File No. 7040-36
Form C28-6318-5

- Systems Reference Library

IBM 7040/7044 Operating System (16/32K)

Programmer's Guide

The 1M 7040/7044 Operating System (16/32K) —
7040-PR-150 — is an integrated group of programs that
permits continuous job processing on 7040/7044 Data
- Processing Systems with 16/32K capacity. This publi-
_cation contains information the 7040/7044 programmer
needs to run his jobs under this Operating System.
It includes general descriptions of the following system

components:

System Monitor : (#7040-SV-951)

Input/Output Control System (#7040-10-952)

Generalized Sorting System (#7040-SM-953)

Monitored Utility Programs (#7040-UT-975)

Processor (#7040-PR-954)
Monitor (#7040-SV-811)
Loader (#7040-SV-812)
Library - . (#7040-LM-813)
Macro Assembly Program (#7040-SP-814)
FORTRAN IV Compiler (#7040-FO-815)
COBOL Compiler (#7040-CB-816)
Debugging Processor (#7040-TA-817) .

Update Program (#7040-UT-955)

Descriptions of the Operating System control cards
prepared by the programmer are provided. '

"Separate publications describe the MAP, FORTRAN 1v,
cosor, and Debugging Languages, the Input/Output
Control System, and the Generalized Sorting System.
Other related publications contain instructions for the
machine operator, information needed by the system
programmer, and information on the contents of the
Subroutine Library, which is a Processor component.

1BM 7040 Data Processing System

Major RevisioN (March 1965)

This publication, Form C28-6318-5, supersedes Form C28-
6318-4 and associated Technical Newsletter N28-0518. This
revision corresponds to Version 9 of the 7040/7044 Operating
System (16/32K). Changes include the addition of the Debug-
ging Processor as a component of the Processor and the use
of 1302 Disk Storage as an input/output unit.

Copies of this and other 18M publications can be obtained through 1M Branch Offices.
Address comments concerning the contents of this publication to:
IBM Corporation, Programming Systems Publications, Dept. D39, 1271 Avenue of the Americas, New York, N. Y. 10020

© 1963 by International Business Machines Corporation

7040/7044 Operating System Publications

, The pubhcatlons describing the 7040/7044 Operating
System form an integrated set of publications that |
meet the needs of several types of readers. Figure 1
1llustrates the sequence in which these pubhcatmns;

should be read.

The Applications Programmer

For the applications programmer the pubhcatlon o

IBM 7040/7044 Operating System (16/32K): Program-

mer’s Guide, Form C28-6318, is provided. It gives gen-

eral descriptions of the 7040/7044 Operating System
components and includes the instructions needed by

applications programmers to run their programs under’

control of the operating system.

While the applications programmer can obtain
operating information that he requires from this pub-

lication, the following 7040/7044 Operating System
.publications can provide him with more detalled 1n-
formation in his area of interest. == v "

MAP PROGRAMMERS

IBM 7040/7044 Operating System (16/32K) Macro

Assembly Program (MAP) Language, Form C28-6335

- IBM 7040/7044 Operating System (16/32K): Input/ '

Output Control System, Form. C28-6309

. FOBTRAN PROGRAMMEBS

IBM 7040/7044 Opemtmg System (16/32K) FOR-
TRAN VA% Language Form 028-6329 ; .

" OTHER PROGRAMMERS

A programmer who needs to use the Cenerahzed Sort~

ing System can find the necessary instructions in the -

publication IBM 7040/7044 Operating System. (16/-
32K): Generalized Sorting System, Form C28-6337.
cosoL programmers should read the publication IBM
7040/7044 Operating System (16/32K): COBOL
Language, Form C28-6336.

The Operator

For the operator, the publication IBM 7040/7044 Op-
~ erating System (16/32K): Operator’s Guide, Form C28-
6338, is provided. Its contents include descriptions of
the System Monitor control cards and detailed

- operating procedures for all the Operatmg System"

components

Preface

" The System Programmer

r is an experienced programmer

“‘assrgned to place thls sYstem into operation, modify it
“according to the spec1a1 requirements of his installa-
* tion, maintain it, and. ensure adequate control over its
: ucontents :

For the system programmer -the pubhcatlon IBM

,7040/7044 Operating System (16/32K) Systems Pro-

grammer’s Guide, Form C28-6339, is provided. It con-
tains the editing instructions and detailed ‘descriptive
information of the Operating System components
needed by programmers authonzed to modify the oper-
atmg system. ~

’Prbg‘rthw’ér’s Guide

This publication is the starting point for a study of the ’
7040/7044 Operating System. Included are descriptions. -
of the features of the system, the functions performed

by each system component, and programmer operating

information, such as control card descrlptlons and ex-
amples of input card decks.. SR

‘The first section introduces the reader to the op-
erating system and describes its orgamzatlon and
operation. Later sections present the features of each
of ‘the system’ components and describe the control '
cards prepared by the programmer. -

Spe(‘:lal features’ of this guide include:

1. Atable glvmg the format of all control cards used'
with the 7040/7044 Operatlng System, including a cross
reference toa complete description of each.

2. Checklists of control cards requlred to process
typlcal jobs.

3. A glossary of technical terms.

It has been assumed that the reader of this publica- .-
tion is familiar with the contents of the following
publications: ' '

~ IBM 7040/7044 Prmczples of Opemtzon Form A22-

6649
IBM 7040/7044 System Summary, Form A28-6289
- IBM 1301, Models 1 and 2, Disk Storage and IBM
1302, Models 1 and 2, Disk Storage with IBM 7040 and
7044 Data Processing Systems, Form A22-6768
IBM 7320 Drum Storage with 7040 and 7044 Sys-
tems, Form A22- 6793

e

Programmer's Systems

Guide . Programmer's
Guide

C28-6318 C28-6339

MAP _‘ Subroutine
. |Language Library
lc28-6335- €28-6806

. FORTRAN Generalized
“t “|Language” - 7} Sorting
. System
~cas6329 | |c2s-6336 C28-6337

Principles - ‘ I'ﬁpuf/Oi‘Jtpuf o Debugging
- |of ;s -+ |Control) Facilities
Operation © |System arti : .
A22-6649 . | . Y. .. |c28-6309 |c2s-6803" | SEEE é' ‘ -
: — . épé‘rutor-'sk :
| Guide :

C28-6338

Figure 1. Reading Sequence for 7040/7044 Operating, System ‘Publica’tildn’s‘ ;’ 7 ;

Using the Prongninﬁér@ Guidé

A programmer who wishes to make full use of all the
features of the Operating System would normally read
the Programmer’s Guide from cover to cover and then
proceed to the appropriate manual that covers his
specific area of interest. ‘However, for the basic knowl—
edge required to run a s1mple job, the MAP, FORTRAN,

Or COBOL programmer may read through to the section
“The Nucleus,” and then sklp to the section “Input/
- Output Unit Assngnment When a programmer has
familiarized himself with the ccontrol card formats, he-

may simply refer to the control card check list and the -

control card format index in the appendlxes to thls
manual.

[N

Machine Reqnﬁretﬁem‘s

The fo]lowmg machine ‘configuration is required for
use of the 7040/7 044 Operating System: -

"Processing System: An sy 7040/7044 Data Process-
ing System with the extended performance instruction

set and with at least 16,384 locations of core storage.

The smgje-precmlon floating-point mstructlon set is
also required in order to use FORTRAN.

Input Unit: An M 1402 Card Read Punch with an
1M 14144 Input/Output Synchronizer that has the
column binary feature, a magnetic tape unit, 18M 1301
Disk Storage, 18M 1302 Disk Storage, or 18M 7320 Drum
Storage. An 1BM 1622 Card Read Punch may be used if
the input is entirely symbolic. If the 1622 Card Read’

Punch is used, it must have the Expanded Character
Set, Feature #3831, to obtain proper translation of
1BM card code (H code) to Bcp characters.

Punch Unit: An 18M 1402 Card Read Punch, a mag-
netic tape unit, M 1301 Disk Storage, 18M 1302 Disk
Storage, or 1BM 7320 Drum Storage. (This unit may be
attached to the same device as the output unit for
off-line processing.) s

Output Unit: An mM 1403 Prmter, a magnetlc tape
unit, 1em 1301 Disk Storage, 18M 1302 D1sk Storage or
1BM 7320 Drum Storage. :

Library Unit: A magnetlc tape umt IBM 1301 D1sk
Storage, M 1302 Disk Storage or IBM 7320 Drum
Storage.

Utility Units: These units may be: magnetic ‘tape
~ units, 1M 1301 Disk Storage, mm 1302 Disk Storage,
or 1BM 7320 Drum Storage. Utility unit requlrements
are shown in Figure 2. e

Checkpoint Unit: A magnetlc tape unit, BM 1301
Disk Storage, 18m 1302 Disk Storage, or 18M 7320 Drum
Storage. If this unit is not provided, snapshots are not
taken and core storage dumps are incomplete.

Required
Application Utility Units
- Compile or assemble only 3.
COBOL Compilation 4
- load only 3
+ Compile or assemble, and Load 4
Compile, assemble, and Load (COBOL) 5
‘Load and go 3
Compile or assemble, Load, and go : -4
| Compile, assemble, Load, and go (coaon 5
“Two-way merge) o 4+
_Three-way merge ’ : o 6*
" Four-wdy merge 8*
.Five-way merge) 10*
Six-way merge . S 12
Seven-way merge 14*
Eight-way merge b 2 ; b 16* -
. System Editing (absolute mod:ﬁcahon cards only)-: - 2
*Magnetic tape units and/or disk storage units (not attached to a 1401)

Nore: The checkpoint unit may not be a magnetlc

- tape unit attached through a 1401.

The console typewriter is used for operator messages.

Figure 2. Utility Unit Requirements™

Contents

Programming Information

" “THE 704077044 OPERATING SYSTEM.......
“The Requirement
‘The System
.~ Components:
‘DEFINITION- OF A JOB . /. ou..=

UsING THE OPERATING SYSTEM

Input :
- Example of an Input Deck

Processing the Input Deck

Output . ..o e
‘Job Termination .
.Job Skipping
‘Control Card Format

lntroductlon to the System Monifor 7
and the Combined: Momtors

o Symbollc Umt Reference Techmque

: ’I'he Processor (IBJOB)

- INTRODUCTION .

;‘Ahy’ ‘Unit” Reference Technique’ e T B 27
Intersystem Reservation Technique . .~ . ..o oo 27

arch Techmque P

' Commumcatlon with the System Momtor o
- Processor Source Languages

" The MaP Language R

............... 34
"THE SYSTEM MONITOR . .00 0. .. 14 - Thecosor Language:... .0 . .00 .00 35
USE OF THE SYSTEM Mom'ron e 14 35
System Monitor Control’ Cards 14 Core Storage Allocatlon Gt g ¢ 35
$70B Card ... Ll e ‘15 INTRODUCTION TO THE Pnocxzsson MONITOR 35
$Bsys Gardo oo U 15 Processor Application Control Options 35
$execuTE Card i, 1B Organization of the Processor Monitor ~................. 36
~:$opEN Card PR R A R ARG NI ok by 15 The Preprocessori...iveivoiinoiiincnn 36
“$crosE Card P ERRRNI RNw .16 The Input and Output Editors0........ 36
$switcH CARD B 16~ Control Card Processing Routines 37
U 8$cHANNEL Cardl e 17 Symbolic Units Required by the Processor 37
Use of Subsystem Control Cards 19 Application Processing o oo 37
THE NUCLEUS vl oo oo i" 19 End Of Data ... i e 37
Words Allocated to Machine Functlons 90. Control Cardsii i o 39
System Transfer Points0 0 ©20 System Monitor Cards Recognized by the
System Data Areas i e 20 © i Processor Monitor & i o 39
Timekeeping 20 “ Processor Application Imtlallzatlon Card 39
Pointer to Tables oo 21 ~* Loader Input File Card ... ;...0 ..o ... 42
Symbolic Units Table ‘91 - Input'and Output Editor Control Cards 42
Control Blocks 22 . - Compiler and Assembler Cards 4
- Unit Control Blocks RS SIS S i 99 Sample Processor Apphcatlons 46
System Control Blocks i 29 INTRODUCTION 70 THE LOADER (IBLDB) 47
Other Tables 0. 29 Program Deckso 47
Abbreviated Table of Contents 22~ Control Sectionsol oin 48
Recognizable Control Card Table 29 Use of Loader Control Cards 48
Nucleus Routines: oo oo, SO /23 - Loader Name Conventionsc... 0.0 00, 48
System Loader 00 000 23 Deck Names, oo e i 48
Interrupt Testo oo ool 24 Control Section Names 48"
The System Dump Routine:.. 24 . ‘Object Program Files viiioa. 49
System Monitor Recall Routine 24 Even Storage A S PR A 49
System Return Routine 0. 24 Loader Diagnostics .-o .. oo .. ‘49
System Restart Routine 24 Loader Control Cards 49
Change Communication Reglon Routine-, 94 Input/Output Buffer Allocatlons " 54
Installation Accounting Routme 24 ‘General Buffer Assignment 54
THE SUPERVISOR o i e 94 - Buffer Assignment with $poor Cards. .- 54
Operation of -the Supervisor c. ‘94 - Storage Allocationo e 54
THE DUMP PROGRAM 95 Loapsn (1spR) Crav FEATURE -------------------- 54
CHECKPOINT AND RESTART, 25 _~Mult1phase Brogramming ... & 2o v oL 54
Cheekpoint g5 DElloNS e e e g
Restart Program0 oo oo 26 glrl(ésss-Referencmg """""""""""""""""" gg
THE Ineur/OuTPUT CONTROL SYSTEM . S 26 Subroutine Library References 55
The 1401 Input/Output Control Program 26 cHAIN Programming Considerations 55
; The Main Link 0 00 55
Input/ Qufpui Unit Asslgnment 27 Dependent Linksooioiii 56
“UNIT ASSIGNMENT TECHNIQUES: ... 27 'Contro] Cards o e 57
.................. 27 $CHAINCard.......................”..‘........ 57

$Link Card ... 57 'System Control Cards 81

$ENTRY Card R R 58 Selection of the Run Type LA L 81
$ENDCH Card B A I 58
Deck Arrangement Rules 58 -~ Monitored Utility Programs in the IBM 7040/7044
CExecution ...l 58 Operating System (16/32K) N 87

THe RELOAD PROGRAM 58 INTRODUCTION e 87

Absolute, Object-Program Files EEERRRE 59 Tue Urmrry MONITOR. 87

Using the Reload Program P 59 Tre Uritrry PROGRAMS 87

}Ig.abel tChangmg Procedure ... g} Messages to the Operator 87
HECULCOM =i s e PSS P ST S e A Control Cards Used with the Utility Programs 87

ProGrRAMMING CRrOss REFERENCES e SRR 61 System Control Cardso .. 88

Macro Assembly Program 61 . Parameter Cards 88
Referenceable Control Sections 62 Extension Cards\ 88
Referencing Control Sections Ao 62 The Device Print Program 88

FORTRANot e i, 62 The Format Track, Home Address, and ’

COBOLttt R 63 Record Address Generator 90
Definition of Common Data Areas or The Load Disk/Drum Program 93

Procedure Sections0 . 63 The Dump Disk/Drum Program Lo 04

Loading Subroutines from the Subroutine lerary ~~~~~ 64 The Restore Disk/Drum Program 95

COMPILER AND ASSEMBLER D1AGNOSTIC MESSAGES 64 The Clear Disk/Drum Program 96
N UCTION TO THE SUBROUTINE LIBRARY (IBLIB 6! . .

;N:::DAED Ou-:p or EDfTORs '''''''''''' (..... ke 6 g Appendix A Control Card Format Index 98
The System Input File 66 System Monitor — Processor Control Cards 98
The System Output File 66 Sort Control Cards S S 103
The System Punch File e et 67 Edit Control Cards0...... 105

THE SNAPSHOT SUBROUTINE ST 67 Upflate Program Control Cards R TR P 107

) Utility Control Cards 109

THE CHECKPOINT SUBROUTINE 67 .

Tue Post-ExecutioN ROUTINE 67 Appendix B. Control Card Check List 111

FORTRAN FiLes F e P S 67

Constant Units SRR 67 - Appendix C. 7040/7044 —

Variable Units 68 1401 Auxiliary Programs 112

Modifying rorTtraN File Specifications 68 Inpur/OQurpur UTILITY PROGRAM . . o o o o 112

Modifying the tou Table0 ... 68 Machine Requirements . - 112

Buffer Pools .. 7 """"""""""" AR - 69 Input Stacking Function B 112

"FORTRAN SUBROUTINES 69 Input File ©. ... P TP R 112

FORTRAN Input/Output Subroutines 69 Output File 112

Using ForTRAN Input/Output Subroutines 71 Blocking D 112

FORTRAN System Routines Rt OpHONS 113

Update Facilities T Dot File o TN

-File Descriptionl oo 72 Output File 114

Transaction File 72 Options T P S 114

Levelof Updating0...... ERS 72 yap SymBoLric UppaTte PrRoGRAM 115

Special Mode of Operation 73 Machine Requirements 116
Limitations of the Special Mode of Operation 73 Input/Output Files :) 116

Requesting the Update Program 73 Control Cards oo 7

Units Used During an Update Run 73 - T

Using THE UPDATE PROGRAM 74 Appendix D. COBOL Error Messages e 120

Control Card Formats 74. ‘ : .

Error Detection and Warning Messages e 80 Glossaryo 128

Summary of Records Processed el . 81

PranNiNg aN Uppate RUNo o 81 Index L 133

The 7040/7044 Operatmg Sysfem

The 7040/7044 Operatmg System is an mtegrated
group of programs designed to permit continuous job
processing on 7040/7044 Data Processing Systems with
16/32K capacity. As this operating system minimizes
the need for opérator intervention, the high speed of
these computers can be applied to an umnterrupted
series of]obs

The Requirement

Machine time available at a computer installation is
usually shared among many applications. Setting up the
various job runs once involved numerous manual oper-
ations that took considerable time during which the
computer was 1dle The resulting loss of computing
potential became proportlonately larger as computer
speeds increased.

To reduce manual procedures to a minimum and to

eliminate the need for operator intervention between -

computer applications, monitored operating systems

‘were developed. The monitor acts upon control in-
formation supplied by control cards, positions a library
to the next program to be executed, loads it into core
storage, and passes control to the program. Control is
eventually returned to the operating system momtor
and the cycle is repeated.

This type of system permits the user to stack his job
input decks on an input unit and process them through
the computer in a continuous flow. In addition, it pro-
vides a convenient means for using data control pro-
grams, such as a sort or merge program.

The/ System

‘The 7040/7044 Operating System permits continuous -

machine processing of a stack of jobs. It includes a
generalized sorting program and a language processor.
This processor provides FORTRAN 1v and cOBOL com-
pilers, an assembler, a relocatable program loader, and
a library of subroutines. An operating system monitor
includes a communications area and supervisory and
service routines, User’s programs and subroutines can
be added to the system by means of the editing pro-
~ gram, which also provides for system maintenance.
A flexible input/output control system permits the

MAP programmer to specify on the siBjo card which

sections of the input/output control system he needs to
have in core storage at execution time. See the section

Programming Information

pen

“The Processor Monitor” for a description of the smBjos

card. An auxiliary program, the 7040/7044-1401 Input/

Output Control Program, is available to increase the

- input/ output capacity of the system.

The use of all input/output devices is controlled

: through a flexible unit assignment scheme. Although

some units are reserved for system use, others may be

~ shared by the system and object programs. If the pro-
~ grammer wishes to retain any files, he must avoid as-

signing them to units that may be used by the system -
during his job. The programmer can designate units
as intersystem units, reserving-them for use from, ap-
plication to application within a job. ;

If an installation uses labeled files, the programmer

~can request that units be assigned as a result of a label
searching procedure. This decreases the need for oper-
ator intervention during a job because files can be

assigned to specific devices before processing is begun.
Symbolic input/output unit assignment frees the

- programmer from making absolute references to units

and channels. The Input/Output Control System issues.
absolute instructions for input/output devices and
keeps a record of the status of each device. 7

These features of the Operating System permlt an
installation to make efficient use of input/output de-
vices for a series of applications. The programmer is
also freed from having to determine which devices will

be available when his program is executed.

" Under normal conditions, it is not necessary for the

computer to be idle; however, it may be idled for oper-
ator action. For example, facilities are provided for
operator interruption for unusual, priority, or error -

conditions.

- The most significant features that the 7040/7044

. Operating System provides within one system are listed

in Figure 3. The “Glossary” at the end of this publica-
tion gives definitions for many of the terms used in that
figure.

COMPONENTS

The relationship of the following major components of
the 7040/7044 Operating System is shown in Figure 4.

System Monitor (IBSYS): The System Monitor has
three major functions. It provides, first, an area of core

~storage for communicating between subsystems; sec-

ond, supervisory routines for processing control cards;
and third, a variety of routines for use by system and -

object programs,

Programming Information .9

“System Monitor

. Reduces manual operations
2. Types operating instructions on the console typewriter
3. Permits scheduling of jobs by machine operators

pury

(A H

11. Allows sorting, compiling, g, and

job
12. Prt!w:des automatic recovery in case of job failure
13. Includes facilities for job sklppmg
14,
: of storage prints
Pre-positions library devices
16. Includes checkpoint capability
17. Includes restart capability
. Controls use of input/output devices
19. Provides symbolic input/output device reference
20. Provides input/output control routines ’
21. Provides standard error routines -
22. Checks labels

&

15.

4. Allows interruption of the processing of stacked jobs for a job
given ‘installation precedence)
5. Provides rapid transition between apphcutlons
6. Controls job-to-job trarsition
7. Provides job accounting facilities
8. Standardizes control information on punched cords
9. Permits o flexible machine environment
10, Provides access to.a language processor, o sorting program,

an editing program, utility programs, and update facilities
ting within one

Provides program checkout documentation, including a variety

10.
1.

. Renames sections of coding for cross-referencing
. Forms a multiphase program that exceeds a single storage

load, if necessary
Provides a loader for absolute ob;ect programs
Provides for load-time debugging

Generalized Sorting Program

kN

. Sorts and/or merges records with the following characteristics:

Binary or BCD records .
Fixed-length or variable-length records
Blocked or unblocked records

Records of up to 2,000 words

. Sorts and/or merges on up to 32 control fields in the following

manner:

Logically or algebraically

In ascending or descending order

According to commercial or scientific collating sequence

. Merges previously sorted data with a current sort run’
. Inserts modification subroutines at specified exit points
. Incorporates a complefe merge program

System Editor

Processor

wn

. Provides routines to modify, add, delete, or dup]icate the

library of system programs and subroutines
Allows compact, efficient storage of all system programs

. Allows patching of system programs .
. Permits source language editing of system programs

—_

Compiles and/or
2. Compiles and assembles multilanguage programs

Macro Assembly Program

segments
5. Includes a relocatable program loader
.. Provides access to and relocation of subroutines
. Includes a library of system/user shared subroutines

N o

bles source decks in any sequence 7
3. Facilitates use of FORTRAN and COBOL compilers and the

4. Provides for source language debugging of relocatable

- Monitored . Utility Programs

. Provide device-printing facilities
. Provide utility routines for disk or drum storage

Update Facilities

. Provide a means of creating and maintaining a file of symbolic

or binary program decks on tape

.- Generate tape files from punched card decks
. Provide -for listing system output. tapes

Figure 3. Features of the 7040/7044 Operatiﬁg System

System 5
Monitor [~} 10CS
[y
Updatev Sort Processor _ Editor Utility Installations
Program Monitor Moniter [~ — — — T T T T T T T | Monitor Monitor | {Programs
|
|
R |
l
|
Reload Macro FORTRAN || coBoL || Debugging }| The Subroutine | Monitored
|} Assembly . % " : . | Utility
Program Compiler Compiler Processor Loader Library
; Program - L ’) . | Programs

Phases of the Sort

Figure 4. 7040/7044 Operating System Components
10

Phases of the Editor

Processor (IBJOB): The Processor is a subsystem that
facilitates use of the compilers and the assembler. It is
composed -of the Processor Monitor, the FORTRAN
compiler, the coBoL compiler, the Macro Assembly Pro-
gram, the Loader (1BLDR), the Subroutme lerary, and
the Debugging Processor;

Generalized Sorting System (IBSRT): The General-
ized Sorting System is a subsystem that performs a
wide variety of functions for efficient sorting and merg-
ing of data. It can process files of blocked and un-
blocked records of either fixed or variable length.

System Editor (IBEDT): The System Editor is a sub-

* system that provides facilities for maintenance of the -

operating system. These editing facilities ‘are described

in the publication IBM 7040/7044 Operating System.

(16/32K): Systems Programmer’s Guide, Form CZS-
6339.

Monitored Utility Programs: The Monitored Utility
Programs perform device-printing functions and also
various utility functions for disk or drum storage.

Update Facilities: The Update Facilities prov1de for
maintenance of tape files containing symbolic or binary
program decks. In addition to the primary update
facilities, they have the capability of generating tape
files from punched card decks and of listing system
output tapes. ' ' v ‘

Installation Programs: Any programs, tables, data,
etc,, can be added to the operating system by an in-
stallation. The System Editor and facilities in the
System Monitor, such as the sExecute card and the
System Loader described later in this text, permit the
user to incorporate, call, load, and execute mstallatlon
programs.

Definition of a Job

A job may consist of -any sequence of applications of
the operating system components. For example, a single
job could include the compilation, assembly, and execu-
tion of an object program (a processor application), a
sort and/or merge of the resulting data (a sort appli-
cation), and subsequent compilations and executions
(processor applications) for editing the output into a
report format. .

Using the Operating System

The System Monitor enables several subsystems to run
within a coordinated environment supervised by a
control program. Input to this system consists of a
variety of jobs that may consist of one or more appli-
cations of one or more subsystems.

The 7040/7044 Operating System can be used for a
variety of apphcatlons that fall into the following cate-
gories:

1. Language processing

a. Compiling and/or assembling
b. Loading only, for analysis of assigned storage
c. Compiling (and/or assembly) and loading
d. Loading and executing an object program
. Compiling (and/or assembly), loading, and
executing a source program

2. Sorting or Merging

3. Executing installation programs

Control cards ensure an even flow of processing by
specifying the subsystem required and by adapting the
generalized subsystem to the specific needs of the user.
This publication furnishes the information that the pro-
grammer needs to prepare the necessary control cards
for his job.

o)

Input

Control cards and other input to the system are stacked
in a system input file. The input to the compilers, Sort,
Editor, or object programs may be in the system input
file or in any other file designated by the programmer.
The system input file may be blocked or unblocked, but
all $ control cards are always unblocked and in BCD
form. =~ ’

Input may consist of control cards, binary cards,
Bop cards, data cards, symbolic cards, absolute cards,

 relocatable cards, or 1mages of these cards on other

storage media.

EXAMPLE OF AN INPUT DECK
A portion of a typical input deck containing several

jobs is illustrated in Figure 5. The control cards in that

figure are described in detail later in the text. For the
purpose of this 111ustrat10n, they can be briefly defined
as follows:

$IBSYS Returns control to System Monitor
$JOB Delimits a job

- $IBJOB Designates a processor application
$IBSRT Designates a sort or merge
$EXECUTE Passes control to an installation program

PROCESSING THE INPUT DECK

The System Monitor is entered from the System Loader,
which brings the supervisory routines into core storage.
When the System Monitor encounters the sBjos card, it
transfers control to the Processor Monitor, since this
portion of the job is a processor application. The
Processor Monitor controls the processor application
according to control card specifications. The sisys card
indicates to the Processor Monitor that the next opera-
tion is not within the scope of the Processor, and con-
trol is returned to the System Monitor.

The System Monitor recognizes the siBSRT control

Programming Information 11

Job n

(Sort control
card deck)

Figure 5. Portion of an Input Deck

card and passes control to the Sort Monitor, the super-
visory portion of the Generalized Sorting System. The
Sort Monitor controls the execution of the sort run ac-
cording to the sort control card specifications. Control
is returned to the System Monitor when sort is com-
pleted.

The sjoB card indicates the beginning of a new]'ob.
Notice that the System Monitor is supervising both
subsystem-to-subsystem and job-to-job transition. The
subsystem monitors supervise run-to-run trans1t10n for
a series of subsystem runs.

When the sexecuTE card is encountered, the mstalla-
tion program to be executed is loaded by the System
Loader. The siBsys card causes the System Monitor to
regain control -after the- installation program is exe-
cuted.

Ovutput

The listing output of all system programs is ertten
on a system output file. Punched-card output appears
in the system punch file. The object program may use
either these files or any files des1gnated by the pro-
grammer.

Job Termination : c

In the event of unexpected job termination, the sub-
system in control completes all possible housekeeping
and transfers control to the Dump routine of the System
Monitor, which brings in the Dump program. Param-
eters assembled with the Dump program and identified

12

by the ‘error number given in the Dump calling se-
quence specify the error message that is typed and/or
listed and the extent of internal and external storage
that is dumped. See ‘the section tltled “The Dump
‘Program” in this publication.

Programs that are being tested can be run under
control of the System Monitor in the same manner as
fully-tested programs. The Dump program provides a
storage printout if an error occurs, and processing con-
tinues with the next j ob.

Job Sklppmg

The: machine operator can Sl(lp jobs, one at a time, by
using the operator interrupt procedures. Control cards
within a skipped job that affect unit assignment are
processed. For details of the job skipping procedure
and the names of control cards that are processed, see
the publication IBM 7040/7044 Operating System
(16/32K): Opetator’s Guide, Form C28-6338.

Control Cu rd Formai

Several control card formats are used in the Operatmg
System. Parameter cards, which are used to adapt a

“sort or edit run to the ’bspeciﬁc needs of the user, have

special formats. A descrlptlon of the Sort control cards
is in the publication IBM 7040/7044 Operating System
(16/32K): Generalized Sorting System, Form C28-6337.
A descr1pt1on of the Edit control cards is in the publi-
cation IBM 7040/7044 Operatmg System (16/32K):
Systems Programmers Guzde Form C28-6339.

_ The general format of the System Monitor and
Processor ‘Monitor control cards is:

CONTENTS

COLUMNS
1 %
2-8 Control card name, left-justified
16-72 Variable field information, no embedded blanks,

fields separated by commas

Column 8 is not examined by the System:MonitOr.

‘Columns 8 through 13 of all monitor control cards

may contain a name, left-justified. ,
A comma delimits an option; a blank ends the list
of options and begins the comments portion of a card.
A comma must not appear in column 16 unless other-

wise specified. ‘

The order of the options in the varrable field is not
significant unless otherwise stated. Except where indi-
cated, an option is assumed by a monitor when a field
is omitted. Thus, the amount of information needed
on the card in general is minimized.

In this manual, the followmg convenhons are used
for variable field information:

1. Lower-case letters indicate that a substltutlon

- must ‘be made.’

2. Upper-case letters must be punched exactly as
shown if used.

3. Brackets [] contain an option that may be omltted standard optlon assumed by the monitor, 1f any, is
or included at the user’s choice.” o " undetlined. :

4. Braces { } indicate that a choice of the contents is 5. A number over the first character in a field indi-
to be made. If no option is specified by the user, the cates the first card column of the field.

Programming Information 13

Introduction to ii\\eASysIem‘Moniioi' and the Combined Monitors

The following sections explain the features of the Sys-
tem Monitor and how each is used by the programmer.
The System Monitor consists of the Supervisor and the
Nucleus. A more detailed description of the System
Monitor is contained in the publication IBM 7040/7044
Operating System (16/32K): Systems Programmer’s
Guide, Form C28-6339.

s

The System Monitor

The 7040/7044 Operating System Monitor coordinates
the use of program and machine facilities and provides
for continuous, efficient operation of the system. This
continuous machine processing is the function of the
Supervisor, a program that allows changes in the core
storage environment, processes changes in the input/
output device configuration, and permits reassignment
of symbolic input/output units. The Supervisor is the
portion of the System Monitor that provides for pro-
gram control. :

The Nucleus contains information that must be avail-
able to object programs, to subsystems, and to the
Supervisor. Consequently, the Nucleus is in lower core
storage at all times.

Figure 6 defines the relationship between the Com-
bined Monitors and the System Monitor. ‘

The Combined Monitors The System Monitor

The Edit Monitor

The Processor Monitor

The IMSRT Routine

Figure 6. Relationship Between the System Monitor and the
Combined Monitors :

Several routines that can be used by object programs
and subsystems are made available by the System Mon-
itor. This category includes the Input/Output Control
System and the Dump Program. The System Monitor
also provides a Bootstrap routine and a Housekeeping
routine to load and initialize the Nucleus at every initial
start. They are overlaid by portions of the Nucleus, the
Input/Output Control System, and the ‘Supervisor
before control card processing begins. The lower levels
of the Input/Output Control System (10Ex and 100P1)

14

always remain in core storage with the Nucleus. Other
portions that may be overlaid by object programs or
subsystems are restored each time the combined moni-
tors are loaded.

The Dump program is stored with other system pro-
grams in the System Library, which is the collection
of system programs and subroutines that make up the -
Operating System. The Dump program is called into

" core storage by the Dump routine in the Nucleus when

a dump is necessary.

Use of the System Monitor

System Monitor Control Cards

System Monitor control cards are provided for operator
and programmer control of the 7040/7044 Operating
System. They always appear unblocked on the system
input unit. Four types of cards are used:

Subsystem Control Cards
$IBJOB
$IBSRT
$IBEDT
SEXECUTE

Operational Control Cards

$IBSYS
$JOB
$UNLIST
$LIST

$ID
$PAUSE
$STOP
$RESTART

Information Control Cards
$DATE . .
$TIME
$*

Unit Assignment Control Cards
" $DETACH
$SATTACH
$SWITCH
$RESTORE
$CHANNEL
$OPEN
$CLOSE
$UNITS -

The Subsystem control cards designate the next sub-
system or program to which control should be passed.
The siBsys card is used to return control to the System -
Monitor; the sjoB card delimits a job.

A series of applications to be run under one sub-
system may be submitted without a smsys or sjos card.

A description of the siBjoB card is presented later in
this publication. Descriptions of the sjoB card, siBsys

card, sEXECUTE card, sOPEN card, sCLOSE card $SWITCH

card, and scHANNEL card follow

$JOB CARD |

The format of the sjoB card is:
1 8 16
$JOB ‘ any text

This optional card denotes the beginning of a job.
It is typed on-line and the system accounting routine is
called. When a sjos card is read, all previous program-
mer unit reservations are canceled. (See the section
“Intersystem Reservation Technique” for a description
of unit reservation codes.) The sjoB control card can
be preceded by any System Monitor control card except
a Subsystem control card. '

The variable field of the sjoB control card may con-
tain a message for the machine operator or program-
mer. The first 30 characters, starting in card column 16,
are saved in the Nucleus and appear in the listing as
part of the page heading.

An example of a typical sjos card follows

1.8 16

$JOB FORTRAN PROGRAM 63

This card is typed on the console typewriter to iden-
tify the job and the subsequent typed output. It cancels
all programmer unit reservations and it transfers con-
trol to the system accounting routine.

S$IBSYS CARD

The format of the siBsys card is:

1 8 16

$IBSYS ‘

This card is used to return control to the System
Monitor. Each return to the System Monitor will re-
lease all units reserved as system work units and all
units reserved for object programs, other than inter-
systera units. The Supervisor is loaded if it is not al-
ready in core storage. Except at initial start, the siBsys
card must precede all other System Monitor control
cards. or any control cards that cannot be processed by
the subsystem that is currently in control.

An example of a typical sisys card follows:

1 g 16 ' '

$IBSYS ‘

This card forces the transfer of control to the System
Monitor. ,

' $EXECUTE CARD

The format of the sexecure card is:

1 S 16
$EXECUTE name

This card is used to pass control to a program that
runs under direct control of the System Monitor.

The variable field of the sexecuTE card must contain
the name of the program to which control is to be
passed. From one through six Bcb characters may be
punched, starting in card column 16, to identify a pro-
gram or system on the System Library. The characters
punched should be identical to the contents of the first
word of the appropriate entry in the Table of Con-
tents for the System Library.

When the sexecure card is encountered, a control

card processing routine in the Supervisor scans the

System Library Table of Contents for the program
name that is specified on the sexecute card. (The pub-
lication IBM 7040/7044 Operating System (16/32K):
Systems Programmer’s Guide, Form C28-6339, contains
a description of the method used for ed1tmg a program
into the System Library.) »

If the program name is found in the Table of Con-
tents, the load addresses of all the program’s phases
are found. The Supervisor transfers control to the
System Loader, the absolute program loader in the
Nucleus, which positions the proper library unit, loads
the first phase, and releases control to it.

~ If the program name is not found in the Table of
Contents, an error message is typed and the next con-
trol card is read.

An example of a typical sexecutE card follows:
1 16

$EXECUTE “PROGRM

This card causes the program with the identifying
name PROGRM to be loaded into core storage from the
System Library and executed under control of the
System Monitor. :

Modified forms of the sexEcuTE card are used in con-
nection with the Update Facilities, the Monitored”
Utility Programs, and the 1M 7740 Communications
Control Package. Descriptions of the cards used for
the Update Facilities and the Monitored Utility Pro-
grams appear in the sections of this publication that
describe these features of the Operating System. The
card used for the 7740 Communications "Control
Package is described in the publication IBM 7040/-
7044 Operating System-(16/32K): Input/Output Con-
trol System, Form C28 6309

$OPEN CARD

The format of the sopPEN card is:

1 8 16, e
$OPEN S. SPPl [, REWIND]
: unit=1Iyy :
S.SUxx
Iyy

Introduction to the System Monitor and the Combined Monitors 15

“This card may be used for : any of the following:

1. To change the combined system pnnt/ punch
function to uncombmed
2 To assrgn an mtersystem reservatron code toa
unit. : o N
3. To perform a ziewind operation on a unit,
The contents of the variable field are:
S.SPP1
Junit=1Iyy
S.SUxx
1y
The Unit optrons " The S.SPP1 optron causes system punch
output to be produced on the system punch unit. The option is
used when the system print output ‘and the system punch output

are’ being produced on the same -unit and the. programmer
wrshes each to be produced on.a separate umt

The umt=Iyy option causes the specified unit to be assrgned

the intersystem reservation code yy. The speclﬁcatron for unit-

may be
S.SUxx System utility unit xx
U Any available tape, disk, or drum unit
T Any available tape unit !
D - Any available disk or drum unit

The S.SUxx option is used to specify the system utlhty unit
xx. Unless REWIND is also specrfied this option is meaningless
and the card is ignored.

The Iyy option is used to specify the unit that has been as-
signed the intersystem reservation code yy. Unless REWIND
is also specified, this option is meaningless and the card is
ignored.

[, REWIND]

This option causes the specified unit to be rewound when the
$OPEN card is processed. The REWIND optlon is meamngless
when the unit option specifies S.SPP1.

Three examples of the sopen card follow:

1 8 .16

$OPEN- S.SPP1-
This card changes the combmed pnnt/ punch functlon
-to.uncombined.
S R 16

" '$OPEN T 114, REWIND

" This card causes the ﬁrst available tape unit to be
assigned the intersystem reservation code 14. A mes-
sage is typed to indicate the physrcal unit to which

the code has been assrgned The tape on the unit is .

rewound.
1 8 16.- .)
$SOPEN S SU07, REWIND

When this card is encountered, the system utility unit
107 is rewound.
$CLOSE CARD

The format of the scLosE card is:

1 .8 6.

$CLOSE " {S.SPP1) [, MARK] [REWIND

o , . {SSUxx » - REMOVE]
IyyR

16

This card rnay be used for either of the following:
‘1. To change the uncombined system print and

punch functions to combmed

2. To cancel system or programmer reservatrons
" The contents of the Vanable ﬁeld are:

S.SPP1
S.SUxx
IyyR

The Unit options: The S.SPP1 option causes the system print
output and the system punch output to be produced on one unit
rather than on two separate units.

The S.SUxx option causes the. reservation code - {if any) as-
signed to the system utlhty unit xxto be canceled that is, set
to 00.

“The IyyR option causes the intersystem reservation code yy

‘to be cancéled. The unit to which the code was assrgned is then

assigned the .code 00,
[, MARK]

If MARK is spemﬁed a file mark is wntten on the unit that
has been specified by the unit option. ’

I: REWIND
REMOVE! .
The Rewind options: If REWIND s specified, the unit is

rewound, If REMOVE is specrﬁed the unit is rewound and
unloaded

If neither option is specified, the Gnit is not repositioned.

If the unit to be closed is a system utility unit, no test
is made for invalid operations, such as writing a file
mark on an input reel. No trailer label facilities exist
for a unit that is closed.

An example of the scrosk card follows: .
1 8 16 ‘ ’
$CLOSE "~ S.SU10, MARK, REMOVE

This card closes s))stern utility unit 10. A file mark is
written on the unit. The unit is rewound and unloaded
and its reservation code is set to 00.

$SWITCH CARD .
The format of the sswrtcH card is:
1 8 .. 6 .
® QY 5 8. Sxxx S.Sxxx
wwmon el o]

This card 1nterchanges two physical units assigned
as symbolic units. Neither of the physwal umts is
reposrtloned

The contents of the variable field indicate which
units are to be. switched. The}{s’peciﬁcation for a unit
may be: ‘

S.Sxxx

S.Sxxx represents any one of the symbolic units for which
there is an entry in the Symbolrc Units Table.
Iyy[R]

This represents the unit to which the intersystem reservation
code yy has been assigned. If R is included in this specification,
the intersystem code is to be released when the units are
switched.

The rules for the switching of units are as follows:

1. Units having identical codes (for example both
00, both 60) may be switched.

2. Two units, éach having a unique .intersystem.

reservation code (01-20), may be switched. In this
case, each code is assigned to a new symbolic unit but
remains assigned to the same physical unit.

3. A unit assigned an intersystem reservatlon code
(01-20) may be switched with a unit assigned the
code 00. In this case, each code is assigned to a new
symbolic unit but remains assigned to- the same physi-
cal unit.

4. A unit assigned an intersystem reservation code
(01-20) may be switched with a system unit (59-63).
The reservation codes will be switched unless the
sswrtcH card indicates that the intersystem code is to
be released (IyyR). This specification causes both
units to be assigned the system unit reservation code
after the units are switched.

5. A unit that is not reserved may be switched with
a system unit (59-63). In this case, the system unit
code is assigned to both units after they are switched.

Two examples of the sswrrcH card follow:

1 - 8 16

$SWITCH $.5U08,5.5U12

This card causes the device assigned as utility unit
08 to be reassigned as utility unit 12 and'the device
assigned as utility unit 12 to be reassigned as. utility
unit 08.

1 8 16

$SWITCH T12R,S.SIN1

" This card causes the device that has been assigned
the intersystem reservation code 12 to be reassigned as
 s.siN1. The device assigned as s.sIN1 is reassigned as the
symbolic unit that was prevmusly 3551gned intersystem
code 12. Both units are assigned the system unit reser-
vation code for the system input unit (60).

$SCHANNEL CARD

The format of the scHANNEL card is:

1 16

$CHANNEL c(fy, fo,. .., f)e(f1, f2, ..., fn). ..
This card designates the symbolic channels that are
to be used during a job. The programmer specifies the
n conditions required for each symbolic channel. This
enables a relationship to be established between the
" symbolic channels and the physical channels A-through
E. This relationship remains in effect until changed
or canceled by a new $CHANNEL card or until canceled
by a sjos card : ;

The contents of the variable field are:
c T .
The letter ¢ is replaced by one of the characters V, W, X, Y,
or Z, which identiftes the symbolic channel that is being defined.

The letter f represents a channel definer, that is, a requirement
or a restriction that applies in assigning a physical channel as
the symbolic channel being defined. As many channel definers
may be specified-as are necessary to define the symbolic channel
fully. More than one definer of the same type may be specified,
provided that no.contradiction exists. A channel definer may
have any of the following forms:

ni[—nalk

This form indicates the number of unlts of a spemﬁed type
that are associated with the symbolic channel being deﬁned The
device type k can be:

T—to indicate a magnetic tape unit

D—to indicate a disk or drum unit

U—to indicate any unit (tape, dlsk or drum) that can be
used for both input and output

The number ni indicates the minimum number of units of
the specified type that must be available on the physical channel
associated with the symbolic channel.. The value of n2 is the
maximum number of units that will be referred to as being on
the symbolic channel, though only n; of them need actually be
on the associated physical channel.

Iyy
nDm I: ;/ Iyy ;]

This form indicates that the physical channel associated with
this symbolic channel must include a disk or drum module that
has at least n symbolic units available on it. The programmer
assigns ‘the: module a number, m, which may be any number
from 1 through 5. This number is used in a variable unit ref-
erence of the form Dm to refer to this module. (Variable unit
references. are discussed in the section “Symbolic Channel
A551gnment Technique” in this ‘publication.)

If Iyy is ‘included in this channel definer, the module will
be the one on which the unit assigned the intersystem reservation
code yy is located. If /Iyy is included in the channel definer, the
module will not be the one on which the unit as51gned the
1ntersystem reservation code yy is located.

it
/lyy ;

The channel deﬁner Iyy indicates that the physical channel
associated with the symbolic channel being defined will be the
channel that includes the unit to which the intersystem reserva-
tion.code yy has been assigned.

The channel definer /Iyy indicates that the physical channel
associated with the symbolic channel being defined -will not
be the channel that includes the unit to which the intersystem
reservation code yy has been assigned.

. ;
/r _
The letter is replaced by one of the characters used to

identify a physical channel (A, B, C, D, or E). The definer r
indicates that the symbolic channel being deﬁned will be asso-

~ ciated with the physical channel specified.

The definer /¢ indicates that the symbolic channel being
defined will not be associated with the physical channel specified.

e
‘}/Ryy

The definer Ryy indicates that the symbolic channel being

-defined: will be associated with the physical channel on:which

the system unit identified by the reservation code yy is located.
The c¢ode must be a decimal number from 59 through 63.

“The. definer /Ryy indicates ‘that the symbolic channel being
defined will not be associated with the physical channel on
which the system umt 1dent1ﬁed by the reservatlon code yy is

Tocated..

Introduction to the System Monitor and the Combined Monitors 17

Up to five symbolic channels may be defined by a
single sCHANNEL card. seTc cards may be used to con-
tinue the definers that extend beyond the capacity of
the scHANNEL card. If the requirements of the scHANNEL
card cannot be met, the job is termlnated

Example 1}

1 ‘ 16

$CHANNEL V(3T)W(3T)

The requirements of this scHANNEL card can be met

if the system configuration has at least two channels.

Each channel (V and W) must have a minimum of
three tape units available.
Two possible configurations are:

PHYSICAL UNITS

SYMBOLIC
CONFIG. CHANNEL AVAILABLE CHANNEL
1 A 3T A"
B 3T ‘W
c :
D
A
2 A .) ..
B 5T \%
C 1T, 1D
D 4T
E .
Example 2
1 16
$CHANNEL X(2D,3T)Y(/B,/101,3U)

The requirements of this scHANNEL card can be met
if the system configuration has at least two channels.

One channel (X) must have at least two disk units
and three tape units available. Another channel (Y),
which cannot be channel B and which cannot have a
unit to which intersystem reservation code 0l is as-
signed, must have at least three d1sk or tape units
available.

Two possible configurations are:

PHYSICAL UNITS SYMBOLIC
CONFIG. CHANNEL - AVAILABLE CHANNEL
1 A . . i
B 3T, 2D : X
C . i :
D 1T, 2D Y
2 A 3T) Y
B 3T, 3D
C 3T, 2D : X
D 1T(I01)*2T
E Q.
*Not an available unit)
Example 3:
1 16
$CHANNEL Z(/B60;4T)Y(2D1,3T;)V(2D2105)

The requirements of this scHANNEL card can be met
if the system configuration has at least three channels.

One channel (Z), which cannot have the system
input unit (R60 = s. siNx) assigned to it, must have at

18

least four tape units available. One channel (Y) must
have at least three tape units available, and one disk or
drum module with, at least two symbolic units assigned
and available. Another channel (V) must have a disk
or drum module, which has been assigned the sym-
bolic unit with intersystem reservation code 05, with
at least two symbolic units assigned and available,
Two possible configurations are:

PHYSICAL UNITS SYMBOLIC
CONFIG. ~ CHANNEL AVAILABLE CHANNEL
A I ..
‘ B 1T(R60)* Y
3T
2D on Mod. 1 ~ Z
C 4T v
D 1D onMod. 1 (I05)*
© 2D on Mod. 1
E .
2 A
B 3T Y
~ 1D'on Mod. 1
4D on Mod. 2
C 1T(R60)* .
' 4T A%
D 1D on Mod. 1 (105)*
2D on Mod, 1)
E 5T ' Z

*Not an available unit

Note that, in configuration 2, physical module 2 on
channel B will be assigned as symbolic module 1 on
symbolic channel Y.

Example 4:

1 16

$CHANNEL W(3-5T)V(4T)

The requirements of this scHANNEL card can be met
if the system configuration has at least two channels.

One channel (W) must have at least three tape
units avallable. Two additional tape units will be re-
ferred to as being on symbohc, channel W, but need
not be on the physical channel assigned to W. Another
channel (V) must have at Ieast four tape units avail-
able. ;

Two p0351ble conﬁguratlons are:

PHYSICAL UNITS SYMBOLIC
CONFIG. CHANNEL AVAILABLE ‘CHANNEL .
1 A . .
B 4T \%
C 5T _ w.
- E
2 A ..
B 4T -V
C 4T . w
D 1T .
. - . E
Example 5:
1 16
$CHANNEL W(0-5T)V(4T)

The requirements of this scHANNEL card can be met
if the system configuration has at least one channel. -

One channel (W), which need not ‘exist, mhsthavef
at least zero tape units available. Five additional tape
units will be referred to as being on symbolic channel
W, but need not be on the physical charnel assigned
tape unifs available.

Three possible configurations. are:

to W. Another channel (V) must have at least four

SYMBOLIC

PHYSICAL’ UNIT§
CONFIG. CHANNEL AVAILABLE CHANNEL "~
1 A
‘B 4T . 2 Ve 0
C 5T W
D ;
E
2 A
B
C - 9T . A%
D e
. E W*
3 A =
B 4T . A%
C 3T W
D 2T
E .

*Note that internally symbolic channel W is assigned to some
channel that meets the requirements, in this ‘case, channel E,
which has “at least Zero tape units available.” i :

.+ [$IBSYS

SIBMAP = ¢

One
Processor P AR R
Application (FORTRAN source

. deck)

Figure 7. Composite System Input Deck

$1BSYS
ontrol cards) - ‘

” |(Sort ¢

; |Data cards): - - ‘I
MAP sou‘rcédeck) e ‘ ’

Use of Subsystem Control Cards - :
Figure 7 shows a composite system input deck con-
taining several types of jobs. The Subsystem control
cards (shaded cards in the figure) are stacked on the
system input unit, where they delimit-each application
or run. Other control cards in the figure are described
later in the text. =

 The rémainder of this chapter describes ;the System
Monitor in greater detail. The general reader may now
skip to the section “Input/Output Unit Assignment.”

The Nucleus

The Nucleus remains in core storage at all times. It
contains the data and tables that must be passed from
subsystem to subsystem and routines that may be
useful to any object program. If the storage protection
feature is available, the contents of the Nucleus may be
protected against any inadvertent change.

One Edit Run

Third Job

%ond Job ¢

Introduction to the System Monitor and the Combined Monitors 19

The Nucleus is divided into the following sections: -

Words Allocated to Machlne Functions e

L
2. System Transfer Points
3. ‘System Data, Areas
4. Control Blocks :
5. Other Tables
6. Nucleus Routines
Figure 8 shows the relationship of the contents of
the Nucleus to the Supervisor and the subsystems.’

Monitor Load Subsystem- or Ob%ect'ﬁogram Load -

’ {Location 00000, Beginning of Storage Protection)

Words Allocated to Machine Fi
System Transfer Points
System Data Areas (Communications Region) -
Control Blocks
Other Tables
Nucleus Routines
Channel Scheduler and CPU Trap.Routines (IOEX). .~ ;
Unit Synchronizer and 729/7330 and 1301/1 302/7320 Device Select
“and Error Recovery Routines - (IOOP1)
(End of Storage Prol'echon*)

Device Selecf and Error-Recovery
- Routines-for Unit Record and
Tel unications E

(100P2)

Utp

—= =
Input/Output Label
System (IOLS)

Input/Output ‘Buffering
System (IOBS)

(Approximtely 5€) —{ — —— ——
 Supervisor (IBSUP) Routines
IMSRT Routine -~
Input/Output Editors
Subsystem Phases or
Obiject Programs

Editor Monitor
Processor Monitor

Supervisor (MONITO)

Table of Contents

#*|OOP2 and portions of IOLS may be storage protected, depending upon the
size of the Nucleus, IOEX, and 1OOPI. Object programs wull not overlqy :
storage protected areas. Gl

Figure 8. Use of Core Storage by the System Moﬁitor

Words Allocated to Machine Functions

The first 93 words of core storage are allocated to -

machine functions. The lowest portion of the Nucleus
contains instructions that accomplish a transfer of con-
trol from machine trap locations to trap routines in the
Input/Output Control System.

System Transfer Points

Transfer words of interest to the programmer are
shown in Figure 9. They are used to pass control to
the Nucleus routines. Those marked with an asterisk
are entered with an unconditional transfer instruction,
for example, TRA s.SRET. An XEC instruction is used to
test s.sRpT. The others are used in a Tsx s.sxxx,4 instruc-
‘tion. The Nucleus also contains entry points to sub-
routines in the Input/Output Control System.

.20

. S.SLDR _Trcmsfer to Sysfem Loader to load next phuse in
) ! A ~ System Library.
- S.SRPT Test for operator |nterrupt
' '$SDMP~ * Transfer word to Dump routine-
“'$,SRUP* .~ Transfer to recall the System Monitor
+ S.SRET* System Return-routine :
S.SRST* Transfer to restore portion of the Restart
S.SCCR Transfer to Change Communication Region routine
S.SIDR Transfer word fo installafion’s uccounting routine

Figure,9; Transfer Words to Nucleus Routines

System Data Areas

The locations that contain data of use to the pro-
grammer are shown in Figure 10. This data can be
obtained in the accumulator by using a cLA instruction.

S.SDAT Current date expressed as. day of the month, i.e.,
mmddyy =
S.SDAT+1 Current date expressed as day of the year, i.e.,
Oyyddd
S.SCUR Name of system in control
S.SFAZ Name of phase of system in control
. S.55WI Switch for system in control
. SSCLK Time of day.(binary)
" 8.8CIS Two's complemenl“o‘f the time alloited : -
$.SCMX Standard time allotment for a run
S.SCOR Core storage limits available to object program
- S.SSCH Result of a call for input/output operation
S5.SSNS Result of a call for input/ovtput operation
S.SLYL Version number and modification level
S.SCSN Upper limit of IOLS, IOBS
S.SPND Upper limit of IOOP
S.PGCT Listing page count
$:SHDR Listing heading text from $JOB card
S.SDBG Debugging work unit and block size

Figure 10. Data Contained Within the Nucleus -

“TIMEKEEPING

If the Core Storage Clock-Interval Timer is available,

each subsystem application and program execution is
__timed using the interval timer, and the system clock
_is adjusted by the elapsed time. An object program
" may obtain the correct time by adding the elapsed time

for the current run to the reading of the system clock,

as explained later in this discussion.

"The System Monitor uses the following three words
in the Nucleus for measuring time:

IBCLK

This is location. 00005 “The mterval timer increments this
location by one every. sixtieth of a second. If the interval timer
is not available, the System Monitor treats this .location as a
clock without the ability to increment or overflow. -
S.SCLK

This is the system clock contalmng the time of day in binary
form. It is advanced by the System Monitor each time the
Monitor gains er relinquishes control.

S.SCIS

This location contams the value to which the 1nterval timer

* was last set by the System Monitor, .

The time of day is kept in the system clock as follows:

1. Location s:sCLK is set to 0 at the initial start.

2. Upon each exit from the System Monitor to a
subsystem or to an object program to be executed
directly under the System Monitor, the Timer routine
of the Supervisor advances the system clock by the
difference of the contents of location BcLK minus the
contents of location s.scis. The timer routine then
places the two’s complement of the number of minutes
allotted to a run, converted to sixtieths of a'second
in binary form, into 1Bcrk and s.scis. This value will
cause an interval timer overflow at the end of the time
period specified by the stiME card or the assembly

parameter MXCLK.

3. Upon each entry to the System Monitor from a

subsystem or an executed program, the Timer routine

again advances the system clock by the difference be-

tween the contents of locations 1BcLk and s.SCIS.
An object program may use a similar technique to

determine the time of day. A sample routine to obtain
the time of day and store it in location TrMEOD in the

object program is given in Figure 11.

sembly.’

s.5U02. A sample configuration is shown in Figure 15.

control cards.

input/output units or devices in this publication:
Input/output device -

or to which information can be transmltted

Log1cal unit -
A'subsystem ‘unit that is equated to a symbohc unit.

Symbolic unit

One of the mnemonics in the Symbohc Units Table Each
symbohc unit is equated to an mput/output device, or a por-

txon of such a device.

ATTACH macro-instructions used during system as-
Figure 13 shows a schematic Symbolic Unlts Table.
Figure 14 shows the minimum symbolic units neces-

. sary for system operation. Thesé are s.sLB1, S.SINi,
s.sout, s.spp1; and the utility units s.svoo, s.svo1, and

The Supervisor maintains this table and modifies it
when processing sSWITCH, SATTACH, SDETACH, OT SRESTORE

- The following. deﬁmtlons apply to dlscussmns of

The physical equipment from whlch mformatxon can be read

TIMNOW PZE ' **
CLA 5 PICK UP TIMER VALUE
SUB. - --8.8CIS MINUS INITIAL SETTING
ADD . S.SCLK PLUS PREVIOUS TIME
STO TIMEOD TAKE YOUR TIME
TRA* TIMNOW

Figure 11. Obtaining the Time of Day in Binary Sixtieths
of a Second

POINTER TO TABLES

A group of constants set from the system assembly
. parameters provides information concerning the loca-
tion and length of the tables within the Nucleus. These
constants are considered pointers to the tabulated data.
They are shown in Figure 12.

