- Systems Reference Library

IBM 7090,/7094 Programming Systems:
Macro Assembly Program (MAP) Language

This publication provides detailed information for writ-
ing source programs in the 7090/7094 Macro Assembly
Program (Map) Language.

Users of the MAP symbolic programming language
are provided with an extensive set of pseudo-operations,
as well as all 7090/7094 machine operations.

The Macro Assembly Program, 1BMAP, is a compo-
nent of the 7090/7094 1BjoB Processor and operates
under the 1BjoB Monitor.

File Number 7090-21
Form C28-6311-2

vLJSM"V\”

Preface

The MmaP language and its use in writing 7090/7094
programs are described in this publication. This sym-
bolic language encompasses all 7090/7094 machine
operations, extended machine operations, and special
operation. In addition, MaP provides more than sixty
pseudo-operations, including the powerful macro-
facility, all of which are described in this publication.

MaP language programs are processed by the 7090/
7094 assembly program, 1BMaP, which is a component
of the 7090/7094 mjoB Processor and which operates
under the 1BjoB Monitor. The facilities of 10cs, FORTRAN,
and coBoL are accessible to the MAP user.

To assist the user in making the most effective use of
this flexible programming tool, basic information about
the maP language is provided in Part I of this publica-
tion. Its main features and capabilities are outlined, and
the constituents of MAP symbolic instructions are ex-
plained.

The pseudo-operations provided by map have been
divided into classes according to function. Most of the
pseudo-operations are described in Part I, where their
formats are shown and their use in programs is ex-
plained and demonstrated.

Majonr Revision (February 1964)

This publication, Form C28-6311-2, is a major revision of the
previous edition, Form C28-6311-1. It makes that publication,
and the Technical Newsletter to that publication, N28-0066,
obsolete.

The macro-facility is described separately in Part II1.
Five appendixes following Part III provide supple-
mentary information related to the map language.
It has been assumed that the reader is familiar with
the contents of one of the following publications:
IBM 7090 Data Processing System, Form A22-6528
IBM 7094 Data Processing System, Form A22-6703
The following related publications may also be use-
ful, depending on individual interests and require-
ments:
IBM 7090/7094 IBSYS Operating System: System Mon-
itor (IBSYS), Form C28-6248
IBM 7090/7094 IBSYS Operating System: IBJOB Proc-
essor, Form C28-6275
IBM 7090/7094 IBSYS Operating System: Input/Out-
put Control System, Form C28-6345
IBM 7090/7094 Programming Systems: FORTRAN IV
Language, Form C28-6274
IBM 7090/7094 Programming Systems: COBOL Lan-
guage, Form J28-6260
Machine requirements for map language programs
are given in the publication IBM 7090/7094 IBSYS
Operating System: IBJOB Processor, Form C28-6275

Copies of this and other 18M publications can be obtained through ism Branch Offices.

Address comments concerning the contents of this publication to:
IBM Corporation, Programming Systems Publications, Dept. D91, PO Box 390, Poughkeepsie, N. Y.

© 1963 by International Business Machines Corporation

12602

Contents

Symbolic Programming Using Map 5 Miscellaneous Pseudo-Operations 30
7090/7094 MAP Language Features 5 The Enp Pscudo-Operation 30
ODETations ovo e 5 The Etc Pseudo-Operation 30
Macro-Operationsoti i 6 The rEm Pseudo-Operation 30
Location Counters 6 Absolutc-Assembly Pseudo-Operations 31
Absolute and Relocatable Assemblies 6 The aBs Pseudo-Operation 31
Error Checkingo 6 The rur Pseudo-Operation 31
Forming Symbolic Instructions 6 The puncH and unpNcH Pseudo-Operations. 31
Instruction Fields 6 The 1cp Pseudo-Operation 31
Symbols 8 Listi]ControIPPseHdo(-)Operations gi
Defining Symbols 8 The rcc Pseudo-Operation
Ordinar?r Syymbols ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 8 The unuisT Pseudo-Operation 32
Immediate Symbols 9 The visT Pseudo-Operation 32
Relocation Properties of Symbols 9 The TrTLE Pseudo-Operation 32
Literals 9 The pETAIL Pseudo-Operation 32
Writing EXPIessionsooeoeeno .. 10 The gject Pseudo-Operation 32
Evaluating Expressions 11 The space Pseudo-Operation 32
Rules for Forming Expressions 11 The LBL Pseudo-Operation 32
Boolean Expressions 11 The vpEx Pseudo-Operation 33
Using Symbols in Expressions 12 The pmc Pseudo-Operation 33
Relative Addressing 12 %ﬁe TTL gseugo-gperation ~~~~~~~~~~~~~~~~~~~~~~~~~ 33
¢ pcG Pseudo-Operation 33
Map Pseudo-Operations 14 Special Systems Pseudo—Opfarations 34
Locaﬁion-Counter%seudo-Operations 14 The CALL Pseudo-Operation Lo 34
The use Pseudo-Operation 14 Expansions of the caLL P'seudo-Operatlon 34
The BEGIN Pseudo-Operation 14 The SAVE Pseudo-Operation S 35
The orc Pseudo-Operation 15 Expansions of the save Pst'audo-Operatlon 35
Storage-Allocation Pseudo-Operations 15 The saven Pseudo-Operathn """""""""""" 38
The Bss Pseudo-Operation 15 The rETURN Pseudo-Operation 36
The BEs Pseudo-Operation 15
The EvEN Pseudo-Operation 16 The Macro-Operation Facility 37
The Lorc Pseudo—Opera‘tion 16 Deﬁning Macror_)Operations - y ____________________ 37
The Loir Pseudo-Operation 16 The Mmacro Pseudo-Operation 37
The common Pseudo-Operation 17 Prototypes in Macro-Definitions 38
Data-Generating Pseudo-Operations 17 The EnpM Pseudo-Operation 39
The ocr Pseudo-Operation 17 Calling Macro-Operations 39
The pEC Pseudo-OperaFion 17 The Macro-Instruction 39
E}ﬁi lzliIDPIS)eudg-Oé)eratlt(?n ------------------------- i; Inserting Instructions into Macro-Expansions 41
seudo-Operation Conditional Assembly in Macro-Operations 41
The rrr Pseudo—Operati.on ------------------------- 19 Combining Substitutable Arguments and Text 41
The pur Pseudo-Operation 19 Nested Macro-Operations 42
Symbol-Defining Psendo-Operations 20 Macro-Instructions in Macro-Definitions 42
The EQU and sy~ P seudo-Operations 20 Qualification Within Macro-Operations 42
The NuLL Pseudo-Opera.tlon ------------------------ 21 Macro-Related Pseudo-Operations 42
The max Pseudo-Operation 21 The mp Pseudo-Operation 43
The MIN Pseudo-Operat.ion 21 Created Symbols 43
The ser Pseudo-Operation RRRRTO 21 The Nocrs Pseudo-Operation 44
Boolean PSGUdo‘OpemtiOHS_ -------------------------- 22 The orcers Pseudo-Operation 44
The BooL Pseudo-Operation 22,
The rBooL and vLBooL Pseudo-Operations 22
Conditional-Assembly Pseudo-Operations 22 Appendixes 45
The 1rT and 1¥F Pseudo-Operations 22 Appendix A: Machine Operations 45
Symbol-Qualifying Pseudo-Operations 23 7090 Machine Operations 45
The QuaL Pscudo-Operation 23 Extended Operations 45
The ExpQ Pseudo-Operation 24 Special Operations 47
Control-Section Pseudo-Operations 24 7094 Machine Operations 47
The coNTRL Pseudo-()peration 24 M 7909 Data Channel Commands 47
The ENTRY Pseudo-Operation 25 18M 1301 Disk File Orders 48
File-Description Pseudo-Operations 25 1BM 7340 Hypertape Orders 48
The FiLe Pseudo-Operation 25 Appendix B: 7090 Macro-Expansions of 7094 Instructions.. 48
The vaBEL Pseudo-Operation 28 Appendix C: Operation Code Formats 50
Operation-Defining Pseudo-Operations 29 Operations 50
The opp Pseudo-Operation 29 Adjective Codes, 50
The orvep Pseudo-Operation 29 Appendix D: 1Bmapr-FaP Incompatibilities 51

The opsyN ijeudo-Operation 30 Appendix E: The map Bcp Character Code 52

Programmers can communicate instructions to com-
puters at three general language levels. The language
of the computer itself is the most basic. At the highest
level are scientific and commercial programming lan-
guages, such as FORTRAN and coBOL, respectively.
Assembly-program languages like the mMap (Macro
Assembly Program) language are at the intermediate
level.

Because the computer executes instructions at the
machine-language level, a source program written at
either of the other two levels must be reduced to a
machine-language object program before it can be
executed. Machine-language programming is theo-
retically the most efficient, since no translation from
source program to object program is required. For the
programmer, however, programming in machine lan-
guage is tedious and time consuming, and program-
ming errors are more likely.

A source program written in the FORTRAN language
closely resembles the mathematical notation used to
state a problem to be solved by traditional methods.
The cosoL language is based on English statements
much like those that would be used to explain a pro-
cedure. These languages are relatively easy to learn
and to use because of their similarity to the ordinary
languages of business and science.

Source programs written in these languages are
translated into machine-language programs within the
computer by a compiler program. By using a compiler,
the computer can produce an efficient machine-
language program from a FORTRAN or COBOL source
program faster and more accurately than a programmer
can. Such compiler languages thus offer marked advan-
tages over machine-language programming. However,
compiler languages are somewhat restrictive. Some
programming features that are available when using
machine language cannot be included in any present-
day compiler.

An assembly-program language is similar in structure
to machine language. However, mnemonic symbols are
substituted for each binary instruction code, and sym-
bols provided by the programmer are substituted for
the other fields of an instruction. An assembly-program
language can also provide additional advantages be-
yond machine-language programming. For example,
pseudo-operations can be provided, which often permit
the coding of one instruction instead of many instruc-
tions. Thus, an assembly program provides the pro-
grammer with all the flexibility and versatility of

Part I. Symbolic Programming Using MAP

machine language but with greatly reduced program-
ming effort. In addition, error checking can be included
to facilitate source program debugging.

7090/7094 MAP Language Features

Operations

The 7090/7094 map (Macro Assembly Program) lan-
guage can be used for all of the 7090/7094 machine
operations, the extended machine operations, and the
special machine operations. (All such operations rec-
ognized by MaP are listed in Appendix A with supple-
mentary information about them.) In addition, the mar
language provides an extensive set of pseudo-opera-
tions that supplement machine instructions.

A pseudo-operation is any operation included in the
MAP language that is not an actual machine operation,
extended machine operation, or special machine opera-
tion. Pseudo-operations are used by the programmer in
much the same way as machine operations. MAP pro-
vides more than sixty such pseudo-operations to meet
a variety of programming needs. These pseudo-opera-
tions, which are described in detail in Parts II and III,
have been divided into classes according to function.

Location-Counter Pseudo-Operations enable the pro-
grammer to establish symbolic location counters and
control their operation.

Storage-Allocation Pseudo-Operations reserve areas
of core storage.

Data-Generating Pseudo-Operations introduce data
into a program in any of a variety of formats. They are
also used in combination to generate tables of data.

Symbol-Defining Pseudo-Operations are used to as-
sign specific values to symbols.

Boolean Pseudo-Operations define symbols as Boolean
quantities.

Conditional-Assembly Pseudo-Operations base as-
sembly of an instruction on programmer established
criteria.

Symbol-Qualifying Pseudo-Operations qualify sym-
bols within sections of a program.

Control-Section Pseudo-Operations delimit sections
of a program, facilitating cross-referencing among pro-
grams and among program segments,

File-Description Pseudo-Operations define the re-
quirements of input/output files used by the program.

Operation-Defining Pseudo-Operations define or re-
define symbols as operation codes.

Symbolic Programming Using MAP 5

Miscellaneous Pseudo-Operations indicate the end of
a program, extend the variable field of an operation,
and permit remarks to be entered into the assembly list-
ing.

Absolute-Assembly Pseudo-Operations specify the
punched output format of an absolute assembly.

List-Control Pseudo-Operations specify the contents
and format of an assembly listing.

Special Systems Pseudo-Operations generate subrou-
tine calling sequences. They may also be used to save
and restore the index registers and indicators.

Macro-Defining Pseudo-Operations are used to de-
fine programmer macro-operations. They are used in
conjuction with the macro-related pseudo-operations,
which extend the facilities of macro-operations.

Macro-Operations

The programmer macro-operation facility is a very
flexible and powerful programming tool. Many pro-
gramming applications involve a repetition of a pattern
of instructions, often with parts of the instructions
varied at each iteration. Using the macro-defining
pseudo-operations, a programmer can define the
pattern as a macro-operation.

In defining the pattern, the programmer gives it a
name that becomes the operation code used to gener-
ate the pattern of instructions. Thus, the coding of a
single instruction can cause the pattern of instructions
to be repeated as often as desired. Moreover, parts of
the instruction can be varied each time the sequence
is repeated. The contents of any field of any instruction
within the pattern may be varied, and even entire in-
structions can be inserted in the sequence. The macro-
operation facility is described in Part III.

Location Counters

During assembly, a location counter registers the next
location to be assigned to an instruction. For most ma-
chine instructions processed by the assembly program,
the contents of the location counter in effect at that
time (the “current” location counter) is increased by
1. Some pseudo-operations may result in no increase,
an increase of 1, or an increase of more than 1.

MaP enables a programmer to create and control as
many symbolic location counters as he needs by using
the location-counter pseudo-operations. Control can be
transferred back and forth among them as often as
desired.

This feature permits instructions coded in one se-
quence to be loaded in another, the establishment of
constant tables, etc.

Absolute and Relocatable Assemblies

The control routines of the operating system occupy
lower core storage. Therefore, a program may not be

6

loaded into this area but must be loaded into the first
unused machine location. However, the programmer
need not know the address of this location, since the
loader (1BLDR) can automatically relocate each pro-
gram segment to be loaded.

The first address of a program segment to be exe-
cuted is called the load address, and each succeeding
instruction is loaded relative to that address. Thus,
the address of an instruction at load time is the address
assigned to it during assembly plus the load address
of the program segment in which the instruction ap-
pears.

In a relocatable assembly, the assembly program pro-
duces an object deck that is automatically relocated at
execution time by mBLDR. However, it may sometimes
be desirable to load a program beginning at a certain
fixed location in core storage. A program loaded in this
way is said to have an absolute origin. The programmer
specifies a certain location as the load address for that
deck. (An absolute origin may also be specified within
a relocatable assembly. See the section “Relocation
Properties of Symbols.”)

In absolute assemblies, output is in the standard 22-
word-per-card format, which is specified on the szBMaP
control card and by the aBs pseudo-operation. Output
in this format cannot be handled by 1BL.or. Whether the
assembly is absolute or relocatable is specified by the
programmer on the siBMaP card (see the publication
IBM 7090/7094 IBSYS Operating System: IBJOB Proc-
essor, Form C28-6275.)

Error Checking

Source programs written in the map language are
checked for a variety of errors, including format errors,
table overflow errors, input/output errors, improper
references, and incorrectly coded operations. In addi-
tion, the severity of the error is indicated.

In a normal assembly, messages are printed just after
the assembly listing, All messages for a given card are
printed together, and the card groups are printed in
ascending sequence. Correlation with the listing is ac-
complished by printing the line number, which is as-
signed by the assembly program, in the left margin of
the listing for each card that requires a message.

A list of MAP error messages and an explanation of
the severity code used are included in the publication
IBM 7090/7094 IBSYS Operating System: IBJOB Proc-
essor, Form C28-6275,

Forming Symbolic Instructions

Instruction Fields

In the mapr language, each symbolic instruction is
punched on a separate standard iBM card. A single

instruction may have as many as five parts, occupying
five fields on the card.

THE NAME FIELD

An instruction may be given a symbolic name by the
programmer, so that references may be made in other
instructions to the named instruction. (Other methods
are also available for referring from one instruction to
another. For example, see the section “Relative Ad-
dressing.”)

The use of a name is generally optional. However,
some psuedo-operations do require a symbol in the
name field. Name-field and other requirements of each
of the psuedo-operations are explained in Parts II and
III. Also, the specifications for symbols used in the
name field are given in the section “Symbols.”

The name given to a symbolic instruction is from 1
to 6 characters long, and it occupies columns 1 through
6 on the card.

THE OPERATION FIELD

The machine operation code, psuedo-operation code,
programmer macro-operation code, or an operation
code previously defined by one of the operation-
defining pseudo-operations appears in the operation
field.

The operation field is punched beginning in column
8. Column 7 separates the name field from the opera-
tional field. Column 7, which is usually left blank, is
ignored by the assembly program.

The character asterisk (*) may be used immediately
to the right of some operation codes to indicate
indirect addressing. Those machine instructions that
are indirectly addressable are indicated in Appendix
A. Tf indirect addressing is specified for an instruction
in which it is not permitted, the asterisk (*) is ignored
and a low-severity error message is issued.

The operation field is usually restricted to a maxi-
mum of six characters. However, an operation code of
six characters defined by one of the operation-defining
pseudo-operations may be followed by an asterisk (*)
to indicate indirect addressing.

THE VARIABLE FIELD

The variable field of a symbolic instruction may con-
tain subfields, separated by commas.

In machine instructions, these subfields contain the
address, tag, and/or decrement (or count) parts of
instruction, depending on the requirements of the
particular instruction. These parts of the variable field
are supplied in the order: address, tag, decrement.

The subfields that are required, optional, or not per-
mitted in the variable fields of all 7090/7094 machine
instructions, extended machine operations, and special
operations are indicated in Appendix A.

In pseudo-operations, the subfields of the variable
field may contain symbols, symbolic expressions, and
literals. The contents of the variable field specified for
each of the maP pseudo-operations is given in Parts II
and III.

A null subfield is indicated as being present but as
having no value. If a null subfield is at the beginning
of the variable field, it is indicated by a single comma.
If it is between two other subfields, it is expressed by
two consecutive commas. A null subfield at the end of
the variable field is represented by a single comma
followed by a blank.

If a subfield that is not used in the variable field (an
irrelevant subfield) is to be followed by a subfield that
is required (a relevant subfield), the irrelevant subfield
must be indicated. Irrelevant subfields at the end of
the variable field may be indicated as null or may be
omitted entirely. For example, the following pairs of
instructions are equivalent:

TXH 0,0,1

TXH »l

IORP ALPHA,0,1
IORP ALPHA,,1

CLA ALPHA,0
CLA ALPHA

TXH ALPHA,0,0
TXH ALPHA,,
PXA 0,0

PXA

In the last two pairs, the commas may not be omit-
ted, since the assembly program checks for a minimum
number of ‘subfields. The Tx instruction requires three
subfields, while the pxa instruction requires two. These
subfields are not irrelevant and must be included.

The variable field is separated from the operation
ficld by at least one blank column. The variable field
may begin in column 12 but may never begin after
column 16. The variable field cannot extend beyond
column 72. An instruction having a variable field ex-
tending into column 72 may not have a comments field.
However, the variable field of most instructions may
be extended over more than one card, each having its
own comments field, by using the ETC pseudo-opera-
tion.

THE COMMENTS FIELD

The comments field is included for the convenience of
the programmer and does not affect execution of the
program. This field is generally used for explanatory
remarks. (See also the section “The Asterisk (*) Re-
marks Cards.”)

A blank precedes the comments field to separate it
from the variable field. This field extends through
column 72 on the card. If there is a blank variable
field, the comments field may begin as soon as column
17. An example of the use of the comments field is
shown in Figure 1.

Symbolic Programming Using MAP 7

COMMENTS

40 s 0 55 60 65

B
J

NAME OPERATION VARIABLE FIELD
(Location) (Address, Tag, Decrement/Count)
1 . 617(8 ~14115]16 20 , . 3%
XIINSITIRIUCTITIoN] [RIEKQUITIRIE]S] lap IRl ls]s] Toinjuly
BELIOW ARE EQUILVALENT. | || Ly
caslElAl el LPHAL O | | i
cAls|El2]Al il LIPHAL]
CASIEI3Al L LA ALPHAL | L]
INSTRUICTITION [REQUIRES TIA, x
XADDRE|S|S FTELD| AN IM iC ,
CASER LIPAK L Lp2 | . !
SRS RN - Ao U T T T T SO A
XIINS TRIUIC TION, RIEQUIREIST ADDRESS: AND
¥AMPILIES BELOMW ARE EQUTVALENTL | .
CASE1:D VDK ' | DIV, O COUNT, j
CASIER2ID] IVIDIH | i LV | [coluiNgT) | i f
! i i { il [P

Figure 1. Example of MAP Coding Shows Use of Comments Field

THE SEQUENCE FIELD
Symbolic instructions may be numbered for identifica-
tion in the sequence field, which includes columns 73
through 80 on the card.

THE ASTERISK (*) REMARKS CARD

The remarks card is a special source card with an as-
terisk (*) in column 1 and any desired information in
the rest of the card.

Any card with an asterisk in column 1 is treated by
the assembly program as a remarks card, and its con-
tents are printed out in the assembly listing. It has no
other effect on the assembly.

Remarks cards may be grouped and may appear
anywhere in a program except in macro-operations or
between ETC cards. They are frequently used at the
beginning of a program to state the problem to be
solved, to describe the technique used, etc. (map also
makes a remarks card available by using the pseudo-
operation REM, which is described in the section “The
REM Pseudo-Operation.”)

Examples of remarks cards are shown in Figure 1,
as well as methods of coding a variable field.

Symbols

The symbolic names used in the name and variable
fields of symbolic instructions consist of one to six non-
blank Bcp characters (see Appendix E). At least one
nonnumeric character must be included, but none of
the following ten characters may be used:

+ (plussign) = (equal sign)

~ (minus sign) , (comma)

* (asterisk) > (apostrophe)

/ (slash) ((left parenthesis)
$ (dollar sign)) (right parenthesis)

Parentheses in a symbol cause a low-severity warn-
ing message to be printed, but assembly is not affected.
However, the ()okx option specified on the siBMAaP

8

O|UINIT!s E TWO o ,§ . i
b L ‘1
WZIERO| FILELD CEIXPLITICTT
ZL@% FIELD TP LITlcTT N

control card (see the publication IBM 7090/7094
IBSYS Operating System: IBJOB Processor, Form:
C28-6275) indicates that parentheses in symbols are
desired, and no message will be printed.

Examples of valid symbols are:

A 3.2XY
37B2 DECLOC
DELTA

Conversely, the following are not valid symbols for
the reasons indicated:

A+B (invalid character)
3921 (no nonnumeric characters)
A2B4C6D (more than six characters)

Defining Symbols

When a symbol has been assigned a value, it is said
to be defined. The assigned value can be the address
of a location within core storage, an arbitrary quantity
specified by the programmer, or a dependent value
assigned by the assembly program. Values are assigned
to symbols during and after the first of the two passes
made by the assembly program over the source pro-
gram. Further information about the assembly pro-
gram is provided in the publication IBM 7090/7094
Operating System: IBJOB Processor. Form C28-6275.

Ordinary Symbols

Several types of symbols are used in the variable fields
of machine instructions and in most of the pseudo-
operations.

