Read error sense

Object Code Instruction Format

289

290

This operation should be issued only for diagnostic programming in a dedicated
mode. Following this operation, the keyboard/display microprocessor ignores all
keystrokes, the internal timer, parity errors, and the extended sense register until an
ENTR command or keyboard operation other than 1F, 20, 21, or 22 is executed.
When a diagnostic operation is issued, there is a change in external status 13 before
the operation is executed. The contents of external register 13 depends on the key-
board/operation is executed. The contents of external register 13 depends on

the keyboard/display unit associated with the partition that issued the instruction
as follows: for unit 1, 40; for unit 2, CO; for unit 3, 44; for unit 4, C4. Register

25 and bit 7 of register 26 should not be altered by the application program.

Notes:

1. The external registers are used by the microprocessors; external registers are not
binary or decimal registers located within a main storage partition.

2. The execution of a diagnostic operation will cause a change to external register
13 and bit 7 of external register 26 before the operation is performed.

3. External register 25 should not be altered because it is used to determine which
partitions are serviced by the microprocessor.

4. Bit 7 of external register 26 should not be altered because it has status informa-
tion required by the microprocessor.

Device Control Write (KEYOP)

Source: KEYOP

Object:

(20, BRa, BRb)
| ||
c7 20 e| o] e
—®] =]

ll Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display I0B starting at hex displacement 1F.

Command address: The address of the binary register that contains, in the
low-order byte, the attachment command.

From address: The address of the binary register that contains the main stor-

age address of data to write into the external register, XR5.

When this instruction is executed, external register 5 is loaded with the data at the
specified main storage address, external register 13 is loaded with the command.
The command must be one of the following:

Hex Value

5A
4A
6B, 7B, EB
48
c8
5F

Command

Load mar hi
Load mar lo

Keyboard/display storage write

Load configuration register

Load sum register
Load diagnostic control register

This operation should be issued only for diagnostic programming in a dedicated
mode. Following this operation, the keyboard/display microprocessor ignores all
keystrokes, the interval timer, parity errors, and the extended sense register until

an ENTR command or keyboard operation other than 1F, 20, 21, or 22 is executed.
When a diagnostic operation is issued, there is a change in external register 13 before
the operation is executed. The contents of external register 13 depends on the
keyboard/display unit associated with the partition that issued the instruction, as
follows: for unit 1, 40; for unit 2, CO; for unit 3, 44; for unit 4, C4. Register 25
and bit 7 of register 26 should not be altered by the application program. See

notes under keyboard operation hex 1F.

Object Code Instruction Format

291

Source: KEYOP (211 , BRa, BRb)
Object: Cc7 21 @ 0 @ 0
0 8 / 15 [23 31

ll Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display 10B starting at hex displacement 1F.

Register address: The address of the binary register that contains, in the
low-order byte, the external register to read.

B To address: The address of the binary register that contains the main storage
address to which the contents of the external register is read.

The contents of the low-order byte of the binary register indicates the external
register to read into the main storage address, as follows:

00 = External registers 5, 13, 25, and 26
01 = External register 5

02 = External register 13

03 = External register 25

04 = External register 26

This operation should be issued on/y for diagnostic programming in a dedicated
mode. Following this operation, the keyboard/display microprocessor ignores all
keystrokes, the internal timer, parity errors, and the extended sense register until an
ENTR command or keyboard operation other than 1F, 20, or 22 is executed. When
a diagnostic operation is issued, there is a change in external status 13 before the
operation is executed. The contents of external register 13 depends on the key-
board/display unit associated with the partition that issued the instruction, as
follows: for unit 1, 40; for unit 2, CO; for unit 3, 44; for unit 4, C4. Register 25
and bit 7 of register 26 should not be altered by the application program.

See notes under keyboard operation hex 17.

292

Keyboard/Display External Register Write (KEYOP)

Source: KEYOP (22, BRa, BRb)
Object: Cc7 212 ‘@ 1@ 0
51 B] B] 3

1

ll Keyboard operation number: The number that the main microprocessor
stores in the keyboard/display I0OB starting at hex displacement 1F.

Register address: The address of the binary register that contains, in the
low-order byte, the external register to write.

From address: The address of the binary register that contains the main
storage address where the data to write into the external register is
contained.

The contents of the main storage address are copied into the external register
specified by the low-order byte of the binary register, as follows:

01 = External register 5

02 = External register 13
03 = External register 25
04 = External register 26

The operation should be issued on/y for diagnostic programming in a dedicated
mode. Following this operation, the keyboard/display microprocessor ignores all
keystrokes, the interval timer, parity errors, and the extended sense register until

an ENTR command or keyboard operation other than 1F, 20, 21, or 22 is executed.
When a diagnostic operation is issued, there is a change in external status 13 before
the operation is executed. The contents of external register 13 depends on the
keyboard/display unit associated with the partition that issued the instruction, as
follows: for unit 1, 40; for unit 2, CO; for unit 3, 44; for unit 4, C4. Register 25
and bit 7 of register 26 should not be altered by the application program.

See the notes under keyboard operation hex 1F.

Object Code Instruction Format 293

294

Load Keyboard/Display Contro! Area (LCRTC)

Source: LCRTC (0-6, dilspl, BRn,_I_en)

— i

Object: Cc8 J ‘@ f ,
]

0 5] 15 23 J28] 31
0 20

Length: The number minus 1 (hex 00-FF) of bytes to load into the key-
board/display area from main storage.

From address: The address of the binary register that contains the main stor-
age address within the partition where data is moved from.

Displacement: The number of bytes, divided by 8 (hex 00-1F) into the key-
board/display control area where the loading of bytes begins.

Control area: The number (hex 0-6) of the control area to load. Control
areas are defined as follows:

0 = Validity table

1 = Display control

2 = Storage area

3 = Scan code translate table
4 = Display translate

5 = Katakana translate

6 = Diacritic translate table

This instruction loads the specified storage area into keyboard/display storage. See
Chapter 3 for a description of each area.

Store Keyboard/Display Control Area (SCRTC)

Source: SCRTC (0i6, displ, BRn, le n)

—=]|
Object: Cc9 s .
0 8 / 15 23 / 28 3

~
a
> X

Length: The number minus 1 (hex 00-FF) of bytes to load into main storage
from the keyboard/display area.

B B

To address: The address of the binary register that contains the main storage
address where data is stored.

Displacement: The number of bytes, divided by 8 (hex 00-1F), into the
keyboard/display control area where bytes are moved from.

Control area: The number (hex 0-6) of the control area to move bytes from.
Control areas are defined as follows:

0 = Validity table

1 = Display control

2 = Storage area

3 = Scan code translate table
4 = Display translate

5 = Katakana translate

6 = Diacritic translate table

This instruction copies the specified storage area from keyboard/display storage to
the main storage location specified.

Object Code Instruction Format 295

296

Move Characters to Screen (CRTMM)

Source: CRTMM (BRa BR fic [ch])
l_ 3 1
Object: CA @ 0 @ " @ |,
0 8 [15 / 23 / /31
(1] a

n Length: The address of the binary register that contains the following:

Bit0: 0 = BRa contains a screen row and column specification, with the
row in the high-order byte and the column in the low-order
byte.

1 = BRa contains an absolute address in keyboard/dispiay storage.
This specification is used for diagnostics.
Bits 1-16: The number minus 1 (hex 0000-7FFF) of bytes to move.

From address: The address of the binary register that contains the main stor-
age address where data is moved from.

Bit:
0 =S is omitted.
1 =S is specified.

n To address: The address of the binary register that contains the screen row
and column, or the absolute address of keyboard/display storage to which data
is moved.

B s
0 = NC is specified.
1 =NC is omitted.