Mnemonic Contents - . - Function
SSLB1 pfx uch, ,’sch LIBRARYT
S.SLB2 pfx ucb, , scb LIBRARY2
S.SINT1 pfx ucb, , scb INPUT1
S.SIN2 phx uch, , scb INPUT2
Ss.sou1 pfx uch, , scb OUTPUT1
s.s0U2 pfx uch, , scb OUTPUTZ
S.SPP1 pfx uch, , sch PUNCH1
S.SPP2 pfx uch, , scb PUNCH2
5.5CK1 pfx uch, , scb CHECKPOINT

s.5U00 phx " uch, , scb UTILITYO

T S.suo1 pfx “ucb, , scb UTILITYT
S.5U02 - pfx -uch, , scb UTILITY2
. 8.8U03° . pfx uch, , scb- . UTILITY3
. S.SU04 . pfx uch, , scb UTILITY4
- S.5U05 pfx b, ,scb UTILITYS

“The prefix bits of each entry are intefpreted as follows:

© S.SUNI Pointer to system utility units

S.SUBC Pointer to unit control blocks by channel
S.SSBC Pointer to system control blocks by channel
S.SDEX Information used to load the Table of Contents

Figure 12. Pointers to Tabulated Data

" The publication IBM 7040/7044 Operating System
(16/32K): Systems Programmer’s Guide, Form C28-6339,
contains a description of the contents of these pointers.

SYMBOLIC UNITS TABLE

The Symbolic Units Table lists the input/ output units
available to the system and the addresses of descriptive
tables for these units. There is one word in the table
for each symbolic unit. These entries are initialized by
the System Monitor housekeeping routines from the

<“unit " control block (uch) for the device assigned to the symbolic
unit; - the. decrement. portion: confums the location of the system.

symbohc unit,

Bit0 =0 Unit may or may not be. unloaded -after being.
' rewound.
=1 Unit must be unloaded after being rewound. This
bit is set for S.50U1, $.S0U2, S.SPP1, and S. SPP2
for data protection.
Bit1 =10 Unit is not in use by current program:
=1 Unit is in use by current program. This bit should
. be set by any object program that does not use the
10BS level of IOCS, so that checkpoint and restart
. procedures can be performed.
Bit 2 Not used.
The prefix codes that can be used fo set these bits are:
PZE B Bit0 = 0;Bit1 =0
MZE . Bit0 = 1;Bit1 =0
PTW Bit0 = 0; Bit1 =1
MTW Bit0 = 1; Bit1 =1

The addre’ss"pdnion of each entry contains the location of the

control block (scb) for fhe part of ihe device “assigned to the .

Figure 13. A Schematic Symbolic Units Table

Introduction to the System Monitor and the Combined Monitors

21

System unit :
One of the symbolic units from S.SLB1 through S. SCKI See
Figure 13.

Utility unit

One of the symbollc units S.SU00 through S.5U99.

Use of this symbolic unit reference scheme allows
maximum flexibility in the use of input/output devices
by both system and object programs. In addition, this
allows the machine operator to plan the use of each
input/output device in advance.

The Symbolic Units Table is referenced by any part
of the Operating System that uses an input/output unit
in processing and by all file control blocks. The calling
sequence to s.100P references this table.

The symbolic units s.s1N2, s.sou2, and s.spp2 are pro-
vided for reel switching purposes. These are called
secondary units. They should not be referenced by a
program. Word rcunt in a file control block referencing
one of these ‘should have the primary unit (ssiNi,

s.sou1, and s.spp1) in both the address and decrement

portions or the decrement portion should be zero. They
may have the same unit control block and system
control block as the corresponding primary unit:

If a symbolic unit is not attached, the corresponding
entry in the Symbolic Units Table is a word of zeros.

Control Blocks

~ UNIT CONTROL BLOCKS

A nine-word block of information is created at system
assembly time for each input/output device attached
to the system. These blocks are maintained by the
System Monitor and the Input/Output Control System.
These blocks contain information for each input/output
device. For a description of unit control blocks, see
the publication IBM 7040/7044 Operating System
(16/32K): Input/Output Control System, Form C28-
6309. ' 1

SYSTEM CONTROL BLOCKS

At an initial start, the housekeeping routines of the
System Monitor create a system control block for each
symbolic unit to which a device is attached. The system
control blocks are generated in an abbreviated form
at system assembly time from the arTack macro-
instruction. The length of these blocks and the informa-
tion they provide depend on the attached device. The

system control blocks are used by the unit synchronizer

of 100P to save information pertaining to an operation
requested on a symbolic unit. See the publication IBM
7040/7044 Operating System (16/32K): Input/Output
Control System, Form C28-6309, for a descnptlon of a
system control block.

22

Other Tables

In addition to the Symbohc Umts Table two tables,
the Abbreviated Table of Contents and the Recogniz-
able Control Card Table, are included in the Nucleus
with the Nucleus routines that use thein.

ABBREVIATED TABLE OF CONTENTS)

The Abbrev1ated Table of Contents contains the por-
tions of the Table of Contents that identify the names
and positions in the System Library of each phase of
the subsystem currently in control. This allows the Re-

‘turn routine and the System Loader to obtain the next

subsystem phase to be executed without reloading the
combined monitors.

RI;CQdNIZABLE CONTROL CARD TABLE
The Recognizable Control Card Table is a list of all

control cards that can be recognized by the Return
routine and used by the System Loader to call a speci-

fied subsystem component.

Type- ' 7106
writer :

Channel A

~T70z
U S.SINI
| S.5PPI

Figure 14. A Configuration for a Minimum System

Type- - 7107 Processing Unit

Channel C

writer
Channel A Channel B
S.SU04
r 1402 and S.SCK1
S.SU05
1403 S.SU06 ’ 729 S.SU00
729 S.suUo1
729) s.suo3 -

Figure 15. Sample Configuration for a System

Nucleus Routines

The Nucleus contains the minimum routines necessary
for smooth transition between the subsystem monitors.
The following routines are available to the programmer
through the transfer points in the Nucleus.

System Loader (s.sLDR)

Interrupt Test (s.srpT)

System Dump (s.spmp)

System Monitor Recall (s.srup)

System Return (s.SRET)

System Restart (s.skst)

Change Communication Region (s.sccr)
Installation Accounting (s.SR)

SIS -3 QN O g

SYSTEM LOADER

The System Loader is an absolute program loader that
can load and verify a phase in System Library format
by using information supplied to it in the Abbreviated
Table of Contents. The System Loader. optimizes load-
ing from disk by skipping directly to the track contain-
ing the first record to be loaded. This loader performs
the following functions:

S.SLBI

S.SINT

729 (and/or
.S.SIN2)

S.SOuUl

729 (and/or 5.50U2)
S.SPP1

(and/or S.SPP2)

729 S.SU02

1. It pre-positions the device specified in the Ab-
breviated Table of Contents, loads a phase from the
device, and verifies the accuracy of the positioning.

2. It initiates post-positioning of the device to the
next phase to be loaded.

3. It transfers control to the phase just loaded.

Functions 1, 2, and 3 are optional, as indicated in the
calling sequence to the System Loader, which follows:

TSX ' S.SLDR4
; pfx ptr
where the prefix codes have the following meanings:

Sign Bit
1'— Do not post-position
0. — Post-position
Bit 1
1 — Do not load
0 — Load
Bit 2
1 — Do not transfer control
0 — Transfer control

and ptr has the following interpretation:
ptr=0

Use the pointer, as it is, to reference the Abbreviated Table
of ‘Contents in the established sequence.

Introduction to the System Monitor and the Combined Monitors 23

ptrs20

Adjust the reference to the Abbrev1ated Table of Contents to
location ptr, which must be the first word of a three-word table
of contents entry for the phase or program that the user wishes
to have loaded.

INTERRUPT TEST

The Interrupt Test tests for operator interrupt. A pro-
gram may at a convenient point include the following
instructions: '

XEC S.SRPT
- OPC This instruction is executed if there
is no interrupt request.
orPC This instruction is executed if there

is an interrupt request.

opc is any operation code. Index register 4 may be
altered by this test. If an interrupt request exists, the
caller should complete all operations currently in prog-
ress, take a checkpoint if applicable, and transfer con-
trol to s.sruP.

Each subsystem tests for operator mterrupnon at
logical points during its processing.

THE SYSTEM DUMP ROUTINE

The System Dump routine stores the console panel in
the Nucleus and saves an area of core storage on the
system checkpoint unit, if that unit is attached, and
calls the System Loader to load the Dump program into
- that area.

SYSTEM MONITOR RECALL ROUTINE

The System Monitor Recall routine causes the Super-
visor to be brought into core storage. It is called with a
TRA S.SRUP instruction. : ;

SYSTEM RETURN ROUTINE ‘

When the program in control cannot 1dent1fy a control
- card, it saves the card in s.sAvE and transfers control to
the System Return routine. The System Return routine
~ compares columns 1-6 of the card that has been saved
in location s.save with the cards in the Recognizable
Control Card Table. If the control card name is recog-

" nized, ie., is contained in the Recognizable Control

Card Table, the System Loader loads. the ‘requu‘ed
subsystem component and passes control to it. If there

is no card s.save, or if the card is not recognized, the

System Loader loads the Supervisor record containing
the combined monitors. This routine is called with a
TRA S.SRET instruction.

SYSTEM RESTART ROUTINE

The System Restart routine is the restore portion of the
Restart Program. It reads in the checkpointed contents

24

of core storage, restores the panel, and transfers control
to the program being restarted. This routine is called
with a TRA s.sRsT jnstruction. See the discussion “The
Restart Program,” that appears later in the text.

CHANGE COMMUNICATION REGION ROUTINE

The Change Communication Region routine permits
the programmer to release storage protection, execute
one instruction that changes the contents of the Nu-
cleus, and restore storage protection. ‘The calling
'sequence is: ,
S.SCCR,4

TSX
OPC Instruction that affects the
Nucleus
- Return

¢

INSTALLATION. ACCOUNTING ROUTINE

The Installation Accounting routine is defined by each
installation. It has the calling sequence:

TSX S.SIDR,4
PZE L,N

where:

L=0 A
L is the location of the $ID or $JOB card information.

L=0 :

No $ID or $JOB card exists.
N=Calling program identification.

The Superﬁsor ‘

The Supervisor provides uninterrupted flow of control
from subsystem to subsystem, and from job to job,
during the processing of a stack of diversified jobs.

The Supervisor consists of control routines that are
brought into core storage between jobs:to process Sys-
tem Monitor. control cards to determine the way in
which an application is processed. All operations of

" the machine are controlled by the Supervisor in con-

junction with the subsystem monitors. Control in-
structions are provided by the programmer or the
machine operator by using control cards on the system
input unit.

The Supervisor is called in frorn the system hbrary
unit when required for transferring control between
subsystem monitors, maintaining the Nucleus, chang-
ing the machine environment, changing the sequence
of jobs to be run, assigning external storage devices to
logical input/output functions, or changing the system
configuration,

: Operahon of the Supervisor

After being called into core storage, the Superwsor
processes. System Monitor control cards until a Sub-
system control card is recognized. The Supervisor then
indicates the location of the appropriate Subsystem
phase to the System Loader and releases control to

the System Loader; the System Loader positions the
-appropriate library unit, loads the subsystem phase
and releases control to it.

The Superv1sor tests for operator interrupt 1mme-

diately prior to reading each control card.

When the subsystem reaches an application out-

side its scope, the Supervisor is called in to take control.
When all jobs are completed, i.e., when the sstop
card is recognized, the Supervisor executes a terminal
procedure. : :

The Dump Program
The 7040/7044 Operating System provides a dump

program that can be used by object programs, system-
programs, or machine operators. This program lists the

operator console panel, certain symbolic unit informa-

tion, and specified portions of internal and external

storage. It is primarily designed asa general diagnostic
and debugging aid for system programs that cannot
continue because of error conditions. It is not intended
to replace object program symbolic debugging tools,
e.g., DUMP or PpUMP in the relocatable library. ;

A series of dump parameters, identified by five- digit
message numbers; is assembled in the Dump program
in the System Library. :

By including the appropriate ‘error number in the
calling sequence to the Dump program, the pro-

grammer provides complete and informative ‘error

messages-and selective storage dumps. Additional error
~numbers and error messages may be added by reassem-
bly of the Dump Program. For details concerning this,
see the publication IBM 7040/7044 Operating System
(16/32K): Debugging Facilities, Form C28-6803. -

Che'ckpoini and Restdrf

Checkpoint

The Checkpomt routine is a relocatable subroutlne
that may be incorporated into any program running

under the Operating System. A call to the Checkpoint

routine saves the status of the console panel registers,

console sense switch settings, file control information, -

and core storage on a specified checkpoint device. -

The checkpoint calling sequence is:

TSX ' ICKPT,4
pix S.Sxxx,t files
PZE low,,high

If the prefix pfx is MzE, no unit positioning in-

formation will be saved. If the prefix pfx is pzE, files

is the location of the first of two words describing the
location of label information used by the program
currently in control. These words have the following
format:

PZE loe,,1all
PZE dli,,li -

If there are no file control blocks, the field files must
be zero. If the field files is zero, the only units that are
repositioned are those with bit 2 on in the-Symbolic
Units Table and reservation code 00-70 in the system
control blocks. The symbol loc is the location of the
first file control block, lall is the total length of all file

- control blocks, dli is the displacement of the label

information within each file control block, and li is the
length of one file control block. S.Sxxx, ¢-designates the
symbolic unit assigned ‘as the checkpoint device; if it
is zero, the system checkpoint device s.sck1 is used. The
symbols low and high are, respectively, the lower and
upper limits of the core storage locations to be saved;
if low, high is zero, the limits in s.scor are saved. If the
designated checkpoint device is unattached, the re-
quest will be ignored. It is not possible to restart from
a checkpoint if the core storage limits specified are
below IBORG or above S.SEND.

Restart is usually accomplished by the machine

~ operator, but special restarts can be initiated by a

program. The Restart routine in the Nucleus uses the
information in the checkpoint record to restore the
computer to the conditions existing when the check-
point was taken and causes the machine to resume
processing from that pomt

A checkpoint that does not retain unit positioning
information (because of an interrupting program that
requires use of core storage only) does not permit re-
positioning of input/output devices upon restart. The
programmer requesting such a checkpoint must back-

- space the checkpoint unit over a sufficient number of

physical records to include two logical records before
restart to accomplish a restart. He must also supply a
transfer address to which the Restart program may

return.. The procedures followed by the Checkpoint

routine to take this type of checkpomvt are:

L. Halt all input/output activity pertinent to the
routine for which the checkpoint is being taken.

2. Wnte a checkpomt identification record.

‘3. Save the contents of the panel registers.

4. Save the contents of core storage. -

The procedures usually followed by the Checkpoint
routine, although not necessarily in the order given,

are:

1. Halt all input/output activity pertinent to the
routine for which the checkpoint is being taken.

2. Write a checkpoint identification record, saving

- pertinent Nucleus data.

3. Save the unit positioning information.

Introduction to the System Monitor and the Combined Monitors - 25

Form C28-6318-5
Page Revised 7/1/65
By TNL N28-0534-0

4. Save the contents of the panel registers. The
contents of the accumulator and the MQ are not saved.

5. Save the contents of core storage.

6. Type a restart code (the prefix must be: srx)

1If there is no unit corresponding to s.scki, a.request

for checkpoint on this unit will be ignored. If the pro-.
gram is taking checkpoints on s.scki, it cannot take

snapshots. If it is taking snapshots it .cannot take
checkpoints on s.sck1. :

Restart Progrum : ‘
The Restart program performs the followmg actlons

1. Locates the checkpoint device and posmon from
the restart code. -

2. Checks the “core storage limits-to be restored
against s.scor limits. If s.scor limits are exceeded,
the restart is terminated and a code 20902 error
message is typed.

3. Checks the compatlblhty of the restart input/ "

output data with current input/output data found in
the Symbolic Units Table, the unit control block, and
the system control block, and notifies the operator of
unit discrepancies. Checks labels, if applicable. Posi-
tions devices that may be repositioned.

4. Notifies operator of thc switch. settmgs at check-
point time.

5. Brings in the panel record to set up the restore

portion of the Restart routine, which is located in
the Nucleus.

6. Restores the appropnate monitor job data

7. Transfers to s.sest, the restore portion of Restart.
8. Restores the contents of core storage within the

specified limits by reading the core-storage-load record
from the checkpoint file on the restart device.

9. Restores the contents of the panel registers.

10. Transfers to the location specified by the Restart
routine. (This location is usually the point from which
the transfer to the Checkpoint routine was made.)

A special restart involving only the restoration of the
panel and core storage to the checkpoint condition may
be initiated by a program, The program taking: the
checkpoint must supply certain information to the
phase of the Restart routine located in the Nucleus.
It must provide the address to which transfer is to

26

be made after restoration is complete, and it must sup-

_ply information for restoring the panel and for reading

the core storage load’record. Before transferring to this
phase, the checkpoint device must be positioned to
the record that is to be read. Program-initiated restart -
then requires only steps 7-10 in the above list. No de-
vices are repositioned..

Information on Restart procedures is in the publica-
tion IBM 7040/7044 Operating System (16/32K): Oper-

_ ator’s Guide, Form C28-6338.

The Input/Output Control System

~ The Combined Monitor and the System Momtor use

the 7040/7044 Input/Output Control System, which is
a set of routines that performs input/output functions
for an object program. Among the facilities provrded
by the Input/Output Control System are:

1. ‘Blocking and deblocking logrcal records

2. Labeling data files

3. End-of-reel and end-of-file handling

4. Performing all input/output operations

5. Detectmg and correcting errors

6. Scheduling operations on the channels

See the publication IBM 7040/7044 Operating Sys-
tem (16/32K): Input/Output Control System, Form
C28-6309, for a detailed descnptlon of the Input/-
Output Control System. .

Refer to Figure 8 for an 111ustrat10n of the over-

laying of unused portions of the Input/Output Control
System by subsystem or object programs.

The 1401 Input/Output Control Program
The 7040/7044—1401 Input/Output Control Program
permits the input/output devices on the 1401 on chan-
nel A to be used as if they were on the 7040/7044.
Input/output equipment attached through an on-line
1401 is referred to as being on ehannel S. This program
stays. in a ready loop waiting. for the 7040/7044 to
select the 1401. When that occurs, the select instruc-
tion is brought into the 1401 and decoded to perform‘
the proper input/output function. .

"“The- 1401 does not attempt to- correct errors; the
7040/7044 is notified of all errors.

This section describes the input/output unit ass1gn-' '

ment techniques available to the programmer and in-
cludes a discussion of the factorsto be considered in

using these techniques. All of the unit specifications -
described in this section may be used in the units field

of a sFILE card or FILE pseudo-operation (MAP).

For the purpose of this discussion, an available unit

is one that meets the following quahﬁcatlons
1. The unit is attached. :

2. The unit isin ready status. (A test for ready status

is performed only if the system is assembled with
IFsNs SET 1. See note.below.) ,
3. The reservation code assigned to the umt is 00.

(Reservation codes are discussed later in this section.)

4. The unit is not a unit record device.

5. The format of a disk or drum unit corresponds to
a standard format of the installation.

6. If the system is assembled with LABELS sET 2, the
label associated with the unit must be standafd and
must have an expired retention period:.

NotE: 1Fsns and LABELs are installation assembly
parameters. More detailed information on them is in
the publication IBM 7040/7044 Operating System

(16/32K): Systems Programmer’s Guide, Form ,

(C28-6339.
Any search for an avallable unit begms Wlth the

first unit in the Symbolic Units Table and continues

along the table until a unit is found that satlsﬁes the
requirement for that search

Unit Ass:gnmem‘ Techmques

There are five unit assignment techniques avallable to '

‘the programmer. The use of these techniques is gov-

erned by unit specifications on' Operating System con- ~

trol cards. A description ‘of each techmque foIlows

Symbolic Unit Reference Techmque

‘This technique a]lows the programmer to designate
units by means of any of the following spec1ﬁcat10ns
IN

This specification mdncates that a system input unit is to be
assigned. For. a primary unit spemﬁcatlon, :S.SINT is ass1gned
for a secondary unit spemﬁcatlon, S.SIN2 is assrgned

-QU
assigned. For a primary -unit specification, S.SOU1 is assigned;

for a secondary unit specification,; S.SOU2 is assigned.

PP : ’

unit is to be assigned. For a primary unit specification, S.SPP1

is assigned; for a secondary unit specification, S.SPP2 is assigned.

CK1

This spec1ﬁcatlon indicates that the system checkpomt unit

is to be assigned.
“LBx . .
This specification mdlcates that a system hbrary unit is to be

assigned. If x is 1, S SLB1 is assigned; if x is 2 S. SLB2 is
assigned.)

Thisspeéiﬁcation ,indicatesthat a system output unit is to be-

This specification indicates that a system:peripheral punch

Form C28-6318-5
Page Revised 7/1/65
By TNL N28-0534-0

Input/Output Unit Assignment -

Uxx
This specification indicates that utility unit xx is to be as-

» signed. Any ‘two-digit number from- 00 through 99 may be used

for xx.

| RDafy]

PRa[y]
PUaly]

These specifications indicate the assignment of a unit record
device: a card reader (RD), a printer (PR), or a card punch
(PU). The channel, a, to which the device is attached may be
either A or S. The channel A interface, y, may also be specified
as 1, 2, or 3 If y is omltted interface 1 is assumed

ko

“This speciﬁcatlon is_valid in' a-secondary unit field on]y It
indicates that the secondary unit for a file is to be the same
physical unit that is assigned as the primary unit for the file.
This allows multi-reel tape files to be processed on one unit;-
when the end of a reel is reached, the program pauses to permit
the mounting.of a new tape. However, disk or .drum:units are
not re-used when the end of the medlum is reached.

NONE

This speciﬁcation, in a primary unit field, indicates that no
unit is to be assigned. In a secondary unit field, NONE has the-
same eifect as an astensk (*)

”Any Unit”’ Reference Techmque ~ C
This technique allows the programmer to designate
units through any of the following specifications:
“T'—to indicate that any available tape unit is-to be used
D—to 1(111dlcgte that any available disk or drum ‘unit is to be
use

U—to indicate that any avallable unit (tape, disk or drum) -
is to be used

. When the “any unit” references are used, units are
assigned on any channel, although the use of channel A
is avoided, if possible.

‘ ,Intersystem Reservutlon Techmque :
‘Every system unit or utility unit that is included in the

system has a two-digit code, called a reservation code,
associated with it. The reservation code for a unit is
placed in the system control block for that unit. The
code identifies the unit or mdlcates the functions for
which it can be used. The codes that can appear in the
reserve status field of a system control block and their
meamngs ‘are: ’ :
CODES (DECIMAL) MEANING
00 i The unit is unreserved and not in use.
01-20 The unit has been reserved by the user
. as an intersystem unit. It is assigned only .
when specific reference is made to its
intersystem reservation code or to its
symbolic unit designation.
21-49 These codes are not specified at present.
50 The unit is unreserved ‘but in use as a’
system' work unit. It may be assigned for
use by object programs when it is made
available by the Loader (IBLDR).
51-55 ~These codes are not specified at present.
56 The unit is unreserved but it is-in use by
: the system or the object program. This
unit is assigned only if specific reference
is made to its symbolic unit designation.

Input/Output Unit Assignment. = 27

CODES (DECIMAL) N MEANING
- :
o571 The unit is unreserved but in use by a
priority program.
58 The unit is unreserved but in use by a .

permanent program.

59 ' The unit is in use as a system library
unit (S.SLBx).

60 The unit is in use as a system input umt ’
(S.SINx).

61 The unit is in use asa system output unit

) (S.S0Ux).)

62 The unit is in use as a system punch
unit (S.SPPx).

63 The unit is in use as the system check-

point unit (8. SCK1).

The intersystem reservation technique uses the codes
01 through 20. The programmer may assign one of

these codes to a unit and thus reserve it for carrying

over file assignments from application to application
within a job. The same intersystem reservation code
may not be assigned to more than one unit at the same
time. Intersystem reservation codes may be assigned
only to those units that have codes of 00 at the time the
intersystem code is to be assigned.

‘The programmer may assign an intersystem reserva-

tion code to a particular unit by designating an = Iyy-
on a control card which allows this specification. The:

yy is a two-digit decimal number from 01 through 20.
Some of the control cards which permit this designa-
tion are: the sopEN card, siBjoB card (Copy option),
soEDIT card, sFILE card, the Sort sysTEm card, and the
Edit control cards.

Once an intersystem code has been assigned, it may

be used to identify the particular unit to which it has-

been assigned. The programmer specifies Iyy in the

variable field of a control card calling for a unit desig-

nation, and the unit chosen is that which has been
assigned the code yy. Some of the control cards on
“which this specification may be used are: the soPEN
card, scLOSE card, sswiTCH card, sSCHANNEL card, sIBJoB
card (Copy option), siEprT card, soEDIT card, SFILE
card, sRELOAD card, the Sort SYSTEM card and the Edit
control cards.

An intersystem reservation code remains assigned to -

a particular physical unit until the programmer speci-
fies that it should be released or until a sjoB card ora
$RESTORE card is encountered.

Label Search Technique

If an installation uses standard labels, the programmer

" may use the label search technique to have units as-
signed for his input and output files. This technique
allows the pre-mounting of input files. The control
cards on which units may be designated by means of
label search parameters include the sriLe card, the
sRELOAD card, the Sort systEM card, and the sassiocN
card for the Update program.

28

INPUT LABEL SEARCH

To use label searching for input files, the programmer
instructs the operator to place the file on any unit not

currently in use. The programmer .may optionally
designate that the unit be on a particular channel. He
uses a label search parameter as the unit designation
on the control card. The label search parameter speci-
fies the type of device on which the file is located and
may specify the channel on which the device is
located. The programmer uses a label control card to
indicate the labeling information associated with the
file (the particular label control card that is used

- varies with the application). The system assigns the

unit for the file by searching among all the devices of
the specified type on the specified channel (if any)
until the label is found that contains the appropriate

" information.

The format of the label search parameter for. mput

files is:
dic]LIN) k

d — This letter is replaced by the device type, whlch may

be any of the fo]lowmg
T —to indicate a tape unit
D—to indicate a disk or drum unit ‘
U—to indicate any unit (tape, disk, or drum)

‘c —This letter, if specified, is replaced by a:character iden-
tifying a physical channel (A, B, C, D, or E) or a symbolic
channel (V, W, X, Y, orZ). If a physrcal channel is designated,
devices on that channel are searched. If a symbolic channel is

designated, devices on the physical channel associated with that

symbolic channel are searched first. If the label is not found,
devices on the other channels are searched.

If no channel is specified, devices on all channels are searched
until the desired label is found. ‘

LIN - These characters must be included to indicate that

‘thee label search is for an input file.

OUTPUT LABEL SEARCH

To use label searching for output files, the programmer
uses a label search parameter as the unit designation
on the control card. The label search parameter speci-
fies the type of device on which the file is to appear
and may specify the channel upon which the device is
located.

If the system is assembled with LABELS sET 1, the first
available device will be selected as the output device.
In this case, labels will not be checked. If the system
is assembled with raBeLs ser 2, the labels will be
checked and only a unit having a label with an expired
retention period will be assigned. ‘

The format of the label search parameter for output
files is:
d[c]LOU

d — This letter is replaced by the device type, Whlch may
be any of thefollowing:
T—to indicate a tape unit
D—to indicate a disk or drum unit
U—to indicate any unit (tape, disk, or drum)
- ¢ — This letter, if specified, is replaced by a character iden-
trfymg a physical channel (A, B, C, D, or E) or a symbolic

channel (V, W, X, Y, or.Z). If a physical channel is designated,
devices on that channel are searched, If a symbolic channel is
designated, devices on the physical channel associated with
that symbolic-channel are searched first. If a label is not found,
devices on other channels are searched. - :

If no channel is specified, devices. on all channels are searched
until the desired label is found.

LOU — These characters must be 1ncluded to indicate that the
label search is for an output file.

DEFERRED LABEL SEARCH
The point at which a label search is made is governed

by the mounting option specified on the sriE card asso-

ciated with the file. If the option specified is MOUNT or
READY, the search is performed by the Loader (1BLDR)
or the Reload program during object program loading,.
If the option specified is DEFER, the search is performed
when the file is opened. In this case, a label search sub-
~ routine is included with the object program and is
called by the Input/Output Control System when it is
needed. This procedure is known as deferred label
searching. Further information about deferred label
searching can be found in the publication IBM
7040/7044 Operating System (16/32K): Input/Output
Control System, Form C28-6309.

Symbolic Channel Assignment Technique
This technique allows the programmer to refer to sym-
bolic channels which have been previously defined by
a sSCHANNEL control card. The method for defining sym-
bolic channels is described in the section, “System
Monitor Control Cards,” in which the scaANNEL card
is discussed.

Once a symbolic channel has been deﬁned the pro-
grammer uses variable unit references to request that

available units on symbolic channels be assigned. This -

type of reference has the following general form:
[k]cn

— the type of device that is to be a551gned Thls may be:
T — to indicate that a tape unit is to be a351gned
D — to indicate that a disk or drum unit is to be assigned
- Dm — to indicate that a unit on symbolic module m is to
be assigned
U —to indicate that-any unit is to be ass1gned

If the device type is not specified, U is assumed.

"¢ — the symbolic channel with which the device is associated.
The symbolic channel designations are any of .the alphabetic
characters V, W, X, Y, or Z. Any symbolic channel designated
by a variable unit reference should have already been defined
in a $CHANNEL card.

n — may be any number from 1 through 10. This is the order.
in which the device is chosen from the available units on the
symbolic channel. Devices are chosen from available units in
the order in which they appear in the Symbolic' Units Table.

An example of a variable unit reference is Tvs. It in-

dicates that the third available tape unit on symbohc

channel V is to be assigned for a file.
The following points should be kept in mmd when.
variable unit references are used:
1. As a given stage in the processing :of 4 job, a
variable unit reference applies to a particular physical

unit. As a job progresses, various units may -become
unavailable. Thus, at a later stage in processing, the

‘same variable unit reference may apply to a physical

unit different from the physical unit to which it pre-
viously applied.

2. If the order of avallablhty spemﬁed in a variable
unit reference is greater than the number of units
available on the symbolic channel spe01ﬁed a unit is
selected on some other channel.

3. If an appropriate primary unit cannot be as-
signed, the job is terminated.

The Use of Unit Assignment Techniques

The variety of unit assignment techniques available
allows the programmer a choice in indicating how units
are to be assigned for input and output files. For each
unit that is to be assigned, any one of the five tech-
niques may be specified; the programmer need not
specify the same technique for all units. It is even
permissible for the primary and the secondary unit
specifications on a sFILE control card or in a FILE pseudo-
operation (MaP) to indicate two different unit assign-
ment techniques. The rules followed by the Loader
(1BLDR) in assigning units, particularly the order of
assignment, will affect the.- ‘programmer’s choice of
technique.

i

Order of Assignment

All units for a single Loader application are assigned
by the Loader before the object program is loaded.
(Prior to this time, any desired channel relationships
should have been established by means of a sCHANNEL
card.) All of the unit assignment specifications are
evaluated as a group when unlts are about to be
assigned. -

When more than one technique of unit a551gnment
has been specified for the units that are being a551gned
the order in which units are assigned is:

1. All units that have been spec1ﬁed by symbolic. .
unit reference:’ ,

2. All units that have been speciﬁed through their
intersystem reservation codes. Units specified by Iyy
are assigned before ‘units spec1ﬁed by IyyR (codes to
be released).

3. All units that are specified by input label search.
If the search fails to locate a unit with the requested
input file label, a message will be typed identifying
the file to be mounted.

Norte: At this point, the Loader makes any reserva-
tion code changes required for the units thus far as-
signed. For all units with intersystem codes that are to
be released, the Loader sets the code to 00. Each
assigned unit with a code of 00 is then assigned either
an intersystem code (if one has been specified for it)
or-a “unit in use” code, which is the decimal number 56.

Input/Output Unit Assignment 29

Adjusting the codes at this point prevents the units

from also being assigned by any subsequent methods.

Duplicate assignments ‘may have already occurred,
however. For example, if s.suo4 has been assigned the
intersystem code 02, two files, one specifying s.suo4 and
the other specifying 102, are both assigned to the device
attached as s.suo4. A symbolic unit specification and an
input label search specification may also result in dupli-
cate assignment if the symbolic unit (for example,
s.5U06) has no code assigned to it (making it available
for input label search) and the input file happens to
be on the device attached as s.suos. An-intersystem
specification and an‘input label search specification will

never cause duplicate assignment since units reserved

by intersystem codes are not included in label search.

The assignment of units.then continues as follows:

4. Units that are specified by output label search.

Norte: If a-request for an output label search desig-
nates a particular channel, but there are not enough
units of the specified type on that channel, the unit
request is said to have “spilled.” The channel designa-
tion is then ignored and:a- search is made later for a
unit of the specified type. SR

The search for a “spilled” primary unit is made after
all other requests for output label search have been
processed. The search for a “spilled” secondary unit
is made when the “any unit” references are processed.

5. Units that are specified by varlab]e umt refer-k

ences.,

a. Units for which a partxcular device type has
been spe01ﬁed are assigned before those units
for which no dev1ce type has been specified.

b. Disk or drum units for which a ‘symbolic module
number has been specified are assigned be-
fore those without such a specification. B

NorE: If a variable unit reference specifies the nth
available device on a symbolic channel, but there are
fewer than n devices available on the physical channel
associated with that symbolic channel, the unit request
is said to have ° “spilled.” The variable unit reference is

then treated as if it were an “any unit” reference of the

same device type. The Loader does not assign a de-
“vice to the unit at this time, but processes any remain-
ing variable unit references. The “spilled” request is
processed when the “any unit” references are proc-
essed. :

The last units to be assigned are:

6. Units specified by the “any unit” references (U
T, or-D) and units for which the requests were
“spilled.” ; *

a. Primary units are ass1gned first. The pnmary
units assigned are those specified by “any unit”
references and by “spilled” variable unit refer-
ences. Units for which a particular device type

30

(T or D) is specified are assigned before those
- for which a general unit type (U) is specified.
At this point, if there are any primary unit re-
quests (output- label search;. variable - unit
references, or “any unit” references) that have
not been satisfied because the Loader could
not find enough available units, a message is
typed, indicating the number of units needed
along with the device type and physical chan-
nel requirements of each unit. If possible, the
* operator should prov1de available units to meet
“the requlrements (by placing units in ready
~ status, for example). If available units are not
~ provided, the job is terminated.

'b. Secondary units are assigned after all pnmary
_units have been assigned. The secondary units
~ assigned " are those specrﬁed by “any unit”

references, by spllled variable unit references,
randby “spilled” output label search requests.
Units for which a particular device type (T or
D) is specrﬁed are assigned before those for
which a general unit type (U) is specified. If
there is no unit available for assignment as a
secondary: unit; the physical unit assigned as

--the primary unit for a file is also assigned as
the secondary unit. :

When output label search, variable unit references,
or “any unit” references are used, as the Loader as-
signs a unit for a file, it assigns to the unit a reservation
code. If the unit specification included = lyy, the speci-
fied. inters'ystern code:is assigned. Otherwise, the “unit
in‘use” code,’ whlch is the decimal number 56, is as-
31gned

Additional Factors
The programmer should be aware of several pomts

‘concerning the manner in whlch umt assignment op-

tions are processed.

1. If a unit has been assigned for an application as a
result of a variable unit reference, the programmer -
may- not assume that the same variable unit reference,
used in a subsequent application within the job, will

: result in the same unit being assigned. For example, a

specification of Tvs calls for the fifth available tape unit
on channel v. The tape unit found will be the fifth one
available at the time the search is made by the Loader.

“A program loaded subsequently involves a different

search by the Loader, and the fifth unit available at
this time may or may not be the same unit found before.

A method for guaranteeing that the same unit.be
assigned in the later application is that of assigning an

intersystem code to the unit. For- example, a valid

specification for the first application would be Tvs = 103
(if the intersystem code 03-is not already assigned to

another unit). The specification for the subsequent ap-
plication need only be 103 to cause the same unit to be
assigned.. . S ,

2 Operatlon of label search for output umts varies,
depending on the setting of the assembly: parameter

LABELS, which is an installation option. (Assembly

parameters are discussed in the publication. IBM
7040/7044 Operating System (16/32K): Systems Pro-
grammer’s Guide, Form C28-6339.) ‘-

For a LABELS SET 1 system, since output header labels

are not read and checked, a label search request for

an output unit results in the assignment of the first
available unit of the specified type. Therefore, since

this assignment can result in the selection of a unit con-

taining an input file for a subsequent application, the
user should make certain that any such units are out
of ready status or are assigned reservation codes. (If

out of ready status, the units must be returned to ready

status before they can be considered available for
assignment.) :

For a LABELS SET 2 system, since output header labels
are unconditionally read and checked, a label search
request for an output unit results in assignment only

when a unit of the specified type contains a standard

header label with an expired retention period. Input
files are protected by labels with unexpired retention
periods.

A label search for an input unit always involves
checking each of the following control block fields,
unless the field contains all zeros: file serial number,
reel sequence number, label date, and file identification.

Label searching techniques can be used when an
output file from one application is to be used as an
input file in a subsequent application in the same job.
‘In the earlier application, the programmer can specify
output label search to have a unit assigned for the
output file. Then, in the subsequent application, an
input label search can be used to assign the unit on
which the file is located. Any combination of the fields
- listed above can be specified in the control block for
the input file. (This method is advised only for use
with LABELS SET 2.)

Another method would be to request, in the earlier
application, that the unit assigned as a result of the
output search be reserved as an intersystem unit. (This
is done by adding = Iyy to the label search parameter.)
In the later application, the programmer can specify
the intersystem reservation code to cause the same
unit to be assigned for the input file. While a unit is
assigned an intersystem reservation code, it is not con-
sidered to be available. This method, therefore, allows
the file to remain on a device that is in ready status,
without the risk of the unit being chosen as a system
work unit or being assigned unintentionally (by means

of a search for an available umt) during an_inter-
medlate apphcatlon

R Any job will:be termmated 1f the Loader cannot
locate .enough units to satisfy the primary unit specifi-
cations for object program files. If the primary unit for
a file has been assigned, but there is no unit available
for assignment as a secondary unit, the device assigned

“as the primary. umt will .also be considered as the sec-

ondary unit. :

Secondary unit spe01ﬁcat10ns (other than * or NONE)
are subject to all the rules for order of assignment.
Consequently, the secondary unit for a file is assigned
before the primary unit for that file whenever the speci-
fication for the secondary unit has priority in order of
assignment over the specification for the primary unit.
However, if no unit is available when the primary is to

“be assigned, the job will be terminated.

Job termination might have been avoided if the pri-
mary unit had been assigned before the secondary unit,
since the secondary unit requirement could have been
fulfilled by the primary unit. Therefore, if any doubt
exists as to the number of units available for a job, care
should be taken that secondary unit specifications do
not interfere with primary unit assignment.

4. In general, for jobs in which actual device types
(T or D) are specified, the use of general unit types
(U) should be avoided. As a result of a unit request
being “spilled,” it is possible that unit requirements
will not be met although it seems that enough devices
of the proper types are available for program
execution.

For example, consider the following sCHANNEL con-
trol card:

1 16

'$CHANNEL X(4-10U)Y(1T)Z(4-5T)

Assume that at the time that the scHANNEL card is
processed, there are 11 available tape and disk units
on channel B, one available tape unit on channel A, and
four available tape units on channel C. The channel

~ requirements are met; that is, there are three channels,

one channel has at least four units, another channel
has at least one tape unit, and a third channel has at
least four tape units. The total unit requirement of 16
units, six of which must be tape units (10U + 1T + 5T),
is also met. The following relationship is then estab-
lished:)

Channel X = Channel B

Channel Y = Channel A
Chaunel Z = Channel C

- The sFiLE cards for a program that is loaded subse-

quently contain unit specifications for ux1, ux2, uxs, ...
UX10, TY1, TZ1, TZ2, . . . 1Z5. The order of assignment in-
dicates that all specifications for tape units are to be

Input/Output Unit Assignment. 31

processed first. The tape unit on channel A is assignéd
for Tv1; the four tape units on channel C are assigned

for Tz1 through 1z4. When 125 is to be assigned, there

is no available tape unit on channel C. The request is
“spilled”; that is, 125 is treated as the “any unit” refer-
ence, T, and is saved for later evaluation.
Ten units on channel B are then assigned for uxi
through vx10. The units are-assigned in the order in
which they appear in the Symbolic Units Table, with-

32

out regard to device type. Therefore, when-the units
have been assigned, the unit that remains unassigned
on channel B may, be either a tape unit or a disk unit.

- 'Whenthe “any unit” reference, T, (converted from
TZ5) is processed, a search is made for an available
tape unit. The only available unit is the one unassigned
unit on channel B. If this-unit:is a disk unit, it cannot be

- assigned to fulfill a T specification. Unit requirements

will, therefore, not be met.

Introduction

The Processor has facilities for translating source lan- i

guages into binary programs and for loading- and
executing translated programs. Input to the Processor
is a deck consisting of all the cards necessary for a
given processor application. A processor application
is the basic unit processed by a Processor at any one
time; it is preceded by .a siBjoB card and continues
until the next siBjoB or siBsys control card. A processor

application may be a segment of a job, since a job

(previously defined) may contain one or more proc-
essor applications together with other types of appli-
cations if desired. A deck for a processor application

might consist of load-time control information, one or -

more source language decks (FORTRAN, cosoL, and
Mar), and/or relocatable binary decks from some
previous compilation.

An application could be processed in one of the
following ways: (1) compile or assemble only, (2)
compile or assemble and load, (3) compile or assemble,
load, and execute, or (4) compile or assemble load,
execute, and debug. :

The Processor consists of eight sections:

The Processor Monitor, which is dommant w1th1n
the Processor. It supervises the execution of the com-
pilers, the assembly program, and the Loader. As the
supervisory portion of the Processor, it provides com-
munication with the System Monitor, and it converts
the load time control cards:to a binary form and saves

__this information for the Loader.

The FORTRAN Compiler, which processes programs
written in a subset of the FORTRAN 1v language — a sci-
entifically oriented language —and produces mput to
the Macro Assembly Program.

The COBOL Compiler, which processes programs
written in the coBoL language —a commercially ori-
ented language — and produces mput to. the Macro
Assembly Program. :

The Macro Assembly Program, whlch processes (1)
programs written in the map language — a machine-
oriented language with macro facilities — and (2) the
internal language programs produced by the copor and
FORTRAN Compilers. The Macro Assembly Program pro-
duces a binary program deck in reloeatable format from
each compilation: This deck can retain enough sym-
bolic content to enable communication between sep-
arately compiled program decks. E ,

The Loader, which combines program decks pro-
duced by the Macro Assembly Program, the load-time

The Processor 'v(IB;lOB)

information saved by the Processor Monitor, and any
requisite library subroutines, to form one executable

_ machine-language program. It loads separately assem-

bled program decks, allocates storage for common data
and input/output buffers, and, optionally, provides a
listing of the core storage allocation. The Loader trans-
fers control to the object program if the programmer
has specified execution of the program. -

The Loader crain feature provides a way to run
programs that exceed a single core storage load by
forming a multiphase program consisting of a main link
and one or more dependent links that are processed
to form several core storage loads.

The Loader copy feature prov1des a way to produce

" and save absolute object programs for subsequent load-

ing and execution by the Reload Program.
The Debugging Processor, which processes the load-
time debugging requests associated with a mar or

- FORTRAN program. The Debugging Processor analyzes
-the requests in a debugging deck, calls in special de-

bugging subroutines that are executed with the object

program, and edits the dumps that have been produced

by the debuggmg subroutines. The dumps are edited
after the object program has been executed '

The Reload Program, which loads -absolute ob]ect
programs from a file produced by the Loader.

- The Subroutine Library, which contains. control in-
formatlon and routines to be loaded into core storage
if required for object time execution.

Figure 16 shows the operation of the Processor com-

‘ponents on source language programs.

The Input/Output Control System

The Processor-uses the highest level of the Input/
Output .Control: System. In -addition, the following
levels of the Input/Output:Control System are avail-
able to the user through the 10cs options that he may
specify on the siBjos card for his processor-application:
- Input/Output Operations 1 (IOOPI) is the lowest
level available: to Processor users. It includes 10EX,
which provides trap:supervision. 100p1 provides the

unit synchronizer, device select and error correction

routines; and overlapped input/output and processing
for.729 and 7330 Magnetic Tape Units, 1301 Disk Stor-
age, 1302 Disk Storage, and 7320 Drum Storage. The
user may communicate directly with 10EX; however
the object program may not overlay 1oop1. =
Input/Output Operations 2 (IOOP2) provides de-
vice selection, error correction routines, and overlapped
input/output and- processing for unit record equip-

The Processor (1BjoB) 33

: Seurce Language input I

Result

Subroutine

Library

FORTRAN Com-
FORTRAN piler produces
PROGRAM Macro Assembly
Program input
. .| COBOL Compiler Macro Assembly
cosoL ‘produces Mdcro: Program-assembles
PROGRAM - = [== _Assembly Program - into relocatable
input binary decks

] The Loader comblnes

MAP LANGUAGE

PROGRAM
e) Debugging Processor

LOAD - TIME analyzes debugging,

DEBUGGING - . requests and calls

REQUESTS debugging sub-

routines :

LOADER Processor Monifﬁ;
CONTROL) . . Pl’Edjpl’OCeESesd O‘T'l
CARDS E)r © uces Loader
B input

~————®--decks, Loader confrol

relocatable binary 7| < Single
Executable -
Program

——p mformuhon and
4 library subroutines -

Relocatable
decks from
previous
assemblies

Eigufe 16. Op}eraﬁoh‘ of k{he Prbcessor on Source Lanéuage Prdgrams -

ment and telecommumcatlons dev1ces The 100P2 leveI
includes the 100p1 level.

The Input/Output Label System (IOLS) prov1des
automatic label handling routines and reel sw1tchmg
routines. The 10Ls level includes roop2.

The Input/Output Buﬁermg System (IOBS) is the
highest level and provides record blocking and de-
blocking routines, and buffer supervision. Checkpomt
facilities are provided. The 108s level includes1ors. * -

A further discussion of the Input/Output Control
System facilities is in the publication IBM 7040/7044
Operating System (16/32K) : Input/Output Control
System, Form C28- 6309

Communication with the System Momtor

The Processor Monitor is part of the combined monitor
core storage load. The Processor maintains communi-
cation with and uses some of the facnhtles of the
System Monitor.

The Nucleus "that is mamtamed by all Operatmg

System monitors is checked by the Processor Monitor -

for the availability of input/output units at the initial-
ization of any application and before releasing control
to one of the compilers, the assembler, or the Loader.

~The System Loader, which is part of the Nucleus,
is used for locatmg and loadmg system phases

Processor Source I.cmguuges

The Processor includes programs that translate Macro
Assembly Program, copor, and FORTRAN source lan-
‘guage programs and debugging requests.

34

THE MAP LANGUAGE , ‘ ;
The map language is a symbolic machine language.
In addition to providing symbolic operation codes for
machine instructions, the Map language contains a

number of ‘pseudo-operations for data generation,
storage allocation, symbol definition, and file descrip-
~ tion. Certain pseudo-operations enable the MaP pro-

grammer to refer to programs that are compiled or
assembled independently. The Macro Assembly Pro-
gram permits the definition of macro-operations and
the use of macro-instructions in the source program.
When a macro-instruction -is encountered, it is ex-
panded -according to the sequence-of instructions used
to define the corresponding macro-operation. In gen-
eral, any element of an instruction in a macro-operation
may be defined as variable, allowing ﬂex1b1hty in the
use of macro-instructions.

Further information concemmg codmg in the mar
language is in the publication IBM 7040/7044 Operat-
ing System (16/32K): Macro- Assembly Program (MAP)
Language Form C28-6335.

THE FORTRAN LAN’GUAGE

The 7040/7044 FORTRAN. IV language and its assomated
‘compiler allow the user to communicate with the M

7040/7044 Data Processing System in a language more
concise and familiar to him than the 7040/7044 ma-
chine language itself. This substantially. reduces the

training required to program, as well as the time con-

sumed in writing programs and in eliminating errors

from them. Further information on coding in the
FORTRAN language is in the publications IBM 7040/7044
Operating System (16/32K): FORTRAN IV Language,
Form C28-6329, and FORTRAN, Form F28-8074.

THE COBOL LANGUAGE

" The copoL language and its associated compiler per-

mit the solving of a variety of commercial data
handling, inventory, and accounting problems. Whereas
the FoRTRAN language is designed to facilitate solution
of mathematical and scientific problems, the cosoL

language is oriented to commercial applications in- -

volving the processing of large amounts of data.
Further information concerning coding in the coBoL
language is in the publications IBM 7040/7044 Oper-
ating System (16/32K): COBOL Language, Form
- C28-6336, and COBOL, Form F28-8053.

THE DEBUGGING LANGUAGE

The Debugging language is similar to FORTRAN 1v, It
enables the users of FORTRAN 1v and MaAP to request
dynamic dumps of both specified areas of core storage

and machine registers during execution of the object

program.
Compile-time debugging requests (asso01ated w1th
a coBoL program) are processed by the cosorL Com-

piler. Further information on coding of debugging

requests is in the publication IBM 7040/7044 Operating
- System (16/32K): Debugging Facilities, Form C28-6803.

Core Storage Allocation

During compilation, assembly, and loading, the fol-
lowing Operating -System -components are .in core
storage: : S

* . 1. The Nucleus

IOEX

. -I0OP1.

I00P2

I0LS

IOBS

ﬂ@mewww

may include the Input and Output Editors

During execution of the object program, the follow-
ing Operating System components are in core storage:
..The Nucleus :
IOEX
. 100P1
. The object program k ~
. In addition, the followmg may be in core storage

depending on which level of rocs the ob]ect
*_program is using: : -

a. TOOP2

b. 10Ls

c. 10BS

c.nu;'oa;o'»—-

. The current Processor component phase, Wthh'

Figure 17 indicates the approximate core storage

- arrangement of the major components of the Operat-

ing System during a processor application.

Object Program Origin: Object program orlgm is
assigned to the first available nen-storage-protected
location after the level of 10cs specified on the siBjoB

_ card. 100P2 and portions of 10Ls may be storage pro-

tected, depending upon the size of the Nucleus and
1oop1. Object programs will not overlay storage pro-

"tected areas.

Introduction to the Processor Monitor

“The Processor Monitor controls (1) transitiorrbetween

processor applications and (2) the flow of a processor

application through the Processor according to control

card specifications. The Processor Monitor provides
communication with the System Monitor and super-
vises the loading of the various parts of the compilers,
assembler, and Loader.

Processor Application Control Options

Typical input to a processor application might consist
of one or more source language programs (FORTRAN,
cosor, and MAP) intermixed with relocatable binary
program decks from some previous compilation proc-
ess. Several types of processor applications follow:
"~ Compile or Assemble Only: The source language
decks are processed by the compilers and the assem-
bler, which produce a corresponding relocatable binary
program deck for each source language deck.

- Compile or Assemble, Load: The necessary compila-
tions are performed and the relocatable decks are
stacked, under Monitor control, onto a single unit for
input to the Loader (1BLDR)..Then, the Loader com-
bines. the stacked relocatable decks into a single ab-
solute machine-language program that is ready for
execution, The Map, Logic, and/or Copy options are
performed as specified on the ssjos card. -

This type of application is used to obtain a map of
asmgned core storage (MaP), a list of defined coding
sections together with references to the (rLocIC or
pLocic), and/or a copy of the absolute object program
that is produced by the Loader (copy). In all cases,
the Loader is required.

Compile or Assemble, Load, and Execute The neces-
sary compilations are performed; the relocatable binary
decks are stacked and formed into a single absolute
object program. Control is then transferred to the
object program which ultlmately returns control to
the system.

If the input to the Processor mcludes load-time de-
bugging requests (for FORTRAN or MaP'source language
programs), the procedure differs slightly. Before the
Loader is called, the Debugging Preprocessor analyzes
the debuggmg requests and ensures that the debug-

The Processor (1BjoB) 35

LOW

F;e Nuckleus B This area r»nuy‘
STORAGE be’storage protected
B R
IOEX
Jloopt- —_—])
- Lo L Obiject Program
1002 ———=—|——~——11{ Origin is in this
IOLS area beyond the
T [T storage protected
10BS o .|| region
The The |[The The . [The |The [Object = |Debugging
Combined |FORTRAN [COBOL Macro Debugging | Loader Program Post-
Monitors, [Compiler |Compiler |Assembly Preprocessor: | (IBLDR) e Processor
including Program
the Processor| o :
Monitor
Debugging)) :
Subroutines - o R v
COMMON-
and
HIGH . .
STORAGE Table of Avu:luble Work Umi‘s Buffers

Figure 17. Storage Allocatron for the Processor

ging subroutines will be loaded with the object pro-
gram. Once the object program has been executed and
control has been returned to the system, the Debugging
Postprocessor is called by the system to edit the dumps
produced by the debugging subroutines.
Input to the Processor may consist of re]ocatable
- binary program ‘decks only. In this case,- only - the
Loader is required. It accepts its input directly from
the system input unit, eliminating the need for a
stacked load file. The remainder of the procedure is
the same as described above.

Organization of the Processor Momtor oot

The Processor Monitor is part of an mtegrated moni-
toring system that also includes the System Monitor,
the Editor Monitor, and a short routine, mvsrr, which
loads the Sort Monitor. The Processor M(gnltor consists
of the Preprocessor, the Input and Output Editors, and
control card processing routines. :

THE PREPROCESSOR

The Loader control cards, $FILE, SLABEL, SPOOL, SNAME,
$USE, and somir, are processed by the Preprocessor in

36

the Processor Monitor. These control cards are de-
scribed in the section on the Loader. They must ap-
pear immediately after the siBjoB card for a processor
application (or after the scHAIN card for a cHAIN
application) and before any source language or
relocatable binary program decks for the processor
application. ,

The Preprocessor scans the variable fields of the
Loader cards and produces and saves bmary informa-
tion for the Loader ’

THE INPUT AND OUTPUT EDITORS

The Input and Output Editors are used by all proces-
sor sections to read from the system input unit (s.smv1)
and to write on the system output file (s. sou1). The
Macro Assembly Program uses the Punch Editor to
write punch card output. These ‘editors are incorpo-
rated in absolute form into every component on the
System Library that uses them. The Input and Output
Editors are independent of each other and are in the
Subroutine Library. (That is, any program can call
one without calling the other.) These editors use the

Input/Output Buffering System (10Bs) of 10Cs. These
routines are described in the section “Introduction to
the Subroutine Library (1BLIB).”

CONTROL CARD PROCESSING ROUTINES -

These routines are not available to the user. They are =

described in the publication IBM 7040/7044 Operating
System (16/32K): Systems Programmer’s Gutde Form
C28-6339.

Symbolic Units Required by the Processor

The Processor operates as a labeled system in which
all system units except the library unit can be labeled.
A system input unit, a system output unit, and a periph-

eral punch unit are required for the operation of the -

Processor. Any object program that uses these units

must either use the Input and Output Editors or ad-
here to all the procedures governing the control of -

these units. These procedures include adhering to
established block sizes, ensuring proper positioning of
the system units, and maintaining label conventions.
Three utility units are required as work units for the
operation of the Macro Assembly Program (1BmaPp),
the rortrRaN Compiler (mrrc), and the Loader

(1BLDR). Four utility units are required for the opera-

tion of the copor Compiler (1BcBC). One additional
utility unit, which is used for the load file, is required
~ for applications in which compilation (or assembly)
and loading take place.

The Processor Monitor locates a sufficient number
of work units for the compilers and assembler. Units

that are reserved by the programmer are not chosen as

work units. The Processor Monitor then stores the ad- ,

dress of the Symbolic Units Table entry for each unit
in a table of available work units. The compilers and
* assembler refer to this table when choosing a work unit.
Figure 18 shows the flow of data and the use of
input/output units during a processor application.

Application Processing

The Processor Monitor supervises processor application
by using control cards in the input deck. It receives
control from the System Monitor when the Supervisor
encounters a siBjoB card. The Processor Monitor func-
tions as follows: :

1. From information contained on the smBjoB card,
the Processor Monitor determines which Processor
components are required, sets up a list of valid con-
trol cards for the application, and forms the phase
dictionaries (Abbreviated Table of Contents) for the
required sections. These phase dictionaries are part of
the System Library Table of Contents, which contains
loading information for each phase of the System Li-
brary. The Table of Contents is arranged in order by
sections and by phases within a section.

2. After processing any load-time control informa-
tion cards supplied, the first siBrrC, SIBCBC, SIBMAP, or
siBLDR card is read in and the Processor Monitor passes
the location of the load information for the appropriate
section to the System Loader (s. sipr) in the Nucleus.
The System Loader loads the first phase of the section
required and transfers control to it.

3. The phase transfers control to the System Loader
when the phase is complete. The System Loader then
loads the next phase and transfers control to it.

4. When the last phase of either the rorTRAN or
coBoL compiler is complete, the System Loader pro-

~ vides for automatic transition, using the phase diction-

ary, to the Macro Assembly Program. Output from the

“ Macro Assembly Program and decks following a siBror

card are stacked on the load file.

5. When all phases required for a compilation or
assembly are complete, control is returned to s.smer,
which determines if the next card is valid for this proc-
essor application. If it is valid, the appropriate section
is loaded, using the System Loader; if the card is in-

~valid, the combined monitors are called.

6. The Loader (1BLDR) generates an absolute binary
object program in a form that is acceptable to the
System Loader. As much of the program as possible

- is retained in storage with 1BLDR; the overflow is

dumped onto a utility unit. The Loader (mrbr) loads
the internally stored portion of the program and then
gives control to the System Loader to load the overflow,

" if any. After loading has been completed, control is
~ given to the object program. Object programs must ulti-

mately return ‘control to the Post-Execution routine,
S.JXIT, using a TRA S.JXIT instruction; s.jxrr, which is
called from the Subroutine Library, then closes files on
all units and performs the specified rewind and unload
options on all utility units. s.xIT returns control to
S.SRET..

