M
g
£

IBM General Information Manual

General Information Manual

IBM 705 Data Processing System

© 1959 by International Business Machines Corporation

Preface

The use of electronic computing machinery in han-
dling the gigantic paperwork problems of today is
becoming an almost commonplace occurrence. News-
papers, magazines, trade journals, and popular adver-
tising have made the term “giant brain” a household
word. In less than one decade, the work accomplished
by computers has begun to affect every aspect of
modern life. Computers design highways and track
space missiles; they assist in the engineering of out-
board motors and atomic power plants; they do the
bookkeeping in the smaller commercial enterprises and
the accounting work for the federal government. As
the value and practicability of computers is being
proved, new fields are being entered almost daily.

This manual is intended as an introduction to the
iem 705 I, II, and III Data Processing Systems. The
manual is divided into two main sections. The first
deals with the system as a whole and describes in some-
what general terms the operation of core storage, vari-
ous registers and accumulators, drum storage and other
input-output devices. Complete detail has been inten-
tionally omitted. Much of this presentation can be
applied to computers in general, as well as to the 705
in particular.

The second part of the manual is an introduction
to 705 programming. A comparatively simple problem
is discussed from its definition to final solution. All
of the various data handling and calculating functions
which the machine can perform are summarized with
schematic diagrams of the data flow.

A brief introduction to the autocoder is also given.
The autocoder is an approved and simplified method
of programming for the 705. Throughout the manual,
intended emphasis is on what the machine does, rather
than how it does it. Further details may be found in
the IBM 705 Data Processing System Reference Man-
ual, Form A22-6506.

Contents

INTRODUCTION ... 7 INTRODUGTION TO 705 PROGRAMMING 52
1BM 705 LANGUAGE 10 The Stored Program ... 52
The M Card 11 IBSTUCHONS o 52
Binary Coded Decimal ... 11 Programming Example ... - 52
Summary of Additional 705 Operations 64
STORAGEcoooviiiiiiiiiiii 13 Data Transmission 68
How Magnetic Cores Remember ... 14
Arithmetic and Logical Unit 17 PROGRANMING FEATURES ... 72
The Programmer ... 18 Zoning of Data Fields ... 72
Address System ... 18 Branching 73
Accumulator and Auxiliary Storage 19 Address Modification 74
COMPATiSON ...\ 29 Bit Manipulation 77
Magnetic Drum Storage ... 24 Record Arrangement for Printing ... 8

Normalizing Accumulator and Auxiliary Storage 78

MAGNETIC TAPE RECORDING ... 27 Control Instructions ... 78
Tape Records ... IERIEREE RIS 28 Transfer Instruction ... 79
Tape Unit 30 Alteration Switches ... 79
1By 754 Tape Control ... U 32 End-ofFile . . 80
18M 767 Data Synchronizer ... 33
Tape Record Checking; Writing 35 CHECKING PROCEDURES ... 83
Tape Record Checking; Reading 36 Machine Checks ... - 83

System Checks ... 84

INPUT-QUTPUT UNITS oo 38 Program Checks ... 85
Card Reader 38 General Consideration of Check-Point and
Card Reader End-of-File Operations.......... .. 40 Restart ...l 87
Card Punch ... 41
war 717 Printer. 43 INDIRECT ADDRESSING ... 88
3 720A and 730A Printers ... 46 PROGRAMMING SYSTEM 89
18M 760 Control and Storage ... 48 Relationship between Computer and
Console ... 48 Programmer ... 89

TYPeWriter ... 51 Autocoder .. 90

1BM 705 Data Processing System

IBM 705 Data Processing System

The diagram (below) shows one type of application
for a 705 in a manufacturing plant.

Two kinds of basic facts, manufacturing and sales,
flow into the data processing system. Flowing out of it
is information (obtained rapidly and systematically)
that:

1. Cuts down record keeping and report writing.

2. Supplies up-to-the-minute operating data.
3. Relieves management of many routine decisions.
4. Compares results with predesigned standards.

Enables operating executives to make decisions
based on facts.

The practical day-to-day use of 1BM 700 systems is an
accomplished fact. The computers, first designed for
complex scientific and mathematical analyses, have
been modified to solve plant operating and manage-
ment problems. They are capable of providing more
information and better control than ever before.

It is significant that the use of such systems is not
restricted to the corporate giants. Smaller plants are
also able to use scaled-down models of the system,
tailored to their needs. They may also buy time from
a service bureau at an hourly rate. The 18BM 705 can be
expanded to keep pace with the growth of a business.

The 705 digests data in huge quantities at high
speed according to required procedures. Results can
be either detailed or summarized. The machine stores
instructions, analytic routines and decision-making
procedures as well as data. It can flag exceptions,

[&33

errors in original transactions and illogical answers, It
can combine in one pass of data through the system
what has been formerly accomplished with whole bat-
teries of punched-card or other office equipment. It
reduces document handling, combines records, and
puts files on reels of magnetic tape. Its highest pay-off
may be on jobs that other equipment cannot do. New
applications are being developed almost daily.

The 705 does seven basic data-handling jobs. It can
do any one of these alone, or several at the same time.
The more jobs that can be finished in one processing
of the records, the more efficient the application of the
machine.

For example, in a materials control procedure, as-
sume that the 705 is applied to the control of a critical
component (in this case, switches). In the same way, it
can also be applied to many other plant operating
problems.

File Maintenance

File maintenance is an inventory job with records.
The file may represent parts in stock, back orders,
maintenance costs, job costs, quality records, or work
in process. Using tape or drum, the 18M 705 not only
acts as an electronic file clerk, but adds, subtracts, and
computes balances automatically. Result: current rec-
ords that reflect the true status of the business.

MANUFACTURING
INFORMATION

950 BDQE

CONTROL INFORMATION
FOR MANAGEMENT

7 L[]
o] =]

PURCHASE ORDERS

OPERATING INFORMATION
FOR PLANT ACTION

1BM 705 — Manufacturing Application

For instance, millions of type x switches may be
used. The 705 improves both inventory control and
production planning. In addition to complete data
about type x switches, an up-to-date stock status is
always kept. At regular intervals, receipt or with-
drawal transactions are fed into the machine. In this
way, the latest facts about switches are available, either
directly from the 705 or from reports printed by
auxiliary equipment.

Process Volume Paper Work

The 18M 705 makes all calculations for invoices, parts
lists, production schedules, shipping manifests, job
costs; the higher the volume of documents processed,
the higher the savings in cost. Result: no clerical
drudgery, no transcription errors.

One comparatively simple job for the 705 is to print
a list showing all switches needed for scheduled pro-
duction. A more complex job would be to compare the
inventory file with partsrequirements files to show
how many switches to order. A still more complex
job would be to compare inventory with requirements,
automatically print purchase orders, and address them
to vendors. The machine might also acknowledge re-
ceipt of the order and write a check in payment, if
quality and quantity are satisfactory.

Communicate with Other Machines

The 1BM 705 communicates directly with existing
punched-card equipment. It can receive data either
directly from cards or from magnetic tape produced
from cards. Cards can also be converted to punched
paper tape, and vice versa. Either cards or tape can be
transmitted over wire.

For example, with leased wires, inventory control
can be centralized for remote plants or warehouses by
receiving scattered reports, consolidating them, and
transmitting combined results back to their source.
The 705 can also use high-speed printers, an electric
typewriter, card punches, and standard card-operated
machines. Result: fast communication into and out of
the computer system; effective inventory and produc-
tion control with minimum clerical paper work.

Several direct input devices can be used to feed data
to the 705 about switches. An output printer can be
used to turn out all finished paper work such as pur-
chase orders and control reports.

Make Decisions

The 18M 705 can compare production costs with pre-
determined standards and print out items for which

8 IBM 705

costs are out of line with standards. With this infor-
mation, corrective action can be taken quickly. Stock
items can be reordered automatically when they drop
below preset limits. Back orders, overhead schedules,
and maintenance can be balanced with available hours
of shop operation. Result: no scurrying to find facts
on which to base decisions about ordering and sched-
uling.

Modify Basis for Decisions

The 18m 705 can be instructed to change specifications
on a comparison basis as significant facts change. Thus,
it can adjust costs to current information and keep
comparison standards up to date. It can continually
recalculate values to shift reorder points, time or cost
standards, lead times. It can adjust for the changing
cost of borrowed money. It does all this automatically,
computing with latest values. Result: effective manage-
ment control.

Combining jobs, the 705 alters the low limits on
switch inventory as consumption changes. It scans all
costs that affect ordering policy and decides on order
quantities and buying practices that keep inventory
at the most efficient level.

Compare Alternatives

The 1BM 705 solves linear programming and opera-
tions research problems, weighing a number of possi-
bilities to show the best. It can examine a number of
product mixes for profit potential and pick the one
for maximum profits or look at a number of machine
tool combinations and pick the best. Result: quick,
sure decisions among many courses of action.

The 705 has been told to weigh prices, raw material
availability, shipping distance from various vendors,
labor costs, and so on. When switches are needed, the
machine examines all factors, determines which vendor
to order from, or whether to make switches in the
company’s shops or split orders among several vendors.

Solve Formulas

The 18M 705 can be used to solve mathematical prob-
lems. It does calculations such as economic lot size for
production or profitability in a materials-control plan.
It can also speed solution of the many management
problems that require a high degree of scientific
analysis. Result: sure answers to problems that would
keep a battalion of clerks busy for months, possibly
without their being able to solve them at all.

The 705 can develop and use new sophisticated
formulas that human minds cannot handle. These

formulas can be used to calculate economical ordering
quantities and even to predict future needs from pres-
ent consumption trends. And, by including all costs in
such a formula, orders can be spotted that will lose
money, in time to turn the orders down. An entire
business operation can be simulated mathematically,

showing the results of future planning in advance
without costly trial and error.

The 705 can also be used for engineering and re-
search. For example, it can solve flight trajectory prob-
lems, analyze stresses on materials, or calculate lift
and drag for wing surfaces.

Data Processing System 9

IBM 705 Language

The 1BM 705 is a machine system that can process in-
formation. It is primarily designed to handle the type
of information originating either in commercial or
in government procedures (military, statistical, or other
related areas). It may also readily be adapted to scien-
tific calculation, particularly where the volume of data
approaches that found in commercial work.

All such usable information originates first as writ-
ten records of facts pertaining to the operation or
state of an enterprise. The records assume various
forms: paper documents, punched cards, punched
paper tape, ledgers, and all types of files. And nor-
mally, no matter in what form the records are kept,
the data are represented or coded in the symbolism of
numbers, letters, and characters. In business, these
familiar symbols stand for an endless variety of quan-
tities, values, descriptions, categories and types of
goods, people, services, volume, property, and so on.

There is no language without some numerals.

It is almost universally accepted that the wide use
of the decimal system originated from the habit of
counting on ten fingers. In some languages, the same
word is used for “ten” as for “two hands.” The word
“digit” refers either to one of the numerals 0 through
9, or to a finger or toe.

If the decimal system came into being to facilitate
counting on fingers, it is not at all surprising that this
system might not be the best one for electronic com-
puters. The computer has only two “fingers,” that is,
nearly all present components are inherently binary
(Figure 1). An electro-magnetic relay maintains its
contacts either closed or open. A magnetic material is
utilized by magnetizing it in one direction or in the
opposite direction. A vacuum tube is maintained either
fully conducting or non-conducting.

The plus or minus voltage conditions of specific
circuitry can be used to indicate yes or no, on or off,
one or zero, plus or minus, and so on. While reading
or writing, the machine can also sense punched holes
in 1BM cards. The presence of one or more holes in-
dicates information. The absence of punching in-
dicates no information.

A computer, therefore, operates most efficiently with
a language of its own based upon the binary nature
of its components.

10 IBM 705

Figure 1. Binary Nature of Components

Since it is hardly practical to keep business records
in some binary form of notation, data must first be
converted to some standardized form (punched cards,
for example) that the machine can read and then
translate into its own binary language. The machine
should then be able to write in this standard form
(punch out cards) for reconversion to written records,
or it should be able to print these records directly in
usable form with no conversion. The 705 does both.

To keep the translation process simple, the binary
representation within the machine should be com-
patible with all common symbols used in business. The
machine will then have the ability to manipulate both
alphabetic and numerical information as well as spe-
cial characters. Furthermore, it will have the advan-
tage of being able to calculate using binary arithmetic
— providing an additional factor of speed and efficiency.

To meet these requirements, the 705 converts all
information to a modified binary representation of
numbers, characters, and symbols as it first enters the
system. As explained in the following sections, the
conversion to this language is made automatically from
1BM punched cards.

The IBM Card

Before the recent development of magnetic tape, the
punched card was almost universally accepted as the
most practical device for recording information for
machine processing. It is still the basic unit record
form used by all 18Bm card-operated equipment.

All data in punched cards are represented by punch-
ing small rectangular holes in predetermined positions
(Figure 2). The card is divided into two main areas:
the lower (numerical) section and the upper (zone)
section.

‘The numerical section is further divided into ten
horizontal rows, one row for each digit 0-9. The zone
section is divided into three horizontal rows: 0, 11,
and 12. Note that the zero row is common to both
zone and numerical sections.

The standard 1BM card is also divided into 80 ver-
tical columns. To record data, a character is repre-
sented by punching one or more holes in a single col-
umn. Thus, as many as 80 characters may be punched
in one card.

Holes punched in their proper rows and in speci-
fied columns can be automatically identified as charac-

single zone punches or combinations of zoning and
multiple digit punching. This system is often referred
to as the “Hollerith Code” after Dr. Herman Hol-
lerith, who first developed machines operating on this
principle.

Binary Coded Decimal

The binary, or base two, number system uses just two
symbols (0 and 1) to represent all quantities. The place
value of the symbols is based on a progression of mul-
tiples of 2. For example, the units position of a binary
number has the place value of 1; the next position, a
value of 2; the next, 4; the next, 8; and so on. Under
this system, the quantity of 12 is expressed with the
symbols 1100, meaning (1 X 8) + (1 X 4) + (0% 2
+ (0 X 1) or (Ix 23) + (122 + (0 x 21) + (0 X
29). Again, the various orders do not have the meaning
of units, tens, hundreds, thousands . . . as in the deci-
mal system. Instead, they signify units, twos, fours,
eights, sixteens, and so on.

The following table shows the binary representa-
tion of numbers from 0 to 9 used by the 1BM 705.

ters by 1BM card equipment or by the card reader DECIMAL BINARY
attached to the 705. Digits are represented by single 8421 (Place Value)
holes punched in the numerical sections; letters and 1 0001
special characters, by combinations of zone and numer- g 83%?
ical punching. 4 0100
For example, the 12 zone with one of the digits 1-9 g 8;?(1)
represents the letters A-I; the 11 zone with the digits 7 0111
19, the letters J-R; the 0 zone with the digits 2-9, 5.7, 3 1o90
Eleven special characters are represented by either 0 1010
~< 3 >
Special
Digits Letters Characters
0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ d.1-3%/ %4e
’ & Ky
ZONE
SECTION J
[| oovoo000 00000000 | (00000000004(0 00000000
1234567088 8202122202425 26 2 d L L 53545556 5750 5960 61 62 €5 8 7374757677 18 19 80
IRECERRART (RERRNEE) f IRERRNRRRRRLE f T
f2202022212 122222222 2 I 2222222222992492444222222222
13333333333 3:33333333! 33 sJJ 33333333330930{3090333333333 .
NUMERICAL YYYYITIIITL uuuluug 44411 uJJA d4aeaaaaaadadne fﬁuuuu %
SECTION 5555555555655 ssssssssssssi 555 093495550449955555558554d544s44 4455555555
66666665656666(18(N6666666666666 sssssl| ssssl BE6666666604684644d466666666
RRRRRRRRRRRERET 111717711777111 1 777711 (RRRRRSRRREET: 7'1 17171117
TIITTTIRSTRNTY unuuusuuL ununJ e uuunnl slla J 80888888
L it fesmannsseseenss [

Figure 2. 1M Card Character Coding

IBM 705 Language 11

Note that 0 is represented as 1010, actually the
binary number for ten.

The 705 representation of characters divides the
binary code into two sections in the same manner as
coding is divided in the 1BM card:

1. The three zones, numbered in binary 01, 10,

and 11.
2. The numbers 1-9 as binary 0001-1001. The 0 is
represented as 1010.

The code, called binary coded decimal, consists of

six binary positions divided as follows:

00 0001 through 00 1010 = 1-9.0
11 0001 through 11 1001 = A1
10 0001 through 10 1001 = J-R
01 0010 through 01 1001 =357

Other combinations of the zones and numerical
digits represent special characters. Still other combina-

tions form special marks and symbols used by the 705
to mark the end of records, fields, or blocks of data.

The Bcp code also uses a seventh position to pro-
vide a check on the validity of all information handled
by the machine system. A single check position is
added to the code so that the total number of 1's used
to represent any character, including the check, is al-
ways even.

For example, if the code for the letter L is 10 0011
(using an odd number of 1’s), a check 1 is added to
make the total even. Consequently, the complete BcD
code for L is 1 10 0011. If the code for the letter M
is 10 0100, no check 1 is added. The complete binary
code for M then becomes 0 10 0100. The zone and
check positions of the code are also referred to as the
A, B and C positions.

Figure 3 shows the Bcp code for digits, letters, and
special characters as used by the 705.

0123456789 ABCDEFEGHI JKLMNOPQRSTUVWXYZ &.o-$*/ ,%f@

Check {C 0110100110 117010011000101100101011001 01010100110
{B 0000000000 1171111111111 11111100000000 11111100000

Zone Al00000000O0O 117711111 100000000017 17771111 11100011100
8 1000000011 00000001100000001100000011 01101101111

Numerical 410000111100 0001111000001 17T1T000017T11100 00100100101
2 1011001100 01100110001 100110011T001100 01001001010
110101010101 10101010110101010101010101 01001011010

Figure 3. Binary Coded Decimal

12 IBM 705

All conventional calculating machines and related
office equipment have ability to store information.
Even the smallest adding machine or desk calculator
stores numbers and their sums. Usually, the numbers
are entered by some key-driven mechanism.

The idea of storage for numbers, quantities, and
results is not new. The development of calculating
machinery has depended, to a large extent, upon the
improvement of various types of storage devices. In
earlier times, many attempts were made to provide
mechanical devices to accumulate quantities and store
results. Perhaps the most successful and widely used
of these is the Chinese abacus.

The accumulation of any information by a calcula-
tor (including the abacus) is the result of a number
of predetermined operations carried out in a pre-
scribed sequence. For example, to use an adding ma-
chine, the operator first enters the numbers by pressing
keys; then he adds or subtracts this quantity in a
counter (storage) by pressing a special key. To ac-
cumulate results, the routine is repeated as many
times as there are quantities to add. To get a total,
another key is pressed. Depending upon the type of
machine, other keys take subtotals, list without adding,
repeat, and so omn.

The concept of automatic control over the sequence
of calculator operation is also not new. A complex
computing machine, found in a dusty storage room of
a Greek museum, is believed to have been used to
compute planetary orbits as early as 65 B.C. It con-
tained complicated groupings of gears, a series of
calibrations, and Greek inscriptions explaining the
theory of the machine and various cycles of the sun
and moon. In 1833, Charles Babbage, a British mathe-
matician, conceived of an “analytical engine” to have
flexible sequential control over the operations it per-
formed. Babbage designed his machine (the real ances-
tor of modern computers) so that it would be possible
to specify in advance the sequence of calculation and
the numbers to be operated upon. Control was to be
effected by a punched card mechanism developed
earlier for the Jacquard loom. Also, the sequence could
be altered by changing the punched cards. Numbers
were to be stored by mechanical wheels. Unfortunately,
this brilliant conception was never translated into a
working machine, partly because of financial difficul-
ties and partly because of engineering problems that
were insurmountable at that time.

Storage

Until 1945, all calculating machines that might be
classified as “‘automatic” used some external means of
sequence control: punched cards, paper tape, wired
control panels, or combinations of each. Storage was
used only to store numbers. The revolutionary con-
cept of also placing instructions in storage first ap-
peared in a report written by Dr. John von Neumann,
who proposed a computer using this principle. By
storing the instructions internally, and by using binary
instead of decimal numbers, von Neumann foresaw
that much greater power would be achieved at con-
siderably less expense of electronic equipment.

Thus, one of the most important differences between
the modern digital computer and the more familiar
calculators and accounting machines is the computer’s
ability to store its instructions as well as data. The
computer can be said to “remember” what it is told
to do and to “recall” its instructions as needed. Since
the functions of storage may be compared, in a limited
sense, to the functions of the human brain, computer
storage is often referred to as “memory.”

The larger the storage or memory capacity and the
faster it can store and recall, the more versatile is the
machine. When information is read, it too is tempo-
rarily stored in memory. It can then be acted upon
according to given instructions in the proper sequence.
Again, results are stored until ready to be sent to
some output unit: tape, printer, or punch. In addi-
tion, if memory is large and fast enough, entire tables
of rates, codes, and other reference material can be
held ready for instant use. Cross references between
incoming records and tables are made inside the com-
puter, at electronic speed. Time for searching through
code books or rate tables is cut to an absolute
minimum.

If there is too much reference material to remember,
the machine can search a reel of tape for the proper
section of the table, then bring this into storage. Next,
the section is examined more closely for the proper
item — somewhat like looking through a book, one
chapter at a time.

Another way to have a larger memory is to attach
a secondary storage device, a magnetic drum, to the
main memory. Tables (or other material) are trans-
ferred from tape or cards to the drum before opera-
tion begins. When needed, the drum is searched at
much higher speed than tape (but also at higher cost
of equipment). A drum or tape is sometimes used to

Storage 13

store instructions, preferably only those used when
exception to normal processing is encountered.

The 705 has a large memory. Available models
can store 20,000, 40,000, or 80,000 characters. Charac-
ters are defined as letters of the alphabet, digits, and
a number of special symbols commonly used in busi-
ness, including @ # & 9, I1 / * — $, Provision is
also made to attach magnetic drums to supplement
storage capacity. Each drum can store as many as
60,000 characters.

How Magnetic Cores Remember

All information handled internally by the M 705 —
data, records, or instructions—is handled in binary
coded form. As previously explained, this is the char-
acter representation used in the central processing
unit.

While such a coding system would be clumsy for
paper-and-pencil work, it is considerably easier for the
machine to use. This is because the more than 50 dif-
ferent characters used to write data can be represented
as binary numbers and (the real advantage for the
machine) any character can be coded merely by setting
up the proper combination of 1’s and 0’s. Actually,
only two numbers, 1 and 0, are represented in mem-
ory, rather than 50 different symbols, letters, or
numbers.

A simple counter wheel represents a quantity or
value by degree of rotation and its position with re-
gard to other wheels in the counter (Figure 4). In the
705, the two values 0 and 1 are represented by a device
that can be conditioned to assume one or the other
of two states. The device is the magnetic core. The
two states can be thought of as yes or no, on or off,
positive or negative. The positive state can be made to
represent 1; the negative, 0.

Figure 4, Counter Wheel

14 IBM 705

-

Figure 5. Polarity of Magnets

A magnetic core is a tiny ring of ferromagnetic ma-
terial. When seen, it appears to be a miniature dough-
nut about half the diameter of a match head. Like a
doughnut, each core is pressed from a powdered batter
(ferric oxide and other materials) and then baked in
a high-temperature oven.

Aside from its compact size —a decided advantage
in computer design — the important characteristic of
the core is that it can be easily magnetized in a few
millionths of a second. And, unless deliberately
changed, it retains its magnetism indefinitely, an addi-
tional factor of reliability.

The common bar or horseshoe magnets show a
definite polarity. That is, one end of the magnet is
thought of as having a north pole; the other, a south
pole (Figure 5). However, the polarity of a core may
be readily set up in either direction, depending upon
the direction of current which induces the magnetic
state. Thus, a core can be magnetized in either of two
ways which can be described as positive or negative.
These are the two states needed for storage: a positive
core can represent a one; a negative core, a zero.

If cores are placed on a wire—like beads on a
string —and a strong enough current is sent through
the wire, the cores become magnetized (Figure 6). The

Figure 6. Polarity of Magnetic Cores

Figure 7. Core at Intersection of Two Wires

direction of current determines the resulting polarity
of the cores. By reversing the current, the polarity is
reversed.

In its largest memory, the 705 uses well over half a
million of these small elements. Since any specified
location of storage must be instantly accessible, the
cores must be arranged so that any combination of
ones and zeros representing a character can be written
magnetically or “read” back when needed.

To accomplish selection, another wire is run through
each core at right angles to the first (Figure 7). When
half the current needed to magnetize a core is sent
through two wires, only the core at the intersection
of the wires is magnetized. No other core in the string
is affected. Using this principle, a large number of
cores can be strung on a screen of wires. Yet any single
core in the screen can be selected for storage or read-
ing without affecting any other. Such an assembly of
wires is referred to as a “plane” (Figure 8).

To illustrate the use of a number of planes to store
a character, assume that the letter “A” is to be placed
in memory. To conform to the binary coding system
of the 705, seven planes are needed: one for the check
position of the character, two for the zone portion,
and four for the numerical portion. One core in each

Figure 8. Magnetic Core Planes

LOCATION OF

‘/ LETTER "A"

Figure 9. 1BMm 705 Memory Location

of the planes is magnetized positively or negatively to
represent the binary configuration for the letter A,
1 IT 0001 (Figure 9).

Notice that with the planes stacked in an “array,”
the cores rcpresenting A are all at the intersection of
the same two wires in each plane. If an imaginary line
were drawn vertically through the cores representing
A, the line would show the actual physical location of
one character position of memory.

In the 705 1, each plane is 50 cores wide by 80 cores
long, making a total of 4,000 per plane. An array of 85
such planes provides capacity for 140,000 bits. An
imaginary vertical line drawn through this array shows
five memory positions. (It passes through 35 cores,
seven cores per character, consequently five positions)
(Figure 10). Thus, the capacity of the 705 I memory

80 CORES 50 CORES

CAPACITY

35 PLANES ————

20,000
CHARACTERS

| LOCATION OF
e—— 5 CHARACTERS

Figure 10. Schematic, 20,000-Position Memory

Storage 15

is 20,000 characters. Internal storage in the machine
is always handled in five-character or 35-bit words
regardless of whether one or more characters are in-
volved. (This is of no concern to the user, because for
his purpose any single memory position is available.)
In this respect, the 705 is a parallel, fixed-word-length
computer and closely resembles the 704 and 709. The
similarity does not hold, however, for arithmetic and
other operations.

Once information is placed in core storage, some
means must be devised to make it accessible, that is, to
recall it when needed. It has been shown that a definite
magnetic polarity can be set up in a core by the flow
of current through a wire. In the machine, the flow is
not actually constant. It is sent through the wire as an
electrical pulse. This pulse may be said to “flip” the
core to positive or negative, depending upon the direc-
tion of current flow.

If the magnetic state of the core is reversed by the
pulse, this abrupt change, or flip, induces current in a
third wire also running through the center of the core
(Figure 11) . The signal through this “sense” wire can
be detected to determine if the core contained a I.
Only one sense wire is needed for an entire core plane,
since only one core at a time in any plane is tested
for its magnetic state. The wire is therefore strung
through all the cores of the plane (Figure 12).

Notice, however, that when information has been
read from memory, all cores storing that information
are set to 0. Read-out is destructive; that is, the process
of reading a 1 resets the core to 0. Therefore, to re-
tain data in memory, the machine must replace 1’s
in those cores which had previously contained 1’s. But
cores which contained 0’s must remain as 0’s.

To reproduce (“regenerate”) the 0’s and 1’s as they
should be, the 705 tries to write back 1’s in all the
locations previously read (35 cores) but at the same
time, an “inhibit” pulse suppresses writing in cores
that previously contained 0’s. The inhibit pulse is

Sense Wire

Figure 11. Core Sense Wires

16 IBM 705

SENSE WIRE

Figure 12. Sense Wire in Core Plane

sent through a fourth wire and, in effect, cancels out
the writing pulse in one of the two wires used to mag-
netize the core. Like the sense wire, the inhibit wire
also runs through every core in a plane (Figure 13).

It is beyond the scope of this book to explain fully
the storage circuitry. However, a basic knowledge of
how core storage works is useful in learning the operat-
ing principles of the 705. It is also useful in under-
standing the operation of other related machines using
a core memory.

Some additional facts about 705 memory mav now
be summarized:

1. Access time to memory is nine millionths of a
second. During this time, a 35-bit, five-character word
is either stored or read out and regenerated. The same
basic cycle is taken for both storing and read-out.

2. The time required to get an instruction from
memory is 17 microseconds in the 705 I and II, 13
microseconds in the 705 III. This includes the time
to read the instruction, replace it in memory, and
decode it.

3. All instructions are five-character words that fit
the 35-bit configuration of storage. Reading of instruc-
tions, therefore, takes full advantage of the parallel

| Inhibit Wire

CORE REPRESENTS 0

CORE REMAINS 0

Figure 138. Core Inhibit Wire

method of moving binary coded information in and
out of memory at extremely high speeds.

4. During machine operation, information stored
in memory remains there indefinitely until other in-
formation replaces it. Old information is automatically
erased whenever new information is placed in the same
storage locations.

5. Since core storage is permanent, information once
placed in memory should remain there even after the
power is shut off. However, when power is turned on,
various voltages are brought up sequentially to the
proper level. The resulting surge of power throughout
the system tends to change the state of the cores. Con-
sequently, one of the functions of the power-on key is
to reset all of memory to blank characters to make
sure no unwanted information is present when the
operation begins.

Arithmetic and Logical Unit

Nearly all of the operations within the computer are
performed by transferring data from their memory
locations, through a control or processing unit, and
back to memory. Addition, for example, is performed
by transferring one of the two quantities to be added
into an accumulator. The sum is formed in an adder
and transferred back to the accumulator where it is
available for storage in memory.

It is the function of the arithmetic and logical unit
to determine and control the route of these data trans-
fers. Since the machine can operate only under con-
trol of instructions, it is also the function of the arith-
metic and logical unit to select the instructions from
memory, interpret these instructions and to control the
over-all operation of the computer system.

In many ways, the arithmetic and logical unit can be
compared to a telephone exchange system (Figure 14).
All of the data-transfer paths that might be used in
any operation must already exist, just as there must
be connecting lines available between any two or more
telephones. There must be a path or wire between
every two units in the 705 that will ever be con-
nected; there must also be devices that are capable of
opening and closing these paths. These devices are
often referred to as gates. As the name indicates, a
gate opens to allow electrical pulses to pass through
and closes to prevent them from using the path.

The function of interpreting an instruction involves
opening and closing the proper gates for the given
operation, just as connecting the proper lines allows
conversation to take place between two distant tele-

[
TELEPHONE * ¢ °
EXCHANGE

Figure 14. Telephone Exchange System

phones. The control circuits, then, must set up a dif-
ferent combination of gates for every instruction
(Figure 15).