The bytes are moved from main storage to the specified location. If the location is
an absolute address, no checking is done to ensure that it is a valid address. If the
location is a row and column, and if the move would extend into the keyboard/
display control area (starting at XEAQ), or if the column specification is 0, an
external status for invalid operation occurs. If the move extends out of the refresh
buffer and not into the control area, no external status occurs. No checking is
done to assure that the move does not extend into tables stored in the keyboard/
display storage, or into the refresh buffer for another screen.

If NC and S are omitted, the bytes are translated through the display translate table
before being placed in the refresh buffer. EBCDIC values from hex 20 through hex
2F are translated to display attributes and moved to the refresh buffer; the display
attributes effect the display of the screen.

If NC is specified, the bytes are not translated through the display transiate table
before being placed into the refresh buffer.

If S is specified, the bytes are translated through the display translate table. How-
ever, EBCDIC values between hex 20 and 2F are changed to hex 1F and displayed
as solid rectangles. The codes in main storage remain unchanged.

If row 0 is specified, the move is to the status line. If row 1 is specified, the move
is to the extra line in the screen refresh buffer.

Move Characters from Screen (MMCRT)

Source: MMCRT (BRa, BRb, BRc,)
l_.|__ —]
Object: CB 0 0 0
0 8 15 23 31

~
B—je

Length: The address of the binary register that contains the following.

Bit O:
0 = BRa contains a screen row and column specification with the row in
the high-order byte and the column in the low-order byte.
1 = BRa contains an absolute address in keyboard/display storage. This
specification is used for diagnostics.
Bits 1-15:
The number minus 1 (hex 0000-7FFF) of bytes to move.

To address: The address of the binary register that contains the main stor-
age address relative to the beginning of the partition to which data is moved.

From address: The address of the binary register that contains either the
row and column, or the absolute address of keyboard/display storage where
data is moved from,

The bytes are moved from keyboard/display storage to the main storage address
within the partition. If the from address specifies row 0, the move is from the

status line. If it specifies row 1, the move is from the extra line in the screen

refresh buffer. If the from address specifies an absolute address that is outside the
keyboard/display storage area, an external status for keyboard/display storage parity
error occurs. |f the from address specifies a row and column that extends into the
keyboard/display control area (starting at XEAQ), or if the column is 0, an external
status for invalid operation occurs.

If- the row and column specification extends into tables or another screen refresh
buffer, no error occurs.

Object Code Instruction Format

297

298

Resume Data Entry (RESUME/RESMXT/RESCAL)

RESUME[(B)]
Source: RESMXT (BRn)
RESCAL (BRn, label)
|
Object: CcD @) J @ [
0 8 / /15 / /31
(1 | 2] 3] (4

Index address for RESMXT: The address of the binary register that contains
the index for an indexed return.

Index address for RESCAL: The address of the binary register that contains
either of the following:)

® The index into the label table for a subroutine cail.
® The index for an indexed subroutine call.

If BRn is not specified on either the RESMXT or the RESCAL instruction,
the index address is all zeros.

If RESUME is specified, the index address is all zeros.

Bit 15:
0 = RESUME is specified.
1= RESMXT is specified.
OR
0 = RESCAL is specified and the address at is a subroutine address.
1 = RESCAL is specified and the address at a is a table address.

Tableaddress or subroutine address for RESCAL. If RESUME or RESMXT
is specified, this address is all zeros.

Bit 31 for RESUME:
0 = The cursor is repositioned forward (B is not specified).
1 = The cursor is repositioned backward (B is specified).

Bit 31 for RESMXT: 0.

Bit 31 for RESCAL.: The last bit of either the table address or the subroutine
address.

This instruction is included in external status subroutines to unlock the keyboard
to allow key entry under the interrupted ENTR command.

For RESUME, the keyboard is unlocked and the interrupted ENTR is resumed.

If B is coded, after an external status 04 or 05 condition the cursor is repositioned
to the manual field preceding the RG specification in the screen format control
string.

For RESCAL, the keyboard is unlocked and the interrupted ENTR is resumed. At
the same time a subroutine is called and executed. If a label is specified with no
binary register, the call is made to the label. If a subroutine label is specified with
a binary register, the contents of the register are added to the subroutine with a
binary register, the contents of the binary register are taken as an index into the
label table. The call is made to the address in the label table at the index.

For RESMXT, the keyboard is unlocked and the interrupted ENTR is resumed.
In addition, the external status bit in the |OB is turned off. The external status
subroutine is terminated, BR18 is decremented by 2, and return is made to the
address in the partition subroutine stack pointed to by BR18. If a binary register
is included, the contents of the register are added to the address pointed to by
BR18, and return is made to the resulting address.

Object Code Instruction Format

299

300

Enter (ENTR)

Source: ENTR {(fmt, BRn,[:])
| & 1
l il o
Object: CF .| , J00000 @ 10
0

gﬁél 23 / 31
6]

n Op code: The op code is stored in the command operation code byte of the
keyboard/display I0B by the main microprocessor.

Bit 8:
0 = Overlap mode (O specified)
1 = Nonoverlap mode (N specified)

Bit 9:
0 = The format is contained in the partition.
1 = The format is contained in the common area.

B si s

0 = The current record buffer address and the previous record buffer
address are not alternated (BRn is not specified).

1 = The current record buffer address and the previous record buffer
address are alternated (BRn is specified).

[~
—1

/
0

B Format: The number (hex 00-FF) of the screen format to use.

Note: The source instruction specifies a label that the assembler converts to
the number of the index where the format address is located in the screen
format system table.

B Previous record buffer address: The address of the binary register that the
system loads with the address of the buffer that contains the previous record.

When the main microprocessor encounters an ENTR command, it places the com-
mand op code in the keyboard/display 10B. If the binary register is specified, the
main microprocessor exchanges the contents of the current record buffer address
and the previous record buffer address in the |OB, and places the address of the
buffer that contains the previously entered record in the binary register. The main
microprocessor places the screen format number into the keyboard/display 10B at
hex displacement 09 and OA. If overlapped 1/0 is specified, the main micro-
processor continues executing instructions following the ENTR command while the
keyboard/display microprocesor processes the screen format control string. If non-
overlapped 1/O specified, the main microprocessor waits until the keyboard/display
microprocessor has finished processing the screen format control string before it
executes instructions following the ENTR command.

The keyboard/display microprocessor uses the screen format number in the key-
board/display IOB as an index into the screen format system table. If the system
table is within the partition, the address of the system table is found in the key-
board/display 10B. If the system table is in the common area, the address of the
system table is found in the system control block. The keyboard/display micro-
processor takes the address at the index into the system table and stores it in the
keyboard/display I0OB at hex displacement 09 and OA. While the keyboard/dis-
play microprocessor is processing the screen format control string, the address
of the byte currently being processed is maintained in this IOB location. When
the keyboard/display microprocessor finishes the control string or encounters a
condition that requires the main microprocessor, it reports an external status
condition.

Object Code Instruction Format 301

This page intentionally left blank

302

Chapter 5. Diagnostic Aids

Diagnostic aids inctude the display/alter function and the dump and trace functions.
In addition, several instructions are intended for diagnostic use. See Chapter 4
under Device Control (DEVCTL), opcode 3D, and under Keyboard Operations
(KEYOP), opcode C7 for the following operations:

Keyboard
Operation Description

12 Allocate keyboard/display storage

1F Device control read

20 Device control write

21 Keyboard/display external register read
22 Keyboard/display external register write

DISPLAY/ALTER FUNCTION

The display/alter function is a diagnostic tool that allows you to examine and alter
the contents of main storage or keyboard/display storage, move the contents of
main storage to keyboard/display storage and move the contents of keyboard/
display storage to main storage.