S.SRET returns control to the System Monitor, unless
load-time debugging is included in the application.
In this case, s.sRer transfers control to the Debugging
Postprocessor, which edits dump output. Upon com-
pletion, the Postprocessor transfers back to s.smEr,
which then returns control to the System Monitor.

“End of Data

Data stacked on the system input unit with the control
cards creates a special problem. The object program
must recognize the end of data, or it must recognize a
$ card and pass the $ card to the Nucleus area s.save
by using a routine such as the one following. It must
not treat subsequent control cards as data. (See Fig-
ure 19.)

The Processor (18jo) 37

\ ;Oufpuf‘
File
v
i 5.50U1 .
Anput Processar Load N cosoL (i‘;'s"c')'gg;‘l’)"’
S.SIN1 Monitor File nput Corpiler’ . :
CS.SIND
o (or aiternate o Compiler./
if $1EDIT) ‘Work ‘Output
B Unit 3 E
‘ 4lnp’mt In S 50U| o
: o Output - /.-
(i?;:m Source’ Y ‘F';kpu {or-alternate
Language .. if SOEDIT)
S s.soul - S.SIN1
{or alternate "o alternate - =
FORTRAN if SQEDID) AESIEDIT) Macro \ Punched -
Input Compiler Assembly [T~ — 7>\ Output
Program S.SPP1
S.SIND
(or alternate
if-$1EDIT) Compiler”
Work Output
Unit 3~ -
S.SINT Files Work 3
{or alternate’]U';“; o ~’/’
. if SIEDIT) \ 12, o
E :] s
ot .
Ly i
. Preprocessor Ferr b
Work\ Output if = _| The Loader
‘ Unit 2 \NOSOURCE/~ — (IBLDR)
Run :
o N S.S0Ul -
\\ﬂ':(graltemotg if $OEDIT) ,
‘Subroutine
Library
S, SLB1
S. sOut
(or alternate
if SOEDIT

S.SINI

Debug

\ - Input Postprocessor.

S.SCKI -) "S.SO“UI

. Specified Utility

-\ Library
U s.stal

Figure 18. Flow of Input/Output Data During a Processor Application

38

CLA

X
TSX S.SCCR,4
T™T 14
TSX S.SCCR 4
MSM S$.SCDI

where x is the location of the following coding:

X PZE S.SAVE, *+1
BSS 14 (The $ card must be here.)

Control Cards

After recelvmg control from 1Bsys, or at the initializa-
tion of any processor apphq:atlon the Processor Moni-
tor examines the units tables in 1NUC and from them
assigns the proper input/output units for the files used
by the system. Then, during the processor apphcatlon
the actions of the Operating System are controlled by
the followmg control cards:

CONTROL ;
CARD . FUNCTION
$ID Causes control to pass to mstallatnon accountmg
routines.
$* Serves as a comment card
$PAUSE ‘Allows for operator action. o
$IBSYS . Indicates that the néxt application falls outside
: the scope of the Processor and that control must
be returned to the System Monitor.
$IBJOB Initiates a4 new processor application.
$IBFTC. Indicates that a source ‘program in, FORTRAN
language is to be processed. -
$IBCBC - Indicates that a source program in COBOL lan-
’ guage is to' be processed. :
$CBEND Indicates the end of a COBOL source deck. -
$IBMAP - Indicates that a MAP symbohc 1anguage source
o . program is. to be processed. g
$IBDBC Indicates that debugging of a COBOL program
is to be performed by the COBOL ‘Compiler in
. this application.
$IBDBL Indicates that ‘debugging of a FORTRAN or
. MAP program is to' be performed:by the: Debug-
ging Processor in this application. The debuggmg
~ requests follow this card.
$DEND Indicates the end of a deck of “debugging re-
quests for the Debugging Processor.
$IBREL Indicatés that all succeeding decks for this proc-
- essor-application are relocatable binary decks
and are not to be stacked on the load file.
- $IBLDR Indicates that a relocatable binary deck follows.
$ENTRY . Indicates the end -of the mformatlon to- be in-
: cluded in a single core storage load. =
$FILE ~ Contains information that must be procéSsed by
$LABEL . - the Preprocessor, a part of Processor Monitor.
-$POOL The information is reduced to a binary form for
$USE the relocatable Loader, ' IBLDR. These: :cards
$OMIT are described in the section on the Loader.
$NAME) :
SCHAIN Used with the CHAIN feature to form a multi-
$LINK phase program consisting of ‘a main link and
SENDCH one or more dependent links that are processed

to form several core storage loads. These cards
are described in the section on the CHAIN
feature.

$RELOAD Used to initiate loading of absolute object pro-
grams that were produced by the Loader.

(Processor decks) ' o
$1BJOB

$IBSYS

. End of Data’ :
must be
recognized

here \

$1BJOB

Figure 19. End-of Data Recognition in the Systetﬁ Input File

SYSTEM MONITOR CARDS RECOGNIZED BY THE
PROCESSOR MONITOR o
Five control cards recogmzed by the System Monitor

are also recognized by the Processor Monitor; however,

their effect is the same in either case. These cards cause
the Superv1s0r to be loaded

$ID
$*
$PAUSE
$IBSYS
$IBJOB

The control cards, sm $* Or SPAUSE, may appear
after the SIBJOB card and before any sIBMAP, SIBFTC,
SIBCBC, or $1BLDR card for the application; however, they
may not be intermixed with SFILF, SLABEL, SNAME, SUSE,

. SOMIT; or $PO0L cards

PROCESSOR APPLICATION INITIALIZATION CARD
The $IBJOB Card: The format of this card is:
1 g 16

$IB]OB

progname optlons

‘The s1BjoB control card must appear first in any ap—
plication to be processed, and it can appear only once

in each processor application. This card signals a new

processor application and causes all control cards that
follow it and that precede the next major control card
to be processed by the Processor Monitor. The options
on this card describe the manner in which an applica-
tion is to be processed.

. The Processor (18jo) 39

DECK

DECK

DECK

T'NAME

FILE

LO0GIC MAP

* ASSIGNED .ABSOLUTE

VIRTUAL SECTIGAN
VIRTUAL SECTION
VIRTUAL SECTION
VIRTUAL-SECTION

"VIRTUAL SECTION

VIRTUAL SECTION

REAL
REAL

'BETA

SECTION
SECTION

-"DECOC

*BEGIN 3
YEND N
*SLPUTL!

“YS.CLSEY

*S.OPEN"

ASJIXITY

YOPFIL ¢
*BINOCCT

* ASSIGNEC ABSOLUTE
VIRTUAL SECTION *S.SDAT' -

Vo [-n VO

L L I E T R R B O O S T Y O I T I O |

L I I I A O e R A]

VIRTUAL SECTION *S.0xIT?
*IBNUC * ASSIGNED ABSOLUTE
REAL SECTION *S.SUTL?
REAL SECTION *S.SLDR®
REAL SECTION *'S.SRET?®
REAL SECTION *S.SDMP*
REAL SCCTION ¥5.SCCR?
- REAL SECTION *S.SIDR!
REAL SECTION *S.SRST?
REAL SECTION *S.SRUP*
REAL SECTION *SLSRPT!
REAL SECTION *S.SCEMT
REAL SECTION *SLXACT?
REAL SECTION *S.XPRT?
REAL SECTION *S.XPSE!
REAL SECTION *S.XOVA!
REAL SECTION *S.X0vD*
REAL SECTION *S.XDVA?
REAL SECTION *S.XDVD?*
REAL SECTION *S.SCKT?
REAL SECTION *S.100P"
REAL SECTION 'S.10LS"
REAL SECTION 'S.UPEN'
REAL SECTION *S.OPNL*
REAL SECTION *S.GETL®
REAL SECTION *S.GETB*
REAL SECTION *S.PUTL"
REAL SECTION 'S.PUTB?’
REAL SECTION. 'S.PLOC®
REAL SECTION *S.CLSE?
REAL SECTION *S.CLSL?
REAL SECTION 'S BSR ¢
REAL.SECTION
REAL SECTION i 1
REAL SECTION *S.FEOR!
REAL SECTION 1S.CKPT
REAL SECTION 1SL.SLVL"
REAL SECTION. 'S.SCOR?
REAL SECTION *SJSCSN*
REAL SECTION: 'S.SPND?
REAL SECTION *S.STMX
REAL SECTION 'S.SPER!
REAL SECTION *S.SUBCY
REAL SECTION 'S.sseC?
REAL SECTION *S.SUNIE?*
REAL SECTION *SJSLTCY
REAL SECTION *S.SRCC?
REAL SECTION *S.SDAT?
REAL SECTION *S.SCLK!
REAL SCCTION *S.SCIS?
.REAL SECTION *S.SDEX?
REAL SECTION '$.SCUR?
REAL SECTION *S.SFAZ*
REAL SECTION 'S.SSHI'
REAL SECTION *S.SFLG*
REAL SECTION ?'S.SAVE'
REAL SECTION *S.5CDI
REAL SECTION *'S.PGCT?
REAL SECTION 'S« SHDR*
REAL SECTION *S.SSCH!
REAL SECTION *S.SSNS*
REAL SECTION *S.SCBL*
REAL SECTION *S.XTDT*
REAL SECTION *S.XSNS*
REAL SECTION IS.XLTP?
REAL SECTION *S$.XSCH?
REAL SECTION *S.XTPS!
REAL SECTION *S.XCPS*
REAL SCCTIONS 'S.NAPT®
REAL SECTION *S.SFBL!
REAL SECTION *SeUNAM!
‘REAL SECTION “ *S<TAUN®

[E R S IR B I I B}

ORIGIN 12247.

I[BLOR ~-- JOB

000000

ASSIGNED ABSOLUTE ORIGIN 12224,
UNDEFINED.
UNDEFINED.
REFERS TD DECK *IBNUC *,

‘REFERS TO DECK

*IBNUC *,

REFERS TO DECK *IBNUC °*,

REFERS 'TO DECK

YPOSTX %y

ASSIGNED ABSOLUTE ORIGIN
ASSTIGNED ABSOLUTE ORIGIN

URIé[N 12417,
REFERS TGO DECK

REFERS TO DECK 'POSTX *,

.ORIGIN. 00000.

ASSTGNED
ASS1GNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED

ASSIGNED.

ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSTGNED
ASSIGNED
ASSIGNED
ASSTGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED

-ASSIGNED.

ASSIGNED
ASSIGNED
ASSTGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
-ASSIGNED"
ASSIGNED
ASSIGNED
ASSIGNED

ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSDLUTE
ABSOLUTE
ABSOLUTE
ABSDLUTE
ABSOLUTE
ABSOLUTE

ABSOLUTE

ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE

ABSOLUTE

ABSOLUTE
ABSOLUTE
ABSDLUTE

ABSOLUTE

ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSDLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE

ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN

‘ORIGIN

OGRIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN

ORIGIN

ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN

ORIGIN-

ORIGIN
ORIGIN

_ORIGIN
‘ORIGIN

ORIGIN
ORIGIN
ORIGIN

ORIGIN.

ORIGIN
ORIGIN
ORIGIN

ORIGIN”

ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN
ORIGIN

LOCATION
LOCATION
LOCATION
LOCATION
12304.
12376,

ADJUSTED LENGTH 1S
*IBNUC *,

LOCATION
LOCATION

ABSOLUTE DECK.

00055,
00135,
00136.
00137.
00140,
00141.
00142,
00143,
00144,
0014

001464

00147,

00150,

00151.
00152.
00153,
00154,
00155,
00156.
00157,
00160,
00161.
00162,
00163,
00164,
00165,
00166,
00167,
00170.
00171.
oot72.
00173,
00174,

001754

00176.
oo177.

'00200.

00201.
00202.
00203.

00204,

00205.
00206.
00207,
00210.
00211
00213,
00214,

‘00215,

00217.
00220.
00221.,
00222.
00246,
00264.’
00265.
00266."

00273,

00274.
00274,
00275,
00276,
00300.
00301+
00302,
00303,
00304,
00305.
00307.
00310

ADJUSTED LENGTH IS 00150.

00164,
00167,
00160,
12565.

00146.
002i1.
12565.

DECK

REAL SECTION

.

REAL SECTION
REAL SECTION
REAL SECTION'
REAL SECTION

:REAL SECTION

REAL SEGTION
REAL :SECTION
REAL SECTION

REAL 'SECTION

REAL SECTION

REAL SECTION

REAL SECTION

REAL SECTICON

-

REAL SECTION
REAL SECTION
REAL SECTION
REAL SECTION
REAL SECTION
REAL SECTION
REAL SECTION
REAL SECTION
REAL SECTION
REAL SLCTION
REAL SECTION
REAL SECTIOM
REAL SECTION
REAL SECTION
REAL SECTION
REAL SECTION
REAL- SECTION
REAL SECTION
REAL SECTION
REAL SECTION
REAL SECTION
REAL SCCTION
REAL SECTION
REAL SECTIBN:
REAL SECTION
REAL SECTION
REAL SECTION:"
REAL SECTION
REAL SECTION-
REAL SECTION

"REAL SECTION

REAL 'SECTION
REAL SECTION
REAL SECTION
REAL SECTION
REAL SEGTION
REAL SECTION .
REAL SECTION
REAL SECTION
REAL SECTION
REAL SECTION"
REAL SECTION
REAL SECTION
REAL SECTION
REAL SECTION

*PCSTX. ¢

VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL
VIRTUAL

CVIRTUAL
VIRTUAL

VIRTUAL
VIRTUAL
VIRTUAL

*S.OAUN?
*SaLDUN®
*SL.EDUN®

"4SLSRUS

1S.SPRP
*S.SLBLY
15,5182
*SLSINI®
15, SIN2Y
*S.S0UL"
'S.S0U2°

. ?8§.$PPLY

*S.Spp2¢
*S5.5CK1!
*5.5U00°
S.SU0LY
*S.SU02°
*S.5U03¢
S.5U04*
15.5U05
*S.SuoT
S.SuU08
'S.SU09°*
S.sulo
*S.SuLLe
*S.5UL2°

*S.5U13°

vS.SUL4
S.5U15¢
'S.SUl6"
*SoSuLTe
1S.SU18*
'S.SU19*
15.5020°
15,5021
1S.5U22°
1S.5U23"
1S.SU24"
'S.SU25"
S.SuUZ6
'S.5U27°
's.5U28°
'S.5U29°¢
*S.SU30°
S.S5U31°

L 1S.5U32¢
CeSosU33e

1S.5U34"
15.5U35"
'S, SUTT®
1S.UCBL*
1S UCBT
*S.SCBT®
YS.SORG*
45,SP1D*
15.5P2D°
'S.SLND?
*S.SSND?

TS, SEND? -

[T I I O O |

(N B B |

LI T T T O SO T O N Y)

[N T I BN U O IR R |

L A

ASSIGNED ﬂBSﬂLUTE

SECTION
SECTION

SECTION

SECTION
SECTION
SECTION

"SECTION

SECTICN

SECTION

SECTION
SECTION

REAL SECTIDN

1S.SFLG?
*SLSRET?
15, SCUR®
*S.SFBLY
1S.CLSE®
1S.SCCRY
$S.SINLY
1S.SSWIY
*S.S0UL"
$S.SIDR?
'S.SPP1Y
TSLUXITe

LI I S I I I O B |

ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
‘ASSIGNED
ASSIGNED
ASS IGNED
ASSIGNED
ASSTGNED
ASSIGNED

ASSIGNED

ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSTGNED
ASSIGNED
ASSIGNED
ASSIGNED

"ASSIGNEO

ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSTGNED
ASSIGNED
ASSIGNED*
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED.
ASSIGNFD

ASSIGNED

ASSIGNED
ASSIGNED
ASSIGNED
ASSTGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED

"ASSIGNED

ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED
ASSIGNED

ORIGIN
= REFERS
REFERS
REFERS

REFERS

REFERS
REFERS
REFERS
REFERS
REFERS
REFERS
REFERS

12
10
T0
T0
T0
10
T0

T0

T0
10
10
10

ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE

ABSOLUTE

ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSDLUTE

ABSOLUTE

ABSOLUTE
ABSOLUTE
ABSOLUTE

ABSOLUTE

ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSDLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE
ABSOLUTE

ORIGIN 00311,

‘ORIGIN 00312.

ORIGIN 00313,
ORIGIN 00314.
ORIGIN 00326,
ORIGIN 00327.
ORIGIN 00330.
ORIGIN 00331.
ORIGIN 00332,
ORIGIN 00333.
ORIGIN 00334.
ORIGIN- 00335, -
ORIGIN 00336,
ORIGIN .00337.
ORIGIN 00340.
ORIGIN 00341,
ORIGIN 00342.
ORIGIN 00343,
ORIGIN. 00344,
ORIGIN 00345,
ORIGIN 00347,
ORIGIN 00350,
ORIGIN 00351.
ORIGIN- 00352,
ORIGIN 00353.
ORIGIN 00354.
ORIGIN 00355,
ORIGIN 00356.
ORIGIN 00357.
ORIGIN 00360.
ORIGIN 00361.
ORIGIN. 00362,
ORIGIN 00363.
ORIGIN 00364.
ORIGIN 003
ORIGIN 00366,
ORIGIN, 00367,
ORIGIN 00370.
ORIGIN 00371.
ORIGIN 00372,
ORIGIN 00373.
ORIGIN 00374.
ORIGIN 100375,
ORIGIN 00376.
ORIGIN 00377.
ORIGIN 00400,
ORIGIN 00401.
ORIGIN 00402,
ORIGIN 00403.
ORIGIN 00404.
ORIGIN 00405.
ORIGIN 01011.
ORIGIN 01305.
ORIGIN 03000.
ORIGIN 10000.
ORIGIN 10000.
ORIGIN 10364.
ORIGIN 12224.
ORIGIN 77777.

565, 'ADJUSTED LENGTH IS 00112,

DECK *IBNUC
DECK "*IBNUC ¢
DECK *IBNUC *
DECK *IBNUC ¢
DECK . *1BNUC *
DECK *IBNUC °*
.
.
L]
.
.

DECK. *TBNUC
DECK * [BNUC
DECK * * IBNUC
DECK _* [BNUC
DECK. * I8NUC
ASSIGNED: ABSOLUTE ORIGI

'y LOCATION
» LOCATION
»+ LOCATION
» LOCATION
» LOCATION
» LOCATION
+ LOCATION
» LOCATION
+ LOCATION
+ LOCATION
+ LOCATION
N 125654

00222.
00136.
00217,
00305.
00167
00140.
00331,
00221.,
00333,
00141.
00335,

Flgure 20. Portion of a LOGIC Llstmg Produced by Spec1fymg the LOGIC OpthIl on the $IB]OB Catd

40

The content of columns 8-13 is the | program narne,
7 NOGO."

which must. con51st of six or fewer alphamerlc
characters. : e i

The content of the varlable ﬁeld 1s'

F{x6201]

The Execution options: The GO -option specifies that the
processor application that follows. is to be executed after it has
been successfully loaded.

The NOGO option spec1ﬁes that the processor apphcatxon
that follows is not to be executed. This option suppresses load-
ing if neither LOGIC nor MAP (see below) is specified. -

“If neither GO nor NOGO: is specified, GO is assumed.

LOGIC
»{ DLOGIC .
NOLOGIC

The Logic options: The LOGIC optlon spemﬁes that a de-:
tailed storage-allocation” list of the object program is to be
produced on the ‘system output unit by the Loader (IBLDR),
The list consists of the origin and extent of all object program
control sections, including Subroutine Library sections. The
presence of this option indicates that the object program is to

- be processed by the Loader. However, execution takes place
only when the execution option specifies: GO.

The DLOGIC option specifies that a detaxled storage-alloca-
tion list of the input object program is to be produced on the
system output unit by the Loader (IBLDR). The list indicates
the origin and extent ‘of all input object-program control sec-
tions and object-time- files. This option is similar to the LOGIC
option except that Subroutine Library sections are not included
in the list.

The NOLOGIC option specifies that the LOGIC list is not
to be produced.

If neither LOGIC, DLOGIC nor NOLOGIC is spec1ﬁed
NOLOGIC is assumed. - "~ - :

‘A sample logic listing is shown' in' Figure 20: The name of -
each control section; including file control blocks, is listed, and
the absolute location. assigned to each is shown.

[} wortar |]

The Map options: The MAP option spec1ﬁes that a non-
detailed storage -allocation map -of ‘the .object program is to
be produced on the system output unit by the Loader (IBLDR).
This list shows the origin and extent of all object program decks,
including Subroutine Library “decks and buffer pool assign-
ments. The presence of this parameter causes the Loader to

process an object program even if the execution option specifies

The NOMAP option speaﬁes that the storage map ‘is to be
suppressed.

If neither MAP nor NOMAP is spec1ﬁed NOMAP is -as-
sumed. A sample MAP hstlng is shown in Figure 21; each pro-
gram deck and its length dre given.

~{ FILES
NOFILES]

The TFile List options: The FILES option specifies that a
list of object program files and their unit assignments is to be
produced on the system output unit.)

The NOFILES optxon “specifies that the file list ‘is to be -
suppressed.

If neither FILES nor NOFILES is spemﬁed NOFILES is
assumed.

(100P1

JOOP2:

IOLS
10BS

“The Object-Time IOCS options: The IOOP1 option specifies

" that the minimum TOCS package is to be used with this object

program. The origin assigned to the object” program by - the
Loader is the first available non-storage-protected location after
I0OPI.

The I00P2 option specifies that the second. level of I0CS is
to be used with this object program. The origin assigned to the
object program by the Loader is the first available non-storage-

‘ protected location after TOOP2. TOOP2 includes TOOPL.

The TOLS option specifies that the label package of IOCS is
to be used with this object program. The origin assigned to the
object program by the Loader is the first available non-storage-
protected location after TOLS. IOLS includes TOOP2. "

The I0BS option specifies- that the IOCS buffering package
is to ‘be used with this object program. The origin assigned to
the object program by the Loader is the first available locatlon
after IOBS. IOBS includes IOLS.

i If neither IOOP1, IOOP2, IOLS nor IOBS is spec1ﬁed I0BS

is assumed.

I00P2 and porhons of TOLS may be storage-protected de-
pending upon the size of the Nucleus and IOOP1. Object pro-
grams may not -be loaded within the storage-protected area.

[} noSoURCE |]

- “The Program Stacking options: The SOURCE option specifies

that the :following processor application includes- decks to be

IBLDR == JOB 000000
MEMORY MAP
SYSTEM, INCLUDING 1€CS 00000 THRU = 12223
FILE BLCCK CRIGIN 12224 - '
NUMBER OF FILES - 1 '
1. DECOC : 12224
OBJECT PROGRAM - 12247 THRU 12676
1« DECK 'NAME '! 12247 '
2. DECK YBETA t 12419
3. SUBR 'POSTX ' 12565
(+ — INSERTIONS CR DELETIONS MADE IN THES DECK) - ‘
“INPUT = CUTPUT BUFFERS : : CTTIST THRU 77776
UNUSED CORE _ ’ 12677 THRU 77754

Figure 21. Sample MAP L1st1ng Produced by Spemfymg the MAP Option on the $IB]OB Card

The Processor (18joB) 41 ~

Form C28-6318-5
Page Revised 7/1/65
By TNL N28-0534-0

processed by the compilers and the assembler. The presence.
of this option with GO, MAP, or LOGIC causes all relocatable -

“ output from the compilers to be stacked on the load file along
with the relocatable decks for the processor apphcatxon ('Those

relocatable decks following a- $IBBEL card are not stacked

See $IBREL below)

'The NOSOURCE option mdlcates ‘that - no- source decks ap-

pear in the processor application to be processed. The Loader

processes its input directly from the system input file - 1f this

option is used.

If neither SOURCE nor NOSOURCE is specxﬁed SOURCE‘

is-assumed.-

i nBoEG {]

The Relocatable Deck options: The DECK option spemﬁes
that relocatable decks are to be produced by the ‘compilers and
the assembler. The presence-of this option on the $IBJOB card
does not override the DECK option on the compiler cards. The

DECK option on the $IBJOB card assures that a pum:h ﬁ]e is

available to the compilers and the assembler. .

The NODECK option specifies that relocatable decks are not -

to-be produced by the compllers and -the assembler. If this
option is chosen and DECK is specified on the compller cards,
no-relocatable decks. are produced.

If neither DECK nor NODECK is spemﬁed DECK is

assumed.

[nocoRoL {]

processor application includes a source deck to be processed
by the COBOL Compiler’ (IBCBC) If the COBOL option does
not appear and if a $IBCBC card is encountered by the’ moni-
tor, the deck associated: with the $IBCBC card ‘will not be
processed.

The NOCOBOL optlon specifies ‘that ‘this- processor applica-

tion' does not mclude ‘a_deck to be processed Dy the COBOL'

" Compiler (IBCBC).

If neither COBOL nor NOCOBOL is spemﬁed NOCOBOL
is assumed.

Note that the effect of the COBOL option is to ensine that
the additional utility unit required ‘ey COBOL is available.

COPY -
COPY =Iyy |
COPY = unit [=Iyy]
EOCOPY
The Copy' options: The COPY option- specifies that - the
Loader is to produce the absolute object-programh file on ‘an
available unit. A message is-typed. to notify the operator of
the unit chosen, ‘and the unit is rewound and unloaded -after
the file is created:
The COPY=1Iyy option specifies that the Loader is to produce
the absolute object-program file on the unit that has been as-

signed the intersystem reservation code yy. Since the unit is not.

rewound, several programs within one job can be stacked on
the unit.

The COPY=unit option specaﬁes that the Loader is to
produce the absolute object-program file-on one of the following:

1. The utility unit, S.SUxx (COPY=Uxx)

2. The first available unit (COPY=UU)

3. The first available tape unit (COPY=T)

4. The first available disk or drum unit (COPY=D)

The operator is notified of the chosen unit.
The COPY=unit=Iyy option is similar to the preceding

option. The chosen unit is assigned the mtersystem reservation.

code yy.

If the Loader‘eannot assign a specified Copy unit (fo; ex-

ample, if the specification is invalid-or if the unit is unavailable),

42

The COBOL. options: The VCOBOL ophon spec1ﬁes that this

the unit spemﬁcatxon is disregarded, The option is then proc-
essed in the same ‘way as the COPY option.

Ifthe file on the Copy unit is to be labeled, the programmer
may include a special $LABEL card with the other Preprocessor
cards. The file name on the $LABEL card must be S.FBCP.

The NOCOPY option specifies that a copy of the absolute
ob]ect-program file is not desired.

" Notes:

1. Use of the Copy feature doec not delete execution of the
copied program. It may not be-used during an Edit run or when
an application contains load-time debugging requests.

2. Ifassignment of an “intersystem reservation- code ‘is not
specified; the Copy: unit will be reserved by the system-and will
not become -available for -other ass:gnments untll either ‘a

" $CLOSE or a $JOB card is encountered.

In the followmg $IBJOB card, the ~Noco and Locic
options are specified in the variable field. Thus; execu-
tion is deleted and a detailed storage allocation list
of the object progr;am is produced on the system output
unit. All of the underlined optlons are assumed except
GO and NOLOGIC. :

1 o 8 L 018

$IB]0B PRONAM NOCO LOGIC
LOADER INPUT FILE CARD
$IBREL Card The format of thls card is:
P g 16
- $IBREL : ' N

This control card: spe(nﬁes that the decks followmg
it for this application are all relocatable binary decks.
This card is meaningful only in a processor application
that contains both source language decks and relo-

“catable binary decks. The deck name field and the

variable field of this card are not significant. This card:

discontinues the stacking of -the load file and causes

the Loader to take its input from both the load file and

the system input file. :
The followmg is an example of a SIBREL card

1' _ ‘ar"/‘ls
$IBREL
The relocatable decks following this card are not

- placed on the load file. The Loader will take its input

for these decks from the system input file. -

INPUT AND OUTPUT‘EDITOB CONTROL CARDS

The presence of Input or Output Editor control cards
~ indicates that alternate units are to be used for input

or output, respectively, for the compilers, the as-
sembler, and the Loader. Either card overrides the
effect of any card of the same type that may have
preceded it in the ‘application. The absence of these
cards indicates that all Processor input is on the system
input unit (s. SINx) and that all Processor output is to

‘be produced on the system 0utput unit (s. sonx)

A steprr or soprt card cannot be placed following a

stBREL. card or after a relocatable deck in a 'NOSOURCE g
application. The encounter of a sIBDBL card terminates

- siEDIT control; the end of Loader processing auto-
matically ‘terminates both sieprr and soEpIT control.

The system input and system uutput units are then .

used for input/output. :
SIEDIT Card: The format of this card 1s
1. 8 16
$IEDIT ’ variable field
The contents of the variable field are:

[5d]

The Input optlons The IN option: specifies that all " com-
piler, assembler, and/or Loader input is on the system input
unit.

The Uxx optlon speerﬁes that all comprler assembler, and/or

Loader input is on-the utility unit, S.SUxx. The unit should be

reserved by the programmer to prevent its use asa compiler or

assembler work unit.

The Iyy option specrﬁes that all compller, assembler and/ or

- Loader input is on the unit that has been assigned. the inter-

system reservation code yy. Appendmg an R to this speclﬁcatlon .

indicates that the unit is to be released. after use.
If none of these options is specrﬁed IN is assumed.

i
NOSRCH)

The File Position optrons The SRCH option_specifies ‘that
the alternate unit specified by the input option is to be searched

for a compiler, assembler, or Loader control card whose deck.

name matches that of the correspondmg control card on the
system input file: s

The NOSRCH option specifies that the alternate umt is p0s1-7
tioned exactly at the beginning of the identifying control card

of the desired. deck.and should not be rewound.:-In: case the
alternate unit is labeled and the desired unit is at the beginning,

" care should be taken to specify REWIND S0 that label checkmg
procedures will take place.

If neither SRCH nor NOSRCH is specrﬁed NOSRCH is
assumed.

4 nomewin {]

The Rewind optlorls The REWIND optlon specrﬁes that the

alternate ‘unit indicated by the input option is to be rewound .

before it is examined for a matching deck.
The NOREWIND. option specifies that the alternate unit

 indicated by the input option is not to be rewound before it
~ is examined for a matching deck. - :

If neither REWIND nor NOREWIND is specrﬁed NOBE-
WIND “is assumed.

- The Rewind options are not effective-if IN is specified. . -
The following is an example of smEprr card:
10 8 Co1ge ot

$IEDIT - U06

" This card mdlcates that utrhty unit U06 is used as

an alternate input unit, Since no other option is spec1—

fied, the standard NosrcH option is chosen; thus utlhty‘

unit U086 will not be rewound.

Form C28-6318-5
- Page Revised 7/1/65
By TNL N28-0534-0
-An example of a deck on s:sIN1 that uses sIEDIT. cards
follows ‘

P

SIBFTC DECK3
BMAP DECKZ |
ST

U6,
REWIND

(FORTRAN source
-~ deck) -

$18JOB-

(MAP source deck)
BMAP DECKZ

$.SU06 .

When processing this application DpECK1 is read in
from the system input unit. DECK2, DECK3, and DECK4
are read in from utility unit V06, as indicated by the

first stepIT card. The options for these decks are taken -

from the control cards on s.SIN1. DECKS is read in from
the system mput umt as mdlcated by the second stEpIT
eard;

,~;$OE4DITQ~iCard: The »format of this card is:

1 8 16

*variable field :
~ The contents of the variable field are:
ouU - :

$OEDIT

\ Iyy -
Uxx [=Iyy]
Ul=Iyy] -
T [=Iyy]
D [=Iyy]

The Qutput options: The OU option spemﬁes that the print
output from the compilers, the assembler, and/or the. Loader
is to be produced on the system output unit.

The Tyy option:specifies that theE print ‘output from the
‘compilers,’ the assembler, and/or the

code yy.

“The Usxx option’ specrﬁes that ‘the print’ output from the
compilérs, the assembler, and/or the Loader is to be produced
on the utility unit,” S.SUxx, The unit is rewound. The unit
should be reserved by the programmer to prevent its use as
a.compiler or assembler work unit. If the =Iyy option is ap-

“pended to this spec1ﬁcatron, the unit is assxgned the mtersystem

reservation code yy.

The Processor (1msjos) 43

oader is: to be produced - - '
- on’ the unit that has’ been ass1gned the mtersystem ‘reservation

The U optxon specifies that the print output from the com-
pilers, the assembler, and/or the Loader is to be produced on
the first available unit. A typed message notifies the operator
of the unit chosen. If the =Iyy option-is appended to this
specification; the unit is -assigned the intersystem reservation
code yy. -

The T option spemﬁes that the prmt output from the com-
pilers, the assembler, and/or the Loader is to be produced on
the first available tape unit. A -‘typed message notifies- the
operator of the unit chosen. If the =Iyy. option is appended to
this specnﬁcatlon, the unit is a531gned the mtersystem reserva-

_tion code yy.

The D-option specifies that the print output from the com-
pilers, the assembler, and/or the Loader is to be produced on
the first available disk or drum unit. A" typed message notifies
the operator of the unit' chosen. If the =Iyy option is ap-
pended to this specification; the unit. is assxgned the mtersystem
reservation code yy: :

If none of these options is specified, OU is assumed
“The following is an example of a soEprr fca,r,d.‘” :
1 8 R

$OEDIT o vi4

The compiler, assembler, and/or Loader listing out-
put for the decks that follow this card are placed on
utility unit Ul4,

COMPILER AND ASSEMBLEB CARDS

Transfer of -control to one of the compilers, IBCBC or
IBFTC, or to the assembler, 1BMAP, is directed by the
control cards described below.

The deck name, whlch is composed of six or fewer
characters, may appear, left-justified, in columns 8
through 13 of the siBCBC, SIBFTC, or s1BMAP cards. The

deck name is required if debugging is to be performed"
during the application. Compiler and assembler output

is labeled with this deck name. (A siBLDR card is gen-
erated with the appropriate deck name in the deck
name field.)

$IBFTC Card: The format of this card is:
1 8 16

$IBFTC deck name variable field

When this card is encountered, the ForTrAN Com-

piler is called to process a FORTRAN source deck.
The contents of the variable field are: '

LIST
FuLisT! |
NOLIST

The List options: The LIST. optxon produces an abbrevnated
three-column assembly program-listing in' the output file...

The FULIST option . produces - the - standard - one-colutun

assembly program listing in the output file.
The NOLIST optxon suppresses the assemb]y program hstmg

The Pun h- optlons The DECK option causes a relocatable'
deck to be produced with the system punch. output '

44

The NODECK option suppresses the production of a deck.
If neither option is specified, DECK is assumed unless

‘"NODECK'is spemﬁed on the $IBJOB card.

I ;Ngﬁes’]

The Cross-Reference Table options: The REF optxon pro-

' dirces an alphabetic listing of all the symbols used in the deck;

together with cross references to the statements. in- the: deck

“which use each.symbol. This: cross-reference table appears imme-

diately after the assembly program listing.
The NOREF option suppresses the listing of the symbolic

cross-reference table.

[

If neither option is speclﬁed NOREF is assumed:

e

SDD
NODD
The Debugging Dictionary options: The DD option causes
the production of a ‘full debugging dictionary. It contains all
statemerit numbers and all symbols (both those specified by the

. programmer and those generated by the Compiler) in the FOR-

TRAN _program.
The SDD option causes the production of an abbrevxated

~ debugging dictionary. It contains all statement numbers and all

variable- names- speelﬁed by the programmer in the FORTRAN
program.

The NODD optlon suppresses the production of a debugging
dictionary.

If none of these Voptions is speciﬁed; NODD is assumed'.
The following is an example of a siBFTC card:

1 8 16

(SIBFTC BETA Lis'T

Smce LIST is specxﬁed an abbreVIated assembly pro-

~ gram listing in a three-column format is produced in
the output file for thls deck.

$IBMAP Card The format of the card is:

T ‘ ,8,, 16

$IBMAP deck name vanable ﬁeld

When thls card is encountered, the: Macro Assembly‘

Program is called to process a MAP source deck.

The contents of the variable field are: -

CLIST)7
I NOLIST|]
The - List optlons The LIST option produces an assembly
program listing in the output file.

The NOLIST option suppresses ‘the assembly program listing.
" If neither option is specified, LIST is assumed.

[, DECK |7

NODECK

The Punch options: The DECK option causes a relocatable
deck to be produced with the system punch output. :

The NODECK option suppresses the production of a deck.

If neither ~option ‘is specified, DECK is assumed unless
NODECK is spemﬁed on the. $IB]OB card

[noReet]

The Cross-Reference Table options: The REF .option pro-
duces an alphabetic listing of ‘all the symbols used in the deck,

together with cross references to'the statements in the deck

which use each symbol. This cross-reference table appears imme-
" diately after the assembly program listing. :

The NOREF: option suppresses the llstmg of the symbohc
cross-reference table.

If neither option is speclﬁed REF is assumed unless NOLIST
is specified.

[,SYMSIZ=xxxxx]

The symbol xxxxx is a decimal integer s1gmfy1ng the number
of locations to be reserved for the Macro Assembly Program
Symbol Table.

The size specified for the symbol table must be at least as:
large as the sum .of the numbers of symbols ‘in the program, -

the number of umque hterals, and the number of macro defini-
tions. An increase in the size of the Symbol Table implies a

comparable reduction in size of the Macro Definition Table

and vice versa.

In the absence of this option, the Symbol Table is a pre—i

determined size (set by an assembly parameter within the
Macro Assembly Program). The option should only be used for
programs containing either an abnormally large number of
symbols or of macro definitions which would otherwise result
in table overflow during assembly. The use of this option to
reduce the size of the Symbol Table may ‘result in an apprecxable
" reduction in speed of assembly. ;

[; RELMOD %]
’1 ABSMOD
Assembly Relocation Mode option: The RELMOD option

causes the assembly to be in relocatable .-mode.

The ABSMOD -option causes the assembly to be in absolute
mode. If neither RELMOD nor ABSMOD is specified, REL-
MOD is assumed.

[t

" The Debugging Dictionary options: The DD. option causes
the production of a full debugging dictionary:. It contains all
the symbols in the MAP source program.

The SDD option causes the production of an abbreviated
debugging dictionary. It contains only those symbols specified
by KEEP pseudo-operations in the MAP source program. .

The NODD optxon suppresses the productlon of a debuggmg
dictionary.

If ncne of these options is specified, NODD is assumed.
The following is an example of a stBMaP card:
1 .8 16

$IBMAP

GAMMA ABSMOD, LIST

Since aBsmop is specified, the assembly will be in
absolute mode.

$IBCBC Card: The format of this card is:
1 : 8 . 16 -
$IBCBC

When this card is encountered, the cosoL Compller
is called to process a coBoL source deck.

The contents of the variable field are:

LIST
FULIST
NOLIST

deck name . variable field

The List options: The LIST option produces an abbreviated
three-column’ assembly program listing in the output file.

The FULIST option produces the standard one—column assem-
bly program listing in the output file.

The NOLIST option suppresses the assembly program listing.
If none of these options is specified, LIST is assumed

[+ woBmext |

" The ‘Punch options: The DECK option causes a reloctable
deck to be produced with the system punch output.

The NODECK option suppresses the production of a deck.

- If neither option is specified,, DECK is assumed unless NO-
DECK is specified on the $IBJOB card.

REF ‘
[gNOREFH
The Cross-Reference Table optlons The REF. option pro-
duces an alphiabetic listing of all the symbols used in the deck,
together with cross references to the statements in the deck
which 'use each ‘symbol. This. cross-reference table appears
lmmedxately after.the assembly program listing.

“The NOREF option suppresses the hstmg of the symbolic
cross-reference table.

If neither option is spec1ﬁed NOREF is assumed
I, SPACE 1 '

The SPACE option causes the COBOL Compiler to attempt
to produce an' object program which occupies fewer storage
positions, though it may require more time for execution.

* The following is an example of a s1BcBc card:
1 8 16
$IBCBC DELTA

Since the variable field is blank, all of the standard
options are chosen, that is, LIST, NOREF, and DECK.

$CBEND Card: This control card is necessary to
terminate a COBOL compﬂatlon The format of thl§
cardis: .

1 8 .
SCBEND e
The deck name is optional on this card.
$IBLDR Card: The format of this card is:
1 8 16

$IBLDR’

deck hame

deckname ~ [date of assembly]

This card must precede every relocatable binary
deck to be loaded. The Macro Assembly Program auto-
matically ‘produces a smBLpR card preceding each re-
locatable binary deck. -

Columns 8-13 must contain the deck name. A $IBLDR
card-produced by the Macro Assembly Program con-
tains the deck name obtained: from the siBMAP, s1BCBC,
or siBFrC card. The date of assembly may be placed
in columns 16-23 for the purpose of identification.

' The following is an example of a stBLDR card:
1 8 16

- $IBLDR ... SEGMT1 - -12/31/63"

The Processor (1BjoB) 45

This card specifies that a binary deck (assembled

December 31, 1963) with the deck name SEGMT1

follows. e s
$ENTRY Card: The format of this card is:
1 Cig T ST TREEE I
$ENTRY variable field

This card is used by the Loader to delimit a core
storage load for an ebject program. It should follow the
last deck for a core storage load. (This card also pre-
cedes a sLINk ‘card in a cHAIN application. See the

section “Loader (mrpr) Chain Feature.”) The vari-
able field is interpreted by the Loader to determine
the initial entry point for the program. When the
Processor Monitor encounters this card, it performs

one of the following operations: , : :
1. If sourcE, together with co, MAP, LOGIC, DLOGIC,

or one of the copyY options, is specified on the siBjoB

card, the Processor Monitor calls the Loader '(1BLDR).
2. If source is specified on the siBjos card, but none

of the above options is specified, the senTRY card is

meaningless and is skipped.

3. If NoSOURCE is specified, th}is"ca«rd is processéd by

the Loader. ;e

The contents of columns 8 through 13 are not sig-

nificant.
The content-of the variable field is:

[{ Gocmaame 1]

The variable field of this card is either blank or contains'an-

external name or a deck name. If an external name is specified,
the entry. point for the program is the location assigiied to that
external name..If a deck name is specified, the entry point for
the program is the standard entry point for the deck. For a

MAP deck, the standard entry point for a deck is initially con-

tained in the variable field of the END pseudo-operation. If the
field is left blank, the entry for“the progiam’ is the standard
entry point for the first retained deck in:the program. - -

The following examples of sEnTRY cards indicate
their significance.

Example 1:

. N

$ENTRY ' ’ e
- Example 2: o R

1 8 1

$ENTRY 'EXNAME

Example 3: WA

1 8 .16 .
$ENTRY ° DKNAME

 Since the variable field of example 1 is blank, the
entry point for this program is the standard entry point

for the first retained deck in the program. Example 2
specifies that the entry point for the program is the

absolute location assigned -to the ExNaAME (external
name) specified. Example 3 specifies that the standard

46

entry point fi)’f the program is the entry point for the
deck named in the variable field of the card. .

Scuﬁplé Processor Applicutiohs k - H ;
A sample processor application consisting of one mMap
language deck follows. No data is on the system input

fille.

| (MAP-source deck).

§IBJOB.

~ A sample processor ‘applicétion‘consisti‘ng of a Mmapr
language deck and a FoRTRAN language deck follows.
Data is on the system input file. - : :

(FORTRAN source
deck)

‘ {(MAP source ‘deck) -

F‘IBM‘AP DECKA \

SIBIOB .\ l

~ A sample processor application consisting of a Map
language deck and some relocatable binary decks fol-
lows. . . B L

deck)

(MAP source deck) " '

$1BMAP DECKW

deck) '
l$|BLDR DECKX

$18JOB

f(relocatable binary - ’

In the preceding processor application, the relocat-
able decks are read into storage and read out on the
load file. The same processor application follows,
showing the siBREL card used to signal the Loader to
take the relocatable input decks directly from the sys-
tem input file, rather than stacking them on the load

file. (The relocatable decks must be reordered last to ’

use the SIBREL card)

{relocatable binary
decks)

(MAP sourée deck)
$IBMAP DECKW - :

$18JOB

Specifying pEckx on the senTRY card ensures that
the entry point for the program is the same in both
cases. In addition, some suse and/or somrr cards may
be necessary when rearrangmg the decks within a pro-
cessor application to ensure that the same control
sections are used. See the section “Introduction to the
Loader (1BLpR)” for further detalls o ;

The following is an example of a processor applica-
tion, consisting of coBoL, MaP, and relocatable bmary
decks.

(COBOL source deck)

518108 coBOL

The following. processor-application also consists of
cosoL, MAP, and relocatable binary decks. However,
the relocatable:binary decks are on'a separate unit,
U09, which may not be positioned correctly. sieprr
cards are used to indicate this: condition.

. kI$VkENTRY
I}/hAAP source deck)
J$IBMAP DEEKN
|01 TIN
l$IBLDR DECKM
I$|BLDR DECKL :

|ﬂsmr U09, SRCH, REWIND
|$CBEND

f

I(COBO,L source ‘dgck)

end of file

|$1'Bcsc DECKK
$1BJOB COBOL

" [{relocatable binary
. deck)
_[$!BLDR DECKA

“S.SINT

(relocatable binary
- deck)

BLDR DECKL

$

S.5U09

lntroduchon to the Loader (lBLDR)

This section dlscusses the fundamentals- of the Loader
(1BLDR), which is a Processor component. The Loader
assigns storage, processes relocatable binary instruc-
tions, completes all cross references between program
segments, and, upon- completlon transfers control to
an entry pomt in the program. The Loader can process
one or more relocatable bmary program segments,
prepare one executable ob]ect program from these
segments, and transfer control to the object program.

Program Decks

Each segment of the program is passed to the Loader
as a separate, ‘relocatable program deck. The program
deck consists of all the cards contained between the
stBLDR control card and the SDKEND control card. It is
Macro Assembly Program output from either this or a
previous run, since a programmer can save program
decks from one run to be incorporated in a later run.
On a tape-oriented system, a program deck consists of
a series of card images on tape. Any number of program

decks can be run at one time. All-of these decks con-

stitute a processor application when they are executed
together. A: processor application can consist_of one
program deck or of many, some of which may operate

The Processor (1BjoB) 47

like closed subroutines or subprograms. Each program
deck contains a control dictionary and a relocatable
text. The control dictionary contains the information
necessary for cross-referencing control sections; and
the relocatable text contains data, procedure, and file
text. A detailed description of the relocatable binary
format is in the publication IBM 7040/7044 Operating
System (16/32K): Systems Programmer’s Guide, Form
C28-6339.

Control Sections

A program segment may contain areas of coding, file '

descriptions, or data within the program segments that
are identified by external names. These areas are called
control sections; they are accessible to other segments;

and they can either be replaced with coding in other

program segments or be deleted.

A control section is a contiguous area; its length is
the difference between the relative location of the first
‘word within it and the relative location of the last word
within it plus 1. Types of control sections are:

1. A real procedure or data control section is any
control section within a given program deck having a
‘relative location assigned in the control dictionary.

2. A real (file) control section is a control section
within a given program deck that is designated as a
file. It has no assigned relative location.

3. The real control section, blank comMoN, is a
control section, within a given program deck, that has
a variable field designated as //. It is assigned an
absolute location in high storage. (See the section

“Storage Allocation.”) All references to the // control

section from decks loaded together will be adjusted to
refer to high storage. No data will be loaded mto blank
COMMON.

‘4. External (virtual) control sections are the control

sections that have no origin or length in the deck in’

which they are referenced. A virtual control section
must be defined in another input deck or in the Sub-
routine Library as a real control section with the same
external name.

The Loader recognizes that control sections are
equivalent to one another by their identical names.
Only one of each named reference item is included by
the Loader, which adjusts all cross referencing to the
retained item. Therefore, the user may refer symbol-
ically in one program to the name of a control section
in another program, and the Loader will perform the
desired cross referencing.

Use of I.oqderConfro’lCdrds . :
The object time control information that is contained
on the Loader control cards for the Loader is proc-

essed initially by the Preprocessor section of the Proc--

essor Monitor. The information is passed to the Loader

48

and is used to modify the information in the_program
decks when they are processed. External names may
be named or renamed at load time by using these
Loader control cards. These cards are a convenient
means of specifying the equivalence of names, file char-
acteristics, and labeling procedures.

Loader Name Conventions ,

To use.the Loader, the names that serve as external
identifiers of object program quantities must be under-
stood. Two types of names are used in the Loader Sys-
tem: deck names and control section names.

DECK NAMES

Deck names identify decks and may be used to identify,
i.e., qualify uniquely, control section names within a
deck. The following rules should be observed when
using deck names:

1. A deck name is composed of six or fewer alpha-
meric characters, excluding left parenthesis, right
parenthesis, comma, slash, quotation marks, equal sign,
blank, plus, minus, and asterisk.

2. The deck name may be punched in columns 8-13
of any other Loader control card, but it is ignored by
the Loader. It is suggested that deck names be punched
in all alphameric control cards of a processor applica-
tion for visual identification of the decks. ,

3. Deck names in a processor application should be
unique. Multlple use of a deck name will result in de-
letion of the second and subsequent identical deck
names (and their corresponding decks) when they are
encountered by the Loader.

4. The deck name may be punched in the variable
field of the sNaME, susk, and soMrT cards to qualify a
control section name. Action taken on the named con-

~ trol section is thus restricted to the deck named. In

other decks, the control section with the same name
remains unchanged.

5. The deck name of Subroutine Library routines
may not be used as control-section name qualifiers.

CONTROL SECTION NAMES

Control section names identify data, procedure sec-
tions, and file control -blocks within the program.
When using Loader control cards, these named sections
in one segment may be referenced by other segments.

"They may also be replaced by a section in another

deck with the same name, renamed, or deleted from
the program. The following rules should be observed
when using control section names: .

1. A control section name is composed of six or fewer
alphameric characters, excluding left parenthesis, right
parenthesis, comma, slash, quotation marks, equal sign,
blank, plus, minus, and asterisk. It is always left-
justified before processing or comparison, and unused
trailing positions are filled with blanks.

" 2: The first real section with a given name that is
physically encountered while loading is retained, and
all succeeding occurrences of it are deleted unless ex-

plicitly excluded by a suse card. All references to the -

to the retained section. . I
3. Explicit inclusion of two control sections with the
same name (by using deck name qualification on a
sUSE card) results in a multiple definition of that sec-
tion; consequently, execution is not allowed. ‘

given name are adjusted to refer to the storage assigned

4. Each control section that is referenced by text

must be defined (assigned an absolute -origin by the
- Loader) or execution will not be allowed. For example,

if a reference were made to a section mentioned/,(mfan b
soMIT card, but no other entry with the same name was -

encountered in any control dictionary, execution would
bedeleted. =~ B e

5. All text references to control sections are made to
a name in a control dictionary. « :

6. A subroutine on the library tape is automatically
called if: (1) a name in the Subroutine Name Table

is identical to that of an external control section and

(2) no real control section with the same name appears
in any of the retained object decks provided.

7. Control sections of library routines may not be
renamed. ‘

8. All control dictionary entry names (ie: deck

names, control section names, and ENTRY statements)
must be unique to be retained. However, if an ENTRY

statement has the same name as the deck it is con-

tained in, all references will be made to the ENTRY and
~. not the deck name. ‘

Object Program Files -

Object-program file control blocks are created by the

Loader from file text that is generated either from

SFILE cards by the Preprocessor or from FILE pseudo-

operations by the Macro Assembly Program. The Map
“programmer may desciibe his files by means of riLE
pseudo-operations or sFILE cards. In general, ' the
FORTRAN user can rely on the ForTrAN File routines
(consisting of FILE pseudo-operation coding) to estab-
lish the relation between ForTRAN logical units and
Operating System symbolic units. Lt

Note; however, that the user may be required to
modify file specifications i
ditions exist: » ST

"1. The object program reads data from the system
input unit without using the system Input Editor
(JoBIN). ' -

2. The object program ‘is processed by the Loader

(BLpR) during an application for which the 'system

input file is specified as a double-buffered file.

3. The object program is edited into the System

| Library in ‘absolute format.

f all of the following con--

Form C28-6318-5
Page Revised 7/1/65
By TNL N28-0534-0
4. The absolute object program is loaded by the
System Loader (s.sLor) and executed during an appli-
cation for which a card reader is assigned as the system

.input unit;

fU'ndei'ffheks'er conditions, the system input file is
treated at execution time as though it were a double-
buffered file. Since a file on a card reader should be

‘processed with single-buffering, the card (usually a

siBsys card) immediately following the object-program
data on the system input unit may be lost (read but

| not processed). To avoid this, one of the following

precautions should be taken: o ‘
1. At the time the object program is to be edited

| into the System Library, sFiLE cards specifying single-

buffering may be inserted with ‘the program. There
should be one sFILE card for each file assigned to the

~system input unit,

2. At the time the object fprogrAam is to be executed,

| an additional stBsys card may be inserted immediately
following the object-program data on the system in-

put unit.

- Even Storage

The Loader provides a technique for ensuring that an
even storage location is assigned to specified data or
instructions. This' is necessary - because the machine
must store double-precision floating-point operands in
successive locations, the first having an even machine
location. Even storage for data or instructions is speci-
fied 'by using the EVEN pseudo-operation ‘in the map
language. :

- The EvEN pseudo-operation causes generation of an
entry in the control dictionary, without a name. The
Loader generates an axr 0, 0 for ‘an EVEN pseudo-opera-
tion if the current absolute location is odd. - - :

Loader Diagnostics
The Loader diagnoses errors- in the file descriptions,

‘control section references, and storage allocation, and

produces appropriate error messages off-line. These

messages are self-explanatory,

Loc‘:drer' Cor‘ltrol‘Cq‘rds

All of the Loader conirol cards. in the folloWing list

are processed by the Preprocessor section of the Proc-
essor Monitor. These cards describe file and program

:loadmg*;modiﬁca,tions for an entire object program.
- They must appear before any source decks or relo- -

catable binary decks and-after the. s18JOB card for the
processor application. . . : :

$FILE = .
- SLABEL
~ $POOL - -

$NAME

k The Processor (1BjoB) 49

Form C28-6318-5
Page Revised 7/1/65
By TNL:N28-0534-0

- -$USE
$OMIT
$ETC ‘
These cards may not be necessary for a processof
application. For example they are never needed when
the s1BjoB card parameters are such that the relocatable

Loader is not needed (that is, _when N0 LOGIC, MAP, Of

Go options are used on the $IB]0B control card) These
cards are used to:
1. Override ﬁle or Iabel descnpt1ons that appear in

the source or relocatable programs for a processor ap-‘

plication.
2. Modify the control section retention scheme used
by the Loader. (In the control section retention scheme,

the Loader uses the first control section that it en-

counters with a givenname.)

3. Depart from the standard buffer ass1gnment The
section, “Input/Output Buffer Allocation,”
further information about this subject: '

4. Modify the names of data procedure' or file con-

trol sections. -
5. Provide a file descrlptlon that is not assembled.
6. Delete control sections.
7. Label a file assembled as unlabeled

‘The cards must appear in the fo]lowmg order All

out of order cards are not processed :

1. All SNAME, $USE, $OMIT, $POOL, and all sLABEL cards
(except that a sLABEL card may 1mmed1ately follow its
associated sFILE card). :

2. All sFiLE cards. Each SFILE - card may be unmedl-
ately succeeded by a corresponding SLABEL ,ca:d if
desued

The publication IBM 7040/7044 Operating System’

(16/32K): Input/Output Control System, Form C28-
‘6309, contains information on file procedures, label
procedures, and buffer pools, resulting from srFiLE,
sLABEL, and sPOOL cards, respectively.

$FILE Card: The format of this card is:

1 8 16 -

$FILE

decknam¥e ‘filename’, options,... . -

* This card overrides file specifications that appear (in

~ the form of file text) for the file name in the decks to
be loaded or provides file specifications for files that
are not described by a FiLE pseudo-operation.- :
The presence of any sFiLE card for a processor apph-
cation causes the Preprocessor to construct a file text
and a control dictionary entry, which are passed to the
Loader. If a sriLE card appears for any file in the proc-
essor application, the file description on the card over-
rides the file description in the file text, if any, for the

_ named file. Thus, when a sFiLE card is-used; it must.

completely describe the file. An associated sLABEL card
must accompany the sriLE card if the file 1s to be
labeled when the job is executed

50

contains

- The deck name is optlonal and does not qualify the

- file name.

The content of the variable ﬁeld is:
‘“filename’ - .
The ‘filename’ is an alphamenc name of six_or fewer char-

" acters that identifies the file. Tt must be enclosed by quotation

“marks. (IBM card code: 8-4). All options except unit assign-

- ment .options may- be entered in any order. Options -are sep-

arated from: the file name and from each other by commas.

[, unit-1, umt-2}

Unit As51gnment options: Two symbohc umts unit-1 and

" unit-2, may be specified for each file. The unit-1 option is the

primary unit, ‘and the unit-2 option is the secondary unit’ used
for unit -switching.. Unit specifications are described in the sec-
tion: tltled “Input/ Output Unit ASSIgnment in thls publication.

Mounting: options:, This option when used-applies to.unit- 1
and unit-2. It should not be used with the corresponding option
shown below. It specifies.the type of message to be printed

~ and the operator action required when an input/output unit is

used: The MOUNT option. causes the message to be printed
accompanied by -a-stop.to permit operator action before exe-

* cution.

-'The DEFER option has the same effect as MOUNT, but
the ‘actions are delayed until the.file is opened. If no mounting

‘action is specified, READY is assumed. The READY option

deletes the mounting messages and the halt for operator inter-
ventnon The COBOL Compiler assumes DEFER

MOUNT i
READY i]
: - 'DEFER i

This option when used applies only to unit-i, where i=1
or 2. The action taken is the same as for the corresponding

“option shown above. If neither MOUNTI, READYi, hor DEFERi
s speaﬂed for umt-l or umt-2 READY is assumed &

[, CKFILE]

Checkpoint File option: The CKFILE optlon specnﬁes that
the file is a checkpoint file. :

» BLOCK=xxxx
Block Size optlon “'This ophon spec1ﬂes the block size for

- the file. The letters xxxx represent the number of words per

block. If ‘this field does not appear, or if xxxx=0, the Loader

- will not assign this file to-a buffer pool.

If the file contains Type 2 records, the size specified must allow

- space for the control word preceding each logical record. If the

check-sum -or. block=sequence option is chosen:(see below); the
stedmust include space for the check -sum . or block-sequence
wor

F s

Buffer options: The SINGLE option specifies that one buffer
is_to be assigned to the file.