Each procedure involves a series of instructions
called a program. The program is a completely de-
tailed set of orders to the machine, telling exactly what

%%Mo%ﬁ

1

“ACCUMULATORS
AND REGISTERS

Figure 15. Schematic, ALu, Memory, and Accumulator

Storage 17

is to be done and in what sequence. The arithmetic
and logical unit operates as directed by the program,
one instruction after another. As each new instruction
is brought in, the necessary circuitry is actuated to
perform that instruction.

The Programmer

The programmer is the person who actually puts the
computer to work. He produces the necessary link be-
tween the machine and the problem or procedure it is
to do. Therefore, he must be thoroughly familiar with
the capabilities of the 705 and the statement of the
problem. The programmer can then break the prob-
lem down into a list of detailed instructions which
the computer can follow.

The 1BM 705 is a general purpose system. It can
obey a number of basic commands but it is not
mechanized to execute these commands in any par-
ticular sequence other than the order in which they
occur in memory. The programmer arranges the se-
quence before instructions are stored or he inserts
special instructions to alter the sequence in which the
program is to be followed. In this way, a general pur-
pose machine can be adapted for work on a great
variety of problems. The change from one procedure
to another merely involves storing the appropriate pro-
gram and feeding the required data.

The programmer, therefore, is primarily interested
in two things. One is the list of all different instruc-
tions that can be performed, and precisely what each

0040 00131 0042 0043 ooaa 0045 || o046

0047 0048 0019 vosL vos1 0052 0053

instruction accomplishes. The other is memory, the
main storage for all data.

Address System

An 1BM 705 memory can store as many as 80,000 char-
acters. To make information available, there must be
some system or order to storage. The programmer, for
example, must know this order if he is to keep track
of where data and instructions are to be located. An
incoming record may contain 500 characters; therefore,
some 500 positions of storage must be assigned to re-
ceive this input record. Other areas may be needed for
output records, constants, working space for inter-
mediate results, instructions, and so on.

Each memory position is assigned a number or ad-
dress, beginning with 00000 and continuing to 19,999,
89,999, or 79,999, depending upon the model of sys-
tem being used.

One method of visualizing the storage of data is to
compare memory with a hat check room with capacity
to store a certain number of hats (Figure 16). Instead
of hats, the memory stores characters. Each hat is lo-
cated in a separate bin, just as each character is in
a separate position of core memory. The hat bins are
all arranged in a regular order with a number for
each one. In memory, each position is assigned an
address.

When the programmer arranges information in
memory, he decides where each piece of information
will go. That is, he decides what addresses will be
used to refer to the data. When the data are to be

Figure 16. Memory Address System

18 IBM 705

transferred, the actual data will not be specified but
only the address. This method may also be compared
to the hat check room. When a hat is called for, it is
not the hat itself that is described, but its location or
address as shown on the check ticket.

The address system of the 705 includes not only
memory, but all of the other components as well. Each
input-output unit is also assigned a code number or
address. It can then be called upon by specific instruc-
tions to read, write, backspace, eject a form, and so
on. The addresses for these units are explained under
the sections describing input-output components.

Four character positions are provided in the address
part of an instruction for addressing memory. Since
any memory address of 10,000 or above is actually a
five-digit number, a system of zone coding is used to
keep within the four-character restriction. Zone coding
is placed over the first and last position of a memory
address to represent the high-order digits 1 through 7.

B and A zone bits over the high-order position of
the instruction address have a decimal value of 2 and 1,
respectively. The B zone bit over the low-order posi-
tion of the instruction address has a decimal value
of 4. By adding the decimal values of the zone bits
in various combinations, it is possible to represent all
the necessary decimal digits used in the fifth-order
position of an actual memory address. For example,
the first 10,000 positions of memory, 00000 to 09999,
have a zero value in the fifth-order position; therefore,
no zone bits are required in the high- or low-order
positions of the instruction address. Memory positions
20,000 to 29,999 have a high-order address value of 2;
therefore, a B bit over the high-order position of the
instruction address is required. Memory addresses re-
ferring to the upper 40,000 positions of a memory
always have a B bit in the low-order position, plus
the proper B and A bits in the high-order position of
the instruction memory address. A chart of actual
memory addresses and coded memory addresses follows:

ACTUAL MEMORY ADDRESS
00000 through 09999
10000 through 19999
20000 through 29999
30000 through 39999
40000 through 49999
50000 through 59999
60000 through 69999
70000 through 79999

CODED MEMORY ADDRESS
0000 through 9999
0000 through 9999
0000 through 9999
0000 through 9999
0000 through 9999
0000 through 9999
0000 through 9999
0000 through 9999

Accumulator and Auxiliary Storage

A number of small magnetic core storage units are also
provided in the 18m 705. These units temporarily store
information from main memory, accumulate the re-
sults of arithmetic, and perform various other func-
tions of data handling. They serve as counters and
character registers, but they are also used in operations
such as shifting, comparison, sign manipulation, ar-
ranging a record for printing, and controlling the
movement of information from one section of memory
to another. They are only accessible through memory;
they cannot receive or transmit data directly to any
input or output device.

Storage is divided into two sections: an accumulator
of 256-character capacity, and 15 auxiliary storage
units (Figure 17). Each auxiliary unit has a capacity
of 16 characters, except number 15 which has a capac-
ity of 32.

A counter or storage register normally accommodates
a field or quantity made up of a fixed number of
characters. A 10-digit counter, for example, always
stores the units digit in its righthand position, the
tens in the next position, hundreds in the next, and
so on, to the capacity of the counter. Whenever the
counter is cleared or reset, all ten positions are read
out. Left zeros may or may not be used, depending
upon the function of the counter.

The accumulator differs considerably from the nor-
mal concept of a counter. Not only can it store any 705
character, including special symbols, but the location

INSTRUCTIONS
FACTORS

Figure 17. Memory, Accumulator, and Auxiliary Storage

Storage 19

Figure 18. Accumulator Storage

of the stored field within the 256 possible positions is
not fixed. And, when the field or result is read out, it
is regenerated in the accumulator in the same manner
as it would be in memory.

The accumulator can probably be illustrated best
by assuming that storage is in the form of a circle.
The 256 positions may then be assumed to be arranged
around the circumference of the circle (Figure 18).
Stored data may occupy any of these positions. But,
since the entire capacity may not be needed, the field
or record in storage must be limited or defined when
it is to be used. For example, a six-character field
would occupy only six spaces, a six-position segment
of the entire circle (Figure 19).

When the field is placed in the accumulator, its
units position is automatically placed at the location
of an indexing device called the starting point coun-

s
CUMULA

Figure 19. Field in Accumulator

20 IBM 705

CRl5]e]

LENGTHEN

SHORTEN
2 FOSITIONS’I

2 POSITIONS

Figure 20. Starting Point Counter

ter. The counter remains in this position until moved
by instructions in the program or until multiplication
or division is performed. Moving the counter to the
right (by instructions) has the effect of lengthening the
field and adding zeros, while moving the counter to the
left shortens the field (Figure 20).

The left-hand, or high-order, position of the ac-
cumulator field is limited by a special character, a
storage mark. The mark is automatically placed in the
storage position next to the high-order character. It
may also be moved by instruction. This enlarges the
field when moved to the left (again, zeros are auto-
matically added), or cuts off part of the field when
moved to the right (Figure 21). In the text and illus-
trations, the mark is represented by the letter “a.” It
is normally stored by the 705 only in accumulator or
auxiliary storage as 0 00 0000.

In use, the accumulator readily accommodates anv
field or record up to 255 characters in length. One
position is occupied by the storage mark to define the
left-hand limit of the stored data. When information
is returned to memory from the accumulator, only the
characters bounded by the starting point counter and
the storage mark are read out. Although the accumula-
tor may also contain other information from previous
operations, this is ignored.

Once information is placed in storage, it remains
there until replaced by storing other data or the result
of calculation. A field can therefore be placed in stor-
age and then be “read out” to any number of locations
in main memory. Each time a transfer of data to mem-
ory occurs, the data are automatically restored in the
accumulator (Figure 22).

P TR

Storage
Mark
ENLARGE

2 POSITIONS

CUT OFF
2 POSITIONS

Starting

Point
Counter

Figure 21. Storage Mark

MEMORY

)

, ACCUMULATOR «

/W

Figure 22. Data Flow from Accumulator to Memory

The accumulator can store the results of any arith-
metic operation: addition, subtraction, multiplication,
or division. However, a computed product or quotient
cannot be larger than 128 digits. One factor of a cal-
culation is always stored in memory; the other is
placed in the accumulator. For example, to add field 4
to field B, either 4 or B may be placed in storage.
The actual operation of adding is performed by other
machine circuitry (arithmetic and logical unit). The
sum of the two fields replaces the original field in the
accumulator (Figure 23).

ACCUMULATOR
PR

SRS x

Figure 23. Accumulator in Arithmetic Operations

OVERFLOW

O'FL,

INDICATORS

Figure 24. Plus, Zero, and Overflow Indicators

Both positive and negative results are stored as true
numbers. A sign indicator automatically registers the
correct algebraic sign of a result by being turned on
for plus, off for negative. A second indicator is used
to register that the contents of the accumulator equal
0. Provision is also made to recognize overflow (Figure
24). For example, if the sum of 4 + B contains more
digits than either 4 or B, an overflow check indicator
is turned on. This prevents the return to memory of
a sum that exceeds the capacity of the space reserved
for it. In this way, the overflow indicator can be used
to flag results that are greater than predetermined
limits. (The indicator also signals the violation of cer-
tain rules that must be followed during a division
operation.)

Other uses of accumulator storage are more fully ex-
plained in later sections.

Auxiliary storage can also be represented as being
circular. And, as in the accumulator, a total of 256
character storage positions are available around the
circumference of the circle. But, unlike the accumula-
tor, the circle is divided into segments by 15 preset
starting point counters (Figure 25). In use, this makes
as many as 15 separate units of storage accessible to
or from memory. Since the counters are fixed (they
cannot be moved by instructions), each auxiliary stor-
age unit (asu) has a capacity of 16 positions, except
number 15 which has a capacity of 32 positions.

When information is placed in an Asu from memory,
the right-hand character is always stored at the posi-
tion of its starting point counter. The left-hand limit
is defined by a storage mark in the same way as in the
accumulator (Figure 26). A mark in any unit may be
moved in either direction around the circle by in-
structions.

If information placed in storage from memory ex-
tends beyond the capacity of a particular unit, it is
automatically stored in adjacent positions in the next

Storage 21

(32 POSITION}«

STARTING POINT
COUNTERS

16 POSITIONS
IN ASU'S 1-14

AUXILIARY STORAGE

Figure 25. Auxiliary Storage Units

unit, counterclockwise around the circle (Figure 27).
In this way, auxiliary storage can either be used to its
full capacity of 256 positions (one position is occupied
by a storage mark) or be used in segments of one or
more AsU’s. Data returned to memory are defined by
the starting point counter of the unit specified and the
next left storage mark.

In general, the functions of asu’s are the same as
those of the accumulator. They provide convenient
and efficient storage for small fields and constants
which may be used a number of times in the same
problem. They can also control movement of data in
memory, store results of addition and subtraction, and
arrange records for printing. However, multiplication
and division use the accumulator only. These opera-
tions cannot be performed with auxiliary storage.

Two indicators are provided for auxiliary storage
to register automatically the proper algebraic sign of
results and to indicate zero balances. The same two
indicators serve all of auxiliary storage. Therefore,
they show the sign and zero condition of the last asu
used.

The overflow indicator shows an overflow condi-
tion in either accumulator or auxiliary storage.

STORAGE MARK

Figure 26. Record Definition, Auxiliary Storage

22 IBM 705

Figure 27. Coupling Ast's

Comparison

The contents of either accumulator or auxiliary stor-
age can be “‘compared” against information in mem-
ory. Fields, records, quantities, or instructions in stor-
age can be determined to be higher, lower, or equal
to corresponding data in memory.

The results of a comparison may be determined by
testing for a high, equal, or low condition. When the
storage contents are higher than memory, an instruc-
tion called “transfer on high” can cause the machine
to alter the sequence of instructions that it executes
in a predetermined manner. An instruction called
“transfer on equal” performs the same function when
the results of a comparison are equal. If the compari-
son is low, the normal sequence of instructions is
executed.

In this manner, the machine can be directed by
instructions to change its method of processing as a
result of whether one record matches, is higher than,
or is lower than another.

The storage contents are found to be higher, lower,
or equal to data in memory according to the preset
sequence of 705 characters. This sequence is: blank .
H#&$*—~/,9% # @O0 A through I 0 J through
R # S through Z 0 through 9. This is also the same
order established for 1M punched card machines, so
that records arranged in sequence by the 705 conforms
to the standard sequence of card files.

For example, if the name Jones in storage is com-
pared with the name Brown in memory, Jones is
“higher.” Compared with Smith, Jones is “lower.” By
using a series of comparisons, a number of records in
memory can be arranged in alphabetic sequence, or
input or output records can be checked for sequence
as part of a processing procedure.

Comparisons of numerical fields can be made either
by using direct comparisons or by using arithmetic.
After subtraction of the storage field from a memory
field, a negative result indicates that the storage field

is higher. A positive result indicates that the storage
field is lower (plus-indicator on), while a zero result
indicates that the fields are equal (zero-indicator on).

All indications can be tested or “interrogated” by
instructions. Figure 28 is a schematic of data flow with
use of the zero indicator.

INSTRUC- = 1 ALU
JIONS >
EMORY
M INSTRUCTIONS
ACCUMULATOR

A typical flow of data between Field B from the input
memory and storage is shown*in record is subtracted . .
the above schematics. First, from Field A. The result Indicators are tested according to further instructions to
instructions are placed in mem- is placed in accum- determine if results are greater than zero.
ory telling the machine how to ulator. Instructions
do the work. Next, records are tell which fields from The machine again follows instructions as to how to pro-
stored, one at a time, in an the record to calculate. ceed, depending upon the condition of plus and zero in-
input area. ‘dicators.

ACCUMULATOR ACCUMULATOR
(PorT)

Final Result - Either P or T is put into the record in memory.

One of two possible calculations is made: Completed record is moved to an output area to be written out.

1.1f the first result was greater than zero, multiply The next record in thefile is moved into memory and all oper-
by Field C from the record. ations (Program) are repeated.

2.1 the first result was less than or equal to zero,

Processing continues automatically until the entire input file
add Field D from the record. is completed.

C D

Figure 28. Schematic, Data Flow between Memory, Accumulator, and ALU

Storage 23

Magnetic Drum Storage

Commercial data processing procedures are well
known for their complexity of detail. A relatively
simple accounting job often requires several hundred
possible operations, even more when all possible ex-
ceptions to normal routines are considered. For exam-
ple, one 18M plant payroll takes some 6200 different
705 instructions to cover all variations in the payroll,
tax, deduction and employee benefit calculations. Of
these instructions, an average of only 750 are used to
calculate the complete data for any one employee.

Also complete data handling usually involves a con-
siderable amount of reference information which must
be related to current transactions in some manner.
Such reference material may be in the form of tables,
rate schedules, results from previous calculations, con-
stants, code lists, and so on. Public utility billing is a
good example of this. Electric power is normally
priced at a graduated rate taken from a pre-estab-
lished rate schedule. A factory, using large amounts
of current, may be charged a substantially cheaper
rate than an average home owner. The home owner’s
rate may also vary, depending on his type of service,
or whether he owns a water heater, stove, or other
electric appliances.

The application of a computer to such problems is
more efficient if enough capacity is available to store
all the necessary data in core memory. However, even
with the 80,000 positions of storage offered in the
largest model 705, memory may become filled with
instructions and input-output record areas, leaving
insufficient space for reference data. Many applications
have a definite need for supplemental storage, acces-
sible at relatively high speed, but cheaper than core
storage. The magnetic drum, also available with the
705, is designed to fill this need.

The 705 drum is a steel cylinder enclosed in a
copper sleeve. It is 10.7 inches in diameter by 12.5
inches in length (Figure 29). The copper surface is
plated with a cobalt and nickel alloy similar to the

|

/i

l!»i

!!ﬂ!!;!!l

l!!ﬂ

i

Figure 29. Magnetic Drum

24 IBM 705

metal used in alnico magnets. The coating on the sur-
face of the drum is the actual magnetic storage
medium.

If an area of this material is placed in a magnetic
field, it becomes magnetized. And after the magnetiz-
ing force is removed, the magnetism is retained indefi-
nitely. The area affected can be quite small (on the
drum it is about .017 inches in length) so that a large
number of magnetized spots or “cells” can be placed
in a small space. The effect of magnetizing a cell is
the same as if a tiny bar magnet were imbedded in the
surface of the drum.

As the drum rotates at a constant speed (about 3730
rpm), information is written by magnetizing cells as
the surface passes a read-write head. The head con-
sists of read and write coils of fine wire wound around
a center core. A plastic shim is inserted at the ends of
the core, providing a magnetic gap. The head assem-
bly is positioned close to the drum in such a way that
magnetic lines of force produced by the write head
“fringe” around the gap and flow through the alloy
surface (Figure 30).

The cells are magnetized by sending pulses of cur-
rent through the write coil. The direction of current
flow determines the resulting polarity of a cell. Con-
sequently, cells can represent either 1’s or 0’s, the two
digits used for the binary coding of all 705 characters.
Because the drum is rotating while writing takes
place, an extremely short duration of the write cur-
rent limits the area magnetized. In this way, the size
of the cell is almost the same as if the drum were
motionless.

When a cell that has been previously magnetized
passes under the read-write head, its magnetic state
can be sensed by current induced in the read coil. In
this way, information written on the drum can be read
back when needed. Also, reading is not destructive
because the condition of a cell is not changed
as it passes the head. Unlike core memory, no regen-
eration process is needed and the information can be
read again and again without being erased. Drum
storage is, therefore, permanent and data on its sur-
face remain there indefinitely even after the power to

READ COIL WRITE COIL

{ WR. 1
{ WR. 0

FRINGING FLUX

Figure 30. Drum Recording

Tracks
M N YN AN

1st Character

200 Characters

200th Character

wy

Figure 31. Reading and Writing on the Drum

the 705 system is turned off. Information is replaced
only when new information is written.

The drum uses 210 read-write heads that read or
write information in 210 tracks around its circumfer-

ence (Figure 31). Tracks are grouped into 30 chan-
nels of seven tracks, each of which conforms to the
seven-bit binary coding structure of 705 characters.
One channel in a track would contain all C bits; the
second, B bits; the third, A, and so on. A channel has
a capacity of 2,000 characters and is divided into ten
sections of 200 characters each.

Any section of the drum is accessible to memory,
but individual characters within a section are not.
Since data consisting of a variable number of charac-
ters may be stored on the drum, reading or writing
begins at the first position of a section and continues
automatically into following higher-order sections.
The end of a block of information is limited by a
special character called a “drum mark.” The character
is automatically written at the end of a block of data.
It stops entry into memory when reading.

A record or block of data may be of any length
within the capacity of the entire drum, or it may be as
short as one character. Drum storage may contain a
number of blocks of data, each beginning at the first
position of a section and extending through one or
more following sections, then ending with a drum
mark.

Because reading or writing can occur only when the
specified section is passing the heads, the access time
to a section may vary, depending upon the distance
to be traveled by that section to the head. The aver-
age time to locate the first character is eight milli-
seconds. Thereafter, characters can be read or written
consecutively at the rate of .04 millisecond per
character.

Figure 32 shows schematically the flow of data be-
tween the drum and memory.

Storage 25

PROGRAM

INSTR. = TABLE
TABLE TRANS-

=

MEMORY

The table to be stored on the drum is first read into memory
at some location specified in the program. Instructions then

cause the table to be transferred to drum storage, also to
specified sections.

A

T

I
|
|

ALU

DETERMINE RECORD
RESULTS) CLASS OF RECORD “FIELDS

Input records are read in,
one at a time. Class of
record determines which
portion of table applies
to each record.

ACCUMULATOR

Record is processed, using data from table section in memory.

Processed record is moved to
output area to be written on
output unit. Next record is
read in to be processed.

Figure 32. Schematic, Data Flow Using the Drum for Additional Storage

26

C

IBM 705

The history of magnetic recording dates back to 1898
when the Danish scientist, Valdemar Poulsen, experi-
mented with recording sound on a steel wire. At that
time, the performance of his machine was severely
handicapped for lack of proper amplifiers and a uni-
form grade of wire.

The design of magnetic recorders was greatly ad-
vanced in Germany during World War II where
equipment capable of a high degree of fidelity was
discovered during the American occupation. Further
developments led to the use of magnetic tape, rather
than wire, for nearly all professional and commercial
sound recording equipment.

Because tape is light, compact, and durable, it pro-
vides an ideal record handling and file storage medium
for high-speed data processing equipment. Instead of
recording sound, the computer records data in coded
form.

Magnetic tape also possesses a unique characteristic
found in no other type of record— that of automatic
erasure. Although recording is permanent, affecting
the magnetic state of the tape surface itself, any previ-
ous recording is destroyed by the writing operation.
This means that tape can be used again and again
with significant saving in recording costs.

IBM magnetic tape used by the 705 is similar to
the tape used in home recording devices. One surface
is coated with a layer of iron oxide particles— so
small that over one trillion such particles cover only
one-quarter square inch of area. The coating, with
suitable binder, forms a layer about .0006 inch thick
on the plastic base. Recording actually occurs in this
oxide layer (Figure 33).

The plastic base is one-half inch wide and may be
purchased as either acetate or Mylar®. Somewhat more

MAGNETIC TAPE SECTION

FERROMAGNETIC
COATING

BASE (ACETATE OR MYLAR)

WIDTH: 0.498 1 .002 inch

TOTAL THICKNESS: .0022 (+.0003 - .0004) inch
BASE THICKNESS: -.0015 + 10% inch

COATING & BINDER: .0006 inch.

Figure 33. Section of Magnetic Tape

Magnetic Tape Recording

Figure 34. Magnetic Tape Reel

expensive, Mylar is a more stable plastic material
under changing atmospheric conditions and exhibits
approximately fifty percent more tensile strength than
acetate. IBM Durexcel magnetic tape is also available.
It combines outstanding durability and reliability
through an advanced development in the formulation
of magnetic tape coating. This produces extremely
long error-free life for the tape.

A maximum of 2400 feet of tape may be wound
on a plastic reel 1014 inches in diameter. Shorter
lengths of as few as 50 feet may also be used, if con-
venient (Figure 34).

The process of recording is similar to that previ-
ously described for drum storage. Information is writ-
ten by changing the status of magnetization of tiny
spots in the oxide coating on the tape from positive
to negative or from negative to positive (Figure 35).
All data are coded in 705 character code. A change in
magnetization represents a 1; the lack of change, a 0.
Because seven combinations of 1’s and 0’s are needed,

PLASTIC BASE
el
~

R/W HEAD MAGNETIC OXIDE

Figure 35. Read-Write Coils and Magnetic Tape

Magnetic Tape Recording 27

0123456789 ABCDEFGHI JKLMNOPQRSTUVWXYZ &-n=-8%/,%I0

Check { T I L

Zone{ 'll
(HEREN

Numerical

- N & o > @ O

Figure 36. Tape Character Coding

writing is positioned in seven tracks horizontally along
the length of the tape. These tracks correspond to the
seven-bit binary coding structure of 705 characters
(Figure 36).

Reading is accomplished by sensing the changes in
magnetization of the oxide as “bits” or 1’s as the tape
is passed over the reading heads of the tape unit.

Tape Records

Conventional recording equipment of all types nor-
mally handles records of fixed length. The punched
card user, for example, is only too well aware of the
limitation of cards to a maximum length of 51, 60, 66,
or 80 columns. This means that the ability to record
information concerning one particular item or fact is
restricted to the capacity of a single card. If more
information is needed, two or more cards are required.
However, the recording capacity is not doubled, since
the identifying data, such as name and part number,
must also be punched in all cards making up the
multiple record.

A 705 tape record is not restricted to any fixed
length of characters, fields, words or blocks. Records

Figure 37. Schematic, Variable Record Length

28 IBM 705

may be of any practical size within the available
capacity of the memory area assigned to the storage
of data. This feature not only allows for the writing
of all information pertinent to an item in a single
continuous record, but also eliminates the need for
repeating the identification in multiple records. Thus,
as much information as is needed can be conveniently
included in its most compact form (Figure 37).

Records are separated on tape by a record gap —a
prescribed length of blank tape, approximately 3/ inch
in length. During writing, the gap is automatically
produced at the end of the record. During reading, the
record begins with the first character sensed after a
gap and continues without interruption until the next
gap is reached. The blank section also provides a
space to allow for starting and stopping the tape be-
tween records. A single unit or block of information
is therefore defined or marked by an inter-record gap
before and after the data (Figure 38).

i

Figure 38. Tape Records Shown with Inter-record Gap

GAP

This method of recording also provides capability
for handling records of variable length within the
same file. Consequently, only pertinent data need be
recorded — no unused “columns” or word blocks are
necessary to fill out or pack the record to conform to
any fixed length. Reading of tape begins with the first
character following a gap and is automatically termi-
nated only when the next gap is sensed.

If short records are handled, more than one record
may be written between gaps. In this case, individual
records are separated by a special character called a
“record mark.” The mark is shown as the symbol #+
in the text and illustrations (Figure 39). It is also read
into memory in the same manner as any other charac-
ter where it is used to define separate records for
processing. The device is mainly useful to permit read-

Tape Motion ——————~

Figure 39. Grouped Records Defined by Record Marks

ing and writing large blocks of data without any
delay in starting and stopping the tape for each indi-
vidual record.

An inter-record gap, followed by a special single
character record, is used to mark the end of a file.
The character, a “tape mark,” is emitted from the
tape control at the time the file is written. Normally,
it never appears in memory, but only on tape. It is
represented in the text and illustrations as ™ (Fig-
ure 40).

TAPE MARK
TAPE MOTION —mm——— >

Figure 40. Tape Mark at End of File

Sensing a tape mark automatically turns on an in-
putoutput indicator in the tape unit signaling that
no more records are to be read from this reel. Nor-
mally, instructions should then rewind the tape and
halt the machine, since all the records in the file are
assumed to be processed. Depressing the unload key
on the tape unit then turns off the indicator and the
reel may be removed from the unit.

However, more than one file of records may be
written on a single reel. In this case, the indicator
may be turned off by instructions, and reading of the
next file of records can continue. Or, sensing the tape
mark may only indicate the end of one of a number
of reels that make up the complete file. Instructions
may then be given to rewind and continue reading
from the next reel which may be ready on a second
tape unit. In this way, operation of the system is not
interrupted while a reel change is being made.

Like movie film, the tape must have some blank
space at the beginning and end of the reel. This blank
end can be threaded through the feeding mechanism
of the tape unit. Reflective spots of aluminum foil,
placed on the tape by the operator at any desired
distance from the ends of the reel, are photoelec-
trically sensed to indicate the physical end of tape and
the starting point for recording (Figure 41).

Load Point

Tape Cleaner

Figure 41. Photo-Cell Sensing, 18M 727 Magnetic Tape Unit

The tape may also be backspaced under control of
instructions from the 705. Tape motion is reversed
until the previous inter-record gap is sensed. This fea-
ture provides for rereading or rewriting one record
or block of data when an error condition is sensed.
However, the tape may be backspaced any number of
records desired under repeated instructions.

During operation, if an error condition is detected,
the machine can be instructed to backspace and “try
again” to correct the mistake. The number of attempts
to read or write can be limited to any number, nor-
mally two or three. If the error cannot be corrected
automatically, instructions can stop the machine and
indicate to the operator where the failure has
occurred.

Because the writing operation automatically erases
any previous information on the tape, a file protec-
tion device is provided to prevent accidental erasure
of information to be saved for further reference. A
circular groove is molded around the center of each
reel to fit a demountable plastic ring. Without the
ring in place, writing is suppressed and only reading
can occur. The file in this condition is protected.
When the ring is in place, either reading or writing
can occur (Figure 42).

During writing operation, the reflective spot signals
end of reel to the tape unit. A tape mark can then be
emitted by a write tape mark instruction to signify
end of file when reading. Sensing the spot also turns
on the tape unit input-output indicator.

Magnetic Tape Recording 29

Figure 42. File Protection Device

Tape Unit

A 705 system can be equipped with any practical
number of tape units for reading or writing magnetic
tape. The same unit performs either operation. Fig-
ure 43 shows schematically the position of the tape
reels in relation to the read-write heads and feed
rollers of the 1BM 727 Magnetic Tape Unit. During

HEAD COVER SHOWN UP

Y] U

©)
(@ %7 Q < S ¢)
Split
Stop Stop
Idler Capgtor: Idlers Capston ldler
(o)(° o)Xo
Drive N A @] Drive
Capstan —] G - c
2 & apstan
@ 2]
R/W Head
4 @ —J @ @

Moving
Pulleys

L

Figure 43. Path of Tape through Machine

30 IBM 705

reading or writing, tape is transported from the file
(left) reel past the heads to the machine (right) reel.
During rewind, the tape motion is reversed.

Since it is impossible to start and stop high-speed
motion under control of the reels above, a loop of tape
is drawn into vacuum columns before it passes over
the feed rollers. As tape is drawn from one column,
it is replenished from the reel above. As it is fed into
the opposite column, the associated reel takes up slack
tape.

The head assembly is built on two vertical plates,
the lower of which is stationary. The upper plate may
be moved up and down under control of the load and
unload keys on the front of the unit or be auto-
matically raised during a high-speed rewind. Move-
ment is about one inch away from the lower assembly
to allow threading of tape by the operator. Changing
reels and threading of tape takes approximately one
or two minutes.

Rewind is under control of an instruction from the
705 or may be started manually by depressing the
load-rewind key. During rewind, the tape is trans-
ported from the machine reel back to the file reel. If
the tape has been wound onto the machine reel to a
thickness of at least 14 inch, the unit goes into a high
speed rewind. The read-write head is raised auto-
matically; tape is pulled from the vacuum columns
and passed directly over the feed rollers at an average
speed of 500 inches per second. When less than one-
half inch thickness of tape is on the machine reel,
rewind is executed at the normal speed of 75 inches
per second. A full reel can be rewound in about 1.2
minutes.

During a high-speed rewind, tape is passed between
a light source located on the lower head plate and the
load-point photo cell located on the upper head plate.

Selector Dial

Figure 44. 1M 727 Magnetic Tape Unit
for Use on mm 705 I and 1I

If the tape breaks, the light strikes the photo cell
causing the tape unit to stop.