You can use only keyboard 0 (the keyboard attached to partition 0) to execute
display/alter functions; however, during power-on checkout, you can start display/
alter from any keyboard. If you do start display/alter during power-on checkout,
power-on checkout and IPL do not continue when you terminate display/alter.

To use the display/alter functions, the keyboard/display MPU must be operational.
While you are using display/alter, no other keyboard/display operations can be
performed. Thus, you will hold up the rest of the system while using display /alter.
Keyboard/display storage for keyboard 0 must be allocated to addresses FEQO
through FFFF. Normally, keyboard/display storage is allocated by the configura-
tion utility.

Other system conditions during display/alter functions are as follows:

® Magnetic stripe reader and elapsed time counter functions are not operational.

® Parity errors in main storage and keyboard/display storage are not detected.

® Status line data is removed from the secondary display of a dual display station.

Diagnostic Aids 303

304

How to Start the Display /Alter Function

During Power-on Checkout and IPL: Press the L key on any keyboard while the
cursor is moving through the power-on checkout display.

After Power-on Checkout and IPL: You must use keyboard 0; press the Cmd key,
then the L key (the keyboard buzzes).

After you have started the display/alter function, if you are using a proof keyboard
or a dual display, press ;nd hold the shift key and press the C key (the keyboard
buzzes). Release the shift key, then enter one of the following:

01—Nonproof keyboard and dual display
10—Proof keyboard and single display
11—Proof keyboard and a dual display

A line of data is displayed on the bottom of the screen as follows:

0 3A00 E2E8E2C9 . . .

© o

0 Main storage page number of data displayed, or an asterisk {*) if keyboard/
display storage data pointer is displayed; set to 0 when the display/alter is
started.

Q Address of the first byte of data displayed. The address is set to 0000 when the
display/alter is first started.

e Data: Displayed in eight 4-byte groups.

Pointers Maintained for Display /Alter

Three pointers are maintained for the display/alter function. The pointers indicate:
(1) the main storage address (the address of the data being displayed on the screen),
(2) the base address, and (3) the keyboard/display storage address.

How to Terminate Display/Alter

To terminate the display/alter function, press and hold the numeric shift key on
the data entry/proof keyboard or the upper shift key on the typewriter keyboard
and press the E key. Then press the Error Reset key.

How to Select and Use the Display/Alter Functions

When you use the display/alter functions on a typewriter keyboard, use the numeric
key pad to enter digits O through 9.

To select a function, press and hold the Num (Numeric Shift) key on a data entry/
proof keyboard or the ‘ {Upper shift) key on the left of the typewriter keyboard,
then press a key 0 through 9 or A through F to select the desired function. (When
you select a function the keyboard buzzes.) Then release the shift key and enter
the required parameters for the function (if parameters are required). If you press
any key other than 0-9 or A-F, unpredictable results occur.

Diagnostic Aids 305

306

The following char
Following the cha

Press this key
to select the
option.

0

t
t

hart §
v

Parameters

aabbccdd

dddd

aaaa

dd...

00

nnxx

1p0

Option Function

Display main storage; display is not updated if
data changes. See Display Main Storage.

Search storage, where aabbcedd is the data to
be found. See Search Storage.

Display the main storage at a displacement
from the base address, where dddd is the
displacement. See Display Main Storage.

Display main storage at a specified address,
where aaaa is the address. Display is updated
as main storage changes. See Display Main
Storage.

Increment main storage address; the address in
the main storage address pointer is incremented
by 16, and the data at that address is displayed.
See To scan the main storage display under
Display Main Storage.

Decrement main storage address; the address in
the main storage address pointer is decremented
by 16, and the data at that address is displayed.
See To scan the main storage display under
Display Main Storage.

Alter main storage, where dd is one hexadecimal
character to replace the data in main storage.
See Alter Main Storage.

Test a byte; the keyboard buzzes when the
byte at the current main storage address
changes. See Test for a Change in a Byte or a
Bit.

Test a bit, where nn and xx are masks to test
the byte. See Test for a Change in a Byte or a
Bit.

Display the beginning of a partition, where p
is the partition number. See Display the
Beginning of a Partition or of an 108.

Press this key
to select the
option.

B

Parameters

1pd

oee

pd

Reset

oeeee

Option Function

Display the beginning of an I0B, where p is the

partition number and d is the data set number.
See Display the Beginning of a Partition or of
an 108B.

Display the beginning of an 10B chain, where
@@ is the low-order hexadecimal address of
the 10B pointer. See Display the Beginning
of a Partition or of an /0B.

Accept keystrokes, where p=1 for a proof
keyboard and p=0 for a typewriter or data
entry keyboard, and d=1 for dual screen and
d=0 for a single screen. See How to Start the
Display/Alter Function, earlier in this section.

Set page number, where p is the page number
to use for the current main storage address.
See 7o set the page number under Display
Main Storage.

Terminate display/alter. See How to
Terminate Display /Alter.

Set keyboard/display address pointer, where
@@@@ is the address. See Move Keyboard/
Display Storage.

Display keyboard/display address. See Move
Keyboard/Display Storage.

Display main storage address. See Move
Keyboard/Display Storage.

Move keyboard/display storage to main
storage. See Move Keyboard/Display Storage.

Move main storage to keyboard/display
storage. See Move Keyboard/Display Storage.

Increment keyboard/display address, move
to main storage, and display. See Move
Keyboard/Display Storage.

Decrement keyboard/display address, move
to main storage, and display. See Move
Keyboard/Display Storage.

Diagnostic Aids

307

308

Display Main Storage

The display main storage function allows you to display main storage at a specified
address or at a specified displacement from the base address. The base address

can be set to the beginning of a partition or to the beginning of an I0B. When the

display/alter function is first started, the base address is set to page O address 0000.

To display main storage at a specified address on the current 64 K page, press and
hold the shift key and press the 4 key. Release the shift key and enter the hex-
adecimal address of the storage to be displayed. For example:

4 0100

causes 32 bytes of data to be displayed starting at the address 0100 within the
current 64 K byte page.

Once the data is displayed, the system can alter the data at that location in main
storage. The displayed data is updated to show the change until you press the

shift key. If you do not want the display to reflect changes being made to the data,
hold the shift key and press 0. Release the shift key when you want the display to
stop changing.

To display main storage at a specified displacement from the base address, press
and hold the shift key and press the 3 key, then enter the hexadecimal displace-
ment value. For example:

30010
displays the data beginning with the base address plus 0010.
The display is updated to show any change in main storage data.

To set the page number of the current main storage address, press and hold the
shift key and press the D key. Release the shift key and enter p, where p is the
number of the 64 K byte page.

To scan the main storage display, press and hold the shift key and press the 5 key
to scan forward or the 6 key to scan backward. Each time the 5 key is pressed
the address of the displayed data is incremented 16 bytes. Each time the 6 key
is pressed the address of the displayed data is decremented 16 bytes. If you hold
down the 5 key or the 6 key, the address of the displayed data is automatically
incremented or decremented until you release the key.

Alter Main Storage

The alter storage function allows you to alter main storage beginning at the
currently displayed address. The format of the alter storage function is:

7dd
where dd is one hex character that replaces the character in main storage.
For each additional hex character entered, the storage position altered is auto-
matically incremented one position. When 16 bytes have been altered, the
displayed address is incremented 16 bytes.
Display the Beginning of a Partition or of an 10B
To display the beginning of a partition:
1. Press and hold the shift key and press the B key. Then release the shift key.
2. Enter:
1p0
where p is the number of the partition to be displayed. The beginning of the
partition is displayed, and the base address is set to the beginning of the
partition.
To display the beginning of a device |OB using an 10B pointer address:
1. Press and hold the shift key and press the B key. Then release the shift key.
2. Enter:

0 @@

where @@ is the low-order hexadecimal address of the device I0B pointer
that points to the device 0B to be displayed.