1. Location symbols are so called because of their
appearance in the name field of an instruction. During
the first pass of the assembly program, location sym-
bols in the variable field of an instruction are immedi-
ately assigned a value called an S-value. The S-value
is 1 if the symbol has previously appeared in the name
field of an instruction and 0 if it has not. After the first
pass has been completed, these symbols are assigned

the value of the address of the instruction in which
they appeared as a name-field symbol.

Absolute symbols are location symbols having fixed
values that are independent of any relocation of the
program segment.

2. Virtual symbols are used in the variable field of
an instruction and never appear in any name field.
Virtual symbols, which have special functions in MAP,
are defined at load time. The S-value is 0. { For further
information, see the publication IBM 7090/7094 IBSYS
Operating System: IBJOB Processor, Form C28-6275.)
Virtual symbols are permitted only in a relocatable
assembly. In an absolute assembly, virtual symbols are

flagged as undefined.

Immediate Symbols

Immediate symbols are created by using them in the
name field of the ser pseudo-operation. Immediate
symbols are assigned a value (S-value) during the first
pass of the assembly program. Immediate symbols may
also be redefined throughout a program by using ad-
ditional seT pseudo-operations. (See the section “The
ser Pseudo-Operation.”) The final value of an imme-
diate symbol is used in the second pass.

Relocation Propetties of Symbols

An absolute origin may be specified in a relocatable as-
sembly, which should not be confused with an absolute
assembly. If an absolute origin is given in a relocatable
assembly, any symbols whose definitions depend on
that origin are absolute. However, instructions under
the absolute origin may refer to symbols elsewhere in
the program. The assembly can be returned to the re-
locatable mode by subsequently specifying a relocat-
able origin.

Under the following conditions, symbols are abso-
lute even if they appear within a relocatable assembly:

1. Symbols whose values depend on an absolute
origin (as a result of using the orG or BEGIN pseudo-
operations)

2. Symbols defined by the BooL, rBOOL, and LBOOL
pseudo-operations

3. Symbols defined by the QU or syn pseudo-opera-
tions and whose values reduce to a constant

4. Symbols defined by a max or MiN pseudo-opera-
tion that yield a constant

5. Symbols used in the variable field of type D in-
structions

Literals

Literals provide a simple means for introducing data
words and constants into a program. For example, if a
programmer wishes to add the number 1 to the con-
tents of the accumulator, he must have the number 1 at
some location in storage.

In contrast to other types of subfields, the contents of
a literal subfield is itself the data to be operated on.
The appearance of a literal directs the assembly pro-
gram to prepare a constant equal in value to the con-
tent of the literal subfield. The assembly program
replaces the subfield of the variable field of the in-
struction containing the literal with the address of the
constant thus generated.

There are three types of literals — decimal, octal, and
alphameric.

DECIMAL LITERALS

A decimal literal consists of the character = followed
by a decimal data item. Three types of decimal data
items are recognized by MaP:

Decimal Integers. A decimal integer is one or more
of the digits 0 through 9, and it may be preceded by a
plus or minus sign. Maximum size of the decimal in-
teger is 235 — 1,

Floating-Point Numbers, A floating-point number
has two components.

1. The principal part is a signed or unsigned decimal
number, which may be written with or without a deci-
mal point. The decimal point may appear at the be-
ginning, at the end, or within the decimal number. If
an exponent part is present, the decimal point may be
omitted, in which case it is assumed to be at the right
end of the decimal number. The principal part cannot
exceed twenty digits. If it does, the number will be
truncated and only the first twenty digits will be used.

2. The exponent part consists of the letters E or EE
followed by a signed or unsigned decimal integer.
(The letters ke indicate a double-precision floating-
point number.) The exponent part may be omitted. If
the exponent part is used, it must follow the principal
part. The exponent part cannot exceed two digits. If it
does, it will be truncated and only the first two digits
will be used.

A floating-point number is converted to a normalized
floating-point binary word. The exponent part, if pres-
ent, specifies a power of ten, by which the principal
part is multiplied during conversion. For example, all
of the following floating-point numbers are equivalent
and are converted to the same floating-point binary
number.

3.14159
31.4159E-1
314159.E-5
314159E-5
.314159E1

The octal representation of this number is
202622077174
Similarly, the number .314159EE1 is converted to a
double-precision floating-point number. Its octal repre-
sentation is

202622077174
147015606335

Symbolic Programming Using MAP 9

Fixed-Point Numbers. A fixed-point number has
three components.

1. The principal part is a signed or unsigned decimal
number, which may be written with or without a deci-
mal point. The decimal point may appear at the begin-
ning, at the end, or within the decimal number. If the
decimal point is omitted, it is assumed to be at the
right end of the decimal number. The principal part
cannot exceed twenty digits. If it does, the number will
be truncated and only the first twenty digits will be
used.

2. The exponent part consists of the letters E or EE
followed by a signed or unsigned decimal integer.
('The letters ee indicate a double-precision fixed-point
number.) The exponent part may be omitted. If the
exponent part is used, it must follow the principal part.
The exponent part cannot exceed two digits. If it does,
it will be truncated and only the first two digits will
be used.

3. The binary-place part consists of the letters B or
BB followed by a signed or unsigned decimal integer.
(The letters BB indicate a double-precision fixed-point
number.) The binary-place part must be present in a
fixed-point number and must come after the principal
part. If the number has an exponent part, the binary-
place part may either precede or follow the exponent
part. The binary-place part may not exceed two digits.
If it does, the number will be truncated and only the
first two digits will be used.

A fixed-point number is converted to a fixed-point
binary number that contains an understood binary
point. The binary-place part specifies the location of
this understood binary point within the word. The
number that follows the letters B or BB specifies the
number of binary places in the word at the left of the
binary point. The sign bit is not counted. Thus, a
binary-place part of zero specifies a 35-bit binary frac-
tion. B2 specifies two integral places and 33 fractional
places. B35 specifies a binary integer. B2 specifies a
binary point located two places to the left of the
leftmost bit of the word; that is, the word would con-
tain the low-order 35 bits of a 37-bit binary fraction. As
with floating-point numbers, the exponent part, if pres-
ent, specifies a power of ten, by which the principal
part will be multiplied during conversion.

For example, the following fixed-point numbers all
specify the same bit configuration, but not all of them
specify the same location for the understood binary
point:

22.5B5
11.25B4

1125E-2B4
9B7E1

All of the above fixed-point numbers are converted

10

to the binary configuration having the octal repre-
sentation

264000000000
The following double-precision fixed-point numbers

10BB35
1B35EE1
1BB35E1
1BB35EE1

are converted to the binary configuration having the
octal representation

000000000012

000000000000

Double-precision literals are stored in consecutive

locations. The first or high-order part is automatically
stored in an even location relative to the beginning of
the Literal Pool. If these literals are to be used as oper-
ands in double-precision operations (7094), an EVEN
pseudo-operation must be inserted immediately before
the Lorc pseudo-operation if there is one; otherwise it
must be inserted before the EnNp pseudo-operation.

OCTAL LITERALS

An octal literal consists of the two characters =0
followed by an octal integer.

An octal integer is a string of not more than twelve
of the digits 0 through 7, and it may be preceded by a
plus or minus sign.

Examples of octal literals are:

=0123 000000000123

=0+123 000000000123

=0-123 400000000123
ALPHAMERIC LITERALS

An alphameric literal consists of the two characters

=H followed by exactly six alphameric characters.

The six characters following the H are treated as data

even if one or more of them is a comma or a blank.
Examples of alphameric literals are:

=HI2ABCD
=HTADDbbb, where b represents a blank

Writing Expressions
The programmer writes expressions to represent the
subfields of the variable field of symbolic instructions.
Expressions are also used in the variable fields of many
of the pseudo-operations in accordance with the rules
set forth for each specific case,

Expressions are comprised of elements, terms, and
operators. ‘

ELEMENTS

An element is the smallest component of an expression
and is either a single symbol or a single integer less
than 2'%. The asterisk (*) may be used as an element
representing the location of the instruction in which it
appears.

Examples of valid elements are:

A
427
ALPHA

TERMS

A term is a group of one or more elements and the
operators * (indicating multiplication) and / (indi-
cating division).

A term consists of one or more elements, with each
element separated by an operator. A term must begin
and end with an element. Two operators or two ele-
ments in succession are never permissible.

Examples of valid terms are:

A A*B
427 C/1409
ALPHA BETA*GAMMA/DELTA

There is no ambiguity between using the asterisk
as an element and its use to denote multiplication, since
position always makes clear its intended function. For
example, a field coded

**B
would be interpreted as “the location of this instruction
multiplied by B.” Since a term must begin with an
element, the first asterisk must be an element. The
second asterisk must be an operator, which is required
between two elements.

EXPRESSIONS

An expression is a group composed of one or more
terms and the operators + (signifying addition) and
— (signifying subtraction).

An expression consists of one or more terms, with
each term separated by a plus or minus sign. Two op-
erators or two terms in succession are never permiss-
ible. However, an expression may begin with a plus
or minus sign. Examples of valid expressions are:

A

ALPHA
ALPHA*BETA
—A/B
A*B—C/D+E*2303
*—A+B*C

The asterisk in the last example is used first as an
element and then as an operator.

Evaluating Expressions

In evaluating expressions, elements are evaluated first,
then individual terms, and finally the complete expres-
sion. The following procedure is used in evaluating
expressions:

1. Each element is replaced with its numeric value.

2. Each term is evaluated by performing the indi-
cated multiplications and divisions from left to right.
In division, the integral part of the quotient is retained
and any remainder is discarded immediately. For ex-
ample, the value of the term 5/2*2 is 4.

In evaluating a term, division by zero is the same as
division by one and results in the original dividend.
Division by zero is not regarded as an error.

3. Terms are combined from left to right in the order
in which they occur, with all intermediate results re-
tained as 35-bit signed numbers.

4. Finally, if the result is negative, it is comple-
mented; in either case, only the rightmost 15 bits are
retained.

Grouping of terms by parentheses or any other
means is not permitted. However, a product such as
A®-0 can be written simply a*B-A*c.

The expression ** may be used to designate a field
the value of which is to be computed and inserted by
the program. It is an absolute expression having a value
of zero.

Rules for Forming Expressions

The use of expressions is sometimes affected by whether
elements within the expression are relocatable, abso-
lute, or a combination of both.

In a relocatable assembly, an expression that con-
tains more than one symbol is generally complex. An
expression that includes a control-section name is also
complex. In addition, any expression that contains a
complex element is itself complex.

In an absolute assembly, all expressions are absolute.

Relocatable and complex expressions are usually
evaluated at load time, when absolute values have
been assigned to symbols as part of the loading process.
However, in pseudo-operations that affect location
counters (such as BEs, Bss, and BEGIN) or that define
symbols (such as mMax and miN), the variable field
must be evaluated before load time. For further in-
formation, see the publication IBM 7090/7094 IBSYS
Operating System: IBJOB Processor, Form C28-6275.
The rules that must be followed in using expressions
are provided in the discussions of the pseudo-
operations.

Boolean Expressions

A Boolean expression is evaluated as an 18-bit Boolean
quantity, unlike the 15-bit integer that normally results
from the evaluation of an expression. Elements within
a Boolean expression must be constant. All integers are
specified as octal integers. An expression is Boolean if:

1. It appears in the variable field of a Boolean
pseudo-operation (BOOL, RBOOL, LBOOL; see the section
“Boolean Pseudo-Operations™.);

2. It appears as an octal subfield of a vFp pseudo-
operation (see the section “The v¥p Pseudo-Opera-
tion”); or

3. It forms the variable field of a Type D or extended
Type D machine instruction (see Appendix A).

Symbolic Programming Using MAP 11

References to a relocatable symbol in a Boolean ex-
pression result in an error.

In a Boolean expression, the four operators (+, —,
*, /) have Boolean rather than arithmetic meanings,
as shown in the table.

OPERATOR MEANING DEFINITION
+ “inclusive or” (also, 0+0=0
“union”) 0+1=1
1+0=1
1+1=1
- “exclusive or” (also, 0—-0=0
“symmetric differ- 0—-1=1
ence” 1-0=1
1-1=0
* “and” (also, “inter- 0*0=0
section”) 0*1=0
1*0=0
1*1=1
/ “complement” (also, /0=1
“not” or “ones’ com- /1=0

plement”)

The four Boolean operations are defined in the table
for 1-bit quantities. The operation is extended to 18-bit
quantities by handling each bit position independently.

The following conventions also apply in using Bool-
ean expressions:

The / is a unary or one-term operator. The expres-
sion A/B means /B, and the A is ignored. However, the
presence of the A is not regarded as an error by the
assembly program. The definitions of / in this case are:

0/0=1
0/1=0
1/0=1
1/1=0

If the other operators (+, —, *) are used as unary

operators, the definitions are as follows:
+A=A+=A
—A=0-AA—=A—0
A=error, A=A*Q=(
For the special case of the slash, the definition is:
A/=A/0=1

In expressions where both terms are missing, defini-
tions are as follows:

+=0+0=000000
—=0-0=000000
*==Location counter
/=0/0=T7T7777

In evaluating a Boolean expression, all integers are
treated as 18-bit quantities. The operation / is per-
formed first, followed by *, then by + and —.

The operators +, —, and * may immediately pre-
cede the slash in a Boolean expression. For example,

A—/B

is a valid Boolean expression. However, in no other
case are two operators or two elements in succession
permitted.

12

Using Symbols in Expressions

In MaP, ordinary symbols are not assigned values until
a pass over the entire program has been completed.
Therefore, there are no restrictions in the order of
symbol definition. For example,
ORG A

A EQU 10000
is a valid sequence in 1BMAP.

Symbols in the variable field of pseudo-operations
that affect location counters must be definable at as-
sembly time. In the sequence

BEGIN A
BSS B
BES C

A, B, and C may not be virtual symbols. (The orc
pseudo-operation is not subject to this restriction.) The
values of symbols B and C are always treated as
constant.

In general, any valid expression may appear in the
variable field of machine instructions. In a relocatable
assembly, final evaluation of complex arithmetic ex-
pressions containing virtual symbols actually takes
place at load time, when all symbols have been defined.

Relative Addressing

After an instruction has been named by the presence
of a symbol in the name field, references to that in-
struction can be made in other instructions by using
the symbol. Instructions preceding or following the
named instruction can also be referenced by indicating
their position relative to the named instruction. This
procedure is called relative addressing. A relative
address is, effectively, a type of expression. For exam-
ple, in the sequence

ALPHA TRA BETA
CLA GAMMA
SUB DELTA

STGAM STO GAMMA
TPL LOCI

control may be transferred to the instruction crLa
caMMA by either of the following instructions:
TRA ALPHA+1
TRA STGAM -2
It is also possible to use the asterisk (*) as an ele-
ment in a relative address. For example, in the
sequence

AXT 10,1
LOOP CLA Al

SUB B,1

SUB C1

STO SUM,1

TIX LOOP,1,1

the last instruction indicates a conditional transfer to
location roop. This could also be written

TIX *—4,1,1

The address *—4 is interpreted as “the location of
this instruction minus 4.”

Relative addressing must be used carefully in com-
bination with pseudo-operations, since some pseudo-
operations may generate more than one word or no
words in the object program. For example, the in-
struction

ALPHA OoCT 2732,427,12716

generates three words of octal data, with ALPHA as-
signed to the address of the first word generated. Thus

the address aLpHA+2 refers to the third word gener-
ated (12716).

Reference can also be made to a word in a block of
storage reserved by a Bss or BEs pseudo-operation by
using relative addressing. For example, the instruction

BETA BSS 50

reserves a block of 50 words, where BETA is assigned
to the first word of the block. The address BeTA +1 refers
to the second word, and BETA +n refers to the (n+1)st
word.

Symbolic Programming Using MAF 13

Part Il. MAP Pseudo-Operations

MaP provides the programmer with more than sixty
pseudo-operations that can perform a variety of pro-
gramming functions with greatly reduced program-
ming effort. They have been grouped according to
function, and the structure and purpose of most of the
MAP pseudo-operations are described in this part of the
publication. The macro-operation facility is covered
separately in Part III.

Location-Counter Pseudo-Operations

Location counters enable instructions that are written
in one sequence to be loaded in a different sequence.

 MAP enables a programmer to establish an indefinite
number of location counters, which can be repre-
sented by symbols of his choice. The symbol used to
represent a location counter may duplicate any other
symbol in the program except another location-counter
symbol.

The blank location counter, so called because it has
no associated symbol, is the basic location counter. If
the use pseudo-operation is not used, instructions are
assembled under the blank location counter. In addi-
tion, a location counter represented by two slashes
(/7/) is reserved for use with blank commoN.

The USE Pseudo-Operation

The use pseudo-operation places succeeding instruc-
tions under control of the location counter represented
by the symbol in the variable field. The format of the
USE pseudo-operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks USE Either:
1. A signal symbol, or
2. Blanks, or
3. The word PREVIOUS

The location counter in control at the time of the
usk pseudo-operation is suspended at its current value.
It is temporarily preserved as the “previous” counter.
It continues from this value if it is reactivated by
another usk. If use with the word previous in the vari-
able field is coded, the previous location counter is
reactivated. For example, the effect of the sequence

USE A
USE B
USE PREVIOUS

14

is identical to that of
USE A
USE B
USE A

This option provides a means of returning to a
location counter even if the counter symbol is not
known.

A usk pseudo-operation with a blank variable field
must precede the first instruction of the deck if the
blank counter is set to a value other than zero by the
operation

BEGIN

The sequence of location counters is: the blank
counter first, the other symbolic counters in the order
of their first appearance in a USE or BEGIN pseudo-
operation, and finally the // counter.

,expression

The BEGIN Pseudo-Operation

The BECIN pseudo-operation specifies a location counter
and establishes its initial value. The format of the
BEGIN pseudo-operation is:

OPERATION
FIELD

BEGIN

NAME FIELD

Blanks

VARIABLE FIELD

Two subfields, separated by
a comma:

1. A location counter symbol,
2. Any expression

The expression in the variable field may contain any
symbol or constant. Relocatable symbols are given
their assembly value, and this value becomes absolute.
Control-section symbols are given a value of zero.

The value of the second subfield of the variable field
is used as the initial value for the location counter
represented by the symbol in the first subfield. For
example, the instruction

BEGIN ALPHA,BETA
would cause the instructions following
USE ALPHA

to be assembled beginning at location BETA.

If no BEGIN is given for the blank location counter, its
initial value is defined as 0 (absolute 0 in an absolute
assembly and relative 0 in a relocatable assembly). If
no BEGIN is given for the nth location counter (taken in
location counter order), its initial value is given as the
last value by the (n—1)st location counter. If more
than one BEGIN appears for a given location counter,
only the first one is used and all others cause error
messages to be issued.

A BEGIN may appear anywhere in the program re-
gardless of the location counter in control.

Note that if the blank location counter is set to a
value other than zero by the operation

BEGIN

the use pseudo-operation with a blank variable field
must precede the first instruction of the deck.
The order in which location counters are used is
illustrated in the example:
instruction 1

,expression

BEGIN A¥
USE A
instruction 2
instruction 3
BEGIN C,*
instruction 4
instruction 5
USE //
instruction 6
instruction 7
USE B
instruction 8
instruction 9
USE C
instruction 10
END

In this sequence, instruction counters are used in the
order: blank, A, C, B, and //. At load time, the se-
quence of instructions will be:

instruction 1
instruction 2
instruction 3

instruction 10 (instruction 4 will be
overlaid)

instruction 5

instruction 8

instruction 9

instruction 6

instruction 7

The ORG Pseudo-Operation

The orc (Origin) pseudo-operation redefines the value
of the current location counter. The format of the orc
pseudo-operation is:

OPERATION

NAME FIELD FIELD

1. A symbol, or |ORG
2. Blanks

VARIABLE FIELD

Any expression

The ore pseudo-operation causes the current location
counter to be reset to the value of the variable field. If
there is a symbol in the name field, it is given this value.

Absolute origins are permitted in a relocatable as-
sembly. An origin is treated as absolute if the value of
the variable field of the orc pseudo-operation is con-
stant. Thus,

ORG 5000

sets the location counter to 5000, In a relocatable as-
sembly, references to symbols under the control of an
absolute origin (ORG or BEGIN) are absolute.

For example, the location counter is set at the sixth
location of the program by

ORG START+5

where sTART is the first location of the program.

Storage-Allocation Pseudo-Operations

The storage-allocation pseudo-operations reserve core
storage areas within the sequence of the program.

The BSS Pseudo-Operation

The Bss (Block Started by Symbol) pseudo-operation
reserves a block of consecutive storage locations. The
format of the Bss pseudo-operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
1. A symbol, or | BSS Any expression
2. Blanks

The Bss pseudo-operation increases the value of the
current location counter by the defined value of the
variable field expression. The expression in the variable
field may contain any symbol or constant. Relocatable
symbols are given their assembly value, and this value
becomes absolute. Control-section symbols are given a
value of zero. If there is a symbol in the name field,
its defined value is that of the location counter just
before the increase.

For example, in the sequence

ALPHA IORD BETA, 4
BETA BSS 4
GAMMA IORD DELTA,,6

if ALPHA has been assigned to location 1001, BETA will
be assigned to location 1002 and camMma to location
10086. Thus, four locations are reserved for BETA.

The area reserved by the Bss pseudo-operation is not
zeroed.

The BES Pseudo-Operation

The Bes (Block Ended by Symbol) pseudo-operation
also reserves a block of consecutive storage locations.
The format of the BEs pseudo-operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
1. A symbol, or |BES Any expression
2. Blanks

The expression in the variable field may contain any
symbol or constant. Relocatable symbols are given
their assembly value, and this value becomes absolute.
Control-section symbols are given a value of zero.

The BEs pseudo-operation functions almost iden-
tically to a Bss pseudo-operation except that the symbol

MAP Pseudo-Operations 15

in the name field is defined after the location counter
increases and thus refers to the first word following the
reserved block.

For example, in the sequence

ALPHA IORD BETA, 4
BETA BES 4
GAMMA IORD DELTA, 4

if ALPHA has been assigned to location 1001, both BETA
and camma will be assigned to location 1006 and four
locations will be reserved.

The difference between BEs and Bss can be seen in
the sequence of instructions

ALPHA BES 25
CLA BETA
which is effectively the same as
BSS 25
ALPHA CLA BETA

The area reserved by the BEs pseudo-operation is not
zeroed.

The EVEN Pseudo-Operation

The EVEN pseudo-operation forces the current location
counter to an even value to ensure an even address for
the next instruction or data—usually a double-precision
floating-point number. It is used only in the 7094 and
has no effect in the 7090 or 7094 u. The format of the
EVEN pseudo-operation is:

OPERATION
FIELD

EVEN

NAME FIELD

Blanks

VARIABLE FIELD

Ignored

In a 7094 relocatable assembly, the EvEN pseudo-
operation causes the instruction

AXT 0,0
to be inserted at load time if the load address of the
AXT instruction is not even. The axr instruction has no
other effect on the program.

