Programming Systems Analysis Guide

7070,/7074 Sort 90

EM Programming Systems Analysis Guide
7070/7074 Sort 90

| @ 1961 by International Business Machines Corporation

Preface

This manual was prepared by Applied Programming
to provide detailed information on the internal logic
of the 7070/7074 Sort 90 Programming System. It is
intended for technical personnel who are responsible
for diagnosing the system operation or for adapting
the programming system to special usage.

Certain knowledge is a prerequisite for the full utili-
zation of this manual. It is assumed that the reader is
familiar with Sort 90 to the extent that it is described
in the IBM 7070/7074 Sort 90 Operation Bulletin
(J28-6096). In addition, it is assumed that the reader
has an understanding of the 1BM 7070 Input-Output
Control System, major portions of which are an integral
part of Sort 90. Such background can be obtained from
the IBM 7070 Input-Output Conirol System Bulletin
(J28-6033) and the IBM Programming Systems Anal-
ysis Guide, 7070 Input-Output Control System
(C28-6119).

A program listing may be obtained by sending a
2,400 foot tape to the 7070 Program Library at Data
Processing Library Services, 590 Madison Avenue,
New York 22, New York.

Contents

Introduction 7
Chart 1A. General Flow Chart 8
Chart 1B. Input-Output. 9

Phasel . . . 10

Running Program: Internal Sort. 10

Input-Output 18

Assignment Programl 25

Exits and Modifications. 28

Exits and Modifications e 28

Storage Maps 29
Chart 2A. Phase I; Assignment Routine1 30
Chart 2B. Phase I; Assignment Routine2 31
Chart 3. Phase I; Internal Sort, Scan. 32
Chart 4. Phase I; Internal Sort, Merge 33
Chart 5A. Phase I; Input-Output Scheduling 34
Chart 5B. Phase I; Input End of Reel and End of File. 35

Phasell 36

Running Program 36

Assignment Program, Chart 6. 45

Exits and Modifications. 46
Chart 6. Phase II; Assignment, Beginning-of-Pass, and

End-of-Pass Routines. 47
Chart 7. Phase II; Running Program, 1......... 48
Chart 8. Phase II; Running Program, 2. 49

Phase Y 50

Running Program 50

Assignment Program L 52

Exits and Modifications., 53
Chart 9. Phase III; Assignment Routine 54
Chart 10. Phase III; Running Program, 1 55
Chart 11. Phase III; Running Program, 2 56

Checkpoint and Restart 57

Program Condition Analysis Aids 59

Locating Errorsin Sort 90. 59

Errors in a New Application. 59

Control Card Summary 59

Malfunctions Related to Input-Output 62

Determining Machine Status when the Program Is Interrupted . 62

Appendix 67

GloSSary 67

Abbreviations 68

The over-all goal of Sort 90 is to produce an output
file of records in sequence with respect to specified
control data, given a file randomly ordered (or, at least,
not completely sequenced) with respect to those data.
Sort 90 includes three phases (Chart 1A): Phase I
reads the input file, forms successive groups of records
into sequenced form by an internal sorting procedure,
and writes the sequences on work tapes. Phase II con-
sists of several passes of a symmetrical merging opera-
tion; in each pass, the sequences produced by Phase I
or by the previous Phase II pass are merged together
to reduce the total number of sequences, increasing
the length of each. When a Phase II pass produces a
small enough number of sequences, Phase III is
entered; it performs the final merging pass, producing
an output file which the customer may use as input for
another program and/or as input for off-line operations.

The flow charts for each phase follow the descrip-
tion of that phase.

Sort 90 is a “generalized” program. This means that
the program, immediately after being loaded, cannot
perform any sorting operation whatsoever; the pro-
gram must first analyze the control cards prepared by
the user and modify itself so as to be capable of per-

IBM 7070/7074 Sort 90

forming the specific sorting application desired. Each
phase is therefore divided into two sections —a “run-
ning” program, which actually performs the sorting,
and an “assignment” program, which sets up the
running program and is then destroyed by record
read-in.

An important feature of Sort 90 is that extensive
provision is made for added programming, such as
editing and summarizing. Thus, sorting may be only
one of several major functions being performed during
a run of this program. The sort may be inserted on a
program tape along with other programs to form a link
in an integrated system of programs.

A companion to Sort 90 exists in the generalized
Merge 91 program, which may be used to merge or
sequence-check already ordered files. Specifications for
acceptable input record and file configurations, amount
and type of control data, and collating sequences are
identical for these two programs, and they may be used
together. For example, should a file contain too many
records for one run of Sort 90, it may be broken into
subfiles. Each subfile is ordered by Sort 90, and the
ordered subfiles are merged into a single sequence
with Merge 91.

18M 707077074 Sort 90 7

(000-010)

PHASE | Read
Control Control
Cards Cards
Halt
Assignment
! o
(071-199) ,,,(B) R
. Moke N_= /N
Input File A Sequences - = \'— "’\\85 "_|
* ~af B4 , —
PHASE Ii 200:211) ‘o
Assignment
‘(212-‘234) ()
Initialize
Parameters
N One Pass N
oy s Y20 N N
5L<_——_-—.——_—_- Merge | — { Bs)
\ - o e — Sequences |~ _ _ -~ N ‘]
- ‘/ Ay \ - e a -
NIy
PHASE il
Assignment
~~
I Ay Y= Je21-373)
/A\\ \ ~ 1 Merge Into .
I8 - ——— — — — — —] Output File Output File
N_3d 7 -
[Ay)——7 A
N3

Chart 1A. General Flow Chart

Phase |

Initial
Sequencing

[

Input File

A

Phase {1
Pass 1

Merge Pass

!

Phase |1
Pass 2

Merge Pass

!

Etc.

i
g

If No. of Phase 11
Passes = 1,3,5, ...
Phase |1l

Final Output File
Merge Pass

i
/

If No. of Phase il
Passes =0,2,4, ...
Phase 111

Final

Merge Pass \

:

Qutput File

Chart 1B. Input-Output

M 7070/7074 Sort 90

9

Phase |

Phase I of Sort 90 has two major functions:

1. The program reads and checks control cards
which contain the user’s information needed by
all phases to adapt the sort into a specific appli-
cation.

2. Groups of records from the input files to be
ordered are read, internally sorted into sequences,
and written on work tapes to form the input for
Phase II.

Assignment

The program itself is divided into two major parts —
an assignment program and a running program. Phase
I assignment program performs some services for all
three phases and other services uniquely for the run-
ning program of Phase I. For the benefit of all phases,
it places parameters from the control cards into a com-
munications block, and it computes such vital informa-
tion as the blocking factor to be used internally by the
sort. For Phase I, the assignment program takes in-
formation provided by the user together with the
constants and skeleton routines it already contains to
generate some parts of the running program and to
initialize other parts.

Running Program

After assignment is completed, the running program
takes over. A number of blocks of records are read into
one and then another of two or three large areas of
storage. The symbol G is used to distinguish these
record areas from the several blocks of records of
which they are composed. “G” henceforth refers to
any one of these record areas used in Phase I of the
sort. Either a two- or a three-area system of over-
lapping input, output, and processing may be used.
With a three-area system, records are sorted in one G,
written from another, and read into the third. When all
three functions are completed for one set of records in
each G, another cycle begins in which the G of the
just-sorted records is written, the G just written is filled
with new records, and the G just read is sorted. With
a two-area system, the program sorts in one G and
writes, then reads into the other during a single cycle.
These matters are discussed more fully in the section
“Input-Output Scheduling.” (See Figures 4a and b.)

Sorting consists of several steps. The main parts are
a scan and a merge. The scan checks the records for
sequences already present in the input file. These

10

“natural” sequences are identified and, if necessary,
reversed to conform with the collating sequence speci-
fied. Next, a series of passes is made internally to merge
these sequences. Each pass performs a series of two-
way merges with successive pairs of sequences and
reduces the number of sequences by half or more. The
merge is concluded when a single sequence remains
for the G. The records are then written on an output
tape in blocks, which may be different in size from the
input or Phase III output blocks. When a sequence
break occurs between successive G’s, output shifts to
another of the M output tapes of Phase I. (M equals
the order of merge used in Phase II.) While the first
G is being written, the second is being processed. The
cycle of events is repeated until the entire input file has
been written as a series of sequences which are about
equally distributed among the M output tapes of Phase
I. These then become the M input tapes of Phase II.

Only RDW’s Moved: The key feature of the internal
sort, as will become clearer later, is that the records
themselves are not moved during the reordering and
merging. Instead, only the rRow’s (record definition
words) of the records are rearranged. This greatly in-
creases the efficiency of the sort, but it also means that
after the first read, form 1 and 2 records from a single
input block are scattered in storage rather than occupy-
ing contiguous locations. Knowledge of this fact is im-
portant whenever one examines a print-out of the
record area. For form 3 records, a block is read into a
contiguous storage area, since new Row’s defining each
record are required after each read.

Running Program: Internal Sort

The running program is discussed first, since the func-
tion of the assignment program should then be more
meaningful to the reader. Whenever the collating se-
quence is not specified, it is assumed to be ascending.
During the execution of the running program, upper
storage contains the following major areas, which begin
from the first location after the running program:

1. Three or four areas to contain the lists of rRow’s
defining the locations of the records — one area
for each G, and a spare.

2. A sequence table to hold the sequence-defining
RDW’S.

3. The two or three G’s to hold the records being
sorted (Figure 1).

2695 2740
w G-1
2705 /
X 3340
G-2
2715
Y ﬁ
2725
3940
z G-3
2735
s T L/—:

4540

RDW Areas: W, X, Y, Z
Sequence Table: ST
Record Areas: G-1, G-2, G-3

Figure 1. Example, Storage Locations of G’s, Row’s, and
the Sequence Table

The beginning location varies because the length of
the running program depends upon record form and
the number of control-data segments. The final location
is limited by the amount of user programming in upper
storage and the necessity of G’s being an equal mul-
tiple of the input blocking.

Scan
BASIC PROCESS

The first step in sorting records is the scan. The func-
tion of the scan is to discover and define the sequences
already existing in the input records occupying a single
G, so that these sequences can then be merged. The
scan begins by comparing the control data of the
first record in the G with that of the second. If a low
condition results, the scan records the beginning of an
ascending sequence; for a high condition, it records
the beginning of a descending sequence. The control
data of the second record are compared with those of
the third record. If the comparison results as before,
the sequence is continuing; if not, a sequence break
exists between the second and third records. If the
sequence continues, the comparisons between each
record and the next continue; when the sequence
breaks, the record, the control data of which were re-
sponsible for the break in sequence, is considered the
first record of a new sequence. If two successive
records with identical control data are found, the se-
quence (ascending or descending) continues. If the
first two records of a sequence have identical control
data, the sequence is arbitrarily classified as an ascend-
ing sequence.

SEQUENCE DEFINERS

The scan defines the sequences it finds by referring to
the successive rRow’s which locate the sequenced

records. It does this by generating a sequence-defining
row (hereafter referred to as an skow) that gives the
locations of the first and last record row for the given
sequence. It enters this srow into the sequence table.
The first seow in this table defines the first sequence of
record row’s, the second srow defines the second se-
quence of row’s, and similarly down the list. Since any
two successive records must form a sequence, the maxi-
mum number of entries in the sequence table will
equal half or just over half the number of records in
a G; e.g.; six out of 12 or six out of 11.

INVERTING SEQUENCES

The row’s of a sequence whose collating sequence is
opposite to that specified in the sort are inverted
(reversed in order) as soon as this sequence is termi-
nated. The inverted list of rRow’s will, therefore, ref-
erence records in the specified order. By this technique
all sequences in the group (G) to be sorted are in
proper collating sequence when the scan is finished.
This inversion of sequences is accomplished through
the use of the rRow area not currently associated with
one of the record areas. When the comparison of the
first two records in a new sequence indicates a reversal
from the collating sequence, the row of the first is
placed at the end of the spare rRow area. If the compar-
ison between the second and third records shows that
they continue this sequence, the row of the second is
placed second from the end of the spare rRow area.
Each succeeding rRow which continues the sequence is
placed in a location one less than the last. When the
sequence terminates, the final Row is placed in the
spare area, and the now inverted ROW’s are returned
to their original location.

Internal Merge
FIRST PASS

When the scan of a G is completed, the “natural”
sequences it identified must be merged into a single
sequence. This is done through a series of passes of a
two-way internal merge. It starts by merging the
records of the first and second sequences. This merge
begins by comparing the first records of the two
sequences and entering the rRow of the lower into the
first location of a new list which occupies the spare
row area. Next, the second record of the sequence
whose first was lower is compared with the first of the
other sequence and the row of the lower enters the
new list. With an important modification, discussed
below, the process continues until all the row’s of
the first two sequences have entered the new list.
The sequences are merged; the new set of Row’s, refer-
enced in their present order, represents the records in

Sort 90, Phase 1 11

a single sequence. The first and last locations of this
set of RoW’s are used to generate an srow. In the
sequence table the first two entries, which defined the
just-merged sequences, are no longer necessary, so the
new skpw enters location 1 of this table, overlaying the
earlier entry.

The program next merges the records of the third
and fourth sequences by adding their rRow’s in proper
order to the new list. This second set of RoW’s repre-
sents a second-ordered sequence of records. Its first
and last locations are also used to generate an srow
which enters location 2 of the sequence table, and the
third and fourth previous entries are no longer needed.
This cycle is repeated for all successive pairs of
sequences in the G being processed. If, after merging
two sequences, it is discovered that only one sequence
remains, the Row’s describing that sequence are simply:
transmitted intact to the end of the new row list and
the proper srow is generated and entered into the
sequence table.

ADDITIONAL PASSES

When one pass of the internal merge is completed, the
next begins. This time the original Row area associated
with the G being processed is available for reordering
the RoW’s, 5o an alternation between Row areas from
pass to pass is a characteristic of the internal merge.
The sequences being merged in any one pass are those
which were found as a result of the preceding pass.
The number of sequences grows fewer; the length of
the sequence table grows shorter. After the last merge
pass is completed, a single srow remains in the se-
quence table. The resultant row list this srow defines
may be in either Row area, depending on the number
of passes, and refers to records in a completely sorted
G. This row list is now ready to control a write opera-
tion, and the records in G will be written on tape in a
physically sequenced order.

For form 1 and 2 records whose (maximum) length
is not changed by editing, the output row list asso-
ciated with one G becomes the list controlling input.
When editing changes the record length, each row in
the list is modified to the specified input record length
before the read operation. In any case, after the read
operation, the records in the corresponding G are not
likely to be located in storage in the same physical
order as they were on tape. This is not relevant for
processing, however, since it is the rRow’s which are
moved and which will control writing. The first record
read is represented by the first Row in the read list,
regardless of which part of the G is addressed. Succes-
sive ROW’s in the read list represent records in the order
read, but the records themselves are scattered through-
out the record area (G).

12

MERGING MORE THAN TWO SEQUENCES

One special feature of the internal merge is a provision
for merging more than two sequences into a single se-
quence in one pass, when circumstances are favorable.
At some stage during the merge of two sequences, all
the rRow’s of one sequence will have entered the new
list, but at least one Row of the other sequence will not
have been moved. Each time this happens, the con-
trol data of the final record of the sequence which has
been completely merged is compared with those of the
first record of the next sequence. Should no stepdown
(break in the collating sequence) exist between these
two records, the program continues by merging the yet
unmerged records of the unexhausted sequence and all
the records of the next sequence. Since this comparison
is repeated when either of these sequences is ex-
hausted, it is possible that many input sequences may
merge into any one output sequence during a single
pass. If input records are partially ordered, this tech-
nique may appreciably decrease the processing time of
Phase I.

SEVERAL G’S INTO A SINGLE SEQUENCE

A stepdown check is made before the second and each
of the succeeding G’s are written. The control data of
the last record of the G just written and the first record
of the next G are compared. If they indicate a break in
the sequence, the output tape is changed. Rotation
among the output tapes between sequences tends to
equalize the number of sequences on each tape, to the
advantage of Phase II. The writing of several Gs as a
single sequence on one output tape, when there is no
sequence break, takes account of partially ordered rec-
ords and also tends to save time for Phase II.

Example of Scan and Merge
The following example illustrates the operation of the
scan and merge of Phase I. In making this example con-
crete, certain assumptions are made about the amount
of storage available for records and its location. It
must be remembered that storage allocation will vary
with the particular application of Sort 90.
1. Sort into an ascending sequence:
1000 sixty-word records, fixed length (form 1)
Five records per block, input
Two-digit control data
2. Machine components:
1BM 7070 with 5000 words of core storage
Two tape channels
The control data are short, and the records are long,
so the sort would tend to be tape-limited. Therefore, if
the user did not choose to specify it, Sort 90 would have
selected a three-area system to allow concurrent read-
ing, writing, and processing. The program computed
G’s which are a multiple of the input blocking. It is as-

sumed that added instructions for spooL or editing are
not long and that enough storage is available so that
each G will hold two blocks of five records occupying
a total of 600 words of storage. A further assumption
is that the user specified a three-way merge for Phases
II and III and that Phase I assignment has computed
an internal blocking factor of three. The user has
chosen this order of merge after considering the num-
ber of tape units available, the number of passes likely
to be saved in Phase II, and the added per-record per-
pass processing time required for higher-ordered
merges.

Storage beyond the running program contains the
records being sorted, the associated row lists, and a se-
quence table. Figure 1 gives memory maps of these as
they are assumed for this example. At the start of the
first processing cycle, row list W is associated with
G-1’s records. In Figure 2 these rRow’s are shown, and

Word A B C |

in MERGE

RDW Start End of SCAN End of Pass 1 End of Pass 2

List InW CD* InW CD* Seq.| InZ CD* Seq. InW CD* Seq.
Ist | RDW 1 03 | RDW 2 oz} 1 | rRoW2 02 RDW 2 02

2nd | RDW 2 02 | RDW1 03 RDW 1 03 RDW 1 03

3rd | RDW 3 14 | RDW3 14 } o | ROW7 05 RDW 7 05

4th | ROW 4 17 | ROW 4 17 RDW 6 09 > 1' | ROW 8 06

5th | RDW 5 15 | RDW7 05 RDW 3 14 RDW 10 07

6th | RDW 6 09 | ROW6 09 b3 |ROWS5 15 RDW 6 09 > 1"
7th | ROW 7 05 | ROW5 15 RDW 4 17 RDW 9 10

sth | RDW 8 06 | ROW8 061 4 |RDWS8 06 RDW3 14

oth | ROW 9 10 | ROW9 10 ROW 10 07 & 2' | ROW 5 15
10th | ROW10 07 | ROW1007 } 5 [RDW 9 10 RDW 4 17

*Digits of control data in the record defined by the corresponding RDW

Addr. Contents
2695 |+ 00 2740 2799 RDW 1
2696 |+ 00 2800 2859 RDW 2
2697 |+ 00 2860 2919 RDW 3
2698 |+ 002920 2979 RDW 4
equals 2699 |+ 002980 3039 may be RDOW 5
2700 | + 00 3040 3099 represented by: RDW 6
2701 + 00 3100 3159 ROW 7
2702 |+ 00 3160 3219 ROW 8
2703 |+ 00 3220 3279 RDW 9
2704 |+ 00 3280 3339 RDW 10

Figure 2. Example, an row List

each is assigned a number to simplify the following
description. In Figure 3A, these rRow’s are shown to-
gether with the control data of the associated record.
Z is the row list not currently associated with any G,
and therefore available for use as an empty area.

X X X
Starting Info Results Results Results
ST ST ST
+00 2695 2696 | +00 2725 2731 +00 2695 2704
+00 2697 2698 | +00 2732 2734 | ..iiiiinennn
+00 2699 2701 | ..iiiiiiiiiiien | eeeseesenaneans
400 2702 2703 | ciieieeiiiennes | eeecenecnannens
+00 2704 2704 | .iiieiiiinnenns | eeeeniiineiennn
z z w
+00 2800 2859 +00 2800 2859
+00 2740 2799 +00 2740 2799
9th |RDW 2] Step| + 00 3100 3159 +00 3100 3159
10th|RDW 1| 1 | +00 3040 3099 +00 3160 3219
+ 00 2860 2919 + 00 3280 3339
z +00 2980 3039 + 00 3040 3099
+00 2920 2979 +00 3220 3279
8th |RDW 7] Step| + 00 3160 3219 + 00 2860 2919
9th [RDW 6| 2 | +00 3280 3339 +00 2980 3039
10th +00 3220 3279 +00 2920 2979
Z used to reorder Ready to prepare
descending se- to write
quences during
SCAN

Figure 3

Sort 90, Phase I 13

During the scan, five natural sequences are defined,
two of them requiring reversal of the row’s and tem-
porary use of Z. The sequence-defining srow’s are en-
tered into the sequence table as the sequences are de-
termined. Figure 3B shows the reordered row list, the
sRDW’s in the sequence table, and the successive uses
made of Z to invert the Row’s.

In the first pass of the merge, it is possible to merge
the five natural sequences into two, since the higher
control data of the first record of the third sequence
permits it to be merged with the remainder of the sec-
ond after the first is exhausted. The successive com-
parisons and sequence definitions made during the first
pass of the merge are given in Table I. The results of
this pass for the row list and the sequence table are
given in Figure 3C. The row’s have been merged into
the “empty” area Z.

A second pass of the merge is all that is required to
complete Phase I processing for this G. The two output
sequences of pass 1 are merged into a single sequence
with the reordering of Row’s into area W. Figure 3D
indicates the final status of this rRow list and the se-
quence table. In the next cycle the records from G-1
will be written on the same output tape in blocks of
three with the fourth block having only one record.

NOTES

1. The next time records are read into G-1, the Row’s
in W will not be in the order of the records in G-1, and
this is the typical situation.

2. The rRow area associated with a particular G varies
throughout Phase I. In the above examples, if the scan
had found only two natural sequences instead of five,
the third step would have been unnecessary, and at
the end of pass 2, Z would have contained the final or-
dering of rRow’s. This would leave W as the “unused”
area when processing the next G.

3. A two-area system in Phase I would require one
less Row area and one less record area (G).

4. After each block is read, the row which was
minus for purposes of reading that block is made plus.
After processing and before writing, the signs on the
appropriate Row’s are made minus.

5. The possibility of forming one new sequence from
more than two in a single pass frequently allows the
number of sequences to be reduced by more than one-
half in a single pass and therefore reduces the number
of passes for a given G. The example illustrates this for
pass 1 of the merge.

RDW Moved to
Successive Control Data Associated List Z,
Comparisons Compared With Location
1. 14:2 2 1 Red of Seq 1, 2 Compared
2. 14;:3 3 2
3. ¢ 5:3 - - Last Red of Seq 1 Compared with
first Red Seq 3.
4. 5:14 5 3 Red of Seq 3 and the Remainder of
5. 9:14 9 4 Seq 2 Compared.
6. 15:14 14 5
7. 15:17 15 6
8, 6:15 17 7 Last Red of Seq 3 Compared with
first Red Seq 4.
sRDW Locating RDW's of first New
Seq is Placed in first Word of ST.
9. 7:6 6 8 Red of Seq 4, 5 Compared.
10. 7:10 7 9
10 0
sRDW Locating RDW's of 2nd New
Seq is Placed in 2nd Word of ST.
* Sequence 1 is exhausted, but the control data (3) of the last record of Sequence 1 are less than the control
data (5) of the first record of Sequence 3. Therefore the new sequence is extended by merging Sequence 3
with the remainder of Sequence 2. -
** Sequence 3 is exhausted, and the control data (15) of the last record of Sequence 3 are greater than the control
data (6) of the first record of Sequence 4. Therefore the remaining RDW of Sequence 2 is moved into the
succeeding word of Z. This terminates the first new sequence.

Table 1. Successive Comparisons and Sequence Definitions
during Pass I of the Internal Merge

14

Description of Flow Chart 3: Scan
INITIALIZATION

The scan is entered at aiscan (071) where the neces-
sary switches are set to N. The index word controlling
entry to the sequence table and the one used to build
the sequence definers are set to hold the starting loca-
tions of the sequence table and the row list for this G,
respectively.

SEQUENCES IN NORMAL COLLATING SEQUENCE

Index word aRecorp is loaded with the first row for
this G (072), and the user is given an opportunity to
exit at ARECDBRNCH to add routines for editing or de-
leting records (073). If there is no exit here, the pro-
gram adds one to the record count (073-1), continues
through the N branch of swa (074), sets swa to B
(075), transfers the row in ARECORD to index word
Acrx2 (082), and, unless this Row was the last in the
list (090), loads the next row in the list into ARECORD
(072). Again assuming there is no exit at ARECDBRNCH
(073), the program counts the record (073-1) and
drops through swa (074) to the comparison routine
(076). Here the control data of the records represented
by the row’s in ARECORD and ACRx2 are compared. If
the second record represented by ARrECORD is greater
than or equal to the first, and if the sort is set for an
ascending sequence, the sort continues through the N
branch of sws (077), sets swc to A (083), transfers the
RDW in ARECORD to ACRx2 (082), and again if this rRow
was still not last in the list (090), loads the next row
from the list in arecorp (072) ready for the com-
parison (076). As long as successive RDOW’s represent
records with equal or higher control data, this loop
through the comparison routine will continue. A low
record, indicating a sequence break, will cause the sort
to leave the comparison routine (076) through the A
branch of swc, setting and storing in the sequence table
an sepw (088), returning swc to N (089) and continu-
ing (through 082, 090, 072, 073, 073-1, 074, 076) to load
the rRow’s and the first two records of the next sequence.

