IBM Application System/400™
Technology

SA21-9540-0

Dedication

This publication is dedicated to the most
important element of business: people.

To the people who purchase 1BM products, our
customers:

who displayed their enthusiasm for the s/3x

product family and their interest in providing
input and feedback that helped us meet and,
we hope, exceed their product expectations.

To the people of iIBM around the world:

who have dedicated their time and energy to
develop the AS/400 product family. To
employees in 1IBM manufacturing locations in
the United States, Europe, Japan, and Mexico,
who helped ensure that worldwide product
requirements were met.

To the people of iBM Rochester and Toronto:

who have provided their ingenuity,
commitment, and dedication, to deliver to our
customers products with improved cost
performance, the highest quality, and the most
advanced computer architecture in the world.

Qzugjjw%
Tom E. Furey, Jr.
Laboratory Director

1BM Application Business Systems
Rochester, Minnesota

Foreword

The AS/400 system is a new generation of
general-purpose, mid-range systems from ism.
With more than 1/4 million customers worldwide,
the product family that established the small and
intermediate business computing standard is now
setting a new standard with the AS/400 system. It
has been designed and built to combine the
strengths of its predecessors. This includes the
System/36’s large application portfolio and wide
range of connectivity options, and the
System/38’s programmer productivity, advanced
architecture, and integrated data base.

Significant new function has been added to
enhance ease of use and connectivity and to
support IBM's Systems Application Architecture
(saa), online education, and direct electronic
customer-to-iBm support. The AS/400 system has
been designed to provide growth potential for
future applications, including applications with
graphics, voice, and image capabilities. The
architecture also preserves customers’
application and education investments by
providing easy migration for most applications.
The hardware, with its expanded range, is setting
new standards in quality and reliability while using
the latest in 1BM's vLSI, main storage, and disk
technology. This has all been accomplished in a
hardware family managed by a single operating
system.

Such an undertaking provided many
programming, engineering, and manufacturing
challenges during development. This publication is
a collection of articles on the design and
development of the AS/400 system. The AS/400
System Overview provides a high-level look at
some of these advances, followed by three main
sections: Programming, Engineering, and
Manufacturing. These articles were written by 78
of the more than 2,000 technical and professional
people who work in these areas. They describe
some of the innovation, technology, and design,
and thus some of the advantages, built into the
AS/400 system.

James E. Coraza
Director of Advanced Systems

1BM Application Business Systems
Rochester, Minnesota

Preface

The articles in this publication are not intended to
replace 1Bm technical manuals in describing the
capabilities of the system components and how to
use them. The articles are for general technical
communications purposes only; they do not
represent an IBM warranty or commitment to
specific capabilities in the referred-to products.
These articles describe the AS/400 system at the
time of announcement and will not be updated.

The publication is the result of the efforts of many
pecple, but special acknowledgement is due to:
Vicki J. Gervickas, editing; Michael L. Horsman,
graphics; Wayne A. Larson, engineering; Richard
J. Lindner, programming; Frederick R.
Oeltjenbruns, manufacturing; John C. Kaplan,
system support; Roger L. Taylor, system
development; and Herbert B. Michaelson,
publications consultant. They provided significant
help with photography and graphics, as well as
shaping both the publication and the individual
articles.

w K

Ben R. Persons
Managing Editor

First Edition (June 1988)

The information herein is subject to change before the products described become available.

References in this publication to 1BM products, programs, or services do not imply that iBum intends to make
these available in all countries in which 18m operates. Any reference to an iBm licensed program in this
publication is not intended to state or imply that only 1Bm's licensed program may be used. Any functionally
equivalent program may be used instead.

The numbers at the bottom right of illustrations are publishing control numbers and are not part of the
technical content of this manual.

Publications are not stocked at the address given below. Requests for 1M publications should be made to
your 1BM representative or to your ism-approved remarketer.

This publication could contain technical inaccuracies or typographical errors. Address comments
concerning the content of this document to 1Bm Corporation, Information Development, Department 245,
Rochester, Minnesota, U.S.A. 55901. iBm may use or distribute whatever information you supply in any
way it believes appropriate without incurring any obligation to you.

On the Title Page: Modets B10 through B60 of the AS/400 System.
AS/400, Operating System;400, 0S/400, Operating System/2, 05/2, NetView, Ramp-C, Systems
Application Architecture, saa, and Personal System/2 are trademarks of International Business Machines

Corporation.

© Copyright International Business Machines Corporation 1988

Table of Contents

AS/400 System Overview

Programming

Application Software

An Integrated User Interface
An Integrated Data Base
Application Development Support

The System/36 Environment

Communications Support

The Communications and Networking Structure
Advanced Peer-to-Peer Networking

A Structured Approach to Data Management

Office Support
Integrated Office Support

Security Support
Security

Customer Support

Electronic Customer Support

The System Capacity Planner

Software Design to Support National Languages
Engineering

Processors

System Processor Architecture

R.O. Fess, K.R. Reid, C.D. Truxal,
R.J. Lindner

J.H. Botterill, D.A. Charland, J.Y. Harrington
M.J. Anderson, R.L. Cole

G.R. Karasiuk

J.A. Modry, P.J. Heyrman, S.A. Dahl

J.O. Walts, P.R. Mattson
R.K. Harney, C.H. Jones
C.A. Egan, D.S. Brossoit

D.G. Wenz, R.J. Lindner, J.H. Bainbridge,
S.J. Cyr, B.W. Hansen, D.N. Youngers

W.O. Evans, R.J. Lindner

J.R. Morcomb, M.J. Snyder, E.W. Emerick,
D.L. Johnston

M.J. Denney, J.M. Mickelson, J.C. Stewart
E.L. Fosdick, M.F. Moriarty

M.R. Funk, Q.G. Schmierer, D.J. Thomforde

1"

12
20
26
32

42
50
60

66

76

82

92
96

99

100

System Processor Technology

VLSI Design Process for the System Processor
Performance Analysis of the System Processor
Design of the System Service Processor

Input/Output
The Internal Input/Output Bus

Magnetic Storage Device Controller
Work Station Controllers

The Multiple-Function Input/Output Processor

Power and Packaging

Power, Packaging, and Cooling for the 9404
System Unit

Quality and Reliability

Improved Methodology for Hardware Quality
and Reliability

Direct-Access Storage
Design of the IBM 9332 Disk Unit
Digital Servo Control for Disk Units

Manufacturing
The Flexible Manufacturing System

Manufacturing Card and System Tests

Disk Unit Manufacturing Process

Electronic Data Interchange

About the Authors

Vi

D.R. Cecchi, R.F. Lembach

J.R. Rubish, L.F. Saunders, T.J. Mullins,
W.J. Goetzinger

H.F. Kossman, M.E. Houdek
W.A. Thompson, T.M. Walker

N.C. Berglund, J.N. Tietjen, W.E. Hammer

F.L. Huss, G.A. Lushinsky, K.P. Gibson,
S.P. Batra

J.E. Remfert, T.L. Clausen, G.A. Dancker,
H.G. Kiel

C.A. Lemaire, R.J. Recio, S.P. Hank

Z.D. Squillace, R.A. Tenley, F.J. Lukes,
A.P. Reckinger

K.L. Thompson, D.A. Spencer

E.A. Cunningham
H.H. Ottesen

D.L. Conroy

R.W. Lytle, D.L. Beck, M.W. Hansen,
G.L. Kearns

J.T. Costello, G.L. Landon, T.J. Warne
R.E. Albrecht

104
108

112

116

120

124

128

134

142

146

150
156

161
162
168

172
180

184

AS/400 System Overview

Provides an overview of AS/400 underlying concepts and a high-level view of technical innovations incorporated in the system.

Ronald O. Fess, Kenneth R. Reid, C. David Truxal, and Richard J. Lindner

Introduction

The AS/400™ system is a broad new family of
general purpose mid-range systems. The system
architecture was developed to provide a total
solution to computing needs. It employs today’s
hardware technologies, combined using state-of-
the-art engineering processes, to create a family
of models tailored to a broad range of business
needs. This system sets new standards for
usability, performance, reliability, productivity,
simplicity, and training, while offering solutions
that allow it to grow with the needs of a business.
The entire family is managed by a single operating
system that provides complete end-user
consistency and application portability across all
models.

The AS/400 system provides many integrated
features that form the foundation for a productive
and extendable computing system. Operating
System/400™ (OS/400™) provides a
comprehensive, fully integrated set of batch and
interactive work management functions that make
processing application programs efficient and
productive. Business operations are
complemented by the integrated office products
and sophisticated communications components
of this system, which effectively employ attached
personal computers and other systems within a
network to provide maximum data availability. The
0S/400 data management facilities provide a full
range of data description capabilities and a
consistent interface for application access to data.
All data resides in a single integrated relational
data base, with powerful query features that make

information readily available. These facilities,
combined with a range of high-level language
compilers and utilities, provide customers with a
set of highly productive application development
tools. System utilities and system management
facilities, such as message handling, spooling,
and diagnostic support, make operating the
system convenient and easy to understand.

Moving from predecessor systems to the AS/400
system is also convenient. Within OS/400,
environments are available for easy migration of
most System/36 and System/38 applications,
files, and procedures. These environments make
the applications appear as if they are running on
System/36 or System/38, thereby preserving the
customer’s previous investment in applications
and in the training to use them. This means an
extensive application base already exists to meet
business needs, while additional applications are
being developed to capitalize on AS/400
advantages. The system also allows gradual
conversion of existing applications to take
advantage of the advanced AS/400 system
capabilities as the user’s business needs dictate.

Many software, microcode, and hardware
innovations, plus the iBM strategic Systems
Application Architecture™ (saA™), make the
AS/400 system a product for the future. sAA
conformance will allow application movement to
and from other conforming systems, with
application users shielded from the underlying
hardware and software differences.

System Concepts

The AS/400 system is designed and built as a
total system, integrating i1Bm hardware and
software components to provide optimal usability,
performance, and reliability while reducing costs.
Three basic system concepts form the underlying
structures that give this system its advanced
characteristics. The first is the layered machine
architecture, which isolates the effects of change
and makes the system function extendable in a
manner transparent to the end user. The second
is its object orientation, which permits an
instruction interface that is consistent across a
wide range of supervisory and computational
instructions. This allows the operation and use of
machine resources through logical names,
independent of the underlying hardware
specifications or characteristics. The third concept
is the single-level addressability of all storage.
This allows transparent storage addressing,
making both main and auxiliary storage appear
contiguous. This, coupled with its object
orientation, allows dynamic object creation, use,
and extendability, and permits storage and disk
additions without affecting customer applications.

Layered Machine Architecture

The AS/400 system insulates users from
hardware characteristics through the layered
machine architecture. This layered architecture
raises the level of the machine interface, creating
a high-level machine instruction set that is
independent of the underlying implementation.
Figure 1 shows the hardware with horizontal and
vertical microcode layers that comprise the high-
level machine. The horizontal microcode (HMC)

layer implements the internal hardware instruction
set, while the vertical microcode (vmc) implements
the machine interface (M) architecture of the
system. The high-level machine provides many of
the basic supervisory and resource management
functions traditionally found in operating systems.
Microcode runs faster than higher-level programs,
so applications realize this gain when functions
they use are implemented in microcode. The high-
level machine provides the user with full
multitasking, integrated security, automatic paging
of programs and data, interlanguage calls with
dynamic binding, interactive debugging,
addressability for 2**48 (281 trillion) bytes of
storage, and re-entrant programs (all users share
a single copy of the program instructions). The
machine interface allows implementation flexibility
below it; therefore, machine performance and
resources can be optimized by implementing
function within the layer in which it operates most
efficiently. Many validity and authorization checks
are done by the machine microcode so software
components can make simplifying assumptions
about their input and operational requirements. As
new hardware and software technologies emerge,
they can be employed without affecting
applications.

=
L Software

{

=

I High-
‘>Level

Vertical Microcode Layer Machine

y -

Horizontal Microcode Layer

Hardware

RSLL350-3

Figure 1 AS/400 Layered Architecture

Object Orientation

Everything on the system that can be stored or
retrieved is contained in an object. Objects exist to
make users independent of the implementation
techniques and addressing structure used in the
machine. The high-level machine is designed to
treat everything the same through the use of a
generic object structure. Although programs are
run, files are read or written, and queues
communicate results between processes or
between a process and a device, they all have
many of the same basic needs, such as storage
space and security protection.

All objects are structured (as shown in Figure 2)
with a common object header and a type-
dependent functional portion. This permits the
system to perform standard object-level functions
on all objects, as well as permitting each object to
be tailored for its own purposes. A create
instruction is used to produce each object in a
standard format. This process is called
encapsulation and, once created, the object’s
internal format is not apparent to the user. The
only exception to this is the space object, which is
designed to allow storage of and operation upon
byte-oriented operands such as character strings
and numeric values. Object management
functions ensure objects are used correctly,
preventing inadvertent modification and ensuring
they are available for subsequent operations.

With the object as the container for all stored data,
machine interface instructions can handle
everything in a consistent manner. Each object
has an object-type identifier that determines how it
can be used when retrieved. Complex system
components combine several types of primary
objects to provide composite objects. These
composite objects are the constructs generally
visible to the user; they are easier to understand
and control because the complexity is handled by
the system. For example, a physical file is a user
construct that is made up of a data space object

Owner Object

Pub Authority Header
{(common)

Object Type
Subtype

Object Offset e o »

Object-
Specific
Header
(optional)

Functional
Object

RSLL351-2

Figure 2 Structure of Generic Object

that stores the data, a cursor object that provides
addressability into the data space, and optionally,
a data-space-index object that provides logical
ordering to records stored in the data space. By
combining primary objects, high system quality
can be achieved because proven functions are
used, and system performance can be optimized
by carefully tuning highly used functions.

Single-Level Storage

A single, device-independent addressing
mechanism handles main storage and all auxiliary
storage utilization. The system’s directory
contains virtual addresses rather than real disk
locations. To run a program, the user simply calls
the named program. This causes the high-level
machine to automatically resolve the address and
verify the user’s authorization. The underlying
virtual storage addressing mechanism ensures
the program gets loaded into main storage and
control is passed to the loaded address. In effect,
the system branches to the program’s address.
Similarly, for data, a program considers data to be
at its virtual address and the machine handles all

input and output operations transparently. For
performance considerations, the system supports
capabilities, called pointers, that contain an
address and authorization for repeated access to
an object.

Virtual addressing is completely independent of
an object’s physical location, and the type,
capacity, and number of disk units on the system.
A data base file may be stored by distributing it
across several locations on several disk units, yet
its records will have contiguous virtual addresses.
As a result, multiple extent files appear to have
just one extent, and unused spaces on a disk do
not have to be gathered together to use them.
Users have the advantage of being able to leave
disk space management to the system.

AS/400 Software

The AS/400 system software contains advanced
solutions for mid-range computer systems. These
solutions are built upon the system concepts and
their advantages are exhibited in many ways.
Examples include the OS/400 user interface that
makes the functions of the system visible and
easy to use; AS/400 Office that provides a
powerful environment for the control of business
office operations, and integrates the use of
personal computers; the system'’s advanced
communications facilities that allow it to
communicate with other systems in a business
environment that often includes multiple office
locations; and the operational control and system
support capabilities that efficiently manage the
system in a complex business environment.

0S§/400 User Interface

Although many traditional operating system
functions are performed by the high-level
machine, OS/400 makes them easy to use.
Simplified menus, commands, and help
information are available to make the system easy
to learn and make the user comfortable with its
operation and control. A broad set of languages

and utilities provide the support for effectively
applying the system to business needs. Special
functions make it easy to migrate from a
System/36 or a System/38 to the AS/400 system.
Figure 3 shows the relationship of operating
system functional areas within the AS/400 system
structure.

System functions are accessed through
consistent, easy-to-use menus and commands
with extensive online help and prompts readily
available. Fast path (menu bypass) capabilities are
also supported for experienced users. To support
these capabilities an advanced User Interface
Manager (uiMm) is an integral part of OS/400. The

UIM, Common User Access -
System/36 Menus/Prompts/Help/Search Index
Menus
Commands AS/400 System System/38
Commands Commands
Operating
System/400
OCL Dialog Manager CL
RPG H Presentation Services, SQL, RPG i}
SFGR RPG, COBOL, Pascal, BASIC, PL/ DDS
ICF/COMM/APPN System Support/Alert
/
CCIiOM
N
High-
System/36 Environment Level
Machine
Vertical Microcode (VMC)

Horizontal Microcode (HMC)

Hardware

Figure 3 AS/400 System Structure

RSLLAS7-4

UM is a device-independent display definition and
presentation facility used by the system to provide
a consistent interface, to enforce saa interface
standards, and to ensure consistent future user
interface extensions. The System contains
knowledge about functional dependencies; when
an interactive request is made to the system, it
uses that knowledge to tailor the prompts so only
valid options are displayed. The um supports
context-sensitive help information throughout the
system. This help provides a consistent level of
descriptive information that pertains to the field on
which the cursor is positioned and is tailored to
the task being performed.

0S5/400 is designed to support interactive use in
multiple national languages for worldwide
application. Textual data is stored separately from
operational program code, permitting a system to
operate concurrently in many national languages.
The urm selects the appropriate language and
shows online displays, messages, and help
information, based on the user’s profile cbject.
The national language textual data can be
updated or medified while the system is
operational. Facilities used by the system to
produce an international system are also available
to customers for application development.

System facilities are available through a command
interface. The comprehensive control language
{cL) provides interactive users and application
programs consistent access to system functions.
This extendable, high-level interface has a
consistent syntax for operational, programming,
and maintenance functions. cL can be compiled to
perform complex operational functions, and the
resulting cL programs may call or be called from
any high-level language program. They may also
access the data base and they may communicate
directly to users through displays and prompts. In
additicn to cL interfaces, the AS/400 system has
provided various application program interfaces

(aPis) that allow customers to tailer functions for
their business needs.

Another interface is the system’s Structured
Query Language/400 (saL), a strategic SAA
interface to the system’s integrated relational data
base. saL is integrated into the system using the
same system services for security, locking, data
storing, and retrieving that are used by all other
AS/400 products. This allows the user to access
the AS/400 data base with saL language
statements, utilities, or conventional high-level
language read, write, and update statements. The
system supports a comprehensive locking
strategy at the object and record levels to allow
multiple users to view, access, and modify the
same files at the same time, through any interface,
without losing data integrity. With this data base,
the AS/400 system has the ability to access a
single data representation using multiple logical
views, providing advantages in application
programming productivity, quality, and security.

Powerful data and file definition languages provide
the external interfaces supporting data base,
device, and communications files. File definitions,
stored as objects on the system, provide the
framework for independence between device files
and data base files, allowing data to be optionally
directed to a device or the data base through cL
commands. The file definition languages describe
data externally from the application programs.
Once a file is defined, its definition can be used by
many application programs. The data definition
facilities were designed in cenjunction with
0S/400 data management, the high-leve!
languages, and the high-level machine object-
oriented functions. Together, these system
functions give the application programs a very
consistent data management interface. The high-
level machine permits the system to perform
typical application-data validity checking and
formatting, thus improving performance

significantly and providing more advantages in
programming productivity and application quality.

Special support exists within 057400 that allows
applications to operate as though they were
running on a System/36 or System/38, making it
easy to migrate end users and most application
programs to and from the AS/400 system. A
System/36 environment exists that consists of a
machine definition, commands, procedures, files,
and a set of control blocks, which are added to a
job when the associated user-profile object has a
System/36 attribute specified. This attribute
informs the system that it should operate in a
manner consistent with a System/36. Users
without the attribute in their profile can issue a cL
command to initiate the System/36 environment.
The System/36 environment runs like a
subsystem within OS/400, not as an emulator,
therefore, the user does not pay the performance
penalty nhormally associated with an emulator.

Similarly, a System/38 envircnment supports
running System/38 user applications. This
environment is established when a program has
the System/38 attribute. System/38 programs run
as part of AS/400 jobs and use System/38
command syntax, command definitions, and
function. This attribute is automatically established
when an object is restored on an AS/400 system
from a System/38, so applications can run without
change. Objects can also be created with this
attribute.

Office Environment and Personal Computers
AS/400 Office can help control the flow of work in
an office. It is an integrated office services
package that contains support for word
processing (including text, graphics, and image
processing), calendars, electronic mail, personal
directories, and office administration. Its user
interface includes full suspend-and-resume
capability from all office functions, permitting

users to suspend any office function, initiate other
functions, and later resume any previously
suspended function. Customer applications called
through the Office menu may be suspended or
resumed as well, The office user interface is
consistent with the rest of the system, including
panel formatting and context-sensitive help
throughout.

The AS/400 system structure and high-level
machine have been used to optimize office
performance and simplicity. The linguistic spelling
features have been implemented in vmc for
improved performance, and the support for
electronic mail uses the networking support within
the operating system and vmc, making the
communications hardware complexity transparent
to office workers. Office functions are designed in
compliance with saa guidelines using strategic 1iBM
architectures. AS/400 Office contains a Document
Interchange Architecture (Dia) library. The
documents conform to the Document Content
Architecture for future compatibility, and are
distributed using sna distributed services (SNADS}.
APls are furnished with the system, allowing
applications to use these office services directly.

Personal computers have been integrated into
AS/400 Office through cooperative processing
techniques, which distribute the work between the
System Processor and the personal computer.
Also, system support allows the AS/400
document library to serve as a filing system for
the personal computer with data location made
transparent to the pc application programs.

The method used to attach personal computers to
the AS/400 system is transparent to the
applications running cn them. They can be
aftached by either twinaxial cable, synchronous
data link communications (SbLC), or the 1BM
Token-Ring Network. A router that runs on the
personal computer controls all communications to
host AS/400 systems. pPc applications behave

consistently in all hardware environments. The
router also allows the personal computer to have
multiple sessions active with one or more host
systems in the communications network. Office
support, called work station function, running cn
the personal computer provides an interface for
applications that wish to communicate with
multiple host systems. Work station functicn also
improves graphics performance by automatically
requesting increased communications packet
size, and improves graphics appearance by
providing attributes to the host AS/400 system
that allow it to tailor the graphics data stream to
the display capabilities.

Cooperative processing techniques have also
been used for host-dependent display stations,
with text precessing distributed between the
System Processor and the work station input/
output {1;0) processors.

Advanced Communications Facilities
Communications between systems is vitally
important in the complex business environment of
today, with the need to distribute information and
have cooperative access with good control.
AS/400 communications facilities give users the
advantage of being able to communicate with
other systems through automatic features that
ease the management of complex
communications networks. The key to this
advantage is the advanced, extendable
coemmunications structure that provides
independence from the specifics of
communications protocols. This is important to
the portability and simplicity of application
programs. The AS/400 system achieves
independence by integrating the industry’s
standard protocols into its communications
structure and through the intersystem
communications function (crF) within AS/400 data
management. ICF does the protocol-specific
processing. Through the use of OS/400 data
definition facilities and the communications

function manager, it provides a high-level interface
for communications.

ICF uses the advanced peer-to-peer networking
{aPPN} support, which is an extension of the
Systems Network Architecture (sna) networking
function of the vmc layer. ApPN provides
automated functions like locating a remote
resource, selecting the best data transmission
route, activating a non-configured logical unit (Lu}
description, and automatically adapting the data
transmission pacing and the transmission priority
to optimize resources.

Automated functions are essential to
communications usability. As the scope of
business operation increases, the performance of
the communications support also becomes
critical. The pretocol independence built into the
AS/400 communications structure achieves a
performance advantage through the use of
separate ;0 processors that relieve the System
Processor from the compute-intensive burdens of
communications data handling. The structure is
extendable to accommodate the hardware and
processing techniques of the future. As
communications speeds and bandwidths
increase, the benefits can become available to
application programs without affecting their
operational interfaces.

The interprocess communications facility and bus
transport mechanism (shown in Figure 3) are new
170 architectures for data communications
between the System Processor and the 110
processors. They operate in the vMmc layer, and
together make the transport mechanisms
transparent to the communicating processes. The
interprocess communications facility provides the
logical connection between pairs of
communicating processes, and the bus transport
mechanism provides the transport services used
by the interprocess communications facility to
transport data across the ;o bus. The bus

transport mechanism is unaware of the content or
format of the data. Device-specific or ;0
processor-specific data structures are moved
transparently, with processing left to the
processes running in the System Processor or ;o
processors.

Operational Control and System Support

The AS/400 system is shipped with the necessary
user profiles, subsystem descriptions, device files,
and other objects that make the system ready to
use when installed. Additional tailoring of the
system can be done at any time using the system
menus or the command interface. Devices can be
added without disrupting end users, using the
concurrent configuration support to create the
necessary configuration objects. Local devices
¢an be attached to the system and automatically
configured when they are powered on.

Online education is available, allowing users to
learn at their own pace. These onling courses,
combined with the message help text and natural
language, online search-index capability, are
designed to provide education to users when it is
needed, directly on their display stations.

The AS/400 system eliminates the need for
separate resource management subsystems that
impose functional restrictions and inconsistent
interfaces on users. The high-level machine
manages the flow of work and the allocation of
system resources, supporting concurrent
processing of batch, interactive, and transaction-
oriented applications.

To protect data, security, which is the
responsibility of the user, can be tailored to match
user's needs or the controls to which the user is
accustomed. A wide range of security levels are
available, from inactive to full security, authorizing
specific users to specific objects. Various degrees
of user authorization can be selected between
these two extremes. Security can be administered

by specifying the list of users authorized to each
object and the level of authority for each user. Or,
it may be administered by specifying the list of
objects authorized to each user and the level of
authority the user has to each object. Features
allow either methed to be used, accomplishing the
same end result. The machine performs all
authority checking when an instruction first
addresses a secure object. This gives excellent
performance and transparency to application
programs.

Advanced support facilities maximize availability of
the system using sophisticated problem detection,
isolation, and analysis techniques, and an
innovative help network for commonly asked
questions and answers. A set of electronic
support functions have been integrated into the
AS5/400 system to help users identify problems.
vMC and HMC support components record and
report vital data about the hardware, software,
and system conditions at the first indication of a
failure. This information allows O5/400 functions
to analyze and isolate a problem and electronically
report it to the 1BM service and support systems.

AS/400 Hardware

The AS/400 system hardware architecture
complements the OS/400 software, efficiently
supporting the high-level machine interface and
system concepts. The engineering design
employs the latest technologies, achieving
dramatic performance and capacity improvements
over predecessor systems, while providing
competitively priced systems across the entire
mid-range.

Figures 4 and 5 depict the AS/400 hardware
structures. Two hardware structures are
specifically designed to allow an extensive range
of models and 10 devices that fulfill customer
price and performance requirements. The smaller
models are intended for use in a quiet office and
fit inconspicuously in an office corner or beside a

desk. The larger models are comprised of
hardware components installed in a rack for
expandability within a confined space. Together
they provide an initial family of six models offering
moere than a seven-fold range in throughput
performance. Main storage uses I1sM's latest 1
megabit production storage technology. The disk
storage offered on the AS/400 system features
1BM’s most advanced disk units where ail track
accessing and positioning is controlled by a
separate microprocessor, thereby freeing the
System Processor to do more application work.

The key elements in developing this broad range
of hardware were the leading-edge processor
implementation using very large scale integration
(vLsi) logic, the storage and disk unit technologies
employed, and the sophisticated development
tools used to design and test the system. Just as
05/400 supports the saa architecture, using
common software products to increase
application portability, the AS/400 hardware uses
common hardware components and 1/0
microcode to provide 0OS/400 portability across
the product family.

The System Processor communicates with
independently functioning 170 processors over a
high-speed bus for direct data access. Main
storage access for the System Processor is
provided by virtual-address translation (vaT)
hardware that converts virtual addresses to main
storage addresses. Address translation tables in
main storage and a translation look-aside buffer in
hardware provide high-speed assistance for
mapping from virtual to real main storage
addresses. The System Processor has a 32-bit
data path and 48-bit addressing that can provide
direct access to 281 trillion bytes of storage. It is
implemented with a software and hardware
architecture that can accommodate up to 64-bit
addressing. If the future need arises, changing to
the 64-hit addressing can be transparent to
05/400 and application software. This addressing

7

Main
Storage

Control Power
Panel Controt

/O Pro-

9406 VAT »
System gec:v'ces —
rocessor
Contrel Processor
Storage Bus Control Bus Control Bus Control
|
—
y4 /
/] ‘ (Bus 1) ; ~
Storage
=4 (Bus 2) Bus EXPAN I~

cessor

Printers,
Display
Stations

Disk

| /
‘ /7

Comm
/0 Pro-
cessor

%

RSLL354-3

. . Disk-
Tape Tape Disk
P P ' Digie ette SOLC Remote
BSC Services
Asynchronous
Token Ring
Figure 4 AS/400 Models B30-B60

model, coupled with single-level storage, provides
the basis for independence from disk unit and
storage characteristics and eliminates the need
for disk management at the application level.
While the industry implements 32-bit
architectures, the AS/400 system’s 64-bit
architecture goes beyond to accommodate the
needs of future applications with voice, image,
and artificial intelligence capabilities.

The System Processor fetches 42-bit HMC
machine instructions from the random access
memory (Ram) control storage and can perform
8-, 16-, or 32-bit operations. Most machine
instructions use one processor cycle. The
processor cycles vary from 60 to 120 nano-
seconds, depending on the model. The high-
speed horizontal microcode provides good
performance characteristics with a very flexible
approach to creating vmc instructions. This layer
of microcode isolates the rest of the system from
the hardware characteristics. This will allow future
performance, capacity, and cost improvements to
the hardware without disrupting the operating
system or customer applications. The use of
microcode layers with built-in interfaces also
permits movement of functions into high-speed
hardware implementations as technologies
advance.