Tape units are available in three models: the 727
(Figure 44) for use with the 705 I and II, and the
729 III (Figure 45) and 729 I used with the 705 III.
Both 729 models make use of improved methods of
checking the accuracy of reading and writing. These
features are more fully explained in following chap-
ters. The 729 III is transistorized.

Each unit is furnished with a selector dial which
may be set by the operator from 0-9. The selected
number then becomes the “address” of the unit. In-
structions in the 705 can then call the unit into use
by specitying this assigned address.

The 727 and 729 I write at a density of 200 charac-
ters to one inch of tape. This means that a 100-char-
acter record would occupy one-half inch of space; a
400-character record, two inches of tape, and so on.
Tape is moved past the read-write head at a speed of
75 inches per second. The maximum rate of reading
or writing is therefore 15,000 characters per second
or 67 microseconds per character.

Figure 45. 1sm 729 III Magnetic Tape Unit
for Use on mm 705 IIT

The 729 I1I writes at a density of 556 characters per
inch. The 100-character record occupies slightly more
than .18 inch; a 400 character record, approximately
.72 inch of tape (Figure 46). In the 729 III, tape is
moved at a speed of 112.5 inches per second, provid-
ing a maximum reading or writing speed of approxi-
mately 62,500 characters per second (16 microseconds
per character). Figure 47 compares the file space in
tape reels between the two densities.

Figure 48 is a table showing the number of records
that can be stored on a 2400-foot reel. Note that the

727 & 729 MODEL |

~ 5" A

} 1000 CHARACTER RECORD g

729 MODEL Il

J S

Figure 46. Comparison of Record Length

Magnetic Tape Recording 31

727 & 729 ‘\ » ‘\ ‘\ ‘\ ‘\
MoeL | ((Cm) (D ((J- {(J- ((m] 5 RreeLs
o Jo Je Je

MASTER FILE*

)
MODEL m{’(J- ('(J- ('(J-

3 REELS
Figure 47. Comparison of File Storage
2370 Usable Feet Per Reel

Record Length 200 Char. 556 Char.
Per Inch Per Inch
80 characters 24,730 31,810
100 characters 22,750 30,580
200 characters 16,250 25,620
300 characters 12,640 22,045
400 characters 10,340 19,345
500 characters 8,750 17,235
1000 characters 4,945 11,150
1500 characters 3,445 8,240
2000 characters 2,645 6,535

Figure 48. Tape Reel Capacity

Access Time to Record

—vtd

- .

IBM 727,729 | 10.8ms.

1IBM 729 Il 7.3ms.

Figure 49. Tape Access Time

usable length of tape is stated as 2370 feet, allowing at
least 15 feet of tape before and after the reflective
spots.

Because an inter-record gap is spaced between each
body of data on the tape, the total time to read a file
must include this time to start and stop the tape be-
tween each block of information. This is termed
“access time” — an interval required to accelerate the
tape to proper processing speed. Access time averages
10.8 milliseconds on the 727 and 729 I, and 7.3 milli-
seconds on the 729 III (Figure 49). The following are
comparisons of times for reading or writing records
on the two tape units.

NO. OF NO. OF CHAR. BM 727,729 1 1BM 729 III
RECORDS PER RECORD TIME (SECONDS)1 TIME (SECONDS)2
100 80 1.62 .86
100 200 2.42 1.05
100 400 3.76 1.37
100 600 5.10 1.69
100 1000 7.78 2.33
100 2000 14.48 3.93

1. Time computed at 67 us per character plus 10.8 milliseconds
per record.

2. Time computed at 16 us per character plus 7.3 milliseconds
per record.

32 IBM 705

The previous table shows that the effective character
rate increases in efficiency as longer records are proc-
essed — a further advantage of handling tape data. For
example:

EFFECTIVE CHARACTER RATE PER 100 RECORDS

EFFECTIVE RATE (CHARAGTERS PER SECOND)

CHAR. PER
RECORD 727 AND 729 1 729 I11
80 4,938 9,302

200 8,223 19,048
400 10,638 29,197
600 11,765 35,503
1000 12,853 42,918
2000 13,813 50,890

IBM 754 Tape Conirol

The operation of a tape unit is started by a “select”
instruction from the 705 which specifies the code or
address of the particular unit to be used. A following
instruction specifies whether the unit is to read or
write. If it is to read, the instruction specifies the loca-
tion in memory where the data are to be placed. If it
is to write, the location of the information already
in memory is specified. Other instructions can call for
backspacing, rewinding, writing a tape mark, and
so on.

The 727 tape units are connected to the 705 through
an 18M 754 Tape Control (Figure 50). This device
receives or sends all tape data through an input-output
cable connected directly to the central processing unit.

As many as ten 727 units, numbered from 0 to 9,
can be connected to one 754. Two signal cables are
attached to the control unit itself. One is used for
odd-numbered tapes; the other, for even-numbered
units. Only 727’s with odd-numbered addresses may
be connected to the odd cable; only those with even-
numbered addresses can be connected to the even
cable. Figure 51 is a schematic showing the proper
arrangement of ten tape units attached to a 754, five
on a side. As many as ten 754’s may be connected to
the 705 system.

The first two digits of a four-digit tape address al-
ways specify a tape operation. The third digit speci-
fies one of ten possible 754, while the units digit
specifies one of ten possible tapes connected to that
control unit. For example, the address 0231 specifies a
tape operation using tape control 3 and tape unit 1.

Figure 50. 1BM 727 Magnetic Tape Unit
and 18M 754 Tape Control

In the 705 system, two tapes may be operated at the
same time, one for reading, the other for writing.
Using this feature, the tape handling time for two files
may be cut in half. A common example of this is the
updating of master files. When transactions to a record
have been applied, the next master record can be read
into memory at the same time that the revised record
is being written out on the new file.

When only one control unit is available for simul-
taneous reading and writing, the tape unit used to
read must be assigned an even address. The unit used
to write must have an odd address, or vice versa; that
is, addresses 0201, 0203, 0205, and so on, may be
assigned for reading; 0200, 0202, . . . 0208 may be
used as addresses for writing. However, any two units
may be selected during one procedure. One read-while-
writing operation can use input tape 0201 and output
0202. The next can specify input 0208 and output
0205.

CENTRAL PROCESSING
UNIT

()

20

Control
Unit

N
e

o
°°° Go
N}
=1
S

Figure 51. Tape Control, Read while Writing

When more than one control is available for input
and output, such as 020x and 021x, there is no restric-
tion on the assignment of tape addresses, if the units
are connected to their corresponding odd or even
cables.

During both reading and writing operations, validity
checking of the records occurs in the tape control.

IBM 767 Data Synchronizer

The 1BM 767 Data Synchronizer (Figure 52) is de-
signed to operate as a tape control for the 729 I
and III with the 705 III system. As many as five 729 I's
and five 729 III's may be attached to one ps in any
combination (Figure 53). If only 729 I's are used, a
maximum of six ps’s can be operated. If 729 III’s are
used, only four ps’s may be operated. An 1BM 748 Data
Synchronizer Power Supply is used with each 767.

With 729 units connected to the system through two
767’s, reading, writing and computing may occur
simultaneously. This produces virtually independent
operation of the tape units.

The 729 transmits data, character by character, to
the 767. The data synchronizer stores the information

Figure 52. 1BM 767 Data Synchronizer

Magnetic Tape Recording 33

/ Regular input-output cable

CPU |

pr————

] I [1
CARD | [CARD
[DRUM | [PR!NTER] LREADER I | paRD

_\‘/ DS Cable

HODO®
= QO@Q@

100000
PO

Figure 53. Data Synchronizer in an 1M 705 III System

from tape in two five-character position buffers or
registers. As fast as the input buffer is filled, it trans-
fers its contents to the output buffer and from there
to memory.

When a particular tape unit is selected and in-
structed to read, the central processing unit proceeds
to the next instruction without waiting for the tape
to begin transmission of the data. For example, proc-
essing may continue on a previous record already in
memory. While the cpu is processing other data, char-
acters from the incoming record are read from tape,
one at a time, and placed in the input buffer of the
data synchronizer.

The capacity of the input buffer is five characters.
As soon as it is filled, its contents are deposited, all
at once, into the output buffer. The transfer is made
in time to free the input buffer for the next five
characters from the tape (Figure 54). The tape unit
continues at full speed until the entire record is read.

As soon as the output buffer has received the five
characters, it takes the next available machine cycle
of the cpu to deposit its contents into memory. This
step interrupts the cpu for a total of nine micro-
seconds only. After this brief pause, the cpu returns

®© []4]] [o]v [[n]s]

JDEEDE

BRAND

1
o o ~t
o (=] —_— —_—
o o o o (=]
o o o o o
@ ‘1]3]6[2‘]’J{b[Rlb‘AlﬂD‘AlMlslsllfA{S 0
b4 3 S hi ha
o o o [=] o
o o o o o

Figure 55. Placement of Group Marks by a ps

to processing once more until interrupted again by
the ps with five more characters. Processing again con-
tinues with intermittent interruption until the tape
record is completely transmitted to memory.

While the record is being read in this fashion, a
synchronizer address counter controls the location in
memory where the data are to be placed. It does this
by starting at the memory location specified by the
read instruction and stepping up by five as each group
of characters is read in.

If the number of characters in the record is not an
even multiple of five, the record is automatically ex-
tended while in the input buffer with from one to
four special characters called group marks. If the num-
ber of characters in the record is an even multiple of
five, no group marks are generated (Figure 55). The
group mark character is later used to terminate a
writing operation when the record is transmitted from
memory to an output unit. It is represented in the
illustration by the symbol #.

Once the entire record has been read into memory
and the ps is selected, an indicator is set, showing that
reading has been completed and that the data syn-
chronizer is available for further use. The indicator
may be tested by instructions to determine when the
complete record is ready for processing.

A writing operation works in the same way in re-
verse. Information is transmitted from memory, five
characters at a time, and placed in the data synchro-
nizer input buffer. From there it is transferred to the
output buffer and to the tape, character by character.

© Parallel Transfer Parallel Transfer
\ Q) 7 to Output Buffer 6 to Memory
\ \ A
Serial “\m ASC N -1 N 9\ - 1| M
Entry 6
from
Tone A 3\| A o . o | 3 [A
4 9\ poss— 4 ‘ > 9 ---------- 4>
7 Q |- -] 7 2 > 6 |- 7.
3 8 ol 3 7] 8 3;
Input Output Input Output Input Output
Buffer Buffer Buffer Buffer Buffer Buffer

Figure 54. Data Synchronizer, Input and Output Buffers

34 IBM 705

During writing, as in reading, the processing of other
data may continue in the cpu, interrupted periodically
for nine microseconds as each group of five characters
is transmitted from memory to the input buffer.

Data synchronizers offer the following advantages:

1. The efficiency of the 705 system is greatly in-
creased by overlapping the functions of reading or
writing and processing. Still greater efficiency is gained
if two or more ps’s are used.

2. The time that the cpu is occupied with the
receiving and disposing of information, by way of
tapes, is greatly reduced because data are transferred
between the ps and memory at the rate of nine micro-
seconds per group of five characters. This transfer
time is so short that it does not materially affect total
job time. For example, one minute is added to a
complete procedure for transfer of 33,000 records of
1,000 characters each.

3. Writing need not be delayed by reading, nor
reading delayed by writing, since these operations can
occur independently in separate data synchronizers.

4. No practical limit is placed upon the length of
records that may be read from, or written onto, tape.

5. A tape can be reading or writing through a ps
while the system is:

a. Processing in the cpU or reading from cards.

b. Punching cards or printing.

c. Reading or writing another tape through another

DS.

Tape Record Checking; Writing

All information written on magnetic tape is auto-
matically checked for validity. The method of check-
ing differs somewhat between the two models of tape
units — the 727 or the 729.

When the 727 is used in the system, the information
in memory is transmitted through the 1M 754 Tape
Control to the write head of the previously selected
tape unit. The records are then written magnetically,
character by character, in 705 code in the seven tape
tracks.

As each character is sent from memory, it is checked
in a character register in the cpu to make sure that
the total number of 1’s representing that character is
always even (Figure 56). If it is not even, a machine
check indicator is turned on to signal the error. How-
ever, the complete record is written without inter-
ruption.

The impulses to the write head from memory are
then returned as “echo” impulses to a register in the
tape control, in the same pattern in which they were

received. These impulses, representing the character
just written, are also checked for an even number of
bits or 1's. After the writing operation has been com-
pleted, the condition of this register is checked and, if
an error has been sensed, the read-write check indica-
tor is turned on to signal that an incorrect record is
on the tape.

Both machine and read-write check indicators may
now be tested by instructions. The action to be taken
is entirely governed by further instructions and may
vary, depending upon the requirements of the pro-
cedure. If the error occurred after the record left
memory, the machine may be instructed to backspace
the tape and rewrite, again checking to determine if
the operation was properly performed on the second
try. If it is, normal operation can then continue auto-
matically. The number of rewrites can be predeter-
mined — for example, the machine can be instructed
to attempt correction up to three times. If the error
still persists, operation halts and manual intervention
by the operator is necessary. In effect, the machine
automatically senses its errors, attempts to make a cor-
rection and, if successful, continues operation without
stopping.

If an error has developed in memory, however, any
rewriting operation cannot correct the condition. In
this case, the machine is normally instructed to stop
so that some manual correction to the record can be
made. When this is not feasible, the error record may
be printed for later correction in subsequent proc-
essing.

During writing on tape, an odd-even indication of
the total number of 1’s in each separate track is stored
in the tape control. At the end of every block of data,
an extra 1 is written where necessary to make the
total count in each track even. This forms a check
character at the end of the record. The check charac-

ERROR

[]
<O
MACHINE CHECK

INDICATOR O
((memory) TQ/O\

CHARACTER READ-WRITE
CODE REGISTER HEAD
CHECK
ERROR

READ-WRITE \/

CHECK INDICATOR TAPE UNIT

Figure 56. Tape Output Check

Magnetic Tape Recording 35

TAPE MOTION

2

dq
q
q

Write Gap Read Gap

VUV

)
N

%

Figure 57. Two-Gap Read-Write Head

ter is used for further checking whenever the record
is read.

Checking methods on the 729 I and III have been
improved with the use of a “two gap” read-write head
(Figure 57). In these units, one head is used for writ-
ing, the other for reading.

During the writing operation, all information re-
corded on the tape is immediately read back for an
automatic validity check on each character. In addi-
tion, a critical analysis is made of the signal strength
of the written record to assure future reading re-
liability (Figure 58). This analysis determines that:

1. Signal strength is well above the given tolerances

required to read the tape record later.

2. No unwanted signal or other interference is pres-

ent in the record area.

When an error is detected, the machine can insti-
tute automatic corrective action under control of in-
structions. This action is the same as that using the
727 units, except that it can also include skipping a
defective section of the tape. The error record is erased
and the section skipped is five or six inches in length.
In this manner, the writing of records on any defec-
tive portions of a tape is prevented without any neces-
sity for discarding the entire tape. When this same

TAPE REEL

Character 3 Strong

c Weak
i Accept Signal

Tape

Channels) 8 Too Stray
; [Weak Noise
1 Channels|C B A 8 4 2 1

TAPE LEVELS

Figure 58. Checking Bit Signals while Writing

portion of the tape is read, the section is again auto-
matically skipped by the 729.

Tape Record Checking; Reading

The 727 tape unit automatically checks in two ways
all information read from tape (Figure 59).

A character code check is made on each character as
it enters memory from the tape unit. This is a ver-
tical check to insure that an even number of 1's will
be stored for each character transmitted from the read
head. An error turns on the read-write check indicator.

A tape record consists of a sequence of characters
along the tape followed by a check character. Each
time a character is read, it is set into seven binary
triggers in the tape control. These seven triggers
keep an odd-even count, by bit, of the entire record.
At the end of the record, the check character is also
read into the same register. Since the check character
(as formed during the write operation) should contain
a 1 wherever necessary to make the total number of
bits in each track even, the sum of bits in the record
plus the check character should always be even. If it is
not even, a single bit or an odd number of bits were

VERTICAL
CHECK

l]
C W D 7
8 NN |
O A I
8 (| 14
4 nnk
2 ¢TI il i
READ WRITE ! TROENEDRNEDN
ABCbl123456

HEAD

MEMORY

J

TAPE UNIT
Figure 59. Tape Input Check

36 IBM 705

EACH
CHARACTER

ERROR
READ-WRITE
CHECK INDICATOR

HORIZONTAL
CHECK
EACH
CHANNEL

NEON
INDICATORS

lost or picked up in reading that record. An error
turns on the read-write check indicator. The check
character is not transmitted to memory. Again, cor-
rective action can be automatically taken by the ma-
chine under the control of instructions. The tape can
be backspaced and reread. If the error is corrected,
operation continues automatically. If the error persists,
operation can be halted for manual intervention or
repairs.

During a 729 read operation, each character is
placed in two registers in the data synchronizer, a high
and a low register (Figure 60). First, the low register
is checked. If all the signals are acceptable, i.e., if the
character is valid, it is sent to memory without regard
for the contents of the high register. If the low regis-
ter shows an error, however, the contents of the high
register are superimposed upon the low register in an
attempt to correct the error. The effect is the same as
if signals missing from the low register were supplied
from the high register. The low register is then re-
checked and, if correct, its contents are sent to mem-

TAPE smang

LO HI
REGISTER REGISTER
Resc;d only Read Only
rong
Signals For Accfepfoble
Validity Signals
@ - . . - .—!
L]
A 4
If Not
Valid,
Superimpose
HI Register

Figure 60. Read Checking, 18M 729 111

ory. If it is invalid, a pct data check indicator is
turned on which can then be tested by instruction.
Corrective action is essentially as explained for the 727
tape unit.

Figure 61 is a comparison of tape unit statistics.

727 7291 729 1 729 01l __ 729 IV
Tape speed in inches per second 75 75 75 112.5 112.5
Recording density per inch 200 200 200 556 556
‘Character rate persecond 15000 15000 15000 62500 62500
Record gap in inches 3/4 3/4 3/4 3/4 3/4
Record gap time in milliseconds 10.8 10.8 10.8 7.3 7.3
Maximum number IBM 752 10
of tape units per IBM 753 10
tape control IBM 754 10
device. IBM 755 8
1BM 760 2
1BM 766 8
IBM 767 (1) 5 5
IBM 774 1T or 1
1BM 777 8
1BM 7607 (2) 10 or 10
Model of Aux. card-to-tape (3) x x
tape unit Aux. tape-to-card X x
used with Aux. tape-to-printer
each IBM IBM 717 x x
system. IBM 720A-730A X x
I1BM 650 x
1BM 702 x
IBM 704 x
IBM 705 [or 11 X
1BM 705 111 (1) X x
IBM 709 x
I1BM 7070 x x
IBM 7090 x x

(1) A maximum of ten 729 | tape units may be used if no 729 Il tape units are used; otherwise

a maximum of five of each type must be used.
(2) Ten intermixed tape units may be used on each I1BM 7607.
(3) Dual level sensing is not active.

Figure 61. Comparison of Tape Unit Characteristics

Magnetic Tape Recording 37

Input-Output Units

Card Reader

IBM cards are important source documents in the data
processing system. The 705 can further process
punched cards prepared by other 1BM equipment and
can record the results on magnetic tape, drum, other
punched cards, or printed records. The 1M 714 Card
Reader handles input data at the rate of 250 cards
per minute (Figure 62). It reads standard 80-column
cards.

Figure 63 is a schematic showing the flow of infor-
mation from the card stations to mémory. The first
station after the card feed is used for checking and
control. At the second, or reading station, punched in-
formation is transmitted to a 92-position record stor-
age unit where it is held until called for by a read
instruction from the 705.

Figure 62. 1BM 714 Card Reader and 18M 759 Card Reader
Control

38 IBM 705

Record storage is an intermediate or buffer storage
between the read station and memory.

When the card reader is selected, a reading instruc-
tion transmits the contents of record storage to the
specified address in memory. This operation clears rec-
ord storage for receiving the next card. After transmis-
sion, further instructions can be executed while the
following card is being read into record storage. For
example, calculations may be made from one card and
the results sent to other output units. These units may,
in turn, begin writing while record storage is being
filled from the next card. In this way, the 705 con-
tinues with other work without delay during the com-
paratively slow mechanical operation of card feeding.

A control panel (Figure 64) provides additional
flexibility in the card reader. The function of the
panel is similar to that of panels in other 1BM card

First Read Hopper

Brushes

Stacker

Second Read
Brushes

Figure 63. Data Flow from Cards to Memory

equipment. It may be used in one or more of the

following ways:

A

AC

AD

AE

Figure 64. Card Reader Control Panel

1. Selection of only those fields to be actually used

in processing (Figure 65).

2. Rearrangement of fields in any desired order.
The record can be made to conform with the
arrangement of other card or tape records with-
out repunching cards (Figure 66).

3. Signing numerical fields with indication of plus
or minus. Normally card fields are punched with
a hole in the 11 row to indicate minus; no
punching indicates plus. Since all arithmetic
fields in memory must be signed for either plus
or minus, the signs may be emitted from the
panel without special card processing (Figure 67).

1 2 3 4 5 6 7 & 9 10 1 12 13 14 15 16 17 18 19 20
1] 0 *» 20
] © o o © o0 0 o o o (-] o ©c o (<] o o © (-] [+
2 25 0 35 40
-] o ° ° o o o -] (-] o o o (-] (<] o o o o o o
a 45 FIRST 50 READ 55 0
0o 0 o o o L] o ©o o o -] (-] [} o o o o o0 o o
61 [70 75 80
o (-] o - o o (=] o ° o -] o o o o o (-] -] o (-]
Ly s 10 Y 2.
©c o o o o o o o o o -]] o [~} o o O o -] o
H] 25 0 a5 ©
o o L] L] -] c © o©° o o o o -] o o o -] o o (-]
o 45 CHECK 50 ENTRY 55 &
o o o o o] o o o] o o o (] o o o o ©° o
6 65 70 75 80
-] (-] (-] (-] =] (<] o L] o =] o L] o el o =] (=] (-] o o
8 85 %0 92
o ©° o o o c o o o o o o
|—TO CHECK ENTRY GR. SW.T—X-12 X12—
(o0] o (] =] o o o o o o o (-} o
X oiG RSM 0.9 COLUMN 09
[o o o o o] o o <] [} o o [} o
12 2 RM COMMON SPLITS COMMON
[+] o o (<] [o o [~} (-] o o o o [~ o
o (=] (-] (<] -] o (<] o =] o o o o
DIGIT SELECTORS TO REC STOR ENTRY
o o o o o o o (-] o] (<3 o o
c 12 x 0 1 2 3 4 5 & 7 8 9 X DG RSM
=] o o =] o o o o o [~ o o L] o o o
12 12 RM
(-] -] o o -] (=] o]] (=] o o o o (=] o
-1 5 ! 15 20
=] o o -3 [=] o o o [o o (=] o o [=] o o (=] o [=]
2 25 30 35 40
o o o o o O o o o o o o o o o 9 (o] o o o
] 45 SECOND 50 READ 55 &0
o o o o o o (<] (=] o o o o [~ o =] o o (-] o =]
8 65 70 75 80
(<] o (-] [«] o o o o o] (=] o o o o o [+] o] (o] o
|1 — COMMON —5 10 15 COMMON 20
° o [[~} o o (<] (<] [o ° o o o o o o (=] o o
15t CYCLE ALTERNATORS st CYCLE
o o (-] (<] o (=] (<] o -] =] °] o o o o o (=] o o
2nd CYCLE 2nd CYCLE
o o o o (<] (<] o o o L]] (<] o (o] o o o o] o
21 — commON —25 30 3 OMMON 40
o (o] o o o (<] o o o =] o o o o o o o o o o
181 CYCLE ALTERNATORS Ist CYCLE
o o [o o] o o o o © <] o o o [+ o (=3 o o
2nd CYCLE 2nd CYCLE
o o (] [~} o (3 o o o o (o] [~} o o o o o o o o
Q COMMON % X-12 X-12
o o o o o (] o o =] o o -] [al o o o o o
14 CYCLE ALT. 0.9 £OLUMN 0.9
o [} o o] =] <] o o o] o e} =] o o o [} [o
20d CYCLE COMMON SPLITS COMMON
o o o (] o o] (<] <] © el o o o o o o o (<]
l 10 15 20-
o o o [+] o o (=] o (<] o o o o o o o o o o o
2 5 30 35 40
o o o o o (<] (-] o (<] <] [~ o o o o o o (] o o
4 45 RECORD STORAGE ENTRY 55 0
o o (<] (-] © (=]] [+] o [} (-] [o o © o o o o [+
] 65 70 75 80
o o [+ [+ -] o o =] o o o o o o o o o o o o]
[} 85 %0 92
o (-] [o o o o © o [~} o =3 FORM 22-6262

IBM CARD

CONTROL PANEL WIRING

Field | Field Field '§
1 2 3 M

RECORD STORAGE

Figure 65. Field Selection, Card Reader

CONTROL" PANEL WIRING

L

Field Field | Field- S
3 2 1 M

RECORD STORAGE
Figure 66. Field Rearrangement, Card Reader

Field

CONTROL PANEL WIRING

G/ da

Field| Field | Field |8
1 2 3 M

RECORD STORAGE
Figure 67. Signing Fields, Card Reader

Input-Output Units 39

ZONE

NUMERICAL

IRING

CONTROL PANEL

Field | Field Field
1 2 3

bl

Figure 68. Zone Elimination, Card Reader

4. Elimination of unwanted zone punching (Fig-
ure 68).

5. Emitting of constants, such as date, factors for
calculation, special characters, and so on (Figure
69).

A record storage mark is normally wired on the con-
trol panel into the position of record storage imme-
diately following the last significant character of the
card record. The mark then limits the length of the
record read into memory. For example, if only 19 col-
umns are selected from the card, the mark can be
wired into the 20th position of record storage. Only
19 characters are then read into memory. If the mark
is not wired, a 92-position record always enters mem-
ory. Unused positions of record storage then appear as
blanks. The storage mark is not transmitted to
memory.

The group mark character may also be emitted from
the control panel. This character is used to define the
limit of the record in memory when writing.

CONTROL PANEL WIRING

Field | Field Field Date |% E
1 2 3 M

Figure 69. Emitting Constants, Card Reader

40 IBM 705

CARD 2

CARD 1

46 Columns

CONTROL PANEL WIRING

CARD 2
46 Characters

CARD 1
46 Characters

RECORD STORAGE
Figure 70. Grouping Records, Card Reader

A grouping feature permits the reading of two cards
into record storage for transmission to memory as a
multiple record. As many as 46 characters may be
read from each card. However, the same card columns
must be used for all cards (Figure 70).

Each card reader attached to the 705 requires an
BM 759 Card Reader Control. Like all other com-
ponents of the system, the card readers are assigned
addresses, 0100-0199. The first two digits, 01, always
specify card reading; the last two digits, the particular
reader to be used.

Card Reader End-of-File Operations

When the card hopper empties while reading records
into the 705, the feed stops immediately. More cards
may then be placed in the hopper and, if the start
key is depressed, operation continues normally.

However, if there are no more cards in the file and
if the start key is depressed, an end-of-file sequence is
set up. Feeding continues under control of the cpu
until the last record has been transmitted from record
storage. Another feed cycle then occurs, during which
nothing reads into the storage unit. The next time
cru sends a select and read call, the input-output
indicator is turned on, signaling that the card reader
is at the end of file.

The machine can then be instructed to stop, to con-
tinue operations using other input-output devices, or
to execute any special instructions pertaining to the
end of the job.

ROW COUNT STORAGE

TRANSFERRED ROW
+——.COUNT FROM FIRST STATION

FROM FIRST STATION — 175 12)
(12 BINARY TRIGGERS) N i
0] 0]
| 1] | 1]
| 2 | 2]
—i ’% CHECK ERROR
CARD READ-WRITE
HOPPER E Kl COMPARE CHECK INDICATOR
% n ¢|
/ 7 7
“ //l STATION E E
st —L2 % SECIFN[F[<[a[]][o]o}— ROW COUNT STORAGE
/ O BEREINellel I«] FROM SECOND STATION
= 92 CHAR. CONVERT | | RE-CONVERT
2nd STATION______| REcorD | | TO | _ITO 18BM CARD
STORAGE 705 CODE CODE
\\ _ \\\
~—— CARD ERROR
CHARA(
STACKER COD?ER | . READ-WRITE
CHECK CHECK INDICATOR

CARD READER

(MEMORY)

Figure 71. Card Input Check

Card Reader Checks

The 705 checks automatically in two ways all informa-
tion read from 18M cards (Figure 71).

Hor1zoNTAL CHECK

At the first card station, the number of holes in each
horizontal row of the card is determined to be odd
or even, that is, the total number of 9’s, the total num-
ber of 8's, 7’s, 6's, and so on. Only those columns
are counted that are wired for entry to record storage.

The odd-even indication is stored, one row at a
time, in a temporary storage device consisting of 12
binary triggers. Each trigger can indicate one of two
possible conditions, odd or even.

When the card has passed the first station, the odd-
even count of all 12 rows is transferred to a second set
of triggers where it is retained during the next card
cycle. The first set of triggers is then free to indicate
the row count for the following card. The reading at
the first station is used only for checking.

At the second station, the card columns wired from
the control panel are stored in record storage. When a
read instruction is given, the card record in record
storage is converted to the 705 character code and is
sent to memory. The 705 code is also reconverted to
the 18M card code and an odd-even count is made of
each row. This count is stored in a third set of triggers
where it is then compared with the count obtained
and stored when the card was read at the first station.
A difference in the comparison turns on the read-write
check indicator.

CHARACTER CHECK

The card record read from record storage into memory
is also given a check for an even number of ones in
each character. An error here also turns on the same
read-write check indicator.

If either of the two error conditions just described
occurs, the check indicator is turned on after the in-
correct record is stored in memory. Instructions test
the indicator and stop the machine if it is on. Several
correction procedures are possible. The error card may
be reread by taking it from the hopper and feeding
it under manual control to record storage. The read
instruction is then repeated and, if a correct record
is transmitted, the machine continues normal opera-
tion under control of the program. In some cases, the
record may be manually corrected in memory, or it
may be printed as an error and omitted from proc-
essing depending upon the requirements of the pro-
cedure being operated upon.

Card Punch

The 705 can also be equipped with one or more card
punches. Standard 80-column 1BM cards are prepared
as output records which can then be further processed
by card-operated equipment. The 18M 722 Card Punch
punches at the rate of 100 cards per minute. Each
punch requires an 1BM 758 Card Punch Control (Fig-
ure 72).

Input-Output Units 41

Figure 72. 1BM 722 Card Punch and 18m 758 Card Punch Control

The record from memory is first transmitted to an
80-position magnetic core record storage. The record is
then mechanically punched while the cpu continues
with other instructions in the program. If the record
in memory is longer than 80 characters, other opera-
tions of the cpu are delayed until two or more cards
are punched for the complete record. Figure 73 is a
schematic of the punch feed and the card record
storage.