The DOUBLE option specifies that two buffers are to be
assigned to the file.

If neither SINGLE nor DOUBLE is spemﬁed DOUBLE is

assumed

b gt

Reel Handling options: These optlous do not apply to input
files that have standard labels The BEEL option specxﬁes that
no reel sw1tchmg will occur.

The REELS option ‘specifies that reel switching will occur, 7

If neither REEL nor REELS is specified; REELS is assumed.-

[t]
LOW Y |- - :
" File Density options: This field specifies the density at which
the file is to be read or written. The density setting is in-
cluded in, the mount or ready message to the operator. The
density switch on the console and the density key on the tape
drive must be set as directed in the mounting message. If both
settings are not made, unrecoverable errors will occur when
input files are read, and output files. will be written in-the
wrong density. S S

If neither HIGH nor LOW is specified, HIGH “is' assumed.
[, MIXED] : :

The MIXED option specifies that the file is composed of both
BCD and ‘column binary records in the mixed mode format.
It is used for documentary purposes only.

i8R0}]

Block Sequence options: The SEQ option specifies that the

block sequence word, which indicates the relative position of

a physical record, is to be checked if the file is input, or formed
and written if the file is output.

Form C28-6318-5
Page Revised 7/1/65
By TNL N28-0534-0

If NOSEQ is specified, the block sequence word will not
be checked or written, The block sequence word, if used, is
part of the phygical record and must be provided for. in the
block Tsize specifications for the file.

This. field should be used only. with files that are in binary
mode.) o ‘

If neither SEQ nor NOSEQ is specified, NOSEQ is assumed.

H 8]

‘Check Sum options: The CKSM option specifies that a check
sum, which is the folded logical sum of all the data in a block,
is to be checked if the file is input, -or formed and written if
the file is output. - i

If NOCKSM is specified, the check sum will not be checked
or.written. The check sum, if used, is located in the same word
as the block sequence number. Provision must be made for
this word in the block size specifications for the file.

This field should be used only with files that are in binary
mode.) S

If neither CKSM nor NOCKSM is specified,, NOCKSM is
assumed.

50.1 -

NOCKPT
‘CKAFLB
}CKCKFL
CKLBFL

Checkpoint options: The NOCKPT -option specrﬁes that no
checkpoints are associated with this file, - -

For ‘input files, the CKAFLB specifies ‘that a checkpomt
record follows each header label ‘and ‘is to be passed over. For

output files, CKAFLB specifies that a checkpoint record is to -

be written.on the file following each header label.

For input or output files, the CKCKFL option spec1ﬁes that
a checkpoint record. is.--to be written on the checkpomt file
whenever a new reel. is started on this file.

For input files, the CKLBFL option specifies: (1) that there
is a checkpoint record, which is to be bypassed, at the begin-
ning of this file and (2) that a checkpomt record is to. be
‘written on the checkpomt unit whenever a new reel is started
in' this file. This option is not-allowed for output files. -

-For COBOL files, at least: one file in the source program must
have been specified in a RERUN. .. REEL clause (I-O- CON-
TROL paragraph, Option 5) for any other filé to be changed
from the no-checkpoint condition to. CKAFLB . for output files,

" to CKLBFL for input files, or to CKCKFL for an input or out-
put file. CKAFLB may be specified without this restriction for
an input file.

If neither - NOCKPT, CKAFLB; CKLBFL, nor CKCKFL is
specified, NOCKPT is assumed.

PRINT
PUNCH

HOLD (.
SCRTCH

File Disposition options: The PRINT option specrﬁes that
the file is ‘to be printed. At the end of an’ apphcatlon, the ﬁle
is rewound and unloaded.:

The PUNCH option specrﬁes that the file is to be punched
At the end of an apphcatlon, the file is rewound and unloaded.

The HOLD option specifies that the file ‘is to be saved. At
the end of an application, the file is rewound and unloaded.

The SCRTCH option specifies that the file is to be rewound
at the end of the processor application.

If neither PRINT, PUNCH, HOLD, nor SCRTCH is spec1-
fied, SCRTCH is assumed.

I} ADDLBL=exname :I .
NSLBL= exname

Labeling optlons Thls field specrﬁes the external srx-character
name- of a procedure control section that is to be entered by
IOCS to process “additional label fields (ADDLBL) or non-
standard labels - (NSLBL). .. :

Note that the presence or absence of a $LABEL card for

this file ‘determines whether or not the ﬁ]e is cons1dered to
be labeled

[LRL= xxxx]

Logical Record Length optlon ThlS entry spec1ﬁes tbe
length of a logical record in'the file: The letters xxxx represent
the number of words per record. If this entry is-omitted; zero. is
assumed.

[, RCT=xxxx] : . R
Record :Count option: This: optlon spemﬁes the : maximum

number of logical records, XXXX, that may_ appear in a block,

If this entry is omitted, zero is assumed.
> For COBOL files, 'this option may be used only 'if the file

is not ass1gned to a system unit. If the number ‘of ‘records per

block is ehanged the block size should be ad)usted accordlngly
[, EOR—exname]

End-of-Reel option: ThlS field specrﬁes the external six-
character name of a.procedure control section that is to be
entered by IOCS for ‘end-of-reel processing.

[‘ERR=exname] -

Error Exit option:- This field speelﬁes the external six-char-
acter name of a gprocedure control section that is to be entered
when IOCS detects an error.

-)]

Record Type option: Type 1 spemﬁes that the file contains
ﬁxed length records or nonstandard variable-length records.

Type 2 and Type-3 specify that the file contains standard
format varxable-length records. with control characters. The
section, “Record Formats,” under “Input/Output Buffering
Systems (IOBS)” in the publication, IBM 7040/7044 Operating
System (16/32K): Input/Output Control System, Form C28-
6309, contains additional information.

If this field is omitted, TYPE1 is assumed.

[, EOF = exname])

End-of—F ile option: This field specrﬁes the external six-char-
acter name ‘of a:procedure ‘control section that is to be entered
by IOCS for-end-of-file processing.

1 8 16
$FILE .

‘FILEY’ UOI UO2 BLOCK 28, LRL 28

The sample ﬁle card shown above 1nd1cates that the
file named FILE1 is assigned to utility unit s.suo1. The
alternate unit is-assigned to utility unit s.suo2. All the
standard options (underlined 0pt10ns) are assumed for
the omitted options.

- $LABEL Card T he format of thls card is:

1 g 16 ;
.‘ = . ﬁle
“ $LABEL deckname ‘ﬁlename’,[serial :|
) : number _|
reel
[sequence:l I: g:;‘;
number

- [idensi]

This card provides labeling information for the file.
If the card is omitted, the file is assumed ‘to be un-
labeled. The sLABEL card is an exception to the variable
field format; the fields that are present must appear

“in the order. shown in the format. However, all fields

except the first and last ‘may be omitted, with omissions
indicated by adjacent commas (,,). The last field is
considered to be ten characters long with embedded
blanks allowed. All labeling information must be. on
this card; setc cards are not allowed. :

The deck name ﬁeld is not s1gn1ﬁcant

“filename”

The ‘filename’ is an alpharnerlc name of six or fewer char-
acters, identifying the file. It must be enclosed by quotation
marks (IBM card code: 8-4).

>

“file serial -
number

“The file serial number is an ‘alphameric field of five or fewer
characters. If this serial iumber is present, standard input labels
for“this-file ‘are checked against' it.” Standard ‘output labels for
this' file-contain this setial number- only if the reel sequence
option specifies ‘a ‘reel number greater than 1. If-the reel
sequence number- is ‘not specified or is specified- as 1, the file

The Processor (18j0B) 51

senal number is taken from the label that is already present)

on the file.

[reel s ence]

num

The reel sequence number is' a numeric field of four or
fewer characters that specifies the reel sequence of the. first
reel to be processed in this file.. If the field is omitted, the reel
sequence number is assumed to be 1. The reel sequence num-
ber is ad]usted at object time to reﬂect reel sw1tchmg and is
checked in standard mput labels

[{duel]

Input Files: This field contams “the creation date in the
following format: .

Y/D
where Y is 2 number of one or two digits indicating the year,
and D is a number consisting of three or fewer digits indicating
the day of the year. This field is checked-against the creation
date field in the label. If the field is left blank the check is
not made.

Output Files: This field contains ‘the number of days the
file is to be retained. Retention days are expressed as 4 num-
ber of four or fewer digits. If the ﬁeld is blank the reten-
tion period is set to. zero. !

» [identification] -

The identification consrsts of ten alphamenc characters fol-
lowing the last comma in the card. It is the file identification.
Embedded blanks are permissible. If the file is input and this
field is blank, the identification in the standard label is not
checked. If the file is output. and this field is blank, - the
standard label contains an identification field of ten zeros.

An example of a sLaBEL card is shown below.
1 8 16

SLABEL. ‘FILE2’ , , , 63/360, ident

This‘c‘ard indicates that the file named riLE2 was
created on December 26, 1963. Since the reel sequence
number has been omitted,. it is assumed to be 1, and

the file serial number is taken from the label. already

present on the file.
$POOL Card: The format of thrs card is:
1 o8 16
$POOL

BLOCK =xxxx , BUFCT—xxx'
: [‘ﬁlename]

deckrrame

Thls card desrgnates those files that are to share
common buffer areas, hereafter called pools. The effect
of this card may be extended, if necessary, by sETC
continuation cards.

The deck name is optional and may be omitted.

The content of the variable field must appear in the
order shown. Itis:

BLOCK =xxxx

xxxx is a number that specifies block size of the buﬁer pool.

» BUFCT=xxx

xxx is:a number that specifies the number of buﬁers to be
assigned. to -the pool.. This number should be at least equal
to the maximum number of files that will be open simultaneously
in the ‘pool.- BUFCT is assigned as specified. However, since
- TIOCS: uses: a2 maximum of twice -the number of files in the
pool, the balance of :the buffers; if any, will not be used. .

52

The buffer count specified here overrides ‘the $FILE -card
buffer options. Only the specified number of buffers are as-
signed to the pool. If a file requires a buffer during the run-
ning of a job and node is available, the job is terminated.

[, ‘flename’]

The remaining ﬁelds on the card are the names of the files
that are to be.included in the pool. Each file name is an
alphameric name of six or fewer characters, enclosed by quota-
tion marks.

An example of a spooL card is shown below.

1 8 D 16‘

$POOL ' BLOCK=100,BUFCT=2,
 FILEL,FILEZ,FILES

* This card indicates that FILE1, FILE2, and FILE5 are to
be assigned to the same buffer pool. The largest block
size of any file in the pool is used Two buffers will be
ass1gned to the pool. :

$NAME Card The format of th1s card is: !

1 8 (RS ()
$NAME -

-(deckname (exname) =exname
exname=exname
) deckname (‘filename’)
‘filename’ =“filename’

=‘filename’

This card may be used to change the name of a file
or control section. A name change is required when the
same name has been used in different decks for two or
more distinct files or control sections; in which case one
of them must be renamed w1th a distinct name. This
card may also be used when two different names are
used to refer to the same file or control section, in
which case one name is replaced by the other.

~The content of columns 8-13 is not significant on this
card. R

Each entry in the variable field consists of two alpha-

" meric names separated by an equal sign (=). The

name on the left consists of an external name that
may be qualified by a deck name. This external name
is replaced by the name to the right of the equal sign.
If files are to be renamed, then. the name must be en-
closed by quotation marks.

If the external name on the left is not qualified, it is
replaced by the name on the right wherever it occurs.
If the name is qualified by a deck name, it will be re-
placed by the name on the right only in the deck
named. : .

A single sNaME card may contain one or many en-
tries, each serving to rename a control section. Suc-
cessive entries must be separated by commas. seTc
cards may be used if the mformatlon will not fit on a
smgle $NAME card. SR

Specml Notes: Because name changes are processed
first, the following special rules apply:

1. If the external name of a file or control section is
changed in all decks by a sNAME card, the new name

must be used on any other Loader ccontrol cards that
refer to the file or control section. - & %

2. If the external name of a control section is
changed by a sNaAME card in one deck only, the old
external name may be used on any other Loader con-
trol card. ,

The following are examples of sNAME cards:

Example 1:

1 g .16

SNAME o DECVK2(R»OUT1:)=]OBXV\
Example 2:

1 -8 16 ‘
S$NAME ' DECKI(‘FILE) ='SAVE"
- Example 3:

1 V 8 - 16

$NAME © LOOKUP=SCAN1

\ (
Example 4:
1 8 g8
FILEY =LISTS’

$NAME

The effect of the card in example 1 would be to
change the name RouT! to JoBxXV in DECK2 only.

The effect of the card in example 2 would’ be to
change the file named FILE to SAVE in pECK1 only. -

"The effect of the card in example 3 would be to
change the name LookuP to scani in all decks.

The effect of the card in example 4 would be to -

change the file name FILE3 to LisTs in all decks.

$USE Card: The format of this card is:
R 8 . 16

$USE " deckname (exname),

~ This card prov1des a method of spemfymg a par-
ticular data, procedure, or file control section that is
used at execution time. The control section in the first

deck encountered by the Loader is normally retained

and all control sections with the same name in other

decks are deleted, but this card may be used to retain

a control section from" :any deck. All control sections

with the same name in other decks will be deleted.
The content of columns 8-13 is not significant. -

~ The entries in the variable field are alphameric lit-

erals The first six or fewer characters of the entry are

‘the deck name. The external name: of the control sec-
‘tion follows; consisting: of six or fewer characters en-
closed by parentheses. :

A single susE card may contain one or many entries,
each serving to retain a control section. Successive en-
tries must be Separated by commas. serc cards may be

- used if the information does not ﬁt on a single suse

card. . : :
‘An example of a'sUsE card follows:
1 8 16

$USE DECK10(TABLE1),DECK5
- (ENTRY4),DECK4(ROUTN3)

. This card mdlcates that the control sections, TABLE1
in DECK10, ENTRY4 in DECK5, and ROUTN3 in DECK4, are
to be used instead of the control sections having the
same names that were loaded before this control
section.)

- $OMIT Card: The format of this card is:
L 8 16 v
,$OI\IIT o ;'exname S
! deckname (exname) E

This card provides a method of deleting data, a pro-
cedure, or a file control section from a specific deck or
from all decks in ‘which this section appears.

The content of columns’ 8-13 is not SIgmﬁcant on this
card.

The entries in the variable field consist of alphameric
names. The entry may be the external name (six or
fewer characters) of a control section, in which case
the control section will be deleted from all ‘decks in
which it occurs. Alternatively, the entry may be a deck
name (six or fewer characters) followed by the ex-

‘ternal name of a control section enclésed by paren-

theses, in which case the control section will be deleted
from the named deck only. :

A single somrr card may contain one or many entries,
each of which serves to delete a control section. Suc-
cessive entries must be separated by commas. seTC
cards may be used if the 1nformat10n does not fiton a
smgle soMrT card. ,

‘Some examples of somrT cards follow

Example 1
A o816 e
~ $OMIT TABLE1 -
. EXampleQ,:, '
B 7 e 8 : 16
somrT * DECKI(TABLE1),DECK2

(ROUTN3), DECK2(HALT4)

The ﬁrst example indicates that TABLE! is to be omit-
~ted in all decks. The second example indicates the
following omissions: TABLE1 in DECK1 only, ROUTN3 in
DECK? only, and HALT4 in DECK2" only

The Processor (1BjoB) 53

Input/Output Buffer Allocation . : :

Since the amount of usable storagé for input/output
buffers can be determmed only by the Loader the
Loader will:: -

1. Allocate buffers for ob]ect program ﬁles, 1f any,
from storage not assigned for use by the system or the
object program.

2. Allocate buffers to pools as specified, if spoOL
cards are used and assign the specified files to those
pools.

3. Assign the remaining files to pools according to
block size, and assign buffers to those pools accordmg
to file specifications. -

GENERAL BUFFER ASSIGNMENT

If no spooL cards are used, the rules for irrput/ output. .

buffer allocation are:

1. A different buffer pool is created for each distinct
~ block size encountered. All files of the same block size
are assigned to the same pool, whether they- are input
or output files. = :

2.. The" pool ‘is given two bquers for each ﬁle for
which the pousLe buffer option is specified in the file
control block; and one buffer. for each file having the
sincLE buffer option specified.

3. The storage used by each buffer pool is:

a. One pool control word..
- b. One control word for each buffer in the pool
- ¢. Block size plus two. words for each buffer.

BUFFER ASSIGNMENT WITH $POOL CARDS

spooL cards may be used to direct the ass1gnment of
Ailes to certain pools.

1. All files mentioned on sPOOL cards are as51gned
to the same buffer pool. No other files, not even those
with block size equal to that of the pool are a551gned

to the specified pool. .
2. If a buffer count (BUFCT) is spemﬁed on-a SPOOL

card, the pool will have exactly that number of buffers.

The buffer count overrides any buffer options that may
have been specified on the sFiLE cards for the files in
the pool. Since no check is made to assure that a suffi-
_cient number of buffers have been specified to accom-
modate all of the files that are opened simultaneously
in the pool, care should be exercised in specifying the
pool buffer count. If, when needed during execution,
buffers are not available for a file, the job is terminated.
3. If no buffer count (Burcr) is specified on the spoorL.
card, the number of buffers assigned to the pool will
be the sum of the buffers specified by the buffer count
_options on the sFILE cards for all files in the pool. =
4. H block size (BLOCK) is not specified on the spooL
card, the largest block size of any file ass1gned to the
pool is used to allocate buffers. - : ~

54

Storage Allocation -

The Loader allocates storage to the object program, as
follows: -

1. If the program refers to s.sLoc, then s.sLoc is as-
51gned to the first nonstorage-protected location after

_the level of iocs specified on the siBjoB card, and a five-

word block is placed in the succeeding locations. .

2. File text for each file is formed into a 19-word file
control block. All file blocks are located immediately
after s.stoc and the five-word block, or at the first
nonstorage-protected location after the level of 10Cs
specified onthe stBjos card. (File text from the Sub-
routine Library appears with the rest of the file text.)

3. The data and procedure text are formed into ab-
solute text starting at the first location after the last
word assigned to the file blocks.

4. Subroutine Library data and procedure text fol-
low the data and procedure text formed from the input
decks. '

5. Blank common is assigned storage immediately
below the hlghest locatlon available to the system
(s.SEND). ‘

6. Buffers are assigned immediately below blank
COMMON. ‘ '

7. Pool control words are created and are assigned
locations immediately below the buffers.

Loader (IBLDR) Chain Feafure

,Multlphase Programmmg

It is a common programming problem that a program
too large to fit into core storage must be executed as a
sequence of smaller programs. The 7040/7044 Processor
has the capablhty of processing such a programming
application, consisting of several core storage loads or
phases, by us1ng the Cham feature of the Loader
(mBLDR)., -

The user of the Chain feature specifies through con-
trol cards that the source language and/or relocatable.

“input decks that follow a siBjoB card are to be proc-

essed to form several component: programs (links)
that are loaded separately. Although each input deck

‘has the same format that is used in an application

consisting of only one core storage load, certain rules
must be followed when codmg a program for a Chain
application. In addition, restrictions are placed on the

order of the:input decks in a'Chain application.

- When processing ‘a“Chain application, the Loader
forms an absolute multiphase program and ‘then places
it on a utility unit. This program must consist of a main

or controlling program, called the main link, and one
-or more links- that are loaded subsequently, called
‘dependent links. The main link remains in core. storage

at all times during execution.

Links may be coded in the ForTRAN, _COBOL, Or MAP
languages References from one link to another are
accomphshed through control drchonary entries.

DEFINITIONS

A prekus dependent link is one whose 1nput decks
precede the input decks of another dependent link.

A subsequent dependent link is one_whose input
decks follow the input decks of another dependent hnk

CROSS-BEFERENCING

Cross- referencmg among hnks is governed by the fol-
lowmg

1. A prevrous dependent link may never refer to a
control dictionary entry that is defined in a subsequent
dependent link.

2. The main link may not refer toa control drctlonary
entry that is defined in a dependent link.

3. A subsequent dependent link may refer to a con-
trol dictionary entry in a previous dependent link only
if the coding for that section of the previous link i is still
in storage The varrable field of the SLINK card can be
coded to insure that portions of previous links are not
destroyed by a cALL to a subsequent link. It specrﬁes
the origin of this link and prevents any reference by
this or subsequent links, to all external names in pre-
~ vious links from this point on.

4, Dependent links ‘may always refer to blank
COMMON Or external names in the main hnk because
the main link cannot be destroyed by any dependent
link. The main link remains in storage throughout
execution.

FILES r
The files for a Chain application must be defined with
the main link; however, references to these files may

occur in any link. Files that appear in subsequent links
are deleted and a warning message is wntten

: SUBROUTINE LIBRARY REFEBENCES

Subroutine library references may be made in any link,
Each subroutine will become part of the link which
refers to it, except when the subroutine is part of a pre-
vious link and the coding for that section of the pre-
vious link is still in core storage (as described in item 3
above). If this requirement is met, a link may refer to
the subroutine in core storage, even though the sub-
routine is not made a part of the link that refers to it.
The placing of a dependent link immediately following
the main link (by omission of a deckname i in the sLINk
card) effectively destroys all other links previously
called for the purpose of referring to subroutines, re-
gardless of the actual physrcal position in core storage.
When such a link or any subsequent link refers to a
subroutine, this subroutine will become a part of the

link referring to it. When the main link refers to a
subroutine, the subroutine effectively becomes a part of

 the main link and cannot be destroyed

Chain Frogrammmg Consideration's

THE MAIN LINK , e

The: following are requirements for the main or con-
trollmg link: '

1. It must contain the’ deﬁmtrons of all files used in
the entire program

2. It must contain the definition of the- Jargest block
of blank COMMON in the program.

3. It should contain a CALL to all dependent links in

~ the order in which they are to be executed. Thrs is done

by a cALL to the CHAIN subroutine. °

4. Tt should return control to the Processor Monitor
when all processing is complete (using a TRA to s.Jx1T).

5. It should contain the subroutines that are common

| to all dependent links, so that they will not be loaded

with every link that references them. Library subrou-
tines need not be referenced by a caLL statement in the
main link; they may be named in an ExTERN pseudo-
operation. o , o

As long as the main link conforms to the above Tules,
it may perform any additional functions that the pro-
grammer desires; however, it may not refer to any lo-
cations within dependent links.

The CHAIN Subroutine: Dependent hnks are loaded
and entered by using a CALL to the cHAIN subroutine in

 the main link. This reference to cHAIN in the main hnk

causes the Loader to make the cHAIN subroutine part
of the main link. This subroutme is located in the sys-
tem Subroutine Library.

The calling sequence is: -
1 8 . 16

~ CALL CHAIN(i)

where i is the link number; this number is determined
by the order in which the links are stacked as 1nput to

the Loader (1BLDR), exclusive of the main link.

The cHAIN subroutine uses the System Loader

‘(s.SLDR) to load and enter each link: Each dependent

link returns control to the main link by means of a
transfer to an entry pornt in the cmAN subroutine
The followmg isan example of a main lmk coded in

the map language that contains a CALL to three depend-
ent llnks

*MAIN OR CONTROLLING LINK

FILEA FILE. U00,,BLOCK=50_ FILE BLOCK FOR
2 ETC - LGL=50,RCT=1 FILE 1

FILEB FILE U01,, BLOCK=60 FILE BLOCK FOR
ETC . . -LGL=60, RCT=1 FILE 2 -

The:Processor (18joB) 55

CHAIN(1)

CALL1 CALL -
CALL CHAIN(2)
CALL ~ CHAIN(1)
CALL CHAIN(3)
TRA S.JXIT TRA TO POST
. e 'EXECUTION
ROUTINES
EXTERN CHAIN '
EXTERN S.FBIN,S.FBOU FILE BLOCKS FOR
. SYSTEM UNITS
. - FROM SR LIBRARY
EXTERN = CONVRT - CONVERSION
* : ROUTINE FROM
* o . SRLIBRARY
EXTERN JOBIN,JOBOU INPUT AND OUT-
. - PUTEDITOR
* R FROM SR LIBRARY
CONTRL // DEFINE BLANK
USE /! COMMON
BSS 500
USE PREVIOUS RETURN TO
* L 'MAIN LINK
* , : - LOCCNTR
' END CALL1 st

The Loader (mLbr) will allocate core storage for the
main link as shown in Figure 22.

DEPENDENT LINKS

Dependent links must conform to the following re-
quirements: :

1. No dependent link may overlay any part of the
main link, including buffer areas, blank common, and
subroutines referenced by the main link.

2. No dependent link should carL the cHAIN sub-
routine since this would destroy the return to the main
link.

3. A dependent link may reference control dictionary
entries defined in the main link. It may also reference

-0
IBNUC and 1OCS
FILEA
FILEB
file blocks A SEBIN
S.FBOU Lo
. : te core
main link coding - storage load
for main
CHAIN chain- -
"~ Y CONVRT
subroutines JOBIN

absolute core
storage load
for main chain

Pool list and buffers for files

Area reserved for blank
COMMON

" S.SEND

Lo

Figure 22. Core Storage Allocation for a Main Link

- 56

control dictionary entries defined in any part of a previ-
ous dependent link if the associated sections of coding
have not been destroyed by the appearance of a sLINK
card that origins a link at a point lower in core storage.

Thus, in the example in Figure 25 neither Link 2 nor
Link 3 could reference external names in Link 1 (even
if Link 3 were to be called immediately after Link 1).

However, external names in Deck 1 of Link 2 can be

referenced by Link 3.

4. Links may be called in any order. Care must be
taken to ensure that the portion of a dependent link
that is referenced by a subsequently called link is not
destroyed before the referencing link is called. This is
especially important when more than one caLL is made
to a link or when library subroutines are “shared” by
two or more dependent links due to initial relatlve
placement.

In the example in Figure 25, although Link 3 can
refer to Deck 1 of Link 2, if the links were called in
the order 1, 2, 1, 3, Link 1 might have replaced the
section needed by Link 3. Since the order in which the
links will be called cannot be determined by the
Loader, this type of error will not be diagnosed or
prevented The respon31b111ty for proper placement
and cross-referencing in these instances rests solely
with the programmer. ,

5. When a dependent link has finished processing, it
must return control to the main link by means of a

. TRA to CHNXIT for MAP coded links, or a CALL CHNXIT

for FORTRAN or cosor coded links.

6. The Tcp pseudo-operatlon may not be used in a
MAP assembly in any link.

7. The entry point for any link may not be a SAVE;
therefore, a FORTRAN subroutine subprogram may not
contain the entry point for a link.

The followmg is an example of a dependent link
coded in MAP: :

*DEPENDENT LINK 1

LINK 1 TSX S.OPEN,4 OPEN FILES

PTW 'FILEA
"TSX - S.OPEN,4
PTW FILEB
CLA A
CALL JOBIN GET INPUT
CALL JOBOU .. WRITE OUTPUT
TSX - S.CLSE4 CLOSE ALL FILES
PZE FILEA '
TSX S.CLSE4
PZE FILEB
- CALL INCLOS
; CALL OCLOS
" TRA CHNXIT RETURN TO MAIN
. S R LINK

“If this ‘dependent link were processed: fell@w g the

main lmk prev1ously descnbed the Loader would-allo+

S JXI‘I’

dlng RSN RAMAMEY U suty Eeon

23 °Stora Allocati for al
o 'the First Dependent Link

The format of this card is:

$CHAIN main name variable field e

This control card is required whenever the:€
teature is; to-be-used in a Processor application. The:

main lmk of the progg, me:is:
_six or fewer alphameric characters, starting in card
column 8.

The contents of the variable field_are:

card ‘must be placed immediately after the smBjos card:

fcomposed of

The Chain Unit options:: This specification- allows
the _programmer to indicate the unit on which,the
to: produce the -absolute-text for.the object

intersystem code ‘ e :

Uxx refers to the system utility unit xx. If the pro-
grammer also specifies =1Iyy, the unit is to be’ ass1gned
the intersystem code yy- i bt ;

U refers to the ﬁrst:avallable umt If the programmer

also specifies —Iyy," unit is to be’ asmgned the, in-

tersystem code yy.

e 1} refers to-the: ﬂrst~ avallableﬁta,pe umt If the pro-

vantage to the FORTRAN prog, ymmer. Because of the
procedures used to assign units for ForTRAN files,
it is recommended that the chain unit be assigned first,

SLINK CARD

1 7 8 . 16

ThlS control card mus!: pr ede: ac dependent hnk
in'the chain. The deck or:decks that follow it and pre-
cede a sENTRY card will be formed into oné core storage
load.

The content of ;column 7 is

If the current lmk is to overlay the deck specﬁied m the vari-
blé fi lum - blank. -1 : -

The ’content ef celumns 8-1

hnlmame o
The link name’is.an alphnmerié’ name: fer -the' hnk and is com-

of six or fewer:characte T T :

The Processor (1BjoB) 57

the locatmn fallowmg the Jast location: in: the speclﬁ
both the variable field and column 7 are blank;:
start at the location following the last location in the
If the ‘variable: ﬁeld is blank “and' column:7 ¢ s ¥, t'hi

pendent hnk

~ cards for, the]
SCHAIN card.

5. A sEN'rB cgr,d mdlca ing the -entry. pomt for the/
main link, must appear next.

6. The dependent links for the application follow.
The first card in each link must be-a sLink card; the{
last card must be a sentrY card.' The deck or decks
‘that form the core storage load for each dependent:
link must be stacked between the sLN “and ‘SENTRY
cards for the dependent link, ;

r- : 7. The dependent links must be stack d so that the.
ance of this card In the«‘mput stackof a ham applica- order in which. they. are_encountered. by the Loader
tion:does ‘not-causé the Processor Monitor: to- call the (mLDR) corresponds to the integer in the variable field
Loader as it: does in 6ther processor applications.«; ')

The content of columns8:13:is:not.significar
- The content of: g;he wvariable field is: ' :

[-externalname:
deckuame

$ENTBY CABD

assumes that
of several decks. ,
deck. Tf the field is left:blank; the ét Tink will Figure 25 shows the-core-storage -allocation -for thls;y v
standard. entry point. for th i leck i ink. A apphcatlon Note the effect of placing LNk2p?, the deck-
d ~ name of the second part of the second link, in the
variable field of the sLiNk card for the third lmk ‘When
sENDCHCABD 4 it o oo Link 3 is loaded, the Loaderl cate t
The format of thls card is: absolute address of the secon -
‘Figures 26 and 27 show a Chain application that con-
tains examples of storage allocations using LNk card
options. The same allocation would result :if ‘the
card SLINK LINK3 LNK2D2 were replaced:with the card
SLINK* LINK3 LNK2D1. Note that Lmk 4 follows the sub
routlnesfoerkS i s e e

entry pomt for

ﬁeld must exxst w:fhm that‘ link

1 .8 16

$ENDCH

ndwated on the sm]on card thei
Loader (1BLDR), after forming a ‘multiphase ‘program
and placing it Qn a utxhty umt w111 clear storage and"

to the Processor M The Reload Program =~~~

format: and-functionof = The Reload program is a subsystem under the Proces-'
sor Monitor. It initiates the loading of absolute object.
programs that were previously produced by t} -Copy
feature of the Loader. It eliminates the. neéessxty of

ne m ng. ¢
(See the section Introducti
itor,” for a descnptlon of #
this card.) :
-2: The: second : card in: the deck must be a scman
card. This card indicates that the ‘decks that follow

58 s

Z+[(IBMAP deck:for-third _):
part of Link 3)

g FTW P TNK3D3 1) :
(IBMAP deck for D R [
-} second part of Lmk 3)

15 IBMAP- LNK3D2 ¢

" |(FORTRAN deck for..
o flrsf part of Link 3)

; LINKLINK3LNK2D§\ I

: /$ENTRY
(relocatable deck for -\
second part of Link:2):

/[(IBMAP deck for
; dependenr Lmk l)

Link 1
v $|BMAP LNKDK
$L|NK~L’IN!(J RN

ENTRY

main (IBMAP deck for -\

linl main link)

SIBMAP MATN
CHAIN MAIN
1BJOB

Figure 24. Sample Deck Arrangement)

-using the Loader to load frequently used programs:
(e.g., a payroll program). This is especxally desirable
in the case of Chain applications where load tlme cam

be time-consuming.

Absolufe Obpci-Program Files

When a Copy option is specified on the sIBJOB control“ i
prorgram :

card to indicate that a copy is to be performed, the
Loader assumes immediate overflow of absolute text.
When processing is compléte, the Loader produces the
absolute object-program file. This file consists of the
appropriate table-of-contents record followed by the
absolute text. Also included is a record with the in-

formation necessary to reload the absolute object

‘program,
The absolute ob]ect-program file can be repeatedly

used until the system Nucleus is modified. Such an oc- -

currence would require a new absolute object-program

file to be produced. If there are any changes in the -

- Subroutine Library, the user may want to reassemble

IBLDR LN K2D2

iihlS ‘programs to include these changes and then have

W ob]ect-program file produced

~Us ! g the R ﬁeload Program

1

[NAME = progname]

| un

‘$RELOAD 3 ‘

Uxx |
Iyy
d[c]LIN :
The Unit options: The Uxx option specxﬁes that the absolute
object program:is to be loaded from sthe:utility: umt, S.8Uxx.:

The Processor (18joB) 59’

LINK 3

LINK 4

LINK 1 B LINK 2

- IBNUC AND 10CS

“File Blocks 1

Coding for
Link 1

: —éoéiﬁg for
Link 2 Deck 1

Coding for
Link 2 Deck 1

Coding for :
~ Link 2 Deek 2

“oding
Llnk 3 Deck 1

/ Codmg for
Link 3 Deck 1

LINK 1 : - LINK 2

LINK 3

IBNUC AND 1OCS

Fi le blocks

Coding for the main link

Library subroutines for the main link

Coding for Link 1

Coding for
Link 2 Deck 1

Coding for
Link 2 Deck 1"

Coding for
Link 2 Deck 2

Coding for
Link 3 Deck 1

Library Subroutines
for Link 2

i Library
Subroutines L'bm")'

for Link 2 Subroutines
\ for-Link 3

N

Pool list and l;uffers for files

7

Area reserved for blank COMMON

Figure 25. Core Storage Allocation for the Sample Chain
Application in Figure 24

Coding for
Link 3 Deck 2

Coding for
Link 3 Deck 3

Pool:list ahd‘bdfféiéifoi files

Library
Subroutines
for Link 3

h 'Areu reserved for blark COMMON

Fxgure 27 Core Storage Allocatmn for the Sample Chain

Apphcatlon in Flgure 2

rENDCH

|$ENTRY

Link 4)

(FORTRAN deck for v

[[steFrc tnkapk
[SLINK * LINK4
[sEnTRY

(IBMAP deck for
dependent Link 3)

$IBMAP LNK3DK

- [SONK LINKBINKzE

[SENTRY:

(IBMAP deck for
4 second | part Lmk 2)

SIBMAP/LNKZD 2 -

(ref‘ atcb|e deck
- | first part Link 2)

oo [SIBLDRINK2DY - 0 o o
[SUNKTUINKZLNKDK__——\
[$ENTRY
.| (IBMAP. deck for .
dependent Link 1)
[siBMAP LNKDK
©[SUNKTLNKT

[sEnTRY

- (IBMAP deck for
|- main link)

| STBMAP MAIN
[SCHAIN MAIN
$IBJOB

Figure 26,
60.

Sample Deck Arrangémient Using $LINK*

The Iyy option ;spécifies- that ‘the absolute object ‘ program
is to-be loaded. from the-unit that has been assigned.the inter-
system reservation code yy. e

The d[c]LIN option specifies that a label search is to be
performed to determine the ‘unit from which the absolute
object program-is. to be:loaded., (The label search options.are
explained in the section t1tled Input/ Output Unit Assignment”

“in ‘this publication.) ‘If this option is specified, the' $RELOAD

card must be preceded by a'special $LABEL card. The $ LABEL
card indicates the contents of the label associated with the
absolute object-program file. The file name for this_$LABEL
“card must be S.FBCP. The format of ‘the $LABEL “card is
. discussed in the section titled “Loader Control Cards” in this
publication. : S

: [,NAME=progname]
Progname is either the name of the main link in a CHAIN
- application at COPY time or it is the program name on the

" $IBJOB card at COPY time. This option must be taken 1f thee

" SRCH option is specified on the $RELOAD card.
: [SRCH
NOSRCH
The Search options: The SRCH option specifies that S SUxx

is to be searched for the program indicated by the progname
entry.

The NOSRCH option mdxcates that the absolute object pro-

- gram to be reloaded is at load-point on S.SUxx.
If neither SRCH nor NOSRCH is specified, NOSRCH is
assumed.

The sample deck arrangements shown below 1llus- ’

trate the sequence of" events in a typlcal Reload
“application.

1. $DATE 051864)
$JOB STACKING -)
$OPEN S.SU00=115,REWIND :
$1BJOB A COPY=115,MAP; NOCO SOURCE :

(program deck)

$ENTRY

$IBJOB. = B COPY= Il5 MAP NOGO NOSOURCE
' * " {(program deck) -

$ENTRY
- $IBSYS

$CLOSE II5R,REMOVE

$IBSYS

~ $STOP o ‘ ,

2. $DATE 030964 - - o
$JOB.. - ;- .. PRODUCE TWO COPY TAPES
$CLOSE S.SUI2REWIND

" $CLOSE SSU05 REWIND o i
$IBJOB D COPY =U05, MAP,DLOGIC GO =
- $IBSYSo : .
 $CLOSE = S.SUO5,REMOVE o
' "I$1B]OB E COPY—U12 MAP DLOCIC GO
- $IBSYS- e ;
~$CLOSE S SU12 REMOVE
$STOP

3. $DATE 12061664 . -
$OPEN $.SU00=110 REWIND
$OPEN S$.SU01=I11,REWIND
$OPEN S.SU02=112 REWIND
$IB]OB'/ : **NOSOURCE e
SRELOAD -+ :: IIO,NAME=A, NOSRCH
$IBJOB. NOSOURCE o
$RELOAD “U110,NAME = B SRCH
$IBJOB -7 “NOSOURCE - = ST
$RELOAD - HENAME=D, NOSRCH
$IBJOB . - NOSOURCE . .

~ $RELOAD 112, NAME E, NOSRCH
© $IBSYS® -
$STOP

- Nore: ‘The NosoURcE option should be indicated on

“the smjoB ‘control card ‘when the ‘Reload program is
-used. Any mounting messages that are required should
“be provided-with a spausk card preceding the $IBJOB
’-"card Or the ﬁle should bespecrﬁed AS DEFER. » © @

I.ubel Chungmg Procedure

*ob]ect program ﬁles ‘may be changed at: reload-trme

by the following procedure:
1. Include all sLaBEL cards necessary for the]ob
immediately before the sreroap card. They will be

~processed by the Preprocessor-and the information on
“themwill be written in the file on work unit 1.

2.-1f sLaBEL cards are included, the unit used for
loadmg the absolute - object program should be re-

‘served ‘by ‘the programmer to: prevent 1t from being
“chosen‘as work umt 1. S o

Execution

‘When: the Reload program ds: called it performs the
ffollowmg '

1L Processes the SRELOAD. card

2. Initializes page heading cells ; S

3. Finds the requested absolute ob]ect program
+-4.-Reads -and] processes 1ts mformatlon records and

table of contents -

5. Reads in the file control blocks » :
6. Processes the new label information and assigns
input/ output units
s the NucIeus for the ob)ect program
8 Tests for program mterrupt
9. Types the BEGIN message
«-10.-Zeros-storage - S
11. Transfers control to the System Loader

~ The System Loader then loads the object program.

If the System Loader finds that the device is incor-

‘rectly positioned, a permanent error occurs, since the
“device cannot be correctly positioned. .

-Programming Cross References

Central to the design of the Loader is the facility to
-have cross-references between decks, regardless of the
original source language. One example of this is the
* sharing of file descriptive mformatron discussed in the
“section, “Object Program Files.”

An understanding of the Mmap and FORTRAN languages

is helpful in understanding this section. The general
-reader may skip the section.

i»Macro Assembly Program

Several MaP operations prowde referencmg between
symbols that appear in several program segments that

The Processor (18jos) 61

are intended for separate assembly. When these opera-
tions are used within a program. segment, they pro-
* duce an entry.in the:control (dictionary for that program
~deck. These control dictionary entries are used by the
Loader to ma](e the. correct. references between .pro-
gram segments and to assrgn the correct absolute ad-
dress for all such symbols. A it
‘Figures 28 and 29 show parts of a: program, conmst—
*mg of two related program segments that reference
each other L N

REFERENCEABLE CONTROL SECTIONS D

Two operations, CONTRL and ENTRY,. may be used to

designate: a: control:sectionin a program:segment ‘as
referenceable or replaceable by other program seg-
‘ments. s

‘The codmg in Flgure 28 that beglns w1th LEAST and
ends with ENp may be defined as a. control section by
using the following coNTRL pseudo-operation:

RANGE CONTRL LEAST,END+1 R

- The effect of this pseudo-operation would be to place
the control section name RANGE, together with a length
of nine locations, into the control dictionary for pECK1;
this effectively defines the coding mentioned above as
a control section with a referenceable name, RANGE.

The following is an example of the ENTRY pseudo-
operation that is used to indicate that NEXT is an entry
pomt in the coding in Flgure 29.:. :

ENTRY =~ NEXT

The effect of this pseudo-operatlon W uld be to
place NEXT together wrth the length zero in the control
dictionary for Deck 2. x is not nece5sar11y the ‘ad-

$IBMAP - DECK1 i
LEAST CLA. " - LOCA: &
CAS LOoCB
CLA LOCB
TRA . . ONE: _ .=
ONE .. CAs . ¢ -
. aa o woce
. TRA :T\V\ZO" s
Two sto low
END TRA © NExt
RANGE CONTRL LEAST, END+1
EXTERN LOCA, LOCB, LOCC, LOW, NEXT

gram ‘with CrossReferences Between

4 st‘sMAg; iy rnecrz
1 toca - 7DEC 0
foee ~ pbec o
toccC DEC . 0
Low DEC 0
NEXT . TSX . SGETL4.
PZE FILLEOCA
" TRA - . RANGE:
* 'ENTRY LOCA
ENTRY LOCB
ENTRY Locc
CENTRY . LOW.
CEXTERN: ~ RANGE .
ENTRY NEXT o

Figure 30 shows a simpl

dress of the first executable instruction of the deck. The
‘END pseudo-operation specifies the first executable in-
‘structlon of the deck as follows:

- END : - name-

: where name is the nominal starting point of the pro-
gram. The Loader will transfer control to name when
thls deck is specrﬁed on the sENTRY card

Frgure29Sample Program) wrth éross Beferences.) Between

Decks

REFERENCING CONTROL SECTIONS -

- The ExTERN pseudo-operation references other program

segments. This operation specifies that the symbols in
the variable field are used in this program segment but
are not defined w1th1n it. These symbols are. deﬁned
in other program segments.

The following is an example of the EXTERN pseudo-
operation. that is used to mdlcate that’ ‘the ‘symbols
LOCA, LOCB, LOCC, Low, and NEXT are not defined in
Deck 1 (Figure 28), but are defined in other segments.

EXTERN LOCA LOCB LOCC LOW NEXT

FORTRAN
The FORTRAN statement COMMON, is used for sharing
data areas with other- program segments. Lmkages to
other program segments can be made e1ther by a CALL
statement or by a functlon name usage
Example: Referencing between common- data areas.

:case consisting of three ad-
jacent data areas that are six, three, and ﬁve “words
long, respectively. G

< cDATUM : o 10

length 3.

sl length 5. .

B e

Flgure 30. Ad]acent Data Areas in Storage

The followmg FORTRAN: codlng deﬁnes such an area
w1th a label paTum: $:003 EE e e
COMMON/DATUM/ A(6), B(3) C(5)

In the map language, the followmg sequence also
defines such an area: - . :
X o BSS B

Y BSS 3
Z BSS 5

If the coding sequences are part of FORTRAN and MAP
programs that are to be run together the addition of
the followmg statemeént to the MAP sequences effects

"the requu‘ed referencm g

DATUM CONTRL 'x<‘+5
- This proeedure ensu; s the eq

’ ments, and only one such area will be:prov1ded' by the
Loader if the programs are loaded and/or run together.

,;conm. s 4 o e e
- The. program cross-reference facrhtres of the Loader
(1BLDR) can be.utilized in a coBOL program by using
-the CONTROL. and. FILE-REFERENCE . statements 'in the

. SPECIAL-NAMES paragraph of the Environment Division

and the ENTER verb.in the Procedure Division. The
Loadler facilities. ‘enable the cosor. programmer. to. (a)
_define .common data: or, procedure sectlons between two

DEFINITION OF COMMON DATA AREAS OR PR
SECTIONS

The conTROL statement in the spE TAL-NAMES para-
graph allows' the user to ‘specify th:
data-areas or blocks of instructions.are: consrdered to’ be
~control sections by mmar and the Loader. These con-

“determined by the space occupled by the ﬁrst appear-

~amount of storage. This.

Workmg-Storage Sectron or Constant Sectlon of the

' Data:Divisiony paragraphs or sections in the Procedure
. Division; or-the out-of-line:subroutines generated for
--a partieular-file. Record descriptions in-the. File Section

cannot be designated as. control sections since records
are located in the buffers, rather than transmitted by
10¢s; “and ‘consequently the com'piler reserves no: stor-

..age for these record areas. ,

++.'The following: restmctlons must be observed in deﬁm-

:ztlons of common data areas or procedure sections.-.

Data Areas: Tf a data-name is des1gnated asa control

. ical'to that of any other com-
'fnamed control sectlons to be loaded at the

ance of a commonly named section: All other ‘appear-

Efances ‘of the ‘named séction “are referenced ‘to- the

: begmmng of the first ‘one. Thus,’ “portions of ad]acent

- storage can be- destroyed ‘when storing into an area, or
“erroneous data can be extracted if ‘each commonly
?'named control sectlon is ‘not‘the same size. e

’;separately complled 'procedure sectlons or paragraphs
.are given the same control-section name, the Loader

section’ actually loaded To ensure that a return is
7 made to fthe proper. program after the control-sectlon

“sections must occupy ('when, assembled) the same
ion does not- -apply if
e de51gnated as control

onlyr:OBOL pamgraph-names

. sections, which. is the normal case. .
.::Out-of-line File: Material:: The out- of-hne ﬁle ‘ma-

;tenal,optlon should not normally\ ‘be used unless the

-other commonly named control section is also out-of-
line file material in a copoL program. If this option is

used, there should be a. FiLE-REFERENCE clause’ (En-

+vironment: Division) 'giving - the ‘file: the:same external

“both programs; : the: #p-entries -and record
descriptions {(Data Division) should be the same, and

The Processor (1Bjos) :63

the’ oPEN specxﬁcatmn (Procedure D1v1smn) should
be the same." g
If the: out-of-line ﬁle materlal mcludes generated
“data areas,. as for Type-2 OCCURS . .. DEPENDING ON".
files or files assigned to pe or ov; hese‘areas will be
1ncluded in the control sectlon ' Mttty

LOADING SUBBOUTINESzFROM"I}IEi SUBROUTINE LIBRARY:

Following an ENTER ASSEMBLY-PROGRAM statement in
~the Procedure Division, use of an Extern-for a library-
subroutirie: name; or ‘a CALL ‘to a library-subroutine
- entry point causes. the named or called subroutine to
be loaded with the compiled coBoL program.

Linking the COBOL Programto Separately C hmpiled ’

Routines or Subprograms; Either a co. TO. statement
with an operand defined by a. MAP-language EXTERN
‘statement or a MAP-language CALL statementused after
an ENTER verb can be used. to. lmk a.COBOL program to
separately. compiled - routines.

If the cALL statement is used, the normal return is to
the statement following the carL. This may be another
CALL statement, If the caLvL is the last MAP-language
statement in an ENTER ASSEMBLY-LANGUAGE .portion. of
the Procedure Division, the normal return is to the first
coBOL statement following the ENTER ASSEMBLY-
LANGUAGE portion (whlch must end w1th an ENTER
COBOL statement) - ’ " :

Paragraph or sectlon-names jmay be spemﬁed» as

If the co To name-deﬁned byr "XTERN form is used
to hnk to a subpro’ 1 am the retum must be made to a

program(s) should be mcluded in ontrol sectlons
"Data areas within'a control sectmn may be referenced
» by address-ad]ustment um

“"procedure name specified “in ‘an - ’ENTRY statement
must begin a subprogram writter cosor. I ‘the
“SAVE statement is used, ‘the: return" to - the - calling

program: should - be* ‘made’ by a.RETURN' statement,
specifying the name- of the save statement as’its

-operand.-Any of the alternate returns may be spec1ﬁed
in* additional ‘RETURN statements. oo fris
=:No- prevxswn ‘exists 'in cosoL for mterrogatmg ‘a hst
::of arguments in' the caLL statement that calls the sub-
'program; Data-names specified as control sections may

be used to communicate data between the calling pro-
gram and the cosoL subprogram. A typical arrange-
ment of statements in the Procedure Division of a
coBoL subprogram might be as follows:

PNI1. ENTER ASSEMBLY PROGRAM
NAME ~ SAVE 1,24

PN2. . ENTER COBOL

PN3. (Procedure: Statements)

PN4. ¢ ENTER ASSEMBLY- PROCRAM

RETURN NAME :

If a name defined by an ENTRY statement is used as
the entry point for the subprogram, return to the call-
ing program should be made by a co To name-defined-

- by-EXTERN statement form: Typlcal statements in' the

Procedure Division mlght be:

PNI ‘ ENTER ASSEMBLY-PROCRAM
~ENTRYPN30 .
" EXTERN CALLER
PN2. ENTER COBOL..
PN3. (Procedure Statements)

CO TO CALLER

‘g lees Common to Two Programs If two

COBOL pfograms are to share the same file(s). when

loaded together, each program must have:

1 A FILE- REFERENCE clause ‘(SPECIAL-NAMES para-
o ‘:graph) prov g'a common reference-name for
. “the ﬁle co
‘2. A controL dlause (SPECIAi.-NAI\ms’ paragraph)

for the out-of-line file material generated for the

file (see “Out-of-Line Subroutines,” above), w1th
~a common’ external name ‘that is not the same as
the FILE-REFERENCE reference-name. = -

- If ‘these requirements are met, only one buffer area

(‘or set of areas; if double-buffered’) “and one file con-

trol block will be generated for each file shared by two
-programs. Also; only ‘one set of linkages to 10cs sub-
“routines and, if apphcable ‘one’ set of generated data
“areas will xist for the file;

The “descriptions of the file in the Envuonment
‘ entry (mcludmg récord descrlp-
and in the oPEN statement must be the same in
ns. If they are dﬂferent only the file

jmformatmn from the first’ program loaded will apply
to the file and unpredictable results may ensue from the

second program..

‘Com piler and Assembler Dmgnosm Messages
‘The Error Editor section of the Macro Assembly Pro-
-gram processes all diagnostic-error:messages-from the

Macro Assembly Program, the COBOL Compxler and the -

FORTRAN Compiler.

If the assembler or compllers encounter a card Wlth :

an error, the card is flagged with a letter, elther W or
" E, in the program listing.

The W flag warns the programmer that the card may

be in error; however, since the error, if any, is trivial,

execution will be allowed. For example, the following.

FORTRAN™ statement, from which a comma has been
omitted, would be flagged with a W:

GO TO K (17,12, 19)
The correct statement is:
GO TO K, (17,12, 19)

An E flag indicates a more serious error. Depending
on the severity of the error, loading and/or execution

-may be deleted. In addition, at the end of the listing,

an error message will be printed indicating the nature
of the error in more detail. The format of these mes-
sages is as follows: .

severity code

The severity code identifies the procedure taken for
the error, as listed below ’ ~

-0 - Warning message only.

“1 - :Mild error. Loading -and executlon of. the object.

program are not affected. -

2 Definite error. The object program is not loaded
into core storage. However, the Loader does
produce a storage-allocation map and/or a

storage-allocation list, if these have -been re-::

quested on_the $IBJOB card by means. of the
Map ‘and Logic .options, respectively. -

4 Serious error. The object program is not loaded.’

Options -on the $IBJOB card - that require the

use of the Loader are not processed. The first.

error of severity level 4 halts the production of
‘a binary ‘deck and causes a $FAIL card to be

punched. Assembly of the. source program con- .

tinues.

7 Catastrophic error. All processmg of the source
: statements ‘terminates. The assembly hstmg is
mcomplete

The statement number identifies the ﬂagged MAP
statement to which the message corresponds; the error

number uniquely identifies the message. The message
specifies the nature of the error. o :

FORTRAN and COBOL error messages are correlated to
the source program by internal serial numbers (1sNn
for rorTRAN; csn for cosor). Each input statement to
FORTRAN and coBoL compilers is assigned an Internal
Serial Number by the compiler. This number appears
in the listing of the input statements. .

~ Introduction to the Subroutine Library ('IBLIB')'~' ;
This section describes the Subroutine Library, which
contains a set of relocatable subroutines for system and

statement number . error number “message

Form C28-6318-5 -
Page Revised 7/1/65
By TNL N28-0534-0

~-programmer wuse. These subroutines are available to
the user throu‘gh the Loader, which incorporated them,

as required, in’the object program at load time.- At
system assembly time, many of these subroutines ‘are
also incorporated in absolute form into the system
components that use them.

Subroutines may be added to or deleted from the
Subroutine Library by using the System Editor (for
further' information, see the publication IBM 7040/
7044 Operating System (16/32K): Systems Program-
mer’s Guide, Form: C28-6339). The System Editor
accepts; for’ editing into ‘the’ Subroutine Library, pro-

~ grams that are written in.the FORTRAN, COBOL, OF MAP

languages, or programs that are in the relocatable
binary format. The System Editor passes these pro-
grams to the appropriate processor.

The following types of subroutines are available in

" the Processor Monitor sectlons of the Subroutine Li-

brary:

1. The Input Editor

The Output Editor

The Punch Editor

The Snapshot Subroutine
The Checkpoint Subroutine
" 6. The Post-Execution Routine

A detalled descrlptlon of these r0ut1nes appears Iater
in the text. '

- The following types of subroutmes are available in
the FORTRAN sections of the Subroutme Library:

SGU oo

1. Mathematical routines

2. System routines for input and output edltmg and
for conversion of data under control of FORMAT state-
ments

3. System routlnes for commumcatlons with the Sys-
tem Monitor and Processor Monitor for such items as
standard diagnostic procedures, machine 1ndlcator test-

. ing, and loadmg control

~ FORTRAN mput/output routines are discussed later
in the text. FORTRAN mathematical routmes are de-
scrlbed in the publication IBM 7040/7044 Operating
System (16/32K): Subroutine Library (FORTRAN IV

Mathematical Subroutmes) Form (28-6806. FORTRAN

system routines are described in the publication IBM -
7040/7044 Operating System (16/32K): Systems Pro-
grammer’s Guide, Form C28-6339.

The Input and Output Editors

-The Input, Output, and Punch Editors provide the -

user with input, output, and punch file handling rou-
tines that can be incorporated in his object program

', The Processor (1BjoB) 65

by using the standard caLL statement of the FORTRAN

and Map languages. If the Punch Editor is called, the -

Output Editor is,also,, included.

" The System Input Flle
The following caLL statement is used in the object
program for input from s.siNt:

CALL - -~ JOBIN

“This entrance to the Input Editor is used by theﬂ

compilers, the assembler, the Loader, and the object
program to get a logical record from the system input
file or its alternate. The file is automatically opened,
without rewind or labeling procedures, when the first

CALL statement is made. A logical record is located in-
the input file buffer; if the record is acceptable, the

Input Editor returns with the accumulator set to:
: pfx - a;,n -
where: ‘ Ci e e,
if pfx
=PZE, the record is BCD.
=PON, the record is BCD with a $ in column 1.
=MZE, the record is binary.
i , J :
=the initial address of the record in the buffer.- -
n

—-the number of words located (14 1f the record is BCD
27 or 28 if the record is binary).
The following is a list of condltlons that cause the

record to be unacceptable. In each case, the processor
application (and the job) is terminated; and ~contreol is
returned to the System Monitor.

1. A redundancy error on the system mput file: or
its alternate, if the unit is not a card reader -

2. An end of file on the system input file

~ 3. An unsuccessful search for a matching s card on
the alternate input file (when SRCH was. specified as an
option on the siEpIT card)

The following is the format ‘of the CALL statement

used by the object program to close the system input
unit (s.51N1):

CALL INCLOS

This entrance is used by any system part ‘except
the System Monitor. It may be used by the object
program to close the system input file and its alternate;
however, this- is not a ﬁnal ‘close. The compllers ‘the
assembler, the Loader, and the object program must

never close the system mput file with an end-of- ﬁle»

procedure

The System Output File
The following cALL statements are used in the object
program for output to s.sout:

CALL JOBOU (list) or
‘CALL - JOBOUL (list)

"This entrance to the Output Editor is used by the
- compilers; ‘the assembler, the Loader, and the object

66

Ay

‘program to place output into the buffers for the system

output file or its alternate. The file is automatically
opened without rewind or label handling when the
first caLL statement is made. The logical output is
placed into the buffer in accordance with the user’s
spec1ficat10ns

The symbol list is the initial address of a set of
parameters that have the following form:

list “PZE: n - :
pfx ! A, T, My
. pfx An) Tni Ml‘l
~where: '

n=the number of words in the hst followmg the first word
if pfx
=PZE, start anew line w1th a single space.
=PON, start a new line with a page restore.
_=PTW, start a new line with a double space.

=PTH, start a new line with spacing controlled by first char-‘
acter: of output line. .

. =MZE, continue the current lme

NOTE: When pfx PTH is used the user has assumed re-.
sponsibility ‘for spacing, page overflow, and page count. The
user can maintain the line count by decrementing the counter -
L.PGLN by the number of lines that are used for output.
L.PGLN is 1mt1aIly set t0- 57w and is reset when it decreases to
zero: - .

: —the locatlon of the ﬁrst word of the text.

if Tj)
—0 the mxtlal byte 0 and Mjis in words and

if Ty ¢
- 540, the 1mt1al byte Tj—l and Mj is in characters

M;j

= the word count or character count, dependmg on Tj.

