
--- ------ - ---- ---- - ---- - - ----------_ .-

(

SC21-7804-1
S5280-28

IBM 5280
Distributed Data
System
DEI RPG User's Guide

Program No_ 5708-DEI

,
• •

=== -:-:. == =- SC21-7S04-1
.. ~ -- 55 = ::-:. ::: 280-28 ------~-.-

IBM 5280
Distributed Data
System
DEI RPG User's Guide

Program No. 570S-0El

Preface

This manual is intended as a guide to programming
techniques that facilitate your use of DE/RPG. The IBM
5280 Introduction to Df/RPG should be read first. For
details about the syntax of the language and specific
details about its functions, see the IBM 5280 Df/RPG
Reference Manual.

This manual has seven parts. Chapters form specific
descriptions within each part. It is recommended that
the first time you use this manual, you read it from front
to back. Thereafter, you may want to use the index or
table of contents to locate a specific subject.

Second Edition (June 1981)

Program listings have been included to illustrate various
functions. Symbolic displays and diskettes have been
provided to demonstrate what appears on the displays
and what appears on the diskette data set.

Note: This manual follows the convention that he
means he or she.

This is a major revision and obsoletes SC21-7804-O and incorporates SN21-8195.
Because the changes and additions are extensive, this manual should be reviewed in its
entirety.

Changes are periodically made to the information herein; these changes will be
reported in technical newsletters or in new editions of this publication.

This publication is for planning purposes only. The information herein is subject
to change before the products described become available. Also, this publication
contains examples of data and reports used in daily business operations. To
illustrate them as completely as possible, the examples include the names of
individuals, companies, brands, and products. All of these names are fictitious
and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Use this publication only for the purposes stated in the Preface. It is possible
that this material might contain reference to, or information about, I BM products
(machines and programs), programming or services that are not announced in
your country. Such references or information must not be construed to mean
that I BM intends to announce such I BM products, programming, or services in
your country.

Publications are not stocked at the address below. Requests for copies of IBM
publications and for technical information about the system should be made to
your IBM representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use
the Reader's Comment Form at the back of this publication to make comments
about this publication. If the form has been removed, address your" comments to
IBM Corporation, Information Design and Development, Department 997,11400
Burnet Road, Austin, Texas 78758. IBM may use and distribute any of the information
you supply in any way it believes appropriate without incurring any obligation whatever.
You may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1980, 1981

•

INTRODUCTION • • . .
How to Use the IBM 5280 DE/RPG Manuals
How to Read the Listings in this Manual

PART 1. CREATING DATA SETS .

CHAPTER 1. CHARACTERISTICS OF DATA-ENTRY
PROGRAMS THAT USE TRANSACTION FILES ...

Modes of Operation Available for Programs Using
Transaction Files

Manual Selection of an Operating Mode.
Automatic Selection of the Correct Format for the

Manually Selected Mode . • • • • • • • •
Key-Initiated Modes.
Program Functions Used with Transaction Files . . .
Special Job Functions for Use with Transaction Files

Manually Copying Records for Programs Using
Transaction Files.

How the Usage Column Entries Affect Programs Using
Transaction Files

CHAPTER 2. CHARACTERISTICS OF APPLICATION
PROGRAMS THAT USE SUBROUTINES ON THE
C-SPECI FICA TI ONS •• • • . • • . • . . . • .

Execute Mode-The Only Mode Available For Use With
Application Programs

Organizing Data in Data Sets Using a Background
Program

Controlling Data Set Update Through Subroutines
Controlling the Input/ Output Devices

Controlling the Display
Controlling the Diskette
Accessing Communications

Combining Data-Entry and Background Programs

PART 2. FORMATTING DATA FOR DISPLAYS AND
DISKETTES

CHAPTER 3. CONTROLLING DISPLAY AND DISKETTE
FORMATS VIA THE Z-SPECIFICATIONS •.•...•

Samples Showing Various Types of Entry Format
Specifications

Samples Showing Various Types of Review Format
Specifications

Using the Z-Specification to Control Diskette Formats
For a Transaction File

CHAPTER 4. CONTROLLING DISPLAY AND DISKETTE
FORMATS VIA THE C-SPECIFICATIONS •

Calling Subroutines From the Z-Specification .
Calling a Subroutine From the A-Specification

• v
· v
· vi

1

13

16
16

18
20
22
22

22

25

27

31

32
35
37
37
40
42
43

47

49

50

54

61

65
67
70

Contents

CHAPTER 5. FORMATTING TECHNIQUES FOR THE
DISPLAYS. 73

Using Different Display Formats For Entry and Review
Modes 77

Using the Position Columns to Create Prompting
Text 79

Using the Display Attributes to Facilitate Entry 82
Using EDTCDE With Display Formats 86
Using CLRL and SLNO to Display Multiple Records 88

CHAPTER 6. FORMATTING TECHNIQUES FOR THE
DISKETTE DATA SET 91

Merging Fields From Multiple Records 92
Positioning Fields Within a Data Set . 95
Converting Numeric Data 97

PART 3. USING INDICATORS 99

CHAPTER 7. USING INDICATORS FOR DATA-ENTRY
PROGRAMS. 101

CHAPTER 8. USING INDICATORS FOR APPLICATION
PROGRAMS. 105

Operations that Set Indicators and Operations
Conditioned by Indicators 106

A Sample of Using Indicators With I/O Operations 107
A Sample of Using Indicators with Arithmetic Operations . 110
A Sample of Using Indicators with Branching Operations . 113
Complex Use of I ndicators on the C-Specifications . .114

PART 4. ACCESS METHODS . 117

CHAPTER 9. SEQUENTIAL ACCESS METHODS 123
Sequential Access of Nonkeyed and Nonindexed

Data Sets. 124
Sequential Access of Keyed and Nonindexed Data Sets 126
Sequential Access of Indexed Data Sets 127

CHAPTER 10. DIRECT ACCESS METHODS . 129
Direct Access for Nonkeyed and Nonindexed Data Sets 129
Direct Access For Keyed and Indexed Data Sets 130

PART 5. DATA TABLES 135

CHAPTER 11. USING DATA TABLES IN DATA-ENTRY
PROGRAMS. 137

Considerations About Declaring Indexes 137
Arranging Data in Tables . 139
Arranging Tables in Data Sets 141

CHAPTER 12. USING ARRAYS IN APPLICATION
PROGRAMS. 143

Using LOKUP on the C-Specifications . 143
Using ARRAYNAME,INDEX as Fields. 144
Using the MOVEA Operation. 145

Contents iii

PART 6. PRINTING 147

CHAPTER 13. UNFORMATTED PRINTING FOR
DATA-ENTRY PROGRAMS 149

CHAPTER 14. FORMATTED PRINTING FOR
APPLICATION PROGRAMS 151

Designing a Print Data Set to be Used with an
Existing Form 154

Designing a Print Data Set That Designs the Form
to be Used 162

PART 7. USING CALCULATIONS 167
Using Named Fields in Calculations 168
Using Counters in Calculations 170

PART 8. CHAINING FROM JOB TO JOB 173
Using EOJ on the Z-Specification 173
Using a Constant Name to Select the Next Program 174
Using a Variable Name to Select the Next Program 175

GLOSSARY. 177

APPENDIX A. A-, Z-, AND C-SPECIFICATION FORMS. . 179

INDEX .. 185

iv

Before beginning this manual you should have an understanding of the
following:

• The relationship of the various DE/RPG manuals

• The listings used as samples in this manual

Each of these topics is described in the following text.

HOW TO USE THE IBM 5280 DE/RPG MANUALS

Three manuals have been provided to describe the DE/RPG (data entry with
RPG subroutines) program product. The following list indicates the audience
for which each manual was written, an overview of the manual contents, and a
set of objectives for each manual. Review this list before beginning to use this
manual to determine which manual provides background necessary for your
understanding of the subject.

IBM 5280 Introduction to DEjRPG, SC21-7803. The audience for this manual
is anyone who is either unfamiliar with data entry or with this program product
and who needs to understand the data-entry functions of the program product.
The manual takes the reader through the entire process of creating a simple
data-entry program (beginning with designing the displays to be used and
concluding with using the program to enter data). A second data-entry
program is included to help the reader understand some of the more advanced
data-entry functions provided. The most complex subject that is included in
the manual is the use of tables. The objective of the manual is to familiarize an
inexperienced user with some basic data-entry functions and operations
provided by DE/RPG and to provide the user with enough information to allow
him to create a basic DE/RPG program. The manual does not contain any
information about the calculation specification operations available with
DE/RPG.

IBM 5280 DEjRPG User's Guide, SC21-7804. The audience for this manual is
a person who has some knowledge of either DE/RPG or of programming
concepts (preferably one who has used another program language). The
manual describes characteristics of the language and illustrates how its
functions can be applied to typical business applications. The topics progress
from the simple to the complex. The objective of the manual is to provide the
user with an understanding of how DE/RPG can be used to solve
business-related problems. Since some of the more powerful functions
provided with DE/RPG are the result of combining operations, another
objective of the manual is to describe some of these combined operations and
to show how they can be used.

Introduction

Introduction v

vi

The User's Guide has been organized to allow you to find the specific topic you
need. There are seven parts within the manual; each part is marked by a title
page. When you read the manual for the first time, read through all the parts
to understand the organization of the program product and of the manual.
Once you are familiar with the product, you can refer directly to the specific
descriptions you need. The User's Guide is written to present topics related to
the DE/RPG program product; therefore, it does not include information about
operating the system. For this type of information, see the IBM 5280 DE/RPG
Reference Manual, SC21-7787, the IBM 5280 Operator's Guide, GA21-9364,
and the IBM 5280 System Concepts manual, GA21-9352.

IBM DE/RPG Reference Manual, SC21-7787. The audience for this manual is
all users of the DE/RPG program product. The content of the manual includes
detailed descriptions of the characteristics, functions, and operations provided
by the program product. The objective of the manual is to provide all the
information required for the user of the program product to code and debug
programs.

HOW TO READ THE LISTINGS IN THIS MANUAL

To help you learn how to effectively use DE/RPG, this manual includes actual
program listings. These listings merge statements from the Z-, A-, and C­
specifications. They do not include column numbers or column heading information.
If you need to determine the location of a specific entry on the listings, use the back
of the Z- and A- specifications included in Appendix A to locate the column number
and then match that column number on the listing with the appropriate description
on the back of the specifications. The top markings on the backs of the specifications
match the characters on the listings. The bottom markings on the backs of the
specifications should not be used for reading the listings in this manual.

The following example illustrates how to use the listings and specifications in the
manner described:

1. Place the top of the Z-specification (back side) under the Z-specification
line in question. Align the leftmost side of the listing with the leftmost
character mark on the specification.

2. Locate the column number that identifies the character(s) you want to
identify (in this example, the characters are H2) II.

3. Match the column number with a column number heading on the back
side of the specification II. The description explains the entr{.

Note; The C-specification does not have descriptive information. To determine

the meaning for a particular column entry, find the column number in the
manner previously described and use the DE/RPG Reference Manual to locate
the column number heading and its description.

The backs of the Z- and A-specifications are included in case you do not have pads
of specifications available. If you need to use these forms, tear them out of the
manual.

•

0000lZ***.*********~
00002Z* PROGRAM 77.
00003Z***.*·*·*.******.***.********~
00004ZJ COUNTEX TFILEcDISKEll
00005Z H2EXMPLE iE
00006Z R H2
I' I I I I I I I III I I I I I I I IIII I I I I I I I II I I I I I I I I II I I I I I I I I II I I I I I I I I II I I I I I I I I II I I I I I I I I

1·10 11·20 21·30 31·40 1141.50 51·60 61·70 71·80

1-5 Identifies the source statement order. 31-32 Reserved.

6

7

8-9

10-17

Identifies the type of source statement.

Names the type of source statement:
--User comment
J-Job specification
blank-Format specification

The identification associated with this format:
1 through 9-A single numeric character 10.
AO through Z9-A two-character 10 consisting of
an alphabetic character followed by a numeric
character.

The narne used to:
- identify the job (J in column 7).

- identify the format or subroutine (blank in column
7).

Th columns are not used if column 21 contains an
R.

18-19 Reserved.

Not.: Columns 20-54 are not used if column 7 contains a J.

20 Specifies the number of times the format is repeated
before the next format is used:
1 through 9-Repeat the format for the specified

number of times unless the SEL FMT or NEXT
FMT key is pressed.

blank or N-Repeat the format until the SEL FMT or
NEXT FMT key is pressed.

21 Specifies how the format is used:
E-(Entry) used to enter and display data.
R-(Review) used to select a format for scan, update,

or verify of existing records.

22-37 Used for logical selection of a format. Multiple tests
are allowed. In enter mode, the format selected is
used to format the next record entered. In review
mode, the format selected ia used to display the
current record.

22 In review mode (column 21 contains an R), an A
specifies the lllHiing of two characters in the data
record to create a unique record identifier.

23-30 -POSnnnn identifies the position in the data record
to be tested, where nnnn is a numeric value from 1
to 1024.

33-34 The characters EQ or blank when a character to test
for is specified in position 35-37.

35-37 Specifies the character that controls format selection
if it matches the character in the data record.

38-44 Reserved.

fJ 45-46 Specifies the identification of the format used for the
entry or display of the next record. If columns 22-37
are specified, the format is selected when a match
occurs. If columns 22-37 are not specified in enter
mode (E in column 211. the format is selected when
the repeat count (column 21) is met or the NEXT
FMT key is pressed. If columns 22-37 are not
specified in review mode (R in column 211. the
format is selected if no previous match occurs.

47-54 Reserved.

55-80 Keywords that specify information used for jobs or
formats:
JOB sPIICificBtions (J in column 7):
CFILE (data setHncludes the COpy function in the

job. The parameter data set is the data set name
from which records will be copied.

OATE(-OMY/-YMO)-The format of the date available
in UOATE. The default is -MOY. where M =
month, 0 OK day, and Y = year.

EOITC(cuptd)-Five characters that define the editing
control for output fields, where'
- cu is a two-character currency symbol (default

= "$)
- p is the decimal point character (default = .1.
- t is the thousand separator character (default

= ,I.
- d is the date separator character (default = I).
The system default for this option is "$. .1 if

EOITC is not specified.
ENTRATR (attr ...)-Specifies the attributes that are

applied to all input/both fields only when the
fields are being entered, where attr is:

BL (blink)
CS (column separators)
HI (high intensity)
NO (nondisplay)
RI (reverse image)
UL (underline)

A combination of attributes can also be used.
EXITATR (attr ...)-Specifies the attributes that are

&pplied to all input/both fields after the fields
have been entered. See the ENTRATR for a
description of the attr parameter.

Introduction vii

viii

•

•

Part 1. Creating Data Sets

This part of the manual contains general information about creating diskette
data sets using DE/RPG; it consists of two chapters:

• Chapter 1. Characteristics of Data Entry Programs That Use Transaction
Files

• Chapter 2. Characteristics of Application Programs That Use Subroutines on
the C-Specifications

DE/RPG uses two basic kinds of programs to create data sets: (1) data-entry
programs and (2) application programs. Application programs can further be
subdivided into interactive and non interactive programs .

Data-entry programs are primarily for transcribing data from an existing source
into data sets on the diskette; they normally have limited preprocessing
requirements. This type of program allows interactive entry and provides data
checks and edits required for accurate entry. Data-entry programs also provide
operator-controlled keyboard functions that enhance the entry process.

Application programs are primarily for processing data. This type of program
does not generally require extensive operator entry. It often uses existing data
as input and performs automatic operations against the data with limited or no
operator interaction. Application programs normally process data rather than
create it. Interactive application programs can be used when a combination of
data-entry and processing functions is required.

Creating Data Sets

2

The samples in Figure 1 -1 illustrate the two basic program types. Sample A is
a data-entry program, Sample B is an interactive application program, and
Sample C is a noninteractive application program.

The displays and diskette data sets that result from using the programs are
also illustrated in the figure. Numeric keys" indicate the parts of the program
that produce the matching displays or data sets.

Sample A

00001Z***
00002Z* PROGRAM 1. FIGURE 1-1 SAMPLE A IN THE DE/RPG USER'S GUIDE
00003Z***
00004lJ SAMPLE1 TFILE(EXDATAST)II
00005Z A1BEGIN 1E A2
00006Z A2END 1 E Ai
00007Z R *POSi 'B' Ai
00008Z R *POSi 'E' A2
00009A F INPUT 37 DEVICE(CRT) DSPSIZ(6 80)
00010A R BEGIN
OOOilA FLDi
000i2A FLD2
OOOi3A FLD3
OOOi4A REND
00015A FLD4
000i6A FLD5
OOOi7A FLD6
00018A F EXDATAST
00019

1
30

6

1
6
9

37

I
I
I

I
21
21

Sample B

DINSERT('B')

OPMT(CUSTOMER NAME)
F'MT(NUMBER)

II INSERT ('E ')
F'MT(PAYMENT) II F'MT (OUT STAND I NG BALANCE)
DEVICE(DISK X'4000')

00001Z***
00002Z* PROGRAM 2. FIGURE 1-1 SAMPLE B IN THE DE/RPG USER'S GUIDE
00003Z***
00004ZJ SAMPLE1
00005Z A1SUBCON
00006A
00007A
00008A
00009A
00010A
00011A
00012A
00013A
00014A
00015A
00016A
00017A
00018A
00019A
00020A
00021A
00022A
00023A
00024C
00025C
00026C
00027C
00028C
00029C

1E
F INPUT
R BEG

FLD1
FLD2
FLD3

RENDING
FLD4
FLD5
FLD6

F EXDATAST
R BEGIN

FLD2
FLD3
FLD1

REND
FLD6
FLD4
FLD5

SUBCOt-'

Figure 1·1 (Part 1 of 4). Program Types

37

1
30

6

1
6
9

37

BEGSR

I
I
I

I
21
21

EXFMTBEG
EXFMTENDING
WRITEBEGIN •
WRITEEND .:.
ENDSR

A1
DEVICE(CRT) DSPSIZ(6 80)

D INSERT (, B')

fJ
PMT (CUSTOMER NAME)
F'MT(NUMBER)

II INSERT ('E')
PMT(PAYMENT) II PMT (OUT STAND I NG BALANCE)
DEVICE(DISK X'4000')

1
31
37

*

*

•

Sample C
00001Z***
00002Z* PROGRAM 3. FIGURE 1-1 SAMPLE C IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ NONINT
00005Z A10UT
00006A
00007A
00008A
00009A
00010A
00011A
00012A
00013A
00014A
000i5A
00016A
00017A
00018A
00019A
00020A
0002iA
00022A
00023A
00024A
00025C
00026C
00027C
00028C
00029C
00030C
00031C
00032C

N01
N01
N01

1E
F MAST1
R BEG

FLD1
FLD2
FLD3

F MAST2
RENDING

FLD4
FLD5
FLD6

F EXDATAST
R BEGIN

FLD2
FLD3
FLD1

REND
FLD6
FLD4
FLD5

N02
N02
N02

OUT
LOOP

Figure 1-1 (Part 2 of 4). Program Types

BEGSR
TAG

37

1
30

6
16

i
6
9

37

READ BEG
READ ENDING
WRITEIcEGIN ...
WRITEEND U
GOTO LOOP
ENDSR

EOJ
DEVICE(DISK X'4000')

DEVICE(DISK X'4000')

DEVICE(DISK X'4000')

01
02

Creating Data Sets 3

4

II o 0001 A 40

CUSTOMER NAME

B •••••••••••••••••••••••••••••

fJ o 0001 A 40

NUMBER

B*****************************

l~ ________________ J
II o 0001 A 40

PAYMENT

E ••••••

l~ _________________ J
II o 0001 A 40

OUTANDiNG pALANCE

*indicates data

... indicates the length of an unfilled field

F iQure 1-1 (Part 3 of 4). Program Types

Data Set Resulting from the Program in Sample A

.

• I _ •. _________ ~ FLD6 S E S FLD5 \

Data Set Resulting from the Programs in Sample B and Sample C

Figure 1-1 (Part 4 of 41. Program Types

Creating Data Sets 5

6

The data sets that result from the programs in Figure 1-1 contain the same
fields but in a different sequence. The sequence of the fields in the data sets
is not an important difference in the programs. It is possible for the program
in Sample A to produce a data set exactly like that produced by the program in
Sample B or Sample C. The important difference in the programs is the way
that they are executed by the operator. Although the programs produce the
same displays (except for Sample C which has no display) and similar data
sets, their execution is different.

This part of the manual describes the differences in program types offered by
DE/RPG. To understand these differences, you must first understand some
basic information about the way the IBM 5280 system works.

The IBM 5280 system uses partitioned areas of user storage for the execution
of DE/RPG programs. Figure 1-2 illustrates this storage area division.

..

Designated as
Keyboard 3

The IBM 5281 Data Station

Foreground Partitions

Figure 1-2. A Sample Partition Division of Main Storage

The IBM 5286 Dual Programmable
Data Station

Partitioned Main Storage
for the IBM 5286

Common Area

15 K Bytes

First partition linked to Keyboard 1

10K Bytes

Designated as
Keyboard 2

A data-entry program requiring operator
entries is in this partition.

Second partition linked to Keyboard 2

11 K Bytes

A data-entry program requiring operator
entries is in this partition.

Third partition linked to Keyboard 3

12 K Bytes

An interactive application program is in
this partition. It requires operator interaction.

Background partition

16 K Bytes

A noninteractive application program is
in this partition. It requires only limited
operator interaction.

Creating Data Sets 7

8

There are two kinds of partitions: foreground and background. Each data
station has its own foreground partition. The background partitions are not
associated with a particular data station; they can be used by any operator
using any data station in the system.

All programs that require extensive operator interaction should be used in a
foreground partition. The foreground partition has control of the keyboard and
display until it temporarily relinquishes its control to a background partition
upon request from a program in the background partition. Control returns to
the foreground partition once the requirements of the background partition
have been met.

Programs that can execute without keyboard input can be loaded into a
background partition and can be executed concurrently with a program in a
foreground partition. A background partition is an area of user storage that is
attached to the keyboard / display only when keyboard input is needed by the
program and only as allowed by the operator of the data station. Application
programs may be executed in either foreground or background partitions
depending on whether or not they will require operator attention during the
execution of the program.

Figure 1-3 illustrates the differences between program types in DE/RPG.

•

Interactive Data-Entry Program with
no Subroutines on the C-Specification

• I/O control is accomplished through
TFILE on the Z-$pecification.

• Keyboard functions such as AUXST,
AUXDUP, and CHECK(AD) and
CHECK(AS) are available.

• All keyboard modes are operational
(~nt~~, update! vEtrify, an~t rfitn.lrl).

• Records are automatically written into
a transaction data set as they are
completed (unless writing is
suppressed).

• Data set organization is always
sequential as entered.

• Limited resequencing of fields in a
record is available.

Interactive Application Program with
Subroutines on the C-Specification

• I/O control is accomplished through
EXFMT, READ, CHAIN, and WRITE
on the C-specification.

• Keyboard functions such as AUXST,
AUXDUP, and CHECK(AD) and
CHECK(AS) are available.

• The execute mode is operational.

Noninteractive Application
Program with Subroutine. on
the C-Specification

• I/O control is accomplished
through READ, CHAIN, and
WR ITE on the C­
specification.

• Not applicable.

• Not applicable.

• Records are written into a named data • Records are written into a
set only when specified by a WRITE named data set only when
(or UPDAT) on the C-$pecification. specified by a WRITE (or

UPDAT) on the C­
specification.

• Data set organization can be
sequential as entered, or by key, or
by index.

• Complex resequencing of fields in
multiple records is available.

• Data set organization can be
sequential by key, or by
index.

• Complex resequencing of
fields in multiple records is
available.

Figure 1-3 (Part 1 of 3). Comparison of Functions Based on Program Type

Creating Data Sets 9

Interactive Data-Entry Program with
no Subroutines on the C-Specification

• Program termination is through the
use of the End of Job key or by EOJ
on the entry format line.

• Display format control is
accomplished by testing and the next
format ID on the Z-specification.

Interactive Application Program with
Subroutines on the C-Specification

• Program termination is conditioned in
the subroutine and controlled by EOJ
on the entry format line.

• Display format control is
accomplished by EXFMT and
conditioning indicators on the C­
specification.

Noninteractive Application
Program with Subroutines on

the C-Specification

• Program termination is
conditioned in the subroutine
and controlled by EOJ on the
entry format line.

• Not applicable.

• CLRL is allowed to retain data from a • CLRL is not allowed. • Not applicable.
previous record on the display.

• EDTCDE for the display is not
allowed.

• CFILE for manual copying of records
is available.

• PRTFI LE for manual unformatted
printing of records is available.

• No formatted printing is allowed.

• No communications support is
provided.

• EDTCDE for the display is allowed to
provide punctuation editing (output
fields only).

• CFI LE is not available.

• PRTFI LE is not available.

• Not applicable.

• Not applicable.

• PRTFILE is not available.

• Formatted printing is allowed. • Formatted printing is allowed.

• Communications is provided for • Communications is provided
remote sending and receiving of data. for remote sending and

receiving of data.

Figur.1-3 (Part 2 of 3). Comparison of Functions Based on Program Type

10

..

Interactive Data-Entry Program with
no Subroutines on the C-Specification

• Indicator control is limited to
conditioning error messages and
CHECK(BY).

• Updating records is accomplished
manually through the update mode.

• Deleting records is accomplished
manually through the key sequence.

• Inserting records is accomplished
manually through the key sequence.

• The RANGET, XCHK, LOOK, and
SUBST table functions are available.

Interactive Application. Program with
Subroutines on the C-Specification

• Indicator control can condition a
variety of operations on the C­
specification.

• Updating records is accomplished
th~ough the UPDAT statement on the
C-specification.

• Deleting records is accomplished
automatically through the DELET
statement on the C-specification.

Noninteractive Application
Program with Subroutine. on
the C-Specification

• Indicator control can
condition a variety of
operations on the C­
specification.

• Updating records is
accomplished through the

UPDAT statement on the C­
specification.

• Deleting records is
accomplished automatically
through the DELET statement
on the C-specification .

• Not applicable. • Not applicable.

• The RANGET, XCHK, LOOK, SUBST, • The LOKUP table function
and LOKUP table functions are and the use of the
available.

• The LOKUP table function and the
use of the arrayname, index combina­
tion as a variable field is available.

arrayname,index combination
as a variable field is available.

** When tables are used on the
C-specification they are
considered RPG arrays and
not RPG tables.

Figure 1-3 (Part 3 of 3). Comparison of Functions Based on Program Types

Creating Data Sets 11

12

•

•

Chapter 1. Characteristics of Data-Entry Programs that Use Transaction Files

Programs that are created exclusively for data-entry purposes are created by
using transaction files. Transaction files include the use of a special keyword
(TFILE) on the Z-specification; the TFILE keyword evokes data~ntry functions
not otherwise available to the operator. The sample in Figure 1-4 illustrates
the steps involved in a program that uses a transaction file .

Characteristics of Data-Entry Programs that Use Transaction Files 13

14

00001Z***
00002Z* PROGRAM 4. FIGURE 1-4 IN THE DE/RPG USER'S GUIDE *
00003Z***D
00004ZJ SAMPLE1 TFILE(EXDATAST)
00005Z A1BEGIN fJ 1E A2
00006Z A2ENDII 1E A1
00007Z R *POS1 'B' Al
00008Z R *POS 1 ' E I A2
00009A F INPUT 37 DEVICE(CRT) DSPSIZ(6 80)
00010A DR BEGIN
00011A FLD1
00012A FLD2
00013A

DR
FLD3

00014A END
00015A FU)4
00016A FLD5

1
30

6

I
I
I

INSERT (, (c')

PMT(CUSTOMER NAME)
PMT(NUMBER)

INSERT ('E ')
PHT(PAYMENT)

00017A FLD6
00018A DF EXDATAST

1 I
6 21
9 21

37
PMT(QUTSTANDING BALANCE)
DEVICE(DISK X'4000')

00019

Storage

Most recent record not yet
completed is kept here.

A

J---D-iS-p-lay-~rd z

Program Using a
Transaction File

1. Specify a name for the transaction fi Ie to use. II

Diskette Data Set

2. Specify the first entry format to be used for the display. fJ
The record for this must be defined on the A-specification. II

3. When the record is complete, it is automatically written in the transaction data set. II
The data set name used with TFI LE must match a file line on the A-specification.

4. Specify the second entry format to be used for the display. II
The record for this format must be defined on the A-specificatlon.1I

5. When the record is completed, it is automatically written in the transaction data set. II
The name on the fi Ie descri ption line for the diskette must match the name used with TF I LE.

6. The program is complete. The operator can choose either format by a key sequence (FMT SEL and
ID number). The program can be terminated if the operator uses the End of Job key.

Note: If the operator wants to verify or update a record or add to the data set, the correct
format is automatically selected.

Figure 1-4. Characteristics of a Data-Entry Program

..
•

Programs using transaction files have the following characteristics:

• The enter, verify, update, and rerun modes and numerous key-initiated
functions such as auto record advance are valid.

• All programmed functions which are related to the keyboard are valid (this
includes keywords such as AUXDUP and AUXST and keyboard functions
such as auto dup, and auto skip).

• Writing records in the diskette data set is automatically accomplished at the
completion of each entry format unless the writing of the record is
suppressed. Part 2 describes this topic in detail.

• Special job functions such as manually copying records from other data sets
(CFILE) and unformatted printing (PRTFILE) are available. Part 6 provides
detailed information about unformatted printing .

• Limited record reformatting is available. You can only reformat fields within
a single record, and you must use all fields in the original record. Part 2
describes this topic in detail.

• Automatic format chaining and operator-controlled format selection is
available. Part 2 describes this topic in detail.

• All input/output control for the transaction data set is automatic (in other
words, the operator cannot control the input/output devices through the
transaction file).

Whenever a transaction file is used to create a data set, the result is a data set
that contains sequentially written records. Updating the data set is
accomplished when the operator initiates the update mode through the
keyboard. The status line on row 1 of the display informs the operator of the
current mode.

Characteristics of Data .. Entry Programs that Use Transaction Files 16

16

MODES OF OPERATION AVAILABLE FOR PROGRAMS USING TRANSACTION
FILES

The basic modes that are available for data-entry programs are enter, update,
verify, and rerun. Within the data-entry program, the entry format statement
and the review format statement on the Z-specification specify the record
arrangement to use for the modes. The entry format determines the record
arrangement to use during the enter mode. The review format determines the
record arrangement to use during the update, verify, and rerun modes.

The enter mode of operation allows an operator to provide initial data entries
into the record or to add new records to the data set using the entry format
display as a guide. The update mode allows the operator to change data in a
record. The verify mode helps the operator check the accuracy of the initial
entry by allowing him to reenter the data without seeing the initial entry; upon
the completion of the verified entry, the. initial entry is displayed and an error is
flagged if the entries do not match. The operator is given the choice of actions
to take: either to correct the initial entry or to accept it .. The rerun mode
automatically cycles the program through its automatic functions and
calculations. One use for this mode is to update all references to a field that
has been duplicated and now needs to be corrected. By correcting the initial
entry of the field and then using the rerun motte, all fields in which the initial
entry had been duplicated now contain the corrected value.

Manual Selection of an Operating Mode

The operator selects the initial operating mode through a keyboard entry in
response to the mode selection menu. The format to be used for the modes
can be selected either automatically through the next-format sequence defined
on the Z-specification or by manual operator selection.

The following text illustrates how an operator selects a mode for a data-entry
program and how the appropriate format is then selected either by the
program or by the operator.

Once a data-entry program has been written, compiled, and brought into a
foreground partition, the following display appears.

Note: Values that were present in the program appear on the display. The
displays show sample values.

l
«

l

Name of DE/RPG
Object Program

:r::::m naMe ~ ::s;:p 7
Device address: 4400

Par tit i on number: ""-

Press ENTER

When the Enter key is pressed, the mode selection menu appears.

o 0001 D 01 40

Select Initial Data Entry Mode

Options are:

L Enter-New/ErKJi.!(1. 3. Ver i fy 5. Rerun

2. Upda te 4. Entel--ADD

Select Option: 1 Press ENTER

Once the mode has been selected, the display advances to the data set open
prompt.

o 0030 N 01 F0 E

Enter data for data set open

Data set name: MASTER

Dev i ce addr"ess: 4400

Press ENTER

When the values for the display fields have been accepted or supplied and the
Enter key has been pressed, the file is automatically opened. The operation of
the program named in the first display takes control.

05-00]

Characteristics of Data-Entry Programs that Use Transaction Files 17

18

Automatic Selection of the Correct Format for the Manually Selected Mode

The entry and review statements on the Z-specification determine the format.
The sample in Figure 1-5 illustrates the coding required for the entry and
review modes.

00001Z***
00002Z* PROGRAM 5. FIGURE 1-5 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ SAMPLE
OOOO~1IrI10NE
OOOOt~2TWO

TFILE(EXP1)

00007Z
00008Z
00009A F
00010A R
00011A
00012A
00013A
00014A R
00015A
00016A
00017A
00018A

1E
1E

R *POS31
R *POS31

DISP1
ONE
FLD1
FLD2
FLD3
TWO
FLD4
FLD5
FLD6
FLD7

A2 SLNO(3)
A1 SLNO(3)

'0' A1 fJ
'T' A2

31 DEVICE(CRT) DSPSIZ(6 80)

15 I001001DSPATR(UL)
15 I002001DSPATR(UL)

1 I003001INSERT('O')

10 I001001DSPATR(UL)
10 I001030DSPATR(UL)
10 I001050DSPATR(UL)

1 I001080INSERT('T')
00019A F EXP1 31 DEVICE(DISK X'4000')
00020
00021
00022
00023
00024
00025

Figure 1-6. A Program Illustrating the Specification of the Entry and Review Modes

Formats ONE and TWO (with format IDs A1 and A2 respectively) are specified
in the entry format statements for the enter mode .; format IDs Aland A2
are specified in the review format statements II for the update, rerun, and
verify modes. Whenever the operator selects option 1 or option 5 on the mode
selection menu, format ONE is displayed first.