Control storage is implemented in two sizes, 4K
and 8K words. This allows trade-offs between
cost and performance and is one of the
techniques used to provide different price and
performance options within AS/400 system
models. Control storage is more costly than main
storage but is significantly faster; therefore, the 8K
control-storage system costs more than the 4K
system but offers better overall system
performance. In the low-cost 4K control-storage
design, additional machine instructions are stored
in main storage and the processor fetches these
instructions from main storage rather than control
storage.

Main
Storage

' 9404
Sraga 4 Processor

Figure 5 AS/400 Models B10 and B20

To optimize system throughput and response
time, it was necessary for i8m to match
technologies. The latest high-density storage
technology is used as the basis for main storage
and is available at two performance levels (80- and
120-nanosecond access times). The data path to
main storage is 8 bytes in width, and capacities
vary from 2 megabytes to 96 megabytes,
depending on the model. In each model,
processor speed is balanced against main
storage and control storage access times and
sizes to achieve optimal performance.

Control
Panel

Power

1/0
Processors

Service
Processor

— / Comm
(Bus 1) ‘ | //
|
WS 1/0 Comm /O
Processor Processor
L
| 1%
Display Comm
Stations,
Printers

Each system also includes a Service Processor
that starts the system and performs system
maintenance functions, such as fault isolation,
error detection, error reporting, and System
Processor service utilities. The Service Processor
also provides the interface to the control panel
and power control functions.

To preserve 1BM's traditional leadership in system
reliability, availability, and serviceablilty, new
methodologies were defined to analyze and
implement hardware quality and reliability. Ease of

service has been designed into the AS/400
system’s online diagnostic capabilities and service
publications. The system’s functionally packaged
hardware and electronic support features provide
the capabilities for responsive service dispatching.

The larger AS/400 models are designed to
provide maximum performance and capacities
using dedicated 1/0 controllers for disk, tape, and
diskette units, for communications and token-ring
network lines, for locally attached work stations
and printers, and for the Service Processor.
These are shown in Figure 4.

The smaller AS/400 models are designed to
provide the lowest-possible entry price, with
competitive performance and capacity. The base
configuration has 10 and Service Processor
functions combined in one 170 processor. As
additional 170 devices are required, individual

I/0 processors are added to support

additional local work stations and printers or
communications lines. These are shown in
Figure 5.

Conclusions

The AS/400 system is 1BM's richest, most
competitive mid-range system offering. It provides
broad function and a wide capacity range, with an
advanced architecture and operating system that
span an entire family of hardware. It features
state-of-the-art data base capabilities, productive
features for application'developers, and
distributed processing capabilities accessed
through an easy-to-use interface that is based on
the saa Common User Access interface. It is an
outstanding office system that integrates the
personal computer with general-purpose
systems.

This system preserves customer investment in
education and most application programs, with
environments that make most application source

portable to and from predecessor systems. The
advanced facilities of 05/400, including
sephisticated communicaticns and netwerking
functions, can be employed gradually as business
needs require. Computer-aided problem
diagnostics and online education advance the
meaning of customer support.

Consistent implementation of the 1BM saa
standards and products fortify this product family
with strategic products today. The AS/400 system
features hardware and software extendability to
accommaodate demanding applications of the
future.

™ AS/400, Operating System/400, 05/400, Systems
Application Architecture, and Saa are trademarks of
International Business Machines Corporation.

10

An Integrated User Interface

Describes a new dimension in user interface consistency and advancements that increase ease of use and simplify work activities.

J. Howard Botterill, Dennis A. Charland, and John Y. Harrington

Introduction

The AS/400™ system spans the range of small to
intermediate systems. It addresses the needs of
the single-user environment, as well as complex
environments with many work stations and many
users. The user interface is simple and self-
guiding for new users, and is efficient and

productive for professional data processing users.

Although the system is new and advanced, the
interface is based on the proven ease-of-use
techniques and system-wide consistency of
predecessor systems. It is a single integrated
interface that combines the strengths of user-
friendly menus, self-directing entry displays,
extensive help, powerful list displays, a
comprehensive command set, and an underlying
object structure.

While retaining these proven techniques, the
AS/400 system provides major enhancements
resulting in greater ease of use, productivity, and
flexibility. It expands interface consistency to
include consistency with other 1BM systems and
between dependent work stations and attached
personal computers.

The interface is designed to be flexible to address
the broad spectrum of new and experienced
users. This has been achieved by providing a
primary method of interacting (usually choosing
from a set of numbered choices) and alternative,
fast-path methods for more proficient users.
These alternative techniques, which include
specifying multiple actions at one time, taking a
direct path to any menu, and entering commands
directly, can be used in combination with the

12

primary method of interaction. They are designed
so that users can easily graduate to them, using
the same terminology, options, and order of
specification as in the primary method. In this way,
the interface grows with the user.

The menus provided with the system have also
been improved. These menus allow the user to
operate in action-object or object-action
sequence, where the action identifies the task and
the object is the item the user wants to operate
on. (The object may not be an AS/400 object type.)
After selecting the type of object (such as file,
document, or program), users are presented with
a list of objects of that type. On the list of objects,
the user can type the number representing a
desired action (like change or delete) next to one
or more of the objects. The user can stay on that
list of objects and follow that action with other
action requests. As an added feature, a list display
has a blank list entry that can be used when the
name of the object is known. The user can type
the action and the name of an object, without
having to find the object in the list. In this same
way, the user can create a new object by typing
the number representing create and the desired
name in the blank list entry.

While the list displays allow the new or occasional
user to simply identify one action to be performed
on an object, users, as they graduate to needing
more function, can request actions to be
performed on multiple objects. These actions can
all be of the same type, or they can be different
actions requested on different objects. When an
action is requested that requires additional

information, like the options for a print request, an
entry display is presented requesting only the
required and frequently used options. The more
advanced, special purpose choices are available
by pressing a function key. In this way, new or
infrequent users are not intimidated by the full
function. They only have to deal with the
frequently used options that have meaning to
them.

At any time, users can ask for assistance by
pressing the Help key. Help is provided in the form
of online text describing the field or display area
the user is currently using. From that first help
display, a function key can be pressed to getto a
Search Index function. This Search Index function
is a significant advancement. It allows users to
request more information by supplying, in their
own words, a description of what they want to
know. In response, they receive a list of topics
from the index that satisfies their request; from
this list they can choose the ones they want
displayed. In this way, the valuable tool of an index
is automated by providing a word search into the
help information that addresses the entire system.

These fundamental features of the AS/400 user
interface allow users to initially use the system
with little training, continue to use it occasionally,
or become highly efficient users.

New Dimensions of Consistency

A consistent user interface is very important to the
ease of use of any system. With the increase in
networking and the use of personal computers,
which allow the user to interact with different host

systems or the personal computer itself, has
come the need for consistency beyond the
individual system.

With the agdvent of the AS/400 system and
Operating System/2™ (0S/2™) for the personal
computer, iBM introduces new dimensions in
gonsistency: consistency between different
systems and between attached personai
computers and dependent work stations. The set
of rules and conventions that defines this
consistency is called Common User Access (Cua)
and is part of 1I8m's Systems Application
Architecture™ (saa™). Much of the cua interface
originates from the ease-of-use characteristics of
the System/3X family of products [1], with
enhancements 1o improve the interfaces on both
attached personal computers and dependent
work stations and make them more similar,
without compremising the potential of the
personal computer interface. cua establishes
IBMs direction for the future in terms of user
interface and ease of use. (For more informaticn
On CuA, see the 18M publication on cua [2])

The AS/40Q interface on both dependent work
stations, like the 319x display stations and
personal computers emulating them, and on the
attached personal computers (provided by
AS/400 PC Support) is based on cua. This means
that a personal computer will have the same
function key assignments for common dialog
functions, whether it is talking to an AS/400
system or functioning as a stand-alone personal
computer. For example, F3 is used for exit, F4 for
prompt, and F12 to return to the previcus display
on AS/400 work stations as well as 1BM's New CUA-
conferming 0S/2 and System/370 products.

The AS/400 systern and cua consistency goes
beyond function keys to dialog design and
interaction. Dialog technigues such as single
selection, value entry, list handling, and help are
also consistent between the AS/400 system and

the new personal computer products. Whether
users are using OS/2 personal computer software
or the AS/400 interface on a personal computer

or a dependent work station, they can interact in
similar ways. This is shown graphically in Figure 1.
For example, if a user wants to select from several

Common on the AS/400 Syslem and 05/2:
® Menu Display

® List Display

® Epntry Display

® Command Entry Line

® Help

-i‘—:-—-.

§
L

— |
o

AS/400
Systern

Peraonsl Compuiar

Aunning Multipie
EE-I'EM;H_MMI
[==
318X or PC
Emulating 319X
™) meny ™
'.i;!fm.'nlr:
A
- of Pl et o e
Tist .
T Commamd ===
__ RE MY WX N Filxib Fh=Srongt
__ AN 4N 4% KE k L
__WE NN N KN e
foabyi] L — | Flafait
e TEE TR
FieEnif

e

o PC with New 0S/2
& Keyboard/Mouse
& Windows

e Dependent Display Statons
® PC Emulating a Cependent Display Station
® Keyboard
® Full Displays
HSLLIE-5

Figure 1 CUA Consistency Batween the AS/400 System and 08/2

13

choices, the choices are presented in a common
format in a window or full display. Users select
their choice by typing its number or by pointing to
it with the mouse. (A mouse is not available on the
dependent display stations.) Similarly, the entry
displays, information displays, and list displays are
formatted and operate in the same way
throughout the AS/400 interface, as well as being
consistent with the appearance and operation of
the same type of displays on other cua-
conforming products.

The resulting consistency between systems
complying with cua makes it possible for users to
count on a common way of interacting, regardless
of what system type of devica is being used.

Menus

A comprehensive set of menus allows users to
quickly identify and select the type of object to
waork with or the task to perform. The type of
object may be a file, a document, a job, or mail, as
shown in Figure 2. The task, for example, may be
an office task, an application, a system operation,
Or a programming task. Some choices show
lower-level menus, with a more refined grouping
of choices.

In this way, the interface can accommodate eithet
action {task) or object requests. Usually task
choices go to a task-specific entry display. Object
requests usually result in displaying a list of the
requested type of objects to which the user is
authorized. On the list display, one or more
actions can be requested on the displayed
objects. In sither the task or object case, the user
need not know any commands, keywords, or
option names. Where needed, the system
presents an entry panel with multiple fill-in-the-
blank prompts. If a single choice is needed, a
menu is presented,

14

Menus
Select Objects
or Tasks

Object Lists
Request Actions
to be Performed
on Documents,

‘ Fites, Jobs, or
Other Objects

Entry Displays
{Prompis)
Sample for Change

Which
Generate

Commands

Figure 2

|

Main Menu
1. User tasks
7. Office
1, System
4. Files
5. Programming
), Application Menu
B iz
1y 2y
User Tasks Bffice
1. Job 1. Mail
2. Messages 2 Dhclmetts Enter Command ‘
. 5 g . on any command line
5, Out'put)
e el ==>m___
I 5T
= 1
Document s i " Help
2:Revise 3=Copy... | !
|
|
XX XX X XXKX 1}
_RK XX A XXXK
Help
. KARXKIX
- XAXLLXN
i 3 2
L d
Change Details fhait woeds |
X% .
:: — Extensive Help '
o with Search
K¥a. N
| L
! |
CHGBOCD CPYDOC EDTDOC
Command

Command
1

Command
|

Change Document Description (CHGDOCO)

Copy Document (CPYDOC)
Edit Document {(EDTDOC)

Inegrated Display interface

RSLL}8-4

Specific menus are provided for common groups
of tasks, such as office, programming, and
operation. A new User Tasks menu is provided for
users who are not data-processing professionals
and do not need the full function of the other
specialized menus (see Figure 3). For example,
such users may use this menu to send a message
to a co-worker (option 3) or check on their printed
output (option 5) without having to be trained as a
system operator.

O N
USER User Tasks

System: CHICAGO
Select one of the following:

i. Display or change your job

Dispiny messages

Send a message

Submit & job

Work with your spooled output files
work with your batch Jjobs

Display or change your library list
Change your passworc

Change your user profile

CwENve s wN

90. Sign off

Selection or command

am=>

F3=Exit Fa=Prompt F9=Retrieve Fl2=Previous F13 User support
F16=System main menu

\ J/
RSLL360-2

Figure 3 User Tasks Menu

A command line is provided on most system
menus. Individuals who use the system frequently
can display any menu by typing Go and the menu
name. Other commands can be entered on the
command line to request functions without using
the menu option paths or leaving the current
display. For example, EDTDOC entered on the
command line of any menu (as shown in Figure 2)
runs the Edit Document function.

List Displays

When a type of object is requested on a menu or
by using a command, a list of objects, including
type and attribute information, is displayed.

(Figure 2 shows a menu request resulting in a list
of documents.) A list display provides a
convenient means to perform actions directly on
objects, without having to recall and enter an
object’'s name for each action. An action option
field precedes each entry, and the action options
supported are shown in the upper instruction
area. Actions are requested by entering an option
number in the field preceding the object. Figure 4
shows the list of documents with a 5 ([l typed
next to LETTERS to request a display of the content
of LETTERS.

In the key areas of data definition, query, and
office, the AS/400 system introduces enhanced
list displays with an input-capable list entry at the
top of a list (see Figure 4, B}). This entry allows
users to type the name of an object, along with
the action option, without having to roll to the
object or leave the list area. It also allows a
request to be typed to create an object that is not
in the list. The user can perform these actions in

~
List of Documents
Type opfions (and Document), press Enter.
l=Credte 2=Revise 3=Copy A4=Delete 5=Display 6=print 8=Detaiis
option Document Subject Revised Types
: INVENTOR Inventory for warehouse 10/22/87 DOCUMENT
e INVENTSM Inventory summary 3/24/87 DOCUMENT
= LETTERL Letter to ABC CORP 12/01/87 MEMO
s LETTERZ Memo to J R Scruttle 12/03/87 MEMO
i‘- LETTER3 Memo to J R Scruttle 12/04/87 MEMO
e LETTERG Letter to Rundle Price 9/5/87 MEMO
S MEMOJHB Memo to J H Bottle 10/28/87 MEMO
)0 MONTHLY Monthly accounting summary 12/01/87 DOCUMENT
e MONTHLYD Monthly detafl for November 12/02/87 DOCUMENT
y OLOMONTH Last month's detail - Oct 11/02/87 DOCUMENT
Y REPORTYE Year end report 11/30/87 DOCUMENT
Mare.
Command or parameters
>
FI=Ex{t FA=Prompt FS=Refresh Fl2=Previous
g 4

RSLL363-2

Figure 4 Example of List Display
with Extended Entry

conjunction with other actions on objects in the
list.

Entry Displays

Entry displays, which allow users to fill in the
blanks, are provided when more details are
needed after a task is selected. Figure 5 shows an
entry display for a print request. The entry
displays are straightforward and require a
minimum of user interaction. They have a single
column of entry fields, each preceded by a simple
descriptive phrase (called a field prompt) and
followed by a list or description of the acceptable
values for that field. The values can be numeric
values for fixed, non-command choices or actual
command values, like *NONE, for command
prompt-entry displays.

The user is asked to respond only to required and
frequently used option choices. Default values are
already entered in the fields. Choices that are only
required in some situations are not initially
presented. They are presented on a following
display if it is determined, based on the initial
responses, that more choices are indeed
necessary. For example, if a copy request refers
to a diskette file, only diskette-related options
follow. Tape or data base options are not shown.
This tailoring of the entry displays based on user
responses is called intelligent prompting. The
system tailors the prompts based on user
responses. The displays are also layered. The
fields that are less-frequently used because they
are for advanced function are not initially shown.
They can be requested by pressing F15
(Additional options). Each of these techniques
results in users not having to analyze the
individual fields or choices that do not apply to
their task.

The fields on an entry display take two forms. The
first form is an entry field, which requests a user-
supplied value, like a name (see Figure 5, Kl). An
underscore shows the value’s maximum length.

15

For certain entry fields that accept a name, the
system can show a list of the objects to which the
user is authorized. F4 for list is shown to the right

E] - Selection by
Typing Mnemonic

Kl - Entry Field B - selection by
—’ Typing a Number

F4 with Cursor
on Document
Name Field

B - Reguested List

f

RSLL361-1

Figure 5 Entry Display to Selection List

16

of these fields, and will request the list display (see
Figure 5, E0). The user can then make a selection
from the list rather than typing the name.

The second type of field on an entry display is a
selection field that allows a selection from a fixed
set of choices. The choices are numbered as
shown in Figure 5, B , unless the choice is a
value that has significance by itself, as in the case
of a command parameter value. The user need
only type the number for the desired choice in the
same fashion as on a menu. When the prompt
requires a Yes or No response, Y and N are
accepted for Yes and No, as shown by E¥in
Figure 5. In the case of command prompt-entry
displays, the actual parameter values are
accepted and are listed to the right of the entry
field, like *REPLACE, *ADD, Or *MERGE.

Command Level Support

While the display interface of the AS/400 system
is carefully designed not to require a knowledge of
commands, and even to hide commands, most
actions result in a command being processed (see
Figure 2, bottom). The terminology for the options
and choices shown on displays closely matches
the terminology for the corresponding spelled-out
names of commands and parameters. This,
coupled with the availability of a command line on
most menus (see Figure 3) and list displays (see
Figure 4), makes it very easy for users to begin
using the command fast-path approach for
frequently requested functions. A user who knows
the command can enter it instead of taking menu
options. The same entry displays that are
presented if that function is selected by number
from a menu or list display are available when
entering commands. The entry displays can be
requested at any point in typing the command by
pressing F4. Any parameters already typed are
carried over and filled in on the entry displays.
Defaults are shown in the entry fields for any
parameters not specified.

Online Help Information

Even with a flexible user interface, the time will
come when a user does not understand how to
use a display or how to get started on a task.
Through the AS/400 help facility, supporting
information is immediately at hand.

The help structure defined in iBM's CuA combines
help on displays with a help index. The AS/400
help facility provides comprehensive display help
and advances the help index concept by giving
users a search capability.

The AS/400 help facility provides the type of
information users need to complete their
immediate task, not a long discussion on how the
system or a function works. Rather than duplicate
printed manuals, the help facility takes advantage
of what the computer does best: provide quick
access to specific information. The key to quick
access is the information-module concept. All help
information is in the form of small building blocks,
called information modules, that provide specific
bits of information. A single information module
can be used individually, or linked together with
other information modules in different
combinations or sequences.

As shown in Figure 6, the help facility makes use
of the information-module approach to provide
both context-sensitive help (based on cursor
position) and a searchable index of help topics.
Context-sensitive help is provided for all displays
by associating specific help areas on each display
with specific information modules. When a user
presses a Help key, the help facility displays the
information module associated with the area
where the cursor is currently positioned. For
example, when the cursor is on a specific line or
field, field help is provided, as shown by i
Figure 6. When the cursor is in other, nonspecific
areas of a display, extended help is provided, as
shown by] . The extended help consists of
information modules on the use of the display as a

Display-X Hel - » Help: Display-X
P One Information Module p| Extended help:
FIetd Xl v o RIEHLRIHINE L\ v atoal e 2
Field Xi:
Help for Field X2 ...u.ee E'.____ Help —» Help= Display-X OB oo
Individual \ibe Field X2: KXOXXXXXXXXXXXX F2 Jeis
[I;. |V|I ua Field Slr v R XXX KKK KXKKXXKANRKKKNX KXXRKXKKXXK ¢ 2 <ovesvenen
ispiays 5 XKXXOKKKXKXKXKXXKXXXEXKKK ;
b XXOCKRXXILXXXKXAKXRXKKK XK Fll=Search index
XXKXKXKXEK KKK XAXXKXKKKKR K T
F2=Extended help F11
F11 Fl1=Search index l Modules Linked
Together
v
Search Index
XXXKXXXXXXX KXXXXXXXXX
XKXXXKXX HOW £O XXXXXXXX Separate
XXXXXXXX Search XXxxxxxx : Move a block
AXXNXXEXXX XXXAXXXXXX l n fo rm atl o n \ XXXIOXOOEKK XXX XK X KX LXK XX
Module
Enter words. XEXKKXXXX XXXAXKXXX
move words Xxxxxxx% Specific xxxxxxxx
XXAXXXXXX TOPIC XXKXXXXXX
= ‘ = Index for xx XXXXEXEXXX XAXXXAXXXX
) XX,
Position cursor, type option: RXXXRXHKKXKKKEXXXRXKKKKKXK
Search Search List (S=View 6=Print User
Index of —» 5 Move a block —
Topics 5 Move a Tine == Sele_CtS -1 Move a line
__Move text left Topic 5 XXXKXXEIAXAXXKIXKIKAK KKK
__Position lines XAXXKXXXKX xueoooax |]
XXXXAXKXX XXAAXNRKX | X
I——b xxxxxxxx Specific xxxxxxxx |XX
Xxxxxxxxx Topic xxooxxxxx [|XX
KXEXRAKXKK XXX | XX
! HAKXXXXXXXX XNREARKXNKK | XX
Separate KXRXKKNXHKXIXKKEXARKXKNRHK | XX
4 XX
Information é R
Modules

Figure 6 How a User Gets Help

whole, in addition to all of the field help modules
describing the use of individual fields. The
modules are linked together so that users can
move forward and backward through them to see
all help for the display. If users initially received
help for a specific field, they can get the extended
help by pressing a function key (F2).

The help linked to specific displays and fields
provides the immediate assistance a user needs
to interact successfully with each display. Through
the Search Index function, users can get the big
picture of how to perform a task that may
encompass multiple displays, or, if needed, an

RSLL364-3

explanation of a concept or term they do not
understand. Furthermore, the users can ask for
the information in their own words, not just the
terms used by the system.

Search Index provides a set of online indexes, one
for Operating System/400™ (OS/400™) and
others for application packages. The index
searched is determined by the product being used
at the time the search is requested. If AS/400
Office is being used, the Office index is searched.
The index consists of a list of topics, each of
which is linked to one or more information
modules.

As shown in Figure 6, a user can request Search
Index from help by pressing a function key (F11).
Although the index is used most effectively by
entering search words, the user has the option of
viewing the entire index by simply not entering
words. If the user does enter search words, each
of the words (except for words used as simple
connectors, such as the or of) is matched against
tables of keywords and synonyms, and a list of
the topics that best match the user-entered words
is displayed.

Figure 7 shows an example of a user searching
the Office index. The user enters MOVE WORDS.
The search process compares MOVE with the
keyword and synonym tables and finds matches
for MOVING and POSITIONING. Similarly, comparing
WORDS with the keyword and synonym tables
finds matches for TEXT and LINES. As a result, the
user is presented with a list of topics on MOVING
TEXT and POSITIONING LINES.

Conclusions

The AS/400 system takes the familiar and proven
features of current systems and introduces many
state-of-the-art advancements in work station
ease of use.

The AS/400 system introduces new dimensions in
user interface consistency and offers consistency
with the future direction of other 1IBM sAA systems.
Even more importantly, it introduces consistency
between attached personal computers and
dependent work stations, without compromising
the potential and strengths of either.

An improved list display is used to simplify
creating and working with objects. It allows
actions to be performed directly on the objects in
the list or by typing the name. This allows all
actions to be performed from within the list area,
simplifying and streamlining work.

17

Search Index

Search Indax allaws you you to tell the system to search
for specific Information.

1. Type the phrase or words to search for.

2. Press Enter.

When you press Enter, the system searches for toplcs
related to the words you supplied and displays a Tist
of topics found.

If you do not type anything, the system will display
a 1ist of all avallable topics.

Type words to search for, press Enter.
MOVE WORDS

F3=Exit Fl2=Previous

Enter

Index for AS/400 Office

Position cursor, type option, press Enter.
S5=View topic 6=Print topic

Opt Topic

Moving & block of text

Moving a single 11ne of text

Moving different blocks of text to the same location
Moving different lines of text to the same lacation
Moving text left or right

Moving underlined or highlighted text

Positioning 1ines on a display

Or to search agafn, type new words, press Enter.
MOVL WORDS

F3=Exit F1li=A11 topfecs Fl2=Previous

\ J

RSLL365-2

Figure 7 Example of Search Index Displays

Whenever an action is requested that requires
additional information, an entry display is provided
that layers the request, with frequently used
options presented first, and then, on request,
more advanced options. Options whose
applicability depends on other responses are
presented only if appropriate.

At any time users can ask for help and receive text
describing the current field. In addition, they can
request more information by typing words
describing what they want to know. In response,

18

they receive a list of topics that satisfy their
request, from which they can choose the ones
displayed.

With the introduction of the AS/400 system comes
an advanced integrated user interface that spans
the comprehensive facilities of this mid-range
system. The user interface is designed to be used
by a broad spectrum of users, and provides them
with interface capabilities not previously available
to users of general-purpose computers. The
interface is designed to allow each user to grow in
productivity, using menus, layered entry displays,
list displays, and command lines that are backed
by a sophisticated indexed help structure. The
interface capabilities can continue to be extended
with other methods of interaction as cua is
extended, preserving consistency between CuA-
complying products and a state-of-the-art
interface.

References

1. Botterill, J.H., The Design Rationale of the System/38 User
Interface, IBM Systems Journal, Volume 21, Number 4,
1982.

2. Systems Application Architecture, Common User
Access: Panel Design and User Interaction, SC26-4351,
December, 1987.

™AS/400, Operating System/400, OS/400, Operating
System/2, 0S/2, Systems Application Architecture, and saa
are trademarks of International Business Machines
Corporation.

19

An Integrated Data Base

Describes the AS/400 integrated data base that can appear as multiple, interface-specific data bases using a single data base manager and

storage representation.

Mark J. Anderson and Richard L. Cole

Introduction

The AS/400™ data base is different from
traditional system data bases because of its
innovative design which integrates the data base
with the operating system software and integrates
support for several different interfaces into a
single data base manager. The design goal for the
AS/400 data base manager was to support
application migration from the System/36 and
System/38, provide Systems Application
Architecture™ (saa™) support, and allow for future
data base enhancements. Therefore, the disk data
management interface of the System/36 and the
data base interface of the System/38 are
supported as an integral part of the AS/400 data
base. Also, the interactive data definition utility
(iIobu) and the saa data base interface, called
structured query language (saL), provides data
dictionary and relational data base interfaces to
the AS/400 data base. The single, generalized
data base manager understands all functions
necessary for these interfaces, ensures they
conform to their definitions, and coordinates their
interaction.

Choosing an Integrated Data Base

An integrated data base design allows
applications written for each interface to coexist
and operate using the same data. Because a
single data base system manages a single
storage representation of data, users may choose
the interface appropriate to the application they
are building. For example, an application
containing embedded saL can be used to do

20

queries or mass updates, while another
application using the more efficient AS/400 data
base techniques could be used to randomly
update records. Also, programmers with a
System/38 background can use the Operating
System/400™ (OS/400™) System/38 environment
support to create and manage data base files,
while other users could use the simpler ipbu
interface.

The traditional approach to satisfy these diverse
requirements is to build separate, independent
data base data management systems for each
interface. This approach requires data to be
replicated in each data base. Besides the obvious
disadvantage of outdated or inconsistent data
between the separate data bases, users are
burdened with extracting data from one data base
and moving it into another. Even when a single
representation of data is maintained, the
traditional system has separate, nonintegrated
data base managers. These multiple data base
managers are not coordinated and, between
them, lack data integrity, concurrency, and
usability.

An integrated data base is easier to manage.
Support for a single data base means that saving
data, journaling data base changes, recovering
data, controlling data authorizations, and so on,
are much easier because only one set of system
functions or commands must be learned. Other
implementations require users to learn new data
base object management procedures for each
data base product.

Also, a single data base avoids redundant control
requirements. For example, with nonintegrated
data base managers, users denied access to data
in one interface might obtain it through another,
unless all independent interfaces had been
similarly restricted. Any function used by a
particular interface that has persistent operational
ramifications, or any constraint (such as an index
that enforces the uniqueness of key values) that is
applied through one interface, is enforced through
all interfaces. For example, once a file is
journaled, all changes to the file’s data are
journaled, regardless of which interface started
journaling or which interface is changing the data.

Additionally, an integrated data base provides
users with a much easier way to migrate from one
interface to another. For example, a System/36
user that wishes to modify an RPG Il application to
take advantage of the additional capabilities of
embedded saL can do so one program at a time.
The converted program can be used concurrently
with any of the unconverted programs. If the
traditional approach had been chosen, the
complete set of programs and all files would need
to be converted at the same time, because a
migrated application either has a separate data
base or an incompatible data base manager.
Having to convert all an application’s programs
and files at the same time makes it impractical to
use new functions in current applications.

In addition to improving end-user productivity, the
integrated data base approach allows for more
productive systems software development. The

integrated approach implements any given
function only once instead of once for every
interface. Because the functions of each interface
overlap one another, the amount of logic required
to develop and maintain the system's data base
support is decreased.

AS/400 Data Base Data Management

AS/400 data base data management has facilities
to define and manipulate data, process queries,
maintain file cross-referencing, record data base
changes, and manage transactions. These
facilities are part of 05/400 and are general
enough to provide an integrated mechanism for
data storage and access.

The data base is made up of two types of files:
physical and logical. Physical files contain the
actual data and may be considered tables, having
records for rows and fields for columns. All
records in a physical file have the same field
attributes and record length. A logical file provides
alternative definitions of data to support
application-data independence and to avoid
redundancy. Logical files allow users to see
records in different sequences, select subsets of
records from physical and logical files, map fields
to different data types, reorder fields, and select
subsets of fields.