‘In the abovejmaybel...n

Page heading and page numbering are automatic and
are printed at the top of every new page.

joBOUL is used for writing complete lines. The first
character of the line must be a blank. When joBouL
is used, pfx mze is invalid, tj must be 0,-and ‘M; must
be the word count.

-Page Heading: One field of 17 words, called PAGHD,
and one field of 14 words, called susHp, are provided
as-entry points within joBou for page heading informa-
tion. These fields must be initialized- by the object
program. The contents of s.supR are inserted into the
first five words of PAGHD on the first entry to JoBOU.

Page Numbering: A one-word page nurhber field,
PGNUM, is provided within joBou for page numbering.
This field is set to the address of s.pccr on the first entry
to JjoBou-and is incremented by 1 before aheading is

written. This incrementation is performed. by the rou-

tine r.uppc. .This routine will take effect only if the

filo has been opened by the Output Editor. The callmg
sequence to this routine is: _
s TSL - - LUPPG. -

~ The following carLL statement is used in the ob]ect ,

program to close the system output file ‘and’ 1ts alter-
nate: - vy by
© CALL OCLOS Comlh
This entrance is used by the compilers, the assembler,
the Loader, and the object program to close the system
output file and the alternate output file; however, this
is not a final close. The compllers the assembler, the
Loader, or'the object program must never cIose the
system output file with an end-of-file procedure.

The System Punch File. . . :
The following cALL statement is. used in: the ob]ect
program for output tos.sep1: : et

~ CALL ~ JOBPP (list) -

This entrance is used by any system component and
by the object program so that the output to be punched
can be placed into the system punch file buffers or into
the system output-file buffers. The appropriate file is

‘opened automatically. It is rewound if apphcable and

its label is checked if necessary. ‘
list is the location of one parameter havmg the foI-
lowing form: R e :
“list cpfx- o card o
‘where: R
pfx

= PZE, if the record is BCD.
="MZE, if the record is binary.

card
" = the initial address of a block of 14 words 1f the record is
BCD or a block of 24 words'if ‘the recordis column binary.
_Columns 73-80 of a column’binary card will be: taken from the
field PPLBL, described below. "

Sequencing of binary cards is prov1ded automatlcally
from the ppLBL field. PPLBL is an entry point within
joBpp that may be set by the user. It is an eight-
character card label (Bcp) and is left-]ustlﬁed It is
initially set to:

BCI " 2,00000001bbbb

The first four bytes are assumed to be alphabetic, the
next four numeric, and the last four blank. The Punch
Editor increases: the numeric -bytes by 1 -after each
binary record is. placed into the buffer,

The following cArL statement is- used by the ob]ect
program to close the system punch: ﬁle

CALL. . . .PCLOSE. ey

This entry is used by any system component and by

-the object program to close the system punch file. This

action releases buffers only: The system. components

~-and object program must never close the: system punch
file with an end-of-file procedure.

- User Punch Routine: An object program writing on
- 8:5pP1 but not using the Punch Editor, in an installation
~where system punch output thay be:combined with
- system print output, must test the Punch File Open bit
~(bit 17 in location s.sFrc). If the Punch File Open
- bit is one; the object program must open s.spp1 without
: reposltromng If that bit is zero, the object program
~must: e :
S Open s. SPPI w1th reposmonmg and label checking.

2. Set the Punch File Open bit to one.

The Snapshot Subroutme

- A snapshot routine ‘is’ provided in the Subroutme
- Library for recording the console and selected areas

of core storage. This routine will be incorporated in any

- object program that calls it with the proper calling
- sequence. This useful program debugging facility and
its calling sequence are described in the publication
“IBM 7040/7044 Operating System (16/32K): De-
: buggmg Faczlztzes Form C28-6803. ’

The Checkpomt Subroutine

A checkpomt routine is provided in the Subroutme
- Library so that restart may be accomplished after an

interrupt in the processing of a job. This routine will
be incorporated in’ _any. ob]ect ‘program that calls it
with the proper calling sequence. This routine and its
calling sequence are described in the sectlon Check-

pomt earher in thrs publlcahon

‘The Post-Execution Routine o
" The Post-Execution routine is provided in the Subrou-

tine Library to ensure return ‘to System Monitor con-

- trol. Every object program upon completion must
T‘;transfer to this routine with the calhng sequence, TRA

«;FQRTRAN Flles

Constqnt Umts p :

Any FORTRAN source program mput/ output statement
that references a constant unit- (for -example, READ
(1,10) A, where the refererice is to the constant FORTRAN
logical unit.1) causes the library File routine cor-
responding to that unit to be loaded with the object
program. A FILE routine, contains a Macro Assembly
Program riLE pseudo-operation that will be generated
into a 19-word file control block and its associated
buffer(s) by the Loader (1BLbR). The File routine de-
termines various file specifications, such as unit assign-

The Processor (18joB) 67

ment, block size, number of buffers, record type, and
length. These File routines are described in‘the publi-
cation IBM 7040/7044 Operating System (16/32K):
Systems Programmer’s 'Guide, Form: C28-6339; file
“control blocks are described in' the publication IBM
7040/7044 Operating System (16/32K): Input/Output

“Control System, Form C28-6309. The unit assignment -

specrﬁcatlon establishes the correspondence between
FORTRAN logical units and system umts ‘as shown in
Figure 31. ‘ : R

FORTRAN
Logical o ’ .
Input/ ‘library External = . System - . System .
Output FILE. FILE - Unit _Unit
Unit Routine Name ~~ Assignment Description
0 © FOO - FT€00. = .:$;8U00- ... _Utility O
1 FO1 FTCol. _ S.suol- Utility 1
2 FO2 FTC02. - S.8U02° wiiliy2 T
3 7 Fo3 FTCO03. © 8:5U03" “Utility 3°°
4. FO4 _FTCO4. - - .-S,SU04 . . -Utility 4 - [
5 FO5 - SSINT. SystemInputUnit
6 F06 - " $.S0UT ~ 'System Output Unit '
7 FO7 - - S:SPP1 System Peripheral
Punch Unit
READ FRD — SSINT._ SystemInputUnit
PRINT FPR — " iYsgouUT - U SystemOutput Unit -
. PUNCH FPC = - S.SPPT . System Peripheral -
- ;) Punch Umt s

: Frgure 31. Correspondence Between FORTRAN Loglcal Umts,
FORTBAN Frle Routmes, and System Umts R

Variable Units ’ B
Any FORTRAN source program input/output statement
that references a variable unit causes the vTv input/
output subroutine and :all File routines to be loaded
with the object program: The followmg is. an. example
of such an input/ output statement: :

‘WRITE :©© (L;10)A

In this example, the FORTRAN Input/()utput Loglcal
Unit I varies during execution of the program. The
UtV routine takes the value of the variable unit at the
time the variable input/output statement is to be exe-
cuted, and references the 10u Table to determine which
File routine (hence, which system ﬁle) 1s requn'ed
The 10v has the following typical format: "~

* INPUT/OUTPUT LOGICAL UNIT TABLE ADDI-
* © TIONS OR'DELETIONS: SHOULD BE MADE BE-
* ... TWEEN IOU AND:- NFILES;N 4

IoU - PZE “ FILOO:
- PZE FILOL iat
PZE . FILO2, . |
PZE FILO3.
CCPZE - 8
- PZE
“NFILES i =PZE " " =]

10U is the point of reference for the urv routine.
Thus, 10U + nn (where nn is the -current value of the
variable unit, e.g.,,nn =0 in the WRITE example above)
contains: the address. of .the correct. File routine entry
point, In turn, FILnn contains the location of the file
control block. '

The value of nn may range in.the above example,

Arom +0 to +7.

’ Modufymg FORTRAN Flle Specuf‘cuhons

rAny of the FORTBAN F1le specrﬁcahons mcludmg unit

assignment, may be modified by the user in erther of
two ways:

1. Temporarily, by including a sriLe card with his

“object program having the same external file name as

that of the library File routine. This sFiLE card must
list not only the desired modifications, but also all other

 specifications necessary to describe the file completely.
1If the file is to be labeled an assocrated SLABEL card
‘must accompany the $FILE card.

2. Permanently, by assemblmg a File routine havmg

" the same entry point as that of the library File routine

and then replacing the library routine with' his own
in an’ edit' run. This new File routine must include all
specifications necessary to describe the file completely.
If the user wishes to label the file, a 1.ABEL statement
should immediately follow the FILE statement in the
routine. : '

Notes:

1. A rortraN file may’ be labeled by mc]udmg a
sLABEL card with the object program. Tlns card need
not be. accompanied by a sFILE card.

*2: If a ForTRAN file is specrﬁed as TYPEL the Becord
Count (rcr) must be 1.

3. 'If the BACKSPACE statement is used the Record

VECount (BCT) must be 1

: Modlfymg 1he IOU Table

The 10U Table is modified as follows ’
- Deletions: If theuser wishes to reduce the amount of

“storage space required when the. variable units are
referenced, he may replace with:-a pze o the PzE FILnD.

word corresponding to any unused file. This procedure

“'prevents loading of the ﬁle control block: of FiLnn. and

its associated buffer(s).
Additions: If the user wishes to use additional files

-on a regular basis, he should insert a pze FiLon. 'word
- eorresponding to.each additional file in the appropriate

place in the 10U Table. He must also assemble a File
routine having the entry pemt of FILDN., and then make
an edit run. : .

Buffer Pools

Whether the source program mput/output statements
reference constant and/or variable units; the user may
considerably reduce the storage space required for
file buffers. Required storage space is reduced by in-
cluding with his object program a spooL card that lists
the external file names of the files to be assigned to a

buffer pool, specifies the number of buﬂers to be in-

" cluded in the pool, and gives the block size of the
buffers. A sufficient number of buffers must be specified
to accommodate all files that will be open simultane-
ously in the pool, and the bu{lers must be of adequate
size. \

FORTRAN Subroutmes

The following library subroutines are of concern to the
user. :

FORTRAN Input/ Outpul Subroutmes -
The reader should be familiar with the sectron Input/
Output Statements,” in the publication IBM 7040/7044
Operating System (16/32K): FORTRAN IV Language
Form C28-6329. - P
The routines that provide communications between
object program input/output requests and the Input/
Output Buffering System (108s) are:
The BST Routine: This routine backspaces the des-

ignated file one physical record, if it is.in Bco mode;.

or one FORTRAN record, if it:is in binary mode.

BstIO is the entry point called by the source program

statement:
BACKSPACE (unit) - -

The MaP calling sequence generated by the com-

piler for the routine is:
TSX BSTIO. , 4
PZE (file name)1 4
The EFT Routine: This routine closes the desrgnated
file with the end-of- file procedure without a rewind.
EFTIO is the entry pomt called by the source program
statement:

END FILE (unit)

The map callmg sequence generated by the comprler‘

for this routine is:

TSX EFTIO., 4
“PZE - *77.“(file name)?

The IOS Routine: This routine supervises ob]ect‘

program input/output and checks for lnvalrd opera-
tions.
10sup. is the entry point from the. Rwp and rRws

routines to prevent invalid write operatlons ‘on the
system input file and to ensure that the current ﬁle is

open in the correct mode and type.

- CKEND. is the entry point from either the Rwp routine
or the RWB routine that is used to check for a$ card
on the system input file. :

REOFX. is the entry pomt from 1088 upon readmg end
of file; :

RERRX. is the entry pomt from 10BS for correctron of
errors. S

SYSCK. is the entry point from the EFT and RWT Tou-
tines to prevent invalid operations on the system input,
output, and peripheral punch files. ‘

The RWB Routine:. This. routlne controls the input
and output of binary records. y L

TSBIO. is the entry point for a bmary read it is called
by the source program statement:

READ (unit) list

The Map calling sequence generated by the comprler
for thls Toutine is:

TSX TSBIO. , 4
 PZE - - (file name)1

STBIO. is ‘the entry pomt fora bmary wrlte it is called
by the source program statement '

WRITE (unit) list

The Map calling sequence generated by the compller

for ‘this routine is:-

TSX STBIO.,4
PZE .- (file name)*:

BNLIO. is the entry point for the binary input/output
list; it effects the input/output of binary data items.

The yap calling sequence generated by the compller
fora nonsubscrlpted input list item is: -

TSL BNLIO
STO location'

The MaP calling sequence generated by the compiler
for a subscripted input list item is:
A TSL ~ BNLIO.
(ihdexing compbtation)
S'l‘O ‘ locatron, tag
The map callmg sequence generated by the compiler
for an unsubscripted output list item is:

CLA location
TSL BNLIO.

The MaP calling sequence ‘generated by the compller
for a subscripted output list item is: ’

(mdexmg computatron)
Cl_.A locatiOn, tag‘ ‘
y ' TSL+ = BNLIO. : :
RLRIO. is the entry pomt for the end of the binary
input list.

1The file name is FILOO, > FILOL. , ;... FILnn. for logrcal units 0, 1,...nn,
respectively. If a variable unit is glven, tlns field is filled in at ob]ect time
by the UTV routine.

The Processor (18jos) - 69

The MAP callrng sequence generated by the compller
for this routine is:

TSX RLRIO 4

WLRIO is the entry pornt for the end of the bmary

outputlist..

The map callmg sequence generated by the comprler’,

for this routine 1s. -
TSX ¢ WLRIO 4

The RWD Routine: Tlns routine controls the input
and output of Bcp records and the conversion of alpha- .
meric data in accordance wrth ‘FORMAT specrﬁcatmns

One input record is read:

1. Immediately before execution or scanning of the‘

FORMAT statement begins.

2. Upon encountering a slash anywhere wrthrn the
FORMAT statement.

3. When the end of the FORMAT statement is reached
and items remain in the input/output list.

If n records are read by any of these methods with
no intervening processing, that is, the input buffer is

never referenced, the first n—1 records are effectlvely‘

skipped.
‘One output record is wrrtten

1. Upon encountering a slash anywhere w1thm thef

FORMAT statement. :
2. When the end of the FORMAT statement is reached,
and items remain in the input/output list.

3. When the end of the input/output lrst is reached ‘

If n records are written by any of the above methods

with no intervening processing, that is, nothing is placed:

in the output buffer, the last n—1 records will be blank.
TsHIO. is the entry point for a Bcp read; it is called
by a source program statement:

READ - (unit; format) hst

The MaP calling sequence generated by the comprler

for this routine is:

TSX TSHIO.,4
PZE (file name)*
(format mdrcator)2

sTHIO. is the entry pornt fora BCD wrlte 1t 1s called byA

the source program statement:
WRITE (umt, format) list
The map calhng sequence. generated by the compiler
for this routine is: , o
TSX STHIO 4
PZE “(file name)*
(format mdrcator)” .-
HNLIO. is the entry point for the Bcp mput/ output
list; it produces the input/output of Bcp data items.
The MaP calling sequence generated by the compller
fora nonsubscrlpted mput list item is:

CTSL .. HNLIO,
STO " “location

70

The Map calllng sequence generated by the comprler :
fora: subscnpted inputlistitem 1s :

: 'TsL» fe 'HNLIO.
(mdexmg computatlon)

k ':S’l‘O e locatrOn, tag :
" The Map calling s sequence generated by the comprler

'for a nonsubscrlpted output list 1tem is:

CLA k '« 4 locatlon)
TSL HNLIO
The MAP ca]lmg sequence generated by the comprler,
fora subscripted output list item is:

(indexing computatron)

Cl..A locatlon, tag ‘
TSL HNLIO:-
““RTNIO, is the: entry point for the end of the Bcp input
list.

The MAP calling sequence generated by the comprler
for thrs routlne is:

: '_Tsx* RTNIO g
FILIO is the entry pomt for the end of the BCD output
list.

The map callmg sequence generated by the comprlerl
for thrs routrne is:

TSX FILIO.,4.

- Other entry points to this rottine, whrch are con-
cerned primarily with format conversion, are listed in
the publication IBM 7040/7044 Operating - System
(16/32K): Systems Programmer’s : Guide, Form C28-
6339.

The RWT Routine: This routine closes the desrg—
nated file with the end-of-file procedure and a rewind.

RWTIO. is the entry pomt called. by the program
statement: FR

REVVIND (umt)

The MAP calhng sequence generated by the comprler

for thrs routme is:

X RWTIO. 4
: PZE (file name)? ’
" The SLI Routine: This routine controls processing
of lists containing nonsubscripted array names for
mput

SLIIO. is the entry pomt for mput of nonsubscripted
arrays.

The MAP calhng sequence generated by the comprler
for this routine is:

*The fle naime is FIL00., FILOL. , . . . FILnn, for logical units 0,1, .. . nn,
respectively. If a vanable unit: is ngen thls field. is filled in at ob]ect trme g
by the UTV Youtine.

" *The: format mdlcator ‘ta be ' PZE" (locatron of format instructron hst) for

? ﬁxe‘: format, or MZE (ocation of BCD. fonnat, ,FMTSC)- for a.variable
ormal : .. :

" TSX SLIIO., 4
PZE array location, , number of items in
the array

The SLO Routine: This routine controls processrng
of lists containing nonsubscripted names for output.

arrays.

for this routlne is:

TOTSX: “SLOIO. ;4 i

. PZE . .array locatlon, » number. of items 'in
the array .

The UTV Routme "This routine estabhshes corre-f
spondence between FORTRAN logical units and system,

units at object time. (See Figure 31.)

UTVAR. is the entry point called by a varlable unit:

designation in the source program 1nput/ Output state-
ment.

The MaP calling sequence generated by the compller'

for this routine is:

"CLA - (logical unit value)
TSX - UTVAR 4 ...

Using the FOR'I'RAN lnpuf/Ouiput Subrouhnes e

The MaP programmer who wishes to use ForTRAN ’
input/output library routines for readmg and/or writ-

ing records should use the following method.

1. Call the initialization routine as spec1fied under.
RWB/RwD. For example, for a Bcp Wrrte th1s step would‘

consist of: -

"TSX STHIO., 4
PZE T (ile name)
(format indicator) - .

2. Set up an input/output list w1th successive entrresf
to BNLIO, or HNLIO., -or use routines sri and sro for
unsubscripted ‘array input/output. For the srngle un-

subscripted Bcp output item X:

CLA X
TSL HNLIO.

sLoto. is the entry point for output of nonsubscripted

The MAP‘ callmg sequence generated by the comprler'

For output of an entire Bcp array Ll

TSX SLOIO. , 4
PZE array location, , number of items in
array

3. End the input/output list as specified under

RWB/RWD. A Bcp output list would therefore terminate

with: N L

b TSX: - FILIO 4 :
4 In addition, when ‘BCD input/output is desrred

the programmer must provrde a8 FORMAT statement :

T, By including it as a series of out-of-line instruc-
. ~ “'tions which' are of the type described in the
 section; “The FORTRAN Compiler,” in the publi-
~cation IBM 7040/7044 ‘Operating System
" (16/39K): Systems Programmer’s Guide, Form
- 'C28-6339, under the rwp routme and the vari-
ous: conversron routines.
~'b. By reading in the FoRMAT statement at ob]ect
time.
e By 1nclud1ng within the program a BCD FORMAT,
" which is referred to in the initial 1nput/output
calling ‘sequence as a variable FORMAT.

The programmer will find that the way of prowdmg
a FORMAT statemenit described in item 4a is extremely
flexible. For example, variable group and field counts
are possrble by using the LxA instruction 1nstead of the
AxT on'index regrsters '1 and 2 within the FORMAT state-
ment. Also, tests may ‘be made within the rormat
statement to' determine which part of the format to
execute next: Branches outside the FORMAT statement
for mtermedlate computatlon are pos51ble if ‘care is
exerclsed : :

FORTRAN Syslem Rouhnes

These routmes ‘are not of general concern to the user
and. are descnbed in the publication IBM 7040/7044
Operating System (16‘/32K) Systems Programmer’s
Guide, Form C28-6339.

- The Processor (1Bjo) 71

Update Facilities

It is often desirable to store program decks in the form
of records on magnetic tape rather than to maintain
large files of punched cards. The Update program
provides.a convenient means of creating and maintain-
ing such a master file. This program is. provrded as part
of the 7040/7044 Operatmg System and is. intended
to facilitate the maintenance of tape files of symbolic
or bmary program decks. It has, in addition to its
primary update facrhtles, the capablhty of generating
tape files from punched card decks and of listing sys-
tem output tapes.

- The options avarlable to perform these file. mamte-
nance functions are:

Input. Option: This option provides for the crea-
‘tion of a new master file from punched cards. Decks
being placed on the master file may be senahzed as
this tape is being generated

Update Option; This optlon provrdes for the dele-
tion, insertion, modlﬁcatlon and renumbermg of the
program decks on the master file. The master ﬁle may
be considered a “storage pool” of current bmary and/
or symbolic program decks. Facilities are provided to

generate an input tape. for the 7040/7044 Operating

System_ from the decks contained in the storage pool.

Output Optwn This option provides the facilities to
list system output tapes on the system output unit
(s.sou1). Any records on the output tape intended
for punch output will be processed by the. System.
Punch Editor as output on the System Perrpheral
Punch (s.spp1). This option is provided for the instal-

lation “that does not' have: tape-to~card and tape-to—‘

printer equipment available.

File Description

The files maintained by this program consist of 80-
column symbolic and/or binary card images, which
may be serialized in columns 73 through 80. All files

created by the Update program are comprised of

blocked Type 3 records; however, system control cards
are unblocked. (A description of Type 3 records may
be found in the publication, IBM 7040/7044 Operating
System (16/32K): Input/Output Control System, Form
C28-6309.) These files may be either unlabeled or
labeled; if labeled, they must satisfy the installation
label option.

The installation label option is specified by a system
assembly parameter, LaBELs. If the parameter constant

72

is zero, no labels will be created or checked. A con-
stant of 1 indicates that labeling is optlonal ‘and ‘that
labels will be processed as indicated by the parameter
in the smun control card: A constant of 2 indicates
a label installation, and ‘all files will be checked for
labels. (See publication’ IBM_7040/7044 Operating
System (1 6/32K) Systems Programmers Guide Form
C28-6339.) = ‘

The maximum blocklng factor for the output file is
ten‘logical records per- ‘physical record. The'maximum
blocking faetor for the: mput file is' 15 logical records
per physwal record

Trunsachon Flle SRR

The user controls the operation of the Update program
by means of the transaction file. This'file contains the
various control cards that direct the Update program,
as well as data that is to be used for the update func-

tion. The transaction file is usually ‘only one of many

jobs on' the system input tape. Therefore, ‘after the
update operation is completed, control is returned to
the: System Monitor to’ proceed to the next job. This

“makes it possible. to-utilize the output of the update

run for the next job. ‘
The transaction file is defined as all the cards that
appear after the SEXECUTE UPDATE control card, up to

~ and including the sENDRUN control card. Although used

in conjunction with an update operation, control cards
outside: of these limits are not part of the transaction
file.and are processed by other portlons ‘of the Oper-
ating System : .

Level of Updating

Update action may be performed on two levels: the
individual card level and the deck level.

A deck is defined as a series of cards with a name.
The first card of the deck must contain a $ in column 1
and the name of the deck starting in column 8. The -
end of the deck is recognized when a $ control card
with ‘a different name is encountered. If the $ control
card has a blank in column 8, and is not a s1BSYs or sSTOP
card, it is not recognized as indicating the end of the
deck, but rather as a control card that is part of the
deck. ‘

The update action possible at the deck level is that
of removing or replacing a deck on the old master
file, or inserting a new deck onto the master file being
created. :

Update operations at the card level are accomplished
by using the serial numbers:that appear in columns 73
through 80 of the cards. (The format of coBoL state-
ments reserves columns- 1 through 6 for a-serial num-
ber, columns 8 through 72 for text and columns 73
through 80 for program identification. In order to
update: a :coBoL -deck, the serial -number: used: for
" modification must appear in columns 73..th ough -80.
Therefore, to_ use the update facilities. for 2 COBOL

deck the program identification must be replaced by
a sequencing number. This can'be accompli hed by

using an input or a,ri‘update{rultl‘before per
modifications.) " .
Modifications at the card level are accomphshed in
the following fashion: : -
1. The deck to be modrﬁed must be Iocat
old master file and serialized.
2.'The mpu’t file (old1 master ﬁle) must be’ posrtloned
to the deck to: be modified.
3. The modifications to the desrred deck must be
on the transaction file in ascending order.” " 7
4. The modification cards are mcerporated into the
new master file in:the following manner:
= - a. If the serial-number: on the modification card
-matches - a ‘serial number: on: the old master
file, the: modification’ card ‘is . copied -onto -the
new master-tape “and the card .on. the ~old
master file is deleted. sl
b. The last character of the serial. number is used
- for insertion of new cards into an existing deck.
If the serial number on the modification card
- falls between two that are already on the old
_master file, the modrﬁcatlon card w111 be in-
serted between them. ' "
c. Blank serial numbers are permlssrble on modi-
- fication cards. Such cards must, however, fol-
low a modification card that does have a serial
- number.. The blank serial number cards will

. ‘be placed on the new master file, following

the modification card with a serial number.
5 Numbenng facilities are considered to operate

within deck limits. Numbermg will stop at the end of

a deck if no “end of numbering” parameter is specified.

6. The delete }fa lity also operates wrthm deck
hmlts :

To prov1de a degree :compatibrhty with: the various
other update programs in use, a special mode of opera-
* tion is provided for the 7040/7044 Update program.
This special mode of operation is accomplished by not
using the sLOGATE control card. With the use of a
SLOCATE control card .a deck is defined as starting with

a $ control card containing the name of the deck start-

all cards on the 1t
though there are numerous program decks present, all
the cards on the file ‘must be in ascending -order.

-

\ing in column 8. The end of the deck is recognized by
encountering another $:control card with a.different
name-or a SIBSYS or ssToP. card. When the SLOCATE con-
trol card is not used the: entire file is considered to be
.one deck; startmg with the ﬁrst card.image and. extend-

~ ing to the end of file (or the trailer label). This mode

-of operation will cause the: followmg message to appear
in the comments produced.at the end of the run: -

“WARNING NO DECK" CONTROLS GIVEN.
- ASSUMING.ONE DECK- ONLY (A

fLIMITATIONS 'OF THE SPECIAL MODE OF OPERATION

When using the specral mode of operatlon the fol-

;:*IOng factors should ‘be considered: -

- 1.-Since the input tape-is considered to be one deck
] ,fmust be in sequence Even

2.~Although only one program on the file is to be

changed, the whole file will be copied.

_3. Because. the file is considered to be one deck, the
sNnuMBER control: card. will cause the whole file to ‘be
numbered if a terminating parameter is not specified.

4. The spELETE operation will continue across deck
boundaries as long as. the.-card- senahzatron dsiin
ascending order.

5.2 Once the update process has started in this-special
émede, it may not be returned 1o the normal operatlon

Requeshng the Update Progwm .
: ‘Update program is on the System L1brary
oaded under ‘control of the

‘System Monitor. The control ‘card used to call the
Update program is SEXECUTE UPDATE. When it is loaded,

';the U date program usrng the fac111t1es of the systern

FUN CTION

CONTROL CARD

,$DATE : The system date card used wrth all
ks]obs o
&]OB = The “systemi “job' card - statrng the
.- -name of the job. g
$EXECUTE UPDATE The control card that mltlates]oad—
: " ing of the Update program.
The first control card of the Update

$RUN
u S - program run.

,Umts Used Durmg an Updute Run

The: Update program makes ‘use of the system hbrary
_unit, the system input unit, the system output unit, and
system utility-units. ‘Figure 32 lists the standard units
used. during an update run and 1ndrcates the purpose

“for which each is: used

Update Facilities 73

“The Update program assumes that output files will
‘appear on specific utility units. The programmer may
include a soutpur card to specify a particular ‘unit for
output. If the assumed output unit(s) is not available,
the Update program assrgns the ﬁrst avallable umts for
‘of the units. selected If a ‘unit swrtch is necessary,
secondary unit is also indicated by a message. - ;

The Update -program assumes:the mdlcated ‘units

for the input files. The programmer may indicate that -

he wishes to use a different unit by specifying the unit
On a SASSIGN control card

" CONTROL CARD

Symbolic Unit Descnphon
S.SLB1 . System l.lbrafy Umt N
$.SU01 " Old Master File (lnput) i
$.5U04 Aumllury Master File (lnput)
S.SU00 “New: Master ‘File- (output) -
$.5U03 :7; Auxiliary Master File (output)
SSINT ;. Transaction File

-8sour - Lising .

“Figure 32. Unit Assignment for an Update Run

‘Using the Update Program

‘All -operations of the Update: program are governed
by control: cards in'the transaction ‘file.: The control
cards used for an update job may be d1v1ded into three
basic categories, as follows: - e s

1. System control cards (e g smsrs, sswn*cn SIBED';[‘,
etc.) that are processed by programs other than ‘the
Update program and must be outsrde the transactron
file. ;

2. Update control cards used for entire 'decks (e g,
SRUN, SOBTAIN, SLOCATE, SMESSAGE snEwrNi) ,CE, and

and its hmlts posmon the mput file, and d1rect the
insertion, deletron, _copying, ‘and placmg of entire
decks. Once operation on a card level has started,

these control cards are not recogmzed unul after thek

end of the deck is reached)
3. Cards used to update within a deck (eg.,
" sNUMBER, spELETE and ‘modification cards). Modifica-

tion cards are used to direct update action within a

deck by means of the senaI numbers in columns 73
through 80. et :
The control cards, ?sNUMBER SDELETE, and modr-
fication cards, are the only ones that will be recognized
at the card level. If they ‘are encountered before any
~sLOCATE card has been- encountered ' (the - sLOCATE
‘control card starts the within-deck processing routine),
the: single-deck-file mode of -operation {described
~earlier in: this section as:the:Special Mode of Opera-
tion) will be entered and the within-deck processing

74

Control Card Formqts;, o
The update control cards are. prepared in the formats

routine will begin at once. If they occur at any other
position in' the transaction file, while: ‘within-deck

processing is not " tgking place (such as’ immediately

-after a sREwiND control card, which itself immediately -

“Follows 2 SLOCATE control card), they w111 be treated
‘as errors. -

*The eontrol‘ cards used w1th the Update program
are as follows : :

FUNCTION

< "$RUN ~ * Initializes the Update program.
2. $OBTAIN" -« -+ Requests:supplementary listings..
¢ ;$ENDRUN .- Terminates’ transactions.
"$ASSIGN - Assigns auxiliary input units.
‘ $LOCATE Posxtrons the input tape and requests
o .. :-update action,
$NUMBER Requests resequencing.
‘$DELETE - Requests deletion of senahzed cards
"$PLACE ~‘Makes selective insertion for ‘the out-
put auxiliary file. . v
- $MESSAGE. Types. a. message . w;th an optronal
o ' ~pause for operator action.
$0UTPUT

Assrgns output umts R

shown in the following paragraphs.

~-*$RUN:: This ‘control card provides the information
‘necessary to initialize-the Update program. It specifies

the type of run desired, blocking factors, and label

'specifications. The format of ‘a SRUN control card

follows: i : :
R e T .17 P <
Z$RUN:: .. ['Run blockmg [Date] [LABEL]
S types] factor :
(29 35 o 51 57 - .68
Ser i [ID] Retentlon "Ser.][ID] Retention]
No.] N “LCycle] :l _Cycle
. CARD
“COLUMNS - CONTENTS ' DESCRIPTION
W S $RUN : Control card identification.
B .- ... Not used.
o 6-13 (Bun Type)
i UPDATE UPDATE spemﬁes that an in-
(R R E put file is to be read and an
... output file is to be created
on S.SUOO unless S.SUO0O is
unavailable or a $OUTPUT
card-is included to ‘specify a
B T L S _particular: unit. . :
. EXTRACT EXTRACT speclﬁes that an.in-
SRR put fle is to be read and an
auxiliary master file is'to be
created on S.SU03 unit, un-
less S.SU03 is unavallable or
.- a $OUTPUT card is included
to specify a particular unit.
:Blank specifies that aninput

‘blank
o . .. file is to.be read and. both
- an output file and an auxili-
. ary master file are to be

¢reated ‘on 'S;SU00 “and
S.SU03, - unless these - units
are unavallable or a $OUT-
PUT " card “is included to
specify particular units. -

CARD o T) R CARD
COLUMNS . CONTENTS - . DESCRIPTION ‘COLUMNS - CONTENTS 7 DESCRIPTION _

" GENERATE

ticular unit is desired - for
output.

- OUTPUT speclﬁes that: an’ in-
put - file is to-be. read from
S.SUO1 (unless a $ASSIGN
card “has been included to
specify "a - particular input

" unit), and either alisting is

to be created on S.SOUI, a
deck is to be punched on
S.SPP1, or both. (This is
the Output Option referred
to in the introduction.)

NOCOPY specifies that no out-

put file will be produeed on
tape. The-'purpose of this
. -option is to speed -up proc-
essing when only a hstmg
or index is desired. -

~This mode of - operation must
¢ be -used only when placing
an Update job on a stacked-
input tape. It is necessary in
order to avoid the processing
of Update - control = cards
when it is only intended ‘to

place ‘them' on “the output
file. In this mode, the param-

eter STOP must appear on
the $ENDRUN control card

that ends the Generate run::

SYSREL specifies that an input
file is to be read from S.SU01

- (unless a"$ASSIGN card has’
- been included to ‘specify a

_particular input unit) and an

output file is to be created

on- 8.8UQ0 Aunless- S.SU00 is
-~ unavailable or a :$OUTPUT

. card is included to specify a

particular output unit, This
“option “is intended for “use
with the relocatable master
tape supplied to users, which
represents, in - the form of

binary decks ~and - control -
- cards, the entire. operating

system set up as an IBEDT

run that is able to create a-
new S.SLBL. The purpose-of.
this .option is to distinguish

the run so that certam system

configurations ‘can’ be ' re-’

‘quested: that result in auto-
matic deletion or. retention

of $ control cards on the re-

. locatablemaster. Therequests

: are made-on the $OBTAIN

control card. The usual up-
date functions are also al-
lowed in a SYSREL run.

The blocking factor is a two-

digit number_ (or blank),
from 01 to 10, that specifies

INPUT - -~ INPUT specifies that ‘an out- =~ - - - .7 .. - . the output blocking factor,
put file is to be created on - . S e

S5.SU00 from decks on ‘the ¢
transaction file (S.SIN1}). A ~
- $OUTPUT card may be in-
cluded to specify that a-par- =

This blocking factor will be
- used with. both the new mas-
. =+ . -terfile and the auxiliary mas-
LR ter file, The input files, if
‘ . blocked, need not:have the
- same- blocking factor, but
" they must not have a block-
* "'ing factor greater than 15.
16 blank :
17-21 [date] The date of the run is placed
SRR : N in this field as yyddd, where . -
yy is year and ddd is the
day “of the. year. For in-
stance; December 31,1963
would be 63365. Thls field
is present solely for com-
" patibility with the 1401 Up-
date Program. It is neither -
used nor checked, the date
being taken from the Nu-
cleus S. SDAT cell '
22 blank 2
23-27 [LABEL] - ‘If the parameter LABEL is
; L . ‘present, - the Update pro-
gram will check for labels
on the input tapes and use
< " them - for multireel ' opera-
. tions, If this field on the con-
trol card is left blank, no
labels will be expected. .
28 blank o .
29-33 Serial The number placed in this field
T Number] will go into the label of the
new master tape (five digits).
34 blank R
35-44 [Identlﬁcatlon] This information is placed in
e . the identificationfield of the
new master tape (ten char-
: : acters). :
45 blank ,
46-49' Retention The four digits of this field are
: Cycle -] placed in the retention field-
. of the new master tape. This.
four-digit number specifies
the number of days- for
.which the file is to be re-
tained. If this field is blank,
000 will be used.

50 blank

51-55- [Serial Number] The label information for the
56 = blank - - —auxiliary master - tape - (out-
57-66 - [Identification] - - ‘ put) is specified in columns
67 blank . . 51 through 71 in the same
68-71 = [Retention? . fashion as it was supplied for

Cycle] the new master tape in col-

umns 29 through’ 49,

$OBTAIN The $OBTAIN contro] card is used to ob-
tain several forms of supplementary data during an
update run. This control card may be used as often as

it is desired, but the options specified by the preceding

$OBTAIN. control card are superseded by the latest con-

" trol card. The format of the $SOBTAIN control card is
-as follows :

1 9 1 27 3
$OBTAIN. (Option-1) (Option-2) (Option-3) (Option-4)

Update Facilities 75

Form C28-6318-5
Page Revised 7/1/65
By TNL N28-0534-0

® Figuré 33. Suppleﬁ:entar'y Output

Options 1, 2, 3, and 4 may be any of the five avail-
able supplementary output specifications (LIsT, PRINT,
DECK, INDEX, Or SUMMARY), or they may be left blank.
If no soBTAIN control card is used, the sumMMARY option
will be provided. The following list shows the options
that are initially assumed for each type of run.

UPDATE SUMMARY
SYSREL: " SUMMARY
EXTRACT SUMMARY .
Blank .'SUMMARY
INPUT None
OUTPUT- None
GENERATE None
NOCOPY None

Figure 33 indiéafeé the output obtained with each

of the options, when used with various run types.

The following parameters may be used in any of the
parameter fields of the soBTaN control card. They are
recognized only if the run type on the $RUN control
card is SYSREL. o

[;l_ﬂi(] Core Size Option: This option causes
32K § the . Update program to prepare a -

‘ relocatable master for a 16K or 32K

" system. If neither option is specified,

-~ 16K is assumed. -

Label Option: ‘This option causes the
Update program to : prepare. a ‘re-
locatable master for labeled or un- -
‘labeled files. -If neither option . is
spec1ﬁed NOLABEL is -assumed."

The input file used in a sYSREL run will contain’ $

control cards for all possible core size and label options.

[

Each of these $ control cards will have an identifying -

code. These codes, placed in columns 70 to 72 of the
approprlate $ control cards, are as follows

LAB The card containing this code is requn'ed for a
‘ labeled system, regardless of core size.

16K~ The card contammg this code is requn'ed for a 16K

: system.
32K Thecard containing this code is requlred for a 32K
system.
16L" - .The card contammg this code is requlred fora 16K
labeled system. :

76

. . Opfion
Run Type LIST or PRINT SUMMARY . INDEX DECK
UPDATE ~ All cards ‘placed on the All program- control cards “-All $ control: cards on -the No effect.
SYSREL new ‘master file will be including $NUMBER and - | -~ new - master - file will -be
INPUT. | listed. PRINT will cause $DELETE will be listed and _ tabulated.
; - only: BCD ‘cards to be all insertions or deletions . |
(. - listed. - will be listed and flagged. . i
EXTRACT - CAll cards ”placed on the |- Same as-for UPDATE. All-$ control cards on the All decks on the auxiliary
: - |auxiliary master: file will . -old master file are listed, master file will be punched.
¢ | be listed. PRINT will cause except for those pertain-
only BCD cards to be listed. ing to decks- that are
* being " deleted or that" -
follow ‘the - last exl‘rac'ed
: deck.: - -
Blank Same as for UPDATE. Same as for UPDATE. " Same as for UPDATE. Same as for EXTRACT.
OUTPUT | Noeffect. No effect. " Noeffect. No effect.
" GENERATE. - | No effect. . No effect. No eﬂec{ No effect. -

32L - Tf}le,card containing this code s required for a 32K
labeled system. . 7
When the sysreL run is made, undesired options are
automatlcally deleted on the basis of the code and the
request specified on the sosTaIN card. For example, if
16K and r.ABEL were specified on the sOBTAIN card then
all cards on the input file with identifying codes 32K
and 32L would be deleted by the sysreL run.
‘Any $ control card that is deleted will be flagged in
the Update summary with the words, DELETED BY

“upDATE. The 30BTAIN card, therefore, becomes a means

of makiﬁg a mass deletion, not by referring to serial
numbers, but on the basis of a particular property.
$ENDRUN This control card is the last card of the

transaction file, and if no parameter is present, the
Update ‘program is terminated. I a deck name is

specified, the program continues to move data from

- the old master tape to the new master tape, up to and

including the deck specified. When an ouTpPUT run is
being performed, a seNDRUN control card is required, -
even though operation is terminated when the end of
the main input file is encountered.

- After the job being executed is completed, all the
units used are rewound, and the input units are un-
loaded. However, input units that have been assigned
intersystem reservation codes are only rewound, since
the intersystem code indicates that the unit may be
used later in the job. Any unit that has been chosen
for output because an assumed unit was unavailable is
also unloaded. The format of the sENDRUN control card
is as fol]ows'

-

1 ‘ 9]
$ENDRUN [deck name
STOP
Necessary only when the Gen-

STOP

el erate option is used, ie.,
when GENERATE appears
on the $RUN control card.

$ASSIGN This control card is used to assign input
units. It need not be used unless an update run requires
input decks from’ a particular input unit. A SASSIGN
card may also be used to assign an intersystem reserva-
tion code to an input unit. If a sassioN card is not used,
input is assumed to be on s.svo1, and alternate input on
s.su0+. After processing the desired decks from the
input file, the sassien control card is used to switch
to the second input file. It is possible to have two
input files open. at any time but only one at a time
may be used to read and'move data to the- output file.
The file not in use will 'stay positioned where it was
when the input files were switched. If. more than two
input files are required ‘during a run, the main fle
is mounted on s.svo1 (primary unit), while the others
are mounted wherever desired and assigned in turn
as the alternate input file. When returning to an alter-
nate input file, only the last alternate used will retain
its position. The format of the sassion card is as
follows: ;

1 9 g 23 29

$ASSIGN [primunit] [OPEN] [file type] [label option]
8. e 58 65
[labelinferrﬁatieh] ‘ '[:eel option] [secunit]
COLUMNS, ~ CONTENTS DESCRIPTION

17 $ASSIGN Control card identification.

8 . : i Not used.

9 -+ [primunit] - The primary unit for the file

being designated as the input
file. It may have one of the
following forms:

System Utility Unit options:
S.SUnn
Unn[=Iyy] »
nn[=Tyy] }

The system utility unit nn'is’
-used - for the input file and

roptlonally assxgned mtersys- :

tem reservation code yy. (In-

tersystem - reservation- codes *
are explained: iin the :section
Input/Output Umt Ass1gn-{ .

- ment. ”)
-MAIN-

S.5U01 .is used for the mputi .

“fle.
“ALT "

S SU04 is-used: for the input. .

. file.
i Intersystem Umt optwn

tem reservation code yy has

“ been assigned is used for the

input file, 5
Label Search optzon ERa
dlc]LIN[=Iyy] =~

A search is to be made for'a
unit with- a specific label for

The unit to whlch intersys- .

. carp

COLUMNS .

18

93

29

58

65 ‘[eeeunit]' o

o [OPEN]

'fléi)el option]

] mformatlon

o [re‘edlb optiorif]«

DESCRIPTION

o " this job. The contents of the
labels are specified in col-
umns 35 through 57 of the

$ASSIGN card. (Label
. search parameters are ex-
plained in the section “In-
put/Output Unit Assign-
ment.”) If =Iyy is added to
* the label ‘search parameter,
. . the unit found is assigned the
) mtersystem reservatlon code
Y. ‘
Tl'us field may contain OPEN
~or:be left blank. If OPEN :
_is present, the file specified .
_ by primunit is closed with
“rewind. The file control block
is ‘set-according to the other
. .options-on this card, and the -
 file is opened and selected as
- the input file to be read: If
this field is blank;-any subse-
:.quent fields on this card are
ignored. In this case, the. file
(determmed by primunit) is
* ¢heckedto ‘insurethat it is
s ‘already open- and,. if 50, is -
selected as the mput file to-.
be read If this file is not
opeén; the- $ASSIGN card is
dignored, -

This field mdlcates the record ;
type for the file. It may be
TYPE1, TYPE2, TYPE3, or
blank. If blank, Type 3 w1].l
be assumed. .

This field mdlcates whether
the file is labeled or un-
labeled. The field may con-
tain LABEL or "NOLAB, or

-+ should.‘bé 'left ‘blank. " The
" field may be in conflict with
the installation label option.

Tbls field -is made up of the
following subfields:
Columns 35-39—
file serial number
Columns 41-50—
file identification
Columns 52-56-
creation date
If these fields are not blank,
the contents are placed in
the corresponding field . of
the file control:block. If any
of them are blank, zeros are
placed in the correspondmg
field. The information is used
for label checking.

- May be REEL, REELS, or
blank. If blank, then REEL
is assumed. REELS must be

- specified if unit switching is
to occur. '

The same options apply here
that apply to the primary
unit. If this field is blank, the
secondary unit is set equal
to the primary unit.

CONTENTS

[ﬁle ‘fype]

label]

Update Facilities 77

$REWIND: This control card is used to rewind the
current input tape. The format of the SREWIND control
card is as follows:

1 Lo
$REWIND'

CARD ‘
COLUMNS = CONTENTS DESCRIPTION

17 $REWIND ~ Control card identification.
$LOCATE: The purpose of the sLocATE control card
is to perform insertions, deletions, replacements, or
removal of decks when updating a master file. It is also
used to position the input tape to a deck that requires
modification. By using the (blank) run type option
on the sRUN control card two master files can be

created All the decks located will be placed on the

new master file, and selected decks will be placed
on the auxiliary master file. The decks to be placed
on the auxiliary master file must be indicated by the
EXTRACT parameter on the sLocATE control -card.

It is possﬂ)le to make 'update runs without using the
sLocatE control card. In this case, the file will be
considered one deck; even though there are many
decks on the file. This mode of operation is described
earher in this section as the “Special Mode of Oper-
ation.” The format of the SLOCATE control card ‘is as
follows: ‘ :

1 o - 18 2 36

$LOCATE deck [action] [EXTRACT]
~ name .

remove to
deck name

COLUMNS CONTENTS DESCRIPTION

1-7 . - $LOCATE - Control card identification.

8 ~- 7" Not used.

9 deck name This parameter must always be

‘ ‘ I . used: It either specifies the
name of the deck to which
the input file is to be posi-
tioned or, for an INSERT
action, it specifies the name
of the deck to be inserted.

As the input file is being

positioned, the decks from

the old master file are copied
onto the new master file.
This action causes the deck on
the transaction file following
the $LOCATE control card
to be placed on the new
master file. The old master
"~ file must have been posi-
tioned -to ' the point of inser-

_ tion by a preceding $LO-
CATE control card.

When the action field is left
blank, the $LOCATE con-
trol card . serves two pur-
poses: if a $DELETE,
$NUMBER, or modification
card follows, the indicated’
action will be performed on

18 acﬁ‘kon'{ :
C[INSERT]

“blank

78

CARD ..

COLUMNS DESCRIPTION

; the deck specified on the

' "~ $LOCATE card; if another
$LOCATE card follows, the
deck on - the old master file
is copied onto the new mas-
ter file. -

The REPLACE action causes

- "the deck on the old. master
file to.be effectively deleted
and the deck on the transac-

" ton file, following the $LO-

. CATE control card, to be
placed on the new master
file. .

The REMOVE action causes

" the specified deck: to be de-
leted (not copied): If the
“remove to deck name”

" ‘parameter is used, a series
of decks will be deleted.
This parameter causes the deck
- to be placed on the auxiliary

master file. If EXTRACT
had been a parameter on the
$RUN control card, it need
not ‘be used on the $LO-

-~ CATE control card. If both a
new master file and an auxil-
iary master file are being

~ generated, the EXTRACT
parameter is required on the
$LOCATE control card,

If more than one deck is to be
removed, the “remove to
deck name” parameter spec-
ifies the last deck to be re-

_moved. - Starting with the

deck specified in the “deck

name” field of the $LO-

CATE control card, all decks

up to and including the one

specified in this field are de-
b leted. ‘ s

$NUMBER: This control card is used to sequence
new decks or to resequence existing decks. Before the
numbering process can take place, the input file must
be positioned to the deck requiring the action. This
is accomplished with a sLocATE control card. (Refer
to the preceding paragraphs for a description of the
SLOCATE operation.) ;

The snuMmBer control card can specify deck' se-
quencing in two fashions:

CONTENTS

[REPLACE]

‘ [REMOVE]

27 - [EXTRACT] .~

36 [remove to
’deck name

1. Begin numbering at a specified card in the deck,
and continue until the end of the deck.

2. Begin numbermg from the point at which the file
is positioned, and terminate at a specified card in the
deck. : :

' At least one parameter must appear on the SNUMBER
control card.

The format of the sxuMBER control card is as follows:

1. .8 18 27

$NUMBER(initial serial no.] [from serial no.] [to serial no.]

COLUMNS CONTENTS, . ‘DESCRIPTION, .. - -
1-7 $NUMBER Control card identification. -
8 . _-Not. used.
9 [1mt1al senal This parameter . specifies _the
T number * initial "serial number to be:
_used on the new master file.
If this field is left ‘blank, ‘the”
¢ serial number of the préevious
‘card on the’ old master wrll*
be used.””
¢ This paraméter specrﬁes where :
~ - - to start- the sequencing ‘ac-
~tion,: ‘The- numbering : begins
on or after the serial number
. specified - in this field. - If .
there is no record havrng the
specified serial number, se-
. quencing starts at the lowest
" number - greater than the :
“from serial number.” i
Sequencing is términated at the
serial number’ specified by
- this . parameter.
- serial number” is specified,
sequencing .cohtinues until .
the next. $ -control card is.
encountered.. ~

18 from senal
umber 3

o7 "to'serial T’
number

NOTE For an INPUT run, only the ﬁrst parameter is used."
The cards are expected to have no serial numbers, since ‘they

are being sequenced for the first time. Sequencmg is terminated
as soon as a $ control card is encountered.

- $DELETE: This-control card i 1s used to request de-
letion of serialized cards. It may be used to remove

one or more serrallzed cards from a deck. To delete

one card, only the “from serial number” parameter
is necessary. To delete aseries of cards, ‘both the
“from” and “to” serial number parameters are required.
Deletion starts at or after the first serial number speci-
fied and continues up to the second one " speci-
fied. If the first parameter is blank, deletion will start
_ at the current position of the input file and continue
up to the “to serial number” or, if that serial number
is not on the old master file, deletion will continue to
the serial number closest to but less than the “to
serial number.” :
The format of the spELETE control card is as follows

1 9 18

$DELETE (from serial no.)i V‘(lto"serial no:)' :
COLUMNS CONTENTS DESCRIPTION
1-7 $DELETE Control card identification. -
. 8', ~ . 'Not:used. . ;.-
9 from senal Deletion starts wrth thls serial
number . number or, if this parhcular
serial number is-not in the
rith the serial number
18 to serial Deletion terminates with this" '
number “serial’ number ‘or; if it ‘is ‘not

present in the deck, with the *
“number :closest to- and less
- than the- specrﬁed senal

number. .

If no “to”

Nortg; Binary decks may - be renumbered or indi-
vidual binary cards replaced, inserted, or deleted in the
same manner.as- symbohc decks are modlﬁed

$PLACE Dunng an. update Tun, it is sometlmes

~ desirable to put system control cards on the auxiliary

master file; but not on the new master file. This can be
accomphshed with the spLACE control card. All cards
following the spLACE. control card and before the next
update control card will be placed onto the auxiliary
master file, but not on'the new master file. The format
of the sPLACE control card is as follows:

$PLACE

No parameters are used wrth the sPLACE control card.

S8MESSAGE: The smEssAGe control card allows the
user to relay a comment to the operator during an up-
date run. When the smessace card is encountered, the
contents of columns 13 through 72 will be printed on
the console typewriter. - In_addition, if columns 13
through 17 contain' the ‘parameter pausk, a halt for
operator action wrll occur. Pressing start will allow the
program to- contmue $MESSAGE _control cards may not
be used in the middle of transactions to a given deck.
They may be used before the first sLocate card and/
or after all transactions to a given deck have been
processed. sMESSAGE:control cards may not be used in
the “special mode of operatron The format of the
SMESSAGE control card is as follows:

S e L L R T

$MESSAGE [PAUSE] -or [message to be printed] -

$OUTPUT ‘The $OUTPUT control card is used to
specify output unit assignments. If this card is not
used, the Update program uses assumed units or, if the
assumed units are ‘unavailable, ﬁnds avarlable units.
Secondary units are used for automatic unit switch-
ing. When the soutput card is. encountered anywhere
in the transaction file, the file-on the currently assigned
output unit is closed. If the currently assrgned output
unit was chosen because an assumed ‘output unit was
unavailable, it is rewound and unloaded. The format
of the souTpuT card isas: fo]lows. : o
Cp e g 1827 3%

umt assrgnment for

$OUTPUT unit ass1gnment
: . auxiliary new master

for new master

CARD o .)
COLUMNS CONTENTS * DESCRIPTION
g “unit i *"anary unit for new master
18 unit o Secondary unit for new master
N e file. . ,
27 - [unit]’ Primary unit for auxiliary new
' v owenen . master file.
.36 - [unit] _ Secondary unit for auxrllary

new master file. -

Update Facilities 79

The unit specifications may be any of the followmg
System Utility Umt Options; " -~

S.SUnn =+ - “System utrhty wnit S SUnn isto'be used
Unn[=1Iyy] for the output unit, and; if desired, as-
< ionn[=Tlyyl] . signed the ‘intersystem reservation code
“.os eni o oyys Anintersystem:code should. be as-i:
. signed if the programmer wrshes
| reserve ‘the 1 is
Intersystem Unit Option:- :
: Iyy e ~,UOutput is “to* appear ‘on ‘the unit that *
. . =+i. .o has been assigned,the mtersystem res-::
o . . . ervatron code VY.)
Label Search Option:

‘A seidech 156 e Tadle for a Linit: Wwith
.an_expired label and the unit is to be
optionally assigned the intersystem res-
ervation code yy. (Label search param-
eters and mtersystem reservation codes
- are " discussed in- the sectlon Input/
;;Output Umt Assrgnment Yo

d[c]LOU[=1yy]

Variable Unit Option.
- [dlen[=Iyy]. .

Thrs i the standard vanable umt ref— ‘.

~ erence '
‘unit “of ‘ 1, :

:7~channel ¢:is to be assigned:for output;

.: ‘The wunit.is to :be optionally assigned -
~ the intersystem reservation code yy.

' (Varlable unit reférences are discussed

¢ in"the section “Inpnt/ Output Umt As-f}

.- signment.?) 1 .0 . R

Any Umt Optzons .

T[—Iyy] i The ﬁrst avarlable tape umt is to be
“assigned ‘as “the ‘output unit and op-
“.+tionally “assigned ~the mtersystem fes-
i ervation code yy. . o
The first available disk or drum unit is
to be assigned’ as the output it and
optionally assigned the “intersystem res-
" ervation code yy.
- The first-available unit (tape, disk, or ~
. drum) is to be assigned as the output
‘unit and’ optionally assrgned the mter-
* system ‘reservation code’yy. f i

© Dl=lyyl

Ul=Iyyl...

Error Detection and Wurnmg(Messages e

The Update Program checks for error condltlons that\
may appear durmg program’ operatron If the error is
serious, the job is terminated, the error ‘message is
listed on the system output unit (s s0U1) and the

followmg message is typed on the console typewnter 3

“UPDATE DISCONTINUED' DUE TO ERRORS. JOB SKIPPED.” If

the error is not serious, a‘ warning message is saved

until the end of the update run and then is listed on

the system output unit (s. SOUl) after the run hrstory;
The following messages are possible:

ERROR IN ‘READING TRANSACTION FILE.

The input’ editor ‘is umable to réad from S;SIN. Th1s error
causes job termination.

$RUN CARD-NOT USED PROPERLY. . .
The $RUN card must be the first card in the deek that con-
trols the update facilities. This error causes job termination.

INVALID UNIT REFERENCE SPECIFIED ON $XXXXXX
CARD."

A parameter on a $ASSIGN or $OUTPUT control card (spec- :

ified by XXXXXX) is mvalidf

$LOCATE HAS INVAL
The ‘action ‘parameter s

causes job'termination;:’

This error causes ‘job termination.
\CTION SPECIFIED,
ot in the authorized Tist. This: etror

80

$ASSIGN CARD ICNOBED UNIT ALREADY ASSIGNED.
The unit requested for a551gnment is currently being used

The job s nof-‘ternunated

IS’ GIVEN ON $BUN NOT VALID.

“The - parameter pnnted‘ in the dashed s space is not allowed.
Thi causes]o t rmmatron

the. loelang factor rs set by the program. This is a warn-
ing message the error: -does. not terminate the job.
BLOECK SEQUENGE ERROR. IGNORED,

-IOCS ichecks: the ‘input file for block sequence error. If any
are*found; ‘the ‘user will'be informed -by this message; the error
does not: terminate the job. -

CHECKSUM ERROR ‘IGNORED.
IOCS _found an error ‘while reading the mput file; the error

BLOCK, NQUE CE AND CHECKSUM ERRORS.
ICNORED

JOocs- found an_error whlle reading the mput file. The error
does not. termmate the]ob

PERMANENT. READ REDUNDANCY
IOCS:is not able to-get next record from input file. This error
causes job. termination. :

BUFFER OVERFLOW. ’

An improper blocking factor has been used or an attempt has
been: made towrite a record that is too large The job is
terminated.

REQUEST FOR ‘MORE WORDS THAN IN BUFFER

This error will occur, most likely; when an’ input file used for
update-has no end of file mark and the records that follow are
too large to, be read The]ob is termmated

SOURCE ORDER ERROR ettt - AFTER [

If the tape presented for update has ‘a sequence error, the
user will be informed ‘of the ‘condition by this message. The
dashed lineés are filled:in with the serial numbers where the error
e f the user has used the $NUMBER improperly to-
resequence the new master and a sequence error results, then
the word SOURCE: will be replaced by the word UPDATE The

job-is mot. terminated.

RENUMBERING: OVERLAP AT 7; ‘NEW

" “The request “for renumbenng has come “after the desired
number has’ been placed on the new master Thls job is not
terminated: : .
NUMBER CARD WITH NO SERIALS IGNORED

A request for numbenng with no parameters is lgnored The
job is not terrmnated)

WARNING NO DECK CONTROLS GIVEN
ONE DECK ONLY. i

“This message is.given if the user has not used the $LOCATE
card to position the input tape; this mode of operation is
allowed. That is, the input tape is considered to be one“deck,
no matter how many decks are actually on the tape The]ob
is not terminated.