A record is sent to punch record storage in exactly
the same arrangement in which it is to be punched;
that is, the record is first set up in memory to fit
established card fields. There is no control panel on
the punch.

Addresses 0300-0399 are set aside for card punches;
the digits 03 always signify a punching operation and
the last two digits specify the particular unit to be
used.

Card Punch Checking

All punching of 18M cards by the 705 is automatically
checked in two ways (Figure 74).

42 IBM 705

CORE
MEMORY
] 80 CHARACTER RECORD STORAGE]
Hopper 1
¢ Punching Checl.dng
Station /Stohon
Stacker

Figure 73. Data Flow from Memory to Cards

ROW COUNT STORAGE

ROW COUNT RETAINED

AFTER CONVERSION (7] 7] UNTIL NEXT WRITE
ERROR FROM MEMORY 7] 1] INSTRUCTION
MACHINE CHECK) 0
INDICATOR 71 7]
@ CONVERT 2] 2] ERROR
10 3 3 CHECK RECORD
MEMORY CARD 4] 4] COMPARE CHECK
CODE H E INDICATOR
| 6 | 6|
7 7
[s] g
9 9
CHARACTER 80 coL — —
CODE RECORD
CHECK STORAGE FERFFFFIFRER]
ROW COUNT
OBTAINED AT
. CHECK STATION
s D2 OO0
ERROR
READ-WRITE I l
CHECK INDICATOR
PUNCHING CHECKING
STATION STATION

Figure 71. Card Output Check

CHARACTER CHECK

The record to be punched is given a character-by-char-
acter check when sent to record storage in the same
way as for all data handled within the machine. An
error in transmission turns on the read-write check
indicator. In this case, it is turned on before the card
is punched. If the indicator is then immediately tested
by instruction, punching can be prevented to avoid
making an error card. A blank card is advanced by
this instruction. Record storage can be reloaded with
the same record from memory and another test for
error made. Punching can thus be prevented until
record storage is correctly loaded.

However, if an error has developed in memory, the
machine check indicator is also turned on, showing
that corrective action must be taken by the operator
or that the record must be set up again in memory.

HorizontAL CHECK

The record to be punched from memory is first con-
verted from 705 character code to the 1BM card code.
The entire record is placed in the 80-position record
storage. During this operation, the machine determines
whether the number of holes in each horizontal row
of the card record is odd or even. The row count in-
formation is temporarily stored by an arrangement of
12 binary triggers. Each trigger can indicate one of
two conditions, odd or even. Trigger storage is iden-
tical with that described for the card reader.

The row count from the first trigger is then trans-
ferred to a second set of triggers where it is retained

until the next write instruction is given. The first
triggers are then free to accept a row count from the
next record to be punched. The card is punched at
the punch station.

When the next write instruction for the punch is
executed, the card passes the punch brushes. Again,
the machine determines whether the number of holes
in each horizontal row is odd or even. This row count
from the punched card is transferred, one row at a
time, to a third set of 12 triggers. Here it is compared
with the count obtained and stored when the record
was sent from memory. A difference in comparison
turns on a record check indicator during the next
write instruction to this punch unit. The error card is
now the top card in the stacker.

No corrective action is possible at this point. How-
ever, a message may be printed to indicate that an
error has occurred, bringing the condition to the at-
tention of the operator.

IBM 717 Printer

The 1BM 717 Printer is one of two types of printers
available to produce printed reports directly from the
central processing unit. The 717 writes at the rate of
150 lines per minute with lines as long as 120 charac-
ters. Each printer requires an 1M 757 Printer Control
as shown in Figure 75.

Input-Output Units 43

Figure 75. 18m 717 Printer and 1BM 757 Printer Control

The printing unit of the 717 consists of 120 type
wheels, one for each possible character position in the
printed line. Each wheel is engraved around its face
with 47 different characters (Figure 76), including all
letters of the alphabet, numbers, and the special char-
acters which can be handled by the 705 as punched or
printed output. The mechanical operation of printing
is the same as used in the 1BM 407 Accounting Ma-
chine.

All records are printed from memory. When the
printer is selected and instructed to write, the record
is first transmitted to a 120-position printer record
storage. From there, it is printed as one line of char-
acters while the 705 continues with other instructions.
Calculations, or reading and writing with other input-
output devices, may take place while a line is being
printed. If the record in memory is longer than 120
characters, other operations in the cpu are delayed
until two or more lines are printed for the complete
record.

There is no control panel on the 717. Therefore, all
information to be printed must be arranged in mem-
ory to fit the report form. Instructions in the 705 can
edit the record, performing the functions of deleting
left zeros from numerical fields and placing of decimal
points, dollar signs and the like. Totals are accumu-

4 IBM 705

lated in the 705 and may be printed as separate rec-
ords from memory.
Printer addresses are assigned from 0400 to 0499.

Automatic Carriage

An automatic carriage feeds and spaces forms for
printing (Figure 77). The carriage is controlled by
punched holes in a paper tape. The tape corresponds
to the length of one or more forms. The punched
holes start or stop the movement of the form at pre-
determined positions (Figure 78).

The carriage accommodates continuous forms to a
maximum sheet length of 22 inches at six lines per
inch or 1614 inches at eight lines per inch. The forms
may be a maximum of 1634 inches wide, including
punched margins. Although forms of any size within
these limits can be handled in the carriage, forms of
standard sizes can be obtained more quickly and
economically from the forms manufacturers.

Forms can also be designed to permit printing in
practically any desired arrangement, and skipping to
different sections of the form can be controlled by
holes punched in the paper tape.

When one form is completely filled, it can be ejected
and the next form can advance to the first printing

line or to the first body line. This “overflow skipping”
is caused by sensing a punch in a specific position of
the tape. If a group total occurs immediately_after a
record, the total may be programmed to print in some
specific line on the form. The overflow punch in the
tape can also be used to start other operations, if

g desired, before ejecting. For example, a total may be
| printed at the bottom of each page before advancing

to the next form.

The F2 is standard but the F4 may be specified in
place of, or in addition to, the F2. Forms tractors are
interchangeable. Each of the devices has two adjustable
tractor-type pin feed units, one for each side of the
form (Figure 79).

\
} Two 1BM forms tractors are available for the printer.
\
|

/ Comma

Decimal

d o . Tope Guides
= . Half Circle

Figure 76. Schematic, Print Wheel Figure 78. Tape in Carriage

fa

Figure 77. Form Feeding Carriage

Input-Output Units 45

Refold Guides

Paper Tension Control

Outfold Guide Bar

Tractor Pins

Figure 79. 1BM Forms Tractor

The F2 provides a choice of spacing, either six or
eight lines to the inch. The F4 provides a choice of
either four or six lines to the inch.

Printer Checking for the IBM 717

All printing of data by the 717 printer is checked in
two ways (Figure 80).

CHARACTER CHECK

The record to be printed is given a character-by-char-
acter code check when it is transmitted to record stor-
age from memory. An error in this transmission turns
on the read-write check indicator. In this case, the
indicator can be tested by instruction, and, if it is on,
printing can be delayed. Record storage can then be

reloaded for a second try at printing. This corre-
sponds to the punching delay when an error occurs
between memory and the punch record storage. Print-
ing can be prevented until record storage is correctly
loaded — the number of tries can be limited by the
program.

If a character code error exists in memory, the ma-
chine check indicator is also turned on. The record
must then be corrected in memory by the operator or
by rereading from the input unit, or the error can be
noted for correction in later processing.

Hori1zoNTAL CHECK

The record to be printed is converted from 705 char-
acter coding to the 1M card code and is stored in the
120-position printer record storage. At the same time
that the converted record is entering storage, a hori-
zontal row count of the digits 1-9 and the special
character combinations 8-3 and 8-4 is stored in an odd-
even register in the printer control. During printing,
a horizontal row count of print wheel echo impulses is
stored in another odd-even register also located in the
printer control. The two registers are then compared.
A difference turns on the record check indicator dur-
ing the execution of the next write instruction involv-
ing that printer.

IBM 720A and 730A Printers

The 1BM 720A and 730A Printers may also be attached
to the 705 to produce high-speed printed output di-
rectly from information in memory (Figure 82). Each

ERROR
MACHINE CHECK
INDICATOR
CONVERT 120 CHAR.
MEMORY TO IBM RECORD PRINT -— REPORT
CARD CODE STORAGE
CHARACTER 3-4] STORAGE OF ROW 34 STORAGE OF
CODE [8-3] COUNT FROM MEMORY 8-3] ROW COUNT FROM
CHECK = PRINT WHEEL POSITION
1 1
- : X X X X7
3 CHECK 3
4] COMPARE 4 2222
5 5
ERROR — - 2222
READ-WRITE] 71
CHECK INDICATOR j— 8 2022
(5] 9 22 22
R?:.".(Oolgﬁ 20220
CHECK INDICATOR 22 @22
Figure 80. 18M 717 Printing Check Figure 81

46 IBM 705

Figure 82. 18M 720A Printer

printer requires one 760 Control and Storage. The
maximum speed of the 720A Printer is 500 lines per
minute.

Maximum speed of the 730A is 1,000 lines per min-
ute. Each line may contain as many as 120 characters.

The 720A or 730A uses no type wheels or bars. In-
stead of type faces that are already formed, each char-
acter is actually formed at the time of printing. The
printing head is a matrix of 35 wires with each wire
individually controlled. Characters are printed as a
pattern of dots formed by the ends of the wires ar-
ranged in a five-by-seven rectangle (Figure 81). By
extending selected wires, the patterns can take the
shape of all the letters of the alphabet and the digits
0-9, as well as the special characters of punctuation
and report printing. As each character is formed, the
selected wires are pressed against an inked fabric rib-
bon to print on paper (Figure 83).

Form feeding is under control of an automatic hy-
draulically-operated carriage that provides quiet, precise
movement of forms during skipping or spacing opera-
tions. Line spacing of either six or eight lines per inch
is under control of a manual shift lever on the car-
riage. Single, double, or triple spacing while maintain-
ing maximum printing speeds is under control of a
punched paper tape that determines the point at

S50 Laad “C. 8869 ‘0.0. b et LA o
IS ISR Rk
i 5000: 0“. L2 44 : 24 .4 : .000=

e90 ® o2
PR
EANR NN L W A4
a6 6609 608 86 e @
foeed Soee R TT
o: ® ! %o ouo‘ ‘m’ 3‘8 i.‘.‘
i g oeeos ece ® ’“0 s002 o®
o o® o 3 R NP
o:ooo ®o00 } o::oo .oooz .2.
o®® ss000 :no e %%,
O o
80 ® ®o0e” oe® 83 ®
® a9 P 3 2 . 80
o° % ¢ . e X ® o8
@ .. .0 @ .o’oo .. :.‘
o o:!u: oo 03°% ® 88 ®eeee

.‘0‘

oodos 3
o8 ¢ oo’

Figure 83. Wire Printing Dot Patterns

Input-Output Units

47

which skipping stops, or the point at which overflow
begins. Forms from four to 2034 inches in width can
be handled with a width of printing area up to 1634
inches. The maximum form length is 22 inches for
spacing of six lines to the inch, and 1614 inches for
spacing of eight lines to the inch.

IBM 760 Control and Storage

The 1BM 760 Control and Storage (Figure 84) provides
intermediate record storage of up to 1,000 characters.
Records can be stored either from the 705 memory or
from tape during independent printer operation. Rec-
ords are printed from storage in exactly the same order
in which they are stored. Character arrangement within
each line is, therefore, entirely controlled by arrang-
ing the output record in memory before printing.

The accuracy of record handling is checked first as
the record enters storage from memory, and again as
it is transferred to the printer. Records entering stor-
age are given a vertical character check and a longi-
tudinal record check. Records sent to the printer are
given a character check for accuracy of print setup, a
longitudinal record check, a test that a character is
transmitted for every print position, and a test that the
printer is in step with the output from the storage
unit. Error indication is provided which may be tested
by instructions in the 705 program.

Figure 84. 18M 760 Control and Storage

48 IBM 705

727 Tape
" ape
- @ &
f

760 Control & Storage

760 Control & Storage 702-705 CPU

B 760 with Tapes and CPU

Printer

A 760 with Tapes and Printer

727 Tape 727

*ZA\%

i f

760 Control & Storage

!

Printer

702-705 CPU

€ 760 with Tapes, CPU, and Printer

Figure 85. Schematic, 1BM 760 and Associated Equipment

A check is also made that records do not exceed the
capacity of storage. If an overflow is detected, the ma-
chine stops with an overflow indication light on the
760.

The 1BM 760 Control and Storage is the center of
operation in a number of arrangements of units, in-
cluding the printers. Other arrangements are possible
with tape units used as input or output through the
intermediate storage of the 760 (Figures 85A, B, C).
Tape-to-tape processing may also be accomplished
without connecting the printer. Complete information
concerning the printers and 760 is published in the
IBM 7204, 7304, 735, 760 General Information Man-
ual, Form 222-6768.

Console

The operator’s console is a separate unit of the 705
system. It may be placed at any convenient position
in the installation within the restrictions of the input-
output cable lengths. Figure 86 shows a 705 system as
it might be arranged so that all units are readily super-
vised from the console.

Four main types of controls are provided (Figures
87, 88).

Figure 86. Schematic, Operator’s Console

Figure 87. 1M 705 I and IT Operator’s Console

Input-Output Units 49

Figure 88. 1M 705 IIT Operator’'s Console

1. Neon lights and indicators enable the operator
to display the contents of memory, character by char-
acter, or to display the contents of accumulator or
auxiliary storage. Under manual control, a program
may be stepped, instruction by instruction, in slow
motion as an aid to tracing the operation of the ma-
chine. Neons show the instruction being executed, the
operation being performed, and the status of other
registers and counters. Neons also display the type of
error condition that may occur.

2. Operating keys turn the power on or off; place
the machine in automatic, manual, display, or store
status; reset checking circuits and counters: clear the
contents of memory; and clear accumulator and auxil-
lary storage. Information may be stored, character by
character, directly into memory or instructions may be
set up on the console and executed under manual
control.

3. Checking switches provide the operator with an
option either to stop the machine when an error
occurs or to continue the problem if automatic correc-
tive action is possible. Alteration switches are used to
vary the sequence of machine operation according to
predetermined plan.

4. A keyboard is used for either manual entry of
data into memory or for keying the instructions to be
executed under manual control (Figure 89).

50 IBM 705

Figure 89. 18M 705 Keyboard

o

D= s

On the 705 III console, an audible signal sounds
when the machine halts, calling the operator’s atten-
tion to the fact that the system is idle. Loading of the
program has also been simplified on the 705 ITI.

Typewriter

The 705 is equipped with a typewriter located to the
left of the operator’s console (Figure 90). The type-
writer also operates under program control and prints
directly from memory, one character at a time, at
about 600 characters per minute.

The typewriter is used mainly for communication
between the machine and the operator. Special condi-
tions encountered during the course of the program,
including end-of-file, exception records, and error rec-
ords, may be noted on the typewriter. Accounting con-
trol totals, batch totals, or other control information
can be supplied at predetermined intervals during a
problem, to aid in over-all control of an application.

Other messages, prestored in memory, may be typed
to indicate type or location of error, end of job, or to
log the progress of the machine while running an
application. Portions of memory may also be typed
out as desired by manual instruction from the key-
board.

The 705 is normally equipped with only one type-
writer. The assigned address is 0500.

Figure 90. Typewriter

Input-Output Units 51

Introduction to 705 Programming

The Stored Program

The orderly processing of data in any system or pro-
cedure normally occurs in well-defined steps. A com-
plete procedure may generally be separated into three
broad areas (Figure 91):

1. Origination of data from some source transac-
tion, such as an order, sale, movement of goods,
service, payment of wages, allocation and dis-
tribution of time, and analysis of quality.

2. Processing of the data from the source record.
These operations include transcription, editing,
filing, calculation, sorting, classifying, and others.

3. Preparation of results such as reports, charts, pay-
ment statements, bills, receipts, performances,
and trends.

The procedure may be carried out using a great
variety of methods and tools. Some steps may be
clerical, particularly in the area of data origination,
transcription, and editing. Where volume is large,
processing may be done by machines using mechanical
or electronic equipment for calculation, sorting, filing,
duplicating and printing. As volume grows and com-
plexity of processing increases, machines assume more
and more importance in the system.

Once the original information has been transcribed
to cards or tape, the 705 system is capable of complete
processing and preparation of results. However, the
procedural steps must now be defined in terms of
operations that the machine can perform. Each step
becomes an instruction; the series of instructions per-

;

> —

EDITING
CLASSIFYING

TRANSCRIPTION

Figure 91. Schematic, Data Origin and Processing

52 IBM 705

] [
P w—
———PROCESSING —

L=l =R

CALCULATION

taining to a single procedure becomes the program
(Figure 92). When the program is stored in memory,
the machine can then operate upon and process the
data to produce desired results,

Instructions

All 705 instructions are divided into two parts:

1. The operation to be performed: read, write, add,
round, transfer, and so on. All operations are coded as
a single character for storage in memory. When in-
structions are written, the abbreviation is normally
used for convenience, rather than the machine code.

2. The operand (the address of the data in memory
or the device to be selected, the number of positions
to be rounded, and so on). The operand is limited to
four characters.

Each instruction, therefore, occupies five positions
of memory; one for the operation code, four for the
operand. Instructions are also always stored in mem-
ory in such a way that the last position of the operand
is located in a memory location whose address ends
in 4 or 9 (Figure 93).

Programming Example

The following section describes the application of a
simplified compound interest problem to the 705. It
is presented to illustrate the steps normally taken in

MANAGER

RESULTS

§

KA

MANAGER

l

INPUT

PROGRAM
READ
ADD
suB

STORE

‘MPY
SHIFT
SEL

WRITE
SEL
READ
T’

7,

wmiNI|

TRANSCRIPTION

Figure 92. Schematic, Stored Program

transition from known procedures to machine meth-
ods. The problem is first analyzed in terms of this
conventional procedure, a flow chart is developed, and
detailed machine instructions are then written to fol-
low the flow chart. Each instruction is briefly ex-
plained as it is used, with accompanying schematics
to show how data are manipulated by the machine.

More efficient methods might be developed with the
use of interest computing formulas. This could pos-
sibly be a more practical approach, if the volume of
data were large enough, and the methods of computa-
tion variable. In many cases, the best approach is one
based upon machine methods, rather than a program
which exactly duplicates manual methods.

The completed program is shown together with in-
structions for loading and running the problem.

In 1627, the Indians are reported to have sold the
entire island of Manhattan to the Dutch settlers for
goods valued at about $24.00. Hardly anyone would
argue the fact that the traders acquired one of the
greatest real estate bargains of history.

An interesting problem is: What interest might the
Indians have earned on the $24.00 if the money could
have been placed on deposit in a savings account at

|
!
’(— Instruction]—){(—lnsfruction 2 A){(—lnstruch’on 3>

T I I T [| T T
MEMORY OP(OIPERIAND IOP! (‘DPER\AND ’OP’ OPERAND \
| 1 L1 1

MEMORY . 8
LOCATION 8

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014

Figure 93. Instruction Location in Memory

three percent interest and compounded annually from
1627 until the present time? Admittedly, the answer is
of little practical value, but the method of solving the
problem on the 705 serves to illustrate the basic princi-
ples of computer programming.

First, assume that the machine can do all the re-
quired arithmetic in the same way that it might be
done with paper and pencil. Using this assumption,
the manual method is analyzed and a step-by-step pro-
cedure developed.

Next, this procedure is written as 705 instructions
so that the machine can understand what is to be
done. Finally, the resulting program of instructions
and the given data are stored or “loaded” into mem-
ory for machine operation.

Figure 94 shows the paper-and-pencil approach to
the problem.

The original principal of $24.00 is multiplied by the
interest rate, three percent, to obtain interest for the
first year. Four decimal places result. Since interest is
customarily adjusted to the nearest cent, the amount is
rounded two positions. Rounding is done by adding a
5 to the second digit of the interest amount and
dropping the last two digits. In the example, no carry
is effected until the fourth year where rounding raises
the interest amount from 78 to 79 cents.

After interest is calculated and half adjusted to the
nearest cent, the principal is added to produce the
compounded principal. The entire calculation is then
repeated for the required number of years.

While working the problem manually, it would soon
become apparent that an accurate tally must be kept

Introduction to 705 Programming 53

$24.00 Principal
X. 03 Multiply by interest rate.
. 7200 Interest for first year
+5 1/2 adjust second position.
. 7250 Round off two decimals.
+24.00 Add principal.
$24.72 Principal Plus Interest

$24. 72 Compounded Principal
X. 03
. 7416
+5
. 7466
+24, 72
$25. 46

$25.46 Compounded Principal
x.03
. 7638
Third Year : +5
. 7688
+25, 46
$26.22

$26. 22 Compounded Principal
.03
. 7866
+5
L7916
26.22
$27.01

Figure 94. Indian Problem, Manual Method

of the number of calculations. For example, the
elapsed time from 1627 to 1959 is 332 years. There-
fore, the calculation is repeated 332 times.

The most convenient way for the machine to do this
is to set up the quantity 332 in a counter and subtract
one each time the calculation is performed. When the
number in the counter reaches 0, the problem is
finished.

The entire procedure may also be shown in flow
chart form (Figure 95). Note that the steps, as out-
lined, almost exactly follow the manual method. Once
instructions are set up to execute the first calculation,
they can be repeated for all the following calculations.
After the program has been repeated 332 times, the
answer is printed and the machine stops.

Instructions must also precede the main program to
read the data into memory and to set a counter to the
quantity 332.

The problem is now analyzed in terms of machine
operations. The next step is to reserve space in mem-
ory for storage of data. When this location is estab-
lished, the instructions may be addressed to manipu-
late the data from the known locations. Figure 96 is a
schematic showing the layout of factors for the
problem.

54 IBM 705

Read Data
Into
Memory

Set Counter
To Number

~\

Repeat

Multiply
Principal
Times Rate

Round Interest
Two Places

Add Interest |
To Principal

Store
Compounded
Principal

Count e
Number OFf
Calculations

Calculation

NO

Answer

Figure 95. Flow Chart, Indian Problem

DATA STORED IN MEMORY

—+

[FI

103
1037

1014 ©+
<

1017 o=
1018

Answer Area

Figure 96. Data in Memory, Indian Problem

C 111
8| [1]1] {1]1] 7 PLUs OR MINUS
Al 1 INDICATION
8 |1 1
4 CODING FOR 3 SAME AS C
2(1|1|1]1]111| CODING FOR 3 SAME AS L
V] i
+ 2
03 co3lL

Figure 97. Signing Numerical Digits

The first factor is the interest rate, stored at mem-

ory locations 1001 and 1002 as O-ii’o-. Note that the field
is signed because it is to be used for arithmetic. In the
705, ’s in the AB positions of the character indicate
plus, and a 0 in the A and a 1 in the B position indi-
cate minus (Figure 97).

The coding of 3 is therefore identical to coding for

the letter C. The difference between 3 and C is sig-
nificant only in the manner in which the machine is
instructed to use the character. As previously stated,
all numerical fields are normally signed over their
units position with a plus or minus indication.

The original principal amount ($24.00) is stored as
a signed field in memory locations 1003-1014. This
same area is also used to store the compounded prin-
cipal as repeated calculations are made. Zeros are in-
cluded to the left to allow enough space for the
possible size of the answer. At this point, this field
length is only a guess; supposedly the programmer
would not take time to estimate accurately what the
answer is.

The number of years of elapsed time is stored at
locations 1015-1017. As each calculation is completed,

+
a 1 is subtracted. The 1 is stored in location 1018.

An answer area is set up in locations 1019-1036.
This arrangement pre-positions the dollar sign, com-
mas, and the decimal point for printing. All output
records from the 705 must be arranged in memory
exactly as they are to be printed, punched, or written
on tape.

A group mark is positioned in location 1037. This
special character limits the writing operation. For ex-
ample, if the machine is told to write the characters
on the typewriter, beginning at location 1019, the
characters are typed, one at a time, through succes-
sively higher positions of memory until the group
mark is sensed.

To place data in memory, the various factors are
punched in an 1BM card as shown in Figure 98. The
data are punched in the exact sequence in which they
are to be stored.

Location 0004

The first instruction of the program selects the card
reader to prepare for reading the data card into mem-
ory (Figure 99). It is shown below as seL 0100. Note
that for convenience a mnemonic abbreviation repre-
sents the operation code. However, when the instruc-
tion is to be used in memory, only the single character
code is stored. For sEL, this character is 2. There-
fore, in memory, the complete instruction appears as
20100 and would be stored as shown in Figure 93.
Any convenient area may be used for instruction
storage. Assume that, for this problem, the first instruc-
tion is stored in memory at locations 0000-0004; the
second, at 0005-0009, and so on. The location is writ-

i UL IH

RATE| PRINCIPAL YRSH ANSWER AREA DATA

THE INDIAN PROBLEM

CARD \

345678 910101213 06015 16 1718015 20 21 22 7324 25 26 27 28 23 30 31 32 33 4 35 %63

IRRERRRRERREIIR] | IRERRERRRRERERRRERI
22|222222220222)222|2{22222222222222222.22
3332333333333 33030333033303330333[3

lnilllllllnullnnennolnnolnunlnnnnuuou
2
1

4344444444 4004J44440444442444448444444)4
55/555555555555(555(5/555555555555555555
ESSGGGEGGGSESGGGBGG&ESSSGGGGBGGSSSGGI:
IR R RRRERRERNIIN

-

M1111711111171119 1911

000600
30 3940 41 4243 4 4545 47 4B 43 50 51 5253 54 5550 5! 56 5960 61 62 SA M4 6566 67T FABI DT 7273 U57677 18 73 80
IRRRRER R R R R R R R R R R AR AR AR R AR RRRRRR R
222
333
444444444 4404444444444444844444448444444444
5555556555555555555555555555555555555555555
65666

T1777111177111171711111111111117117171717117111711

99/999999999999/9999998999999999998999
izfresersanunnussabedinnnnnsnrmnnnznuss

s8/ss8888888888/sec/sfjeBeoslBaocclssalocslensssssssnssasssss8888888883888888888828888
] sl9
3 37

999999999899999999899999999999999999598989458
96041 0243 4445 4647 434850 51 5253 54 55 5 5758 59 60 61 6263 64 65 66 6768 63 7071 7273 14 75 %6 77 18 18 80

Figure 98. Data Card, Indian Problem

INSTR. INSTRUCTION STOR.

LOCATION [OPer. | ADDRESS | CODE | ACCUMULATOR 00

SIGN]

STORAGE

AUXILIARY

01-15 EXPLANATION

SIGN]

0004 | SEL | 0100

Select card reader

Figure 99. Program Example

Introduction to 705 Programming

55

Figure 100. Select Card Reader

ten on the program sheet as 0004, 0009, 0014, and
so on,

Select (2 — SEL)

The various units of the 705 system are called into use
by preceding the address of the unit with a select
operation. Only one unit or device may be selected at
one time and the device remains selected until another
select instruction is executed (Figure 100).

The select operation differentiates between a mem-
ory address and the address of a machine component.
For example, the address 0100, when preceded by an
ADD operation, instructs the machine to add the quan-
tity stored at memory location 0100. When the address
is preceded by a SEL operation, the instruction refers
to the card reader.

Location 0009

After selection, a read instruction transfers the con-
tents of the card reader record storage into memory
beginning at address 1001 (Figure 101).

Read (Y — RD)

The read instruction is used to place data in core
memory from a previously selected input device; card
reader, tape unit, or drum (Figure 102).

Information is transmitted to memory starting at
the location specified by the read instruction address.
Transmission continues, character by character, into
successively higher-order positions of memory until
reading is stopped by the card reader record storage
mark, an inter-record gap on tape, or a drum mark
at the end of the drum record. For example, when

MEMORY POSITIONS

92 POSITION
RECORD STOR.

Figure 102. Read Card Record Address 1001

reading the data card shown in Figure 98, the first
character is stored at memory location 1001; the sec-
ond, in location 1002; the third, in 1003; and so on.
Sensing the reader storage mark, wired from the con-
trol panel, terminates the read operation from a card.
The storage mark is not read into memory. If no mark
is wired, all 92 positions of record storage are trans-
mitted with unwired positions as blank characters.
Blank columns of the card are also converted to blank
characters in memory.

The first character of a tape or drum record is stored
in the memory location specified by the read address.
Following characters are stored in successively higher
memory positions until the end of record is sensed.

Note: When a data synchronizer is used, the read
address must always end in 0 or 5.

Locations 0014, 0019

The number of years is set up in auxiliary storage
unit 01. Each time a calculation of compounded prin-
cipal is made, a 1 is subtracted from the counter. The
interest rate is set up in the accumulator to prepare
for calculation of interest (Figure 103).

The 705 adds, subtracts, multiplies, and divides
when given arithmetic instructions. These instructions
can be applied to data stored in accumulator storage,
auxiliary storage (except multiply and divide) or in
memory. They are normally applied to specific numer-
ical factors or fields, such as factors developed during
calculation or fields selected from records.

INSTR. INSTRUCTION STOR.
LOCATION | OPER. ADDRESS | CODE

=T
) AUXILIARY
7

ACCUMULATOR 0C STORAGE 01.15

SIGN|

EXPLANATION

0004 | SEL 0100

Select card reader

0009 [RD 1001

Read data card

Figure 101. Program Example

56 IBM 705

e e o | Accumusron ool & AULAY 13 EXPLANATION
0004 | SEL 0100 .Select card reader
0009 |RD 1001 Recad data card
0014 |RAD 1017 101 332 +[Set control ctr to no years
0019 |RAD 1002 03 + Get interest rate

Figure 103. Program Example

To select a field from memory to be acted upon by
an arithmetic instruction, the field is always addressed
by the memory location of its units digit. The remain-
ing digits of the field are automatically read from
right to left until a non-numerical character is
reached. All characters, including blanks, are con-
sidered non-numerical except the digits 0-9. Thus, a
numerical field in memory is defined as beginning at
the location of its units digit and extending to, but
not including, the next left non-numerical character.

Arithmetic instructions should always be addressed
to “signed” fields. Both positive and negative fields in
memory should be signed. Numerical fields are signed
by placing a plus or minus sign indication over the
units digit of the field (Figure 104). On the 705, the
equivalent of the 12 zone in punched cards indicates
the plus sign, and the 11 zone, the minus sign. The
sign indication actually converts a numerical digit to
a non-numerical character in the same manner that an
11 or 12 punch over a digit punch in 1™ cards forms
a letter of the alphabet (Figure 97).