The four categories of iogical files are:

Simple logical files that map data from a single
physical file to another logical record definition.

Join logical files that define a single record
definition built from fields of multiple physical files.

Multiple format logical files that allow access to
several physical files, each with its own record
format definition.

View logical files that are created by the saL
CREATE VIEW statement and define a single record

definition built from fields of multiple physical and
other view logical files.

Records are stored in physical files in the
sequence that they were added (arrival sequence;).
All file types can access records in arrival
sequence. Physical files and simple, join, and
multiple format logical files can use indexes to
access records in logical sequences based on the
contents of data fields (keyed sequence). Fields
controlling the logical sequence of records are
called key fields,

The data description of a file can be contained
within the programs that use the file, can be part
of the file itself, and can be in an 1obu data
dictionary. If the file is described only by the
programs that use it, it is called a program-
described file. Program-described files cannot be
processed by programs like the Query utilities that
rely on the data base to provide field definitions.

Several methods can be used to describe files to
the AS/400 data base. One of these is data
description specifications (DDs). Using pos, users
can describe all types of data base files except
view |ogical files. These definitions are then used
to create the file. View logical files and physical
files can be created using SQL CREATE statements.
A file created with DDs or saL is called an
externally described file and has its field
definitions stored with it. Externally described files
can be accessed by utilities like Query and they
permit programmers to simplify programs by
leaving out data definitions the files can supply.
(For more information, see the article Application
Development Support.)

Ancther way of describing files to the AS/400 data
base is to use iDpu. Files created from iobu
definitions are calied dictionary-described files.
Like externally described files, dictiohary-
described files can be used by programs that
require files with field definitions. If a program-

described file already exists, ibou can link a
definition to it. This makes the file dictionary like
the Qiuery described, and usable by program
utilities. If an externally described file already
exists, (Dou can also incorporate that file's
definition.

Powerful data manipulation functions are provided
by the data base. Non-keyed files can be
processed sequentially by arrival sequence or
randomly by relative record number. Keyed files
can be processed sequentially by arrival or keyed
sequence, or randomly by relative record number
or key value. Records can be added, deleted, or
updated. A file can be cleared of data, physically
reorganized using a specified physical or logical
file's keyed sequence (recrganizatich may also
remove deleted records from the file), or initialized
with a set of deleted or default record images.

Query processing allows relational selecting,
projecting, joining, grouping, and ordering of
records. The integrated support provides a single
source for query validation, optimization, and
implementation of saL statement processing,
several end-user Query utilities (including those
utilities running in the System/36 and System/38
environments), and other system functions. This
level of integration is possible because the system
interface to the query support is independent of
any user interface, and is functionally capable of
supporting all user interfaces, Each user query is
compiled or interpreted into this system interface.

Data base files are managed with generic
functions that rename, move, change the
attributes of, authorize, and save them. These
functions are generic in the sense that, not only
the data base files, but all user objects on the
AS/400 system, are managed using the same
commands and utilities. A single set of generic
functions can exist because the AS/400 data base
manager is part of the AS/400 system. These
generic functions can be used by any data base

21

interface and changes made in one take affect in
all.

The AS/400 data base manager maintains a set of
files that contain basic attribute and cross-
reference information about all files. These files,
like any other data base file, can be queried by
users. The cross-reference information tells which
data dictionary describes each dictionary-
described file, how files are interrelated, and how
they are dependent on each other. The data base
manager uses this cross-reference information to
build catalogs for the saL interface and to
generate reports on where data definitions are
used for IDDU.

Journaling records changes that users make to
data. Users may use the journal to: help recover if
a file is damaged; decrease the time required to
save; provide an audit trail or activity report; and
provide job accounting information. The AS/400
data base can treat multiple changes to a file's
data as a single transaction. At the end of the
transaction, the changes can be committed or
rolled back. When the system or job ends
abnormally, any uncommitted changes are
automatically rolled back.

Data Base Interfaces

AS/400 data base uses a single operating system-
level representation for all files and an integrated
set of functions to operate on those files. The files
and functions are available to any interfaces that
can support them. Figure 1 shows this structure
of interfaces to the AS/400 data base.

While all facilities are available to all interfaces,
some use a subset of them. For example,
because the syntax of the saL language cannot
describe multiple format files (files composed of
more than a single record definition), such files are
not allowed in libraries created to hold saL files.
The AS/400 data base manager can ensure the
consistency of the saL interface because it knows

22

the file types that are not allowed and the libraries
created primarily to hold saL files.

System/36 Disk Data Management Interface
System/36 disk data management supports four
basic file types: sequential, keyed, direct, and
alternative index. Sequential and direct files are
implemented as simple non-keyed AS/400
physical files having no field-level definition.
System/36 keyed files are implemented as keyed
AS/400 physical files that contain fields as
required to represent the key definitions.
Alternative index files are simple logical files.

Because of the integrated data base, users of the
System/36 environment can access files created
using other interfaces. A System/36 application
that can migrate need not know whether the file
was created from within the System/36
environment or System/38 environment, using

saL or Ibpu. This level of transparency in the
interface is possible because the AS/400 data
base manager understands all types of data base
files; the System/36 file support is an integral part
of the data base manager. (For more information
about the System/36 environment, see the article
The System /36 Environment.)

System/38 Data Base Data Management
Interface

The System/38 data base interface uses all of the
AS/400 file types except view logical files. The
data definition, data manipulation, query
processing, generic object functions, file
journaling, and commitment control used by the
System/38 interface are all subsets of the AS/400

support.

Again, because the System/38 file support is part
of the integrated data base manager, the

Operating System/400

System/36
Environment

System/38
Environment

AS/400 IDDU sSQL
Data Base Interface Interface
Interface

System/36
Disk Data
Management
Interface

System/38
Data Base
Interface

Figure 1 Interface to AS/400 Data Base

RSLL394-4

System/38 data base is not restricted to files
created using the System/38 data base interface.
All files may be processed regardless of the
interface used to create the file.

Interactive Data Definition Ultility Interface

1oou is an enhanced version of the System/36
data dictionary utility and is a central repository for
data definitions. Field, record format, and file
definitions can be created and managed
independently, and files can be created from these
stored definitions.

The 1DDU data dictionary can be used in a passive
or an active mode. In passive mode, users must
keep data definitions synchronized with the files
they describe. The 1bbu support provided on the
System/36 was primarily passive. Users could
unlink, change, and relink a file's definition without
restructuring its data.

The AS/400 ioou data dictionaries are used in an
active mode, where the system keeps the
definitions synchronized with the files they
describe. If a file is created using 1DoU data
definitions or an externally described file is
described by a data dictionary (created through
some other interface such as bDS or SQL CREATE
statements), the AS/400 data base manager
automatically reflects to the data dictionary
changes made to the file. The data base manager
knows that a file is linked to a data dictionary, and
therefore can maintain consistency between them.
Users are prevented from modifying definitions
while the definitions represent externally
described files.

IDou data dictionaries are made up of a set of
related data base files that contain the definitions.
Therefore, users can query the data definitions in
a dictionary or access them from a program.
However, the data base files containing the data
dictionary are protected from direct changes by
users.

Files created by iopu are externally described, and
so have a copy of their definitions stored with
them. Therefore, accessing the data dictionary is
not necessary for data base operations, and
dictionary contention problems are avoided. The
files are then portable, allowing another AS/400
system without a data dictionary to use them.

Structured Query Language intertace

AS/400 Structured Query Language/400 provides
the 1BM saa data base interface and is an
implementation of the relational data model that
describes operations on tables, rows, and
columns. saL supports powerful data definition
and data manipulation statements. For example,
the saL CREATE viEw statement can create an
alternative view of a sales representatives’ salary
table that presents average salaries by
department. Or, a single sQL upPDATE statement
can add 10% to the salaries of sales
representatives who exceed their quota by 50%.
On the System/38 or System/36, the same
functions require program logic.

saL statements can be issued interactively or
embedded in application programs. Depending on
the type of statement, either type of use results in
a call to the data base query support to run it or
generate an intermediate representation of the
query statement for storage with the program for
later processing.

saL-created tables are implemented as non-keyed
physical files, saL views are view logical files, and
saL indexes are simple keyed logical files. The
implementation of saL views is particularly
interesting because it combines a data base file
with AS/400 Query. When an saL view is queried
or opened using any interface, the data base
manager calls query processing to perform the
relational functions defined for the view.

Files created using saL can only exist in special
libraries created using the SQL CREATE DATABASE

statement. These saL libraries contain a journal, a
journal receiver, an 10ou data dictionary, and
logical files, constituting a catalog that describes
saL-created files. The AS/400 data base manager
prevents any file that cannot be described by the
catalog (such as program-described files and
certain logical files) or that cannot be processed
bv sai {such as multiple format logical files) from
being createa. restored, or moved into a library
created using saL. This ensures the catalog
contains only relational files and that it completely
describes the files in the data base.

Any table created using saL is automatically
journaled so commitment control can be used.
Any file created into an saL library (using saL or
any other interface), moved into an saL library, or
restored into an saL library is automatically
described by the catalog because the AS/400
data base manager incorporates the file’'s
definitions into the data dictionary.

Files in saL libraries can be accessed using other
interfaces. Also, saL statements can be used on
files in libraries not created to hold saL files,
thereby allowing access of files created using any
other interface.

Conclusions
The AS/400 system’s innovative approach to data
base system integration offers flexibility for:

» Meeting today's requirements of compatibility
and coexistence with existing systems.

« Improving data definition and query facilities
using Iobu and saL.

« Staging conversion of existing applications to
incorporate enhanced functions.

* Meeting future application requirements by

allowing data created using one interface to be
accessed by another.

23

Future applications require support for increased
transaction rates, very large data bases,
distributed data base management, and so on.
Support and management of these and other
features is simplified and enabled as a result of
the AS/400 integrated data base manager.

Acknowledgments

The authors wish to thank William S. Davidson
and Alvin G. Grossbach for their contribution to
the content of this article.

™ AS/400, Operating System/400, 0S/400, Systems
Application Architecture, and saa are trademarks of
International Business Machines Corporation.

24

25

Application Development Support

Describes the features of the AS /400 application development support, which allow productive application development.

Gary R. Karasiuk

Introduction

The AS/400™ system contains an advanced set of
tools and system functions that enable users to
productively develop applications. Highlights
include integrated data base functions, the source
editor, compilers and the debugger, and work
station support. Specifically, productivity is
improved by:

« Using externally described data to reduce
redundant data descriptions and pass
information across the different phases of
application development. In our model of the
application development life cycle, the phases
are: requirements, analysis and design,
produce, build and test, and release and
control. [1]

+ Integrating the source editor with the system
(and especially the compilers) to improve the
productivity of the produce phase.

« Integrating the debugger with the system to
improve the productivity of the test phase.

¢ Accommodating users with different system
backgrounds (System/36 and System/38).

Shared Data Descriptions

One of the important software development
trends of the 1980’s is the simplification of
application programming by moving some of the
code from procedural programs into a declarative
form, which is usually a part of the data model
description. This results in two clear advantages:
reusability and simplicity. One example of

26

reusability is moving data descriptions out of the
program and into the data model. This allows
users to have a single authoritative source for
their data descriptions. This simplifies
maintenance, as users can be assured they are
looking at the correct description, and if they
choose to change the description, they are
changing the only occurrence of the description.
This improves the quality of the application,
because different data descriptions do not exist
for the same piece of data, and also reduces the
amount of coding. In a conventional system, if a
user had an application with 10 programs that
accessed the same file, and wished to add a
validity check to one of the fields, the user would
have to add additional logic to each of the 10
programs. If the validity check could be added to
the data model, it would only have to be added
once, as is the case with the AS/400 file model
and its use of externally described data. Device
files on the AS/400 system contain externally
described data, which is stored with the file when
it is created.

All device files can be described at a field level,
with field attributes such as data type and length.
Options exist that allow specification of such
things as descriptive text and field validation
parameters for each field. The normal unit of data
transferred by a program is a record, which is
made up of one or more associated fields. This
collection of fields is called a record format. This
information is entered only once and then is used

by other components in the system (see Figure 1).

Many of the devices on the AS/400 system
support the common file model, and thus allow
input/output (1/0) redirection. Some of the different
device file types are physical (for storing data);
logical (different views of physical data); display
(for displays); printer (for page formats); and
communications (for data exchange). Applications,
for the most part, can be written so that they are
unaware of the underlying device file type.
Consequently, files can be overridden at run time.
One novel use of this capability is to replace
display files with communications files, to provide
for automatic testing of interactive applications.

A typical application development scenario
illustrates how data descriptions are passed in the
AS/400 system from the design phase to the
produce phase:

1. The internal data definitions needed by the
application are entered into a reference file.

2. The screen design aid (spa), a utility for
designing displays, is used to define
application displays. The fields to appear on
the displays can have their definitions included
from the reference file, to ensure consistent
definitions of the same data. Integrity
information stored with the reference fields
ensures that integrity checks are performed
when the display file is accessed. Also,
displays can be quickly strung together to
form a simple prototype of the application,
allowing for early end-user feedback.

3. The physical and logical files are created,
again with some of the field definitions from
the reference file.

4. The compilers (RPG, coBOL, command
language (cL), Ly, and BAsIC) have language
extensions to extract data definitions from
files and convert (back translate) them to
high-level language data structures. (See
Figure 2 for an example of back translation.)
Compiler directives specify which record
formats are to be back-translated.

5. Other utilities also make use of the externally
described data. The data file utility (DrFu)
creates applications that add, delete, and
update data records. AS/400 Query creates
reports that include features such as
breakline processing, sorting, and
summation. Using the externally described
data, Query, for example, could extract the
column headings that appear on the final
reports from the files. Both brFu- and Query-
generated programs are used to supplement
the other high-level language programs in the
application (typically RPG Or COBOL).

The AS/400 file model also makes it easier for the
application developer to take advantage of system
function, and thereby save application code. This
is a natural result of the clean interface between
application programs and files. The savings in
application logic (code) is shown in these two
examples:

Subfile Support: The logic of scrolling lists of items
on the work station can be handled by the system
through subfile support. It is the system that
processes the positioning of the list. The
application need only define the characteristics of
the subfile, such as the maximum number of items
in the list and the format of a line in the list.

Step 1
Create File

Step 2
Create Displays

Reference
File

»

Display
File

Step 3
Create Data Base Files

Physical and I

Logical Files o

Step 4

v

Compiler

Source
Statements

Step 5
Add DFU and
Query Applications

Data Update
and
Query Apps

Compiled
Programs

Figure 1 Shared Data Descriptions

Select/Omit Support: The logic of identifying a
subset of data base records can be handled by
the system through data base select/omit
support. This saves the applications from reading
all of the records in a file and performing their own
selection logic.

The System Editor

The AS/400 system has chosen to concentrate on
the produce phase of the application development
model. As a result, the editor is well-integrated
into the system. The editor on the AS/400 system
is the source entry utility (SEV).

RSLL409-4

The editor is integrated with the compilers with its
syntax-checking support. All of the languages on
the system support interactive syntax checking.
The editor is responsible for determining the
syntactic boundaries of the statement, and the
compiler is responsible for the actual syntax
checking of the statement. Splitting up the
function in this manner has three advantages.
First, syntax checking is consistent from the
user’s perspective, because only the editor is
responsible for the end-user interface. The
options that control syntax checking are the same
for all languages. Second, the compiler syntax
checkers and the interactive syntax checkers are

27

The following is an example of a payroll record description in DDs.

A R PAYREC

A NAME S0A

A ADDRESS 100A

A

A SALARY 8 2

A

A DEDUCT P2 EDTWRD('§
A

TEXT('ORDER RECORD")

TEXT('Full Nome")

TEXT('Street Address')

50A COLHDG('Street' 'Address")
TEXT("Annual Salary') EDTCDECT *)
COLHDG('Annua!l" 'Salary")

0. &R")

TEXT('Deductions')

This is the way the description would be automatically expanded by the PL/I compiler.

OCL 1 PAYROLL-RECORD,
%INCLUDE PAYROLL (PAYREC,RECORD,PR-);

J et T x/
/% PHYSICAL FILE: PAYROLL.KARSLIB x/
/+ FILE CREATION DATE: 87/10/13 x/
/% RECORD FORMAT: PAYREC %/
/+ RECORD FORMAT SEQUENCE 1D: 37B899FF85E16 x/
[¥ - ORDER RECORD-- === === m e m oo x/
5 PR-NAME CHAR(50) | /% Full Name x/
15 PR-ADDRESS CHAR(100), /% Street Address x/
15 PR-SALARY CHAR(B, 2), /* Annual Salary x/
15 PR-DEDUCT DEC(7,2): /% Deductions %/

Figure 2 Sample Back Translation

less likely to diverge because both products are
developed together. In fact, in some cases, the
syntax checking is performed by the early phases
in the compiler. And, finally, the structure of the
editor is simpler.

The main limitation of this approach is that not all
syntax (and few semantic) errors can be detected
due to the statement-by-statement nature of the
syntax checking. Also, due to the richness of
some of the languages, it is difficult to quickly
determine the statement boundaries. In the case
of pLy, heuristic methods were needed to
determine the statement boundaries.

28

RSLL408-1

The editor also supports prompts for different
languages. The language prompt support varies
by type of language. For cL, the system prompt
function is called from inside the editor to provide
very complete statement prompts. The prompt
function provides command formatting, layered
prompts, and context-sensitive help text. (See the
article An Integrated User Interface for more
information on the system prompter.) For RPG, the
prompt function provides field-level support for
each of the RpPG specifications, again with context-
sensitive help; for Basic, the prompt function calls
the BAsIC session manager. Other languages have
simpler prompt support.

The editor also supports a split-screen mode,
where a compiler listing can be browsed on one
half of the display while corrections are being
made to the corresponding source member on the
other half.

Debugging

The AS/400 system has an integrated symbolic
debugger that is built into the microcode and into
Operating System/400™ (OS/400™). One of the
unique characteristics of the AS/400 debugger
(such as, setting and stopping at breakpoints) is
that only a small performance penalty is paid
when using it. The debugger’s high-level
performance is achieved through the event
mechanism that is built into the system
microcode. (An event is signaled by the system
each time an instruction is processed so that
08/400 can monitor the progress of the code
being run.) Programs that are compiled with the
debugging option turned on (which is the default)
have debugging tables that are generated along
with the object code. (These debugging tables do
occupy additional storage.) Users that always
generate the debugging tables as a part of the
compile step have the flexibility to debug any
program in their application without having to
recompile.

The debugger supports all of the common
debugging functions:

» Set breakpoints at high-level language
statement numbers

+ Display and change high-level language
variables

* Issue any command while stopped at a
breakpoint

* Trace

The debugging support allows users to closely
monitor the application’s processing. It also
increases the value of a testing session, as the
user can temporarily correct many types of errors
(by changing variables and issuing system
commands), allowing other errors to be found
before the program must be recompiled.

Through group job support, the user can have the
editor running in one group job and a debugging
session in another. The user can hot key between
the jobs as the need arises, allowing simpler
errors to be corrected while debugging.

Another system feature that aids in the debugging
phase is dynamic binding. The design of the
AS/400 system makes the link-edit step
unnecessary, allowing the user to compile and
run. Corrections can be compiled into test
libraries, which, for the programmer, are placed
ahead of the production libraries. Program calls
are resolved at processing time, causing the test
versions to be called. This allows programmers to
test corrections without having to have a separate
test version of the entire application. At the same
time, others can continue to use the production
level of the application.

Accommodating Different User Sets

A unigue requirement for the AS/400 system was
the need to accommodate users from the
System/36 and the System/38. The application
development support enhances the functional
richness and ease of use of these two systems by
providing consistency, flexibility, and the ability to
migrate easily.

End-user interface changes were made to all of
the application development support. The goal
was to make all of the products more consistent
and, thus, easier to use. Another goal was to
make the application development support more
consistent across 1BM’s entire product line,
including Multiple Virtual Storage (Mvs), Virtual

Machine (vm), and Operating System/2™ (0s/2™).
With these changes came additional ease-of-use
features, such as more online help information
and better field prompts.

Additionally, calling the application development
support has been made more flexible. Users now
have three ways of calling this support: through
the programming development manager (a utility
that presents the user’s programming objects in
list form), the command shell, or the
Programmer’s Menu. The programming
development manager allows users to look at
their programming objects (files, programs, and
the like) and then select the appropriate function.
Many of the functions have been generalized,
such as the compile function, which can be
applied to any source type. The programming
development manager also allows users to create
their own user-defined functions that can then
easily be applied in any of the programming
development manager lists. So, users can apply
functions to objects (through the programming
development manager), objects to functions
(through the Programmer’s Menu), or both at the
same time (through commands).

To accommodate the wide difference in user-
experience levels, some products have expert
modes, which remove some of the help
information from the display to make more room
for the user's data. For example, the
programming development manager allows the
user to turn off displaying the options and the
command keys to allow more room for the object
list, thereby showing 17 items on the display
instead of eight. And, some products support a
fast path. The pru fast path bypasses many of the
normal bru prompts (the system picks
appropriate defaults), allowing simple DFu
applications to be generated quickly.

And, finally, to make the migration from
System/38 and System/36 easier, multiple dialects

of the various languages were added. For most
applications, this enables System/38 and
System/36 users to recompile their existing
programs unchanged. This has also been
extended to the screen specification languages,
where both the screen format generator (SFGR on
System/36) and pps (System/38) are supported.

AS/400 utilities also support these additional
languages. Screen design aid supports creating
SFGR source as well as bDbs source. DFU runs
applications that were created using System/36
DFU.

The AS/400 Migration Aids were developed to
facilitate moving applications, system data, and
user data from the System/36 and System/38 to
the AS/400 system. This product allows some
migration work to be done ahead of time by
providing an extensive set of facilities that run on
the System/36 or the System/38. These facilities
include:

 Analysis reports, which will find the programs
that require change to recompile successfully.
Individual source statements are flagged with
either warning or error messages, allowing the
user to identify the problem areas.

« System reports, which show the amount of data
to be migrated. They also show what has and
has not been migrated or analyzed. This allows
the migration to be performed in stages.

« A facility for automatically determining the
source type (such as rpG, coBOL, Query) for
source members that did not have a source
type previously specified.

« A facility for reconstructing source from
compiled menu, message, and SFGR objects.

29

Conclusions

The thrust of the AS/400 application development
support is to provide an integrated set of tools
that focus on the produce phase of the
development model. The more complex
applications of the future will need advanced tools
to achieve the necessary productivity and quality.
The future will see more emphasis placed cn the
other phases, especially the analysis and design
and build and test phases.

A secondary thrust of the application development
support is to move function out of procedural
programs and into declarative forms, and also to
take advantage of system functicn. This is an
initial step toward controlling the complexity of
application programs. The application
development support provides a base set of
function that meets the challenges of today and is
expandable to meet the challenges of the future.

Acknowledgements

The author would like to thank many of the pecple
in the Teronte Programming Center for their help
with this anticle, and especially Steven J. Hodson
and Claus Weiss.

References

1. Hoffnagle, G.F. and W.E. Beregi, Automating the Software
Development Process, IBM Systems Journal, Volume 24,
Number 2, 102-105, 1985.

™AS/400, Operating System 400, 05/400, Cperating
System/2, and OS/2 are trademarks of International Business
Machines Carporation.

30

31

The System/36 Environment

Describes an environment which supports System/36 applications and users on the AS /400 system.

John A. Modry, Peter J. Heyrman, and Steven A. Dahl

Introduction

The System/36 environment is a feature of the
AS/400™ system that supports developing and
running System/36 applications that use
procedures, Operation Control Language (ocL)
statements, utilities, menus, messages, and
application program interfaces (Apis). Most
System/36 applications can be easily migrated to
the System/36 environment and just as easily
migrated back to System/36. A number of
challenges were faced in providing equivalent
function and interfaces with a preceding system
while still taking advantage of the new function
and improved usability of the AS/400 system.

The primary design goal of the System/36
environment was to allow System/36 applications
to work on the AS/400 system, both functionally
and in terms of the interfaces seen by the users of
the applications, without requiring source code
changes. The System/36 environment is
operating system support that is designed to
provide System/36-equivalent function, using
underlying AS/400 facilities and constructs
wherever possible. Any AS/400 function can
access, update, delete, and rename the migrated
objects from a System/36. The user’'s compiled
programs, messages, display formats, data file
utility (oFu) programs, files, libraries, and so forth,
are all AS/400 programs or objects when being
accessed or run by the system. Two significant
advantages of the System/36 environment
approach are:

» The performance of the System/36
environment is approximately the same as

32

using equivalent Operating System/400™
(OS/400™) function.

» The System/36 environment provides access to
AS/400 functions. This allows most System/36
applications to be expanded to use AS/400
commands and programs without requiring that
the application programs be rewritten, and
allows interactive users to call AS/400
commands and programs while in the
System/36 environment.

A variety of approaches were used to design the
System/36 environment. For some functions, the
complete System/36 design was used and re-
implemented for the AS/400 system. For other
functions, extensions were incorporated at
various points within the AS/400 system to
provide the functional equivalent of System/36
support. In some cases, System/36 user
interfaces were extended to be more functional
and to achieve consistency across the entire
AS/400 system. The different approaches blend
together to produce a System/36 environment on
the AS/400 system that provides support for
System/36 applications, while maximizing
performance, usability, and extendibility.

Structure

The System/36 environment consists of AS/400
objects that represent various parts of a
System/36 application, as well as the programs,
objects, and the like that support the System/36
environment.

Object Structure
On System/36, applications are stored in files and
libraries. Four types of library members exist:

* Source members contain editable information
that is input to another process, such as a
compilation. Examples of source members are
high-level language source statements,
message source, and display format source.

» Procedure members contain ocL statements
that are similar in function to control language
(cL) statements on the AS/400 system.
System/36 procedures are interpreted by the
System/36 Reader/Interpreter.

» Load members are the internal form for objects,
such as compiled programs, display formats,
message members, and configurations.

» Subroutine members are the output from a
process such as compilers, Query, or bFu. On
System/36, program subroutines are combined
to create load members.

Figure 1 maps some key System/36 objects to
AS/400 objects.

On the AS/400 system, source and procedure
members are mapped to source files so a single
editor can change source statements,
procedures, CL program source statements, and
so forth. This eliminates the need to learn multiple
editors to change source members.

System/36 Object

AS/400 Object

Library

Library

Source Member

Member of Source File QS36SRC

Procedure Member

Member of Source File QS36PRC

Compiled Program (RPG Il and COBOL) Program
Subroutine Member Program
Compiled Display File Display File

Compiled Message Member

Message File

File (Sequential, Direct, and Indexed)

Physical File in Library QS36F

Alternative Index

Logical File in Library QS36F

Virtual Disk Shared Folder in Library QDOC
Folder Folder in Library QDOC
Documents Documents in Library QDOC

Data Dictionary

Data Dictionary and a Set of Files Within a Library

Library #LIBRARY

Libraries #LIBRARY and QSSP

Figure 1 Mapping of System/36 to AS/400 Objects

Support has been provided to handle the special
System/36 attributes for an object. For example,
the System/36 procedure attributes (such as
multiple requesting terminal (MRT) indicator, and
log statement indicator) and System/36 source
attributes (such as never-ending-program (Nep)
indicator, and maximum number of MRT
requestors) are supported. In addition to the
existing System/36 attributes, new attributes were
defined. One of these attributes indicates that a
program was compiled for the System/36
environment and must be run in the System/36
environment.

User profiles on the AS/400 system support all of
the System/36 user profile attributes, including:
initial sign-on menu, initial sign-on procedure or
program, initial current library, mandatory-menu
attribute, and mandatory procedure or program
attribute. In addition, a new user profile attribute

RSLL397-3

indicates if a user’s job should have access to
System/36 environment functions.

The library structure for the System/36
environment has been changed from the library
structure of System/36. On System/36, the
system library, #LIBRARY, contains all of the 1BM-
supplied objects for the System/36 operating
system (System Support Program, or ssp).
Because #LIBRARY is always checked when
searching for objects, customers often place
applications that are used by many users in
#LIBRARY. On the AS/400 system, library assp
contains all of the 1IBM-supplied programs,
procedures, and files for the System/36
environment, and #LIBRARY is used to hold user
applications. This two-library approach allows
new operating system releases to be installed
without affecting the applications in #LIBRARY.

To maintain information about the System/36
environment, a System/36 definition object has
been created (object type *s36). This object
includes information about:

- Display stations, printers, the diskette unit, and
tape units to be used in the System/36
environment.

The System/36 environment maps the AS/400
10-character device names to two-character
names. This allows System/36 applications that
use the two-character device names to be
migrated to the System/36 environment.

e System/36 environment file information.
The default library that contains files is Qs3er.
This library name can be changed with the
System/36 environment definition support.

« Session information.
This includes information on items such as the
default library for a display station, the printer
associated with a display station, and so on.

e Spool information.

This includes printer lines per page, characters
per inch, default forms 1o, and so on.

e MRT security information.

This information defines how the System/36
environment controls access to resources used
by an MRT.

Tailoring of the System/36 Environment
Tailoring the System/36 environment is an
extension of the AS/400 configuration process.
Because the System/36 environment assumes

33

default values for all of the System/36
environment definitions, this tailoring process is
optional. The user can tailor the System/36
environment to meet specific needs using the
Change System/36 Environment command.

On the AS/400 system, all jobs operate in a
subsystem (the AS/400 concept of a subsystem
should not be confused with the System/36
concept of an Interactive Communications Feature
(SsP-ICF) subsystem). Jobs running in a subsystem
can be controlled independently of jobs in other
subsystems. The System/36 environment support
is an element of the AS/400 subsystem support.
The System/36 environment sets up the
necessary control blocks that allow the System/36
environment to maintain information about the
current subsystem and the System/36
environment. This includes a lists of procedures,
MRTs, and other subsystem information.