WARNING ADDITIONAL DECK INSERTED AFTER

ASSUMING

n when more than 'one “deck is inserted
e ntrol card. It also appears on a generate
decks are being placed on the new

Thxs _message 1s_'
wrth one y

tron, thls {rn sage will apbear The job is- termmated

INVALID OPTION ON: $OBTAIN IGNORED.
‘A paramieteron the $OBTAIN card is not in the authorized
list; the job is not terminated;

IGNORED.. T IS Dy
‘Update control cards were placed in the transaction file and

UPDATE CARDS ARE IMPROPER ON OUTPUT RUN.

have no meaning on an output run; the job is not terminated: =

INVALID RECORD DURING OUTPUT. ALL SUCH
SKIPPED,

When listing an output tape created by the system, all con-
trol characters that cannot be interpreted will cause this
message; the job is not terminated. ,
$DELETE WITH NO SERIAL NUMBER. IGNORED.

No parameters' were specified on the $DELETE control card;
the job is not terminated.

UNEXPECTED CHANGE IN MODE.)
The record read is in a mode different from that indicated
by the previous record control character. The job is not ter-
minated.
PERMANENT WRITE ERROR.)
IOCS unable to write current record; the job is terminated.

END OF REEL REACHED BEFORE LOCATING
DECK

Request to locate a deck resulted in searching a whole reel
without finding the deck. The name of the deck requested was
either misspelled, nonexistent on the input, or overlooked when
the request was made. The job is terminated. :

NOT ENOUGH AVAILABLE UNITS FOR THIS RUN .

Units must be in ready status in order to be considered avail- :

able. This error terminates the job. -

lyy SPECIFIED ON $XXXXXX CARD, WAS ALREADY

ASSIGNED.

The user has specified that a unit be assigned the inter-

system reservation. code yy. (by means: of the =Iyy option) and
this code has already been assigned to another unit,

UNIT S.SUxx, SPECIFIED ON $XXXXXX CARD HAS
ALREADY BEEN RESERVED AND. CANNOT BE AS-
SIGNED lyy. B , ‘

The user has specified that the intersystem reservation code
vy is to be assigned to a unit that already has a different inter-
System reservation ‘code “assigned-to “it. The new code is not
assigned.

FILE _ . .
OUTPUT o

This message is . printed to_inform the user that a.file has

been opened when no $OUTPUT card has been used to specify

-~ HAS BEEN OPENED:AS UPDATE

. a particular unit for the file. The followipg file names may

appear in place of the dashed lines:
OUTPT The main output file
AUXOU The duxiliary output file -~ =

The following messages will appear in the summary
to inform the user of specific units used as output dur-
ing an update run: . e ‘

UPDATE OUTPUT ON XXXX (XXXX=2201=channel B

tape unit 1) T

INPUT LABEL SEARCH, FILE FdUND ON XXXX
OUTPUT LABEL SEARCH, FILE FOUND. ON XXXX

Summary of Records Processed -

The Update program will print out a summary of the
records processed. Included in the summary will be a

count of logical records written on the new master file. -

Also listed will be a count of deletions and a count of

insertions. There will not bea count of extracted records. -

The summary, therefore,»indicatesthe volume of infor-

mation on a tape and also serves as a cross check of

records processed during successive Update runs.
(That is, the number of records read from the Update

run master file must be equal to the number of records

written-on the master file during the previous Update
N v .

ran) o — ,

Planning an Update Run

System éonirol Cards

System control cards are an important facet of the
update run considerations. In planning an update
run, the input file must be considered in relation to
what system control cards precede and follow the
various program decks. The output file, depending
on its use, will also require system control cards.

If an auxiliary master file is being produced using
the ExTRACT option, system control cards that are not
on the input file may be placed on the auxiliary master
file by means of the spLACE control card.

For an update run where a new master file is being

/"‘*cxeated, system control cards may be inserted by the

following means: R B
1. Use a modification card identical to the last card
in the deck after which the system control cards are
to be placed. “

2. Place the system control cards behind this serial-
ized card. L «

3. During the update run, the serialized modification
card will replace the last card of the deck specified,
and the system control cards will be processed as
unserialized modification cards. ,

If decks are maintained as a storage pool with no
sBjos cards, output files produced from them can still
be utilized by using SIEDIT to supply the required con-
trol cards from s.siw. - . '

Selection of the Run Type
During a typical Update run, the first parameter on
the sruN control card may be EXTRACT, UPDATE, or
blank. If the parameter is left blank, then both an
extract file and a new master file will be created. The
situations in which the various types of runs are se-
lected are outlined in the following text. L

UPDATE: An uPpATE option is indicated if:

L. The input file contains only one deck. =

2. The input file is already set up as a system input
tape, with one job. : : "

3. The desired run is to incorporate changes to stor-
age pools, with no subsequent assembly or execution
to follow the update action. .

EXTRACT: If the input file contains many decks and
only one is desired for modification and assembly, the

- . programmer éhbﬁl& use the EXTRACT option.
~ BOTH: When a new master file and a system input

tape intended for processing are both desired, the

- “blank” option for the sruw control card should be used.

Update Facilities 81

'EXAMPLES: The following examples, Figures 34 the more basic functions of the Update program and

through 39, are intended as an aid for planning jobs
using the Update program. They show only some of

SWICH 531
POWITGH... “.e: 313 o
SSWITCH 5.5000 .

g 5.5U1
BSYS o
 [FENDRUN s
|ssTop 14

TR

END *UPD025010

- FDECETE UPDO1234
UPD02345

TSL "CALLJO UPD01210

SNUMBER UPD00000

- BLOCATE = DECK1 =~

. BOBTAIN

SUMMARY INDEX

BRUN UPDATES

——

SEXECUTE ~ UPDATE

$SWITCH

S.SOUTN 41 -
$.Sgl7£: -

JOB UPDATE AND
ASSEMBLE

EDATE 02/01/64

This example shows a deck setup used to update a single deck and prepare it for assembly.
$IBJOB card preceding the symbolic deck-to be updated =
$STOP control cards are added to.it. The illustration of
system tapes in preparation for the assembly.

Figure 34, Deck Setup for an Update Run

82

L2

. Switch S.SINT with $.SUT1.

should not be considered as the limit of the facilities
available.- - .. . LR e e

:Card Function

. Switch S.SUdO with §,SUTT. :

" ‘Return control to System Monitor,

" End of fransaction file,

. System control card placed on new master file.

. System control card placed on new master file:

Modification card.

Délete cards from UPDO1234 to UPDO2345.

. Modification card.

Request for resequencing, ;fcrrring o:t UPDOOOOO
Locate deck to bej mpfiified .

Request supplementary listings.

‘ Spé;:if); runr type

B;ing in Update Pfogr;:im. .

Switch S.SOU1 with-5,5U17. .

System Job card.

1. System Date card.

and ‘assembled. Because processing ‘is
the deck shows the cards used for the update function and two switch cards to assign the

“In this'case, the old master file is assumed fo have the

t6 stop-after assembly. of this deck, the $IBSYS and

$STOP Card Function

o/ esys

21, Terminate pl%ocessing.

< {PIBMAP . .- DECK2. "

20. ‘Return control f5 System Monitor.

2 , o
£ | IT .SRCH, , ol R R
vg , PIEDIT V11, SRCH, . 19, Control Assembly.
[BIBJOB. . DECK, NOGQ © 18, Find the program r;cfllleid DECK 2.
BSWITCH -, e ﬁff;l7. Define the processor ahﬁliﬁufion;
IBSYS . 216, Switch S.5U00 with S.SUTT
PENDRUN Refun;}i;ébﬁi‘rél :fa fhé 'S)i/ster‘r; Mor;itor. :
$STOP 14,

s

13. 'Sysfqm:'conifdi card placed on ’new'mdﬁfer file.

] N L VE i L e
& N END : UPD29O7O 12, System.control card placed on new master file.
& : S :
$ PDELETE UPDO01234 _ 1. Modification card. BN
& UPD02345 fon card, - -
LN

TSL' CALLIO Uppoi2io \, 10. Delete cards from UPDO1234 to UPDO2345.

$NUMBER ~ UPD 00000 N o
4 9. Modification card. |

LOCATE DECK2 *8. Request for resequegéing; starting'at UPDOOOOO

POBTAIN . INDEX *7. Position input tape to program DECK 2.

RUN UPDATE 5 *6.- Request for supplementary listings..

SEXECUTE = UPDATE

5. Defines run type (Update).

$SWITCH 5.50u1, 4, nBriﬁgfinﬂl;")pdafe Program.

5.5U17
,$JOB KPSDATE,AND 3. Switch S.SOUT with 5. 5017,
SSEMBLE
SDATE 02,/01,/64 2. Define update job.
.) - 1. System Date card.

*These cards are optional ,
This example shows the deck setup used to modify a single deck, prepare it for assembly by the insertion of system control cards, and assemble it. In

this case, the old master file does not have a $IBJOB control card preceding the program deck, so-the $IEDIT control card is used to supply this, The
deck illustrated will perform the update and the assenibly of the update deck.

Figure 35. Deck Setup for an Update and Assembly Run

"Update Facilities 83

Card Function”

SSWITCH T
A Ss.sun’

fswiTcH - 16, Switch S.SINT with S.5U11

: |§|gsgs

FENDRUN

nd of transaction 'Fil?e f

. fosT

O i

; $IBSYS i i'siem control Eard placed on auxiliary. master tape.

END UPD2%070

- TsL_CALLJO UPD01210 .) 10, M;;inrf&ica‘ﬁro;c:c:’;-&. Tt

BNUMBER . UPD00000 .\ 5| 9. Mdification card.

.,I!LQCATE‘ DECK EXTRACT '\

_FOBTAIN = SUMMARY ~ \

SRUN EXTRACT

*6. Request for ;§upp|emeniar$%_ listing.

PEXECUTE. UEDATE .. i\ 8| 5. ‘Define run fypé"ﬁs an EXTRACT run.

SSWITCH 75,5001,)
' 5.5U17

$JOB EXTRACT AND . ..
ASSEMBLE
SDATE 08/06/63

4. Bring in Upd‘“e:f[’rdérum, SN

3. Switch S.SOU1 with 5.5U17.

2. Define update job.

1. System Date card.

*These cards are optional.

This example is similar to the one in Figure 36, except l'h'ut’instead of generating the output tape-as a new master-tape
“with the update option, the output is:placed on the auxiliary master tape with the extract option. -

Figure 36. Deck Setup for.:ag:Ubg}ggp;and Assembly Run Using the Extract Option

84

o\ Card Function

SEXECUTE UPDATE

$JOB INPUT - e
R) Update Program.
SWITCH —s5.s0uU1, et AN
s.su17.. Y3l . 3. - System Jobcard defining update job.

KDATE 08,/06/63 Ly -
, 2. Switch S.SOUT with 5, SU17.

1. System Date card,

s

~* This card is opiifqnalf. i ﬂ

This example illustrates the cards.used-to-pist a’symbolic card deck onto a master file. In this case, the bol ic deck is serialized

(refer to the accompanying listing), so that no request for rumbering is required.

Figure 37. Deck Setup for:Placing a'Symbolic Card Deck ontb a Master File

]sAST'o:P‘ TR

NEE g

Card Function

o . |$IBSYS '8, Terminate processing. -
g Sivenaa el maiintd o
«\ P Y - . it " : 2 ‘ R
K $ENDRUN .7+ Return control to System Monitor.
S . .
ég, , . ; :
& $RUN OUTPUT 6. End of transaction file.

SEXCUTE UPDATE 75. Define run type as OUTPUT run.

FJOB OUTPUT RUN 4. Bring in Update Program.

$SWITCH = S.soul, 3. System job card defining update run.

s.su17
FDATE 08/06/63

2. ‘Switch S.SOUT with S.5U17.

1. System Date card.

This example shows the deck arrangement for listing an output fope on the system output unit.

Figure 38. Deck Setup for Listing ‘van'Output Tape

Update Facilities 85

$STOYI> Card Eunction

SIBSYS

= 18. Finiksh séssion -
$ENDEDIT SR

g s 7. Réfu?n to ystem
SENTRY | e

]6.'EdEd'f y
$1BMAP RWDA REF End Edit eun

15. Edit Control card”
$IEDIT 111,SRCH It Soniro] car

14, Assemble RWDA .

$IBJOB SOURCE,NOGO

e e 13. Search unit réser?éeiﬁﬁreviobsly
"REPLACE "~ "RWDA - DU : .

- - 12. Indicate source assembly -
$IBEDT . - SOURCE -+ N ~ : -

SIBSYS 11, Request replqc‘eme:nit; of RWDA

$ENDRUN 10. Start Edit run

9. Refurn to. IBSYS

8. End U:ﬁdaté, run’

“SYMBOLIC CHANGES
TO RWDA

SLOCATE RWDA

7. ‘Change deck

SOUTPUT ___ U0B=111

PIVEN 65" Locate ‘déck: for latér.use . -
RUN UPDATE

SEXECUTE UPDATE 5. Select Output unit and reserve

i UPDATE 4. Select Update run
$JoB ASSEMBLE
EDITRWDA 3. Enter Update phase
$DATE 08/06/63)

2, Release all reserve codes

1. System Date card

Figure 39. Deck Setup for Update Followed by Edit Run Usmg Intersystem liéser{'atioﬂ{Ci‘;des

Monitored Utility Programs in the IBM 7040/7044 Operating System (16/32K)

Introduction

The 7040/7044 Operating System (16/32K) includes
a subsystem of monitored utility programs. Five of
these perform various utility functions for 1301 Disk
Storage, 1302 Disk Storage, or 7320 Drum Storage.
The subsystem also provides a program for listing in-
formation contained on disk storage, drum storage,
magnetic tape, or punched cards. This chapter de-
scribes the six monitored utility programs and the
methods for using them. o

A number of utility programs that are independent
of the 7040/7044 Operating System (16/ 32K) are also
available. Information concerning these programs may
be found in the publication IBM 7040/7044 Utility
Programs, Form C28-6317. e ,

The reader should be familiar with the publications
IBM 1301, Models 1 and 2, Disk Storage and IBM
1302, Models 1 and 2, Disk Storage with IBM 7040 and
7044 Data Processing Systems, Form A22-6768,- and
IBM 7320 Drum Storage with 7040 and 7044 Systems,
Form A22-6793. :

The Utility Monitor

The 7040/7044 Operating System utility programs
operate under the control of a Utility Monitor. The
various subroutines common to all of the -utility pro-
grams are incorporated into the Utility Monitor, saving
library positioning and loading time. The Utility Mon-
itor, which is controlled by the System Monitor, is
loaded by the System Loader (s.sLpR). The System
Loader also loads each utility program requested and
passes control to it.

The system units used by the Utility Monitor are:

1. The system library unit (s.sLBx), from which the
Utility Monitor and the utility programs are loaded

2. The system input unit (s.siNx), from which the
control cards are read by the Utility Monitor

3. The system output unit (s.soux), on which the
system output is written by the Utility Monitor

The Utility Programs
The following monitored utility programs are included
in the 7040/7044 Operating System (16/32K) :
1. The Device Print Program
2. The Format Track, Home Address, and Record
- Address Generatdr

I3

3. The Load Disk/Drum Program
4. The Dump Disk/Drum Program
5. The Restore Disk/Drum Program
6. The Clear Disk/Drum Program

The arrangement of control cards for an application

using the Dump Disk/Drum Program and the Restore
Disk/Drum Program is shown in Figure 40. When the
SEXECUTE IBUTL card is recognized, the System Loader
(s.sLpr) loads the Utility Monitor and passes control
to it. i ‘ :
When the Dump Disk/Drum parameter card is
recognized by the Utility Monitor, the System Loader
loads the Dump Disk/Drum Program from the sys-
tem library unit (s.sLBx) and transfers control to it.

After the Dump Disk/Drum Program has been exe- -
cuted, control is returned to the Utility Monitor, which
recognizes the Restore Disk/Drum parameter card.

‘The System Loader then loads the Restore Disk/Drum

Program from the system library unit and passes con-
trol to it.
The siBsys card returns control to the System Monitor

7 (1Bsys).

Card Function

4. Return control to System Monitor

3. Restore Disk/Drum Parameter Card

BURD
m!
SEXECUTE I1BUTL 2

Figure 40. Sequence of Control Cards Used for a Utility Run

" 2. Dump Disk/Drum Parameter Card

1. System control card

‘Messages to the Operator

Error messages and messages requesting operator inter-
vention are typed whenever necessary. A list of mes-
sages associated with the monitored utility programs

is contained in the publication IBM 7040/7044 Operat-
ing System (16/32K): Operator’s Guide, Form C28-6338.

~ Control Cards Used with the Utility Programs

Three types of control cards are used with the utility
programs: system control cards, parameter cards, and
extension cards. : S

Monitored Utility Programs 87

‘SYSTEM CONTROL CABDS

System control cards ($EXECUTE and smsYs) provide
communication between the System Monitor and the
Utility Monitor. The sexecuTe card transfers control to
the Utility Monitor. The format of the sexecuTe card
is as follows: o
$EXECUTE h,:'IBUTL .

Any $ control card returns control to the System: Mom-
tor. The format of the siBsys card is as follows: . -

ll
$IBSYS 4

PARAMETER CABDS

Parameter cards perform a dual function: they provrde
communication between the Utility Monitor and the
utility programs, ‘and they contain the spemﬁcatlons
used by the utility programs to accomphsh the utlllty
function. The format of the parameter card is_as
follows: - - ‘ i

17 878

S IBUxx. .. c.

Specifications. ... o000
where ¢ = zeroor blank.
EXTENSION CARDS

Extension cards provide a means of continuing parame-
ter card specifications. Unless otherwise indicated, any
number of extension cards may follow a parameter
card. When extension cards are used, the interrupted
field in the parameter card must end with a comma
followed by a blank. The field is continued in column
8 of the extension card. The format of an extensmn
card is as follows: S ‘

4o A R 78

IBUxx. .- . ¢
-where ¢ = any Bcp character other than zero or blank

The parameter cards can be distinguished from
extension cards only by the character punched in
column 7. Parameter cards must have either a zero or
a blank column 7, while extension cards must have any
Bcp character other than zero or blank in column 7. A
suggested method of dlstmgulshmg between the two
is to punch a zero in column 7 of the parameter card
and to punch numbers (1, 2, 3,) in column 7 of the
succeedmg extenswn cards

“Specifications (cont.). v

The Devnce Prmt Progrum

The Device Print Program produces a hstmg of the
information contained on 1M 1301 Disk Storage, 1BM

1302 Disk Storage, 18M 7320 Drum Storage, magnetic

tape, or punched cards. Either binary or scp informa-
tion may be listed. The listing, which is produced on
the system routput unit, »may‘ be in any one. of five

88

;length of

- formats; Frgure 41 gives an example of each of the

available formats,

Any file or group of files on the storage device may
be selected for listing. Within a file, any record or
group of records may be selected. Input files may be
labeled. Unit switching is not performed. Labels are
not checked by the program to ensure that the file is

~actually labeled. If labels are specified,. files are

printed or skrpped in multiples of three. Also, if check-
pomtrecords are mcluded (each constltutmg a separate
file), an adjustment is not made. by the program, and
sk1pp1ng or printing of files still proceeds by multrples
of three of the ber. of data files spec1ﬁed
The Dev1ce Print. Program has a maximum buffer
f (4096)10 words. This maximum can be
altered by changing the assembly parameter SIZE and
reassemblmg the Device Prmt Program '

USING THE DEVICE PRINT PROGRAM

‘An BUUD parameter card is used to ‘transfer control
from the Utility Monitor to the Devrce Print Program.

This control card specifies the ystem unit ‘from which

:the,data is to be obtained, the mput mode, the format
of the output ‘and the location of the mformatlon to
fbe wrltten on the output umt S : :

CONTBOL CABD FOBMAT

The format of the parameter card used by the Devxce
Print Program is (extension cards may be used when
s.snnn is attached as a nonsequential device):

CARD o :
S COLUMNS L GODING T “DESCRIPTION” -~
“i 1-5°.. +IBUUD: .« . Control card identiﬁc,ation,.
6. Not used. o
g 7 Blankor zero.
813 iS:Snmn ¢ ¢ ’System -unit contammg data rec-
...ords to be printed. .. :
4 Field separator.
‘15 Oorl Inputmode:

(0 for binary information;
.4 for BCD.information..
Output format.
1. Octal=8 words per line,
‘9, 'BCD~-16 words per line.
-3. Octal - with - mnemonics—8
 words per line.
4. Octal w1th BCD-8" words)
5

16 1,234,005

“iperling, v
. :Qctal. with. BCD and mne-
‘monics—8 words per line.

17 / 7 Field separator
18 “0Qorl ~ Label: : : :
i . 0 for nonlabeled input ﬁles,
1 for labeled input files.
19 / Field separator
Either ViR
. 20-71 A,B/C,D _Ais the startmg record (ﬁrst.
S for sequen- o second, etc.) of starting file B.
tial'input - C and D are the terminating

- tecord - and - file, - respectively.
_-A maximum of four digits each
“is allowed for A and C. (See
Figure - 42.) Only -one such

sury .wom spiopm Bw_m.-no,ﬁoﬁoqz PUV D€ UM TEI90 G 3ewaod

000000 000000 1000000 CT10S0H - WXL TICO+0 v¥L 110019 OLs

000000 000000) ! v g ,
000000000000 000000000000 000000000000 ~ 10100050000€ 101000000200 101000001090 . 01000

000000000000 000000000000
910000 © DLS 400C L NI SEOION HXL

«0000s V1) 910070 8021 0100-N 8HJY 0000SL Sqy «00000 bLs

89

Monitored Utility Programs

110000000050 901000001900 ZIT000000%50~ 0000000029.0 LL000000COIC- 401000000090~ $00N00000920 'SOT000TEC00E 70000
SuIT 33g §PI0M WBIH--ADH WIM 18190 ¥ Ieuriog ;
000000. 000000 000000 000000 . 000000 CTI0SOH ¢ 112040 110019 S
000000000000 000000000000 000000000000 000000000000 . 000000000000 '~ 10100050000€ 101000000200 101000001090 01000
200005 9160/0 0100-N) . w0000 %000 1 © ST1010H et
11000000000~ 9010000019C0 211000000950~ - 000000002940 110000000090~ 401000000090~ $000000009LC SOTO0OTEO00E 00000
sury .H,vnw spiom uammm-|muwnoﬁon§ YITM 123190 ¢ udﬁuoh
n : , : , WXL vt o018 |
000000000000 - 000000000000 000C00000000 000000000000 000000000000 10TO00SOCOOE 101000000200 161060001090 01000
S V19 8091 8HIY , say : oIS o m1s w3 o ax R
£10000000050 901000001900 ZTT000000%50~ 000000002920 LLOGOO0000S0- 501000000090~ 500100000910 S0T000T€000€ 00000
SUYT 194 SPIOM UGSIXIS- ..QON 2 1ewIo.q
oooooooooooooooooooo880882_omoiSo,::ﬂ;ozo.oooomﬁ8\8,#8-zoooom\..oooooiocoo«.ooo LST101GH . r0000
) Sury 1od sprom BIA--18300 T jewaog
000000000000 000000000000 000000000000 000000000000 000000000000 1GTO00SO000E 1CTCO0000200 101000001090 01000
£L0000000050 907000001900 ZT1000000¥50~ 000000002920 LL0000000090- 01000000090~ 00000000920 SOTOO0TEO00E COOOO

Figure 41. Device Print Program Output Formats

3rd File 2nd File : Ist File
A A A
4 Y Y Al
L : s .
R Lo plSlal 2na [R| we VS| o I R
G Record G Record clfle Record Gl Record clF Record G Record el Record
L)
Y .
“Print from the third record of the first file to the
1 first record of the third file)
v N
IBUUD S.Sxxx/02/0/3,1/1,3

Figure 42. Sequential Device Print Program Input Parameters

CARD

COLUMNS DESCRIPTION

specification is allowed = for
each IBUUD control card.
Each additional specification
must be placed on'a separate
- IBUUD control card. If ‘A,
B=0, 0 the device will not be
rewound and: the number of
records and files specified in
C, D will be printed. If
B/C, D=0/0, 0 the device
. will be backspaced the num-
ber of - records. specified by
A and this number of records
will be printed unless an End-
of-File is encountered.
Not used.

Track address(es). Each address
is followed by a connector that
indicates the relationship of
the track preceding the -con-
nector to the track following
it. (This is shown in Figure
43.) A maximum of 50 ad-
dresses is allowed for each
IBUUD control card and all
of its extension cards.

t-tttt is a track address (0-399
for drum; 0-9999 for disk).

c can be:

1. A comma to mdrcate indi-
vidual tracks;

2. A hyphen to mdrcate se-
quential tracks;.

3. A blank to indicate the last
track to be printed.

Blank. ‘

Not used.

CODING

72-80

ttttc for

disk or drum
input- -

ttttc

tttc

tte

tc

20-71

72
73-78

1 8 .
IBUUD S.Snnn/12/0/32, 45, 230-243

Write the BCD information from S.Snnn, as follows: Output
format 2; the file is unlabeled; write from tracks 32 and 45, and
230 through 243.

Figure 43. Nonsequential Device Print Program Input
Parameters

90

The Format Track, Home Address, and Record
Address Generator

This program can be used to write format tracks and/

" or home address identifiers and record addresses for

1301 Disk Storage, 1302 Disk Storage or 7320 Drum

_ Storage.

The Format Track Generator generates, in core
storage, the fields of characters used to write a format
track and writes them on the format tracks for the

_cylinders specrﬁed in the Format Track parameter
_card. :

The Home Address and Record Address Generator

_ generates and writes home address identifiers and
_record addresses on one or more data tracks of disk
~ storage or drum storage. When home address identifiers
- and record addresses are to be written on more than -

one data track, the data tracks must have identical
format tracks. Record areas are filled with a character
that is specified on the parameter card.

The maximum number of words available for record-
ing information on the track depends on the number
of record areas that can be defined for one data track
and on the number of words per record area.

A record area to be formatted must be one word
larger than the input record if the device is attached
for single record operation.

The formulas for computing the maximum number
of words available for recording data on the tracks
are given below. The length of the home address
identifier and the length of the record address are
assumed to be of standard length.

Where

M=the maximum number of words available for recording
information on the track, and

N=the number of record areas per track.

Then, for the 6-bit mode, the maximum number of
words available for recording data on the track is com-
puted as follows: :
1301 Disk: M = 465 — [19(N-1)/3]
| 1302 Disk: M = 974 — [25(N-1)/3]
7320 Drum: M = 530 — [19(N-1)/3]

- Any fractional part of M should be disregarded.

USING THE FORMAT TRACK, HOME ADDRESS,
AND RECORD ADDRESS GENERATOR

‘Three types of parameter cards are used with the
F ormatr Track, Home Address, and Record Address
Generator. (The functions of these cards are sum-
marized in Figure 44.) The parameter cards are proc-
essed by sets. A set is-defined as all cards having the
same set identification (columns 73-78 of the control

cards). An error encountered in ‘any card in a set

causes all the following cards in the set to be ignored.
Writing Format Tracks: An IBUxF parameter card
is used for writing format tracks. The following infor-
mation is supplied to the program through this control
card: e S '
1. Control card identification (IBUxF), where x =
F for 1301 Disk Storage
H for 1302 Disk Storage
G for 7320 Drum Storage G
2. Symbolic unit designation (S.Sxxx) of the disk or
drum storage unit ‘ ~
3. Numbers "(0-9 for drum; 0-249 for disk) of the
cylinders to be given formats (although there is
only one format track for drum storage, cylinders
0-9 may be specified, thus providing some com-
patability with disk storage)
4. Number of record areas to be placed on the format
track . o
5. Number of words in each record area

CONTROL CARD(S)
IBUxF

L IBUxH (first card)

IBUXF (second card) -
or Home Address Identifiers and

IBUxH (first card) - Record Addresses

IBUxB (second card) ~ | ‘

“IBUxB {(first card)

FUNCTION — WRITE:
.| Format TruckbOnly B

Format Track, Home Address Identifiers,

IBUxH (second. card) " -and Record Addresses - j

® Figure 44. Use of Parémeter Cards with Formaft' Track, Home
) Address, and Record Address Generator

Writing Home Address Identifiers and Record Ad-

dresses: An IBUXH parameter card is used to write -

home address identifiers and record addresses. Before
these can be written, however, the format of the tracks
on which they are to be written must be supplied -to
the program. Two types of parameter cards may be
used to identify the formats: the IBUXF control card,

Form (C28-6318-5
Page Revised 7/1/65
By TNL N28-0534-0
normally when writing format tracks, can be placed
behind the IBUxH control card to supply the neces-
sary information, or an IBUxB control card, which is
similar to the IBUXF control card, may be placed
behind the IBUxH control card.
The following information is supplied to the pro-
gram through the IBUxH parameter card:
1. Control card identification (IBUxH), where x=
’ F for 1301 Disk Storage '
H for 1302 Disk Storage
G for 7320 Drum Storage
2. The addresses of the tracks on which the home
address identifiers and the record addresses are
’ to be written : A
3. The character to be used when filling the data
records
- Writing Format Tracks, Home Address Identifiers,
and Record Addresses: To generate format tracks, home
address identifiers, and record addresses, an IBUxB

- control card is used. This card performs essentially the

same function as the control card used to write format
tracks (IBUxF). It serves the added purpose of indi-
cating to the program that all functions are to be per-
formed (that is, the writing of format tracks, home
address identifiers, and record addresses). This card
is followed by an IBUxH control card containing the -
specifications for the home address identifiers and
record addresses. :
CONTROL CARD FORMATS

IBUxF Control Card: To generate a format track
only, the IBUXF control card is used. The format of the
IBUXF control card is as follows: '

CARD) o
COLUMNS CONTENTS DESCRIPTION
1-5. IBUFF Control card identification.
(1301 Disk)
IBUHF
(1302 Disk)
IBUGF
(7320 Drum)
6 W ' Write checking will be per-

formed if W is present.
7 Blank or zero.

8-13 S.Sxxx Symbolic unit designation of the
disk or drum storage unit that
i ; is to be given a format.
14/ Field separator.
A5-71: - 0-249 Numbers of the cylinders to be
‘ for disk - given formats. Each cylinder -
09 -~ number is separated either by
for drum a comma (to indicate separate
cylinders) or by a dash (to in-
- dicate a sequential series of
- cylinders). ‘A field separator
(/) follows the last cylinder
number.
'01-63 A two-digit number, which

designates the number of rec-
ord areas to be placed in the
format track, follows the field

Monitored Utility Programs 91

Form C28-6318-5
Page Revised 7/1/65
By TNL N28-0534-0

CARD

COLUMNS 'DESCRIPTION

separator (/). A field separa-
tor also follows the two-digit
number. This number -will be
used regardless of the number
of Trecords defined on the
$ATTACH card.

A series of numbers separated by
commas follow the last field

“geparator. The numbers indi-
cate the word length of each
of the record areas. If the
lengths of all the record areas
are the same, only one num-
ber need be used.

Blank.

Set identification. A six-character
alphameric name assigned by
the user to this set of control -
cards.

Not used.

CONTENTS

1-465

(1391 Disk)
1-974

(1302 Disk)
1-530

(7320 Drum)

72
73-78

aaaaaa

79-80
The followmg is an example of the 1BUFF - control
card: ' :
1 8 ’ 73
IBUFF S.Sxxx/1-23, 26, 59/06/3, 6, 23, 99, 36,25 SETONE

This control card is used to write a format track on the

1301 Disk Storage assigned as S.Sxxx. Cylinders 1-23,

26, and 59 are to be allocated six record areas each,
with word lengths of 3, 6, 23, 99, 36, and 25 words.
SETONE is the set identification.

IBUxH Control Card: To generate home address’

identifiers and record addresses only, the IBUxH con-
trol card is used, followed by either the IBUxF or the
~ IBUxB control card. The format of the IBUxH control
card is as follows:

CARD '
COLUMNS CONTENTS DESCRIPTION
’ 15 IBUFH Control card identification. .
(1301 Disk)
IBUHH
(1302 Disk)
IBUGH
(7320 Drum)
6 W : Write checking will be per-
formed if W is present. ‘
7 Blank or zero.
8 C Filler character (may be any
. BCD character).
9 /. Field separator.
10-71 tttte Track address(es). Each address
ttte is followed by a connector,

tte * which indicates the relation-
te - ship of the track address pre-
- ceding the connector to the
address following it. A maxi-
mum of 50 addresses is
allowed for each IBUxH con-
trol card and all of its exten-
sion cards.
t-tttt is a track address
(0-399 for drum; 0-9999 for
disk).
c can be:
1. A comma to indicate indi-
vidual tracks;

92

“

CARD
COLUMNS CONTENTS DESCRIPTION
2. A hyphen to indicate se-
' quential tracks;
3. A blank to terminate the
field.
72 Blank.

73-78 aaaaaa Set identification.’ A six-charac-
ter alphameric name assigned
by the user to the set of con-
trol cards. .

79-80 Not used.

The cards in the followmg example may be used to
write home address identifiers and record addresses.

1 '8 73
VIB’UFHV R/40-959, 1040-1079, 2360-2399 SETONE
1 8 i) ‘ 73

IBUFF S.Sxxx/1-23, 26, 59/06/3, 6, 23, 99, 36, 25 SETONE

The control card 1BuFH, followed by an 1BUFF control
card, is used to write home address identifiers and
record addresses on the 1301 D1sk Storage assigned as
s.sxxx. Tracks 40 through 959, 1040 through 1079, and
2360 through 2399 (whose cylinders were previously
given a format), with six data areas of 3, 6, 23, 99, 36,
and 25 words, are to be given home address identifiers
and record addresses. Data areas will be filled with
the Bcp character R.

IBUxB Conirol Card: To generate a format track,
home address identifiers and record addresses, the
IBUxB control card is used followed by the IBUxH
control card. The format of the IBUxB control card is

“as follows:

CARD
COLUMNS CONTENTS _DESCRIPTION
1-5 IBUFB Control card identification. Indi-
(1301 Disk) cates that format tracks, home
IBUHB address identifiers, and record
(1302 Disk) addresses are desired.
. IBUGB
(7320 Drum)
6-80° - (Same parameters as for the IBUxF control card.)

The cards in the following example may be used to

write format tracks, home address 1dent1ﬁers and

record addresses.

1 8 ‘ 73
" IBUFB S.Sxxx/1-23, 26, 59/06/3, 6, 23, 99, 36, 25 SETTWO
1 8 : : 73

IBUFH,]/40-959,1040-1079, 2360—2399 SETTWO

The 1BUFB control card followed by an 1BuFH control
card, is used to write format tracks, home address
identifiers, and record addresses on the 1301 Disk
Storage assigned as S.Sxxx. Cylinders 1-23, 26, and 59
are to be allocated six data areas with word lengths of
3, 6,23, 99, 36 and 25. Data areas will be filled with the
Bep character J. Home address identifiers and record
ad(ixesses will be written on tracks 40 through 959,
1040 through 1079, and 2360 through 2399. seTTWO
is the set identification.

The Load Disk/Drum Program

The Load Disk/Drum Program transmits data obtamed
from disk or drum storage tracks, magnetic tape rec-
ords, or cards from a card read punch to one or more
consecutive record areas on specified. data tracks of
1301 Disk Storage, 1302 Disk Storage, or 7320 Drum
Storage. Any input record that exceeds the capacity
of a record area is truncated; the excess characters or
bits are not loaded. If a record area is greater than the
input record, the unused positions of the record area
are filled with blanks.
Neither truncating input records nor padding record
areas is considered an error condition. The loading
process is terminated when either all the designated
track numbers are exhausted or all the spemﬁed input
files have been loaded. :

The Load Disk/Drum Program has a maximum

buffer length of (1000), words. This maximum ¢an be .

altered by changing the assembly parameter TRKsz1
and reassembling the Load Disk/Drum Program.

- USING THE LOAD DISK/DRUM PROGRAM

Prior to loading information onto the disk or drum
storage, the format track, home address identifiers, and
record addresses must have been written. Depending
upon the control card used, the following informa-
tion must be provided to the Load Disk/Drum Pro-
gram: el T

1. Control card identification (IBULD or IBULS)

2. Symbolic unit designation (s.snnn) of the disk
or drum storage unit onto which the data is to be
loaded.

3. Symbolic unit designation (s.smmm) of the unit

containing the data to be loaded

. Mode of the input data (Bcp or binary)

. Quantity of records to be loaded

6. Number of the track record at which loading is
to begin

. Tracks to be loaded

. Number of systém input unit files to be skipped
before loading _

9. Number of input files to be loaded

Ut H=

o0 =1

CON'TROL CARDS

Twao parameter cards may be used with the Load Disk/
Drum Program, the BuLD control card and the muLs
control card. Either may be used if the device is at-
tached for single-record-operation or full-track mode.
The 1BULD control card must be used if the device is
attached for random-access operations. The 18ULS con-
trol card must be used if the dev1ce is attached for
cylinder mode.

IBULD Control Card: Th1s control card is to be
used if the disk or drum storage is attached for random
access, full-track mode, or single-record operation,

The disk or drum storage must be attached for random-
access operation. when it is loaded if it is to be used
as a random-access device. It must be attached for
either full-track or single-record operation when it is
loaded if it is to be used as a sequential-access device.
The IBULD card will load the
device for use as a: -
Random-access device
Sequential-access device

1If the device was attached for
‘this method of operation:
Random access
- Full-track: mode
or
Smgle«record operatlon
Thus, the method of operatlon spe01ﬁed at the tlme
the device is attached determines whether the 1BULD
card will write on the disk or drum for random or
sequential access. The format of the 1BULD control card
is as follows:

"CARD
COLUMNS CONTENTS 7 DESCRIPTION
1-5 = IBULD" . Control card identification,
6 W. Write checking will be performed if

W is present.
7 Blank or zero.

~8-13. - .S.Snnn Disk or drum to be loaded.
14/ Field separator.
15-16 01-63 Number of track records per track
' to be loaded.
17 /- Field separator.
18«19 01-63 Track record at which loadlng is to
start.
20 /7) Field separator., v
21-26 " SSmmm Input device containing the data
to be loaded.
27 / Field separator.
28 Oorl 0 indicates binary input; 1 indicates
- BCD input.
29 / Field separator.
:30-31 00-xx - Files to skip before loading data.
32 / Field separator.
33-34 01-xx Files to load.
35 / Field separator.
36-71 titte - Track -address(es): ‘each address is

ttte . followed by a connector that in-
dicates the relationship of the

- track address preceding the con-
nector to the address following
it. A maximum of 50 addresses
is ‘allowed for each IBULD con-
trol card and all of its Extension
cards.

t-tttt is a track address :
{0-399 for drum; 0-9999 for disk) .

¢ can be:
1. A comma to indicate indi-

vidual tracks;

2. A hyphen to indicate sequen-
- tial tracks; -

S 3. A blank to terminate the field.
72 Blank.

73-80 Not used.

The fellowmg is an example of the 1BULD control
card. ,

tc

1 8 , .
IBULD -. - S.Snnn/02/03/S.Smmm/0/00/01/2, 6,7

Monitoréd Utility Programs 93

This 1BuLD control card is used to'load two records on

each specified track starting at record number 3 of

tracks 2, 6, and 7 of the 1301 Disk Storage s.snnn.
Binary data is to be loaded from a magnetic tape unit
designated as s.smmm, and no files are to be skipped
before loading. Loading will be terminated when either
the six record areas are loaded or an end of file is
recognized on the input device.

IBULS Control Card: This card may be used for
full track, single record, or cylinder mode. Unlike

the 1BULD control card, this card will in all cases write

information on the disk or drum for sequential access.

The format track to be written for the disk or drum
storage units is determined by the mode of operation
that is used. For operation in single record mode, ‘the
format must provide a record area at least one word
greater than the size of the input record. For operation
in cylinder mode, the format must provide a record
area of 465 words for 1301 Disk Storage, 974 words
for 1302 Disk Storage, or 530 words for 7320 Drum
Storage. ’

If the device was attached for The IBULS card will load
this method of operation: the device for use as a:

Full-track mode
or ,
Single-record operation - Sequential-access device
or
Cylinder mode
The format of the mBuLs control card is as follows:
CARD ‘
COLUMNS CONTENTS DESCRIPTION
1-5 IBULS Control card identification.
6 Blank indicates that an End-of-File
: will not be written.
Any non-blank character indciates
.that an End-of-File will be -
written.
7 Zero or blank.
8-13 S.Snnn Disk or drum to be loaded.
14 / Field separator.
15-20 S.Smmm = Input device containing the data to
be loaded.
21 / .. Field separator,
22 Oorl 0 indicates binary input;
) 1 indicates BCD input.
23 / Field separator.
24-25 00-xx - Files to skip before loading data.
26 / Field separator.
27-28 01-xx Files to load.
29 / Field separator.
30-71 iiiiic Disk or Drum Record numbers:

iitic each record number is followed
by a connector that indicates the
relationship of the record number
preceding the commector to the
ic record number following it. A
‘maximum of 50 record numbers
is allowed for each IBULS con-
trol card and all of its Extension.
cards. Consecutive records - be-
ginning with record numbers one

94

CARD :
COLUMNS DESCRIPTION
' S must be specified if the disk or
drum has been attached for
cylinder mode. (i-iiii=1-32,767)
c can be:
1. A comma to indicate indi-
vidual record numbers;
2. A hyphen to indicate sequen-
tial record numbers;
3. A blank to terminate the field.

R ' ~ Blank
73-80 Not used.

Label Control Card for the Load Dzsk/Drum Pro-
gmm Each control card that is to deal with labeled
input must be preceded by a LABEL control card. If
more than one LABEL control card precedes a control
card, only the last one is used. The format of the
LABEL control card is as follows: ’

CONTENTS

* CARD . .. -
COLUMNS CONTENTS DESCRIPTION
1-5 =~ IBULD or Program identification.
i IBULS)
6 Not used.
7 Blank.
8-12 LABEL .. Label card identification.
- 13-15) Not used.
16 a Is 1 if there is a checkpoint;
Is 0 if no checkpoint.
17 b ~Is 1'if multi-reel file;
L Is O if single-reel file.
18 c Is 1 if block sequence numbers are
to be checked;
Is 0 if block sequence numbers are
: not to be checked.
19 d * Is 1 if a check sum is checked for
each block read;
Is 0 if no check sums are to be
checked.
20 s - Field separator.
21-25 - fffff File serial number.
26 , Field separator.
27-30 Ty Reel sequence number.

31 ', % Field separator.

32-36 yyddd Creation date, where yy is tens and
units digits: of the year and ddd
, is the number of the day in the
year.
37 , Field separator.
38-47 ifiiiiiiii Field identification.
~ 48-80 Not used.

The Dump Disk/Drum Program
The Dump Disk/Drum Program writes all the infor-
mation contained on one or more specified data tracks
of 1301 Disk Storage, 1302 Disk Storage, or 7320 Drum
Storage onto magnetic tape, disk storage, or drum
storage. The operation is performed by a Read-Full-
Track-with-Address instruction. Therefore, record ad-
dresses are included as part of the information to be
recorded. 5

- The program is intended for use w1th the Restore
Disk/Drum Program, which restores to the disk or

drum storage all or selected portions of the informa-

tion that has been recorded. (The format track for the
affected area must be the same when the restore opera-
tion is performed as it was when the dump took place.)

USING THE DUMP DISK/DRUM PROGRAM

The following information should be included in the
control card: ‘
1. Program identification (1BuDD)
2. The designation for the disk or drum storage to
be dumped
3. The system designation of the device to be
written on
4. The tracks to be dumped
5. Identification for the block of information being
dumped to be used during the restore operation

CONTROL CARD FORMAT

IBUDD Control Card: The format of the 1BUDD con-
trol card is as follows:

CARD
COLUMNS CONTENTS DESCRIPTION
1-5 IBUDD Control card identification.
6 Not used.
7 Zero or blank.
8-13 S.Snnn Disk or drum to be dumped.
14 / Field separator.
15-20 S.Smmm Primary output device for dumped
tracks.
21 / Field separator.
either
22-28 S.Sxxx/ Alternate output device. If no alter-
29-71 (see nate unit is specified, the primary
below) unit is assigned.
or
22-T1- tttte Track address(es): each address is
ttte followed by a connector that in-
tte dicates the relationship of the
track address preceding the con-
tc nector to the address following it.
A maximum of 50 addresses is
allowed for each IBUDD control
card and all its extension cards.
t-tttt is a track address
(0-399 for drum; 0-9999 for disk)
c can be:
1. A comma to indicate indi-
vidual tracks,
2. A hyphen to indicate sequen-
tial tracks.
) 3. A blank to terminate the field.
72 Blank.
73-78 aaaaaa Identification for use by the Restore
‘Disk/Drum Program, where “a”
~is any BCD character except a
comma, blank, or slash.
79-80 Not used.

When the same output device is specified on suc-
cessive control cards, the program will not close the
device after every control card. Instead, it will wait
until there is a change in the control card field or until
a non-dump control card is encountered. When there
is a change in the output device and a non-dump con-
trol card is encountered, the current device will be

closed with an end-of-data procedure and will be re-

wound. The following is an example of the 18upD con-

trol card:

1 s 73

IBUDD S.Snnn/S.Smmm/2, 5, 23 SETONE

The 1BUDD control card is used to dump a specified
disk storage area. In this example, tracks 2, 5, and 23
of the 1301 Disk Storage (s.snnn) are to be dumped
onto a magnetic tape (s.smmm). SETONE is the iden-
tification.

Label Control Card for the Dump Disk/Drum Pro-
gram: A LABEL control card should precede each
control card or group of control cards when header and
trailer labels are to be placed on the output device.
The presence of a LABEL control card will result in
closing the previous output device, if any. If more than
one LABEL control card precedes a control card, only

. the last one is used. The format of the LABEL control

card is as follqws:

- CARD]
COLUMNS CONTENTS DESCRIPTION
1-5 IBUDD Program identification.
6 Not used.
7 . Blank.
8-12 LABEL Label card identification.
13-15 Not used.
16 a Is 1 if multi-reel output;
Is O if single-reel output.
17 s Field separator.
18-22 fiftf _File serial number.
23 , Field separator.

24-27 rrrr Reel sequence number. (rrrr should
be greater than 1 to insure use of
the file serial number.)

28 , Field separator.

29-32 dddd Retention period.

33 , Field separator.
34-43 iiiiiiiiii File identification.
44-80 L Not used.

The Restore Disk/Drum Program

The Restore Disk/Drum Program restores to 1301 Disk
Storage, 1302 Disk Storage, or 7320 Drum Storage all
or selected portions of the data previously recorded by
the Dump Disk/Drum Program. It cannot be used to
load any other information. New data can be placed
onto disk or drum storage by using the Load Disk/
Drum Program.

The information previously dumped is restored using
the Write-Full-Track-with-Address operation. There-
fore, only the home address is required for verifica-
tion. If labels were specified when the Dump Disk/
Drum Program was used, the input file is labeled. A
LABEL control card must be used to affect proper
processing of the labels during the restore operation.
If the input to the program is a multi-reel file (un-
labeled), an alternate unit must be specified. The

Monitored Utility Programs 95

home-address identifiers and the format track must be
the same as when the disk or drum storage was
dumped. »

USING THE RESTORE DISK/DRUM PROGRAM

The control card. should contain the following in-
formation:

L Prograni identification (1BURD)
2. Symbolic unit designation (s.snnn) of the disk

or drum storage unit on which the data is to be :

restored

3. Symbolic unit designation (s smmm) of the unit
containing the data to be restored

4, Identification of data blocks to be restored

CONTROL CARD FORMATS

IBURD Control Card The format of the IBURD CON-
trol card is as follows:

CARD
COLUMNS CONTENTS DESCRIPTION
1-5 IBURD Control card identification. ‘
6 w Write checking of the data will be
performed if W is present.
7 Zero or blank,
8-13 S.Snnn Disk or drum storage to be restored.
14 / Field separator.
15-20 S.Smmm = Primary input unit.
21 / - Field separator.
either - Identification used by the Dump
22-70 aaaaaa Disk/Drum control card(s). If
more than one identification is
used; they are separated by
commas.
71 Blank. -
72-80 ~ Not used
. or Alternate input device. If no alter-
22-27 S.Sttt nate unit is specified, the pnmary
unit is assumed.
28 / Field separator.
29-71 (See card columns 22-70.)
72-80 Not used.

The following is an example of the 1BURD control
card:
IBURDW S.Snnn/S.Smmm/aaaaaa, bbbbbb, ccecce

This BURD control card is used to restore aaaaaa,
bbbbbb, and cccece to disk storage (s.snnn) from
s.smmm.

Label Control Card for the Restore Disk/Drum
Program: Each:control card that is to.deal with labeled
input must be preceded by a LABEL control card. If
more than one LABEL control card precedes a control
card, only the last one is used. The format of the
LABEL control card is as follows: :

96

. CARD
COLUMNS CONTENTS DESCRIPTION
1-5 IBURD Program identification.
6 R Not used.
7 ‘Blank.
8-12 LABEL Label card 1dent1.ﬁcat10n
13-15 Not used.
16 a Is O if the file is single-reel;
Is 1 if the file is multi-reel.
17 , Field separator.
18-22 bbbbb File serial number.
23 , . -Field separator.
24-27 cece Reel sequence number.
28 , . Field separator.
29-33 ddddd File creation date.
34 ,) Field separator.
35-44 eeeeceeeee File identification.
45-80 Not used.

The Clear Disk/Drum Program

The Clear Disk/Drum Program clears record areas of
designated data tracks of 1301 Disk Storage, 1302 Disk
Storage, or 7320 Drum Storage. The record areas are
filled with any specified Bcp character. Home-address
identifiers and record addresses are not disturbed. Two
methods of clearing are provided:

1. One or more consecutive record areas on specified
data tracks are filled with a designated Bcp char-
acter. The number of record areas per track to be
cleared and the number of the record at which
the clearing is to begin must be specified. If
disk/drum is attached in full-track mode, this
method cannot be used.

2. All record areas on one or more specified tracks
are filled with a designated Bcp character. With
this method of clearing, only the tracks to be
cleared need be‘speciﬁed.

USING THE CLEAR DISK PROGRAM

The following information must be included on the
control card:

1. Program identification (1BUCD)

2. System designation for unit being cleared

3. The track, nonsequential tracks, or series of tracks

to be cleared

4. The Bcp character with which the cleared areas

. areto be filled ,

5. If applicable, starting record number and number

“of record areas to be cleared

CONTROL CARD FORMATS

IBUCD Control Card: The format of the 1Bucp con-
trol card is as follows:

Method 1:
CARD
COLUMNS = CONTENTS DESCRIPTION
1-5 IBUCD Control card identification.
6 W Write checking of data will be per-

formed if W is present.

CARD _CARD
COLUMNS CONTENTS . DESCRIPTION COLUMNS ~ CONTENTS DESCRIPTION
7 Zero or blank, drum; 0-9999 for- disk).
8-13 S.Snnn Disk or drum to be cleared. . 4 ¢ can be:
14 / Field separator. I. A comma to indicate indi-
15 c Filler characte; (BCD) vidual- tracks;
. ’ 2. A hyphen to indicate sequen-
16 / Field separator. tial tracks;
17 1 Method of clearing (Method 1) 3. A blank to terminate the field.
18 / Field separator. 72 Blank.
19-20 01-xx Number of track records per track 73-80 Not used.
: to be cleared. Method 2:
21 / Field separator. : - .
. o, 1-16 (Same as those for Method 1.)
22-23 0l-xx - Trsatcalitrecord at which clearing is to 17 9 Method of clearing (Method 2)
24 / Field separator. 18 / Field separator.
25-71 tttte Track address(es): each -address is 19-80 - (See columns 25-80 in Method 1.)
tttc followed by a connector that in- The following is an example of the mBucp control
tte dicates the relationship of the card (Method 1): .
track address preceding the con- 1 8
te nector to the address following ‘

it. A maximum of 50 addresses
is allowed for each IBUCD con:
trol card and all of its extension
cards.

t-tttt is a track address (0-399 for

IBUCD S. Snnn/B/l/03/04/26 45, 230, 231
This ucp control card is used to clear three records
starting at record 4 on tracks 26, 45, 230, and 231 of the
1301 Disk Storage (s.snnn)

Monitored Utility Programs 97

Appendix A. Control Card Format Index

Refer to the given page reference for a complete description of each card.

System Monitor — Processor Control Cards

_ PAGE
CARD FORMAT . : REFERENCE
1 3 :
$* any text : - . : 0G-11
1 16
$ATTACH S. Sxxx, device, channel, number, type [{ nl, from, tol}] [{ 157 }] 0G-12
1 8
$CBEND deckname PG-45
1 8 16
Yy
: ‘ Uxx[=Iyy]
$CHAIN main name U[=Iyy] PG-57
T[=Iyy]
D[=Iyy]
1 16
/ -
SCHANNEL channel(£1.fs, . . . f.)channel (fifs, ... £2). .. (I))gi;
1 16
S.SPP1
REMOVE - PG-16
$CLOSE S.8Uxx [, MARK] [’REWIND] 0015
IyyR
1 16
$DATE mm/dd/yy} ‘ 0G-10
mmddyy
1
$DEND DB-9

98

Form C28-6318-5
Page Revised 7/1/65
By TNL N28-0534-0

CARD FORMAT : : PAGE
REFERENCE
1 16
' S. Sxxx N Co : :
$DETACH device,channel,number,[, , dir]{ = o 0G-11
1 S
$ENDCH)) ‘ : PG-58
1 16
$ENDEDIT any text I $G-23
1 ' 16 ’
_deckname .
SENTRY [{ externalname }:‘ PG-58
1 16
$EXECUTE program name PG-15
1 ' 16

' MOUN T MOUNT1
_$FILE deck name ‘file name’, [primary unit], [secondary unit] |, { READY READYi PG-49
DEFER DEFEPu

1] 16

$ETC [CKFILE],BLOCK=xxxx|:> Sg{%ﬁz :I[I{ﬁ’?ﬂ‘s :H: }Ef)%{,{
1 . 16
NOCKPT PRINT
CKSM CKAFLB(||,)PUNCH
SETC [MIXED][NOSEQ :l[NOCKSM :I ”) CKCKFL HOLD
CKLBFL SCRTCH

1 16

ADDLBL = exname
$ETC [

NSLBL=exname }][’LRL = XXXX:I [’RCT = XXXX] [,EOR =exname :I

1 16

SETC [ERR = ex'na;me:l : |z{ ’%% }:l [, EOF =}exname:|

TYPE 3

Appendixes 99

Form C28-6318-5
Page Revised 7/1/65 -
By TNL N28-0534-0

CARD FORMAT . PAGE

REFERENCE
1 8
LT DECK REF [’
$IBCBC deck name FULIS [}] [{ et }] , SPACE PG-45
[{NOLIST NODECK f _ NOREF | :I
1 8 16
‘ . DUMP=0U N
$IBDBC [name] location [, FATAL :I E{m}] [, MARKER=file name] . DB-6
1 o 16
FORTRAN
OBOU
$IBDBL [TRAP MAX =xxxxx][LINE MAX=xxxxx] » {JOBOUL [DWU=unit] i
: ' 10BS=file name
TOOP=unit
' DB-8
1 16
e (S.SLB2)
$IBEDT >-SUxd] =lyy] l: (SSUxx[=Iyy]) :I $G-21
(R (Iyy[R]) »
NONE ,
1 16 , 7)
, S.SUxx[=Iyy] (S.SUxx[=1Iyy])
SETC Iyy [(Iyy)
yyR=lyy (IyyR=1lyy)
1 16
~ SOURCE /
$ETC [LABEL(nn, mm, q, p)] E{NOSOURCE }:I [, MXBLK (nnnn)] [, NOMAP]
1 16
$ETC [EDTFIL(mn)][CORE (nnnnn)][MIN |
1 8
LIST
DECK REF
IBFTC deck FULIST : }J] SDD PG-44
1 8 16 _

(LocIiC
program [GO MAP FILES]
$BJOB © me [{ NOGO }] I:{ R7 i }:I NOMAP }] [{ NOFILES }:I PG-39

100

GARD FORMAT) PAGE
. REFERENCE

1 : © 16

: IOOP1
$ETC IOOP2 "/ SOURCE ~{ DECK COBOL
%8}3’3 NOSOURCE NODECK 1NOCOBOL
1 16
CoPY
COPY=lyy
$ETC COPY =unmit[=1Iyy]
NOCOPY
1 8 16
$IBLDR deck name [date of assembly :| o ' PG-46
7 1 8 16
LIST DECK REF ,
LIST ,J DECK ;3 RuY PG-45
$IBMAP deck name [{ NOLIST }:”:{ NODECK }:I [{NOREF}] |

RELMOD
,SYMSIZ=xxxxx][] SDD
[ABSMOD l:{ NODD

$IBREL | | , | | ‘ PG-42
1 16

- $IBSRT [{ NNS%%}; }] o SM-18
1

' S » PG-15
$IBSYS e 0G.8
1 16
$ID e any text o : : V 0G-9
1 16 7 4
| IN SRCH REWIND

$IEDIT Iy;]x[’i‘] [{ NOSRCH }] [{ NOREWIND }] PG-42
1 -
$JEDIT | $G-32

Appendixes 101

CARD FORMAT

PAGE
REFERENCE
1 16 R
$JOB any text PG-15
OG-8
1 16
file -~ reel dat e ‘
$LABEL ‘filename’, serial ‘ sequence da s » identification PG-52
number number y
1 78 16
$LINK x linkname deck name PG-57

$LIST 0G-9
1 16

deckname (exname) = exname

exname=exname
$NAME . . deckname (‘file name) = ‘file name’ PG-53

file name’=file name’
1 16

ou
$OEDIT Uxx[Iyy] PG-44
k=1yy
1 16
‘ exname .
$OMIT [{deckname(exname)}] PG-34
1 16
S.SPP1 -
, unit=1Iyy PG-15
$OPEN SSUxx* { [»REWIND] 0G-14
Iyy ‘

1 16
$PAUSE any text 0G-10

102

CARD FORMAT

1

16 ;

$POOL, BLOCK=xxxx ,BUFCT = xxx [,‘ﬁlename’]

1 16

SRELOAD : 2 Uxx %[NAME = program name] [{ N(S_)l;gl(-:IH }]
d[c]LIN S

1

$RESTART restart code

1

$RESTORE

1

$STOP

1 16
S.Sxxx S.Sxxx

$SWITCH {Iyy [R]} f {Iyy [R] }

1 16

$TIME XXX

1

$UNITS

1

$UNLIST

1 16

$USE deckname (exname), ...