SEQUENCES NOT IN NORMAL
COLLATING SEQUENCE

If the first two records form a descending sequence, the
sort leaves the comparison routine (076) through the
N branch of swc (084), sets sws and swc to B (087),
unloads the row of the first record into the last position
of the spare row list (086), and returns (through 082,
090, 072, 073, 073-1, 074, 076) to load the row’s and
compare the second and third records following the
termination of the first sequence. If the third record is
less than the second record so that it continues the de-
scending sequence, the program proceeds through the
B branch of swc and unloads the rRow of the second

record into the second last position of the spare row
list (085, 086). Blocks (085) and (086) are also
reached if the records have identical control data,
through the B branch of sws and the equal branch of
the following switch (078). The loop through the com-
parison (076) continues until the newest record proves
larger. The sort then leaves the comparison through
the B branch of sws (077) and the unequal branch of
the next switch (078), sets and stores an srow in the
sequence table (079), returns the inverted list of rec-
ord row’s to the proper row list (080), resets sws and
swc to N (081), and transfers the row of the first rec-
ord in the next sequence to acrx2 (082).

If the user had specified a descending collating se-
quence for the sort, the high and low branches of the
comparison (076) would have been reversed during
assignment, equal remaining the same. This is true
also of the major comparison in the internal merge,
since the same compare routine is used.

CONCLUSION OF SCAN

Whenever the counter (090) indicates that the row
for the last record has been entered into Acrx2 (082),
the program branches to set and store the final
sequence-defining srow in the sequence table (091),
returns the inverted row’s from the spare area to the
proper row list—if the last sequence was contrary to
the collating order specified (092, 093)— and proceeds
to the internal merge.

REENTRIES FROM OPTIONAL EXITS

If the user exits at ARECDBRNCH (073) to do any one-
by-one processing, he should reenter at AWRITE (094).
This entry leads to the necessary adjustments for any
change in record length (095, 096), and the loop con-
tinues as otherwise determined from the record count
(073-1). If the user deletes the record whose row is in
ARECORD after an optional exit from ARECDBRNCH (073),
however, he should reenter at ApELETE (097) to signal
amovesw of the merge (103, Chart 4) that a short G
is being processed. If this is not the last record of the
G (098), this rRow is moved to the end of the list after
all below it have been moved up one place (099), and
the program loads the next row and compares the
proper two records (072, 073, 073-1, 074, 076).
When, following a deletion, a check (098) indicates
that the last record has been deleted, the program tests
to see if any records in G were not deleted (100). If all
records were deleted, the sort sets (101) AWDELETESW
(166, Chart 5A) in the 1-0 scheduler to N to bypass
writing this G and branches through connector H to
the 1-o scheduler to prepare for processing the next G.
If the last record of the G was deleted (098), but some
records in this G were not deleted (100), the program

Sort 90, Phase 1 15

continues to set and store the final skow in the
sequence table (091). If the last sequence required
inversion (092), it returns the inverted rRow’s to the
proper list (093) and enters the merge.

Description of Flow Chart 4: Merge
SHORT G

Entering from the scan, the program initializes the
counters and switches to be used on the first pass of
the merge. The index word counters which control
operations on each row list and on the sequence table
are prepared (102-1), and swc and sws are set to N
(102-2). amovesw is tested (103); if it has been set
to Y, indicating a short G, the program branches to
reset AMOVESwW (104) and duplicates the row list in
the spare rRow area (105). This is necessary because
the merge normally moves from the old list to the new
one only the RoW’s representing current records. With-
out the duplication, should the final output list be in
the originally “empty” row area, the unused rROW’s in
the input list would be missing. Difficulty would be
encountered when this rRow list was next used to read
a (larger) group of records into storage. The duplica-
tion, which occurs whenever a G is short, insures
against such a loss of row’s. The short G may arise
from the reading of one or more short blocks or from
the deletion of records during the scan.

LOADING SEQUENCE CONTROLS

After testing aMovesw (103), and duplicating the row
list if necessary, the number of sequence definers
(seow’s) is checked (108). If there is more than one
entry in the sequence table, the program moves the
srow for the first sequence into an index word, referred
to as “sequence A control” (107). This index word and
another, referred to as “sequence B control,” count and
control the entry of record row’s into the locations used
for comparison and thus into the merged sequence.
When sequence A control has been set up (107), it is
used to enter the rRow for the first record from sequence
A into acrx2 (108). Then sequence B control is loaded
with the srow for the second sequence (109) and,
under its control, the rRow of the first record in this
sequence enters ARECORD (110).

TWO MERGING LOOPS

The control data of the records represented by ARECORD
and Acrx2 are compared (112), and (assuming the col-
lating sequence is ascending) the mow of the lower
record is moved to the first location of the empty row
area. A check is made to see whether this was the last
Row of its sequence, and, if not, the sort returns to load

16

the next rRow into the same comparison word. Depend-
ing upon which record is lower, one of two loops is
followed to perform these functions:

1. If sequence B record is lower, the sort moves
through the N branch of swc (121), executes
the move instruction (122), leaves the sequence
B test through branch N (123), loads the next
row from sequence B into Arecomrp (110), and
compares this next sequence B record with the
sequence A record still referenced by acmx2
(112).

2. If sequence B record is not lower, the sort moves
through the N branch of sws (113), executes the
move instruction (114), leaves the sequence A
test through N (115), loads the next row from
sequence A into Acrx2 (111), and the sequence B
record still referenced by ArRecorp is compared to
this next sequence A record referenced by Acrx2
(112).

On a merging loop, sequence A and its control always
refer to the sequence whose skpw is nearest the begin-
ning of the sequence table. However, when testing
whether a third input sequence may join the merge,
sequence A and its control refer to the exhausted
sequence.

SEQUENCE B EXHAUSTED

One or both of these loops are repeated until the last
rpw of one of the sequences is moved to the new list.
The program then checks to see if the next sequence
can be merged with the remainder of the unexhausted
sequence into the current output sequence. Whenever
sequence B is exhausted, the program passes through
the Y branch of the merge test of this sequence (123)
and sets swc and sws to T (124). The contents of se-
quence A control — containing the skow for the un-
merged portion of sequence A — are transferred to tem-
porary storage (125) and replaced (with interchange)
by the contents of sequence B control (126). If more
sequences are represented in the sequence table (127),
the program branches to load the next row for se-
quence A into acrx2 (108). In this case the next row
for sequence A is now the last row for the just-ex-
hausted sequence. Sequence B control is set to refer to
the next (third) sequence (109), and AREcORD is
loaded with the first Row of this sequence (110). Then
the program compares the first record of the third se-
quence to the last record of the exhausted sequence
(112).

SEQUENCE CONTINUES

If the control data of the first record of the third se-
quence is not lower, the new input sequence can be

merged into the current output sequence. When this
happens, the program continues through the T branch
of sws (113), replaces the contents of sequence A con-
trol with the sequence definer for the unmerged por-
tion of the first sequence from temporary storage
(119), resets swc and sws to N (120), loads the next
row for this sequence into Acrx2 (111), and continues
the merge.

SEQUENCE BREAK

If, on the contrary, the control data of the first record
of the third sequence are less than those of the last
record of the exhausted sequence, there is a sequence
break. The remaining records of the incompletely
merged sequence must be added to the current out-
put sequence, and the third sequence is readied as one
of the inputs for a new output sequence. The program
leaves the comparison (112), goes through the T
branch of swc (121), moves remaining row’s of the
incompletely merged sequence to the new row list
(128), resets swc and sws to N (129), and moves the
srow of the third sequence from sequence B control to
sequence A control (130). It enters the srow for the
output sequence just completed into the next available
(first) position in the sequence table, replacing (func-
tionally) those two (or more) skow’s which defined the
input sequences that were merged (130-1). If there are
more entries in the sequence table (131), the program
branches to load the first Row of sequence A into ACRX2
(108). It loads sequence B control with the srow for
the next input sequence (109), loads the first row of
this sequence into arecorp (110), and enters the first
comparison for merging the next output sequence
(112).

SEQUENCE A EXHAUSTED

Whenever sequence A is exhausted, the series of in-
structions is similar to that indicated above for the ex-
haustion of sequence B. The program passes through
the Y branch of the merge test of this sequence (115),
swc and sws are set to T (116), and the contents of se-
quence B control, containing the srow for the un-
merged portion of sequence B, are transferred to tem-
porary storage (117). If more sequences are repre-
sented in the sequence table, sequence B control is set
to refer to the next (third) sequence (109) and
ARECORD is loaded with the first row of this sequence
(110). Then the program compares the first record of
the third sequence to the last record of the exhausted
sequence — still referenced by the contents of sequence
A control (112). If the sequence continues, the program
proceeds as previously described through the T branch
of SWB, AMCONTINUE, etc. If there is a sequence break,

the program proceeds as previously described through
the T branch of swc, AMBREAK, etc.

NO MORE INPUT SEQUENCES

1. If there are no more entries in the sequence table
after a sequence break (131), the program moves the
skpw of the new input sequence from sequence A con-
trol to temporary storage (132) and branches to the
series of instructions, beginning with amrNis (133)
which concludes a pass of the merge.

2. If there are no more entries in the sequence table
after sequence B is completely merged (127) or after
sequence A is completely merged (118), the temporary
storage area has already been loaded with the srow
for the unmerged portion of the last input sequence
(125 or 117); the program branches directly to AMFINIs
(133) in either of these cases. At AMFINIS the remain-
ing Row’s of the last sequence are moved to the new
row list (133); the last new seow is entered into the
sequence table, and the old row list is set to become
the “empty” area for the new rRow list of the next pass
(134).

STEPDOWN CHECK

At the beginning of the major loop (102-1), switches
and counters are reinitialized in preparation for an-
other pass. The program drops through the N branch
of amovesw (103) and a decision is made as to
whether another pass is necessary or not (106). If an-
other pass is necessary, the program continues as
before. If, however, the sequence table contains only
one entry, thus indicating that all the records in the
G are in sequence, the sort branches to a stepdown
check (135).

If the control data of the first record in this sequence
are equal to or greater than those of the last record in
the previous sequences, this G will be written on the
same output tape as the earlier one. But if the control
data of the present G are less, they will be written on
a different output tape (136). If a two-area input-
output system is used, a separate area is reserved to
hold the last record of each sequenced G, so that it
may be saved for comparison with the first record of
the next G after the latter is sequenced. This is not
necessary in a three-area system, since the area being
written while the current G is processed is not de-
stroyed until the latter processing is complete.

OUTPUT PREPARATION

The last step in the internal merge is the preparation
of the sequenced records for transfer to tape. This
includes changing the signs of the Row’s in accordance
with the internal blocking (137). Then, entry is made
to the input-output scheduler.

Sort 90, Phase 1 17

Input-Output

Scheduling

Although 10Cs routines incorporated in Sort 90 provide
many standard 1-o routines and tape scheduling, in
Phase I the sort program itself adds two important pro-
visions:

1. It programs for the options which 1ocs leaves to
the user, such as the treatment of unusual condi-
tions (sCLR, LLR, and Eos) and additions to end-
of-reel routine. (The user may still add his own
coding to the end-of-reel routine at appropriate
points.)

2. Even more important (in Phase I only), the sort
must provide the coordination to insure that all
necessary activity of one cycle is completed be-
fore another is initiated. In one normal cycle all
records from one G must be internally sorted, all
records in another G must be written on tape, and
this second G, or another, must be filled with un-
sorted records. The proper sequence of events
must also be insured when the sort first begins
and there are no records to be written or proc-
essed during the first cycle. Similarly, input end-
of-reel (EOR) procedures must be deferred until
all records from the current input tape have been
sorted and written.

SCHEDULING FOR PHASE I PROCESSING

Because of the sorting method used in Phase I, the T
and PUT macro-instructions are not used. In normal in-
put-output scheduling, each GeT prepares one record
for processing and signals the file scheduler whenever
a block is empty. The puT prepares one record for out-
put and signals the file scheduler whenever an output
block is ready to be written. With such usage, process-
ing must be done on a record-by-record basis. In Phase
I of Sort 90, processing is done on a record group basis.
Therefore, it has been necessary to substitute a spe-
cialized set of instructions to ready groups of records
for processing and writing and to signal the file sched-
ulers. However, the power of the sort in group process-
ing sacrifices flexibility in some respects. In the serial
processing required with ceT’s and puT’s, it is relatively
easy to insert or delete records. Not so with group proc-
cessing. In practice, insertion is impossible, and dele-
tion requires the special technique of reproducing the
RDW list to prevent loss of RoW’s. See ADELETE (097) on
Chart 3 and amovesw (103) on Chart 4.

PRIORITY OPERATIONS WITH G’S

The problem of moving records in and out of storage
during Phase I of Sort 90 is somewhat unusual because
the current input, output, and work areas commonly

18

consist of many blocks of records rather than one.
These large G’s are desirable because they make pos-
sible larger sequences for the output of Phase I. There-
fore, input-output programming of the sort is coupled
with standard 10cs routines in such a way that any
number of blocks are moved in and out of storage
efficiently during a single processing 1-0 cycle. This
multiple-block processing means that as soon as one
block of records is either read or written, priority
routines must be available to detect and process errors,
to modify counters and switches, and to initiate the
next read or write instruction as long as any records of
a single G remain. The 7070’s priority-processing fea-
tures make it possible to interrupt the sorting process
temporarily while such priority routines are executed.

TWO OR THREE-AREA I-0

Sort 90 gives the option of either a two or three-area
system of overlapping input, output, and processing.
In a two-area system, tape operations are overlapped
with processing but reading is not overlapped with
writing, while a three-area system permits all three to
occur at one time — although in any case they must be
initiated serially. In a two-area system, one G of rec-
ords is sorted while, in another G, already-sorted
records are written out and, following this, unsorted
records are read during the same cycle. In a three-
area system, sorted records are written from one G, un-
sorted records are read into another, and the sorting
occurs in the third, during a single cycle. Since the
sorting occurs through the rearranging of row’s, the
records themselves are not moved about in storage.
Figure 4a and b illustrates the two and three-area sys-
tems.

If the sort tends to be tape-limited (i.e., it takes
longer to read and write records than to sort them),
the three-area system is desirable. If, on the other hand,
many segments of control data and short records com-
bine to lengthen process time beyond the combined
read and write times (a process-limited application),
then a two-area system may be preferable. The user
may specify which system the sort is to use, or he may
leave it to the assignment program to decide which is
better.

NORMAL CYCLE

Sort scheduling must take into account three principal
types of conditions and provide the proper sequences
of instructions peculiar to each. First, there is the
normal sequence of events when sorting is underway.
The just-sorted records must be written, unsorted rec-
ords must be read, and other records must be sorted
during a single cycle. (For example, see cycles 3 and 4

Cycle Cycle Cycle Cycle Cycle Cycle Cycle
Y] >/2 3 4 5] 7
Gl Read Proc. Write Read - - .
G2 Read Proc. Write - - -
G3 Read Proc. - - -
a. Three-Area System
Gl Read Proc. Wr-Rd Proc. - = -
G2 Read Proc. Wr-Rd - - -
b. Two-Area System
*
Gl Write Read Proc. Write EOR Read Proc.
G2 Proc. Write Read Routine Read
G3 Read Proc. Write Read Proc. Write
c. Three-Area System, EOF Condition, EOF encountered in Cycle 3 before any records
read.
*
Gl Read Proc. Write EOR Read Proc. Write
G2 Write Read Proc. Write]Routine Read Proc.
G3 Proc. Write Read
d. Three-Area System, EOF Condition, EOF encountered in Cycle 2 after some records read.
*
Gl Wr-Rd Proc. Wr-Rd EOR Read Proc.
G2 Proc. Wr-Rd Proc. Write Routine Read Proc. Wr-Rd
e. Two-Area System, EOF Condition, EOF encountered in Cycle 3 before any records read.
*
Gl Proc. Wr-Rd Proc. Write EOR Read Proc. Wr-Rd
G2 Wr-Rd Proc. Write Routine Read Proc.
f. Two-Area System, EOF Condition, EOF encountered in Cycle 2 after some records read.
* Indicates cycle in which EOF signal is encountered.
Figure 4

of Figure 4a and b.) Write instructions and counters
are set up for the G to be written, and the write instruc-
tion for the first block is issued.

If a three-area system is used, read instructions
are set up for another G, and the read command for
its first block is given. Then the program begins to sort
the records in the remaining G through the scan and
internal merge. Whenever a tape operation is com-
pleted, priority is signaled. Sorting is temporarily inter-
rupted, and a priority routine is entered to correct a
tape error (if any), modify the appropriate switches,
and issue another tape read or write instruction. Then
sorting resumes, unless another signal for priority has
been given. Counters in the priority routines cause the
sort to bypass the tape command and give a priority
release whenever the tape operations on a G have been
completed. This terminates reading and writing at the
proper time. Reentry to 1-0 programming from the scan
and merge is delayed by gates which are not opened
until tape operations are complete. Sorting and tape
operations must each wait for the other to conclude
before the next cycle is begun.

Procedures are similar for a {wo-area system except
that the program enters processing directly after the
first write instruction is issued, and the first read in-
struction is given only after the tape-write priority
routine indicates that all the records in the G have
been written.

BEGINNING-OF-SORT CYCLES

A second situation is encountered when the sort begins
and there are no records to be sorted or written. See
cycles 1 and 2 of Figure 4a and b. This condition
occurs just after the assignment program is completed
and processing starts, and also whenever a new input
reel is first processed. Reading begins at once, and
switches are set to prevent any activities except
priority read routines until the first G is filled. A full G
terminates the first cycle. The second cycle bypasses
the write instruction, sets the read instruction for a
new G, issues the instruction to read the next block
into this G, and starts sorting the records in the first G.
Sorting is temporarily interrupted by the read priority

Sort 90, Phase I 19

routine each time a block has been read. Switch set-
tings have been changed so that when all records in the
first G have been sorted, and the second G is full, the
program is ready for the normal condition at the
beginning of the third cycle.

INPUT END-OF-REEL CYCLES

The third situation confronted by the scheduling
routines is the handling of the input end-of-reel con-
dition. To allow the checking of record counts, all
unsorted records in storage must be sorted and written
before the end-of-reel routine is entered. If end-of-reel
is discovered by the priority routine before any records
are read during a given cycle, switches are set to limit
the next cycle to writing the records being sorted in
this cycle. When these records have been written, the
end-of-reel routine is entered. If end of reel is en-
countered after some blocks have been read, switches
are set to limit the sort to process and write during the
next cycle and to write only in the cycle following it.
The end-of-reel routine is entered in the third succeed-
ing cycle. (See Figure 4c, d, e, f.)

Description of Flow Chart 5A
NORMAL CYCLE

During a normal cycle the entry is from the scan and
merge to a switch which is set to loop on itself until
the last block of the G being written has been written
(160). When writing is complete, the write block
counter is reset (161). If the last sequence processed
breaks with the previous sequence (161-1) and if M—1
output reels contain only a single sequence each
(161-2), then HALT 1114 follows (161-3). If alteration
switch 1 is set off, the sort will drop the last input reel
(168-4) and proceed to terminate Phase I. Since the
number of sequences equals the order of merge, the
processing of Phase II will be bypassed. Despite the
large number of records, there is no risk of a non-
ending sort, and the sort will be completed success-
fully. If, on the other hand, alteration switch 1 is on
(161-4) and sorting continues in Phase I, a non-ending
sort will result in Phase II unless records are eliminated
by summarizing. If alteration switch 1 is on or if there
were not M—1 full output reels containing single
sequences, and if the last tape write operation did not
reveal an EoF (161-5), then the output is switched to
the next active tape (161-6); the just-processed se-
quence will be written on a different output reel. If
the last write operation did find an EoF, then the out-
put end-of-reel routine has already switched the tapes
to be written, so this step (161-6) is bypassed, as it is

20

if no stepdown was found between the sequence just
processed and the previous sequence (161-1).

In all cases that continue the internal sort, the next
step is to modify the write instructions to refer to the
G just sorted and next to be written (161-7). If records
are still being read on the last cycle, the program loops
on a switch until reading is complete (162). AEORSW
(163) has been set to N, so the program checks
ATURNONSW (163-1) for sLR on previous read and sets
amovesw (163-2) if it is sLR. The controlling index
words are reloaded to rotate the read, write, and
process areas for the present cycle (165). For example,
in a three-area system, the index-word contents are
exchanged so that the G just read will be processed,
the G processed written, and the G written read. Nor-
mally AwpELETE (166) is set to Y, so the next instruction
is a write command (171), which turns over the actual
monitoring of the tape operation to the proper channel
control. Since the program is not in priority mode, the
priority release (172) is executed as a NOP. AGOEORSW
is off, so the sort continues through the Y branch of
this switch (173), and branches at aareaswl accord-
ing to whether the 1-0 system has two or three areas
(175). If it has two areas, the program generates Row’s
if necessary (157-1) and exits to begin the scan; if it
has three areas, the program branches to arswq (138)
to prepare for reading.

With a three-area system, the program continues
through the N branch of arswq (138). If editing which
changes the record length is done in Phase I, the
row's that are modified in editing must be reset to
handle the unedited input records (139). The read in-
structions are loaded from index words to specify the
proper G to be read and are otherwise prepared (140).
ARTAPEMARK (154) is set (141) to give special handling
if an EOF signal is given before any records are read
into the current read G, and arbsw (158 and 162) is
set (141) to prevent a reentry from the scan and merge
should processing be completed before reading. The
first read instruction is given (150), and since priority
release (151) acts as a Nop, the program branches
through the Y branch of arxsw (157) and exits to the
scan and merge, but only after generating record-de-
fining rRow’s (157-2) in the case of form 3 records
(157-1).

WRITE PRIORITY ROUTINE

Whenever priority is signaled on the write channel,
processing is interrupted at the completion of the cur-
rent instruction, the contents of the instruction counter
are stored in index word 97, and the program branches
in priority mode to the write priority routine (167).
The first task is to analyze the final status word whose

address is in location 99 to discover the results of the
write operation. If condition code 2, indicating a cor-
rect length record (cLR), is present in position 1 of the
final status word, the program proceeds normally.
Other condition codes (except 5) are referred to 10cs
to be handled as it has been directed. Condition code 5
(eoF) leads to an output end-of-reel routine, which is
described in the following section. After the end-of-
reel routine (unless Phase I is terminated) or under
normal condition (cLR), the program prepares the
instructions to write the next block (169). It then
branches to write the next block (171) unless the last
block in G has been written (170). A priority release
instruction is given (172). This returns the program to
non-priority and the instruction whose address is in
index word 97, unless the read priority routine has
been signaled.

Whenever, in the write priority routine, the test of
the block counter (170) indicates the last block has
been written, the sort branches to set aAwrsw (160) to
Y (177), which opens one of the gates to permit entry
from the scan and merge when non-priority processing
reaches this point. Normally, AcoEorsw is off (178), so
the branch is through Y to aareasw2 (179). With a
three-area system, priority is released, and the program
returns to the point of interruption or another priority
routine. With a two-area system, however, the comple-
tion of writing indicates that reading may begin. So,
still in the priority mode, the program branches to
ArswQ (138), and the routine to initiate the first read
is carried through as described earlier for a three-area
system (138, 139, 140, 141, 150). This time, however,
the program is in priority mode, and the priority re-
lease (151) following the tape read command returns
control to the point of interruption in non-priority
processing.

OUTPUT END-OF-REEL ROUTINE

When, on a write priority interrupt, an EoF is indicated,
the sort branches to an output end-of-reel routine. The
proper location in the tape table is tagged (168) to
indicate that the reel is temporarily end-of-file but may
be backspaced if the current input reel is restarted or
dropped from the sort. (See “Input End-of-Reel Rou-
tine.”) If there are fewer than M—1 full output reels
(168-1), writing is switched to the next active output
tape (169-1). If, however, there are M—1 full reels
(168-1, 168-2) and only M—1 sequences (168-5), the
sort sets (168-8) one switch to allow HALT 1114, sets
another to allow HALT 1112, and sets (168-9) a third to
allow HALT 1107. It then changes output to the last
active output tape (169-1).

When there are M—1 full reels (168-1, 168-2) and
more than M—1 sequences (168-5), the sort comes to
HALT 1110 (168-6). The user should set alteration
switch 1 off (168-7) and drop the current input reel
(168-4), because he runs the risk of a non-ending sort
in Phase II. However, anticipating extensive sum-
marizing in Phase II, he may continue by setting altera-
tion switch 1 on. Switches are set (168-9) to allow
uaLTs 1112 and 1107, and the sort is readied to write
on the last active output tape (169-1).

When there are M full output reels (168-2), the sort
comes to HALT 1112 (168-3), which signals the user
that the last input reel must be dropped before the
sort can proceed to Phase II. The current input reel
is dropped (168-4) by backspacing to a segment mark
all output tapes except those which became EoF before
reading began on the current input reel. A message
indicates the drop, and the sort branches to the end-of-
phase routine (197).

READ PRIORITY ROUTINE

With a read priority interrupt, the sort enters in
priority mode to do a tape condition analysis (142).
ATURNONSW (163-1) is set to Y if sLr is indicated. This
causes the amovesw (103) of the merge to be set later
(163-2) when the G being read is processed. When the
G remains unfilled (148), ARTAPEMARK (154) is set to
N (149), and instructions are modified so that the next
block from tape will be read into the next available G
locations. The routine returns to the channel scheduler
where it gives the next read instruction (150) and a
priority release (151). Whenever G is found to be filled
(148), arpsw (162) is set (156) to Y, which drops the
second barrier to the start of the next cycle; reading
is complete for this cycle, and a priority release is given
(151).

If on a read priority interrupt a tape condition analy-
sis (142) reveals an error (condition code 1), a branch
is made to 10cs for processing that the user has speci-
fied on the first control card (143). If a long length
record (LIR), a short character length record (scLr),
or a segment mark (Eos) is revealed (143), the pro-
gram comes to HALT 1124, 1127, or 1126, respectively
(144). When sTarT is pressed, the sort returns to issue
the next read command (150) and priority release
(151) but, except for the segment mark condition
(145), first types out the block involved (146) and
drops it from the sort.