When starting a subsystem, the System/36
environment determines if a System/36
environment definition object exists. If the object
does not exist, the System/36 environment
automatically creates the object and supplies
default values for all of the definition information.
These defaults include defining System/36
environment display stations, printers, the diskette
unit, and tape units based on the AS/400
hardware configuration.

In addition to automatically creating the
System/36 environment definition object,
hardware devices are automatically added to the
System/36 environment definition object when
they are added to the AS/400 system. When a
display station, printer, diskette unit, or tape unit is
added or removed from the system, the AS/400
configuration support notifies the System/36
environment, which changes the System/36
environment information for that device. This
combination of the AS/400 support and
System/36 environment support allows

34

customers to attach a new input/output (1/0)
device and immediately start using it.

In addition to the definition process of the
System/36 environment, customers have the
opportunity at initial program load (ipL) to change
certain system values to tailor their system. One
of the system values determines if all user profiles
should be given access to the System/36
environment. This allows the system administrator
to set a single value instead of setting the
System/36 environment attribute in multiple user
profiles. The System/36 environment system
value can be overridden by the individual user
profile. Another system value specifies whether
the system should create device names in the
two-character System/36 format or the 10-
character AS/400 format.

Accessing the System/36 Environment
These three ways are used to access System/36
environment functions:

 For users who always want to operate in the
System/36 environment, a special environment

Mandatory Menu
and/or Procedure

attribute can be set in their user profiles to
indicate that the user is a System/36
environment user. When a System/36
environment user signs on the system, the user
has access to all functions available in the
System/36 environment. Similarly, if a
System/36 environment user submits a batch
job, the batch job has access to all System/36
environment functions.

For users who occasionally need access to the
System/36 environment, two commands (Start
System/36 Environment and End System/36
Environment) are provided that allow a user to
enter and return from the System/36
environment.

For users who occasionally need to run a single
System/36 environment procedure, a command
(Start System/36 Environment Procedure) is
provided that accesses the System/36
environment, runs the procedure, and
automatically returns users to their previous
environment.

Individual Objects
Within a Library
and Folder

File, Library, Folder

Password

o 0 e i = il =

W

Non-Secure f

| |

System/36

i AS/400 System —

]

Figure 2 AS/400 Security Time Line

RSLL398-3

Security

To accommodate both the broad range of security
requirements and the differing levels of
sophistication of a given customer, the System/36
implemented security so that users can progress
through the levels of security as their
requirements change. As shown in Figure 2, the
user can begin with no security and, as
requirements change, progress to requiring
passwords and menu security, and eventually to
secured libraries and files.

This same philosophy has been adopted and
expanded on the AS/400 system. The security
administrator can use AS/400 authorization lists
to grant and revoke security levels to libraries or
objects within a library for groups of individuals.
Different levels of security can be selected by the
security administrator (unsecured, password and
menu, full object-level). The user can grant rights
to an individual user or to a group of users for a
set of objects. The administrator can, in turn,
selectively exclude members of a group from a
given resource. The System/36 support for
securing a data base file when it is created is
provided on the AS/400 system using authority
holders. (For a broader discussion on how
System/36 security capabilities have been
incorporated into the AS/400 security architecture,
see the article Security.)

User Interface

The user interface consists of the way the user
accesses a function and the information seen
while the function is running. The System/36
environment supports the System/36 interface
used to access a function. The same commands,
messages, and other interfaces to System/36 are
supported. System/36 users do not have to be
retrained to run System/36 environment functions.

Because many System/36 environment functions
call AS/400 support, a single interface can be
used to manage the system. For example, the

AS/400 display to manage currently running jobs
is the same as the System/36 environment
display. (For more information on the AS/400 user
interface, see the article An Integrated User
Interface.)

The expanded library search list facilities of
0S/400 allow multiple national languages to be
supported at the same time. The System/36
environment uses this support for displaying such
items as messages, menus, and display formats.
(For additional information, see the article
Software Design to Support National Languages.)

Operator Control Commands

System/36 operator control commands, such as
Status Print and Change Print, are used by
programmers, operators, and general users to
display and control jobs, spooled print files, and
the like. In addition to providing a familiar
command interface for System/36 users, the
System/36 environment support allows menus
containing operator control commands to be
migrated to the AS/400 system. System/36
commands are supported by one of these
techniques:

» Some commands are supported by specialized
System/36 environment programs that provide
similar functions to the System/36 commands.
For example, the Status Session command
calls a System/36 environment program that
displays information, similar to that on
System/36, about the current job.

« Some commands are supported by directly
mapping the System/36 command to the
corresponding AS/400 command. In many
cases, the System/36 environment support was
incorporated into the AS/400 support. For
example, the Status Print command is mapped
to the AS/400 Work with Spooled Files
command. The information displayed is very
similar to that on the System/36.

* Some commands are not supported directly.
Users must provide information different than
that on the System/36. In these cases, a
message is issued to the user, instructing the
user on how the task is performed on the
AS/400 system. For example, the Change Print
command results in a message describing how
to cause one print file entry to print after
another print file entry. After the user responds
to the message, the AS/400 Work with Spooled
Files display is presented and the user can
change the spool file entries so the spool files
print in the desired order.

This method of giving instructions to
accomplish the function with AS/400
commands is an easy way for users to learn the
AS/400 commands. Once the user learns the
names of these commands, the users can use
the AS/400 command names directly, rather
than the System/36 environment commands.

Message Support

The four types of System/36 messages (user,
program, console, and subconsole) are available
on the AS/400 system.

e User Message: A user message is sent by a
user or procedure to either a work station or
user by the MsGc command. An example of this
is ‘‘Peter, can you attend a meeting at 2:00
today?”

The underlying message support of the AS/400
system is functionally very rich and flexible.
0S/400 automatically creates a message queue
for each user as he is enrolled, and for each
work station or printer device as it is created.
The user can modify the characteristics of these
message queues. For example, a message
queue on the AS/400 system can operate like a
System/36, where it immediately notifies the
user when a new message is received. The
system also allows the user to hold messages

35

36

and not notify the operator, or to interrupt
immediately what the user is doing and display
the message.

Program Message: A program message is sent
by a program to a work station when an error is
detected. The operator has a choice of ignoring
the error, retrying, or canceling the function. An
example of a program message is “Library
LEDGER already exists.”

The System/36 environment program message
support is designed to present messages like a
System/36. Program messages sent by
System/36 environment functions and
applications are presented in the same format
as they were on the System/36, with the same
options, and the ability to return to the
procedure prompter ($HELP function of
System/36). System/36 automatic-response
values for application messages will continue to
function, and the user can take advantage of
other automatic-response capabilities provided
by the full AS/400 message support. The
System/36 message manual is now online, and
can be viewed without leaving the work station.

Console Message: A console message is sent
to the system console operator to manage
system resources or batch jobs. An example of
a console message is "‘Please insert diskette
ABC in the diskette drive.”

The AS/400 system has a single system
operator message facility designed to handle all
environments. The AS/400 system operator
message queue (QSYSOPR) is used like the
system console message queue on the
System/36. The System/36 commands and ocL
statements for sending a message will send
messages to QsYSoPRr when the console is
specified. The system operator message queue
can be viewed by anyone from any work

station. It is not restricted to a specific device as
on the System/36. When a program message is
sent to the system operator message queue, an
informational message is also sent to those
using that program, to inform them that the job
is waiting for operator action.

« Subconsole Message: A subconsole message
is sent to a subconsole operator who is
managing a set of printers that are near the
work area. An example of a subconsole
message is ''Please mount forms CHECKS into
printer p2.”

As stated earlier, each printer has a message
queue. The operator responsible for managing
a printer or set of printers can use the Work
with Writers command (similar to the System/36
Status Writer command) to view all of the active
printers. If the status of the printer indicates it is
waiting because of a message, the operator
can then display the messages for that device
and correct the situation.

Menu Support

System/36 environment menu support is an
extension of System/36 menu support and is
integrated into OS/400. User menus for both the
System/36 environment and the AS/400 system
consist of a display format and a message file
(message member on System/36). The
System/36 interface for creating menus is
supported (FORMAT, CREATE, BLDMENU, and SDA
procedures), in addition to the AS/400 methods
for creating menus (Create Display File, Add
Message Description, and Start Screen Design
Aid commands). The System/36 interfaces to
display a menu (Menu operator control command
and MENU OCL statement) are supported by the
System/36 environment, similar to the support
offered on System/36. In addition to displaying
user menus, the System/36 environment has
been enhanced to display AS/400 system menus.

The AS/400 system menus guide the user in
performing system tasks, in the same way as the
help menus provided on System/36.

The operational characteristics of menus have
been changed from System/36. For example, on
System/36, the Dup key was used to retrieve the
last function only, while the AS/400 system can
retrieve any previous function. The user can
display and select from all of the functions that
were entered on a menu during the current
session.

System Request/Attention Key

The system request support on the AS/400
system is combined with the inquiry (attention)
support from System/36. The support is a
common interface that is tailored to the
environment the user is currently operating in.
This merging of the functions was accomplished
with these changes:

« The System Request key shows the System
Request menu from any signed-on display
station.

¢ The System/36 system request function to
display the messages sent to the system
operator is an option on the System Request
menu.

« The options are tailored to the current operating
environment. For example, if a System/36
environment job is running, the Display current
job option shows the status of the job using the
System/36 environment Status Session
command. If an AS/400 job is running, the
Display current job option shows the status of
the job using the AS/400 Display Job command.

Unlike the System/36, the Attention key is not
reserved for use by the system. The System/36
environment user can use the support available to

all AS/400 users to define a program to be run
when the Attention key is pressed. This attention
key program can be defined in the user’s profile
or by issuing a command (Set Attention Program).

Application Interface

A major design consideration was to ensure that
the primary application interfaces on System/36
(RPG I, COBOL, OCL, utilities, and so forth) are
supported by the System/36 environment. The
System/36 environment was designed so
information produced by these applications, and
the interfaces seen by the users of these
applications, are equivalent to that of the
System/36.

Languages

The language heritage of the System/36 began on
the System/3 and has evolved and grown to meet
the ever-expanding interactive processing, work
station, and communications requirements of the
data processing community.

For example, on the System/3, communications
was principally batch-oriented and was accessed
using the telecommunications specification. The
System/32 supported a small built-in display that
was six-lines long and 40-characters wide. RPG II
Keyboard, Console, and cRrT file specifications
were added to accommodate accessing those
devices. System/34 added the concepts of MRT
programs, NEPs, NO requestor-terminal programs,
read under format, and ssp-ICF operations.
System/36 in turn added work station file
specifications to allow for a data dictionary
specification for externally defined ssp-ICF
formats.

To protect application investments and to provide
an easy migration path for System/3, System/32,
System/34, and System/36 customers, the
System/36 environment RPG Il and coBoL
compilers have maintained all of these language

extensions. System/34 and System/36 are not
strongly data typed. Users can leave blanks in a
numeric field and the System/36 would treat that
as zero and allow arithmetic operations on the
field. The base instruction set of the AS/400
system supports the stronger data typing of

RPG Ill, COBOL'85, PL/I, and BAsIC and will detect a
decimal data error if the user attempts an
arithmetic operation on a field containing non-
numeric data. Extensions to the base instruction
set allow it to operate similar to the System/36 if a
decimal data error is encountered when
performing zoned arithmetic. The System/36
environment functions also provide additional
support for System/32, System/34, and
System/36 language extensions, so RPG Il and
System/36 environment coBoL programs must be
processed within the System/36 environment.

AS/400 programs (RPG Ill, COBOL'85, CL) can also
run in the System/36 environment. Because the
System/36 environment is an integrated part of
0S/400 and has all of the facilities of the operating
system available to it, an RPG Il program runs in
the System/36 environment without using the
System/36 environment-sensitive functions.

In addition to the functions currently available to
the System/36 application developer, the
System/36 environment compilers provide
expanded capabilities. These items, for example,
are available to RPG I programmers:

 Greater than 64K program size

» Maximum number of arrays is increased from
7510 200

« Ability to call any other program on the system

e Maximum number of files used by a program
increased from 20 to 50

To enhance programmer productivity, the
System/36 environment supports the full AS/400
debugging facilities for rRPG 11 and cosoL. (For
more information on the System/36 environment
compilers, see the Application Development
Support article.)

Operation Control Language

A key part of any System/36 application is the
procedures the programmer has developed to
control the flow of programs within the
application.The AS/400 system supports both
System/36 ocL within the System/36 environment,
and compiled AS/400 cL, which is syntactically
quite different from the System/36.

A programmer can include cL programs and
AS/400 commands in a System/36 procedure.
This allows a programmer to access new
functions or facilities provided by OS/400, without
having to rewrite the System/36 procedures as cL
programs.

The System/36 environment ocL reader and
interpreter supports:

« The individual ocL statements themselves.

» Procedure control expressions that allow the
user to build conditional logic into the
procedure. The types of functions available
include testing for a file's existence, performing
simple mathematical functions to control
iterative operations, or checking the volume 1D
on a diskette.

» Substitution expressions that allow the user to
extract data from the system and incorporate it
into an ocL statement. For example,
substitution expressions are available to
request the user 1D of the person initiating the
procedure, the current system time or date, and
the value of any parameter passed to this
procedure.

37

To facilitate intermixing ocL statements and cL
commands in a procedure, a few new ocL
substitution expressions have been added to
the System/36 environment. The new
substitution expressions are provided to assist
the programmer who wishes to add cLto a
procedure and needs to provide the library
name where a System/36 file is located or to be
able to detect messages returned by a cL
command.

Utility Support

On System/36, utilities perform basic tasks for
users. The System/36 environment has a set of
utilities very similar to the System/36 utilities.
System/36 environment utilities have the same
appearance and issue the same messages as the
System/36 utilities.

Several technigques support System/36
environment utilities:

« Some utilities are supported using AS/400
commands to perform function similar to
System/36. For example, the scopy function to
display selected records from a diskette file
uses three AS/400 commands to perform the
single function requested by the user. The
Restore Object command restores the file from
diskette, the Copy File command selects the
records, and the Display Physical File Member
command displays the records.

» Some utilities are supported by System/36
envircnment programs. For example, $SETCF,
which sets default values for a display station,
calls a program that sets corresponding values
in System/36 envircnment control blocks.

« Some utilities are supported by displaying an
AS/400 menu. The user can select options from
the menu to perform the desired function. For
example, scnFiG, which defines the devices

38

attached to System/36, displays the AS/400
Configuration menu.

« Some utilities are supported by AS/400
command prompts. For example, $SPRUED,
which updates a user profile, provides prompts
that request the parameters for the AS/400
Work with User Profiles command.

- Some utilities are not required on the AS/400
system because the architecture of the AS/400
system is different from System/36. The utility
control statements for these utilities are
checked for syntax and then ignored. For
example, because the AS/400 system does not
require that a file occupy contiguous disk
space, $FREE, which groups unused disk
spaces together, is checked only for syntax.
This syntax checking benefits users developing
applications to run on System/386.

MRT Support

The System/36 environment supports MRT
applications, which have been written to manage
and process requests from multiple devices. MRT
requesters can be either interactive jobs or
communications jobs. An MRT is initiated when the
first requester calls it, and the MRT remains active
as long as at least one requester is using it. An
MRT may also be an NEP. An MRT that is not an NEP
ends when it has no requesters using it. An NEP
MRT with No requesters remains active, waiting for
the next requester. MRTs are used extensively in
System/36 applications for both storage and
performance reasons.

MRT support is critical for source-level
compatibility of System/36 applications, and this
support is provided by the System/36
environment. The System/36 environment uses
AS/400 work management support to initiate the
MRTs, AS/400 data management support to pass
the requester devices into and out of the MRTs,

and relies heavily on the event support of the
AS/400 system for interprocess communication.

The MRT is implemented as an AS/400 user job
with the same structure, attributes, and
capabilities of other user jobs, but with a special
attribute that identifies it as an mrT. This allows
the MRT to be controlled through the same job
control interfaces as other AS/400 jobs, in
addition to being controlled through the
System/36 job control interfaces. Various AS/400
job centrol displays identify an mRT as having a job
type of MRT; indicate if an MRT is also an NEP;
display the maximum number of users allowed in
an MRAT (MRTMAX); display the number of users
currently in an mRT; and indicate if a System/36
environment job is currently routed to an MRT and,
if so, indicate the name of the MRT.

The System/36 environment default value for MRT
security is the same as itis on the System/36. In
addition, a customer has the option of choosing
other levels of MAT security to reduce the number
of authorizations needed when enrolling new
users on the system, and to improve the
performance of routing users to active NEP MRTs.

Data Base Support

The AS/400 data base contains support for some
System/36 concepts. For example, the System/36
file attribute that prevents the records in a file from
being deleted was generalized by AS/400 data
base support into attributes preventing input,
output, update, or deletion of records in a file. (For
mere detailed information on the advantages of
the AS/400 data base support and how it
supports files migrated from System/36, refer to
the article An Integrated Data Base.)

The System/36 environment provides the
additional support necessary to allow most
System/36 applications to function like they did on
System/36, while using the AS/400 data base

support. The System/36 environment supports
the ocL FILE statement (which is required for every
disk file used in a System/36 application) by
mapping the parameters to the equivalent AS/400
data base functioris, and allocating any files
indicated by the FILE statement.

The System/36 environment supports improved
performance when an application uses the same
data base file in consecutive programs called from
the same procedure. This is a fairly typical
scenario because the 64K program size limit on a
System/36 often results in splitting an application
into many small programs, each opening the
same file. The System/36 environment keeps data
base files open after a program has completed. If
the next program uses the same file, the
System/36 environment connects that program to
the open file. If the next program does not use the
same file, itis closed.

The System/36 environment data base support
takes advantage of the additional function
available on the AS/400 system. For example, the
limit on the number of open files has been
increased significantly, thus allowing a single
program to perform file updates that would have
required multiple programs on a System/36.
Another advantage is the AS/400 disk
management capabilities. A file does not have to
be located in contiguous storage locations and
space is not reserved until it is needed. Users also
have access to the data integrity and recovery
functions of the AS/400 data base.

Display and Communications Support

The System/36 environment provides support for
System/36 applications that interact with any
combination of display devices and
communications devices. Functions necessary for
System/36 compatibility that are not part of
AS/400 data management are incorporated as
extensions of AS/400 data management and are
only used when an AS/400 application is running.

The basic support and structure of AS/400 data
management for display devices was adopted
from System/38. System/36 display formats are
migrated to AS/400 display device files. In
addition, OS/400 Intersystem Communications
Function (icF) was incorporated into the AS/400
data management structure. The concept of ICF, a
generalized high-level interface for
communications applications, was adopted from
System/36. Support was incorporated into
AS/400 data management for ICF files, which are
used for 1/0 to all types of communications
devices supported by the AS/400 system.
System/36 communications formats are migrated
to IcF device files. (For more information on
AS/400 data management support, see the article
A Structured Approach to Data Management.)

Major capabilities were built into the System/36
environment to make migration transparent to
most System/36 applications. The structure (work
areas) of System/36 data management is
organized to support programs that issue 1/0
operations directly to devices. The structure of
AS/400 data management is organized to support
programs that issue 1/0 operations through a
device file to a device. On the AS/400 system,
multiple device files can be open at the same time,
and work areas representing a program’s use of a
device through a particular file are needed on all
I/0 operations. Information stored in the work
areas on an output operation is required to
successfully process the next input operation. No
comparable requirements exist on System/36, as
all information required to complete an 1,0
operation is associated with the program and the
device, and not with the use of the device through
a particular file. The System/36 environment
masks these differences to provide support for
System/36 applications, including the support for
read under format.

A System/36 program can do 1/0 through both
display formats and communications formats and

can simultaneously wait for an /0 response from
multiple display devices and multiple
communications sessions. The AS/400 system
does 1/0 through formats contained in a device file.
The System/36 environment allows an application
to issue a single input operation (Accept Input) to
a display file (with one or more display devices
attached) and an IcF file (with one or more
communications sessions attached). The
operation is satisfied by the first 10 response to
complete.

Finally, the System/36 environment allows
System/36 applications to use System/36 two-
character device names instead of AS/400 10-
character device names. The System/36
environment device name mapping takes into
consideration the system-level device name
information, as well as application-level device
name mapping provided through ocL statements
(WRKSTN and SESSION). The System/36
environment determines the appropriate device
name mapping and passes it to AS/400 data
management using generalized device-name
mapping interfaces before calling a System/36
application program. Therefore, AS/400 data
management is not aware that it is working with
System/36 device names.

Read Under Format

To provide compatibility for System/36
applications, the System/36 environment

supports read under format, which allows a
System/36 program or procedure to read a format
that was displayed by a previous program. The
program can read through a different format and a
different file than that used on the output
operation. (The application program doing the
read must know how to process the data it is
receiving.) Read under format allows the user to
enter data on the display while the second
program is initiating, thus improving overall
response time.

39

Read under format applies to all requester
devices. A requester display device is the device
through which an interactive user signs on. A
requester communications device is a
communications session through which a
communications job was initiated by a procedure
start request coming across a communications
line.

The System/36 environment supports read under
format by keeping display files and icF files open
after a program has attempted to close them.
When a program opens the same file that was
already opened by a previous program, the
System/36 environment connects that program
with the file kept open from the previous program.
The second program then has the capability to
read a format that was displayed by the previous
program. When a program opens a different
display file, the System/36 environment
determines if read under format is in progress
and, if so: intercepts the first input operation from
the current program; issues the input operation
threugh the old file; intercepts the completion of
that input operation; moves the data to the input
buffer of the new file; sets appropriate return
codes; and sends the response to the application
just as if the 170 had completed through the new
file. When a program cpens a different 1cr file, the
System/36 environment passes the
communications session to the new file without
disturbing the conversation in progress, using
specialized 1cF functions provided specifically for
this purpose. This same level of support is
provided for both synchronous and asynchronous
input operations issued by System/36
applications.

Some additional complexities are introduced

when supporting read under format between MRTs
and single reguester terminal (srT) programs. The
System/36 environment uses specialized functions
provided by AS/400 data management to support

40

the completion of an ;0 operation in a different job
from which the operation was started.

In addition to supporting read under format,
keeping display files and (cF files open across
programs provides significant performance
advantages.

The System/36 to AS/400 Migration Aid

To assist the user in migrating from a System/36
to the AS/400 system, a menu-driven Migration
Aid leads the user through the migration process,
including the migrating steps that occur on the
System/36 and those that occur on the AS/400
system.

The System/36 part of the Migration Aid
summarizes what is on the system, identifies
functions that must be changed to run on the
AS/400 system; selects items for migration (such
as libraries or office user profiles); moves the
selected items to tape or diskette; and generates
reports (items selected, saved, failed).

The AS/400 part of the Migration Aid restores all
migrated items; enrolls migrated users; compiles
APG and coeoL programs from the scurce code;
creates message files, display files, and menus
from saved source; converts saved device
configurations, data dictionaries, documents, and
office objects (calendars, mail logs); and
generates reports (objects migrated successfully
and unsuccessfully). See Figure 1 for a list of the
items migrated, and the AS/400 object to which
they are converted.

Coexistence Support

Ceexistence refers to the fact that for many
customers, their AS/400 system will coexist with
other systems. Many users will use the System/36
environment as the central site for developing and
testing applications that will run on cne or more
System/36s. This allows them to take advantage

of the AS/400 programming productivity features,
such as interactive debugging.

Applications that work in the System/36
environment also work on a System/36. In cases
where the System/36 environment provides more
support than the System/36 (for example, the
number of files that may be opened in a single
program), warning messages are issued as the
application is compiled. In this way, users who do
not plan to move applications back tc a
System/36 are allowed to expand their
applications to take advantage of the AS/400
support, and users who plan to move applications
back to a System/36 are warned whenever they
use a function that will not run on a System/36.

Applicaticns and data can easily be moved
through a network of System/36 and AS/400
systems using either communications facilities or
save-and-restore support. In addition, applications
and data can be moved to the A5/400 system
from the Systemn/34 and System/32.

AS/400, System/36, System/34, and System/32
users can use the standard save-and-restore
functicns on their respective systems when
exchanging applications and data. In the past,
migrating to a different architecture required that
the data be converted before migraticn, usually
into a data interchange format. This is no longer
necessary because the AS/400 system
recognizes and generates the internal formats of
applications and data used by these other
systems. The three advantages to this approach
are: the users of the respective systems do not
need to learn new save-and-restore interfaces;
saving a large file to tape using standard
System/36 save procedures is approximately six
times faster than saving the same file in data
interchange mede; and archived media (tapes and
diskettes) can be directly migrated to the AS/400
system without first having to restore them to the
system from which they were saved.

Conclusions

The System/36 environment provides AS/400
support for System/36 applications and users.
The System/36 environment provides a high
degree of source-level compatibility for System/36
applications. This includes support for ApIs such
as RPG Il, COBOL, procedures, OcL, utilities, menus,
commands, messages, display formats, and
communications formats. End-user interfaces for
accessing System/36 functions are supported
and mapped to corresponding AS/400 functions.

The System/36 environment consists of operating
system extensions that were designed to provide
System/36-equivalent function, using the
underlying support of the AS/400 system
wherever possible. This approach results in
performance for System/36 applications that is
equivalent to that available for AS/400
applications, and enables the System/36
environment applications and users to have
access to the new functions of the AS/400
system.

Users may easily migrate most applications and
data from a System/36 to the System/36
environment, as well as from the System/36
environment back to a System/36. This allows the
System/36 environment to serve as a growth path
for existing System/36 users, as well as for
developing central-site applications that will run on
a System/36. In addition, users may choose to
gradually rewrite their System/36 applications to
take advantage of new AS/400 functions. Users
content with the function provided by System/36
applications can continue to run in the System/36
environment, while obtaining the performance
benefits of the AS/400 system.

Acknowledgments

We would like to acknowledge the contribution of
Guy W. Vig and Michael P. Anderson in supplying
information relative to the utility support,
System/36 to AS/400 Migration Aid, and
coexistence support sections of this article.

™ AS/400, Operating System/400, and OS/400 are
trademarks of International Business Machines Corporation.

41

The Communications and Networking Structure

Describes the data communications hardware and software structure in the AS/400 system and discusses how it supports today’s function

while laying the foundation to meet future requirements.

James O. Walts and Paul R. Mattson

Introduction

The interest in and use of data communications
and networking facilities has grown dramatically in
recent years. Part of this growth has been driven
by market demand, while part has been driven by
technology.

The information managers in business and
industry recognize that their information is a
valuable corporate resource. What information will
be collected and how it will be managed and used
has become very important. Getting accurate
information to the correct places in a timely
fashion for decision makers to take action has
become an integral part of businesses’ challenge
to remain competitive.

Data communications plays a significant role in
meeting these challenges. Business has become
more and more dependent on its data
communications facilities as these challenges are
met. In many cases, even the very way business is
carried on has changed due to emerging data
communications technologies. As a result, a
growing demand exists for functionally rich,
reliable, and manageable data communications
functions, products, and facilities.

In a complementary way, technology has
contributed to the growth in data communications
products and services. Increasing processing
power and storage capabilities at lower and lower
costs have allowed new applications that were
once prohibitively expensive. Existing function is
enjoying new levels of performance for the price.

42

The AS/400™ system features many of the
capabilities that have been driven by the data
communications market demands, including the
AS/400 implementation for various
communications protocols. Some of these
features are common application facilities,
Systems Network Architecture (SNa),
management services, and separate input/output
(i/0) processors. The AS/400 system delivers
these functions today by integrating advanced
hardware and software technologies into an
overall structure designed for functional
expansion tomorrow.

Design Objectives

The AS/400 data communications structure was
designed with a number of goals in mind. First, the
structure had to provide comprehensive functional
capability at a competitive price-for-performance
level. In addition, the data communications
structure had to support multiple architectures in a
flexible and extendible fashion, by supporting
multiple, concurrent data communications
architecture implementations and the sharing of
physical resources where meaningful. It had to
have an extendible common framework, within
which various communications protocols could be
implemented. The various communications
protocols had to be presented to the application in
a consistent high-level fashion, thus shielding the
application writer from much of the protocol detail.
And, the structure must maximize the ability of the
AS/400 system to communicate and operate with
other 1BM and non-1BM products today and in the
future, including the rich complement of sNA
capability, asynchronous communications

support, binary synchronous communications
support, as well as affinity with the emerging open
systems interconnection (o0si) architectures. And
finally, the structure had to allow the system and
data communications operator to configure
networks easily, check their status, and monitor
their behavior. The data communications operator
must be able to get maximum utility from the
network with minimal management effort. The
structure of AS/400 data communications was
designed to meet these objectives. An AS/400
sample network is shown in Figure 1.

Data Communications Structural Overview

The AS/400 data communications structure can
be viewed as a two-dimensional matrix. Each cell
within the matrix provides a particular
communications function. (Figure 2 shows this
communications matrix.)

The vertical dimension of the matrix shows the
distribution of architectural layer functions (such
as application, presentation, and session
functions). AS/400 function has been distributed
across the System Processor, the 1/0 processors,
and physical hardware attachments. Function is
distributed throughout the system, depending on
such parameters as sharing architectural layers,
sharing physical hardware, and performance.

The horizontal dimension shows various
communications protocol implementations (such
as sNA, asynchronous, and binary synchronous
protocols). This horizontal dimension depicts the
integration of dissimilar architectural

Figure 1

AS/400-System/370 Sample Network

RSLL309-2

43

implementations into the same structural layers of
the system. It also shows sharing common
system functions and packaging at several of the
vertical layers (for example, a common
communications 1/0 processor is available for all
protocols).