The absence of a zone or the presence of a zero zone
does not satisfy the requirements for a signed field.
When an unsigned field is addressed by an arithmetic
instruction, the sign is interpreted as plus. The correct
arithmetic is performed but the machine indicates an
error condition. A sign check indicator is turned on.

When an instruction calls for the movement of data
between memory and storage, the address of the in-
struction must not only specify the location of the
data. but also the storage unit to be used. Since an
address is strictly limited to four characters, zone cod-
ing over the hundreds and tens positions of an arith-
metic instruction address designates either accumulator
storage (00) or any particular auxiliary storage unit
(01-15) . Figure 105 shows the codes for the accumulator
and all auxiliary storage units. The codes are actually
the binary numbers 1 through 15. To simplify pro-
gram writing, a column on the program sheet is
reserved for the number of the storage unit to be
used (00 for the accumulator, 01-15 for auxiliary
storage). Assume that the zone coding is given to the

+ + +
ﬂb10ll|7l§‘4‘9 6l1|§l0|0‘0|1‘6|0\6 2ll 8 9!1‘3 OH
S Field 8 Field = Field 2 Field § Field §
°] 9 2 2 3 < 4 © 5

Figure 104. Signed Fields in Memory

necessary address before the program is placed in
memory.

The instruction G 4 3 5 0 is interpreted by the 705
and executed so that it adds the number located at
position 1 4 3 5 0 to the factor in accumulator 00.

01 10 11

The instruction G 4 8 b 0 is interpreted and exe-
cuted so that it adds the number at location 14350 to
the factor in asu 11.

Reset and Add (H — RAD)

The reset and add operation enters a numerical field
from memory into accumulator or auxiliary storage.
The address part of the instruction specifies the loca-
tion of the field in memory and the storage unit to be
used (Figure 106).

Digits are entered into the storage unit starting
with the specified right-hand digit of the memory field.
Entry continues successively from right to left (higher-
order to lower-order memory locations) until a non-
numerical character is sensed. The zoning (sign) of the
addressed digit of the memory field is not entered into
the storage unit.

The accumulator or auxiliary storage sign is set to
plus when the addressed character has plus zoning,
and is set to minus when the character has minus zon-
ing. If the character has neither plus nor minus zon-

Acc. or Aux.
Storage Address
No. of

Number Positions Thousands Hundreds | Tens Units
00 256 00 00
01 16 00 01
02 16 00 10
03 16 00 n
04 16 01 00
05 16 01 01
06 16 01 10
07 16 01 1
08 16 10 00
09 16 10 [
10 16 10 10
11 16 10 1
12 16 1 00
13 16 1 01
14 16 1 10
15 32 1 il

00 indicates no zone; Ol indicates zero zone;

10 indicates 11 zone; 11 indicates 12 zone

Figure 105. Accumulator and Auxiliary Storage Table

Introduction to 705 Programming 57

MEMORY
2(4(0|8(3(3|%|T|s|b],|b|blb],]B
L ~ N el
5 & ™88 g

ASU'S
TR [A
INDICATOR
ASU 01 STARTING
7 POINT
COUNTER

Figure 106. Reset and Add “Years” into asu 01

ing, an error is indicated and the sign of storage is
set to plus. A sign check indicator is then turned on.
The sign of the designated storage is automatically
set to plus when the result in storage is zero.

The field in storage is marked by the position of the
starting point counter and a storage mark. The start-
ing point counter indicates the position of the right-
hand (units) digit. The storage mark is placed next
to the position of the left-hand (high-order) digit of
the field.

The field for number of years at location 1017
would be placed in auxiliary storage unit 01 as a332.
The sign indication of all asu’s is set to plus. The field
in memory is unaffected and could be placed in some
other unit if desired.

Location 0024

The interest rate in accumulator is multiplied by the
principal stored in memory at location 1014 (Figure
107).

Multiply (V — MPY)

The multiply instruction causes a field in memory to
be multiplied by a factor in accumulator storage 00.

The multiplicand is the field in memory specified
by the address part of the instruction.

The multiplier is the accumulator factor.

The product is developed in accumulator storage.
The number of digits in the product is equal to the
sum of the number of digits in the multiplier and

MEMORY

ojojofofojo|o|o|2|4]0

o+

w

w
A

o
W+

PRINCIPAL

RA 75

o™
[=3
o

1014

g XIX|X[X{X]a]0O]|3]X Xz + | ACC.
SIGN
ACCUMULATOR STARTING
BEFORE POINT
MULTIPLY COUNTER
X000000000007200X1ACC.
SIGN

POINT

ACCUMULATOR AFTER MULTIPLY TSTARTING
COUNTER

Figure 108. Multiply Rate % Principal

multiplicand. A maximum product of 128 digits can
be obtained. Only the accumulator can be used for
multiplication (Figure 108).

The resulting accumulator sign is plus if both mul-
tiplier and multiplicand have like signs, and minus if
they have unlike signs.

Only numerical fields can be used in multiplication.
The use of non-numerical fields produces inconsistent
results.

When the addressed character of the field in mem-
ory has neither plus nor minus zoning, an error is
indicated and the sign of the field is interpreted as
plus. The sign check indicator is turned on.

Location 0029

The interest in accumulator is half adjusted to the
nearest cent by a round instruction (Figure 109).

Round (E— RND)

The round instruction moves the starting point coun-
ter of the accumulator to the left the number of posi-
tions specified by the address part of the instruction.
Only the accumulator can be specified. The field re-
maining in storage is limited to those digits between

lC)I:As;'r(-)N o;;?wcrs;sss 2?1;; ACCUMULATOR 00 é 573:::‘:?::15 é EXPLANATION
0004 | SEL 0100 Select card reader

0009 |RD 1001 Read data card

0014 |RAD 1017 332 +| Set control ctr to no years
00192 |RAD 1002 03 [+ Get interest rate

0024 | MPY 1014 | 000P0000007200 [+] Rate x principal = interest

Figure 107. Program Example

58

IBM 705

AUXILIARY
STORAGE 01.15

INSTR INSTRUCTION STOR.
LOCATION [OPER. ADDRESS | CODE

SIGN]

Z
ACCUMULATOR 00| 9
>

EXPLANATION

0004 | SEL 0100

Select card reader

0009 [RD 1001

Read data card

0014 [RAD [.1017 | O1

332 [+ Set control ctr to no years

0019 [RAD 1002 03 |+

Get interest rate

0024 | MPY 1014

Rate x principal = interest

0029 {RND 0002

1/2 adjust interest

Figure 109. Program Example

the accumulator mark and the new position of the
starting point counter (Figure 110).

A 5 is added to the digit to the right of the final
position of the starting point counter. Any resulting
carry is added to the units digit of the remaining stor-
age field.

When a carry is made out of the high-order position
of the original field, the result is extended one posi-
tion to the left to include the carry, and the overflow
check indicator is turned on.

When the result in accumulator storage is zero, the
sign is always set to plus.

Location 0034

The interest in accumulator storage may now be
added to the principal in memory. There are two
methods of doing this. The principal may be added in
the accumulator and the result stored back in mem-
ory. Two instructions are needed: one to add in
storage, and a second to return the sum to memory.

In the 705, a simpler method is available. The field
in the accumulator may be added directly to an arith-
metic field in memory using one instruction, add to
memory (Figure 111).

alo]o|o]ojojojofojolo|7{2}0

‘gs.P.c.
aoooooooooo7250x§

ACCUMULATOR AFTER
RND 0002 S.P.C.

ACCUMULATOR BEFORE
RND 0002

Figure 110. Round 0002

Add to Memory (6 — ADM)

The add-to-memory instruction adds a field in ac-
cumulator or auxiliary storage to a field in memory.
The storage unit and the memory field are specified
by the address part of the instruction (Figure 112).

The result replaces the original memory field and
the field in storage is unchanged.

Addition may occur in two ways depending upon
whether the addressed position in memory is signed
or unsigned: (1) if signed, the addition is algebraic,
except that a carry beyond the next non-numerical
character is lost. The proper sign is placed over the
units position of the field in memory. (2) If unsigned,
the addition is not algebraic. This method is explained
under the section “Address Modification.”

Location 0039

After each calculation of compounded principal, a
count is made by subtracting 1 from the number of
years (Figure 113). When the number equals 0, the
problem is finished.

MEMORY BEFORE ADM 1014

N+
—
<

+ +
of{3sfojo|ojofojojofoj2(4]|0]0]3]3

o PRINCIPAL 3 b2
8 2 2e
MEMORY AFTER ADM 1014
+ + +
o|3{o|ofofofo|o]o]o]2|4|7|2{3|3]|2
§ PRINCIPAL AND INTEREST 3 =2

5|0

2
+ SPC

INSTR, INSTRUCTION STOR.

F AUXILIARY
LOCATION [OPER. | ADDRESS | CODE H

STORAGE 01-15

SIGN|

ACCUMULATOR 00

EXPLANAJION

0004 | SEL 0100

Select card reader

Figure 112. Add Interest to Principal

0009 [RD 1001

Read data card

+

0014 | RAD 1017 | 01 332

Set control ctr to no years

0019 | RAD 1002 03 |+

Get interest rate

0024 | MPY 1014

Rate x principal,

= interest

0029 | RND 0002

1/2 adjust interest

;. 0034 | ADM 1014

Add interest to principal

Figure 111. Program Example

Introduction to 705 Programming 59

ocanion [—5peR T ABDHESE | copt | Accumuiator oo 8| Auxiarr TE EXPLANATION
0004 | SEL 0100 Select card reader

0009 {RD 1001 Read data card

0014 |[RAD 1017 | 01 332 |+ Set ctrl ctr to no years
0019 [RAD 1002 03 |+ Get interest rate

0024 | MPY 1014 Rate x principal = interest
0029 |RND 0002 1/2 adjust interest

0034 | ADM 1014 Add interest to principal
0039 |{SuB 1018 | 01 331 [+] Subtract 1 from ctrl ctr

Figure 113. Program Example

Subtract (P — SUB)

The subtract instruction subtracts a numerical field in
memory from a factor in accumulator or auxiliary
storage. The address part of the instruction specifies
the location of the field and the storage unit to be
used (Figure 114).

Digits are subtracted from storage starting with the
specified right-hand digit of the memory field and con-
tinuing from right to left until a non-numerical char-
acter is sensed. This non-numerical character is not
subtracted from storage.

The result in accumulator or auxiliary storage is
the difference between the storage factor and the speci-
fied memory field. The result replaces the original
storage factor.

The accumulator or auxiliary storage sign is set
according to the rules of algebra for subtraction.
When the addressed character has neither plus nor
minus zoning, an error is indicated and the sign of
the field is interpreted as plus. The sign is always set
to plus when the result in storage is zero.

The left-hand limit of the result is automatically set
by a storage mark stored next to the highest-order
digit.

MEMORY

e[z [o[2[F]s }

~r
—
(=]

1017
1018

Z °|3|3I2|§ | + | OF
ASU's

ASU 01 T
BEFORE S.P.C.

SUBTRACTION

SIGN
Uel=[o['] <
ASU's

ASU 01
AFTER
SUBTRACTION

Figure 114. Subtract Operation

60 IBM 705

The length of the result equals the longer of the
two fields being subtracted, unless a carry is made out
of the highest-order position. In this case, the result
is extended one position to include the carry as its
most significant digit, the storage mark is positioned
to the left of this digit, and the overflow check indica-
tor is turned on.

When the overflow exceeds the capacity of an auxil-
iary storage unit, the carry is made into the adjacent
unit with proper positioning of the storage mark in
this unit.

The subtract instruction does not affect the field in
memory.

Location 0044

The next instruction, transfer on zero specifying
Asu 01, tests the contents of asu 01 for zero (Figure
115). If the control counter equals zero, the calcula-
tion of compounded principal is completed. In this
case, the address of the TRz instruction directs the
machine to location 0054 where instructions will be
executed to print the answer.

If the control counter does not equal zero, the ad-
dress part of the TRz instruction is ignored and the
machine proceeds to the next instruction at location
0049 in the normal manner. This instruction is an
unconditional transfer (Figure 115); that is, the next
instruction to be executed is always located at 0019.
At 0019, the compounded principal is placed in the
accumulator and the entire calculation is repeated.
Subsequent instructions are repeated until the control
counter is again tested for zero. The instructions at
locations 0019 through 0044 form a program loop.

When the control counter reaches zero, the transfer
instruction is skipped and the machine is directed to
the instruction at location 0054 to print the answer.

Transfer on Zero (N — TRZ)

The transfer-on-zero instruction causes a program
transfer when the zero indicator of accumulator stor-
age or of the auxiliary storage units is turned on. The

AUXILIARY
STORAGE 01.15

INSTR. INSTRUCTION STOR.
LOCATION [OPER. ADDRESS | CODE

0004 . | SEL 0100 Select card reader

0002 | RD 1001 Read data card

0014 | RAD 1017 | 01 332 [+ Set ctrl ctr to no of years
0019 | RAD 1002 03 |+ Get interest rate

0024 | MPY 1014 Rate x principal = interest
0029 | RND 0002 1/2 adjust interest

0034 | ADM 1014 Add interest to principal

SIGN|
SIGN]

ACCUMULATOR 00, EXPLANATION

0039 | SUB 1018 | 01 331 |+

Subtract 1 from ctrl ctr

0044 | TRZ 0054 | 01

Test ctrl ctr for zero

0049 | TR 0019

Figure 115. Program Example

accumulator zero indicator is turned on when the
contents of accumulator storage consist of characters
having zero numerical portions. The auxiliary storage
unit’s zero indicator is turned on when the contents
of the last used unit consist of characters having zero
numerical portions. These characters are zero, plus
or minus signed zero, and the record mark.

The address part of the instruction specifies the
memory location of the next instruction to be exe-
cuted after the transfer. The address must also specify
either accumulator storage (00) or any of the auxiliary
storage units (01-15).

When a storage field consists of characters having
zero numerical portions, the sign indicator is set to
plus. Therefore, if a distinction is to be made between
zero and plus, the transfer on zero must precede the
transfer on plus.

NoTE: As a result of an incompleted division opera-
tion, the accumulator contents may be zero with the
minus sign of the replaced dividend. See “Divide.”

Location 0049

A transfer instruction is used to repeat the calculation
if the result in asu 01 is not zero.

Transfer (1 — TR)

The transfer instruction is used to change the sequence
in which instructions of a program are executed. The
address part of the instruction specifies the memory
address of the right-hand digit of the next instruction
to be executed.

pper—

Ctrl_not zero, calc again

Locations 0054, 0059

After execution of the TRz instruction at 0044, the final
answer to the problem is stored at memory location
1014 as a signed numerical field. The field is not suit-
able for printing, since it contains insignificant zeros
and an alphabetic character in location 1014. The
answer is now transferred to the memory area reserved
for this purpose, the one that contains the dollar sign,
commas, and the decimal point. The field is first trans-
ferred to the accumulator by a RAD instruction and
then to memory by a store-for-print instruction (Fig-
ure 116).

Store for Print (5 — SPR)

The store-for-print instruction normally is used to
transfer a numerical field from the accumulator or
auxiliary storage to memory. However, this instruction
can also be used to store alphabetic fields from the
accumulator or auxiliary storage to memory.

When the sign of the storage unit is plus, a blank is
stored in the memory position specified by the address
part of the instruction.

When the sign of the storage unit is minus, a dash
is stored in the memory position specified by the ad-
dress part of the instruction. The numerical storage
field is stored in the memory positions directly to the
left of the sign position. The storage mark determines
the left limit of the field to be stored.

When periods or commas are encountered in mem-
ory, these memory positions are skipped and the digits
are stored in successively lower address positions.

Insignificant zeros, characters with zero numerical
portion, and commas in the resulting field in memory

INSTR. INSTRUCTION STOR.

z AUXILIARY
LOCATION [OPER__| ADDRESS | CODE H

STORAGE 01-15

ACCUMULATOR 00

SIGN|

EXPLANATION

0054 | RAD 1014

Get answer into acc

0059 [SPR 1036

Put answer in mem for print

Figure 116. Program Example

Introduction to 705 Programming 61

are replaced by blanks. The characters b, &, and — are

stored as # -6_ 0, respectively. Zeros to the right of a
decimal point are not replaced.

The store-for-print instruction must always be ap-
plied to fields of known lengths. For example, to store
in a ten-position (plus punctuation) memory field, the
storage unit must contain ten digits. If it contains less,
the resulting memory field may include remaining
high-order digits from a previous field.

The field in the storage unit remains unchanged by
this instruction.

Locations 0064, 0069, 0074

The typewriter is selected for printing by the instruc-
tion at location 0064 (Figure 117). A write instruction
prints the answer beginning at memory location 1019.
The machine stops for end of job.

Write (R — WR)

The write instruction transmits a record from memory
to the record storage unit of the card punch or printer.
From there, it is punched in a card or printed on a
report form. Records from memory are transmitted
directly to the tape unit to be used for writing, to the
drum section to be used for storage, or to the type-
writer. The write instruction does not affect the record
in memory.

Information is written from memory successively
from left to right, starting at the memory position
specified by the address part of the instruction and
continuing until a group mark is reached. Informa-
tion written is limited by the group mark.

For example, when writing on tape, the instruction
WR 1201 places the character stored in memory posi-
tion 1201 on the tape as the first character of the
record, position 1202 as the second character, 1203 as
the third, and so on until the group mark is sensed.
The group mark in memory stops the writing opera-
tion and a record gap is automatically placed on the
tape. The group mark is not written on tape.

When cards are being punched, the character stored
in the memory position specified by the address part
of the write instruction is punched in column 1. The
second character from memory is punched in col-

umn 2, the third in column 8, and so on until the
group mark is reached. If the length of the record is
less than 80 columns, the remaining columns in the
card remain unpunched. Records longer than 80 char-
acters are punched in successive cards by a single write
instruction. The write status is maintained and subse-
quent operations are delayed until the last block of
records has been read into record storage. The 8lst
character of the record in memory is punched in
column 1 of the second card, and so on.

On the 1BM 717 Printer, the first character of the
record specified in memory is printed by print wheel 1,
the second by print wheel 2, and so on, until 120 char-
acters have been written. If the length of the record is
less than 120 characters, the remaining print wheels
do not print. Records longer than 120 characters are
printed on successive lines by a single write instruc-
tion. The write status is maintained and subsequent
operations are delayed until the last block of charac-
ters has been read into record storage.

Note: The carriage switch on the printer may be
set to PROGRAM. In this case, the first character of the
record stored in memory is used for carriage control
such as skipping and space control. The section “Ma-
chine Components” explains this procedure more fully.

During writing on the drum, the group mark in
memeory is converted to a drum mark at the end of the
record.

Note: If a 705 III with a ps is being used, the units
position of the address of the first character to be writ-
ten must be a 0 or 5.

Stop (] —HLT)

Execution of this instruction stops the cpu operation.
Depressing the start key causes the machine to read
and execute the next instruction.

Several stops may be included in a program for the
convenience of the operator. An error in reading or
writing an end-of-file condition, or various other situa-
tions, may be programmed to stop or “halt” operation.
The address part of the stop instruction can be read
from the console when a stop occurs. The address,
therefore, may be coded to indicate to the operator
why machine operation has been interrupted. Any ad-
dress can be given to the instruction.

INSTR. INSTRUCTION STOR.
LOCATION [OPER. ADDRESS | CODE

AUXILIARY

ACCUMULATOR 00 STORAGE 01.15

SIGN|
SIGN

EXPLANATION

0064 | SEL 0500

Select typewriter

0069 | WR 1019 Write answer

0074 | HLT 9999 End of job

Figure 117. Program Example

62 IBM 705

ol ob ool folole kol [sB sl LB o [o[. ek T Ll [o[o [l l[o [+ 1 | |

o .. < ~
Rate-Q: Principal TYrs.~ 2 Answer Area
S S o

b

0~
S o
S o

ﬂiHHIlIHHI_IIIIIIHIIHIHI

T

01 02 03 04 05 06 07 08
09 10 11 2 13 14 15
lOlCN:;ll:‘)N o;;ts,"uc::s:;sss 2?;5 ACCUMULATOR 00 é 513::3;'5‘:115 é EXPLANATION
0004 SEL 0100 Select card reader
0009 RD 1001 Recd data card
0014 RAD | 1017 | 01 332 |+| Set control ctr. to no. of years
0019 RAD | 1002 03 |+ Get interest rate
0024 MPY | 1014 | 000p0000007200 |+ Rate x principal = interest
0029 RND | 0002 0p0000000072 |+ 1/2 adjust interest
0034 ADM | 1014 Add interest to principal
0039 SUB i018 | 01 331 [|+| Subtract 1 from control ctr.

0044 TRZ | 0054 |01

0049 R 0019

XXXXXXXXXX_ | F

x

0054 RAD | 1014

0059 SPR 1036

0064 SEL | 0500

0069 WR 1019

0074 HLT | 9999

Figure 118. Complete Program, Indian Problem

Complete Program

The completed program for the Indian problem is
shown in Figure 118. To actually run the job, the
instructions are punched in an 1M card for reading
into memory. Figure 119 shows the card after punch-
ing with the instructions coded as they are to be stored.

To load instructions into memory, the operator uses
the following procedure, assuming that power is on
and that a card reader 0100 is available to the cpu.

1. Depress the clear memory key on the console to
erase any information now in memory.

9. Place the instruction card, followed by the data
card (Figure 98), in the card reader and depress the

start key twice. The instruction card is now in record
storage.

3. Depress the instruct key to place the machine in
instruct status.

4. Key instructions as follows (705 I, II):

a. 20100. Select card reader.

b. Y 0000. Read instruction card beginning at
memory location 0000. Instructions are read
into memory locations 0000-0074 just as they
are punched in the card.

c. Depress start key. The machine executes the
instruction at 0004 (the first instruction of
the program) and continues automatically un-
til the end of the job is reached.

20100| Y100} |HIOU7 |HI002 |[VIOI4 |E0002/61014 |PI0JB |NOON4 10019 |HIOI4

1 i]
SEL | RO RADOI RAD | MPY | RND | ADM 5UB QI 25| ™ RAD

1 2 3 4 5 ﬁ 7 i a 10 1
oBomsl oRBoooloojooRTofoboojoRBRojonBocooBoopll oojoMBoojooloo
123 o4 S8 7 & 810111213 14159 1) 18 19 ?12?131‘75%271‘!2310!!]73314313(,311!1‘.‘“!|l2l}“0&‘6!7“43!05!12535—\55
lIllI1IIIIIIIIHIIIlllllllll‘lIllllllllllllHlllll1|1ll

INSTRUCTION CARD
W2222022222022222)222202222202222M22222122222122222122222222212

THE INDIAN PROBLEM
33333033333(33333[33333]33333]3333333333]33333{33333]33333[33333

444444444444‘44444444444l444444aulu4444444l444444444l
55555555555555555555’5555 5555E555555555 5585555555555 5)
66666(6666666666(66666(66666(56666fi666666666(56666/66666/66666

71777777777717.717777)7777177777777'7777777777717177777

88888 llBBBIl!lﬂl!l888308883388B8888EBH(H!B'O&SBBBS&SBIBBSB

hz)3 14 |

coNoojoBolMooRocjoooncjpocoo
56 57 58 58 |61 52 63 64 65[65 67 68 69 70[71 72 73 74 75| 771819 80
'S ERRIREREIN 0 K1 ERURY RRRR]
22222)0222202222202222222222
33303{33333/233333333333333
44444/4444844844/04484444424
B555555055/55555/55555/55555
6666066666/66666/666C666666
R RN REIIRERRIIARERIIRRRE]

3888888888388888888888888

w0l 2213 16 156 17 18 19 20k 22 22 24 25126 22 2¢ 79 30kt 32 35 34 35136 37 38 39 40lar 42 43 44 4shas 42 48 43 50051 57 53 34 591

99999/99999/99999/99999/9999899999999 9999999999{9999f}l99999
123 asfe 189 2

56 57 58 59 60161 62 63 64 G

51036 | 20500|RI019 |J9999 \
SPR | SEL | WR | HLT
i]

5 16

5999995999Jls,eo!lellllsssag
»

65 €758 69 70173 72 73 4 75176 17 36 7€ £)

Figure 119. Instruction Card, Indian Problem

Introduction to 705 Programming 63

5. Key instructions as follows (705 III):
a. Key address of card reader in memory address
selector.
b. Depress auto load key to place first card rec-
ord in memory beginning at location 0000.

Summary of Additional 705 Operations

The following section summarizes the functions of
operations not described previously in this “Introduc-
tion to 705 Programming” section.

Reset and Subtract (Q — RSU)

The reset and subtract instruction enters a numerical
field into the accumulator or auxiliary storage from
memory. The address part of the instruction specifies
the location of the field and the storage unit to be
used. The field in memory is not affected (Figure 120).

The accumulator or auxiliary storage sign is set to
minus when the addressed character has plus zoning,
and is set to plus when the addressed character has
minus zoning. However, when the result is zero, the
sign of storage is always set to plus.

It the addressed character is not plus or minus
zoned, an error is indicated. The field in memory is
assumed to be plus, thereby setting the storage sign to
minus.

Add (G — ADD)

An add instruction adds a numerical field in memory
to a field in accumulator or auxiliary storage. The
address part of the instruction specifies the location
of the memory field and the storage unit to be used.
The field in memory is not affected (Figure 121).

MEMORY

Halolefolols [« 3]s [ele e[l }

493
493
493

Digits

Accum
Sign

a

FLERER

ACCUMULATOR

o~

XIX

Starting
Point Counter

Figure 120. Reset and Subtract 4936 into Accumulator

64 IBM 705

MEMORY
+ + ¥
X Y[6|2|3]4|9(7|6]l4]0|0]ol0]3]9
@ el pog el
o~ o~ (s
8 8 8 S

X|X|X|af1]|2({5|7]9

f 5.p.C.

Figure 121. Add 8026 to Accumulator

The result in storage is the sum of the storage and
memory fields and replaces the original contents of
storage. Storage sign is automatically set according to
the rules of algebra except that it is always plus when
the result is zero.

It the addressed memory character does not have
plus or minus zoning, an error is indicated and the
memory field is assumed to be plus.

Subtract (P — SUB)

A subtract instruction subtracts a numerical field in
memory from a field in accumulator or auxiliary stor-
age. The address part of the instruction specifies the
location of the memory field and the storage unit to
be used. The field in memory is not affected (Figure
122).

The result in storage is the difference between the
storage factor and the memory field. The result re-
places the original storage factor. The storage sign is

MEMORY

SERRE

XlY

3026 | &+
3036 © +

FIELD

H‘s.r’.c.

Figure 122. Subtract 3031

set according to the rules of algebra, except that it is
always plus when the result is zero.

If the addressed character is not plus or minus
zoned, an error is indicated and the sign of the mem-
ory field is assumed to be plus.

Store (F —ST)

The results of arithmetic operations are always ob-
tained either in the accumulator or auxiliary storage
as numerical fields. These results may be placed in
memory by using a store instruction. The address of
the instruction specifies the location in memory where
the field is to be placed and the storage unit to be
used (Figure 123).

The stored factor is automatically defined in mem-
ory as an arithmetic field. The sign of storage is
placed over the units position of the field as plus or
minus zoning. The next position to the left of the
field in memory is examined to determine if it is a
digit or non-numerical character. If it is a digit with
no zoning, a plus zone is automatically added.

The factor in the accumulator or auxiliary storage
is not affected and may be used for further calcula-
tion or it may be placed in other locations of memory
if desired.

Divide (W — DIV)

A numerical field in accumulator storage is divided by
a memory field using a divide instruction. The address
specifies the location of the divisor in memory. Only
accumulator storage can contain the dividend (Figure
124).

As with all arithmetic instructions, the addressed
character must be signed. Otherwise, an error is indi-
cated and the field is interpreted as plus.

MEMORY BEFORE STORE

¥ ¥
 EAAAARARHONAAERE,

o [+e] o

S § g

9} W 1’2}

MEMORY AFTER STORE

{Telelelolols [elz[ofo[s[[s]

ilale[5

5022
503

STORAGE FIELD

elofo[1[2]s]]

STORAGE S.P.C.
Figure 123. Store 5033

QUOTIENT - ACCUMULATOR
DIVIDEND - ACCUMULATOR

DIVISOR - MEMORY

IDBODDENHEEDONDDHE

ACCUMULATOR
AFTER -p.C.

Figure 124. Divide 6027

Two additional rules apply to the divide operation:

1. The dividend must contain a greater number of
digits than the divisor.

2. The divisor must be greater in value (regardless
of sign) than an equal number of digits at the
left end of the dividend.

If these rules are violated, an error is indicated and
the machine proceeds to the next instruction. Since
the magnitude and length of fields used in division
are normally known to the programmer, the dividend
may be adjusted by adding zeros to the left to prevent
violation of the divide rules. If the conditions are not
always known, an error condition may branch the
program to instructions that take corrective action.

The accumulator sign is plus if the divisor and
dividend have like signs, and minus if they have un-
like signs.

Set Left (B —SET)

The set left instruction adjusts the length of the ac-
cumulator or auxiliary storage field to the number of
characters specified by the address part of the instruc-
tion. The adjustment is made to the left end of the
field by properly placing the storage mark (Figure
125).

If the mark is placed beyond the left position of the
field, the storage positions between the field and the
mark are filled with zeros. If the mark is placed in
some position of the field itself, that position of the
field and any positions to the left of the mark are no
longer considered as part of the storage contents.

Introduction to 705 Programming 65

STORAGE BEFORE

U]e] [ofofelsle R[]

STORAGE s.P.C.
MARK ZEROS
X00001234567i +
STORAGE AFTER * s.P.C.

SET LEFT 0010

STORAGE BEFORE

XXXX01234567é +

X{X[X[X|a|[l1[2]al4]}5]|6]|7 +

STORAGE AFTER
SET LEFT 0004
Figure 125. Set Left 0004

Therefore, the positioning of the storage mark either
extends the field to the left and adds zeros, or it cuts
off significant digits from the left end of the field.

The set left instruction may also be used to couple
auxiliary storage units. For example, seT 0018 specify-
ing Asu 01 extends Asu 01 to 18 positions. Sixteen posi-
tions of the field are located in asu 01; two positions,
in asu 02.

Lengthen (D — LNG)

The lengthen instruction shifts the starting point
counter of the accumulator to the right. The address
of the instruction specifies the number of positions to
be moved (Figure 126).

A zero is added to the right of the accumulator field
for each position moved by the counter.

The lengthen instruction may only be used with
accumulator.

ACCUMULATOR BEFORE

[2[a[[s]x[x[]x]¢
]

a

xx

S.p.C.