•

•

The following display illustrates the entry format named ONE.

o 0001 A 40

oD

l~ __________ ~J
Format ONE is displayed once, then the next entry format (TWO) is displayed .

o 0001 A 40

When the data for format TWO has been entered, format ONE is redisplayed.
This process of displaying format ONE and then format TWO continues until
the operator stops the job by using the End of Job key.

Whenever the operator selects one of the review mode options, format ONE or
TWO is automatically selected for the display based on the entry in the test
position of the current diskette record. If an 0 .. is in the test position,
format ONE is displayed for the rerun, update, or verify modes. If a T II is in
the test position, format TWO is displayed for the rerun, update, or verify
modes.

When this is the
current record,
the format for
ONE is used.

When this is the current
record, the format for
TWO is used.

FLO! FL02 FL03 0 ~fL04 FL05 FL06 FL07 1J

Note: The review format and the entry in the usage column on the A­
specification for the field determine whether the fields in the record are
displayed. The operator manually selects the mode in which to operate, and
the program automatically selects the appropriate format for the mode.

Characteristics of Data-Entry Programs that Use Transaction Files 19

20

KEY-INITIATED MODES

In addition to the basic data-entry modes (enter, update, verify, and rerun),
several key-initiated modes are available for programs using transaction files.
The IBM 5280 DE/RPG Reference Manual contains detailed descriptions of all
keys and modes. Briefly, the key-initiated modes offered by DE/RPG are:

• Update search (U-S)

• Update insert (U-I) •

• Verify correct (V-C)

• Verify insert (V-I)

• Verify search (V-S)

• Verify display (V-D)

• Copy (C)

• Copy search (C-S)

• Copy transfer (C-T)

• Rerun display (R-D)

• Print (P)

The designations in parentheses are the codes used to represent the modes in
positions 35 through 37 of the status line. The designations for the four major
modes are enter (E), update (U), verify (V), and rerun (R).

..

,

The following list names the keys that are active during data-entry programs
and indicates in which modes they can be used:

Modes

Function E C C-S C-T P R R-O U U-I U-S V V-C V-O V-I V-S

Attention

Auto Duplicate/Skip

Auto Enter

Cancel

Character Advanc.e

Character Backspace

Character Delete

Character Insert

Clear Screen

Cursor Down

Cursor Left

Cursor Up

Cursor Right

Duplicate

Edit Release

End of Job

Erase Input

Field Advance

Field Backspace

Field Correct

Field Exit

Field Exit Minus

Help

Hexadecimal

Home (Record Backspace)

Mark Field

New Line

Next Format

Page Forward

Print

Record Advance

Record Backspace (Home)

Record Correct

Record Delete

Record Display

Record Insert

Record Transfer

Reset

Review File

Search Content

Search End-of-Data

Search Relative Record

Search Sequential Content

Select Format

Skip

System Request

x X
X X
X X

X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X

X X
X X
X X
X X

X X

X X

X X
X X

X

X X
X X
X X

X

X

X X
X

X

X
X

X

X X
X X
X X

X

X

X

X

X
X

X

X

X

X
X

X X

X
X X X X

X

X

X
X

X

X X

X
X

X

X

X

X

X

X
X

X
X

X
X

X
X

X

X
X

X

X

X
X

X

X

X
X

X

X
X
X

X

X

X
X

X

X

X X
X X
X X

X X

X X

X X
X X
X
X

X

X

X

X

X

X

X

X
X

X

X

X
X

X

X

X

X

X

X

X
X

X X X
X

X

X

X X

X X

X X
X

X

X
X X
X X

X X
X X

X X X
X X
X X
X X
X
X X
X X

X
X X

X X X

X X
X

X X
X

X X
X X X
X X X

X
X

X

X

X X

X

X

X
X

X X
X X

X X X

X

X

X

X

X

X

X

X

X

X

X

X

X
X
X

X
X

X

X
X

X

X

X

X
X
X

X

X

X

X

X

X
X

x

X

X

X

X

X
X

X

E C C-S C-T P R R-O U U-I U-S V V-C V-O V-I V-S

To compare the keys that are active during the execution of a data-entry
program with keys that are active during the execution of an application
program, see the topic Execute Mode- The Only Mode Available for Use with
Application Programs in Chapter 2.

Characteristics of Data-Entry Programs that Use Transaction Files 21

22

PROGRAM FUNCTIONS USED WITH TRANSACTION FilES

Program functions that facilitate entry are available to transaction files. These
functions use keywords such as AUXDUP, AUXST, CHECK(AD), and
CHECK(AS). These functions rely upon operator controlled switches. For
example, when the current field statement contains AUXDUP(named field)' the
named field is automatically duplicated into the current field when the Auto
Dup function is active. These program functions provide additional keyboard
control for the data-entry operator.

SPECIAL JOB FUNCTIONS FOR USE WITH TRANSACTION FilES

Two job functions can be specified for programs using transaction files by
including the CFILE and PRTFILE keywords. Each of these functions must be
used in conjunction with the TFI LE keyword in the job specification statement.

Manually Copying Records for Programs Using Transaction Files

CFILE allows the operator to manually perform copy functions using the search
and copy keys. The function provided by CFILE is not to be confused with the
copy utility. The sample in Figure 1-6 illustrates a program that uses the CFILE
function. CFILE" names the data set that is to be copied. When CFILE is
used, the data set must be named in a file description statement II for the
diskette. Both data sets (the one being copied from and the one being copied
to) must have the same record length.

00001Z***
00002Z* PROGRAM 6. FIGURE 1-6 IN THE DE/RPG USER'S GUIDE * D
00003Z***
00004ZJ INVOICE
00004Z
00005Z A1INSTRUC
00006Z A2PURHCAS
00007Z
00008A
00009A
00010A
00010A
OOOiOA
OOOiiA
OOOiiA
000i2A
OOOi3A
000i4A
OOOi5A
OOOi6A
00017A
00018A
00019A

1E
NE

R
F EXMP
R INSTRUC

R PURHCAS

00020A
00021A
00022
00023

F INTERBIL
tJ F CUSTMAST

80

1

:\.

A2
Ai
A2

TFILE(INTERBIL) CFILE(CUS+
TMAST)
WRITE(*NO)
SLNO(3)

DEVICE(CRT) DSPSIZ(6 80)

0002001 'FIND THE CUSTMAST RECORD THAT HATC+
HES THE ORDER. USE CUSTHAS DATA SE+
T. '

I001001CHECK(FE) PMT(USE THE FIELD EXIT KE+
Y TO CONTINUE)

I001001INSERT('T')
000200i'ITEM'
0003001'PRICE'
000400i'QUANT'

6 1002010
5 2100301.0
4 010040iO

8~ DEVICE(DISK X'4000')
80 DEVICE(DISK X'4000')

Figure 1-6. A Program Illustrating the Use of the Copy Function

•

o 0001

In order to use the copy-related keys, the program must be in the enter mode;
that is, the operator must have selected option 1 Enter-NEW/REPLACE or 5
Enter-ADD from the mode selection menu. Copy-related keys are keys that
are operational when the copy function is in effect. The copy-related keys are
Review Second Data Set, Transfer Record, and Return to Transaction Data Set.

Once in an enter mode, the operator initiates the manual copy function by
using the Review Second Data Set key. The process involved in manually
copying records using the copy keys is given in the following list.

Note: The search keys can also be used to identify the desired record to be
copied. The IBM 5280 Operator's Guide contains a detailed description of the
available operations for the copy mode .

1. After the operator has pressed the Review Second Data Set key, a
display appears requesting the name of the data set from which to copy
records. Using the sample in Figure 1-6 as an example, the operator
enters CUSTMAST.

2. The records (starting with the first one in the named data set) are shown
using display format O. For example, the first record in the CUSTMAST
data set might appear as follows:

A 40

MR. D.B. MACRATH1355 NORTHEMBASSY ROW,WILHELM,MASS889010

If this is the record the operator wants to copy, he can change any data
on the record before copying it. When changes are made, the updates
and changes do not appear on the original record (in the data set being
copied from); the updated data only appears in the copied record.

Characteristics of Data-Entry Programs that Use Transaction Files 23

24

3. By pressing the Transfer Record key, the record is copied into the
receiving data set. The data set is extended to accept the copied record.

4. The next sequentially encountered record in the data set being copied
from is displayed. If the operator does not want the record copied, he
presses the Enter key to display the next record in the data set. When
the operator wants to terminate the manual copy operation, he presses
the Return to Transaction Data Set key and the program returns to the
enter mode.

The normal operation of the program resumes. The next format is
automatically displayed and processing continues. The sample in Figure 1 - 7
illustrates the data set that might result from using the sample in Figure 1-6.

CUSTMAST PURHCAS CUSTMAST PURHCAS CUSTMAST PURHCAS

Figure 1-7. Data Set Resulting from Using the Program in Figure 1-6.

This process is not necessarily the most desirable way to merge records from
two different data sets. It is simply an available technique for programs using
transaction files. Consider the impact this function has on the review operating
modes. For example, unless the record being copied and the records in the
receiving data set have the same display format, the operator has difficulty
recognizing which record type is being displayed. Formatting techniques for
overcoming this situation are described in Part 2.

•

•

HOW THE USAGE COLUMN ENTRIES AFFECT PROGRAMS USING
TRANSACTION FILES

The usage entry is in column 38 on the A-specification. Its purpose is to specify
how fields are to be processed. Four entries are possible in this column for
programs using transaction files: I for input, 0 for output, 8 for both input and
output, and W for work space.

Fields designated as I in the enter mode initially display as blanks until the
operator enters data. In the update mode. the existing data is displayed and
the operator is allowed to alter the data. In the verify mode. the field is initially
blank until the operator enters the verify data; then. the characters are
displayed and any errors (mismatches) are indicated. All input fields are
included in records written to the diskette data set .

Fields designated as 0 can be used for literal messages and are to be excluded
from the diskette data set. Literals are displayed immediately in all modes. All
output fields are excluded from records that are written in the diskette data
set.

Fields designated as 8 are treated as input fields except during execute mode.
During execute mode, the initial valve of the field is displayed at the start of the
format. The operator may change the data in a key-entered field or accept the
data as displayed. All fields described as input and output (8 in the Usage column)
must be named.

Fields designated as Ware neither displayed nor included in the diskette data
set. This type of field is normally used to hold intermediate calculation results
or to declare a variable to be used in another operation.

This completes the description of the characteristics of data-entry programs
using transaction files. The next chapter describes the characteristics of
application programs.

26

It

Chapter 2. Characteristics of Application Programs that Use Subroutines on the
C-Specifications

In general, application programs that use subroutines on the C-specifications do not
use transaction files. The path this type of program takes is much different from
that taken by programs that use transaction files. All input/o~tput operations are
controlled by the programmer; no default display or diskette operations are
available. The sample in Figure 2-1 indicates the steps involved in using a simple
application program.

CharacteristiCi of Application Programs that Use Subroutines on the C-5pecifications 27

28

00001.1**~**
000021* PROGRAM 7. FIGURE 2-1 IN THE DE/RPG USER'S GUIDE *
00003Z***
OOO(DJ SAMPLE 1
000(1 ___ A1SUBCON
00006A F
00007A Dr.;
OOOOBA
00009A
00010A
00011A
00012A
OOOi3A
00014A
00015A
00016A
00017A
00018A
OOOi9A
00020A
00021A
00022A
00023A
00024C
00025C
00026C
00027C
0002BC
()0029C

fJ

l __ ___

iE
INPUT
BEG
FLD1
FLD2
FLD3
ENDING
FLD4
FLD5
FLD6
EXDATAST
BEGIN
FLD2
FLD3
FLD1
END
FLD6
FLD4
FLD5

SUBCON

37

i
30

6

1
6
9

37

I
1
I

I
21
2I

BEGSR EW
EXFMTBEG Ell ~
EXFMTENDINGU
WRITEBEGIN IJ
WRITEENDII
ENDSR

Storage

Records that are
generated while the
program is used
are kept here.

Display Record

Program Using a Subroutine

1
31
37

Ai
DEVICE(CRT) DSPSIZ(6 BO)

INSERT('B')
PMT(CUSTOMER NAME)
PMT(NUMBER)

INSERT ('E')
F'MT(PAYMENT)
PMT(OUTSTANDING BALANCE)
DEVICE(DISK X'4000')

Diskette Data Set

Figure 2-1 (Part 1 of 2). Characteristics of an Application Program

•

1. Call the subroutine .•

2. Define the subroutine .•

3. Execute the format for the display to the first record .• This record must
be defined on the A-specification.1I

4. EKecute the format for the display of the next record .• This record must
be defined on the A-specification .•

5. Write the first record in the diskette data set .• The data set name is
defined by the name on the file description line for the diskette on the A­
specification.1I The description of the record follows the data set name.

6. Write the next record in the diskette data set.1I The description of the
record follows the data set.1I

7. The program is complete. The preceding cycle is continued until the
operator uses the End of Job key.

Note: The operator cannot use the verify or update mode with this program.
If the operator wants to update a record, more code must be added to this
program or another program must be used.

Figure 2-1 (Part 2 of 2). Characteristics of an Application Program

Characteristics of Application Programs that Use Subroutines on the C-Specifications 29

30

The characteristics of an application program controlled through subroutines
are:

• Display sequence and diskette data set formatting is totally controlled by the
subroutines. Part 2 contains detailed information about this topic.

• Data-entry functions, including key-initiated modes (such as search) are not
available. The only available mode of operation is the execute mode.

• A variety of methods for accessing existing data sets is available. Part 4
contains detailed information about this topic.

• Formatted printing is available. Chapter 14 contains detailed information
about this topic.

• A variety of ways of arranging data on diskette is available. Records can be
organized by key fields, and data sets can be indexed or sequential.

• Data set update must be controlled from the subroutine.

• All input/output control for the display, diskette, printer, and
communications is controlled by subroutines on the C-specifications. '

• Programs can operate without operator interaction.

•

EXECUTE MODE-THE ONLY MODE AVAILABLE FOR USE WITH
APPLICATION PROGRAMS

Execute mode is automatically selected whenever the program calls a subroutine
that includes an EXFMT statement on the C-specification. This mode inhibits
automatic functions provided by the data-entry operating modes and programmed
keyboard functions.

During execute mode and whenever an EXFMT is performed from the subroutine
to a format described on the A-specification, the following function keys are active
in the application program:

· Attention · Auto Enter

· Character Advance · Character Backspace

· Character Delete · Character Insert

· Duplicate · Edit Release
(Works only with AUXDUP)

· Erase Input · Field Advance

· Field Correct · Field Exit

· Field Exit Minus · Help

· Hexadecimal · Record Advance

· System Request · Skip

Characteristics of Application Programs that Use Subroutines on the C·Specifications 31

32

ORGANIZING DATA IN DATA SETS USING A BACKGROUND PROGRAM

The formatting characteristics of data sets that use subroutines on the C­
specifications are described in detail in Part 2. Specifically, the two subjects
described in Part 2 are: (1) using application programs to create data sets
containing key fields and (2) using 'application programs to create indexed data
sets.

A key field is a specially designated field that can be used to organize data on
the diskette in sequence according to the value of the key field or to
automatically identify the correct record (by key field) in a data set during a
read operation from a subroutine. Part 4 contains information about using key
fields. Any field that satisfies the following requirements can be a key field:

1. The field must exist in a data set on the diskette.

2. The values of the fields designated as keys must be in an ascending
order within the data set unless an index data set is used.

The sample in Figure 2-2 illustrates a program that creates a data set with key
fields.

,

00001Z**
00002Z* PROGRAM 8. FIGURE 2-2 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ MASTNAME
00005Z V1HELLO
00006A

1E
F INVTEMP 15

00007A
00008A
00009A
00010A
00011A
00012A
00013A
00014A
00015A
00016C
00017C
00018C
00019C NO!
00020C N01
0002!C
00022C
00023C
00024
00025
00026
00027
00028

.

R ITEMINV
ITEM~
PRICE
ON HAND

F INVMAST
R ITMAS

D K ITEM~
PRICE
ONHAND

HELLO

6
5
4

15

6
5
4

NOW

N03

BEGSR
TAG fJ READ ITEMINV II
WRITEITMASa
GOTO NOW
ENDSR

II

1

EOJ
DEVICE(DISK X'4000')

DEVICE(DISK X'4000')

01
03

• ,_
349867 188856.... 998760

II .. a

188856. . .. 349867.. .. 689546.... 998760

Figure 2·2. A Program that Creates a Data Set with Key Fields

Notice that the key field has a K in the name type column D The program in
Figure 2-2 makes each item number field in the data set a key field. The
program reads each record II from the original data set II and determines
where to place it in the new data set • according to its key value. Each time
the program reads a new key field, the records (following the new record) must
be rewritten to reorder the records according to their key values. The result is
a data set that contains records ordered by their key fields II

This process takes time, however, because records must be rewritten with the
entry of each new key field. By using an index file along with the key field,
you can avoid rewriting all the records after each entry. The sample in Figure
2-3 illustrates a program that uses an index.

Characteristics of Application Programs that Use Subroutines on the C-5pecificationl 33

34

00001Z*******************************~*******************************
00002Z* PROGRAM 9. FIGURE 2-3 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ MAST MAKE
00005Z ViHELL.O 1E

F INV 00006A
00007A
00008A
00009A
00010A
00011A
00012A
00013A
00014A
00015A
00016C
00017C
00018C
00019C
00020C
00021C
00022C
00023C
00024C
00025C

R ITEMINV
ITEM~
PRICE
ONHAND

F INVMAST
R ITMAST
K ITEM~

N01
N01N02N03

PRICE
ONHAND

HELLO
NOW

689546

689546

BEGSR
TAG

16

6
5
5

16

6
5
5

READ ITEMINV
WRITEITMAST
GOTO NOW
ENDSR

349867

II

EOJ
DEVICE(DISK D1)

DEVICE(DISK D1) INDEX(HOLD)IDI

01
0203

188856 998760

349867 188856 998760

Figure 2-3. A Program that Uses an Index Data Set

•

•

Notice that a new piece of code is required: the INDEX keyword and its
parameter II. When you use the index function with a key field, records are
written in the data set exactly as they are entered, but they can be accessed as
if they were entered in key sequence. This is accomplished by the index file
II which holds the key fields (in sequence) and their relative record location in
the resulting data setD

Key fields and indexed data sets are only available for programs that use
subroutines to create data sets or for the Sort/Merge Program Product.

CONTROLLING DATA SET UPDATE THROUGH SUBROUTINES

The UPDAT statement in a subroutine is the only way a data set can be
updated as it is created by an application program. The sample in Figure 2-4
illustrates an update operation .

Characteristics of Application Programs that Use Subroutines on the C-5pecifications 35

00001Z***
00002Z* PROGRAM 10. FIGURE 2-4 IN THE DE/RPG USER"S GUIDE
00003Z***
00004ZJ UPDATHAS
00005Z Y1GOFIRS
00006A
00007A
00008A
00009A
00010A
00011A
00012A
00013A
00014A
00015A
00016A
00017A
00018A
00019C
00020C
00021C
00022C
00023C
00024C
00025C

N05
NOS
NOS

lE
F INPUT
R CHANGE

CUSTNA
ADDR
CUSNUM

F CUSMAST
R HEAD

CUSTNA
ADDR
CUSNUM

GOFIRS
LOOP

BEGSR

65

30
30

5
65

30
30

5

o
o
o
B
B
B

EOJ
DEVICE(CRT) DSPSIZ(6 80)

1 1"CUSTOHER NAME I

2 1 I ADDRESS"
3 1'CUSTOMERt'
1 20
2 20
3 20

DEVICE(DISK D1)

TAG D
READ HEAD
EXFMTCHANGE fJ
UF'DATHEAD II
GOTO LOOP
ENDSR

05

D

M. R. DE HAN ... P.D BOX 150, NY, NY, ... X178A

o 0001 A 40

CUSTOMER NAME

ADDRESS

CUSTOMER~

M. R. DEHAN

5592 SO. FERRY, GRAND RAPIDS, MICH

X178A 1
l~ _____________ J

II

M. R. DEHAN ... 5592 SO. FERRY ... X178A

Figure 2-4. An Application Program that Includes an Update Operation

36

•
II

Notice that the record that is to be updated must first be read from its data
set II. Next, the record must be written to the display II so the operator can
see its contoots. All fields that are to be changed in the record must be fields
that are described with either a B (both) or I (input) usage entry. The update
operation. must be described in the subroutine to cause the operator's

changes a.
Programs that use subroutines do not have automatic verify or rerun
capabilities. These capabilities can be provided by program operations that
compare entries and set indicators. See Part 3 for a description of using
indicators .

CONTROLLING THE INPUT/OUTPUT DEVICES

All input/output devices (display, diskette, printer, and communications) must
be specifically controlled from the subroutine. Control for the printer is
described in Chapter 14.

Controlling the Display

There are two ways to display data: (1) reference it through an entry format on
the Z-specification and (2) specify it through an EXFMT or WRITE 'operation in
the subroutine. If the program is exclusively a background program (does not
require any interaction), the first method is not available.

The EXFMT operation in an interactive application program allows you to
display fields and allows the operator to change the fields. All usage entries (I,
0, W, and B) are valid. The WRITE operation allows you only to display the
fields; it does not allow the operator to change them. Only the output (0)
usage entry is allowed.

The samples in Figure 2-5 illustrate these techniques.

Characteristics of Application Programs that Use Subroutines on the C-Specifications 37

38

Sample A

00001Z***
00002Z* PROGRAM 11. FIGURE 2-5 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ EMPBACK
00005Z A2AT
00006A
00007A
00008A
00009A
00010A
00011A
00012A
00013A
00014A
00015A
00016A
00017A
00018A
00019A
00020C
00021.C
00022C
00023C
00024C
00025C
00026C
00027

N05
N05

1E
FLOOK II R DISP

F TEMf'ITM
R ITTRANS

ITEMt
DESC
COST

F MASTITEM
R ITMMAS
K ITEMt

DESC
COST

AT
BRANCH

BEGSR
TAG

95

1
95

6
80

9
95

6
80

9

o
I

NOt
05

II
READ ITTRANS fJ

. WRITEITMMAS
GOTO BRANCH

D EXFMTDISP
ENDSR

Sample B

j,

EOJ
DEVICE(CRT) DSPSIZ(6 80)

'THE PROGRAM IS DONE'
CHECK(FE)
DEVICE(DISK X'4000')

DEVICE(DISK X'4000')

0511
01

00001Z***
00002Z* PROGRAM 12. FIGURE 2-5 IN THE DE/RPG USER'S GUIDE
00003Z***
00004ZJ PUTTOGET
00005Z L1MIX
00006A
00007A
00008A
00009A
00010A
00011A
00012A
00013A
00014A
00015A
00016A
00017A
00018A
00019A
00020A
00021A
00022A
00023A
00024A

1E
F TEMP
R ITEMINV
K CUSTN

ITEM.
PRICE
AMT

F MERGE
R CUSTMAS

CUSNAM
ADDR
CUST.

F BILLTOT
R BILL

CUSNAM
ADDR
CUST.
ITEM.
PRICE
AMT

F INPUT
R MSG

22

4
6
5
6

65

30
30

4
82

30
30

4
6
5
6
1

1

EOJ
DEVICE(DISK Dl) INDEX(KEEP)

DEVICE(DISK D1)

DEVICE(DISK D1>

DEVICE(CRT) DSPSIZ(6 80)

*

00025A
00026A
00027A
00028C MIX 0

BRANCH

o 'BE PATIENT. I AM READING RECORDS.'

00029C
00030C
00031C
00032C
00033C
00034C
00035C
00036C N03
00037C

01

02

00038C

CUSTt

END

BEGSR
WRITEMSG
TAG
READ CUSTMAS
GOTO END
CHAINITEMINV
GOTO BRANCH
WRITEBILL
GOTO BRANCH
TAG
ENDSR

Figure 2-5. Programs that Control the Display

01

02

03

•

"

In Sample A, the program executes the format named DISP .. on the display
when all records have been read from the data set. The content of this record
cannot be altered by the operator. When the last record is read D an
indicator is turned on B. The last record is written in the new data set B
and the DISP format is displayed II.

In Sample a, the program writes a message on the display while the program
is being executed.

Part 3 contains detailed information about using indicators .

Characteristics of Application Programs that Use Subroutines on the C-Specifications 39

40

Controlling the Diskette

All diskette operations must be controlled from the subroutines. Operations
that read data from diskette and write data to diskette are available. There are
basically two ways of reading data from diskette: (1) sequentially (READ) or
(2) directly (CHAIN). Information about writing on diskette has been provided
earlier in this chapter and is also described in Part 2. Part 4 describes
additional details about reading from a diskette. The sample in Figure 2-6
illustrates the coding that controls diskette operations in subroutines.

00001Z***_*********************
00002Z* PROGRAM 13. FIGURE 2-6 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ PUTTOGET
00005Z L1MIX lE

F TEMP 00006A
00007A
OOOOBA
00009A
00010A
00011A
00012A
00013A
00014A
00015A
00016A
00017A
000lBA
00019A
00020A
00021A
00022A
00023A
00024A
00025C
00026C
00027C
0002BC
00029C
00030C
00031C

R ITEMINV
K CUSTN

ITEM~
PRICE
AMT

F MERGE
R CUSTMAS

CUSNAM
ADDR
CUST~

F BILLTOT
R BILL

CUSNAM
ADDR
CUST~
ITEM~
PRICE
AMT

MIX
BRANCH

CUST~

BEGSR
TAG

22

4
6
5
6

65

30
30

4
8':>

30
30

4
6
5
6

N01N02N03

READ CUSTMAS D
CHAINITEMINV II

IJWRITEBILL II
GOTO BRANCn
ENDSR

Figure 2-6 (Part 1 of 2). A Program that Controls the Diskette

EOJ
DFVICE(DIS'K Dl) INDEX(KEEP)II

1

DEVICE(DISK Dl)

DEVICE(DISK Dl)

OJ.
0':)

03

•

"

D

...... 8979 6500 1345 4598

II
"

4598 ... 6500 1345

D
"

... ... 8979 6500

Figure 2~ (Part 2 of 2). A Program that Controls the Diskette

The initial organization of the data set determines the type of read operation
that can be used. For example, the READ operation can be performed against
all types of data sets. The CHAIN by key field operation, however, can be
performed only against data sets organized in ascending key sequence or
against indexed data sets.

In the sample, the first operation in the subroutine sequentially reads ..
records from a data set one at a time. The second operation uses a field II
from the first record (as a reference for the key field in the second data set II)
to determine which record in the second data set is to be read.

The third operation writes II a new record in the new data set II. This new
record contains fields from the two previous records. The DE/RPG
Reference Manual contains details about the restrictions placed on using the
READ and CHAIN operations.

1345

Characteristics of Application Programs that Use Subroutines on the C-5pecifications 41

42

Accessing Communications

DE/RPG accesses communications through a communications file statement
description. The sample in Figure 2-7 illustrates a program that uses

communications.

00001Z***
00002Z* PROGRAM 14. FIGURE 2-7 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ COMEXP
00005Z Z1SUBEX
00006A
00007A
00008A
00009A
00010A
00011A
00012A
00013A
00014A
00015A
00016A
00017A
00018C
00019C
00020C

1E
F ITFILE
R ITEMTRAN

ITEM.
COST
NUMSOD
ONHAND

F ITEMUP
R ITINVEN

45

6
9

15
15
45

ITEM. 6
COST 9
NUMSOD 15
ONHAND 15

SUBEX BEGSR
fJ OPEN ITEMUP

TAG HERE
00021C
00022C
00023C
00024C

NOS
NOS

a READ ITEMTRAN II WRITEITINVEN
GOTO HERE II CLOSE I TEMUP
ENDSR 00025C

Figure 2·7. A Program that Uses Communications

EOJ
DEVICE(DISK D1)

DEVI CE (COMM) II

0511

Communications control is provided through the use of a communications access
method which is part of the Communications Utilities Program Product. The
COMM or COMM3270 device keyword" allows you to specify that the program
is to use communications facilities. To use a data set with communications, you

must first open the file II and then close. it when you are through. Open and
close operations for all other input/output devices are automatically provided by
DE/RPG.

This program is reading a record from an existing data set II. It is then
sending the contents of the record. over the communications network to the
host system. Each record in the data set is read. When the end of the data
set is reached, an indicator is turned on II and the file is closed. Section 3
contains additional information about using indicators.

The IBM 5280 Communications Utilities Reference Manual, SC34·0247, contains
detailed -information about the communications support provided by the IBM 5280.

The IBM 5280-3270 Emulation Reference Manual, SC34-0384, contains detailed
information about the IBM 3270 Emulation.

"

COMBINING DATA-ENTRY AND BACKGROUND PROGRAMS

DE/RPG is extremely flexible. The choice of program type is yours. Two
considerations should guide your choice of program type: (1) the requirement
for operator involvement and (2) the desired data set organization.

Often, a combination of the two basic program types is desirable. The sample
in Figure 2-8 illustrates a combination program.

00001Z***
00002Z* PROGRAM 15. FIGURE 2-8 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ COMBINA TFILE(BILLMST>IDI
00005Z X1FIND 1E X2 WRITE(*NO) -=-
00006Z X2TOGETH lE Xl WRITE(BILL)-=-
00007A F GET 75 DEVICE(CRT) DSPSIZ(6 80)
00008A R FIND
00009A
000 i OA fJ NUMBER
00011A R TOGETH
000i2A

CUSTN
ADRES
ITEMN
PRICE

F BILLMST
IIR BILL

ITEMN
PRICE
CUSTN
ADRES

F CUSMAST
R LOOKSE

CUSNA
ADDR

K NUMBER

5

30
30

6
6

75

65

30
30

0002001'CUSTOMER NUMBER'
I002017CHECK(DR) EXSR(GOGET)

0001001 'CUSTOMER NAME'
0002001 'ADDRESS'
I001017INSERT(CUSNA)
I002017INSERT(ADDR)

OI003001PMT(ENTER ITEM NUMBER)~
2I004001PMT(ENTER COST)

DEVICE(DISK D1>

DEVICE(DISK D1)

00013A
00014A
00015A
OOOi6A
00017A
000i8A
00019A
00020A
0002iA
00022A
00023A
00024A
00025A
00026A
00027A
00028A
00029C
00030C
00031C

GOGET BEGSR
NUMBER IiICHAINLOOKSE

ENDSR
0102

Figure 2-8 (Part 1 of 2). A Program that Combines Data-Entry and Application
Program Types

Characteristics of Application Programs that Use Subroutines on the C-Specifications 43

44

o 0001 A 40 fJ
CUSTOMER NUMBER 100-A

II

tJ
. 079-A 1 090-82

J
o 0001 A 40

II
CUSTOMER NAME D. W. WINTER

ADDRESS RR2, MAZEPA, MN.

OAAA12

l 000356

II
"

100-A2 ...

Figure 2-8 (Part 2 of 2). A Program that Combines Data-Entry and Application
Program Types

...... 120-A2

]

•

•

In Figure 2-8, the program is basically a data-entry program that uses a
transaction file •. The program is using a subroutine to select the correct
record from another data set and appropriate data from it.

In the program, the operator is being prompted for a customer number II.
DE/RPG then uses this number to find the correct record in an existing data
set B. It inserts the data into a display record. Next, the operator is
prompted for information about· the transaction II. When this format is
complete, a reformatted record. is written in the transaction data set.

The program has all the advantages of a data-entry program and it has the
additional advantage of automatically supplying information from a master data
set which is typically available only with application programs .

This concludes the topic describing the program types available with DE/RPG.
Part 2 describes formatting characteristics of both program types .

. Characteristics of Application Programs that Use Subroutines on the C-5pecifications 45

46

•

Part 2. Formatting Data for Displays and Diskettes

This part of the manual contains information about controlling the sequence of
formats and about the contents of the formats. It consists of four chapters:

• Chapter 3. Controlling Display and Diskette Formats Via the Z­
Specifications

• Chapter 4. Controlling Display and Diskette Formats Via the C­
Specifications

• Chapter 5. Formatting Techniques for the Display

• Chapter 6. Formatting Techniques for the Diskette Data Set

Formatting is organizing data for an I/O device such as the display, diskette, or
printer. This part of the manual describes format specifications and
descriptions for the displays and diskettes. Part 6 describes format
specifications and descriptions for the printer. To understand the relationships
of display and diskette formats, read the entire four chapters in this part.

In DE/RPG, format .control is through the statement types on the Z- and A­
specifications or through operations on C-specifications. The format statements
(both entry and review) on the Z-specification and the operations (EXFMT,
WRITE, READ, and CHAIN) on the C-specification control the use of the formats.
Specifically, statements on the Z-specification and operations on the C-specification
determine whether or not the formats described on the A-specification are displayed,
written in the diskette data set, printed, or copied. The record statements on the
A-specification describe the contents of the display and diskette formats.

Formatting Data for Displays and Diskettes 47

48

•

Chapter 3. Controlling Display and Diskette Formats via the Z-Specifications

All display formats for this type of data set must be specified in format statements
on the Z-specification and described in record statements on the A-specification.
An entry format statement must be included to automatically display the format in
the enter mode. A review format statement must be included to automatically
display the format in the verify, rerun, and update modes. Manual format selection
with the Sel Fmt key is always available with transaction files.

This chapter contains descriptions for specifying:

• A single entry format

• Two entry formats that are chained (automatically follow one another in the
selection)

• The entry format based on a field test of data in the previous record

• An entry format controlled by the Next Fmt key

Controlling Display and Diskette Formats via the Z-Specifications 49

SAMPLES SHOWING VARIOUS TYPES OF ENTRY FORMAT SPECIFICATIONS

The simplest specification for an entry mode display format is shown in the
following sample in Figure 3-1. There is one format (named IDENT with the 10
AO). The format is used once D Because the next format 10 field is blank
D the format does not automatically advance.