This matrix structure is presented to the user
through management services and common
application facilities. Common application facilities
provide the user with consistent access to
communications functions. These facilities are
common to all protocols, thus providing a uniform
interface. Management services permeate all
structural layers of the system. In this way they
can control and monitor all communications
functions. The hardware and software, which is
self-defining and self-diagnosing, aids the
operator in network configuration, interrogation,
and monitoring.

Data Communications Relationship to SNA and
OSI Models

Figure 3 provides a composite view of the
components of the initial AS/400 data
communications offering. The overall AS/400
implementation is shown with a comparison of
SNA and osI implementations. The figure shows
the details of how the functional layers of sNA have
been implemented in the AS/400 system and how
the physical, data link, and network layers of os|
have been embodied in the AS/400 system. As an
example, 1BM Token-Ring Network and x.25
protocols serve as alternative data link controls
for the snA Path Control function. Also,
independent protocol implementations can share
a physical resource. As an example, the AS/400
system can communicate with an Ascii host
system and an SNA host system concurrently over
the same x.25 physical port. The ability to share
physical resources is important to satisfy the
second AS/400 design objective of supporting
multiple architectures in a flexible manner.

44

Common Application Facilities

Application

Presentation

Session

Network Facility

Data Link Control Facility

Communications /0O Processor .

A

v

Independent Protocol Implementations

Figure 2 Two-Dimensional Matrix of the Data Communications Structure

— M SN C +~O0®~+—TO0 ~ >

O = 0< D

RSLL310-3

The vertical dimension of the diagram shows the
functional distribution across the architectural
I R layers from the operator or application through the

A5/400 Communications Structure

SNA Impl tati 08! Imp! 181l machine interface to the 110 processor, and then
| oparator Manage] - o | ’1 STl through the physical network interface. The
| ment Services | Services | ar i el i diagram shows the AS7400 structure that reduces
the complex data communications environment
T inieysiein Communioations into smaller isolated functions. The intersystem
; Funchion JICF) communications function, network facifity, data
B T ‘ link control facility, and interprocess
il Uyl . g communications facility are well-defined internal
o HK ne interfaces that enable sharing of the various
| niating bt L o B architectural layer implementations. Additionally,
, 1 these well-defined interfaces allow for movement

Network Facility/Machina Intarlace (REQIO) of functions within the system, allowing the
AS/400 system to take advantage of technology
as it becomes available. That 15, a function can be
distributed to a different layer in the systemin a
manner transparent to the user. This means that a
series of compatible systems can be built with
varying functional distributions without changing
the user interfaces (this is not specific to
communications, but is a general AS/400
structural feature).

AS/00 Bus Inlerprocess Comm Fagcilily {IPCF}

Management Services

As shown in Figure 2, management services span
all functions in the AS/400 system, from the
system operation and the physical hargware
connections to the communications network and
the lccal devices. It provides the facilities used to
manage the system complex and the network
within which it exists. These management
services are known as Communications and
Systems Management {C & sm), the parts of which

& If : i . are shown in Figure 3. ¢ & sM fully integrates both
| the communications and local systems

vigations 11O F:-“ sar {IPGF)

management into Cperating System/400™

-l ' {OS/400™) through operator menus, commands.
I _|‘-‘ { @ and the common agplications interface.

ee namote 22;{'019 g:‘:‘gf 23;:: Operator Menus and Commands. The AS/400
System System system presents to the system operator an
RELLsTI extensive set of menus and commands tc use

Figure 3 Components of A3/400 Data Communications as Related to SNA and OSl Implementations C & sm. The operator can manage the system

rescurces through menus that provide the ability
to gather problem data (called alerts) into a data
base, monitor the network, configure the network,
and perform problem determination from a central
point. The alerts are automatically sent to the
central point from anywhere in the network. The
central point can be an AS/400 system and a
System/370 using the NetView™ Distribution
Manager. (For more details, see the article
Electronic Customer Support.)

Management Services Control Point. The
management services control point consists of
configuration services, activation and deactivation
services, and problem management. The
management services control point manages
mapping system communications cbjects to
physical resources. It is the cornerstone of
communications resource management and
cocrdinates creating all System Processor and 170
processor tasks that provide the communicaticns
support from the user application to the physical
port. The support selected is a function of the
configured communications objects. It includes
activating the appropriate 1,0 processor-based
tasks for communications objects being varied on
and creating appropriate data link control facility
and network facility tasks based on the line and
controller descriptions, respectively. It maps
application reguests for sessions to the network
facility that supports those sessions.

The management services control point is also
responsible for alerting the AS/400 system of
changes in physical resource status. This occurs
during the coordinating process required to
activate a communications resource, as well as
during error conditions and user-initiated
deactivation procedures. In addition, the
management services control point orchestrates
communicaticns seccnd-level recovery. That is,
after a device, controller, or line is declared
inoperative, the management services control
point coordinates the applications, the operating

46

system, and the system operator to re-establish
or end the communicaticns path in the system.
Management services also cocrdinate the control
point functions of advanced peer-to-peer
networking {appN). (For meore information on ApPN,
see the article Advanced Peer-to-Peer Networking.)

Configuration Services: Configuration services
provide a set of facilities for controlling and
maintaining configuration information for the
AS/400 system. The AS/400 configuration is
integrated into the system and is object-criented.
That is, composite data structures are defined at
the machine interface on which only well-defined
functions may operate. Several configuration
objects are defined. These include the line
description, the controller description, the device
description, the mode cbject, and the class-of-
service object. These objects may be created,
examined, varied on and off, changed, or deleted
while the system is fully operational.

The line description is a definition of the way in
which a communications port is to be used. It is
through the line description that one selects the
particular data link protecol to be used and the
physical and logical parameters that condition that
protocel’s behavior as it communicates with a
remote system. The line description specifies the
resource name that corresponds to a particular
communications port on the physical
communications adapter. The actual
communications port is bound to that software
object at the time the line is varied on. This late
binding contributes to a number of features. The
adapter may be moved to different hardware slots
without software re-configuration. Because the
validity of resource names is not checked until
vary-on time, central-site development and testing
of configuration programs is made easier. Several
different cbjects may call for use of the same port.
This mutual exclusion is managed by the system
at vary-on time. The controller description defines
the characteristics of the remote system and the

session-level Lu-type protocols. The device
description defines the physical or logical device
to which sessions are to be established.

Activation and Deactivation Services: Activation
and deactivation services provide 1/0 processor
management services to the system. The
management services control point calls on the
activation and deactivation services to activate
appropriate 1/o processor micrecode tasks based
on the line description; this includes Icading the
multitasking 10 processor with the selected
protocol’s re-entrant microcode. Therefore, only
the firstline on an ;o0 processcr of a particular
data link control type requires a microcode
download. Activation and deactivation services
customize the activated microcode task by
passing configuration and recovery information to
it. Activation and deactivation services are also
involved in the deactivation process that cccurs
when a line description is varied off.

Activation and deactivation services provide a
focal point for 110 processor-detected errors. 110
processor hardware and software events are
passed, in well-defined formats, to activation and
deactivation services where they are logged. The
system command, Work with Error Log, and
problem analysis functions are interfaces to this

log.

Activation and deactivation services use the
threshold concept to alert the operator of behavior
outside the acceptable cperating bounds as it
occurs. This feature helps the operator identify
problems negatively affecting network
performance.

Activation and deactivation services provide the
interface to the 1;0 processor for debugging. The
debugging functicns include setting breakpoints,
dumping I/0 processor storage, and tracing the
paths taken by 110 processor micrecode. These
tools are for use by service representatives.

Problem Management: Problem management
assists ¢ & sM in problem determination, problem
diagnosis, and configuration monitoring. The
problem management interfaces work with the ;0
processor services to perform activation and
deactivation of network resources, to test network
resources, and to collect statistical information on
the network resources. Problem management
then reports the resulting system reference codes
(sRcs) for each of these operations to the ¢ & sm
facilities. These srcs are processed by ¢ & sMm. If
the situation cannot be handled locally, it is
reported to the focal-point problem management
system through the use of ¢ & sm generic alerts
facilities. These functions provide the ability to
manage the system from a central site.

Intersystem Communications Function
Intersystem Communications Function (ICF)
provides the common application facilities shown
in Figure 2. In Figure 3, the various protocol
implementations (SNA, asynchronous, and binary
synchronous) appear below ICF. ICF presents a
common application interface for easily accessing
these communications implementations. The
communications protocols are implemented in the
vertical dimension shown in Figure 2. Therefore,
ICF is a consistent interface across all protocol
implementations. This common application
interface shields the end-user application from the
detail of each individual protocol. It allows the
application programmer to define the application
data externally to the program and independently
of the protocol type. The specific protocol is
selected according to the configuration.

The AS/400 system has several of its own system
applications that are written to the icF interface.
One such application, sNA distribution services
(SNADs), provides a set of asynchronous services
consisting of queueing, safe storage, and
scheduling services, which support distribution of
a variety of data objects. Examples of other i8m
applications are distributed services node

executive (DsNx) and interactive terminal facility
(ITF).

Networking Facilities/Machine Interface

The machine interface contains a set of
instructions for accessing all network facilities.
These instructions provide the means for
configuration, activation and deactivation, 1/0, and
problem handling. The instructions operate
together to provide a group of control point
services that set up an optimal route for delivering
application data with integrity and security, for
supporting network management and for
providing network recovery. These functions are
provided by the station 10 manager (Siom) in
conjunction with the management services control
point. The request 170 (REQi0) machine instruction
is the main instruction for performing data
transmission and reception. This instruction is
processed by the station 170 manager shown in
Figure 3. The station 170 manager provides the
capability to share, on a session basis, the
resources of a remote system. It multiplexes the
data for a set of sessions to a data link control
facility. It also provides session-level error
detection and recovery on behalf of the
application. The station ;0 manager is established
by the management services control point during
controller description vary-on processing. The
station 1/0 manager task, based on the controller
description and device description, provides a
particular Lu-type protocol service for an
application.

Data Link Control Facilities

Data link control facilities provide sNA and non-SNA
(refer to Figure 3) applications with a common
interface to the components that deliver the data
to the adjacent system in the network. They are
designed to transparently multiplex several
different station 110 managers to a single physical
port that supports logical adjacent links, for
example, x.25 and 1BM Token-Ring Network. As an
example, the x.25 data link control can

concurrently multiplex the following dissimilar
communications environments to the same
physical x.25 port: the AS/400 system as a
secondary SNA station role when communicating
with the host System/370; the AS/400 system as
a primary SNA station role when communicating
with a remote personal computer; and the AS/400
system as an asynchronous pad station when
communicating with an asynchronous host
system. This high level of concurrency of
communications environments provides maximum
use of the hardware.

The line iy0 manager (LIoM) is shown in Figure 3
under the data link control facility box. The line 10
manager provides a transparent interface to the
station 170 managers independent of the
underlying data link protocol and network being
used. ltis this transparency that allows the
addition of new data link controls into the
structural matrix without affecting those types of
station 1/0 managers that currently exist. In a
complementary way, new session and transport
layer implementations can be introduced to share
the existing physical network support. The line 170
manager is put in place by the management
services control point during line description vary-
on processing. It manages the physical link-level
activation for the management services control
point, multiplexes a set of station 1/0 managers
onto a single physical port, and participates in the
second-level line recovery as directed by the
management services control point.

1/0O Processor Facilities

The AS/400 1/0 processor is a general purpose
processor that is attached to the System
Processor through the system 170 bus. (For more
information, see the article The Multiple-Function
Input/Output Processor.) Its purpose is to off-load
support of ;0 interfaces and their associated
protocols from the System Processor.

47

The 1/0 processor provides a multitasking
operating system and management functions that
allow it to support a number of communications
ports concurrently. For each port, a set of protocol
support tasks are put in place at the time the line
is varied on. This facilitates the efficient use of ;0
processor storage and processor resource. A
number of data link and physical controller tasks
are available in the AS/400 system (1Eee 802.2, x.25
packet-switching digital network, synchronous
data link control, asynchronous, and binary
synchronous).

Each set of 1/0 processor protocol tasks has a
corresponding line 170 manager task in the System
Processor. The connection between the line 1/0
manager task and the 1/0 processor protocol task
(1pcF) provides a full duplex and queued message-
based service. This service masks most of the
details of the bus structure and physical ;0
processor card addressing from the line 10
manager. That is, it provides a location-
independent service to the line 10 manager and, in
doing so, also provides a transport mechanism
independence. This allows for repackaging
hardware and changing function distribution
without upsetting the line 170 manager design or
any of the 170 design above it.

Within the 1/0 processor, the functions provided
are also distributed across a number of tasks.
This distribution is based on the sna and os|
implementations. At each layer within the 1,0
processor, connections are established to the
System Processor, allowing the System
Processor to take advantage of any of the
exposed layers shown in Figure 3. This is key to
sharing the same physical port while using
different upper-layer protocol services.

48

The AS/400 1/0 processors have provided a
means to move compute-intensive operations
(such as data link controls) out from the System
Processor. This relieves the System Processor
from those burdens, allowing for efficient 1/0
processor microcode implementations and
greater overall system throughput.

Conclusions

The AS/400 communications structure provides a
distinct environment for integrating dissimilar
communications protocols into the operating
system. This structure allows the designer to
concentrate on the protocol function rather than
how to accommodate the protocol in the system.
The result is a well-integrated set of dissimilar
communications protocols.

The AS/400 communications and networking
structure supports all the functional capabilities of
preceding products, as well as providing the
structure on which to expand its initial offering.
Through the common applications facilities, new
protocols can be integrated and new hardware
attachments added without disrupting an
investment in communications applications
software. In addition, a rich set of communications
architectures is provided from which to build
networks, while offering easily accessed complex
environments. Management services provide the
operator functions necessary to efficiently
administer the communications facilities.

The AS/400 system provides an integrated
communications hardware and software solution
which is designed to grow with tomorrow’s needs.

™ AS/400, Operating System/400, OS/400, and NetView are
trademarks of International Business Machines Corporation.

49

Advanced Peer-to-Peer Networking

Describes the implementation and advanced networking features that enhance system-to-system and program-to-program communications.

Raymond K. Harney and Christopher H. Jones

Introduction

The expanding AS/400™ telecommunications
market requires networks built with low-cost
systems that are able to grow and participate with
existing 1IBM Systems Network Architecture (SNA)
networks. In addition, allowing distribution of
resources among different processors without
requiring end users to be aware of the physical
location of these resources is central to the
usability of a distributed operating system. This
transparency of network location and the physical
medium used to gain access to these resources
will be an integral part of corporate
telecommunications strategies as the networking
environment grows during business transitions of
the 1990s and beyond.

In March of 1987, the Low-Entry Networking
architecture was announced as the strategic
networking element for common communications
support in the Systems Application Architecture™
(sAA™) strategy. The System/36 and System/38
combine the verb set and application program
interface that is advanced program-to-program
communications/logical unit type 6.2 (APPC/LU type
6.2), with the Low-Entry Networking, or node type
2.1 transport layer functions, into product
implementations called appc. The AS/400 system
has built upon this implementation of the Low-
Entry Networking architecture with the
development of advanced peer-to-peer
networking (APPN) to meet growing distributed
processing requirements. Advanced functions are
offered, such as distributed directory searches,
dynamic route selection, and intermediate session
routing based on transmission priority. (For early

50

networking requirements in an intermediate implement only the base Low-Entry Networking
system environment, see Baratz et al [1].) architecture will also be able to use these
services. (For a list of 1IBM systems that have

AS/400 apPN support allows applications written implemented the Low-Entry Networking

for the aPPc/LU type 6.2 application program architecture, see Sundstrom et al [2].)

interface to communicate with remote partner

applications without modification when multiple The Evolution of APPC and APPN

AS/400 systems are providing networking In 1983, 1BM introduced an SNa peripheral node

services. In addition to providing networking type, node type 2.1 (or as it is known today, Low-

services for AS/400 users, other systems that Entry Networking) that supports point-to-point

System A System E

Program 4 Program 1 Program 2 Program 3

/ Local Operating System \

Transport Network

Session 1
Session 2

Figure 1

One Physical Link
Connecting the Two Systems
RSLL301-2
Example of Point-to-Point Communications

communications [3]. The first implementation of
this architecture, known as AppcC on the
System/38, provided the capability to carry
parallel LU type 6.2 sessions, thereby allowing
multiple partner applications to be active and
communicating concurrently. Figure 1 shows
Program 1 on System-A using the services of Lu-A
to establish a conversation with Program 2, which
is using the services of LU-E on System-E.
Similarly, Program 3 and Program 4 have
established a conversation using a different
parallel session between Lu-A and LU-E.

It can be observed how these distributed
applications use the services of the local
operating system to communicate on a logical
point-to-point, or direct connection, basis. The
logical unit (Lu) provides the port for an application
program to establish conversations and to send
and receive data from partner applications. The
transport network, which consists of path-control
and data-link control elements, is then used to
actually deliver the data to the remote Lu. In type
2.1 nodes, the transport layer provided data
transport on a point-to-point, or one-hop, basis.
Therefore, the logical point-to-point connection of
Lus and applications was also a physical point-to-
point connection of systems, due to the functional
capabilities incorporated into the transport
network of type 2.1 nodes.

By taking advantage of the layered AS/400
implementation, the path-control layer was
enhanced and a set of system tasks was added
that resulted in the ability to incorporate advanced
functions without affecting the operational
characteristics of the applications and the Lus
being served. (See the article The Communications
and Networking Structure for a description of the
data communications hardware and software on
the AS/400 system.) Figure 2 shows the
architectural model of the sna layers in a type 2.1
node, and how that model was implemented in the
AS/400 system. Highlighted is the separation

between the Lu and the transport network. In this
figure, the AppC function manager represents the
LU type 6.2 verbs that are issued by the Lu, and
APPN represents the type 2.1 transport network
and the control point functions.

The advanced facilities provided by AppN can be
summarized into four main functions, in the order
they are automatically performed within the local
node:

1. Distributed searches of the network to locate
any remote LU requested by a local
application.

This alleviates the requirement to manually
define every remote Lu with which the local Lu
may establish a session.

2. Topology and route selection services based
on a class of service selected by the user.

SNA Layers

AS/400 Layers

Transport Network

Using the properties of the nodes and links in
the network that are maintained in a local
topology data base, the best route from the
local control point (system) to the remote
control point is calculated according to the
class of service selected by the user.

Activation of a non-configured remote LU.

Once the correct route is determined, the
configuration that was manually configured
and activated with AppC is now automatically
created and activated by the operating
system.

Adaptive pacing and transmission priority.

While establishing the session, the transport
layer assigns transmission priority to
message units and allocates buffers
according to user-specified parameters and
systems capacities.

Intersystem Communications
<4+— Function (ICF)
Application Interface

<+—— Machine Interface

Control Point

RSLL302-3

Figure 2 SNA Layers Mapped to AS/400 APPC/APPN Implementation

51

Figure 3, when compared to Figure 1, illustrates
how appc applications and their serving Lus can
take advantage of these functions. Shown is Lu-A
in System-A and Lu-E in System-E retaining the
appearance of the same logical point-to-point
connection as in Figure 1, while the transport
network provides for multihop sessions between
physically non-adjacent systems.

Planning the Communications Network
The AS/400 system incorporates significant
enhancements over the two types of type 2.1

nodes that exist today. Network nodes contain the

advanced functions in the path-control layer that
allow intermediate routing to be performed within
a type 2.1 node. Also included in a network node
is a set of tasks, collectively referred to as the
control point, that performs the functions of

System-A

Program 4 Program 1

System-B

distributed searches of the network to locate a
non-configured remote LU and to calculate the
best route from origin node to destination node
based on user-specified criteria. An end node
provides a subset of the network-node function
and relies on the services of an attached network
node for session requests that involve multiple
nodes. End nodes also provide the ability to
register their local Lus with a network node server,
thereby alleviating the network node operator
from having to configure manually the Lu names in
all of the attached end nodes for which it is
providing services.

Figure 4 shows these different node types,
connected by the different types of physical media
and the related data-link protocols that can be
used. Of special interest is the ability for network

System-C

Local Operating Systems \

Transport Network

System-D

nodes to route sessions into the wide-area
network for nodes that reside on the 1iBMm Token-
Ring Network.

All models of the AS/400 system can be
configured as either a network node or an end
node, and all models may also communicate using
synchronous data link control (spbLc) leased and
switched connections, X.25 permanent and
switched virtual circuits, and the Token-Ring
Network. In the sample network, systems A, B, C,
D, and E are configured as network nodes that
are connected to each other by spLc leased and
switched connections. These network nodes are
providing network services for all local users and
also for all users of directly connected end nodes.
Each system in the network (both network nodes
and end nodes) is uniquely identified by a special

System-E

Program 2 Program 3

One Physical Link Connecting All the Networks

Figure 3 Physically Non-Adjacent Systems Retaining Logical Point-to-Point Connection with APPN

52

RSLL303-2

Key:
NN = Network Node
EN = End Node Ray
TRLAN = Token-Ring Local ~a
Area Network W
[}
©
o
(&3]
ja
<<
[
(e}
—
L
X.25 Switched
Virtual Circuits N
:7e %§@§€h%”"
ENfo
SDLC
Leased

E

z

z

Leased

E

m

5@ E

N

Figure 4 Fully Connected APPN Network

SDLC

Chicago

SDLC
Leased

onnection

DLC Switched

RSLL304-2

LU name, called the control point name. This name
serves a dual purpose: to uniquely identify each
node for routing purposes and to be used as an
LU name for user applications. Both node types
also provide the capability to define additional
local Lus within a single node. However, because a
control point name uniquely identifies a system in
the network, a node can only be defined with one
control point name.

The task of configuring an APPN network of any
arbitrary size consists of configuring the local
control point name and node type, and then the
control point name and node type for each
adjacent partner. An example would be for
network node-A in the sample network shown.
First, it is configured as a network node with a
local control point name of A. Then, network
nodes B, C, D, and E are configured as adjacent
network node control points. Finally, all of the end
nodes that it wishes served are configured. The
characteristics of the links being used are also
specified during configuration; default values are
provided according to the protocol and physical
interface but can be modified by the user.

For the control point to perform the directory
services and topology and route selection
services, adjacent network nodes (and optionally
end nodes) use a pair of parallel sessions, or
control-point to control-point sessions, to
exchange network information. Management of
these sessions is performed automatically by a
separate task in each control point and is
transparent to the users at these nodes. Token-
Ring Networks, x.25 switched virtual circuits, and
spLC switched lines, which are logically switched
facilities, can be configured in such a way that
they are activated only for user sessions; the
connection is dropped when all user sessions
have ended. Because the existence of a control-
point session will prevent switched facilities from

53

disconnecting, the planning stage must include
decisions about which links will be used for the
control points to exchange network information,
with the remaining retaining the ability to use the
automatic-disconnect feature.

Advanced Functions of APPN

These key requirements drove the apPN design
effort: eliminating the need for host processor
intervention in peer-to-peer communication;
reducing or completely eliminating static definition
of netwerk resources; accommodating large
networks; and designing for future enhancements.
One can view the directory services component
as providing a general-purpose search
mechanism, and the topology and route selection
services component as having the potential to
provide routing services over any type of
communications medium. In addition, the concept
of dynamically creating and activating system
objects, which was once done manually, can be
extended to include other system objects, and the
intermediate routing algorithm that incorporates
adaptive pacing and transmission pricrity can be
viewed as another, but not the last, advance in
intelligent data transport.

Directory Services

The directory services component in an APPN
node is responsible for maintaining locally defined
Lu names and participating in network searches to
help other control points locate requested Lus.
Network nodes are also responsible for
maintaining the Lu names that are contained
within adjacent end nodes.

When the transport network receives a session
request from an Lu it is serving, the services of the
control point are employed to provide the
necessary routing information. The directory
services component is the control point task that
must first identify the control point that owns the
requested remote LU. Directory services
accomplishes this by sending a search request to

54

corresponding directory services components,
asking if the requested Lu name is known.

As an example, consider the scenario where Lu-
Chris in End Node-Chris requests a session with
Lu-Ray in End Node-Ray, as shown in Figure 4.
The directory services task in End Node-Chris
sends a search request to its network node
server, Network Node-D. Network Node-D then
searches its local directory data base, and
because the requested Lu is not found on itself or
on any of the end nodes it is serving, it broadcasts
search requests to all adjacent network node
control points with which it has an active control
point session. The search request completes
when the search reply is sent from End Node-Ray
to Network Node-E and then back to Network
Node-D. (Subseguent network searches are
optimized by sending searches directly to the
contral point that positively responded on the
previous broadcast search. Also, directory
searches are nct required when the remote Lu
name is equal to the name of a network-node
control peint.)

As a second example, consider the case where
End Nede-Chris requests a session with End
Node-Joe. The search request is sent as before,
except that End Node-Joe has elected not to
establish control point sessions with any network
node that would prevent using automatic
disconnect over the x.25 switched facilities.
Therefore, Network Node-C and Network Node-A
will not forward the search request to End Node-
Joe, but will return positive responses and supply
the necessary information about the link to End
Node-Joe.

In both of these examples, the directory services
component at Network Node-D has obtained the
necessary information: identifying the control
point that owns the requested Lu, along with
obtaining information about the links that connect
the end nodes to the intermediate routing portion

of the network. This is how the distributed
directory search function is central in alleviating
the user from manually configuring remote LUs. In
addition, because the distributed search function
is present in all network nodes, the reliability of
this function is enhanced, as no single point of
failure exists within the network.

Topology and Route Selectlon Services

The topology and rolite selection services
component uses the control point sessions
between network nodes to exchange information
and build a topolegy data base. This topology
data base includes all network nodes, links
between network nodes, and associated
characteristics of these nodes and links, so every
network node can maintain a fully replicated copy
of the intermediate routing portion of the network.
This topology data base in network nodes is kept
current using updates that are transmitted
throughout the intermediate routing portion of the
network whenever a new resource (node or link) is
activated or the characteristics of an existing
resource change.

At session request time, the user supplies the
type of service being requested by specifying a
mode name. This mode name is associated with a
class-of-service definition that is used to
determine the most desirable route between the
origin and destination control points. The class-of-
service definitions specify the characteristics that
nodes and links must possess to be included in
the route selected for the user. This allows the
route selection algorithm to determine first if a
node or link is acceptable, and from the set that is
acceptable, to calculate the best route
dynamically.

Because class-of-service definitions may vary,
different sessions may use different routes
between the same origin and destination control
points, depending on the mode name and
associated class of service selected. With the

AS/400 system, five mode and class-of-service
definitions are automatically created during the
initial program load (1pL). These definitions allow
users to choose between routes and transmission
priorities that are favorable for batch or interactive
traffic. Users can also modify these supplied
definitions or create their own class-of-service
definitions to control session routing according to
their requirements.

After the session origin and destination control
point names have been resolved by the directory
services component, the topology and route
selection services component uses information
that it has stored in its local topology data base,
and any information possibly returned on the
search reply (when end nodes are involved), to
calculate the best route from the origin control
point to the destination control point. Because
topology data base updates are sent and received
by the topology and route selection services
component as characteristics of any resource
change, every route is calculated with the most
current information.

Consider when Lu-Chris is attempting to establish
an interactive session with Lu-Ray. The selected
class of service for an interactive job specifies that
the links with the fastest line speed and shortest
propagation delay are preferred over links with a
slower line speed and longer delay. Assuming in
this example that all the nodes and links were
operational and available for use, the route End
Node-Chris to Network Node-D to Network Node-
B to Network Node-E to End Node-Ray would be
calculated.

As a second example, consider the scenario
where LU-Chris is requesting a session with Lu-
Ray for a batch job. The class of service for batch
jobs prefers a route with a longer propagation
delay in an effort to leave the shorter propagation
delay links for the interactive jobs. This time, the

session route calculated would be End Node-
Chris to Network Node-D to Network Node-A to
Network Node-E to End Node-Ray. The route
calculated would cause the switched links
connecting the network nodes to be activated for
this session, because the topology and route
selection services component calculated that
activating the switched satellite link with a fast line
speed, but long propagation delay, yielded the
best route for the batch class of service.

Dynamic LU Activation and Session
Establishment

Once the route has been determined by the
topology and route selection services component,
APPN automatically creates and activates the Lu
description associated with that path. This is the
same LU description that would have been created
if the user had manually configured each Lu for
each transport link. By dynamically creating the
description of the Lu, the network eliminates the
need for explicit system operator definition for
each remote LU to which the local system
communicates. (For more information, see the
article A Structured Approach to Data
Management.)

To establish a session between the local and
remote LUs, a session activation request is routed
through the transport network. The session
activation request contains an ordered list of the
nodes and the links used to reach the destination
LU. As the activation request crosses the network,
each intermediate node puts in place a temporary
routing entry. The routing entry contains
addressing information, generated at the previous
node, for use on the link that the activation
request arrived on. It is then automatically
assigned a second address for use on the
outgoing link. This allows subsequent session
traffic to be routed simply by giving the session
address of the origin Lu, and eliminates the need
for fixed routing entries in the transport network
(see Figure 5).

Adaptive Pacing and Transmission Priority

The objectives for the transport network were to
provide efficient and equitable data transfer for all
sessions, while still allowing selected sessions to
be assigned priority. APPN accomplishes this
through the use of adaptive pacing and three
levels of transmission priority available for user
sessions. Note that one transmission priority,
network, is available only for network control
functions.