INPUT END-OF-REEL CYCLES

Input end-of-reel cycles begin from the interrupt for
read priority. (See Figure 4c, d, e, f.) If the tape con-
dition analysis (142) indicates a tape mark (EoF),

Sort 90, Phase I 21

the program branches to arTaPEMARK (154). If the
interrupt follows the first instruction for the current G,
AEORSW (163) is set to Y (153), an action which in the
following cycle causes another switch to be set which
will prevent entry to the scan and merge and will lead
to the end-of-reel routine at the proper time. This
branch is made because no records have been read this
cycle and only writing will be necessary in the next
cycle before the end-of-reel routine is entered. If,
however, end-of-file recognition follows later read in-
structions, ARTAPEMARK (154) directs the sort through
N branch where arswq (138) is set to Y (155) so that
AEORSW (153) will be set to Y in the next cycle rather
than in this one; records have been read in this cycle
which need to be processed in the next. Since reading
is complete after either of these branches from an ror
condition, they both return to set (156) arbsw (162)
to Y, dropping the second barrier to the start of the
next cycle. A priority release is given (151), and, if any
processing or writing remains, this is completed during
the remainder of this cycle.

The following cycle (after an EoF is encountered)
varies according to whether records were read during
the earlier cycle or not. If records were read, writing
and processing are to occur this cycle and only reading
is to be bypassed. aAEorsw (163) is still set to N, so
the instructions following the entry from the scan and
merge are executed as in a normal cycle — until ArRswoQ
(138) is encountered after the first write command.
This switch (138) has been set to Y, so it is reset (152);
AEORSW (163) is set (153) to Y; arpsw (162) is set (156)
to Y; and the priority release (151) functions as a NOP.
(The AroRsw setting will eliminate processing from the
following cycle, and the arpsw setting opens one of the
gates controlling entry to the next cycle.) Then,
through the Y branch of arxsw (157), the program
enters the scan. When all writing and processing are
complete, the sort is ready for the third cycle.

During the third cycle, only writing is permitted.
Entry from the scan and merge (160) proceeds nor-
mally except that aeorsw (163) is at Y setting, so
AGOEORSW is set to N, and AEoRsw is reset to N. This
means that, after the first write command (171) and
the priority release (172) which acts as a Nop, the
program leaves the N branch of the next switch and
executes a one-instruction loop (174). This loop is
temporarily interrupted for write priority routines
(167) until all writing is complete. In the priority
routine which follows the writing of the last block in
the G, the program branches (170) to set awrsw to Y
(177) to open one of the gates at the entry from the
scan and merge. Since AGOEORSW is on, it is turned off
and the N branch is taken (178). The program re-
leases priority (181) directly to the input end-of-reel
routine (182).

22

BEGINNING-OF-SORT CYCLES

When the assignment program is completed, the run-
ning program is entered through the scheduling rou-
tine. This first entry is made at Arswq (138). The pro-
gram proceeds as in a normal cycle after it has reached
ARSWQ. RoW's are adjusted if editing changes record
length (139); read instructions are set up (140); and
several switches are set (141) before the first read com-
mand is issued in non-priority mode (150). The priority
release acts as a Nop (151), but now arxsw is at N
setting (in contrast to the normal cycle) and the
branch is to a switch (158), which has just been set to
loop on itself. Since no G contains records ready for
processing or writing, there is nothing for the sort to
do but wait until a G is filled with records. Temporary
interruptions come from the read priority routine
(142). When one of these routines discovers that G is
full (148), arpsw is turned off (156), and after the
priority release (151) the non-priority program leaves
its one-instruction loop (158) and resets arxsw (157)
to Y. The program is ready to begin the second cycle.

The second cycle is to read and process, but not
write. It begins at aEorsw (163), which is set to N.
The index words defining the next read, write, and
process areas are loaded (165) as in a normal cycle,
but AWDELETE (166) has been set to N (during as-
signment or the end-of-reel routine) to allow writing to
be bypassed. AWDELETE is reset (176), and Awrsw is set
to Y (177) to open one gate at the entry from the scan
and merge. The program drops through the Y branch
of the next switch and returns (179, 180) to ARswoQ
(138). The first read is initiated from there as in a
normal cycle (138, 139, 140, 141, 150). Any priority re-
leases encountered (180, 151) act as NOP’s, since the
program is in non-priority mode. In this second cycle,
the sort leaves arxsw (157) through the Y branch, gen-
erates RoW’s (157-2) for form 3 records (157-1) and
exits to the scan and merge. When reading and proc-
essing are complete, the next cycle, a normal cycle,
begins (160).

NOTES

L. Beginning-of-sort cycles occur after input end-of-
reel for all except the last input reel. An end-of-reel
routine which recognizes the last input reel (by means
of the label or a reel count) causes a branch to an end-
of-phase routine, which is completed by a call to load
Phase II.

2. Whenever user coding added to the scan causes
all the records in a given G to be deleted, there are no
records to be written during the following cycle. Under
these circumstances the scan sets AWDELETE (166) to
N, and in an otherwise normal cycle writing is by-

passed in the same manner as in the second cycle of
the beginning-of-sort cycles discussed above.

End-of-Reel and End-of-File

The input end-of-reel routine has the following major
functions:

1. When labels are used, it checks for discrepancies
between the information provided in the input trailer
label and the actual number of blocks and records
processed; it also checks hash totals if these are used.
If a discrepancy is discovered, it gives the user the
opportunity to reprocess (restart) the current input
reel, to drop it from the sort, or to ignore the-dis-
crepancy.

2. The end-of-reel routine rewinds the current input
tape and sets up for the next input reel. To do the latter
it changes the input file unit number in the ptr and
carries out the header label processing for the next
reel.

3. The end-of-reel routine provides optional exits
where the user may branch to modify 1ocs input file
treatment or to process additional trailer labels.

4. The end-of-reel routine tests for the last input
reel, and, when found, it causes a branch to the end-of-
file routine.

REPROCESSING OR DROPPING INPUT REELS

If an input reel is reprocessed or dropped from the
sort, it is necessary to “remove” the records of this input
reel from the output reels on which they were written.
So that only these records will be eliminated, the end-
of-reel routine writes segment marks on each output
reel between the records from different input reels.
It writes these segment marks after it has been deter-
mined that an input reel is accepted by the sort. A
segment mark is also written on each output tape dur-
ing assignment before any records are written. When
in a later end-of-reel routine an input reel is to be
reprocessed or dropped from the sort, the active output
reels are backspaced to the previous segment mark.
To determine which output reels are active and which
were filled before the current input reel was processed,
it is necessary to allow output reels to occupy three
different statuses: EoF while a previous input reel was
being processed (inactive), EoF while the current input
reel was being processed (temporarily inactive), and
not eoF (active). When an output reel becomes full,
it is made temporarily inactive. At input end-of-reel
time, it is made permanently inactive, if the input reel
is accepted for the sort, or restored to active status,
if the current reel is to be dropped or reprocessed.

INCONSISTENCY IN END-OF-FILE INDICATORS

The sort provides two ways of determining end-of-
file, if labels are used. The user may punch the num-
ber of input reels on his control card, and he may
depend upon trailer information. The two indicators
may not agree as, for example, if the user punches the
wrong number of reels or, in running, omits a reel
(intentionally or not). When only one shows end-of-
file, the end-of-reel routine provides halts which allow
the user his choice of action at that time.

END-OF-FILE ROUTINE

The end-of-file routine concludes Phase I and provides
the linkage to Phase II. It rewinds the last input tape,
closes the output tapes, types the record counts, and
calls Phase II.

Description of Flow Chart 5B

The input end-of-reel and end-of-file routines are de-
scribed in Chart 5B. The Phase I input end-of-reel rou-
tine uses the 10cs end-of-reel routine and the exits it
provides. The blocks on Chart 5B which are part of the
1ocs end-of-reel routine are indicated by one asterisk

(*)-
END-OF-REEL WITH LABELS: CHECKING COUNTS

If the user specifies that the input file has labels (182),
the end-of-reel routine begins (in 10cs) by comparing
the block count indicated by the trailer label of this
input reel with the count kept by the sort (183). Next,
if the initial comparison showed that the number of
blocks processed did not coincide with the number
shown on the trailer label (184), the sort leaves the
end-of-reel routine through rocsex6 and sets (184-1)
ARESTARTSW (186) to Y. The sort also checks for dis-
crepancies between the label indication and the hash
and record counts made while processing this reel
(185-1), if record and/or hash counts were specified
(185). When discrepancies are found, a message to
this effect is typed and AREsTARTSW is set to Y (185-2).

END-OF-REEL WITH LABELS: NO DISCREPANCY

If the count checks show no discrepancies, the sort
drops through the N branch of ArestarTsw (186), adds
the counts to storage for use by Phase II, and writes
segment marks on all active output reels (187); this
separates records that came from the current input reel
from those of following input reels, and it aids in drop-
ping or reprocessing later input reels if discrepancies
should be found in them. Some output reels may have
become full during the processing of this input reel.
Since no discrepancies were found, these reels may be

Sort 90, Phase I 23

safely changed from a temporarily inactive status, which
was assigned during the output end-of-reel routine, to
a more permanently inactive status for the rest of Phase
I (187-1). These reels are set so that they cannot be
backspaced for the restart option should this be chosen
when another input tape becomes end-of-reel. Back-
spacing under segment mark control of all output tapes
not permanently inactive is also necessary for the op-
tion of dropping the records of the current input reel
after mavts 1110, 1112, or 1114. The sort gives the user
the option of exiting at amorerrLR (188) for added
processing of trailer labels and sets (188-1) swrs (194)
to N, which indicates to a later stage that the present
input reel is not to be processed.

The sort may test for the last reel of the input file in
two ways. It may check the trailer label; or, if the user
has called for a reel count, it may check the reel
counter. With these two tests there are four ways the
sort may reach the end-of-file routine when labels are
used:

1. If there is no reel count, and the trailer label indi-

cates end-of-file, the program branches Y (189)
to the end-of-file routine (197).

2. If there is a reel count, if the reel counter is zero,
and if an earlier end-of-reel routine has come to
HALT 1104, transfer to the end-of-file routine (197)
occurs (189). The count of zero indicates that the
number of reels specified by the user has now
been processed.

3. If both tests (of trailer label and of reel counter)
show that the present input reel is the last, the
sort branches (189-1) to the end-of-file routine
(197).

4. If both tests are made, but one and only one shows
an end-of-file condition, the sort types a message
indicating this and comes to HaLT 1104 (189-2).
If the user places alteration switch 1 off, the sort
branches (189-3) to the end-of-file routine (197).

If alteration switch 1 is turned on (189-3) after maLT
1104, or if neither indicator shows an end-of-file con-
dition (189-1), the just-processed input reel is not the
last, and the sort encounters a switch (189-4) which
determines whether HaLT 1107 Will occur (189-5). If
either HaLT 1114 (161-3) or mart 1110 (168-6) has
occurred, all input reels but one are full. The user has
continued after these halts, and now that another input
reel is completed, he is again given the option to termi-
nate Phase L. If, after mart 1107, alteration switch 1
(189-6) is off, the sort branches to the end-of-phase
routine (197). But if alteration switch 1 is on, the
sort re-enters the 1ocs end-of-reel routine, to which it
branches directly (189-4) if neither marT 1114 nor
1110 has occurred. The block counter is reset to zero
for the next reel, the input tape is rewound, and the

24

unit number for the active input tape is changed in the
pTF to the number of the unit specified as alternate
(190). swra was initialized to N (191), so the sort
leaves 10csEOREX for further preparation for new input.
Since there are as many as five input tape units and
1ocs provides for only two alternates in the prtF, the
sort replaces the just-used unit with the next input
unit in the tape table (192). The tape table is a list by
channel and unit of the tapes which are used by the
sort. For the modification just mentioned, the sort
enters the number of the next unit in the p1F locations
for aLTlTAPE and ALT2TAPE. The reel-by-reel hash and
record count fields (if any) are set to zero (193),
and, since swrB (194) was set to N, the user is given
the opportunity to exit at AENDOFREEL for added coding
(194-1). The sort returns to the rocs end-of-reel routine
to process the header labels of the next input reel
(194-3, 194-4) and leaves this routine to enter the 1-0
scheduler for the beginning-of-sort cycle.

END-OF-REEL WITH LABELS: DISCREPANCY

If ArResTaRTSW (186) was set to Y, indicating a count
discrepancy, the program resets ARESTARTSW to N and
comes to HALT 1101. If alteration switch 1 is turned
on, the sort ignores the discrepancy (186-2). If, how-
ever, alteration switch 1 is off, any output reels which
were put on temporarily inactive status by becoming
eoF while the present input reel was being processed
are reactivated (186-3). The records which they re-
ceived from the last input reel will be ignored and
also overlaid, if more records are processed. HaLT 1102
follows. The user may elect to drop this input reel and
its records from the sort by setting alteration switch 1
off and pressing starT (186-5). All output reels which
are active (not permanently inactive because of EOF)
are backspaced to the previous segment mark (187-2).
This segment mark was written by the EoR routine
when previous input reels were processed and their
records accepted for the sort (187). Under the option
of dropping the current input reel, the program con-
tinues from AMORETRLR (188) to the end (194-4) as was
described for the case of no discrepancies. This in-
cludes changing the pTF at ARCONTINUE (192).

If the user wishes to reprocess this input reel rather
than drop it, he turns alteration switch 1 on (186-5).
As with the other alternative, the sort backspaces the
active output reels to the previous segment mark
(186-7). It rewinds the input reel (186-6), restores the
previous reel sequence number (186-8), sets swra and
swrs to T (186-9), and zeroes the reel-by-reel block
counter. It reenters the 1ocs end-of-reel routine but
immediately exits through 10cseorex to zero the tem-
porary record and hash counters (if any) (193), since

swra (191) was just set to T. It bypasses the
AENDOFREEL exit because swrs (194) was also just set
to T. It resets swra to N (194-2) and returns to the
10cs end-of-reel routine to reprocess the header label
on this input (194-3, 194-4). The end-of-reel routine
concludes with a branch to the beginning-of-sort cycle.

END-OF-REEL WITH NO LABELS

If the user has specified no labels, the sort exits through
10csEoFEX, and adds the contents of the reel-by-reel
hash and record counters (if any) to the accumulating
totals (195). Segment marks are written on all active
output tapes (195), and reels which became eor dur-
ing the current input reel are set so that they cannot be
backspaced (195-1). No restart is possible with un-
labeled tapes in Phase I, but these actions permit the
option of dropping the records from the current input
reel after maLTs 1110, 1112, or 1114. The only test for
end-of-file is the reel count, which the user must have
specified in the first control card. If the counter equals
zero, indicating that the last input reel has been proc-
essed (196), the sort branches to the end-of-file rou-
tine (197). Otherwise, it branches to a switch (189-4)
which will allow maLT 1107 (189-5) under the same
conditions as indicated above for labeled tapes with
no count discrepancies. Unless the user chooses to
terminate Phase I after maLT 1107, the sort returns to
the 10cs end-of-reel routine to zero the reel block count
and rewind the input tape (190). It also changes the
active tape unit address in the pTF to the next tape,
which is now specified in aLTlTAPE (190). Because
swRra is initialized to N, the sort exits from the 10Cs
end-of-reel routine (191) to enter another tape unit
number in ALTITAPE and ALT2TAPE locations (192). It
zeroes temporary hash and record counts (if any)
(193) and gives the user an optional exit at AENDOFREEL
(194-1), since swrB (194) was initialized to N. There
are no header labels to process (194-3); therefore, the
sort branches to the beginning-of-sort cycle.

END-OF-FILE ROUTINE

The end-of-file routine begins by rewinding the input
reel just processed (197). It gives the user an oppor-
tunity to exit at awinpup (198) for the final processing
and closing of added tapes or for other added routines.
Output tapes are closed, and messages are typed which
state the number of records successfully read by Phase
I, the number of records deleted (if any), the number
of blocks dumped for error (if any), and the number
of records written (if any were deleted) (198-1). The
user is given another optional exit at AENDPHASE]
(199). The sort calls for Phase II (199-1), and, after
it is loaded, enters the Phase II assignment program.

Assignment Program

General Description

Sort 90 begins with the assignment program of Phase
I. This assignment program must read the user’s speci-
fications for the sort application; some of this informa-
tion it will move directly to a communications block
where it is preserved for use by the assignment pro-
gram of each phase. Other information will be used for
computations the results of which are stored in the
communications block. Besides these tasks which serve
all phases, the assignment program of Phase I also must
prepare the Phase I running program according to the
user’s specifications.

Phase I assignment is sufficiently long that it must
be carried out in two parts. In loading the first part, an
area immediately following the load program is re-
served for the communications block, the skeleton of
the running program is placed in its proper position,
and two large blocks of the assignment program are en-
tered, one located before the running program and the
otherafter it. The first part reads and checks the control
cards, enters the user’s specifications into the communi-
cations block, generates the routines used to compare
the control data of the records to be sorted, calculates
the storage available for records, and, if desired, de-
cides whether a two- or three-area system is to be used
for Phase I. For the second part, 1ocs routines and an-
other section of assignment are loaded. The assignment
and 10Cs OPEN routines are entered over the second sec-
tion of part 1 of assignment, where they in turn will be
werlaid by the reading of records during the running
program. The remainder of 10cs is entered over the
first section of part 1 of assignment, where it is retained
through all three phases of Sort 90. This second part
of assignment opens the input and output tapes, zeroes
upper storage, and generates the Row’s to define the
records to be sorted. (See “Memory Maps,” Figure 5.)

Description of Flow Charts 2A and 2B
CHECK OF PHASEKEY

When part 1 is loaded, the first step is a test (000) of
the Phasekey to determine whether this is a restart. If
the Phase II constant is in APHASEKEY, this sort is prob-
ably being restarted after an interrupted Phase II. If
this is a restart, the program comes to zHaLt 1010 (001).
If alteration switch 1 is on (002), or if ApHAsEREY did
not contain the Phase II constant, the sort proceeds to
the assignment program and issues the message “7070
sort 907 (003).

When alteration switch 1 is off (002), the program
comes to HALT 1011 (002-1). If alteration switch 1 re-

Sort 90, Phase I 25

mains off (002-2), the program branches to load part 2
of Phase I (053). However, the user may be loading
his sort program from cards; if so, it will be necessary
to go through the control cards before loading part 2.
Setting alteration switch 1 (002-2) on gives this option;
control cards are read (004 through 010) and the sort
branches (010-1) to load part 2 of Phase I (053).

READING AND CHECKING CONTROL CARDS

The first task is to read the control cards. A card is read
(004); if it is the first card, the program branches
(005) to determine whether there will be a third card
for input labels and a fourth card for output labels. If
one or both types of labeling are not used, the card
reading loop is set for one or two fewer cards (006,
007, 008, 009). The program loops (010) until the last
control card is read. Then the user is given an oppor-
tunity to exit at aassicN (011) for added coding.

Several housekeeping tasks follow (012). Electronic
switches used by Phase I are turned off, and temporary
and permanent storage areas are zeroed. Switches are
set in accordance with whether the user has specified
a two-area or three-area system for Phase I, or has
left it for Sort 90 to decide (013).

The following 800 or so locations contain instructions
(014, 015, 016, 016-1) which take the control informa-
tion from the locations into which control cards were
read, enter it into the appropriate locations of the com-
munications block, and initialize many parts of the
running program. Each bit of information is also
checked as it is processed. If it falls outside of the
range permitted the sort, an error message is typed,
and the program comes to unconditional maLT 1001
or, in some cases, to other halts. Usually the user must
repunch his control cards and begin again. The sort
checks for spooL, sets up for the proper record form
and length, takes care of options on record counts and
hash totals, makes provision for editing, sets up a table
for tape allocation, prepares for the specified tape
labeling, checks for the overlapping of control fields,
and generates a table of control data segments in the
communications block.

GENERATION OF COMPARE ROUTINE

With the table of control data segments ready, Phase
I assignment generates (017) the compare routine
which is used by the scan, the internal merge, and
the stepdown check. The number of comparisions per
record will depend upon the number of control data
segments, of which there may be no more than 18.
Four instructions are needed for each segment com-
pared, so with a final unconditional branch instruction
the length of the compare routine varies from five to

26

65 instructions. The compare routine is located at the
end of the running program; when it is short, more
storage is available for the records to be sorted.

DECISION FOR TWO- OR THREE-AREA I-O

Assignment’s next task is to compute the size of the
G’s and to decide, unless the user has already done so,
whether a two-area system must be selected (018).
Otherwise, the switches in the computation routine
depend (021-1, 021-2) upon acompswa (019) and
acompswB (020), which were set earlier (013). As-
signment then enters (022) one of two subroutines,
identical in terms of their major logic but differing in
that one handles form 3 records and the other form
1 and 2 records. Their logic will be discussed with
reference to the form 1 and 2 routine.

1. When the user specifies a two-area system, as-
signment branches through the Y branch of asreasw
(023), computes the G size for a two-area system
(024), computes the size of the sort blocking (026),
and drops through the N branches of swx (027) and
swMm (033).

2. If the user specifies a three-area system, the se-
quence is the same except that it substitutes the G size
computation for a three-area system (025).

3. If the decision is left to Sort 90, the sequence is
as follows: Assignment computes the G size for a three-
area system (025), calculates the sort blocking (026),
and branches A at swx (027). If process time is
less than either reading or writing time (028), a three-
area system is chosen, and a message indicating this is
given (034). If not, assignment sets swx to B (029),
computes G size for a two-area system (024), selects
a new sort blocking (026), and branches B at swx
(027). If process time is greater than writing time
added to reading time (030), then the two-area system
is chosen and a message is given to indicate that a
two-area system was chosen because of timing consid-
erations (035). If processing time does not exceed
combined tape times, the subroutine sets swx to
N (031) and swm to T (032), recomputes G size for a
three-area system (025), selects sort blocking (026),
and drops through the N branch of swx (027) and the
T branch of swnm (033) to issue a message (034) which
indicates the choice of three areas.

If computation of G size (025) for a three-area sys-
tem indicates insufficient storage available, assignment
comes to HALT 1052. When starr is depressed, the pro-
gram will attempt to use a two-area system (024). If
this is successful, a message indicates the choice of a
two-area system because of space considerations. If
not, or whenever the user specifies a two-area system
and storage space is lacking, the sort comes to uncon-

ditional maLT 1053. (Chart 2A does not indicate these
program steps, which arise when space limitations
become a factor.)

CALCULATION OF G SIZE AND SORT BLOCKING

One part (026) of the subroutine being discussed (022-
035) computes the blocking (the number of records
per block) to be used internally by Sort 90. The size
of the block is limited by the storage space available
in each of the phases; this space, in turn, varies accord-
ing to the length of the running program, the extent of
added programming such as editing and spooL, and
the order of merge.

1. The number of blocks which must be in storage
is 2(M+1) for Phase II and 2M blocks plus two
output blocks for Phase III. From this considera-
tion alone, block size diminishes sharply as the
order of merge is increased.

2. The lengths of the running programs in all three
phases vary according to the length of the com-
parison routines and, in Phases II and III, accord-
ing to the number of comparison routines and file
schedulers. The number of the latter increases
with the order of merge.

3. Any phase in which the user adds routines for
summarizing, editing, and the like will have less
room for records.

. Running spooL diminishes the available space.

In addition, the user may set a limit to block size

by modifying location aBLOockMAX. (See “Modi-

fications” in J28-6096.)

For form 1 and 2 records, the blocking which the sort
will select will be the smallest of the following: G (one
group of records for Phase I), the maximum possible
blocking for Phase II, the maximum possible blocking
for Phase III, or aBLockmax divided by record length.
Note that G is made an even multiple of the input
blocking, but is not necessarily an equal multiple of
the internal blocking. This means that the input of the
first pass of Phase IT will typically contain a short
block for every G processed in Phase I, so Sort 90 is
designed to handle routinely short blocks from this
source or from any deletion routines. For form 3 rec-
ords, the block-size is measured in words rather than
records, and the size selected will be the smallest of
the following: the number of words in G, the maximum
possible block-size for Phase II, the maximum possible
block-size for Phase III, or ABLOCKMAX.

When both the blocking and G size have been com-
puted, a message is typed listing these quantities
(049). For forms 1 and 2, these are given as the num-
ber of records per block and per G, while for the

UL

variable-length form 3 records, these are given as the
number of words per block and per G. Now that G is
known, the routine to generate row’s for Phase I can
be initialized (050), and the storage limits are inserted
(051) in the assignment routine which will be used
to zero upper storage (069) during part 2 of assign-
ment. AsSIGNLINK (052) gives the user the option of
adding programming before part 2 is loaded (053). Be-
fore calling part 2, however, the sort zeroes upper stor-
age (052-1). This eliminates the possibility of invalid
alphameric characters when the restart routine is
written out during the last section of assignment.

PART 2

Part 2 begins with a check for restarT (054). If the
Phase I constant is not in APHASEKEY, the sort branches
to load Phase II (055). Otherwise, assignment con-
tinues. If no spooL is to accompany the sort, it elimi-
nates the spooL test from the channel schedulers (056).
The sort saves the oPENPROC and LABELINF entries from
the output pTF, since they will be altered by the routine
which assigns and writes the restart routine; these
entries will be needed when the DTF is reset to OPEN
all the output tapes except the one containing the re-
start routine (056). To save time, Sort 90 disables the
10cs subroutine which causes header labels to be typed
before the labels are processed in the end-of-reel
routine and opeN (057). It modifies the oPEN routine
so that the signs of rRow’s in the row lists will not be
set (058) and sets the output prF for the channel and
unit of the last output tape (059). The restart routine
is assigned according to the pcapT, which the sort set
earlier according to the user’s specifications. When this
assignment is completed, the restart routine is written
on the last output tape (059).