ACCUMULATOR AFTER
Il2’3‘4'5‘0]0l0 (o] E
? S.P.C.

a

{[]

Figure 126. LNG 0004

66 IBM 705

ACCUMULATOR BEFORE

b pelx[xfe o [2s[e[s[e [3
L]

a

S.P.C.

ACCUMULATOR AFTER

{lxx[e [2[s [« [x[]
i

a

S.P.C.

Figure 127. sur 0003

Shorten (C — SHR)

The shorten instruction shifts the starting point coun-
ter of accumulator storage to the left. The address of
the instruction specifies the number of positions to
be moved (Figure 127).

Because the field in storage consists of those char-
acters betwen the position of the starting point coun-
ter and the storage mark, the movement of the counter
to the left has the effect of removing characters from
the right end of the storage field.

The shorten instruction can only be used with ac-
cumulator storage.

Transfer on Zero (N — TRZ)

The transfer-on-zero instruction causes a program
transfer when the zero indicator of accumulator stor-
age or of auxiliary storage is turned on (Figure 128).

The address part of the instruction specifies the
memory location of the next instruction to be exe-
cuted. The address must also specify either accumula-
tor or a particular Asu. Auxiliary storage zero indi-

Read

Record

L

Calculate

ASU Zero Indicator \
oefefefolo o]y

ASU 04

Do
Exception
Routine

$

a

ey K—|
Record

Figure 128. Transfer on Zero

Read Record

AL

Calculate

|
Accumulator Sign l7

[
FERTTEERE (1 sy el

Routine
S.P.C.

T
|

Accumulator
Yes

Write Record

Figure 129. Transfer on Plus

cator is set when the contents of the unit last used are
zero.

Transfer on Plus (M — TRP)

The transfer-on-plus instruction causes a program
transfer when the sign of accumulator or auxiliary
storage is plus. Figure 129 shows a program testing the
sign of the accumulator. The address part of the
instruction specifies the location in memory of the
next instruction to be executed. The address must
also specify either accumulator or a particular Asu.

Note that the sign of auxiliary storage is set to plus
when the result in the last used asu is plus.

Load Storage (8 — LOD)

The load instruction places a designated field in mem-
ory in either the accumulator or an auxiliary storage
unit. The size of the field is determined by the posi-
tioning of the starting point counter and the storage
mark which adjusts the length of the contents of stor-
age (Figure 130).

MEMORY
;HERBERTbJO’NESbO9432]
1 >
3 3
ACCUM.
X| XX | X[X[X[a|J|O|N|E|S|X + SIGN
LOD 1630 ﬁ‘ s.p.C
{Accumulator Set Five Positions)
30JONESb09432] + ASY
SIGN

LOD 1637 ASU 01
(ASU 01 Set to 12 Places)

Figure 130. Load 1630

(EFBEEFEETT

MEMORY AFTER

20

iABY‘?ZbSYSTE

{XXXOSYSTE

M
ACCUMULATOR ‘ﬁ‘ 5.P.C.

Figure 131. unL 2017

For example, if a set left instruction adjusts storage
to ten positions, a following load instruction for that
storage unit loads ten characters from memory. A
memory area of any size may be loaded up to the
capacity of storage.

The address part of the instruction specifies the
right-hand memory location of the memory data and
the storage unit to be used.

The storage sign is always set to plus by the load
instruction. The contents of memory are not affected.
Characters are placed in storage exactly as stored in
memory with no regard for the sign of a numerical
field. Thus, storage may be used to hold alphabetic,
numerical or mixed fields as required.

Unload Storage (7 — UNL)

The unload instruction accomplishes the reverse of
load. Information in storage is placed in memory at
the location specified by the address part. Any storage
unit or accumulator can be specified (Figure 131).

The number of characters placed in memory is de-
termined by the number of positions available as the
contents of storage. Therefore, if the storage mark is
ten positions to the left of the starting point counter,
ten characters are placed in memory.

The storage sign has no effect upon the data placed
in memory. Contents of storage remain the same.

Compare (4 — CMP)
The compare instruction compares the contents of ac-
cumulator or auxiliary storage with a portion of mem-
ory specified by the address of the instruction. The
particular storage unit to be used is also designated by
the address.

The contents of storage are compared with an equal
number of positions of memory. Comparison proceeds

Introduction to 705 Programming 67

in the usual way; that is, the most significant charac-
ters are those on the left.

All characters that can appear in memory can be
compared, including record mark and group mark.
The ascending sequence of 705 characters is as follows:

blank . [T $ & $* — /, % # @ 0 A through I
6] through R * § through Z 0 through 9

Transfer on High (K — TRH)

When a comparison determines that the storage field
is higher than the field in memory, a high indicator is
turned on. The indicator may be interrogated by a
following transfer-on-high instruction. If the indicator
is on, the next instruction to be executed is located
at the address specified by the transfer instruction. If
the indicator is off, no transfer is effected.

The indicator remains on until another comparison
is made and may be interrogated as many times as
desired.

Transfer on Equal (L — TRE)

The transfer-on-equal instruction executes a program
transfer if the results of a comparison are equal. The

Set
Left

3 Cj
o
Q.

Storage

=

Compare

I:‘ansfer High
High Reutine
Equal Transfer

N K on
Routine

=

=

m
e}

[=}

Q

Low
Routine
[
Continue
Program

Figure 132. Branching after Comparison

68 IBM 705

location of the next instruction to be executed is
specified by the address of the transfer. If the com-
parison is not equal, no transfer is executed. The
transfer-on-equal instruction can be used any number
of times between comparisons.

When comparison between storage and memory de-
termines that the storage field is lower than memory,
neither a transfer-on-equal nor a transfer-on-high in-
struction can be executed. The next instruction in
sequence is performed in the normal manner. Figure
132 shows how the program may be branched as a
result of a comparison.

Data Transmission

Various methods may be used to move data in the 705
from one memory location to another. These methods
provide ability to transfer records from input to out-
put areas, rearrange and combine records, put infor-
mation in sequence and classify it, and work with any
portion of the record or records in memory. Specific
operations are available to the programmer to move
data from memory to memory, from memory to stor-
age, or from storage to memory. Data to be trans-
mitted from one storage unit to another, however,
must always pass through memory. The transmission
may specify particular fields, groups of fields, or indi-
vidual characters.

Transmission may be character-by-character or in
groups of five characters.

MEMORY

delelefoflols[[[E[[o [

ASU 04

972

aRE’S[ULTINASU‘t

~———12 POSITIONS -—»‘b}

MEMORY
éRECORDbFIELDXXX
@K
3
- RCV 1468

TMT 9720 ASU 04

Figure 133. Receive-and-Transmit Operation, Serial

Receive Serial (U — RCV)

A receive instruction is used to specify a location in
memory to which information is to be transmitted
from some other portion of memory. This location is
specified by the address of the instruction (Figure 133).

The address, like that of a read or write address,
specifies the first left-hand character of the group of
characters to be moved.

Because two portions of memory are involved in the
transmission, two counter or indexing devices are used.
The address of the receive instruction is placed in
memory address counter II (mac II). The counter
steps up one position for each character moved.

Memory address counter (Mac I) contains the ad-
dress of the characters to be transmitted as explained
below.

Transmit Serial (9 — TMT)

The transmit instruction address specifies a location in
memory from which information is to be placed in
another area of memory. It normally follows a receive
instruction. The address also specifies an auxiliary
storage unit and refers to the memory location of the
first character to be transmitted.

The number of characters sent to the receive area
is determined by the number of positions between the
starting point counter and the storage mark of the
specified asu. That is, if transmission is controlled
by asu 10 set to 12 places, 12 characters are sent to
the receive area. Any Asu may be specified. Neither
the storage unit nor its contents is affected by the
transmit instruction. The unit may be previously ad-
justed by a set left instruction or it may be set prop-
erly as a result of calculation.

Memory address counter I is set by the address of
the transmit instruction and steps one for each char-
acter transmitted.

5
9

o|me[m]ofr[¥]*[:

TR (e

P o O~
s 58
FIVE CHARACTER
BLOCKS
{(Ire o[r]efd Tefelo[e[m]em] o] ¥[*]3

~t 80~
g s8

RCV 0944

TMT 0124

Figure 184. Receive-and-Transmit Operation, Five-Character

Receive (U — RCV)

Five-character transmission may also be used in a man-
ner similar to single-character transmission. In this
case, blocks of five characters are received. The address
of the instruction specifies the location of the fifth
character of the first block. The address must always
specify the memory location with an address ending in
4 or 9 (Figure 134).

The address of the receive instruction is also placed
in Mac II which steps five positions for each block
of data received.

Transmit (9 — TMT)

The transmit instruction normally follows a Rrcv.
When no asu is specified, a five-character transmission
occurs.

The address of the T™T designates the units position
of the first block of five characters to be transmitted
to the receive area. The address must always refer to a
memory location ending in 4 or 9 and the total num-
ber of characters affected is always evenly divisible
by 5.

Transmission is limited by a record mark in the
units position of the last block of five characters. Sens-
ing the mark terminates the operation and the record
mark is moved as any other character. The mark must
therefore be placed in a memory position ending
in 4 or 9.

In any other location, the transmission is not
affected.

The address of the T™T is placed in mac I which
steps five characters at a time as transmission occurs.

MEMORY

[EERER S QR QUNRE

1069

a

il e e[[r[o s n]s1)
ASU 06 ﬁ

MEMORY

(e[lely {Iuellole[*[>[2]
o N
g &
RCV 2009
SND 1004 ASU 06

Figure 135. Receive-and-Send Operation

Introduction to 705 Programming 69

Send (/ — SND) (705 I11)

The send instruction is similar in operation to the
five-character rcv and T™T (Figure 135). It causes high-
speed movement of data from one location in memory
to another. However, it is not necessary to place a
record mark to limit transmission. Instead, the num-
ber of five-character blocks sent is controlled by a
preset AsuU.

As in the transmit operation, the sNp must be pre-
ceded by a rcv instruction to set Mac II at the loca-
tion of the receiving area. Both rcv and snp instruc-
tions must have addresses ending in 4 or 9. The
address of both instructions refers to the units position
of the first block of five characters to be moved.

Five characters in memory are moved for each single
position of the designated storage unit. Contents of
storage and the transmit area of memory are not
affected.

Blank Memory ($ — BLM) (705 III)

The blank memory instruction is used for such opera-
tions as the blanking of an output area before arrang-
ing the next record for printing or punching. BLm
may be executed in two ways (Figure 136).

1. The address of the instruction, with no Asu speci-
fied, indicates the number of five-character blocks to
be filled with blanks. A preceding rav instruction with
an address ending in 4 or 9 specifies the receive area.

Example:

RCV 25024
BLM 0003

These instructions cause blanking of 3 groups of
five characters, beginning with the character at loca-
tion 25020 and ending in location 25034.

MEMORY BEFORE

iAREAbTObBEbBLNK
& 2
< Q

MEMORY AFTER
bbb‘bbbbbbbbbbbb
g g
& &

RCV 25024

BLM 0003

or
RCV 25020
BLMO1 0015

Figure 136. Receive-and-Blank Operation

70 IBM 705

2. The address of the instruction may specify asu 01
(and only asu 01). In this case, individual positions
of memory will be blanked. The number of blanks
generated is controlled by the numerical portion of
the BLM address. A preceding Rcv instruction specifies
the address of the character in memory where blank-
ing will begin. Example:

RCV 25020
BLM 01 0015

These instructions cause the blanking of a total of
15 characters, starting with location 25020 and ending
with location 25084.

Read while Writing (S— RWW)

A record or group of records may be read into mem-
ory from tape while at the same time another block
of data may be written from memory onto tape. As a
result, the tape time may be overlapped. Two areas

_ - e

SEL
Input Tape

B
=z

Read First
Record

H

Process
Records

¢

Select
Input Tape

RWW

<L

SEL Output
Tape

|

WR

|

TR. to Process
Input Record

Figure 137. Read-while-Writing Operation

of memory must be set aside for this operation, one
for reading in and the other for writing (Figure 137).

The read-while-writing instruction conditions a pre-
viously selected input tape unit to retain its selected
status. The instruction can only be used with an 1BM
754 Tape Control. It prepares the unit to read, but no
reading is done until a subsequent write instruction is

executed. The address part of the instruction specifies
the memory location of the first character to be read
in. This address sets mac II.

After the output tape is selected, a write instruction
causes simultaneous reading and writing. The write
address is the location of the first character to be writ-
ten. The address also sets MAc L.

Introduction to 705 Programming 71

Programming Features

Zoning of Data Fields

A number of operations in the 705 permit the pro-
grammer to manipulate the numerical and zone por-
tions of data separately. Such instructions are useful
to adjust the sign of numerical fields, to act upon
operation codes as data or to examine and change any
individual binary bit within a character in any posi-
tion of memory.

The following examples illustrate the principles of
manipulating zones in order to sign fields from incom-
ing 18M card records and to change an operation code
for the purpose of constructing a program switch.

The numerical fields in cards are commonly signed
by punching a specific zone punch over the units digit
of the field to denote minus, or with no zone punch-
ing to indicate plus. When fields of this kind are read
directly into memory, both the plus and minus fields
must be given proper zoning to define them as numer-
ical fields. Assume that one six-position card field is in
memory at location 4168. Position 4168 may contain
either no zoning or minus zoning.

If no zome is present, signifying plus, the scn 4168
generates a plus in the accumulator which is placed
in the same location by Apm 4168. If the zone is minus,
the minus zone is removed by the seN instruction, and
replaced by the apm instruction.

The same instructions will also properly sign the
fields in memory if the X punch designating minus
is placed in some other position of the field, for exam-
ple, location 4163. In this case, the address of the sign
instruction becomes 4163 and the apm instruction
remains 4168.

Sign (T — SGN))
The sign instruction is used to remove any zone from
a single memory character and place it in the accumu-
lator or aucxiliary storage. The character affected and
the storage unit to be used are specified by the ad-
dress of the instruction.

When the zoning of the addressed character in mem-
ory is minus, a dash (minus zone) character is placed
in the storage unit and the storage sign is set to minus.

When the zoning of the addressed character is other
than minus or no zone, an ampersand (plus zone) is
placed in storage with the storage 51gn set to plus.

The addressed character remains in memory with
no zoning.

72 IBM 705

&= X Punch Denotes Minus,

No X Denotes Plus

MINUS ZONE

IEGOEE:

MINUS FIELD %

NO ZONE

PLUS FIELD @
<

@)

IN MEMORY IN MEMORY <
SGN 4168 SGN 4168
<[[[« €] ¢ o[-
ACCUMULATOR‘ES ACCUMULATORESPC
ADM 4168 PLUS ADM 4168 = MINUS
ZONE & 7ONE
{123452 123'4’53’}

Figure 138. Signing Fields in Memory

The sign in storage (ampersand or dash) may be
given to any memory character by an add- -to-memory
instruction (Figures 138 and 139).

Add to Memory, Unsigned Fields (6 — ADM)

The add-to-memory instruction may be addressed to
an unsigned field in memory. In this case, the addi-
tion is not algebraic. It begins with the right-hand

‘fMlNUS ZONE

2l2]4[s]s]

3 3
S5 MEMORY =

L/f: NO ZONE
2[2]«[se]

MEMORY

[
4163 | = |

4168

lx[xe]-J

ACCUMULATOR s P.C.

[x]e[e]

ACCUMULATORﬁS_p.C_
SGN 4163 SGN 4163
PLUS MINUS
ZONE ZONE
112{3(4]5|6 12,345’2
S pus 8 3 minus B
N FIELD IN ¥ S FIELD IN' ¥
MEMORY MEMORY
ADM 4168 ADM 4168

Figure 139. Signing Fields in Memory

digit of accumulator or auxiliary storage and the ad-
dressed character in memory and continues from right
to left until the storage mark is reached.

If non-numerical characters, including blanks, are
encountered in either memory or storage, both zones
and digits are added separately. The zone portions are
added as binary numbers; the numerical parts are
added decimally.

Carries are propagated binarily or numerically
through each portion of the memory field, except that
any carry beyond the position of the storage mark is
Jost. The contents of storage are not affected.

Branching

The flow chart shown in Figure 140 illustrates a sim-
plified routine for file maintenance. In such a pro-
cedure, a master file is normally adjusted by current
transactions to bring it up to the latest accounting
period. These two files, master and detail, become in-
put to the 705 system.

As the master records are read in, they are normally
in ascending sequence by some key field, account num-
ber, customer number, part number, and so on. The

Read
Master

Read
Detail

Comp. Detail
to Master

Process

Write
New Master

Figure 140. File Maintenance, Basic Flow Chart

detail records must be in corresponding sequence by
the same key field. As each detail record is read in,
it must be compared against the master to ascertain
if it applies to the particular record just read into
memory. Normally, detail records do not apply to some
masters; the ratio of activity to the file varies, depend-
ing upon the particular procedure involved.

If the detail matches the master, the results of the
comparison are equal. The program should then fol-
low the instructions to process the detail against the
master.

If the detail record is higher in the key sequence
than the master, it indicates that the master record
now in memory has no corresponding detail. It is con-
sidered inactive, and is to be merely copied on the
output file without processing. The result of a high
comparison, therefore, must direct the program to a
series of instructions that accomplish this.

If the detail record is lower than the master, it sig-
nifies that the detail does not match and cannot be
processed. This is normally an error condition where
the unmatched record must be written out separately
as unmatched. In the flow chart, this branch of the
program indicates a machine stop.

The entire operation may be compared to the func-
tion of a collator matching and merging two files.
However, the 705 executes its instructions in sequence
and, in order to feed the master file without feeding a
detail, the instructions for reading details must be
skipped.

To accomplish this, a program “switch” is inserted
between the instructions for reading masters and read-
ing details. The switch may be set by the machine,
depending upon which condition of high, equal, or
low comparison is encountered.

An unconditional transfer instruction is placed in
the program as a switch. When the operation code of
this instruction (a digit 1) is executed, a transfer is
made directly to the comparison instruction. In this
condition, the switch is closed.

To open the switch and allow the program to ignore
the transfer, the operation code 1 is changed to A.
The character A is the code for “no operation.” That
is, the machine does not execute this instruction but
takes the next instruction in sequence.

The soN and ApM instructions are used to set the
switch to either no operation or transfer. The sGN in-
struction, addressed to the switch, removes the zoning
from the character A, converting it to a digit 1. The
ApM replaces the zoning, changing the 1 to a charac-
ter A. Figure 141 shows the essential steps of the pro-
gram written in flow chart form.

The ability of the 705 to operate upon instructions
as data is one of the most important aspects of the

Programming Features 73

> 0004 SEL 0200
0009 RD xxxx

0014 TR 0124=3=0124 SGN 0010
0129 ADM 0010
0134 TR 0029
0019 SEL 0100

0024 RD xxxx

0029 SET xxxx -~
0034 LOD xxxx
0039 CMP xxxx
0069 PROCESS --€—— 0044 TRE 0069
0049 TRH 0059
0054 TR 0139==30139 HLT 0001

0059 SGN 0010
0064 TR 0109

0104 I
0109 SEL 0201

0114 WR xxxx
— 0119 TR 0004

Figure 141. File Maintenance, Program Schematic

stored program. Among other advantages, it enables
the machine to adjust its own procedure depending
upon the varying conditions of the problem to be
solved. Not only may the operation codes be changed
by instructions, but addresses may be changed as well.
Thus, a single instruction may perform the work of
many with a consequent saving in memory space.

Address Modification

In general, address modification serves two purposes.

1. The number of instructions in a program may

be reduced, conserving memory for data or other
storage.

2. The machine may vary its own instructions de-
pending upon circumstances encountered during
the working of a procedure. A basic flow of work
controlled by the program can thus serve as a
pattern of procedure which can change as re-
quired by the type of entry data, the result of
calculation, various error conditions, end-of-file
detection, and so on.

The ability of the machine to use limited judgment
while it performs work adds greatly to its flexibility
and the extent of its application. The degree of judg-
ment exercised is written into the program within the
framework of the possible operations which it can exe-
cute. The efficient and practical use of this judgment
is directly related to the skill and ingenuity of the
programmer. Address modification is one means of
making the program more effective.

74 IBM 705

The programmer should always keep in mind, how-
ever, that while the total number of instructions may
be reduced by modification, the number of machine
operations may be increased. In many cases, addi-
tional instructions may be more efficient, provided the
necessary memory area is available. These conditions
vary with each application of the 705.

As an example, the address part of instructions
selecting the various components of the 705 system
may be modified by other instructions in the program.
One use of this type of modification is the selection
of alternate tape units when an end-of-file condition
is signaled. A reading or writing operation may then
continue without interruption on an alternate unit
while the first unit is rewinding or standing by for
reel change. When a tape file is made up of more
than one reel, reading or writing may proceed from
reel to reel with a minimum of lost time.

In the program shown in Figure 142, two tape units
are used alternately to read a file. Addresses of the
two units are 0201 and 02083.

The units and tens positions of each tape address
are stored as constants in memory at locations 9019
and 9021. The select address in the program for the
Input tape is reset to 0201 and the constants 01 and 03
are loaded into auxiliary storage units 01 and 02 by
preliminary instructions.

When a transfer on signal is effected by an end of
file, the contents of Asu 01 are compared against the
address part of the tape unit select instruction at loca-
tion 0104. When the address is 0201, that is, when the
comparison is equal, Asu 02 is unloaded, changing the
address to 0203. When the address is 0203, the com-
parison is unequal and asu 01 is unloaded changing
the address to 0201. The select address therefore alter-
nates between address 0201 and 02083.

Figure 143 illustrates a second method of alternat-
ing between addresses by calculation. The sum of the
units and tens position of two tape addresses is stored
in memory as a constant factor. Any two component
addresses may be alternated by a two-digit factor, if
the sum of their units and tens positions is not
greater than 99. In Figure 148, tape unit addresses
0201 and 0203 are used. The factor in memory is
therefore the sum of 01 and 03 or 04, and is stored
at location 9021.

When end of file is signaled from tape unit 0201,
the units and tens position of the tape select instruc-
tion (location 0104) are loaded in asu 01. The constant
04 is subtracted to obtain a minus result. This result
is unloaded into the tape address. The minus sign of
the result is ignored by unloading.

When end of file is signaled from tape 0203, the
constant 04 is subtracted from 03 to obtain the re-

nstr. in

F@Lth!Ibkkhbgllllll!llll NERRERERRANEEND

Memory 3 & R§

AUXILIARY

INSTR INSTRUCTION STOR. 5 5
ACCUMULATOR 06/ 0| ¢y geg. 01-15 |2

LOCATION OPER. ADDRESS | CODE

EXPLANATION

Housekeeping

04 [SET 0004 |01

QAXXXX

0009 LOD 2019 {01 00201 +

0014 |UNL 0104 |01

Reset Select Address

0012 |SET 0002 |01

a01 +| Get Constant 01

0024 [SET 0002 (02 axx

0029 |LOD 9021 |02 a03 +| Get Constant 03
Main Routine »

0104 [SEL 0201 Input Tape Unit

0109 |RD XXXX Read Record

0114 [TRS 1014

End of File

Change Addreds

1014 |CMP 0104 |01

A.S.U. 01 vs. Select Address

1019 [TRE 1034

Address is 0201

1024 |UNL | 0104 |01

Change Address to 0201

1029 IR 0104
1034 L 0104 |02 Change Address to 0203
1032 IR 0104

Figure 142. Program, Alternate Tape Units

sult 01. Unloading this result changes the tape ad-
dress from 0208 to 0201. The select address alternates
between 0201 and 0203 each time end of file is
signaled.

The address part of instructions specifying memory
locations from 0000 to 9999 may also be modified in
either of two ways: (1) by arithmetic operations in the
storage units, or (2) by an add-to-memory instruction.
These methods can be used in the 705 I and II only
if the result of the modification never produces a
carry beyond the four digits for the lower memory
addresses. Also, if the address to be modified is an
arithmetic one, such an address can specify only the

accumulator. This is because any zoning used to
specify Asu’s is removed by calculation. Again, this
limitation applies only to the 705 I and II. The 705 I1I
uses special operation codes to deal with such ad-
dresses as will be explained in following sections.
The address part of an instruction contains only
four characters. To specify locations above 10,000
(actually a five-digit address), zoning is placed over
the high-order position of the address. In the 705 III,
zoning is also placed over the units position. The zon-
ing substitutes for the fifth or ten-thousandth position.
Addresses with zoning may be modified by using
add-to-memory to unsigned fields. This operation alters

L TaLelebh T T lop T ifol 2l [[T LTI LITLLITL] HENNERD

~Instr.in I Initia

Memory oS Addr. é §
TLC;?AS;'RON o;::mfcrs;“s SO [accumutaTor 00 é STSSI'CE'EAS” él EXPLANATION
; Housekeeping
0004 RAD 9019 |01 a0201 +
0009 [UNL 0104 |01 Reset Select Address
:0014 ISET 0002 |01
Main Routine
0104 SEL [0201] Input Tape Unit
10109 RD XXXX Read Record
{0114 RS 1014 | | End of File
| i | '
Change Address ; 'L
1014 1OD 0104 ;01 ! a01 +| Get Two Positions of Address
11019 SUB 9021 Q1 ; a03 —! Subtract Constant 04
11024 'UNL 0104 101 | Change Select Address
11029 1R 0104 | 1

Figure 143. Program, Alternate Tape Units

Programming Features 75

the numerical portion of the address without disturb-
ing any zoning. Conversely, the zoning portion may
also be modified without changing the numerical
portion.

In the 705 III, the possibility of using a machine
with a memory capacity of as many as 80,000 charac-
ters means that many, if not most, of the instructions
in a program refer to locations over 10,000. Thus,
these addresses have zoning of the thousands and units
positions. This increased use of zoning not only pre-
vents considering an address always as an unsigned
field in memory but also may tend to complicate the
manipulation, modification, and comparison of in-
struction addresses.

Three operations available in the 705 III are de-
signed to operate on addresses rather than general
data. They must always be addressed to a memory
field ending in 4 or 9; otherwise, an instruction check
indicator is turned on.

Load Address (# — LDA) (705 I1I)

The load address instruction is used to load the ad-
dress portion of an instruction in memory into the
accumulator or auxiliary storage as a five-digit field
(Figure 144).

Only the numerical portion of the four addressed
characters in memory is loaded into storage, forming
the four low-order digits there. The fifth (high-order)
digit in storage is formed from the zone bits over the
units and thousands positions of the address in
memory.

All other zoning in the memory field is ignored,
including any Asu zoning over the tens and hundreds
positions.

MEMORY BEFORE

10 | 0¥
(2 [2[2]2]

MEMORY AFTER

o1 10
L

MEMORY

01 1wli|ic
K3 Il

2
&
3

(o2]o]«[+]]}
AU 03 4gs.P.c.

LDA 6419

ASU 03
Figure 144. Load Address Operation

76 IBM 705

orjor
e [713[3]s]
ACCUMULATOR 4 s.p.c.

ULA 6004

Figure 145. Unload Address Operation

The resulting five-digit field in storage is automat-
ically defined by a storage mark. Therefore, Lpa need
not be preceded by a seT instruction.

Unload Address (* — ULA) (705 1II)

The unload address instruction is the reverse of the
load address instruction. It causes a five-digit field in
storage to be placed in memory as a four-character
address. All other zoning in the memory field is un-
disturbed (Figure 145).

If the field in storage is less than five digits, it is
placed in memory as four digits with zeros to the left.
If the field in storage is longer than five digits, only
the low-order five are placed in memory.

Add to Address in Memory (@ — AAM)
(705 III)

This instruction adds a five-digit field in storage to a
four-character field in memory. The first four low-
order digits in storage are added to the numerical
portion of the four characters of the address in mem-
ory. The fifth (high-order) position in storage is
added to the address zones. The result appears as a
proper four-character address in memory (Figure 146).

All additions with an AAM instruction is non-alge-
braic, always adding the absolute value of the amount
in storage, regardless of sign.

If the field in storage is greater than five digits, the
instruction adds only the first five digits (low-order)
and ignores any others. The field in storage may also
be less than five digits.

MEMORY BEFORE

1 ol
R
2
b
g g
O

MEMORY AFTER

6004

Lo [2[2[8]8]s]

ACCUMULATOR@S P.C

AAM 1004

Figure 146. Add-Address-
to-Memory Operation

Bit Manipulation

The 705 III can perform other operations, not per-
formed by the 705 I and II. These operations can
examine or change any individual binary bit within
a character in any position of memory. Two opera-
tions, transfer on zero bit and set bit, expand the
control of data by the program and further con-
serve memory space. Bit manipulation also pro-
vides a rapid, simple method of program switching.
By this means, a number of switches can be built into
a single character; the presence of a 1 or 0 determining
the conditions of on or off. Any practical number of
switches can be set or tested without using an Asu or
placing a constant in memory.

Set Bit (% — SB) (705 III)

The set bit instruction sets any bit in any character
to either 0 or 1. The address of the instruction speci-
fies the location of the memory character (Figure 147).
Zoning over the tens and hundreds positions of the
address specifies the particular bit within the char-
acter to be set. The mnemonic and numerical codes
are written on the program sheet as follows:

SB 01-06 (SBZ) Set bit zero.
SB 07 (SBA) Set bit alternate.
SB 08 (SBR) Set bit redundant.
SB 09-14 (SBN) Set bit to 1.
01 Set 1 bit to 0.
02 Set 2 bit to 0.
SBZ 03 Set 4 bit to 0.
04 Set 8 bit to 0.
05 Set A bit to 0.
06 Set B bit to 0.
SBA 07 Reverse A bit,
SBR 08 Reverse C bit.
09 Set 1 bit to 1.
10 Set 2 bit to 1.
SBN 11 Set 4 bit to 1.
12 Set 8 bit to 1.
13 Set A bit to 1.
14 Set B bit to 1.

An sB instruction with a numerical coding of 08
causes the check bit to be reversed, regardless of its
condition. This instruction may be used to develop
an invalid character in memory for test purposes.

c 1] c o]

B 1] B

MEMORY AT A
LOCATION 8 [0 8 [0]
4986 —~——> 4 [1] 4 1]

2] 2 [1]

1 [T] 1[0]

BEFORE AFTER

S3Z 4986- 01

Figure 147. Set-Bit Operation

In all other cases, changing the zone or numerical
bits of a character automatically inserts or deletes the
check bit to place a valid character in memory.

Transfer on Zero Bit (.— TZB) (705 III)

This instruction is preceded by a receive instruction
setting MAc II at the location of the character in mem-
ory to be tested (Figure 148). The numerical portion
of the TzB address is the location of the next instruc-
tion to be executed if the bit tested is 0. Zone coding,
similar to Asu coding, is placed over the tens and
hundreds positions of the TzB address to specify which
bit in the character is to be tested. This coding is as
follows:
ZONING

01

02

03

04

05

06
07

ow>oomm.—§

If the bit tested is 0, a transfer is made.