The first OB on the chain is displayed. You can increment through the chain by
pressing the 0 key to display the next I0B on the chain.

To display the beginning of a device 10B using a data set number:
1. Press and hold the shift key and press the B key. Then release the shift key.
2. Enter:

1pd

where p is the number of the partition that contains the IOB chain to be
displayed, and d is the data set number for the |0OB to be displayed.

The base address is set to the beginning of the 10B currently displayed.

Diagnostic Aids

309

310

Move Keyboard/Display Storage

This function allows you to move data from keyboard/display storage to main
storage or from main storage to keyboard/display storage. You can also display
data moved from keyboard/display storage.

To start this function, press and hold the shift key and press the F key, then
release the shift key and enter a number (0-6) to select the desired function as
follows:

Number Function

0eeEE@@ Set the keyboard/display address pointer, where @@@@ is
the hexadecimal address to place in the pointer.

1 Display the current keyboard/display address set by the 0@@@@
function.

2 Display the address in the main storage address pointer.

3 Move 32 bytes of keyboard/display storage data into main

storage, using the addresses in the main storage address pointer
and the keyboard/display address pointer.

4 Move 32 bytes of main storage data into keyboard/display
storage, using the address in the main storage address pointer
and the keyboard/display address pointer.

5 Increment the keyboard/display storage address by 16, move 32
bytes of keyboard/display storage data into main storage, and
display the 32 bytes of data.

6 Decrement the keyboard/display address by 16, move 32 bytes
of keyboard/display storage data into main storage, and display
the 32 bytes of data.

Search Storage

The search storage function allows you to search storage for specified data. To
start this function, press and hold the shift key and press the 2 key. Then enter
the EBCDIC data to be found as follows:

aabbccdd
where aabbccdd is the data to be found.

The search begins with the address displayed and continues until the data is found
or until 4 K (hex 1000) bytes of storage have been searched. If the data is found,
the address of the first byte of the data is displayed along with 32 bytes of data
beginning with the first byte. If the data is not found in the 4 K bytes of storage,
the address displayed is incremented by hex 1000.

For example, assume the address displayed is 4000 and the data to be found is
D4C8D7C8. If the data is found at address 4C00, the displayed result is:

0 4C00 D4CBD7C8 XXXXXXXX ...
If the data is not found, the displayed address is:
0 5000 XXXXXXXX XXXXXXXX ...

If you enter hex 00 for dd or for cc and dd, the hex 00 is not included in the
search. For example, if you enter D4C80000, a match occurs when the data
D4C8 is found.

Test for a Change in a Byte or a Bit

To determine when the value at the displayed address changes, press and hold the
shift key and press the A key. Then enter 00. The keyboard buzzes the first time
the data changes.

To determine when a bit(s) turns on or off in a byte at a specified address, press
and hold the shift key and press the A key. Then enter the following:

nnxx (nn must not equal 00)

where nn is a byte to be logically ANDed with the byte at the displayed address,
and xx is a byte to be logically exclusive ORed with the result of the AND opera-
tion. If the result of the operation is zero, the keyboard buzzes. (The byte is not
changed in storage.) Thus, you can determine when a certain bit turns on or off.
For example, to determine if bit 4 of the byte at the displayed address turns on,
you would enter 0808 as shown below:

xxxX 1xxx This bit is the bit to be tested.
0000 1000 AND the value with this byte.
0000 1000 This is the result of the AND operation if the bit is on.

0000 1000 Exclusive OR the result with this byte.
0000 0000 The keyboard buzzes when the result is zero to indicate that
the bit did turn on.

To determine if the same bit goes off, you would enter 0800; that is, exclusive OR
the result of the AND operation with 00.

Diagnostic Aids 311

312

DUMP AND TRACE CONSOLE FUNCTIONS

With the dump console function, you can dump any portion or all of main storage.
There are two options with this function: (1) dump storage by page number,
beginning address, and number of blocks, and (2) dump an entire partition by
partition number.

With the trace console functions, you can trace program execution of specified
instructions and display the results, or write the results to a diskette or printer.
You can also display or write the contents of storage. You can use trace options
to display information on the status line.

To write dump or trace output to a diskette or printer, a program must be loaded
that sets up an 10B for data set 15. (When using trace options, data set 15 is not
required unless the results are to be written to diskette or printer.) If you are using
an assembler program, data set 15 must be set up by a .DATASET control statement.
Following is an example of a .DATASET control statement, and .DC control
statements required by the .DATASET statement:

.DATASET LABEL=DMPTRIOB DSN=15 DEV=X'B000' PBI=BUF256
LBUF=BUF128 RECL=128 NAME=DTNAME TYPE=SW,SHRW
ELAB=ERRRTN;

.DC LABEL=DTMANE TYPE=STOR LEN=9 INIT="DUMP0000’;

.DC LABEL=BUF256 TYPE=STOR LEN=256 BDY=128;

.DC LABEL=BUF128 TYPE=STOR LEN=128;

If you are using a DE/RPG program, you can set up data set 15 by setting bit 0 in
byte 0100, using the patch function. If you set this bit, you do not have to recom-
pile; however, you must use a larger partition.

If the dump or trace data is to be written to a diskette data set, you must have
allocated a data set that is large enough to contain the data to be dumped.

Before you start the dump or trace function, you must open data set 15 (if data
set 15 is required for your output). Data set 15 can be opened by calling the
CFDUMPTR routine. If you use CFDUMPTR the name of data set 15 must be
DUMPO0000. The CFDUMPTR routine is called by pressing the Cmd key, then
shift, then the Dump Trace Open key when using one of the following programs:

SYSSORT

SYSMERGE

SYSCOPY

SYSPRINT

SYSKEU

DE/RPG program that has been modified as described above.

When the CFDUMPTR routine is called, the following prompt is displayed:

Dump/Trace file open
Enter device address:

Enter the device address for the printer or diskette to indicate the destination of
the dump or trace output, and press the Enter key. You can now use the dump or
trace function, as described below.

Dump Function
To dump storage by page number, address, and number of blocks, do the following:
1. Press the Cmd key.
2. Press the C key.

3. Press the D key.

4. Enter the following to specify the main storage data to dump:

P@@BB
where:
P = The page in main storage from which the data is dumped.
@@ = The first 2 hex digits of the address (hex 00-FF) at which the dump
begins (the low-order address is always hex 00).
BB = The number (hex 00-FF) of 256-byte blocks of data to dump.

To dump the data from an entire partition, do the following:

1. Press the Cmd key.

2. Press the C key.

3. Press the P key.

4, Enter the partition number, 0 through 7.

When dumping to data set 15, data set 15 is not closed when the dump is com-
pleted until: (1) the partition is exited, or (2) the partition is reloaded if the

partition exit operation calls the standard load processor, or (3) the applicatibn
program explicitly closes the data set.

Diagnostic Aids 313

Trace Function
The trace function traces the execution of specified instructions and dispiays and/or
writes the trace output after each instruction is executed. The trace output is in

the following format:

P @@@@ xx R

where:

P = The partition number of the last instruction traced. If the last
instruction traced is in the common function area of main storage,
an asterisk is displayed in this field.

@@@@ = The relative address of the last instruction traced.

XX = The op code of the last instruction traced.

R = The result of the last instruction traced. The length of this field

varies from O to 16 positions depending upon the type of instruction
traced.

For branch instructions, the result field contains the address of the
next instruction to execute if the branch is successful.

For table and binary instructions, the result field contains the specified
binary result register.

For decimal instructions, the result field contains the specified decimal
result register.

For all other instructions, the result field is blank.