In a 7094 absolute assembly, the Even pseudo-

operation causes the insertion of the instruction

AXT 0,0
at assembly time so that it is available at load time in
the event that the axr instruction load address is not
even. The AxXT instruction has no other effect on the
program,

The LORG Pseudo-Operation

The 1omrc (Literal Pool Origin) pseudo-operation
places the Literal Pool in the program at the point
where LORG occurs. The format of the Lorc pseudo-
operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
1. A symbol, or |LORG Ignored

2. Blanks .

i8

A symbol in the name field is assigned to the first
location of the Literal Pool (see the section “Literals”).
If no rore is given, the Literal Pool origin is one be-
yond the final value of the location counter in use at
the end of the program. If more than one location
counter has been used, LorG can be used to prevent
the Literal Pool from overlapping part of the program.
For example, in the sequence

USE
BSS
USE
CLA
USE
END

Rl

the Literal Pool would be placed at symbolic location
B (one beyond the final value of location counter Y).

If more than one rorc is given, only the first is
effective. If the // location counter is used, caution
must be used in locating the Literal Pool.

An EVEN pseudo-operation should precede rLorc if
double-precision literals are used in 7094 programs to
ensure their entry at an even address.

The LDIR Pseudo-Operation

The Lpir (Linkage Director) pseudo-operation places
the Linkage Director in the program at the point of
the Lp1r. The format of the Lpir pseudo-operation is:

OPERATION

NAME FIELD FIELD VARIABLE FIELD

1. A symbol, or |LDIR
2. Blanks

Ignored

The Linkage Director is a unique location for each
assembly, which is one beyond the final value of the
location counter if the Lpir pseudo-operation is not
used. If the Lpir pseudo-operation is used with a sym-
bol in the name field, the programmer may refer to the
Linkage Director.

The Linkage Director serves as a cross-reference for
the caLL and save pseudo-operations. If neither the
LDIR nor LORG pseudo-operations is used, the Linkage
Director precedes the Literal Pool. If the Loir pseudo-
operation appears more than once, only its first appear-
ance is effective.

For example,

ALPHA LDIR
would cause
ALPHA PZE
BCI 1,deckname

to be generated. The second subfield in the Bcr opera-
tion is the deckname specified on the siBmaP card (see
the publication IBM 7090/7094 1BSYS Operating Sys-
tem: IBJOB Processor, Form C28-6275).

The COMMON Pseudo-Operation

The comMmon pseudo-operation has been preserved
solely for compatibility with existing programs. It re-
serves an area called blank common for use in common
with such programs. The format of the common
pseudo-operation is:

OPERATION

NAME FIELD FIELD

1. A symbol, or | COMMON |Any expression
2. Blanks

VARIABLE FIELD

The expression in the variable field may contain any
symbol or constant. Relocatable symbols are given
their assembly value, and this value becomes absolute.
Control-section symbols are given a value of zero.

The coMMON operation causes:

1. Location counter // to be activated

2. A symbol in the name field, if any, to be defined
as having the current value of location counter //

3. Location counter // to be increased by the defined
value of the variable field expression

4. The location counter in use prior to the coMMON
operation to be reactivated

The effect of the sequence

A COMMON E

is equivalent to

USE /7
A BSS E
USE PREVIOUS

Data-Generating Pseudo-Operations

Five pseudo-operations (ocr, DEC, BCI, LIT, and VFD)
provide the programmer with a convenient means of
introducing data expressed in a variety of forms into a
program during assembly. Numbers introduced by
these operations are often referred to as constants. A
sixth pseudo-operation, pup, permits a sequence of sym-
bolic cards to be duplicated a specified number of
times.

The OCT Pseudo-Operation

The ocr (Octal Data) pseudo-operation introduces
binary data expressed in octal form into a program.
The format of the ocrt pseudo-operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Symbol OCT 1. One or more octal inte-
gers, separated by com-
mas, or
2. Blanks

Each subfield in the variable field contains a signed
or an unsigned octal integer of n digits, where n = 12.

The only limit on the number of subfields is that they
must all be contained in the variable field of one card.

A blank variable field results in a word of all zeros.

The ocr operation converts each subfield to a binary
word. These words are assigned to successively higher
storage locations as the variable field is processed
from left to right. If a symbol is used in the name field,
it is assigned to the first word of data generated.

For example, each of the instructions

ALPHA OCT TTTTTTTTT777
ALPHA OCT =TT1TTTT77777
ALPHA oCT =3717TTTTT7777

would result in a binary word of 36 consecutive ones
at location ALPHA.
In the instruction,

ALPHA OCT 43,25,64

the binary equivalent of octal number 43 would appear
at location ALPHA, the binary equivalent of 25 at loca-
tion arpaa+1, and the binary equivalent of 64 at
ALPHA +2.

The DEC Pseudo-Operation

The pEc (Decimal Data) pseudo-operation introduces
data expressed as decimal numbers into a program.
The format of the pec pseudo-operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
1. A symbol, or | DEC 1. One or more decimal data
2. Blanks items, separated by com-
mas, or
2. Blanks

The only limit on the number of subfields is that
they must all be contained in the variable field of one
card.

A blank variable field results in a word of all zeros.

The pEC operation converts each subfield to one or
two binary words, depending on whether the decimal
data item is single or double precision. These words
are stored in successively higher storage locations as
the variable field is processed from left to right. A
symbol used in the name field is assigned to the first
word of data generated.

For example, the instruction

ALPHA DEC 43,25

would result in the binary equivalent of decimal num-
ber 43 appearing at location aLpHA and of decimal
number 25 appearing at location ALPHA+1.

The BCI Pseudo-Operation

The Bct (Binary Coded Information) pseudo-operation
introduces binary-coded decimal data into a program.
Each data word generated consists of six 6-bit char-

MAP Pseudo-Operations 17

acters in standard Bcp code. The format of the Bar
pseudo-operation is:

OPERATION

NAME FIELD FIELD

1. A symbol, or | BCI
2. Blanks

VARIABLE FIELD

Two subfields, separated by

a comma:

1. Single-digit
symbol,

2. Alphameric data

count or

If a digit is used in the count subfield, it must be a
single digit from 1 through 9.

A null subfield indicates a count of ten. To accommo-
date the full ten words of data on the card, the null
subfield must be indicated by a comma in column 12.

The data subfield contains any desired alphameric
information (see Appendix E for the map Bcp char-
acter code).

The length of the data subfield is determined by the
number of six-character words specified in the count
subfield. The immediate value of the symbol used in
this subfield may also be used to determine the length
of the data subfield.

The comments field begins immediately after the
end of the data subfield, and no blank character is
needed to separate the data subfield from the com-
ments field. Any part of the data extending beyond
the limit of the data field is treated as comments. Blanks
are inserted as required to fill the data subfield to the
length specified by the count subfield.

Thus, the Bcr pseudo-operation introduces data
words into consecutive locations, the number of words
generated being equal to the number in the count
subfield. A symbol used in the name field is assigned
to the first word of data generated.

For example,

ALPHA BCI 2,bPROFITbRISEbINLPER-

CENT
would generate the data words proFrT RISE, whereas
IN PERCENT would be comments.

The VFD Pseudo-Operation

Each vrp pseudo-operation generates no, one, or more
than one binary data words and assigns them to suc-
cessively higher storage locations. The format of the
vFp (Variable Field Definition) pseudo-operation is:

OPERATION

NAME FIELD FIELD

1. A symbol, or| VFD
2. Blanks

VARIABLE FIELD

Any number of subfields,
separated by commas

Each subfield of the variable field generates zero, one,
or more than one bits of data. Thus, the unit of informa-
tion for this pseudo-operation is the single bit.

18

Each subfield may be any one of three types: octal
(Boolean), alphameric, or symbolic (including deci-
mal integers).

The subfield of the vep pseudo-operation consists of:

1. The type letter

a. The letter O signifies an octal (Boolean) field.

b. The letter H signifies an alphameric field.

c. The absence of either O or H signifies a sym-
bolic or decimal field.

2. The bit count

Either a decimal integer or an immediate symbol
specifies the number of bits to be generated by the
subfield. If an immediate symbol is used, care should
be taken to avoid confusion caused by the type letter.
The maximum allowable bit count for a single subfield
is 864.

3. The separation character slash (/)

4. The data item

a. In an octal subfield, the data item is one
Boolean expression.

b. In an alphameric subfield, the data item is a
string of characters none of which is a comma
or a blank.

c. In a symbolic subfield, the data item is one
expression. A maximum of 20 significant bits
are obtainable in a symbolic subfield.

Any number of subfields may be used. Successive
subfields of the variable field are converted and packed
to the left to form generated data words. If n is the bit
count of the first subfield, the data item in that sub-
field is converted to an n-bit binary number that is
placed in the leftmost n positions of the first data word
to be generated. If n exceeds 36, the leftmost 36 bits
of the converted data item form the first generated
data word and the remaining bits are placed in the
first (n—386) bit positions of the second generated data
word.

Each succeeding subfield is converted and placed
in the leftmost bit positions remaining after the pre-
ceding subfield has been processed. If the total number
of bit positions used is not a multiple of 36, the unused
bit positions at the right of the last generated data
word are filled with zeros.

If the data item is a single signed octal integer of
any length, the sign is recorded as the high-order bit
of the specified bit group.

If after conversion a symbolic or octal itemn occupies
more than n bits, only the rightmost n bits of the con-
verted data item are used. If the converted data item
occupies fewer than n bits, enough zero bits are placed
at the left of the converted data item to form an n-bit
binary number. Neither condition is regarded as an
error by the assembly program.

The data item in a symbolic subfield is converted
as a symbolic expression. Decimal integers must not
exceed 32767.

The data item in an octal subfield may be any valid
Boolean expression. A single signed or unsigned octal
integer is a valid Boolean expression, which, in this
case, may exceed 18 bits.

The data item in an alphameric subfield may consist
of any combination of characters other than a comma
or a blank, Each character is converted to its 6-bit
binary code equivalent. If the converted data item
occupies more than n bits, only the rightmost n bits
are used. If the converted data item occupies fewer
than n bits, sufficient 6-bit groups of the form 110000
(the Bcp code for blank) are placed at the left of the
converted data item to form an n-bit binary number. If
n is not a multiple of 6, the leftmost character or blank
is truncated. None of these conditions is regarded as
an assembly error.

For example, the vip pseudo-operation could be
used to break up a 36-bit word as follows: Positions S
and 1 through 9 must contain the binary equivalent of
the decimal integer 895, positions 10 through 14 must
contain the binary equivalent of the octal integer 37,
positions 15 through 20 must contain the binary equiv-
alent of the character C, and positions 21 through 35
must contain the value of the symbol aLpaA. The in-
struction to generate this word is

VFD 10/895,05/37,H6/C, 15/ALPHA

The LIT Pseudo-Operation

The L1t (Literal) pseudo-operation places data items
from the subfields of the variable field into the Literal
Pool in successively higher storage locations.

The format of the LiT pseudo-operation is:

OPERATION

NAME FIELD FIELD

Blanks LIT

VARIABLE FIELD

Data subfields, separated by
commas

Rules for the contents of the data subfields are the
same as those governing literals except that the equal
sign (=) is omitted.

A Literal Pool entry made using a LitT pseudo-opera-
tion is assumed to be double precision if the variable
field generates only two consecutive words of data. If
a double-precision entry is made in the Literal Pool
by either a LT pseudo-operation or a double-precision
literal, the number is placed in an even location rela-
tive to the beginning of the Literal Pool. (In this re-
spect, the assembly program does not distinguish
double-precision floating-point numbers from double-
precision fixed-point numbers.)

For example,
LIT 1,2
causes the number 1 to be placed in an even location
relative to the beginning of the Literal Pool (which
can result in duplicate entries in the Literal Pool).
The instruction
LIT 1EE1
results in a double-precision entry beginning in an
even location in the Literal Pool, but the instruction
LIT 1EEL,2
results in a three-word entry with the first word not
necessarily entered into an even location.

Thus, double-precision floating-point numbers may
be used as constants if an EVEN pseudo-operation is
used immediately preceding the LorG operation or, if
no LORG is present, immediately before the Enp pseudo-
operation.

The DUP Pseudo-Operation

The pup (Duplicate) pseudo-operation causes an in-
struction or sequence of instructions to be duplicated.
An important application is in generating tables. The
format of the pur pseudo-operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
1. A symbol, or | DUP Two subfields, separated by

2. Blanks a comma:
1. An expression

2. An expression

The first subfield represents instruction count, and
the second subfield represents iteration count. Integers
are generally used in these subfields. Symbols in the
instruction count and iteration count subfields are
evaluated for their S-values.

If m represents instruction count and n represents
iteration count, the pup pseudo-operation has the effect
of duplicating the next m instructions n times.

The group of m instructions following the pur es-
tablish the range of the pup. The effect of the pup
pseudo-operation is that the set of m symbolic cards
making up the range is copied n—1 times and placed in
the symbolic deck behind the original set. (The name
field of the symbolic card is duplicated.) An iteration
count of zero causes the entire range to be omitted.

For example, the sequence

DUP 2,3

PZE X
PZE Y

results in the sequence

PZE
PZE
PZE
PZE
PZE
PZE

i R

MAP Pseudo-Operations 19

With the sole exception of the Enp pseudo-operation,
any operation may appear within the range of a pup,
including another pup.

If a pup pseudo-operation occurs.within the range
of a preceding pup, the two (or more) pur pseudo-
operations are said to be nested. As in most cases of
nesting, the effect of nested pup pseudo-operations must
be determined beginning with the innermost one and
working out. If the explicit range (the instruction
count) of the inner pup extends beyond the range of
.an outer pup, the implicit range of the outer pup is
extended to the farthest point covered by the inner
pup. The first card to be processed after such a series
of pup pseudo-operations is the next card beyond both
explicit and implicit pup ranges.

For example, the operation

DUP m,n

duplicates the effect of the next m cards n times.
In the nested pup pseudo-operations in the sequence

DUP 1,2
DUP 1,2
PZE X
PZE zZ

the single card to be duplicated by the outer pup is the
inner pup, and the effect of the inner pup is actually the
two operations
PZE X
PZE X
The sequence generated when the outer pup is ex-
panded is
PZE
PZE
PZE
PZE
PZE
where the last card in the sequence is the first card
beyond both the explicit and implicit ranges of the
outer DUP,

In the sequence

BN 34 4 4 4

DUP 3,2
DUP 1,2
PZE X
PZE Y
PZE Z

the effect of the three cards following the outer pup is
actually the four operations

PZE X
PZE X
PZE X
PZE Y

When the outer pup is expanded, the resulting sequence
is
PZE
PZE
PZE
PZE

PZE
PZE

Ea ol i

20

PZE
PZE
PZE

X

Y
Z

where the last symbolic card is the first card beyond
the explicit range of the outer pup.
The range of a pup that occurs within the range of

another pup must be fixed before the outer pup is en-
countered. This can be done by using the seT pseudo-
operation. (See the section “The ser Pseudo-

Operation.”) For example, the sequence

K SET 1
DUP 2,2

K SET K+1
DUP Kn

will result in an error message and assembly will be
terminated. However, the iteration count may be vari-
able. For example, the sequence

K SET 1
DUP 2,2

K SET K+1
DUP m,K

is valid and will be assembled correctly. For example,

the sequence
K

K

SET
DUP
SET

1
2,2

DUP 3
PZE
PZE
PZE

would result in

PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE

K

N = <

AN R4 N N N 4 N

Symbol-Defining Pseudo-Operations

MAP provides a group of pseudo-operations specifically
designed to define the symbols that appear in their
name fields. They are useful in a variety of program-
ming applications, such as equating symbols to com-
bine separately written program segments or changing
parameters referred to symbolically throughout a pro-
gram by redefining the symbol.

The EQU and SYN Pseudo-Operations

The EQuU and sy~ pseudo-operations are identical. The
format of the EQu and sy~ pseudo-operations is:

OPERATION
FIELD

EQU
or
SYN

NAME FIELD VARIABLE FIELD

Symbol

Any expression

The QU and sy~ pseudo-operations give the name field
symbol the same definition — and the same structure —
as the variable field expression. Thus, if A is defined as
x+y-z and the instruction

B EQU A
is given, B is also defined as x+y-z.

The instruction

LCS EQU *
defines Lcs as having the current value of the location
counter.

The NULL Pseudo-Operation
The format of the NuLL pseudo-operation is:

OPERATION

NAME FIELD FIELD VARIABLE FIELD

1. A symbol, or| NULL
2. Blanks

Ignored

The nuLL pseudo-operation defines the symbol in the
name field, if any, as having the current value of the
location counter. The operation

LCS NULL
is equivalent to
LCS EQU *

except that NuLL is preferred.

The MAX Pseudo-Operation

The max pseudo-operation gives the symbol in the
name field an absolute value equal to the expression
in the variable field that has the maximum defined
value. The format of the Max pseudo-operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Symbol MAX Expressions, separated by
commas

The maximum value is computed as if all symbols were
absolute. The comparison is made after negative values
have been complemented. For example, the sequence

BSS A
A MAX 100,ALPHA,ALPHA —100
ALPHA EQU 150
is equivalent to
BSS 150

The MIN Pseudo-Operation

The effect of the MiN pseudo-operation is opposite to
that of max. The symbol in the name field is given an
absolute value equal to the expression in the variable

field having the minimum defined value. The format
of the Mmin pseudo-operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Symbol MIN Expressions, separated by
commas

The minimum value is computed as if all symbols were
absolute. The comparison is made after negative values
have been complemented. For example, the sequence

BSS A
A MIN 100,ALPHA,ALPHA —100
ALPHA EQU 150
is equivalent to
BSS 50

The SET Pseudo-Operation

The st pseudo-operation causes the symbol in the
name field to be defined immediately. The seT pseudo-
operation, which can be used to define symbols in both
machine instructions and pseudo-operations, is often
used to define the symbols in the variable fields of the
pup, vFp, 1T, and 1FF pseudo-operations. The format
of the seT pseudo-operation is:

OPERATION

NAME FIELD FIELD VARIABLE FIELD

Symbol SET

Any expression

Qualified symbols may not be used in the variable field.

The symbol in the name field is immediately assigned
the value (called the S-value) of the variable field ex-
pression during the first pass of the assembly program.
Thus, the ser pseudo-operation enables the program-
mer to use sequences of instructions in which decisions
depend on the value assigned to a symbol during the
first pass of the assembly program. It also permits sym-
bols to be redefined repetitively. The value assigned
to the symbol is always a 15-bit integer.

Use of the ser pseudo-operation is subject to the
following conditions:

1. Immediate symbols may not be qualified.

2. An immediate symbol used in the variable field
of a pseudo-operation affecting location counters (such
as Bss) assumes the final value assigned to it in the
program. For example, the sequence

A SET 100
BSS A
A SET 1000
END
is equivalent to
BSS 1000

3. An immediate symbol should not normally be
given a name identical to an ordinary symbol, since
doing so can result in multiple definition.

MAP Pseudo-Operations 21

An example of the use of the ser pseudo-operation
to assign a value to a symbol during the first pass of
the assembly program is shown in the following se-
quence.

ALPHA SET 50
VFD ALFHA/BETA

By using the ser pseudo-operation, the value of
ALPHA can be changed without altering the vFp in-
struction. A similar use of immediate symbols is in
making conditional assembly decisions with the 1FF/1FT
pseudo-operations.

The seT pseudo-operation permits a symbol to be re-
defined repeatedly for such programming functions as
constructing tables and writing macro-operations. For
example, in the sequence

ALPHA SET 1

DUP 2,9

PZE ALPHA
ALPHA SET ALPHA+1

ALPHA is first assigned a value of 1 and then redefined
nine times with its value incremented by 1 at each
iteration.

Boolean Pseudo-Operations

The Boolean pseudo-operations define symbols as
Boolean quantities.

The BOOL Pseudo-Operation

The BooL (Undesignated Boolean) pseudo-operation
functions like the EQu pseudo-operation except that the
variable field expression is Boolean and the name field
symbol becomes a Boolean symbol. The format of the
BOOL pseudo-operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Symbol BOOL A Boolean expression

BOOL defines the symbol in the name field as an 18-bit
constant. Relocatable symbols or virtual symbols used
in the variable field result in an error. Octal integers
in the variable field may not exceed six characters.

The RBOOL and LBOOL Pseudo-Operations

The format of the rBooL (Right Boolean) and LBoOL
(Left Boolean) pseudo-operations is:

OPERATION
FIELD

RBOOL
or
LBOOL

NAME FIELD

Symbol

VARIABLE FIELD

A Boolean expression

Relocatable symbols or virtual symbols used in the
variable field result in an error. Octal integers in the
variable field may not exceed six characters.

22

These pseudo-operations are similar to BooL except
that the symbol in the name field is defined as right
(left) Boolean. They are normally used to determine
the correct machine operation for the special type D
instructions (s1B, BNT, BFT, 1B, and riB). The following
mechanism is used.

1. If the expression in the variable field of an siB
instruction is entirely left (right) Boolean, the instruc-
tion is assembled as siL (sir). Constants are considered
to be both left and right Boolean, If the expression is a
mixture of both left and right Boolean, siL is assembled
but a warning message is issued.

2. If the variable field of an siL (sr) instruction is
not purely left (right) Boolean, left (right) and un-
designated Boolean, or purely undesignated Boolean,
a warning message is issued.

For example, following the instructions

X LBOOL 123
Y RBOOL 456
Z RBOOL 321

the instruction

BFT X assembles as LFT 123
BNT Y assembles as RNT 456
1IB Z assembles as IIR 321
RIB Y+Z assembles as RIR 777
SIB Y+Z assembles as SIL 323

A warning message is issued for the last instruction
(s1B) because of the mixture of left and right Boolean.

Conditional-Assembly Pseudo-Operations

Two pseudo-operations provided by map enable the
programmer to specify that the next instruction is to
be assembled only if certain criteria are met.

The IFT and IFF Pseudo-Operations

The 1rr (If True) and 1¥¥ (If False) pseudo-operations
specify conditions that determine whether the next
sequential instruction will be assembled. The format
of the 1rT and 1¥F pseudo-operations is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks IFT 1. element—relational opera-
or tor—element
IFF 2. If present, either of the
words OR or AND, pre-
ceded by a comma

The 1F1 (1FF) pseudo-operation assembles the next
instruction if the condition expressed by the operation
and the first subfield is met.

A relational operator consists of one or two adjacent
symbols signifying:

Equals

+ Greater than
- Less than

The elements at the left and right of these relations
must not be qualified. The element is used in one of
two ways:

1. To represent a numerical value equal to its S-value

2. To represent literal Bcp information, in which case
it is surrounded by slash (/) marks

Interpretation of the relational operator depends on
the context. If the elements represent Bcp, the relation
is a scientific collating sequence comparison, For ex-
ample,

IFT /A/=+/B/

is false and would therefore not permit assembly of the
next instruction. However,

IFT /A/=—/B/
is true and would permit assembly of the next instruc-

tion.
Also,

IFF //=/A/

compares blank to A and would permit assembly of
the next instruction.

If the elements represent a numeric quantity, the re-
lation is a numeric comparison. The programmer must
avoid noncomparable elements.

Presence of the second subfield signifies that another
IFT or IFF is to follow, in which case the combined effect
of the two is either a logical or or a logical anp.

The S-value and not the definition is used in numeric
evaluation of symbols. The ser pseudo-operation may
be used to control 1FF or 1FT pseudo-operations, as in
the sequence

K SET 4

IFT K=4
This statement is true, and the next instruction will be
assembled.

The fact that the conditional assembly extends over
only one instruction is not a serious restriction, since
the following instruction may be either another 1FT
or 1FF pseudo-operation or a macro-operation that ex-
pands to any length (see the section “Conditional
Assembly in Macro-Operations™).