00001Z***
00002Z* PROGRAM 16. FIGURE 3-1 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ INQUIRED ~ TFILE(LOOK)
00005Z AOIDENT 1E ~
00006A F INPUT
00007A R IDENT
00008A FLD1
00009A FLD2
00010A FLOOK

o 0001 A 40

36

30X
6D

36

II ENTER THE CUSTOMER'S NAME

I
I

.......... A& A • .&

DEVICE(CRT) DSPSIZ(6 80)

PMT(ENTER CUSTOMER'S NAME)
PMT(ENTER CUSTOMER ID) CHECK(DR)
DEVICE(DISK D1>

l~ ______ -------"",J
II

o 0001 A 40

ENTER THE CUSTOMER ID

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Figure 3-1. A Sample Program with Simple Format Selection

50

•

The sample in Figure 3-2 shows a slightly more complex use of specifying
display formats. As illustrated by this sample, the format named IDENT with
format 10 AO is used first g. It is used once, and then the next format II is
displayed. The next format. is named MENU and has the 10 Al. This
format is also used once. When the record for the format is complete and has
been advanced, the format named IDENT with 10 AO is automatically displayed
II. The operator can stop this process by using the End of Job key to
terminate the job.

00001Z***
00002Z* PROGRAM 17. FIGURE 3-2 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004Z**
000010:"11""'1' INQUIRE A1 EW TFILE(LOOIO
0000 AOIDENT 1E ~

000011 A 1 MENU 1 E AO II SLNO (3)
00000" F INPUT 36 DE~~~ECCRT) DSPSIZC6 80)
00009A R IDENT
00010A FLD1
00011A FLD2
00012A
00013A
00014A
00015A
00016A
00017A

R MENU

FLD3
FLOOK

30X
6D

1
36

I
I

PMT(ENTER THE CUSTOMER'S NAME)
PMT(ENTER CUSTOMER ID)
CHECKCDR)

0001001'1 ENTER ITEM~ AND PRICE DATA'
0002001'2 ENTER SHIPTO DATA'
I003001PMTCSELECT A NUMBER)

DEVICE(DISK D1)

Figure 3·2 (Part 1 of 2). A Sample Program with Complex Format Selection

Controlling Display and Diskette Formats via the Z·Specifications 51

D

D

II

o 0001 A 40

ENTER THE CUSTOMER'S NAME

..... A a .. .&

o 0001 A 40

ENTER THE CUSTOMER ID

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

SELECT A NUMBER

1 ENTER ITEM~ AND PRICE DATA

2 ENTER SHIPTO DATA

D II
~

FL01 FL02 FL01 FL02

Figure 3-2 (Part 2 of 2). A Sample Program with Complex Format Selection

52

FL01 FL02 FL03

•

A more complex format selection is shown in Figure ;3-3. The format selection
is based on a test performed against a specified position in the previous
record. Look at the sample that follows. The first format is IDENT with a
format 10 of AD; the second format is MENU. Notice that the selection of the
next format (either ITEMINF or SHIPINF) is based upon the presence of a 1 or
2 in position 1 • of the MENU record.

If a 1 is in position 1 of the MENU record, the format named ITEMINF is
selected. The N II in the repeat field for the ITEMINF format statement
means that the format will continue to be displayed until the operator selects
another format. If the operator uses the next format function, the IDENT
format with lOAD is automatically selected. If a 2 is in position 1 of the
MENU record, the format named SHIPINF is selected. The 1 in the Repeat
field for the SH I PI N F format statement means that the format is used only
once. The next format that is automatically selected is IDENT with 10 AD.

00001Z***
00002Z* PROGRAM 18. FIGURE 3-3 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ INQUIRE TFILE(LOOK)
00005Z AOIDENT 1E A1
00006Z A1MENU 1E *POS000111 '1' A2
00007Z E *POS0001 '2' A3

SLNO(3)

00008Z A2ITEMINF fJNE AO
00009Z A3SHIPINF 1E AO
00010A F INPUT 61 DEVICE(CRT) DSPSIZ(6 80)
00011A R IDENT
00012A FLD1
00013A FLD2
00014A R MENU
00015A
00016A
00017A
00018A
00019A
00020A
00021A
00022A
00023A
00024A
00025A
00026A
00027A

FLD3

R

F

R ITEMINF
FLD4
FLD5
FLD6
FLD7
SHIPINF
FLD8
FLD9
FLD10
LOOK

FLDl FLD2

D

30X
6D

1

6
5
3
1

30X
30

1
61

I
I

PMTCENTER THE CUSTOMER'S NAME)
PMT(ENTER THE CUSTOMER ID) CHECK CDR)

0001001'1 ENTER ITEM. AND PRICE DATA'
0002001'2 ENTER SHIPTO DATA'
I003001PMTCSELECT A NUMBER) CHECKCDR)

I
21
01

I

I
I
I

F'MTCENTER ITEM.)
F'MTCENTER PRICE)
F'MTCENTER QUANTITY)
INSERTC'I')

F'MTCENTER NAME)
PMTCENTER ADDRESS)
INSERT C ' S ')
DEVICE (DISK D1)

II
"

FLD4 FLD5 FLD6 FLD7 FLD4 FLD5 FLD6

Figure 3·3. A Sample Program Showing the Use of a Simple Test to Select the Entry Format

These samples illustrate a variety of ways to specify display entry formats. The
following text describes ways to use review format specifications.

Controlling Display and Diskette Formats via the Z·Specifications 53

54

SAMPLES SHOWING VARIOUS TYPES OF REVIEW FORMAT
SPECIFICATIONS

A review format is not required; if you use a review format, the simplest way
to specify the review format is to simply include a review statement with no
test position or character to test column entries. The sample in Figure 3-4
shows you how to do this. When you do not include a test position, you are
not controlling the format that is used for review purposes. The first format is
always selected in this sample. Whether or not the data being reviewed fits
the format that is specified is not considered by DE/RPG. If a field is not long
enough for the data, the data is simply truncated. Only the leftmost positions
(as many as fit in the review format field) remain. Also, DE/RPG only takes
the first 10 specified. Any format IDs included in the next format columns after
the first untested 10 are never used. Therefore, it is always a good coding
habit to include a test position and character to test entry in the records that
are written in the diskette data set. Because the test position • in the review
statement is blank, format 10 AO. is selected regardless of the record type
that is being reviewed. If the IDENT record was the last record written, then
the IDENT record is reviewed in the IDENT format. DE/RPG does not advance
to the next review statement; it continues to use format AO for all records that
are read. Therefore, if the next record that is read is a MENU record, it is read
.with an IDENT format. Although this process would cause no problems in this
sample program because the first field of the IDENT format is longer than the
only field for the MENU record, it is still an improper coding practice.

OOOOiZ***
00002Z* PROGRAM 19. FIGURE 3-4 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ INQUIRE TFILE(LOOK)
00005Z AOIDENT 1E Ai
00006Z AiMENU iE D A0.:ll
00007Z R AO~
00008Z R Ai
00009A F PRE 5 DEVICE(CRT) DSPSIZ(6 80)
00010A R IDENT
00011A FLD1
00012A FLD2
00013A
00014A
00015A
00016A
00017

R MENU

FLOOK

1
1

5

I
I
o

o

INSERT('1')
INSERT('2')
'THIS IS FORMAT IDENT'

'THIS IS THE MENU FORMAT'
DEVICE(DISK Dl)

Figure 3-4. A Sample Program Showing the Invalid Use of Multiple Review Formats

•

•

A good way to code a review statement is shown in the next sample. This
sample demonstrates the use of the test position and character to test columns
on the Z-specification. Notice that the samples being used in this topic consist
of the programs written in the entry mode topic.

The sample in Figure 3-5 is taking two records (lTEMINF and SHIPINF) from
the program and writing review statements that allow DE/RPG to automatically
select the appropriate formats for displaying the records •. The other formats
in the program do not have review statements in this sample.

00001 ***
00002 * PROGRAM 20. FIGURE 3-5 FROM THE DE/RPG USER'S GUIDE
00003 ***
00004ZJ INQUIRE TFILE(LOOK)
00005Z AOIDENT iE Al
00006Z A1MENU lE *POSOOOl '1' II A2
00007Z E *POSOOOl '2' A3

SLNO(3)

00008Z A2ITEMINF NE AO
00009Z A3SHIPINF alE fJ AO
00010Z ' R *POS15 'I' A2
000llZ II R *POS0061 'S' II A3
00012A F ~~PUT 61 DEVICECCRT) DSPSIZC6 80)
00013A R IDENT

*

00014A FLD1
00015A FLD2

30X
6D

I
I

PMT(ENTER THE CUSTOMER'S NAME)
PMTCENTER THE CUSTOMER ID) CHECKCDR)

00016A R MENU
00017A
00018A
00019A
00020A
00021A
00022A
00023A
00024A
00025A
00026A
00027A
00028A
00029A

FLD3
R ITEMINF

FLD4
FLD5
FLD6
FLD7

R SHIPINF
FLD8
FLD9
FLD10

FLOOK

1

6
5
3
1

30X
30

1
61

0001001'1 ENTER ITEMt AND PRICE DATA'
0002001'2 ENTER THE SHIPTO DATA'
I603001CHECK(DR)

I PMT(ENTER ITEMt)
21 PMT(ENTER PRICE)
01 PMT(ENTER QUANTITY)

I INSERT('I')

I PMT(ENTER NAME)
I PMT(ENTER ADDRESS)
I INSERT ('S')

DEVICE(DISK D1>

Figure 3-5. A Sample Program Showing the Valid Usa of Multiple Review Formats

When the ITEMINF and SHIPINF records were initially written, they contained
record markers that were included to identify them during the review modes.
These record markers were III for the ITEMINF record and S • for the
SHIPINF record. They were supplied by the INSERT(' ') operation.

Controlling Display and Diskette Formats via the Z-Specifications 55

56

These record markers are now used to direct DE/RPG in selecting the
appropriate format for the review mode. As the sample indicate., the review
statement for the ITEMINF format contains a epOS15II in the Teat Position
column and an I in the Character to Test columns. The 15 is determined in the
following way:

Add the lengths of the fields preceding the test character field

6 + 5 + 3 = 14

Add 1 to determine the position for the test character

14 + 1 = 15

The ·POS61 .. test position for the SHIPINF record is determined in the same
way.

The result is that DE/RPG always selects the ITEMINF format whenever an I is
encountered in position 15 of the current diskette record and the SHIPINF
format whenever an S is encountered in position 61 of the current diskette
record.

This sample does not show you the optimal way to specify review formats;
the length of the fields in the ITEMINF and SHIPINF records are not the same.
Therefore, position 15 of the SHIPINF record could contain an I (because this
would be a position within the customer name field of the SHIPINF record),
and therefore, the ITEMINF format could be selected for reviewing a SHIPINF
record. The sample in Figure 3-6 shows you how to correct this type of
problem.

00001 ***
00002 * PROGRAM 21. FIGURE 3-6 FROM THE DE/RPG USER'S GUIDE *
00003 ***
00004ZJ INQUIRE TFILE(LOOK)
00005Z AOIDENT lE Al
00006Z A1MENU 1E *POSOOOl '1' A2 SLNO(3)
00007Z E *POSOOOl '2' A3
00008Z A2ITEMINF NE AO
00009Z A3SHIPINF .. 1E AO
00010Z ~ R *POS0061 'I' A2
00011Z R *POS0061 'S' A3
00012A F INPUT 61 DEVICE(CRT) DSPSIZ(6 BO)
00013A R IDENT
00014A FLDl
00015A FLD2
00016A R MENU
00017A
00018A
00019A
00020A
00021A
00022A
00023A
00024A
00025A
00026A
00027A
0002BA
00029A
00030A
00031

FLD3
R ITEMINF

FLD4
FLD5
FLD6
FLD7
FLDA

R SHIPINF
FLDB
FLD9
FLD10

FLOOK

30X
6D

1

30X
30

1
61

1
I

PMT(ENTER THE CUSTOMER'S NAME)
PMT(ENTER THE CUSTOMER ID) CHECK(DR)

0001001'1 ENTER ITEM. AND PRICE DATA'
0002001'2 ENTER THE SHIPTO DATA'
I003001CHECK(DR)

I
21
01

I
I

I
I

PMT(ENTER ITEM.)
PMT(ENTER PRICE)
PMT(ENTER QUANTITY)
CHECK(BY)
INSERT('I')

PMT(ENTER NAME)
PMT(ENTER ADDRESS)
INSERT (I S I)

DEVICE(DISK D1)

Figure 3~. A Program Showing a Suggested Technique for Multiple Review Format Selection

Take the previous sample and add a field that extends the record marker for
the ITEMINF record to the corresponding position of the record marker in the
SHIPINF record. Determine the length of this field in the following way:

Subtract the position of the ITEMINF record marker from the position of
the SHIPINF record marker

61 - 15 = 46

The length of this new field should be 46. The CHECK(BY) operation provides
a field that consists of blanks and which cannot be altered by the operator.
Look at the sample II Now the review statement for both format selections
contains a ·POS61 test position.

Controlling Display and Diskette Formats via the Z-Specifications 57

58

To illustrate the most complex review mode format selection, the sample uses
a new program. The entire program is not shown; only those parts that are
directly related to the complex review format selection are provided. See the
sample in Figure 3-7.

00001Z**
00002Z* PROGRAM 22. FIGURE 3-7 IN THE DE/RPG USER'S GUIDE *
00003Z**
00004ZJ RESEARCH TFILE(CENSUS)
00005Z BOGENERAL D1E *POS0001 'M' B1
00006Z E *POSOOO 1 ' F ' B2
00007Z B1MALE 1E *POS0002 'S' B4
00008Z E *POS0002 'M' B5
00009Z B2FEMALE 1E *POS0002 'S' B6
00010Z E *POS0002 'M ' B7
00011Z B4MASISTAT NE BO
00012Z B5MAMARSTA NE BO
00013Z B6FESISTAT NE BO
00014Z B7FEMARSTA NE BO
00015Z R *POS0001 'F'
00016Z RA*POS0002 'S'
00017Z R
0001BA F EX
00019A R GENERAL
00020A
00021A
00022A
00023A
00024A
00025A
00026A
00027A
00028A
00029A
00030A
00031A
00032A
00033A
00034A
00035A
00036A
00037A
00038A
00039A
00040A
0004iA
00042A

FLDi
R MALE

FLD2
FLD3

R FEMALE

FLD4
FLD5

R MASISTAT

FLD6
R MAMARSTA

FLD7
R FESISTAT

FLD8
R FEMARSTA

FLD9
F CENSUS

5

1

i
1

1
1

1

1

1

1
5

o
I

o
I
I

o
I
I

B6
o
DEVICE(CRT) DSPSIZ(6 BO)

'THIS IS THE GENERAL RECORD'
PMT(S=SINGLE, M=MARRIED, USE ENTER)

'THIS IS THE MALE RECORD'
INSERT ('M')
PMT(S=SINGLE, M=MARRIED, USE ENTER)

'THIS IS THE FEMALE RECORD'
INSERT ('F ')
PMT(S=SINGLE, M=MARRIED, USE ENTER)

o 'THIS IS THE MASISTAT RECORD'
I PMT(USE ENTER, NEXT IS GENERAL)

o 'THIS IS THE MAMARSTA RECORD'
I PMT(USE ENTER, NEXT IS GENERAL)

o 'THIS IS FESISTAT'
I PMT(USE ENTER, GENERAL NEXT)

o 'THIS IS THE FEMARSTA RECORD'
I PMT(USE ENTER, GENERAL NEXT)

DEVICE(DISK D1)

Figure 3-7 (Part 1 of 2). A Program Showing Complex Use of Multiple Format Selection

•

II

o 0001 A 40

F=FEMALE M=MALE USE ENTER

THIS IS THE GENERAL RECORDMI!I

o 0001 A 40

S=SINGLE, M=MARRIED, USE ENTER

THIS IS THE MALE RECORDM

l~ _________ ~J
o 0001 A 40

MM

OWNS 5-ROOM HOME IN SECTOR 16 973-48-295

PROFESSIONAL

l~~ .. _3_6_Y_E_A_R __ SO_F __ AG_E __ .. ~,Jr
Note: The program literals indicate the type of record that would be displayed.
The sample displays show the type of information that might be used for this
kind of application.

Figure 3-7 (Part 2 of 2). A Program Showing Complex Use of Multiple Format Selection

Controlling Display and Diskette Formats via the Z-Specifications 59

60

The technique being demonstrated is the selection of the correct format to use
for records that use two record markers to select the appropriate format for
review mode. The process is called AN Ding. Before the format can be
selected, both test conditions" must be true.

The sample program that demonstrates format selection through ANDing test
conditions uses an application common to population census applications. The
program allows an operator to enter data into record types in a way that this
data can be separated and identified later. The first record that an operator
sees is the one named GENERAl. The first display II demonstrates the type
of information required by this record type. Depending on the entry in the first
position of this record (F for female and M for male), DE/RPG selects either
the MALE or FEMALE format. In this sample, the selected format is MALE D
The operator enters data of the type shown by the second sample display B.
If the second field of this record is an M, DE/RPG automatically selects the
format called MAMARSTA (for male married statistics). The type of data the
operator enters into this record is indicated by the third display. During the
review mode, the MAMARSTA format is selected whenever DE/RPG
recognizes an M in position one of the current diskette record and an M in
position two. As you notice in the third display, this is the identifying sequence
used by this record type. This concludes the example of AN Ding test
conditions to select a format for the review mode.

The various ways formats can be selected for the review mode have been
demonstrated in this topic. The next topic in this chapter describes the ways in
which you can determine the contents of the diskette formats.

USING THE Z-SPECIFICATION TO CONTROL DISKETTE FORMATS FOR A
TRANSACTION FILE

The default format for diskette records written by using a transaction file is
identical to the format specified for the display. The first sample program used
in this chapter demonstrates this default. Look at the sample in Figure 3-S.
Notice that the detailed view of the diskette record" contains fields in the
order in which they were entered by the operator using the display format II.

To change the default for writing the diskette record created by a transaction
file, you must specify a different diskette record to be used in the program.
The record you specify must contain a" data fields contained in the entry
display format and it must not contain fields from any other record. The order
of the fields is the part of the record that can be changed.

00001Z***
00002Z* PROGRAM 23. FIGURE 3-8 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ INQUIRE TFILE(LOOK)
00005Z AOIDENT 1E A1
00006Z A1MENU 1E *POS0001 '1' A2 SLNO(3)
00007Z E *POS0001 '2' A3
00008Z A2ITEMINF NE AO
00009Z A3SHIPINF 1E AO
00010Z R *POS0061 'I' A2
00011Z R *POS0061 'S' A3
00012A F INPUT 61 DEVICE(CRT) DSPSIZ(6 80)
00013A R IDENT
00014A FLD1
00015A FLD2
00016A R MENU
00017A
00018A
00019A
00020A mil
00021A ~
00022A
00023A
00024A
00025A
00026A
00027A
00029A
00029A
00030A

FLD3
R ITEMINF

FLD4
FLD5
FLD6
FLD7
FLDA

R SHIPINF
FLD8
FLD9
FLD10

FLOOK

FLOl FL02

30X
6D

1

6
5
3

46
1

30X
30

1
61

1
I

PMT(ENTER THE CUSTOMER'S NAME)
PMT(ENTER THE CUSTOMER ID) CHECK(DR)

0001001'1 ENTER ITEMt AND PRICE DATA'
0002001'2 ENTER THE SHIPTO DATA'
I003001CHECK(DR)

I
21
01

I
I

I
1

PMT(ENTER ITEMt)
PMT(ENTER PRICE)
PMT(ENTER QUANTITY)
CHECK(BY)
INSERT('I')

PMT(ENTER NAME)
PMTCENTER ADDRESS)
INSERT (, S ')
DEVICE(DISK D1)

o
"

FLOS FLOg FL010 FLOl FL02 FL04 FL05 FL06

Figure 3-8. A Sample Program Showing Diskette Data Set Reformatting

Controlling Display and Diskette Formats via the Z-Specifications 61

62

The sample in Figure 3-9 demonstrates how this specification can be made.
Although the program is the same one used in the previous sample, notice that
there is now a record following the file statement for the diskette D Also
notice the keyword WRITE followed by the new record name on the entry
format line. As the sample illustrates, the program reorganizes the
sequence of the fields in the diskette record. as specified by the format
named as the WRITE parameter.

00001Z***
00002Z* PROGRAM 24. FIGURE 3-9 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ INQUIRE
00005Z AOIDENT
00006Z A1MENU
00007Z
00008Z A2ITEMINF
00009Z A3SHIPINF
00010Z
00011Z
00012A
00013A
00014A
00015A
00016A
00017A
00018A
00019A
00020A
00021A
00022A
00023A
00024A
00025A
00026A
00027A
00028A
00029A
00030A
00031A
00032A
00033A
00034A
00035A
00036A
00037

1E
1E *POS0001

E *POS0001
NE
1E

R *POS0061
R *POS006~

F INPUT
R IDENT

FLD1
FLD2

R MENU

FLD3
R ITEMINF

FLD4
FLD5
FLD6
FLD7
FLDA

R SHIPINF
FLD8
FLD9
FLD10
LOOK
ITEM
FLD7
FLD6
FLD4
FLD5
FLDA

, 1 '
, 2'

, I '
lSI

61

30X
6D

1

I
I

A1
A2
A3
AO
AO
A2
A3

TFILE(LOOK)

WRITE(ITEM) fJ

DEVICE(CRT) DSPSIZ(6 80)

PMT(ENTER THE CUSTOMER'S NAME)
PMT(ENTER THE CUSTOMER ID) CHECK(DR)

0001001 1 1 ENTER ITEM~ AND PRICE DATAl
0002001 1 2 ENTER THE SHIPTO DATAl
I003001CHECK(DR)

I PMT(ENTER ITEM~) 6
5
3

21 PMT(ENTER PRICE)

46
1

30X
30

1
61

46
3
6
5
1

01 PMT(ENTER QUANTITY)
I CHECK(BY)
I INSERT('I')

I PMT(ENTER NAME)
I PMT(ENTER ADDRESS)

INSERT (I S I)
DEVICE (DISK DU

O·

2

,
II

FLO 1 F L02 ~~ LOB F LOg FLO 1 O\~ LO 1 F L02~-F-L-O-7-F-L-O-6-F-O-L-4-F-O-L-5-F-L-O-"A)

Figure 3-9. A Sample Program Showing Simple Reformatting for a Data-Entry Program

..

To write a record that uses a different format from the one used for the
display, both these conditions must exist: (1) a new record must be created
within the diskette file and (2) the WRITE keyword followed by the record
name must appear in the statement for the entry mode display format.

When the entry mode display and diskette formats are not identical, you must
make a decision about which to use for displaying the record in the review
mode. Your choice consists of using either the initial entry format or of using
the diskette format. If you select the diskette format for the review mode, you
must include a description of this format within the CRT file.

One other possibility exists concerning the diskette format. So far, you have
seen that you can use the default format that is identical to the display format
and that you can specify a separate format. The last possibility for data sets
created by transaction files is the suppression of writing a diskette record. This
is done with the WRITE(*NO) operation II. A possible application is the
MENU record shown in previous samples. This record must be displayed, but
the entry is not required in the diskette data set. Look at the following sample.
Note that FLD3 is now missing from the data set II.

Controlling Display and Diskette Formats via the Z-Specifications 63

64

00001Z****************~**
00002Z* PROGRAM 25. FIGURE 3-10 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ INQUIRE TFILE(LOOK)
00005Z AOIDENT 1E A1
00006Z A1MENU 1E *POS0001 '1' A2 II WRITE(*NO) SLNO(3)
00007Z E *POSOOO 1 ' 2' A3
00008Z A2ITEMINF NE AO WRITE<ITEM)
00009Z A3SHIPINF 1E AO
00010Z R *POS0061 ' I ' A2
00011Z R *POS0061 'S' A3
00012A F INPUT 61 DEVICE(CRT) DSPSIZ(6 80)
00013A R IDENT
00014A FLD1
00015A FLD2
00016A R MENU
00017A
00018A
00019A
00020A
00021A
00022A
00023A
00024A
00025A
00026A
00027A
00028A
00029A
00030A
00031A
00032A
00033A
00034A
00035A
00036A
00037

FLD3
R ITEMINF

FLD4
FLD5
FLD6
FLD7
FLDA

R SHIF'INF
FLD8
FLD9
FLD10

FLOOK
R ITEM

FLD7
FLD6
FLD4
FLD5
FLDA

30X
6D

1

6
5
3

46
1

30X
30

1
61

46
3
6
5
1

I
I

PMT(ENTER THE CUSTOMER'S NAME)
PMT(ENTER THE CUSTOMER ID) CHECK(DR)

0001001'1 ENTER ITEM. AND PRICE DATA'
0002001'2 ENTER THE SHIPTO DATA'
IOv3001CHECK(DR)

I PMT(ENTER ITEM.)
21 PMT(ENTER PRICE)
01 PMT(ENTER QUANTITY)

I CHECK(BY)
I INSERT('I')

I PMT(ENTER NAME)
I PMT(ENTER ADDRESS)

INSERT (, S')
DEVICE (DISK DO

0

2

Figure 3-10. A Sample Program Showing How a Record Can Be Displayed but Not Written in the Diskette Data Set

This concludes the topic describing the rpntrol of diskette formats for data
sets created by a transaction file. The next topic describes controlling display
formats and diskette formats through subroutines on the C-specification.

•

•

Chapter 4. Controlling Display and Diskette Formats via the C-Specifications

All format control through subroutines on the C-specification must be explicit. In
other words, you must specify the operation to be performed on the format, such
as reading it from or writing it to a diskette data set or placing data on the display.

Subroutines on the C-specification can be accessed in one of two ways: (1) by
naming the subroutine in an entry format statement on the Z-specification or (2)
by using the EXSR keyword and subroutine name on the A-specification. The
samples in Figure 4-1 demonstrate the ways in which subrou"tines can be called .

Sample A illustrates calling the subroutine from the Z-specification. Sample B
illustrates calling the subroutine from the A-specification .

Sample A
00001Z***
00002Z* PROGRAM 26. FIGURE 4-1 SAMPLE A IN THE DE/RPG USERIS GUIDE
00003Z***
00004Z.. SAMPLEl
0000aC1MAST
oooollr F
00007A R
00008A
00009A

1E
INPUT
HEADER
FLD1

62
EOJ

DEVICE(CRT) DSPSIZ(6 80)

*

00010A
OOOtOA

FLD2
FLDX;

30
30

1

I
I
I

3
4
5

1PMT(ENTER NAME)
lPMT(ENTER ADDRESS)
lPMT(IF THIS IS THE LAST

ENTERT PLACE AN X HERE)
579INSERT(IH I)

RECORD TO +
DSPATR(RI)

00011A
00012A
00013A
00014A
00015A
00016A
00017C
00018C
00019C
00020C
00021C
00022C NOl
00023C
00024
00025

FLD3
F OUTPUT
R HEAD

FLD3
FLD1

II
FLD2

MAST
RETURN

FLDX

1 I
62

BEGSR
TAG
EXFMTHEADER
COMP IX I
WRITEHEAD
GOTO RETURN
ENDSR

DEVICE(DISK D1)

01

Figure 4-1 (Part 1 of 2). A Sample Program Showing a Call to a Subroutine from the Z-8pecification

Controlling Display and Diskette Formats via the C-Specifications 65

66

Sample B

00001Z***
00002Z* PROGRAM 27. FIGURE 4-1 SAMPLE B IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ SAMPLEX TFILE(INTERMED)
00005Z E1HEADER IE E2
00006Z E2DETAIL 1E E1
00007A F INPUT 67 DEVICE(CRT) DSPSIZC6 80)
00008A R HEADER
00009A FLD1
00010A FLD2
00011A FLD3
00012A 1--LD4
00013A R DETAIL
00014A FLD5
00015A FLD6
00016A FLD?
0001?A FLD8
0001BA F FINAL
00019A R DET
00020A K FLD5
00021A FLD6
00022A FLD?
00023A FLDB
00024A F INTERMED
00025
00026C
00027C
0002BC
00029

DOUT

30
6

30
1

6
30

5
5

46

6
30

5
5

67

BEGSR
WRITEDET
ENDSR

I
I
I
I

I
I
I
I

PMTCENTER CUSTOMER NAME)
PMT(ENTER CUSTOMERt)
PMTCENTER ADDRESS)
INSERT ('H ')

PMTCENTER ITEMt)
PMT(ENTER DESCRIPTION)
PMTCENTER PURCHASE)
PMT(ENTER PRICE) EXSR(OUT)II
DEVICE(DISK D1>

DEVICE(DISK D1)

Figure 4-1 (Part 2 of 2). A Sample Program Showing a Call to a Subroutine from the A-Specification

•

•

CALLING SUBROUTINES FROM THE Z-SPECIFICATION

A subroutine named in an entry format on the Z-specification is executed, as
are all other entry formats, when it is selected based on a previous test

condition. When the subroutine is called, DE/RPG exits to the C-specification
subroutine description. This description must begin with a BEGSR operation
which names the subroutine (the name must be the same as the name specified
on the Z-specification). Calling a subroutine in an entry format statement allows
you to perform complex reformatting of data that has been entered via a single
entry format specification. The following sample in l7igure 4-2 shows you how this
facility allows you to take data from a single entry format and reformat it to create
three separate data sets from the one display record. The transaction data set is the
fourth data set; it is in the order of entry .

00001Z***
00002Z* PROGRAM 28. FIGURE 4-2 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ MANY TFILE(OUT)
OOOOSZ A1FIRST 1E A2
00006Z A20UTPUT 1E A1
00007A F INPUT 180
00008A DR FIRST

DEVICE(CRT) DSPSIZ(6 80)

00009A CUSN
00010A ADDR
00011A COMP
00012A PUR
00013A DATE
00014A F CUSNMAST
0001SA R ONE
00016A CUSN
0001 TA ADDR ~
00018A DATE
00019A F COMPMAST
00020A R TWO
00021A COMP
00022A DATE
00023A F ORDMAS
00024A R THREE
0002SA DATE
00026A PUR
00027A CUSN
00028A F OUT
00029C OUTPUT
00030C
00031C
00032C
00033C

20
40
30
80

6
66

20
40

6
36

106

180

I
I
I
I
I

BEGSR II:W
WRITEONE"'

O WRITETWO
WRITETHREE II
ENDSR

PMT(ENTER THE CUSTOMER'S NAME)
PMT(ENTER THE ADDRESS)
PMT(ENTER THE NAME OF THE COMPANY)
PMT(ENTER THE PURCHASE)
PMT(ENTER THE DATE)
DEVICE(DISK D1)

DEVICE(DISK D1>

DEVICE(DISK D1)

DEVICE(DISK D1.)

Figure 4-2 (Part 1 of 2). A Sample Program Showing Complex Reformatting

Controlling Display and Diskette Formats via the C-Specifications 67

o 0001 A 40

MARGARET RUTHERFERD 1533 RAGNOllA DRIVE, WASHBURN, MARYLAND APEX DESIGNS ESQ

300 PAIR ROOMOR PANTS, LOT 576

032880

l _____ ---------~J
D

CUSN ADDR CaMP PUR DATE [CUSN ADDR caMP PUR DATE r

D

CUSN ADDR DATE [CUSN ADDR DATE

D
~

caMP DATE [caMP DATE J[caMP DATE

II ..

DATE PUR CUSN LDATE PUR CUSNjlDATE PUR CUSN

Figure 4·2 (Part 2 of 2). A Sample Program Showing Complex Reformatting

68

..

•

This program illustrates the combination of using a transaction file and explicit
write operations to create data sets. Each time the operator completes the
entry using the display format named FI RST D a default record is written in
the data set named by the TFILE function and three reformatted records D
D and II are written in three separate data sets as determined by the

subroutine on the C-specification.

In addition to the complex reformatting capabilities shown in the previous
sample, the entire interactive program can be controlled by the subroutine on

the C-specification. The sample in Figure 4-3 demonstrates how this can be
accomplished. The first entry format specified is the name of a subroutine on
the C-specification II. As you look at the subroutine contents you can see
that it contains an operation named EXFMT Elfollowed by a name that is
repeated on the A-specification. This operation allows you to tell DE/RPG
when to display a format that the operator uses to enter data. Once the data
is entered, control returns to the subroutine and the data can be reformatted
for writing to a diskette data set or written as it occurs in the display format
II. It is possible to loop (or cycle) through the process again and again II.

00001Z***
'00002Z* PROGRAM 29. FIGURE 4-3 IN THE DE/RP~ USER'S GUIDE *
00003Z***
00004ZJ SAMF'LE
00005zD D1START
00006A F

1E
INPUT
ITEMID
FLD1

00007A R
00008A
00009A
00010A
00011A
QIX112A
OOOj,3A
00014A
00015A
00016A
00017C
00018C
OOOt9C

Fl.D2
Fl.D3
FLDX

F Mi'lSJ TEM
R ITEM

FLD1
FLD:)
FLD3

START
F;:FTUF;:N

ElEGSF,
TAG

41

30
4
j,

4i

6
30

4

I
I

OI
I

o

[OJ
DEVICE(CRT) DSPSIZ(6 80)

PMT(ENTER ITEM~)

PMT(ENTER DESCRIPTION)
PMTtENTER ~ SOLD)
PMT(TO END, ENTER X)

1lEVICE(DISK 01)

00020C
00021C
00022C
00023C

NOi
NOi

Fl.DX
EXFMT I TEM I D fJ
CUMF' 'X' II WR I TE I T[I"I

01.

00024
00025
00026

GOlD RETURN'"
ENDSF: ..

Figure 4·3. A Sample Program Showing Program Control from the C-Specification

When the subroutine controls the operation of the programs, you can use the
End of Job key to terminate the program. In this sample, another technique
for ending the job is used. The operator enters an X in a designated field
when he wants to terminate the program. This X tells the program to go to
termination.