314

To start the trace function, press the Cmd key, then the C key, then enter
the following:

Tnss
where:
T = The uppercase letter T to select the trace function.
n = 0-To display trace output on the screen only.
4-To write trace output to data set 15,
s = 01-To trace branching instructions only.

02-To trace decimal arithmetic instructions only.

03-To trace branching instructions and decimal instructions.

04-To trace nonbranching instructions only.

05-To trace all instructions except binary and decimal.

06-To trace nonbranching instructions and decimal instructions.

07-To trace all instructions except binary instructions.

08-To trace binary instructions.

09-To trace branching instructions and binary instructions.

10-To trace decimal and binary instructions.

11-To trace decimal instructions, binary instructions, and branching
instructions.

12-To trace binary instructions and nonbranching instructions.

13-To trace all instructions except decimal instructions.

14-To trace binary instructions, decimal instructions, and non-
branching instructions.

15-To trace all instructions.

Note: To cancel trace output to data set 15, specify trace output to the display
screen only (option TOss). This puts the trace program in address-stop mode.

Then press the uppercase letter C to cancel address-stop mode. This does not
close data set 15.

ADDRESS-STOP MODE
Address-stop mode causes the 5280 to stop executing program instructions when
it reaches the instruction at a specified address. To start address-stop mode or alter
the address-stop, enter the following:

ACRRE@

where:

@@@@ =The address of the instruction at which to stop, relative to the start of the

the partition.

When the 5280 stops program execution at the selected address, the following
functions can be requested.

Diagnostic Aids

315

You can request main storage display only after setting singie instruction mode by

trace (TOss) or after stopping on address-stop. When you request the main

storage display, the contents of 16 bytes of main storage are displayed on the

status line. The specified address, relative to the start of the partition, is displayed

in positions 41 through 44 of the status line, followed by the byte at the selected

address and the following 15 bytes. To select the main storage display, enter:
MeEEeE@

where:

@@@@ = The address of the first byte to display.

Forward Scroll
You can request the forward scroll function only after the main storage display
function. The forward scroll function replaces the 16 bytes being displayed on
the status line with the next sequential 16 bytes of main storage. To select
forward scroll, enter the uppercase letter F.

Backward Scroll
You can request the backward scroll function after the main storage display
function. The backward scroll function replaces the 16 bytes being displayed on

the status line with the preceding 16 bytes of main storage. To select backward
scroll, enter the uppercase letter B.

Replace Main Storage

During main storage display, you can replace the byte of storage at the address
displayed in position 41-44 of the status line.

To replace the byte at the displayed address, enter:
Rdd

where:
dd = Two digits to store in main storage.

After the two digits are stored in the main storage byte, the address is incremented
by one and the contents of the next 16 bytes are displayed on the status line.

316

Single Instruction

When you request the single instruction function, the 5280 executes the next
instruction and stops. After the instruction is executed, trace information is
displayed on the status line, beginning in position 41. To select the single instruc-
tion function, enter the uppercase letter S.

Loop

When you request the loop function, the 5280 executes the program instructions
until it again reaches the original address-stop address. It stops at the address-stop
address, and trace information is displayed on the status line, beginning in posi-
tion 41. To select the loop function, enter the uppercase letter L.

Main Storage Dump

You can request a main storage dump function while the 5280 is operating in
address-stop mode. The dump function is requested the same as a normal dump
(Dp@@BBY), that is, the contents of storage are written to data set 15. (See
Dump Function.) When the dump is completed, you may continue with other
address-stop mode functions. Data set 15 is not closed until the partition is
exited, or until the partition is reloaded if the exit operation calls the standard
load processor, or until the application program explicitly closes the data set.

Trace
You can request a trace while the 5280 is operating under address-stop mode.
The trace function is requested the same as a normal trace (T4ss). (See Trace
Function.) The 5280 executes the remaining program instructions and does not
stop, but the trace information continues to be written to data set 15.

Cancel Address-Stop

You can cancel address-stop mode by keying an uppercase letter C. The 5280
will execute the remaining program instructions with no stops and no trace output.

Diagnostic Aids 317

This page intentionally left blank

318

Chapter 6. Keyboard Functions

Keyboard functions may be initiated by function keys or by program instructions.
Each function is assigned an EBCDIC value between hex 00 and hex 3F. See
Appendix C for a list of these EBCDIC values. When a keyboard function is ini-
tiated, the EBCDIC for that function is placed into the keyboard/display 10B,

at relative address hex 47.

Certain functions are normally processed by the 5280, but may be processed by an
application program subroutine. Other functions are always processed by the
5280, and others are always processed by an external status subroutine for external
status condition 1. Many functions that are processed by the 5280 must first be
enabled by the application program, which must set flags in the keyboard/display
10B.

KEYBOARD FUNCTION CONTROL
The 5280 performs automatic functions and maintains certain function control.
The application program must enable the automatic functions by setting flags in
the keyboard/display |OB. The keyboard function control flag bytes are main-
tained by both the 5280 and the application program. The flag bytes are located
at relative address hex BE and BF, as follows:

Byte Bit Meaning if 1

X'BE’ 0 Keyboard is in enter mode.

1 Keyboard is in update mode.

2 Keyboard is in rerun mode. (See BF, bit 6.)

3 Keyboard is in verify mode.

4 An application program must not change this bit.
5 An application program must not change this bit.
6 Keyboard is in display mode.

7 Fixed prompts are not displayed.

X'BF" 0 Modified data bit is set to 0 by the 5280 when the current field
is entered, and set to 1 by the 5280 if data is entered into the
field. When the field is exited, the 5280 ORs this bit with the
modified data indicator that is assigned to the field.

1 An application program must not change this bit.

2 An application program must not change this bit.

Keyboard Functions 319

Byte Bit Meaning if 1

W

Auto-dup/skip enable bit must be maintained by the application
program. While this bit is 1, the 5280 automatically processes
fields defined as auto-skip (AS) or auto-dup (AD). When this
bit is 0, these fields are treated as manual fields. When this bit

is 1, a field defined as main storage store (MS) is stored; other-
wise, it is not stored.

4 Auto-enter enable bit must be maintained by the application
program. When the bit is 1, the 5280 automatically performs a
record advance when the operator enters the last manual posi-
tion of a record format. If bit is 0, the 5280 puts the keyboard
in the awaiting record advance state after the operator enters
the last position of the record.

5 Alternate record advance bit must be maintained by the appli-
cation program. If this bit is 1, when the operator presses the
Rec Adv key the 5280 ignores all remaining fields and format
specifications. If this bit equals 0, the 5280 processes the remain-
ing fields and format specifications.

6 Rerun/display enable bit must be maintained by the application
program. This bit is 1 and the 5280 is processing in rerun mode,
display is enabled.

7 An application program must not change this bit.

FUNCTIONS NORMALLY HANDLED BY THE 5280

The following function descriptions detail how each function is initiated and how
the 5280 processes the function. The function descriptions pertain to all modes of
entry unless a mode is specifically mentioned. Most functions are processed dif-
ferently for verify mode; the descriptions for verify mode follow the general
descriptions of each function.

Alpha Shift Function
The alphabetic shift function is initiated when the operator presses the Alpha key.
The Alpha key is on the data entry and proof keyboards, and is valid at all times.
While the Alpha key is pressed, the lower character on the key top is selected for
any data key.

Character Advance Function
The character advance function is initiated when the operator presses the =

(Character Advance) key, and is valid only while an ENTR command is being
processed.

320

In enter, update, special verify and field correct modes, when the - (Character
Advance) key is pressed the cursor moves to the next position within the current
field. If the — (Character Advance) key is pressed when the cursor is in the right-
most position of the field or when awaiting field advance, a field advance is per-
formed. The contents of the positions the cursor moves through remain unchanged.
If the character advance key is pressed when the cursor is in the last position of the
record, an error occurs unless the auto-enter flag is on. If the auto-enter flag is

on a record advance is performed.