The variable field of an 1FF or 1FT pseudo-operation
may not be extended by using the Erc pseudo-opera-
tion.

Symbol-Qualifying Pseudo-Operations

MAP provides two pseudo-operations, QUAL and ENDQ,
that enable a programmer to qualify symbols within
sections of a program.

The QUAL Pseudo-Operation

All symbols between the QuaL pseudo-operation and
its associated ENDQ pseudo-operation are qualified. The
format of the QuaL pseudo-operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks QUAL Symbol

The symbol in the variable field qualifies all symbols
defined within the section controlled by the Quar pseudo-
operation. References to a symbol defined in a qualified
section from within the same section need not be qual-
ified. References from outside the section are qualified
by placing the section symbol (variable field symbol
of the QuaL pseudo-operation) in front of a connecting
dollar sign followed by the desired symbol. For ex-
ample, the symbol @ssaLPHA refers to symbol ALPHA
defined in qualified section @s. The notation $BETA re-
fers to symbol BEra, which is not qualified. The un-
qualified section effectively has a blank qualifier.

Qualified sections may be nested to provide multiple
qualification. The range (from a QUAL to its correspond-
ing ExNDQ) of a lower-level QuaL must fall completely
within the range of the next higher QuAL. A symbol is
automatically qualified by any qualifiers of a higher
level than the highest one specified in using the symbol.
A multiply qualified symbol can be referenced without
using all the qualifiers if enough qualifiers are given
to determine the symbol uniquely. In any case, the
qualifiers must be specified in the same order that nest-
ing occurs within that section.

A sequence illustrating qualification is

QUAL H

A BSS 1 Qualified
CLA X Section H
ENDQ H

A QUAL] Qualified
BSS 1 Secti
ENDQ] ection J

In this case, if X is written as A or Hsa, it refers to
the first definition of A; X written as Jsa refers to the
second definition of A.

In the sequence of nested qualification

QUAL

A BSS

QUAL
CLA
ENDQ
ENDQ
A BSS
CLA

X written as A refers to the first definition of A; X
written as sa refers to the second nonqualified A.
Y written as A refers to the second A; Y written as
msA refers to the first A.

In the more complicated sequence

Qualified
Section Section M

Qualified
M$N

M Z 2R A

QUAL ONE

BSS 1

(B)gSAL 'II'WO Qualified {?1(1;11—
CLA X Section Section
ENDO Two) ONESTWO |\ GNE

CLA Y

ENDQ ONE

MAP Pseudo-Operations 23

QUAL THREE

BSS 1 Quali-
QUAL TWO } Qualified fied

BSS 1 Section Section
ENDQ TWO }\ THREE$TWO \ THREE
ENDQ THREE

X refers to the first A by oNEsa; to the second A by A,
by Twosa, or by ONEsTWOsA; to the third A by THREESA;
and to the fourth A by THREESTWOSA.

Y refers to the first A by A or by oNEsa; to the second
A by twosa or by onEstwosa; to the third A by
THREESA; and to the fourth A by tHREESTWOsA. In this
sequence, the two sections Two are distinct and not
separate parts of the same section. The first is section
oNEsTWO, and the second is section THREESTWO.

The ENDQ Pseudo-Operation
The format of the ENDQ pseudo-operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks ENDQ Either:
1. A symbol, or
2. Blanks

ENDQ delimits the range of the qualified section
whose symbol is in the variable field of this instruction.
If the variable field is blank, the innermost qualified
section is terminated. However, a low-severity warning
message is issued, since a variable field inadvertently
left blank can result in errors when using nested quali-
fication.

In nested qualified sections, a separate ENDQ is re-
quired to terminate each qualified section. Also, quali-
fied sections must be terminated in order beginning
with the lowest level section as shown in the following
sequence, or an error message will be issued.

QUAL ALPHA
QUAL BETA
QUAL GAMMA
ENDQ GAMMA
ENDQ BETA
ENDQ ALPHA

Control-Section Pseudo-Operations

Relocatable programs can be divided into segments.
By dividing large programs into relocatable segments,

24

individual segments can be coded and checked in
parallel, with consequent savings in time. Also, a seg-
ment can be modified without requiring reassembly of
the entire program.

The control-section pseudo-operations provide the
means for making references to and from such seg-
ments. 1BLDR makes the cross-references among pro-
gram segments that are assembled separately but
loaded together. (For further information, see the
publication IBM 7090/7094 IBSYS Operating System:
IBJOB Processor, Form C28-6275.)

Each program segment is a control section. In addi-
tion, sections within segments may be designated as
control sections by the programmer.

IBLDR treats control sections as being variable. A
control section may be replaced by another control
section or even deleted entirely. If more than one
control section is given the same designation, generally
only the first control section is retained.

The CONTRL Pseudo-Operation

The conTRL pseudo-operation designates a program or
a part of a program as a control section. The format of
the conTRL pseudo-operation is:

OPERATION
FIELD

CONTRL

NAME FIELD VARIABLE FIELD

Symbol

One of the following:

1. A location counter sym-
bol, or

2. A qualification symbol, or

3. Two subfields, separated
by a comma, each contain-
ing an ordinary symbol

The contrL pseudo-operation delimits the control
section named in the name field in accordance with
the contents of the variable field. If a location-counter
symbol is used in the variable field, all instructions
under control of the specified location counter are
delimited. The blank location counter cannot be used
as a control section. If a qualification symbol is used,
all instructions between the specified QuaL pseudo-
operation and its associated ENDQ pseudo-operation are
delimited. If two subfields are used, all instructions are
delimited beginning at the location specified by the
first symbol and ending at, but not including, the lo-
cation specified by the second symbol.

If there is no symbol in the name field, the first sym-
bol in the variable field is taken as the external name
of the control section and a low-severity message is
issued. The length of a control section is always the
difference between the value of the location counter in
control at the end of the section and its value at the
beginning of the section. Hence, the use of Orc or USE
pseudo-operations within control sections may result
in incorrect length calculations, in effect, “losing” in-

structions from the section. The conTRL pseudo-opera-
tion may appear anywhere in the program. In an abso-
lute assembly, a low-severity error message is printed,
but coNTRL is otherwise ignored. For example,

X CONTRL AB

defines the portion of the program from A to, but not
including, B as control section X.

Control sections may be nested.

To obtain the blank comMon area, as used by 7090/
7094 FORTRAN Iv, an instruction of the form

CONTRL //

must be used. For example, in the sequence
CONTRL //
USE A
USE B
USE //
BSS 20
USE C
USE A
END

the blank comMoN counter // will have its initial lo-
cation defined as the last value reached by location
counter C. The area under control of the // counter is
a control section.

The ENTRY Pseudo-Operation

The ENTRY pseudo-operation provides a reference from
outside a program segment to a point within the pro-
gram segment. The format of the ENTRY pseudo-opera-
tion is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
1. Asymbol, |ENTRY Symbol
or
2. Blanks

The name field symbol becomes the external name of
the entry point. The variable field symbol is the in-
ternal name of the entry point and must be an ordinary
symbol, although it may be qualified. If the name field
is blank, the variable field symbol serves as the external
name. If the variable field symbol is qualified, the (left-
most) qualifier is used. For example,
ALPHA ENTRY BETA

specifies that ALPHA is the external name of an entry
point into this program from another program and that
BETA is the internal name of this entry point.

File-Description Pseudo-Operations

Two pseudo-operations are provided by map for spec-
ifying input/output file requirements in relocatable
assemblies. These pseudo-operations describe files that
are used in conjunction with Library 1ocs. (See the
publication IBM 7090/7094 IBSYS Operating System:
Input/Output Control System, Form C28-6345.)

IBLDR generates a file control block and assigns the
file to a buffer pool. File control blocks described in one
program segment may be referenced in other segments.
If the same file is described more than once, only the
first description is effective.

The FILE Pseudo-Operation

The FILE pseudo-operation enables the programmer to
specify input/output file requirements. The ¥LE
pseudo-operation causes generation of a sFILE card, as
well as any sETc cards needed. The format of the FILE
pseudo-operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Symbol FILE External file name, options, . . .

The symbol in the name field of the riLE pseudo-
operation is the internal name of the file used by the
programmer within his program. Whenever this name
appears in the variable field of an instruction, the re-
locatable reference is to the generated file control
block for this file.

The first subfield of the variable field is the external

file name. The order of the subsequent subfields is

arbitrary.

In describing the subfields, options that may be in-
cluded or omitted are shown in brackets. When an
option is not specified, the standard option, which is
shown underlined, is assumed. Braces indicate that a
choice of the enclosed options is to be made by the
user. Options are shown in all upper-case letters in the
form in which they must be specified.

External File Name is an alphameric literal of up to
18 characters used to determine equivalence between
files. This subfield must be specified as the first subfield
in the variable field. It may be null (the variable field
may start with a comma), in which case the six-
character name field (left-justified with trailing blanks)
is inserted as the external name.

Unit-Assignment Option

[, primary unit] [, secondary unit]

Two symbolic units may be specified for each file: the
primary unit, and a secondary unit to be used as a reel-
switching alternate. The format used for these speci-
fications is indicated below, where the following nota-
tion is used:

MAP Pseudo-Operations 25

Form C28-6311-2
Page Revised 2/24/64
by TNL N28-0097

X a real channel (specified by one of the letters A

through H)

P a symbolic channel (specified by one of the letters S
through Z)

I an intersystem channel (specified by one of the letters |
through Q)

k a unit number (specified by one of the numbers 0
through 9)

a access mechanism number (specified by the number 0)

m module number (specified by one of the numbers 0
through 9)

s data channel switch or interface (specified by either of
the numbers 0 or 1)

M model number of 729 Magnetic Tape Unit (specified by
II, IV, V, or VI)

D 1301 Disk Storage (specified by the letter D)

N 7320 Drum Storage (specified by the letter N)

H 7340 Hypertape Drive (specified by the letter H)

The following format is used for assigning units:

SPECIFICATION EFFECT

blank Use any available unit.

M Use any available 729 Magnetic Tape Unit
of this model.

X Use any available unit on this channel.

P Use any available unit on this channel.

X(k) Use kth available unit on this channel.
Parentheses are required.

PM Use any available 729 Magnetic Tape Unit
of specified model on designated symbolic
channel.

P(k)M Use kth available 729 Magnetic Tape Unit
of specified model on designated symbolic
channel. Parentheses are required.

I Use any available unit on channel I. This
specification can be used for input and out-
put units.

M Use any available 729 Magnetic Tape Unit
of specified model on channel 1. This speci-
fication can be used only for output units.

1(k) Use kth available unit on channel I. Paren-
theses are required. This specification can
be used for input and output units.

I(k)M Use kth available 729 Magnetic Tape Unit
of specified model on channel I. Paren-
theses are required. This specification can
be used only for output units.

I(k)R Use kth available unit on channel I, and re-
lease unit from reserve status after use.
Parentheses are required.

XDam/s Use 1301 Disk Storage on channel X,
access mechanism number a (which must
be 0), and module number m.

XNam/s Use 7320 Drum Storage on channel X,
access mechanism a (0), module number
m (0, 2, 4, 6, 8) and data channel switch
setting s (0, 1).

XHk/s Use 7340 Hypertape Drive on channel X,
unit number k, and data channel switch s.

IN, IN1, IN2 Use system input unit.

0OU, 0U1, OU2 Use system output unit.

PP, PP1, PP2 Use system punch output unit.

UTk Use system utility unit number k.

CKk Use system checkpoint unit number k.

RDX Use card reader on channel X.

PRX Use printer on channel X.

26

PUX Use card punch on channel X.

INT File is internal,

An asterisk in the secondary unit field in-
dicates that the secondary unit of a file is
to be any unit on the same channel and of
the same model as the primary unit.

No units are assigned. A file control block
is generated but does not refer to a unit
control block.

File-Mounting Option

NONE

MOUNT MOUNTi
»<READY and/or | > {READYi
DEFER DEFERi

The file-mounting option governs the on-line message
to the operator indicating the impending use of an
input/output unit, The first form applies to both units;
the second applies to the primary unit when i=1 and
to the secondary unit when i=2. Two standard options
are indicated—one is for units assigned to system unit
functions (rEADY) and the other is for nonsystem units
(MOUNT).
The effects of these operations are:

MOUNT A message is printed before execution, and a
stop occurs for the required operator action.
MOUNT is the standard option for nonsystem
units.

A message is printed before execution, but no
stop occurs. READY is the standard option for
all input/output units assigned to system unit
functions.

A message and operator stop are deferred until
the file is opened by the IOCS calling sequence.

TSX .OPEN, 4
PZE internal file name

READY

DEFER

The i form of this option overrides for unit i any
general option specified.
As an example of the file-mounting option.

MOUNTI1, DEFER2

causes the MOUNT action for the primary unit and the
DEFER action for the secondary unit.
Operator File-List Option

[’ ‘LIST :I
NOLIST
LIST This file will appear in the operator’s mount-

ing instructions.

No message will be printed unless the
DEFER option has been specified.
File-Usage Option

NOLIST

INPUT
OUTPUT
> JINOUT
CHECKPOINT (or CKPT)

INPUT This is an input file.

OUTPUT This is an output file.

INOUT This file may be either an input or an
output file. The object program sets
the appropriate bits in the file block.
The file is initially set at input.

CHECKPOINT This is a checkpoint file.

(or CKPT)

Block-Size Option
[, BLOCK=xxxx (or, BLK=xxxx)]

xxxx is an integer (0-9999) that specifies block size for
this file. If the block-sequence and/or check-sum op-
tions (see below) are specified, a word must be added
in determining block size. If the BLoCk option is
omitted, the assembly program assumes a block size
of 14 for Bcp or Mxscep files and 256 for BIN and MXBIN
files.

Activity Option

[, ACT=xx]

xx is an integer (0-99) that specifies activity of this
file in relation to other files. If the activity subfield is
omitted, activity is assumed to be 1. The activity
value is used in determining the number of input/
output buffers assigned to each buffer pool in the object
program.

Reel-Handling Option

ONEREEL
» { MULTIREEL for unlabeled files only
(or REELS)

ONEREEL No reel switching should occur.

MULTIREEL Reel switching will occur. Every out-

(or REELS) put file will switch reels if an end-of-
tape condition occurs.

Bhsovroias L] forlabeled fles only |

NOSEARCH If an incorrect label is detected when
opening an input file, IOCS causes a
stop for operator action.

SEARCH If an incorrect label is detected, IOCS

enters a multireel search for the file
with the desired label.

File-Density Option

HIGH
LOW
» (200
556
800

HIGH Tape-density switch is assumed to be set so that
execution of an SDH will result in using correct
density.

LOW Tape-density switch is assumed to be set so that
execution of an SDL will result in using correct
density.

200 File-recording density is 200 cpi.

556 File-recording density is 556 cpi.

800 File-recording density is 800 cpi.

If a system unit is assigned to this file, system set den-
sity supersedes the density specified by these options.
Mode Option

BCD,
BIN
MXBCD
MXBIN
BCD File is in BCD mode.
BIN File is in binary mode.
MXBCD File is in mixed mode, and first record is
BCD.

MXBIN File is in mixed mode, and first record is
binary.
Label-Density Option
SLABEL
HILABEL
LOLABEL
FLABEL
SLABEL All header label operations performed at
installation standard density, which is
currently high density.
HILABEL All header label operations performed at
high density.
LOLABEL All header label operations performed at
low density.
FLABEL All header label operations performed at

same density as file.
Regardless of these options, the LABEL pseudo-opera-
tion must be used to specify a labeled file. If label
density is not specified, all label options are performed
at the density that is high density at the particular
installation.
Block-Sequence Option

ANOSEQ
»{SEQUENCE
(or SEQ)
NOSEQ Block-sequence word neither checked if

reading, nor formed and written if
writing.
SEQUENCE Block-sequence word checked if read-
(or SEQ) ing, or formed and written if writing.

Check-Sum Option

[ieRsN]

NOCKSUM Check sum neither checked if reading,
nor formed and written if writing.
CKSUM Check sum checked if reading, or

formed and written if writing.

Check-sum options may not be specified unless a
block-sequence option has been specified.
Checkpoint Option

: E NOCKPTS
CKPTS :l
NOCKPTS No checkpoints initiated by this file.
CKPTS Checkpoints initiated by this file.
Checkpoint-Location Option
[, AFTER LABEL]

Checkpoints are written following the label on this file
when reel switching occurs. If ckprs is specified and
this field is omitted, checkpoints are written on the
checkpoint file when reel switching occurs.
File-Close Option
SCRATCH
lz PRINT

PUNCH
HOLD

SCRATCH
PRINT

File is rewound at end of application.

File is to be printed and is rewound and
unloaded at end of application. PRINT
will appear in on-line removal message
at end of execution.

MAP Pseudo-Operations 27

Form C28-6311-2
Page Revised 2/24/64
by TNL N28-0097

PUNCH File is to be punched and is rewound
and unloaded at end of application.
PUNCH will appear in on-line removal
instructions.

HOLD File is to be saved and is rewound and

unloaded at end of application. HOLD
will appear in on-line removal instruc-
tions.

If the unit assigned is system input unit 1, system out-
put unit 1, or system peripheral punch unit 1, the unit
will not be rewound and the removal message will not
be printed.

Starting Cylinder-Number Option
[, CYLINDER=xxx (or, CYL=xxx)]

xxx is the number (000-249 for disk, 000-009 for drum)
of the starting cylinder for this file. The equals sign is
required. When disk or drum storage is specified for
a file, the starting cylinder number must be specified
by the user.

Cylinder-Count Option
[, CYLCOUNT=xx (or, CYLCT=xxx)]

xxx is the number (000-250 for disk, 000-010 for drum)
of consecutive cylinders to be used by this file. The
equals sign is required. When disk or drum storage is
specified for a file, cylinder count must be specified
by the user.

Disk Write-Checking Option
[, WRITECK]

Wirite-checking is performed after each disk-write or
drum-write sequence for this file.

Hypertape Reel-Switching Options
HRFP
HRNFP
HNRFP
HNRNFP
These options may be used in conjunction with the
Hypertape option, HYPER, where reel switching is likely
to occur. If any of these options are used but HYPER
is not specified, a warning message is issued.
The effects of these options are:

HRFP Hypertape, rewind, file protect.
HRNFP Hypertape, rewind, no file protect.
HNRFP Hypertape, no rewind, file protect.
HNRNFP Hypertape, no rewind, no file protect.

Four subfields provide information for cross-checking
by mBLDpR. These subfields, the conversion, block-size
check, nonstandard label routine, and Hypertape op-
tions, are not placed on the sFILE card.

Conversion Option
NOHCVN
»{ REQFICV

OPTHCV
NOHCVN Alphameric-to-BCD conversion routine not
necessary. File may not be assigned to
card equipment.

28

REQHCV Alphameric-to-BCD conversion routine re-
quired. File must be assigned to card
equipment,

OPTHCV Alphameric-to-BCD conversion optional.

Regardless of the conversion options specified, it is the
responsibility of the programmer to provide the re-
quired conversion routines. File may be assigned to
any input/output device.

Block-Size Check Option
E MULTI=xxxx ,
MIN =xxxx
MULTI =xxxx Block size is a multiple of xxxx.

MIN =xxxx

Only one of the block-size check options may appear.
The quantity specified is used by 1BLDR to check the
block size indicated by the BLock option. If neither
option appears, block size is assumed to be exactly
that specified by the BLock option.
Nonstandard-Label-Routine Option

[, NSLBL=symbol]
The symbol is the name of a nonstandard-label routine.
If the label routine is part of the program segment
being assembled, the label routine must be made a
control section with the symbol used as its external
name. If the label routine is not part of this program
segment, the symbol must be a virtual symbol.
Hypertape Option
[,HYPER]

HYPER must be specified if a program requires Hyper-
tape for a particular file. If reel switching may occur,
the Hypertape reel-switching options may be used in
conjunction with uyper. However, use of Hypertape
reel-switching options without specifying HYPER re-
sults in a warning message.

If a file may be attached to a Hypertape or a 729
Magnetic Tape Unit, the HYPER specification is not
necessary.

For example, the options for an input file might be
specified in the instruction

INPUT FILE

Minimum block size is xxxx.

,A(1),READY,BLK =20,

556,HOLD
Since the first subfield is null, the symbol iNpuT in the
name field is regarded as the external name. The re-
maining subfields specify the first available unit on
channel 1, the file-mounting option, a block size of 20
words, a file density of 556 characters per inch, and the
file is to be saved and must be rewound and unloaded
at the end of the application.

The LABEL Pseudo-Operation

The LaBEL pseudo-operation enables the programmer
to label a file and causes generation of the sLABEL con-
trol card. Whereas the FiLE pseudo-operation describes
the file characteristics, LABEL simply labels the file. The

format of the LABEL pseudo-operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD

1. A symbol, |LABEL Five subfields:
or 1. File name,

2. Blanks 2. File serial number or disk
or drum Home Address-2,

. Reel sequence number,

. Retention period (in days)
or date,

. File identification name

(%1 SR Y

The file name is an alphameric name of eighteen or
fewer Bcp characters. If this subfield is null (the vari-
able field begins with a comma), the symbol in the
name field is inserted as the file name. If the name field
is also blank, 000000 is inserted as the file name.

The file serial number is an alphameric subfield of
five or fewer characters, and it may be null. If the label
is for a file on disk, this subfield must contain two Bcp
characters to specify the Home Address-2. (For further
information, see the publication General Information
Manual, IBM 1301 Disk Storage With IBM 7000 Series
Data Processing Systems, Form D22-6576.) The reel-
sequence number is a numeric subfield of four or fewer
digits, and it may be null.

For retention period in days, four or fewer numeric
characters are used. For date, two or fewer numeric
characters represent the year, and three or fewer
numeric characters represent the day of the year. The
year and the day of the year are separated by the
character / (slash).

The file identification name is an alphameric subfield
of eighteen or fewer Bcp characters. This subfield may
contain blanks but not commas. A comma will termi-
nate this subfield, and excessive subfields will be
flagged as errors. This subfield may also be null.

For example,

LABEL INVOICE,,241,63/248,PRIMARY FILE

specifies that the mvvoice file be labeled, provides its
reel-sequence number of 241, dates it as the 248th day
of 1963, and specifies PRIMARY FILE as the file identifica-
tion name.

The variable field of the rLaBeL pseudo-operation
must be contained on one card. No erc cards may be
used following LABEL.

The variable field is checked for errors. If there are
more than five subfields, the variable field is truncated,
only the first five subfields are used, and a warning
message is printed. If there are fewer than five sub-
fields, an appropriate number of commas is supplied
so that the sLABEL card always has the required sub-
fields and a warning message is printed.

Each subfield is then checked for length except for
the last one. Subfields that are longer than the specified
maximums are truncated to the maximum number of

Form C28-6311-2
Page Revised 2/24/64
by TNL N28-0097

characters allowed for each, and a format error
message is printed. Numeric subfields are also checked
for validity, and the presence of any nonnumeric char-
acters causes a format error message to be printed.

Operation-Defining Pseudo-Operations

Three pseudo-operations that define symbols as opera-
tion codes are provided by mar.