Adaptive pacing allows the receiving transport
layer to change or adapt the pacing window size
based on its buffer resources and traffic patterns
in the network. The previous AppcC flow-control
algorithms depended on fixed pacing. The pacing
window, or the number of message units that
could be transferred over a session before
receiving an acknowledgment from the receiving
transport layer, was negotiated at session
establishment and was fixed for the duration of
the session. The receiving transport layer can now
allocate its session buffers dynamically, efficiently
using its available resources. It also has the ability
to slow down the transfer of data, or even stop
receiving at any node of any session, thereby
maximizing equity in the transport network by
adjusting the flow of messages for any session
that may be contributing to congestion problems
in the network.

The transport layer also allows message units to
be transferred through the network at different
priorities. Before aAppN, the type 2.1 transport layer
would simply transmit message units on a first-in,
first-out basis. There was no way of specifying or
allowing a particular session’s message units
priority transmission over the message units for
any other session. This allowed batch-like
applications to consume the available
transmission media bandwidth much more readily
than applications that were interactive in nature, or
had short bursts of data to transfer. AppN allows

55

Transport Network

Session f

Activation < -
Request <

4

Session
Activation

Response

o
<

Figure 5 Single Route Activation and Data Transfer

the user to configure three session-level priorities:
high, medium, and low. The transmission priority
is carried in the session activation request at
session establishment, allowing the two halves of
the session and each routing entry along the
session path to store the same transmission

priority.

To ensure that lower-priority message units are
not preempted indefinitely by higher-priority
message units, an aging mechanism was
developed. The aging mechanism consists of a
service number, a transmission priority number
assigned to each transmission priority, a
scheduling queue, and a key-ordered priority
queue. The transmission priority numbers provide
a priority factor for each transmission priority. The

56

— >
>
RSLL305-3

following values were assigned for each
transmission priority:

e Network = 0
* High = 8

e Medium = 16
e Low = 32

The service number is initialized to zero and is
incremented each time a session control block is
serviced. This number enforces first-come, first-
serve scheduling for a given priority, and also
provides an aging factor for unequal priorities.
Special wrap logic is also supported to manage
the path control priorities when the service
number wraps.

The scheduling queue contains a set of session
control blocks that represent each half session or
routing entry that has pending message units to
transmit. The session priority (high, medium, or
low) is stored within each session control block.
The message units available for transmission are
attached to each of their session control biocks.
The priority queue is ordered by ascending key
and contains one element for each of the session
control blocks currently on the scheduling queue.
The keys of the elements on the priority queue are
the sum of the service number and the session
control block’s transmission-priority number.

The transport layer always dequeues the first
element on the priority queue to service a session
control block. It then transmits as many message
units as it possibly can over the underlying link
and then increments the service number. The key
of the priority queue element (which is the sum of
the service number and transmission priority
number) is then modified, and the element is
enqueued to the priority queue before the first
element of greater value. This allows the priority
for sessions to decrease gradually while still
enforcing the first-in, first-out ordering for
sessions of equal priority.

Figure 6 shows an example of several message
units being received by path control to transmit
the effect on the priority-queue elements keys,
and the order of transmission.

Figure 7 shows the relationship between the
scheduler and priority queues.

Implications for APPC/LU Type 6.2 Applications
One of the design objectives of SNA, carried out in
the implementation of AS/400 APPN, was to allow
resources, such as application programs and data
files, to be relocated without affecting the remote
applications that access them. This allows
transaction service-layer programs and user

1 0 Low =32 32
2 1 Low = 32 33
3 2 Med = 16 18
4 3 High =8 11
5 4 High =8 12
6 5 Low = 32 37
7 6 Med = 16 22
8 7 Low = 32 39
9 8 Network = 0 8

The actual order of transmission is message:

9,4,53,7,1,2,6,8.

RSLL307-2

Figure 6 Transmission Priority Example

application programs to refer to a resource by its

name without knowing the actual address of that

resource or the configuration of the network.

The ability for a single control point to configure

multiple local Lu names provides the vehicle to

move resources associated with a certain Lu

name without affecting the more permanent

control point name. This is made possible by the " Ische duling

directory services function of determining the Queue

owning control point for an Lu name, and then by

the topology and route selection services function

of calculating the path between the origin and

destination control points.

Consider the scenario where applications (shown

in Figure 4) access a user data file named

USERINFO that resides on Network Node-E that is

associated with an LU name of USERINFO on {

Network Node-E. During the course of normal |

operations, it is determined that Network Node-D i

would be a more appropriate system for this file.

Using an 1BM-supplied transaction-level program

called object distribution, Network Node-E would Priority

send the file to Network Node-D. Network Node-E Queue

would then delete the local Lu name of USERINFO,
and, at the same time, Network Node-D would
add USERINFO as a local Lu name. These steps

allow remote applications to continue to access
the file UserINFO associated with the Lu name of
USERINFO. The ability of the control point tasks to
recognize that the Lu name of USERINFO now
resides in Network Node-D, and the ability of the
transport network to provide the routing
transparently, is key in shielding users and Lus
from the real address of a resource.

Using an iBm-supplied application called display
station pass-through, which allows for remote-
system sign on, the sequence above could be
performed from a single control station.
Therefore, the required involvement of users on
each system can be minimized, especially if skilled
network management personnel are centrally
located.

RSLL308-2

Figure 7 Relationship between Scheduling and Priority Queues

57

Conclusions

AS/400 advanced peer-to-peer networking builds
upon the non-hierarchical, point-to-point Low-
Entry Networking protocols implemented in type
2.1 nodes. Advanced functions developed for the
AS/400 system free users from the detailed
manual tasks that were required with previous
networking solutions.

These advanced functions are: distributed
directory searches; topology and route selection
services; dynamic logical unit activation and
session establishment; and adaptive pacing and
transmission priority. Distributed directory
searches provide the current address of a remote
Lu for user applications that only know the Lu by
name. The topology and route selection services
component selects the best nodes and links to
use based on a set of user-specified criteria to
access the remote Lu. Dynamic logical unit
activation and session establishment serves as a
placeholder for current communications. Adaptive
pacing and transmission priority allows the
transport network to adjust the flow of session
traffic.

The layered structure of the operating system
allows new and old products to coexist gracefully,
and additional functions to be added in a natural
manner to meet future requirements. This is
highlighted by the enhancements made to the
transport network while preserving the AppPc
application program interface. Advanced peer-to-
peer networking demonstrates the AS/400
commitment to provide the best networking
functions in the industry.

References

1. Baratz, A. E. et al, SNA Networks of Small Systems, IEEE
Journal on Selected Areas in Communications, SAC-3,
Number 3, 416-426. May 1985.

2. Sundstrom, R. J. et al, SNA: Current Requirements and
Direction, IBM Systems Journal, Volume 26, Number 1,
13-36. 1987.

58

3. Gray, J. P. et al, Advanced Program-to-Program
Communication in SNA, IBM Systems Journal, Volume 22,
Number 4, 298-318. 1983.

™ AS/400, Systems Applications Architecture, and sAa are
trademarks of the International Business Machines
Corporation.

59

A Structured Approach to Data Management

Highlights the advances in display and communications data management, describing the data management structure necessary to support

them.

Carol A. Egan and Daniel S. Brossoit

Introduction

The AS/400™ data management structure greatly
simplifies the process of accessing data from
different media by providing a consistent system-
wide method of data definition and access.
AS/400 data management supports data base, an
extensive list of devices, and communications
capabilities to many different systems. This
structure also provides the underlying support for
application portability by providing a common
interface for applications running in Operating
System/400™ (OS/400™), in the OS/400
System/36 environment, or in the 0S/400
System/38 environment.

File processing and externally described data
have been implemented as the interface to the
AS/400 data management function. The data
management structure has been integrated in the
AS/400 system to incorporate this interface.
Display and communications structures, with the
primary focus given to Intersystem
Communications Function (IcF) data management,
provide a significant advancement in the AS/400
data management structure.

File Processing

The file-processing interface serves as a basis
for AS/400 data management support. A file is
the object used to access data. Files supported
include data base files and device files. Data
base files provide access to the data base,
while device files provide access to input/output
(/0) devices, such as display stations, printers,
and remote systems.

60

All file types support the foliowing base set of file * GET (retrieve data from an input device or
operations: data base)
* OPEN (create the path for data transfer) » CLOSE (remove the path for data transfer)

* PUT (send data to a device or data base)

Application

User Application

OS/40'O', S/36 Environment, S/aS 'Eniv'ironn';’en'tﬁ 2

(PUT/GET) (OPEN/CLOSE)

Common Data
Management

Data Base
and
Device Files

Common Data Management

Data Base/Device
Data Management

Diskette/

Display
Stations ICF ‘ Printers Tape Units

Data Base

RSLL312-4

Figure 1 Data Management Structure

The data management file support is structured
with two distinct divisions: common data
management and data base/device data
management. Common data management
provides functions needed by all data
management support facilities. This includes the
open and close interface for all device and data
base files. Data base/device data management is
subdivided into multiple structures to provide the
functions unique to the various devices
supported. A remote system is treated as another
device on the system and is supported through
the icF structure. Figure 1 illustrates the
relationship of the various data management
functions.

The 0S/400 file interface allows the ability to have
externally described data. This support is
provided by data description specifications (DDs),
which are part of the file description. Externally
described data allows for centralization of data
definitions in the file external from individual
programs. Using it, programmers take full
advantage of the system’s data management,
improving their productivity as well as program
and data integrity. (Refer to Application
Development Support for more information on the
programmer productivity provided by the AS/400
system.)

Common Data Management

Common data management provides the
foundation for file processing on the AS/400
system. The file is identified and the relationship
between the file and the program is established
with the use of a file oPeN interface, by which
common data management creates an open data
path. The open data path provides the link
between the program and the different file-specific
routines of the underlying data management. In
addition to providing the link to the processing
routines, the open data path also contains all the
file-status information needed by the application
to access the file. The application has access to

the open data path through a user-file control
block. The user-file control block, which is created
and maintained by the compiler on behalf of the
application, is a consistent link to any file,
regardless of the file type. Figure 2 shows this link
between the program, file, and open data path.

OPEN and CLOSE operations are processed
through common data management. puT and GET
operations, which use the open data path and
user-file control block interface, are routed directly
to the appropriate data base or device data
management routine. The appropriate file
processing routine is called to process the

Program obDP

operation due to the link established during opPEeN.
This ability to tie 1/0 operations to specialized file
processing routines during the oPEN operation
provides the flexibility for using the same open
data path and user-file control block interface to
process operations and data to distinctly different
media, such as data base and display stations. An
application program accesses the different media
by opening two different files, which creates two
separate open data paths linked to the
appropriate processing routines. Issuing PuT and
GET operations to each file transfers the data to
the corresponding media.

Link to Data

Get
Open (X) Management 1/O > Routine
o Interfaces

Link to File

Put
Routine

 UFCB (Y

File Name
(A)

/L

uffers

~al

Figure 2 Opened File Structure

RSLL313-4

61

Data Base/Device Data Management

The data base/device data management routines
provide the specific support for data base and
each of the AS/400 devices. Advances in data
base, display station, and IcF data management
are some of the key advances in AS/400 data
management. (For advances made in data base,
see the article An Integrated Data Base .)

Display Data Management

Display data management, part of the AS/400
data management structure, provides the
application interface for display stations. The
application issues 1/0 requests through the high-
level language read and write file operations. The
display characteristics are defined in the file with
pDS keywords. Because the underlying display
data management structure converts the
application I/0 requests to the appropriate device
control information, the application is not
dependent on the type of display station being
used. Although display stations differ in function
and can be locally or remotely attached, the single
interface lets any given application program work
with any display station.

The application interface can be expanded using
DDS keywords, so new function can be added
easily. An example is application help; this
function is provided to the application, in a manner
consistent with the rest of the display station
interface, by bbs keywords such as Help Area
(HLPARA), Help Record (HLPRCD), and Help
Sequencing (HLPSEQ).

ICF Data Management

Comparable to the display data management
function, icF data management provides the
AS/400 system’s single interface to
communications. The ICF interface supports a full
range of function, while still maintaining a file
interface that is consistent with data base and all
other device support. To make communications a

62

logical extension to the file interface, the IcF
interface required special considerations, such as
the ability to request that a remote process be
started, to support both interactive and batch
remote communications.

Consistent Interface. The basic concept of ICF is
to isolate applications from the complexities of
communications protocols and hardware. The
underlying AS/400 communications structure
handles the protocol and hardware characteristics
for the application program.

Communications functions are grouped into
communications types and integrated into the
communications structure as system routines,
called function managers, below ICF data
management. ICF data management handles the
file operations and data for the application. The
function manager handles the communications
protocol needed to perform an operation. Each
communications type is designed to work with a
group of remote systems and hardware devices
through a specific communications method, such
as binary synchronous communications (Bsc) or
Systems Network Architecture (SNA). The
communications types supported are advanced
program-to-program communications (APPC), SNA
upline facility (SNUF), BSC equivalence link (BSCEL),
and asynchronous communications. Figure 3
shows the relationship of the various data
management functions.

ICF functions include:

 Establishing a communications session
between the local system and a remote system.

» Starting a process on a remote system. (The
process on the remote system can be a job.
This allows the local application to start a job on
the remote system without operator
intervention.)

« Sending and receiving data.
« Ending communications with a remote process.
< Ending a communications session.

The ICF interface is designed to support
interactive communications. Thus, an application
can be written to perform a batch transfer of data,
or to send a request for a single data record to a
remote system and then wait for the reply to be
received. To facilitate interaction, the IcrF interface
provides the ability to start processes on remote
systems, and allows remote systems to start jobs
on the local AS/400 system.

The ability to provide a consistent interface across
all communications types has been achieved by
mapping specific communications functions into
DDS processing keywords. The underlying support
interprets these generalized pbs keywords in
terms of specific communications protocols. A
base set of these keywords is supported by all
communications types to provide equivalent base-
level support. For example, every communications
type supports starting a process on a remote
system with the evoke keyword. Additional bbs
keywords are communications-type specific to
allow full use of the communications protocol.

From an application perspective, ICF merges the
best characteristics of the System/36 and
System/38 communications interfaces. For
instance, ICF supports externally described data
and pps keywords, a concept from the System/38
interface. ICF also supports system-supplied
formats, compatible with the System/36 System
Support Program Interactive Communications
Feature (ssp-ICF) operations, which use program-
described data and provide similar functions of
DDS keywords. ICF functions are a superset of the
functions provided by the System/38
communications pps keywords, System/36

User Application

»
!

Common Data Management

Data Base
and

Device Files

Display
Stations

Data Base

Diskette/
Tape Units

Function
Managers

Figure 3 Communications Data Management Structure

SSP-ICF operations, and System/36 interactive
data definition utility (ipbu) support for
communications.

Remote Resource Independence. An application
program maintains independence from a specific
remote resource, such as an Apprc logical unit (LU)
or an asynchronous communications display
station, through the use of a program device. All
operations in the application program are issued
to a program device name instead of to a specific
remote resource. Because of this use of a

Machine Interface
RSLL314-3

program device hame, there is no specification
within the high-level language program to a
particular remote resource. Because this
association is removed from the application
program, the program can communicate with
various remote resources without modification.

The program device is directed to a remote
resource through the use of a remote location
name. The program device and the remote
location name are bound by defining a program
device entry with a control language (cL)

command before starting the program. OS/400
support provides both an early binding capability
of program device and remote location name
through the use of the Add Icr Device Entry
command, and a late binding capability through
the use of the Override ICF Device Entry
command.

The remote resource is represented by a set of
one or more device descriptions that contains the
same remote location name. While program
device names allow application programs to be
independent from specific remote resources,
remote location names allow program devices to
be independent from specific device descriptions.
Remote location names allow a single logical
name to be used to access generically a set of
one or more device descriptions. The program
device is bound to a specific device description at
session allocation time. All operations at the
machine interface are issued to a specific device
description (see Figure 4).

Additional function is provided using a remote
location name to gain access to any device
description that contains the same remote
location name. These functions include:

» Selecting a route through the network at
session allocation time and then automatically
creating a device description that reflects the
route selected based on the remote location
name requested. This support is provided by
the networking capabilities of advanced peer-
to-peer networking (APPN) that are accessed
through the ApPC communications-type
interface. (See the article Advanced Peer-to-Peer
Networking.)

 Allowing a single program device to represent
multiple device descriptions.

The mapping from remote location name to device
description is communications-type dependent.

63

Program

Open (X)
.
.

I/0 Interfaces

. uFcB(X)

File Name
(A)
Program Device

Name

y

Program
Device
Name

oDpP

inkto Data |
Management I/O Interfaces

Link to File

Open Feedback Information ‘

1/0 Feedback Information |

User Buffers l

Program Device Entry

| Program Device Name
Remote Location Name

Figure 4 Remote Location Name Correlation

64

Remote Location Name

Machine
Interface

ANANANANANNNANNANNNANS

Device Description (LD) l

 Controller Description (CD) !

Line Description (ND)

RSLL315-5

For the asynchronous communications and BSCEL
communications types, a one-to-one mapping of
remote location name to device description exists.
Binding a program device name to a device
description involves selecting the device
description that contains the remote location
name specified in the program device. For APPC
and sNUF, a one-to-many relationship between the
remote location name and device descriptions can
exist. For the SNUF communications type, the
system uses the first available device description,
while for the AppCc communications type, the
system selects the device description that refiects
the route the session is taking through the
network.

Because the system dynamically maps a remote
location name to a specific device description, the
application program is also dynamically mapped
to a specific communications type at session
allocation time. An application program is also
given the ability to pre-select a particular device
description (and communications type) by
specifying a device description name in its
program device entry definition.

Multiple Environment Support

Because of the flexibility of the data management
structure, the same internal interface can be used
between the user application and the underlying
data management structure, regardless of the file
type, language, or environment being used.
Therefore, the same data management structure
can support applications running in OS/400, in the
System/36 environment, or in the System/38
environment.

A consistent data management structure does not
restrict the ability to portray different application
interfaces. Two methods are used by data
management to determine which interface to use.
The first is by defining bos keywords that allow
the application to indicate the characteristic
desired. For example, when System/36

applications are migrated to the AS/400 system, a
display file is created with a bos keyword that will
cause the display to be automatically cleared on
all output operations. System/38 environment
applications do not support this keyword, and
consequently the display is only cleared on the
first operation to the display. An OS/400 file can
be created with or without the keyword, therefore
an 0S/400 application can choose either
interface.

A second method used to determine the interface
is to define the interface characteristics based on
the type of application and the environment it is
running in. For example, System/36 multiple
requester terminal (MRT) applications are
supported for both display stations and IcF in the
System/36 environment. Also, read under format
is supported for System/36 display station and
communications applications in the System/36
environment. These functions are provided by the
System/36 environment and data management
extensions. (See the article The System/36
Environment for more information.)

Conclusions

ICF data management is a significant advance in
the AS/400 data management structure. ICF
provides a consistent, easy-to-use interface
across various communications types that
isolates the application from the complexities of
communications protocols and hardware. It also
allows the ability for the application to select the
remote resource with which it is communicating
without changing the application program.

To meet the immediate needs of migration from
the existing systems, the same data management
structure provides support for Operating
System/400 and the System/36 and System/38
environments, which helps provide application
portability from a System/36 or a System/38.

The AS/400 data management structure, and the
file processing interface it supports, provides a
consistent system-wide method of managing data
across different media. The structure was
designed to provide easy expansion of function
for applications of the future.

™AS/400, Operating System/400, and OS/400 are trademarks
of International Business Machines Corporation.

65

Integrated Office Support

Describes how AS /400 Office employs the capabilities of hardware and software products to make office tasks simple and efficient.

David G. Wenz, Richard J. Lindner, James H. Bainbridge, Stephen J. Cyr, Barry W. Hansen, and David N. Youngers

Introduction

The major objective of AS/400™ Office is to
improve office productivity. To accomplish this, it
must efficiently integrate the set of office functions
available to office workers. The system must
provide facilities that allow the user to organize
and control information assets in a manner
comfortable to the user. It must allow office
workers to communicate easily, quickly, and
comfortably, much like a phone conversation or
face-to-face meeting.

This can be difficult when workers throughout a
company use several different tools in their day-
to-day activities. Multiple systems located at
different sites further complicate the problem of
communication. AS/400 Office solves these
problems, allowing communications to flow easily
from user to user on one or more iBM systems.

The solutions provided by AS/400 Office can be
described in terms of its major elements. The filing
system provides underlying support necessary to
integrate the hardware and software product
capabilities into the efficient office required for
today’s businesses. Electronic mail allows
anything in the filing system to be sent as easily as
mailing paper today, but much more efficiently.
The efficient use of personal computers is
accomplished by applying cooperative processing
techniques. A flexible and powerful editor
transparently integrates the system functions into
the processing of office tasks. And, the AS/400
Office menu makes all office functions accessible,

66

providing a user-friendly environment for all levels
of expertise.

The Filing System

The filing system is the heart of the AS/400
integrated office environment. It is a single
container for all office objects that can contain the
data for any office product being used. Figure 1
shows the various types of data that can reside
within the filing system. Mail, documents,
programs, and files are among the traditional
objects that can reside in this filing system, but it
can also contain spreadsheets, images and
graphs, personal computer (pC) programs, and PC
files. Data can be shared among users, with
authorization controls specified by the owner of
the data. (The article Security describes the
authorization capabilities in more detail.)

Document organization and control is a key
element of office work. The AS/400 Office filing
system provides document library services that
allow a user to handle these tasks in a
comfortable manner, using the filing system as an
electronic filing cabinet complete with folders.
Folder management services allow the user to
organize office objects using these folders.
Folders can contain other folders, and can be
interactively searched for an office object. Or,
familiar search procedures can be used to get a
list of documents conforming to specified
selection criteria.

The key to the filing system capabilities is the
design of the document. The text of each

document is stored as a separate system object
allocated from single-level storage. Associated
with the text of each document is another portion,
called the attributes, which includes items such as
subject, author, and other keywords that may be
used to search for or identify a document. The
attributes portion of the document is stored within
the system’s integrated data base, which provides
powerful query search capabilities. (For more
information about the functions and capabilities of
the system’s data base support, see the article
entitied An Integrated Data Base.)

All documents in the filing system reside in the
document library. This library conforms to the 1BM
strategic Document Interchange Architecture (DiA)
[1,2]. Document content, including format and
structure, is also governed by a strategic
architecture, the Document Content Architecture .
AS/400 Office conforms to Level-2, for final form
(print format) documents [3], and Level-3, for
editable documents, which can contain image or
graphics [4]. DIA is made up of three components:
library services, remote library services, and
distribution services. The library services
component can search, store, and retrieve
documents in the local DiA library. The remote
library services component can store and retrieve
documents in a DIA library on another system
within the network. If the document is on another
AS/400 system, it can also be checked out for
editing and checked in when complete. This
allows shared processing without the danger of
work being destroyed by another edit session.
The distribution services component allows the

Single
Conlainer
Filing
System

DIA Library

Documenis

Transpareni
Storage of
Image

Transparent
Document Recovery
Sharing and
Sending

Fartial
Document
Access

Drive is a Folder
Full Subdirectories
File Server

Byte Level Locking
£C Spreadsheet

Figure 1 AS/400 Office Filing System Features

Shared
Foiders

Document
Search

Persanal Services
Opening Mait
‘DIA Application’

Editor
Document Data
Managemeni

Program Loads

Spreadsheet
Sharing
Legend’
LPC - Link Prolocol Converler
wSC - Work Stalion Controller
e - Input Output Processor
PC - Paersonal Computer

PCS - PC Seppont
ow 4 - DisplayWrile 4
TRLAN - Token-Ring Local Area Metwork

HELLA -4

user to list, receive, and ¢cancel mail from the mail
log, and distribute documents and messages.
Folder management services ensure the internal
documents are converted 10 interchange format
before they are sent inte the network.

Folders can be very useful for organizing
documents. However, some documents do not
require a folder, and can be placed directly into
the nia library outside of a folder. Users may also
subset the documents in the library using the
search function to create document lists. The list
is a separate system object that is stored in the
library. It may contain documents from inside and
outside folders within the library. Figure 2 shows
the AS/400 document library with folders.

Ancther aspect of the filing system is the two
interfaces for work stations. The work station
controller interface suppons a variety of
dependent display stations. The supportis
tailored to the capability of the display station. The
AS/400 PC Support interface supports the use of
attached personal computers. PC Support
services requests using the filing system to make
the rc files in host folders appear as though they
were in the PC storage. Files residing in the
storage of other AS/400 systems in the network
can also be accessed by either type of work
station. The distributed library services of the filing
system handles these requests using AS/400
communications support.

AS/400 Office provides a significant advantage for
PC users by providing transparent access to pPC
files on the host system. This means pC
applications can run using shared files from the
host system. To achieve this transparent
processing, the Pc naming convention, complete
with qualifiers, is supported within the document
and folder naming conventions of the AS/400
Office filing system. The filing system does all

67

AS/400 Document Library

Folder Folder

Figure 2 AS/400 Document Library Objects

appropriate locking and sharing automatically and
provides recovery services. If a session is ended
abnormally for any reason, the user has an option
to retain or discard any changes made to the file.

Electronic Office Mail

Electronic office mail is an important element of
the comfort and productivity associated with
AS/400 Office. The ability to communicate with
other users on this or other systems, with path
transparency over various communications
protocols, sets this offering apart. Figure 3 shows
AS/400 Office with a variety of display stations
able to communicate locally using Office. It also
shows the integrated support that makes remote
mail functions easy to use.

AS/400 Office services are an integral part of
Operating System/400™ (OS/400™) and therefore
can sheild the user from the complexities of
handling communications. Menu options allow the

68

RSLL415-1

office worker to display the items in a folder or to
compose a note using a simplified note editor. A
simple selection or single command can send an
item or note to another user or list of users. The
system automatically handles the distribution
based on the system distribution directory, from
which the system determines the location of
recipients. Mail directed to a user on a remote
system, who is not explicitly defined in the local
system’s directory, is automatically handled by the
system. This allows one system with a central
directory to be used as a mail router, with
directory maintenance consolidated in only one
place.

Maintenance of distribution lists is also simplified
by AS/400 Office. When a user description is
changed or removed in the system distribution
directory, all locally defined distribution lists are
automatically updated. Distribution lists can also
be easily tailored by the user when sending mail.

The user can expand a locally defined list and,
optionally, add or remove entries for the mail
being sent. This ability to tailor distribution lists
reduces the number of lists needed, and thereby
reduces the maintenance required. The number of
lists can also be minimized using the system’s
ability to send mail to a distribution list defined on
a remote system. The remote system expands the
list and directs the mail based on the content of
the list.

Office users are informed of all new mail by a
highlighted message on the main office menu.
They can also be informed of high priority mail,
when not at the main menu, through the system
message support. When priority office mail is
received, a message is sent to the user’s system
message queue to tell the user about the arrival of
the mail. The message is shown to the user even
while system applications other than office are
running.

Systems Network Architecture distribution
services (SNADS) provides distribution and
confirmation of delivery for mail sent to users on
another AS/400 system, Distributed Office
Support System/370 (DIsoss), a System/36, a
System/38, or a 5520. It uses advanced program-
to-program communications (APpPC) or advanced
peer-to-peer networking (APPN), depending on the
options specified when creating the
communications objects. (The article Advanced
Peer-to-Peer Networking details the advantages of
using APPN.) The system also contains support to
communicate with a remote spooling
communications subsystem (rRscs) for mail sent to
System/370 Professional Office System
(VM/PROFS) users.

Personal Computer Integration

One of the most important elements to a
successfully integrated office is integrating the
personal computers rapidly populating the office.

AS/400

Store Document
Search Interchange
Retrieve
Legend:
BSC - Binary Synchronous

Communications
MSRJE - Multiple Sessions

Remote Job Entry
SNADS - Systems Network Architecture

Distribution Services

APPC - Application Program-to-
Program Communications
APPN - Advanced Peer-to-Peer
Communications
EDD - Electronic Document Send/Receive
Distribution Store/Retrieve
DISOSS - Distributed Office Local + Remote
Support System/370 s

RSLL376-5

Figure 3 Electronic Mailing System

The AS/400 system improves function,
performance, security, data integrity, and data
sharing, and expands the application base
available to the pc user, by integrating this support
into 0S/400.

Figure 4 shows the wide range of services that
make connection of a personal computer to the
AS/400 system very appealing. These services
are provided by functions, called host servers,
that communicate to the attached personal
computer through a work station controller or
communications attachments within the host
system.

Host Processing

The most important services provided by the host
servers include shared folders, virtual print, file
transfer, and distributed data management (Dom).

Shared folders is the critical link that provides the
data-sharing benefits described. This link allows
the attached personal computer to share its
objects with the AS/400 system. The value of
system facilities, such as single-level storage,
integrated data base, security, and
communications, can be added to the capabilities
of the personal computer. The host server maps
pc functions to equivalent host system functions
transparent to the user. For example, using the
DIR command on an attached personal computer
issues a list of files, their size, and the date and
time they were last modified. However, this list can
be large, making it difficult to find the desired file.
Subdirectories can help to organize files, but may
not break down the list sufficiently for some
needs. When stored in an AS/400 shared folder,
information about the file, such as author,
description, or keywords, can be added without
affecting the application. Using the search
function of the integrated data base, AS/400
Office can provide a list of documents written by a
certain author, or files with a specific description.

69

PC Applications

PC
Print
Attachment
Transparency
"| Data Base
Files
Legend:

SDLC - Synchronous Data Link Control
TWINAX - Twinaxial Cable
TRLAN - Token-Ring Local Area Network
RSLL416-2

Figure 4 PC Integration (Requester/Server)

70

The list can be derived from a folder or from a full
DIA library search.