Controlling Display and Diskette Formats via the C-Specifications 69

70

CALLING A SUBROUTINE FROM THE A-SPECIFICATION

The second way in which you can call a subroutine on the C-specification is with
the EXSR keyword on the A-specification.

This operation allows you to control the format selection from the keyboard but
still use the C-specification to perform such operations as writing a record in the
diskette data set. The sample in Figure 4-4 illustrates the sequence that occurs
when you use the exit from the A-specification to call a subroutine that writes a
diskette record.

•

OOOOlZ********************************-******************************
00002Z* PROGRAM 30. FIGURE 4-4 IN THE DE/RPG USER'S GUIDE *
00003Z***
0000A7 I SAMPLE X TFILE(INTERMED)
ooooDEiHEADER iE E':'l
0000'fJE2DETAIL lE Ei
OOOO~H F INPUT 67 DEVICE(CRT) DSPSIZ(6 BO)
OOOOBA R HEADER
00009A FLDi
00010A FLD2
0001iA FLD3
000i2A FLD4
000i3A R DETAIL
00014A FLD5
00015A FLD6
00016A FLD7
00017A FLD8
OOOlBA F FINAL
OOOi9A R DET
00020A m 1\ FLD5
0002iA FLD6
00022A FLD7
00023A FLD8

30
6

30
1

6
30

5
5

46

6
30

5
5

00024A F INTERMED 67
0002~:;

00026C
00021C
0002BC
00029

OUl f.!FGSF:
IIWF:ITFDE r

END,S'~:

I
I
I
I

I
I
I
I

IJ

PMTCENTER CUSTOMER NAME)
PMTCENTER CUSTOMER~)
PMTCENTER ADDRESS)
INSERT (, H ')

PMT(ENTER ITEM~)

PMT(ENTER DESCRIPTION)
PMTCENTER PURCHASE)
PMT(ENTFR PRICE) EXSRCOLlT)D
DE'JICE C DISI'; D1)

DEVICECDISI< D1)

FLD1FLD2 FLD3 FLD4) FLD5 FLD6 FLD7 FLDB ~\ FLDl FLD2 ... S

II
"

FLD5 FLD6 FLD7 FLD8 ~ FLD5 FLD6 FLD7 FLD8 ... (

Figure 4-4. A Sample Program Showing Display Control from the A-Specification and Diskette Data Set Control

from the C-Specification

The sample program displays a HEADER format" as specified by the entry
statement on the Z-specification. After the operator completes the entries for
one HEADER record, the DETAIL format is automatically displayed II. At the
completion of each format, a record is written in the transaction data set II·
At the conclusion of the DETAIL format D the subroutine writes a DET record
II in key sequence II in the diskette data set II. When the DETAIL format
has been completed, the HEADER format is redisplayed. This process is
repeated for the new customer. The process continues until the operator uses
the End of Job key. In this example, the End of Job key works because a

transaction file is being used.

Controlling Display and Diskette Formats via the C-Specifications 71

72

This concludes the description of controlling formats through subroutines on
the C-specification. Chapter 5 contains topics describing the control of the
contents of the display, and Chapter 6 contains topics describing the control of
the contents of diskette records.

•

Chapter 5. Formatting T8(:hniques for the Displays

This chapter describes characteristics of the display formats. A variety of ways
to design displays for various applications are provided .

Formatting Techniques for the Displays 73

74

The default display format consists of fields strung together with no overlap or
spacing other than the spacing resulting from unused field positions or display
attributes. The sample in Figure 5-1 demonstrates the default format. Notice
that the position columns of the A-specification are unused.

00001Z***
00002Z* PROGRAM 31. FIGURE 5-1 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ OVMASTER TFILE(OVERMAST)
00005Z A1FIRST 1E Ai
00006Z R Ai
00007A F OVERALL 17 DEVICE(CRT) DSPSIZ(6 80)
00008A ~ FIRST
00009A IIIFLD1
00010A fJFLD21J
00011A FLD3
00012A ~FLD4

5C
3
4
5

I
I
I
I
o
o
o
o

SHIFT(XXXDD) DSPATR(CS)
DSPATR(CS)
DSPATR(CS)

00013A
00014A
00015A
00016A
00017A F OVERMAST 17

III EJ II II
~A~~
III I I I I I I 1'1 I I I I I I I IIFLD1FLD2FLD3FLD4

DSF'ATR(CS)
'FLD1'
IFLD2'
IFLD3 '
IFLD4'
DEVICE (DISK DO

Figure 5·1. A Sample Program Showing the Default Display Format with the Use of Display Attributes

The unformatted display shown in the sample in Figure 5-1 is not format 0
which is referred to as the default format for data shown in some of the
modes (such as copy and insert) described in the Df/RPG Reference Manual.
Format 0 consists of single-character fields that are . strung together across the
display. The sample in Figure 5-1 illustrates a user-generated format that consists
of fields with lengths specified by the person writing the program.

During the update mode, the preceding sample program allows an operator to
alter data. All changes in the data are tested against the edits and checks
initially imposed on the fields. If an operator tries to enter 1 AA23, for example,
in FLD1, an error occurs because the new data does not match the pattern
specified for the field (alpha, alpha, alpha, digit, digit).

•

One method of providing flexibility to the program so that edits and checks can
be suspended during the update mode is to specify format 0 in the review
statement. See the sample in Figure 5-2.

00001Z***
00002Z* PROGRAM 32. FIGURE 5-2 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ OVMASTER TFILE(OVERMAST)
00005Z A1FIRST 1E A1
00006Z R Do
00007A F OVERALL 17 DEVICE(CRT) DSPSIZ(6 80)
00008A R FIRST
00009A FLD1
00010A FLD2
00011A FLD3
00012A FLD4
00013A F OVERMAST
00014

5C
3
4
5

17

I
I
I
I

SHIFT(XXXDD) DSPATR(CS)
DSPATR(CS)
DSPATR(CS)
DSPATR(CS)
DEVICE(DISK D1)

Figure 5·2. A Sample Program Showing the Use of Format 0 to Suppress Edits and Checks

When format 0 is specified in a review statement, each data character forms a
field. None of the original edits and checks are enforced. The operator is free
to alter the data as needed. When the diskette record is an exact replica of
the display record, the display appears the same as the diskette contents.

If you specify format 0 in a review statement of a program, be aware that it
displays the diskette contents. If the diskette record has been reformatted, the
field order may be different from that used in the initial entry; and, the
operator may not be able to identify the fields that are displayed. No literals or
prompts can be used with format O.

Formatting Techniques for the Displays 75

76

The sample in Figure 5-3 shows a formatted display. It takes the first sample
and uses the position columns. Notice how the fields are placed exactly where
you want them to be in order to present an attractive display.

00001Z***
00002Z* PROGRAM 33. FIGURE 5-3 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ OVMASTER TFILE(OVERMAST)
00005Z A1FIRST 1E A1
00006Z R Ai
00007A F OVERALL 17 DEVICE(CRT) DSPSIZ(6 80)
00008A R FIRST
00009A FLD1 5C

3
4
5

I
I
I
I
o
o
o
o

1 2SHIFT(XXXDD)
1DSPATR(CS)

DSPATR(CS)
00010A FLD2 2
00011A FLD3 2 20DSPATR(CS)
00012A FLD4 3 1DSPATR(CS)
00013A
00014A
00015A
00016A
00017A
00018
00019

l

0 0001

II t

I'

F OVERMAST 17

A 40

FLD1

FLD2 fl I I IFLD3

FLD4

1 10'FLD1'
2 10'FLD2'
2 25'FLD3'
3 10'FLD4'

DEVICE(DISK D1)

Figure 5·3. A Sample Program Showing a Formatted Display with Display Attributes

In the position columns on the A-specification, the entries in the first three
columns specify the row and the second three columns specify the column on
the display. If you are not using the Source Entry Program provided with the
DE/RPG compiler to enter your program in preparation for a compilation,
ensure that the numbers entered in the position columns are right-adjusted
with either zero or blank fill.

The positioning of fields on the display does not affect their positioning on the
diskette. Other than the sequence for the transaction data set being a replica
of the display seq'uence, the display formats and the diskette formats are
independent of one another.

J

•

USING DIFFERENT DISPLAY FORMATS FOR ENTRY AND REVIEW MODES

When an experienced operator is entering the same type of data every day, a
highly prompted display is unnecessary. The operator does not need to see a
display filled with prompting information to guide the entry. The operator
simply wants to enter the data and proceed to the next record.

Consider, however, the IBM 5280 used by an operator who only occasionally uses
it to enter data into the system. This operator could be an individual in a remote
location. The main occupation of the operator may be shipping parts, but
occasionally there is a need to use the IBM 5280 to update inventory. A highly
prompted and formatted display is not only desirable but necessary to guide the
entry.

It is possible that the operator for whom you are writing the program has the
need for both types of displays. For the initial entry, he requires a highly
prompted, formatted display. For review purposes, he requires only the data
fields without formatting. By specifying a separate review format display, this
can be accomplished. See the sample in Figure 5-4.

Formatting Techniques for the Displays 77

78

00001Z***************~***
00002Z* PROGRAM 34. FIGURE 5-4 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ INVENT
OOOO~DE 1 FIRST
00000
00007Z E2SECOND
00008Z
00009A
00010A
00011A
00011A
00012A
00012A
00012A
00013A
00013A
00013A
00014A
00014A
00015A
00016A
00017A
00018A
00019A
00020A
00021A
00022A
00023A
00024
00025
00026

NE

1EII
R

F INPUT
R FIRST

FLD1

FLD2

R SECOND
FLD1
FLD2

F OUTPUT X

o 0001 A 40

11

6

5

6
5

11

E2

TFILE(OUTPUTX)
SLNO(2)

DEVICE(CRT) DSPSIZ(6 80)

OOOiOOi'THIS IS THE INVENTORY PROGRAM. IT +
IS TO BE USED ONLY WHEN A PURCHASE'

0002001 'HAS BEEN MADE. AT THIS TIME, ENTE+
R THE INFORMATION THAT IS REQUESTED+

0003001'AND THEN PRESS THE REC ADV KEY. YO+
U WILL SEE A MENU THAT WILL GIVE YO+
U'

0004001'THE CHOICE OF CONTINUING OR OF END+
ING THE JOB. 1

0005001'PLACE THE ITEM. HERE:'
1005022
000~~34'PLACE THE PRICE HERE: '

21005056
0005062'PRESS REC ADV'

I
21

DEVICE(DISK D1)

II THIS IS THE INVENTORY PROGRAM. IT IS TO BE USED ONLY WHEN A PURCHASE

HAS BEEN MADE. AT THIS TIME, ENTER THE INFORMATION THAT IS REQUESTED

AND THEN PRESS THE REC ADV KEY. YOU WILL SEE A MENU THAT WILL GIVE YOU

THE CHOICE OF CONTINUING OR OF ENDING THE JOB~

PLACE THE ITEM~ HERE:OOAAAl PLACE THE PRICE HERE: 09950 PRESS REC ADV

o 0001 A 40

OOAAA109950

l~ __________ ----,J
Figure 5-4. A Sample Program Showing Different Displays for the Entry and Review Modes

•

•

The entry format used for this program is named FIRST and its 10 is E1 D
Because the next format 10 column contains E1 • the next format, which
defines the format to be used for the review mode is not displayed during the
entry process; it is manually selected. Before a format can be used for the
review mode, it must be defined as an entry mode format.

Notice that SLNO(2) is used. Because this is the default value, using SLNO does
not affect the location of the literals on the display. In other words, SLNO in
this program does not accomplish anything. The use of SLNO is described
later in this chapter.

When you use literals, check the length of the message to ensure that it does
not exceed 80 characters. This prevents unnecessary word divisions that make
the message difficult to read .

The fully prompted display is only used for initial entry. An unprompted
display is used for the review mode.. The format statements control this
sequence .

USING THE POSITION COLUMNS TO CREATE PROMPTING TEXT

One of the most useful functions available in providing programs to be used by
inexperienced operators is the writing of extensive prompting information on
the display. The posit1on columns on the A-specification allow you to design
displays that satisfy this requirement. By using the position columns and
literals, you can create menus.

The sample program in Figure 5-5 displays the menu; it does not use the
operator's entry to select a format. To have the entry control the selection of a
format, you must use indicators and the C-specification, or test position and
character to test entries on the Z-specification. Chapter 3 contains information
about using the test position and character to test to select a format, and
Chapter 8 contains information about using indicators to select formats. It is
also possible to select programs from menus. To do this, you would include
EOJ('programname' device *PASS) on the entry formats; this would automatically load
the appropriate program next. The DE/RPG Reference Manual contains
additional information about this keyword and its parameters.

Formatting Techniques for the Displays 79

00001Z •••
00002Z. PROGRAM 35& FIGURE 5-5 IN THE DE/RPG USER'S GUIDE •
00003Z •••
00004ZJ EXAMPLE TFILE(OUTPUT)
00005Z A1FIRST 1E
00006A F INPUT
00001A R FIRST
00008A
00008A
00008A
00009A
00010A
00011A
00012A
00013A
00014A
00015A F OUTPUT

o 0001 A 40

80

1
80

DEVICE(CRT) DSPSIZ(12 80)

0001001 'ENTER ONE OF THE FOLLOWING NUMBERS­
IN THE FIELD WHERE THE CURSOR IS L-

OCATED'
0003005'1 SELECT
0004005'2 SELECT
0005005'3 SELECT
0006005'4 SELECT
0001005'5 SELECT
I010016CHECK(FE)

INVENTORY'
SOLD TO DATE'
TRACE'
CUSTOMER MASTER'
BILLING'

DEVICECDISK D1)

ENTER ONE OF THE FOLLOWING NUMBERS IN THE FIELD WHERE THE CURSOR IS LOCATED_

1 SELECT INVENTORY

2 SELECT SOLD TO DATE

3 SELECT TRACE

4 SELECT CUSTOMER MASTER

5 SELECT BILLING

Figure 5-5. A Sample Program Showing the Design for a Menu

80

•

In addition to menus, you can design fill-in-the-blank entries. The sample in
Figure 5-6 illustrates this.

00001Z***
00002Z* PROGRAM 36. FIGURE 5-6 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ EX TFILE(OUTPUT)
00005Z A1FIRST lE Ai
00006A F INPUT 55 DEVICE(CRT) DSPSIZ(6 80)
00007A R FIRST
00008A
00009A
00010A
00011A
00012A
00013A
00014A
00015A
00016A F OUTPUT

o 0001 A 40

20
15
10
10
55

ENTER THE FOLLOWING INFORMATION

CUSTOMER NAME:

STREET ADDRESS:

CITY:

0002001 'CUSTOMER NAME:'
0003001'STREET ADDRESS:'
0004001' CITY: I

0005001' STATE: '
1002017PMT(ENTER THE FOLLOWING INFORMATION)
1003017
1004017
1005017

DEVICE(DISK Dl)

l STATE J
.'-------------~

Figure 5-6. A Sample Program Showing a Design for a Display with Fill-in-the Blank Entries

As in the menu, the prompts used to guide the operator are not written to the
diskette data set. This requires no special action on your part; prompts are
never written to the diskette data set.

Formatting Techniques for the Displays 81

82

USING THE DISPLAY ATTRIBUTES TO FACILITATE ENTRY

If you choose to use the default format, you can use the column separator
display attributes to separate the entry fields. The sample program in Figure
5-7 uses the display attributes on a field basis. with no field positioning.
The display looks as if it contains one long field containing column separators.
As you begin to enter data, you see that fields have been defined and that
blank spaces indicate the field boundaries.

00001Z*************~***
00002Z* PROGRAM 37. FIGURE S-7 FROM THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ EXAMPLE TFILE(OUTPUT)
OOOOSZ A1FIRST 1E A1
00006A F INPUT S9 DEVICE(CRT) DSPSIZ(6 80)
00007A R FIRST
OOOOBA D FLD1
OOOOBA
00009A fJ FLD2
00010A nFl.D31!
00011A "FLD4
00012A F OUTPUT

21

16
11
11
S9

I

I
I
I

PMT(ENTER THE CUSOMTER'S NAME, ADDR+
RESS, CITY, AND STATE) DSPATR(CS)
DSPATR(CS)
DSPATR(CS)
DSPATR(CS)
DEVICE (DISK D1>

ENTEF~ THE ISTDMEJ~ I S NAME I ADDRa I CITY I ANDai"ATE II

I I I I 1 I 1 1 1 I I 'I 1 I 1 I 1 1 1 I 1 1 I 'I II I I I I I 1 I I I 1 1 1 I i' I rill 1 1 t I I 1 I I' I ~ 1 1 I I I I I I I I i I

Figure 5-7. A Sample Program Showing the Use of Display Attributes with Unformatted Fields

•

•

The sample in Figure 5-8 illustrates the use of reverse image with positioned
fields.

00001Z***
00002Z* PROGRAM 3S. FIGURE 5-8 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ SAMPLE TFILE(OUTPUT)
00005Z A1FIRST lE
00006A F INPUT 55 DEVICE(CRT) DSPSIZ(6 SO)
00007A R FIRST
OOOOSA
00009A
00010A
00011A
00012A
00013A
00014A
00015A
00016A

FLD1

FLD2

FLD3

FLD4
F OUTPUT

o 0001 A 40

20

15

10

10
55

ENTER THE FOLLOWING INFORMATION

CUSTOMER NAME:

STREET ADDRESS:

CITY:

0001001 'CUSTOMER' 'S NAME:'
I00101SDSPATR(RI)
0002001 'STREET ADDRESS:'
I00201SDSPATR(RI)
0003001' CITY: '
I00300SDSPATRCRI)
0004001' STATE: '
I00400SDSPATR(RI)

DEVICE (DISK DU

l STATE J
~------~

Figure 5-8. A Sample Program Showing the Use of the Reverse Image Display Attribute

As shown by the sample in Figure 5-9, you can use the no display attribute to
provide security:

00001Z***
00002Z* PROGRAM 39. FIGURE 5-9 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ SAMPLE TFILE(OUTPUT)
00005Z A1FIRST lE Ai
00006A F INPUT 24 DEVICE(CRT) DSPSIZ(6 80)
00007A R FIRST
OOOOSA GROSS
00009A
00010A
00011A
00012A
00013A
00014A
00015A
**CTDATA REFTAB
659613250000
459294350000
853026360000

HOURS
ALL

F OUTPUT
F REFTAB
TEMPT
T GROSST

6

3
10
24
12

6
6

2I002002PMT(ENTER EMPLOYEE'S .)
SUBST(EMPT GROSST) DSPATR(ND)

lI003001PMT(ENTER HOURS WORKED)
2I004001INSERT(GROSS*HOURS) DSPATR(ND)

DEVICE(DISK Dl)

o
o

NUMENT(3)

Figure 5-9. A Sample Program Showing the Use of the No Display Attribute

Formatting Techniques for the Displays 83

84

All the previous samples in this chapter have demonstrated using field
attributes for each field on the display. It is possible to specify field attributes·
to be shown only on the current field. The attributes remain displayed only as
long as the field is not exited. The samples in Figure 5-10 illustrate this
technique.

In Sample A of Figure 5-10, the ENTRATR is specified with no EXITATR. The
resulting display shows the current field in reverse image. All other fields
(except those with field attributes defined) are normal displays. In Sample B of
Figure 5-10, an EXIT ATR is provided. The resulting display shows reverse
image only for the current field. The entire display contains column separators.

Sample A
00001Z**
00002Z* PROGRAM 40. FIGURE 5-iO IN THE DE/RPG USER'S GUIDE *
00003Z**
00004ZJ ATTR TFILE(ALL)
00005Z ENTRATR(RI)
00006Z fi1. ONL..Y NE Ai
00007Z R Ai
00008fi F INPUT 100 DEVICE(CRT) DSPSIZ(6 80)
00009A R ONLY
00010A FLDl 10 I 2 2PMT(ENTER A NAME)
0001iA FLD2 8 I 2 20PMT(ENTER A TELEPHONE NUMBER)
000i2A FLD3 is I 2 40PMT(ENTER THE CREDIT CARD NUMBER)
OOOj.3A FLD4 20 I 3 2PMT(ENTER THE CUSTOMER NAME)
000t4A DSPATR(CS)
00015A F ALL 100 DEVICE(DISK D1>

Figure 5-10 (Part 1 of 2). A Sample Program Showing the Use of the ENTRATR Attribute without the EXITATR Attribute

•

•

Sample B
Z**
Z* PROGRAM 41. FIGURE 5-10 SAMPLE B IN THE DE/RPG USER'S GUIDE *
Z**

00001ZJ ATTR TFILE(ALL)
00002Z ENTRATR(RI) EXITATR(CS)
00003Z A10NL Y NE A1
00004Z R A1
00005A F INPUT 100 DEVICE(CRT) DSPSIZ(6 80)
00006A R ONLY
00007A FLD1
00008A FLD2
00009A FLD3
00010A FLD4
00011A . FALL

10
8

15
20

100

I
I
I
I

2 2PMT(ENTER A NAME)
2 20PMT(ENTER A TELEPHONE NUMBER)
2 40PMT(ENTER THE CREDIT CARD NUMBER)
3 2PMT(ENTER THE CUSTOMER NAME)

DEVICE(DISK D1)

Figure 6-10 (Part 2 of 2). A Semple Program Showing the U .. of the ENTRATR Attribute with the EXITATR Attrlbut ..

Formatting Techniques for the Displays 86

86

USING EDTCDE WITH DISPLAY FORMATS

The sample in Figure 5-11 illustrates the use of EDTCDE for the display. EDTCDE
was intended primarily for use with printed data sets to provide appropriate
punctuation. Therefore, its use with the display involves some extra manipulation.
An EDTCDE to the display can only be performed by using a WR ITE operation
to the display from a subroutine. All fields in the edited record must be 0 usage.
The sample in Figure 5-11 illustrates a way that you can write a program with
input (I-usage) fields and still use EDTCDE.

00001Z***
00002Z* PROGRAM 42. FIGURE 5-11 IN THE DE/RPG USER'S GUIDE *
00003Z***
0OO04ZJ EDITEX TFILE(MINE)
00005Z A1TRANS 1E A2 CLRL(*NO)
00006Z A2CALCS 1E Ai
00007Z R Ai
00008A F INPUT 18 DEVICE(CRT) DSPSIZ(6 80)
0OO09A R TRANS
00010A FIRST 9 21 2 30PHT(ENTER THE AMOUNT OF THE
0OO11A SECOND 9 21 3 30PMT(ENTER THE AMOUNT OF THE
00012A R PATT
0OO13A FIRST 9 20 4 30EDTCDE(K '$')
00014A SECOND 9 20 5 30EDTCDE(K '$')
00015A F MINE 18 DEVICE (DISK DO
00016C CALCS BEGSR
00017C WRITEPATT
00018C ENDSR

Figure 5-11 (Part 1 of 2). A Sample Program Showing Currency Edition on the Display

BALANCE)
PAYMENT)

•

•

o 0001 N 09 40 000007 A1 E

ENTER THE AMOUNT OF THE BALANCE

o 0001 N 09 40 000008 A1 E

ENTER THE AMOUNT OF THE BALANCE

555555555

555555555

l $5,555,555.55 J
$5,555,555.55

~---------------'"
Figure &-11 (Pert 2 of 2). A Semple Progrem Showing Currency Editing on the Displey

Formatting Techniques for the Displays 87

88

USING CLRL AND SLNO TO DISPLAY MULTIPLE RECORDS

The sample in Figure 5-12 illustrates a program that uses the CLRL and SLNO
keywords to display multiple records simultaneously.

This program is presenting the operator with a format that allows him to enter
name and address information. When the operator completes the information
and uses the Rec Adv key, it appends the second record, containing a request
for the driver's license and telephone number, to the first record. The first
record continues to be displayed. When the second record is completed and
the operator presses the Enter key, the process starts again.

00001Z***
00002Z* PROGRAM 43. FIGURE 5-12 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ CLEAR TFILE(WHEE)
00005Z A1FIRST 1E A2 CLRL(2)
00006Z A2SECOND 1E Ai SLNO(4)
00007A F INPUT 20 I DEVICE(CRT) DSPSIZ(6 80)
00008A R FIRST
00009A FLD1
00010A FLD2
OOOiiA
00012A
00013A
00014A
00015A
00016A
00017A
00018A
00019A
00020

o 0001

NAME

ADDRESS

R SECOND
FLD3
FLD4

F WHEE

A 40

10
10

10
10

20

I
I
o
o

I
I
0

0

1 20DSPATR(CS)
2 20DSPATR(CS)
1 2'NAME' DSPATR(BL HI)
2 2'ADDRESS' DSPATR(BL HI)

1 30DSPATR(CS)
2 30DSPATR(CS)
1 2'DRIVER' 'S LICENSE NO. '

DSPATR(BL HI)
2 2'TELEPHONE NUMBER' DSPATR(BL

DEVICE(DISK D1)

Figure 5-12 (Part 1 of 2). A Sample Program Showing the Usa of CLRL and SLNO on the Display

HI)

•

o 0001

NAME

ADDRESS

A 40

DRIVER'S LICENSE NO.

TELEPHONE NUMBER

o 0001

NAME

ADDRESS

A 40

1111111111

DRIVER'S LICENSE NO. 1i~~lM~~~
TELEPHONE NUMBER i~~~~1

l~ _______ -----",J
o 0001 A 40

• NAME

ADDRESS

DRIVER'S LICENSE NO. 111111
TELEPHONE NUMBER

l~ _______ ~J
Fi.,,. 5-12 (Part 2 of 2). A Sample Program Showing the Use of CLRL and SLNO on the Display

Formatting Techniques for the Displays 89

90

..

•

•

Chapter 6. Formatting Techniques for the Diskette Data Set

The method used to write the record into the diskette data set determines
what is required to format the diskette data s~t. There are basically two ways
to write a record into a diskette data set: (1) implicitly for transaction data sets
(a record is automatically written in a transaction data set when completed and
WRITE(*NO) is not specified) and (2) explicitly for application programs
(records are written as specified in the subroutines).

You learned some reformatting techniques in Chapter 5. This chapter provides
two additional techniques for reformatting diskette data sets.

1. Merging fields from multiple records into a single diskette record

2. Positioning fields within a diskette data set

Formatting Techniques for the Diskette Data Set 91

92

MERGING FIELDS FROM MULTIPLE RECORDS

It is possible to merge fields from multiple records in data sets created by
either the transaction file or by subroutines. Both techniques are illustrated in
this chapter. The first one that is presented is for data sets created by
subroutines.

In the sample program in Figure 6-1, the HEADER record. and the DETAIL
record • are completed before the subroutine is called. When the exit to
the subroutine is made, two operations are performed: (1) two fields from the
DETAIL record are multiplied and a new field is created to hold the contents
.; (2) a new record, which consists of fields from the HEADER record and
the DETAIL record and the new field from the subroutine, is written in another
diskette data set II. The entries in the repeat columns on the Z-specification
determine the sequence of the formats II.

•

•

OOOOiZ***
00002Z* PROGRAM 44. FIGURE 6-1 IN THE DE/RPG USER'S GUIDE *
00003Z***
OOOOIl~"'7 I SAMPLEX TF ILE (EXMP)
0000. E1HEADER II iE E2
0000tBIE2DETAIL • NE E1
0000," F INPUT 67 DEVICE(CRT) DSPSIZ(6 80)
OOOOBA R HEADER
00009A FLDi
00010A FLD2
00011A FLD3
00012A FLD4
00013A R DETAIL
00014A FLD5
00015A FLD6
00016A FLD7
00017A FLDB
0001BA F FINAL
00019A R OUTPUT
00020A FLD1
00021A FLD5
00022A FLD7
00023A FLD8
00024A FLD9
00025A F EXMP
00026C OUT
00027C FLD7
0002BC
00029C

30
6

30
1

6
30

5
5

5S

I
I
I
I

01
21

PMT(ENTER CUSTOMER NAME)
PMT(ENTER CUSTOMER~)
PMT(ENTER ADDRESS)
INSERT (, H ')

F'MT(ENTER ITEM~)
PMT(ENTER DESCRIPTION)
F'MT(ENTER QUANT PURCHASED) IJ
F'MT(ENTER PRICE) EXSR(OUT)
DEVICE(DISK D1)

DEVICE(DISK DU 67
BEGSR
MUL T FLDB FLD9 II 92
WRITEOUTPUT II
ENDSR

II B , ,.

_F_L_O_1 ____________ -', ______ F_l_D_6_F_L_O_7 __ F_L_O~8~ FLD5 FLD6 oj

II .
f

FL01 FL05 FL07 FL08 FLOg FL01 FL05 FL07 FL08 FLOg ...

Figure 6-1. A Sample Program Showing the Merging of Fields from Multiple Records in a Data-Entry Program

Formatting Techniques for the Diskette Data Set 93

94

The sample program in Figure 6-2 illustrates merging fields from different
records into one diskette record using a transaction file. The two records that
are used to provide operator entry (HEAD1 and DET1) .. are used once each.
After these have been completed, the record that merges fields from the
preceding records is accessed II. The fields are supplied in the last record by
the insert operation II. The operator sees the field contents, but he is not
able to alter them in this record. If the automatic record advance function is
inactive, the record remains on the display until the operator presses the Enter
key.

00001Z***
00002Z* PROGRAM 45. FIGURE 6-2 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ TRY
000011 F i HEAD j.
0000", __ F2DET 1
OOOODF3ALL.

TFILE(FINAL)
1E F'") .:.. WFUTE (*NO)
1E F3 WRITE(*NO)
1E F1

F INPUT 28 DEVICE(CRT) DSPSIZ(6 80)
R HEAD!

OOOOtsA
00009A
OOOiOA
0001iA
00012A
OOOi3A
00014A
00015A
()0016A
00017A
00018A
00019A
00020A
00021A

FLD1 5 21 PMT(ENTER FLD1) DSPATR(CS)
FLD2 3 I F'MT(ENTER FLD2) DSF'ATR(RI)
FL..D3 4 I PMT(ENTER FLD3) DSF'ATR(CS)

R DEn.
FLD4 6 I F'MT(ENTER FLD 4) DSF'ATR(RI)
FI...D5 10 I F'MT(ENTER FLD5) DSF'ATR(CS)

R ALL
10 I INSERT(FL..DS)

5 21 INSERT(FLD1)
3 I IIINSERT(FLD2)
4 I INSERT(FLD3)
6 I INSERT(FLD4)

00022A F FINAL 28 DEVICE(DISK DU

FL05 FL01 FL02 FL03 FL04 {FL05 FL01 FL02 FL03 FL04 ... ~

Figure 6-2. A Sample Showing the Merging of Fields from Multiple Records in a Data-Entry Program
without a C-Specification

It is difficult to verify this diskette record for three reasons: (1) the fields are
not in the order in which they were entered, (2) the fields are now in one
record rather than in the initial two records, and (3) the fields were supplied for
the diskette record by an automatic function (INSERT) which the operator
cannot alter.

In addition to merging fields from various records, it is also possible to drop
fields by simply not including them in the new record.

•

•

POSITIONING FIELDS WITHIN A DATA SET

Earlier in this chapter, a description of padding a diskette record (with the
CHECK(BY) operation) was provided. One of the reasons for padding a record
is to ensure that a record marker is in a certain position in the diskette record.

Using the position columns for a reformatted record, it is possible to place
each field where you want it in a diskette record. The following sample
program in Figure 6-3 illustrates how this is accomplished .

Formatting Techniques for the Diskette Data Set 95

96

00001Z***
00002Z* PROGRAM 46. FIGURE 6-3 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ INQUIRE
00005Z AOIDENT 1E
00006Z A1MENU
00007Z
00008Z A2ITEMINF
00009Z A3SHIPINF
00010Z

1E *POS0001
E *POS0001

NE
1E

R *POS0061
R *POS0061

F INPUT
00011Z
00012A
00013A
00014A
00015A
00016A
00017A
00018A
00019A
00020A
00021A
00022A
00023A
00024A
00025A
00026A
00027A
00028A
00029A
00030A
00031A
00032A
00033A
00034A

R IDENT
FLD1
FLD2

R MENU

FLD3
R ITEMINF

FLD4
FLD5
FL..D6
FLDA

R SHIF'INF
FLD8
FLD9
FLD10

FLOOK
R ITEM

FLD6
fJFLD5

FLD4
FLDA

, l'
• 2'

, I '
'S'

61

30X
6D

1

6

I
I

A1
A2
A3
AO
AO
A2
A3

TFILE (LOotO

SLNO(3) WRITE(*NO)

WRITE(ITEM)

DEVICE(CRT> DSPSIZ(6 80)

F'MT(ENTER THE CUSTOMER'S NAME)
PMT(ENTER THE CUSTOMER ID)

0001001'1 ENTER ITEM~ AND PRICE DATA'
0002001'2 ENTER SHIPTO DATA'
I003001CHECK(DR)

I F'MT(ENTER ITEM~)

5 21 PMT(ENTER PRICE)
3 01 PMT(ENTER QUANTITY)
1 I INSERT('I')

30 I PMT(ENTER NAME)
30 I PMT(ENTER ADDRESS)

1 I INSERT('S')
61 DEVICE(DISK D1>

3 0 010
5 2 020 II
6 030
1 061

FL01 FL02 1 FLOG FL05 FL04 FLOA I\FL01 FL02 H FL08 FLOg)

Figure 6-3. A Sample Program Showing the Placing of Fields as Specified in a Diskette Data Set

This sample program is one that was used earlier in the manual. Previously the
CHECK(BY) operation had been used to position the record mark (I) in the
proper location. This time you reposition the fields to place the record mark in
the correct location.

Notice that the reformatted field descriptions use the position columns •
When an entry is contained in a reformatted diskette field description, the
result is the placement of the field in the record beginning at the position
number. For example, FL05 begins in position 20. of the diskette record.

If the position entry overlaps the field lengths, the field positions are overlayed.
For example, if FL06 were 20 positions long, began in position 10, and was
followed by FL05 which started in position 20, the last 10 positions of FL06
would be overlayed by, the first 10 positions of FL05.