The OPD Pseudo-Operation

The opp (Operation Definition) pseudo-operation de-
fines the symbol appearing in the name field as an
operation code. The format of the opp pseudo-opera-
tion is:

OPERATION

NAME FIELD FIELD VARIABLE FIELD

Symbol OPD 12-digit octal machine opera-

tion code definition

The 12-digit machine operation code definition in the
variable field must be specified according to the gen-
eral format given in Appendix C.

The opp pseudo-operation defines the symbol in the
name field as an operation code. The symbol must be
defined by the opp pseudo-operation before its use in
an operation field.

For example,

ALPHA OPD 430106004500

defines ALPHA as an operation code having the same
effect as the machine instruction crA.

The OPVFD Pseudo-Operation

The opvrp (Operation Variable Field Definition)
pseudo-operation defines the symbol in the name field
as the operation code represented by the expression
in the variable field. The format of the opvrp pseudo-
operation is:

OPERATION
FIELD

OPVFD

NAME FIELD

Symbol

VARIABLE FIELD

From 1 to 36 subfields, sep-
arated by commas

The format of the variable field is the same as that

‘given for the vrp pseudo-operation. The variable field

expression must result in a 36-bit word having the
format given in Appendix C.

The symbol in the name field becomes the mnemonic
operation code of the instruction. The symbol must be
defined by opvep before being used in an operation
field.

For example,

ALPHA OPVFD 06/43,012/0600,018/4500
defines aALPHA as an operation code having the same
effect as the machine instruction cra.

MAP Pseudo-Operations 29

The OPSYN Pseudo-Operations

The opsyN (Operation Synonym) pseudo-operation
equates the symbol in the name field to the mnemonic
operation code in the variable field. The format of the
opsYN pseudo-operation is:

OPERATION

NAME FIELD FIELD VARIABLE FIELD

OPSYN

Symbol

Mnemonic operation code

The mnemonic operation code in the variable field
must be a valid operation code (i.e., a machine opera-
tion code, a pseudo-operation code, a macro-operation
code, or a code that has been defined previously by
OPD, OPVFD, or another opsyn).

If a previously defined operation code is redefined
with OPD, OPVFD, or OPSYN, a warning message is issued.
For example,

CLA OPSYN CAL

redefines cLA as caL. The message warns the program-
mer of possible inadvertent redefinition of an existing
operation code.

Miscellaneous Pseudo-Operations

The END Pseudo-Operation

The END pseudo-operation signals the end of the sym-
bolic deck and terminates assembly. The END operation
must be present and must be the last card in the sym-
bolic deck. The format of the enp pseudo-operation is:

OPERATION
FIELD

1. A symbol, or |END
2. Blanks

NAME FIELD VARIABLE FIELD

1. An element, or
2. Blanks

In a relocatable assembly, the value of the element
in the variable field is the nominal starting point of the
program segment.

The Exp pseudo-operation performs the following
functions in an absolute assembly:

1. Any binary output waiting in the punch buffer is
written out.

2. A binary transfer card to which control is trans-
ferred is produced. It has a transfer address that is the
value of the expression in the variable field.

If unencH is in effect, no cards are punched.

The ETC Pseudo-Operation

The variable field of most instructions may be ex-
tended over additional cards by using the ETC pseudo-
operation. The format of the etc pseudo-operation is:

30

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Ignored ETC Subfields, separated by com-
mas, or partial subfields

The 1c pseudo-operation appends its variable field
as a continuation of the variable field of the previous
instruction. The blank that separates the variable field
from the comments field of a card is an end-of-card
indicator and not an end-of-variable-field indicator.
The number of ETc cards in one group is generally lim-
ited by the size of the resultant expression and/or the
number of subfields. A variable-field expression is lim-
ited to about 100 elements, operators, and/or subfields.
No element of an expression may be split between
two cards. For example, the instruction

TIX NAME+14,1

could be written

TIX NAME +1
ETC 4,1
or
TIX
ETC NAME
ETC +1,4
ETC ,1
or
TIX NAME +1,4,
ETC 1

but could not be written

TIX NA
ETC ME+1,4,1

The following operations may not be followed by an
Et1C card:

ABS IFT PCC
BCI LABEL PCG
DEC LBL PMC
DETAIL LDIR PUNCH

*DUP LIST QUAL
EJECT LORG REM
END NOCRS TITLE
ENDM NULL TTL
ENDQ OCT UNLIST
EVEN OPD UNPNCH
FUL OPSYN USE
IFF ORGCRS

*A DUP within the range of another DUP should not be fol-
lowed by an ETC pseudo-operation.
If an ExC follows any of these operations except END,
the erc will be ignored and a low-severity warning
message issued.

The REM Pseudo-Operation

The rEM (Remarks) pseudo-operation permits remarks
to be entered into the assembly listing. The format of
the rREM pseudo-operation is:

OPERATION
FIELD

REM

NAME FIELD VARIABLE FIELD

Any informa- Any information

tion

The contents of columns 8-10 (the operation field)
are replaced by blanks, and the remaining contents of
the card are copied onto the assembly listing. The rREM
pseudo-operation supplements the remarks card that
has * in column 1. In a macro-definition, the variable
field of the rEM card is scanned for substitutable pa-
rameters, whereas the * card causes an error message
but is otherwise completely ignored.

Absolute-Assembly Pseudo-Operations

The pseudo-operations ABS, FUL, PUNCH, UNPNCH, and
Tcp are effective in absolute assemblies only. They are
ignored in a relocatable assembly.

The ABS Pseudo-Operation

The aBs (Absolute) pseudo-operation specifies card
output in the standard 22-word-per-card column-binary
card format. The format of the ABs pseudo-operation is:

OPERATION

NAME FIELD FIELD

Blanks ABS

VARIABLE FIELD

Ignored

Binary cards are normally punched in the aBs mode
unless otherwise specified. The aBs pseudo-operation
always causes the next output word to start a new card.
Any words remaining in the punch buffer are written
out in the previously specified format.

Column-binary card format is described in the pub-
lication IBM 7090/7094 IBSYS Operating System:
IBJOB Processor, Form C28-6275.

The FUL Pseudo-Operation

The ruL pseudo-operation specifies card output in the
24-word-per-card “full” mode. The format of the ruL
pseudo-operation is:

OPERATION
FIELD

FUL

NAME FIELD
Blanks

VARIABLE FIELD

Ignored

The ruL pseudo-operation always causes the next
output word to start a new card. Any words remaining
in the punch buffer are written out in the previously
specified format.

The full mode card format is described in the publi-
cation IBM 7090/7094 IBSYS Operating System: IBJOB
Processor, Form C28-6275.

The PUNCH and UNPNCH Pseudo-Operations

The puncH and UNPNCH pseudo-operations cause re-
sumption and suspension, respectively, of binary card
punching. The format of the runcH and uNPNCH
pseudo-operation is:

OPERATION
FIELD

PUNCH or |Ignored
UNPNCH

NAME FIELD VARIABLE FIELD

Blanks

The TCD Pseudo-Operation

A binary transfer card directs an absolute loader pro-
gram to stop loading cards and to transfer control to a
designated location. In most cases, a transfer card is
required at the end of the binary deck. In absolute
assemblies, the END pseudo-operation causes a binary
transfer card to be punched. However, the Tcp pseudo-
operation can cause a transfer card to be produced
before the end of the binary deck.
The format of the Tcp pseudo-operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks TCD A symbolic expression

The Tcp pseudo-operation performs the following
two functions:

1. Any binary output waiting in the punch buffer is
written out.

2. A binary transfer card is produced having a trans-
fer address that is the value of the expression in the
variable field. See the publication IBM 7090/7094
IBSYS Operating System: IBJOB Processor, Form C28-
6275, for a description of the format of a transfer card.

If unencH is in effect, no cards are punched.

List-Control Pseudo-Operations

The PCC Pseudo-Operation

The pcc (Print Control Cards) pseudo-operation has
the following format:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks PCC Either:
1. ON
2. OFF
3. Blanks
4. Any information

PCC ON causes listing of the following control cards:
TTL, TITLE LBL, LIST, INDEX, SPACE, EJECT, DETAIL, PCG, and
pMc unless the UNLIST pseudo-operation is in effect.
PCC OFF suppresses listing of these cards and is the
normal mode. The pcc card is always listed unless

MAP Pseudo-Operations 31

UNLIST is in effect. If the variable field is blank or
contains anything other than oN or oFF, the current
setting of the pcc switch is inverted.

The UNLIST Pseudo-Operation

The unvisT pseudo-operation causes all listing to be
suspended. The format of the uNLIsT pseudo-operation
is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks UNLIST |Ignored

The unLisT pseudo-operation is itself listed unless
a previous unLsT is still in effect. After an UNLIST, no
lines are listed by the assembly program until a LisT
or END pseudo-operation is encountered.

The LIST Pseudo-Operation

The ristT pseudo-operation causes listing to be re-
sumed following an uNrisT. The format of the LisT
pseudo-operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks LIST Ignored

The vist pseudo-operation does not appear in the
assembly listing unless the mode of pcc is ow, but it
does cause one blank line to appear in the listing
whether or not UNLIST is in effect.

The TITLE Pseudo-Operation

The TiTLE pseudo-operation abbreviates the assembly
listing by eliminating certain kinds of information. The
format of the TITLE pseudo-operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks TITLE Ignored

TITLE causes the assembly program to exclude the
following information from the listing:

1. Any line that contains octal information except
the instruction that causes it, i.e., all but the first word
generated by ocr, DEC, Bc, and VFD

2. All but the entire first iteration of each instruc-
tion in the range of a pup

3. All complex fields in a relocatable assembly

4. The expansion of save and all but the first three
instructions in the expansion of caLL.

5. All literals in the Literal Pool except the first

A TiTLE pseudo-operation is effective until the as-
sembly program encounters a DETAIL operation. TITLE
is not listed except when the mode of pcc is onN.

32

The DETAIL Pseudo-Operation
The peram pseudo-operation causes the listing of
generated data to be resumed after it has been sus-
pended by a titLE pseudo-operation. The format of
the DETAIL pseudo-operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks DETAIL |}Ignored

The sole effect of the pETAIL operation is to cancel
the effect of a previous TiTLE pseudo-operation. If
TITLE is not in effect, the pETAIL operation is ignored
by the assembly program. The pETAIL operation does
not appear in the assembly listing unless the mode of
PCC is ON.

The EJECT Pseudo-Operation

The gjecT pseudo-operation causes the next line of the
listing to appear at the top of a new page. The format
of the gjecT pseudo-operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks EJECT Ignored

The gjecT pseudo-operation appears in the assembly
listing only if the mode of pcc is on.

The SPACE Pseudo-Operation

The space pseudo-operation permits one or more
blank lines to be inserted in the assembly listing. The
format of the space pseudo-operation is:

OPERATION
FIELD

SPACE

NAME FIELD

Blanks

VARIABLE FIELD

1. A symbolic expression, or
2. Blanks

The definition of the expression in the variable field
determines the number of blank lines in the assembly
listing. If the value of the expression is zero or the
variable field is blank, one blank line appears. sPACE
itself is listed only if the mode of pcc is on.

The LBL Pseudo-Operation

Serialization of a deck normally begins with the first
four characters of the deck name, which are left-
justified and filled with trailing zeros. However,
serialization can be altered by using the LBL pseudo-
operation. The format of the 1L (Label) pseudo-
operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks LBL Up to 8 BCD characters,

ended by a blank or comma

LBL causes binary cards to be identified and serialized
in columns 73-80, as follows:

1. Serialization begins with the characters appear-
ing in the variable field, which is left-justified and
filled with terminating zeros.

2. Serialization is incremented by one for each
card until the rightmost nonnumeric character or the
seventh character is reached, after which the numeric
portion recycles to zero. The two leftmost characters
are regarded as fixed, even though they may be
numeric.

For example, if the variable field is coded as 1, the
first card is identified and serialized as 1p000000.

If the variable field is coded as INsTRO03, serialization
is as follows:

INSTRO30
INSTRO31

INSTR999
INSTRO000

At the beginning of each card, the assembly pro-
gram normally prints the phrase:

BINARY CARD ID. Number

If a comma is used to terminate the variable field,
printing of this phrase is suppressed. Printing of this
phrase can be reinitiated by using an rLBL pseudo-
operation ending in a blank.

Serialization can be altered at any point in the
source program by using additional rLBL pseudo-
operations. However, since LBL does not force punch-
ing of the current card, reserialization is not effective
until the next card is normally punched.

LBL is listed only if the mode of pcc is on.

The INDEX Pseudo-Operation

The 1NpEX pseudo-operation provides a table of con-
tents of important locations within an assembly. The
format of the inpEX pseudo-operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks INDEX Symbols, separated by commas

The first appearance of an inpEx card causes the

message
TABLE OF CONTENTS

to be listed. Each subfield of an inpEx pseudo-opera-
tion causes the symbol and its definition to be listed.
If a virtual symbol is used, its definition will be the
control section number assigned to the symbol.

INDEX pseudo-operations may appear anywhere in
the source program and need not be grouped. The

listing generated by inpEx pseudo-operations is in-
serted where the pseudo-operations appear.

For meaningful commentary, INDEX pseudo-oper-
ations can be grouped and interspersed with ex-
planatory remarks cards.

Listing of the iNDEX card itself is governed by the
mode of the pcc switch.

The PMC Pseudo-Operation

The pmc pseudo-operation causes (or suppresses) list-
ing of the card images generated by macro-instructions
and by the reTurN pseudo-operation. The format of
the pmc (Print Macro Cards) pseudo-operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks PMC Any one of:
1. ON
2. OFF
3. Blanks
4. Any information

oN in the variable field causes listing of the card
images generated by macro-instructions; orF, which is
the normal mode, suppresses such listing. A blank
variable field or one containing any information other
than oN or ofF inverts the current setting of the rmc
switch.

erc cards extending the variable field of a macro-
instruction are listed even if the mode of pmc is OFF.

Listing of the pmc card is controlled by the pcc
pseudo-operation.

The TTL Pseudo-Operation

The TTL (Subtitle) pseundo-operation generates a sub-
heading in the listing. The format of the TTL pseudo-
operation is:

OPERATION

NAME FIELD FIELD VARIAI;LE FIELD

Blanks TTL

A string of BCD characters
starting in card column 12

Card columns 13-72 are used in words 4-13 of a
generated subheading, which will appear on each
page. TTL also forces a page ejection.

A subheading may be replaced by the variable field
of another T and may be deleted by a TTL with a
blank variable field.

Listing of the TTL card is controlled by the pcc
pseudo-operation.

The PCG Pseudo-Operation

The pce (Print Control Group) pseudo-operation
causes listing of the relocatable control bits of each

MAP Pseudo-Operations 33

assembled word. The format of the rcc pseudo-
operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks PCG Any one of:
1. ON
2. OFF
3. Blanks
4. Any information

oN in the variable field causes listing and orF sup-
presses listing of the relocatable control bits for each
assembled word. o~ is the normal mode. A blank
variable field or one containing any information other
than oN or orF inverts the current setting of the pcc
switch, prcc is ignored in an absolute assembly.
rcG is listed if the mode of pcc is on.

Special Systems Pseudo-Operations

Users of the MaP language are provided with a wide
range of subroutines which are included in the sys-
tems library. A group of system pseudo-operations
permits the transfer of control and data between the
main program and the subroutine. Details about
specific calling sequences are provided in the publica-
tions IBM 7090/7094 IBYSY Operating System: IBJOB
Processor, Form C28-6275 and IBM 7090/7094 Opera-
ting System: Input/Output Control System, Form
C28-6345.

The CALL Pseudo-Operation

The caiLL pseudo-operation produces the standard
1BjoB subroutine calling sequence. The format of the
caLL pseudo-operation is:

OPERATION
FIELD

CALL

NAME FIELD

Symbol

VARIABLE FIELD

One or more subfields:

1. Symbol or **

2. Calling sequence param-
eters

3. Error returns

4, Identification number

The first subfield in the variable field must contain
an unqualified symbol (the name of a subroutine) or
**, The next subfield contains the parameters of the
calling sequence (if any), enclosed in parentheses and
separated by commas. These may be any symbolic ex-
pression.

Error returns (if any), separated by commas, occupy
the next subfield. The last subfield is an identification
number (if desired), less than 32,768 and delimited by
apostrophes. If specified, this number appears in the
calling sequence in place of the assembly line number.

34

When an identification number is not specified, the
assembly line number appears.

For example, a typical caLL operation might be
coded

LCS CALL name(argl,arg2, . ..,argn)

ETC retl,ret?, ... retn’id’
where name is the name of a subroutine; argl, arg2,
. ., argn are the parameters of the calling sequence;
retl, ret2, . . ., retn are the error returns; and ’id’ is the
identification number.

A comma should not precede the left parenthesis,
follow the right parenthesis, nor precede the 'id’.

If the subroutine is part of the program being assem-
bled, the reference is to the routine in the program.
However, if the subroutine is not part of the program
being assembled, the symbol in the first subfield of the
variable field becomes the external name of the sub-
routine called. If ** is used, a constant zero becomes
the called address.

The remaining subfields generate the calling se-
quence.

Expansions of the CALL Pseudo-Operation

The linkage produced by
LCS CALL NAME(PL,...,Pn)R1,
ETC ..., Rm’ID’
is
LCS TSX NAME,4
TXI *+24+n+m,n
PZE ID,,Linkage Director
PZE P1
PZE Pn
TRA Rm
TRA R1

where P is a subroutine parameter, R is an error
return, n is the number of parameters and m is the
number of error returns. The Linkage Director is a
location unique for each assembly, and has no associ-
ated symbol. It may be given a symbolic designation
using the Lpir pseudo-operation.

The operation

LCS CALL NAME(P1,P2)
produces

LCS TSX NAME 4
TXI *+242+4+0,2
PZE Line number,,Linkage Director
PZE Pl
PZE P2

The statement

LCS CALL NAME,R1

produces
LCS TSX NAME 4
TXI *+240+1,,0
PZE Line number,,Linkage Director
TRA R1
The statement
LCS CALL NAME
generates
LCS TSX NAME 4
TXI *4-24-0+40,,0
PZE Line number,,Linkage Director

The SAVE Pseudo-Operation

. The savE pseudo-operation produces the instructions
necessary to save and restore the index registers and
indicators, to disable and restore all operative traps,
to provide error returns used by a subprogram, and
to store the contents of index register 4 in sysLoc and
in the Linkage Director. The format of the save
pseudo-operation is:

OPERATION
FIELD

SAVE

NAME FIELD

Symbol

VARIABLE FIELD

Up to 7 subfields containing
integers or immediate sym-
bols and any or all of the
letters I, D, E

The order in which the subfields in the variable field
of the save pseudo-operation are used is not important.
All subfields are optional.

As many as 7 numeric subfields may be used to
specify the index registers that are to be saved and
restored. Immediate symbols may also be used to
specify index registers. Any or all index registers may
be specified in any order.

Index registers are saved in the order 4, 1, 2, 3, 5,
6, 7 and are restored in the opposite order. Index reg-
ister 4 is automatically saved and restored, although
it may still be specified.

One of the three remaining subfields is literally the
character I; another is literally the character D; and
the last is literally the character E.

The presence of I signifies that the sense indicators
are to be saved and restored.

The presence of D causes all operative traps to be
disabled and restored. ;

The presence of E generates the instructions neces-
sary to facilitate use of error returns in the caLL
pseudo-operation.

The contents of index register 4 are stored in the
Linkage Director each time the save pseudo-operation
is executed. sysLoc is a standard communication loca-
tion used by all programs loaded under BrDOR. If the
assembly is absolute (the aBsMoD option is specified),

the symbol sysLoc must be defined by the programmer.
The general form of the save pseudo-operation is:

locsym SAVE (X1, ..., Xk)LD,E
or
SAVE

locsym X1, ..., Xx,LD,E

Expansions of the SAVE Pseudo-Operation
The instruction
LCS SAVE 2,1,1
or its equivalent _
(2,1)I

specifies that index registers 2 and 1 and the sense
indicators are to be saved.
The expansion is:

LCS SAVE

ENTRY LCS

LCS TXI ..0003,,0
AXT)
AXT W |

..0001 AXT ** 4.
LDI ..00102+1

..0002 TRA 1,4
PZE

..0003 STI ..00102+1
SXA SYSLOC,4
SXA Linkage Director,4
SXA ..0001,4
SXA ..0001-1,1
SXA ..0001-2,2

The instruction

LCS SAVE 2
generates

ENTRY LCS

LCS TXI ..0003,,0
AXT **2

..0001 AXT x4

..0002 TRA 1,4

..0003 SXA SYSLOC,4
SXA Linkage Director,4
SXA ..0001,4
SXA ..0001—-1,2

In the next two examples, the instructions generated
because of using the letters I, D, or E in the subfield
of a save pseudo-operation are identified by the ap-
pearance of the particular letter in the comments field
of the generated instruction.

The instruction

LCS SAVE 2,ILD
generates
ENTRY LCS
LCS TXI ..0003,,0
AXT **9
..0001 AXT ik 4
LDI ..0002+1 1
NZT TRPSW D
ENB* .TRAPX D
..0002 TRA 14

MAP Pseudo-Operations 35

PZE I
..0003 XEC SYSDSB D

STI ..0002+1 1

SXA SYSL.OC,4

SXA Linkage Director,4

SXA ..0001,4

SXA ..0001-1,2

Locations syspss, .TRPsw, and .TRAPX are in the Sys-
tem Monitor (see the publication IBSYS Operating
System: System Monitor (IBSYS), Form C28-6248).
A switch at .Tresw indicates whether enabling is per-
missible at this time; .TrRaPx gives the address of the
location that contains the bits for proper enabling.
(Note that the enabling instruction below refers to
.TRAPX indirectly.)

The following sequence illustrates the expansion
that is generated when the E option is specified:

LCS SAVE (2)I,D,E
generates

ENTRY LCS

L.CS TXI ..0003,,**
LDC LCS.4 E
SXD *+5,4 E
LAC ..0001,4 E
TXI *+1,4,1 E
SXA *+1,4 E
LXA **4 E
TXI *41.4,%% E
SXA ..0002,4 E
AXT **9

..0001 AXT **4
LDI ..0002+1 I
NZT .TRPSW D
ENB* .TRAPX D

..0002 TRA *x E
PZE I

..0003 XEC SYSDSB D
STI ..0002+1 I
SXD LCS.,0 E
SXA SYSL.OC,4
SXA Linkage Director,4
SXA ..0001,4
SXA ..0001,1,2

If the save pseudo-operation has no symbol in the
name field, a symbol will be generated and an error
message will be printed.

The SAVEN Pseudo-Operation

The saven pseudo-operation produces the instructions
necessary to save and restore the index registers used
by a subprogram. The format of the saven pseudo-
operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Symbol SAVEN Up to 10 subfields

The saveN pseudo-operation is similar to sAVE except
that the instructions

ENTRY LCS
SXA Linkage Director,4

are not generated. sAveN is generally used when en-
tering a subroutine from another subroutine without

36

destroying the linkage information. If the savew
pseudo-operation has no symbol in the name field, a
symbol will be generated and an error message will
be printed. If the variable field is blank, index register
4 is saved and restored.

The RETURN Pseudo-Operation

The reTURN pseudo-operation is designed for use with
cary and save, making use of the error (or alternate)
returns used in these operations.