In verify mode, the — (Character Advance) key is not valid except when the system
is awaiting field exit or record advance, or when the cursor is in a position other
than the rightmost position of a right-to-left field. If the system is awaiting field
exit, a field advance is performed. If the system is awaiting record advance, an
error occurs unless the auto-enter flag is on. If the flag is on, a record advance
occurs. If the cursor is in any position other than the rightmost position of a
right-to-left field, the = (Character Advance) key is processed as for enter mode
except that any character advanced over is blanked on the screen and must be
reverified before the field is exited.

Character Backspace Function

The character backspace function is initiated when the operator presses the
< (Character Backspace) key, and is valid only when an ENTR command is being
processed.

In enter, update, and special verify modes, when the < (Character Backspace) key
is pressed the cursor normally moves back to the previous position within the
field. If the system is awaiting field exit, the cursor remains in the same position
but the awaiting field exit condition is cleared. The cursor stops blinking; the
operator can enter another character into the position. If the system is awaiting
record advance, the condition is cleared and the cursor is positioned to the last
manual input position of the record. If the key is pressed when the cursor is in
the leftmost position of a field, the cursor moves to the rightmost position of

the previous input field. Any automatic fields, display attribute specifications, or
prompts that the cursor moves through are processed, and fields with RG (return
to program) exits specified cause external status condition 5. If the mode is special
verify, the fields are blanked, including the field the cursor was in when the key
was pressed.

If the cursor is in the first input position of the record when the < (Character
Backspace) key is pressed, screen format specifications between the first input
position and the start of the screen format are processed in the backward direction,
and then in the forward direction. No record backspace function occurs.

In field correct mode, if the cursor is in a field position other than the leftmost
position when the < (Character Backspace) key is pressed, the backspace is pro-
cessed as described for enter mode. If the cursor is in the leftmost position of the
field, the backspace is processed as described above and, in addition, the field is
blanked on the screen and the mode returns to Verify mode.

Keyboard Functions 321

322

Clear

Clear

In verify mode, for all fields except a right-to-left field, when the < (Character
Backspace) key is pressed the backspace is processed as described above and, in
addition, any position the cursor backspaces through is blanked on the screen.
the field is a right-to-left field, the < (Character Backspace) key is not valid unless
the system is awaiting a field exit or record advance; then the field is blanked on
the screen, the awaiting field exit or record advance condition is cleared, the
cursor remains in the rightmost position of the field, and the entire field must be
reverified.

[£3
1

Screen Function

The clear screen function is initiated by the KEYOP instruction (op code C7)
for keyboard overation hex 11. This function is always handled by the 5280. The
5280 fills the screen, but not the status line, with blanks.

Status Line Function

The clear status line function is initiated by the KEYOP instruction (op code C7)
for keyboard operation hex 11. This function is always handled by the 5280.
The 5280 fills the status line except the first position with blanks. The partition
number in the first position is not cleared.

If this function is performed when an ENTR command is being processed, the
status line counters and the field shift position will not be completely updated
until the cursor enters the next field in the screen format.

The Command Key

The command function is initiated when the operator presses the Cmd (Command)
key. The Cmd key is a prefix key, valid at all times. When the Cmd key is pressed,
the 5280 sets a flag in the keyboard/display I0B. When the next key is pressed,
except for the Shift key, Reset key, the Hex key, Console key, or another Cmd key,
external status is posted. If the keystroke following the Cmd key is lowercase,
external status condition 2 is posted. If the keystroke following the Cmd key is
uppercase, external status condition 3 is posted. After the Cmd key has been
pressed, the Reset key will clear the fact that the Cmd key has been pressed.

Cursor Movement

Cursor movement is initiated when the operator presses one of the cursor movement
keys. Cursor movement keys, which are located on the left of the keyboard, can
move the cursor to the right (), to the left (<), up (1) or down (). Or the New-
line key at the right of the keyboard (<~) can move the cursor to the first posi-
tion of the next line. The cursor movement keys are valid only while an ENTR
command is being processed in enter, update, verify, or special verify modes, and
the current screen format definition is for a format level zero field. (Field correct
mode is not valid for a format level zero field.) If a cursor movement keystroke
moves the cursor out of the format level zero field, an error occurs.

In verify mode, the cursor movement keys to move right, down or to the next line
are not valid. The keys to move the cursor left and up are valid, and blank the
screen positions through which the cursor moves.

Note: The — (Cursor Right) and < (Cursor Left) keys are normally redefined in
the scan code translated table to invoke the character advance and character back-
space functions, respectively.

Delete Function

The delete function is initiated when the operator presses the Del (Delete) key.
The Del key is valid only when an ENTR command is being processed. The Del
key is not valid in a blank check field or in a mandatory fill field if the mandatory
fill check is enabled.

In enter, update, special verify, and field correct modes, when the Delete key is

pressed the character above the cursor is deleted. All characters within the field
to the right of the cursor are shifted one position to the left. A blank is inserted
at the end of the field. The cursor position does not change.

If the cursor is within a picture check subfield when the delete key is pressed, the
delete function treats the subfield as a field. If the cursor is within a field defined
as format level zero, the delete function treats the total number of 1-byte alpha-
meric fields as one field. ‘

In verify mode, the Del key is not valid.

Duplicate Function

The duplicate function is initiated when the operator presses the Dup {Duplicate)
key. The Dup key is valid only when an ENTR command is being processed, and
when the Dup enable flag is set to zero. The Dup key is never valid if the system
is awaiting field exit or record advance. How the Dup key is processed depends
upon the current field definition.

In enter, update, special verify, and field correct modes, if the field definition does
not specify a main storage duplicate field, data is duplicated into the current field
from corresponding field positions in the previous record buffer. The duplication
begins at the current cursor position and continues to the end of the field. If the
field is a right-to-left field, the duplication begins at the current cursor position and
continues to the leftmost position of the fieid. A field advance function is then
performed.

If the field definition specifies a main storage duplicate field, data is duplicated
into the field as described above, except that the data is duplicated from the

main storage location specified in the format. ~

If the field definition specifies a format level zero, only the current position is
duplicated from the previous record.

Keyboard Functions 323

324

No character set checking is performed on data duplicated into the current field.

In vorifis m mati
i verity mode, automatic v!

cursor position to the end of the field, or, for a right-to-left field to the leftmost
position of the field. If the field is a main storage duplicate field the data in the field
in the current record buffer is verified with the corresponding data in the main
storage location. If the field is not a main storage duplicate field, the data is

verified with the corresponding data in the previous record buffer. If the verifica-
tion is successful, a field advance function is performed.

erification is performed on the data from the current

el LN we Gala

If the field definition specifies format level zero, the data at the current field
position in the current record buffer is compared with the corresponding position
in the previous record buffer.

If the verification is not successful, a verify mismatch error occurs. The cursor

stops at the position where the mismatch occurred, the entire field is displayed on
the screen. |f the operator presses the Reset key, and then presses the Dup key

again, the character is replaced with the corresponding character from the previous
record buffer or the main storage location. The automatic verification then continues
to the end of the field unless the field is a format level zero field.

Field Advance Function

The field advance function is initiated when the operator presses the ! (Field
Advance) key and is valid only when an ENTR command is being processed.

In enter and update modes, when the —1 (Field Advance) key is pressed the 5280
checks the characters that have been entered into the field to make sure they
satisfy the attributes (except character set) that are specified in the screen format
definition for the field. If they do not, an error occurs. If they do, the cursor
moves to the first position of the next input field; the first position is the leftmost -
position in a left-to-right field and the rightmost position in a right-to-left field.
Intervening automatic fields, prompts, and display attributes are processed. Fields
with RG (return to program) exits specified cause external status condition 4. If
the Field Advance key is pressed while the system is awaiting field exit, the await-
ing field exit condition is cleared and the field advance is performed. If processing
is complete on the last input field of the screen format and the auto-enter flag is
on, a record advance is performed. Otherwise, the system sets the awaiting record
advance condition.