The 1z8 and sB may be used for the purpose of
either recording or recognizing a number of variables
placed in one or more characters. For example, data
that can be expressed in such terms as yes or no, on
or off, up or down, can be indicated by 1 or 0. For
example, the presence of a 1 in a specified position of
a character may indicate that a deduction is to be
taken from gross pay. A 0 indicates that no deduction
is to be taken. A 1 may indicate in personnel records
that the individual is a naturalized citizen; 0, that he
is an alien. A 1 might indicate male; 0, female.

In setting up code characters within a record for
the purpose of recording variables, several limitations
must be considered.

1. The variables must not be recorded in such a
way that a character can be formed of all zeros. This
configuration is a storage mark and cannot normally
be contained in memory.

2. The characters must not be all 1's. This con-
figuration constitutes a group mark and may improp-
erly limit a writing operation.

clo]

B

MEMORY A 1]
LOCATION 8 [0]
4896 4[]
2 [1]

1 (0]

RCV 489 437
e

TZB 1464 01 >

Figure 148. Transfer-on-Zero-Bit Operation

Programming Features 77

3. If the code character is to be printed, the pro-
grammer must insure that every possible combination
of bits forms a character that can be written by the
printer.

Record Arrangement for Printing

When a write instruction follows the selection of a
printer, information is transmitted from memory from
left to right, beginning with the character specified by
the address part of the write instruction. Information is
sent to printer record storage exactly as it was stored
in memory. Therefore, the arrangement of the record
in memory must be programmed to conform to the
report form before printing occurs.

Each position in the record uses one print wheel or
printing position in the printed line. Insignificant
zeros to the left of digits in arithmetic fields are nor-
nally changed to blanks before printing by use of the
store-for-print instruction. Indicative fields, descrip-
tions, or other portions of the record can be shifted
in memory to conform to the printing arrangement
by load and unload, receive and transmit, or send
instructions.

Store for Print (5 — SPR)

The store-for-print instruction normally is used to
transfer a numerical field from the accumulator or
auxiliary storage to memory. The address of the in-
struction specifies the location in memory where the
field is to be stored and the storage unit to be used
(Figure 149).

MEMORY BEFORE

elolefo[[<[tle]- [2[o]e)

842

MEMORY AFTER

s ol lo[ol2[2[«[-[o[[-

STORAGE
SIGN

[} [

ACCUMULATOR

Tolo

o]

s.P.c.

SPR 8420

Figure 149. Store-for-Print Operation

78 IBM 705

The sign of storage is placed in the address location
of memory as a blank character, if the sign is plus, or
as a dash if the sign is minus. The numerical field is
then stored to the left of the sign position.

When the store-for-print instruction is used, the area
in memory that receives the field must contain com-
mas and/or a decimal point in positions that properly
point off the digits as they are to be printed. When
these periods or commas are encountered in memory
during the store operation, they are skipped. How-
ever, insignificant zeros, characters with zero numerical
portions, and commas to the left of these insignificant
positions are replaced in memory with blanks.

The field in storage is not affected by the instruc-
tion.

Normalizing Accumulator and
Auxiliary Storage

The normalize-and-transfer instruction is useful in re-
moving zeros, one at a time, from the left end of a
factor in accumulator or auxiliary storage. A program
routine may then be inserted to count the number of
zeros removed, a necessary function in printing a float-
ing dollar sign or in filling in blank spaces to the left
of a field with asterisks for check protection.

Normalize and Transfer (X — NTR)

The normalize-and-transfer instruction removes the
left-hand character of the storage field if the numerical
part of that character is a zero.

A transfer is made to the location specified by the
address part of the instruction when the zero is de-
leted. If the numerical part of the left-hand character
is not a zero, the storage field is not changed, a trans-
fer is not made, and the machine proceeds to the next
instruction. If the field is a single zero, it is not
deleted and a transfer is not made.

Control Instructions

Six control instructions control the various features of
the input-output units and turn on and off the input-
output indicators. A seventh control instruction, avail-
able only on the 705 III, is used to skip a section of
defective tape. A control instruction always applies to

the last selected unit. The address part of the control
instruction specifies the feature to be controlled.

Control 0000 (3 —IOF)

The input-output indicator of the last selected unit,
if on, is turned off. The instruction refers to printers,
tape units, drums and card readers.

Control 0001 (3 — WTM)

A tape mark is written on tape by the last selected
unit. The writing of this single-character record is
checked in the same way as the writing of all charac-
ters from memory.

Control 0002 (3 — RWD)

The tape on the last selected unit is rewound.

Control 0003 (3 —ION)

The inputoutput indicator on the tape unit last
selected, if off, is turned on. The instruction is used
with tape units only.

Control 0004 (3 — BSP)

The tape on the last selected unit is backspaced to the
previous inter-record gap.

Control 0005 (3 — SUP)

This instruction applies to printers and punches only.
It prevents printing or punching of information from
record storage for one cycle. The instruction is nor-
mally used to prevent printing or punching when a
read-write error has occurred from memory to record
storage. Under program control, the record can be re-
loaded from memory after the error condition has
been recognized.

Control 0009 (3 — SKP) (705 III)

The tape on the last selected unit is skipped forward
approximately five or six inches. During the skip, the
tape is erased as it passes over the read-write head.
The instruction is intended for use with the 729
tape unit with a two-gap head. When a writing error
persists after two or three attempts, the tape may be
backspaced once more and skipped over what may be
presumed to be an imperfection in the tape itself.

Transfer Instruction

Transfer on Signal (O — TRS)

The transfer on signal causes a program transfer when
the last selected indicator is on. The indicator may be
an input-output indicator, a check indicator, or an
alteration switch. The transfer is made to the location
of an instruction specified by the address of the Trs.

When the transfer on signal is executed, the selected
check indicator is automatically turned off.

The instruction has two modes of operation when
used on the Models I and II. The first is with no
zone coding over the tens and hundreds positions of
the address. This causes a transfer as described above.
The second mode is with 01 zoning, in which case the
instruction becomes a transfer-on-ready for use with
the 18M 777 Tape Record Coordinator.

In the 705 III, the TRs with no zone coding serves
the same purpose as when used with the 705 I or IL
Its operation is dependent upon the condition of the
previously selected indicator.

The second mode of operation with the 705 III in-
volves expanded use of zone coding. The instruction
can then test the various indicators without the use of
a previous select instruction. Codes and corresponding
mnemonic abbreviations are listed below.

ASU MNEMONIC INDICATOR
01 (TRR) Transfer Ready Ready; ps or TRGC
02 (TTC) Transfer Transmis- Pcr Data Check
sion Check
03 (TSA) Transfer Synchro- Pcror 1-o (Tape)
nizer Any
10 (TIC) Transfer Instruction Instruction Check (0900)
Check
11 (TMC) Transfer Machine Machine Check (0901)
Check
12 (TRC) Transfer Read-Write Read-Write Check (0902)
Check
13 (TEC) Transfer Echo Check Record Check (0903)
14 (TOC) Transfer Overflow Overflow Check (0904)
Check
15 (TSC) Transfer Sign Check Sign Check (0905)

Alteration Switches

Six alteration switches are provided on the operator’s
console with addresses of 0911 through 0916. The
operator may turn them on or off manually.

Switches are selected in the program in the same
way as any other component in the 705 system. Any
switch can be specified by the address part of a select
instruction (ser 0911).

On the 705 III a transfer-any instruction may also
test the condition of an alteration switch in the pro-
gram. When the switch is on, a transfer is made to

Programming Features 79

End of File

Rewind
Input Reel

RS 2

| Type Message

1L

Calculate and
Process Records

J\/L . Tape Mark

Halt for
Output Reel :‘>
Write Reel Change J
Rewind
o EOF Output Reel
o A0

Cﬁ Type Message
Tape Mark iL
Halt for
End of Job
Rewind

End of File

Type Message Single Input and Output

Multiple Reels

<1 Halt for
\r Reel Change

Figure 150. End of File, Flow Chart

the memory location specified by the address part of End-of=File

the transfer-any instruction. When the switch is off, no

transfer is made and the 705 proceeds with the next Each input or output unit in the 705 system, except
sequential instruction. the card punch and typewriter, is equipped with an

80 IBM 705

indicator to signal an end-of-file condition. Whenever
a unit is selected by a program instruction, the input-
output indicator associated with that unit is also auto-
matically selected.

An indicator is either on or off. Once an indicator
is turned on, it remains on until it is turned off either
by the program or by a manual operation. The status
of an indicator is tested or interrogated by a transfer-
on-signal instruction in the program. The instruction
usually follows immediately after reading or writing
operations. If the indicator is on, a transfer is effected
to the memory location specified by the address of the
instruction. End-of-file instructions are normally in-
cluded as subroutines in the program. When the indi-
cator is off, a transfer-on-signal has no effect and the
machine continues to the next instruction.

An end-of-file or branch routine may be arranged
in a variety of ways depending upon operating condi-
tions. For example, the typewriter may be used to
notify the operator that a tape unit is in end-of-file
condition. The machine may then be programmed to
stop while reels are changed or to select automatically
an alternate unit and continue operation. Other con-
trol instructions may automatically rewind a com-
pleted reel.

By pre-arranged alteration switch settings, the opera-
tor can, after putting in the last group of cards, make
the machine automatically select program instructions
to continue operation after an end of file has been
signaled. Such operation might include final total
calculation and printing.

When two or more tape units are used to read or
write a single file on multiple reels, an end-of-file
signal on the first reel can change the select instruc-
tion address to specify the second tape unit. Reading
or writing can then continue on the following reel
without loss of operating time while the preceding
reel is rewound. Reading can continue alternately be-
tween two units until the mounting of the last reel
is noted by an alteration switch setting.

When several related records are processed in or
out of the system during the same procedure, an end
of one input record file can cause program modifica-
tion to consider only those records remaining to be
processed. Calculation or processing steps for the rec-
ords on the completely processed file are then ignored.

Figure 150 is a flow chart of an end-of-file procedure
for single input and output tapes.

Tape Unit Indicator

Each tape unit is provided with an input-output indi-
cator to indicate the end of a reel or file. The indica-
tor can be turned on by any of the following:

1. Sensing the end-of-reel marker while writing.

2. Sensing the tape mark as a unit record while
reading.

8. Using an 10N instruction in the program when a
tape unit was last selected.

The indicator can be turned off by:

1. Depressing the unload key on the tape unit to
remove the reel.

2. An 10F instruction in the program when a tape
unit was last selected.

Card Reader Indicator

Each reader is provided with an input-output indica-
tor that is turned on when a read instruction involv-
ing that reader is given after the last card has been
read from record storage. The indicator is turned
off by:

1. Loading record storage by feeding cards.

2. An 10F instruction when the reader was last
selected.

Printer Indicator

Each printer is provided with an input-output indica-
tor to indicate the end of a printed page. It is turned
on by the overflow signal obtained from channel 12 of
the carriage tape. The indicator is turned on after the
next write instruction involving that printer is given
(Figure 151). The indicator is turned off by:

1. Using an 10F instruction in the program when a
printer was last selected.

2. Depressing the printer start key.

Channel 12
sensed while
writing this
line

T
|

/Channel 2 —‘)
)

\ Form

Input-output
indicator turned

Carriage on after
control writing this
tape line

Figure 151. Printer, Input-Output Indicator

Programming Features 81

Drum Indicator

The input-output indicator of a drum is turned on if
an attempt is made to read or write beyond the limits
of the drum. The indicator is turned off by using
an I0F instruction in the program when a drum sec-
tion was last selected.

Transfer Any (I — TRA)

The test for an end-of-file condition or the condition
of a check indicator may be simplified in the main
program by using a transler-any instruction.

The transfer-any indicator is turned on whenever
an input-output or check indicator is turned on.
When the indicator is on, a transfer is made to the
memory locations specified by the address part of the

82 IBM 705

instruction. The transfer-any indicator is turned off
by the transfer itself.

The TrA instruction address without zone coding
has a single mode of operation for the 705 I and II.
However, with the use of zone coding on the 705 III,
the TRA may also be used to interrogate an alteration
switch as follows:

ZONE CODE ALTERATION SWITCH MNEMONIC
01 0911 TAA
02 0912 TAB
03 0913 TAC
04 0914 TAD
05 0915 TAE
06 0916 TAF

Use of a Tra with the coding listed above performs
the dual function of selecting and testing a specific
alteration switch and transferring if the switch is on.

All procedures perform two functions. First, they ac-
complish useful work; second, they control such fac-
tors as the amount, quality, and accuracy of the work.
A data processing procedure is no exception.

Here, the useful work consists of such operations as
sorting, calculating, collating, reading, and printing.
Control operations are necessary to establish and main-
tain accounting controls, record counts, calculation
checks, and machine checks. Controls or checks may
be broadly classified under three headings: machine
checks, system checks, and program checks.

Machine Checks

The 705 makes six specific checks upon data being
processed. Each type of check is associated with a neon
indicator and a manual switch on the operator’s con-
sole. When a neon is on, an error condition is
indicated.

The switch associated with each neon indicator can
be manually set to either AUTOMATIC or PROGRAM.
When set to AUTOMATIC, an error detected by the cor-
responding check indicator causes the machine to stop.
When the switch is set to PROGRAM, the corresponding
indicator may be interrogated by a program instruc-
tion to turn off the indicator and start corrective ac-
tion automatically.

In many cases, therefore, it is not necessary to inter-
rupt machine operation when an error condition is
detected. The program can include branch or sub-
routines to handle certain types of errors as excep-
tions. An error in reading a record from tape, for
example, may be programmed to backspace the tape
and reread the record. If a correct reading is obtained
the second time, normal machine operation continues.
If the error persists, machine operation can be inter-
rupted or the incorrect record can be noted and oper-
ation continued.

A check indicator is interrogated by two instruc-
tions: select, followed by transfer on signal. The select
instruction specifies the proper indicator. The trans-
fer-on-signal address transfers the program to the first
instruction of a subroutine which is to be followed
if an error is detected. The transfer is made only
when the indicator has been turned on by an error
condition. Machine operation is not interrupted when

Checking Procedures

the error is corrected by the branch program. The
transfer-on-signal instruction turns the indicator off.
Check indicators and their assigned addresses are:

Instruction Check Indicator 0900
Machine Check Indicator 0901
Read-Write Check Indicator 0902
Record Check Indicator 0903
Overflow Check Indicator 0904
Sign Check Indicator 0905

Instruction Check Indicator 0900

The instruction check indicator turns on when the
following conditions occur:

1. A character code error is detected during instruc-
tion time.

2. An invalid operation part is encountered in the
operation register.

8. The operation part is incorrectly interpreted.

4. The units position of the address part of any
transfer instruction, or a transmit instruction specify-
ing accumulator 00, is not 4 or 9. The send instruc-
tion is also checked on the 705 IIL.

5. The field addressed by an indirect address coded
instruction is not a position ending in 4 or 9. It is
recommended that the switch associated with this in-
dicator be turned to AUTOMATIC to cause a machine
stop when an error is detected. Programming around
this type of error is usually impractical. With the
switch set to AUTOMATIC, the machine stops during the
character cycle in which the error occurred.

Machine Check Indicator 0901

The machine check indicator is turned on when a
character code error is detected during the execution
of all instructions in which data are transferred from
accumulator or auxiliary storage or memory.

When the indicator switch is turned to AUTOMATIC,
the machine stops during the character cycle in which
the error occurred except if an error occurs during the
execution of write or write and erase. In this case,
the indicator is turned on but no automatic stop
occurs. Such an error may be detected by program-
ming, as the read-write check indicator is also turned on.

Read-Write Check Indicator 0902

The read-write indicator turns en when a character
code error is detected during the execution of a read,

Checking Procedures 83

write, read-while-writing, or write-and-erase instruc-
tion. The indicator also turns on when an error is
detected in reading the holes in the card or by the
longitudinal check in tape reading. The indicator,
therefore, checks the transmission of data from all
input units to memory. It also checks the transmission
of all output data from memory to the drum, tape
unit, card punch record storage, printer record stor-
age, and typewriter. The indicator turns on if an
attempt is made to read or write beyond the limits of
the drum or if an error occurs in recording a tape
mark.

When the indicator switch is turned to AUTOMATIC,
an error stops the machine after the instruction is
executed.

Record Check Indicator 0903

The record check indicator turns on when an error
is detected by the brush-compare method on the
punch and by the echo-check method on the printer.
An error in card punching is detected as the card
passes a brush station after it has been punched. If
an error occurs, the record check indicator turns on
during the execution of the second write or write-and-
erase instruction after the instruction that punched
the error card.

An error in printing is detected by sensing the posi-
tion of each print wheel during the print cycle. If an
error occurs, the indicator turns on during the execu-
tion of the next write or write-and-erase instruction
involving that printer.

In both cases, when the switch for this indicator is
on AUTOMATIC, an error stops the machine at the end
of the punching or printing cycle during which the
indicator was turned on. At this time, the error card
is the last card to go into the punch stacker. The in-
correct line of printing immediately precedes the last
printed line.

Overflow Check Indicator 0904

The overflow check indicator is turned on during an
add or subtract operation when the number of digits
in the result is greater than the number of digits in
the longer of the two fields. An overflow is indicated
as a result of a round operation, if a carry-over is
made out of the high-order position of the accumu-
lator storage field.

The indicator is turned on by a divide instruction
when the divisor does not have a greater absolute
value than an equal number of digits taken from the
left end of the dividend. When the error switch for
this indicator is turned to AUTOMATIC, an error stops
the machine during the execution of the instruction.

84 IBM 705

Sign Check Indicator 0905

The sign check indicator turns on if a field addressed
by a reset and add, add, reset and subtract, subtract,
multiply, or divide instruction does not have plus or
minus zoning over the right-hand digit.

When the switch for this indicator is on AuToMATIC,
an error stops the 705 I or II during the character
cycle following the one in which the error was de-
tected. For 705 IIT operation, the sign check occurs
and stops the machine in the same cycle in which the
error is detected.

System Checks

System checks can be defined as any checks other than
those made by the builtin check circuits in the 705.
This is a broad category and includes such program
checks as record counts, hash totals, control totals,
proof figures, limit checks, and crossfooting balance
checks. All of these checks can be programmed and
are useful tools for program checking.

The system checks to be incorporated in a program
should be designed during the original planning
phase. What kind of system check to use depends
upon the program to be checked. System checks de-
signed for a specific program generally are unique to
that program. Some general techniques applicable to
any program are described here.

Magnetic Label

File identification placed at the beginning of a reel
of tape is referred to as a magnetic label. The label
may specify the job title and/or number, date of last
processing, number of the reel, and so on. A label may
also be placed at the end of the reel to designate the
end of the file. The labels are read into memory at the
beginning and end of the program as an added con-
trol that the proper records have been processed. The
label may also assure a true end of file or end of job.
A counter may be included as part of the label to
record the number of passes to which the tape has
been subjected. Old tape may consequently be retired
from active files before excessive wear has occurred.

Record Count

A record count is simply a count of the number of
records in a file. This count is made each time the
file is written and is carried as an additional record
at the end of the file. The count is made again when

the file is being read for processing to see that all
records in the file have been read in.

Hash Total

A hash total is a total of an important numerical or
alphamerical field (such as part number) for all rec-
ords. It checks that all of the records written on the
last processing run have been read in during the
present cycle. It is similar to a record count, except
that the hash total gives an additional check that all
part numbers have been read in correctly. The hash
total is carried as an additional record at the end of
the file. This total may be computed as the original
tape is written, or during a subsequent machine run.

The hash total may also be computed for certain
vital fields in a single record. This total is carried as
an additional field in each record and can be checked
whenever that record is read into memory. Hash totals
must be accumulated by use of add-to-memory instruc-
tions if alphamerical fields are part of the total.

Control Total

A control total is a predetermined total of some
amount or quantity field in a file of records. During
the processing, a sum of this field is accumulated and
checked against the count total. The control total can
be in the form of a grand total for all input data, or
an intermediate or minor total for each control group
in the file. An example of the use of control totals is a
simple payroll where a predetermined total is made
of the employee hours per pay period. During the
processing of the payroll, a total of hours per em-
ployee is accumulated and, at the end of the program,
the two totals are compared.

Proof Figures

Proof figures are sometimes used to check an impor-
tant multiplication in a program. The proof figure
is usually additional information carried in the rec-
ord. An example of this is the multiplication of quan-
tity by cost required in grocery billing. The check is
based on a relationship between cost and a so-called
proof cost. An arbitrary fixed figure Z, larger than any
normal cost, is set up. Then the proof cost is ex-
pressed by the formula: Cost + Proof Cost = Z.
When quantity is multiplied by cost, it is also mul-
tiplied by proof cost. Normally, two of the totals
needed for the check, quantity and quantity times
cost, are accumulated during the program. The other
factor needed for the check (quantity times proof cost)

is also accumulated in the program. Now it is possible
at any point to check as follows:

(Quantity X Cost) - (Quantity 3 Proof Cost) = (Quantity X Z)

The left side of the equation can be calculated by
a single addition of the two progressive totals accumu-
lated during the program. The right side of the equa-
tion can be calculated by a multiplication of the ac-
cumulated quantity and the factor Z. This check
insures that each particular multiplication was per-
formed correctly. This type of check applies to other
applications by the same general approach, that of
adding check information.

Limit Check

A limit check is the test of a field in a record or a
total in the program to see if certain predetermined
limits have been exceeded. An example of this would
be a transaction code known to include only num-
bers 0 through 5. In the program, a check should be
made to see that the code does not exceed 5.

Another limit check applies to reasonableness. For
example, certain totals are known to vary not more
than ten percent between processing cycles. This check
can be easily programmed.

A further use of this check is in a table look-up
operation. If a value is known to be in a given table,
the modified table address may be checked against the
address of the upper table value to verify correctness
of the search. If the file search begins to exceed the
limits of the table, an error has occurred and correc-
tive action should be taken.

Crossfooting Balance Checks

Crossfooting balance checks are useful in many pro-
grams. An example is in payroll calculation. During
the processing of each record in a payroll, independ-
ent totals are accumulated of gross pay, taxes, miscel-
laneous deductions, and net pay. These totals can be
crossfooted and checked at any point in the program.
For example, the total gross pay at any point should
equal total net pay, plus total deductions, and taxes.

Program Checks

Program checks are normally designed to examine and
verify the execution of certain routines or particular
instructions in the program that may not be satis-
factorily covered by system or machine checks. Like

Checking Procedures 85

system checks, they are accomplished by programming.
Many types of program checks may be used. They in-
clude checks of arithmetic operations when amounts
or quantities are being originated in the procedure
and no previous control total exists. For example, the
payroll calculation of gross pay for each individual
employee cannot be verified by control totals.

A check can be made of comparisons or upon the
sequence in which instructions are executed. Checks
can be devised to check recognition of plus or minus
balances, reading or writing into proper locations,
selection of proper drum sections or other units, back-
spacing, and others.

The programmer should always first use the readily
available checks, including machine and system checks.
However, if these checks do not satisfy the require-
ments of procedure quality control, the characteristics
of the problem itself may be considered for additional
checks. A problem often contains self-checking or
limiting factors that may furnish suitable systems or
program checks. When necessary, the problem should
be modified during early stages of planning to include
program checks.

Check-Point Procedure

A check-point procedure is a programmed checking
routine performed at specific processing intervals or
check-points. Its purpose is to check that the program
has been performed correctly to a predetermined
point. If it has, then the status of the machine is writ-
ten out or “remembered” periodically. The program
is then continued until the next check-point is
reached.

If an error is detected at a check-point, or during
the processing interval between check-points, the pro-
cedure is backed up to the previous check-point. The
machine is then restored to its exact status as recorded
on the check-point tape or on the drum. The entire
program between check-points is rerun.

The operation of “backing up” requires that the
record of machine status, as originally written on the
check-point tape or on the drum, be restored in mem-
ory, Also, it requires that all input and output tape
units must be returned to their positions at the time
the last check-point was recorded.

However, check-point can also be used in proce-
dures involving printing or card punching. When re-
starting, proper identification of the output group of
cards or printed records containing the error must be
made so that these records can be removed at the end
of the job. When using the card reader, manual inter-
vention is necessary to restart.

86 IBM 705

Restart Procedure

A restart procedure is a programmed routine designed
to return the machine automatically to some predeter-
mined point in the problem. This is normally the
preceding check-point.

The restart accomplishes two things:

1. It “backs up” the entire machine system to the
predetermined point in the problem. Tape units
are back-spaced automatically; card units and
printer are adjusted manually.

2. It restores the memory of the machine to its
status at preceding check-point. Only certain
selected portions of memory may be restored if
desired.

The purpose of the restart procedure is to reduce
the need for manual intervention in case of error. The
routine may be executed automatically when an error
is discovered at check-point or it may be entered from
any point in the program when an error condition is
recognized.

If a stop occurs while a program is running, one or
more of the following factors will have caused it:

1. Data errors.

Operator errors,

Random machine errors.
Emergency repairs or power failure.
End of shift or job interruption.

Sk 00 10

The operator has a choice of procedures to put the
machine back in operation. He may make the correc-
tion, rerun all or a portion of the program, adjust the
machine (maintenance), or shut the system down. It is
a great advantage to include programming to correct
automatically steps 2, 3, and 5 above.

The program may instruct the machine to “try
again” in the case of a random machine error or to
check the problem at regular intervals so that, if a
rerun is necessary, only a portion of the program
need be rerun.

The first approach to a restart is to establish some
point in the program to which the program will re-
turn in the event of a stop. The simplest procedure is
to merely return to the original starting point of the
job. The program includes a transfer to “housekeep-
ing” instructions to rewind all tapes, turn off input-
output indicators, set switches, check tape reel labels,
and so on. In such a restart procedure, no record of
memory is needed.

A second approach is to establish a break or recov-
ery point at the end of a reel. Checking for errors,
storing of accumulated totals, checking reel labels or
recording of other pertinent information is done be-
fore or after each reel change. The end of a reel then
signals a break point and all other reels are changed

Detail

Check Points

Figure 152. Schematic, Recovery Point at End of Reel

at the same time, whether at end of file or not. If a
restart is necessary, the system recovers to the begin-
ing of all files.

This second method, however, is practical only when
both input and output reels are of approximately
equal length. The effect is to divide a multi-reel ap-
plication into a number of single-reel jobs. Figure 152
shows this method. In this case, assume that files con-
sist of four reels of master input, four reels of master
output, and one reel of detail transactions.

Detail records are merged with masters and do not
add records to the master input file. Recovery points
are established at the end of each master input reel,
dividing the application into four smaller, independ-
ent runs. Control totals and other restart information
are written on the output tape at the beginning of
each master reel as a special record. This record might
be an addition to the reel label.

If a restart is necessary, the program rewinds the
master input, output, and the detail reels. The totals
are reestablished and the detail reel is then read forward
by the restart routine until a record matching the first
master on the input reel is located. The job is then
continued in the normal manner. Maximum time lost
by the restarting procedure is the time required to
process and rewind one full reel of tape. If a power
failure or other interruption occurs, the same pro-
cedure can be used, except that the program must also
be reloaded.

General Consideration of Check-Point
and Restart

The problems of an application must be viewed when
planning for restart procedures.

1. Checks may be taken, before printing, of totals
when group control occurs. These checks include
0901, 0904, and 0905. In the event of an error, a trans-
fer to a restart procedure is made to return the entire
machine to the last error-free check point. A sign check
usually indicates an error in input data. Therefore, a
programmed stop when this error is detected may be
advisable. Indicator 0900 is normally set to AUTOMATIC.
The operator then has an option to make corrections
when an instruction error occurs or to transfer to a
restart without continuing to the next check point.
The program may be reloaded or read in automat-
ically as a part of the restart procedure.

2. System checks may be included at check point.
Restart may not always be desirable, if a systems error
is detected. For example, if a control total is out of
balance and the record count shows that a record is
missing from an input file, a rerun of this section of
the file cannot locate the missing record. In this case,
the check-point should indicate the cause of error and
stop the machine with operator option either to con-
tinue or to take corrective action.

3. Normally, the check-point routine is modified
depending upon the point at which it is taken. For
example, when system checks are also taken at check-
point, a more complete check occurs than if check-
point is forced at periodic intervals.

4. Read-write errors are not tested at check-points.
They should be reprocessed as they occur and the
operation stopped if they persist.

5. Jobs running 15 minutes or over should nor-
mally include check-points with automatic restart.
Jobs without check-point might extend for longer
periods of time if they are to be run infrequently.
Validity of results must be checked for any job, re-
gardless of its length. However, for jobs of less than
15 minutes’ running time, it is generally more eco-
nomical merely to rerun the job in case of error (not
read-write errors), rather than to devote additional
programming time to comprehensive checking.

Checking Procedures 87

Indirect Addressing

All instructions illustrated in the preceding sections
have been shown using direct addresses. That is, the
address of an instruction refers directly to the location
of data or other instructions in memory, or to the
address of a machine component. Control and shift
instructions use the address to specify the type of con-
trol to be exercised or the number of positions of a
factor to be adjusted.

Any instruction executed by the 705 III, however,
can use an indirect address. Such an address does not
refer directly to the data to be processed nor to a
machine component. It refers to a memory location
which contains the address of the data, device, or con-
trol function.

Such a form of addressing can be particularly useful
in performing the operations of address modification.
In a program, it may be necessary to address a num-
ber of instructions te a single machine unit, such as a
tape unit. The unit may be selected for reading, for
error routines, in restart procedure, or in various
other branch routines. If the unit is to be alternated
with some other unit, all the addresses of all instruc-

Input Tape
SEL 4069

-

|

L

Main Routine *

L

<

J S .
Branch
D Routine b —
——— /" S .
SEL | 4089 /7 ubroutine
SEL | 4069
¥

¥

Figure 153. Indirect Addresses

88 IBM 705

tions involving that unit must be modified. A con-
siderable number of other instructions might be
needed for this purpose.

However, if the select instructions involving the
specified tape unit were indirectly addressed to one
memory location, that location could contain one ad-
dress of the tape unit. Therefore, to modify all select
instruction addresses, it would be necessary only to
modify the single address to which the select instruc-
tions refer (Figure 153).

In memory, an indirect address is identified by a 1
in the A-bit position of the units position. Any address
may be indirect, but the numerical portion of the
units position must be either 4 or 9. In the text, an
indirect address is indicated by an asterisk.