The format of the RETURN pseudo-operation is:

OPERATION

NAME FIELD FIELD VARIABLE FIELD

1. A symbol, or |[RETURN
2. Blanks

1 or 2 subfields separated by

a comma:

1. A symbol,

2. An integer, a symbol, or
an immediate symbol

The first subfield in the variable field of the RETURN
pseudo-operation is required. It contains the name
of the associated save pseudo-operation. If the second
subfield is present, it specifies the particular error
return.

The RETURN pseudo-operation often takes the general
form

name RETURN
where locsym is the symbolic address of the associated
save pseudo-operation, and i is the desired error
return (i=0 is the normal return).

The form of the RETURN instruction may vary. For
example, to specify a particular error return (e.g., 2),
the instruction

LOoC RETURN LCS,2

is written, where Lcs is the location of the save pseudo-
operation to be used. The following instructions are
generated:

locsym,i

LOC AXT 2,4
SXD LCS.4
TRA LCS+1

If the E option of the saVE or saveN pseudo-operation
is not used, the following form should be used:

RETURN LCS
which generates
TRA LCS+1

This form should also be used even where the E option
is specified if the error return is inserted into the dec-
rement of the save or saven pseudo-operation. at
execution time.

The variable field of the rReTURN pseudoc-operation
may not be left blank, since it results in a TRA instruc-
tion with a blank variable field. The pmc pseudo-
operation governs the listing of the instructions
generated by the ReTURN pseudo-operation.

Macro-operations are special types of pseudo-opera-
tions that provide the maP user with a powerful pro-
gramming tool. After a programmer has defined a
macro-operation, he can cause a whole sequence of
instructions to be called into a program by coding a
single instruction. The sequence can be repeated as
often as desired. Moreover, any field or subfield of
any instruction in the sequence can be changed each
time the sequence is repeated.

Any machine instruction, pseudo-operation, or
macro-operation can be included in a macro-oper-
ation, The sequence of instructions generated (usually
called a macro-expansion) is an open subroutine. The
instructions are executed in-line with the rest of the
program,

Two general requirements must be met to take
advantage of the macro-operation facility. First, the
macro-operation must be defined by a macro-defini-
tion. Then, wherever the sequence of instuctions is
desired in the program, it must be called by a macro-
instruction.

Defining Macro-Operations

A macro-definition provides a name for the macro-
operation, determines the instructions that will be in-
cluded in the macro-expansion, and establishes the
parts of the instructions that are to be variable.
Three kinds of instructions must be coded to de-
fine a macro-operation. The first is the Macro pseudo-
operation. (The card containing this instruction is
sometimes called the macro-definition heading card.)
Prototype instructions (sometimes called prototype
card images) immediately follow the Macro pseudo-
operation to establish the instructions that will be
generated in the macro-expansion. Finally, the Expm
pseudo-operation ends the macro-definition.

The MACRO Pseudo-Operation

The macro pseudo-operation establishes the name of
a macro-operation. The format of the macro pseudo-
operation is:

OPERATION

NAME FIELD FIELD VARIABLE FIELD

BCD name up | MACRO [Up to 63 substitutable argu-
to 6 characters ments (groups of not more

long than 6 characters) separated

by punctuation characters

Part 1ll. The Macro-Operation Facility

The name in the name field becomes the name of
the macro-operation that is being defined. This name
is later used to call the macro-operation and thus, in
effect, becomes an operation code. Any valid symbol
may be used in the name field of the Mmacro pseudo-
operation, or all numeric characters may be used.
However, six zeros may not be used.

The name in the name field of a Macro pseudo-
operation may be the same as a symbol used any-
where in the program, even in this or any other macro-
operation. However, if this name is the same as any
other machine operation code, pseudo-operation code,
or macro-operation code, the operation code is re-
defined.

The subfields in the variable field of the macro
pseudo-operation contain substitutable arguments.

SUBSTITUTABLE ARGUMENTS IN THE MACRO
PSEUDO-OPERATION

Much of the flexibility of the macro-operation facility
results from the principle of substitutable arguments.
These subfields in the variable field of the macro
pseudo-operation are dummy names that will be re-
placed in the macro-expansion.

Substitutable arguments permit any field or subfield
of any instruction to be changed each time the macro-
operation is called. The programmer can also change
parts of subfields and even add entire instructions.

A substitutable argument is from one to six char-
acters long. Any valid symbol may be used, and the
name of a substitutable argument may consist of all
numeric characters. For example, in the wmacro
pseudo-operation

ALPHA MACRO ABC,123

each of the two groups of three characters in the
variable field is a substitutable argument.

No punctuation characters except the period may be
used as part of a substitutable argument.

A substitutable argument may be the same as a
symbol or an operation code, including the operation
code for this or any other macro-operation. However,
substitutable arguments should not be identical to
symbols or operation codes used in the prototype that
immediately follows unless the symbols or operation
codes are actually intended to be substitutable argu-
ments,

The Macro-Operation Facility 37

DELIMITING SUBSTITUTABLE ARGUMENTS IN THE MACRO
PSEUDO-OPERATION

Substitutable arguments in the variable field of the
Macro pseudo-operation may be separated by any of
the following punctuation (special) characters:
=4+ -*/(),]
If parentheses are used, they must be used in pairs.
The use of these characters permits meaningful
notation in a macro-definition. For example,

ALPHA MACRO 23 RATE,TIME,DIST,
QUSYM

could also be written

ALPHA MACRO 23(RATE*TIME=DIST)

QUSYM

The variable field of the Macro pseudo-operation
may be extended over more than one card by using the
Erc pseudo-operation. When the substitutable argu-
ments appear on more than one card, the blank char-
acter acts as a separator. Hence, no punctuation char-
acter is needed between consecutive substitutable
arguments that appear on separate cards. For example,

BETA MACRO A,B,C
could also be written
BETA MACRO AB
ETC C

This usage of the erc pseudo-operation differs from
the usual case, in which all punctuation characters
must be written.

Consecutive punctuation characters or an explicit
zero are ignored and do not result in a substitutable
argument of zero.

Prototypes in Macro-Definitions

The prototype of a macro-definition determines the
instructions that will be included in the macro-expan-
sion, their sequence in the expansion, and the positions
of the substitutable portions of the instructions. The
prototype, which consists of one or more prototype
instructions, immediately follows the mMacro pseudo-
operation.

A prototype instruction is similar to any other in-
struction. It has a name field, an operation field, and
a variable field. It may also have a comments field,
although this field does not appear in the card image
generated in the macro-expansion. The distinguishing
feature of a prototype instruction is that parts of it can
be made variable.

The fields or subfields of a prototype instruction may
contain text or substitutable arguments.

TEXT IN PROTOTYPES

Text represents the fixed parts of the instructions that
will be generated in the macro-expansion. Any part of

38

a prototype instruction that has not been made a sub-
stitutable argument by its appearance in the variable
field of the Macro pseudo-operation is treated as text.
For example, in the prototype

ALPHA MACRO AB
CLA A

B BUFFER

the operation code cra and the location BUFFER are
text. (BUFFER has been defined elsewhere in the
program.)

Text is reproduced in the macro-expansion exactly
as it appears in the prototype instruction. Thus, if only
text is used in a field of an instruction, it must con-
form to the rules governing that field of the instruc-
tion in which it is used. For example, if the oper-
ation field of a prototype instruction is text, it must
be a valid operation code.

Since parentheses can be used to delimit substi-
tutable arguments within the prototype, parentheses
must be used carefully as part of text to avoid con-
fusing the enclosed characters with a substitutable
argument,

SUBSTITUTABLE ARGUMENTS IN PROTOTYPES

Substitutable arguments represent the variable parts
of the instructions that will be generated in the macro-
expansion, The same substitutable arguments are used
in the prototype that appeared in the variable field of
the mMacro pseudo-operation. However, in the proto-
type, substitutable arguments appear in the fields or
subfields of the prototype instructions that are to be
variable. A substitutable argument may appear in any
field or subfield of a prototype instruction. For ex-
ample, in the sequence.

BETA MACRO ONE, TWO,THREE
ONE CLA PART1
TWO PART2

STO THREE

ONE, TWO, and THREE are substitutable arguments in
the name, operation, and variable fields, respectively,
of prototype instructions.

DELIMITING SUBSTITUTABLE ARGUMENTS IN PROTOTYPES

The same punctuation (special) characters may be
used in prototype instructions that were used to sep-
arate the substitutable arguments in the variable field
of the Macro pseudo-operation. Except for the apos-
trophe, these characters are reproduced in the macro-
expansion. Only the aspostrophe may be used to delimit
substitutable arguments in the variable fields of rREm

and T1L pseudo-operations and the data subfields of Bcr
pseudo-operations. (Another use of the apostrophe in
macro-operations is explained in the section “Com-
bining Substitutable Arguments and Text.”)

A comma or a left parenthesis immediately follow-
ing the operation code (as near the beginning of the
card as column 11) signifies the end of the operation
field and the beginning of the variable field.

A blank delimits a substitutable argument in a pro-
totype. For example, in the macro-definition (where
b represents a blank)

XYZ MACRO

AbbbB
three blanks separate A (in the operation field) from
B (in the variable field). It is not always necessary
that three blanks separate these two fields, but at
least three characters are used for an operation field
code. In this example, A and two blanks are used,
whereas the third blank is required to terminate the
operation field. If fewer blanks separated A from B,
both would be taken as part of the operation code,
causing errors.

If a blank is encountered before card column 72
in the variable field of a prototype instruction other than
a BCI, REM, or TTL pseudo-operation, the card is termi-
nated. Substitutable arguments may appear anywhere
from column 1 through column 72 on Bci, REM, and
1L cards. Any information to the right of the blank will
not be included in the macro-definition.

If a BCI, TTL, or REM pseudo-operation has been re-
defined in a macro-definition or by an operation-
defining pseudo-operation, it should not be used within
a macro-definition. Also, if an operation code has been
defined to have the effect of a Bcr, TTL, or REM pseudo-
operation and is used within a macro-definition, the
variable field will be terminated by a blank.

Every field or subfield of six or fewer characters in
any field of a prototype instruction is compared with
the substitutable arguments in the variable field of
the Macro pseudo-operation. Therefore, care must be
taken to avoid confusing fields intended as text with
fields intended as substitutable arguments.

Remarks cards having an asterisk in column 1 may
be included in macro-definitions, but they cause a
warning message to be issued.

AB,C

The ENDM Pseudo-Operation

The EnxpM pseudo-operation terminates a macro-
definition. The format of the ENpM pseudo-operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks ENDM Either:

1. One or two subfields, sep-
arated by a ¢omma, or
2. Blanks

The ExpM pseudo-operation immediately follows the
last instruction and ends the macro-definition. An
eENpM pseudo-operation is required for every MACRO
pseudo-operation.

The first of the two subfields permitted in the
variable field of the EnpMm pseudo-operation is a BCD
name of up to six characters. If a name is used in this
subfield, it must be the same as the name used for the
corresponding Macro pseudo-operation. If the first
subfield is not used, but the second is, a comma must
precede the second subfield.

If the second subfield in the variable field of the
EnpM pseudo-operation is present, it specifies either
crs (create symbols) or Nocrs (no created symbols).
The second subfield controls symbol creation for this
macro-operation only, overriding the effect of the
~ocrs and orcers pseudo-operations (see the section
“Created Symbols”). crs in this subfield always causes
and Nocrs always suppresses symbol creation each
time the macro-operation is called. Any symbol other
than cgs or Nocgs has no effect.

For example, in the macro-definition

ALPHA MACRO AB
CLA A
ADD B
STO SUM
ENDM ALPHA NOCRS

the ENpM pseudo-operation is coded so that symbol
creation is suppressed whenever this macro-operation
is called.

If the variable field or the first subfield of the
variable field is blank, this and all unterminated macro-
definitions are terminated (see the section “Nested
Macro-Operations™).

Calling Macro-Operations

After a macro-operation has been defined, it may be
called so that the generated sequence of instructions
is brought into a program at a desired point. In the
macro-expansion, each prototype instruction in the
macro-definition is reproduced. Text and all punctua-
tion characters except the apostrophe are reproduced
exactly as they appeared in the prototype. However,
the substitutable arguments that appeared in the varia-
ble field of the macro pseudo-operation and in the
prototype are replaced by the actual parameters that
the programmer wishes to appear in the expansion.
These parameters are provided in the macro-instruc-
tion, which is used to call the macro-operation.

The Macro-Instruction

The macro-instruction calls a previously defined
macro-operation into a program. The format of the
macro-instruction is:

The Macro-Operation Facility 39

OPERATION

NAME FIELD FIELD VARIABLE FIELD

Parameters, separated by
commas or parentheses

1. A symbol, or | Macro-
2. Blanks operation
name

If there is a symbol in the name field, it is assigned to
the first instruction of the macro-expansion.

The name that was assigned in the name field of the
Macro pseudo-operation is an operation code and is
used in the operation field of the macro-instruction.

The variable field of the macro-instruction contains
the actual parameters that the programmer wishes to
appear in the macro-expansion.

PARAMETERS IN MACRO-INSTRUCTIONS

The parameters in the variable field of the macro-
instruction replace the substitutable arguments that
appeared in the macro-definition. These parameters
must appear in the same order as the substitutable
arguments they are to replace originally appeared in
the variable field of the macro pseudo-operation.

The length of a parameter in the variable field of a
macro-instruction is not limited to six characters as is a
substitutable argument. The variable field of a macro-
instruction may be extended over more than one card
by using the xrc pseudo-operation. However, a single
parameter must appear completely on one card unless
it is enclosed in parentheses.

Macro-instruction parameters consist of any appro-
priate character or group of characters that would
normally appear in the particular instruction. For ex-
ample, in the macro-definition.

QPOLY MACRO COEFF,LOOP,DEG,T,OP
AXT DEG,T
LDO COEFF
LOOP FMP GAMMA
oP COEFF+DEG+1,T
XCA
TIX LOOP,T,1
ENDM QPOLY

mnemonic symbols represent the substitutable argu-
ments. LOOP appears in a name field, op in an operation
field, and coEr¥, pEG, and T appear in subfields of the
variable field. caAMMa is text and not a substitutable
argument, since it does not appear in the variable field
of the macro pseudo-operation. In this macro-instruc-
tion, a symbol should be substituted for rLoor and a
valid operation code for op. Such a macro-instruction
might be written

X015 QPOLY C1—4,FIRST,5,4,FAD

The macro-expansion would cause the following
six card images to be generated.

X015 AXT 5,4

LDQ Cl4
40

FIRST FMP GAMMA
FAD Cl-4+5+1,4
XCA
TIX FIRST,4,1

The symbol xo15 is assigned to the first instruction,
and each substitutable argument is replaced by the
corresponding parameter that appeared in the variable
field of the macro-instruction.

DELIMITING MACRO-INSTRUCTION PARAMETERS

The parameters in the variable field of a macro-
instruction are separated either by commas or paren-
theses. A single comma following a right parenthesis
or preceding a left parenthesis is redundant and may
be omitted. Neither of these combinations results in a
null parameter. A null parameter is indicated by two
consecutive commas or by a single comma at the be-
ginning of the variable field. If the blank terminating
the variable field is preceded by a comma, the last
subfield is not null (see the example in the section
“Created Symbols”). An explicit zero must be used to
obtain a zero parameter.

Parentheses around data used as a macro-instruction
parameter signify that everything within the paren-
theses, including blanks, is to replace the correspond-
ing substitutable argument in the prototype. (In fact,
if blanks are to be included in a macro-instruction
parameter, the parameter must be enclosed in paren-
theses.) For example, the macro-definition

XYZ MACRO AB
A

B
ENDM XYz

followed by the macro-instruction

XYZ (AXTbbbbb10,1)
ETC (ALPHAbbTRAbbbbbBETA,1)

results in the expansion

AXT 10,1
ALPHA TRA BETA,1

If parentheses are to appear in a macro-expansion,
they must be enclosed in an outer pair of parentheses.
The outer parentheses are removed in the expansion.

Pairs of parentheses must be balanced. For example,
given the macro-definition

CALLIO MACRO IOCOM,T1,0P,LABEL,T2
ETC TAPNO,PFX,ERRET
TSX (TAPE) 4
PZE IOCOM,T1,0P
PZE LABEL,T2,TAPNO
IFT ERRET=1
PFX ERRET
ENDM CALLIO

and using the following parameters in place of the
substitutable arguments

IOCOM — CITIO T2 — null

T1-2 TAPNO — CITTAP
OP — (RBEP) PFX —null
LABEL — CITLB ERRET — null

the corresponding macro-instruction would be

CIT10,2,((RBEP)),CITLB
,CITTAP,,,

CALLIO
ETC
This macro-instruction could also be written
CALLIO CITIO2((RBEP))CITLB
ETC ,CITTAP,,,
since the commas around ((®BEP)) are redundant.
Note that TAPE must not be a substitutable argument
and that (wBEP) must be enclosed in outer parentheses.
Also, an explicitly null parameter appears in the macro-
instruction at a position corresponding to the substi-
tutable argument ERRET in the macro-definition. This
null parameter causes the fifth word of the expansion
to be omitted.

Inserting Instructions into Macro-Expansions

A single parameter in a macro-instruction may include
more than one field or even an entire instruction to
replace a single substitutable argument that appeared
in a field of a prototype instruction. The parameter is
inserted into the field in which the original substituta-
ble argument appeared, and it may extend to other
fields to the right of the field in which it is inserted.
For example, if a substitutable argument appeared in
the operation field of a prototype instruction, a parame-
ter could be inserted that would have an operation
field and a variable field.

When a parameter consists of more than one field
or is an entire instruction, the programmer must pro-
vide enough blanks in the parameter so that the fields
of the instruction appear in their proper positions in
the macro-expansion.

In the following example, a substitutable argument
in the operation field of a prototype instruction is re-
placed by an instruction having an operation field and
a variable field. The macro-definition.

XYZ MACRO AB,C,
CLA A
B
STO C

ENDM XYZ
followed by the macro-instruction

ALPHA (ADDbbbbbBETA)
GAMMA

SUM XYZ
ETC

results in the macro-expansion

CLA ALPHA
ADD BETA
STO GAMMA

Conditional Assembly in Macro-Operations
The 1¢T and 1FF pseudo-operations may be used to de-

termine whether instructions within a macro-expansion
are assembled. For example, the sequence

ADDM MACRO B,CD
CLA B
ADD C
IFF /D/=/AC/
STO D

allows the sum to be stored if the name substituted for
D is not literally the characters ac and prevents it
from being stored if the name is the characters ac.

If the ¥ pseudo-operation in the above example
were replaced by

IFT D=1

the sum would be stored only if the parameter substi-
tuted had already appeared in the name field of some
instruction (i.e., if the S-value of D is 1).
The two conditions can be combined to obtain

IFF /D/=/AC/,AND

IFT D=1
which assembles the store operation only if D is not
literally ac and has appeared before in a name field.

Combining Substitutable Arguments and Text

The apostrophe can be used to combine substitutable
arguments and text to form a single prototype subfield.
The apostrophe delimits a substitutable argument in a
macro-definition prototype but is not itself included in
the macro-expansion. However, the apostrophe may not
be used to combine partial subfields in lower-level
nested macro-definitions (see the section “Nested
Macro-Operations™).
For example, given the macro-definition

ALPHA MACRO A,B,C
BCI A,bb’B’bERROR,b
CONDITION’C’b
IGNORED
ENDM ALPHA,NOCRS
the macro-instruction
ALPHA 6,(FIELD),,

causes the following instruction to be generated:

BCI 6,bbFIELDbERROR,b
CONDITIOND
IGNORED
By using the apostrophe, instructions within macro-
operations can be altered and even name field symbols
can be changed. For example, the macro-definition

FXCY MACRO B,W,Z,Y,T
N’B PXA Y, T
PAC 0,4
WX'Z Y4
ENDM FXCY

after the macro-instruction
FXCY AME,S,A,DATA,1

The Macro-Operation Facility 41

results in the sequence

NAME PXA DATA,1
PAC 0,4
SXA DATA,4

The name field may not exceed six characters in the
prototype, including substitutable arguments, text, and
punctuation characters. The operation field may not
exceed six characters or six characters and an asterisk.

Nested Macro-Operations

A macro-definition may be included completely within
the prototype of another higher-level macro-definition.
When the higher-level macro-operation is expanded,
the Macro pseudo-operation and the prototype of the
lower-level macro-operation are generated. Thus, a
macro-instruction for a lower-level macro-operation
cannot be used until all higher-level macro-operations
have been expanded.

A new macro-operation may be defined or an existing
macro-operation redefined, depending on whether the
name of the lower-level macro-operation appears as text
or as a substitutable argument in the higher-level
macro-operation. For example, in the macro-definition

MAC1 MACRO MAC2,ALPHA,BETA

ETC GAMMA,DELTA
MAC2 MACRO ALPHA

BETA A

GAMMA B

DELTA C

ENDM MAC2

ENDM MAC1

the lower-level macro-operation, Mac2, appears as a
substitutable argument. The macro-instruction

MAC1 ABC,(A,B,C),CLA,ADD,STO
generates
ABC MACRO A,B,C
CLA A
ADD B
STO C
ENDM ABC

which defines a macro-operation, aBc, where A, B, and
C are substitutable arguments; and cra, app, and sto
are text.

However, had mace appeared as text rather than as a
substitutable argument in the macro-definition of mMaci,
Mac2 would be redefined each time maci was ex-
panded.

There is no significant limit to the depth of nesting
permitted.

‘Macro-Instructions in Macro-Definitions

The prototype of a macro-definition may include
macro-instructions for which macro-operations have
not yet been defined. However, these macro-instruc-
tions must be defined before using a macro-instruction
that expands the macro-operation. Circular definition

42

must be avoided. For example, a macro-operation, A,
may not include a macro-instruction for A. Also, a
macro-operation may not include its own macro-
instruction within the prototype.

Data enclosed within parentheses may be used as a
parameter in a macro-instruction. When a macro-
instruction is used within another macro-definition,
special handling of data containing blanks is required.
Such data must be replaced by a substitutable argu-
ment in the outer macro-definition. The actual data
must appear as a parameter in the macro-instruction.
An additional pair of parentheses must surround the
data (already within a single pair of parentheses) to
ensure proper substitution.

For example, in the macro-definition

MAC1 MACRO A,C
CLA c
MAC A,(AXTbb** 4b)
STO A
ENDM MAC1

MAC is a previously defined macro-operation. Proper
substitution would not occur, because a blank termin-
ates the variable fields of prototype instructions except
for the Bci, rREM, and TTL pseudo-operations. Instead,

the following sequence should be used:

MAC1 MACRO ACD
CLA C
MAC AD
STO A
ENDM MAC1

When using the macro-instruction Mmact, the substitu-

tion would be

MAC1 X,Y,((AXTbb**,4b))
The resulting generated sequence is

CLA Y

MAC X,(AXTbb** 4b)

STO X

The macro-instruction for MAC can now cause the data

.to be substituted properly.

Qualification Within Macro-Operations

The qualification in effect when the macro-instruction
is used will be used for symbols in the macro-expansion.
If a qualification symbol is required within a macro-
definition, it may be a substitutable argument, as may
the symbols it qualifies.

If a macro-expansion having a qualified section falls
within the range of a qualified section in the program,
the rules for nested qualification apply when referring
to symbols within the macro-expansion.