The sort saves the file serial number from the output
label area for input header checking in Phase II (060)
and opens the first output tape (061). Since all output
tapes are not yet opEN (061-1), it sets the output DTF
for the channel and unit of the next output tape; it
restores the oPENPROC and LABELINF entries of the pTF
(061-2). Assignment opens the next output tape (061)
and checks to see if it is the last (061-1). If not, the
loop continues. Whenever the check reveals that all
the output tapes are oPEN, the sort saves the output
file creation date for input header checking in Phase
II, and sets the input pTF for the first input channel
and unit (062). It saves the first input reel sequence
number for the possibility of a restart during the end-
of-reel routine for this reel (063).

The sort opens the first input tape (064) and re-
stores the OPEN routine’s capacity to attach signs to
the row’s (065) in case the user wishes to OPEN any

Sort 90, Phase I 27

additional tapes through exit aappassicn (068). If
there is more than one input tape, aLTlTAPE and
ALT2TAPE are set with the next input unit number to
permit the switching of input tapes when the first tape
is at end-of-reel (066). Since Phase I does much of the
scheduling of its own input-output functions, several
modifications must be made to the file schedulers
(067). For example, assignment modifies both file
schedulers so that when the availability switch is en-
countered in the oN condition, the program branches
to sort coding. Several parts of the sort input-output
scheduler are also assigned (067).

The user may exit to added coding at AADDASSIGN
(068); this is the place to opEN any additional files be-
cause the OPEN routine is available. Upper storage is
zeroed as an aid in checking errors (069), and for
form 1 and 2 records the row’s for each G are gen-
erated (070). Assignment initializes the reel-by-reel
record and hash counters (070-1) and, in preparation
for Phase I's special restart option, writes segment
marks on each of the output tapes (070-2). maLt 1108
occurs if error occurs in writing the segment mark.
Pressing START causes a backspace, a skip forward, and
another attempt to write the segment mark. After a
segment mark is written on each output tape, the sort
branches to its own 1-0 scheduler to prepare for the
first read (138).

Exits and Modifications

The user may modify Sort 90 by altering constants or
by adding program steps. A detailed discussion of
these changes and their purposes is given under “Modi-
fications” in J28-6096. For added programming, the
user assembles the necessary coding and overlays rec-
ommended exit points with branch instructions to the
new routines. The added coding should include return
branches to recommended reentry points. For modi-
fications which require the reading or writing of addi-
tional tape files during the sort, the user must as-
semble (for each added file) a main program modifica-
tion consisting of a pTF entry, a file scheduler, a label
pc information entry, a pA for record storage areas, the
requisite 10Cs macro-instructions (including orEN and
CLOSE), the required processing instructions, and the
required linkages from and into the sort program.

The major functions for which exits are available in
Phase I may be summarized as follows:

28

1. The user may exit during assignment to execute
added assignment routines such as opening addi-
tional tape files (068). The exits are AAssiGN
(011), assieNriNk (052), aappassioN (068).

2. During the scan the user may exit to do added
processing on a record-to-record basis. Deletion of
selected records is a possible function of such
processing. Additional files may be read or written
at this time. The exit is AREcDBRNCH (073).

3. During the input end-of-reel routine the user may
exit for his own end-of-reel routines such as
processing additional trailer labels. The exits
are AMORETRLR (188) and AenporreeL (194-1).
These replace the 10CcsExB, I0CSEOFEX, and
10cseOREX used by Sort 90. The other 10cs input
end-of-reel exits are available to be used in the
normal way, if desired.

4. The end-of-file routine provides exits for end-of-
phase processing such as closing any additional
input files. The exits are awinoup (198) and
AENDPHASEL (199).

Besides exiting to added coding, the user may
modify Sort 90 by overlaying certain constants. The
detailed instructions are given under “Modifications”
in]J28-6096, but the following list summarizes the
modifications possible in Phase I:

1. The routine in Phase I assignment which com-
putes G size and, if desired, selects between a
two- and three-area system of input-output proc-
essing can be modified. Its constants can be
altered to improve its accuracy in a particular
application. For example, programming added by
the user may increase significantly the per-record
execution time. Though it normally assumes no
added execution time, the computation routine
can be modified easily.

2. Location ABLOCKMAX can be overlaid with a num-
ber to limit the maximum block-size employed
internally by the sort.

3. To change the unit from which control card in-
formation is taken, the user may modify one of
several constants. By proper modification the user
may cause this information to be taken from an-
other unit record device, a tape unit, or a storage
location instead of from a 7500 Card Reader on
Synchronizer 1.

4. The user may alter the 10cs treatment of the in-
put file by changing its prF entry. The pc label in-
formation entry can also be changed to modify
10Cs treatment of the input file tape labels.

Storage Maps

0000

0500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Phase [, Pt. 1 Phase |, Pt. 2 Phase 11 Phase |1}
(Load Prog.) (Load Prog.) (Load Prog.) (Load Prog.)
Communications Communications Communications Communications
Block Block Block Block

10CS 10CS 10CS
Assignment
except - except except
Program - —
OPEN OPEN OPEN
Unused
- - DTF
DTF's DTF's Label Info. DTF's
Ph. I Info., Ph. 1 Info., 1OCS Label Info.,
Label Info. Label Info. OPEN Ph. 11l Info.
Ph. Il Info.
Running - Running - Running
Running
Program Program Program
- - Program
Assignment
10CS Assignment
OPEN
Assignment - =
10CS
R 10CS
RESTART & Assignment
Assignment 9 OPEN
- = Spec. Form
10CS 3 Coding
RESTART &
Unused Unused Assignment
Spec. Form Unused
During During 3 Coding
During
- — Unused
Assignment Assignment During
Assignment
Assignment

w

Available for RDW's and Records

Approximate locations for assembly of December, 1960.

Figure 5. Storage Maps

Sort 90, Phase I

29

ABEGIN (000)

(001) 017)

Halt (:) R Generate

Restart 1010 Compare Rin
(003 (002) (002-1) ACOMPSWA (018)
M;Bs’jg ° i Halt 3-Area One
Sort 90 ON OFF on Specified? Channel?
(004 (002-2)
Read (021-1)
™ Control Card|~

Set for 2
Area Calc
AAREASW
Setto Y

Specified?

Input
Labels?

Less Control
Card

Set for

Compute
Output Set for One OS":/U;nt:oS/e\'
Lqﬂe‘f:? Less Control

Card

(036-048)

Calc G Areq,
Sort Blkg, Same

as Form 1,2*

(012) N Cale G for 3- Calc G for 2-
AASSIGN o11) | Area 1-O (Hits Area 1-O (Hits |
General 1051,1052, if 1051,1053, if {
Clean Up Reg) Req)
(Halt 1001,

ACOMPSWB rI (026 S S(\?Vz)?)
for No of Compute et
1-O Areas

Sort Blocking

to B
r (016)
Agsign & Chk: Assign & Chk: Tape
SPOOL, Red Form Alloc, Red Length N
& Cnt, (HIt 1001, (Hits 1001, 1002, P/} (028)
. 1 . roc Time
if Req) 003, 1004, if Req) Time> Read <Rd Time anp
& ©15 + (016-1) Plus Write Proc Time <
" Time? Wr Time
Assign & Chk: Assign & Chk: Lbl Y
Hash, Editing Procd & Control Y (034)
(Halts 1001, Fields, (Hlts 1001, (03
1004, if Req) 1005, if Req) Message: Message:
2-Area 3 Area
Y T
® !
»{ C
To Ch. 2B o

*Halts 1054, 1051, 1052, 1053 if required

Chart 2A. Phase I; Assignment Routine 1

30

From
B CH 2A

(049)

Type BG
Message

y_(050)

Compute Values
for RDW
Generation

Yy _(051)
Prepare Rin

to Zero Record
Area- After
Second Load

ASSIGNLINK 052)

Optional
Exit

(052-1)

Zero Part of
Storage Before
Second Load

y (053)

Call Phase 1

o Part 2

ABEGINPT2 (054)

Check

User Coding

(056

Assign SPOOL
Save Output
OPENPROC and
LABELINF

y (057)

Disable Output
Header Typing

y (058)

Modify OPEN to
Prevent Sign
Setting of RDW
List

Y (059

Initialize DTF
Set Up and Write
Restart on Last

Output
(060)
Save File
Serial
061-2)

Set DTF for Next
Qutput . Restore
OPENPROC

and LABELINF T

Y (061)

OPEN on
Output Tape

PHASEKEY,

Restart

(055)

Call
Phase

ToChé

Chart 2B. Phase I; Assignment Routine 2

Save Creation
Date. Set DTF
for First Input

Yy (063)

Save First
Input Reel

(064)

Seq No

ARDWRESET!1

AEORZERTOT

AHKPGZER

OPEN First
Input Tape

Y. (065)

Restore OPEN to
Allow Sign
Setting of

RDW List

(066)

Set for Switching
Input at EOR,
if Required

Y (067)

Modify File
Schedulers,
Initialize Sort
1-O Routine

Zero
Record Area

(070)

Generate
RDW's if
Form 1, 2

* (070-1

Initialize Reel-
by-Reel Record
and Hash
Counters

‘L (070-2)

Write Seg Mks
on Output Tapes.
(Halt 1108, if
Required)

To |-O,Ch 5A

User Coding

Sort 90, Phase I

Signal Short
G to Merge:

Set AMOVESW
toY

(097-1)

Add One to Delete
Cnt, Hash if
Required

From User
-0 Coding
Ch 5A
AISCAN (071) ASCAN (072) ARECDBRNCH (073) Clisdefn . AWRITE (094)
I
Initialize ’
Switches & Cntrs ';vc::hd Q:EERODRVla Opfic_mul
Set All SW's ; ; Exit
B In List for This G T
To N :
(075 ASCW1 (074) (073-1) ANEWRLJ (096) Y (095)
Add One to Red Set RDW Set ANEWRL
Count Hash if }g—i For New le—{ on Basis of Length
Required Red Length of Field
ARECORD <
Rcd: ACRX2
Record
ASDESCEND (085) ACMSW2
IACMSW 1 .
Decrement Set and Store
Temporary Reverse Sequence
Loc by One Definer
ASCEND Y (086) ASDOWN ¥ (089
Set and Store Unload ACRX2 Set
S=quence Into Temp. SWC to
Definer Reverse Location
y__(080)
Restore Reversed
RDW's to List
in New Order
Set
SWB to N
SWCto N
(082)
Contents of
ARECORD A
Into
ACR
CRX2 ASCANEXIT _ (091)

Set and Store
Final Entry Y
in Seq
Table

Last Red?

(093)

Restore Reversed

RDW's to List AWDELETE
In New To N
Order °

Move This RDW
To End of List
and Remaining
RDW's Up One

To
CH -0
CH 5A

Chart 3. Phase I; Internal Sort, Scan

32

AMERGE (102-1) (102-2) AMOVESW (103), (104) (105)

From Scan T,
Initialize Counters Dup RWD'S
Set Up Limits Set vp ° N
of Seq AMOVESW of This G in
Table Empty Area
CH3
Data of 1st
Rcd of New Seq < Sw Outputs:
N Ctrl Data of Las
Red of Last Séq
Sput”
AMSETI (107) AMSETL (108) AMSET (109) N
Establish Seq A Load Next RDW Establish Seq B Output
Control with RDW o From Seq A Control with RDW Preparation
for First Seq Into 71 for Next Seq
ACRX2 N To I-O
AM1 * (110) AM2 (111) ()
Load Next RDW Load Next RDW
p| From Seq B From Seq A CH 3A
Into Into
ARECORD ACRX2
-]
AMASCEND2 (122) ACMSW2 (121) \ (112) ACMSW1 (113) AMASCEND1 (114)
Move Seq B RDW Move Seq A RDW
To Next Loc To Next Loc

in Empty Area

in Empty Area N

(123) AMBREAK (128) AMCONTINUE (119)
Move RDW's of RDW From Temp
B Completely Unmerged Seq Storage to Seq
Merged? to A
Empty Area Control

Set
SWC to N
SWB to N

Set
SWCto T
SWBto T

SWC to N
SWB to N

(130)
RDW for Seq A RDW for Seq B RDW for Seq B
From Seq A From Seq B From Seq B
Control to Temp Control to Seq Control To Temp
Storage A Control Storage
Y (126) 1 (130-1) AMFINIS (.13.3)
RDW for Seq B Compute Entry Mc;gev&esn:;mmg More (ng)
From Seq B Defining Unmerged Seq Entries in Seq
Control to Se: New Se: Table?
A 4 Empty A
A Control to Empty Area
*x ¢ ‘34
(131) (132) — (134)
t t
More ore R o Defining New
Entries in Seq Entries in Seq Contro > Seq
Table? Table? Nt Temp Storage

NOTES: * Set to Y by:
1. One or more SLR conditions on the series of reads which filled this G, or
2. A tape mark read before this G was completely filled with records, or
3. One or more records deleted during the SCAN preceding this MERGE.

** Computing the entry defining the new sequence includes setting up the re-
versing of roles of the two RDW areas involved; on the next merge pass, the

area containing the "current" RDW's becomes the empty area into which RDW's
are moved, and the formerly empty area now contains the "current list of RDW's.

Chart 4. Phase I; Internal Sort, Merge

Sort 90, Phase I

From PH | Assignment
ARSWQ

Mark During
Read of Prev
Cycle?

(138)

From
Read

Priority
Interrupt

From Processing

AWRITEWAIT

CH 3,4

Write G)
Filled?

AMPISW

161-2) 161-3)

Halt
114

To 1OCS
Error Rtn (161-4)
Tape. Reset .
< Condition Block Count Alteration
Y Analysis lock Counter SW1 From
Write Priority
(39 Interrupt
(144 N (161-7)
Adjust RDW's
1f Change Red Hlt 1124, ATURNONSW Setup
Length 1126 Set to Y ~ Write
T 127’ if SLR Filled? Instruction
(140 = To 10CS
AEORSV\Q_ (163) Error Rin
Set Up Read gpe AGOEORSW Set Up to Write
st mr‘?s':rl::u%xfhis > Setto N Next Block
Y AEORSW Set Add to Block
Qele? to N Count
41) (149) Ya ATURNONSW 165 AWDELETE Tl66) 71
ARTAPEMARK ARTAPEMARK Set SLR Set IW's Defining Any .
Set to Y ARDSW TYP;'RC" Setto N Set Up ARDSW In G Just Read Read, Write wﬁfg B}egg{ N \A{ma
Set toN ea Next Read Instr oY ? and g?cess Wi N v ape
s
- A J]
* (150) (151)un
Read o Priority AWIgELETE
Wit)
ARXSW L] (172
Priority
Release

F

Tag This Tape
Temp EOF

ANDWAYOUT

M
Fuil Reels?

(168-3)

Halt
1m2

-

Only
M-1Seq?

I {174)

Alteration SW1

(168-7)

OFF

NOTES: * Set to "N" during first G of an input reel.

** Acts as a priority release instruction if in priority mode; otherwise, the
program continues along the flow indicated. Actually handled by 10CS

schedulers.

*** The |OCS error routine returns to the priority condition code analysis
after processing the error record.

*k+¥ I in the priority mode, a priority release to the end-of-reel routine is
executed; otherwise, a branch to the end-of-reel routine is executed.

Chart 5A. Phase I; Input-Output Scheduling

Drop Last
Input Reel
(Halt ﬁ‘oe, ifReq)

(169-1) AEORWAIT
Fetch New (BES AWRSW) Y
> Qutput Tape Write G Filled? |-«
Y
(168-8) | (168-9) _(157-
Set Up For ANDWAYOUT Generate
Halt 1114: Set Set to Y. Set Red Defining
AMPISW to Y for Halt 1107 RDW's
ON l
ANWQ 68-4)

To Scan CH 3

(181)ansn
Priori Priorit
Releastey Releaseyto
EORRtn
To CH 5B

From CH 5A

(182)« (183)s
Blocks
Processed:
Block Count
Y in Label
k%

AEORTN ¥

(195

Update Cnts &
Seg Mks on All

Active Output Rls
(Halt 1108,ifReq.)

Wr

!

(195-1)

This Input Reel

Deactivate Outpu
Reels EOF During

AEORENTER

(184)

(184-1)

Set
ARESTARTSW
ToY

Count
Discrepancy?

ARESTARTSW
Set to N
Halt 1101

Alteration

swi

ANEXTREEL ¥

(187)

(187-1)

ON
ARSALTSW (187-2)

Update Cnts & Wr Deactivate Output Backspace to Seg
Last Seg Mks on All Reels EOF During Mark All Output Halt
Input Reel? Active Output Rls This Input Reel %ﬁe:s Not EOfF i 1102
N alt 1100, i
(Halt 1108, if Req) I Required 4
From
CH 5A
AEOFEND (197) (188-1) AMORETRLR ¥y (188) OFF
Rewind ee Set SWRB
Input Ta < Y nt after Hit © Alteration
put ape - 1104 or label ToN W
Show EOF ?
(189-1) (186~
Reel i
Both Nei ther Rewind
- ?Qﬁe"l"ig Input Reel
(189-2) (186-7) (186-8) (186-9)
Close Remaining Backspace to Seg Restore Prev
Output Tapes. Masscla;qe M“"Ik ’:l” OE‘(’;FU' | Reel Seq No
Type Record 1104 I};‘eﬂ: n%to if Zero Block
Counts? Required) ’ Count
AEND- AMLESSISW (189-4) (190)
PHASE1 Talts %er? lt!‘k}ck Count
< Alteration 1M100r 1114 Chanoe Tone
N nge 1ape
OFF already occur? Addr in DTF
N
Y Arcontinue Y (192
Set Up
Call for New
Phase 11 Input Reel
(189-5) (189-6) -
Halt .
107 Alteration
To Phase 11 CH 6
OFF AEORZERTOT
N (194) Y ¢
AENDOFREEL (194-1) Zero Temp
Optional T Totals
Exit
User Coding (194-3), (194-4) *
Process Header
Labels "Next" @
NOTE: Input Reel y >
* |dentifies blocks which are part of IOCS EOR routine. To CH 5A
** |QCSEX6
*** |OC SEOFEX
**** |OCSEOFEX
Chart 5B. Phase I; Input End of Reel and End of File Sort 90, Phase I 35

ARESTARTSW

Reinstate Output
Reels EOF During
This Input Reel

Phase Il

Phase II of Sort 90 is a multipass routine which merges
the sequences provided by M input tapes into longer
sequences and writes them out on M output tapes.
(“M” equals the order of merge.) The M input tapes
on the first pass are the output tapes of Phase I; each
contains a number of sequences formed by the internal
sort of Phase I. Phase II is started by taking one
sequence from each of the input tapes. These M se-
quences are merged into one sequence which is written
on one of the output tapes. A second sequence is taken
from each input tape, and these sequences are merged
into a second sequence on a second output tape. This
process is repeated, with the output rotated from tape
to tape, until all sequences have been merged and the
pass is complete. Typically each output tape will re-
ceive at least one sequence. As long as any tape re-
ceives more than one sequence, at least one more pass
will be required. In succeeding passes the input tapes
of the previous pass become the output tapes for the
current pass and the former output tapes become the
input tapes. (See Chart 1B.) It is possible that none
of the output tapes of Phase I contain more than one
sequence; if so, Phase II processing will be completely
bypassed.

Phase II, like Phase I, has both an assignment pro-
gram and a running program. However, since some of
the initialization must be repeated every pass (e.g.,
opening and closing files), the running program can
be further subdivided into the beginning-of-pass pro-
cedures, the merge, and the end-of-pass procedures. A
memory map shows the relative locations of the as-
signment and running programs as they are loaded
into storage. See Figure 5.

When not otherwise specified, the collating sequence
is assumed to be ascending.

Running Program

General Description

To carry out the merging successfully, the running
program must not only order the records from the cur-
rent set of input sequences, but must also determine
when the current sequence from any given tape is
exhausted, prepare records for processing and writing,
and regulate the tape operations. The following sec-
tions discuss the general techniques by which Phase II
accomplishes these tasks.

36

COMPARING AND RANKING

The merge begins when the lowest record from the
first sequence on each of M input tapes is available.
Immediately it is faced with the question of which
record is to be written first. Then, when the lowest is
PUT, it must GET the second record from the same input
tape and again decide which record is lowest. To
decide which of the next available records, one from
each input tape, is to be merged, Sort 90 uses a com-
pare network and ranking. (The ranking is illustrated
by the lower half of Figure 8.)

The ranking is a series of index words, one pair for
each input file. One word of each pair will contain the
rDW of a current record from each file and the other
will carry a branch instruction to identify the file from
which the record came. The series of index words is
called a ranking because they are loaded so that the
row's of the current set of records, one from each input
file, will be in an order which ranks the records accord-
ing to the collating sequence. The next record to be
merged will be the one whose row is in the lowest
position in the ranking.

When the lowest record is put, the rRow for the next
record from the same input sequence is obtained. The
control data of the record are compared with those of
as many of the other current records as necessary, be-
ginning with the lowest. The sort continues through
the compare network until one of the already-ranked
records is found to be equal to or greater than the new
record. When this occurs, the row’s and branches of
any lower records are moved down the ranking, and
the rRow and branch of the new record are inserted in
their proper positions. The lowest record, which may
be the newest one or one of the others, is Pur—unless
the user wishes to delete it or summarize.

The process is repeated until all records from the
current sequence of each input file have been merged.
When this happens, the next set of sequences, one from
each input file, will have their records ranked and then
merged into a second sequence. This cycle is repeated
until all input files are exhausted and the pass is com-
pleted.

STEPDOWN CHECK

Since each input tape typically contains more than one
sequence, the program must discover when the one
currently being merged is exhausted. The program
identifies the exhaustion of a current input sequence

and the start of another by comparing the first record
of each new input block with the last record put. If the
control data of the new record are lower (a stepdown)
a new sequence is indicated. The row’s and branches
of the first records of stepdown files are entered into
the ranking above those of any records of the files still
merging into the current output sequence. The rROW
and branch of the first record of a new stepdown file
is compared with any other stepdown records repre-
sented in the ranking. It is entered in its proper posi-
tion in the ranking—after the row’s and branches below
it are moved down one pair. Switches are set which
restrict new records from files not yet stepdown to
comparisons with the currently ranked records of other
non-stepdown files; thus the merge continues without
the stepdown files. When a stepdown has been encount-
ered in each input file, all of the input files become
active again for merging into a new sequence. This
sequence will be written on the next available tape.

RDW INTERCHANGE

Records of forms 1 and 2 are readied for processing
and writing without being moved in storage. As in
Phase I, the merge is accomplished by the movement
of row’s, but in Phase II the method is one of row
interchange or exchange (Putx). A GET and the suc-
ceeding compare routines cause the row of a record
to enter the ranking as discussed above. When a record
is PUT, its RDW is transferred to the output row list, but
before it is entered, the rRow from the location it is to
occupy is temporarily stored. When the program re-
turns to GeT another record from the same input file,
the row is unloaded from temporary storage into the
location in the input list of the row for the record just
puT; this completes the exchange.

The technique of interchange has interesting con-
sequences for the location of records and row’s in stor-
age. As sorting begins in any pass of Phase II, upper
storage will contain the record areas and any added
programming. (See Figure 6.) The record area can be
divided into 2 (M+1) blocks, each identified by an
row list.

At the start of processing, the records of each block
are read into contiguous storage locations. (See Figure
7A.) Records are compared and ranked. When the
ranking is full, the Row of the lowest record enters the
output list, initiating an interchange. The interchange
is completed with the output rRow entering the input

| LOWER STORAGE

list. Another record is ranked, and the row of the lowest
again enters the output list. When the first output list
is full, the block it controls will be written out while
another is filled. When an input list has been com-
pletely interchanged, a new block of records will be
read, but this time, instead of going into contiguous
areas of storage as at the start, the records will be
scattered into the locations represented by the row’s
which have been moved from the output list into this
input list. On the second read into a block these may
represent mainly row’s originally in the two output
blocks. But on later reads into a given input block,
rpw’s which started in any of the input or output lists
may be present. As a result, the latest block of records
read from any tape is very likely scattered over the
whole area reserved for input and output blocks rather
than being read into contiguous areas as during the
first cer. Similarly, output blocks consist of records
scattered throughout this area. The scattering of re-
cords has no influence on the outcome of the sort oper-
ation itself, since the important factor is contiguous
lists of row’s. Knowledge of this feature, however, may
aid a user who examines a storage print made during
Phase II. (See Figure 7B.)