This concludes the chapter on formatting. Related topics are Access Methods in
Part 4 and Creating Data Sets in Part 2.

•
..

CONVERTING NUMERIC DATA

Numeric Data Formats

Numeric data on a diskette file may be in zoned decimal, packed decimal, or binary
format. To have DE/RPG convert data from one format to another format, use the
Data Type column on a field description line.

Figure 6-4 shows how a record containing packed and binary data can be converted
to a record containing only zoned fields. Chaper 10 of the IBM 5280 DE/RPG
Reference Manual contains detailed descriptions of zoned decimal, packed decimal,
and binary data formats.

OOOOiZ** 00002Z* PROGRAM 82. FIGURE 6-4 IN THE DE/RPG USER'S GUIDE *
00003Z** 00004Z.J EXP(~ND
OOOO~)Z >aMAIN
00006t~
00007("
00008A
00009~1
OOOlOA
OOOiiA
000i2A
OOOi3~1
OOOl4A
000 ~i, Sf-I
000i6f'i
OOOi7A
000i8A
000i9A
00020A
0002iC
00022C
000;~3C
00024C
00025C
00026C
00027C
00028C
00029C
OOO~,;)OC

Oi

R MSGEND

F IN80
I;: INREC

DATAi
DATA2
DAlf.13

F OUT80
R OUTREC

D?iTAi
D('~TA2
DATf~13

I'1?HN

L.OOP

DONE

80

80

:to 0
9P 0
':::B () 80 '

BEGSR
EXFNTMSGGO
Tf'H3
F;:EAD I NF~EC
GOlD DONE

o
o

Wf.: I TEDUTF,EC
GO TO LOOP
TAG
EXFMTri~;GEND
ENDSF:

2

EO,';
DEl.) ICE (CI;:T)

2'EXPAND PROGRAM IN PROCESS'

l'EXPAND PROGRAM COMPLETE'
DEVICE (DISK Dj,)

DEVICE(DISK D2)

01

Figure 6-4. A Sample Program Showing How to Convert Numeric Data

The input data records have the following format:

Bytes 1-10

Bytes 11-15

Bytes 16-19

Bytes 20-80

Datal

Data2

Data3

unused

Zoned

Packed

Binary

The output data records have the following format:

Bytes 1-10

Bytes 11-19

Bytes 20-24

Bytes 25-80

Datal

Data2

Data3
unused

Zoned

Zoned

Zoned

Formatting Techniques for the Diskette Data Set 97

98

•

•

•

Part 3. Using Indicators

This part of the manual contains information about using indicators to condition
operations for data-entry and application programs. It consists of two
chapters:

• Chapter 7. Using Indicators in Data-Entry Programs

• Chapter 8. Using Indicators in Application Programs

In general terms, indicators are flags that condition program functions. In
DE/RPG, indicators are denoted by numbers 01 through 99; they allow you to
program automatically conditioned operations. Indicators can be both set and
used on either the A- or C-specifications. As the name indicator implies, they have
two conditions: off and on. To be set on, a test on a conditioning operation must
be successfully made or a SETON operation must be specified. A conditioning
failing operation or a SETOF operation sets the indicator off.

The condition of the indicator (off or on) determines the actions that can be
accomplished against the field using the indicator. To understand how this
works, look at the following sample.

00001Z***
00002Z* PROGRAM 47. FIGURE 7-1 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ INDIC
00005Z A1START
00006A
00007A
00008A
00009A
00010A
00011A 01
00012A
00013

NE
F INPUT
R START

GROSS

TEMP

CALC

20

5 21

5 21

5 21

Ai WRITE(*NO)
DEVICE(CRT) DSPSIZ(6 80)

PMT(ENTER THE"GROSS
COMP(GT 800.00 01)
AUXDUP(GROSS)
CHECK(BY)
INSERT(TEMF'*1.5)

AMOUNT)

Figure 7-1. A Sample Program Showing Setting an Indicator on the A-Specification

Using Indicators 99

100

Suppose that every time the pay amount for an employee exceeds $800.00,
you want to multiply the gross amount by 1.5. You would use a compare
function as shown in the sample to determine when the gross exceeds BOO. 00.
When the gross does exceed BOO. 00, indicator 01 is turned on. When the
Auto Dup function is active, the gross amount is duplicated in a field which is
multiplied by 1.5; otherwise, it is not duplicated and the amount in the field
named CALC is O.

This sample is for a data-entry program. Additional samples for data-entry
and application programs are included in the following chapters.

•

•

Chapter 7. Using Indicators for Data-Entry Programs

There are two uses for indicators: conditioning the indicators (setting them on
or off) and conditioning an operation with the indicators. In other words, to .
use indicators effectively, there must be some action that either sets them on
or off and there must be a succeeding action that is performed or not
performed based on the condition (on or off) of the indicator.

The act of setting indicators on or off is called conditioning. The actions that
affect the state of the indicators are called conditioning operations .

Using Indicators for Data-Entry Programs 101

102

Indicators on the A-specification can only be set on by a successful compare
operation or by using the SETON keyword. The sample in Figure 7-2
illustrates one method for setting an indicator on and another for setting it off.

00001Z***
00002Z* PROGRAM 48. FIGURE 7-2 IN THE DE/RPG USER'S GUIDE *
00003Z**
00004ZJ INDEX
00005Z HOREC1
00006A

1E
F DISPEX
R REC1

6
WRITE(*NO) SLNO(2)

DEVICE(CRT) DSPSIZ(6 80)
00007A
00008A
00009A
000101101
00011A
00012

GROSS 6
0001 nni 'GROSS AMOUNT pATn'

OI001fJCOMP(GT 800 oull
ERROR(01 'GROSS IS TOO LARGE')iCI

IISETOF(01)

o 0006-9801-N 01 40 000001 E GROSS IS TOO LARGE

GROSS AMOUNT PAID 801

Figure 7 -2. A Sample Program Showing the Use of I ndicators to Write an Error Message

In this sample, the indicator. is being set on whenever the amount an
employee earns is greater than 800. The operation that conditions the indicator
is a compare. similar to the one in Figure 7 -1. Whenever the indicator is set
on • it conditions an operation that sets an error condition. Once the
error condition has been reset, the indicator is set off by the SETOF keyword •
The program in Figure 7 - 2 allows you to determine that you do not want the
entry to exceed a specified amount. In this sample, the amount is 800. Every
time an entry exceeding 800 occurs, the operator sees a 4-digit error code
(98xx) flashing on the status line. To display the text for the error
message, he must press the Help key while the error is flashing. The text for
the error message appears approximately midway on the status line.

Only two operations can be conditioned by indicators on the A-specification:
bypassing a field and writing an error message. The sample in Figure 7-1 illustrates
a program that uses an indicator in a data-entry program to condition a field and
the sample in Figure 7-2 illustrates a program that uses an indicator to write an
error message.

•

•

The sample in Figure 7-3 illustrates a typical payroll data-entry program in
which indicators might be used effectively both to bypass fields and to write
errors.

00001Z***
00002Z* PROGRAM 49. FIGURE 7-3 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ INDICAT TFILECPAYEX)
00005Z Z1RECEX NE Z1
00006Z R Z1
00007A F DISPLAY 60 DEVICECCRT) DSPSIZC6 80)
00008A R RECEX
00009A
00010A
00011A
00012A
00013A
00014A
00015A
00016A
00017A
00018A
00019A
00020A 11
00021A
00022A
00023A
00024A
00025A
00026A
00027A
00028A
00029A
00030A 12
00031A
00032A 13
00033A
00034A 14
00035A
00036A
00037A
00038A
00039A
00040A
00041A
00042A
00043A

TOT

OVER

SICK

HOL

TEMP1

TEMP2

TEMP3

HOUR
BASE
OVERTI
SICKTI
HOLTI
GROSS

F PAYEX

3

3

3

3

5

5

5

3
5
4
5
5
5

60

0001001 'TOTAL HOURS:'
0001020'OVERTIME HOURS:'
0001041 'SICK HOURS:'
0001059'HOL1DAY HOURS:'
0003001 'HOURLY RATE:'
0003020'BASE PAY:'
0003041 'OVERTIME PAY:'
0004001 'SICK PAY: '
0004020'HOLIDAY PAY:'

11001014DSPATRCUL) CHECKCME RZ)
COMPCEQ 0 11)
ERRORC30 'YOU MUST ENTER THE HOURS')

11 1 36DSPATRCUL) D
CHECKCFE RZ)

fJCOMPCEQ 012)
1I001052DSPATRCUL) ~

IICHECKCFE RZ)1iI
COMP(EQ 0 13)

1I001074DSPATRCUL) CHECKCFE RZ)
IICOMPCEQ 0 14)

21 5 lPMT(ENTER OVERTIME RATE)
CHECKCBY)

21 5 10PMT(ENTER SICK PAY RATE)
CHECK(BY)

21 5 20PMTCENTER HOLIDAY RATE)
CHECKCBY)

2I003016CHECKCDR) DSPATRCUL)
2I003n~nINSERT(HOUR*TOT) DSPATR(UL)
2Io03,IIINSERT C TEMP1*OVER) DSPATR C UL)
2I0040ai i INSERTCTEMP2*SICIO DSPATRCUl.) II
21004' INSERTCTEMP3*HOL) DSPATRCUL)
2I004060INSERTCBASE+OVERTI+SICKTI+HOLTI)

I!ISETOF(11) SETOF(12)
SETOF(13) SETOF(14)
DEVICECDISK D1)

Figure 7-3. A Sample Program Showing the Complex Use of Indicators on the A-Specification

This program is prompting the operator for data about the hours an employee
works. If the operator enters any nonzero value II in the overtime hours II
sick hours. or holiday hours fields. the program automatically provides a
corresponding calculation II • and II that determines the correct amount
of pay.

Using Indicators for Data-Entry Programs 103

104

If the operator does not enter anything in the field, it is filled with zeros. The
CHECK(RZ). operation ensures this so that an accurate test can be made
against the fields. Notice that a SETOF • operation is specified for each
indicator. If the indicators are not reset, they remain on for the next record.
When SETOF is used, the operator must be careful about using the backspace
function. The condition of the indicators might may not be accurate. Using the
rerun mode at the conclusion of the entry operation is one way to ensure
accurate calculations and totals.

In conclusion, there are two things to remember when using indicators on the
A-specification:

1. Successful tests turn indicators on.

2. When an indicator is on, either the field is bypassed or an error message
is displayed.

•

"

Chapter 8. Using I ndicators for Application Programs

Indicators can be set in a variety of ways on the C-specification. The resulting
indicator columns (54 through 59) determine the status of the operation that
sets the indicator on. For example, these columns set indicators to signify that
an arithmetic calculation has resulted in a positive, negative or zero result or
that the end of the file has been reached on a READ operation. The same
columns are also used by the compare operands to indicate that the result of a
compare operation is high~ low, or equal to the field being compared. Some
I/O operations (such as READ) require a resulting indicator. The DE/RPG
Reference Manual provides detailed information about conditioning indicators
and about operations conditioned by indicators.

Using Indicators for Application Programs 105

106

OPERATIONS THAT SET INDICATORS AND OPERATIONS CONDITIONED BY
INDICATORS

The following chart lists the operations that set indicators and the operations
that are conditioned by indicators:

Operations that Set Operations Conditioned by
Indicators Indicators

ADD All except
Z-ADD TAG
SUB ENDSR
MULT BEGSR
DIV
MVR
COMP
CAB
CABEQ
CABNE
CABLE
CABLT
CABGE
CABGT
TESTB
LOKUP
READ
READP
CHAIN
WRITE
DELET
SETLL
OPEN
CLOSE
SETON
UPDAT
SETOF
Z-SUB
OPEN

The operations that set indicators on the C-specifications fall into three general
categories: I/O operations, arithmetic operations, and branching operations.
Examples of conditioning each of these types of operations are included in this
chapter.

•

A SAMPLE OF USING INDICATORS WITH I/O OPERATIONS

Some of the I/O operations that set indicators are:

• Reading the last record in a data set

• Performing a chain operation when no record with the specified key exists
in the data set

Using Indicators for Application Programs 107

108

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028

D

The sample in Figure 8-1 illustrates a simple program that uses indicators for
I/O operations.

Z**
Z* PROGRAM 50. FIGURE 8-1 FOR THE DE/RPG USER'S GUIDE *
Z**
ZJ EXF'LIND
Z A1BEGIN
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
C
C
C
C (ilN01
C
C

o 0001 A

1E
F ITMAST
R ITEM
K CUSTN

ITEMC:
QUANT
PERPRI
COST

F DISF'
R LOOK

NUMBER
R OK

CUSTC:
ITEM1
QUANn.
PERPR1
COST1

BEGIN
BRANCH

DNUMBER

N05

40

ENTER THE NUMBER

AAA2

BEGSR

25

4
6
4
5
6

25

4

4
6
4
5
6

TAG
EXFMTLOOK
CHAINITEM
EXFMTOK

I

B
B
B
B
B

IIGOTO BRANCH
ENDSR

EOJ
DEVICE(DISK D1)

DEVICE(CRT) DSPSIZ(6 80)

DPMT(ENTER THE NUMBER)

INSERT(CUSTN)
INSERT(ITEMC:)
INSERT(QUANT)
INSERT(PERPRI)
INSERT(COST)

0105

AAA2

ITEM ...

Figure 8-1 (Part 1 of 2). A Sample Program that Uses Indicators with I/O Operations

•

o 0001 A 40

AAA2584200002000010000200

Figure 8-1 (Part 2 of 2). A Sample Program that Uses Indicators with I/O Operations

This program prompts the operator for an identification number II. When the
operator enters the number, the program exits to the C-specification and uses
the number to locate the corresponding record on the diskette data set II­
When a record with a matching identification value is found, indicator 01 is off
and a display appears containing the value of the fields in that record II
When no matching record is found, indicator 01 is on • and a display
appears containing the prompt for another identification number D

This process continues until the operator uses the End of Job key or until the last record
is reached.

The sample in Figure 8-2 expands the program from Figure 8-1.

Using Indicators for Application Programs 109

110

000011***
000021* PROGRAM 51. FIGURE 8-2 IN THE DE/RPG USER'S GUIDE *
00003Z**
00004ZJ EXPLIND
OOOOSZ A1BEGIN
00006A
00007A
00008A
00009A
00010A
OOOHA
00012A
00013A
OOOj.4A

IE
F DISP
R ONE

NUMBER
LOOK
ITEMNU
FLDX

F ITMASTI
F: ITEM
K CUSTN

ITEMNU
QUANT
F'ERF'RI
COST

BEGIN
E<f<ANCH

BEGSR

b

6
1

27

6
6
4
5
6

I

I
I

000 1 ~>A
000IbA
00017A
0001BA
00019C
00020C
00021C
00022C
00023C NOI
00024C NOI

fI NUMBER

TAG
EXFMTONE
CHAINITEM
EXFMTLODK

0002SC
00026C 1109
00027C
00028C

FLDX

END

IJUPDATITEM
COMP 'X'
GOTO END
GOTO BRANCH
ENDSR

EOJ
DEVICE(CRT) DSPSIZ(6 80)

PMT (ENTER THE NUMIJ' I D)

PMT(ENTER THE ITEM NU. IF CHGD.)
IIF'MT(ENTER X FOR L.AST ONE) DSPATR(RI)

DEVICE(DISK D1)

01

09

Figure 8·2. A Sample Program Showing Multiple Use of Indicators for I/O Operations

This program does not display fields .. from the record that matches the
identification provided by the operator D but it does allow the operator to
alter the value of a field in the matching record B. Only the fields for records
with matching identifiers are displayed. The operator terminates the program
with an entry in a field on the display II. An indicator controls this function

II·

A SAMPLE OF USING INDICATORS WITH ARITHMETIC OPERATIONS

Some of the arithmetic operations that condition indicators are:

• A positive result for an arithmetic operation

• A negative result for an arithmetic operation

• A zero result for an arithmetic operation

The samples in Figures 8-3 and 8-4 illustr.ate using indicators \vith arithmetic
operations to set and use indicators.

OOOOiZ***
00002Z* PROGRAM 52. FIGURE 8-3 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ EXPLIND
00005Z AiBEGIN
00006A

iE
F DISP 6

EOJII
DEVICE(CRT) DSPSIZ(6 80)

00007A
00008A
00009A
OOOiOA
OOOiiA
000i2A
000i3A
000i4A
000i5A
000i6A
000i7A
000i8A
000i9A
00020A
0002iC
00022C

R LOOK
NUMBER

R MSG

F ITMAST7
R ITEM
K CUST_N

ITEM
QUANT
PF;RPRI
COST

F OTTER

D
D EXMPB

INTER
BEGIN

6

i
27

6
6
4
5
6

is
2

I

I

B PMT (ENTER THE BEGINNING NUMBE .. R)

PMT(WARNING. THE VALUE IS 0)
DEVICE (DISK DU

DEVICE(DISK Di)

00023C
000241R
000251i1NOi
00026r. 02
00027111NOi
00028C NOi
00029lmN05NOi
00030(;

is 2
BEGSR
EXFMTLOOK

N05NUMBERlii CHAINITEM
BRANCH TAG II Z-ADDCOST II

EXFMTMSG
IIWRITEEXMPB

READ ITEM
GOTO BRANCH
ENDSR

01

INTER 152 02

05

ITMAST7 00882 ..
CUSTN ITEM QUANT PERPRI COST CUSTN ITEM QUANT PERPRI COST ...

INTER ...

Figure 8-3. A Sample Program Showing the Use of Indicators with Arithmetic Operations

This program is creating a new data set that contains a field" from each
record in the original data set beginning with the record that matches the
identifier entered by the operator and ending with the last record. The program
prompts the operator for an identification value. It uses this value to locate
the beginning record in the data set •. When a matching record is found, the
program takes a field from the record • adds it !o zero. and writes it out
to the new data set II. When the last record is reached, the program
automatically terminates •. Indicators control when fields are added to zero
D when they are written in the new data set. and when the program
terminates •.

Using Indicators for Application Programs 111

112

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030

The program in Figure 8-4 is another version of the program in Figure 8-3.

Z**
Z* PROGRAM 53. FIGURE 8-4 IN THE DE/RPG USER'S GUIDE *
Z**
ZJ EXPLIND
Z A1BEGIN
A
A
A
A
A
A
A
A
A
A
A
A
A
C
C
C
C
C
C

02

1E
F DISP
R LOOK

NUMBER
F ITMASTF
R ITEM
K CUSTN

ITEM:::
QUANT
PERPRI
COST

F OUTGO
R L.AST

INTER
BEGIN
AGAIN

NUMBER

C BRANCH
C

7

6
27

6
6
4
5
6

15
2

15 2
BEGSR
TAG
EXFMTLOOK
CHAINITEM
GOTO AGAIN
Z-ADDCOST
TAG

I

READ ITEM
ADD INTER
GOTO BRANCH

C DN05N03COST
(BN05
l;

C END
II WR I TELAST

ENDSR

1

EOJ
DEVICE(CRT) DSPSIZ(6 80)

PMT(ENTER THE NUMBER ID)
DEVICE(DISK D1)

DEVICE(DISK D1)

02

INTER 152 03

INTER

Entered by
Operator End of
OOCCC1 Data Set

CUSTN ITEM QUANT PERPRI COST I,-C_U_S_T_N_IT_E_M_Q_U_A_N_T_PE_R_P_R_I_C_O_S_T_._._. _...Jf
Field containing total
amount of all cost fields
from OOCCC 1 to the end of

Figure 8-4. A Sample Program Showing the Use of Indicators to Accumulate a Batch Total

In Figure 8-4, the program is accumulating an online total of fields in the
original data set beginning with the record specified by the operator's identifier
and ending with the last record in the data set. The new data set that is
written, contains one field which represents the total value of the fields that
have been read from the original records.

In this sample, indicators are being used to condition arithmetic operations.
branching D writing to the new data set D and program termination II.

•

A SAMPLE OF USING INDICATORS WITH BRANCHING OPERATIONS

Some of the branching operations that condition indicators are:

• The value in Factor 1 is greater than the value in Factor 2.

• The value in Factor 1 is less than the value in Factor 2.

• The value in Factor 1 is equal to the value in Factor 2.

The sample in Figure 8-5 illustrates using compare operations with indicators.

00001Z***
00002Z*PROGRAM 54. FIGURE 8-5 IN THE DE/RPG USER'S GUIDE *
00003Z**
00004ZJ EXPLIND
00005Z A1BEGIN
00006A
00007A
00008A
00009A
00010A
00011A
00012A
00012A
00013A
00014A
00015A
00016A
00017A
00018A

1E
F DISP
R LOOK

NUMBER
NUMB2

R DONE

R TEST1

R TEST2

16

6
6

15
1

6
6
1

I
I

21
. I

I
I
I

EOJ
DEVICE(CRT) DSPSIZ(6 80)

PMT(ENTER THE FIRST NUMBER)
F'MT(ENTER THE LAST NUMBER)

INSERT (,INTER)
PMT(THIS IS THE INTER RESULT.
PRESS ENTER TO CONTINUE)

INSERT(CUSTN)
INSERT(NUMBER)
PMT(FIRST IS CUSTN THEN NUMBER)

INSERT(INTER)

+

00019A
00019A

15
1

21
I F'MT(THIS IS INTER WHEN ADDED TO +

COST)
00020A
00021A
00022A
00023A
00024A
00025A
00026A
00027C
00028C
00029C
00030C
00031C N01
00032C
00033C
00034C
00035CD05
00036C
00037C

F ITMAST
R ITEM
K CUSTN

ITEM
QUANT
PERF'RI
COST

BEGIN
HERE

N05NUMBER

NEXT
N01

N01NUMB2

00038C N01N02COST
00039C.,.
00040C .. 03
00041C1N03
00042~
00043

END

BEGSR

27

6
6
4
5
6

TAG
EXFMTLOOK
CHAINITEM
Z-ADDCOST
EXFMTDONE
TAG

2

READ ITEM
GOTO END
COMP CUSTN
EXFMTTEST1
ADD INTER
EXFMTTEST2
GOTO NEXT
GOTO HERE
ENDSR

DEVICE(DISK DU

01
INTER 152 02

05

0303

INTER

Figure 8.a. A SIImple Program Showing the U. of Indicators with Compare Operations

This program illustrates the use of indicators to control multiple branching
operations within a single program. Based upon the condition of the various
indicators, the program returns to one of three points in the program 1111
II The formats for the display (reached when the EXFMT occurs), provide a
way of tracking the program to determine which branch has been taken.

Using Indicators for Application Programs 113

114

COMPLEX USE OF INDICATORS ON THE C-SPECIFICATIONS

The sample in Figure 8-6 illustrates a complex application for using indicators on

the C-speci fi cati on.

00001Z***
00002Z* PROGRAM 55. FIGURE 8-6 IN THE DE/RPG USER'S GUIDE *
00003Z**
00004ZJ INDEMPL
00005Z A1SLJBEX
00006A
00007A
00008A
00009A
00009A
00010A
00011A
00011fi
00012A
00013A
00014A
00015A
000t6A
00017A
OOOi.8A
00019A
00020A
00021A
00022A
00023A
00024C
00025C

1E
F INPUTER
R EXOFREC

NUMBER
TOTAL

F.: OUT

R TELL

F INVMAST
H B1LMAST
K CUSTNO

ITEM
QUANT
PERPRI
COST

SUBEX
START

II NUMBER
DOt

01

22

I 6
15 21

1

1
36

6
6
4
5

15 2
BEGSR

o

I

o
I

TAG
EXFMTEXOFREC
CHAINBILMAST
EXFMTOUT

EOJ
DEVICE(CRT) DSPSIZ(6 80)

D PMT (ENTER THE CUSTOMER NUMBER)
fJPMT(ENTER THE MATCHING TOTAL FROM T+

HE ACCOUNTING BOOKS)

'THERE IS NO RECORD FOR THIS CLJSTOH+
ER'
PMT(USE THE FLD EXIT KEY)
CHECK(FE)

'THE TOTALS DO NOT TALLY'
PHT(USE THE FLD EXIT KEY) CHECK(FE)
DEVICE(DISK D1)

01
()0026C
00027C
00028C
00029C
00030C
0003iC
00032C

II TOTAL
NEXT

II GOTO START
SUB COST

r.. TAG
IJINTER i.52 0203m

05111
04 16 00033C

00034C
00035C
00036C

04

00037C rn
00038C IIii
00039C
00040C
00041C
00042C
00043C
00044C

~ READ BILMAST
CLJSTND COMP '999999'

END
ERROR
ERROR

05
0 '")

"" N03N04
03N04

INTER
N02

EFmOR

END

mGOTO
fa GOTO
u:.i G(nO

GOTO START
SUB COST 1m INTER

1m GOTD NEXT
TAG
EXFMTTELL
GOTO START
TAG
ENDSR

Figure 8-6. A Sample Program Showing the Complex Use of Indicators

0203

•

The object of this program is to determine whether the monthly billing data set
maintained for the customers equals the monthly total in the accounting books.
The following list shows the elements involved in using the program in Figure
8-6.

The flow of the program is as follows:

1.

2.

3.

4.

5.

6.

7.

8.

The operator is prompted to enter the customer ID .. and the total II
from the accounting books.

The program finds the first record in the data set that matches the
customer I D II.

Note: If there is no matching record, the program sets an indicator that
conditions the operation that displays an error message D and prompts
the operator for the next customer information II.

The program then subtracts the total in the record from the total entered
by the operator II. It places the results in a newly created field II. If
the results of the calculation are zero or negative, it sets the appropriate
indicator Ell.

The program then reads the next record in the data set II. (If it is the
last record in the data set, it sets an indicator IE and conditions an
operation that ends the subroutine II.)

The program compares the identification numbers of the last record and the
ID entered by the operator. If the numbers match, the program sets an
indicator m.
The program checks for invalid combinations and if it finds one, branches
to an error routine within the subroutine •.

If the result of the previous calculation was not zero and this record
matches the entered I D • the program subtracts the total in this
record from the field created in the previous calculation and then puts the
new results in the temporary field •.

The program branches back to the read operation. and begins the
process again. When the results are zero and the last record with a
matching ID has been found, the program returns to the beginning of the
routine and prompts the operator for another number.

This process of reading a record and performing a calculation against the
record continues until the operator uses the End of Job key, or the end of the
data set is reached. As you can see in this one sample, a variety of operations
can be used to set indicators and a variety of operations can be conditioned by
indicators.

USing Indicators for Application Programs 115

116

•

•

Part 4. Access Methods

This part describes the various ways that you_ can retrieve data from diskette
data sets.

It contains two chapters:

• Chapter 9. Sequential Access Methods

• Chapter 10. Direct Access Methods

The organization of the data set de~ermines the access method that can be
used. The sample in Figure 9-1 illustrates the types of organization and access
methods available with DE/RPG.

The DE/RPG compiler uses the C-specification operations (such as READ,
WRITE, CHAIN, and UPDAT) to determine if the diskette data set is to be
created, added to, updated, or read. For example, if only WRITE statements
appear for a data set, the data set is recreated if it already exists; in other
words, it is rewritten beginning with the first record. Therefore, if you want to
add records to an existing data set without completely rewriting it, you must
include a READ operation for the data set in the subroutine. The READ
operation does not have to be executed; it simply indicates that the data set

....,Jlready exists:...

Access Methods 117

1. The data set is sequential.

II
• EJ ..

E C F ABO

23456

Dcan be accessed sequentially.
DCan be accessed directly by relative record number.
IICan be accessed directly by key if the field specified

as the key occurs in ascending sequence in the data
set when it is accessed.

2. The data set organization is by key sequence.

23456

IIcan be accessed sequentially by key.
IICan be accessed directly by key.
IICan be accessed directly by relative record number

if a key field is not specified for the data set when
it is accessed.

3. The data set organization is sequential by key and with
an index.

E C F B

23456

Bcan be accessed sequentially by key.
IICan be accessed directly by key.
DCan be accessed directly by relative record number

if a key field is not specified for the data set when
it is accessed.

Figure 9-1. Types of Access Methods Available with DE/RPG

118

15 16

II
ii

II
II

m
II

II

ABC

23456

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

su B 1 J B E IG SR
R E A D REC

5 If"\ H A I N rr EC l\.-

K ElY' ~ H ~ IN Et: ~

r: ... N D r5R

SU 82 ~E ~ SIt<
. I ~E ~ D ME~

K E Y ~ H ~ I N ~Et, ~

15 CH ~ IN ~Et
EN DSR

SU B~ E~ Sf(
II E~ D RE t

KE y ~H AI N EC
5 CH AlIN E~

EN DSR
I

B/4 C/2 0/6 Ell F/3

2 3 4 5 6

•

Before beginning the topics of direct and sequential access methods, there is
one additional consideration concerning the general topic of access
methods-that is, the accessing of multivolume data sets. A multivolume data
set is one that is resident on more than one diskette. An example of this might
be a data set that contains information about the items your business sells. A
single diskette might not be large enough to hold all of this information, so you
must continue the data set onto another diskette .

Access Methods 119

120

The sample in Figure 9-2 illustrates a program that reads from multivolume
data sets and writes a single multivolume data set on the diskette.

00001Z***
88882Z* PROGRAM 56. FIGURE 9-2 IN THE DE/RPG USER'S GUIDE *

3Z**~******** 00004ZJ MULTVOL
00005Z S1ROUT
00006A gF
00007A R
8888~~
00010A
00011A
00012A
00013A
00014A
00015A
00016A

1E
ONE
EXl
FLD1
FLD2
FLD3
FLD4
FLD5
TWO
EX2
FLD6
FLD7
FLD8 00017A

00018A
00019A
00020A
00021A
00022A
00023A

II F OUTPUT

00024A
00025A
00026A
00027A
00028A
00029C
00030C
00031C
00032C
00033C N01
00034C N01
00035C

R
K

N02
N02

RE1X
H:B~
FLD3
FLD4
FLD5
FLD6
FLD7
FLD8

ROUT
LOOP D

II

50

10
1.0
10
10
10
50

20
20
10

100

BEGSR
TAG
READ EX1
READ EX2
WRITERE1X
GOTO LOOF'
ENDSR

a

EOJ
DEVICE(DISK D1 D1)

DEVICE(DISK D2 D2)

DEVICE(DISK D3 D4)
INDEX(CHECK)

01
02

Figure 9-2 (Part 1 of 2). A Sample Program Showing the U.e of Multivolume Data Sets

•

•

On drive
01

On drive
02

On drive
03

ONE

TWO

OUTPUT
II

On drive
01

On drive
02

On drive
04

Figure 9-2 (Part 2 of 2). A Sample Program Showing the Use of Multivolume Data
Sets

Access Methods 121

122

In this sample, the data set named ONE is read first D The 01 01
parameters of the DISK keyword II declare this data set as multivolume. By
specifying 01 01 (the same drive), the programmer is indicating that the
operator removes the first diskette from the drive as needed and replaces it
with the second diskette. In this case, the operator sees only one open prompt
for the date set named ONE at the beginning of the program. As the need for
the second volume arises, the open prompt reappears, alerting the operator to
change diskettes in the drive.

The second data set that is read • also contains a data set that resides on
more than one diskette. As before, these diskettes will be used in a single
diskette drive. Finally, the data set that is written is also a multivolume data
set. The open prompts for both diskettes for the data set that is written appear
at the beginning of the program. These data sets will use two different diskette
drives. Both data sets, therefore, are opel')ed at the beginning of the program.

If you are not using logical devices (01, 02, etc.), then the specifications for
the drives would appear as: X'4000', X'4400', etc.

Data sets created by transaction files are always sequentially written and
non keyed or non indexed ; therefore, they can only be accessed sequentially or
directly by a relative record number.

Note: The one exception to this is a data set that has been entered in a
transaction data set in key order by the operator. In this case, the data set can
be accessed as a keyed data set.

Data sets created by subroutines on the C-specifications can be sequentially
written, or written in key sequence, or indexed by key sequence; therefore,
they can be accessed using any of these methods.

Data sets created by using the Sort/Merge Program Product can be organized
sequentially, or in key sequence, or by an indexed (ADDROUT) data set;
therefore, they can be accessed by any of these methods.

In addition, the Sort/Merge Program Product can be used to create individual
indexed data sets, and those can be merged into a master indexed data set.

Review Pa~ 1 for a description of how data sets are created by data-entry and
application programs. See the ISM 5280 Sort/Merge Reference/Operation
Manual, SC21-7789 for details about creating data sets using the Sort/Merge
Program Product.

User-programmed access to aiready existing data sets is through the READ or
CHAIN operations on the C-specifications.

•

Chapter 9. Sequential Access Methods

The read (READ) operation on the C-specification provides the sequential
access method for DE/RPG. The read operation can be used either for
sequential or indexed data sets. Sequential (nonindexed) data sets are read in
an ascending relative record number sequence. That is, the first record in the
data set is read and then the next one is read and so forth. Indexed data sets
are read sequentially by key sequence. Data sets created in key sequence are
read sequentially by key sequence .

Sequential Access Methods 123

124

SEQUENTIAL ACCESS OF NONKEYED AND NONINDEXED DATA SETS

The sample in Figure 9-3 illustrates the use of the read operation for accessing
a sequentially written (non indexed) data set.

00001Z***
00002Z* PROGRAM S7. FIGURE 9-3 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ ACCESS
OOOOSZ F4SUB1
00006A
00007A
00008A
()0009A
00010A
0001 j.A
00012A
00013A
00014A
00015A
00016A
00017A
00018C
00019C
00020C
00021C
00022C
00023C
00024

NOS
NOS

1E
F MASTHEAD
R HEADER

CUSNA
ADDR

67

30
30

6
1

67

ID
H

F MIX
R FIRST

ID
CUSNA
ADDR
H

SUB1
GO

BEGSR
TAG D READ HEADER
WRITEFIRST
GOTO GO
ENDSR

EOJ
DEVICE (DISK D1>

DEVICE(DISK D1>

OS

Figure 9·3. A Sample Program Showing the Sequential Access of a Nonkeyed, Nonindexed Data Set

In this sample, the records in the data set that is being read • are in a
random sequence II. The resulting data set is also written in the same
random sequence. because no key or index has been specified for it.