Macro-Related Pseudo-Operations

The P pseudo-operation is used to supplement the
definition of macro-operations, whereas oORrccrs and
NOCRS are used in macro-expansions.

The IRP Pseudo-Operation

The e (Indefinite Repeat) pseudo-operation causes a
sequence of instructions within a macro-operation to be
repeated with one parameter varied at each repetition.
The format of the 1rp pseudo-operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks IRP 1. Asingle substitutable argu-
ment, or
2. Blanks

To repeat a sequence of instructions, two P pseudo-
operations are required within a macro-definition — one
to initiate the sequence and the other to end it. A single
substitutable argument that originally appeared in the
variable field of the preceding Macro pseudo-operation
must appear in the variable field of the initial 1P
pseudo-operation. The variable field of the second 1RP
pseudo-operation is left blank.
For example, the operation

IRP A
initiates a sequence, whereas
IRP

ends the sequence.

Substitutable argument A governs the iteration of the
instructions. If a symbol other than a single substitu-
table argument or more than one subfield appears in
the variable field of the first 1rp pseudo-operation, the
pseudo-operation is ignored and a warning message is
issued.

In the macro-instruction, substitutable argument A
is replaced by one or more subarguments enclosed in
parentheses and separated by commas. Each time the

macro-instruction is used, the assembly program gener-

ates the sequence of instructions with each of the sub-
arguments. used successively in place of suitable
argument A. If only one subargument is used, the
sequence of instructions will be generated only once.
If no subarguments are given, the whole sequence will
be skipped. If a blank appears within the parentheses,
only the arguments to the left of the blank will be effec-
tive. For example, given the macro-definition

XYZ MACRO ARG,B
IRP ARG
CLA ARG
ADD B
STO ARG
IRP

ENDM XYZ
the macro-instruction

XYZ (J.K,L),CONST

generates

CLA]
ADD CONST } (First iteration, with
STO] subargument J)
CLA K
ADD CONST} (Second iteration, with
STO K subargument K)
CLA L
ADD CONST (Third iteration, with
STO L subargument L)

If the substitutable argument does not appear be-
tween the two 1P pseudo-operations, the generated
sequences will be identical, their number depending on
the number of subarguments given.

For example, given the macro-definition

BBB MACRO CD,E
IRP C
CLA D
STO E
IRP

ENDM BBB

the macro-instruction

BBB (1,2,3),DATALDATA2
generates
CLA DATAL
STO DATA2
CLA DATA1
STO DATA2
CLA DATAIL
STO DATA2

An 1re pseudo-operation may not occur explicitly
within the range of another wp. Such a nested pair
causes termination of the first range and opening of a
second range. However, a macro-instruction within the
range of an 1rP pseudo-operation may itself cause pairs
of mp pseudo-operations to be generated at a lower
level.

Created Symbols

If parameters are missing from the end of the variable
field of the macro-instruction, symbols are created to
fill the vacancies. These symbols take the form

..0001
..0002

~Lannn

No created symbols are supplied for an explicitly null
argument. Created symbols are supplied only at the end
of the parameters.

For example, if the macro pseudo-operation

ALPHA MACRO AB,C
is followed by the macro-instruction
ALPHA X,

The Macro-Operation Facility = 43

substitutable argument A is replaced by X, substitu-
table argument B is omitted since the parameter is ex-
plicitly void, and substitutable argument C is replaced
by a symbol of the form . . nnnn. This symbol is created
to replace the omitted parameter at the end of the
variable field of the macro-instruction.

Given the macro-definition

XFAD MACRO N,B,C,D,E,AX
SXA A4
AXT N,4
X CLA B,4
IFF /C/=//
FC D,4
STO E,4
TIX X,4,1
A AXT ** 4
ENDM XFAD,CRS

the macro-instruction

XFAD 4,DATA,AD,DATA1,DATA2
generates
SXA ..0001,4
AXT 44
..0002 CLA DATA4
FAD DATAL4
STO DATA2,4
TIX ..0002,4,1
..0001 AXT ** 4

However, the macro-instruction

XFAD 4,DATA,,,DATA2
generates
SXA ..0001,4
AXT 44
..0002 CLA DATA4
STO DATA2,4
TIX ..0002,4,1
..0001 AXT ** 4

In this example, the number of instructions can vary
between references, making a relative-address refer-
ence difficult. However, by permitting the assembly

44

program to generate the names, the references are cor-
rect without requiring programmer-specified names.

The NOCRS Pseudo-Operation

The Nocrs pseudo-operation suppresses symbol crea-
tion, which causes missing parameters at the end of the
variable field of the macro-instruction to be treated as
if they were explicitly null. The format of the Nocrs
pseudo-operation is:

OPERATION
FIELD

NOCRS

NAME FIELD

Blanks

VARIABLE FIELD

Ignored

The ORGCRS Pseudo-Operation

The orccrs pseudo-operation may be used to alter the
form of created symbols. This pseudo-operation also
causes symbol creation to be resumed if it has been
suppressed by a ~ocrs. The format of the orccrs
pseudo-operation is:

OPERATION
NAME FIELD FIELD VARIABLE FIELD
Blanks ORGCRS |1. Blanks, or

2. Up to 4 numeric digits, or
3. One BCD character and

up to 4 numeric digits.

If a Bcp character appears in the variable field, it re-
places the second period of the created symbols. If dig-
its appear, they will be the origin of the new set of
created symbols. This origin will be one lower than the
first symbol actually created. If fewer than four digits
are used, they will be right-justified with leading zeros.
If no digits are supplied or if the variable field is blank,
the number will continue from the last created symbol.

With a blank variable field, the orccrs pseudo-opera-
tion causes resumption or continuation of symbol
creation.

Appendix A: Machine Operations

All machine operations recognized by map are tabu-
lated in this appendix, including supplementary infor-
mation about their format and use. Listings are pro-
vided of the 7090 machine operations, extended
machine operations, special operations, 7094 machine
operations, 7909 data channel commands, 1301 disk file
orders, and 7340 Hypertape orders.

The code letters used under identical column head-
ings have the same significance in all tables. The Bcp
name of the machine operation is given in the column
headed Mnemonic.

Type indicates machine-instruction format character-
istics by code letters having the following meanings:

CODE MEANING
A 15-bit decrement field
B No decrement field
C 8-bit decrement field
D 18-bit address field
E 13-bit address field
K 4-bit prefix field
L Disk orders

The codes in the address (Addr), tag, and decrement
(Decr) columns signify:

CODE MEANING

R Subfield required. If missing, error message
FIELD REQUIRED is issued.

Subfield permitted. Neither its presence nor
absence results in a message.

U(n) Subfield unexpected. If present, message FIELD
NOT EXPECTED is issued. Assembly program
truncates definition value of subfield to number
of bits (n) shown in parentheses and, treating
this value as a constant, adds it to value nor-
mally appearing in subfield.

N Subfield not allowed. If present and its value
is not zero, message FIELD NOT ALLOWED
is issued. Its value is always treated as a con-
stant zero.

If the size of a subfield differs from normal, field size is
indicated in parentheses following the subfield letter
code.

In the column headed Ind, the letter (P) indicates
that indirect addressing is permitted and (N) indicates
that is is not permitted.

7090 Machine Operations

MNEMONIC TYPE ADDR TAG DECR IND
ACL B R P U(4) P
ADD B R P U(4) P
ADM B R P U(4) P
ALS B R P u(e) N
ANA B R P U(4) P
ANS B R P U(4) P

MNEMONIC
ARS
AXC
AXT
BSF
BSR
BTT
CAL
CAQ
CAS
CHS
CLA
CLM
CLS
COM
CRQ
CVR
DCT
DVH
DVP
ECTM
EFTM
ENB
ENK
ERA
ESNT
ESTM
ETM
ETT
FAD
FAM
FDH
FDP
FMP
FRN
FSB
FSM
HPR
HTR
IIA
1L
IIR
1S
IOT
I0CD
IOCP
IORP
I0CT
IORT
IOSP
IOST
LAC
LAS
LBT
LCHx
LDC
LDI
LDQ
LFT
LFTM
LGL
LGR
LLS
LNT
LRS

TY.

cl
=

wcwwwmowwwwrﬂmt:u:>>>>:>:>:>mwccmwwwwbﬂwwwwwmmmwwmwmmmwmoomwmwmwommwwwww

>
]
=]
]

wgw:u*c:o:uz:u:uww:d:czzwwz:czz:u:vz:cwzwzmzwwmmmw:ﬂmw
—
[e]

(18)

—~
-
@

~

(18)

TSNz ZE RN NN Z D

HZY TR ZTN RN N 2 Z 222N ZZ S TNttt T Y S T S TYT R R R R Yy

Appendixes

Appendix

A AZ A2 2V TZVZ T Z TN NN ZUZZZ Y Z VO ZN NN ZZZVVZVZZ TV ZZZZAVZVZNZAVZZZ222Z2F

45

46

MNEMONIC
LSNM
LTM
LXA
LXD
MPR
MPY
MSE
NOP
NZT
OAl
OFT
ONT
ORA
ORS
OSI
PAC
PAI
PAX
PBT
PDC
PDX
PIA
PSE
PXA
PXD
RCHx
RCT
RDCx
RDS
REW
REFT
RIA
RIL
RIR
RIS
RND
RNT
ROQL
RUN
SBM
SCHx
SDN
SIL
SIR
SLQ
SLW
SSM
SSp
STA
STD
STI
STL
STO
STP
STQ
STR
STT
STZ
SUB
SXA
5XD
TCH
TCNx
TCOx
TEFx
TIF
TIO
TIX
TLQ
T™I
TNO
TNX

TYPE

PREEE > YO NN S YA U S S Y AN U R O P N N N A P N I e S U O N e e

ADDR

=z'Z

(18)

(18)
18)

—_

(18)

bt i
[e-Neo)
~—

rn:u:-J:u:u:uw:u:u:uwmwwwwwmmwwwwwzz:u:v;ggsu:uw:u:uwzwwwwwwwzzmwwwmwwzwwmwwwwmwmww:ﬂww

T.

»
2]

FUUR D YUY ZE NN T YN NN Y Z Z OO Z N2 22 O U U g R O g O O Y S RO RO MO O RO RO O R RO O S S D

DECR
U(6)
U(6)
U(e)
u(e)
U(4)
U(4)
U(6)
U(6)
U(4)
U(6)
U(4)
U(4)
U(4)
U(4)
U(4)
U(6)
u(e)
U(e)
u(e)
U(6)
u(6)
u(e)
U(e)
U(6)
U(e)
U(4)
U(6)
U(e6)
U(e6)
U(e)
U(6)
U(e)
U(6)
U(6)
U(4)
U(8)
U(6)
U(e6)
U(6)
U(4)
U(4)
U(6)
u(e)
U(86)
U(4)
U(4)
U(6)
U(e)
U(4)
U(4)
U(4)
U(4)
U(4)
U(4)
U(4)
P

U(4) -

U(4)
U(4)
U(6)
u(e)
u(e)
U(4)
U(4)
U(4)
U(4)
U(4)

U(4)
U(4)
U(4)

Z
g

ZN T YZN YN SN ZZ YU 2NNV NN Z AN A Z 2NN Z 2 Z 2V Z R 22 A Z 22 V22 A2 2 A2 2 Z 2T VNN 2T 2N NZ 222

MNEMONIC TYPE ADDR TAG DECR IND
TNZ B R P U(4) P
TOV B R P U(4) P
TPL B R P U(4) P
TQO B R P U(4) P
TQP B R P U(4) P
TRA B R P U(4) P
TRCx B R P U(4) P
TSX B R R u(e) N
TTR B R P U(4) P
TXH A R R R N
TXI A R R R N
TXL A R R R N
TZE B R P U(4) P
UAM B R P U(4) P
UFA B R P U(4) P
UFM B R P U(4) P
UFS B R P U(4) P
USM B R P U(4) P
VDH C R P R(6) P
VDP C R P R(6) P
VLM C R P R(6) P
WEF B R P u(e) N
WRS B R P u(e) N
XCA B P P U(6) N
XCL B P P u(e) N
XEC B R P U(4) P
ZET B R P U(4) P

Extended Operations
maP provides a group of sense and select-type extended
operation codes for programmer convenience. These
codes permit the address portion of certain instructions
to be specified symbolically as part of the operation
code, rather than octally in the address portion of the
instruction. These codes also provide more meaningful
mnemonics for some machine instructions.

MAP also recognizes a group of prefix codes that can
be used in such programming applications as forming
constants or in subroutine calling sequences.

SENSE TYPE

The following extended operation codes of the sense
type are recognized by the assembly program. The tag
subfield is permitted in all these operation codes, but
indirect addressing is not permitted in any of them.
The letter x is to be replaced by one of the channel
letters.

MNEMONIC ADDR DECR
BTTx N U(8)
ETTx N U(6)
SLF N U(8)
SLN R U(6)
SLT R U(86)
SPRx R U(8)
SPTx N U(6)
SPUx R U(6)
SWT R U(8)

SELECT TYPE

The following extended operation codes of the select
type are recognized by the assembly program. The tag
subfield is permitted in all these operation codes, but

cross-referencing problems of multiple source decks
and their required subroutines from the Subroutine Li-
brary, and with overlay analysis. It processes the con-
trol information tables that are built by Section 1 and
builds up the object program file blocks from the sFILE
cards stored in that control information storage block.

The principal task of Section 3 is to provide unit as-
signment for the object program; to give absolute lo-
cation assignments- to each program deck, each sub-
routine, and the control sections of both; to apportion
the unused part of core storage as input/output buffers
for the object program; to generate the 10cs calling se-
quences to define those buffer pools; and to provide a
map of the complete object program core storage use.
(The map feature of the Loader provides an outline-
like picture of the assignment of core storage to the
object program).

The input/output unit assignment provides for ab-
solute channel, symbolic channel, and between-appli-
cation symbolic or reserve channel specification of in-
put/output devices. Provision is also made for absolute
assignment of disk areas, drum areas, and Hypertape
drives. If necessary, file mounting instructions to the
operator are printed by Section 3.

Section 4 of the Loader is read into the core storage
area occupied by Section 2. Its main function is to form
the final, absolute instructions from the relocatable bi-
nary text of the input program and from any subrou-
tine on the library unit which is required by the pro-
gram.

The input to Section 4 consists of the relocatable bi-
nary text of both the input program and subroutines.
Input program text may appear as follows:

1. In an internal file.

2. In an internal file and on the System Utility Unit
(sysuts) — the source text overflow tape, or

3. On the System Utility Units (sysuts and sysur4)
— the internal text overflow.

Subroutine texts are read from the Subroutine Li-
brary tape and are processed in the same manner as
program texts. Subroutines are called as determined by
their appearance in the required Subroutine Name Ta-
ble that was formed by Section 2 of the Loader. |

The final text is put into an internal file, and onto
the System Utility Unit (sysuti) if necessary, for pre-
execution loading by Section 5 of the Loader. For over-
lay applications, output can also be on one of the Sys-
tem Library Units. A call to the program to be exe-
cuted first is generated according to the sEnTRY card
or, in its absence, to the section whose name is
. " or, in its absence, to the first program deck
encountered.

Section 5, the final phase of the Loader, loads the
processed absolute program text into its proper core

Form C28-6275-2
Page Revised 2/28/64
by TNL N28-0100

storage locations and prepares for its execution. The
lower half of the program area is set to strs, and the
absolute text contained in the internal file in the upper
portion of core storage is scatter-loaded into this lower
half. The internal file area is then set to strs. Absolute
text will not be loaded above the locations required by
Section 5 for loading the overflow text appearing on
the System Utility Unit (sysuri). At the completion
of the program load, the function of the Loader ends
and control is transferred to the generated initialization
instructions.

Relocatable Binary Program Deck

A relocatable binary program deck consists of relocat-
able binary text, the control dictionary, and the file
dictionary. This section defines the deck order and for-
mat of the relocatable binary text, the control diction-
ary, and the file dictionary.

Binary Card Format
The following column binary card form is used:

Word 1 S, 1 11 (examine bit 3)
2 check sum control bit
0 = verify check sum
1 = do not verify check sum
3 0 (standard IBJOB Processor deck)
4 0 (Loader or relocatable deck, not
Prest)
5-7 deck type
8-12 01010
13-17 word count (beginning with word 3)
21-35 card sequence number
Word 2 S,1-35 logical check sum of word 1 and all

data words on the card

Words 3-24 S, 1-35 data

Binary Card Sections

A binary program deck is composed of three sections,
each prefaced by an alphameric source card identify-
ing the section type. The deck format, exclusive of con-
trol cards, is as follows:

COLUMN 1 COLUMN 8
$FDICT DECKNM
Binary File Dictionary
$TEXT DECKNM
Relocatable Binary Text
$CDICT DECKNM
Binary Control Dictionary
$DKEND DECKNM

Each section of the binary deck (e.g., the control
dictionary) and text is sequenced independently, be-
ginning with sequence number 0. Within any section,
the cards must be in proper sequence and the sections

Systems Programmer’s Information 47

Form C28-6311-2
Page Revised 2/24/64
by TNL N28-0097

MNEMONIC TYPE ADDR TAG DECR IND
TWT K R N N P
WTR A R N U(4) P
XMT A R N R P

(1) A count field in the high-order position of the decrement
is assembled from the fourth subfield of the variable field.
For example,
ICC od

IBM 1301 Disk and 7320 Drum File Orders

The following disk and drum file orders are recognized
by map. The symbolic order should be written:

Location DORD access and module, track, record

and assembles as ten Bcp digits in two successive loca-
tions,

ACCESS AND
MNEMONIC MODULE TRACK RECORD
DEBM P P P
DNOP P P
DREL P P P
DSAI P P P
DSBM P P P
DSEK P P P
DVCY P P P
DVHA P P P
DVSR P P P
DVTA P P P
DVTN P P P
DWRC P P P
DWRF P P P

The access/module and track subfields may be any
symbolic expression. They are evaluated in the normal
manner and converted to Bcp. The low-order two char-
acters of the access/module subfield and the low-order
four characters of the track subfield are inserted into
the instruction. The record subfield is taken as alpha-
meric data, and the first two characters are used. A
pNoP (12125) order is inserted in the last two charac-
ter positions of the second word.

IBM 7340 Hypertape Orders

The following Hypertape orders are recognized by
mAP. The symbolic order should be written:

Location HORD Tape unit (if required)

and assembles as two (or three for HsBR and HSEL) BCD
characters, left-justified in the word. Locations contain-
ing two-character orders are filled with trailing u~op
(1212¢) codes. Three-character orders are repeated in
the rightmost three characters.

MNEMONIC
HBSF
HBSR
HCCR
HCHC
HHCLN
HEOS
HERG
HFPN
HNOP
HRLF

TAPE UNIT

2222222222

48

MNEMONIC
HRLN
HRUN
HRWD
HSBR
HSEL
HSKF
HSKR
HUNL
HWTM

TAPE UNIT

zz

2222332

Any symbolic expression may be used in the tape unit
subfield. The expression is evaluated and converted to
Bep, and the low-order character is used as the Hyper-
tape unit number (0-9).

Appendix B: 7090 Macro-Expansions of 7094
~ Instructions

When assembling in the 7090 mode, certain 7094 in-
structions are replaced by equivalent 7090 macro-
instructions. The expansions of these macro-instructions
are provided in this appendix.

The expansions are divided into groups in which only
a few instructions vary from the given operation code.
The generic macro-expansion of each group is given
with the necessary substitutions.

In this appendix, the symbols E.1, E.2, E3, and E.4
are generated by the expansions as names of temporary
storage locations. However, these symbols must be de-
fined by the programmer or they will be virtual. The
symbol is generated and defined by the expansion even
if the mode of the created symbol switch is Nocrs.

Group 1. pca and pcp

For pca, take w=A and z=20.

For pep, take w=D and z=2.
The expansion is then

PCw Y, T
PXw Y, T
TZE *+3
SUB =1Bz
SSP
Group 2. sca and scp
For sca, take w= A.
For scp, take w=D.
The expansion is then
SCw Y, T
SXA *+1,T
AXC *¥* T
SXw Y, T
LXA *—~2,T

Group 3. DFAD, DFSB, DFAM, and DFSM
For prap, take op = Ap.

For prsB, take op =sB.

For praM, take op = AM.

For prsM, take op =smM.

In this and the following groups, the expansion below

is also used:

(SAVE

Y,T

NoOP
STO
CLA*
STA
STT
PXA
SUB
SXA
PAC
CLA

Y,T
E.l
=
*42
*+1
0
*—1
CRS,4
0,4
E.l

There are four forms for these expansions:

DFop

DFop

DFop
or DFop

DFop*

Y,T

"
, T

%k

*k
0

CRS
Y,T

CRS

Group 4. orp and pst
For pLp, take op =1p, opa =cra, and opb=1bo.
For psT, take op =sT, opa =st0, and opb =sT19Q.

STQ
Fop

STO
XCA
FAD
Fop

FAD

NOP
STQ
Fop*
STO
TXI

XCA
FAD
Fop*
FAD
TXI

AXT
SXA
LAC
DFop
AXT

(SAVE
CLA
DFop
AXT

E.l
Y,T
E.2

E.1l
Y+1,T
E.2

T
El

*—9

E.2
*+1,T,~1

E.l
*—7
E2
*+1,T,1

,0
CRS,4
*—2,4
0,4

4

Y,T
E.l
0,4
4

There are four forms for these expansions:

Dop

Dop

Dop
or Dop

YT

M’T

Wk

ok
,0

opa
opb

opa

opb*
TXI

opa
SXA
LAC
opb

AXT

Y, T
Y+1,T

T
*+1,T,-1
*—9
*+1,T,1

Dop*

Group 5. pFMP
There are four forms for

DFMP

DFMP

DFMP
or DFMP

DFMP*

Group 6. pFpP and prou

Y, T

CRS

Y,T

ok
,T

ok
ok
0

CRS
YT

CRS

For prop, take w=P.

For prpH, take w=H.

(SAVE
IFT
CLA
opa
opb
AXT

Y, T
/opa/=/STO/
E.1l

0,4

1,4

*h 4

this expansion:

STO
FMP
STO
LDQ
FMP
STQ
STO
LDQ
FMP
FAD
FAD
FAD

NOP
STO
FMP*
STO
LDQ*
FMP
STQ
STO
TXI
LDQ*
TXI
FMP
FAD
FAD
FAD

AXT
SXA
LAC
DFMP
AXT

(SAVE
CLA
DFMP
AXT

E.1l
Y,T
E.2
Y, T
E.l
E3
E4
Y+1,T
E.1
E2
E3
E4

**’T
E.1

*—2
E2

*—4

E.l

E.3

E.4
*+1,T,—-1
*—9
*+1,T,1
E.l

E.2

E.3

E4

0
CRS
*—24
0,4

"
4

Y.T
E.l
0,4
*k 4

There are four forms for these expansions:

DFDw

Y, T

STQ
FDw
STO
STQ
FMP
CHS
FAD
FAD
FDw
XCA
FAD

E.1
YT
E2
E3
Y+1,T

E2
E.l
YT
E.3

Appendix

49

Form C28-6311-2
Page Revised 2/24/64
by TNL N28-0097

DFDw =T
NOP ,T
STQ E.l
FDw* 2
STO E.2
STQ E.3
TXI *+1,T,—-1
FMP* *-6
CHS
FAD E2
FAD E.l
TXI *+1,T,1
FDw* *—11
XCA
FAD E.3
DFDw e
or DFDw **0
AXT *>*0
SXA CRS,4
LAC *—24
DFDw 04
CRS AXT ** 4
DFDw* Y, T '
(SAVE Y,T
CLA E.l
DFDw 0,4
CRS AXT ** 4

Appendix C: Operation Code Formats

The operation code formats to be used with the orp
and opvrp pseudo-operations are given in this ap-
pendix.