If processing should be interrupted, a record at any
given location in storage may be in any one of the
following conditions:

Not yet written, its Row in an input list
Not yet written, its Row in an output list
Being written, its Row in an output list
Already written, its Row in an output list
Already written, its Row in an input list

NON-ENDING SORT

The maximum number of records which Sort 90 may
safely sort is ordinarily the number which occupy M—1
full reels when the records are blocked according to
the sort blocking factor. If the user attempts to force
the sort to merge a greater number of records, he may
encounter a non-ending sort in Phase II. The sort
cannot end with a sequenced file whenever a long
sequence completely fills the first M —1 reels and shares
the other reel with one or more shorter sequences.
Further passes will not change the order of the records
at all. On another pass the first sequence on each tape
(the only sequence on M —1 of the tapes) merges again
with the other first sequences, but these already form

UPPER STORAGE 1

Running Program Lists

RDW |

Figure 8. Storage Allocation, Phase II

Records Added Programming

Sort 90, Phase II 37

A. START OF PROCESSING

OUTPUT

File 1

INPUT
2 3

7'8,9 IOIIIIIZ

13|I4,]5,16l17|18

]9'20,21 ,22 |23 |24

RDW Lists

| (o]
Contents: Rec. Areaf | '2 l 3 ,4 , 5 l 6
o.1 | o.2 1.2

|

21 | 22 | a0 | 32 |

Record Areas:

MZ |3 ,4| 5'6'7'8 l 9']0'”'12']3']4'15,16|]7|18l]9|20|21122,23l24]

B. DURING PROCESSING
(Specific case after 21 RDW's interchanged, 7 output
blocks written, and 5 new input blocks read)

OUTPUT

File [¢] 1
| |

INPUT
2

Contents: Rec. Areaf M]g l23 lggl 6 l]zl 5 l]o']3' 8 llé l 18

! I
20 |21 14| 2[5 4 [17] 11]24]

RDW Lists [or | o2 | 11 |

22 | 32 |

3.1 |

7
RN

Record Areas:

[1]2]s]4]s]6'7]8|9|10|n|12|13||4[15|16||7|8|19|20|21 [22]23 [24]

Figure 7. rRow and Record Areas, Three-Way Merge, Blocking Factor of Three

one long sequence, so there is no change in order.
There are no sequences left on other input tapes to
merge with the remaining sequences on the last tape,
so these latter are written just as they are. Since there
is no reduction in sequences, HALT 2000 occurs. If the
user elects to continue, no further change normally
takes place. One possible exception may occur when
summarizing or deletion did not take place on the pass
when the above condition first occurred but is ex-
pected on some succeeding pass. For any chance of
the successful completion of the sort, any such future
reduction in the number of records would have to
shorten the long sequence so that it occupies no more
than M —1 full reels.

HaLT 2000 in the beginning-of-pass procedures stops
the sort whenever the number of sequences has not
been reduced over the preceding pass. However, the
user is warned of the possibilities of an unending
sort much earlier than this, and he can avoid them

38

entirely, if he uses no more than M —1 reels of input—
with a blocking factor no greater than that of the
sort—or if he makes sure that no output reel from
Phase I contains more than one sequence. In the latter
case Phase IT would be bypassed completely. The sort
provides the following halts and a choice of action
in Phase I:
1. When M —1 reels have been filled: maLt 1110.
2. If each of the first M—1 reels contains one se-
quence, when the last reel encounters a sequence
break (step down): maLT 1114.
If the user elects to drop the current input reel after
these halts, the sort may proceed to a successful com-
pletion (definitely so after mavLt 1114). If, instead, he
decides to process more input records, the sort will
most likely not succeed unless one or more of the
Phase I output tapes are short, or unless heavy sum-
marizing will be performed in early passes of Phase
I If the user elects to enter more input records, he

is also notified at maLT 1107 when the current input
reel is exhausted and/or at maLt 1112 when all M out-
put reels are filled.

Example of Phase Il Processing

Figure 8 provides an example to illustrate processing
in Phase II of Sort 90. The figure is divided into three
rows of blocks; the top two rows represent ten RDW
lists; the bottom row represents the ranking, at six suc-
cessive steps. Below the rankings are listed the com-
parisons which were made to insert the newest rRow
and branch into the ranking during each interval, to-
gether with the result of the last comparison.

RDW LISTS

The example illustrates Phase II processing for a four-
way merge, where the blocking factor is three, where
internal blocking is not an even multiple of the G of
Phase 1, and where the control data consist of a two-

digit field. Therefore, ten row lists are represented,
one pair for the output and a pair. for each of the four
input files. One member of each pair is available for
writing and reading, while the other is being processed.
Each row list contains three words, but the figure
shows six lines, with the “a” lines indicating the con-
tents of the three words before this list is processed
and the “b” lines containing any row which, through
interchange, overlays the contents represented by “a.”
Words in the current input lists which were entered in
the write list prior to step 1 are left blank in order to
make clearer the condition at step 1. The right-hand
columns of each of the sixteen blocks represent the
control data of the records defined by the row’s in the
lists before these records have been written. For this
reason no control data are represented for the RoW’s
initially in the output blocks. An asterisk (*) in the
control data column indicates a record area and an
RDW not currently used because a short block is present.

LIST O.1 LIST 1.1 LIST 2.1 LIST 3.1 LIST 4.1
a |RDWO.1-1 RDW 1.1-1 | 19 RDW 2.1-1 | 37 RDOW 3.1-1 138 | |-..vcvntn Ignore this
@ b |RDOW 2.1-1] 37 @ RDW O. 1-1 @ RDW O. 1-3 RDW PUT
before Step 1
a |RDWO.1-2 RDW 1.1-2 | 23 RDW 2.1-2 | 55 RDW 3.1-2 |46 RDW 4.1-2| 35
@ b |ROW 1.2-2] 38 @ RDW O.2-2
o [ROWO.1-3 RDW 1.1-3 | 26 RDW 2.1-3 | 59 RDW 3.1-3 |48 RDW 4.1-3 | *
@ b [ROW 3.1-1{ 38
LISTO.2 LIST 1.2 LIST 2.2 LIST 3.2 LIST 4.2
a [ROW O .2-1 Row t.2-1 31| [...l RDW 3.2-1 | 45 RDW 4.2-1 | 15
@ b | RDW 1.2-1] 31 @ RDW O.2-1
a | RDOW O.2-2 rRow 1.2-2 [38 | | RDW 3.2-2 | 67 RDW 4.2-2 | 27
@ b |ROW 4.1-2| 35 @ RDW O. 1-2
a |RDOWO.2-3 RDW 1.2-3 | * RDW 2.2-3 | 36 RDW 3.2-3 |72 RDW 4.2-3 | 31
@ b | ROW 2.2-3| 36 @ RDW O.2-3
OUTPUT INPUT INPUT INPUT INPUT
o 1 2 3 4
BBRNCHGETC B BGET 3 B BGET 3 B BGET 4 B BGET 4 B BGET 4 B BGET 1
BRECORDC C |row3.1-1 |38 Row 3.1-1 |38 | [rowa.2-1 [1®| [row4.2-1 |1° Row 4.2-1 | 13| [row 1.1-1 |17
BBRNCHGETB s [BBGET2 B BGET 1 B BGET 3 B BGET 3 B BGET 2 B BGET 4
BRECORDB ROW 2.2-3 | 3¢ row 1.2-2 | 8| |row3.i-1 |38 ROW 3.1-1 |38 row 2.1-2 | >°| |row 4.2-1 | 1°
BBRNCHGETA B BGET 4 ' B BGET 2 B BGET 1 B BGET | B BGET 3 B BGET 2
BRECORDA A |row 4.1-2 | 33 Row 2.2-3 [36| |row 1.2-2 |38 Row 1.2-2 | 8 Row 3.1-1 | 38| |row 2.1-2 | *®
BNEXTGET B BGET 1 B BGET 4 B BGET 2 B BGET 2 B BGET 1 B BGET 3
P]
BRECORD ROW 1.2-1 |3 Row 2.1-2 | | [row 2.2-3 | % Row 2.1-1 | ¥ row 1.2-2 [%8| |row 3.1-1 |38
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6
COMPARISONS: N:A, N:B, N:C STEPDOWN, - N:A N:A, N:B STPDWN, N:C
COMP_RESULTS: > > = * implies short block, < > > >
N=38 therefore no record N=15 N=55 N=19
and no control data
Figure 8. Example of Phase II Processing
Sort 90, Phase II 39

THE RANKING

To the left of the blocks representing the ranking are
the four pairs of index words used for the ranking in
a four-way merge. The four letters may be used as
brief symbols for the records referenced by the row
at each level during a single interval. (These letters
are also used several times to refer to the pair of in-
dex words which represent this record in the ranking,
but the context makes very clear when this is the case.)
N is used to symbolize the new record before it is
ranked. In order to insert it in the ranking it will be
compared (N:A,) with as many as necessary of the
current records in the ranking except P. P at that stage
represents the record last pur in the output list, so that
BNEXTGET and BRECORD do not reference a current rec-
ord and are in effect “empty.” N and its input location
are defined by a comparable pair of index words,
BNEWRECORD and BBRNCHGETN. These unload the neces-
sary information at the proper level in the ranking
after that level is determined by the comparisons. It
may be noted that the order of the merge determines
how many levels of the ranking are necessary and
how many of these index words will be used. For a
two-way merge, only the A pair and lower would be
needed, while for a five-way merge, BBRNCHGETD and
BRECORDD would be added to those illustrated. Note
a related fact: the number of comparison routines
needed will vary with the order of the merge, and,
as discussed elsewhere, only the number needed are
actually generated by the assignment program. In Fig-
ure 8 the comparisons listed under a step are those
used on records of that ranking to obtain the ranking
listed for the next step.

MERGING THE RECORDS

Basically, Figure 8 shows a series of comparisons, rank-
ings, Row interchanges, and stepdowns. To aid in iden-
tifying the Row’s exchanged at a given time, a circled
number has been placed beside the row’s which are
to be exchanged. This number is the same as the num-
ber of the step.

Step 1: At step 1 the “a” lines of the row lists are as
given. All “b” lines are empty. An Row from each input
list has been ranked, and row 1.2-1 referring to the
lowest record is entered in output list 0.2, which is now
ready for processing. (The records represented by the
“a” lines of list 0.1 are currently being written.) Before
row 1.2-1 overlays row 0.2-1, the latter is moved to a
temporary location. The program comes to instruction
BNEXTGET. Since its contents, symbolized by BBGETI, is
a branch to instructions for the first pair of input rRow
lists, the program unloads row 0.2-1 from temporary
storage into list 1.2, where it overlays row 1.2-1. This

40

completes the row interchange. The sort GeTs the next
row from this list, Row 1.2-2, by loading it into BNEW-
RECORD, and sets BBRNCHGETN to BBGET1. The record, N,
referenced by row 1.2-2 is compared with A. Since N’s
control data (38) are larger than A’s (35), N is com-
pared with B. Since N’s control data are also larger than
B’s (36), N is compared with C. N’s control data are
equal to C’s, so the contents of the A pair of index
words are moved to the P pair; the contents of B pair
are moved to A pair, and the contents of the N pair are
moved to the B pair. This gives the sequence repre-
sented by the ranking at step 2.

Step 2: rpw 4.1-2 is now in BRECORD. It is PUT into
the next available location of output list 0.2, and a
sequence of events follows which is similar to that
described for step 1. row 0.2-2 is temporarily stored,
and rpw 4.1-2 overlays it in list 0.2. Bow 0.2-2 is un-
loaded into list 4.1, the list currently being processed
for the fourth input area, because the branch instruc-
tion of BNEXTGET is BBGET4. Since list 4.1 currently
holds a short block, this is its last entry. Therefore, list
4.1 is readied to control the reading of more records,
and list 4.2 when ready is used for processing. Row
4.2-1 is loaded into BNEWRECORD and BBRNCHGETN is set
to BBGET4. N is now the first record in a block, so a
stepdown check is made. The stepdown check reveals
that list 4.2 references a new sequence on this input
tape; N’s control data (15) are lower than those (35)
of the last record put. Since this is the first input tape
which is stepdown, switches are set to prevent records
which may yet enter the current output sequence from
being compared with C. Then the contents of the A
pair of index words are moved to the P pair, B to A,
C to B, and N to C. This results in the ranking shown
at step 3.

Step 3: The events of step 3 are similar to those of
the preceding steps, so only its distinctive character-
istics are discussed here. Entering row 2.2-3 into list
0.2 fills it, so it is readied for reading. Row’s will be
entered into list 0.1 for the next three intervals. After
the interchange the processing of input list 2.2 is com-
plete, so it will control the reading of new records
while list 2.1 governs the processing of records from
the second input tape. This time N is not stepdown,
and the sort enters the compare network normally.
N is compared with A only, however, since its control
data (37) are lower than A’s (38). After the single
comparison (N:A), N’s row and branch are entered
directly into BRECORD and BNEXTGET, and no others are
moved. The ranking is as shown in step 4.

Step 4: row 2.1-1 is entered in the output list, and
the exchange is completed by unloading row 0.1-1 into
list 2.1. The control data (55) of N are now larger than

those of the other records ranked for the present out-
put sequence, so its row and branch enter BRECORDB
and BBRNCHGETB. Because switches were set when the
stepdown occurred during step 2, N is not compared
with C. The ranking has become as shown in step 5.

Step 5: row 1.2-2 is interchanged with row 0.1-2.
Another short block and stepdown are encountered.
For this stepdown, however, the two records for the
following sequence must be compared (N:C). The con-
trol data (19) of the new record are higher, so the
contents of all pairs of index words (A, B, C) are moved
down the ranking, and N’s row and branch are un-
loaded into pair C. Again switches have been set so
that the next record whose control data exceed 55 will
be compared with A but never B or C. The ranking
is as shown in step 6.

INITIAL FILLING OF THE RANKING

The initial entering of Row’s and branches into the
ranking is not shown in Figure 8, but it is accom-
plished in a way similar to that for stepdown records.
When sorting begins, the program loads the first row
from the first input list into BNEWRECORD and initializes
BBRNCHGETN with a branch to this list. The irrelevant
contents of pairs A, B, and C are moved down one
pair, A to P, B to A, and C to B, and the index words
for N are unloaded into pair C. BNEWRECORD and
BBRNCHGETN are then loaded with the first row and
branch for the second input area. This time N is com-
pared with C. If N has higher control data, A pair is
moved to P pair, B to A, C to B, and N to C. If not,
A pair is moved to P pair, B to A, and N to B. The
next GeT is for a record from the third input file. N is
compared with B, and, if higher, with C. The contents
of index words are moved as before until the rRow’s
and branches rank the records A, B, C in the proper
order. A GeT is performed for the first record of the
fourth input file, the necessary comparisons are made,
and the contents of the proper index words moved, so
that P, A, B, C are represented in rank order. Normal
operation is resumed as P is puUT.

END-OF-REEL

After a ceT which reveals an input end-of-reel, the sort
closes the input tape, moves the contents of index word
pairs A to P, B to A, C to B, and removes C pair from
use. After closing the second input tape which be-
comes EOF, the sort moves A to P, B to A, and removes
the B pair from use. The A pair is removed by a third
EOF, and a fourth xor leads to end-of-pass routines.

OTHER FEATURES OF PHASE II

1. After each record is puT, record counts and hash
totals (if required) are taken before the next Ger is
performed.

2. Provision is made for user exits for editing, sum-
marizing, or deleting records. These optional exits

* occur after N has entered the ranking and before P

is putT. If a record is deleted or summarized into an-
other, special reentries are provided which bypass the
put and Rpw interchange and allow separate counts of
records and hash. Thus P is not always puT.

3. It is evident that the rRow’s initially occuring in
any list are soon scattered throughout all the lists. This
means that the records represented on any one list are
likely to be scattered throughout the entire record
area.

4. With form 3 records, an row is generated for each
record, and the comparing and ranking are performed
as for form 1 and 2. However, there is no rRow inter-
change, since each form 3 record is moved to the out-
put area as it is PUT. Because there is no rDW inter-
change, form 3 records are not scattered. The block
of records from a given input file always occupies the
same location in storage, and records are located in
storage in the same order as on tape.

5. If the user specifies a descending collating se-
quence, the sort proceeds in the same way except that
the branch-if-low instructions in the compare network
are changed to branch-if-high, and the branch-if-high
instructions are also reversed. P, A, B, C are then in
descending order, and P, the highest record, is pur.

Description of Charts 7 and 8: Merge

The details of the merge in Phase II, which become
evident from an examination of the flow chart, largely
concern the variety of provisions which must be made
for filling the ranking in the first place, for reducing
the ranking as input tapes become end-of-file, and for
handling stepdowns which are indicated by the first
records of new input sequences. The stepdown records
must not be added to the output sequence until all
tapes are at stepdown.

FIRST GET LOOP

To start the merge the ranking must be filled. When
the tapes have been opened, completing the beginning-
of-pass procedures, a Ger is issued for the first record
in the first input block (235). (Since this is initially
empty, the program branches to new block routines,
the file scheduler, and 10cs to fill and ready this block
before processing can continue.) When the first record
is available, its row is loaded into an index word
(BNEWRECORD) used to hold the newest record, and a
branch to the cer for this tape is loaded into
BBRNCHGETN. '

Since this is the first record in the block, the
program reaches the routine whose first instruction is

Sort 90, Phase II 41

BSTPDWNCHK (240). This is the first GeT for this tape,
so the sort encounters the instruction to branch to
BIGETENTRY (241). An indexed Bpx (241 and 242) in-
struction with its 6-9 portion set according to the order
of merge causes the program to branch (245) to the
instructions reached by line M—1 where M is the
order of merge. For example, if the order of merge is
five, 259 and 271 on the diagram represent the instruc-
tions performed. If the order of merge is four, 258, 265,
and 270 are chosen instead; the instructions repre-
sented by locations 266, 259, 271 do not exist, and sw 4
(265) has been modified so that it always remains set
to T despite instructions which apparently change its
setting. In the move instruction (represented by 271
if M equals 5) the current contents of the positions
in the ranking are shifted downward one pair of places,
and the contents of BNEWRECORD and BBRNCHGETN enter
at the high-order end. What reaches the lowest pair
(P) is irrelevant because at Brecexrt (272) the pro-
gram branches to Ger a record from the next tape area
without processing a record. The branch at BrRECEXIT
was set to AA during beginning-of-pass procedures.

The first record of the next block is obtained and
the same sequence of instructions is performed except
that the program branches (245) to the instructions
reached by line M—2. If the order of the merge is
five, these instructions are represented by blocks 258,
265, 266, 270, and 271..The control data of the newest
record are compared with those of the first whose
row and branch are now at the top of the ranking.
If the newest record is larger, the branch is to 271;
if less than or equal to the first, the branch is to 270.
In the former case the contents of BNEWRECORD and
BBRNCHGETN enter at the high end of the ranking after
all the other pairs have moved down a pair of steps.
In the latter case, their contents enter into the second
highest pair (C) after the lower pairs have moved; the
row and branch representing the first record remain
in the top pair (D). Then the program branches to
GET a record from the next tape area, again without
processing a record. This type of loop is repeated until
the ranking is full except for the lowest pair of posi-
tions, and the last exit used from 245 by the first GeT
loop is line 1.

FIRST RECORD PUT

After the first GeT from the one remaining tape area
is complete, the program continues through 239, 240,
241 and the Y branch of 242. Then BsTPpwNcHK (240)
is reset (246) to normal operation (N), and BRECEXIT
(272) is reset (247, 248, 249) to oo if the user is to
summarize, and to BB or cc, if not.

Next, the sort prepares to switch output tapes (251).
It resets BsTPDWNsW (244) according to the order of

42

merge and sw 1 (255) to normal (N). Entering the
compare network through sw 1, the sort compares the
newest record (currently the first record from the last
input tape being used) with the lowest-ranking record
already obtained. The latter record’s row and branch
now occupy the second lowest pair of positions, A, in
the ranking. If the newest record is lower or equal, it
is placed (267) in the lowest pair, P (BRECORD and
BNEXTGET). If not, and the order of merge is greater
than two, the newest record is compared with the sec-
ond lowest and the same type of decision is made.
Wherever the newest record ranks, its Row and branch
are inserted and records moved so that the lowest pair
is ready for further processing.

The program branches at BRECEXIT to BB, CC Or DD—
to cc if the user adds coding here, to pp if he wishes
to summarize. After the pp branch, BREcex1T is changed
to an EE branch, since a record now exists against which
the next can be compared in the BcMPpseQw (273)
routine.

All paths of leaving BRECEXIT rejoin at Bput (277)
where the next record (form 3) is placed in the output
block or its row (forms 1 and 2) is placed in the output
list. If (278) the program is summarizing this pass, or
in all cases if it is form 3, the row of the lowest record
(BRECORD) enters BBASERECRD where it allows com-
parison with the following record. The record count
is increased (280) and, if the user has specified hash
totals, the field for hashing in the current record is
added to the hash total (281). The first full cycle from
GET through puT is complete.

NORMAL LOOP

The next cer (235) is performed from the area of the
record just PuT. The program branches (239) to sw 1
(255) unless records are long and there is only one
per block; the compare network is entered normally
(260). The comparison and remaining instructions in
the loop proceed as in the previous loop except that
EE is the branch at Brecexit instead of pp when the
user has specified summarizing. If summarizing, there-
fore, the present lowest record (BRrECORD) is compared
with the last record pur (273), and the user may cause
a branch to added coding, if these two records are
equal. If the program branches to user coding from
optional exit BSUMBRANCH (275) to summarize or
delete, the reentry should be at BsumMarize (281) or
at BDELETE (284) where separate counts are kept of
records and hash totals.

END-OF-FILE LOOPS

If, on issuing a cer (235) for a record from the area
of the record last pur, it is discovered that the relevant
tape is end-of-reel (Eor), the program branches to

cLosk this file (236). If all input tapes have now become
eor and the merging has been completed for this pass,
the program branches (237) to end-of-pass procedures.
If not, the entrance (245) to the compare network is
modified (at 238). If the order of merge has been
five and is now to continue at line 4 with the com-
pleted input tape eliminated, an entry (245) through
line 4 leads to instructions (259) which set sw 4 (265)
to T in such a way that for the remainder of this pass
operations to modify sw 4’s setting have no effect and
the comparision N:D (266) cannot occur. Then all the
pairs in the ranking move down a pair of positions
(271). In the series of instructions between BRECEXIT
(272) and the next Ger (235), the new lowest record
is treated as in a normal loop. The information loaded
into D is irrelevant to the merge and, because sw 4
acts as a barrier, will never be considered.

When the next tape is discovered to be EOF as an
attempt is made to GeT a record from its block, the
same steps are followed, except that the entry (245)
to the compare network is by a line numbered one
lower. This number, incidentally, represents the order
of merge of the remaining tapes which are not Eor.
If the original order of merge had been five and was
now to become three, sw 3 (263) is set to T (258) for
the remainder of the pass and the instruction (258)
to modify sw 4 has no effect. sw 4 (265) then transfers
the program to instructions (270) which move the
three relevant pairs in the ranking down a pair.
Because the same coding happens to be used for
other loops, these instructions also move the contents
of BNEWRECORD and BBRNCHGETN to the next higher pair,
C. This pair ceases to concern the sort because sw 3
is now a barrier.

This loop is repeated with the following entries
(245) to the compare network through lines M—1 to 1.
When all tapes are EoF, the program branches (237)
to the end-of-pass procedures (212).

END-OF-PASS PROCEDURE

See Chart 6 for this procedure. Index words ‘are used
as counters, and at the end of a pass their contents
are added to the proper storage locations to give the
number of records pur, deleted, and summarized
(212). Then output files are closed (213). If records
were summarized or deleted, or if any blocks were
dumped as a result of an error condition, the necessary
count messages are typed (213). Finally, hash and
record counters are checked against the results of the
previous phase or pass (214). If there are errors, a
message gives the record counts and hash dis-
crepancies, and the program comes to HALT 2199 (215).
If discrepancies occur, the user may wish to restart the

current pass and may do so using normal 10cs restart
procedures. Otherwise, the user may press START to
return the sort to the beginning-of-pass procedures
(216), the same action as when no discrepancies occur.

STEPDOWN LOOPS

In a normal loop when a Ger is performed and the first
record in a block is obtained, the sort must check to
see whether a new sequence is starting or whether the
new block is simply a continuation of the old sequence.
This is done in the BsTPpWNCHK routine (243). If the
first record in the block is higher than the last record
PUT (BRECORD), it is handled normally; the sort enters
the compare network through sw 1 (255). If it is equal,
the sort bypasses the compare network, places the
row and branch directly in pair P, and continues nor-
mally from Brecexrt (272). If the new record is lower,
the following stepdown loop of instructions is per-
formed: The program branches to BSTEPDOWN (244)
and modifies the compare network entry (245). When
this is the first tape which is ready to merge its next
sequence, the entry is through the line numbered
M—1. If the order of merge is four, then the sort
branches through line 3 to 258, 265, and 270. The
three pairs (A, B, C) representing current records to
enter the presently-merging sequence move down the
ranking (270) by one pair and the row and branch
for the new record enter into the highest pair, C.
sw 3 is set (258) to prevent records which are to enter
into the current sequence from other non-stepdown
tapes from being compared with the new record. After
the pairs move, there is a new lowest record whose
ROW is in BRECORD, and the processing of the current
record continues from BRECEXIT as in a normal loop.
Each succeeding GET initiates a normal loop until
the next stepdown is encountered. This occurs as the
first record of a new block from another tape proves
to be lower than the last record put. The stepdown
causes the program to branch again through 244 and
945 and enter the compare network through the line
M —2. If the order of merge is four, instructions repre-
sented by blocks 257, 263, 264, and 269 are executed.
sw 3 is returned to N and sw 2 is set to T. The barrier
which existed at sw 3 is changed to one at sw 2. This
allows the comparison of records in the current output
sequence with each other and records in the next out-
put sequence among themselves, but comparisons be-
tween members of the two sequences are prevented.
The sort compares the new stepdown record with the
earlier one, and ranks them accordingly. If the new
one is lower, the pairs in A and B move down the
ranking and the new row and branch are entered into
the third pair, B. If the new record is higher, all con-

Sort 90, Phase II 43

tents of the ranking are moved down one pair and the
new rpow and branch are entered at the top, C. Then
the lowest record, one merging into the current se-
quence, is processed as in a normal loop starting from
BRECEXIT (272).