•

If the data set that is being read contains more than one record type, you
should include the RECIO operation (along with its associated indicators) to
identify the correct record type to be processed by the program. The sample in
Figure 9-4 illustrates this process.

00001Z***
00002Z* PROGRAM S8. FIGURE 9-4 IN THE DE/RPG USER'S GUIDE
00003Z***
00004ZJ ACCESS
OOOOSZ F4SUB1 1E EOJ
00006A F MASTBIL 67 DEVICE(DISK D1)

*

II
00007A DR HEADER SETOF(OS) SETOF(06) RECID(*POS1
00008A SETON(OS)
00009A H 1
00010A ID 6
0001iA CUSNA 30 II 00012A ADDR 30
00013A DR DETAIL RECID(*POS1 'D') SETON(06)
00014A D 1
000iSA ID 6
000i6A ITEM 10
000i7A QUANT S
000i8A COST 6
000i9A F IMML 67 DEVICE(DISK DU
00020A R HED
0002iA H
00022A ID
00023A CUSNA
00024A ADDR
0002SA R DET
00026A D
00027A ID
00028A ITEM
00029A QUANT
00030A COST
0003iC SUBi BEGSR
00032C BRANCH TAG
00033CII READ MASTBIL 01
00034C OS NOi WRITEHED
0003SC~06 NOi WRITEDET
00036C 01 GOTO BRANCH
00037C ENDSR

Figure 9-4. A Sample Program ~howing Sequential Access of a Data Set with Multiple Record Types

Notice that the data set being read contains two types of records (header"
and detail •. All header records are identified by an H in position 1 • and
all detail records are identified by a 0 in position 1 • The sample program is
specifying that every time a header record is read, a new header record is
written • and every time a detail record is read, a new detail record is written II·

'H')

Sequential Access Methods 125

126

SEQUENTIAL ACCESS OF KEYED AND NONINDEXED DATA SETS

Suppose you want to sequentially read records in a data set that is written in
keyed sequence. The sample in Figure 9-5 illustrates this process.

00001Z***
00002Z* PROGRAM 59. FIGURE 9-5 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ ACCESS
OOOOSZ F4SUB1
00006A
00007A
00008A
00009A
00010A
00011A
00012A
00013A
0001SA
00016A
00017A
00018A
00019C
00020C
00021C
00022C
00023C
00024C

N01
N01

iE
F MASTERAD
R HE{:,DER

CUSNA
ADDR
ID
H

F FEL
R NEW

CUSNA
ID
ADDR
H

SUB1
BRANCH

BEGSR
TAG

67

30
30

6
1

90

READ HEADER
WRITENEW
GOlD BRANCH
ENDSR

F4
DEVICE(DISK)

DEVICE (DISK DU

01

Figure 9-5. A Sample Program Showing Sequential Access of a Keyed Data Set

The data set is the same one used in Figure 9-2 but this time, it is organized
by key sequence.. This time, the records are read in the sequence of their
keys and written out in key sequence (which in this case corresponds to the
sequence of the relative record numbers because the original data set is
organized in key sequence). Even though a key field is not specified for the
NEW record, the data set can be used as a keyed data set if the 10 field is
referenced as the key field. This is true because the data set from which this
one was created was in ascending key sequence and therefore the NEW data
set is also in ascending. key sequence (via the 10 field).

..

SEQUENTIAL ACCESS OF INDEXED DATA SETS

Suppose that the data set being accessed is indexed. It is randomly organized, but
it uses an indexed data set that is organized by key sequence. The sample in Figure
9-6 illustrates this process.

00001Z**
00002Z* PROGRAM 60. FIGURE 9-6 IN THE DE/RPG USER'S GUIDE *
00003Z**
00004ZJ ACCESS3
OOOOSZ D1SUB13
00006A
00007A
00008A
00009A
00010A
00011A
00012A
00013A
00014A
0001SA
00016C
00017C
00018C
00019C NOS
00020C NOS
00021C

1E
F MASTHEA4
R HEADER
K ID

CUSNA
ADDR

F TEMPS
R NEW

ID
CUSNA
ADDR

BEGSR

66

6
30
30
66

SUB13
AGAIN D TAG

READ HEADER

101

IIWRITENEW
GO TO AGAIN
ENDSR

102

D1 fJ
DEVICE(DISK D1) INDEX(LOOK)

DEVICE(DISK D1)

05

103 104 105 106

fJ
"

HEADER1/106 HEADER2/103 HEADER3/102 HEADER4/104 HEADER5/101

Figure 9-6. A Sample Program Showing Sequential Access of an Indexed Data Set

The read operation is performed sequentially, but this I time it is performed
against the indexed data set which in turn references the correct record to be
read in the data set. With the use of the indexed data set, a data set that is
randomly written can be accessed as if it were organized sequentially by key
field. This improves the efficiency of first writing the records and later reading
them.

Sequential Access Methoqs 127

128

•

Chapter 10. Direct Access Methods

The chain operation (CHAIN) on the C-specification provides the direct access
methods for DE/RPG. Data sets can be directly accessed in one of two ways:
(1) by a reference to a specific relative record number or (2) by a reference to a
specific key field value.

DIRECT ACCESS FOR NONKEYED AND NONINDEXED DATA SETS

Nonkeyed and nonindexed data sets can only be directly accessed by relative
record number. The sample in Figure 10-1 illustrates this process.

00001Z***
00002Z* PROGRAM 61. FIGURE 10-1 IN THE DE/RPG USER'S GUIDE *
00003Z***

lE C5
00004ZJ ACCESS
OOOOSZ CSSUB2
00006A F MASTHEAD

R HEADER
66 DEVICE (DISK DO

00007A
00008A
00009A
00010A

ID
CUSNA
ADDR

00011A F OUTPUT
R NEW

CUSNA

6
30
30
30 DEVICE(DISK DO

00012A
00013A
00014C
0001SC
00016C
00017C N09
00018C
00019C NOS
00020C

.

•

II ;UB2

BRANCH

30
BEGSR
CHAINHEADER
TAG
WRITENEW

II READ HEADER
GOTO BRANCH
ENDSR

2 3

End of the
Data Set

I ••
..

... NEWN

4

Figure 10-1. A Sample Program Showing Direct Access of a Nonkeyed Data Set

09

05

5

In this sample, factor 1 • contains the record number that you want the
program to read first. DE/RPG will find and read II the record with this
relative record number. If you want to read the records sequentially following
this record, you must specify a READ operation.

End of the
Data Set ..

. .. HEADERN

Direct Access Methods 129

130

DIRECT ACCESS FOR KEYED AND INDEXED DATA SETS

The CHAIN operation provides direct access to keyed data sets (both indexed
and nonindexed). The sample in Figure 10-2 illustrates the chain process.

00001Z***
00002Z* PROGRAM 62. FIGURE 10-2 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ ACCESS2
00005Z N1SUIe2
00006A
00007A
00008A
00009A D
00010A
00011A
00012A
00013A
00014A
00015A
00016A
00017A
00018C
00019C
00020C
00021C
00022C

1E
F DISP
R GET

ID
R LOOK

NAME1
NAME2

F MASTHEAD
R HEADER
K IDENT

CUSNA
ADDR

SUIe2

ID

67

6

30
30

1
66

6
30

I

Ie
Ie
I

30
IeEGSR
EXFMTGET
CHAINHEADER
EXFMTLOOK
ENDSR

EOJ
DEVICECCRT) DSPSIZ(6 80)

PMT(ENTER THE RECORD ID YOU WANT)

INSERT(CUSNA)
INSERT(ADDR)
PMT(PRESS ENTER TO CONTINUE)
DEVICECDISK D1)

01

Figure 10-2 (Part 1 of 2). A Sample Program Showing Direct Acce .. of a Keyed Data Set

o x

ENTER THE RECORD YOU WANT
889134

l~ ________ ------"",J

HEADER6 ...

o x

PRESS ENTER TO CONTINUE

DAN NELSEN 99 EAST CENTER STo. ROCHESTER. MN.

Figure 1~2 (Part 2 of 2). A Sample Program Showing Direct Access of a Keyed Data Set

As the sample illustrates, the value of the key is contained in the field named
ID II. This value is used by the program to determine the exact record in the
data set to be read. If the data set is keyed and nonindexed, the program
directly finds the correct record.

If the data set is keyed and indexed (or the ADDROUT data set is being used),
the program uses the index data set to correctly locate the appropriate record
in the data set. The sample in Figure 10-2 illustrates using a direct access
method with a keyed and indexed data set.

Direct Access Methods 131

132

00001Z***
00002Z* PROGRAM 63. FIGURE 10-3 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ ACCESS3
00005Z D1SUB13
00006A
00007A
00008A
00009A
00010A
00011A
00012A
00013A
00014A
00015A
00016A
000i7A
00018A
00019A
00020A
0002iA
00022A
00023A
00024A
00025C

N05

1E
F MASTHEA4
R HEADER
K ID

CUSNA
AD DR

F MASDETAL
R DETAIL
K IDENT

ITEM
QUANT
COST

F TEMPS
R NEW

IDENT
CUSNA
AD DR
ITEM
QUANT
COST

SUBi3
AGAIN 00026C

00027C
00028C
00029C
00030C
0003iC

N02
N05

ID
N05

BEGSR
TAG

66

6
30
30
27

6
10

5
6

87

6
30
30
10

5
6

READ HEADER
CHAINDETAIL
WRITENEW
GOTO AGAIN
ENDSR

D1
DEVICE(DISK D1) INDEX(LOOK)

DEVICE(DISK D1) INDEX(FIND)

DEVICE(DISK D1)

05
02

Figure 10-3 (Part 1 of 2). A Sample Program Showing Direct Acce .. of a Keyed

and Indexed Data Set

.. }
203 204

D
HEADER1/202 HEADER2/205 HEADER3/204 HEADER4/203 HEADER5/201

101 102 103 104 105

301 302 303 304 305

fJ
DETAIL1/302 DETAIL2/304 DETAIL3/301 DETAIL4/305

101 102 103 104

··1
Figure 10-3 (Part 2 of 2). A Sample Program Showing Direct Access of a Keyed and Indexed Data Set.

Direct Access Methods 133

134

The sample i,n Figure 10-3 illustrates a direct access method using a field from
a previously read record as the key value. First, a record from the LOOK data
set (which is the index data set for the MASTH EAD data set) is sequentially
accessed. Since this data set is written in key sequence D the first logical
record (by key) is the first relative record. The key field from this record is
extracted and used to identify the correct record to read from the MASTDETAL
data set. This record is directly accessed. After the read and chain
operations have been concluded, a new record, which contains fields from the
previous two records that were read, is written into a new data set D

Remember that the way the data set is created directly determines how it can
be accessed. Part 1 contains related information about creating data sets
using data-entry and application programs.

A data set created with the ADDROUT file in the Sortl Merge Program Product
is similar to an indexed data set with the following exceptions. When
accessed:

• The data set must not specify a key field.

• The name provided as a parameter for the INDEX keyword is the name of
the ADDROUT file.

If you are using a large indexed data set, you may want to include a storage
parameter for the INDEX keyword. The DEjRPG Reference Manual contains
additional details about a storage parameter.

Part 5. Data Tables

This part describes considerations involved in using data tables and in creating
tables. It contains two chapters:

• Chapter 11. Using Data Tables in Data- Entry Programs

• Chapter 12. Using Arrays in Application Programs

There are two basic ways of thinking of data tables in DE / RPG: (1) as lists
and (2) as one-dimensional RPG arrays. The table functions performed on the
A-specification are primarily for data-entry purposes. They provide a variety of
ways to ensure correct entry or to automatically supply values for entries. The
array operation provided on the C-specification compares a value (field or .
constant) with entries in a table and allows you to manipulate a table and index
as a field.

The table functions that can be provided on the A-specification are:

LOOK

RANGET

SUBST

XCHK

Determines if the field matches a table
entry.

Determines if the field is within an
acceptable range of values.

Replaces the value of the field with an
entry from the table.

Cross-checks the values of two fields
against a table to ensure that the
combination of their values matches.

The array operations that can be performed on the C-specifications are:

LOKUP

Arrayname,index

Compares the value named in Factor 1 with
the entries in a table for high, low,
and equal.

Allows the programmer to use the
arrayname,index combination as any field is
used on the C-specifications.

The Introduction to DEjRPG manual describes the process of using tables and
of creating them (both in separate data sets and in the using program). This
chapter describes considerations for using tables; it does not repeat the
material provided in the Introduction to DE j RPG manual. The DE j RPG
Reference Manual provides additional information about coding programs to use
tables.

Data Tables 135

136

•

t

Chapter 11. Using Data Tables in Data-Entry Programs

The specific topics described in Chapter 11 are:

• Considerations about declaring indexes

• Arranging data in tables

• Arranging tables in data sets

CONSIDERATIONS ABOUT DECLARING INDEXES

Indexes are numeric variables which contain the number of a table entry. The
number that the index contains depends on the table operation with which it is
used. For example, when an index is used with a LOOK operation, the index
contains the number of the table entry that matches the contents of the current
field.

You have the choice of either declaring the indexes to be used in your program or
of accepting the default characteristics for the indexes. The default characteristics
for each index are five. positions wide and numeric. All indexes must be numeric,
so there is no difficulty in accepting the default from this viewpoint. However, all
indexes are not necessarily five positions wide. If you accept this default and you
use indexes in a XCHK operation, you must create the XCHK table so that its
entries are five positions wide. If you do not accept the default, DE/RPG is not
able to provide the correct value.

Of course, you have the most control when you create the indexes. Creating
indexes as work space fields prevents their being displayed or written to
diskette. The sample in Figure 11-1 illustrates the declaration of an index
named PEEK.

Using Data Tables in Data-Entry Programs 137

138

00001Z***
00002Z* PROGRAM 64. FIGURE 11-1 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ SAMP TFILE(ONLY)
00005Z B1TEMP 1E B1
00006A F DISPL 4 II DEVICE (CRT)
00007A R TEMP
00008A PEEK fl1 OW 0
00009A AMT 4 21
00010A
00011A
00012A
00013A
**CTDATA TABL.E1
1000
2000
3000
4000
5000
6000
7000
8000
9000

F TABLE1
T AMTAB
F ONLY

4
4
4

2

PMT(ENTER AMOUNT)
LOOK(AMTAB PEEK)
NUMENT(9)

DEVICE(DISK D1)

Figure 11-1. A Sample Program Showing the Use of an Index with a Table

This index is described as a work space D It is one position wide D
Because it is only one position wide, it can be used effectively only with a
table that contains fewer than 10 entries. The 0 in the decimal usage column
• describes the field as being numeric.

•

ARRANGING DATA IN TABLES

The type of table operation you want to use determines the arrangement of the
data in the table. For example, two tables that are to be used in LOOK
operations in the same program, can be created simultaneously by alternating
entries. The sample in Figure 11 - 2 illustrates this table entry process.

00001Z***
00002Z* PROGRAM 65. FIGURE 11-2 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ TABEXMP
00005Z Y1EXMPTB
00006A
00007A
00008A
00009A
00010A
00011A

j.E
F INPUT
R EXMPTB

00012A F LOOKTBS
00013A T ITEMT
00014A T PRICTA

~00015A F TEMPORAR
-=-**CTDATA LOOKTBS~

100-A200895
350-A100150
580-A208969 D
678-A115555

11

116
1J5

11
6
5

11

TFILE(TEMPORAR>
Vi.
DEVICE(CRT) DSPSIZ(6 80)

0001001'ITEM NUMBER'
0002001 'PRICE'
IOO:l.014LOOK(ITEMT>fI

2I002008LOOK(PRICTA) CHECK(RZ)
NUMENT(4)D

2
DEVICE(DISK D1>

Figure 11·2. A Sample Program Showing a Compile·Time Table

In this program, the operator is entering an item number.. This item number
is being validated by entries in a table II. If a matching entry is found in the
table, the entered number is considered valid. In the same manner, the price
• that is entered by the operator is being validated by entries in another table
II These two tables can be created at compile-time •. Because they are
both being used in LOOK operations, they should be created in alternating
sequence. in the same data set II. No indexes are used in this program.

Using Data Tables in Data-Entry Programs 139

140

If two tables are being used for a substitute operation, they should also be
created in alternating sequence in the same data set. The sample in Figure
11-3 illustrates a program using the SUBST operation.

00001Z***
00002Z* PROGRAM 66. FIGURE 11-3 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ SAMPLET TFIlECSHIPTEM)
00005Z A1HEADER NE
00006A F DISPL 73 DEVICE(CRT) DSPSIZ(6 80)
00007A R HEADER
00008A
00009A
00010A
00011A
00012A
00013A
00014A F SHIPTEM
00015A F SHIPTAB
00016A T SHIPCD
00017A T SHIPTO
**CTlfJ~ SHIPTAB

1I01RAILFREIGHT
02INSTIMAIL
03EDDY'S TRUCKS
04MASSIVE TRANS

30
30

II 13
73
15

2
13

0001001'CUSTOMER NAME'
0002001 'ADDRESS'
0003001'SHIP CODE'
1001015
1002015
I003015CHECKCRB) SUBST(SHIPCD

DEVICE(DISK D1>
NUMENT(4)

Figure 11·3. A Sample Program Showing the Use of the SUBST Operation

In this program, the operator is entering a two-digit ship code •. The program is
exchanging this two-digit code for a descriptive title taken from the substitution

table •. As you can see, the organization of the table data set consists of alternat·
ing entries for the abbreviated and extended entries.

Remember, when you are using a SUBST operation, that the field receiving the
substituted data must be long enough to accept it. For example, in Figure 11·3 if
the receiving field. had been only two positions to accept the initial operator
entry, only the first two characters of the extended description could have been
substituted. If the code is 03 and the field length is 2, the field would contain ED
(rather than EDDY'S TRUCKS) after the substitution. Another:consideration
when using the SUBST operation is to keep the entries of the two tables aligned.
For example if the tables were not carefully created, the incorrect description
might be substituted for the coded entry.

SHIPTO)

•

Entries for tables being used by the RANGET operation should be paired. The
sample in Figure 11 -4 illustrates this operation.

00001Z***
00002Z* PROGRAM 67. FIGURE 11-4 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ PARTSAM
00005Z C1REC
00006A
00007A
00008A
00008A
00009A
00010A
00011A
00012A
00013A

1E
F DISPC
R REC

FIND
F DISCOUNT
T DISCT
F DISRAT 00014A

**CTDATA
01000
02000

DISCOUNTfJ

02010
05000
05010
19990

TFILE(DISRAT)

1.5 DEVICE(CRT) DSPSIZ(6 80)

5 21 DPMT(ENTER AMT SOLD TO DETERMINE
DISCOUNT) RANGET(DIS~T FIND)

CHECK(RZ)
5 21 INSERT(FIND)
1 OW
5 NUMENT(6)
5 2

15 DEVICE(DISK DU

Figure 11-4. A Sample Program Showing the Use of the RANGET Operation

I n this sample, the program is testing the entry. to determine if it is in an
acceptable range of values. The table being used to determine the range is
created at compile-time within the program. If you look at the entries for
the table, you see that the first and second entries form a pair of ranges, the
third and fourth form another pair and so on. For example, if the entry is
03000, it is in the range of 02010 to 05000; therefore, the index (FIND)
contains the number 3. Remember that indexes that are not declared (set up
as separate fields) default to numeric fields with a length of 5.

The coding required to determine the amount to be discounted for this value is
not included in the program.

ARRANGING TABLES IN DATA SETS

Multiple tables can be contained in a single data set. Before you group
multiple tables in the same data set, however, consider that all tables used by
a program must be resident in storage for the entire use of the program. Only
those tables being used specifically for the program should be in the data set.
If you are using the same tables in a variety of programs, try to group them in
data sets separate from the program so unused tables are not loaded into
storage when the programs are operating.

The sample in Figure 11-5 illustrates the creation of a data set that uses
multiple tables.

THE--

Using Data Tables in Data-Entry Programs 141

142

OOOOiZ***
00002Z* PROGRAM 6B. FIGURE 11-5 IN THE DE/RPG IISER'S GUIDE *
00003Z***
00004ZJ TODAY
00005Z
00006Z AOSCRATCH
00007Z X1DfT
OOOOBZ X2TRAIL
00009Z
00010Z
OOOHZ
OOO'\2A
00013A
00014A
00015A
000lSA
000lbA
00017A
00017A
00017A
OOOt.BA
000lBA
00019A
00019A
00019A
00020A
00020A
00021A
00022A
00023A
00024A
00025A
00026A
00026A
00027A
0002BA
00029A
00030A
0003tA
00032A
00033A
00034A
00035A
00036A
00037A
00038A
00039A
00040A
00041A
00042A
00043A
00044A
0004SA
00046A
00047f>
0004BA
00049A
000'50A
0005i.A
00052A
00053A
00054A
OOOSSA
00056A
00057A
OOOSBA
00059A
00060A
00061A
00062A
00063A
00064A
00065.,\
00066A

iE
NE
lE

R *POS150
R *POS1S0
R *F'0S150

F DISP

R SCRATCH

R DET
DAT
SALS

ITEM

DESC
QUANT

PRICE

COST

CUSN
MARK2

R TRAIL
DAY
CUST
TOT

MARK3
F BILLING
R DETAIL

DAT
CUSN
SALS
ITEM
DESC
QUANT
PRICE
COST
MARK2

R TRAILER
DAY
CUST
TOT
MARIO

F MASTHEAD
F TABLEt
T ITEMT
T PRICET
F TABLE2

00067A T INVENT
**CTDATA TABLE2
1
1

2
3
:3
4
4
'5
5
6
6

TFILE (BILLING)
CFILE(MASTHEAD)
WRITE(*NO)
WRITE< DETAIL)
WRITE (TRAiLER)

'H'
'D'
'T'

Xi
X2
AO
o
Xl
X2
DEVICF(CRT)
DSf.'SlZ(6 BO)

150

6

6
3X

6e

:w
4

5

9

5

6D
S

j5

j

150

150
ji

6

J001060PMT(MAKE AUTODUP ACTIVE AND FNTER T+
HE DATE IF THFRE IS ONE)
AUXST (DATF)

0002001 'USE THE SEARCH KEYS TO FIND THE CO+
RRFCT HEADER RECORD IN THE MASTHEAD­

DATA SET.'
0003001 'SEARCH FOR A MATCH TO THE CUSTOMER­

NUMBER ON THE ORDER FORM.'
0004001'NEXT USE THE COpy KEYS TO COpy DAT+

A FROM THE HEADER INTO THIS DATA SE+
T. '
PMT(USE THE FIELD EXIT KEY TO LEAVE­

THE DISPLAY>
CHECK(FE)

I002001AUXDUP(DATE)
I002021PMT(FNTFR THE SALESMAN'S INITIALS)

CHECK(DR BC)
J00203iPMT(ENTER THE ITEM CODE) +

SHIFT(DDXXXD)
LOOK(ITEMT A)
CHECK(ElC)

I00300iPMT(FNTFR THE DESCRIPTION)
OI003041PMT(~NTER THE QUANTITY)

CHFCK(RZ DR)
2I004001PMT(ENTER THE PRICE) CHECK(RZ)

LOOK(PRICET EI)
XCHKCINVENT A B)

000401.10' TOTAL; ,
2I004070INSERT(PRICE*QUANT)

TADD(*TOT1) DSPATR(HI)
I005001PMT(ENTER THE CUSTOMER NUMBER)
J00'5079INSERT('D')

PMT(ENTER THF CURRENT DHTE)
INSFRT(ClISN)

21 INSERT(*TOT1)

00.\
007
012
01.5
021
05j
05~;

060
l.50

001
007
01.2
l ~)O

RESET< *TOH)
INSERTC' T')
DEVICE(DISK X'4000')

DEVICE(DtSK X'4000')
NUMFNT(6)

NUMENTC1.2)

**CTDATA TABLFl
OOAAA109950
OOAAB200230
00ABB318970
00BBB4000i3
00BBB500405
OOBBB609875

I Figure 11-5. A Sample Program that Illustrates the Use of Multiple Tables

•

Chapter 12. Using Arrays in Application Programs

This chapter describes how to use the LOKUP and MOVEA operands on the
C-specification and how to use arrayname, index as a field.

USING LOKUP ON THE C-SPECIFICATIONS

The array operation that is available on the C-specification .is LOKUP. This
operation is similar to the LOOK operation on the A-specification. In addition to
the equal-to check provided by the LOOK operation, the LOKUP operation also
provides higher-than and lower-than checks. When a table is referred to by a
LOKUP operation on the C-specification, it must be described on the A-specifica­
tion in the program. The sample in Figure 12-1 illustrates a program that uses the
LOKUP operation.

00001Z***
00002Z*PROGRAM 69. FIGURE 12-1 IN THE DE/RPG USER'S GUIDE
00003Z***
00004ZJ LOKEXM
00005Z X1SUB
00006A
00007A
OOOOBA
00009A
00010A
00011A
00012A
00013A
00014A
00015A
00016A
00017C
0001BC

1E
F IN!='UT
R CHECK

F PREP
R ONE

FLD1
FLD2
FLD3

F RANTAB
T EXTAB

SUB

00019C
00020C
00021C
00022C

fJ FLD1
II

01

BEGSR

6

5
1

10

5
3
2
5
5

READ ONE

01
1

o

o

Z-ADD1
LOKUPEXTAB,A
EXFMTCHECK
ENDSR

A

EOJ
DEVICE(CRT) DSPSIZ(6 BO)

INSERT(A)

DEVICE(DISK D1)

DEVICE(DISK D1) NUMENT(3)

99
0050

01

Figure 12-1. A Sample Program Showing the Use of the LOKU P Operation

Notice that the index is described on the C-specification II before it is used with
the table. 'Also, notice how the index is used with the table to locate the position
of the successful match in the table II ..

*

Using Arrays in Application Programs 143

144

USING ARRAVNAME, INDEX AS F)ELDS

On the C-specification, array name, index combinations can be used wherever a
field can be used. The sample in Figure 12-2 illustrates one such use.

00001Z***
00002Z* PROGRAM 70. FIGURE 12-2 IN THE DE/RPG USER'S GUIDE *
00003Z***
00004ZJ TFIELD
00005Z A1TRANS
00006A
00007A
00008A
00009A
00010A
00011A
00012A
00013A
00014A
00015A
00016A
00017A
00018A
00019A
00020C
00021C
00022C
nn023C

IilCTDAiliTABLE1
AAAA100001
AAAA200002
AAAA300003

1E
F INPUT
R TRANS

INTER1
INTER2
FLD!

FLD2

F TABLE1
T ITEMT
T PRICET

CALCS

tOO

15 OW
15 OW

5 I

5 I

15 01
15 or

.t I
10

5
5

Ai WRITE(*NO)
DEVICE(CRT) DSPSIZ(6 80)

TN~ERT(OOOOOOOOOOOOOO)

O'ERT (00000000000000)
2 2PMTCENTER THE TTEM NUMBER)

LOOK(ITEMT A)II II
~D.?PMT (ENTER THE PRICE) LOOK (PRICET B)

EXSR(CALCS)
INSERT(INTER1)
INSERT(INTER2)

NlJMENT(3)

BEGSR
MOVE ITEMT, A IIINTER1
MOVE PRICET, BO NTER2
ENDSR

Figure 12-2. A Sample Program Showing the Use of the Table, Index Operation

In this sample, the operator enters the item number as prompted •. The program
finds the corresponding entry in the ITEMT table II and places the position number
in the A index II. Next, the program prompts the operator for the price II. It
searches the PR I CET table. and places the position at which the match is found
in the B index II. At this point, the program exits to the C-specifications where it
places the value of the ITEMT found in the position designated by index A in the
field named I NTE R 1 •. Correspondi ngly, the program places the matching value
from the PRICET table in INTER211.

The values of I NTE R 1 and I ~TE R2 are displayed. The displays indicate the process
involved in using the program.

USING THE MOVEA OPERATION

On the C-specification, the MOVEA operation transfers characters to a field.

Z** Z* PROGRAM 83. FIGURE 12-3 IN THE DE/RPG USER'S GUIDE *
Z**
ZJ PFWG83
Z i SCi~N iE EOJ

DEVICE(CRT) 1;!1

A
;i
f:1
f~
A
f~
j:1
A
A
I~~
A
C*
C*
C
C
C
C
C
C
C
C
C
I

C~
C
C
C
C
C
C:
C
C
C
C c
c:
'.-" c
c:

F CRT
R MSGi

i'1SGBO
F: MSG2

LETTEF:

80

BO

:i60
. ! BLrlNKS 1.6'-.1

F TBLFILEi i
T SCTBL i
F TBLFILE2 i
T LTBL i

B

o
o
w

PMT(ENTER 80 BYTE MESSAGE FOR SCAN)

'THE MESSAGE CONTAINED LETTERS'

NUMENT(80)
NUi"lENT(i60)

SUBROUTINE SCAN: THIS ROUTINE INPUTS A LINE
WHICH LETTERS WERE USED, AND DISPLAYS THOSE

OF DATA, SCANS AND TABULATES
LETTERS.

START SUBR. SCAN

03

SCAN BEGSR
I.JJOFi TAG

LOOP2
I ,t~ ,
; "? f

d~f:iF:
I...
i

L
SKIPC

ENDLF2
~
.1.

EXFMTMSG1
MOVEi~BL.(iNI<S
i"10VEfiMSGBO
Z····fiDDO
Z···fiDDi
Tl-"'i(3
MOt...'E SCTHL, I
CABGTCHf~IR
CABL.TCH(IF'
i...OI-<UPLTBL
GOTD ENDLP2
fiDD i
CABEQL
MOVE ' ,
,;~DD i
TAG
MOIJE CHAR
TrIG
fC:! Ii D l ")l' .', fiB .. t:.<: '-.I
MO\"IEf~LTBt..
EXFi1Ti"iSG2
GOTD I ... OOP J.
ENDSF:

LTBL
SeTBL.
L
I

LTBL.,L.

.I. - ...
l..lJUP/
1 ... ETTEl:;;

GET 80 BYTE MESSAGE
BLANK OUT CHAR. TABLE
MOVE MSG. INTO TABLE
ZERO L.ETTER COUNT
INITIALIZE LOOP CTR.