If the 1 (Field Advance) key is pressed while the system is awaiting record advance,
an error occurs unless the auto-enter flag is on. If the auto-enter flag is on, a
record advance is performed.

If the field is a format level zero field, the field advance is processed as a character
advance.

In special verify mode the field advance is processed as described above except
that the characters in the field are not checked to make sure they satisfy the
attributes specified in the screen format.

Field

In field correct mode, the checks are made as in enter mode. If the checks are
successful, the field is blanked on the screen, the cursor moves to the first position
of the field, and the mode returns to verify mode. The field can then be verified.

In verify mode, the | (Field Advance) key is valid only after a constant insert
verify error or when the system is awaiting field exit or record advance. If await-
ing record advance or field exit, the field advance key is processed as for enter
mode except that the attribute checks are ignored. If the | (Field Advance) key
is pressed after a constant insert verify error has occurred, after the operator has
pressed the Reset key the constant in the current record buffer remains unchanged
and a field advance is performed.

Backspace Function

The field backspace function is initiated when the operator presses the I« (Field
Backspace) key, and is valid only when an ENTR command is being processed.

In enter, update, and special verify modes, if a 1< (Field Backspace) key is pressed
while the system is awaiting the field-exit or record advance, the condition is
cleared and the cursor is repositioned to the first position of the field.

If the I+ (Field Backspace) key is pressed when the cursor is in any field position
other than the first position of the field, the cursor is repositioned to the first
position of the field.

If the I« (Field Backspace) key is pressed when the cursor is in the first position
of the field, the cursor is repositioned to the first position of the preceding input
field. Intervening automatic fields, prompts, and display attributes are ignored.
Intervening RG (return to program) exit specifications are posted with the external
status condition 5. If the mode is special verify, the data field in which the cursor
was positioned when the key was pressed is blanked, and intervening automatic
fields are blanked.

If the I« (Field Backspace) key is pressed when the cursor is in the first position
of the record, format specifications between the first position and the start of the
screen format are processed in the backward direction, then in the forward direc-
tion. A record backspace is not performed.

If the field definition specifies format level zero, the field backspace is processed
as a < (Character Backspace) key.

In field correct mode, if the system is awaiting field exit, the |+ (Field Backspace)
key is processed as described for enter mode.

If the I+ (Field Backspace) key is pressed when the cursor is in any position other
than the first position, the key is processed as described for enter mode. [f the key
is pressed when the cursor is in the first position of the field or of the record, the
key is processed as described for enter mode except that the entire field is blanked
on the screen and the mode returns to verify mode.

In verify mode, if the 1< (Field Backspace) key is pressed while the system is await-
ing field exit or record advance in a right-to-left field, the condition is cleared, the
field is blanked on the screen, the cursor remains in the rightmost position of the
field and the entire field must be reverified.

Keyboard Functions

325

326

If the 1< (Field Backspace) key is pressed under any other condition, the key is
processed as described for enter mode except that any data character that is back-
spaced over is blanked on the screen, and reverification is required in order to
advance over the position.

If the field definition specifies a format level zero, the 1< (Field Backspace) key
is processed as for al< (Character Backspace) key.

Field Correct Function

The field correct function is initiated when the operator presses the lowercase
Field Corr (Field Correct) key, and is valid only in verify mode. [t is not valid
for a format level zero field.

If the Field Corr key is pressed when the cursor is in an automatic field, verifica-
tion of the field is not done automatically.

When the Field Corr key is pressed and a constant insert verify error has not oc-
curred, the cursor is repositioned at the first input position of the current field and
the field is filled with blanks in the current record buffer and on the screen. The
operator can enter data into the field as in enter mode. Auto dup and auto skip
functions are not performed. Character set and field edit checks are performed.
When the field is exited in the forward direction, the cursor is repositioned to the
first position and the mode returns to verify mode.

Following a constant insert verify error, the operator can press the Reset key, then
press the Field Corr key. The constant insert data from the main storage location
specified in the screen format is placed into the current record buffer. This data
overwrites the data in the buffer. A field advance is then performed.

Field Exit Function

The field exit function is initiated when the operator presses the Field Exit or the

. Field+ key, and is valid only when an ENTR command is being processed.

In enter, update, special verify, and field correct modes, if the key is pressed

while the system is awaiting field exit, the awaiting field exit condition is cleared
and a field advance is performed. If the key is pressed while the system is awaiting
record advance, an error occurs unless the auto-enter flag is on. If the auto-enter
flag is on, a record advance is performed.

® Right-Adjust Field: For a right-adjust field (that is not signed numeric), the
right-adjust function is performed before the field advance occurs. The data
in the field to the left of the cursor is right-adjusted on the screen and in the
current record buffer. The leftmost positions are filled with alphabetic or
numeric fill characters, according to the field definition. The zone of the
rightmost byte in the buffer is not changed. If the key is pressed when the
cursor is in the leftmost position of the field, the entire field is filled with the
fill characters.

® Signed Numeric Field: [f the field is a signed numeric field, the right-adjust
function is performed as described above for a right-adjust field, except that
the rightmost position of the field on the screen is blank, which represents a
positive sign. The data in the field is right-adjusted to the position to the right
of the blank.

® All Other Fields: When a Field Exit key is pressed when the cursor is in any
other field, and the system is not awaiting field exit or record advance, it is
processed as for the skip function.

In verify mode, if a Field Exit key is pressed while the system is awaiting record
advance, it is processed as described for enter mode. If the system is not await-
ing record advance, the verify function is determined by the field definition.

® Right-Adjust Field or Signed Numeric Field: If the field is specified as right-
adjust or signed numeric, the key may be pressed only when the cursor is in the
leftmost position of the field or when the system is awaiting field exit. When
the key is pressed when the cursor is in the leftmost position, the field is verified
for the appropriate fill characters. When the key is pressed when the system
is awaiting field exit, and if the rightmost character of the field has been com-
pletely verified, a field advance is performed. If only the digit portion of the
rightmost character has been verified, the zone portion is verified against hex F.
If it does not match hex F, a verify sign mismatch error occurs. If the'operator
presses the Reset key and then presses the Field Exit key again, the zone of
the rightmost character is changed to hex F. If the field is signed numeric,
the minus sign on the screen is replaced by a blank. If the field is not signed
numeric and not numeric shift, the negative numeric graphic in the rightmost
position is replaced with the routine numeric graphic. A field advance is then
performed.

® All Other Fields

In all other fields the verify action of the key is as for the Skip key.

Field Exit Minus Function

The field exit minus function is initiated when the operator presses the Field-
key, and is valid only when an ENTR command is being processed.

In enter, update, special verify, and field correct modes, if the key is pressed while
the system is awaiting record advance an error occurs uniess the auto-enter flag

is on. If the auto-enter flag is on, a record advance is performed. If the system is
not awaiting record advance, the processing of the Field- key depends upon the
field definition.

Keyboard Functions

327

328

® Digits Only Right-Adjust or Numeric Only Right-Adjust: When the system is

not awaiting field exit, the data to the left of the cursor is right-adjusted to the
rightmost position of the fieid on the screen and in the current record buffer.
The leftmost positions of the field are filled with the appropriate fill characters.
After the right-adjust, if the rightmost character of the data is not a digit (0-9)
an error occurs. Otherwise, the negative graphic for the digit is placed into the
rightmost field position on the screen, and a hex D is placed into the zone
portion of the rightmost byte in the current record buffer. Then a field advance
is performed. If the Field- key is pressed when the cursor is in the leftmost
position of the field, the function is processed as described above except that
the field is filled with the appropriate fill character before the negative

graphic and the hex D zone are processed. If the system is awaiting field exit,
the function is processed in the same way except that no right-adjust occurs.