As other tapes reach the stepdown condition, similar
loops are followed. When the last remaining tape has
reached this point, the branch at 245 is through line
zero. If (252) there is summarizing this pass,
BRECEXIT is initialized (253) to pp for processing the
first record of the new output sequence. The sort makes
the last used row in the output block minus, and signals
10cs that the block is ready to be written (254). It sets
a switch to prepare for the change of output tapes for
the sequence next to be formed (251). It reinitializes
the stepdown counter and switch for the next series
of stepdowns and sets sw 1 to N. The program branches
through sw 1 (255) to compare the new record from
the last stepdown tape with the others ranked for the
new sequence. When its position in the ranking is
determined in the usual fashion, the row of the first
record of the new output sequence is found in BRECORD,
and the processing of it continues in normal fashion
from BRECEXIT.

OUTPUT END-OF-REEL ROUTINE

When a puT goes to the file scheduler for a new output
block and Eor is indicated from the previous write
operation, the output end-of-reel routine is entered.
Phase II bypasses the 1ocs end-of-reel routine and
branches to its own routine (286). The main functions
of this routine are to cLosE the current output file (292)
and to find (286) and set up for (293) the next se-
quential and not Eor output tape as specified by the
tape table. It also notifies the user, however, if there
are too many records for the available tape and order
of merge. If M output reels are full (288) the sort comes
to unconditional HaLT 2103. If M—1 output reels are
full (290), the sort comes to maLT 2104, which warns
the user of the risk that Phase II may not be completed
successfully. If he did not encounter halts warning him
of similar difficulties in Phase I, it may be that he has
short reels of tape. If short output tapes are suspected,
the user is advised to replace them and restart the cur-
rent pass. If, instead, his choice is to proceed after
HALT 2104, and if this pass is successfully completed,
HaLts 2000 or 2001 may be encountered at the be-
ginning of another Phase II pass. (See the next sec-
tion.) Although output Eor may occur in the middle
of a sequence as determined by the merge network,
parts of it which are written on different tapes will
be separate sequences; therefore, the sequence count
is increased by one to count the portion just written
(287).

44

Since neither the input nor output tapes of Phase 11
make normal use of the 10cs end-of-reel routine, if
IOCSEOREX is ever used by any of them it is an error,
and unconditional HaLT 2101 follows (294).

Description of Chart 6: Beginning-of-Pass

In Phase II there are many steps which would nor-
mally be included in the assignment routines but which
must be repeated at the start of every pass. These will
be referred to as the beginning-of-pass procedures. Be-
fore each pass the user is allowed to exit at BSTARTPASS
(216) for any added programming he may desire.
Next, as the first step in the pass initialization, provi-
sion is made for the switching of input and output
tapes (217). Controls are modified to allow the pre-
vious read tapes to become write tapes, and vice versa.
This includes changing the channel and unit members
in the input p1F’s (218).

Then a test is performed to determine whether Phase
IT will continue with another pass or whether Phase
IIT will be loaded (219). If the number of sequences
is less than or equal to the order of merge, Phase III
will be called (221). Note that the number of se-
quences from Phase I may be no greater than the order
of merge; if so, Phase II processing will be completely
bypassed. Before calling Phase III, however, the user is
allowed to exit at BENDPHASE2 to enter any coding he
may desire (220). If the number of sequences is
greater than the order of merge, the pragram proceeds
to calculate the additional Phase Il passes required
(222). It then checks to see whether the number of
passes required has been reduced since the last pass
(223). If not, it also checks to see whether the number
of sequences has been reduced since the last pass (224).
If so, the program comes to HALT 2001 (226), and, if
not, it comes to HALT 2000 (225). After the latter halt,
the user should not proceed, as he may be in an un-
ending sort as discussed previously. After either type
of halt, however, the user may elect to proceed simply
by pushing start. If the user chooses to restart from
the beginning of the last pass, he simply employs the
normal procedures for using 10cs restart.

If the number of passes required has been reduced
(223), or if not and the user decides to proceed any-
way, the program continues to BsummTEsT (227). At
BSUMMTEST the user may exit to a decision routine
which will decide whether to summarize this pass or
not and will branch accordingly to Boosumm (229) or
BskipsumM (230). If the user does this after punching
zeros in the summarizing-pass-control column of con-
trol card 2, he will come to maLT 2002 whenever
BDOSUMM is selected. Such zeros indicate no summariz-
ing in Phase II, and no compare routine (BcMPSEQW)
for this purpose was generated during assignment. The

user may push sTart, however, and proceed without
summarizing despite his mistake. If the user has chosen
not to exit at BsuMMTEST (227) for pass-to-pass control
of summarizing, the sort continues to a check of the
control information just mentioned (228). If the num-
ber in the pass control field (APAsscNTRL) is not less
than the number of Phase II passes remaining, the
sort will branch to BposumMM; otherwise it will branch
to BskipsumM. This allows the user to summarize on
the last xx passes or to skip summarizing entirely. The
instruction BposuMM (229) sets BsummMmsw 3 (247) to
Y, so that srecexiT (272) will be set (248) for sum-
marizing after all the first Ger’s are complete.

Hash and record counts are saved for later com-
parison, and the counters are reset (230). Index words
are reset to allow switches 1, 2, 3, and 4 to be set to
N again (230). Brecexit (272) and BsTPDWNCHK (240)
are reset for the first et loops (231). Finally, the
RDW’s associated with each block must be generated or
regenerated (232).

To prepare for writing the checkpoint record, the
sort initializes the output pTF for the last output unit
and channel and zeros are placed in the oPENPROC and
LABELINF entries (233). The sort sets the checkpoint
writing routine for the channel and unit of the last
output tape (233-1) and spaces this tape forward one
segment mark (233-2). If no segment mark is en-
countered on this reel, the sort comes to unconditional
HALT 2105. When it finds a segment mark, the check-
point record is written (233-2). Input files are opened
(233-3). The sort opens the last output file (234) and
tests whether all are opeN (234-1). Since they are
not, it sets the pTF for the next output tape (234-2),
restores the oPENPROC and LABELINF in the DTF (234-2),
and opens the next output file (234). This loop is re-
peated until the test (234-1) shows that all output files
are oPEN. The DTF is then reset to the last output tape,
and the creation date of the output tapes is saved for
input label checking on the next pass (234-3). The
merging for this pass is ready to begin.

Assignment Program, Chart 6

The assignment program of Phase II begins with a
check of the Phasekey (200). Usually BPHASEKEY will
contain a constant placed there during Phase I assign-
ment. If so, the assignment program continues in nor-
mal fashion. However, if this is a restart after Phase
II was interrupted on an earlier run, BPHASEKEY con-
tains a constant inserted during Phase II assignment
of the earlier run. On the restart run the restart tape
contains all the information necessary for Phase II to
be completed when the proper input reels are used.
Phase II will be completed before any of the Sort 90

program is loaded; therefore, when at the end of Phase
I1 the sort calls for Phase III, Phases I and II will have
to be read and bypassed before Phase III is reached.
If it is determined that it is a restart, the program
branches to HALT 2003 (200-1). If alteration switch 1
is on (201), and sTART is pressed, the program con-
tinues Phase II assignment. If this switch is off, press-
ing START causes the program to branch to load
Phase I1I.

Next, it is necessary to modify several instructions
related to 10cs (202). The 10cs OPEN routine will be
left in storage during the execution of the running pro-
gram of Phase II, rather than being overlaid by the
records read as in Phases I and III. This permits tapes
to be reopened at the start of each pass. Therefore, the
OPEN routine occupies a different area of storage than
it did in Phase I. Since there are three instructions in
the EoR routine that refer to locations in the OPEN
routine, it is necessary to modify these instructions to
reflect the new location.

spooL may be operating and may cause a priority
interrupt when interrupt is again allowed near the end
of Phase II assignment. Since the main parts of 10Cs
(including the channel scheduler) remain in storage
between phases, the force-switch off exit is still set to
branch to the location of the pending switch of a file
scheduler in Phase 1. But this scheduler no longer
exists, and the branch to one for this phase is not yet
created by an open. Therefore, to allow interrupts by
spooL before the oPEN’s for the first pass are complete,
the sort resets the force switch in each channel sched-
uler to branch to the bypass switch (202).

The assignment program then comes to HaLT 2111
(not shown) to allow changing the last input reel if
this reel is on a tape unit whose channel and unit
number is the same as one of the work tapes specified
and if there are enough sequences so that Phase II
will be executed. At this point the user may exit from
the assignment program and enter optional coding
(203). This exit is called BassiGN.

Other once-per-phase jobs include preparing for the
taking of hash totals if these are used (204). It is
necessary to specify which field is to be hashed and
to modify the necessary instructions. The program
tests to see if any sPooL is to be run during this phase
and if so, appropriate modifications are made to in-
structions. Many characteristics of Phase II depend
upon the order of the merge; therefore, this assign-
ment program determines the order of the merge and
loads index words and other instructions to determine
such things as the number of output tapes, to set up
the number of compare routines to generate, and so
on (205). The running program also varies according
to the form of the records to be used. The biggest

Sort 90, Phase II 45

variation occurs between form 3 and forms 1 and 2
(206). For form 1 or 2 records, the assignment pro-
gram calculates the number of row’s to be generated
for each tape and a total number (207). With form 3
records, the assignment program places the record
length field indicator in the appropriate cET and
PUT instructions, since form 3 record length varies
(208). It is up to the user to specify the collating
sequence, so that the assignment program can modify
the switches and the skeleton instructions for the com-
parison routines (209). Assignment varies according
to whether the user has decided to summarize this
phase or not. If APASSCNTRL is zero, the user has decided
not to summarize during Phase II. Therefore, a switch
is set which causes HALT 2002 to follow if BDOSUMM
is entered. If APAsSCNTRL is not zero, assignment sets
up to generate the compare routine BCMPSEQW; this
includes specifying the control data segments it will
use for comparison.

One of the major jobs of Phase II assignment is
to generate the compare routines and file schedulers
and to modify output and input pr¥’s (210). The num-
ber of compare routines needed to determine the rank-
ing depends upon the number of control data seg-
ments. Using model instructions and constants, the
routines are assembled in a work area and moved into
the appropriate positions in the running program. File
schedulers provide the necessary linkage to make use
of 1ocs for input and output. Input file schedulers,
as many as the order of merge, are generated in a
fashion similar to that described for the compare
routines. The skeleton of the first input scheduler lies
in the position it is to occupy in the running program.
Needed additional schedulers are moved to the de-
sired locations and the appropriate modifications are
made. The related pT¥’s are also created at the same
time. Note that compare routines and file schedulers
are located at the end of the running program. Space
which is not actually used because the order of merge
is Jow is used for records being sorted. When compare
routines are short—because of few control data seg-
ments—even a bit more space is available following
the last compare routine.

The next task of Phase IT assignment is to initialize
index words (211) for a variety of jobs such as the
control of entry into the compare network in ac-
cordance with the order of the merge, end-of-file,
stepdown, and first cer.

Then the sort saves the oPENPROC and LABELINF
entries from the output prF (211), since they will be
altered by the restart assignment and checkpoint
routines and are needed in their present form to
opeN all the output files except the one containing

46

the restart routine. The sort sets the output prr for
the last output tape and writes the 10cs restart routine
on it (211-1). The first output channel in Phase II is
the A channel. The last tape on each channel now
contains the restart routine, since Phase I assignment
wrote it on the output channel of that phase, channel
B. Now, no matter which channel is output during
Phase III or any pass of Phase 11, the restart routine
will be available as the first record, after labels, on
the last output reel.

The sort initializes the segment mark writing routine
for the proper channel and unit and writes a segment
mark on the checkpoint tape following the restart
routine (211-2). The tape is then rewound to the load
point. If an error occurs during the writing of the
segment mark, the sort comes to HALT 2108. Pressing
START causes the tape to backspace and then skip for-
ward before returning for another attempt to write
the segment mark. With success in writing the segment
mark the sort branches to the beginning-of-pass initial-
ization (216).

Exits and Modifications

As in Phase I, Sort 90 can be modified by changing con-
stants and by adding new programming steps. Detailed
instructions on modifications are given under “Modi-
fications” in J28-6096, but main types of changes are
listed here. If programming is added, exits at the fol-
lowing points are recommended:

1. During assignment the user may exit for any as-
signment functions to be added. The exit is
BASSIGN (203).

2. From pass-to-pass, an exit is available for
added beginning-of-pass initialization. This exit is
BSTARTPASS (216).

3. From pass-to-pass, an exit is available to enter a
decision routine to choose whether to summarize
this pass. This exit is BsummTEST (227).

4. While records are being sorted, exits are avail-
able for processing of all records during a pass
when no records are to be summarized, and for
records to be summarized, during passes set for
summarizing. These exits are BRECExiT (272)
and BSUMBRANCH (275).

5. Exit to added coding may be made at the end of
Phase II before Phase III is loaded. This exit is
BENDPHASEZ (220).

Only one change to constants is recommended for
Phase II. When coding is added to the running pro-
gram, the user should make a change to allow the
additional storage areas to be written on tape by the
checkpoint routine.

PHASEKEY

Restart

(200-1)

Halt
2003

BENDPHASE2

Optional
Exit

User Coding
(220)

Optional
Exit

Phase I

User
Coding

T
User Coding

Constant
(200-2)
Halt
2005
e ON Alteration OFF
Sw
(202
Modify
10CS é—
BASSIGN (203) ToCHY
Optional
Exit
User Coding
(204)
Prepare
for
Hash Totals
SPOOL
l 205
Set Up
Order of
Merge
(206) (206-1)

Rtns, File Scheds

Form 3 Not | Halt
Available 2004
Y
(207 ¥ (208)
Form Form
> 1,2 3
Coding Coding
l; J
Y (209)
Establish
Collating
Sequence
¢ (210) l 211-1)
Generate Comp Initialize DTF,

Set Up and Write

Save

OPENPROC
& LABELINE

Output and Input Restart an Last
DTF's Qutput
‘ 211) * 211-2)
Load Index Words Write Seg Mark

and Rewind Tapes
(Halt 2108, if Req)

Chart 6. Phase II; Assignment, Beginning-of-Pass, and

End-of-Pass Routines

BSUMMTEST

Optional
Exit

Summarize
This Pass?

rize, BSUMMSW.
Set to Y
(HIt 2002 ifReq

Save Counters
Reset
IW and
Countas

BRECEXIT
Set to AA,
BSTPDWNCHK
Set to Y

Generate
RDW's

(217

Set Up
Read and
Write
Controls

¢ (218)

Place Chan
and Unit
Numbers in
Input DTF's

@19)

Order
of Merge =
No Seq

(222)

Calc No. of
Additional
Phase |l Passes:
Message

(223)

Passes

From
CH7
BPHASE2EOP (212)

Combine W
Counters
with
Storage

l (213)

CLOSE
Output
Type Count
Messages

Discrepancy

Message
Halt
2199

Req Reduced?

Y (226)

Halt
2001

!

No. of
Seq Reduced

(225)

Message
Halt

(233)

Set DTF for Last
Output: Zero
OPENPROC ond
LABELINF

& 233-1)

Set Checkpoint
Rtn For
Proper Chan,
Unit

(233-2)

Space Forward One
Seg Mark (HIt2105
if Req) Write Chkpt

Record

l (233-3)

OPEN Input

2000

(234-2)

Set DTF for Next
Output: Restore
OPENPROC
and LABELINF

=

+ 234)

OPEN an

Tapes Serially

Output Tape

All
Qutput Tapes
OPENZ

(234-3)

Reset Output
DTF To Last
Tape,Save Date

ToCH 7

Sort 90, Phase II

47

14

(245)

From CH 6 (235) (236) (237) (238)
CH8 *
Get New Red . Reduce Step- Set
EOF Close This All N down Count 0 k. 4
U From Same Area o - lown Counter | | Merge Networl
() s BRECORD Red Input Input EOF by One | o Py
4
To 2 3
CHé E @
(239) BIGETENTRY (241) (242)
Reduce First A
Get Counter First GETS N -
by One Complete
Y BSTEPDOWN (244) ¥ (259),
Reduce Step-
. |down Counter Set
by One — SW4to T
(249) BSUMMSW3 (247) y (246)
N Red: Set Summarize
BRECORD BRECEXIT T
—=<Rcd to BB or CC his Pass
JV (251)
Set to Chg
Outputs, Res- 3‘7:”2%;3' ut Set
Cotrs & Dot [BRECEXIT
tors Cntr ocl to DD
Set SW1 to N
(257), .. (258), .
Set Set
SW3to N V2 SW4 to N V3
SW2to T SW3to T
(263) (264) (265) (266)
> > >
Sw3 N N:C Sw4 N:D
N N
T < T o < T <
BRECEXIT (268) Y (269) Y (270) @71)
AA Optional Move IW Move IW Move IW Move IW
Exit AtoP AtoP, Bto A, AtoP, Bto A, AtoP, Bto A,
N toA Nto B CtoB, NtoC CtoB, Dto C,
Nio D
EE ToCH 8 ¥ v ¥ |

Chart 7. Phase II; Running Program, 1

NOTES: * To fill the ranking of the beginning of a pass, GET a new record from
each tape in turn and treat as a stepdown. BRECEXIT is set to AA.

**Once SW4, 3, 2, or 1 is set to "T" by an EOF, that switch will not be
returned to N until the beginning-of-pass procedures of the next pass.

*** According to the number of tapes not first GET, not
stepdown and not EOF

From CH 7

BRECEXIT

To AA

CH7

User
Coding

From Output or
Input IOCSEOREX

From Output
File Scheduler

BCHANGEOUT ¢ (286)

@73) BEORHLTY (294)
BCMPSEQW Find Next
Halt
BRECORD Not EOF
Rcd:BBASERECRD 7 > 2101 Output Tape
Red
%(287)
Incr Seq
Count
by One
(289)
Halt
BWRITE 2103
BRECEXIT
Set to <
EE /
(291)
Halt
BPUT
8] Pl' (277) 2104
BRECORD | ¢
in Write List
& (278) o Close
AN User User 7| Output Tape
Summarizing> Coding Coding
ith Form
vy 1,2 Y (293)
Y (279 BSUMMARIZE (282) BDELETE (284) Modify
Contents of Increase Sum- Outout
BRECORD Into marize Count lr(uzcreu'si Deolete Dl{r:U
BBASERECRD by One ount by Lne
Y (280) Yy (283) y (285) o O
o Output
I"”z‘::ﬂfecmd Hash if Hash if File Scheduler
- by One Required Required
y (281)
Hash
e \ Y ,-@ ToCH7
Required

NOTE: * DD, EE exits used if
summarizing this pass.

Chart 8. Phase II; Running Program, 2

Sort 90, Phase II

49

Phase Il

Phase III of Sort 90 merges the output tapes of the
final pass of Phase II into a single sequence and gives
the user a final opportunity to add routines for sum-
marizing, deleting, inserting, and editing records. (It
is possible that Phase II is bypassed; if so, the input
tapes to Phase III are the output tapes of Phase 1.) As
for Phases I and II, there is both a running program
and an assignment program, the latter being executed
first and overlaid with rRow’s and records during the
running program. Phase III is quite similar in its op-
eration to Phase II, the principal differences being as
follows:

1. Phase III is simpler, since each input tape con-
tains a single sequence, and no provision for han-
dling stepdowns is required, except as a sequence
check.

2. It takes a single pass; therefore it is not neces-
sary to retain the oPEN subroutine during the
running program nor is it necessary to divide the
initialization into an assignment section and a
beginning-of-pass section.

3. Phase III allows for the insertion of records and
for editing which will change the length of the
record.

4. With the oPEN removed, there is more storage
available for any added coding in Phase III.

5. The blocking factor for output is set to that speci-
fied by the user, and the use or non-use of output
labels is at the option of the user.

Hlustrations in this section assume an ascending se-
quence.

Running Program, Charts 10 and 11

For forms 1 and 2 the techniques of rRow interchange
and the ranking of current records from each tape are
employed in Phase III in precisely the same way as in
Phase II. The symbols for the index words of the rank-
ing are the same as for Phase II, except that they have
the first letter “C” rather than “B.” (See Figure 8.)

FIRST GET LOOPS

Following assignment, the program branches to cer a
first record (321) from the first input tape. Since the
block is empty, the program branches to the routine
which fills a new block. When this is full, an row for
the first record is placed in cNEwRECORD, and

50

CBRNCHGETN is loaded with a branch instruction to the
GeT for this file. sw 1 (329) has been initialized to
transfer to an entry routine (330), which is set at first
to branch through line M—1, where M is the order of
merge. The branch is to one of the switches sw 1, sw 2,
sw 3, or sw 4; this switch is at T as initialized; and the
switches numbered lower are at N as coded. Therefore,
the program goes directly to one of the move routines
and, after moving the irrelevant contents down the
ranking one pair of words, unloads the contents of
CNEWRECORD and CBRNCHGETN into the pair of positions
at the top. For example, if the order of merge is three,
locations 334, 335, 340, 341, 342, 346, 347 do not exist,
and the entry at 330 is along line 2 to sw 3 (339) and
the related move instructions (345).

The program proceeds to crecexit (348) where it
branches to Ger (321) a first record from the next tape
block. After the records are read into the appropriate
block and the rRow and branch for the first record in
this block are obtained, the sort again enters (330) the
compare network, but through line M—2. This time
the switch is set to allow this new record to be com-
pared and then ranked with the first. If the order of
merge is three, the flow is to 337, 338, and either 344 or
339 and 345—the latter only if the control data of the
new record are larger than those of the earlier record.
At crecexiT (348) there is a branch to another Ger
(321).

FIRST RECORD PUT LOOP

When a first cer is performed on the last input tape,
the entry is through line 0. sw 1 is set to N (331), and
CRECEXIT (348) is either set to cc or, if there is added
coding, to BB. Then the new record is compared with
the record whose row and branch are in pair A. Fol-
lowing any further comparisons which may prove nec-
essary, the Row and branch for the new record are in-
serted in their appropriate positions in the ranking,
and the first record of the output sequence is repre-
sented in the lowest positions of the ranking, cRECORD
and CNEXTGET.

After any coding added from crecexiT, the sort is
ready for cseQcHECK (349). Since this is the first rec-
ord to be put, the program bypasses the sequence
check and goes directly to any coding that has been
added at carBraNcH (353). The sequence check (349),
however, is now set to operate with all remaining rec-
ords (354), and the row of the first record is entered

in the output list for form 1 and 2 records (355) or the
record is PUT in the output block for form 3. CRECORD
is entered into cBASERECED (355) to provide the basis
of comparison for the next sequence check, and the
record count (356) and hash total (357) are appropri-
ately increased before the program branches to GET
(321) another record from the same tape as the record
just put. This is the start of a normal loop.

NORMAL LOOP

In the normal loop of the merge a new record is ob-
tained (321) from the same area as the record just puT.
The sort enters the compare network from the N
branch of sw 1 (329), and the new record is ranked in
the usual way. After the index words are moved, the
remainder of the loop is like that of the first record
PUT, except that the sequence check (349) functions
normally. The comparison is not bypassed. The user
may exit from csSTEPDOWN (350), cSUMBRANCH (352) or
cHiBRANCH (353) to add coding which may vary ac-
cording to whether the merged record (CRECORD rec-
ord) is less than, equal to, or greater than the previous
one (cBasERECRD record). If it is less, a record is out of
sequence, and the user may want to add a special
error routine to take account of this fact; any such
programming should return the user to cwrITE (354).
If the user chooses not to exit here, he receives a mes-
sage indicating a stepdown, and the sort comes to HALT
3109 (351). Leaving alteration switch 1 off (351-1) and
pushing sTART, the user causes the sort to type a mes-
sage, “SEQUENCE BREAK TO oUTPUT (351-4), and to
branch to cwriTE (354). The out-of-sequence record
will be put in the output file. If alteration switch 1 is
on (351-1), pushing sTART causes the sort to type out
both the stepdown record and the base record against
which it was compared before coming to mHaLT 3110
(351-2). When alteration switch 1 remains on (351-3),
the next START results in a message that the stepdown
record is dropped (351-5), and the sort bypasses the
PUT routine by going through coeLeTE (358). If altera-
tion switch 1 is off, however, the sort types a message,
“SEQUENCE BREAK TO OUTPUT~ (351-4), and branches to
cwriTE (354).

If the merged record is equal, he may wish to sum-
marize or delete, while if it is high, he may wish to
do another type of editing. For the former, provision
is made for the user to reenter at CDELETE or
CSUMMARIZE so that the merged record is not put and
record and hash counts (358, 359, 360, 361) will be
handled correctly without any special programming
by the user. Otherwise reentry is at cwmiTE (354).
Should the user decide to insert records at any point
by added coding, a separate subroutine is provided
which puTs the record to be inserted and also allows

the proper handling of these counts (362, 363, 364,
365). The program branches to the insert subroutine
and, when this is complete, return is made to the user’s
coding.

INPUT END-OF-FILE

When the next Ger is attempted (321) and an EoF
signal is encountered, the program branches to cLos
that input file (322). A test (323) is made to determine
whether this is the last tape to become eoF. If not, the
program continues to an entry (328) to the compare
network which is determined by the number of tapes
which have not yet reached the EoF condition. Upon
entry, the switch in the compare network of this same
number is set to T. This, together with moving the ap-
propriate index words, reduces the ranking to handle
one less current record. For example, if four tapes have
not yet reached £or, sw 4 is set to T (335), and all pairs
in the ranking are moved down one pair of positions
(347). Since the set of move instructions is used for
other purposes as well, the contents of CNEWRECORD
and CBRNCHGETN, which are not new, are unloaded
into crecorp and cBRNCHGETD. However, the setting
of sw 4 to T prevents the comparison of new records
with the record represented here and the execution
of any further move instructions affecting these loca-
tions for the remainder of Phase IIL

After the appropriate set of move instructions has
been executed in an EoF loop, the next record to be puT
is represented in the lowest pair of the ranking, and
the remainder of the loop from crecexir (348) con-
tinues the same sequence of instructions as in a normal
loop.