Another service, virtual print, allows a pC
application to use a host system printer as if it
were attached to the personal computer. File
transfer provides the capability to transfer files to
and from the AS/400 system. In the process of
transferring the files, they are converted to Ascli,
BASIC Sequential, Basic Random, DIF, DOS
Random, or escbic. This allows almost any PC
application to retrieve data from the AS/400
system.

Finally, bpom provides an interface that allows a PC
application to retrieve data from the AS/400
system it is connected to or from any other
AS/400 system in the network. bbom makes the
location completely transparent to the application.
Using ApPN, the system selects the best route and
handles the data transfer.

Attached PC Processing

The attached pc requester communicates through
a router that provides attachment independence
to all applications running on the personal
computer. The router converts the
communications request to the correct
connectivity option for the attached personal
computer. The services provided by attached pc
processing include: display and printer emulation,
the PC Support Organizer menu, message pop-
up, and multiple sessions. The attached pc
requesters are all designed with user-friendly pc
interface techniques available (pop-up help
windows, action bars, and the like).

Display emulation is the primary function allowing
the attached personal computer to have access to
all of the AS/400 system function. It does this by
making the attached personal computer appear to
the system as a host-dependent work station. The
printer emulation function allows host system
printing at the personal computer much like a
host-dependent printer.

The PC Support Organizer menu shows both
AS/400 system and pc applications. It comes with
a base set of office applications and is extendable
to allow users to add other frequently used
applications. With the PC Support Organizer
menu, it is no longer necessary to use the hot-key
sequence between systems to run applications.
The user can select the application from the menu
and is not required to know if it is running on the
attached personal computer or the AS/400
system. This is achieved using the shared folder
support of the filing system. By designating a
shared folder as a pc disk drive (a virtual drive)
and copying the applications to this drive, the
applications have access to all of the shared
folder services. With this feature, the AS/400
system can act as a file server for PC users.

Message pop-up displays messages sent from
the AS/400 system in a pop-up window on the
attached personal computer. This allows the user
to take appropriate action without interrupting
application processing.

And finally, multiple sessions provides up to five
active sessions on the attached personal
computer. This allows communications with
different host systems, or multiple sign-ons to the
same host system, all using the same connection,
with all sessions active at the same time. In
addition to using this capability for normal
business activity, it can be used for central
network management. A system operator can
control a network by signing on remote systems;
APPN performs intermediate routing.

The attached pc user running a pc application
views the AS/400 Office filing system as a hard
disk (with many restrictions removed). The system
is capable of storing gigabytes of data for the
user. Users can share this data with anyone they
authorize throughout the entire network.
Additionally, file locking is provided at the byte
level to allow pc applications to share these files

and lock only the record, or part of the record,
being updated. As stated, the filing system
supports the pPC naming conventions. This means
that commands like pc Directory (DIR), Making
Directories (Mp), Changing Directories (cD), and all
of the functions within subdirectories, work
transparently.

Flexible and Powerful Editors

The AS/400 system features the AS/400 Office
editor and DisplayWrite 4, and provides an editor-
of-choice option. When a personal computer is

DisplayWrite 4 AS/400

Shared
Folders

attached to the AS/400 system, either editor may
be used. The AS/400 Office editor is compatible
with the DisplayWrite 4 editor, and they can
exchange documents very well. A user can take
advantage of the improved processing techniques
available with the AS/400 Office editor while
working with DisplayWrite 4 documents. The
inverse is also true. AS/400 Office editor
documents can be shared with a DisplayWrite 4
user by placing them in a folder. The document
structures and many of the typing techniques are
identical between these two editors. Figure 5

AS/400 Office Editor

Legend:

LPC - Link Protocol Converter
PC - Personal Computer
PCS - PC Support

WSC - Work Station Controller

Figure 5 Editor Attachments

RSLL378-4

71

shows how the editors relate to the AS/400 work
station attachments.

Although appearing very similar, several
differences should be noted between an editor
that runs on a personal computer while
unattached and one that has the advantage of the
powerful AS/400 System Processor while
attached. The AS/400 Office editor supports the
entire range of work stations that can be attached
to the AS/400 system, and as work station
hardware improves, the editor improves. Some
examples of improvements through the work
station family include: block cursor on the scale
line above the actual cursor; fast cursor-move for
word, line, and paragraph; wide display size (27
lines, 132 columns); and color displays.

The editor’s performance is very dependent on
the processor and peripherals performing the
actual work. If the editor is host-system based,
expected response time would be similar to other
host applications; if the editor is Pc based,
response time depends on the power of the pPc
processor. The AS/400 Office editor was
designed to take advantage of cooperative
processing technology using two innovative
approaches. The result is an average response
time that is much better than the average system
response time for host-dependent work stations,
and better than typical pC response times when
doing processor-intensive activities.

The first approach, called work station controller
text assist, relieves the host system of keystroke
processing tasks associated with host-dependent
work stations. The work station controller runs in
a separate input/output (1/0) processor. The work
station controller and the editor, through a dialog,
allow significant processing to take place on the
1/0 processor, off-loading it from the System
Processor. Figure 6 shows the editing function

72

Action

Work Station Controller
Text Assist Functions

AS/400 Functions

Status/Scale Lines

Updates status line:
audit window, pitch, and
line number

display when “Find

Tabs Processes right, center, Formats text for
decimal, comma, and colon viewing on the display
tabs during typing based on tabs

Word Spill Spills words to next Adjusts line endings
line when characters in changed text
reach right margin

Locate Locates characters on Locates character

when not found in

Character” mode active

current display

Horizontal/Vertical

Shows next display

Scrolling based on cursor
Move/Copy Makes first mark and Prompts for target
prompts for end of block and copies/moves
marked text
Delete Makes first mark, Deletes marked text

prompts for end of block,
and deletes within lines

not delayed by work
station controller

RSLL319-4

Figure 6 Cooperative Processing: Work Station Controller Text Assist

split between the work station controller and the
host system, using work station controller text
assist.

The second approach is pc text assist. This uses
pC storage to provide an increased buffer area for
text. It improves the average response time
experienced by the user because it allows page-
based functions to be handled on the attached
personal computer, using the personal
computer’'s own processing power, while
implementing document-based functions on the
host system. pc processing includes moving,
copying, and deleting text, as well as adjusting line
endings. Figure 7 shows the division of editing
function between the attached personal computer
and the host system.

For both techniques, the AS/400 system stores
the documents and remains the primary
processor for many functions that require the host
system’s resources and processing capability.
Compute-intensive activities, like pagination,
printing, spelling verification, and query, are
processed on the host system. The host system
also handles work that would otherwise require
large amounts of data transfer, like data merge for
editing or printing. This cooperation allows the
processing to be done more efficiently (shown in
Figure 8).

Action

PC Text Assist Functions

AS/400 Functions

Status/Scale Lines

Updates status line:
audit window, typestyle
and pitch, context and
line number

Tabs

Formats text for

viewing on the display and
processes right, center,
decimal, comma, and coion
tabs during typing

Word Spill

Spills words to next

line when typing and
cursor reaches right
margin, and adjusts line
endings in changed text

Locate

Locates characters on
page when “Find
Character” mode active

Locates characters
not found in current
page buffer

Horizontal/Vertical

Refreshes current

Refreshes the display

last mark, prompts for
end of block, and
deletes the text if
within a single page

Scrolling page buffer when the from page buffer based
cursor moves out of on cursor movement
the current page

Move/Copy Makes both first and Moves/copies/deletes
last mark, prompts for marked text that is
end of block and target, not in the current
and copies/moves the page buffer
text if within a page

Delete Makes both first and Deletes marked text

that is not in the
current page buffer

Figure 7 Cooperative Processing. PC Text Assist

Additional Aspects of Integration

In addition to the integrated use of system
functions that provides the basic underpinnings of
support, most of which are hidden from the user,
the AS/400 Office product integrates function

RSLL320-4

from two more visible standpoints. The first is the

diverse functions available while using the editor,
and the second is document access and
interchange through folder management services.
These are highlighted in Figure 9.

The office word processing function is the base
for all text operations. Therefore, the AS/400
Office editor becomes a very important element of
integration, due to the internal interfaces provided
for various office functions. If the Office mail
function needs to edit, view, or print a note, the
internal interface provided by the editor is used to
accomplish the task. Office word processing also
often requires users to merge data into a
document while editing or printing. The interface
to AS/400 Query allows merging while editing and,
using the RUN instruction within the office edit
function, inserting the output of an application
program running on the AS/400 system directly
into a document at print time.

Folder management services is the basic element
of the document access and interchange
functions that provide application independence
from the stored data type (see Figure 9). This
independence is achieved by detecting
discrepancies between the stored document type
and the requested document type when the
document is accessed. Document conversions
are automatically performed before any further
requests are processed. This ensures the
document is in the correct format for processing,
while freeing each office service from the burden
of managing multiple data types. The result is a
consistent piA library and folder interface.

The Office editor uses a high-level document
access method. This provides the Office editor
with a data management facility that works
specifically with documents. This data
management allows partial-document access,
minimizing unnecessary data movement by
allowing the editor to get, put, or replace a portion
of a document. A single page can be updated
without first making a complete temporary work
copy of the entire document. The editor can go to
specific lines and pages of a document, find

73

: ‘ ‘ Cooperative Environment
Function Entirely Enllrgly i R
Host-Based PC-Based e e -
; Host PC
Performance Average Average Good Good
User Interface Average Good Good
Paginate, Spell, Good Average Good
Print
Sharing of Data Good Poor Good Good
Integration Good Average Good
RSLL321-3
Figure 8 The Cooperative Processing Advantage: Doing the Work Where It

Is Most Efficiently Done

currently active page formats, and move, insert
and delete text, while removed from the specifics
of how the document is stored. This access is
supported for both host-system and pc editors.
The host-system editor requires access by line
and page reference, while the pc editor requires
access by byte offset and length.

The piA library and folder interfaces are also
application program interfaces (Api) that follow the
strategic Systems Application Architecture™
(sAa™) standards. These interfaces are available
to users wishing direct access to AS/400
functions. Because these interfaces follow saa
standards, applications written using them can be
used on other systems supporting sAA
applications. An example is the Structured Query
Language (saL) interface to the file transfer
function. It allows a Pc application to write saL
statements to get data from any AS/400 data
base in the network.

AS/400 Office Menu

The AS/400 Office menu is the user interface to
Office functions. Figure 10 shows the menu
interface, designed with office activity in mind. The
information shown is comprehensive, including
options, a command line, informational messages,

74

Application

Office

Function

| Send
Mail View/Edit/Print

Transparent Access and Interchange

and the monthly calendar. The menu options
provide access to the diverse functions supported
by Office, including: sending notes, messages, or
mail (or anything contained in a folder); managing
calendars with many scheduling options;
organizing directories and distribution lists; and
many more office functions. Also shown is an
option that allows the user to customize the
interface using additional menus. Apis have been
strategically located to allow program access to
certain Office functions. Separate functions can
be combined or accessed in a different way to
accommodate the office user.

Also noteworthy is the multiple suspend-and-
resume capability. In a busy office, the ability to

RUN
Command

Imbedded |
Output |

Data

DIA Library
Folders

Figure 9 System and Application Integration

Query .

Data Merge

Automatic
Processing

Transforms '

(Produces
Requested
Document
Type)

User
Data Base

RSLL417-3

’ Meetimgs and HAead, Prin, Send a Briel Sand a Note
| Conferance- File, Distribrute Message to te Paaple on
| Agom Schaduling Mail Peopie tha Metwork
% \ / G Wotk with Lisg
. - of Dosumants
OB OFFICE -
el i /// of Folders
CHOOSE ONE DS, THE FOLLPWING: |
TiME:
Suspended ———] % C":-.fNDlRS :
IL—
M >3, STay wTLT Edit'Print
. s Lrwn %0iE 18
Suspended ————___ : Fﬂ'-n;:&ml:..ln - Sy B with Giflce
T 7. MIETTRIG MG W57 LIH 23 B B S 5 o Editor
8. REDISION LLPREHT
Customizable 3. A;:ﬂ::nué_m;u
Layers Below -4
TPPE CHOICE, VAESS ENTER
Command VITRIK CFFICE 104 CAX USE: \“x\ Waork with
Line PO F3=PREVTOUS Direciorins ang
ATIM="0 IRTEAUPT A FL:ND
o UNOPENED mI\!Lt::[‘rms ol Dimfribution Lisis
Informational ____——"|)
Message
Fungtion Key n“.uul !HIIIII'
Cptions Graphl :
ca Toals
Qrca
Adminisiration
Tasks
AStY 3782

Figure 10 AS/400 Olfice Menu

interrupt an activity 1o do something etse, and then
return to the original task, is a necessity. This
function suspends an activity using a single key,
indicates suspended activities on the menu, and
allows the activities 1o be resumed in any order.

Conclusions

AS/400 Office creates a truly integrated office
environment for the 1sm customer. It allows office
work to flow smoothly and efficiently in an office
that may inciude several different iBm systems.
Users may perform the work on the work station
with which they are most comfortable, while
having available the AS/400 performance,
usability, functionality, and integration necessary
for a productive office environment.

By following the strategic saa architectures,
AS/400 Office is positioned for future participation
as more systems adopt and support the
architectures.

Acknowledgements
The authors woutd like to acknowledge the
contributions of the following people to this article:

John C. Endicott, Karl C. Hanson, Timothy L.
Kramer, Myron L. Anderson, and C. David
Truxal.

References
1. Document Interchange Architecture: Technical
Reference, SC23-0781-0, First Edition. May, 1985,

2. Document Interchange Architecture: Interchange
Document Profile Reterence, SC23-0764-1, Second
Edition. May, 1985.

3. Document Content Architecture: Final-Form-Text
Reference, SC23-0757-1, Second Edition. May, 1985.

4, Document Content Architecture: Revisable-Form-Text
Reference, SC23-0758-1, Frrst Edition. June. 1983.

™ AS/400, Operating System/400, 057400, Systems
Application Archnecture, and 544 ars tragemarks of
International Business Machines Corporation.

75

Security

Discusses integrating security capabilities into the machine interface and the operating systemn to form a security mode/ with the flexibility

necessary in a changing user environrment.

Wayne Q. Evans and Richard J. Lindner

Introduction

As time progresses, a users’ need for system
security function changes. Initially, the user’s need
is to establish information asset protection
practices with the AS/400™ system similar to
those they are currently using. In the future, as
applications become more sophisticated and the
user requires data protection controls not
apparent today, the system security features must
be flexible enough to provide solutions for the
protection problems encountered.

A system-wide AS/400 security medel integrates
the best security features of the System/36 and
Systemn/38. An object-oriented security
implementation was selected as a base for the
AS/400 security medel. The machine interface
uniformly enforces security for all references to
objects, including libraries, files, and data. This
increases the effectiveness of the data protection
and cannot be circumvented. Like other security
systemms, AS/400 security is designed to protect
the data from unauthorized disclosure or
modification. Passwords are used to validate user
access to the system. The individual user
attributes are stored in user profiles.

The implementation challenge of AS/400 security
was to provide a wide range of security functions
that met the following goals:

« It had to be abte to run without security, with
limited security, or with full security as
configured by the user's installation, while the
underlying security functions built into the
machine interface were always active.

76

= It had to allow resources that do not yet exist to
have security definitions in an architecture that
is dependent on object existence prior to
authorization.

+ It had to allow individual authorities to override
the public authorities and control access to
data.

- It had to allow grouping of authority based on
relationships (for example, groups of users and
lists of objects) adapted to the structure of the
organization using the system.

The AS/400 security model required solutions
within Operating System/400™ (OS/400)™, as well
as in the underlying machine interface. The
AS/400 implementation of multiple levels of
system security, user profile attributes, methods
of grouping authority, authority holders, program
adoption of autherity, and the authority search
order facilitates solutions to the various needs of
today and the future.

System Security Levels

The AS/400 system is designed for businesses
where the security requirements range from no
security to full security. The system can be
configured for three levels of increased security:
physical security only, sign-on security, and full
resource security. When physical security is
adequate, the AS/400 user does not need to be
enrolled, meaning that when a user has physical
access to the system, the user is allowed to sign
on and use the system. Security does not restrict
access to any system objects; however, users are

prevented from affecting the jobs of other users in
the system. When sign-on security is required, the
AS/400 user must be enrolled and must enter a
valid password for access. If access is granted,
users are not restricted from any function, similar
to a physical security system, unless the user
profile indicates the user is a limited-capability
user. A limited-capability user is limited to
selecting options from menus, and to using a
limited set of commands that allows messages to
be sent and viewed, the status of the user’s job to
be displayed, and the ability to sign off the system.
When full-resource security is needed, the AS/400
user must be enrolled and enter the correct
password. Resource security can restrict data
access to authorized users. Individual users can
be authorized to use system objects such as files,
programs, devices, and commands. A user can
also be enrolled as a limited-capability user when
full resource security is employed.

The machine interface validates security when an
object is accessed, so levels of security were
implemented totally within OS/400. Advances
added to allow users to select the level of security
for the system are:

= Allow system access to users that are not
enrolled.

When the system is configured for physical
security, the AS/400 Sign-On display asks for a
user name but no password. The user name is
used to search for a matching user profile. If no
profile is found, the operating system creates a
user profile for the user. This dynamic creation

of a user profile satisfies the machine interface
requirement that every job have a user profile.
The created user profile is not deleted when the
user signs off, anticipating the same user will
use the system again. This design also allows
users to customize their profile and easily move
to a more secure level.

» Allow unrestricted access to objects.

Unrestricted access to objects is implemented
using a special all-object authority (aLLoBJ) that
modifies the processing of machine instructions
to eliminate any authority checking when
accessing objects. 0S/400 uses all-object
authority as the default value for user profiles in
a system configured with physical or sign-on
security.

When changing to full-resource security, the
system removes the *ALLOBJ authority from all
user profiles except users in the security officer
class. Removing "ALLOBJ special authority
indicates the user is to be controlled by authority
to objects and causes the machine interface to
check the user’s authority to access objects.

User Profile Attributes

The user profile is the object that identifies the
user to the system. The primary use of the user
profile is to store security-related information.

User Class

The user class defines the operations a user can
perform based on the task assigned to the user.
AS/400 security has five hierarchical user classes.
A user class can perform all of the functions for
lower user classes. The user classes and
functions, ranging in order from increased level of
access to lower level of access, are:

» Security Officer, who performs all security
functions including creating security
administrators.

» Security Administrator, who enrolls users and
secures resources. Security administrators can
be assigned for functional areas; the security
administrator for one area cannot remove or
enroll users in other functional areas.

« System Programmer, who performs application
development functions. Application
programmers can be restricted from modifying
production applications.

» System Operator, who performs all system
operation options. So that a system operator
can back up the system, operators are allowed
to save and restore objects they are not
authorized to use.

* Work Station User, who performs application
functions.

In addition to controlling the functions allowed, the
user class controls the menu options that are
available to the user. Easy-to-use menu interfaces
are provided for system functions, so that
particular menu options are presented to a user
based on the assigned user class. The AS/400
system has a simplified enroliment process that
uses the user class to determine the special
authorities granted to a user.

The security officer and security administrator
user classes are granted access to privileged
machine instructions to operate on user profiles.
This means that administrators can enroll users
when they have the security administrator
(*secabM) special authority in their AS/400 user
profile. The machine interface security validates
the user’s authorization to the commands and
privileged instructions, such as creation of user
profiles, system backup and restore, and
operations on other user jobs.

Limited-Capability User
Most system menus provide a command entry

line. To restrict use of the command entry line and
limit the user to selecting menu options, the
AS/400 user can be enrolled as a limited-
capability user. The 1Bm and user-defined
commands allowed by a limited-capability user
can be individually defined. The i1BM commands
initially available to the limited-capability user are
End Session (sIGNOFF), Display Job (DspJoB),
Send Message (SNDMSG), and Display Message
(DsPMsG). Limited capability also determines the
fields that a user can modify at sign on.

Objects Owned and Authorized

The user profile records all the objects owned and
objects authorized to the user. The user that
creates an object becomes the owner of the
object. The list of all objects owned by a user is
stored in the user profile. A second listis all the
objects that have been authorized to the user
profile. The virtual address of the objects is stored
rather than the object name. The virtual address
optimizes the machine-interface authority-
checking algorithm because the machine
instructions use virtual pointers when referring to
the objects.

Authorization of Objects

The owning user profile has the authority to grant
other users authority, and the public authority to
use an object.

AS/400 security is designed with individual object
authorization; eight authorities can be granted to a
user. These authorities are independent (not
hierarchical), however, for some operations a
combination of authorities is required.

« Object management (*oBJMGT): Rename, move,
or authorize other users.

¢ Object existence (*0BJEXIST): Delete object.

» Object operational (~oBJOPERY): View description
of object.

« Authorization List Management (*fAUTLMGT):
Authorize users on an authorization list.

* *READ: Read.

» *ADD: Insert new entries (for example, records,
messages, and objects).

» Update (-upD): Modify existing entries.

» Delete {*DLT): Remove individual entries
(records, messages).

These authorities can be granted or revoked
individually, though, to simplify security
administration, four additional terms represent
multiple individual authorities.

» *ALL: Full authority for object, including capability

to manage security on objects except
authorization lists.

* *CHANGE: Authorities to use and modify, but not
delete.

» *UsEe: Authority to use, but not modify.

¢ *ExcLUDE: No authority. The user is restricted
from any use of the object.

The use of independent authorities was
implemented because this provides precise
control over the functions an individual user can
perform. Descriptive terms such as *CHANGE and
*USE are used to improve the understanding of a
user's capability.

Methods of Grouping Authority

Grouping techniques eliminate the need to
repeatedly specify authority when several objects
or users have the same authority. This also
reduces the number of authorities that must be
stored by the system. Authorization lists and
group profiles are implemented to simplify

78

security administration. Performing a single
operation can grant a user authority to multiple
objects, or multiple users authority to a single
object.

AS/400 Authorization Lists

An authorization list allows the authorization of
multiple objects to be controlied by a list of users,
each with a specific level of authority for all
objects referring to the list. When an object is
secured using an authorization list, the security
kernel searches for specific authority to the object
and then for authority on the authorization list.

Figure 1 shows an authorization list that secures
several objects. When a user (USER1, USER2, Of
USERS3) is on the authorization list, the user has
that authority to all objects secured by the

authorization list. When a new object is secured
by the authorization list, all users on the
authorization list have authority to the object, thus
eliminating the need to specify the authorities
individually. If a user has private authority to an
object, the private authority overrides the authority
on the authorization list. For example, USER2 has
the private authority *UsE to file B, which limits
access to read operations on this file, even though
USER2 has -ALL authority to the other objects
controlled by the list.

Controlling authority of users on the authorization
list requires a new authority concept, the concept
of authorization list management (*AUTLMGT).
Object management (*0BJMGT) authority indicates
the user is allowed to authorize the objects to
others but does not control the authority of users

B

Program

:Document

Object
Specific User2 *Use
Authority

Figure 1 Authority List Securing Multiple Objects

|
Library :
|

|

|

RSLL380-2

on the authorization list. Authorization list
management (*fAUTLMGT) is required to change the
list authority of users to the objects controlled by
the list. The owner of the authorization list and
users with *AuTLMGT authority can add, remove,
and change users and their authority on the
authorization list.

The AS/400 machine interface implements the
authorization list as an object type. The machine
interface provides the underlying support for this
concept by implementing the authorization list
management interface that allows modification of
user authorities that appear on an authorization
list.

AS/400 Group Profiles

Group profiles allow users to share the authority
of another profile and have their own user profile
and passwords. This allows members of the same
department to share common objects (such as
programs and data). The authorization for all
members of the group can be managed by
authorizing the group profile. The group profile
simplifies adding new profiles or removing profiles
as different users join or leave a group.

A user that is a member of a group has the option
of having OS/400 automatically grant the group
profile authority or transfer ownership to the
group profile for objects created by that user.
Transferring ownership or granting authority to the
group profile authorizes all group members to the
object.

When an individual user profile is authorized to an
object, that private authorization overrides the
authority of the group profile. Individual user
authority allows specific group members to be
given either less or more authority to an object
than other members of the group.

Figure 2 illustrates three user profiles that have
the same group profile. The user profiles in the
group share the object authorities of the group

profile, p4se. Individual profiles (JONES, EVANS) in
the group have individual authorities that are not
shared with the members of the group. For
example, the profile EvANS has been granted *use
authority to the program B. This allows EVANS to
run the program, but not delete the program,
because it is owned by JONES. The group profile
D46E and JONES both have authority to file D. But,
the private authority of *USE for user JONES limits
access to *UsE (read) operations even though
other group members have *CHANGE authority.
This is an example of how private authority
overrides the authority of the group.

Authority Holders
When a user profile is authorized to a file, the

Group Profile

AS/400 machine interface stores a pointer to its
object and the authority with the user profile.
Deleting a file causes all record of the authority to
the file to be removed from the system by the
machine interface. To support authorization for
non-existent files, which is used in applications
migrated from the System/36, AS/400 security
implemented a file called an authority holder. The
authority holder is a shadow object that holds the
authorities of a file when the object does not exist.
An authority holder can be created for a file and
users can be authorized before the file or library
exists. When a file is created with a name that
matches the authority holder, OS/400 attaches the
authority holder to the file.

Individual User
Profiles

‘

Name-D46E
GRPPRF(*NONE)

Owned dbjects
A *PGM
C *FILE

Authorized Objects
D *FILE *CHANGE

I |

Name-SMITH
GRPPRF(D46E)

Name-JONES
GRPPRF(D46E)

Name-EVANS
GRPPRF(D46E)

Owned Objects
*NONE

Owned Objects
B *PGM

Owned Objects
*NONE

Authorized Objects
*NONE

Authorized Objects
D *FILE *USE

Authorized Objects
B *PGM *USE

Figure 2 User and Group Profile Relationship

RSLL381-2

79

Figure 3 demonstrates the use of authority
holders. No authority holder exists for file A, so
when it is deleted the authorities are removed. File
B has an authority holder; file B can be deleted
and the users and their authority are retained.
Granting a user authority to file B causes the user
profile for that user to be authorized to the
authority holder, rather than to the file object.
Authority can be granted to file C even though the
file does not yet exist because there is an
authority holder for C. When file C is created, the
system attaches the authority holder to the file.
The authority holder name is simplified in Figure 3.
The authority holder name includes both the file
name and library name because the same file
name can exist in multiple libraries.

Because authority for non-existing objects is only
a requirement for migration, authority holders only
apply to program-described files, rather than
every type of file or other objects. Also, the
command to create authority holders requires
special authorization, thus giving the user control
over the use of authority holders.

Program Adoption of Authority

Adoption of authority is used to allow a program
to perform operations that require authority the
user does not have. Rather than granting the user
additional authority, the user application program
calls a program that adopts the authority of the
application owner to perform the operation. A
program that adopts authority is identified during
program creation and uses the owner’s authority
while the program is running.

The adoption of authority is useful when creating
ease-of-use interfaces for application users. The
users do not need to be authorized to objects;
they need only to be authorized to the program
that performs the needed tasks. This prevents the
user from accidental or intentional misuse of
resources. Because a program that adopts
authority allows the user of the program to
assume the authority of the owner, the system
protects programs that adopt authority by
restricting their transfer of ownership and restore
operations.

or,

User 1 "ALL User 1
User 2

User 3

User2 *USE
User3 *CHANGE

*ALL
*USE
*CHANGE

User 2 *EXCLUDE
User 4 *CHANGE
User 5 *CHANGE
User 6 *USE

File A Has No
Authority Holder

File B Secured by an
Authority Holder

Authority Holder C
With No File

Figure 3 Authority Holder Usage

80

RS11382-2

Adopted authority is passed to called programs,
but the system prevents passing authority to
programs that interrupt normal job processing.
Authority is not passed during message break
handling programs, attention key programs, or
debugging breakpoints.

Authority Search

The AS/400 security model provides a specific
authority search because it allows individuals to
be given less authority than the public; that is, they
may be excluded from the use of an object. When
a user is authorized to an object, the user is
limited to the authority assigned to the user. The
default (public) authority only applies for users that
were not authorized.

The search for authority is implemented in the
machine interface to optimize performance
(because the machine validates the user’'s
authority). When the machine’s security kernel
checks a user’s authority to access an object,
program adopt authority is added to the first
authority found when using this search order:

1. Individual User Profile.
a. *ALLOBJ special authority allowing
unrestricted access.
b. Private authority to object.
c. Private authority on the authorization list (if
the object is secured by an authorization
list).

2. Group Profile (if individual profile has a group

profile).

a. *ALLosJ authority allowing unrestricted
access.

b. Private authority to object.

c. Private authority on the authorization list (if
the object is secured by an authorization
list).

3. Public Authority.
a. Public authority to object.
b. Public authority on the authorization list (if
the object is secured by an authorization
list).

Searching the individual user profile first, and
using the first authority found, allows users to be
granted less (or more) authority for an object than
the public, group profile, or authorization list
authority. A new authority, *EXCLUDE, can be
assigned to a user profile to restrict the user from
access to an object. Adopted authority is additive
to allow a user to perform operations on objects
while running an adopted program that is normally
restricted.

Conclusions

The AS/400 security model contains advanced
features that provide solutions for the data
protection problems of today and the future.
Supporting the distinctly different underlying
concepts of previous security models has
enhanced the ability of users to migrate to the
AS/400 system. The increased flexibility of this
security model will satisfy security needs of users
that migrate and future users with more complex
security needs.

The implementation of this model by integrating
security throughout the layers of the system
capitalizes on the system strengths and optimizes
the performance of its various functions. This
implementation approach has also provided the
constructs for expansion as the needs arise.