Digits Only or Numeric Only (Not Right-Adjust): For a digits-only or numeric-
only field that is not right-adjust, and while not awaiting field exit, the posi-
tions to the right of the cursor except for the rightmost position are filled with
blanks on the screen and in the current record buffer. The negative zero graphic
is placed in the rightmost field position on the screen, a negative zero (hex DO)
is placed into the rightmost byte in the buffer, and a field advance is performed.
If awaiting field exit, the key is processed in the same way except that an

error occurs unless the rightmost data character in the field is a digit (0-9).

The zone of the digit is set to hex D in the current record buffer and the
negative zero graphic is displayed on the screen.

Numeric Field: For a numeric field, the Field- key is valid only if the field
exit- flag (bit 0 of byte hex 3D into the 10B) is set to 0. If the field exit-
flag is zero, the function is processed as for a numeric-only field except that
the negative graphic is not displayed on the screen. If the field exit- flag is
not zero, the Field- key is not valid in the field; an error occurs if it is pressed
while the cursor is within the field.

Signed Numeric Field: If the system is not awaiting field exit, the data to the
left of the cursor is right-adjusted to the next to the rightmaost position of the
field on the screen and to the rightmost position of the field in the current
record buffer. The leftmost positions are filled with the appropriate fill character.
After the right-adjust, if the rightmost character is not g digit (0-9) an error is
posted. Otherwise, the zone of the rightmost digit is set to hex D in the cur-
rent record buffer, a minus sign is displayed on the screen in the sign (rightmost)
position of the field, and a field advance is performed. If the system is

awaiting field exit, the processing is the same except that no right-adjust is
performed. If the key is pressed while the cursor is in the leftmost position of
the field, the processing is the same except that the field is filled with the
appropriate fill character before the sign is processed.

All Other Fields: The Field- key is not valid for any other field definition for
these modes.

In verify mode, if the system is awaiting record advance when the Field- key is
pressed, an error occurs unless the auto-enter flag is on. If the auto-enter flag is
on, a record advance is performed. [f the system is not awaiting record advance,
the function is processed depending upon the field definition.

Signed Numeric, Digits Only Right-Adjust, Numeric Only Right-Adjust: For a
signed numeric, digits-only right-adjust, and numeric-only right-adjust field, the
Field- key is valid only when the cursor is in the leftmost position of the field
or when the system is awaiting field exit.

Awaiting Field Exit: If the key is pressed when the system is awaiting field
exit, the zone portion of the rightmost byte in the current record buffer is
verified for a hex D. If the zone is not a hex D, a verify sign mismatch error
occurs. If the operator presses the Reset key, and then presses the Field- key
again, the zone is changed to hex D in the buffer and a field advance is per-
formed.

If the field is signed numeric and the rightmost byte is hex D0-D9 the negative
graphic for the digit is displayed in the rightmost field position on the screen,
or if it is hex DA-DF, a blank is displayed in the rightmost field position on
the screen; a field advance is then performed.

If the field is numeric-only or digits-only and the rightmost byte is hex D0-D9,
the negative graphic for the digit is displayed in the rightmost field position on
the screen, or if it is hex DA-DF, no change is made on the screen; a field advance
is then performed.

Leftmost Position: If the Field- key is pressed when the cursor is in the left-
most position of the field, all field positions except the rightmost position are
verified for the appropriate fill character. The digit portion of the rightmost
byte in the buffer is verified for the digit portion of the appropriate fill char-
acter. The zone portion is verified for a hex D. If the verification is successful,
the rightmost field position on the screen displays as described above. If the
zone of the rightmost character is not hex D, an error occurs and the zone may
be changed to hex D as described above. [f verification other than sign verifi-
cation fails, an error occurs and the operator must press the Reset key, then
reenter the field positions from the error keystroke to the end of the field.

Digits Only or Numeric Only (Not Right-Adjust): If the field is digits-only or
numeric-only but right-adjust is not specified, and if the system is awaiting
field exit the Field- key is processed as for a digits-only or numeric-only
right-adjust field. If the system is not awaiting field exit when the Field- key
is pressed, the positions to the right of the cursor except for the rightmost
field position are verified for blanks. If a nonblank character is encountered,
the cursor stops at that position, the remainder of the field is displayed, and a
verify mismatch error is reported. If the operator presses the Reset key and
then presses the Field- key again, a blank replaces the character at that position
and the blank verification continues. The rightmost byte of the field in the
buffer is verified for a negative zero {(hex D0). If it is not a negative zero, the
character is displayed on the screen and a verify mismatch error is reported.
If the operator presses the Reset key and then presses the Field- key again, a
negative zero is placed into the rightmost byte in the buffer and displayed in
the rightmost field position on the screen. After the rightmost position is
successfully verified, a field advance is performed.

Keyboard Functions

329

330

® Numeric Field: For a numeric field, the Field- key is valid only if the field
exit minus flag (bit 3 of byte hex 3D into the |OB) is zero. The function is
processed as described above for the numeric-oniy fieid except that the negative
graphic is not displayed.

® The Field- key is not valid for any other field definition.

Field Exit Minus/Dash Function

The field exit minus/dash function is initiated when the operator presses the
lowercase dash key on the data entry keyboard.

In all modes, if the cursor is positioned within a field in which the field- key is
allowed [a signed numeric, numeric only, digits only, and (if the field- key enable
flag is 0) a numeric field] , a field minus function is performed. Otherwise, this
key is processed as a dash/minus data key.

Hex Function

The hex function is valid only when an ENTR command is being processed. It is
not valid for a hex field or when the system is awaiting field exit or record advance.

In all modes, the hex function is selected with a command key sequence from the
operator or by the application program issuing a keyboard operation (KEYOP)
for a keyboard function. When the hex function is selected, the keyboard is
placed in hex mode. The next two keystrokes must be 0-9 or A-F, and are
combined to make one EBCDIC value. This EBCDIC value is then processed as

a data character. It is not necessary to use the shift key to select the hex
characters.

If the operator presses the Reset key after the Cmd key and the Hex key have
been pressed, or after the first of the two hex character keystrokes has been
pressed, no data is processed and hex mode is cleared. If a key other than the

0-9 or A-F key is pressed following the Cmd key and the Hex key, an error occurs.
The operator must press the Reset key; hex mode is cleared and no data is
processed.

Insert Function

The insert function is initiated when the operator presses the Ins (Insert) key. The
Ins key is valid only when an ENTR command is being processed. The Ins key is
not valid in a field defined as mandatory fill.

In enter, update, special verify, and field correct modes, when the Ins key is pressed
the keyboard is placed in insert mode. The insert mode symbol is displayed in
position 14 of the status line. When the operator presses a data key, the data
character is inserted into the field in the current cursor position. All field positions
to the right of the cursor, and the cursor and character above the cursor, are shifted
one position to the right. If the character that would be shifted out of the end of
the field is not blank, an error occurs. If the cursor is in the rightmost position of
a field when an attempt is made to insert a character, an error occurs. Any attempt
to exit a field while in insert mode causes an error. The operator can cancel insert
mode by pressing the Reset key.

If the cursor is within a picture check subfield when the Ins key is pressed, the
insert function treats the subfield as a field. |f the cursor is within a field defined
as format level zero, the insert function treats the total number of 1-byte alpha-
meric fields as one field.

If the first of two hex digits has been entered into a position of a hex field when
the Ins key is pre