GET NEXT CHARACTER
IF < I I~i I, BF~j~lNCH
IF) 'Z', BRANCH

03CHECK IF CHAR. IN TBL
IF SO, BF:rINCH
INCREMENT TABLE INDEX
IF FIRST, BRANCH
ELSE INSERT COMMA
INUL INDEX PAST I, I

MOVE CHAR INTO TABLE

~~~~~~E~f ~8~~ E~~~s. 
MOVE TABLE INTO FIELD 
AND DISPL.AY RESULTS 
GO DO i~lNOTHEP 

Figure 12·3. A Sample Program Showing the Use of the MOVEA Operation 

This program prompts the operator to enter a message to be scanned for the letters 
in it. To facilitate scanning, the program moves the message into a table using the 
MOVEA operation. Each letter is looked-up in a table used to collect the letters. 
If the letter is not in the table, the letter is added to the table. A separating comma 
is added for punctuation. After the entire message is processed, the letters used in 
the message are moved into a field and displayed. 

Using Arravs in Application Programs 145 



146 



• 

This section contains information about printing data using the IBM 5280. It 
consists of two chapters; 

• Chapter 13. Unformatted Printing for Data- Entry Programs 

• Chapter 14. Formatted Printing for Application Programs 

Part 6. Printing 

Printing 147 



148 



• 
• 

Chapter 13. Unformatted Printing for Data-Entry Programs 

Unformatted printing is only available for programs using transaction files 
(TFILE specified in the job statement). Chapter 1 describes this type of 
program in detail. Unformatted printing consists of printing the contents of the 
current buffer (current record) without providing format control such as line 
skipping. The result is that the default records are printed one at a time with 
fields in the record strung together. To print an unformatted record, three 
conditions must exist: (1) PRTFILE(datasetname) must appear in the job 

statement, (2) a printer data set must be specified on the A-specification, and (3) 
the operator must use the PRINT key. 

The sample in Figure 13-1 illustrates a program that provides unformatted 
printing. 

00001Z*************************************************************** 
00002Z* PROGRAM 7:\.. FIGURE 13··· 1 IN THE DE/RPG USER'S GUIDE * 
00003Z*************************************************************** 
00004ZJ INTERX aTFILE(TEMJOB) 
00005Z PRTFILE(OUTPUT) 
00006Z B1PURCH NE 
00007Z R 
00008A F EXMP 
00009A R PURCH 
00010A 
00011A 
00012A 
00013A 
00014A 
00015A 
00016A 
00017A 
00018 

FLD1 
FLD2 
FLD3 

F TEMJOB II F OUTPUT 
II 

15 

6 
5 
4 

15 II 15 

Ef1 
DEVICE(CRT) DSPSIZ(6 80) 

0001001'ITEM' 
0002001'PRICE' 
0003001 'QUANT' 
1001010 

2I002010CHECK(RZ) 
OI003010CHECK(RZ) 

DEVICE(DISK D1) 
DEVICE(PRINTER X'8000') 

Figure 13-1. A Sample Program Showing the Use of the PRTFILE Operation 

Note that only the input fields. in the record are printed. The reason is that 
only input fields are in the default diskette record. To print the three records 
as shown in the sample, the operator has to press the Print key three times or 
use the Auto Rec Adv function. Look at the length field in the file statement 
for the printer II. The length of the printed record is determined by the length 
provided in the file statement. For example, if the length in the print file 
statement for the sample were 10, and the length of the default record were 
15, the last five characters in the record would be lost and the resulting printed 
record for the first line is: 

OOAAA10099 

Also notice that no redefinition of fields follows the file statement for the 
printer. or for the diskette. 

If a record has been reformatted, and unformatted printing is used, the results 
will match the format of the diskette record. 

Unformatted Printing for Data-Entry Programs 149 



150 

Because unformatted printing is available for programs using transaction files, 
it is available in the enter, update, verify, and copy operating modes. The 
mode in which the operator uses the Print key determines what is printed. If 
the operator uses the Print key for an unformatted printing operation when the 
enter mode is in effect, only the last record in the data set is printed. The 
reason for this is that the enter mode goes to the end of the data set in 
anticipation of adding new records. If you are using the unformatted printing 
operation, be sure you know which mode is in -effect when the operation is 
used. 



• 
111 

Chapter 14. Formatted Printing for Application Programs 

Formatted printing differs from unformatted printing in two ways: 

• The program determines the arrangement of data as it is printed. 

• Printing is controlled by operations in subroutines on the C-specifications rather 
than by the operator using the Print key . 

Formatted printing can be used with all programs except those exclusively 
using transaction files (no subroutines). Chapter 1 provides information about 
the various types of programs available for use in DE/RPG. 

To use formatted printing, a print data set must be described on the A-specification 
and a write operation for the print data set must be specified on the C-specification. 

Formatted Printing for Application Programs 151 



152 

The sample in Figure 14-1 illustrates a very simple formatted printing 
operation. 

00001Z*************************************************************** 
00002Z* PROGRAM 72. FIGURE 14-1 IN THE DE/RPG USER'S GUIDE * 
00003Z*************************************************************** 
00004ZJ PRTEX 
00005Z R1HEADER 
00006A 

E 
F VIEW 90 

00007A 
00008A 
00009A 
00010A 
00011A 
00012A 
00013A 
00014A 
00015A 
00016A 
00017A 
00018A 
00019A 
00020A 
00021A 
00022A 
00023A 
00024C 
00025C 
00026C 
00027C 
00028C 
00029C 

• 
• 
• 
• 
• 
• 
• 
• 

R HEADER 
CUSNA 
SH<EET 
CISTA 

F PF<INT 

R NAME 
CUSNA 

R ADDR 
STREET 

R CITY 
CISTA 

20 
20 
20 

132 

20 

20 

I 
I 
I 

F CUSTOMER 
R HEAD 

20 
90 

K CUSNA 
STREET 
CISTA 

PRNT 

MR. N.E. EDDY 

20 
20 
20 

BEGSR 
WRITENAME 

IIWRITEADDR 
WRITECITY 
WRITEHEAD II 
ENDSR 

233 OSBORNE DRIVE 

MRS. ..lANE R/~NS()M 

j.6 FORWIRTH ST. 

WRITE(*NO) 
DEVICE(CRT) DSPSIZ(6 80) 

PMT(ENTER CUSTOMER NAME) II PMT (ENTER STREET ADDRESS) fJ 
PMT(ENTER CITY AND STATE) EXSRCPRNT) 
DEVICECPRINTER Pi) 
FORM(55) II SPACEB (2) SPACE A C 2)D 

.SPACEACO) M 
SPACEA(3) 

040 
DEVICECDISK DU 

FRAMPTON, NEW MEXICO 

NEW HAMPTON, CONN. 

Figure 14·1. A Sample Program Showing a Simple Formatted Print Operation 

• 
• 
• 
• 
• 
• 
• 
• 



• 

This program is prompting the operator for customer identification information 
II. When the entry for a customer is complete, the program exits to a 
subroutine on the C-specification D The subroutine writes three records: 
NAME, ADDR, and CITY via the printer. 

Notice that the printing does not begin on the first line of the paper. The 
SPACEB(2) II operation is telling the IBM 5280 to skip two lines before printing 
the record. The SPACEA(2)lIoperation is telling the IBM 5280 to print the first 
record and then skip two lines before printing the next record. 

The second record II is printed and no lines are skipped before the last record 
• is printed. After the last record is printed, four lines are skipped. The last 
line of the subroutine. writes a single record (containing three fields) in key 
sequence into the diskette data set. The entire process, beginning with the 
prompt to the operator, begins again. 

This was a simple sample of formatted printing. More complex samples are 
provided later in this chapter. The topics that are presented in this chapter are: 

• Designing a print data set to be used with an existing form 

• Designing a print data set to create a form 

Formatted Printing for Application Programs 153 



DESIGNING A PRINT DATA SET TO BE USED WITH AN EXISTING FORM 

The sample in Figure 14-2 illustrates the form you use to design a print data 
set. This form represents a typical preprinted form used by many businesses. 
The form is marked to indicate the amount of space between entry areas. 

/ Top of Page 

J Align the Printer at this Mark 2 Inches from Alignment Mark to First Print Line 

RAYMOND B. ATHERTON LAW FIRM 

Bismarck, North Dakota 

Date of Service Type of Service Associate Who Helped You 

, ... , ... .. .. .. 
25.6 mm 112. mm 46mm 
(1 Inch) (4.4 Inches) (1.8 Inches) 

\ 12.8 mm 
) (0.5 Inch) 

Figure 14-2. The Form to be Used for the Print Operation in Figure 14-4 

154 

, 



• 

The first rule to remember when working with preprinted forms is that 
DE/RPG prints the data exactly where you specify. 

This means that you must tell DE/RPG exactly where to place each piece of 
data. The placement of data not only includes the line location, it also includes 
the space location. To understand how to make these measurements, you 
must know something about the printer. 

For example, the IBM 5256 printer prints 132 characters per line and six or eight 
lines per inch. The maximum line width is 13.5 inches. This means that each 
character occupies approximately 0.1 inch (13.5 divided by 132) and that each 
printed line occurs approximately every 0.17 inches (1 divided by 6) for six lines 
per inch and approximately every 0.13 inches for eight lines per inch. If the form 
you are using is 10 inches long, the number of lines that can be printed on the form 
at six lines per inch is 60 lines (10 inches multiplied by 6). If your form is 8.5 inches 
inches wide, the maximum number of characters that can be printed on the form at 
10 characters per inch is 85 characters (8.5 divided by 0.1). 

Formatted Printing for Application Programs 155 



J fJ 

You must measure your preprinted form to find the width and length of the 
form. Then determine where you want to print each line of data. Review the 
illustration of the form in the sample in Figure 14-3. 

7 Inches 

a RAYMOND B. ATHERTON LAW FIRM 

Bismarck, North Dakota 

II 

Date of Serv ce Type of Service Associate Who Helped You 

.. ~ 

~ 

a II 

}m 

J 
Figure 14-3. The Measuremvnts that Determine the Spacing Required for the Program in Figure 14-4 

156 



" 

• 

• 

Assume that this form is 7 inches long.; that is, 42 lines long (six lines per inch 
multiplied by 7 inches). The alignment mark II tells the operator to load the form 
with space at the top. Counting from the alignment mark, there are 2 inches II to 
the first print line. Two inches is 12 lines (2 multiplied by 6). Therefore, you 
know that you want to skip 12 lines before printing the first line. Next, look at the 
marks on the first print line. The first field to be printed is 1 inch long II. This is 
a date field. The date is always six characters long (mmyydd). If each character 
takes 0.1 inch, then 6 characters take 0.6 inch. This does not fill the field. You 
will have to do something to start the printing for the next field in the proper 
column. If you measure across the vertical separators, you find that you need an 
extra six characters to ensure that the next field. is printed in the proper begin­
ning position. 

You can determine the maximum length of the second field by dividing the length 
of the field by the number of inches per character. For example, the field is 4.4 
inches long and each character takes 0.1 inch; therefore, the maximum number of 
characters that can be printed in this field is 44. The length of the last field must 
be determined next. This field is 1.8 inches, so divide 1.8 by 0.1. The field can be 
a maximum of 18 characters. 

Next, you must determine how many spaces to skip between lines of print. You 
know from the marks that there is 0.5 inches between lines II. If a line is printed 
every 0.17 inches (6 lines per inch) and there is 0.5 inch between the lines you 
want printed, then you should skip 3 lines after printing a line (0.5 divided by 
0.17) . 

Formatted Printing for Application Programs 157 



158 

You have enough information to begin writing the program that prints the data 
from a diskette data set onto this form in the locations you specify. The 
sample in Figure 14-4 illustrates this program. 

00001Z*************************************************************** 
00002Z* PROGRAM 73. FIGURE 14-4 IN THE DE/RPG USER'S GUIDE * 
00003Z*************************************************************** 
000047 I PRNTJOB 
00000 Q1START 
00006A F 
00007A R 
00008A 
00009 
00010A 
00011A 

1E 
BILMAST 
BILLING 
ID 

CUSNA 
DATE 
DESC rr.I 

.. ASSOCII1I 
-F PRINOUT 
IJR FIRSTA 

164 

6 

90 
6 

44 
18 

132 

o 

EOJ 
DEVICE (DISK DO 

~ DEVICE(f'RINTER PU FORM(42) 
_ SKIPB(12) 

00012A 
00013A 
00014A 
00015A 
00016A 
00017A 
00018A 
00019A 
00020A 

DATE II 
DiJDESC 
R FIRST 

DATE 
DESC 

6 
44 

1-=-
, 1113--

SPACEB ( U 

00021A 
00022A 
00023A 
00024A 
00025C 
00026C 
00027C 
00028C 

R SECOND 
ASSOC 

R NEXT 
CllSNA 

START 

NEXT ON 

6 
44 

90 
BEGSR 

fJ READ BILLING 
TAG 

001 
13 

SPACEA(2)1II 
058 

SKIPB (40) SKIPA (Uri 
1 rJJ 

05 

00029C NOW 
00030C 

II WRITEFIRSTA 
TAG 
Z-ADDID 16TEMP 60 

00031C 
00032C 
00033C 
00034C 
00035C 
00036C 
00037C 
00038C 
00039C 
00040C 
00041 
00042 

01 

N05 

ID 

WRITESECOND 
ntREAD BILLINGIm 
III COMP TEMP 

WRITEFIRST 
GOTO NOW 

~READf'BILLING 
~WRITENEXT 

READ BILLING 
GOTO NEXTON 

f!JENDSR 

Figure 14 .... A Sample Program that Prints a Form 

05 
1m01 

05 

05 



• 

The program begins with an exit to a subroutine II. The subroutine is reading a 
record II from the diskette data set. The subroutine then tells the IBM 5280 to 
print the record named F I RSTA II. The contents of this record are described on 
the A-specification II. Notice that a file description for the printer precedes the 
record description II. This file description contains an operation that tells the 
IBM 5280 the length of the form II. You had determined this length by multiply­
ing the form length in inches times the number of lines per inch that could be 
printed. Next, the first record that is printed is described. The record description 
contains the operation that skips the first 12 lines of the form II to properly posi­
tion the printing at the first vertical print position. 

The field descriptions determine what is printed on the line. The first field is 
printing the date II from the data set in print positions 1 through 611. The 
second II is inserting the contents of the description in the data set into print 
positions 13 through 57 II . 

When this record is completed, the subroutine adds a field in the record to 
zero and places it in a newly created field lB. This new field will be used later 
in the program to determine if the next record that is read is for the same 
customer and, therefore, if it should be printed on the same form. The 
SECOND record is written. 

The SPACEA(2) II operation in the record advances the printer 2 lines when 
this record is completed. That locates the next print line in the proper location 
for the next record. The field currently being printed is 18 characters long II. 
The field is taken from the diskette data set II. At the completion of this 
record, the subroutine reads the next record m. The subroutine compares the 
identification number in the record to the identification number of the previous 
record II. If these numbers match, an indicator II is set. This indicator 
conditions an operation II that directs the subroutine back to the set of 
operations that printed the first line. In this way, multiple lines of printing are 
performed for a customer who has more than one transaction. If the indicator 
is off (there are no other transactions), the subroutine prints the customer's 
name at the bottom of the form fl. The SKIPB(40) II places the print 
position at line 40. The SKIPA(l) fB advances the print position past the end 
of the form and forces a new page. The next record (for a new customer) is 
read and printed. When all records have been read from the data set 
(indicator 05 is on), the subroutine ends fl. 

The sample in Figure 14-5 illustrates the result of using this program. 

Formatted Printing for Application Programs 159 



Date of Service 

061781 

063081 

Type of Service 

WILL $150.00 

RAYMOND B. ATHERTON LAW FIRM 

Bismarck, North Dakota 

ADOPTION PAPERS $55.00 

SILAS MERINA, APT 88, RIDEPORT ROAD, BISMARCK, N~DA 

Associate Who Helped You 

JUSTIN R. GROSSHAN 

JUSTIN R. GROSSHAN 

Figure 14-6 (Part 1 of 2). An Example of the Printed Form Resulting from Using the Program in Figure 14-4 

160 



• 

• 

Date of Service 

06038i 

Type of Service 

RAYMOND B. ATHERTON LAW FIRM 

Bismarck, North Dakota 

LIEN SETTLEMENT $83.95 

MARJORIE DAVIS, 1615 DARTMOUTH AVE., BISMARCK, N.D. 

Associate Who Helped You 

MARVIN P. MAYNARD 

Figure 14-5 (Part 2 of 2). An Example ofthe Printed Form Resulting from Using the Program in Figure 14-4 

Formatted Printing for Application Programs 161 



162 

DESIGNING A PRINT DATA SET THAT DESIGNS THE FORM TO BE USED 

Before you can begin writing the program that creates the form, you must 
design the form on paper. Part of this design involves the appearance of the 
form, and the other part involves the measurements to be used in describing 
the form in the program. 

The sample in Figure 14-6 illustrates the form design that is used in this topic. 

The programmer has decided to use 8.5- by 11-inch continuous forms rather than 
having special forms made. This means that each form is 11 inches long (66 lines 
long-11 inches by 6 lines per inch). 

The form begins 2 inches from the top perforations II. The programmer wants 
the headings centered, so he must first calculate how many characters there are in 
each heading. JERRY'S SALVAGE YARD contains 20 characters. Because each 
character occupies 0.1 inch, 2 inches are required for this heading. There are 8.5 
inches across the page. The center of the page is 4.2 inches II from each margin. 
If the heading is 1 inch on either side of this center line, the heading is centered. 
Mark the heading to begin 3.2 inches II from the left margin. 

Leave a space between this first heading and the address to make both more 
readable. The second heading has 14 characters (1.4 inches). This means that 0.7 
inches should be on either side of the center mark to center the heading. Mark the 
heading to begin 3.4 inches II from the left margin. 

The third heading is 15 characters. Mark the heading to begin in the same position 
as the second heading •. 

The heading is complete. Next space down 3 lines (which is 0.5 inches). Begin the 
customer address 1 inch (10 characters) from the left margin II. Leave enough 
space for the entire customer address as shown in the illustration II. 

Start the column headings for the bill. Beginning at the left margin, indent 1 inch 
and write Date II. The heading Date should occupy 0.5 inches. You know that 
the dates require 0.6 inches (6 digits at 0.1 inch each), so leave about 4 characters 
(0.4 inches) space after the heading. This space provides separation between this 
field and the next field. Write the heading Parts •. Include enough space after 
this heading so the associated field has enough space to provide a description of the 
parts that are being billed. Four inches following the heading Parts should be 
sufficient II. 

Write the heading for the last column (Cost) III. In this sample, the maximum cost 
of a part sold by this company is 5 digits long (2 decimal positions). Therefore, the 
maximum width the field requires is 0.6 inches (1 character for the decimal point). 
Make the column width 1 inch to provide margin space. 



, 

Next, you need to provide a line beneath the column headings to separate the 
headings from the entries. This line should begin 1 inch from the left margin 
and should be 6.5 inches long. 

Finally, you should have an area that gives the accumulated balance of the bill. 
Leave 4 inches for individual entries II. At the bottom of the form, skip three 
lines after the last entry. Now go to the right 6 inches and write the heading Balance 
in the lower right corner of the bill. Leave enough space for a 9-character field. 

You now have enough information to begin writing the program that will print 
this form. 

Formatted Printing for Application Programs 163 



Sample 14-6 

;t INCH ES 0 

II 
I t/-. 2.. J:NCH~5 fI 

:rERR1's SALVAG-E y/tRf) 
~========33~.2~~~========~1 II 
-========S==P=~C~E~~~~L=I.=~==e=S======~~INMAKER RoAD 
J- 3.'1-" I 
________ ~~~P~~~CE~·~~ __ L_~ __ c._S ______ ~II_LEWISTON) PENN 

S SPACES ) 
~ INCHES (30 clHle. _____ TO : ____ --=~:....._ _________ _ 

1. I.AlCH II II 

.Q SfltUS DATE II 'A~TS _______ Im_'_4...:.....:.~_N_C_H_E_5 _____ mC.OST __ _ 

3 SPAces 
IilSALltNCE: __ _ 

Figure 14-6. The Design for the Form to Be Created by the Program In Figure 14.7 

164 



'. 

() () () () ~i. 
() () () Cj ::.~ 
()()()O~~ 
00004 
() () 0 () ~:) 
00006 
00007 
<Joooa 
oooo':? 
000:1.0 
OOOii 
999~· ~~ 
',,J',}',) 1 " 
00014 
() () () :t :5: 
()()() i c) 

8881;[; 
()OOi '/ () () () :~~ c) 
0002:i. () I;~ () ;~ ::.~ 
(h,O.:.3 
()()024 
00024 
00026 
00029 
()() ():3 () 
O()O:?; i 
() () () ::) ~~~ 
OO(L33 
00034 
000:3:) 
<)0036 
000:.37 
() () ():"3 E~ 
00039 
O()040 
0004i 
00042 
00043 
00044 

The sample in Figure 14-7 illustrates the program that creates this form. An 
illustration is included to show you a printed copy of the form. To include 
entries on the form as it is created, simply use the principles you learned in the 
first part of this chapter. 

l**************************************************************** Z* PROBRAM 74. FIGURE 14-7 IN THE DE/RPG USER'S GUIDE * 
Z**************************************************************** 
Z"j PF;:TEX 
~:.: P:i. FORh 
t1 
j~1 
j:~1 

(I 
(:'1 
Jo. 
1"1 
I:~ 
j~i 
(.~ 
I~'I 
{1 
j::1 

I~~I 

I:', 
(.~ 
f~" 
I:~ 
f;1 
(.~ 
t, 
{1 
1~1 
(I 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

f( f:~DDHEAD 

F c: I THEtlD 

R CUSNt1HED 

F;: CUSI~1DHD 

F~ CUSCITHD 

F:; ENTf~Yi-ID 

H LINE 

FOHi"i 
NEXT 

BEGSf:: 
TI:iG 
WF, I TENAMEHEr-1D 
WF:: I TEf~DDH[t1D 
WF< I TEC I THEf'"D 
WI:;: I TECLJSNAHED 
WR I TECUSr~lDHD 
vJF:: I TECLJSC I THD 
WRITEENTRYHD 
WF;: I TEL. I NE 
WRITEL.INEND 
WF;: I TEB(.lL. 
GOTD NEXT 
ENDSF\ 

Eeu 
DEVICE(PRINTER P1) FORM(66) 

SKIPBCi2) SPACEA(2) 
033'JERRY' 'S SAL.VAGE YARD 1 

SPACE;:':, (2) 
035'RAINMAKER ROAD' 

SPt,CEr~ (:3) 
035'LEWISTON, PENN' 

;:;P(.~CEf~l ( :i. ) 
OttITO:' 

SFf;CEr::i ( :i. ) 
OU.' , 

SPACEf~l (2 ) 
011' , 

SPr:'iCEt, ( :i. ) 
OU. 'DATE' 
020' F'f.1RT,s' , 
06~) , COST! 
011' ______________________________ T ___ + 

Figure 14-7. A Sample Program that Creates a Form 

Formatted Printing for Application Programs 165 



166 

TO: 

DATE PARTS 

JERRY'S SALVAGE YARD 

RAINMAKER ROAD 

LEWISTON, PENN 

COST 

BALANCE: 

Figure 14-8. The Form that Is Created When the Program in Figure 14-6 Is Used 



• 

• 

Part 7. Using Calculations 

This section provides information about various ways to perform calculations 
using DE/RPG. 

The types of calculations that are available on the A~pecification: 

• IN SERT(constantoperatorconstant) 

• INSERT(constantoperatornamed field) 

• INSERT(named fieldoperatornamed field) 

• ADD(-TOTn or named field) 

• TADD(-TOTn or named field) 

• TSUB(-TOTn or named field) 

• SUB(-TOTn or named field) 

operator can be + (addition), - (subtraction), - (multiplication) or / (division) 

-TOTn stands for counters 1 through 9 

The topics presented in this part are: 

• Considerations about using calculations 

• Using named fields in calculations 

• Using counters in calculations 

• Keeping online totals using the A~pecification 

Using Calculations 167 



168 

USING NAMED FIELDS IN CALCULATIONS 

The sample in Figure 15-1 illustrates a simple data-entry program that uses 
calculations. If named fields are used in a calculation, they must have been 
created as numeric fields; that is, they must have had a decimal position entry 

• when they were created. Numeric fields are a maximum of 15 positions 
long. 

00001l********************* •• ********************************************* 
000027* PROGRAM 75. FIGURE 15-1 IN THE DE/RPG USER'S GUIDE * 
00003l************************************************ ******************** 
00004lJ INDICEX TFILE(PUTOUT) 
00005Z G1SHOW 1E 
000067 R 
00007A F EXMW 
00008A R SHOW 
00009A QUANT 
00010A COST 
OOOilA PAY 
00012A F PUTOUT 

13 D 
3 
4 
6 

13 

OI 
21 
21 

G J. 
DEVICECCRT) DSPSIZC6 80) 

PMTCENTER THE QUANTITY) 
PMTCENTER THE COST) 
INSERT(QUANT*COST) 
DEVIC[(DISI'; D1) 

Figure 15·1. A Sample Program Showing the Use of Named Fields in Calculations 



• 

If a field is not named, it cannot be referred to. If a field is not created as a numeric 
field, it cannot be used in the calculation. A field with no decimal position entry is 
considered a character field. Character data cannot be used in a calculation. 

When you include an arithmetic expression in an insert operation, be aware 
that DE/RPG does not include embedded parentheses to denote that an 
expression should be handled as a unit; all expressions are evaluated from left 
to right with multiplication and division being performed first and then 
subtraction and addition being performed. For example, the expression 
INSERT(1+3*14) results in 43 (1+42) rather than 56 (4*14). 

When you use constants in a calculation for an insert operation, decimal 
positions are permitted. For example, 

INSERT(.15*PAY) 

could be used to determine 15 % of the field named PAY. 

The lengths of the source field and the receiving field must be considered. For 
example, if you are adding two fields, each with a length of 5, the receiving 
field should have at least a length of 6. See the sample in Figure 15-2. 

00001Z******************************************************************** 
00002Z* PROGRAM 76. FIGURE 15-2 IN THE DE/RPG USER'S GUIDE * 
00003Z******************************************************************** 
00004ZJ CALCEXM TFILE(KEEP) 
00005Z G2FIGURE iE 
00006Z R 
00007A F OISP 
00008A 0 FIGURE 
OOOO<'";'A 0 COST i 
00010A fJ C~:OSL) 
00011A PAY 
00012A F KEEP 

::) I 
21 
21 

G2 
DEVICE(CRT) DSPSIZ(6 80) 

PMTCENTER THE PRICE OF ITEMl) 
PMTCENTER THE PRICE OF ITEM2) 
INSERT(COSTi+COST2) 
DEVICEJOISK 01) 

Figure 15-2. A Sample Program Showing the Effect of the Length for Fields Involved in a Calculation 

If the receiving field has a length less than the source fields, significant digits 
can be lost from the calculation. 

If, COST1.equals 500.00, COST2Bequais 600.00 and PAY. has a length of 
5 .with two decimal positions, PAY will be 100.00 rather than the 1100.00 it 
should be. 

Using Calculations 169 



170 

USING COUNTERS IN CALCULATIONS 

The counters (-TOT1 through -TOT9) are 15 positions wide. All entry of data 
into a counter is accomplished by the ADD, TADD, TSUB, or SUB operations 
on arithmetic calculation operations. All entry of data in a counter is 
right-aligned. 

Transfer of data from a counter is accomplished with the insert operation. The 
insertion of data from a counter into a receiving field is right-aligned. See the 
sample in Figure 15-3. 

000017******************************************************************** 
000027* PROGRAM 77. FIGURE 15-3 IN THE DE/RPG USER'S GUIDE ~ 

00003Z***************************************.*****************-********** 
000047J COUNTEX TFILECDISKET) 
000057 H2EXMPLE iE 
000067 R 
00007A F CALCL 
OOOOBA R EXMPLE 
00009A NAME 
00009~1 
OOOtOA 
0001 b; 
OOOt2A 
00013A 
OOOt4A 

PFUCE 

LOOI"': 
ot'{.lY 

r 1)ISI"':ET 

ciO 

6 
6 

H2 
DEVICECCRT) DSPSIZ(6 80) 

01 D PtH(ENTEH THE FH:ST PF:ICE) 
1) 

21 

21 
21 

PMT(ENTER THE SECOND PRICE) 
II ADD (*TOT2) ... 

1 NSEFa C * TOT i) IiiI 
INSEI;:T(*TOT2) II 
DEVICECDISI\ D1.) 

Figure 15-3. A Sample Program Showing the Use of Counters 

If you assume that the entries are both 004488 D then the contents of 
-TOT1 is 0000000000004488 • and the contents of -TOT2 • is 
000000000000004. 

When -TOT1 is inserted into the field. the field contains 4488.00. When 
-TOT2 is inserted into the field. the field contains 0044.00. 

The counters use two functions that provide decimal alignment (ADD and SUB) 
and two that do not provide decimal alignment (TADD and TSUB). 

(.IDDC·)(·TDT+ 



t 

Consider an example contrasting the ADD and T ADD functions. The sample in 
Figure 15-4 illustrates the differences. 

00001Z******************************************************************** 
00002l* PROGRAM 78. FIGURE 15-4 IN THE DE/RPG USER'S GUIDE * 
00003Z******************************************************************** 
00004ZJ DECOUNT TFILECWRITE) 
00005Z I1DUMMY 1E 
00006Z R 
00007A F XAMP 
00008A R DUMMY 0 
00009A QUANT 
00010A DPRICE 
00011A TOTAL II 
00012A 

5 

OOOt3A 
00014A 
OOOj5A F WRITE 

01 
2I 
2I 

21 
21 

11 
DEVICECCRT) DSPSIZ(6 80) 

PMTCENTER THE QUANTITY) 
PMT(ENTER THE PRICE) 
INSERTCPRICE*QUANT) ADD(*TOT1)1I 

.:IITADD<*TOT2) 
-INSERT(*TOT1) 

INSERT(*TOT2) 
DEVICE(J)ISK 1)1) 

Figure 15~. A Sample Program Showing the Difference between the ADD and TADD Operations 

If QUANT. equals 2 and PRICE II equals 2.44, the product of mult1ptying 
QUANT and PRICE is 4.88. TOTAL. contains 0044.88. -TOT1 • contains 
000000000000000. -TOT211 contains 0000000000000488. 

The fields in which -TOT1 and -TOT2 are inserted respectively are: 

OOOOOOOOOOOOOO4 and ()()()()()()()(800. 

If you intend to use the counters in online totals, be carefut of the way you use 
decimal positions. 

Two more consideration are important in using counters for online totals: (1) 
resetting the counters and (2) controlling the counters as data is loaded into 
them. 

Using Calculations 171 



172 

The sample in Figure 15-5 illustrates a program that has three types of records 
in the data set: header. detail. and trailer II There is always one" 
header record, multiple. detail records (this number varies), and one II 
trailer record. The counter is being used to keep an online total of the number 
of purchases made on the detail records for a single customer. 

OOOOiZ.****.*.*.* •• ****.************************************************** 
00002Z* PROGRAM 79. FIGURE i5-5 IN THE DE/RPG USER'S GUIDE * 
00003Z********.*.**********.********************************************** 
00004ZJ F\:ESEXMP II TFILE(BILLEX) 
00005Z KiHEADER iE' K2 
O)'\OO'~ to'")E)ET"IL "'NE- K03 
~;~~~~;~ ~~T~;Ai'L.FiR.:II joOE II K1 
00008A F INPUT 75 DEVICE(CRT) DSPSIZ(6 80) 
OOO(YM D F;: HEADER 
00010A CUSNA 30 I PMT(CUSTOMER NAME) 
aOOliA ADDR 30 I PMTCADDRESS) 
00012A COUNT 15 2W 
000i3A fJ R DETAIL. 
OOOi4f.l ITEM::' 6 I PMT(ENTER THE ITEM:::! 
()0015A NUMSLD 3 01 F'MTCQUANTITY SOLD) 
000161~1 PERF'RI 4 21 F'MT(PRICE PER ITEM) 
000j07A TOTAL 6 2I INSERT(NUMSL.D*PERPRI) 
0OO18A 

DR 
IIADD (COUNT) 

00019A TF:AILER 
INSERT(COUNT)II 0OO20A 9 21 

00021A II RESET ( COUNT) 
0OO22f., r- BILLEX 75 DEVICE(DISK D1) 

Figure 15-6. A Sample Program Showing the U .. of a Named Field a. an Online Counter 

The sample in Figure 15-5 illustrates how this online total is being kept by 
adding the results from each detail record into the counter. at the 
completion of the record. At the completion of all detail records for a single 
customer, the contents of the counter is inserted. into the trailer record. The 
counter is then reset. so that it does not carry a balance from one customer 
to another. 



• 

Part 8. Chaining From Job to Job 

This chapter describes how to use the EOJ keyword on the Z-specification to chain 
DE/RPG jobs. Chaining links one DE/RPG job to the next job. The next job in 
the chain can be another DE/RPG job or any other program. 

USING EOJ ON THE Z-SPECIFICATION 

The name parameter in the EOJ keyword provides the name of the object 
program data set (as it appears on the diskette) that you want to go to upon 
completion of the current program. The name parameter can be either a 
constant name or a variable name. 

A constant name cannot be changed by an entry from the keyboard. The name is 
coded on the Z-specification enclosed in apostrophes. For example, if you always 
follow a payroll program with the check-writing program, you name the check­
writing program in the EOJ keyword parameter within apostrophes. 

A variable (dummy) name is one that is set by the program to select the next 
program to be loaded. The variable name is not enclosed in apostrophes. 

This chapter illustrates both techniques that can be used to chain programs. 
A DE/RPG program that loads a utility program illustrates the use of a 
constant name. Another program illustrates how you can use a menu to allow 
the operator to select the next program. 

Chaining from Job to Job 173 



174 

00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00010 
00011 
00012 
00013 
00014 
00016 
00017 
00018 
00019 
00020 
00022 
00023 
00024 
00025 

USING A CONSTANT NAME TO SELECT THE NEXT PROGRAM 

The sample program in Figure 16-1 shows the constant name SYSPRINT" 
on the EOJ keyword. SYSPRINT is loaded when the current program is 
completed. Everytime the current program is run, SYSPRINT is the next 
program run. 