Any number of indirect addresses throughout a pro-
gram may refer to a single effective address. All asu
zoning and the A bit position of the low-order char-
acter of the effective address are ignored. For example,
the following instructions add some constant (located
at 1004) into Asu 01, and then subtract the same con-
stant from Asu’s 02, 03, and 0O+

0104 ADD 01 1004
0109 SUB 02 0104
0114 SUB 03 0104
0119 SUB 04 0104

The address at 0104 carries asu coding
which is ignored by the indirect addresses

at 0109, 0114, and 0119.
Effective Address
in Memory

[o]2]o]o]
o

3

<

Relationship between Computer
and Programmer

It is a rather ironic fact that present-day computing
equipment, primarily designed to save work, has, at
the same time, produced a new kind of drudgery. This
is the task of program writing. And, since the program
is the only means of communication between man
and machine, it is necessary that some method be de-
vised to make this communication as simple and as
effective as possible.

The problem is mainly one of language. While it is
not impossible to write intructions in the machine
language, there are many reasons why such an ap-
proach is inefficient. First, in the 705 as in other
svstems, the programmer must memorize the actual
operation code. Second, he must calculate the exact
location of all instructions and data in order to use
actual addresses in his instructions. The problem of
converting these addresses to the proper characters
(that result from zoning the high-order addresses of
memory, from asu zoning, and from indirect ad-
dresses) becomes so complex that such a system is
entirely impractical. Even if this could be done, one
clerical error in establishing a location of either data
or instructions would make the program useless. One
omission of an instruction would mean the entire re-

Analysis

L

Programming System

location of all information following an inserted in-
struction. It should be apparent that program writing
in actual machine language is only effective for short
programs consisting perhaps of a few dozen instruc-
tions at most.

Figure 154 shows the basic relationship between the
computer and programmer. First, the problem is ana-
lyzed and reduced in terms of the operations that the
machine can perform. The programmer may use
tables, formulas, codes or other aids, applicable to the
specific situation. When the program is written, it is
solved on the computer. The problem then becomes
input data and the machine, by calculation or other
means, produces useful output.

Various systems have been devised to make machine
and human language more compatible. Generally, the
approach is one of inserting an intermediate process
between the statement of the problem and the produc-
tion of a final program. To do this, the programmer
states the problem in a language more nearly like his
own, but in definitely restricted or standard termi-
nology.

For example, he may be allowed to write the pro-
gram in abbreviated or mnemonic fashion, adhering to
pre-established rules and restrictions. By doing this,
he is able to call his data by the appropriate name,
such as input record, gross pay, quantity, and so on,

Machine

Problem

JL

Programmer |

.
r~
l

Formulas
Tables
Codes

Program

Results

Figure 154. Direct Conversion of Problem to Machine Language

Programming System 89

e T bt

! . Program I
l LAnolys:s , Catalog I
! |
l .

Program in
Common
Language
For Man
and
Machine

Programmer

Formulas

Tables Codes |

F— ==
!
[
!

——— e . _..._._.___I_._-_ C— e]

l
|

[

__I

Program

Computer

Assembly System

Control '

L
|
I
!
|
|
.'
!
I

— - —

| [
. Input Data
]

L Computer

!

i Results
.

|

Figure 155. Conversion of Problem to Machine Language Using Assembly System

rather than by an address in memory. He is also able
to allow the necessary amount of space for data but
does not need to calculate the actual locations of
either instructions or data. The system may also pro-
vide other features enabling him to draw upon previ-
ously written and tested routines usable for sections
of the program he is writing. It may also incorporate
operations that are not actually in the machine’s
vocabulary but which are converted to these terms by
the intermediate process.

Figure 155 shows the basic flow of the work between
problem and output, using a program system. Again,
the programmer analyzes the problem, writing a pro-
gram in pseudo-language according to set rules. He
can now draw on other available programs for some
parts of his program, assuming that this material is in
the “library” of the system for his use. This program
then becomes input data to the intermediate process,
called an “assembly.” The program is punched in
cards for direct input, although for long programs, a
card-to-tape operation may be performed first.

‘The machine now takes the punched program data
and converts it to an actual program in its own lan-
guage. The processing is under control of the assembly
system. A machine program is the only output of this
process, although supplementary listing or tape may
usually be obtained.

90 IBM 705

The resulting program is now stored in the com-
puter and the problem becomes input data as before.
The operation is now one of converting the problem
input to useful output.

Autocoder

The Autocoder is a system of program writing, devel-
oped and tested by 1M for the 705. It offers a number
of important advantages to the programmer:

I. It saves clerical work. The programmer merely
indicates the amount of space in memory re-
quired for data. The assembly locates all instruc-
tions automatically and reserves other areas as
indicated.

2. The programmer can use all 705 operations plus
an expanded set of autocoder operations.

3. The assembly process edits the program for cler-
ical errors, such as items out of sequence, refer-
ences to wrong data or instructions, and incorrect
operation codes.

4. The system makes available to the programmer
a library of subroutines to use in his own pro-
gram, as required.

IBM AUTOCODER PROGRAM SHEET

705 DATA-PROCESSING SYSTEM copep av—
CHECKED BY
rrocram S TOCK STATUS IDENT. é’JA&% Insents on back DATE
vPGZ‘.) LINE sie TAG . 'SPERATIO':D ZUTA N OPERAND valas COMMENTS
01l01 START SEL 200 B ‘
; .. _RD | MASTER INP e
o . SET |18) ,
o4 _RAD | 2ADDRESS Get transfer addres.s
05 ~UNL 712!]'35&}4}?;} e Reset transfer address
06 SEL P 202
“—07 e “RD T DETAIL N
08 " lop 1DET coDE o
N ‘YO‘;?M CAhXP - .l MAS ACLO'D. EA I : | B) : .
BT RN (SR 7 VRS os et esas s a—

Figure 156. Example, Autocoder Program

Autocoder Organization

As in any system so far developed, all information for
a 705 program is originally supplied by the program-
mer. This information is written on a program sheet
(Figure 156). Machine instructions, record areas, work
areas and all other data are described in complete de-
tail. Each separate item of information forming a
program entry is written on one line of the sheet.

Entries are written in the sequence in which they
are to be stored in memory, although some other se-
quence may be specified. A space is therefore provided
for writing program page numbers. Line numbers are
preprinted on the sheet. Entries may include both
instructions and data.

After the program has been written and checked, it
is key punched into autocoder instruction cards (Fig-
ure 157). Each card contains one program entry (one
line from the program sheet). Information is punched
exactly as written including page and line number.

An identification for the entire program may be gang
punched into all cards.

Punching is next verified for accuracy by the card
verifier or by manually checking the original sheet
with listed or interpreted cards. After verification, the
cards are sorted to line number, then to page number.
Inserted entries, if any, are placed in proper sequence
at this time.

The punched instruction cards may then be used
as direct input to the 705, or cards may first be con-
verted to tape to provide a faster input to the assem-
bly. In either case, the program instructions are one
input to the 705. The autocoder system tape is the
second input (Figure 158).

The autocoder system tape contains several types of
information:

1. System control: instructions to load the auto-
coder into the 705 memory and miscellaneous
instructions to control the form of input and
output as directed by the console operator.

2. Librarian: instructions to control the revision to
the library.

i l

i
PacE 8 UNE] TAG JoPERAT ION]NUM) OPERAND)i

COMMENTS

]

[i
Tag OPERATION @ OPERAND

PAGE 8 LINE

COMMENTS 1

9 111213 1415018 17 19 19 W 2

IR RRRRIIREREIE]

12243
1
220222

1M AUTOCODER SYATEM
-
w

BEESS0CCEEE666666666
LRI AR AR RRRRRRIINRREI

i
U R R R R R LR R L AR AR R R AR N RN Y
T3 I T I VN AN ABW T i e E] WS :
PACE LINE

OPERAND

usanrl:aan!.:ual:nasnuuuuauaunsmnuusnns!unnuu-un--nnnnnnunnu-
(AR R R R R R R AR R R R R R R R RN R R R R R AR R R ARl RRRRE]

COMMENTS

22222122221221222222222222£122222222222122221222112222212221222212122222212
!81!333333!33!1333133331133!1#3!!33333313333333331333J333331333333333333333311
144444444446444t4l4t444l4444!4‘4!‘44444444444l4‘444444‘4‘4444444!&44444444444444
5555555555555555555555555555555#55
GCSGESGESGS%GGGGGEEEGiii565!5iGSSGGGGGSGGSGSEGGSGESISGSGESSS
71777177777ﬁ777117771117777177717117117771777711777771777717
ssp2888808088880008882888088880882888388¢8

TN 853094

Figure 157. Instruction Card, Autocoder

Programming System 91

LISTING

LISTING
AUTOCODER R TAGS, LITERALS (OPTIONAL)
SYSTEM @ CONTROLS A .
—_— D
0200 0205
INSTRUCTION u(s);g;lc
» 705 > r > —> 705 >
TAGS
(' verEFY 0203
PROGRAM
ENTRIES — EXPANDED PROGRAM
ENTRIES _y CARDS
0206
0201
AND/OR
INSTRUCTION > PHASE | PHASE II
CARDS
PROGRAM
CARDS
(OPTIONAL)

Figure 158. Organization of Autocoder Assembly

3. Phase I:
phase of assembly.

instructions and controls of the first

4. Phase II: instructions and control of the second

phase of assembly.

5. Macro-instructions: a library of tested sequences
of 705 instructions. Each sequence is identified

on the tape by a name.

6. Subroutines: a library of tested 705 subroutines.
Each routine is also identified on the tape by its

name.

During assembly, the 705 operates upon the instruc-
tion entries, one at a time, as input data. The entire
process is under control of the autocoder system. A
complete 705 program is produced as output with
instructions originally written in autocoder language
converted to five-character absolute machine coding.

The output program is written on tape together
with additional instructions needed to load the pro-
gram into the machine for operation. The program
may also be punched in cards if desired (Figure 159).

/

!

T

z

5

3 T 7 T i]

| | |
A N S S |
| I I
I I I

INSTRUCTIONS

B

15 T [F]

[E]

AND DATA

000000[00
123455
IRRRERI

IBM
EOPM_PROGRAM CARD

|
IARRERIINN

888888

6665EG566656EBGGEGBG&GGEBGSEGMGGBEE

14 15(16 17 18 18 20123 22 23 24 25/26 27 28 29 0131 32 33 34 35{36 37 38 39 40/41 42 43 44 45145 47 48 48 50[51 52 53 54 55156 57 50 58 61 62 63 54 55/66 67 64 83 70,71 72 73 74 7576 77 76 79 80|

opﬁiiruounnmnunnmnuuumnooumnnoumooooumuuunmooomnnnnumnoumunouumnnoomonnr
;TrrrllIIlllIll!!ﬂllllHllllHlllIH]II!HIIIIH!IIIHIlllllllllllllﬂllllﬂllll
22222222222221222222222222222&22272ZIZZHZ2112&222202222”222212222221222222222222
3J333333333333333333J33;333333333333333&3333h33333&]313p33333333ﬂ333333333333333
64444444444444444444M444U4444444444“4444444444444444(‘4444444444“44444”4444‘4444
5555555555555555555555555555555555&555555555ﬂ55555%5555%55595555&5555555555&5555
ﬁEGGNBSGSSEEGEGFGGGSMGGGSWGSBEBGSGEWGSGSFSSEG
77777777777ﬂ7177”7717ﬂ7777W7777”7717W7777W717H77777?1177U7777W1177ﬂ7777

[
8888888888/888888B88888888888888888888688888888188888/88888/8866888868

[T Loz o

IDENTIFICAT 108

123456
13M865189

INSTRUCTIONS AND DATA

O TR N I T L R AR AR08, il B

Figure 159. Output Program Card, Autocoder

92 IBM 705

A listing is written on tape for reference. It includes corresponding absolute coding for each entry as devel-
all entries exactly as originally produced by the pro- oped by the autocoder. The listing may be obtained
grammer (Figure 160). The listing also includes the as direct output on the printer at the time of assembly.

PG LINE TAG oP NUM OPERAND PROGRAM TBL SH COMMENTS LOC OP ASU ADORESS
01 000 TITLE SERIAL TABLE SEARCH
01 010 READ RCD RDTP 2 RCO AREABEOJ RTam
READ RCD SEL 0202 00164 2 00202 0202
RD RCD AREA 00169 Y 00400 0400
DOA TPERR
INCL TPERR
81000001 LOD 14 000001 00174 8 14 00174 OAP4
TRA 14 TPERR 00179 I 14 00574 OEP4
RACON EOJ RT 00184 A 00334 0334
RACON 00189 A
INCL XOFF
01 020 RAD 4 #60007# TO STEP COMPARE ADDRESS 00194 H 4 01059 1 59
01 030 LRL14 LAST CODE&7
20000002 LoD la 00000002 &5 00199 8 14 00204 0B=4
RACON LAST CODE &7 00204 A 00562 0562
01 €40 MOVE! BASIC ADDRETBL SEARCHm:
20000003 RCV 14 TBL SEARCHE&1 00209 U 14 00221 08Kl
T™T 14 BASIC ADDR&1 00214 9 14 00566 OEOé
01 050 RAD ITEM CODE 00219 H 00402 0402
01 060 TBL SEARCH CMP *ASUO4 00224 &
ADM 4 ©00224 00229 6 4 00224 0S24
01 070 TRE ITEM FOUND 00234 L 00254 0254
01 080 CMP la TBL SEARCH IS THIS LAST ITEM 00239 4 14 00224 0BKé4
31 090 TRE NO CODE YES 00244 L 00394 0394
01 100 TR TBL SEARCH CONTINUE TABLE SEARCH 00249 1 00224 0224
21 110 1TEM FOUND MOVEI TBL SEARCHaCOMPUTEnD
ITEM FOUND RCV 14 COMPUTE &1 00254 U 14 00271 0BP1
™T 14 TBL SEARCH&1 00259 9 14 00221 0BKl
01 120 LoD 14 #1998# TO DECREMENT BY 2 00264 8 14 01068 1608
01 130 ADM 14 COMPUTE 00269 6 14 00274 0BP4
01 140 COMPUTE RAD UNIT COST 00274 H
01 150 ST UNIT COST 00279 F 00406 0406
01 160 MPY ITEM QTY 00284 Vv 00411 0411 |
01 170 RND 1 00289 E 00001 0001
01 180 ST TOTAL COST 00294 F 00419 0419
01 190 WRTP 1 RCD AREAmon
SEL 0201 00299 2 00201 0201
WR RCD AREA 00304 R 00400 0400
DOA TPERR
2000002 LoD 14 un000002 00309 8 14 00309 0C=9
TRA 14 TPERR 00314 I 14 00574 OEP4
RACON 00319 A
RACON 00324 A
p1 200 TR READ RCD 00329 1 00164 0164
01 210 EOJ RT WRTM 1
EO0J RT SEL 0201 00334 2 00201 0201
WTM 00339 3 00001 0001
DOA TPERR
1000003 LoD 14 oo000003 00344 8 14 00344 OCM4
TRA 14 TPERR 00349 1 14 00574 OEP4
RACON EQJ RT &30 00354 A 00364 0364
RACON 00359 A
01 220 RWD 00364 3 00002 0002
01 230 TYPE #END OF JOBo#
SEL 0500 00369 2 00500 0500
WR #END OF JOBO# 00374 R 01069 1069
DOA XOFF
uo000004 LOD 14 aaQ00004 00379 8 14 00379 0CP9
TRA 14 XOFF 00384 I 14 01019 16J9
01 240 HLT 9999 00389 J 09999 9999
01 250 NO CODE HLT 1 00394 J 00001 0001
01 260 TR NO CODE 00399 1 00394 0394
02 010 DRCD 00400
02 020 RCD AREA 1 00400
02 030 ITEM CODE 2 & 00402
02 040 UNIT COST 4 & 00406
02 050 ITEM QTY 5 & 00411
02 060 TOTAL COST 8 & 00419

Figure 160. Autocoder Program Listing

Programming System 93

moomn_ INDIAN PROBLEM mer. $OL 1,
IPGZ 3 l|NE§L TAG . l‘;OPERAYIOP:O ?:‘l»zdz is OPERAND 2o
01 SEL 100 .
02 | RD T [oATA CARD | B
03- B RAD 1IVEAR'S
04 [CALCULATE RAD | IRATE B :
05 MP Y PRINCIPAL
o RND | 2 B
07] ADM _PRINCIPAL .
Jos ... _.sus [1oNE]
Jlos | TRz aPRINT T
L R 1 _[CALCULATE)
11 PRINT. RAD | PRINCIPAL
120, SPR_ | ANSWER _
LS SEL L soo T T
LA U WR O ANSWER .
s | HLT 9999 L
l16_DATA CARD DRCD ' |]
17 RATE 2 .]
13 PRINCIPAL 12
LS YEARS, T e
20 ONE i 1 L 1
121 ANSWER | g A;j
Lezem o Tl .]

Figure 161. Autocoder Solution 1, Indian Problem

Basic Autocoder Programming

Figure 161 is a program for the Indian Problem de-
scribed in previous sections as it might be written in
Autocoder. The program is divided into two types
of entries: (1) instructions (lines 01-15), and (2) a
description of the input record area (lines 16-22).

RECORD AREA

The first entry of the record area (line 16) identifies
the entire input record by a descriptive name referred
to as a “tag.” The tag may be as many as ten charac-
ters in length and is written here as data card. The
mnemonic operation in this entry is pRcD, meaning
“define the record.”

Note that prep is not a 705 operation. It is used
only by the autocoder assembly process to specify that
entries following the prep describe fields or other por-
tions of data input or output. These following entries
will be used to assign space in memory for the various
records described. Their tags can be used as operands
of instructions referring to the data.

Each field of the data card is therefore tagged with
an appropriate name and its length is indicated in
the numerical column of the program sheet. The pro-
grammer also indicates whether the fields are to be
signed. A total of 37 memory positions are reserved,
including one for a group mark.

94 IBM 705

INSTRUCTIONS

The instructions in the autocoder program are iden-
tical with those shown in Figure 118 except that they
are written in autocoder language. The select instruc-
tion on line 01 selects the card reader. The read in-
struction on line 02 is addressed to “data card,” the
tag of the input record.

An instruction may be addressed to the tag of
another instruction. For example, the transfer instruc-
tion is addressed to “calculate.” The transfer on zero
instruction is addressed to “print.”

Instructions may carry the actual address of machine
units as shown by the operands of select, round and
halt on lines 01, 06, 13, and 15. Or, they may have
“literal” operands consisting of the literal data to be
operated upon. This type of operand is shown in a
second example.

CONSTANT AREA

Figure 162 shows a second method of writing the pro-
gram originally shown in Figure 118. In this example
the data card is not needed. Instead, the data are
assembled as part of the completed output program
and are loaded into memory with that program.

Data are given in two ways: (1) as constants in a
separate area reserved for this purpose, and (2) as
literal operands in the instructions.

For example, the program entry on line 138 is the
operation DpcoN, meaning ‘“define constant.” Entries
following this operation are included as a portion of
the completed output program. Each constant entry is
tagged for reference by the instructions. The length
of the constant is indicated in the numerical column
and the constant is written in the operand columns

seoceam___ INDIAN PROBLEM et SOL 2
‘PGZ B lINEs . TAG . ‘EOFERAYIO':O :U:AZ.LS OPERAND sols
01 RAD | 1](+332)
102 [CALCULATE RAD PRINCIPAL e
03 MPY l(+03)
04) RND | 2
05 ADM | PRINCIPAL .
06 SUB_ | 1j(+1)
07 TRZ | 1PRINT
08 ITR | _|CALCULATE
09 |PRINT. [RAD | PRINCIPAL)
10 . SPR_ -~ JANSWER -
R WR T JANSWER
12] HLT . [9999 L
13 . [DCON | ‘ !
14 IPRINCIPAL [12+000000002400 .
| [15 ANSWER {18$b, bbb , bbb, bbb-bbb _
16 GM L T

Figure 162. Autocoder Solution 2, Indian Problem

exactly as it is to be used. If the field is signed, the
proper sign is indicated as shown.

INSTRUCTIONS FOR INDIAN PROBLEM

In Figure 162, the first instruction on line 01 has an
operand written as (4-332). The enclosure of a field
by parentheses indicates to the assembly that the char-
acters so enclosed are to be treated as data. In this
case, the quantity 332 is to be placed in asu 01 by a
reset-and-add operation. Plus 332 is the literal amount
to be added.

Literal operands are used on lines 03 and 06. This
feature makes it unnecessary for the programmer to
establish a location for constants in memory or to de-
fine them with a pcon operation. He may insert literal
data as the need arises. The assembly locates the
constants for him and generates the proper addresses
which then refer to the data.

Additional advantages of the autocoder may now
be summarized.

1. The program is written in a notation referring
to records, data, or instructions by name rather than
code.

2. Data may be entered as they are used, saving
clerical time in establishing tables of constants that
must be referred to by absolute memory location. The
location of the constant data and the conversion of
instruction operands to addresses are automatic fea-
tures of the assembly.

3. The programmer may also use actual memory
locations if desired. To do this, the operand portion
of the autocoder instruction is preceded by the symbol
@. For example, RAD @ 1234 refers to an actual mem-
ory position.

4. Other special mnemonic operations may be used
to insert titles, headings, descriptions and other de-
scriptive information where needed.

The entire Autocoder system is more fully explained
in the IBM 705 Autocoder System Manual of Opera-
tion, Form 222-6726.

Programming System 95

Index

Page
ACCUMMUIALOT ... 19
Accumulator, Capacity of 20
Accumulator, Function of ... 21
Accumulator Overflow ... 21
Accumulator, Sign of ...l 21
Add Instruction 64
Add-to-Address-in-Memory Instruction . R .76
Add-to-Memory Instruction ... 59, 72, 73
Address, Card Punch 42
Address, Card Reader .. 40
Address Modification 76
Address Systemn ...l 18
Alteration Switches 80
Arithmetic Fields 57
Arithmetic and Logical Unit .. 19
Assembly Program ... e 90
Autocoder ... 93
Autocoder Organization ... SO 91
Autocoder, Basic Programming 94
Audible Signal, Console ... 51
Automatic Carriage ... U PO 44
Auxiliary Storage 19
Auxiliary Storage, Capacity of ... 21
Auxiliary Storage, Division of 221
Auxiliary Storage, Function of U 21, 22
Auxiliary Storage, Overflow 22
Auxiliary Storage Units, Address Coding....57
Backspace Instruction ...
Binary Coded Decimal .
Binary Components ...
Binary Numbers
Bit Manipulation ...

Blank Memory Instruction
Branching ISR

Card Punch ...l . 41
Card Punch Checking 43
Card Punch Record Storage 42

Card Punch Speed ... R UV UUU RSP 41
Card Reader ... T i 39
Card Reader Control Panel TR 39
Card Reader Data Flow 39
Card Reader Indicator 81
Card Reader Record Storage R 39
Card Reader Speed ... 39
Card Reader Storage Mark IR . B6
Carriage Control Tape 44
Carrige Switch, Printer 62
Cell, Magnetic Drum ... 24
Character Check, Card Reader .. 41
Character Check, Printer ... 46
Character Sequence ... 67
Character Check-Bit 12
Check Character, Tape Record ... 35, 36
Check Indicator, Data Check 87
Check Indicator, Function of ... 83
Check Indicator, Instruction 8%
Check Indicator, Machine ... 83
Check Indicator, Overflow .. o . 84
Check Indicator, Record46, 84
Check Indicator, Read-Write [RUTUT 35, 386, 41, 83 84
Check Indicator, Sign R 84

41

Checking, Card Reader

96 IBM 705

Checking, 760 Control and Storage ...
Checking, 717 Printer ...

Checking Procedures IR
Checking Switches
Check-Point Procedure ... ST
Check-Point and Restart, Con51derauon of (SRR
Compare Instruction SO 67
COmPAariSON ... 22
Comparison, for Branching . 73
Comparison Indicator 22
Comparison, Numerical Fields ... 22, 23
Comparison, Results of 22
Comparison Sequence . . 22
COoMNSOle ..o 48
Constant Area, Autocoder94, 95
Constant Emitting 39
Control Instruction 78
Control 0000 Instruction ... 79
Control 0001 Instruction ... 9
Control 0002 Instruction ... JE 79
Control 0003 Instruction ... 9
Control 0004 Instruction .. 79
Control 0005 Instruction .. 79
Control 0009 Instruction ... 79
Control and Storage, 760 48
Control Total 85
Crossfooting Balance Checks ... BSOS TT 85
Data Recording in Bit Positions . . .77, 78
Data Synchronizer ... : 33 34 35 56, 62
Data Synchronizer Address Counter R 34
Data Synchronizer Buffers 34
Data Synchronizer, Characters of 35
Data Synchronizer, Data Transmission ... 34
Data Synchronizer High Register ... 37
Data Synchronizer Low Register ... 37
Data Synchronizer, Reading 34

Data Synchronizer, Writing 34, 35

Data Transmission ... 68
Drum Indicator ... 82
Drum Mark ... 36, 62
Drum Storage 14
End of File, Card Reader 40
End of File, Procedures80, 81, 82
Error Condition, Tape L 29
Error Condition, Tape Writing ST 35

Error Condition, Tape Reading . PO
Error Correction, Card Reader 41

Field Rearrangement, Card Reader ... 39

Field Selection 39
File Protection Device, Tape .. 29
Form Dimensions, 720A, 730A . 47
Form Ejection ... JE RO PUSUUNPUUPURNURRVOPRUT * §
Form Feeding, 720A, 780A 47
Form Overflow 45
Form Skipping 44

Form Spacing, 720A 730A . .46, 47
Form Specifications, Automatlc Carrlage . . 44
Forms Tractor

Group Mark ...
Group Mark, Emitted ... [
Grouping Feature ... 39

Page
Hash Total ... 85
Hollerith Code 1
Horizontal Check Card Reader ... 41
Horizontal Check, Printer ..o 46
INdicators, CONSOLE ..ottt 50
Indirect Addresses 88
Input-Output Indicator ... 40
Input-Output Indicator, Off Instruction 79
Input-Output Indicator, On Instruction ... 79
Input-Output Indicator, Tape Unit ... 29
INStruction, AULtOCOAEY ..o 94
Instruction, Autocoder Problem ... 95
Instruction, Form of 52
Instruction, Operation Part ..., 52
Instruction, Operand ... 52
Instructions, Storage of . .16, 17, 52
Inter-record GAP oot 29
Inter-record Gap, TaPe ... 56
Kevboard, C€onsole 50
Language, Machine ... e 10
Lengthen Instruction 66
Limit Check ... 85
Load-Address Instruction 76
Load-Storage INSLruCtioN ... 67
Machine CRhecKS ..o 83
Magnetic COTe ATITAY ..ot 15
Magnetic Core Plane 15
Magnetic Core Polarity 14
Magnetic Core ReGeneration ... 16
Magnetic Core Sense Wire ... 16
Magnetic COre SLOTAZE ..ovieumeemuieiiiimimimiiminissisis e 14
Magnetic COre StOrage ACCESS ... 16
Magnetic Core Storage Access Time 16
Magnetic Label ... 84
Magnetic Drum Access Time ... 25
Magnetic Drum Channels 25
Magnetic Drum Reading ... 25
Magnetic Drum Section ... 25
Magnetic Drum Storage 24
Magnetic Drum Tracks 25
Magnetic Drum Writing 25
Magnetic Tape Characteristics ... 27
Magnetic Tape, Dimensions Of27
Magnetic Tape Records .28, 29
Magnetic Tape Record Coding ... 27, 28
Magnetic Tape Recording 27, 28
MEIMOTY oo 13
Memory Address System . 19
Multiply INSUFUCHON oo 58
Normalize and Transfer Instruction ... 78
Operating Keys, CONSOLE ..o 50
Photosensing Marker, Tape 29
Printer, 717 o 43
Printer, 720A, T30A ... 47
Printer Indicator ... 81
Printer Record Storage . 46
Printer Wheel 44
Printing MatIiX ..o 47
Program, Alternate Tape Units 75
Program CReCKS ... 85, 86
Program Example Analysis 53, 54
Program Loading ... 63
PIOTAIMIMET .ooootioiisiuseie et 18
Programmer and Computer, Relationship between 89, 90
Programming EXample ... 52
Programming Example, Problem Statement 53

Programming Features
Programming, Introduction to
Programming System
Proof Figures
Punched Card, IBM
Punched Card, Numerical
Punched Card Zoning ...

Read INSLIUCEION ...ocoooiiiiiiiiiii e
Read-while-Writing Instruction
Receive Serial Instruction68,
Receive Instruction
Record Area, Autocoder
Record Arrangement, Printer
Record Arrangement, Punch
Record COUNL ..o
Reflective Spots, Tape ..
Reset-and-Add Instruction ...
Reset-and-Subtract Instruction ...
Restart Procedure
Rewind, Tape
Rewind Instruction
Rewind Speed
Round Instruction

Select Instruction
Send Instruction .69,
Set Bit Coding ...
Set-Bit Instruction ...
Set-Left Instruction
Shorten
Sign Instruction
Signed Fields ...
Signing Card Fields ...
Signing Data .
Skip Instruction
Starting Point COUNEr
Storage, General Description of
Storage Mark
Storage Mark, Card Reader
Stop Instruction
Store Instruction
Store-for-Print Instruction
Stored Program
Subtract Instruction ...
Suppress Instruction
System Check ...

Tape Character Rate
Tape Check Character ..
Tape Control Unit, 754
Tape Control, Read while Writing
Tape Character, Signal Cables ...
Tape Mark
Tape Read, Write Time ...
Tape Record Access Time
Tape Record Checking, 727 Writing
Tape Record Checking, 729 I, III Writing
Tape Record Checking, 727 Reading
Tape Record Checking, 729 I, III Reading
Tape Record Density
Tape Reel Capacity

Tape Skipping
Tape Speed ..
Tape Unit
Tape Unit Address
Tape Unit Head Assembly
Tape Unit Reel Change
Tape Unit Selector Dial
Tape Unit Vacuum Columns
Transfer Instruction ...
Transfer-Any Instruction

Transfer-Any Instruction Coding ... 82 Typewriter, Functions of ..., 51
Transfer-on-Equal Instruction Typewriter Speed ..., 51
Transfer-on-High Instruction ~
Transfer-on-Plus Instruction ... Unload Address ... R T TSP PP PSP 76
Transfer-on-Signal Instruction Unload Key, Tape Unit .. 29
Transter-on-Signal Instruction Coding 79 Unload Storage INStruction 67
Transfer-on-Zero Instruction ... : Write INStTUCHIONoooooiniioiioe oL 62
Transfer-on-Zero-B%t Codmg. Write Tape Mark Instruction 79
Transfer-on-Zero-Bit Instruction
Transmit Instruction Zone Elimination ... 39
Transmit-Serial Instruction Zoning, Arithmetic Fields 57
Typewriter Zoning, Data Fields ... 72
18

Typewriter Address ..., Zoning over Addresses

98 IBM 705

(5/59: 9M-ME)

1B

International Business Machines Corporation

530 Madison Avenue, New York 22, N.Y. Printed in U.S.A. D22.6509-0

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	99
	xBack