To perform the input end-of-reel processing just
described, the sort leaves the 1ocs end-of-reel routine
through rocseorex and does not return. Therefore, any
use of the 1ocsEorex for input end-of-reel is an error
and leads to marLt 3101 (373).

OUTPUT END-OF-REEL

When a put goes to the file scheduler for a new output
block and EoF is indicated from the previous write
operation, the 1ocs end-of-reel routine is entered. From
rocsex] the sort adds a routine which combines the
index-word record counters with the output reel-by-
reel storage counters, adds the record and hash totals
to cumulative counters, and resets the reel-by-reel
counters (371). The reel counts are entered in the
trailer label areas, if output labels are used and require
them. The user is then given the option of an exit
at cenpexitl (372), so that he may add further proc-
essing of the standard trailer label. After added rou-
tines or if no exit is taken, the sort returns to the 10cs
end-of-reel routine.

Sort 90, Phase I1I 51

Exiting from 10csEOREX in output end-of-reel proc-
essing, the sort types an end-of-reel message (366).
If all the M—1 output reels are full (367), maLt 3115
follows (368). This allows the user to change tapes.
The sort is reset to write on the first output unit (368),
and it writes successively on each of the remaining
units, if necessary. The 10cs reel-change halt is dis-
abled, the prF is reset for the next tape unit, and the
file serial count is increased (369). The user may add
further coding from ceorexir (370) before return is
made to the 10cs end-of-reel routine.

END-OF-PHASE ROUTINE

When the last input tape is EoF, it is closed (322), and
the program branches (323) to cwmpup (323-1) and
the end-of-phase routine. The user may exit to added
end-of-phase coding but must return to cLose the out-
put file (324). The various record and hash counters
which get separate totals for summarized records,
deleted records, and inserted records are suitably com-
bined (325). Hash and record count totals are checked
against the totals of the last pass of Phase IT (326).
If discrepancies exist, a message indicates this, and the
program comes to HALT 3199 (326-1). With alteration
switch 1 off, the user may press sTarT to restart Phase
IIL. If the user chooses to set alteration switch 1 on and
press START, the program will ignore the discrepancy
and proceed to cENpPHASES (327) to conclude the sort.
At cenppHASE3 the user may exit to load or execute
other programs. Alternately, the sort will continue to
HALT 3333 (327-1), from which it will enter a busy
loop (if starT is pressed) to allow continuation of
SPOOL.

Assignment Program, Chart 9

Phase III begins with a check of the Phasekey (300)
and proceeds if cPHASEXEY contains the constant in-
serted during Phase II assignment. Otherwise, the pro-
gram comes to HALT 3005 (300-1). If the user elects to
proceed after such a halt, or if there has been no halt,
a constant indicating Phase III is placed in CPHASEKEY.
Next, if the user has so requested on the control card,
and if Phase I produced no more sequences than the
order of merge so that Phase II was omitted, the
program will come to HaLT 3111 (301) to allow the
user to change the last Phase I input reel. The user
may wish to save this file and still use this tape unit
in further processing.

In Phase III, the oPEN subroutine will not be re-
tained as it was in Phase II, but will be overlaid when
records are read in for sorting as in Phase L. Its location

52

in storage changes from phase to phase, and branch
instructions in the EOR routine addressing it must there-
fore be modified (301). spooL may be operating and
may cause a priority interrupt when interrupt is again
allowed just before the checkpoint record is written
(314-3). Since the main parts of 10cs, including the
channel scheduler, remain in storage between phases,
the force-switch off exit will be set to branch to the
pending switch of a file scheduler in Phase II. But
this linkage has not yet been created by an open.
Therefore, to allow interrupt by spoor before the
OPEN’s of assignment are complete, the force switches
in the channel schedulers are reinitialized (301) to
branch to the bypass switch. The user is then given
an opportunity to exit at cassioN (302) for additions
to the assignment program.

Next, the necessary information is obtained from
the communications block to prepare the output header
labels (303). This includes the file serial number, cre-
ation date and retention cycle. The contents of the
hash and record counters are saved for later com-
parison and the counters are reset to zero (304). The
sort checks as to whether or not hash totals are to be
taken and if so, modifies the hash instructions accord-
ing to the hash field specified by the user (305). If
SPOOL is not to be run, assignment eliminates the spoor
test in the channel schedulers.

The order of merge is obtained, and various instruc-
tions and index words which depend upon it both in
the remainder of the assignment routine and in the
running program are adjusted appropriately (306).
For example, the program loads an index word con-
trolling the number of compare routines and input
file schedulers to be generated. It adds the order of
merge to another index word which later in assign-
ment will load other index words which act as counters.
The entry to the compare network after the first Ger
is controlled in this way.

For form 1 and 2 records, assignment determines
the number of rRow’s per block and prepares for oper-
ations which depend upon this number, such as mak-
ing the sign of the last Row minus for tape operations
(307, 308). Adjustments are also made for any change
in record length by Phase III editing. For form 3
records (307, 309) the number of row’s required is
determined, and instructions which depend upon the
maximum record length are set up. Counters are modi-
fied to handle form 3 records, and the length of the
area to be provided for input file schedulers is in-
creased by eight.

Instructions in assignment which are used to gen-
erate compare routines are modified in accordance with
the collating sequence (310). The generation instruc-
tions are also modified according to whether one or

more than one control data segment is to be compared.
The last output tape is eliminated as a sort output tape
and is retained for use only as a checkpoint tape (311).
Thus, there are only M—1 output units for Phase III.
Assignment assembles the output prF with the proper
channel and first output unit, tape density, block size,
record length, unreadable record procedure, and the
other necessary information (311). The sort generates
the required compare routines, input file schedulers,
and input prF’s (312). Major characteristics of this
generation are the same as in Phase II assignment.

Next, the program loads a number of index words
(313). For example, it initializes sw 1 to the oPEN entry
to be used following each first cer. The sequence check
routine is set to bypass the comparison until after the
first record is puT, and the switch restoring it (354) is
readied. The instructions (332, 333 and 334) used to
set sw 1 and sw 2 during an EOF entry are initialized,
and counters for the first Ger and EOF entries are set
according to the order of merge.

Sort 90 assignment prepares for Row generation by
finding the starting point for the Row lists and the num-
ber of input and output row’s (314). It loads this in-
formation into the appropriate instructions. Note that
output blocking and record length may be different
from that found during sorting. In preparation for
writing the checkpoint record, the checkpoint tape
spaces forward one segment mark (314-1) and the
checkpoint writing routine is set for the proper channel
and unit (314-2). If no segment mark is found on the for-
ward space, the program comes to unconditional HALT
3105. Normally, however, the segment mark forward
space allows the sort to pass over the restart record
and write the checkpoint record as the next record
(after the segment mark) on the checkpoint tape
(314-3). Assignment restores the capacity of 10cs to
write output header labels (314-4). If form 3 records
are being processed (315), the program generates
2(M+1) row’s (316); each row represents the maxi-
mum block size when processing form 3 records.

The oPEN routine is modified to prevent the signs of
rRpw’s from being set, since at present this would modify
locations in the assignment program (316-1). The first
output and all input files are opened (317, 318), and
the sign setting function is restored to the oPEN routine
(318-1), before the user is able to exit at CADDASSIGN
(318-2). For form 1 and 2 records the rRow’s are gen-

erated (319, 320); the row’s are created in the index
word ceuiLbrRDW, the proper sign is added, and the
index word is unloaded into the proper location.

Exits and Modifications

Phase III may be modified by changing constants and
adding new programming steps. Detailed instructions
on modifications are given in J28-6096, under “Modifi-
cations.” As in Phase I, the necessary DTF’s, DC’s, DA’S,
file schedulers, 10cs macro-instructions, and required
linkages may be added to allow the reading or writing
of additional tape files.

The following exits may be overlaid by branches to
added routines:

1. At the beginning and end of the assignment
routine, exits are available for such functions as
opening additional tape files. These exits are
cassioN (302) and cappassioN (318-2).

2. During sorting, extensive provision is made for
summarizing, deleting, and editing of records as
well as special treatment of (unexpected) step-
down records. The recommended exits are
crECEXIT (348), cHiBRANCH (353), CSUMBRANCH
(352), and cstePDOWN (350).

3. During the output end-of-reel routine the user
may cause an exit to his own routines for addi-
tional trailer label processing. The exits are
cenpexiTl (372) and ceorexrr (370). These re-
place the 10csEoRrEX and 10csEx] used by Sort 90.
The other 10cs output end-of-reel exits are avail-
able to be used in the normal way, if desired.

4. Two exits to added end-of-phase programming
are available; further end-of-job routines or link-
age to other programs may be entered. The exits
are cwiNpup (323-1) and ceNpPHASES (327).

During the merge of Phase III, added programming
may call for the insertion of records into the sequenced
output file. An insertion routine beginning with
cinsert (362), purs the inserted record and keeps
separate counts of records and hash totals.

In Phase III, constants may be modified to modify
the 10cs handling of output files and tape labels. The
user may control whether the tape is rewound and
unloaded or not and may change the way the sort
writes trailer labels.

Sort 90, Phase II1 53

From
CH 6

CPHASE3 (300)

N

Check
Phasekey

Unusual
Constant

(300-1)

Halt
3005

Y _@op

Restore |OCS
(Halt 3111
if Req.)

Set Up
Label Areas

(304)

Save and
Reset
Counters

y (305)

Preparation
for Hash

» Order

(306)

Set Up

of Merge

Form 3 Not Available

(307-1)

Halt
3004

Load
Index
Words

Yy (314

Set Up
RDW
Generation

¥ (314-1)

Space Forward
One Seg Mk
(Halt 3105,

if Req.)

Y ___ (308)

Form 1, 2

4 (314-2)

Coding

Totals,
SPOOL

Y (309)

Form 3
Coding

Set Chkpt
Rtn for
Proper Chan,
Unit

/ (314-3)

Write
Checkpoint
Record

y (310)

Establish
Collating
Sequence

@1

Set Up Output
DTF, Chg Last
Output to ChkpH
Only

A 312)

Generate Comp
Rins, Input File

¢V (314-4)

Restore Qutput
Header

Typing

(315)

(316)

Schedulers,
and DTF's -

Chart 9. Phase III; Assignment Routine

54

Generate

@316-1)
Modify OPEN

to Prevent

Y

RDW's

Sign Setting of
RDW List

JV (317)

OPEN
First

Gutput

Y (318)
OPEN

Inputs

\ @318-1)

Restore OPEN
to Allow
Sign Setting
of RDW Lj

CADDASSIGN (318-2)

Optional
Exit

User
Coding

N

CGENERATE

Generate
RDW's

A

\
To
@ CH 10

111 @seYq ‘06 +0S

99

From (321)** (322)

Ch9 Chli (323) CWINDUP__(323-1) (324) 325 (326) (326-1)
/ L g’ngr:ln:ws:me:_ > Close this Input Tapes Optional CLOSE Out- ng]llj)r:?:rslw ;‘?9“9
Area as Input EOF put File > with Storage
y CRECORD Red_JEOF
From Input
IOCSEOREX
(329)« CENDPHASE3 327-1)
CINEORHALT (373) £ EOJ
T | Halt Ootional
3101 ptiona Halt
Exit 3333
N
330
0 Apen\()4 1 Set (328) User Coding
—— Entrance: Number of Merge for Nox4
™ Tapes not First ~ of Tapes not
GET 3 ECE
1 2 3
(331) A 4) Y (335
Set SW1 to Set Set S
et
 CRECEXIT SWito T Sw2to T SWato T () SWato T
CC
y (343) ¢ ((344) (345) Y (34¢) Y (347)
Move IW Move IW Move IW Move IW
Move IW AtoP, Nto AtoP, Bto A AtoP, BloA,| (AP, BloA
NtoP A Nto B CtoB, NtoC to 8, Dto C,
N to D
EXIT ——-f%--
CRECEXIT Y (348) NOTES:
i * SW 1 is initially set to 1. The program branches to fill the ranking. Branches
| AA C are made successively from M-1 to zero, where M is the order of merge.
o Ch 11 ** To fill the ranking initially. GET a new record successively from each tape.
(2]

Chart 10. Phase III; Running Program, 1

ch. 10@

351)

Stepdown
Mess Halt
3109

Type Out

Record and
Baserecord
Halt 3110

(351-3)

Alteration

From CH 10
CRECEXIT

W1

ON y (351-5)

Message for
Drop Record

CDELETE l (358)

Increase Delete
Red Count by
One

* (359)

Hash
if Req

l

User
Coding

User
Coding

CINSERT

* AL, (348-1)
Any Sorted or Put Inserted
Inserted Record>N———‘ Record
uT
Y 68
CSTEPDOWN 850) cseqcHECk ©49)
RECORD Increase Insert
Optional Red: Red Count
Exit CBASERECRD > by One
CSUMBRANCH § (352) CHIBRANCH y (353) + (365)
Hash
User Coding if. Req.
User Coding User Coding User Codmg
From
From Outpu 1OCSEX1
JOCSEOREX
(351-4) CWRITE ¥y (354) COUTEOR (366, CFIXTRAILR (371)
Y Message for Seq If First Red A
Break on Output PUT, Restore Type EOR Combine and
OFF Tape Seq Check Message Reset Counters
(355) CENDEXIT1
User Put CRECORD .
Coding in Write Listand O;Et;.c?ncl
in CBASERECRD i 1T6Cs
EOR Rin
CSUMMARIZE (360) L (356)

Increase
Summarize Red
Count by One

Increase Record
Count by One

I G Y a5
Hash Hash
if Req ifReq

NOTES:

User Coding
Y (369) CEOREXIT (370)
Set Up for .
Next Output Opél(c;r;al

To IOCS

oF
CH 10

* This switch is actually included in the compare routine which begins with
CSEQCHECK, but it causes the comparison portion to be bypassed by a
branch to CHIBRANCH until after a record has been PUT.

Chart 11. Phase III; Running Program, 2

56

EOR Rtn

User Coding

Checkpoint and restart procedures may aid the user
in several ways. Machine malfunction may result in a
hang-up or the kinds of conditions which result in a
specified sort halt. If the malfunction was transient
(or if not, when it is corrected), the user may be able
to restart from a point prior to the error condition, but
after the beginning, and proceed successfully. It is not
necessary to repeat the earlier stages of the sort which
were completed correctly. Checkpoint and restart also
allow the partitioning of a long sorting job, so that
successive stages may be run at different times.

Sort 90 makes two kinds of restart provisions:

1. Phase 1 provides its own reel-by-reel restart pro-
cedures for labeled input records. If it finds dis-
crepancies between the trailer label and internal
counts for a completed input reel, halts follow.
As one option the user may choose to restart
simply by setting alteration switch 1 properly
and pushing start. The sort rewinds the input
reel, repositions the output tapes, and repeats the
processing of this reel. Restarting for other
reasons in Phase I requires that the sort be
started again from the beginning.

2. In Phases II and III, Sort 90 uses the 1ocs check-
point and restart routine. The following para-
graphs describe its application to Sort 90.

Sort 90 writes a checkpoint record only when it gives

a checkpoint macro-instruction. It writes a checkpoint
record at the beginning of each pass of Phase II and
during assignment in Phase III. Restart of a given
pass in Phase II is possible only as long as the records
on the input tapes remain as they were at the begin-
ning of that pass. Since writing the output of one pass
destroys the records on the input tapes of the previous
pass, restart is possible only from the beginning of the
current pass. For this reason also, Sort 90 retains only
one checkpoint record on a given checkpoint tape and
writes the new checkpoint record over any previous
one on this tape.

Sort 90 takes the option in Phase II of writing check-
point records on an output tape which will also contain
sorted records. Phase I1I uses one of the tapes on the
output channel but limits its use to checkpoint only.
Since input units and output tapes alternate from pass
to pass in Phase II, the sort must have two tapes for
checkpoint records, one on each channel. In Phases II
and III the unit chosen for checkpoint is the last one

Checkpoint and Restart

on the output channel. The last tape for a given chan-
nel is the one entered last on the control card.

Sort 90 does not use the normal procedure for load-
ing and readying the checkpoint and restart routine.
Normally the assignment section, the checkpoint writ-
ing routine, and the restart program enter storage dur-
ing program loading, but before the 10cs OPEN and I1GEN
routines are loaded. As soon as these parts of check-
point are loaded, the assignment section prepares the
checkpoint and restart routines in accordance with a
DCHPT entry, and writes the restart program as the first
record on the checkpoint tape. Then loading resumes,
and the oPEN and I1GEN routines overlay the locations
just occupied by the assignment and restart sections.

A generalized program such as Sort 90, however,
cannot fully specify the pcupT entry until the control
cards are read. Therefore, it must load the assignment
and restart sections and retain them in memory until
part of the sort assignment program (including pcepT
specification) is executed. Then restart is assigned and
written as the first record on the checkpoint tape,
after labels or segment mark. During processing, re-
cords overlay both the assignment and restart sections.
The checkpoint writing routine, which is retained in
storage during processing, is assigned at the same time
as the restart program.

A checkpoint tape must be on both channels, but
during Phase II assignment the restart program can
only be written on a tape of the channel to be used for
output for the first pass. This is channel A. Therefore,
the restart for channel B, output channel for Phase I,
is written during Phase I assignment. Phase I must load
and assign the checkpoint and restart routine, although
it writes no checkpoint records and cannot use the
restart program.

The presence of the restart and checkpoint records
on tapes containing records causes no difficulty in read-
ing or writing the records to be sorted. If the input to
Phase I contains checkpoint records, the user must
punch “1” in column 65 of the first control card. In
Phases II and III one of the input tapes always con-
tains a restart record and, after pass 1, a checkpoint
record. These records are read as long length records
(L) and are bypassed accordingly when records to
be sorted are read from this tape. Phase I opens output
tapes during assignment after the restart routine is
written; Phase II opens them after the checkpoint

Checkpoint and Restart 57

record is written at the beginning of each pass. The
sort does not write over checkpoint and restart records
on the output tape because the tape is not rewound
after the new checkpoint is written, and label process-
ing is bypassed when this tape is opened.

Whenever the user decides to restart Phase III or a
pass of Phase II, he simply follows normal 10cs restart
procedure. He must use the restart initiator program,
which will load the restart program from the check-
point tape and transfer control to this program. The
restart program positions tapes and restores storage;

58

Sort 90 continues from the point at which the check-
point record was taken.

The storage locations normally contained in the sort
checkpoint record include the index words used by
the sort and from BPHASEKEY or CPHASEKEY through the
storage limit specified on the control card. To include
programming modifications, the user must patch the
row’s following the pcuPT. Instructions for doing this
are given under “Modifications” in J28-6096. A restart
does not routinely restore all of storage because spooL
may be operating.

Locating Errors in Sort 90

The sort is varied through control card punching and
through more direct modification. The latter may in-
volve added programming or simply overlaying con-
stants. To avoid errors in running Sort 90, the user
must avoid making errors in effecting these variations.
If errors do occur, however, make the following checks:

Check 1

Check first for errors in control card punching. Al-
though Phase I assignment of Sort 90 checks for many
types of control card errors, it cannot check for all
types. It will check for the following:

1. Consistency among user specifications.—For ex-
ample, are the control data fields located so that
they will lie within records of the length in-
dicated?

2. Conformance to rules.—For instance, do the con-
trol field specifications indicate a total of not more
than the maximum of 160 digits of control data?

3. Support of the goals of sorting—Does the user
indicate records or control data field of lengths
greater than zero?

Sort 90 will not check the specifications punched in the
control cards for the following:

1. The configuration of components.—Are the indi-
cated tape units available? Are the storage limits
indicated in the control card within the storage
limits of the computer?

2. The actual input.—Are records of the form and
length indicated? Do the control data lie where
indicated?

3. User’s intended specifications.—If the user wants
the records in descending collating sequence, has
he so indicated?

The unchecked errors may result in a variety of
program malfunctions and computer hang-ups. On the
other hand, the program may be executed with ap-
parent success, with an error becoming evident only
at some later time. Hence, despite the extensive check-
ing which is programmed, care is required in the
preparation for a new sort application.

Program Condition Analysis Aids

Check 2
Check for misplacement of the control cards. Are they
placed in the card reader in the proper order?

Check 3

If the user has modified the sort, check these modifi-
cations for programming errors. Check their place-
ment in storage.

Errors in a New Application

If a hang-up is on the first run of the sort in a new
application, suspect errors of the types already de-
scribed, rather than machine errors. Always question
whether any changes have been made from previous
successful runs of the sort. If no changes have been
made in the control card specifications or through user
modifications, has there been any change in the char-
acteristics of the input? A change in input may reveal
errors not evident before, or it may require change in
the control cards or change in any added pro-
gramming.

Sometimes the hang-ups from such sources look very
much like machine difficulties. For example, if the
user has indicated that the work tapes will have labels,
and in fact they do not, a read error will very likely
result. When the program attempts to check the header
label on the Phase I output tapes, it will not usually
find a record of the proper length or density occupy-
ing the first block of tape.

When rerunning the sort to determine the source of
errors, be sure to use a hash total check option which
permits pass-to-pass checking. If labels permit, use
hash total and record count checks on both input and
output trailer labels, in addition.

Control Card Summary

Because errors in the preparation of control cards oc-
cur frequently, a summary of each control card is
available for ready reference on the following pages.

Program Condition Analysis Aids 59

Control Card 1

COLUMNS

1
2-6

7

8
9-13

14
15-19
20
21
22-24
25-27
28-30
31
32-33

35

36-40

41-42

43

44-47
48-51
52-55
56-60

61

62

NAME OF PARAMETER

Input Channel
Input Tape Units

Input Tape Type

Channel A
Channel A Tape Units

Channel B
Channel B Tape Units
Output Tape Type

Record Form
Input Record Length

Input Blocking
Output Blocking

Zero Suppression Ind.
Input Reel Count

Record Count Ind.

Hash Total Ind.

Hash Total Field

Unreadable Record Ind.

Phase I Area Ind.

Phase I Storage Limit
Phase II Storage Limit
Phase III Storage Limit
Form 3 Length Field

Input File Label Ind.

Work Tape Label Ind.

CONTENTS

X
uy;usuguy

X

X
uu;Usugy

X

uu; usugtiy

=
S
S i§ﬂQWAWMHOQMHO S~ E S Ex v

3

60

N=O DPD-=O

*M = order of merge for Phases II and III
**Channel A tape units may duplicate some or all input tape units (columns 2-6)
***First word in record is word 000.

60

REMARKS

(x =1 or 2). Input channel number.

u = input unit, u,-u, are alternate units consecutively.

Each unused alt. = 0. Zero unit cannot be last.

(x=1,2 30r4). 1=729 n, low; 2 =729 1, high; 3 =729 v,
low; 4 = 729 1v, high.

(x = 1 or 2). First work tape channel; should be same as column 1.
u-u, are work tape units on channel A. M* units must be speci-
fied. **Zero unit cannot be last.

(x =1 or 2). Work tape channel B number. Not same as channel
A, unless one-channel system.

u-u, are work tape units on channel B. M* units must be speci-
fied. Zero unit cannot be last.

(x=1,2,30r4).1="729mn, low; 2 = 729 m, high; 3 = 729 v,
low; 4 = 729 1v, high.

(x =1, 2 or 3). Input record form. :
Number of words per record, form 1; or maximum number of
words per record, form 2; or minimum number of words per
record, form 3.

Input blocking factor, forms 1 and 2; or maximum input block
size, form 3.

Output blocking factor, forms 1 and 2; or maximum output block
size, form 3.

Output with zero suppression.

No zero suppression.

No reel counts.

1-99 input reels.

Must be specified for unlabeled file.

No further action beyond pass-to-pass.

Check input trailer record count.

Insert record count in output trailer.

Check and insert.

No hash totals.

Check input trailer hash total.

Make pass-to-pass hash total check.

Insert hash total in output trailer.

(1; and (2)

(1) and (3)

(2) and (3)

(1), (2) and (3)

No hash totals (if col. 35 = 0).

www = word number in record.***

ff = field control.

Halt for manual correction.

(xx = 10-29). Dump tape channel and unit number.

Type the block before halt for manual correction.

Retry under operator control.

Phase I will decide.

Two-area system.

Three-area system.

4-digit core storage address.

4-digit core storage address.

4-digit core storage address.

Form 1 and 2 records.

www = word number in record.***

ff = field control.

No labels.

Low density labels.

High density labels.

If (1) or (2), control card 3 is necessary.

No labels.

Low density labels.

High density labels.

Control Card 1 (Cont.)

COLUMNS NAME OF PARAMETER CONTENTS
63 Output File Label Ind. (1)
2
64 Spool Indicator 0
1
65 Input Checkpoint Ind. 1
0
66-69 Phase I Edit Indicators VXXX
0000
70-73 Phase III Edit Indicators YXXX
0000
74-75 Reserved for User
76-80 Not Used 00000
Control Card 2
COLUMNS NAME OF PARAMETER CONTENTS
1-6 Control Data Field 1 Position wwwdll
7-12 Control Data Field 2 Position wwwdll
13-18 Control Data Field 3 Position wwwdll
19-24 Control Data Field 4 Position wwwdll
25-30 Control Data Field 5 Position wwwdll
31-36 Control Data Field 6 Position wwwdll
37-42 Control Data Field 7 Position wwwdll
4348 Control Data Field 8 Position wwwdll
49-54 Control Data Field 9 Position wwwdll
55-60 Control Data Field 10 Position ~ wwwdll
61-63 Total Control Data Digits XXX
64 Collating Sequence 0
1
2
3
65 Summarizing Equals Control 0
x
66-67 Phase I1 Summarizing Pass Control 00
99
XX
68-75 Reserved for User
76-80 Not Used 00000
**+*Pirst word in record is word 000.
Control Card 3, Input File Label
COLUMNS NAME OF PARAMETER CONTENTS
1-7 Reserved for User
8-10 Reel Sequence Number XXX
11-15 Creation Date yyddd
16-20 File Serial Number XXXXX
21-40 File Identification
41-75 Reserved for User
76-80 Not Used
*Must be punched with zeros if no parameter.
Control Card 4, Output File Label
COLUMNS NAME OF PARAMETER CONTENTS
17 Reserved for User
8-10 Retention Cycle XXX
11-30 File Identification
31-74 Comments
75-80 Not Used

*Must be punched with zeros if no parameter.