Operations

Entries are made in the Combined Operations Table
for all opp and opvrp pseudo-operations, since the
lookup process is the same as for any other symbol. To
specify machine operations using opvFD, the general
form of this entry is

6/A,5/0,1/IND,2/ADD,2/TAG,2/DEC,18/V

where each group of bits in the instruction word is
specified by an octal number. The same general form
is used for opp except that the 36-bit word is specified
as a whole by a 12-digit octal number that will result
in the same bit structure.

In this format, V varies with adjective code A (de-
scribed below). The fields app, TAG, and DEC refer to
address, tag, and decrement, respectively. The follow-
ing code is used:

0 Field required

3 Field permissible

2 Field unexpected but allowed
3 Field not permissible

A 1 for vp indicates that indirect addressing is per-
mitted, and a 0 indicates that it is not permitted.

The seven bits specifying fields b, ADD, TAG, and
pec are denoted by rr (Fields Required).

50

Adijective Codes
The following list of octal adjective codes gives the
type of operation to which each applies.

CODE (OCTAL) OPERATION TYPE

40 A

41 Prefix

42 Input/Output Command

43 B

44 C

45 D

46 E

47 Select

50 Disk and Drum Channel Commands
(4 fields)

51 Disk and Drum Channel Commands

52 Boolean Variable

53 Disk File and Drum File Orders

54 Unexpanded 7094 Instructions

55 Hypertape Orders

TYPE A INSTRUCTIONS (40)

The entry is
06/40,05/0,07/FR,06/0,012/0PCODE

where OPCODE is an octal machine code written with the
prefix in the first digit. For example, opcopk for the in-
struction Tx1 would be 1000.

PREFIX OPERATIONS (41)
This entry is
06/41,05/0,07/FR,06/0,012/0PCODE

where OPCODE is written with the prefix in the first digit.
For example, opcopk for the instruction poN would be
1000.

INPUT/OUTPUT COMMANDS (42)
The entry is
06/42,05/0,07/FR,03/N,03/0,012/0PCODE

where OPCODE is written with the prefix in the first digit.
For example, opcopk for the instruction Tci would be
1000. If the instruction is a nontransmitting command,

N=2.

TYPE B INSTRUCTIONS (43)

The entry is
06/43,05/0,07/FR,06/0,012/0PCODE

TYPE C INSTRUCTIONS (44)
The entry is
06/44,05/0,07/FR,06/0,012/0PCODE

TYPE D INSTRUCTIONS (45)
The entry is
06/45,05/0,07/FR,06/0,012/0PCODE

TYPE E INSTRUCTIONS (46)
The usual format is

06/46,05/0,07/FR,03/S,015/EA

where S is the sign of the operation:
If S=0, opcope would be +0760.
If S=1, opcopk would be —0760.
EA is the actual extended address of the instruction.

SELECT INSTRUCTIONS (47)
The entry is
06/47,05/0,07/FR,03/0,03/E,06/C,06/OPCODE

OPCODE is the Select type, as follows:

0=Read

1=Write

2=Set Density High

3=Set Density Low

4=Rewind)

5=Rewind Unload

6=Backspace Record

7=Backspace File
10=Write End of File

C is the channel number of Select, starting at 1 for
Channel A,

E is the equipment code and has the following signi-
ficance:

0=Decimal Tape

1=Binary Tape; or either Binary or Decimal Tape
2=Card Reader

3=Punch

4=Decimal Printer

5=Binary Printer

See “Select Type” operations for specific address
field requirements.

DISK AND DRUM CHANNEL COMMANDS (50)
The entry is
06/50,05/0,07/FR,06/0,012/OPCODE

DISK AND DRUM CHANNEL COMMANDS (51)
The entry is

06/51,05/0,07/FR,03/N,03/0,012/0PCODE

where N=2 if a 1 in bit position 19 is part of the
operation code.

BOOLEAN VARIABLE (52)
The entry is

06/52,05/0,07/FR,06/0,012/OPCODE
where the high-order bit of opcopk is always on.

DISK FILE AND DRUM FILE ORDERS (53)
The format is

06/53,06/0,02/ACC,02/TRK,02/REC,
06/0,012/ORCODE

ORCODE is the order, written in external Bcp notation.

Form C28-6311-2
Page Revised 2/24/64
by TNL N28-0097

For example, preL with an order code of 04 would be
written 1204. ,
The fields acc, TRk, and ReC refer to the access

module, track, and record, respectively. Encoding is:
1 Field permissible

UNEXPANDED 7094 INSTRUCTIONS (54)

The entry is
06/54,05/0,07/FR,06/0,012/0PCODE

HYPERTAPE ORDERS (55)

The entry is
06/55,06/0,02/ADD,010/0,012/OPCODE

Appendix D: IBMAP-FAP Incompatibilities

This appendix lists the incompatibilities that will occur
when assembling a FAP or 1BSFAP program using IBMAP.
1. All rap machine operations and extended ma-
chine operations will assemble properly in Map.
2. All rap pseudo-operations pertaining to the up-
date facility have no counterpart in map. They are:

DELETE NUMBER UMC
ENDFIL REWIND UNLOAD
ENDUP SKIPTO UPDATE
IGNORE SKPFIL

3. The following rar pseudo-operations have no
counterpart in MaP. (Since MAP treats undefined op-
erations as remarks, some of these operations do not
affect assembly.)

IFEOF TAPENO
LOC 704
PRINT 9LP

SST

4. The following rap pseudo-operations must be
replaced by the indicated MAP equivalent:

FAP MAP
HEAD,HED QUAL,ENDQ

BCD BCI

MOP MACRO

MAC Standard macro-instruction
END (of macro) ENDM

RMT USE and USE PREVIOUS

(Note that QuUAL permits nesting of qualifiers, whereas
HEAD does not.)

* The following is an example of a program segment
coded first in AP and then in maP.

FAP
BRMT
BSS 10
RMT

RMT *
EXTERN
SKP
SPC
TSX

ALPHA

$SUB,4

Appendix 51

MAP
USE RMT
BSS 10
USE PREVIOUS
BEGIN RMT, ALPHA
Leave
symbols
undefined
EJECT
SPACE
TSX SUB,4 (remove all $ signs that

specify external names)
5. The following pseudo-operations have identical
names in FAP and MAP but differ in context or meaning:
IFF
Variable field specifications are different.
COMMON
COMMON counter increments forward in MAP.
DUP
In MAP, an S-value may be used for the instruction and
iteration counts. A FAP sequence such as

N EQU 5
DUP LN
must be changed in MAP to
N SET 5
DUP LN
EQU,SYN

In MAP, these apply to symbol definitions only and
cannot be used where an S-value is required; see DUP

above.
OPD,OPVFD
The flag bits in the field are different (see Appendix C).
MACRO
D In MAP, this is used as
NAME MACRO ABC,...
and may not be used as
MACRO
NAME A,B,C,...

6. The following Fap pseudo-operations have their
equivalent option specified on the siBMAP card:
REF

7090
COUNT

7. In Mmap, the NuLL pseudo-operation rather than
£QU * should be used for symbol definition, because of
the limited size of the Pseudo-Operation Dictionary.

8. The following Fap pseudo-operations will as-
semble properly in MAP:

ABS FULL ORGCRS
BCI INDEX PCC
BES LBL PMC
BOOL LIST REM
BSS MAX SET
*CALL MIN SPACE
DEC NOCRS TCD
DETAIL NULL TITLE
EJECT OCT UNLIST
ENTRY OPSYN TTL
ETC ORG VFD

*CALL generates a different calling sequence in MAP.

52

9. In MaP, virtual entries in the Control Dictionary
correspond to the transfer vector of Fap except that
BLDR provides direct rather than indirect references.

10. In Mmap, normal arithmetic truncates to 15 bits
in the address field, 3 in the tag, and as specified in
the decrement. vep symbolic arithmetic truncates to
a maximum of 20 bits. Boolean arithmetic truncates to
18 bits.

Appendix E: The MAP BCD Character Code

The MaPp Bep character code is shown in octal form in
in the following table with the corresponding 1BM
punched card code.

CHARACTER BCD CODE (OCTAL) CARD CODE
(blank) 60 (blank)
0 00 0
1 01 1
2 02 2
3 03 3
4 04 4
5 05 5
6 06 6
7 07 7
8 10 8
9 11 9
A 21 12-1
B 22 12-2
C 23 12-3
D 24 12-4
E 25 12-5
F 26 12-6
G 27 12-7
H 30 12-8
1 31 12-9
] 41 11-1
K 42 11-2
L 43 11-3
M 44 11-4
N 45 11-5
(0] 46 11-6
P 47 11-7
Q 50 11-8
R 51 11-9
S 62 0-2
T 63 0-3
U 64 0-4
v 65 0-5
w 66 0-6
X 67 0-7
Y 70 0-8
Z 71 0-9
+ (plus) 20 12
- (minus) 40 11
/ (slash) 61 0-1
= (equals) 13 8-3
’ (apostrophe) 14 8-4
. (period) 33 12-8-3
) (right parenthesis) 34 12-8-4
$ (dollar sign) 53 11-8-3
* (asterisk) 54 11-8-4
R (comma) 73 0-8-3
((left parenthesis) 74 0-8-4

aBs pseudo-operation 31
Absolute assemblies 6, 31
Absolute-assembly pseudo-operations 6, 31
Absolute expression 11
Absolute origin 6,9,15
Absolute symbols 9
Adjective codes 50
Alphameric literal 10
Alphameric subfield invep L 18
Assembly-program language 5
Asterisk (*)
asanelement 10
in indirect addressing 7
in relative addressing 12
remarks card 8
Bep character code 52
Bcr pseudo-operation 17
BEGIN pseudo-operation, 14
BEs pseudo-operation 15
Binary-place part in fixed-point number 10
Binary transfer card oL 30, 31
Bit count of VFD 18
Blank COMMON 14, 17, 25
Blank location counter, 14
BoOL pseudo-operation 22
Boolean expressions, 11, 22
Boolean pseudo-operations 5,22
Boolean variable code format 51
Bss pseudo-operation 15
caLL pseudo-operation 34
Calling macro-operations 39
Calling sequence i, 34
Comments field L 7
COMMON pseudo-0peration 17
Compiler program i 5
Complex expression 11
Conditional-assembly in macro-operations 41
Conditional-assembly pseudo-operations 5, 22
ConStants 9,17
CONTRL pseudo-operation 24
Control section i 24
Control-section pseudo-operations 5,24
Created symbols in macro-operations 43
“Current” location counter 6
Data-generating pseudo-operations 5,17
Data item, decimal 9
pEC pseudo-operation 17
Decimal data item 9
Decimal integer o i 9
Decimal literals 9
Defining macro-operations 37
Defining symbols 8
DETAIL pseudo-operation 32
Disk channel command format 51
Disk file order format e 51
Disk file orders 48
Double-precision literals 10, 16, 19
pup pseudo-operation 19
EJECT pseudo-operation 32
Elements in eXpressionsouiinia 10
END pseudo-operationciiia 30
ENDM pseudo-operation 37,39
ENDQ pseudo-operation 24
ENTRY pseudo-operationcoviunennn.. 25

Index

EQU pseudo-operationo 20
Error checking 6
Error returns 36
ETC pseudo-operation i, 30
Evaluating expressions 11
EVEN pseudo-operation 16
Expansions
of CALL 34
in macro-operations 37, 39
of SAVE 35
Exponent part
fixed-point number L. 10
floating-point number L 9
Expression®™® 11
EXDPIESSIONS . .. oottt 11
absolute 11
Boolean 11
complex 11
elements of 10
evaluation of 11
operators In 11
relocatable 11
rules for forming A 11
symbols in o 12
terms I .. 11
writing of 10
Extended machine operations 46
External file name 25
FAP-IBMAP incompatibilities 51
Fields
COMMENES . . . oottt e e s 7
instruction 6
DAME . oo ot 7
operation 7
SEQUENCE . .« o oot e e 8
variable 7
File-description pseudo-operations 5,25
File identification name 29
File name 29
external 25
File options
activity 27
block sequence 27
block size 27
block-size check 28
checkpoint 27
checkpoint location, 27
check SUM 27
CONVEISION . . . o oo e 28
disk cylinder count............ 28
disk starting cylinder number 28
disk write-checking 28
file close 27
file density 27
file mounting 26
fileusage 26
Hypertape v 28
Hypertape reel switching 28
label density 27
MOde . 27
nonstandard-label routine 28
operator file list 26
reel handling oo 27
FILE pseudo-operation 25
File serial number 29

File unit

Primaryo . i 25
secondary 25
File unit-assignment option 25
Fixed-point number 10
Floating-point number 9
Format
Boolean variable code 51
disk channel commands 51
disk file orders 51
Hypertape orders 51
Input/Output Commands 50
operation code 50
prefix operation code L, 50
select instruction code 51
type A instruction code, ... 50
type B instruction code 50
type C instruction code 50
type E instruction code 51
unexpanded 7094 instruction code 51
FUL pseudo-operation 31
Hypertape order format 51
Hypertape orders P 48
IBMAP-FAP Incompatibilities 51
1FF pseudo-operation L. 22,41
FT pseudo-operation, 22,41
Immediate symbols 9,21
NDEX pseudo-operation, 33
Indirect addressing 7
Input/output command format 50
Instruction count of pup 19
Instruction fields 6
Instructions, type D 9, 22, 50
Integer
decimal 9
octal ... 10
mp pseudo-operation 43
Irrelevant subfield 7
Iteration count of pup 19
LABEL pseudo-operation 29
Languages
assembly program 3
compiler 3
machine 5
MAP 5
LBL pseudo-operation 32
LBoOL pseudo-operation 22
LDIR pseudo-operation 16
Linkage Director 16, 34
List-control pseudo-operations, . 6, 31
LisT pseudo-operation 32
Lt pseudo-operation 19
Literal Pool 10, 16, 19
Literals 9
alphameric 10
decimal 9
double-precision 10, 16
octal ... 10
Load address 6
Location-counter pseudo-operations 5, 14
Location counter // 14, 17, 25
Location counters 6, 14
“current” 6
Location symbols 8
LorGc pseudo-operation 16
Machine-language program 5
Machine operations 45
extended 46
select-type extended 46
sense-type extended 46
TOO0 . 45
TO9L 47
Macro-defining pseudo-operations 6, 37

54

Macro-definition heading card 37

Macro-definitions 37
Macro-expansions 37,.39
inserting instructions in L. 41
of 7094 instructions 48
Macro-instructions 37,39
delimiting parameters in 40
in macro-definitions 42
parameters in 40
Macro-operation facility 6, 37
Macro-operations
conditional assembly in 41
nested 42
qualification in 42
Macro pseudo-operation 37
Macro-related pseudo-operations 6,42
MAP BeD character code 52
Map language features 5
MAP pseudo-operations 14
MAX pseudo-operation 21
MIN pseudo-operation 21
Miscellaneous pseudo-operations 6, 30
Name field 7
Names
external file 25
file 29
Nested pup pseudo-operations 20
Nested macro-operations 42
Nested qualification 23
Nocrs pseudo-operation 44
NULL pseudo-operation 21
Null subfield, 7
Numbers
fixed point 10
floating point 9
Object program 5
oct pseudo-operation 17
Octal integers 10
Octal literals 10
Octal subfield in vep 18
opp pseudo-operation 29, 50
Operation code formats 50
Opcration-defining pseudo-operations 5,29
Operation field 7
Operators
in Boolean expressions 12
in expressions e 11
relational 22
oPsYN pseudo-operation 30
Options
disk cylinder count 28
disk starting-cylinder number 28
disk write-checking 28
file activity 27
file block sequence 27
file block size 27
file block-size check 28
file checkpoint, 27
file checkpoint location 27
file check-sum 27
file close 27
file conversion 28
file density 27
file label density 27
filemode 27
file mounting 26
file nonstandard-label routine 28
file reel handling 27
file unit assignment, 25
file usage 26
Hypertape 28
Hypertape reel switching 28
operator file list 26

orrvp pseudo-operation 29, 50
Orders

disk file 48
Hypertape 48
Ordinary symbols 8
ORG pseudo-operation 15
orGeRs pseudo-operation 44
Origin
absolute 9,15
relocatable 9
Parameters
delimiting in macro-instructions 40
in macro-instructions 40
pcc pseudo-operation 31
pce pseudo-operation 33
.pMc pseudo-operation 33
Prefix codes 47
Prefix operation code format 50
Primary file unit, 25
Principal part
fixed-point number. 10
floating-point number 9
Prototype card images 37
Prototype instructions 37,38
substitutable arguments in L 38
text in 38
Pseudo-operation 5
Pseudo-operations
ABS i 31
absolute-assembly 6, 31
BCL .« o oo oot e 17
BEGIN . .. 0ttt e e 14
BES . . oot 15
BOOL o oottt e 22
Boolean 5,22
BSS 15
CALL . oottt 34
COMMON . .ot i e e 17
conditional-assembly o ... 5, 22
CONTRL . . oottt e et e e e 24
control-section 5,24
data-generating 5,17
DEC o oot 17
DETAIL . . o\ttt et e e e 32
DUP o ottt e 19
EJECT . ot oottt et et e e 32
END o ottt 30
ENDM . o oo oo e e e 37, 39
ENDQ oottt e e 24
ENTRY oo ottt e e e 25
EQU oo 20
ETC oot e e e 30
EVEN .ottt e 16
FILE . . ottt it e e 25
file-description 5,25
FUL oottt e 31
4 20 22, 41
TET . o 22,41
INDEX . 0ottt oo 33
TRP .o oot 43
LABEL . . .ottt e 28
LBL ottt 32
LBOOL . oottt ittt e 22
% 03 4 S 16
LIST o oottt et e e 32
list-control 6, 32
LIT o« oot e 19
location-counter 5,14
7o) S 16
MACRO . oottt e 37
macro-defining 6, 37
macro-related 6, 42
MAX oo 21
MIN o 21

miscellaneous 6, 30
NOCRS ..ottt 44
NULL oo 21
OCT ot 17
OPD ..ottt 29, 50
operation-defining 5,29
OPSYN 30
OPVED ..o iiiii i 29, 50
ORG ..ttt 15
ORGCRSo titeii et 44
PCC . 31
PCG .ot 33
PMC ... 33
PUNCHottt i 31
QUAL . . 23
BRBOOL . . .ttt 22
REM 30
RETURNt 36
SAVE ..o 35
SAVEN 36
SET ot et 9, 20, 21, 23
SPACEttt 32
special systems 6,34
storage-allocation 5,15
symbol-defining 5,20
symbol-qualifying 5,23
SYN e, 20
TCD e 31
1 2 32
TTL ottt 33
UNLIST .. oot e 32
UNPNCH e 31
USE .ot 14
VED 18
puNcH pseudo-operation 31
QUAL pseudo-operation, 23
Qualification
in macro-operations 42
mested 23
Qualified section, 23
Qualified symbol 23
RBOOL pseudo-operation 22
Relational operator 22
Relative addressing 12
Relocatable assemblies 6
Relocatable expressions 11
Relocatable origin 9
Relocatable segments 24
Relocation properties of symbols 9
REM pseudo-operation 30
Remarks card 8
Retention period for files 29
RETURN pseudo-operation 36
Returns, error 36
S-value 9
SAVE pseudo-operation 35
SAVEN pseudo-operation 36
Secondary file unit 25
Sections
control 24
qualified 23
Segments, relocatable 24
Select instruction code format 51
Select-type extended machine operations 46
Sense-type extended machine operations 46
Sequence field 8
Serialization of decks 32
seET pseudo-operation 9, 20, 21, 23
Source Program 5
sPACE pseudo-operation 32
Special operations 47
Special systems pseudo-operations 6,34

Storage-allocation pseudo-operations5,15

C28-6311-2

Subfields TS 7
alphameric in VFD L 18
irrelevant 7
null 7
octal in VFD 18
symbolic in VFD 18

SUbroutines 34

Substitutable arguments
combining with text 41
delimiting in MACRO 38
delimiting in prototypes............................ 38
I MACRO . . oot 37
in prototypes 38

Symbol-defining pseudo-operations 5,20

Symbol definition 8

Symbol-qualifying pseudo-operations 5,23

Symbolic instructions 6

Symbolic subfield in veD oL 18

Symbols 8
absolute 9
created in macro-operations 43
definition of 8
immediate 9,21
10Cation 8
ordinary 8
qualified 23
relocation properties of 9
used in expressionsc.iiiiei... 12
virtual ... 9

sYN pseudo-operation, 20

SYSLOC . .\ ot e et e 35

TIBIVL

@
International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601

Tcp pseudo-operationl 31
Terms in expressionscc.coieriern... 11
Text

combining with substitutable arguments 41

in macro prototypes 38
TITLE pseudo-operation 32
TTL pseudo-operationoa.... 33
Type A instruction code format 50
Type B instruction code format 50
Type C instruction code format 50
Type D instruction code format 9, 22, 50
Type E instruction code format 51
Type letter in VED 18
Unexpanded 7094 instruction code format 51
Units

primary file 25

secondary file 25
UNLIST pseudo-operationc...0... 32
UNPNCH pseudo-operation 31
usk pseudo-operation 14
Variable field, 7
VFD pseudo-operationc.i.ieii 18
Virtual symbols 9
Writing expressionso, 10
1301 disk file orders 48
7090 machine operations 45
7090 macro-expansions of 7094 instructions 48
7094 machine operations 47
7340 Hypertape ordersccouuiuniann.. 48
7909 data channel commands 47
(Jokoption 8

“v'$°N Ul pajuiig

T-L1€9-820

IBM Technical Newsletter

IBM 7090/7094 MAP; 7320 CAPABILITY

File Number 7090-21

Re: Form No. C28-6311-2

This Newsletter No. N28-0097

Date February 24, 1964

Previous Newsletter Nos. None

This Technical Newsletter amends the IBM Systems Reference Library publication,

IBM 7090/7094 Programming Systems: Macro Assembly Program (MAP) Language,
Form C28-6311-2 to provide direction for using IBM 7320 Drum Storage.

In addition to the prerequisite and related publications listed in the subject manual,
the reader is assumed to be familiar with the contents of the publication IBM 7320
Drum Storage with 7090 and 7094 Systems, Form A22-6747.

In the subject publication, replace the pages listed below with the pages that are

attached to this newsletter:

oMUl W WY

pages 25 and 26
pages 27 and 28
pages 29 and 30
pages 47 and 48
pages 49 and 50
pages 51 and 52

After replacing the pages, file or discard this instruction sheet and discard all pages

removed from the publication.

A vertical line immediately to the left of the column shows when the text was changed.

International Business Machines Corp., Programming Systems Publications, P. O. Box 390, Poughkeepsie, N. Y. 12602

PRINTED IN U.S.A.

N28-0097 (C28-6311-2) Page 1 of 1

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057