Sori Control Cards

1

$IBSRT

16

o]

PAGE
REFERENCE

PG-51

PG-59

0G-10

0G-14

0G-10

PG-16
0G-13

0G-11

0G-15

0G-9

PG-53

SM-18

Appendixes 103

PAGE

CARD FORMAT =
REFERENCE

‘1 2

END ST ‘ SM-25

1 2

’ REELS/nn MODE/B LABEL/S ‘
FILE, INPUT/nnnnn, BLOCKSIZE /nnnn [{ RERT X }] I: {MODE /B }] [{ LABEL/S }:l SM-19

1 2

[SERIAL/nnnnn | [, RLSEQ/nﬁnn] [, IDENT/xxHfile name | [, CKSUMS |

*

1 2

[BLKSEQ] [, ckPT] [{%ﬁ}’%ﬁg}]

*

1 2

BLOCKSIZE/nnnn | [{ MODE/B\ | [fLABEL/N\] [SERIAL
FILE, OU_TPUT’{ BLOCKSIZE/U }[{MODE/D }] [{LABEL/S }] B /nnns | SM-20

1 2

* [RLSEQ/mnnn] [, IDENT/xxHfile name | [, RETAIN/nnnn | [, CKSUMS] [, BLKSEQ | [{%}g‘ﬁ%ﬁg H

1 2

LABEL,IDENTIFICATION/xxxH where xx=120 ‘ - SM-24

1 2

MERGE, FILES/(nl, n2, .. [ORDER/m] [, FIELD/(f1 l:{ % }])] [{gggggﬁgﬁ% }:l

SM-21
1.2
MODIFICATION, PROGRAM/PxMxx, UNIT/S.Sxxx ; SM-27
12

'OVERFLOW,BLOCKS/n [REELS/nn] [,RLSEQ/nnnn] R | ‘SM-24

104

CARD FORMAT PAGE

’ REFERENCE
12 : : 7 : d

OPTION [,NOCKPT] [,EQUALS] [,CKSUMS] [[NODUMP] [,NOTAPE]‘[,NOEXTRACT] SM-24

1 ‘2
RECORD [{ IERL }] ,LENGTH/([Lmin, | Lmax, | , Lmax,][, Lmax,]) SM-20
1 2 — 7 _
. B U -
+ FIELD/(n [{ g}] [{?}])
12 . | | 7
o : , A [fSEQUENCE/C\]
1 : 2
: chz.mnel channel | |)
SYSTEM, INPUT/ l(lﬁiltit 3 [MERGE/ _{(channel, channel) }] o | SM-22
1 2

chann'élk[=Iyy]

\ _) (channel =1yy,=1Iyy) : ']
d [OUTPUT/ {ynit] = Iyy] 't |[CORE/(nl, n2, n3) |, DISK/mnnn |

. (unit[=Iyy], unit{ =Iyy])

Edit Control Cards

1 8 16
- (S.SLB1 |
i il g SSLB2) |
$IBEDT Pkt [3ES.SUXX[)=IYY])s:| o $G-21
| (NONE (Iyy [R]) -
1 16 .
' | (ssuxx[=1 S.SUK[=1
SETC 3Iyy XX yy]g Dglyy)XX[yy]) %_‘J
i IyyR=lyy (IyyR=lyy) -
1 16
$ETC [LABEL (nn,mm,q.p)] E{Ng%g%%ﬁ }][MXBLK (nnmn)][, NOMAP]

Appendixes - 105

Form C28-6318-5
Page Revised 7/1/65
By TNL N28-0534-0

MODIFY

CARD FORMAT
1 16 . i -) o
$ETC - [EDTFIL (nn)] [,CORE (nnmnn) [, MIN |
1
$ENDEDIT
1
$JEDIT
1 8 16
phase
AFTER bon
1 s 16
sysnam CALLS phasel, phase2, . ..
1 8 16
ETC continuation of variable field of preceding card -
1 8 16
.- 'S.Sxxx S.Sxxx . ; '
DUP {Iyy [R] }’ {Iyy [R] } ,n, [inlabel] [, cdate] [, oulabel] [, rdays]
1 8 16
phase [{ S.SUxx
INSERT EOR ’ Iyy [R]
1 8 16
LIBEND
1 8 16
LIBE [phase] [, format]
1 8 16 -
hase [{S‘SUXX }:I
P “Alyy [R]f

108

PAGE
REFERENCE

-5G-23

SG-32

SG-26 -

SG-23

SG-28

SG-26

SG-24

SG-28

SG-28

SG-25

PAGE

CARD FORMAT REFERENCE
1 8_ 16
load " oot patchl ﬁaéchz patchn | 5G-29
address R 2 roRE :
1) 16
REMARK any text SG-27
1 8 16
[sysnam] REMOVE {%lgﬁe} SG-25
1 7 8 16
S.SUxx _
REPLACE phase E{Iyy [R]}] - SG-24
1 8 16
REWIND 43-5XXX } | 5G-27
Iyy [R]
Update Program Control Cards
- 9(6) 18(4) 23(5) 29(5) 35, 41, 52
. TYPEL label : '
$ASSIGN [Ef]‘i’{’ary] [oPEN] TYPE2 l: Iﬁ‘éﬁ’g infor- - PGT7
TYPE3 mation
58(5) 65(6)
[{REEL }] [secondary]
REELS unit
1 9(8) - 18(8)
from serial to serial
$DELETE [num ber :I I:number PG-79
1 5©)
$ENDRUN [{csl%%l)c}game }] PG-76
1 16(5)
$EXECUTE UPDATE PG-73

Appendixes 107

CARD FORMAT . . PAGE

REFERENCE
1 9(6) 187 . 21 o 36(6)
| INSERT o _— '
$LOCATE deckname [REMOVE :| [EXTRACT | [to deckname | . PG-T8
' {REPLACE
1 13(5) —
$MESSAGE " [P‘AUS’E] or [message to be printed] ' ‘ PG-79
1 ‘ 9(8) 18(8) » 27(8)
initial serial 7] [from serial toserial | = K
$NUMBER [number] [number I:number R PG-18
1 _9m)] 18(7) 27(7) 36(7)
LIST
PRINT
DECK |
INDEX any four of
$OBTAIN SUMMARY the options ; PG-75
16K : may be used ~ ' {
32K]
LABEL
NOLABEL
1 9, 18(6) 27,360
unit assignments for unit assignments for
- $OUTPUT new master auxiliary new master
primary secondary ,[primary] , [secondary] , o PG-79
1
$PLACE | | | PG-79
1
$REWIND - - PGS

108

CARD FORMAT
1) 6(8) 14(2) - 17(5)) 23(5) 29, 35, ;
[JUPDATE
EXTRACT ,
INPUT , label ; .
$RUN OUTPUT bb [yyddd] [LABEL]| information information
NOCOPY T new master
GENERATE | .
| \SYSREL .

Utility Control Cards

CARD FORMAT

1 16
$EXECUTE . IBUTL

1 8

'IBUCD[W] Specifications
1 8

IBUDD Specifications..........
1 8 16

IBUDD LABEL Specifications

1 8

IBUFB[W] Specifications........

1 g

IBUFF[W] Specifications.......
1 8

e

~ IBUFH[W] Specifications........

cee

PAGE

. REFERENCE

PG4

PG-88

PG-96

PG-95

PG-95-

PG-92

PG-92

PG-92

Appendixes 109

PAGE

CAI:D FORMAT : e , ' REFERENCE
8 - , e i . V B

IBUGB[W] Specifications . i * | o PG-92

1 8 7
IBUGF[W] speciﬁcatims....‘.;,... o - | PG-91
1 8 ~
IBUGH[W] Specifications........ . ‘ o PG-92
1 8
IBUHB[W] Specifications.......... | ‘ PG-92
1 8
IBUHF[W] Specifications | PG-92
1 8 :
IBUHH[W] Specifications.......... R : PG-92
1 8
IBULD[W] Specifications.......... , : PG-93
1 8 16
IBULD LABEL Specifications.......... PG-93
1 8
IBULS[W] Specifications ‘ e ' PG-94
1 8_ 16 7
IBULS LABEL Specifications........ R ‘ B . PG-94
1 8
IBURD Specifications PG-96
1 ks ” 16 |
IBURD[W] LABEL Specifications ; PG-96
1 8

IBUUD Specifications PG-88

110

~Appendix B. Control’ Card Check List

Appendixes

Source language . Relocatable
programs included: "~ Binary .
COBOL . FORTRAN . IBMAP. . Programs Comments
$JoB X oD & X "' One required at the beginning of each job
$ID [o 38 o O 0 “Transfers control to mstullcmon accounting routines
B A 0. o o o . Comments card
$PAUSE o : o o o . Permits operator action .
$1BJOB X X X X . Initiates an I1BJOB applncahon, one requlred for.each processor application
$I1BSYS [o] o (o] o] Next job segment will not be processed by IBJOB: control is passed to I1BSYS
$IBFTC : . X Precedes each FORTRAN deck -
$1BCBC X <" .Precedes each COBOL deck
$CBEND X) - Follows each COBOL deck
$IBMAP X Precedes each MAP deck
_ $IBLDR X Precedes each relocatable binary program to be loaded o
$ENTRY X X X X “Specifies location of initial transfer; initiates object program loading
$RELOAD o o (o] (o] _ Reloads absolute program produced by IBLDR
$FILE o] o o o Provides file specifications; supersedes any deck specifications
$LABEL (o] (o] -0 (e B Provides label information for files
$POOL o o o o Designates files to share common buffer ureus, i.e. pcols ‘
$USE (o] o 0 ‘o Specifies data, procedure or file secti o be used ‘
$OMIT o o o o Deletes file, data, or procedure sections
$NAME I I o o (o] “Used to change control section or file
$ETC o - .0 o o . Continues variable fields of the above Preprocessor cards
$CHAIN o . (o] o o . .One required to initiate a CHAIN application
$LINK o o o) (o] One required at the beginning of a link deck
$ENDCH o o) 0 o "Onie requred to terminate a CHAIN application
Notation: X n y: O optional; blank does not apply.
$* 0 For comments
$IBSYS X One required to transfer conirol to the Supervisor
$ID X " One required to. transfer control to installation accounilng rouhne
$JOB X One required at the begmmng of each job ‘
$IBSRT . X ~ One requu'ed at the beginning of euch sort apphcuhon
FILE (Input) X One required for-edch’ input file
FILE (Output) X ' One required for the output file :
RECORD X ~ One required to describe the record format: -
SORT X One required for each file to be sorted, if any.
MERGE X - One required for the files to be merged ifany
SYSTEM X : One required to specify the 7040/7044 System enwronment
LABEL o Required for nonstandard labels only - :
MODIFICATION [e] For introducing ' modification programs oniy
OVERFLOW - -0 For restarting a sort application after overflow -
OPTION ' o Provides for additional sort application options .
END X One required to indicqfe eend of sort épntrol cards
Notation: X y; O optional

111

Appendix C. 7040/7044 — 1401 Auxiliary Programs

Input/Output Utility Program

The 7040/7044 — 1401 Input/Output Utility program

provides a facility for producing, off-line; a stacked
system-input file on magnetic tape, and for processing,

oft-line, .a system-output tape or system-peripheral-
punch tape to produce a printed listing and/or a deck
of punched cards. These two program functions; called
the Input Stacking function and the Output Print/ =
Punch function, respectively, are selected and control- -

led by a control card and sense switch settings. The
two functions are described separately below.

Machine Requirements

The 7040/7044 — 1401 Input/Output Utility ﬁfogram~

requires an 18M 1401 Data Processing System with the
following: S o

At least 4000 positions of core storage

The Column Binary Feature (#1990)

Advanced Programming Features

The High-Low-Equal Compare Feature

The 1401 system must have the capability of attach-

ing the following required input/output devices:

A minimum of one M 729 or 7330 Magnetic Tape

Unit : : :
One 18BM 1402 Card Read Punch
One M 1403 Printer, Model 2

program options.

Input Stacking Function
The Input Stacking function is designed to eliminate
the extensive and time-consuming use of the 7040/

7044 on-line card reader attendant to loading programs
and input data directly from card decks. The program
performs an off-line card-to-tape operation with block-
ing of the input data as required by its varied format.
Standard input for this function is a deck of stacked
jobs; the deck can consist of both Bcp cards and binary’

cards. A tape is produced that contains records in the

format acceptable to the 7040/7044 Operating System

(16/32K) for the system input file. If desired, a listing
of the Bcp records on this tape is also produced,.
Basically, this program function reads. card records,

moves them to one of two separate work areas, depend-

ing on their mode, and fills the tape output area; and
creates the control word which describes the Type-3
record so formed. See the publication IBM 7040/7044
Operating System (16/32K): Input/Output Control
System, Form C28-6309, for a description of record
types.

112

_ Input File

The input file consists of Bcp and/or binary card decks,
or of unblocked Bcp card images on tape. If input to -
the stacking function is a stack of jobs for the Operat-

~.ing System, these card decks (or the equivalent on
‘tape) must conform to the monitor requirements; that
is, each deck must contain the appropriate $ control

card. A sRUN control card must always accompany the
input file; if the input is on cards, the deck is preceded
by the sruN card. (See the publication IBM 7040/7044

- Operating System (16/32K): Operator's Guide, Form

C28-6338, for a detailed description of this card.)

Figure 45 shows a sample input file setup.

’ Output File

BLOCKING

The output file consists Vof blocked tape records in
Type 3 format. The blocking for both scp and binary
records is determined by the blocking parameter in

- the sruN control card. The maximum blocking factor

- possible is 10 Bcp records per block, unless the program
- isreassembled for a 1401 with more than 4,000 positions

~ of core storage. (See the publication IBM 7040/7044

Two magnetic tape units are required to utilize all = Operating System (16/32K): Systems Programmer’s

Guide, Form C28-6339, for detailed information.) Bi-
nary card records will block to one-half of the scp fac-
tor specified. There are, however, two major exceptions.

When it is determined that a card record is in the
mode opposite to that of the previous record, the pre-
vious block of records is written on tape. This creates

_short length records, but it ensures that all records in a
- block are in the same mode.

" The other exception concerns system control cards
(cards with a $ in column 1). These card records

_. will be unblocked, i.e., they will have a blocking factor

of 1. o
" BCD Records: Bcp records consist of 90 characters

(15 words) per logical record as follows:

- Positions'1 — 6 C

- Control Word. This contains the number of char-
acters in the logical record (90), including the
control word, and the control code character for
the next block; for example, 000904 or 000905.
Both the 4 and 5 signify a Bop card record. The
5 also indicates a change in the mode of the next

~ block.

Positions 7 —86 .. ‘

Card Record. Tl’llS is the 8()-column BCD card
- image,
Positions.87 — 90
bbbb (ignored by the Operatmg System).r;«.f

- [sswitcn W) S
$ATTACH System Monitor control cards
d as appropriate)
$DATE 1 '
l Thls control card must be the first card

Figure 45. Sample Input Fﬂe Set-Up for Stacldhg)

‘Binary Records: Blnary records consist of 29 words

per logical record:
' Control Word ‘
- One binary word containing the number of words
in the logical record, not including the control
word, the control' code character for the next
block, and other control information; for example,
500034200006 or 500034200007. The 6 and 7 sig-
- nify a binary record. The 7 indicates a change in
- the mode of the next block. The prefix and tag
~ (5 and 2) are ignored. They are 1ncluded for com-
- patibility with other systems. , ,
Card Record
Words 2 —29. This is the column binary equlva-
lent of an 80-character ‘binary card with blanks in
the last eight character positions. - :

Labels: Both header and trailer labels conform to the
standard 120-character tape label format. (See the pub-
lication IBM Standard Tape Labels, Form C28-8142.)
Whenever label processing is specified, output trailer
labels contain the record count and input] header labels
are printed (if input is on tape) S

Options . .. SHR ST
Five program qptrons are avfallable

- L. If sense switch c is set on; the program accepts
an: input file consisting of unblocked Bcp card images
on tape, instead of the usual card input file. In this

case, however, the sRuN control card for the program

must still be read in from the card reader. A tape
mark on the input tape file serves to indicate the end
of job. Labeled input. tape files, however may be
multireel. ‘

2. If ¢ sense switch B is set ON, each time a sjoB con-
trol card is read, the - contents of the card are printed
on a new page and the program then halts.

- 3. If sense. switch E is-set oN, a printed listing is
produced, composed of all the $ control cards that are
written on the output file. Each time a sjos control card
is read, the contents of the. card are printed on a new

' page.

4. If sense switch F is set oN, a printed listing is
produced composed of all the Bcp records that are
written on the output file. Each time a sjos control
card is read, the contents of the card are prlnted on a
new page.

5. Standard labehng lnformatlon may be provided.
for the output file, in conjunction with the use of the
LABEL optlon on the SRUN card

Output Prmt/ Punch Funchon

The Output Print/Punch function is an off line ald for
processing certain 7040/7044 Operating System (16/
32K) output tapes. This function is designed expressly
for tapes which are produced on the s.sou1 or s.spp1
symbolic system units; these tapes may contain Bop
print records, Bcp punch records, and/or binary punch
records. However, any tape file whose format conforms
to one of those described below may be processed by
the program. An optional feature is the facility for
selectively printing the contents of the MAP Symbolic
tapes.

The punching or printing operations are performed
with control words (part of the input data) determin-
ing the type of output desired and the mode of the next
block of records. The tape may contain blocks in both
modes; however all records w1th1n a block must be of
the same mode.

The user has the option of processing elther labeled
or unlabeled’ tapes Labeled tape ﬁles may be multl-
reel. : ,

Input File

Any tape file used as input to the program must con-
form to the following format specifications, except for
the block size limit if the program is reassembled for

Appendixes 113

a 1401 with more than 4,000 positions of core storage.
(See the publication IBM 7040/7044 Operating System
(16/32K): Systems Programmer’s Guide, Form C28-
6339, for detailed information.) The data formats de-
scribed are those of Type 3 output as produced through
the 7040/7044 -Input/Output Control System

Blockmg A block (tape record) of BCD mput may
consist of up to 900 characters; this allows : a maximum
of six logical print records (full line) or ten BCD
punch records. Binary input may be a maximum of
five cards per block (870 characters) All records in a
block must be in the same mode

BCD Records: scp records consist of a maximum of
138 characters (23 words) per logical record for a full
line of printing, or 90 characters (15 words) in the case
of a card image, made up as follows: : :

~ Positions 1-6

Control Word. This word contalns the number of
characters in the logical record (1nc1udmg the

control word) in positions 3-5, and the control

code character in position 6. The control code
character indicates the operation to be performed
upon the record and whether there is a change
in mode for the next block. For. example, in the
control words 001202 or 001203, the 120 indicates
the number of characters in the record, and both
the 2 and 3 indicate a Bcp print record. The 3 also
shows a change in mode for the next block
‘Positions 7-86 or 7-138

- This is a record of up to 80 positions for a Bcp
card, or up to 132 posrtrons fora BeD pnnt hne

* Positions 87-90

- For BCD card records, these posmons are 1ncluded
to fill out the record to an even multiple Of‘SIX

Binary Records: Binary records for punching column-
binary cards have a max1mum of 29 words per logical
record as follows:

Control Word
This is one binary word containing the number of
words in the logical record, not including the con-
trol word, the control code character for the next
block, and other control information; for example,
50 00 34 20 00 06 or 50 00 34 20 00 07. Both the 6
- and 7 signify a binary punch record. The 7 also
indicates a change in the mode of the next block.
The prefix and tag (5 and 2) are ignored. They
are included only for compatibility with other
systems. . :

Card Record

© Words 2-29. This is the column-bmary equivalent
~ of an 80-character card with blanks in the last

114

eight character positions to ﬁll out the record to an
-~ even multiple of six.
Labels: All labels should conform to the standard
120-character label format. Header labels Wlll be
printed out, separated from the main listing.

Output Files

BCD Print Line: A record of up to 131 positions is
printed from character positions 8 through 138 of the
input. The first character of data (position 7) in the
logical record is the carnage—control character, and
is not printed.

Binary Card Output: The contents of binary words

2-29 (not including the eight blank characters) are
converted to column blnary and punched in an 80-
column card.

BCD Card Output: An 80-column card is punched
from the seventh through eighty-sixth character posi-
tions of the input (positions 87-90 ignored).

Options

Available program options include the printing of Bcp
punch records (Type 3) contained on a tape, and the
processing of labeled files. These options are selected
by the PRINT and LABEL parameters, respectively, on
the srRuN control card.

The PRINT option requires the use of sense switches
B and c to control the printing operation. The possible
combinations of these switch settings allow (1) the
listing of the entire tape, (2) the listing of all stBMAP
control cards only, or (3) the printing of selected Map
program decks. The Bcp records in a mixed mode file
are printed if sense switch E is set oN. All binary punch
records that are read are ignored; that is, they are not
punched.

- The LABEL parameter on the sRuN card spe01ﬁes that
the file is labeled, and that header labels are to be

- printed for operator verification. -

Under the standard outpuT type of run, several
sense-switch control options are ‘available:

- 1. If sense switch B is set oN, each sjoB control card
read is prmted on a new page and the program halts.

2. If sense switch ¢ is set oN, printing is suspended.
Only the punching of Bop and binary card ‘records
occurs. ' '

- 3. If sense switch is set oN, punchlng is suspended.
Only a printed listing is produced.

4. If sense switch B is set onN in conjunction with
sense switches ¢ and/or E, all or part of a job can be
skipped: (A job is defined as the group of records be-
tween two successive sjos control cards.) Punching
and/or printing of the current job is terminated, and
when the next sjoB card is encountered, it is printed
and the program halts for operator action. (See

the publication IBM 7040/7044 Operating System
(16/32K): Operators Gmde Form C28 6338, for de-
tailed procedures.) :

Map Symbohc Update Program

The 7040/7044 — 1401 map Symbolic Update program
provides the programmer with an off-line facility for
maintaining a master tape file .of MaP symbolic pro-
grams for the 7040/7044 Operating System (16/32K).
The program eliminates the necessity of keeping a
card file of mMaP program decks, as the programmer
can modify or replace symbolic decks on an existing
master tape, or add decks to and delete decks from
this tape. The program also allows the user to prepare
a 7040/7044 system input tape (s.siN1) by selecting
symbolic decks from the master file and placing them
on an extract file tape, along with any necessary system
control cards. The initial symbolic master tape may
be generated most conveniently by use of the 1401
Input/Output Utility program (described elsewhere in
this publication), especially if a large number of cards
are involved. However, the update program may also
be used for this function.

The operation of the program is controlled by nine

$ control cards. Two of these, srRun and sENDRUN, must

be used and must be the first and last cards, respec-
tively, in the change file card deck. The other seven
cards, whose use varies according to the requirements
of a given run, are the sassicN, soutpur, and SREWIND
cards which select and control the input and output
tape devices, and the SPLACE, SLOCATE, $DELETE, and
sNUMBER cards which control the processing of decks
portions of decks, and individual cards. :

The possible inputs to the program are a master in-
_put file (tape), an alternate master input file (tape),
and a change file (cards). Of these three, at least the
change file must be present. The possible outputs of
the program are an updated master file (tape), an
extract file (tape), and an operator’s log (listing). Of
these three, at least the operator’s log and one of the_
others will be present. :

Basically, the user can direct the program, by con-
trol cards and correction cards, or by control cards
alone, to update the master file tape, or to produce a
system-input tape (extract file). Updating the master
file may involve insertion, replacement, or deletion of
whole program decks, or it may involve the modifica-
tion of one or more program decks by insertion, re-
placement, or deletion of individual cards or groups
of cards. This updating of the master file is actually
done, of course, by producing a new master file as
output, from a combination of the old master file and
the change file, though one may logically speak of
performing the above-mentioned operations ‘upon the
same master file.

-~ Modifications within individual program decks are
performed on the basis of symbolic-deck serial number-
ing, required of both the deck to be modified and the
correction cards. These serial numbers must be punched
in the card identification columns (73-80) of the orig-
inal MAP program-deck cards and the correction cards.
The serial numbers consist of a three-column (73-75)
alphabetic name or “ident,” and a five-column (76-80)
sequence number. The last digit of the sequence num-
ber (column 80) should always be zero on the original
program deck cards, i.e., should be non-zero only on
insert cards of the correction deck, allowing up to nine
insertions between original program cards. (Decks
or portions of decks can be renumbered by the pro-
gram; see the sNvumser card description under “Con-

trol Cards.”)-

The required serial numbering restricts the original
decks to 10,000 cards, but a deck can be divided into
subdecks, each up to 10,000 cards in length, by varying
the ident. This scheme may be desirable for reasons
other than the size limitation, e.g., for identification
of closed subroutines and program sections.-

Production of a s.siNt file involves placing program
decks and individual cards (7040/7044 system $ con-
trol cards) from the change file, and/or selected decks
from the master (or alternate master) input file onto
the extract file. Both production of the extract file, and

updating of the master file, then, may involve reorder-
‘ing of decks from input to output. The programmer

should be aware of certain principles underlying the
operation of the update program, in order to avoid
faulty runs which could result from the attempt to re-
order decks.

The program always executes control-card instruc-
tions from the point at which the input file is stationed -
at that time. In addition, the program only searches
forward (on the input tape) in seeking a match for
the deck name specified by a control card. Thus, the
programmer is required to know the order of decks
by deck name on the input tape(s) and the current
reference point on the tape(s). When an updating or
extract Tun. requires a reordering of deck sequence,
the input master file tape (or alternate, as appropriate)
has to be rewound, and in some cases, those programs
already processed by previous control cards must be
bypassed. See Figure 46 for an illustration of -control
card usage for an updating run involving reordering.

DEFINITION OF SYMBOLIC DECK

For the purpose of the update program, a symbolic
deck is defined as a MAP language program deck, the

Appendixes 115

first card of which is a stsMaP card with a deck name
~ in columns 8-13 and the appropriate system param-
eters beginning in column 16. The last card of the
deck contains the symbolic END statement. Symbolic
decks in the change file that are to be used for updating
must not be preceded or followed by any 7040/7044
control cards other than SIBMAP,

Machine Requiremems

The 7040/7044 — 1401 map Symbolic Update program
requires an IBM 1401 Data Processmg System w1th the
following:
At least 4000 positions of core storage
" The Column Binary Feature (#1990)
Advanced Programming Features
The High-Low-Equal Compare Feature

The 1401 system must have the capability of attach-
ing the following required input/output devices:
A minimum of two 1BM’ 729 or 7330 Magnetlc Tape
Units
One 18M 1402 Card Read Punch
One 18M 1403 Printer, Model 2

Up to four magnetic tape units are required to utilize
the ExTRACT and alternate-master-mput capabllltles of
the program. -

Input/Output Files

The files which the‘update/ program uses or creates are
summarized in the following table:

TAPE UNIT FILE
1 Old Master input
2 Updated Master output
3 Extract output (S. SINl)
* Change input
4 Alternate Master input
Rk

© ‘Operator’s Log ‘ e
*The change file is assigned to'the 1402 Card Read Punch.
**The operator’s log is produced on the 1403 Printer.

The master and extract tape files contain complete
symbolic decks in Type-3 format. (See the publication
IBM 7040/7044 Operating System (16/32K): Input/
Output Conirol System, Form C28-6309, for record
types.) The $ control cards -are unblocked while the
symbolic cards in each deck may be blocked. Any

7040 $ control cards other than s;BMaP which precede -

or follow complete map symbolic decks on the master
input file will be ignored. These cards, however, may
be inserted on the extract file from the change file.

The extract file can be used as the system input file
or as a master or alternate master input file for another
update and/or extract run.

The alternate master file may be used to merge
additional decks with the master file (by means of the
sASSIGN card, described later in this appendix).

116

The change file contains all control cards for the
run, symbolic. changes for individual: decks and/or

. complete MaP symbolic decks. Complete Map sym-

bolic decks on the change file, which are being in-
serted onto the master output or are replacing decks
on the master input file, must not be preceded or fol-
lowed by any 7040 $ control cards other than szBMAP.
- An-operator’s log, produced on the printer, identifies
each steMAP record encountered by the program as in-
put and produced as output. Out-of-sequence condi-
tions within a master input deck, and input-tape labels
(if any) are also printed.
Any tape file can be multi-reel. At end of reel, the
operator mounts a new reel and presses START to con-
tinue processing.

BLOCKING

The blocking factor of five records per block specified
in the following paragraphs is a maximum for the
distributed version of this program, which is assembled
for a 4K 1401. If the user has a 1401 which is larger
than 4K, the program may be reassembled to take
advantage of the extra core storage capacity through
an increased maximum block size. (See the publica-
tion IBM 7040/7044 Operating System (16/32K):

Systems Programmer’s Guide, Form C28-6339, for de-

tailed information.)

Input Tape Files: Input tape files may be unblocked or
blocked, up to five logical records per ‘block (see
“Logical Record” below). They must be in Type 3
_record format, i.e., a file produced by a simple card-
to-tape utility run is not acceptable.

Output Tape Files: The output tape files are blocked
according to the blocking factor specified in logical
records per block, on the srun control card, up to

“the maximum of five. Only the Map symbolic card
-records are blocked; the siBMaP control cards (and

~ any other $ cards written on the extract file) are
always unblocked. The output files are in Type 3
- ‘record format.

Logical Record: The Bcp card records consist of the

following 90 characters: :

Positions 1-6 - :

- Control word. This contains the number of char- -

~acters in the logical record (090), in position 3-5,
and the control character for the next blocks
(always 4), in.position 6. The word equals 000904.
Positions 7-86
Card record. This is the 80- column BCD card
image.
Positions 87- 90
bbbb (ignored by Operating System).

* The control character “4? in the control word indi-

cates a Bcp card-image record, with no change in mode

for the following block.

Control Cards

The control cards for this program are of the fixed-
form type. Each field associated with a given card,
whether required or optional, occupies a unique posi-
tion on the card. In the card formats given below, the
first number directly above a card field indicates the
card column in which the field must begin. ‘This
number is followed immediately by another number
in parentheses, indicating the maximum length of the
field. s , ST
Parameters that atre specified literally — that is, as
they appear on the card — are given in capital letters;
€.g., LABEL, as opposed to fields the contents of which
are merely named. Also, fields which are optional or
not essential to the running of the program are en-
closed in square brackets. Where a choice of alterna-
tive parameters exist, they are enclosed in braces.

$SRUN CARD

The format of the srun card is:

1(4) 6(7) / :) 14(2) 17(5) ~ 23(5)
$RUN UPDATE |7 blocking ..., [LABEL]
EXTRACT(| factor ~ 1¥v¢ .
29(5) 35(10) - ; 46(4) : o
[master] — : - PR
le master _master .
serial I file “retention
number_| |_identification _] cycle
515) 5710) 68(4) '
rgﬁmd : [~ extract]] extract | .
serial | file 7 retention
| number _identiﬁcationJ Cycle

The $RUN.card must be the first control card in the change
file. The available options are: -

[3 UPDATE :,
EXTRACT , ‘

UPDATE specifies that only a new master -file iis to be
created. EXTRACT specifies that only an extract file is to be

created. Leaving-the field blank specifies that both a new mas-
ter file and an extract file are to be created. . :

blocking

factor : ; S

Must be 2 digits, from 01 to. 05, which. specify - the output
blocking factor. This blocking factor will be used on both the
master and the extract output files. The master input files need
not be blocked the same, but must not exceed the maximum.

[yyddd]

Current date. This field is required for labeled ﬁles If spec-
.iﬁid for unlabeled files, it will be printed on the operator’s log
only, :

[LABEL]

Specifies labeled files. Leaving the field blank specifies un-
labeled files. All input and output files must have the standard
120-character tape label, if label is specified. Input file labels

‘be omitted.

“assumed. -

will be printed on the operator’s log. Labels of tapes to be used
for output will be checked for expiration of retention period and
the program will halt if the reel should not be used.

- file o
serial
number | - . .

A five-character alphameric file serial number. The file serial
number in columns 29-33 is used in the header label of the
new master file. The file serial number in columns 51-55 is
used in the header label of the extract file. These fields may be
omitted. : R

file o
identification
number - :

A ten-character alphameric file identification number. The
file identification number in columns 35-44 is used in the header
label of the new master file. The number in columns 57-66 is
used in the header label of the extract file. These fields may

"

retention
cycle

A four-digit numeric field that gives the number of days the
file is to be retained. The number in columns 46-49 is used in
the retention period section of the new master file header label.
The number in columns 68-71 is used in the extract file header
label. “These fields ‘may be omitted, in ‘which' case zero is

$ASSIGN CARD -
The format of the sassion card is:
() 18w
$ASSIGN . u [OPEN]

The $ASSIGN card is used to initially select the desired master
input tape unit and subsequently to alternate master inpuit tape
units. This card need not be used if no master ‘input- file is
present during the run. When used, ‘it must precede the first
$LOCATE card that refers to the ‘master-input field or the
$ENDRUN " card if no such' $LOCATE card exists. The two
fields of the $ASSIGN card are issied as follows:

u

Either a 1 or 4 to indicate which master input tape unit is to
be used for the operations that follow, ' '
[OPEN] I S

The first reference to a new master input. reel and the first
reference to a new alternate master input reel must specify
OPEN. Reels will be rewound, and input labels, if any, will be
printed.. Subsequent $ASSIGN .cards should -contain blanks in
18-21. o : o)

$OUTPUT CARD

The format of the souTPUT card is:
1(7) 9(1)
$OUTPUT u - -

The $OUTPUT card is used to force an end-of-reel condition
on either the master or extract output files after the current deck
is completely processed. By this means, the splitting of a deck
between two reels of tape can be avoided and the contents of a
given output reel can be predetermined.

u

Either a 2 or 3 to indicate which output tape unit is to be
closed. When the unit is closed, the standard end-of-file pro-
cedure is used ‘and the tape is rewound and unloaded. The
next reel mounted will be automatically opened.

Appendixes 117

SREWIND CARD

The format of the sREwIND card is:
1(7)
$REWIND

The $REWIND' causes the currently-assxgned master mput
tape to be rewound. It is used to change the order of symbollc
decks on the master or extract output files.

SLOCATE CARD
The format of the $LOCATE card is:

17 9(6) 180) 220) __ 36(6)

$LOCATE deckname [(INSERT , - [to
REPLACE [EXTRACT] deck--
REMOVE _ name]

The $LOCATE card copies the master input file up to, but not
The program then performs the action indicated by the pro-
cedure options for one card deck. The ‘available options are
INSERT
REPLACE

Procedure parameters, pertaining to entue program decks,
INSERT copies the card deck following the $LOCATE card from
positioned to the first card following the deck identified by the
deckname in columns 9-14 of the precedmg $LOCATE card, or
encountered.

REPLACE copies the card deck from the change file onto the
card following the deck previously identified by the deckname
in columns 9:14. The deck from the change fileis identified on

. REMOVE spaces the master input file to. the first .card fol-
lowmg the deck identified by the deckname (columns 9-14).
the deck identified by the deckname in columns 36-41. In the
latter case, all decks up to and including the deck named in

If the procedure option is omitted, the deck identified- by
the deckname in columns 9-14 is copied ‘with corrections, if
$LOCATE card are matched: by serial number with the_card
records on the master input file. If the serial numbers match,
Change cards that do not match ‘are inserted on the output
file(s).
case, the deckname on the3IBMAP card following the $SLOCATE
card in the change file will be checked against the deckname in

including, the deck identified by the six-character deckname.
as follows: :
REMOVE) :I

the change file onto the output file(s). The master input file is
at the beginning of the file if no prior $LOCATE card had been
output file(s). The master input tape is positioned to the first
the output file by the deckname in columns 9-14.
when' columns 36-41 are blank, or to the first .card following
columns 36-41 will not be copied onto the new master. -
any, onto the output file(s),-Any change cards following -the
the change card replaces the master card on the output file(s).

The insert or replacement deck is on the change file. In elther
the $LOCATE card, and a mismatch will cause a helt

[EXTRACT]

This parameter causes the deck spemﬁed (w1th or without
changes) to be placed on the extract file, when’a new master
is being created, so long as the $RUN card has not specified
update only. It is interpreted in combination with the output
option specified on the SRUN card as follows:

$RUN GARD $LOCATE CARD OUTPUT FILE(s)
EXTRACT (ignored) 7 - Extract only
UPDATE (ignored) Master only

(both) . EXTRACT Extract and Master

If this option is.omitted and the $SRUN card has Vnot specified
EXTRACT, the deck w;ll be written only on the new master
file. : :

118

In conjunction with the REMOVE option and a deckname
in columns 36-41, extraction of all decks within the range of
the REMOVE w111 take place sub]ect to the conditions tabulated
above. :

[to deckname]« .

" This parameter is specified only in conjunction w1th the
REMOVE option, which is shown above.

Remarks on the Use of Procedure Options and Sym-
bolic Change Cards: All symbolic change cards, sNum-
BER cards, and spELETE cards (discussed below) that
are applicable to a given master input symbolic deck
must follow the sLocATE card for that deck in the card
reader. In addition, they can only be used to update
symbolic decks already existing on the master input
file. They cannot be used to alter an incoming change
file deck that is being inserted onto the master output
file or is replacing a deck on the master input file.

- No additional control card is required to insert
changes or replace records in a master input deck.
Change cards following a sLocaTe card which does not
have INSERT, REPLACE, or REMOVE specified will be
inserted or will replace records in a master input deck
on the basis of the serial numbers in columns 73-80
of the change input file cards and the corresponding
positions of the master input file records.

When symbolic cards are to be inserted, replaced, or
deleted in conjunction with renumbering of a master
input deck, the change cards in the range of the re-
numbering must follow the sNumBeR card in the card
reader. ~

A master input MaP END record may be changed only
by replacing it with another Exp record. The program
will insert any remaining change cards for a given
master deck ahead of the Enp record for that deck,
when encountered.

A sLocatx card with a deckname only, followed by

~another 1401 $ control card (other than sNUMBER or

sDELETE), will copy up to and including the named
deck. The same is true for sLOCATE cards w1th only
deckname and EXTRACT specified. -

To space over decks on the master mput ﬁle without
copying them, a sLocate card with the REMOVE option
specified must be used. The deckname in columns
9-14 specifies the first deck, and the deckname in
columns 36-41" (if any) spemﬁes the last deck to be
spaced over..

$SDELETE CARD -

The format of the sDELETE card is:

17)) 18(8)

~from
-serial seual
- number number

 $DELETE

The $DELETE card causes the deletion’ of a portion of a
symbolic deck on the master input file. The range of cards to be
deleted is specified as follows: i

from
serial
number

The serial number of the first or only record in the master
input deck to be deleted. The contents of this field are matched
to columns 73-80 of the records on the master input file. i

to
serial ,
number ‘

The serial. number of the last master input re(i‘ord< to be
deleted. If this field is left blank, only one record will be deletf;d.

SPLACE CABD e
The format of the spLaCE card is:

1(6)

$PLACE o S

All cards following the $PLACE card and preceding the next
1401 $ control card in the:change file are copied onto the ‘extract
file, unless the $RUN card has specified update, This allows the
production of a new system input file incorporating any system
control cards. :

$NUMBER CARD

The format of the sNuMBER card is:
17) ®) 1@ 218)

$NUMBER new ~ [from —] [t -]
serial serial serial
C number number ~number. | -

The $NUMBER card is used to renumber all or a portion of a
symbolic deck on the master input file. Its three fields are used
as follows: . : !

new
serial
number

The new ident and sequence number to be used. The first
three characters are the ident (alphabetic) and the last five
characters (numeric) are the sequence number. The last digit
should be zero; this number ‘will be incremented by 10 on each
subsequent output record within the range of the renumbering.

from 7] .
serial i
number ; .

The serial number of the first record in the master to be re-
numbered. The contents of this field are matched to columns
73-80 of the records on the master input file.” If blank, the
program will begin numbering at the current rfecord, |

to o
_ serial] ,
number | :

The serial number of the last record to be renumbered in
the master input deck. If this field is blank; the: master input
deck will be renumbered up to and ‘including the END. record.

- The first record to be renumbered (columns 18-25)-is given
the new serial number (columns 9-16) and subsequent ‘records
are renumbered consecutively from the new number.

The serial numbers are punched in the card identification
field (card columns 73-80) of all ‘correction cards and are in the
same relative positions in the tape record. The serial numbers
have the following format:

SEQUENCE INSERT
IDENT NUI\'IBERv NUMBER
Columns 73-75 76-79 80

The ident (columns 73-75) is alphabetic. Only the numeric
sequence portion (columns 76-79) is incremented by one. Thus,
the subdeck identified by columns 73-75 is limited to 10,000

cards (before insertions).

SENDRUN CARp
The format of the sexpruN card is:

17) %)
$ENDRUN [deckname]

The $ENDRUN card must be the last control card in the

. change file. The decknamé'in ‘colurins 9-16 causes the master

input file to be copied up to and including the deck identified by
the deckname. If the master input tape réaches end-of-reel before
the deckname is found, the program will halt to allow the oper-
ator to change-reels. (e e

K the deckname field is:left ‘blank, the run is terminated
(except for trailer-label processing, if any) after the current
deck is completely processed. There must be only one $ENDRUN
card used in a run.

EXAMPLE OF CONTROL-CARD USAGE

Figﬁfe 46 illustrates, the : use of control cards for a
sample updating run involving reordering, correction,
and insertion of program decks. ‘

‘Order of Decks on Master Input File (Tape. 1):

1. PAY603 symbolic deck (payroli program)

2. INV900 symbolic deck (invéntory program)

3. PRC450 symbolic deck (production control program)

“Desired Order of Decks on-Updated Master File (Tape 2):

1. PRC450 symbolic deck ‘-
2. INV900 symbolic deck including corrections:
3. PAY100 symbolic deck (new payroll program)

Contents of Change File.
i RIS “'Card Columns

1 9 18 i 36
$RUN UPDATE : 04 63091

$ASSIGN 1 OPEN

$LOCATE PAY603 REMOVE INV900
$LOCATE PRC450 :

$REWIND -

$LOCATE PAY603 REMOVE

$LOCATE INV900 .

(Correction cards in sequence by serial numbers)

$LOCATE ~ PAY100 INSERT -

(Symbolic deck for PAY100)

'$ENDRUN

Figure 46. Sample Update Run with Re-ordering

Appendixes 119

Appendix D: COBOL Error Messages.

The list below classifies the coBoL error messages ac-
cording to phase name and purpose. Note, however,
that a message belonging to one phase may be used by
another phase.

MESSAGE NUMBERS . PHASE NAME AND PURPOSE

1-100 IBMAP Phase B, output phase
101-349 IBMAP Phase A, scan phase 7
350-450 IBMAP Dictionary Reduction, assignment phase
501-600 IBMAP Interface, compiler interface
1100-1199 IBFTC Scan)
1200-1299 - IBFTC Storage Allocator
1300-1399 . IBFTC Arithmetic and Logical Translator
1400-1499 = .IBFTC Indexing Analyzer
1500-1549 - IBFTC Instruction Generator
1550-1599 - IBFTC Indexing Generator
2000-2099 IBCBC Phase I, language reduction
2100:2199° - IBCBC Phase II, syntax analysis
2200-2299 IBCBC Phase I11, data reduction
2300-2399 IBCBC Phase 1V, procedure generation

In the messages described below, the following con-
ventions are used: :

1. csn(n) refers to the source language COBOL state-
ment number that appears in the lefthand column of

the source program listing produced by the Compller ‘

2. ‘AT’, ‘A2, and ‘A3’ are the variable parameters
that appear in the error messages produced by the

compilation. In many cases, the meaning of these

parameters.is clear from the text of the message where
it is not clear, an explanation is given. -

3. In messages where the variable parameter can be
a ‘data-name, it can also be a literal or a ﬁguratlve
constant, if applicable. ‘

4. A data-name used as a parameter will be followed v

by a code for error messages 2300 and above. These
codes are described below:

N, C Numeric computational
N,D Numeric display

A Alphabetic

RPT Report

AN Alphanumenc

GRP Group

2000 CSN (n) RECORD ‘A1’ CAUSES TABLE OVER-.

FLOW. RECORD IS SEGMENTED.

Explanation: ‘A1’ is the name of the entry causing
overflow. A record or section in an area of the source
program is very large. If a qualifying name falls within
a different segment from the name being qualified, the
name may be incorrectly defined.

Action:

1. Shorten record or section in which ‘A1’ is stated.

9. Restate qualification so that no references to ‘A1’ or
any name defined below ‘A1’ depends on a qualifier of
higher level than ‘A1’

3. Restate entry names for remainder of record, using
only unique names.

120

2001

2002

2003

2004

CSN (n) NAME EXCEEDS 30 CHARACTERS.
NAME IS TRUNCATED.
Action: Shorten or correct name.

CSN (n) SYMBOL NOT FOLLOWED BY BLANK.
BLANK ASSUMED.

: Action Correct statement, 1f necessary.

CSN (n) NON NUMERIC CHARACTER IN NU-
MERIC LITERAL. INTERVENING BLANK
ASSUMED.

Explanation: A sequence of numeric characters mcludmg
a decimal point is terminated at the first non-numeric

~character after the decimal point. This error may result

from fallure to allow a space separation.

CSN (n) NON-NUMERIC LITERAL CONTINUA-
TION MUST BEGIN WITH A QUOTE. QUOTE

~. ASSUMED PRECEDING FIRST NON-BLANK

2005

2006

2007
2008

2009

2010

2011

2012

2013

2014

2015

CHABACTEB

CSN (n) NON-NUMERIC LITERAL DOES NOT
TERMINATE WITH A QUOTE. ASSUME LITERAL
TERMINATES IN CARD COLUMN 72. '

CSN (n) NON-NUMERIC LITERAL EXCEEDS 120
CHARACTERS. LITERAL TRUNCATED. i

CSN (n) PICTURE CLAUSE EXCEEDS 30 CHAR-

_ACTERS. PICTURE CLAUSE IS TRUNCATED.
“CSN' (n) INVALID USE OF ‘Al’. ‘A1’ DELETED.

Explanation: ‘A1’ is either a plus (+) or a minus (—)
sign immediately following a plus or minus sign.

CSN (n) BLANK SHOULD SEPARATE ‘A’ AND
‘A2’. BLANK ASSUMED.
Explanation: ‘A1l" and ‘A2’ 'each may be any special

'character or name in COBOL.
‘CSN . (n) - INVALID CHARACTER FOUND 'IN

SOURCE STATEMENT. REPLACED BY SPACE.

CSN (n) ‘Al” OUT OF SEQUENCE. CONDITION
IGNORED.
Explanation: ‘A1’ is the number of the card found out-

: of-sequence

AL SHOULD BE $CBEND $CBEND ASSUMED

PRECEDING THIS CARD,
Explanation: ‘A1’ is the contents of columns 1-6 of a
system control card ($ in column 1). :

"CSN (n) NUMERIC LITERAL EXCEEDS 18 DIG-

ITS. LITERAL TRUNCATED.

CSN (n) ‘Al SHOULD NOT BE. IN ‘MARGIN A.
MARGIN B ASSUMED.
Explanation: ‘A1’ is a COBOL word or operator. Margin

- A is reserved for special headers, section and paragraph

names.

CSN (n) USE OF ‘Al’ IS INVALID IN THE ‘A2’
DIVISION. WORD IS DELETED.

Explanation: ‘A1’ is a COBOL word. ‘A2’ is the divi-
sion in which ‘A1’ has been found. Each COBOL word
is restricted to one or more divisions. The message indi-
cates either incorrect structure or the accidental use
of a COBOL word as a name.

2016

2017

2018

CSN (n) REDUNDANT ‘A1’ DIVISION CARD. CARD
IGNORED.) .
Explanation: “Al’ is the name of the redundant division.

CSN (n) ILLEGAL USE OF ‘Al’ IN ‘A2’ STATE—
MENT. ‘A’ DELETED.

Explanation: ‘A1’ is an extraneous element A2 is the
COBOL word that begins the statement.

CSN (n) ‘A1’ IS'NOT A BEGINNING WORD OF A
‘A2” ENTRY. ALL SYMBOLS DELETED UNTIL

NEXT VALID. ENTRY IS FOUND.
Explanation: ‘A1’ is a name, a COBOL word, or a
symbol. ‘A2’ is the division name (Environment or Data).

" ‘A1’ does not begin any recognizable clause, statement,

2019.

or header in the ‘A2’ division.

CSN (n) ‘A1’ IS IN THE WRONG SECTION OR
PARAGRAPH. ASSUMED CORRECT.

Explanation: ‘Al’ is an Environment Division COBOL
word. This clause does not appear in the proper En-
vxronment D1v151on section or paragraph,

Appendixes 121

2020

2021 -

2022

2023

2024

2025

2026

2027

2028

12029

2030

2031

2032

2033

2034

122

CSN (n) DUPLICATE ‘Al’ CLAUSE SPECIF IED.
DUPLICATE CLAUSE DELETED. -
Explanation: ‘AL’ is a key COBOL word that appears
twice in either a Data DlVlSlOn entty or in the Envxron-
ment Division.

OBJECT OR SOURCE COMPUTER OMITTED AS-
SUMED PRESENT. :

Explanatzon Assume IBM 7040 or. IBM 7044 was
specified.

CSN (n) Al CLAUSES RENAMING‘ TABLE OVER-
FLOW. NO FURTHER RENAMING FILES ARE
RECOGNIZED.

Explanation: ‘A1’ is the ﬁle-name causing table over-
flow. All file-names specified with RENAMING clauses
from ‘A1’ on will not be. recognized as legitimate file-
name definitions, and references to these files will result
in undefined references.

CSN (n) ‘A’ HAS MORE THAN 6 CHARACTERS
FIRST 6 CHARACTERS ARE USED.

Explanation: ‘A1’ is a BCD name that must conform
to the IBMAP restrictions for name formation.

CSN (n) FILE NAME FOLLOWING FD IS
OMITTED. FD ENTRY IS DELETED.

CSN (n) PICTURE CLAUSE INCOMPLETE. PIC-
TURE DELETED.

Explanation: The syntax structure of a PICTURE clause
is incorrect.

CSN (n) ILLEGAL FORMAT IN PICTURE. ASSUME
PICTURE IS °‘Al’.
Explanation: ‘Al
PICTURE.

CSN (n) ‘A1’ USED AS A DEFINING ENTRY MUST
NOT BE SUBSCRIPTED OR QUALIFIED. QUALI-
FICATION OR SUBSCRIPTS DELETED.
Explanation: ‘A1’ is a name that appears as a defining
entry in the Data or the Procedure Division.

CSN (n) LEVEL NUMBER IS OMITTED OR IN-
CORRECTLY STATED. ASSUME LEVEL NUMBER
IS 49.

Explanation: A Data Division entry starts without a level
number. A period may have been incorrectly positioned
within the preceding entry.

CSN (n) PERIOD OMITTED. ASSUME °‘Al’ ‘AY
BEGINS NEW ENTRY,

Explanation: ‘A1’ is considered to be the level number.
‘A2’ is considered to be the data-name.

CSN (n) ‘AI’ NOT FOLLOWED BY DATA NAME.
ASSUME DATA NAME IS FILLER.
Explanation: ‘A1’ is the level number stated in the source

is assumed to be the encoded

~ program.

CSN (n) ‘A1’ IS NOT DEFINED.

Explanation: ‘A1’ is a non-qualified data or procedure
name. ‘Al’ is used, but no paragraph, section, or data-
name definition exists in the source program.

CSN (n) ‘A’ IMPROPERLY QUALIFIED.
Explanation: ‘A1’ is a name that has one or more quali-
fiers. The definition of one or more of the qualifiers of
‘A1’ does not include ‘A1’

SN (n) ‘A1’ CANNOT HAVE MORE THAN 49
QUALIFIERS: FIRST 49 USED.

Explanation: ‘A1’ is a lowest level data or procedure
name at the point of usage.

CSN (n) HIGHEST LEVEL QUALIFIER ‘A1’ IS
NOT UNIQUELY DEFINED. ‘A2 MAY NOT BE
UNIQUE.

Explanation: ‘A1’ is the highest level qualifier of-a

2035

2036

2037

2038

2039

2040

2041

2042

2043

2045

2046

" name. ‘A2’ is the name that is being qualified. Duplicate
__definitions of ‘A1’ exist. If ‘A2’ appears within more
‘than one deﬁmtlon of ‘Al’; an error condition exists.

CSN (n) ‘AI IS NOT UNIQUE FIRST DEFINITION
USED.

Explanation: ‘A1” is a non-quahﬁed ‘data or procedure
name that has been defined twice.

CSN (n) ‘A" IS NOT A RECOGNIZED IBMAP OP

‘CODE. CARD DELETED.

Explanation: ‘A1’ appears following an ENTER AS-
SEMBLY-PROGRAM statement and is not one of the
following: ENTRY, EXTERN, CALL, SAVE, RETURN,
ETC.

CSN (n) IMPROPER FORMAT FOR °‘Al’ STATE-
MENT. CARD DELETED.

Explanation: ‘A1’ appears following an ENTER AS-
SEMBLY-PROGRAM statement and is one of the fol-
lowing MAP operation codes: ENTRY, EXTERN,
CALL, SAVE, RETURN.

CSN (n) ‘A1*IS NOT A PROPERLY FORMED IBMAP
NAME. CARD DELETED.

Explanation: ‘A1’ is the label of an IBMAP statement -
or the operand of an ENTRY statement.

CSN (n) ‘A1’ IS NOT A NUMERIC ELEMENT IN
THE VARIABLE FIELD OF °‘A2° STATEMENT.
ELEMENT AND REMAINDER OF CARD IG-
NORED.

Explanation: ‘A1’ is the non-numeric element. ‘A2’ is a
SAVE or RETURN MAP operation code.

CSN (n) PARAGRAPH NAME DOES NOT PRECEDE
‘Al’ STATEMENT. PARAGRAPH NAME ASSIGNED.
Explanation: ‘A1’ is the first word of the statement.
The paragraph name FILLER has been generated for
a statement that required a paragraph name.

CSN (n) COBOL WORD APPEARS IN ASSEMBLY-
PROGRAM PORTION. ASSUME ENTER COBOL
WAS STATED.

Explanation: An- ENTER COBOL has been assumed
and FILLER has been generated as a paragraph name.

CSN (n) ENTER ‘A1’ NOT A VALID ENTER OP-
TION. ASSUME ENTER ASSEMBLY-PROGRAM
WAS INTENDED,)
Explanation: ‘A1’ is the operand of the ENTER verb.

CSN (n) ‘A1’ RENAMING ‘A2’ IS INVALID. RE-
NAMING IGNORED.

Explanation: ‘A1’ is a file-name that follows a 'SELECT
in the Environment Division. ‘A2’ is a file-name that
follows the RENAMING entry corresponding to the
above SELECT.

1. A file that is renamed may not itself rename- another
file, or

2. ‘A1’ renaming ‘A2’ has been previously stated.

CSN (n) DIVISIONS ARE INCORRECTLY. OR-
DERED. ‘A1’ DIVISION DELETED.

Eagolanation: ‘A1’ is the division header that is out of
order.

‘A1’ IS AN INVALID ENTRY ON $IBCBC CARD.
CONDITION IGNORED. g

Explanation: ‘A1’ is the invalid option or symbol speci-
fied on the $IBCBC card. .

DECK NAME IS OMITTED FROM $IBCBC CARD.
CONDITION IGNORED.

Explanation: The characters CBC will appear as the
first three characters of file-names and CONTROL
names generated by the Compiler.

2047
2048
2049
2050
2051.

2052

2053

2054

2055
2056

- 2100

2101

CSN (n) ETC CARD DOES NOT FOLLOW CALL.
CARD DELETED.

DECK SPECIFIED ON $IBCBC CARD BUT NOT
"ON $IBJOB CARD. NO DECK TAKEN.

CSN (n) ‘A’ OPTION HAS BEEN
ASSUMED PRESENT : ‘
Explanatzon ‘Al is a requlred optlon

CSN (n) ‘A1’ IS NOT LEGAL IN ‘A2 STATEMENT
CONDITION IGNORED.

Explanation: ‘A1’ is an extraneous symbol in an ‘A2’
statement. ‘A2’ is the beginning word of the statement.

FIRST CARD AFTER $IBCBC IS NOT ‘A DIVISION
HEADER. ALL CARDS IGNORED UNTIL DIVISION
HEADER IS ENCOUNTERED. :

CSN(n) ALPHANUMERIC LITERAL CONTAINS NO
CHARACTERS. LITERAL ASSUMED TO BE SINGLE
BLANK CHARACTER

CSN (n) NUMERIC LITERAL. USED, AS ARGU-
MENT IN ASSEMBLY-PROGRAM. CALL STATE-
MENT EXCEEDS 10 DIGITS, LITERAL TRUN-
CATED.

CSN (n) NON-NUMERIC LITERAL USED AS ARGU-
MENT IN ASSEMBLY-PROGRAM CALL STATE-
MENT EXCEEDS 6 CHARACTERS ‘LITERAL
TRUNCATED.

CSN. (n) WARNING. NO CORRESPONDING SUB-
FIELDS. :

CSN (n) SYNTAX :ERROR IN. CORRESPONDING
STATEMENT. STATEMENT DELETED.

CSN (n) ‘A’ IS NOT A BEGINNING WORD OF
AN ‘A2’ ENTRY. ALL SYMBOLS DELETED UNTIL
NEXT VALID ENTRY IS FOUND. .

OMITTED.

Explanation: ‘A1” is a COBOL word. ‘A2’ is a division.

name (Data or Procedure). No recognizable COBOL
word has been found as the beginning of a clause in
the Data or Procedure Division.

'CSN (n) ILLEGAL USE OF ‘A1’ IN ‘Az’ CLAUSE.

CLAUSE DELETED.

- Explanation: ‘A1’ is a. COBOL word. ‘A2’ is VALUE

2102

2103

2104

2105

or APPLY. No legltlmate .option is indicated following
the APPLY clause in ‘the Environment Division or the
VALUE OF clause in an FD entry.