REMARKS

No labels.

Low density labels.

High density labels.

1f (1) or (2), control card 4 is necessary.

No spooL.

sPOOL possible.

If (1), ES’s 29 and 30 must be off.
Checkpoint records in input file.

No checkpoint records.

(y = 1 or 2). Record form,

xxx = record length for editing.

No Phase I editing or form 3 records apply.
(y = 1 or 2). Record form.

xxx = record length for editing.

No Phase I1I editing or form 3 records apply.
Must be punched with zeros if not used.
Must be punched with zeros.

REMARKS

www = word number in record.***

d = starting digit in a word.

11 = number of digits in the control field.
Same as above
Same as above
Same as above
Same as above
Same as above
Same as above
Same as above
Same as above
Same as above
Sum of II's in columns 1-60.

Algebraic, ascending.

Algebraic, descending.

Absolute, ascending.

Absolute, descending.

No cut-off for summarizing.

(x = 1-9). Number of control fields to be considered.
No Phase II summarizing.

Summarizing every Phase II pass.

zero field.

Unused fields must be filled with zeros.
Non-zero fields cannot be preceded by a

(xx = 01-98). Number of final Phase II passes for summarizing.

Must be punched with zeros if not used.
Must be punched with zeros.

REMARKS

Must be punched with zeros, if not used.
3-digit number* (1st reel of input file).

yy = year file was created*.

ddd = number of the day in the year.
5-digit number*.

Ten-character name in double-digit form*.
Must be punched with zeros, if not used.
Must be punched with zeros.

REMARKS

Must be punched with zeros, if not used.
3-digit number®*.

Ten-character name in double-digit form*.
Punched in double-digit form*.

Must be punched with zeros.

Program Condition Analysis Aids

61

Malfunctions Related to Input-Output

Machine Implications of Heavy 1-O Usage

A sort program gives the tape 1-0 system a longer and
more intense work-out than any other program likely
to be in use at an installation, including customer engi-
neer test programs. It is very common for a progres-
sively deteriorating component finally to fail during a
sort, even if it has previously evidenced itself in no
other programs. In a typical sort, almost every type of
tape command is issued many times.

Input-Output Control System (10CS)

Errors may occur if the user attempts to make incorrect
use of the 10cs routines which the sort contains or if
he calls routines which are not available.

SECTIONS OF IOCS INCLUDED

The major parts of the 10cs which are included as an
integral part of Sort 90 are:

1. cuan2: The sort uses two channels and requires
the necessary schedulers.

2. Eorl: The sort incorporates the Eor routine which
permits the processing of tape labels.

3. cupT: The checkpoint routine is used for restart
in Phases II and III. (Phase I has its own reel-by-reel
“restart” option.)

4. 16eN2: This routine permits spooL programs to
operate with the sort, but the tape error routine to
scan storage for illegal double-digit characters is not
included.

5. orEN2: The oPEN2 routine is used, but it is re-
loaded with each phase into different locations. In
Phase II, oPeN is retained for pass-to-pass initialization,
but in Phases I and II it is used only during assignment
and overlaid during the running program.

These major parts of 10cs are available to the user
if he should choose to read or write additional files
during the course of the sort. However, as pointed out
above, he must choose the right time to use the oPEN
routine because sometimes it has been overlaid and
other times it has been temporarily modified for use
by the sort. All necessary information on when to exit
is given the user. (See “Modifications” in J28-6096.)

The user should also note the absence of the 1ocs
double-digit scan. The 10cs error routine will not at-
tempt to locate invalid alphameric characters, and the
user should not expect to be able to call on the double-
digit scan in conjunction with any added coding. At-
tention should be paid to the fact that write errors
caused by invalid alphameric characters normally can
be caused only by the user’s editing modifications; the
sort itself does not alter records.

62

KNOWLEDGE OF IOCS

Some understanding of 10cs is a prerequisite for under-
standing and using the sort. For example, knowing
that a full block will not be written until the next
puT is initiated is helpful. It is the basis for under-
standing how summarizing into a record can occur
even when the base record (into which information
from succeeding records is summed) is the last record
in a block. Although its row is in the output list which
is ready for writing, the base record and other records
controlled by this list will never be written until sum-
marizing is complete.

Determining Machine Status When the
Program Is Interrupted

This section can aid in determining the status of the
computer and the program when the program is in-
tentionally interrupted or when a hang-up occurs.
Since it is possible for an interruption to occur during
an input or output function, knowledge of 10cs
switches, counters, and index words is also useful. (See
Program Systems Analysis Guide, 7070 Input-Output
Control System, C28-6119.)

The actual machine addresses assigned some of the
symbolic locations discussed below are listed, for a
particular assembly of the sort, in information pro-
vided the user; they are also given at the end of each
phase in the program listing. The actual machine ad-
dresses of symbolic locations not thus given may be
determined by consulting the listing in the section
specified.

Phase and Pass

The user will know the phase and pass of the pro-
gram from the typed messages received:

“7070 sorr 90” (003) indicates that the assignment
program of Phase I is about to start.

“BxxxxGyyyy” (049) is given near the end of part
1 of Phase I assignment.

“Phase 17 (056) indicates that the Phase I running
program is about to begin.

“Phase 2 passxx ReQzz” (222) indicates that the xxth
Phase II pass is about to begin and zz Phase II
passes (including the xxth pass) remain to be
performed.

“Phase 3” (301) shows that Phase III is about to
begin.

Other messages and any of the standard halts may also
give the user aid in locating the stage to which the
program has progressed. All halts and messages are
listed under “Messages” and “Programmed Halts” in
J28-6096, and many are shown on the flow charts.

The first location of the loaded program, which is
usually 0325, is APHASEKEY, BPHASEKEY, Or CPHASEKEY,
depending on whether Phase I, II, or III is loaded.
This location contains a constant indicating the phase
presently loaded.

Channel, Unit, Block Count

The channel currently being used for input and that
for output can be determined by reference to the
proper prF. The pTF’s are located as follows:

PHASE I

Output DTF: 10CSFTBL02
Input pTF: 10CSFTBLO]

PHASE II

Output prF: 10csFTBLOL
Input prF’s: 10CSFTBLO2, I10CSFTBLO3, 10csFTBLO4,
10csFTBL0S, 10CSFTBLOG

PHASE III
Output pTF: 10cSFTBLOL

Input DTFs: I0CSFTBL0Z, 1ocsFTBLO3, 10CSFTBLO4,
10cSFTBL05, 10CcSFTBLOB

In Phase I, the input pTF contains the channel and
unit used for the file currently being read; the input
tapes are read serially, and the pTF is reinitialized for
the succeeding tape units. In Phase II and III, each
input tape has its own pTF which gives the channel and
unit information. In all phases, the output pTF contains
the channel and unit used for the file currently being
written. For each output unit in Phases I and II, words
1,6, and 9 of a standard DTF are saved in a special area
of storage. To switch from one unit to another the
program inserts the proper set of words into the out-
put DTF.

Phase III has only one output pTF, but reels are
filled one at a time and the DTF is reinitialized for the
succeeding tape units; there is no need to store words
1, 6, and 9 for reuse. In Phase II, channel and unit
digits from the output pTF and input DTF’s are ex-
changed, so the locations currently used for input and
output DTF’s remain unchanged from pass to pass. The
ptF locations for Phase III also remain fixed and the
channel and unit assignments are opposite to those of
the last pass of Phase IIL

The block count given in any prF is the count for
the unit concerned only. For Phases I and II, the same
information for the inactive output units, which are
not currently defined in the output pTF, may be ob-
tained from the saved first words. The first and sixth
words are stored beginning with the first output tape
unit at ApTFINSERT for Phase I and Boutpurtl for Phase

II. These locations are in the area used for constants
unique to the phase being run; this area is just before
the first instructions of the running program.

Record and Hash Total Counters

A number of locations are used in each phase for a
variety of record counts. These counters are found in
three different sections of the program for each phase.
Some counters are also used to transmit information
from one phase to another, so they are located in the
common communications block at the beginning of the
sort program in lower storage; this area is established
in Phase I and remains in storage for all three phases.
Other counters are found in the information areas
unique to each phase; these areas precede the running
program in each phase. A third set of counters are
index words. The following three sections describe the
functions of the counters, their location, and how
counts may be taken if processing is interrupted.

Functions of Counters

Since tape labels are optional, as are hash total checks,
some of the counts may be bypassed. The following list
gives the function of the counters when they are used.

PHASE I

AWRCNTX(2,5) is reset to 9999 for each input reel,
and it counts records by decrementing with a BDX in-
struction. When zero is reached, it is reset to 9999, and
9999 is added to AwWRCNT. At input EOR the difference
between its count and 9999 is also added to AWRCNT.

AWRCNT is reset to zero for every new input reel. It
adds to its previous total 9999 when AWRCNTX(2,5)
reaches zero and receives 9999—AWRCNT at input EOR
time. Then, before being reset to zero, its contents are
added to AWRITECNT.

AWRITECNT is set to zero during assignment, and it
adds the contents of AWRCNT at input EOR time to its
previous total. Its contents remain for Phase II where
this count is moved to BPREVCOUNT.

ADLTCNT is reset to zero for every new input reel. It is
incremented by one for every record deleted. At input
EOR time its count is added to ADELETECNT.

ADELETECNT is set to zero during assignment and adds
the contents of ADLTCNT to its previous total during the
input EOR routine.

AOKHASH 1is reset to zero for every new input reel.
The hash total for each record to be written is added
to this location before the record enters the comparison
routine of the scan.

AHASH is set to zero during assignment and adds the
contents of AOKHASH to its previous total during the
input EOR routine.

Program Condition Analysis Aids 63

ADELHASH is reset to zero for every new input reel.
The hash total for each record deleted is added to this
location.,

AINCOUNT is set to zero during assignment and adds
the contents of apLTcNT and AWRCNT to its previous
total during the input EoR routine.

ADUMPCOUNT is set to zero during assignment and
adds the contents of 10csFTBLOL(S8, 9) to its previous
total during the input Eor routine.

PHASE II

BWRITEX (2, 5), BDELETEX (2, 5), and BsuMMXx (2, 5) are
the record-by-record counters for records pur, de-
leted, and summarized, respectively. These counters
are set to 9999 at the beginning of each pass, and they
count records by decrementing with a Bpx command.
When any one reaches zero, it is reset to 9999, and 9999
is added to BWRITECNT, BDELETECNT, or BSUMMCNT, Te-
spectively. These latter were set to zero at the begin-
ning of each pass.

During the end-of-pass procedures the difference
between each index word count and 9999 is also added
t0 BWRITECNT, BDELETECNT, and BSUMMCNT, respec-
tively.

BPREVCOUNT receives the contents of BwrrrecNT dur-
ing beginning-of-pass initialization. Before the first be-
ginning-of-pass initialization, BWRITECNT contains the
count of records written in Phase I as it was left in
storage for transmission to Phase II. Thus, BPREVCOUNT
saves the count of records written during the last phase
or pass for comparison with the BwrITECNT of the next
pass.

BHASHWRITE, BHASHSUMM, and BHASHDELET receive
the hash totals on a record-by-record basis for records
PUT, summarized, and deleted, respectively. They are
reset to zero during beginning-of-pass initialization.

BPREVHASH is reset to the contents of BHASHWRITE
during the beginning-of-pass initialization.

BCURRHASH is reset to hold the sum of BHASHWRITE,
BHASHSUMM, and BHASHDELET at the end-of-pass, so
that a comparison may be made with BpPREVHASH.

BDUMPBLOCK receives during the input Eor routine
the counts of the number of blocks dumped for errors.
The counts added come from the pTF’s of the completed
reels.

64

PHASE III

CWRITEX (2, 5), CINSRTCNTX(2, 5), csummx(2, 5), and
CDELETEX(2,5) are the record-by-record counters for
records sorted and pur, inserted and pur, summarized,
and deleted, respectively. These counters are set to
9999 during assignment, and they count records by
decrementing with a Bpx command. When any one
reaches zero, it is reset to 9999, and 9999 is added to
CWRITEREEL, CINSRTREEL, CSUMMCNT, OI CDELETECNT, r€-
spectively; these latter are set to zero during assign-
ment.

If trailer labels with record counts are to be written,
the difference between each index word count and 9999
is also added to CWRITEREEL, CINSRTREEL, CSUMMCNT,
and CDELETECNT, respectively, during the output Eor
routine. cwrITEREEL is added to cwrrtecnT and
CEDITREC, and CINSRTREEL is added to ciNsrTeNT and
CEDITREC. CEDITREC is for the output trailer label.
CWRITEX and CINSRTCNTX are reset to 9999, and
CWRITEREEL is reset to zero.

Whether trailer labels are used or not, the same steps
are carried out during the end-of-pass procedures.

Before it is set to zero in assignment, CWRITECNT con-
tains the count of records written in the last pass of
Phase II. This count is saved in cprevcount for
comparison with cwritecNT plus csummeNnT plus
CDELETECNT at the end of Phase III.

CHASHREEL, CHASHINSRT, and CCURRHASH receive the
hash totals on a record-by-record basis for records
sorted and pur, inserted and put, and summarized or
deleted, respectively. At output Eor time (if labels are
written with hash totals) and at end-of-phase time, in
any event, CHASHREEL is added to ccumrrmasH. At the
same time, CHASHREEL and CHASHINSTR are combined
into ceprrHASH for use in the output trailer label. The
hash total from Phase II is found in cwrrTEHASH and
is transferred to cprEvmasH during the assignment.
CCURRHASH is compared with cPrevHASH at the end
of Phase III.

CDUMPBLOCK receives during the input Eor routines
the counts of the number of blocks dumped for errors.
The counts added to this cumulative total come from
the pTF’s of the completed reels.

Locations of Counters

Phase 1 Phase 11 Phase 111
Index Words Index Words Index Words
AWRCNTX BWRITEX CWRITEX

BDELETEX CINSRTCNTX
BSUMMX CSUMMX
CDELETEX

Communications Communications Communications

Block Block Block
AHASH BHASHWRITE CHASHWRITE
AWRITECNT BWRITECNT CWRITECNT
Information Information Information
ADLTCNT BHASHSUMM CEDITREC
AWRCNT BHASHDELET CEDITHASH
AOKHASH BPREVCOUNT CWRITEREEL
ADELHASH BSUMMCNT CHASHREEL
ADUMPCOUNT BDELETECNT CINSRTREEL
ADELETECNT BDUMPBLOCK CHASHINSRT
AINCOUNT BCURRHASH CPREVCOUNT

CINSERTCNT
CSUMMCNT
CDELETECNT
CDUMPBLOCK
CPREVHASH
CCURRHASH

How Counts May Be Taken

PHASE I

The following counts should be correct anytime be-
fore counts are combined during the input EOR routine:
Records written from current input reel, represented
by X:
X = 9999 — AWRCNTX(2,5) + AWRCNT
All records written this phase:
X + AWRITECNT
Records deleted from current input reel:
ADLTCNT
All records deleted this phase:
ADLTCNT + ADELETECNT
Records read (successfully) from current input reel:
X + ADLTCNT
Records read (successfully) this phase:
X + AWRITECNT + ADLTCNT + ADELETECNT, Or
X + AINCOUNT + ADLTCNT
Hash total of records written from current input reel:
AOKHASH
Hash total of all records written:
AHASH
Hash total of records deleted from current input reel:
ADELHASH

Blocks dumped for error from current input reel:
rocsFTBLOL(8,9) +4

All blocks of records dumped for error this phase:
10ocsrTBL01(8,9) +4 + ADUMPCOUNT

PHASE 1I

The following counts should be correct anytime before
counts are combined during end-of-pass procedures:
Records written this pass:
9999 — BWRITEX (2, 5) + BWRITECNT
Records summed this pass:
9999 — BsuMMx(2,5) + BSUMMCNT
Records deleted this pass:
9999 — BDELETEX(2,5) + BDELETECNT
Records written last pass:
BPREVCOUNT
Hash totals of records written this pass:
BHASHWRITE
Hash totals of records summed this pass:
BHASHSUMM
Hash totals of records deleted this pass:
BHASHDELET
Hash totals of records written last pass (or Phase I):
BPREVHASH
Blocks dumped for error from a given input reel:
Digits 8, 9 in the fourth word of the pTF for that
reel

PHASE III

The following counts should be correct except during
the output Eor routine and during the end-of-phase
routine:
Sorted records written this output reel, represented
by X:

X = 9999 — cwriTEX(2, 5) + CWRITEREEL
Inserted records this reel, represented by Y:

Y = 9999 — cINSRTCNTX(2, 5) 4 CINSRTREEL
All records (including inserted) written this output
reel:

X+Y
Sorted records written this phase:

X + CWRITECNT
Inserted records written this phase:

Y + CINSRTCNT
All records (including inserted) written this phase:

X + Y + CINSRTCNT + CWRITECNT
Summed records this phase:

9999 — csumMx(2,5) + CSUMMCNT
Deleted records this phase:

9999 — CpELETEX(2,5) + CDELETECNT
All records written last pass of Phase II:

CPREVCOUNT

Program Condition Anaiysis Aids 65

Hash totals of sorted records written on this output

reel:
CHASHREEL

Hash totals of sorted records written this phase:
CHASHREEL + CCURRHASH

Hash totals of inserted records this output reel:
CHASHINSRT

Hash totals from last pass of Phase II:
CPREVHASH OT CHASHWRITE

Blocks dumped for error from a given input reel:
Digits 8, 9 in the fourth word of the p1F for that
reel

Current Record

ARECORD contains the rRow of the record most recently
admitted to the scan of Phase I. BRECORD contains the
row of the record of Phase II most recently moved to
the bottom of the ranking; this record is put, summar-
ized, or deleted. cRECORD contains the row of the rec-
ord in the same circumstances in Phase III.

RDW Lists

In Phases II and III, the address of the row’s for each
file can be determined from digits (4 to 7) of the third
word in the prF for that file. In Phase I, an row de-
scribing the row list for reading is in index word
AGREAD, and an Rpw describing the row list for writing
is the index word AcwrrTE. The index words defining the
current Row list for processing and the spare list are
modified by the internal sort, so the exact location of
these lists is not so simply determined.

66

1. Index word AMTG contains the limits of the spare
area until the internal merge begins, after which its
indexing portion is incremented to control the place-
ment of merged Row’s into this area.

2. At the beginning of the scan, index word asct
contains the limits of the row list to be processed; dur-
ing the scan its indexing portion is incremented to de-
termine the processing loop. During the merge it has
another function.

3. However, at the beginning of each merge pass,
index word AscraBLE is set to hold the first entry in
the sequence table; thus, its indexing portion addresses
the first location in the mrow list being processed
throughout the merge pass.

4. Index word asEQTABLE defines the maximum limits
of the sequence table.

G

The bounds of the G’s of Phase I are given in AGSIZE,
AGSIZE +1, and, if a three-area system is used, Acsize +2.
These words are located with the other constants
unique to Phase I

Other Locations

Other locations which may be found of aid in program
testing are found in the same areas as the counters
discussed above. These areas are the communications
block common to all three phases, the constant areas
unique to each phase, and the index words. The user
may consult the listing for further information on
these. The index words and their uses for Phases II and
IIT are listed at the beginning of these phases.

Glossary

This is a glossary of basic sorting terms used in this

manual. For a more extensive glossary of sorting terms

see the Appendix of| General Information Manual,

Sorting Methods for IBM Data Processing Systems,

F28-8001.

AssiGNMENT ProGraM: The set of instructions by which
a generalized program modifies and completes the
set of instructions which will be utilized in the per-
formance of one specific machine run.

Brocking Facror: The number of data records con-
tained within a tape record, or block. Sometimes
shortened to “blocking.”

Brock LENGTH or Brock Size: The total number of
words contained in one block of records.

CHeckPOINT: A reference point at which error-free
operation of the program has been verified and to
which the program may return for restart in the
event of subsequent failure. Checkpoint also refers
to that routine in the program which writes the
checkpoint record.

CuECkPOINT RECORD: A tape record of those contents of
storage necessary to restart a program at the check-
point.

CoLLATING SEQUENCE: The relative order of precedence
which a computer assigns to the numbers, letters,
and special characters for compare operations.

ControL CaARrD: A card which contains parameters
which, through interpretation by an assignment pro-
gram, regulate the setting up of a generalized pro-
gram for one particular application.

ControL DaTA: Aggregate of all control fields in a rec-
ord which are used for any one identification or
sequencing operation on a file.

ControL DaTA FieLp or ConTroL FIELD: A contiguous
set of one or more characters in a record (not nec-
essarily in the same word), on the basis of which,
alone or with other control fields, an identification
or sequencing operation can be performed.

ControL DATA SEGMENT: That part of a control field
which is within a single word.

G: The set or the number of records ordered in storage
by the internal sort.

GENERALIZED PROGRAM: A program which is designed
to process a large range of specific jobs within a
given type of application and which can compute in-
structions for itself so that it can perform one par-

Appendix

ticular job. Present generalized programs have pro-
visions to add and/or delete sections of instructions
as they are required and to move areas within stor-
age so that the running program is both compact and
efficient.

Hasa TorAL: A total of data made for auditing or con-
trol purposes which would not ordinarily be added
together, e.g., summing a list of past numbers. In
multiple-pass computer applications (e.g., tape sort-
ing), such hash totals are reconciled at the end of
each pass with the hash total from the preceding
pass. This provides a check for machine or program
failures and may detect the presence of illegal char-
acters in data.

INTTIALIZATION: Resetting counters, switches, and in-
struction addresses at specified times in a program.
This process is not to be confused with the assign-
ment program which is performed only once, and
is always executed before the running program has
been started.

INTERNAL SORT: A sort in which all the records sorted
into a single sequence remain in primary storage
while the ordering is accomplished. The length of a
sequence thus formed is limited mainly by the num-
ber of items to be sorted which will fit in storage
at one time.

Merce (verb): To combine items from two or more
sequences into a single sequence. A common type of
merging is to take several files, each of which is
sequenced, and merge them into a single file, which
contains all of the items from all of the files in a
single sequence. The merging of two input files
is said to be a two-way merge, three input files a
three-way merge, etc. If the number of inputs has
not yet been determined, the merge might be termed
an M-way merge. M is also said to be the order of
merge.

OrpeR OF MERGE: The number of input sequences being
merged (i.e., combined into any single sequence)
during any one pass. The number of input files com-
bined into a consolidated file during any one pass
of a sort or merge.

PArRaMETER: A quantity which is left unspecified at
some stage of an operation and to which the user
may assign arbitrary values.

Pass (1): A complete cycle of reading, processing,
and writing an entire file.

Appendix 67

Pass (2): One repetition of a repeated operation. For Abbreviations

example, in this manual a cycle of the internal Addr Address
merge merges successive pairs of sequences until Blkg Blocking
all records in a G have been processed. If all the Cale Calculate
records still do not form a sequence, another cycle CcD Control Data
occurs. Additional cycles occur until all the records Ch Chart
in a G do form a sequence. Each cycle of this merge Chan Channel
processes all the records in a G and is referred to Chg Change
as a pass. Chk Check
Process-Limrrep: The operating condition of a com- Chkpt Checkpoint
puter which exists when internal processing time ex- Cul Control
ceeds input-output time. The term applies only to Cnt Count
equipment which provides for overlapping, or simul- Cnts Counts
taneous operation, of input-output and internal proc- Cntrs Counters
essing. The opposite condition is input-output Comp , Compare
limited, or, more specifically, tape-limited. Dr Drive
Recorp Count: The number of records in a file. Dup Duplicate
RestarT: The return to a previous point in the pro- EOF End of File
gram to begin processing again. This previous point EOR End of Reel
may be the beginning of the program or it may be Hlt Halt
a checkpoint. RESTART also refers to that routine in Incr Increase
the program which accomplishes the return. Instr Instruction
RunniNG PRoGRAM: A generalized program which has Iw Index word
been set up for a particular job by the assignment Lbl Label
program with its control card parameters. Loc Location
SeQUENCE Break: Condition when a record has control Mk Mark
data which are lower-valued (in the collating se- Mks Marks
quence) than the previous record. The preceding No Number
sequence is concluded and a new one must be Ph Phase
started. When sorting in reverse order, high to low, Prev Previous
a sequence break is just the opposite from the con- Proc Process
dition described above. Red Record
Sort: To sequence or order a file of records according Rd Read
to some designated control data. Req Required
STEPDOWN: A sequence break. Rls Reels
TaPE LABEL: A record, usually at the beginning of the Rtns Routines
tape, ending of the tape, or both, designated for Seoment
purposes of identification and control. Seg &
Tape-LimiTED: The operating condition of a computer Seq Sequence
: p g p .
when tape input and output time exceeds processing Spec Special
time. This term only applies to equipment which ST Sequence Table
provides for overlapping, or simultaneous input- Sw Switch
output operations and processing. The opposite con- Temp Temporary
dition is process-limited. Wr-Rd Write-Read
e

68 (10/61: jM-FW-72)

C28-6120

BN

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, New York

06 +9S v£0£/0£0L WEI

VSN ut peiulig

0z19-82>

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	xBack