Z**************************************************************** 
Z* PROG~AM 80. FIGURE 16-1 IN THE DE/RPG USER'S GUIDE * 
z*****~********************************************************** 
ZJ LOKEXM n 
Z X1SUB 1E ~J('SYSPRINT' X'4800') 
A F INPUT 6 DEVICE(CRT) DSPSIZ(6 80) 
A R CHECK 

INSERT(A) A 
A 
A 
A 
A 
A 
A 
A 
A 
C 
C 
C 

F PREP 
R ONE 

FLD1 

5 
1 

10 

01 
I PMT(PRESS EOJ TO SKIP SYSPRINT) 

DEVICE(DISK DU 

FLD2 
FLD3 

5 
3 
2 

o 

F RANTAB 
T EXTAB 

SUB 

5 
5 

DEVICE(DISK D1) NUMENT(3) 

C N99 
C 01 
C 

FLD1 

CONSTANT 
'SYSPRINT' 

o 
BEGSR 
READ ONE 
Z-ADD1 
LOKUPEXTAB,A 
EXFMTCHECK 
ENDSR 

* AD DR 
* 02FO 
* 02F8 
* 0312 

'PRESS EOJ TO SKIP SYSPRINT' 

* 
* ADDR 
* 0313 
* 0318 
* 031B 
* 031D 

* 

1 

NAME 
FLD1 
FLD2 
FLD3 
A 

* OBJECT PROGRAM MAP 
*ROUTINE ENTRY POINTS 
*EP RTN DESCRIPTION 
*05CC RG99 - End of job processor 
*063C RG80 - Verify mode error display 
*0700 RG86 - Physical buffer allocation 

A 

*07CC RG01 - Keyboard externaL status routine 
*OA1C RG03 - KB/CRT 110 management routine 
*0BC4 RG30 - Diskette externaL status routine 
*0D28 RG32 - Diskette 1/0 management routine 
*1110 RG51 - 1/0 driver - full function 

* *1744 
*18FC 
it 7,936 

Z-spec driver entry point 
Program entry point 
Is the program Length. 

99 
50 

01 

Figure 16-1. A Sample Program Showing the Use of a Constant Program Name 



• 

• 

USING A VARIABLE NAME TO SELECT THE NEXT PROGRAM 

The sample program in Figure 16-2 shows how to chain one program to 
another by using the variable name parameter in the EOJ keyword. 

The variable name PROG .. is coded in the name parameter of the EOJ 
keyword and loads the next program when the format OPT II is executed. 
The operator is prompted for the program name of the program to run next B. 

The prompt that appears on the display screen for this sample program looks 
like this: 

o 0(-)01 A 08 40 j . 

SELECT YOUR PROGRAM NAME: I I I I I I I I I 

l J 
00001 
00002 
00003 
00004 
(-)0005 
00006 
00007 
00009 
00010 
00011 

Z**************************************************************** 
z* PROGRAM 81. FIGURE 16-2 IN THE DE/RPG USER'S GUIDE * 
Z**************************************************************** 
ZJ SHOWEDJ 0 
Z 1 OPT 1E EOJePROG X'4000') 
Z fJ WRITE(*NO) 
A F DSPLY 480 DEVICE(CRT) 
A R OPT 
A PROG 8 
A 

* ADDR CONSTANT 
* 02F0 'SELECT YOUR PROGRAM NAME: ' 

* * ADDR NAME 
* 0309 PROG 

* * OBJECT PROGRAM MAP 
*ROUTINE ENTRY POINTS 
*EP RTN DESCRIPTION 
*0AFC RG99 - End of job processor 

I 2 

*0B6C RG86 - Physical buffer allocation 

II 
2PMT(SELECT YOUR PROGRAM NAME:) 

CHECK(DR) DSPATR(CS) 

*0C38 RG01 - Keyboard external status routine 
*0E88 RG03 - KB/CRT I/O management routine 
*1030 RG50 - I/O driver routine 

* *12F4 
*14CC 
* 6,400 

Z-spec driver entry point 
Program entry point 
Is the program length. 

Figure 16-2. A Sample Program Showing the Use of a Variable Program Name 

Chaining from Job to Job 175 



176 



• 

f' 

• 

access methods: A technique for moving data between 
main storage and I/O devices. 

attribute: A characteristic. For example, attributes of a 
displayed field could include high intensity, reverse 
image, and column separators. 

background program: An application program that can be 
executed in a background partition. 

complex reformatting: The changing of the 
arrangement of data from its entry sequence to its 
diskette format. This might include the omission of 
fields or the merging of fields from multiple record 
formats. 

counters: A register or storage location used to 
accumulate a user-defined numeric value identified by 
*TOTn. 

data-entry program: A DE/RPG program that is used 
primarily for putting volumes of data on diskette. 
Normally it makes use of the edit and check functions 
provided by DE/RPG. 

data set: An organized collection of related data 
records treated as a unit and existing on diskette. 

End of Job key: For the data entry keyboard, the Cmd 
numeric shift Dup key sequence that an operator uses 
to terminate a job. For the typewriter keyboard, the 
CMD, 7 key sequence that an operator uses to 
terminate a job. 

format: A specific arrangement of information in a 
record or on a display screen. 

formatted printing: A print operation in which each 
field is specified by the program. 

indexed data set/file: A data set in which the position 
of each record is recorded in a separate file called an 
index. The index contains an index key and disk 
address for each record in the file. 

indexes: A field that is used with a table function to 
contain the table position at which a match occurs. 

Glossary 

indicator: A switch identified by two digits, which are 
either OFF or ON and that can be used to condition 
actions on the A- and C-specifications. 

interactive application program: A DE/RPG program 
that is used primarily for processing data. This type of 
program requires some data input from the operator in 
order to perform the processing. Some edit and check 
functions may be used . 

I/O (input/output): Components that receive or return 
data, such as the keyboard, display, printer, magnetic 
stripe reader, and diskette. 

keys: One or more characters included in a data record 
that are used to identify or control the use of that data. 

keyword: For the A- and Z-specifications the control 
characters that define the action to be taken, such as 
CHECK, or specify characteristics of the program, such 
as TFILE. 

logical device: A two-character identifier that can be 
used to specify the device to be used, for example D1. 

mode: The operational category of a data station, such 
as enter, verify, update, rerun, and execute. 

non interactive application program: A DE/RPG 
program that is used primarily for processing data. This 
type of program requires little if any operator interaction. 

operation: For the C-specifications the control characters 
that define the action to be taken, such as EXFMT for 
execute the format named in factor 2. 

partition: An area of the IBM 5280 storage in which 
programs can execute. 

physical device: A four-character address for the device, 
such as 4000 for a disk or 8000 for a printer. 

status line: For the IBM 5280, the first line on a display 
screen. This line provides operational information. 

Glossary 177 



subroutine: A group of instructions that always returns 
the control to the calling routine. Subroutines occur on 
C-specifications and always begin with a BEGSR and end 
with an ENDSR operation. 

unformatted printing: A print operation that is initiated 
by the Print key. 

178 



:.­
~ 
Q) 

::l 
Q. 

() 

en 
"C 
C1l 
n 
~ o· 
~ 
o· 
~ 
." 
o 

~ 
-...J 
to 

II' 

===.~ 

!lJm International Business Machines Corporation 
:t 

IBM 5280 DATA DESCRIPTION SPECIFICATIONS 
GX21-9362-2 

Printed in U.S.A. 

Job No. 

Operator 

Sequence 

~ 
o 
a:: 
a:: 
w 
o 
> m 
>­
~ 
~ 
u 
w 
:::c 

1

- c: 
<II ~ .E 
a.... -

c:"C ... 
II- <II <II 0 

E E ~ 111 
... E ~ .~ 

1
0 0 <II "C 

U. U a:: c: 

lolllA 

1012lA 

L 0 13lA 

10141A 

[0151A 

,0161A 

Reserved 

Dataset 

Date 

E 
~ 

~ 
U. 

<II 

I 

~ "C 
I- Q) 

Q) ~ 
E ~ 
ItI Q) 
za:: 

Dataset/R ecordl 
FieldITable Name, 

Keying 

Instruction 

"C 
<II 
> 
~ 
Q) 

a:: 

Length 

Graphic 1 
Key 1 

Location 

Line I Pos 

I Sou",. Document 1 Page o' 

ing 

Checks=CHECK (code .. .) Functions 

Auto Dup 

Auto Skip 
BI.nk Check 
Bypass 

Bypass on Verify 
Data Required 
DupDisable 
Field EXit Required 
Lower Case 

-AD Mand.ltory Entry 
-AS Mand.tory Fill 
-BC Rt Adj-Blank Fill 
-BY Right to Left 

-ME 
-MF 
-RB 
-RL 

'ADD (name) 
'AUXDUP (name) 
, AUXST (n.me) 
'COMP ('test fld ,J •... fldn 

-BV ,Rt Adj-Zoro Fill -RZ 'Iitora!' (indicator) ) 
DSPATR ( attr ... ) 

'EDTCDE (code 'floal') 
,ERROR (code ('","sage')) 

E XSR (subroul,ne) 

-DR 
-DO 
-FE 
-LC 

Self·Check 
D-M/G (Check/Gen) 

xx=Modulus 

'INSERT (fld ,J •... fldn 'Iileral') 
LOOK (table (index)) 

1 not valid for COBOL programs 
'Iesl-EO.GE,GT,LE,L T,NE 
J il_+ -" / 

'altr~BL,CA,CS,HI,ND,RI,UL 
'shift-A,D,H,N,V,W,X,Y 

PMT (prompl) 
'RANGE (low high) 
'RANGET hable (index)) 
'RESET (l'TOTn) )namo)) 
'SE~ ('Iesl) 
'SETOF (ind) 
'SETON lind) 
SHIFT ('shift) 

'SUB (name) 
'SUBST (table 'Iable 2 (index)) 
'TADD (J"TOTn) )namo)) 
:TSUB (("TOTn) ) name) ) 

XCHK hable mdex , Index 2) 
'literal' 

454647 48 4950 51 52 53 5455 56 57 58 596061 626364 65 6667 68 69 70 71 72 7374 75 76 77 78 79 80 

> 
\J 
\J 
CD 
::::I 
C. 
X' 
?> 

f··11111111 ~ 
.~lzlA 

0181A 

10191A 

110lA 

111~ 

,1(2IA 

111 3 l6. 

" 141A 

1'15~ 

IA 
IA 

IA 

IA 

IA 

1 2 3 4 5 6. 7 8 9 10111213141516171819202122232425262728293031323334 35 :16'37 38394041,424314445464748495051525354 55 56 57 58 5960 616263646566 67 68 69707172 73747576 n 787980 

* Number of sheets per pad may vary slightly 

UM/050 

N 
I .. 

Q) 

::::I 
C. 

n 
I 

(I) 
\J 
CD 
n 
::;; 
(:;' 
Q) .... 
0' 
::::I 

"T1 
0 ... 
3 
en 



OJ 
0 

I'll III1I1 II II II I , 'III 11'1 I I '1111 III I I11I1111 111111I1111 I 111I1111 1111 I 1 1 '1 I' '1'11 1 I I II I II I111 I I I " , , II , 1I11 III I 
1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 101-110 

15 

6 

9-10 

11-16 

17 

18 

19-26 

27-29 

30-34 

35 

36 

37 

38 

39-44 

45·80 

Identifies the source statement order. 

Identifies the type of source stateme'nt. 

An " indicates a user comment. 

Reserved. 

Specifies the indicator that is used to control field 

bypassing or displaying user error co-des. 

Reserved. 

Defines the type of statement: F = data set, R = 
record, K= key field, T = table, blanl< = field. 

Reserved. 

Specifies the name for: data 5,et (max 8 charactersl, 

record (max 8 charactersl, field (max 6 characters) 

or table (max 6 characters). 

Reserved. 

Specifies the length: 

data set = maximum record length i!; required. 

record = number of characters (1-81921 
field = number of characters (1 ·256 for alphameric 
or 1-15 for numeric). 

Defines the data type for the 'field: 

A = alpha S = signed numeric 
B = binary V " right half only 
C = use SHIFT keyword W ; right half shift 
o = digits only X " alpha only 

H = hexadecimal Y " numeric only 
N = numeric b = alpha or numeric 
P = packed depending on the 

field type. 

Reserved. 

SpeCifies the number of decimal po'sitions (0-9). 

Specifies how the data in a field on the display 

screen is processed. I = input, 0 = output, B = both, 
W = workspace. 

Specifies th, location of the field within a record or 

on the display screen. 

Specifies parameters for data sets, files, records, 
tables, and fields 

U"f" .'i/'(,\ ,}IIII !,ir',\ (f III (U/UI/III 11) 

BLKING II"DBL] ['FMTU or <FMTSI )--specifies 
blocking characteristics for data sets: 

"DBL specifies to use two physical buffers 
• FMTU specifies that the records are 

unblocked (BaSIC or H data e:~chanl~e) 
< FMTS specifies that the records are blocked 

and spanned 11 data exchange) 
DEVICE (dev·type address)-physical deVice type for 

the data set: 
dev-type IS COMM or COMM 3270 Icom· 

municatlons), CRT Ikeyboard/display), DISK 
Idiskette), MREAD (magnehc stripe reader), 
PRINTER (printer!. 

address is the 2-character logical 10 or the 
4-character device address IX'xxxx where 
x x x X IS the physical address!' 

DSPSIZ (lines 80)-specifies display size: lines = 6, 
12, or 24. 

FORM (length [overflow-line overflow-ind] I-Specifies 
the printer page size; length specifies the lines 
available on the page, overflow-line specifies the 
line that sets the overflow indicator on, and 
overflow-ind specifies the indicator that is set on. 

INDEX ([storage] [data set] )-At least one parameter 
must be specified. Specifies the storage reserved 
for the sparse index and the index data set name: 
storage specifies the space required for the index, 
data set specifies the name of the index data set. 

LABEL (name of data set)-diskette data set name. 
LOGON ('message' or namel-Specifies the log on 

information when required for communications. 
The parameter can be either a message enclosed 
in single quotes or a variable name. 

NUMENT (numbed-number of records In a data set 
when used for dynamic allocation of the data set 
or the number of entries in a table. 

RI!coli/s (R "' coiumn 17) 

DSPATR lattr .. .l-Specifles the display attributes that 
apply to all the fields In the record. 

MARK ("POSnnnnl-Specifies the position In a data 
record where an E is place If the Field Mark key 
is pressed. 

VMARK I"POSnnnnl·-Specles the posltoon 111 a data 
record where a V is placed after the record is 
verified. 

RECIO «POSfnn 'c'l-Speclfles the position that 
Identifies t~e Single character record type 'c' 
from a dat.it set With more than one record type 
Innnn IS f'to 18921 

SPACEA Inl -Causes the printer to space n lines after 
the record IS printed. 

SPACEB Inl-Causes the printer to space n lines before 
the record IS printed. 

SKIPA Inl-Causes the printer to skip to lone n after 
the record IS printed. 

SKIPB Inl-Causes the printer to skip to line n before 
the record IS printed. 

Fie"l (Blank in colllllln 17) 

ADD (name)-Adds the data in the current field to the 
named field with decimal alignment. 

AUXDUP (name)-Duplicates data from the named 

field if the Dup key is pressed or the Auto 
Dup/Skip switch is on. 

AUXST (name)-Stores the current field in the named 
field if the Auto/Dup switch is on. 

CHECK (parameted-Specifies the keyboard edits to 
be applied to the field. 

COMP (test fld 1 @ ... fldn 'literal' (indicator] )­

Compares the current field with a named field, the 
specified expression, or a literal and optionally 

turns on an indicator if the compare is true. 
DSPATR (attr ... I-Controls the display attributes for 

each field. 

EDTCDE (code 'float'l-Specifies the editing that IS 

to be applied to data in numeric fields, where' 

• code IS a single character that controls the use 

of editing characters speCified by the EDITC 

keyword. 

• float can be either: 

", which places asterisks in the character 

poSitions to the left of the flllt digit 

C\>, which floats the two-character currency 
symbol used on EDITC. 

ERROR (code ['message'l I-Locks the keyboard, 

displays an error code, and optionally displays an 

error message (when the Help key IS prl!ssedl If 

the speCified Indicator IS turned on. 

EXSR Isubroutlnel-Branches to the namf'd calcula 
tlon subroutine 

INSERT (fld 1 ~il .. .fldn 'Ioteran-Inserts the named 

field, expression or Ioteral Into the curromt field. 

LOOK (table (,ndexl I-Compares the current field 
for a match In a table, and optionally places the 
Index value of the table entry In Index 

PMT (promptl-Dlsplays the prompt mess.Jge when 

the current field IS entered. 
RANGE (low highl-Specifies the low and high limits 

for data that can be entered Into the current field 
RANGET (table(lndexl I-Compares the current field 

for a match In a table of low and high Iomlts, and 
optionally places the Index value of the table entry 
in index. 

RESET (('TOTnl (namel I--Only one par.lmeter IS 

allowed. Sets the named counter to O. 
SEO Itestl -Sequence cheCks the data In the current 

field against the data from the prevIous sequence 
check uSing the speCified test. -

SETOF Iindl- Turns the speCified ,nd,cator off 

SETON (lndl- Turns the specified indicator on 
SHI FT (sh,ftl-Specifies the shift and character set 

for each character In a field when C IS speCIfied 

for data type 
SUB Inamel -Subtracts the data In the current field 

from the named field With deCimal alognment 

SUBST (table 1 table 2 Ilndexll-Compares the 
current field for a match In table 1. If there IS a 
match, replaces the current field With data from 
the corresponding entry In table 2. Optionally 

places the Index value of the table entry In Index. 
TADD I ["TOTnl (namel I-Only one parameter IS 

allowed. Adds the current field to the l1aml!d 

counter. 
TSUB (I"TOTnl (namel I-Only one parameter IS 

allowed. Subtracts the current field from the 

named counter 
XCHK Itable Index 1 Index21-Compares the Indexes 

to see if they match an entry In a named table of 
Index pails. 

Continuation-Specifies to continue on the next lone 
speCifies to continue with the forst nonblank 

character In pOSition 45·80 on the next lone 
(ignore leading blanks) 
speCifies to continue from position 45 on the 
next line (leading blanks are Included). 

1-15 16-30 31-45 46-60 61-75 76-90 91-105 106-120 121-135 136-150 151-165 

I1111111111111111111111111111111111111111111111 111111 , III , I til 1111111'11111111111111 t I , 11,11'1"" , 1111111'11'111'11'1111'11'1'1111"'111 1 , 111111111111111111111111111 



J> 
.~ 
Ql 
::J 
C. 

(") 

en 
'C 
C1) 
n 
:j; 

g' 
o· 
~ 

" o 

~ 

~ 

IBM 
Job 

Operator 

Intern.tion.1 BUlin .. MKhines Corporlltion 

a; 
N 
o 
<{ 

~ 

I Date 

Job/Format/ 
Subroutine Name 

011121314151617 

~ • 

IBM 5280 GENERAL UTILITY SPECIFICATIONS GX21·9361·1 
Printed in U. S. A. 

Keying 
Instruction 

Test Conditions 

Position 
to be Tested 
(*POSnnnn) 

Graphic 

Key 

Y 
.E ... ... 
Q) .... 
E 

i 
l 

a; 
N 

Reserved 0 
<( 

a> 
~ 
0 -... 
"' E 
0 

u.. 

Reserved 

lo..cript;on- I Pogo of 

~ 
CF I LE (data setl 
DATE (-DMY/-YMDI 

Options 

Entry Lines 

CLRL (number I 

EOJ (Il'job' de_J (-PASSJ IJ 

EDITC (cuptdl SLNO (linel 
ENTRATR ('attr ... 1 WRITE (namel 
EXITATR ('atlr ... 1 
JOBOPT (I -NOPMTJ( .NOQPEN II 
PRTFILE (data setl 

SHARE (names) 

SHARER (namesl 

STATUS (namel 

TFILE (data set ldelfreqJI 

I aUr=BL,CS.HI.ND.RI.UL 

565758 5960 61626364 65 66 6768 6970 717273747576777879 

1 2 3 4 5 6 7 8 9 10 11 12 1314 1516 17 18 1920 21 22232425 26 27 28 2930 31 32 33 34 35 36 37 38 3940 41 424344 45 46 47 48 495051 52 5354 55 56 5758 59 60 61 626364 66 66 67 68 6970 71 72 73 74757677 787980 
*Number of sheets per pad may vary slightly. 



00 
I\J 

I1111 III I I1111111111111111111111 111111111111 1111111111 11111111111111111111111111\111111111111111111111111111II 
1·10 11·20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91·100 101·110 

1-5 Identifies the source statement order. 

6 Identifies the type of source !Itatement. 

7 Names the type of source statement: 
--User comment 
J-Job specification 
blank-Format specification 

8-9 The identification associated with this format: 
1 through 9-A single numeric character 10. 
AO through Z9-A two-character 10 consisting of 
an alphabetic character foil lowed by a numeric 
character. 

10-17 The name used to: 

18-19 

identify the job (J .in Icolumn 7). 

- identify the format or subroutine (blank in column 
7). 

These columns are not used Ilf column 21 contains an 
R. 

Reserved. 

Note: Columns 20-54 are not used if Icolumn 7 contains a J. 

20 Specifies the number of time:s the format is repeated 
before the next format is used: 
1 through 9-Repeat the format for the specified 

number of times unless the SEL FMT or NEXT 
FMT key is pressed. 

blank or N-Repeat the format until the SEl FMT or 
NEXT FMT key is pressed. 

21 Specifies how the format is used: 
E-(Entry) used to enter and display data. 
R-(Review) used to select a format for scan. update. 

or verify of existing records. 

22-37 Used for logical selection of a format. Multiple tests 
are allowed. In enter mode. the format selected is 
used to format the next recOlrd entered. In review 
mode. the format selected is used to display the 
current record. 

22 In review mode (column 21 (:ontains an R). an A 
specifies the anding of two (:haracters in the data 
record to create a unique record identifier. 

23-30 -POSnnnn identifies the poSition in the data record 
to be tested. where nnnn is 13 numeric value from 1 
to 1024. 

31-32 Reserved. 

33-34 The characters EQ or blank when a character to test 
for is specified in position 35-37. 

35-37 Specifies the character that controls format selection 
if it matches the character in the data record. 

38-44 Reserved. 

45-46 Specifies the identification of the format used for the 
entry or display of the next record. If columns 22-37 
are specified. the format is selected when a match 
occurs. If columns 22-37 are not specified in enter 
mode (E in column 21). the format is selected when 
the repeat count (column 21) is met or the NEXT 
FMT key is pressed. If columns 22-37 are not 
specified in review mode (R in column 21). the 
format is selected if no previous match occurs. 

47-54 Reserved. 

55-80 Keywords that specify information used for jobs or 
formats: 
JOB specifications (J in column 7): 
CFILE (data set)-Includes the COpy function in the 

job. The parameter data set is the data set name 
from which records will be copied. 

OATE(-OMY /-YMO)-The format of the date available 
in UOATE. The default is -MOY. where M = 
month. 0 = day. and Y = year. 

EOITC(cuptd)-Five characters that define the editing 
control for output fields. where: 
- cu is a two-character currency symbol (default 

= b$). 
- P is the decimal point character (default = .j. 

t is the thousand separator character (default 
= ,l. 

- d is the date separator character (default = I). 
The system default for this option is b$ . .1 if 

EOITC is not specified. 
ENTRATR (attr ... )-Specifies the attributes that are 

applied to all input/both fields only when the 
fields are being entered. where attr is: 

BL (blink) 
CS (column separators) 
HI (high intensity) 
NO (nondisplay) 
RI (reverse image) 
UL (underline) 

A combination of attributes can also be used. 
EXITATR (attr ... )-Specifies the attributes that are 

applied to all input/both fields after the fields 
have been entered. See the ENTRATR for a 
description of the attr parameter. 

JOBOPT([-NOPMT] [-NOOPEN]l-At least one of the 
parameters must be specified. Where: 
- -NOPMT specifies to bypass the prompts for 

data set information at the beginning of the 
job. 

- -NOOPEN specifies to bypass the automatic 
opening of all files except the transaction file 
specified by the TFILE keyword. 

PRTFILE (data set)-Includes the PRINT function in 
the job. The parameter data set is the data set 
name to be aSSigned to the printer. 

SHARE(names)-Aliows other programs to read or 
write records in the data set specified by the 
names parameter while this program is executing. 

SHARER(names)-Aliows other programs to rBBd 
records in the data set specified by the names 
parameter while this program is executing. 

ST ATUS(name)-Establishes a variable that can be 
used to check the status of an I/O device after an 
I/O operation. The parameter name is the name 
assigned to the variable. 

TFILE(data set [delfreq))-Specifies the data set where 
records will be written after a format is 
completed. where: 
- data set is the name of the data set that 

receives the transaction records. 
- delfreq specifies how often deleted records are 

automatically inserted in the transaction data 
set. 

Format Specifications (blank in column 7): 

CLRL (number)-Specifies the number of display lines 
cleared. starting from the first line of the display. 
when a new record is to be entered. If -NO is 
specified. none of the display lines are cleared. 

EOJ [([' job' dev] [-PASS))}-Causes the end of the 
job upon completion of the format. The optional 
parameters are: 

job-name of the next job job to execute. 
dev-the device address where the next job is 

located. 
-PASS-Suppress job production statistics. 

SLNO (line)-Specifies the uppermost display line that 
can be used. All display line references are based 
on the specified line as line one. 

WRITE (namel-Specifies that the current data is 
written to the data set in the record format 
specified by name. If -NO is specified. the current 
data is not written to the data set. 

Continuation can be specified by a + or - as the last 
character on the line. where: 

+ specifies to continue with the first nonblank 
character in positions 55-80 on the next line 
(ignore leading blanks). 

- specifies to continue from position 55 on the 
next line (including leading blanks). 

11111111-~~1111111111111~i~~ 11111111111311i~~ 11111I1111 ~~i~~ 11111I1111 ~;-17111111111111 ~~tIOIIIIIIIII tl\~~~ 1I11I11111 ;~-~~rIIIIIIII1112111~~i 1111111111t~i~~~ 11111111111151\~~~ III 



J> 
.~ 
Ql 
~ 
Co 
(") 

en 
"0 
CD 
C') 

:::;; 

g' 
0' 
~ 
en 

" o 

~ 
00 
(,J 

.. . 
RPG CALCULATION SPECIFICATIONS 

IBM Intern.tionel Business M.c:hine·Corpor.tlon 

Program 

Programmer 

c 
line 

a) 
~ 

0_ 
~er =0 Oil ...... 

Date 

Indicators 

I I 
And And 

Card Electro Number 

l Result Field 

Factor t Operation 

Name 

3 4 

8. >z 
>~« 
~ (5 er" 
E :: tI) 
... c: " 
~ 85 
6 7 8 1.0 111 ~J 13 1" (1$j '6117~ JU ..... 23" 25 ,. 271,. 29 30 31 32 43 44 <546 47 

11> Ie l I r I I .I I I I I I t .. 1 1 r I fllrt'J I I I I I 10 
Ie 

10 Ie 
Ie 
Ie I· 

'61 Ie I I l 

Ie f 
( .. ,.",. 

Ie , 

Ie ..... 
~:.:, .. 

. , ! II I if '\ 
:.:',. Ie 

',' ii, i •.. :'.':' ',.'.' !;;. ;i.: . .:: :" .. " :.'. 

J I "., .... 

Ie 
r' I 

lei I l'hl I II I I 2 

3 Ie I I FTICI I II I I I "i( ..•• , ••. :·:.·.·'i/; 
: ••• : ...•.. : < ;/ 

I Ii I L i 
..... 

J ·: .......... i "" .:::,;, I e I It: ,I I 11 I 1:1 I 1 .. ,:I.L:t ',1/:1.11 
.. : .......• : .. 

..... , 

'.' \ > .",' ".'. 
151 lei I f01 Iii I r I I ~[·lr·.lr)ll 

i;;;;.:.; 

......• : /\ i<) i< ...... , .... ,.' .. , .c. 
...... .... 
: ... : c2 61 lei I I .1 I 1,1 I 1.1 I 

i> 
...... :, .; . 

.1 f·· ...... i h. 
.:. h<. <.0': ..... : .. ; 71 lei i II I II I II I I 

}.:. C .. > :>\.j : ...... '.". 
h:·,. ....... ; .... 'i· ... ..:'< ti.) 8 I lei I lil I 1.1 I 1.1 I I} •• :: "":.:::, .,K··':.:l., J ·.i·· .. r.l:/l.JF·il.··. 

Ii 1 ••••••.• 
1
< 

./ .·.·'i :' .• : ••..... «:iii .. . . ... , • 

, ... 
:.:: ..•.• ,<\ ~~! :{ > 

i.< <. 
'\i' .,.:' 

I •.•.•••••• '))11 )1 i 

': ..... t 121 : II~ II I'll t~~ I r~tll ~'?'.PH~I,~!"I~llllllll il=§iii· 
I 

[<til>l 

Ie "·1 ·i •. :·:.:· ••• · ii : •.••.• : •...•. :" }t if} I 
Ie ! 

I.;:,:; :':: .> •... : .••. :./ i> 
'.; ... .. ·.'···.;···::il [ [ [ [ f'f:n;f[t~f" j.;n!l.O.ilO;!njiIJ;~U~!I·j:r 

t>'i C~ Z~ L ~ 09 6~ At. It. at. c .. _ .... ,... I.. n .. - .... , .. -- .... ~ --

Ie 
Ie 

ZL LL OL 69 89 L9 99 ~9 to9 C9 Z9 L9 09 6~ as l~ 99 --=-

GX21-9093-2 UM/OSO" Printed in U.S.A. 
"No. of forms per pad may vary slightly 

2 
p, .. []] of P,o ... m 75 76 77 78 79 80 

_ Identification I 1 1 ·1 1 1 1 

Resulting 
Indicators 

I Plus f!j9J Zero 

Compa!e 

11 > 2 [1'<2J1 =2 
'_OokuDIFactor 2),s 

Comments 

I High 
59160 61 62 6364 65 66 67 68 69 70 71 72 73 74 

t 

bi 



This page is intentionally left blank 

184 



• 

*POS 
entry formats 
review formats 

*TOT 166 

access methods 

53,55,57,58,61,62,64,96,123 
64,96 

as affected by data set organization 117 
as performed against multivolume data sets 120 
direct access 129 

of indexed data sets 130 
of keyed and nonindexed data sets 131 

of non keyed and nonindexed data sets 129 
sequential access 123-127 

of non keyed and nonindexed data sets 124 
of keyed and nonindexed data sets 126 
of indexed data sets 127 

ADD 167,170-172 
ADDROUT files 131,134 
alternating entry formats 53 
anding tests on formats 53, 55, 58 
apostrophes in literals 88, 165 
application programs 

controlling the 1/0 devices 37 
data set organization 32 
data set update 35 
keys that are active 31 

arithmetic operations 167 
(see also calculations) 

arrayname,index combination 144 
AUXDUP 9,99 

BEGSR 67 
BL 88 
blink attribute 88 

calculations 
on the A-specification 168, 169 
on the C-specification 93, 111-114 
with counters 171 
with named fields and INSERT 169 

calling subroutines 
through EXSR on A-specification 66, 71 
through Z-specification 65,67 

CFILE 22,10 
CHAIN 40,47 

(see also direct access methods) , 
chaining jobs 173 
changing the entry and review formats 
CHECK(BY) 96,57,61,97,103 
CHECK(DR) 43,51,103 
CHECK(FE RZ) 80,103 
CHECK(FE) 22 
clearing lines on the display 86,88 
CLOSE 42 
CLR L 10,86,88 
column separators 

with a formatted display 76, 88 
with an unformatted display 74,82 

combination programs 43 
communications 42 
COMP 

on A-specification 
on C-specification 

compile-time tables 

102,103 
65,69 

139 

78 

complex format selection 61, 78, 88 
complex reformatting for the diskette 92 
constant name 174 
copying 22 
creating multiple records from a single record input 
current field attributes 84 

data set open prompt 1 7, 122 
data sets 

access methods for 117 
created using application programs 9 
created using data-entry programs 9 
multivolume 120 
reformatting 9,92 

data-entry programs 
characteristics of 15 
differences with appl ication programs 9 
keys that are active 21 

default diskette records for transaction files 9 
default display format 49 

(see also format 0) 
DEVICE 2,42 

Index 

67 

differences between data-entry and appl ication programs 9 
direct access methods 129-134 
displaying multiple records at the same time 86, 88 
DSPATR(BL HI) 88 
DSPATR(CS) (see column separators) 
DSPATR(ND) 83 
DSPATR(RIl 83 
DSPATR(UL) 103 
DSPSIZ 2 
dynamically created fields 92, 111, 114 

Index 185 



EDTCDE 10,86 
ENDSR 2,3 
enter mode 15, 16 
ENTRATR 84,85 
EOJ 10,173 
ERROR 102,103 
execute mode 31 
EXFMT 31,37,47 
EXITATR 85 
EXSR 70 

fill-in-the-blank displays 83 
FORM 152 
format 0 58, 75 
formatted displays 76 
formatting 73, 91 

definition of 47 
diskette formats 67,91 
display formats 65, 73 
entry formats 50 
format selection by testing 55 
review formats 54 

GOTO 3,110,112,114 

highlight attribute 88 

INDEX 33,120,127,130 
indexed data sets 32, 127, 130 
indicators 

for conditioning errors 101, 102 
for conditioning fields 103 
on A-specification 99, 103 
operations conditioned by 106 
operations that condition 106 

resetting 104 
using to branch 110, 113 
using to condition arithmetic operations 110, 111, 112 
using to condition end of job 110, 113 
using to condition EXFMT 10,113 
using with I/O operations 108 

INSERT 
with arithmetic expressions 99, 168, 169, 170 
with named fields for complex reformatting 43,94 

with record identifiers 53 

186 

key fields 32,126,130 
key-initiated modes 20 
keyed data sets 126, 130 
keys 21,31 

literals 78 
loading an object program 16 
logical device I D 122 
LOKUP 135,143 
LOOK 135,137, 139 

menus 53,80 
merging multiple fields from multiple records 94, 112 
mode select prompt 17 
modes 

automatically selecting 18,50 
designations 20 

MOVE 144 
MOVEA 145 
MULT 93 
multiple entry formats 71,88,94 
multiple tables 142 
multivolume data sets 120-121 

ND (nondisplay attribute) 83 
nondisplay attribute 83 
NUMENT 139,140 

online tOlals 112, 170-171 
OPEN 42 

padding records 57 
partitions 7 
physical device I D 122 

PMT 2 
positioning fields in a display 75, 79 
positioning fields in a data set 95 
positioning fields on a printout 157, 162 
printing a form 162 
printing on a form 154-161 



.,. , 
READER'S COMMENT FORM 

Please use this form only to identify publication errors or request changes to publications. Technical questions about IBM systems, changes in I BM programming 
support, requests for additional publications, etc, should be directed to your IBM representative or to the IBM branch office nearest your location. 

Error in publication (typographical, illustration, and so on). No reply. 

Page Number Error 

IBM may use and distribute any of the information you supply in any way 
it believes appropriate without incurring any obligation whatever. You may, 
of course, continue to use the information you supply. 

• No postage necessary if mailed in the U.S.A. 

Inaccurate or misleading information in this publication. Please tell us 
about it by using this postage-paid form. We will correct or clarify the 
publication, or tell you why a change is not being made, provided you 
include your name and address. 

Page Number Comment 

Name 

Address 

OOj 
~!: 
:::001 
'"01\.) 
Cloo 
~o 

:-
GJ 
c: 
a: 
CD 

(I) 

fJ .... 
~ 
(Xl 

! 



SC21·7804·1 

Fold and tape Please do not staple 

I II II I 

BUSINESS REPLY MAil 
FIRST CLASS PERMIT NO. 40 ARMONK, N. Y. 

Fold and tape 

--- ------ - ---- ---- - ---- - - ----------_.-

POSTAGE Will BE PAID BY ADDRESSEE: 

IBM CORPORATION 
General Systems Division 
I nformation Design and Development 
Publications, Dept 997 
11400 Burnet Rd 
Austin, Texas 78758 

Please do not staple 

International Business Machines Corporation 

General Systems Division 
4111 Northside Parkway N.W. 
P.O. Box 2150 
Atlanta, Georgia 30055 
(U.S.A. only) 

General Business Group/International 
44 South Broadway 
White Plains, New York 10601 
U.S.A. 
(International) 

Fold and tape 

NO POSTAGE 
NECESSARY IF 
MAILED IN THE 
UNITED STATES 

Fold and tape 

() 

S 



l 
f 



--..- ------ ----- ~--- ~ ---- - - ----
=~=~=C!J 

International Business Machines Corporation 

General Systems Division 
4111 Northside Parkway N.W. 
P.O. Box 2150 
Atlanta, Georgia 30055 
(U.S.A. only) 

General Business Group/International 
44 South Broadway 
White Plains, New York 10601 
U.S.A. 
U nternational) 

SC21-7804-1 