CSN (n) ‘A’ OMITTED IN ‘A2 STATEMENT
‘A1’ ASSUMED.

Explanation: ‘A1’ is a required word in the ‘A2’ option.
‘A2’ is the beginning word of an option.

CSN (n) ILLEGAL USE OF ‘Al’ IN ‘A2" STATE-

‘MENT. ‘A3’ DELETED.

Explanation: ‘A1’ is an item that was xmproperly stated
in an ‘A2’ clause. ‘A2 is the beginning word of an op-
tion. ‘A3’ is the portion of the option that is deleted
from the statement.

CSN (n) ILLEGAL USE OF ‘Al IN A2 STATE-
MENT.

Explanation: ‘A1 is an item that is nnproperly stated in
an ‘A2’ ‘A2’ is the begmnmg word of an option.

CSN (n) EXTRANEOUS SYMBOL ‘A1’ FOLLOWING
‘A2” STATEMENT. ALL SYMBOLS ' DELETED
UNTIL NEXT- VALID ENTRY IS FOUND.
Explanation: ‘A1’ is an extraneous symbol appearing
after a complete clause. A2 is the begmmng word of
the clause. :

2106

2107

CSN (n) OPERAND ‘OF ‘A1’ STATEMENT
OMITTED.

Explanation: ‘Al is the begmmng word of an incom-
plete statemeht

CSN (n) ‘AT’ STATEMENT INCOMPLETE STATE-
MENT DELETED. .

Explanation: ‘Al’ is. RERUN or RECORD Either no
file assignment follows a RERUN clause, or the integer
specifying the length of ‘the RECORD CONTAINS

7} clause has been omitted.

2108
2109

2110

2111

2112

2113
2114
2115

2116

2117

2118

2119

number of levels falls below. ‘A2’; ‘i.e.,

CSN (n) EXTRANEOUS ‘Al PARENTHESIS ‘A2’
PARENTHESIS ‘A3,

Explanation: ‘A1’ is RIGHT or LEFT. ‘A2’ is LEFT or
RIGHT. ‘A3 is INSERTED’ or ‘DELETED’.

CSN (n) ‘A1” DOES NOT BEGIN A SENTENCE.
ALL SYMBOLS DELETED UNTIL NEXT VALID
ENTRY IS FOUND.

Explanatioh ‘AT’ is not a COBOL word.

CSN (n) ‘A’ FOLLOWED BY ‘A2" IMPLIES END
OF SENTENCE. PERIOD ASSUMED. :

Explanation: The. Compiler: -has detected a condition
_that implied the end of a sentence, but no period has

been ‘found.

CSN (n) NON NUMERIC LITERAL FOLLOWING
‘ALL’ GREATER THAN ONE CHARACTER. TRUN-

‘CATED TO ONE CHARACTER.

CSN-(n) SUBSCRIPT COUNT EXCEEDS THREE.
RIGHT PARENTHESIS ASSUMED BEFORE ‘Al

CSN . (n). SUBSCRIPT MISSING AFTER. LEFT
PARENTHESIS. INTEGER 1 ASSUMED FOR SUB-
SCRIPT.

CSN (n) ILLEGAL USE OF ‘AL’ AS A SUBSCRIPT.
INTEGER 1 ASSUMED FOR SUBSCRIPT.
Explanation: ‘A1’ is not a data-name or a numeric literal.

CSN (n) ILLECAL USE OF ‘Al’ AS A SUBSCRIPT.
‘A1’ DELETED.
Explanation: ‘AL’ is an alphanumeric literal.

CSN (n) ILLEGAL FORMAT IN ‘A1’ STATEMENT.
‘A2’ DELETED.
Explanatwn ‘AL’ is IF, COMPUTE, or PERFORM.

A2 is not a legal symbol

CSN (n) Al’ STATEMENT CAUSES OVERFLOW.
‘A2 LEVELS OF. IMBEDDED - PARENTHESES
ASSUMED.

- ‘Explanation ‘AY is PERFORM; IF, or COMPUTE.
‘A2’ is the maximum number of levels of parentheses

that can be accommodated. Provision is'made for ‘A2’
levels of parentheses within a - formula. When this
number is exceeded, ‘A2’ levels “are assumed until the
pairs of left
and right parentheses are ignored until the paren-
thetical level falls below ‘A2’

CSN (n) ‘A1’ AND ‘A2 IS AN ILLEGAL COM-
BINATION IN A ‘A3’ STATEMENT.

DESCRIPTION OF: FILE ‘Al’ INCOMPLETE. ‘A2

'STATEMENT OMITTED OR 'IMPROPER.

Explanation: ‘A1’ is a file-name. ‘A2’ is one of the
following::

CLOSE. A CLOSE statement - was not spemﬁed for
the file.

ASSIGN. A unit was not assigned for the file.
VALUE. A VALUE clause does not exist for a file with
standard’ labels.

DATA. A DATA RECORDS clause has not been speci-

fied for the file.

Appendixes 123

© 'MULTIPLE. More ‘than ‘one unit has ‘been specified,

2120

2121

2122

2124

2125

2126

124

but MULTIPLE REEL was not specified. -

DESCRIPTION OF FILE ‘A’ INCOMPLETE. ‘A2

STATEMENT OMITTED. ‘A% ASSUMED

‘Explanation: *Al’ is a file-name.

If ‘A2’ is CONTAINS, ‘A3’ is SIZE.

A RECORD CONTAINS has not been specified for
the file. A size of 18 is-assumed.

If ‘A2’ is LABEL; ‘A3’ is. STANDARD or OMITTED.
a. The LABEL RECORDS clause ‘is omitted. As-
sume STANDARD LABEL, since VALUE clauses are
present. . o
b. LABEL RECORDS . clause is omitted and a
VALUE clause is not present. Assume LABEL REC-
ORDS is omitted.

If ‘A2’ is SELECT, ‘A3’ is SELECT.

If ‘A2’ is MULTIPLE, ‘A3’ is MULTIPLE.

‘A1’ MAY NOT BE SPECIFIED FOR F ILE ‘A2’ DES-
IGNATED AS ‘A3. CLAUSE IGNORED.
Explanation: ‘A2’ is a file-name.)

If ‘A1’ is RERUN, ‘A3’ is OUTPUT.

An APPLY RERUN-RECORDS clause has been speci-

fied for an output file. This clause applies only to
input files and is ignored for output.’

If ‘A1’ is READ, ‘A3’ is OUTPUT.
A READ. statement has been specxﬁed for an output
file. This is an invalid operation and:the READ is
ignored.

If ‘A1’ is CHECKPOINT-UNIT, ‘A3’ is INPUT.
The ON CHECKPOINT-UNIT specification is miss-
ing for the RERUN clause on an input file.

If ‘A1’ is LABEL, ‘A3 is SYSTEM UNIT.
LABEL RECORDS may not be specified for a sys-
tem unit.

If ‘A1’ is INPUT, ‘A3’ is OUTPUT, :
A file assigned to S.SOU or to S.SPP is' spec:ﬂed as
OPEN INPUT.

If ‘A1’ is OUTPUT, ‘A3 is INPUT.
A file assigned to S.SIN is specified as OPEN OUT-
PUT.

If ‘A1’ is BINARY, ‘A3 is OUTPUT.
A file assigned to S.SOU is speclﬁed as RECORD-
ING MODE IS BINARY.

NO READ STATEMENT SPECIFIED FOR FILE
‘A’ DESIGNATED AS INPUT. CONDITION
IGNORED. .

Explanation: ‘A1’ is a ﬁle-name

‘A1’ AND ‘A2 SPECIFIED FOR ‘A3’ IS AN IL-
LEGAL COMBINATION OF UNIT ASSIGNMENT.

‘A2’ DELETED.

Explanatwn ‘A1’ is unit name 1 ‘A2’ is unit name 2.
‘A3-is a file-name. Unit 1 and unit 2 refer to invalid
combinations of utility units. system units, and/or no
units,

OPERAND OF ‘Al’ CLAUSE SPECIFIED FOR FILE
‘A2’ IS ILLEGAL. ‘A3’ IS ASSUMED. :
Explanation: ‘A1’ is RECORD. ‘A2’ is a ﬁle-name ‘A3’
is the number of machine bytes.

1. Record length for a file on S.SIN,S. SOU or SSPP
is not valid. Lengths of 28 words for S.SIN and S.SPP
and of 22 words for S.SOU are assumed.

2. Record length is less than 18 characters. A record
length of 18 characters is assumed.

‘Al’ SPECIFIED FOR FILE ‘A2’ IS AN ILLECAL
UNIT ASSIGNMENT. ‘A3’ ASSUMED.

Explanation: ‘A1’ is unit designation. ‘A2’ is a file-name.
‘A3’ is NONE. :

2127 -

2129

2130

2131

2132

2133

2134

2135

2136

2137

2140

DUPLICATELY DEFINED ‘Al CLAUSES FOR ‘A2’
CLAUSE DELETED.)
Explanation: If ‘A1’ is CONTROL ‘A2’ is a file-name,
a data-name? or .a_procedure” name.
A dupllcate CONTROL clatsé has been specified for
_a ﬁle-name, a data-name, or a procedure name.
If ‘A1’ is FILE-REFERENCE, ‘A2’ is a file-name.
A duplicate FILE- REFERENCE clause has been
speciﬁed for a file.

CSN (n) USE OF Al AN ‘A2’ STATEMENT IL-
LEGAL. STATEMENT DELETED.

_Explanation: If ‘A1’ is a COBOL word, ‘A2’ is VALUE
or LABEL.

a. The literal that should be specified in the VALUE
clause has been omitted or is unrecogmzable
b. The LABEL, RECORDS clause is incorrect.

If ‘A1’ is an external name, ‘A2’ is a MAP operation code.

© An invalid duphcatlon of an external sik-character

name appears in a MAP statement.

» If ‘A1’ is a COBOL name, ‘A2’ is ENTRY.

A procedure name is not specified as an entry.
If ‘AL’ is a MAP label, ‘A2’ is RETURN.

A label in MAP is not specified as the operand of a
RETURN.

END DECLARATIVES STATEMENT MISSING.

* CONDITION IGNORED.

Explanation: PROGRAM-START has been spec:ﬁed in
the Environment Division. '

END DECLARATIVES STATEMENT MISSING. NO
PROGRAM START CAN BE INFERRED.

CSN (n) RECORD NAME ‘A1’ IS NOT NAMED IN
DATA RECORDS CLAUSE. CONDITION IGNORED.
Explanation: ‘A1’ is the data-name of an 01 entry, fol-
lowing an FD entry, that does not correspond to any of

‘the record names specified in the DATA RECORDS

clause. It is assumed that ‘A1’ was named in the DATA
RECORDS clause.

CSN (n) OPERAND OF ‘Al’. CLAUSE SPECIFIED
FOR FILE ‘A2’ IS ILLEGAL. ‘A3’ ASSUMED.
Explanation: ‘A1’ is the name of an improperly used
clause. ‘A2’ is a filename.

CSN (n) DUPLICATELY DEFINED ‘A1’ CLAUSES
FOR ‘A2’. CLAUSE DELETED.
Explanation: See explanation for message 2127.

CSN (n) DESCRIPTION OF FILE °‘Al’ INCOM-
PLETE. ‘A2” STATEMENT OMITTED. ‘A3’ AS-
SUMED. :
Explanation: See explanation for message 2120.

CSN (n) ‘Al’ NOT FOLLOWED BY PARAGRAPH
NAME. CONDITION IGNORED.

Explanation: ‘A1’ is a section name. A paragraph name
does not immediately follow ‘Al

PROCEDURE DIVISION DOES NOT START WITH
SECTION OR PARAGRAPH NAME. NAME PRO-
VIDED.

CSN (n) ‘A1’ OMITTED for ‘A2’ ‘A3’. ‘A4’ DELETED.
Explanatwn If ‘AT’ is a procedure name, ‘A2” is USE,
‘A3’ is statement, and ‘A4’ is statement.

If ‘A1’ is CHECKPOINT-UNIT, ‘A2’ is INPUT, ‘A3’ is
FILES, and ‘A4’ is RERUN clause or ‘A2 is ALL, ‘A%’
is ‘FILES, and ‘A4’ is INPUT RERUN.

If ‘A1’ is SELECT, ‘A2’ is: ASSIGN, ‘A3’ is clause, and
‘A4’ is clause.

If ‘AY is a file-name, ‘A2’ is the begmnmg words for

FD entry clauses, ‘A3’ is clause, and ‘A4’ is clause.

2141

CSN(n) : COMPILER. OVERFLOW " CAUSED - BY
LENGTH OF A ‘A1’ STATEMENT.. @ ;
Explanation: ‘A1’ is the COBOL word OPEN CO

' COMPUTE; IF or DATA RECORDS.

2142

2201

~ 2. A single GO TO .

‘1. A single’ OPEN statement may" net contam more

than 20 file-names. -
DEPENDING ON statement
may not ‘contain ‘more than 95 procedure-names.

-3. The number-of logical operators' (AND; OR) in

a single IF statement or:in the UNTIL portion of a
PERFORM statement may not exceed 99.

4. Error . checking of the consistency between the
names in the DATA-RECORDS clause and in the record
descriptions - under. an” FD - entry takes place only. if
there are 50 or fewer data records for ‘that FD-entry.

5. Within the COMPUTE, IF, and the UNTIL ‘portion
of a PERFORM ‘statement, 360 is the maximum number
of elements. that can be passed over before an: operation
within a formula can be evaluated. Due to the hierarchy
of operations 1nvolved the pattern in the first formula
below would cause overflow at the 5Ist level of paren-
thesization and the pattern in the second formula would
cause overﬂow at the 180th level: -

A B*C**(AlB*Cf“*(
A (A1(A2 (A3 (...

When the number of elements exceeds 360, all’ subse-
quent elements will be deleted until any of the following
are found:

a. The end of the- statement

b. The words AND or OR, wx,thm the IF ‘and the
UNTIL portion of a PERFORM statement

c. The word AFTER, w1th1n the UNTIL portlon of
a PERFORM statement

NOTE: Within the IF and ‘the UNTIL portion of the
PERFORM statement, the levels of parenthesization are
limited to 50. Within the COMPUTE ' statement there
is no limit on parentheses.

6. Within a formula to be évaluated by the COMPUTE
IF, .and the UNTIL portion of a PERFORM statement,
an additional limitation exists. If the elements are to
be passed over, as explained under Limitation 5, in-
clude literals or subscripted variables, overflow occurs
when:

n=A
Z (2+0n/s) +2N+NN+SS+D>900
T n=1

where A = the number of alphanumenc literals
C = the number of characters in each alpha-
numeric literal
N_= the number of numeric hterals, single
‘or double-precision, used as subscripts
or not
NN = the number of double-precnslon numeric
literals
"8 = the number of subscripted’ vanables
D = the number of datanames uséd as sub-
scripts :
When such overflow . .occurs, subsequent - literals and
subscripted variables will be deleted Normal processing
will be resumed when the hierarchy ‘of operation allows
some portion of ‘the formula containing subscnpts or
literals to be evaluated.

CSN (n) S.SIN IS SPECIFIED B’OTE IN AN ACCEPT
STATEMENT AND AN ASSIGN CLAUSE..

CSN. (n) FIRST LEVEL NUMBER IS NOT AN 01
OR 77 ENTRY. 01 ASSUMED. o

2202

2203

Explanation:

: 1. "An ‘acceptable level number does not fol]ow section

header or FD entry.

2. A 77 entry is not followed by another 77 entry
or an 0l.

The level number is changed to 01.

CSN (n) SECTION HEADER MISSINC WORKING-
STORAGE ASSUMED.

Explanation: Section name does not immediately fol-
low section header. Workmg-storage section is assumed.

CSN: (n) LEVEL. 77 ENTRY APPEARS OTHER
THAN AT- THE BEGINNING OF 'A WORKING-

. STORAGE OR CONSTANT SECTION ASSUMED

LEVEL ‘Al’.
Explanation: ‘A1’ is the level number that is assumed.

‘1. If the level number appears in a file section follow-

- .ing an-FD. entry, it is changed to 01.

2204

2205

2206

2208

2209

2210

9211

2212

9213

2214

2215

2216

2. If the level number appears anywhere other than

- in a file section, following an FD entry, it is considered

an- elementary item of the current record.

CSN (n) OCCURS CLAUSE ON‘LEVEL 77 ENTRY.
OCCURS CLAUSE DELETED.

CSN- (n) REDEFINES CLAUSE FOR LEVEL 77
- 'ENTRY IN' CONSTANT SECTION. REDEFINES

CLAUSE DELETED.

CSN (n) CONDITION NAME IN ‘CONSTANT SEC-
TION. SITUATION IGNORED

CSN (n) INCORRECT USE OF REDEFINES RE-
DEFINES DELETED. :
Explanatmn Redeﬁned data-name is not acceptable.

CSN (n) SIZES OF REDEF INED AND REDEFINING
AREAS ARE NOT EQUAL. REDEFINING SIZE
USED. ‘

Explanation: For other than level 01 definition, sizes
of redefined and redefining areas do not agree. Rede-

fining: area size used.

CSN (n) LEVEL 01 REDEFINES CLAUSE IN FILE
SECTION. REDEFINES IGNORED

CSN (n) SIZE CLAUSE AND PICTURE DISAGREE
SIZE CLAUSE IGNORED.

CSN (n) SIZE SPECIFIED AS 'GREATER THAN

-32,767 CHARACTERS. SIZE ASSUMED TO BE 1

WORD,

CSN' (n) SUBFIELD USAGE DISACREES WITH
GROUP USAGE. GROUP USAGE TAKES PRE-
CEDENCE.

CSN (n) USAGE AND CLASS DISAGREE. ASSUME
USAGE IS DISPLAY. .

Explanation: Class and usage on. same level do not
agree. Usage is changed to conform to-class.

‘CSN ‘(yn)' INVALID APPEARANCE OF BEGINNING-
- LABEL OR ENDING-LABEL.

'NOT TREATED AS

LABEL: DESCRIPTION.

Explanation: BEGINNING—LABEL and . ENDING-

LABEL can be used as data-names only on level 01
entries following an FD entry.

CSN (n) OCCURS CLAUSE INTEGER IS NOT A
VALUE BETWEEN 1 and 32,767. INTECER AS-
SUMED TO BE 1.

Appendixes 125

2217

2018

2219

2220

2221

2222

2223

2224

2295

2226

2227

2298

“Explanation:

 CLAUSE (PICTURE IS GIVEN)

CSN (n) MORE THAN THREE LEVELS OF OC-
CURS-CLAUSES IN. HIERARCHY EXTRA OCCURS
CLAUSE DELETED. o

CSN (n) OCCURS CLAUSE ON LEVEL 0L, OCCURS
DELETED.

CSN_(n) INCORRECT VARIABLE FOR OCCURS

'DEPENDING OPTION. DEPENDING OPTION DE-

LETED.
Explanation: Variable for~ ‘OCCURS DEPENDING op-
tion “is not a ‘proper ‘data-name.

CSN (n) SIGNED CLAUSE IS STATED FOR NON-

"NUMERIC ITEM. SIGNED CLAUSE DELETED.]
CSN (n) POINT LOCATION CLAUSE IS STATED

FOR NON-NUMERIC ITEM. POINT . LOCATION
CLAUSE, DELETED

CSN (n) “‘AY CLAUSE INVALID ° ON
LEVEL. CLAUSE DELETED.

‘A1’ is the first word (SIGNED, SYN-
CHRONIZED, POINT LOCATION, PICTURE,
BLANK WHEN ZERO) of a clause that _may not be
stated for a group-level item.” -

GCSN (n) INCORRECT OPTION ON SYNCHRON-
I1ZED CLAUSE. ASSUME SYNCHRONIZED RIGHT.
‘Explanationi: SYNHRONIZED is not followed by LEFT
or RIGHT. RIGHT is assumed. -

CSN'. (n) POINT : LOCATION ‘- CLAUSE INCOR-
RECTLY USED. CLAUSE DELETED. -+
Explanation: INTEGER, LEFT, or RIGHT is missing
from - the POINT - LOCATION clause. The POINT
LOCATION clause is ignored: . :

CSN (n) REDUNDANT ' POINT LOCATION
CLAUSE IG-

GROUP

NORED. ;
Explanatwn PICTURE and POINT LOCATION
clauses were ngen for the same entry POINT LOCA-

"TION clause is 1gnored

CSN (n) CLASS DISAGREES WITH CLASS ON

GROUP LEVEL. CLASS FROM GROUP LEVEL;

TAKES PRECEDENCE

CSN (n) OPERAND OF ‘Al CLAUSE OMITTED
CLAUSE DELETED."
Explanation: ‘A1’ is the ﬁrst word of a Data D1v151on

clause that is unproperly formed CLASS is omitted.
FCSN (n) -INVALID PICTURE CONFIGURATION

ASSUME PICTURE IS ‘Al’.

Explanation: ‘A1’ is the assumed PICTURE The in-

- consistent .or -invalid- characters “are changed to 9, A,

2229

2230

2231

2232

" or X, depending on -CLASS.

CSN (n) PICTURE AND CLASS DISAGREE AS-

. SUME-PICTURE IS ‘Al’.

Explanation: ‘A1’ is the assumed PICTURE

CSN(n) INVALID TEXT IN Al CLAUSE TEXT
DELETED UNTIL NEXT VALID ENTRY.

Explanation: ‘AY’ is the ﬁrst word of a clause that is.

1mproper1y formed i :
CSN (n) PICTURE. IS - MISSING A NUMERIC

‘~CHARACTER POSITION. ASSUME PICTURE IS 9.

CSN (n) BLANK WHEN ZERO IMPROPERLY
USED. CLAUSE DELETED.

"+ Explanation: "BLANK' 'WHEN ZERO clause is given

126

‘when''a “report field - cannot properly result from the

description of the data entry. -

2233

2934

2235

2237

2238

2239

2240

2242

“CSN (h) ‘ZERO’'DOES 'NOT - FOLLOW - BLANK"

BLANK WHEN ZERO ASSUMED

,CSN (n) CONDITIONAL VARIABLE ON 'GROUP

LEVEL. LEVEL ‘A1’ ASSUMED FOR DATA NAME
FOLLOWING THE CONDITION NAMES.

. :Explanation;: Conditional variable is not an elementary

item. Conditional variable is.changed to an elementary

_ item by, changing the level number. of the first non-con-

ditional name to that of .the conditional variable.
CSN (n) LEVEL 88 HAS EXTRANEOUS ‘CLAUSES.

‘EXTRANEOUS CLAUSES DELETED

2236
-SECTION ‘HEADER IGNORED.

CSN (n) ‘A1’ SECTION HEADER OUT OF ORDER

Explanation: Section’ header “is- out of place. Section

“header, ‘other: than ' FILE “SECTION, s processed cor-

rectly; FILE,‘SECTION ‘héader -is igno"red.? ~

'CSN (n) WORD. ‘SECTION’' MISSING FROM SEC-

TION HEADER. ASSUMED PRESENT.

CSN (n) SIZE OF NUMERIC FIELD EXCEEDS 18
DIGITS. SIZE REDUCED TO 18 DIGITS
Explanation: The field is truncated.

CSN. (n) SIZE AND PICTURE MISSING FROM

. ELEMENTARY ITEM ‘ASSUME ONE:- WORD FOR

ITEM.

CSN (n) FD ENTRY DOES NOT FOLLOW FILE
SECTION HEADER. WORKING-STORAGE SEC-
TION IS ASSUMED

CSN (n) ILLEGAL USE OF VALUE CLAUSE.
VALUE CLAUSE DELETED :

CSN (n) :DEPENDING ON VARIABLE FIELD IM-

- - PROPERLY PLACED. VARIABLE FIELD ASSUMED

2243
_ VALUE CLAUSE FOR ALPHABETIC FIELD. AS-
 SUME VALUE IS SPACE.

2244

2245

2246

2247

2248

92249

2250

2251

TO BE ‘TALLY:
Explanation: Data-name spec:ﬁed -as: optlon does not
appear . in the proper place. . !

CSN' (n) 'NON- ALPHABETIC CHARACTERS IN

CSN - (n) NON-ZERO NUMBERS IN ' VALUE
CLAUSE FOR SCALED POSITIONS, ASSUME
VALUE IS ZEROS.

CSN (n) MINUS SIGN IN VALUE CLAUSE FOR
UNSIGNED FIELD. SIGN DELETED.

CSN (n) RECORD NAME FOR WRITE IS NOT
PART OF AN OUTPUT FILE..

CSN (n) ILLEGAL TYPE 2 FILE DESCRIPTION.
ALL RECORDS BUT FIRST IGNORED FOR FILE

PROCESSING. :
Explanation: There is more. than one record description

for a file, the first of which contains at least one OC-
CuRs.

. VDEPENDIN,G ‘ON clause.

CSN (n) FD ENTRY DOES NOT CONTAIN ANY
RECORD DESCRIPTION CONDITION IGNORED.

GSN (n) COMPUTATIONAL FIELD IN RECORD

FOR BCD FILE. CONDITION -IGNORED.

CSN (n) OCCURS DEPENDING ON CLAUSE AP-

- PEARS IN A RECORD WHICH IS NOT FIRST FOR

FILE, DEPENDING ON PART OF CLAUSE IS
DELETED.

CSN' (n) SIZE DEDUCED FROM RECORD DE-
SCRIPTION IS GREATER THAN THAT SPECIFIED

2252

2253

2254
2255
2256

2257

2258

2259

2260
2261
2262
2263
2964
2265

2266

2967

2268

IN FD ENTRY. SIZE SPECIFIED IN FD ENTRY IS -
" USED FOR DETERMINING FILE CHARACTER-

ISTICS. -

CSN (n) RECORD TYPE SPECIFIED. IN FD EN-
TRY DOES NOT AGREE WITH RECORD DE-
SCRIPTION. TYPE SPECIFIED IN FD ENTRY IS
ASSUMED.

Explanation: The RECORD CONTAINS clause is im-
proper.

CSN (n) RECORD FOR FILE ON IN, oU ‘OR PP
CONTAINS OCCURS DEPENDING CLAUSE DE-
PENDING OPTION DELETED.

CSN (n) CONDITION NAME DOES 'NOT HAVE A
VALUE CLAUSE. VALUE 1S CONSIDERED AS
BLANKS OR ZEROS DEPENDING ON CLASS.

‘Al’ IS NOT AN 01 LEVEL, BUT IS SPECIFIED IN
A CONTROL: STATEMENT. CONTROL STATE-
MENT DELETED -

CSN (n) ‘AT’ IS A REDEFINING RECORD BUT

IS SPECIFIED IN A CONTROL STATEMENT. CON-

DITION IGNORED.

CSN (n) ‘A1’ IS IN THE FILE SECTION BUT IS
SPECIFIED IN A CONTROL STATEMENT. CON-
TROL STATEMENT DELETED. i
Explanation: ‘A1’ is a record description entry. . -

CSN (n) RECORD IN THE CONSTANT: SECTION
CONTAINS NO CONSTANTS. CONDITION I1G-
NORED.

Explanation: None of the entries' for a complete 01
record description in the constant section contains a
VALUE clause.

CSN. (n) CONSTANT-SECTION RECORD ENTRY
WITHOUT A REDEFINES: CLAUSE HAS NO
VALUE CLAUSE. BLANKS OR ZEROS ARE STORED
ACCORDING TO CLASS. :

Explanation: An entry within a record description in
the constant section does not have a VALUE clause
associated with it. (If. none of these entries has. asso-
ciated VALUE clauses, only message 2258 will .appear.)

CSN (n) A VALUE CLAUSE IS STATED FOR A
REPORT FIELD ENTRY VALUE CLAUSE IS
IGNORED. :

CSN (n) VALUE CLAUSE IS STATED FOR A
FIELD UNDER AN OCCURS CLAUSE VALUE
CLAUSE IS IGNORED.

CSN (n) FIGURATIVE CONSTANT DOES NOT
AGREE WITH CLASS OF FIELD. BLANKS OR
ZEROS ARE STORED ACCORDING" TO CLASS.

CSN (n) CLASS OF VALUE CLAUSE CONTRA-
DICTS CLASS OF DATA ITEM, BLANKS OR ZEROS
STORED ACCORDING TO CLASS OF DATA ITEM.

CSN . (n) INTEGER OR DECIMAL. COUNT OF
VALUE CLAUSE EXCEEDS ASSOCIATED COUNT
IN PICTURE. ASSUME. VALUE IS ZERO.

CSN (n) SIZE OF ALPHANUMERIC LITERAL IN
THE VALUE CLAUSE EXCEEDS SIZE OF FIELD.
LITERAL TRUNCATED:

CSN (n) ALL IN VALUE CLAUSE IS FOLLOWED

‘BY A FIGURATIVE CONSTANT CONDITION

IGNORED.
Explanatzon The ﬁguratlve constant is stored.

CSN (n) RECORD MARK IS SPECIFIED FOR A
gOMPUTATIONAL FIELD.. ASSUME VALUE IS
ERO.

CSN (n) RECORD MARK IS ASSOCIATED’ WITH
FIELD WHICH IS NOT SPECIFIED AS ALPHA-
NUMERIC. ASSUME VALUE IS SPACE. -

2269
2270
2271
2572
2273
2274

2275

2276

2277

2300

2301

2302
2303

2304

2305

2306

CSN (n) RECORD ASSOCIATED WITH SYSTEMS
UNIT IS NOT OF SPECIFIED LENGTH. CONDI-
TION IGNORED.

CSN (n) ALL IN VALUE CLAUSE IS FOLLOWED
BY NUMERIC LITERAL. BLANKS OR ZEROS ARE
STORED ACCORDING TO CLASS.

CSN (n) ALL IS FOLLOWED BY MORE THAN

' ONE CHARACTER. -BLANKS OR:ZEROS ARE

STORED. ACCORDING TO CLASS.

€SN (n) FILE NAME IN ‘WORKING-STORAGE OR
CONSTANT.SECTION. CONDITION IGNORED. -

CSN(n) OPERAND IN ‘A1’ CLAUSE IS NOT A POSI-
TIVE INTEGER. CLAUSE DELETED. ¥
Explanation: ‘Al 1s SIZE POINT. LOCATION or
OCCURS..

CSN(n) SUM' OF SIZES OF ELEMENTARY ITEMS
IS GREATER THAN 32K BYTES SIZE ASSUMED

: IS MODULO ’32K

CSN(n) ‘INTECER 1 TO’ PHRASE WITHIN OCCURS
CLAUSE IS INCORRECT AND IS BEING IGNORED.

CSN (n) OCCURS DEPENDING ON CLAUSE AP-
PEARS IN A RECORD ASSOCIATED WITH UNIT
RECORD EQUIPMENT. DEPENDING ON PART OF
CLAUSE. DELETED..

CSN (n) RECORD ASSOCIATED WITH UNIT

RECORD . EQUIPMENT IS. NOT OF SPECIFIED
LENGTH. CONDITION IGNORED.

CSN (n) ‘A1’ MAY NOT BE SUBSCRIPTED. SUB-
SCRIPT DELETED.

Explanation:- ‘A1’ is a data-name that does not have an
associated OCCURS clause.

CSN ' (n) 'TOO MANY LEVELS OF SUBSCRIPTS
FOR °‘Al’. EXTRANEOUS SUBSCRIPTS IGNORED.
Explanation: ‘A1’ is a data-name.

CSN (n) INSUFFICIENT NUMBER OF SUB-
SCRIPTS FOR °‘Al’. ASSUME INTEGER ‘I’ FOR
MISSING SUBSCRIPTS.

Explanation: ‘A1’ is a data-name.

CSN (n) USE-OF ‘Al’ IS IMPROPER AS A SUB-
'SCRIPT. ASSUME SUBSCRIPT VALUE IS ‘1.

Explanation: ‘A1’ is a subscnpt name that is not an in-
tegral numerical elementary field.

CSN (n) ‘A’ MAY NOT BE'USED AS AN OPERAND
OF ‘A2’
Explanation: ‘A1’ is a data-name.

‘A2’ is a COBOL. verb.

CNS(n) ‘A1’ and ‘A2" ARE IMPROPER PAIR FOR
‘A3’

Explanation: ‘A1’ is an operand.

‘A2’ is an operand.

‘A3’ is a COBOL verb.

_NOTE: The statement ‘IF DATA-NAME IS

POSITIVE ‘
; NEGIA‘I'I'IVEI ’ is converted to IF DATA-NAME IS

GREATER THAN ZERO) »
LESS THAN ZERO ’

Therefore, whenever the sign test is not permitted for
the data-name specified, ‘FIG CONSTANT (ZR)’ will
be substituted for parameter ‘A2.

CSN (n) LOW-VALUE OR SPACES BEING MOVED
TO NUMERIC FIELD. CONDITION IGNORED.)
Explanation: LOW-VALUE or SPACES .is invalid in a
numerical field, but the move is done.

Appendixes 127

Glossary

The definitions in this ‘glossary apply::to these terms

as they are used in all 704077044 Operating System
publications. The reader may also refer to the IBM
Reference Manual Glossary for Informatwn Proc—
essing, Form: C20-8089

ABSMOD deck : T
A deck with an absolute: Ioad locatron and absolute length
(produced by specifying ABSMOD on the $IBMAP card).
The. actual origins are determined by the user. .

absolute address. -
The label or number permanently assxgned to a spe01ﬁc
storage location, devxce or regxster

absolute orrgm : '
An origin that is a’ specrﬂo machme locatxon It is usually
assigned by the user.; B) : :

absolute program - SR
A machine-language program in a format ready for- load-
ing dlrectly into a specific area of core storage

act1v1ty
Use of an mput/output devrce that makes both dev1ce and
channel busy.

alternate unit : PR S e
A symbolic unit that is substituted for ‘another ‘symbolic
unit as a result of programmer dlrectron

application
Any single use of a subsystem or user’s program; A job
segment.

argument '
An mdependent vanable

assembler
See assembly program.

assembly program
The program that interprets a’ symbolic source program
and produces from it a maehme~language obiect program

assigned symbol
A symbol given a specxﬁc value by the programmer, usmg
a-symbol definition pseudo-operation.

block '

A group of data records, words, or characters, The size
of a block may be hmxted by the amount of ‘core storage
available for buffers or. by some inherent characterrstle
of a particular mput/output devrce

block length
The total number of words or characters in one block

blocking
Records are blocked, ‘or grouped together in a buffer, in
order to increase the average length of the physical rec-
ords being written, thus reducmg the process ‘time per
record, and increasing the total number of records that
can be written on one unit. .

buffer i '

"~ An area of core storage that is used to temporanly store

* information during a transfer of information to or from an
input/output device.

buffer control'word - S ‘ ‘
The first word preceding a buffer. It is used to- keep a
record of the status of information within: the buffer.

128 _ ' 5

bullermg system
A set of routines to block and deblock data records and
to perform buffer switching operations.
ca]lmg sequence
.. The_ instructions and data that estabhsh the lmkage to a
subroutme The data provides the arguments and error
routines needed by the subroutme
CHAIN .
A feature of the relocatable program loader that provrdes
‘a’ way ‘to run programs that éxceed 4 single core storage
load by forming a multlphase program,

channel scheduler
A routine that allocates usage of 'a -data channel among
the devices attached to that channel

channel trap

*See -interrupt.

checkpornt))
A recording’ of the current status of the computer to per-
mit restarting the- program later.

" closed subroutine

A subroutine that is a separate program. To use a closed
subroutine; the programmer transfers control out of his
main program into ‘the subroutine. The subroutine ter-
minates by transferrmg back to the main program. A
-2 closed subroutine. is entered -into the program -only once,
- and can then be used as often as needed by coding in the
. main program a’ calling sequence that gives the name of
the subroutine and the desired parameters.

COBOL ' ‘
- .COBOL (COmmon Busmess Onented Language) is a
programming language designed primarily for commercial
.- data processing. It allows the 'user to describe the’ process-
.-ing to be performed in terms snmlar to business English.

COBOL compiler - -
A program that translates COBOL language - statements
‘into assembler. input or machme-language programs.

comments field :
This optional ﬁeld becomes the fourth field of a MAP
. symbolic instruction. When it is .used it must be preceded
by at least one blank to separate it from the variable field.
. This field is avallable for explanatory remarks, - etc., as a
convenience to the programmer, It is listed in the as-
“ sembly listing, but has no other effect on program execu-
' tion. See also: remarks card. '

compile " ’
" To produce a machine-language program from a source-
language deck. The language of a compiler is closer than
symbolic or machine: language is to the language of the
problem. - :
compiler)
A program used to produce either assembler input or a
.. machine language program from a source, or programming,
'language deck. It typically involves program - analysis,
tabulation of mformatron, and generation of instructions
by synthesis of tabulated information and use of skeleton
or model routines. In the 7040/7044 Operating System
the” Macro - Assembly Program assembles the 1nput gen-
erated by the compilers.

control card i
‘A punched card containing input data“or parameters for
“initializing or' modifying a generahzed program for one
specific appllcatlon.

control dictionary
The ‘portion of a-program: deck that contains syrnbollc
information necessary - to ‘relocate and/or -load -the deck,
including the names and locations of control sections.

control section ‘
A sequence of instructions or data within-a program that
can be-referred to from outside the program- segment in
which it is contained. A control section -can be deleted or
replaced with a control section from other program seg-
ments. - B

core storage
The form of high-speed storage using magnetic cores that
is found in the: central processing unit of a 7040/7044
Data Processing System,

data record
A collection of facts, numbers, letters, symbols, ete., that
a program can process. or produce

data record format

The predetermined arrangement of the contents of a datak

record,
debugging
The process of detectmg and correctmg errors.
definition ~
See symbol deﬁmtlon
dummy argument ' ;
See ‘substitutable argument.
dynamic dump
A dump of selected areas of core storage during the
execution of a program at intervals. specified by the
programmer, A snapshot is a form of dynamlc dumping.
element
. A symbol or an integer less than the fifteenth power of two.
end of data file
The condition that exists when all of the records in a data
file have been read or written.
end-of-file trailer label :
A record with identification and control data related to
previous records of a file. Its first five characters are 1EOF.
end-of-medium indicator

The signal that tells a program that the. physncal end of a
device has been reached.

end-of-reel trailer label

A record with identification and control data related to -

previous records of a file that extends to another reel. This
is the last record on all but the last unit of a mult1-reel
file. Its first five characters are 1EOR;

entry point

A specific location in a program segment wlnch othet seg—

ments can reference.

event :
Use of an mput/output device which makes the dev1ce
busy but does not make the channel busy.

expression

A single term, or two or more terms combined by the
operators + and - .

external symbol
See virtual symbol.

externally initiated trap
An interruption of central processing unit operations due

to an event in a device independent of any activity in the
central processing unit.

file)
A collection of related information.

file closing
The termination of input/output operations on a file. It
often involves the preparation of end-of file trailer labels
and rewind operations.

~get

file control block :
An area of ‘core storage-in which the user’s specxﬁcatlons
for a file are stored. A file control block can be generated
from - file and label pseudo-operations, by the use of
$FILE and$LABEL control cards at load time,.or can
be created by the programmer

file mark
A special xndlcatlon on .an: external storage device that
informs the program that the end of data has been read
on the device. A file mark is written by the input/output
label system after the header label, after the checkpoint
recording, if any, and before and after the trailer labels
of output files.

file opening .-
The 1n1t1ahzat10n of input/output operations on a file. This
often involves verification of header labels.

FORTRAN . ‘
FORTRAN is a. programmlng language de31gned pnmarlly

 for scientific. and technical applications.

FORTRAN compiler
A program that translates FORTRAN. language statements
into assembler input or machme language.

To obtain a single data record from an input file.
header label
A record containing common, constant, or 1dent1fymg in-
formation for a group of. records whlch follow. . It usually
contains a file identification, a creation date, and a reten-
tion period. :
immediate symbol ’
A symbol that is assigned a spec:ﬁc value durmg the first
pass of the assembly program. .
initial start .
Beginning of data processing upon loading a system into
a computer.
initialize
To set an instruction, counter, switch, or address to a speci-
fied starting condition at a specified time in a program.
interface :
A common bolmdagy between two programs or two data
processing system components.
internally initiated trap
. An interruption of central processing unit operations due
to a currently scheduled activity on a data channel.
interrupt. .
A break in the normal flow of a routine. such that the
flow can be resumed from that point at a later, time. An
interrupt is usually caused by a signal from a source ex-
‘ternal to the central processing unit.
1ntersystem unit .
An mput/output unit. that is to be reserved so that in-
formation may be passed between job segments.
job
One or more appllcatlons spemﬁed by ‘the programmer to
‘be executed as a logical unit. A job is delimited by the
$JOB card. :
label
See header label, end-of ﬁle trailer label, end-of-reel trailer -
label, and label processing. '

label processing

Standard ’
The use of the mput/output label system to verify or
create a standard IBM-label. The format of the stand-
ard, 120-character IBM label is given in: the publication
IBM 7040/7044 Operating System - (16/32K): Input/
Output Control System, Form C28-6309.

Nonstandard .
The use of the input/output label system to read and
write labels verified and created by the user’s routines.

Glossary 129

Addrtlonal

- The use of ‘the input/output-label system to venfy or

create a-standard IBM label and then, by user’s routines,
verify or insert additional mformatron in the optlonal
field: of the standard label : :

library

An organized collection of operatmg programs, subroutmes,

—and data See system hbrary :

]ink : :
VA portron of a program that is drstmct core storage load
‘implemented by using the cham feature of the relocatable
program’ loader. .

literal
_ A symbol or quantity in a source program ‘that is 1tself
data rather than a reference to data.

literal pool
An area within an assembled program segment where the
literals used in a program section are-stored. ‘Within an
area, duplicate literals may be' eliminated.

load

and place it into core storage:
load address

The -absolute storage location into which a word or the

first of a series of contlguous words is loaded."

location
Also referred to as storage location. See absolute address

location counter

A counter that is incremented by one for each word the

assembly program generates in the object program
location field
See name field.

logical record
See data record.

machine language
The binary data that can be executed or used by’ the
processing unit of the¢7040/7044

Macro Skeleton Table

A Macro Assembly Program internal table that contains

" the prototypes of all the macro- deﬁmtlons in a program.
macro-definition
The specification of a macro-operatxon " This includes
specifying the name of the macro-operation and the
prototype cards, which indicate the fields which are to
be fixed, and the fields whlch are to be varlable ‘('sub-
stitutable arguments))

macro-instruction
The “symbolic instruction that causés the named macro-
operation to be inserted in-line into the program segment.
The macro-instruction -contains the parameters that are to
replace the substrtutable arguments m the macro-deﬁmtlon

macro-operation

An open subroutine with variable arguments that can be

defined once ‘and then used by codmg a srngle mstructron
in the symbolic source program.

merge
To combine data records from two or more ordered files
into one ordered file.

monitor

A program or routine to control operation of several other:

programs or routines.

name field -
The first field of a: MAP symbollc mstructron, punched in
card columns 1-6. It may contain a symbol by which other
~instructions can refer to the.instruction named ¢ name
field is also refetred to as the location field.

non-data operation)
Any-use of ‘an ‘input/output devrce that does not- mvolve
-the transfer of data.

130

To take information from' auxiliary or external storage

Nucleus : :

That portion' of the system monitor that remains .in: core
storage at all times during use of :the operating: system to
provide common; data areas, :pointers; tables, and ‘routines.

null field
A subfield-. that is indicated as being .present by a blank
preceding - a comma, consecutive commas, or a comma
Hfollowed by a blank

ob]ect program - - : : ~
The binary machme language program.

off-line
Pertains to: operation of - input/output devices ‘or auxiliary
*- equipment not under direct control of the central process-
ing unit.

on-line
Pertaining to operation of input/output devices under du'ect
control of a program being executed in the central process-
ing unit.

open subroutine
Subroutines that are mserted into the normal sequénce of
a program. Each time an open subroutine is used by a
program, all of ‘the instructions of that subroutine must
be repeated. A macro-operation is a type of open subrou-
tine; although a programmer uses only. one. instruction to
call a macro-operatron, the coding generated by . that
instruction is included in the sequence of a program each
time it is used. -

operatmg system
A’ collection of momtors, subsystems, data ‘control pro-
.grams, ‘and user’s programs that permits uninterrupted

" computer operation during the processing of a variety of

jobs.

operatxon field
The second field of a MAP symbolic instruction, punched
in card columns 8-14. Tt contains the instruction mne-
monic, pseudo-operation, or macro-operation code of the
instruction. An asterisk may follow a machme code to
indicate indirect addressrng :

operatlon '
A sequence of events and activities on a' particular device,
.-such as writing a record -on magnetic tape and correcting -
any writing errors, punching a card, backspacing ‘several
tape records, or seeking, writing, and write checkmg a
-track on disk storage.

order of merge ~ :
The number of ﬁles that can be combmed into -a .con-
solidated file during a merging operation.
origin .
The address of the beginning of a program sectxon. o
overlappmg data channel
A data channel that allows asynchronous operation of its
input/output devices and program processmg by the central
' processing unit." ;
overlay
The technique of using the same areas of internal storage
during’ different stages of ‘a run.”It is used to replace all
or part of a program that is no longer needed in internal
storage with another part of the program. .
parameter : ’
A quantity to which arbitrary values may be assrgned
patching: .
. Correctrng or changmg the codmg by overlaymg it with
another instruction or group of instructions.:
phase .
A portion of a program that is loaded as a unit for sub-
sequent execution.
phase dictionary
An abbreviated table ‘of ‘contents that contains’ the phase
name ‘and load addresses of the phases to be’ loaded for a -
given application. _

physical record
. See block..
pointer .- :
A word giving the address of another core storage locatlon
See also transfer vector) . T
primary unit
‘The symbolic unit on wluch a file begms

priority program

A special processing routine to be executed at the com-=

pletion of an'input/output ioperation; after-a specified time
interval has elapsed or upon some other signal external
to the program in control.
processor g
A program that performs the functions :of generatrons,
assembly, and/or compllatlon loadlng or execution super-
vision. , ~ : ;
processor apphcatlon ey
Job segments that are apphcatlons ofa processor i
program: - :
A group of related routines that solve a glven problem‘
program deck

The binary output deck produced by the macro- assembly
program from the input deck for one compilation. or as--

sembly run.. The .program deck -includes- all -the- cards

betiween the $IBLDR card. and the $DKEND- card
program scheduler

- A facility in IOEX that -allocates use of the central proc-

essing unit among programs in storage, based on prlorlty
program segment

The part of a program that is contamed ina program deck

programming system ‘
A source language -and the processor’ program that trans-
lates it into machine language.

prototype -
- The ‘part: of ‘a macro-definition that estabhshes the format
of the' instructions: generated l)y the macro-mstructlon

- pseudo-instruction

The symbolic instruction that causes the performance of-

‘a pseudo-eperation;

pseudo-operation ‘ :
Any operation available in the MAP language that is not
an - actual machine -operation, special mstructlons, 10CS
operation; prefix code, or: macro-operatlon
- put
To place a smgle data record into-an output ﬁle
qualification

The process of uniquely identifying the symbols. deﬁned in.

a given section of a.program segment by appendmg an-
other symbol. S
random access
To obtain. data directly from any storage locatlon regard-
“less of its position with 1 respect to the prevrously referenced
k mformatmn :
random. processmg :
The treatment of data without respect to its locatlon in
external storage, and in an arbitrary sequence governed by
the input against which it is to be processed.
record
A group of related facts or field of information treated as
a unit and stored as a continuous sequence of words or
characters separated by gaps.
reel
Used figuratively to represent any external storage medium,
relative origin
A symbolic origin that is assigned to a machine locatlon
by the loader.
RELMOD deck
A deck with a relative load address. The load address is
determined at load time.

relocatable binary format
The format produced by an assembler and acceptable by
a loader. It permits relocation of addresses and decre-
ments by meahs of relocation bits.

" relocatable program loader

A program. that assigns absolute origins to relocatable sub-
- Toutines, object programs, and data, assigns absolute loca-
tions to each of the instructions or data, and _modifies
the reference to these instructions or data.
relocatable subroutine
- A sequence of machine mstructlons and data with a specific
functlon The load address is determined at load time.
remarks card :
“A card that is used to insert remarks in a listing,
reserved unit' :
A symbohc unit that is given a unique des1gnat10n, that
is not available for assignment to a file, and that may be
~used only’ by referencmg that de51gnatron
restart
““To return to-a ‘previous point in’ a program and resume
operation from that point.
routine
“A sequence of machine 1nstruct10ns that carry out a specific
‘fanction:
run ‘
The execution of one or more programs that are lmked to
“form one ‘operating program.

select minus routine
A routine that examines the results of an 1nput/0utput
activity and determines if any error recovery is required.
When it is ‘entered from' the channel scheduler the sign
of the accumulator is minus. :

select plus roitine ‘
A routine that determines if a device is ready to be used
and, if it is, prepares a select lnstructlon, channel com-
mand, and’ device order to accomplish an input/output
activity or error recovery procedure. When' this routine
is entered from the channel scheduler, the sign of the
i ?accumulator is plus

select routrne
A routine for a speerﬁc mput/ oufput dev1ce cons1st1ng of a
select plus routine and a select mmus routine. !

sense data.
Information from an 1nput/output ﬁle control unit -indi-
cating error, unusual, or attention conditions.

sequential access.
- Obtaining data from an mput/output devrce in a serial
~manner only.

snapshot
See Dynamic Dump

sort
To place a ﬁle of records in order accordmg toa spec1ﬁed
sequence.

sort application :
Job segments that are apphcatrons of the Generahzed Sort-
ing System.

sort run
Same as sort application.

source program
A symbolic program written in a problem oriented or sym-
bolic language, such as the FORTRAN, COBOL or MAP
languages.

statement . - '
An- -environmental definition, data description, or proce-
dure in the source language of a compiler or assembler.

storage

A-general term for any device or medlum capable of re-
taining information for later use.

Glossary 131

storage load
" See phase.

string - S

A sequence of items.

subaddress C o
A portion of ‘an input/output device that is accessible
through an order code. For disk storage units, the module
number is the subaddress :

subroutine

A set of instructions, taken as a unit, that perform a spe-°

cific programming - task.* Subroutines -aré commonly -used
for such phases' of “a‘problem’as common’ mathematical
procedures (e.g., finding a square root), converting data
from one form' to another, and error procedures. The:sub-
routines can be used many times over, by one or several
programs. :
substitutable argument
A prototype card field in a macro-deﬁmtlon that is variable

and is to be replaced with a parameter (quanuty or sym- -

bol) when' the macro-operation is used. It is. also called a
dummy argument. ~

subsystem

A major component of the 7040/7044 Operating_ System'

such as the Processor, the Generalized Sorting, System, or
the System Edltor

symbol
A character or combination of characters used to represent
the absolute address of a storage location, an input/output
device, or any other program parameter.

symbol definition

! The process of ass1gmng a value toa symbol.

symbolic language
The defined set of characters and the rules for combmmg
them into meaningful communication that permits. the
programmier to represent the machine locations and in-
structions by recogmzable names and symbols, e.g., the
MAP language.

symbohc unit
A mnemonic in the symbohc units table, whlch -refers to
an input/output device. A symbolic unit may be assigned
to an entire input/ output device or to a portion of a devrce

symbolic units table ‘
An area of core storage that holds the addresses of the unit
control blocks (ucbs) and system control blocks (scbs)
~:for each symbolic unit.

system

A collection of components united to form a functional®

unit, It usually is-used in these publications to ‘refer to the
7040/7044 Operating System (16/32K). It may also ‘refer
to the 7040/7044 Data Processing System

system control block

An area of core storage holding mformatwn relatmg to an’

operation on a symbolic unit ‘defined by -an ATTACH
macro-instruction. These blocks are used by the mput/
output operations level of 10CS. :

132

System Library
The organized collection of absolute programs, relocatable
subroutmes, and data that make up the operatmg system.

System Loader. : ’

The absolute program loader in the Nucleus

system monitor . .
The part of an operating system that contains routines and
needed for continuous system operatlon .

system unit
One of tlle followmg S. SLBx, S. SINx, S SOUx, S SPPx, or
.-S.8CK1.

term :
A single element or two or more elements combmed by the
~-operators * and /. ; :

rtrarler label

See end-of ﬁle traller label and end-of—reel traller label

transfer vector i
A collection: of ‘core storage words containing information
used to identify the position of routines whose locatlon is
out of the regular sequence of instructions.

trap
-See: mterrupt

trap word: S g
~‘The:'core storage locatlon used to store the mstructlon
counter-and trap identification data.:

unit control block
<A nine-word area of core ‘storage describing an 1nput/
" output -devicé connected: to the computer. These blocks
are generated during system assembly for use by the
“. input/output .executor. R S
unit record equipment
Input/output devices such as the card reader, card punch,
- and printer. o . : i

unit synchromzer
- A routine that coordinates completion. of input and output
operatlons on-a given unit with the calling program accord-
ing to the specifications of the programmer. -

utility unit...
A unit that is available for use by the system or by the pro-
grammer for any purpose

vanable field -
“The third ﬁeld of 'a'MAP symbolic instruction format It
contains the address; tag, and decrement (or count) por-
tions of a machine instruction, or whatever is specified for
a pseudo-instruction or the parameters for a macro-mstruc-
tion.

varlable-length records i
- Records of a file“in which the number of words in each
record varies,

' virtual symbol

“A symbol in a program segment that is used in the variable
‘field ‘of ‘an instruction; which never appears in.the name
field of an instruction in that program segment, and which
is 1dent1ﬁed as bemg defined in another program segment.

o

absolute object-program files e © 59

absolute origin 45
alternate input oo 42,66
alternate output 42,66
alternate units L .42, 66-67
“any unit” reference technique L2t
application 83
assembling L. 10, 11, 33,42
auxiliary (1401) program control cards T .116—119 :
blank common cooSll 48
block size 00 B
buffer count 51-52
buffering system T T 51
cHAIN feature I 54, 55, 57
changing the Nucleus 24
checklist of control cards e 111
checkpoint, 25,67
clearing disk or drum 114
clock ... 20
COBOLt it i e, 9, 33, 63-64
coBoL cross-referencing 63-64
coBoL files 50, 64
coBoL language 35
combined monitors 14
COMMON ...ttt ettt e 62
compiling 10, 11, 33, 42
configuration (see the Preface)
CONTRLttt it e 61, 62
control 64
control blocks 21, 22
control card format 12
control card index PUTUN 98
control cards 106-115,117-119
control dictionary 48
control sections 48
control section names 48
copy feature 42
" cross references 61-62
data areas e 20
date 20
Debugging language 35
Debugging Processor 33
deck arrangement 58
deck mames 48
deletion P 79
diagnostic mesages 49, 66
Dump 25
dumping diskor drum 94
endofdata............ 37
ENTRY ..ttt e 61
entry point e .45, 58
error number oL 64, 120
even storage S 49
execution ... L L 15, 58
EXTERNt 64
external names 48
filles ... 49, 55
format track generation 90, 91
FORTRANl i 9,34
FORTRAN constant units 67
FORTRAN files 67
FORTRAN language 34
FORTRAN variable umits 68

Index

Generalized Sorting System 11
glossary ...l 117-121
home address generation 90-92
input T Tea e i 11
Input Editor i 36, 65.
Input/Output: Control Program (1401 IOCP) 26
input/output ‘buffer allocation Ci 54
Input/Output Control System26,35

" input/output devices (see the Preface)

_ input/output subroutines IR T 69-71
installation-accounting0 ... 24
interrupt test 24
intersystem reservation techniques 27
intersystem wunits L. 27
job P 11,15
job skipping R U, 12
job termination 12
label search technique 28
labeling system e 28
labels 28,172,112, 113
Bistings 41,44

 listing program B 89,113
Loader control cards 49-53
Loader (IBLDR)cc.coiuio... 39, 48, 51

CLoader (S.SLDR) 39
loading 11,33
loading disk or drum 93

ogical wmit 21
machine requirements (see the Preface) !
macro statements B 34
MAP language 34
monitor o 9
monitor recall 24
multiphase programming 33, 54-58
Nucleus 14,19
object program origin 21
object programs e 49
off-line listing 113
off-line punching 113
Operating System 9
output ... 12
Output Editor 36, 65-67
page heading P 66
page numbering 68
PAUSE .. 39
peripheral punching e O, 68
Post-Execution routine -............. e 37,67
Preprocessor e 36
Processor i g, 33-71
Processor Monitor 9, 33, 35-46
program decks o L. 47
program segmentS0 47
real control sections e 48
record addresss genmeration e 90, 91
reel sequence 51
reel switching, A - 51
Reload program 59
relocatable text 33, 48
restart e 26
restoring disk or drum L L. 95
sample decks 44 46, 47, 58, 63

segments 47

C€28-6318-5

severitycodAer E O P 64 systemunit.,.;.A......‘.H..' 21
Snmapshot - 67 tabl L : 91
Sort (See Generalized Sorting System) ' : tme
source languag§s 34-35 timekeeping] r 20
S.SIN1 preparation ... 12 transaction file i 72
storage allocationr ..°......... 35, 54 transfer points20
storage protection 24,35 . Type 1 records e 51
Sull))routme Library o 35, 65 Type 2 1ecordSo 51
SUDSYSEEIML 7u e SR L 14,15 Type 3records Wi ecn e o0 B
Supervisor e 14, 24-25 N

symbolic channel 0 S 17, 29 Update control cards e R 74,107
symbolic unit S S P .0.21,22,3 Update summary of records processed s s 81
symbolic unit reference technique. 27 - . umit assignment ... 27,49
symbolic updating 00000 72,105 . unit-control blocks T A |
system control blocks SN AT Leoobie 2200 nit pesitioning L. 28

) System .Editor : L : <o 1L unit switching J P PR 16-17

. séysttem lli'%“t ks e - . ‘user punch routine T s i PR/
Sg:tzﬁ L‘Q;gg’ utility control cards L .. 87
System Monitor ‘ - utility prpgrams T A 87,112
system Output - G utility unit R, F P 21
System Return Routine o ieviesesn o0 24 virtual control sections L. 48

m

International Business Machines Corporation

Data Processing Division

112 East Post Road, White Plains, N.Y. 10601 -

(3

'V'S'N uf paiutg

(RS I

§-81€9-822

	001
	002
	003
	004
	005
	006
	007
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050.0
	050.1
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134