™AS/400, Operating System/400, and OS/400 are trademarks
of International Business Machines Corporation.

81

Electronic Customer Support

Describes integrated electronic customer support which brings an exciting new dimension to the partnership between the customer and 1BMm.

James R. Morcomb, Michael J. Snyder, Earl W. Emerick, and David L. Johnston

Introduction

The electronic customer support functions bring
an exciting new dimension to the customer and
IBM partnership. Many new easy-to-use system
support functions have been brought to the
fingertips of the user. These functions span a full
spectrum of support, from hardware service and
software problem analysis to marketing technical
support and information.

To accomplish this on the AS/400 system, it was
decided to integrate the support vehicles into a
cohesive set of functions within Operating
System/400™ (OS/400™). This set of electronic
customer support functions includes both support
components and end-user functions. The AS/400
objectives included decreasing the frequency of
incidents on hardware and software that require
support and providing more responsive support
for those incidents that do occur. The design
goals were to provide automated problem
detection and analysis and to provide access to
support functions at the time of failure. Integrating
the electronic customer support function into the
system achieves these objectives and design
goals.

Electronic customer support provides a single
point of contact for the user to obtain support,
which results in improved response time and
increased productivity for the user. Figure 1
shows that the system provides the user direct
access to the electronic customer support
functions through a display station attached to the
system. The backbone of the system support

82

functions is the built-in communications interface
to the 1IBM Marketing and Service Support
Systems. The integrated electronic customer
support functions operate through a set of
interfaces with the 1BM systems applications to
bring 1BM support to every AS/400 display station.

Design Concepts

Two design concepts were deemed essential to
enable the desired system management
functions. The system components had to be
designed so they are self-identifying, and they had
to provide problem detection and analysis at the
time of failure. Further, a new common input/
output (1/0) architecture was needed to provide a
consistent interface for new support-related
functions.

Self Identification

The hardware and software components of the
AS/400 system contain self-identifying information
called vital product data. The hardware
components contain within them their type, model,
serial number, and load identifier. Type and model
are used to identify hardware products and card
features. The load identifier is the label of the
initial program load (1PL) required to bring up the
device or component. The serial number is a
unique identifier for each component. Other
component-specific information useful for using
the component may also be provided. Software
components contain their name and maintenance
level. In addition, a header associated with each
code component indicates loadable-code group
membership, any dependencies on other

hardware or software components, and supplier-
identification information. The vital product data
contained in the hardware and software is
essential to support these functions:

 Error recording to the device or field-
replaceable unit

* Automatic configuration and initial system build
 Feature ordering and verification

» Code-change management

« Service or configuration activity recording

» Code download prerequisite checking

« Failing unit location

« Service support entitlement

Collecting and storing vital product data is shown
in Figure 2.

Problem Detection/Analysis

The system components are designed for
problem detection and analysis at the time of
failure. This emphasis on capturing data at the
time of failure permits problem analysis for only a
single occurrence of a failure. It avoids the use of
failure re-creation techniques that are expensive
to develop and often fail to detect and isolate
intermittently occurring problems. Hardware
configuration and information about how the

AL System

» Automated Problem
Tracking

Automated Problem
Management

¢ Automated PTF
Distribution

e Auto Configuration
and Resource
Management

e File Exchange with
IBM Support

® Access to IBM
Marketing
Technical Support
information and
Tools

e Central Site/VAR
Support

Overview ¢f Electronic Customer Support Functions

|

AS/400 System

® Host Question-
and-Answer
Support

® Capy Screen
Imige
® Network

Problem
Management

Servite
Support

e Entitlement
Checking

e Aulomated
PTF
Distribution

e Automated
Call
Routing

Market
Suppon

e |[BM Host
Quesiion-
and-Answer

e File Exchange

e [BM Support
Fumetian/
- BLSS
- News
Bullatins

5113925

hardware is being used is also captured so the
systemn status at the time of the failure is known.
This permits status-related problems to be mere
easily identified and diagnosed.

Common IO Architecture

An internal interface, a common ;0 architecture,
has been designed for communications between
bus-attached 1o devices and OS5/400. It provides
a congistent interface to all attached 10
processors for support-related functions. This
approach has reduced the amount of operating
systern code required to provide the support
functions and, more importantly, reduced the
amount of component-specific code required in
QS/400. This improves the ability to add new 10
processors to the system in the future.

Electronic customer support functions supported
by the common 10 architecture are:

» First-failure data capture

Vital product data collection

« Resource alteration notification
= Error notification

= Microcode download support

» Loading and running 10 processors of
device tests

« Code debugging functions

Software components are provided within the 170
processors and within 057400 to implernent the
70 support interface between attached 1;0 devices
and the operating system. The O processor
components provide support-related functions

such as program debugging, code download, vital
product data coltection, configuration
management, and data collection. The operating
system components provide the error reporting
path, an error log, a problem analysis and
resolution driver, problem determination
procedures, and configuration services. The

S/N | Level

Hardware iPL

08/400 IPL

Configuration
Object
Templates

User
Configure

common 10 architecture role in problem
management functions is illustrated in Figure 3.

Support Components

The support components are: an error notification
record built by the detector of the failure, a
reference-code translate table that provides

Product !
Data

| swrHw
Dependence

‘Name | Level

Software
instaliation

HW SW
Vital Vital
Product | Product
Data Data
and and
Config- | Config-
uration uration
Automatic
Configure K_-/

K

Application Interface

RSLL400-4

Figure 2 Resource and Configuration Management Functions

84

information about the actions that must be taken
to resolve each failure, and software component
descriptions that provide information needed for
software management functions.

Error Notification

An error notification is built and logged for each
detected failure. It contains the time-of-failure
error information, and a pointer to hardware
configuration information, which is added to the
record before it is stored in the error log. It also
contains the encoded name of the failure, called
the reference code, and the name of the
reference-code translate table used to evaluate
the error condition. Thus, the error is encoded by
the detector and the encoded name serves as an
index to the reference-code translate table entry
that contains information about the actions that
must be taken by the system or the user to
resolve the problem.

Reference-Code Translate Table

The reference-code translate table is a construct
for enrolling system components in a structured
set of problem analysis and resolution services
provided by 0S/400. The reference-code translate
table is a data table that stores information about
the set of errors the component can detect and
the actions that must be taken by the system or
the user to resolve each error. It contains no
textual information, but contains pointers to the
system message file that are used to access
national language text describing detected
conditions, user messages, and failing items. This
provides an interface between electronic
customer support and users in their native
language, thereby enhancing user participation in
system problem management. (Refer to Software
Design to Support National Languages for more
information on this subject.)

08/400 uses this table to decode the error
notification information into the set of problem
analysis and resolution actions, and post-problem

resolution verification procedures that must be
done by the system to resolve the problem. The
reference-code translate table also contains alert
code-point information, which is used by the alert

manager component 1o build and send an alert.
(An alertis a network problem management
record sent to a problem management host
system.) The code points are pointers to text

o Customer

e Detert
® Diagnose
» Notify

Opened

Resource
Manager/DB
Ready

{ Prepared

Sent/
Answered

S

—

Message
Description

Translate Table

Alert Focal
Point

&

Receive
Alert

Send
: PTF
Dispatch
Service IBM Service -

Support

Route to Product
Suppoert Center

Figure 3 Problem Management Functions Overview

R5LL401-5

phrases in a message file on the host system. In
this way, many different systems in a network can
communicate in @ common problem-management
language. The reference-code translate table role
in problem-management functions is shown in
Figure 3.

Software Component Descriptions

Software compenent descriptions define the
product configuration and list the replaceable
units of licensed program products and
microcode groups. They identify all the major
features and, optionally, loadable pieces of a
software product and the code-replaceabls units
in each. The following information is also provided
in these descripticns:

The owner of the distribution and maintenance
responsibility

Hardware or software dependencies

Replaceable unit list
= Maintenance level of replaceable units

These descriptions conform to a code-packaging
architecture that permits a common set of system
code management functions for all loadabie code
independent of code type. The software product
description information is collected along with the
software vital product data and stored in a system
data base, as iliustrated in Figure 2.

Resource and Configuration Management

The AS/400 system provides new functions for
resource and configuration management. An
overview of these functions is shown in Figure 2.
The system resource manager comgponent is the
interface 1o the system resource data base. The
resource data base is a read-only record of the
system’s hardware and software vital product
data and configuration inforrmation. The
information in this data base is made available

across the machine interface for use by
application programs, problem determination
procedures, and other operating system
components.

The hardware vital prcduct data is collected
during each IPL or when resources are added
after an IpL {when the device is powered ¢n). The
software installation manager collects and records
software vital product data and configuraticn
information when code products or components
are added or medified.

The configuration manager component provides
the interface to create, change, or delete
cenfiguration objects automatically or under user
control. These objects are used by programs to
access and use hardware resources, such as
printers, display stations, communicaticns lines,
tape units, and diskette units. Creation of
configuration objects for directly attached
resources is controlled by an automatic-
configuration option. If the automatic-
configuration 1pL option is set to YES, configuration
objects are automatically created for all locally
attached devices when they are installed and
powered ¢n. If automatic configuration is set to
NO, the user creates configuration objects using
menus or commands. Default values are provided
with 05/400 to minimize the amount of data that
must be provided by the user.

The software vital product data and configuration
information is used by the configuration manager
component to correctly install and maintain all
licensed program products and microcode
groups. Product configuration and dependency-
checking ensure program temporary fixes (PTFs)
are correctly ordered and applied.

Problem Management Functions

New problem management functions are provided
for managing system-detected problems. The
AS/400 system alsc allows the user to manage

86

problems identified and defined by the user
(referred to as user-defined problems). Both of
these types of problems are managed using the
new preblem management functions. The AS/400
system provides functions for automated problem
analysis, automated problem lcgging and
tracking, automated problem reporting, and
problem ccrrection. This is done to help the
customer and iBm quickly and accurately resclve
problems occurring on the customer’s system.
Figures 3 shows the AS/400 structured problem
management facilities and their retationship tc the
support structures.

As an example, when problem management
starts with a hardware error that is detected by a
device attached to the system, an error
notification is repcrted tc the system using the
common I/c architecture. The data pertaining to
the problem contains vital product data and
configuration information, the reference code and
the name of the associated reference-code
translate table for the reporting device, as well as
additional failure informaticn. The error is
recorded in the system error log and an entry is
created in the system problem log. A message is
alsc generated and sent tc the user. From this
message, problem analysis can be entered for the
specific condition and the analysis resuits can be
autcmatically stored, information about the
problem can be collected online, and the problem
can be automatically reported to the 1M Service
Support System for resolution. After the problem
is reported, a service representative may be
dispatched, a PTF may be sent to the system, or
the appropriate support organization may be
notified of the problem so they can contact the
customer about it. The problem log is used to
track the problem as it progresses to resolution.
Alerts and alert management are provided to
extend local problem management into the
network problem management aspects of
Communications and Systems Management

(c & sm). The alert capabilities are flexible and

allow various options for participating in network
problem management.

Problem Log and Tracking

The problem log and problem log manager
component are central to the AS/400 service
philoscphy. 18M service representatives, the 1BM
Service Support System, and the customer can
use the problem log to determine the level of
analysis perfcrmed and the locations for the
hardware repairs agsociated with the problem,
and to access any notes associated with the
problem. The log can also be used to determine
which PTFs exist that can correct the problem.

The problem log and problem log manager
compoenent provide a consistent means of
tracking both user-defined and system-detected
problems from initial definition through resolution.
The tracking mechanisms indicate the state of the
problem, including whether or not the problem
has previously been analyzed. The problem log
manager component provides the entry point for
structured problem management on the system,
guiding the user to the next step of problem
resolution to be completed for a problem.

The problem log provides online tracking and data
for each problem as it progresses to resolution. A
problem record includes: the problem state;
hardware and software vital product data;
isolation at the time of failure and isolation after
running problem analysis; replacement parts lists
and part location information; service entittement
information; contact numbers; effect on customer
operations; and actions taken as a result of
reporting the problem through the 1Bm Service
Support System. In addition, notes can be keptin
the problem log for each individual problem and a
problem can be updated by the user to indicate it
has been resolved. The records are deleted at the
user's request after they have been kept for at
least 30 days. This time period helps to ensure
that a problem can be adequately tracked.

Each problem is tracked independently through
the different states. Options to run various
problem management functions are provided by
the problem log manager component based on
the state of a problem. The problem state
definitions and the selectable problem
management functions for each state are:

« Opened: This is a new problem detected by the
system. Problem analysis, problem reporting,
and problem recovery functions can be selected
for problems in this state.

« Ready: Analysis of the problem is complete.
Problems at this state have either been
detected by the system and analysis has been
completed, or the user defined a problem to the
system using the Analyze Problems (ANZPRB)
command or function. Problem reporting and
problem recovery functions can be selected for
problems in this state.

* Prepared: Problem reporting has been selected
and information has been collected for
contacting 1BM. Problem reporting, verification,
and recovery functions can be selected for
problems in this state.

« Sent/Answered: Problem reporting has been
selected and a call sent and responded to from
the 1BM Service Support System. Resolution,
verification, and recovery functions can be
selected for problems in this state.

Problem Analysis

Structured problem analysis can be initiated for
system-detected problems by running problem
analysis, and for user-defined problems using the
Analyze Problem (aNnzPrB) command. Additional
problem analysis is possible through non-directed
use of system tools.

Problem analysis provides for the isolation and
resolution of system-detected problems. It is
designed based on the philosophy that isolation

results are provided at the time an error is
detected. This is done to reduce problem analysis
effort and to enhance the accuracy of the analysis
for system-detected problems. Significant errors
result in system messages and are identified as a
problem when the message is displayed to the
user. Problem analysis may be started from the
message that was displayed for a particular
problem or from a list of problems displayed by
the problem log manager component.

Problem analysis provides a common way to run
resource-specific problem analysis procedures to
analyze a specific problem. A component
reference-code translate table is used to
determine whether further analysis is needed for a
particular problem or whether the analysis is
complete at the time of failure. If further analysis is
required, the component reference-code translate
table is used to determine which problem analysis
procedure to call initially for a problem. Problem
analysis procedures are provided by components
of the system for analyzing problems and verifying
repair actions for problems. Problem analysis
procedures and reference-code translate tables
are supplied for hardware components, such as
devices or adapters and certain software
components.

Structurally, a problem analysis procedure is a
program written in a special procedural language.
The problem analysis component provides
common services such as problem analysis
procedure initiation and problem analysis
procedure recovery. This structure isolates the
problem analysis procedure from 0S/400, allows
the addition of new 1,0, and provides a greater
potential for using problem analysis procedures
on other systems.

The Analyze Problems (ANzPRB) command can be
used when the user discovers a problem that has
not been detected by the system. The ANzPRB
command guides the user through a series of
panels designed to resolve user problems, isolate

problems to a failing component, or generate a
symptom list for reporting to 1BMm. During the
definition of a user-defined problem, guidance is
given to ensure that a procedural error was not
made on the part of the user. Problem analysis
procedures are supplied by system components
as the entry points from the ANzPRB command.
Once the problem is isolated to a component, the
analyze problem function determines which
general-entry problem analysis procedure to call.
The function generates a symptom string for a
software error, which is later used by the 1BMm
Service Support System to determine if a
software problem already has a PTF available.

In addition to structured problem analysis, the
user also has the capability of doing non-directed
problem analysis through access to the system’s
service functions. These can be called from the
system menus, through the System Service Tools,
through the Dedicated Service Tools, or by
entering commands.

Automated Problem Reporting and Service
Support

When a problem has been isolated through the
structured problem analysis functions, the user is
then given the option to report the problem to 1BM.
Selecting this option causes the AS/400 system to
automatically initiate a communications session
with the 1BM Service Support System. The System
Support Facility provided on the AS/400 system
communicates, using the service call record
interface, to software functions on the 18m Service
Support System to perform service entitlement
and call-record analysis, and to resolve or route
the call. This system automatically communicates
the requests through an Lu type 6.2 program-to-
program interface.

A service call record is passed to the 1iBM Service
Support System for both hardware and software
problems. For software problems, a symptom
string is used to search an 1BM Service Support

87

System data base to find available pPTFs for this
problem. If a match is found, the appropriate PTFs
are sent to the user’s system for subsequent
application. For hardware problems, a call record
is used to supply the 1BM Service Support System
with the failing-parts information and the 1Bm
service representative is dispatched with the
parts. If no hardware or software resolution is
identified for a problem or the repair action
requires onsite assistance, the call is
automatically routed to the appropriate hardware
or software support structure.

Copy Screen Image

The copy screen image function provides
additional problem determination capabilities for
the customer to debug applications, or as part of
help-desk support. A value-added remarketer
(vAR), value-added dealer, or third-party
development support personnel can similarly use
this function. Copy screen image also enables iBM
support personnel to directly participate in
problem determination on a customer’s system.

Copy screen image provides the capability for a
user at one work station to view the displays
being viewed by a second user at another work
station. Through commands or menus, the user
specifies that display images on a specific work
station are to be copied on some other work
station. The display being copied is the controlling
display station and is input-capable; it is called the
source device. The display station to which the
controlling display station’s displays will be copied
is a display-only device. It is called the target
device and has no input capability.

The commands or menus used to control the
copy screen image processing are very flexible.
When starting the processing, the requester can
identify, by device name, which work station is to
be the source device and which the target device.
Requesters can also specify that their device will
be the source device, the target device, or not

88

involved in the actual copy screen image
operation. The processing can be ended by the
user of the source device, or by a person not
involved in the operation, using the command or
menu interface. The user of the target device can
also end processing through the use of a special
system-request interrupt. The user also has the
capability to direct copied display-images to a data
base file. This enables the user to process this
data at a later time and serves as an audit trail for
what occurred during the operation.

Network Problem Management Support

The network problem management functions,
combined with the enhanced problem
management and configuration management
functions, provide a comprehensive set of
functions which allows management of the system
within a network that works together with the
System/370 ¢ & sMm functions. A problem is
reported in the form of an alert, generated at the
time of the failure, from the data available about
the condition. The AS/400 system uses I1BM'S new
generic alert architecture for the alert structure.
The alert functions allow a high degree of
customer selection of alertable conditions and
provide detailed data for that alertable condition.

The AS/400 network problem management
functions provide flexible control mechanisms.
The customer can indicate that alerts are to be
sent for all alertable conditions, for all alertable
conditions except those defined as unattended, or
not for any conditions. The customer can also
control the sending of alerts on an individual-
message basis by setting the Alert Indicator field
in the message. This indicator can cause the alert
to be sent immediately, after local problem
analysis, only if the system is being operated in
unattended mode, or not at all for a message.

The AS/400 system uses messages to identify
alertable events and to provide part of the data
needed for an alert. Other data that is provided as

detailed alert data is contained in the reference-
code translate table. The AS/400 system also
supports generation of alerts from data entered
by an operator.

The AS/400 system can be configured to operate
in the following roles for receiving alerts:

 Alert Focal Point: Receive, log, and provide
NetView™ Distribution Manager display
capability. The configuration can optionally
direct the system to forward alerts to a higher-
level focal point. This is the hierarchical (or
nested) focal point capability.

 Alert Forwarding: Receive and forward to a
higher-level focal point with or without logging
when the system is not configured as a focal
point.

The AS/400 system uses a sphere-of-control
table to send requests to be the focal point for
those nodes capable of accepting the request.
The sphere-of-control table allows the user to
define all the network nodes that are to report to
the focal point in a single table on the focal point
system. The AS/400 system can be defined to
operate as a primary or as a default focal point.

The AS/400 system receives both the new generic
alerts and the stored-display alerts that use the
major vector-subvector format. Alerts are received
on either of the Systems Network Architecture
(sNA) session types used for alerts. The AS/400
system will forward alerts when configured to do
s0. Alerts are forwarded on the appropriate SNA
session, independent of the session type on
which they were received.

Technical Support and Information Access
Technical support and information access, as an
integrated part of 0S/400, is new on the AS/400
system.

Technical support and information access is
provided locally on the user’s system and
remotely through 1BM-supplied marketing support
systems (where a marketing support system is
accessible). Figure 4 shows the relationship to the
support systems of the three basic functions:
question-and-answer, 1BM product information,
and technical information exchange (TIE).

The question-and-answer function is integrated
within 0S/400 and provides the user with a
productivity tool for commonly asked questions
and their answers on selected topics. The
question-and-answer function is delivered with the
operating system along with an initial iIBM-supplied
local question-and-answer data base. vARs and
central-site support organizations can also use
the question-and-answer function to supply their
own question-and-answer data bases. 1BM
product information provides access to market
support functions, such as system library
subscription service lists (sLSs), announcement
letters, and the like. Technical information
exchange is an asynchronous file-transfer vehicle
used to exchange files between the user’s system
and the 1BM market support system.

Online Questions and Answers

The question-and-answer function provides the
capability for a set of hierarchical data bases that
users can access to improve education and
technical information distribution. A local question-
and-answer data base can contain commonly
asked questions and their answers, with
associated topics and search words that enable
an end user to quickly find information. The
question-and-answer function is divided into two
primary areas, the set of operations and the
question-and-answer data bases that can be
operated on. The set of operations include
question-and-answer data base management and
item management within a question-and-answer
data base. The question-and-answer function has
the ability to manage a number of question-and-
answer data bases that could include subjects

Question-and-
Answer Data
Bases

Customer AS/400 System

IBM-
Supplied

AS/400
System

IBM Support
Network

Host
Question-and-
Answer

Central Site or
. VAR Question-
and-Answer

Data Base

IBM Service |
Support ’

Host
Question-and-
Answer

File
Routing

IBM Host
Question-and-
| Answer Data
Base

Market Suppdrt
Application

and Information
RSLL403-5

Figure 4 Technical Support and Information Access Functions

addressing technical topics, management or
employee briefings for company policy changes,
procedural directions, or operational questions.
The topics are determined by the user or the data
base supplier.

Each local data base can be associated with a
remote data base. The remote data base can
reside on an 1BM host system (in one of several
countries) or another AS/400 system. All of these
remote data bases are accessed through the LU
type 6.2 program-to-program interface, allowing
the same local question-and-answer functions to
be used for different host question-and-answer
programs and data.

The question-and-answer function has three
primary user types: the general user, the
question-and-answer coordinator, and the
administrator. These users are established
through normal system security and may vary
from question-and-answer data base to question-
and-answer data base. The general user can
perform searches on the local data base only. If
the searches are unsuccessful, questions can be
submitted to the coordinator for response. The
coordinator can perform local searches, as well
as searching the associated remote data base.
The coordinator is also the responder for general
user-submitted questions. The coordinator is
considered a general user when accessing the
associated remote data base. The administrator is
responsible for the management or distribution of
a data base. The administrator has all the rights of
the general user and coordinator, plus data base
management and distribution capabilities.

The question-and-answer function is easily
accessed using system help commands or an
easy-to-use set of menus. Local end users are
shown the same style and basic content of
displays, regardless of whether they are
accessing local or remote data base information.
The user interface is consistent with other user

90

interfaces on the system, thus providing the
functions in a familiar format.

Question-and-answer data bases can be supplied
from several organizations. i1BMm ships with every
entitled system an initial set of local questions and
answers for use by the customer online. In
addition, 1BM provides access to an associated
remote 1BM data base. The 1BM local and remote
data bases place a wealth of knowledge and
broad range of experiences at the fingertips of the
AS/400 question-and-answer user. The customer
can choose to supply a local data base, containing
questions and answers that have been collected.
This allows administrators to distribute commonly
asked questions to their network of systems and,
if desired, they can also be associated with a
larger, company-wide data base.

The question-and-answer data base is divided
into four primary areas: supplied, locally added,
candidate, and conversational. When general
searches are performed, the supplied and locally
added portions of the data base are used. When
questions are submitted, they are kept in the
conversational portion of the data base. The
candidate portion of the data base is used for the
staged or controlled publication of items. This
structure allows the user the freedom to tailor the
searchable set of items in any one data base
without affecting the supplier’s information. The
structure of the data base also allows the supplied
portion of the data base to be refreshed without
destroying any questions and answers that are
being responded to (submitted questions), being
published, or that have been locally published to
all users.

The question-and-answer function also provides
functions to create, distribute, and manage a new
question-and-answer data base. Once created,
the user can use the question-and-answer edit
function to establish a base set of questions and
maintain these items in the data base. After

selected items are developed, the user can create
a distribution copy of the data base from either
the supplied portion, the locally added portion, or
a combination of both of these portions. When
this data base load is installed on another system,
it provides that local user with a new supplied set
of items to work from.

Questions and answers can be added to any local
data base (including the iBM-supplied) at the
customer’s discretion. These items can be
published for other users to access in their
searches. ltems can be published immediately or
in a controlled fashion. Immediate publication of
an item allows the user one chance to edit a
question prior to publishing it. The less-formal
user would likely publish questions and answers
immediately when the general-user audience is
smaller. The more sophisticated user (for
example, a VAR or central-site user) would typically
stage the publication of questions and answers to
ensure accuracy, style, and content. These
questions and answers are added to the locally
added portion of the data base and do not affect
the supplied portion provided by the supplier of
the initial data base.

Marketing Technical Support

1BM product information and technical information
exchange (Tie) work together to provide a set of
technical support functions and information to the
user.

1BM product information provides access to
support tools that are available on the marketing
support system. Examples of the available
support tools include sLss lists, AS/400
configurator, and access to marketing
announcements material. Using the AS/400 3270
device emulation support, 1IBM product information
provides the capability for the support system to
use both display (Lu2) and print (Lu3) capability.

TIE provides two functions: the 18m Support
Network connection support and an
asynchronous file-transfer capability. Connection
to the Support Network is used to establish an Lu
type 6.2 conversation with a partner application
on the (iBm Support Network. It provides the
required network sign-on support. TIE
asynchronous fite transfer provides access to a
marketing support mailbox in the iBm Support
Network. Saved and open files can be sent to the
AS/400 system from marketing support.
Configuration and open files can be sent to
marketing support by the AS/400 system using
the information-exchange send and receive
functions. Users can query their mailbox to
determine if data is present.

Additional routing capability is added through file
header information. This enables files to be sent
to the AS/400 user’s 1BM product information
marketing support system sign on or to the user’s
marketing support representative.

Conclusions

Designing system components for time-of-failure
error detection and failure-cause analysis is a key
design decision in meeting system support
objectives. Implementing time-of-failure detection
and analysis enables automated functions for
isolating intermittent problems and improved
accuracy for isolating other classes of problems.

Integrating the electronic customer support and

¢ & sm functions into O5/400 and designing them
for concurrent operation are aiso key to meeting
system objectives. Concurrency of the functions
improves system availability to the user. The
problem management support in the system
provides responsive support for problem isolation
and reporting and provides immediate or deferred
resolution of problems. Automated problem
reporting and the user-defined problem resolution
capability increase the effectiveness of personnel
supporting system operaticns. The question-and-
answer function and marketing technical support

provide new levels of information access and
exchange, enabling users to more efficiently learn
and manage information about their systems.

The electronic customer support functions
integrated into OS/400, and the interfaces they
provide to other support functions and information
outside the system, provide the user with a
cohesive view of problem management and
information access. These functions are available
to the user in the language of choice at any
display station attached to the AS/400 system.

The AS/400 system has made significant
advances in the richness and ease of use of
system management and support functions,
Electronic customer support is the new standard
for excellence in the computer industry and is
expected to become the benchmark for all other
systems. These functions are the foundation for
future electronic customer support and ¢ & sm
enhancements at both a system and network
level.

™AS/400, Operating System/400, 0S/400, and NetView are
trademarks of International Business Machines Corporation.

o1

The System Capacity Planner

Describes the advanced capacity planning functions available as part of the AS /400 system.

Michael J. Denney, James M. Mickelson, and James C. Stewart

Introduction

Given the normal growth within a business and
the ever-increasing application demands being put
on the data processing area of a business, the
need to plan for initial and changing system
requirements is apparent. The overall goal for the
AS/400™ capacity planner (the Model System
command, MDLSYS) is to provide an easy-to-use
tool that can assist with these tasks.

The AS/400 capacity planner represents unique
approaches in the area of capacity planning. The
capacity planner is made up of five major
components. The work load component assists
the user in defining and characterizing the
applications running on the system. The
configuration component validates the system
configuration, while the analytic model component
uses the work load and configuration information
to predict end-user response times, throughput,
and system utilizations. The evaluator component
analyzes the model predictions and recommends
a configuration change to improve the response
time, throughput, and utilization levels based on
the user’s objectives and design guidelines. The
growth component allows the user to analyze
future system requirements based on annual
growth rates. These five components work
together to provide an easy-to-use capacity
planner.

Work Load Component

The work load component allows the user to
characterize the application work load. Because
system resource requirements are generally tied
to specific components of a business, the total

92

system work load is treated as a collection of
measurement profiles that correspond to the
various business components. On an installed
AS/400 system, this data input is automated
through a measurement profile generated using
the Print System Report (PRTSYSRPT) command.
The PRTSYSRPT command is available as part of
the AS/400 Performance Tools.

Figure 1 illustrates generating measurement
profiles for the three business components
accounting, sales, and online ordering. Within the

Business
Component
(work load)

capacity planner, the measurement profiles are
combined to give a total system view of the work
load. This combined set of measurement profiles
is referred to as a response file.

This ability to characterize work being done on the
system at the business component level has a big
advantage. Growth within a given business
component while holding other components
constant can be examined. New applications that
have been characterized in the form of a
measurement profile can be added using the

Collect

Measurement
Data

Data
Reduction

Predicted
Accounting XXX XXX
SRIBS I, b e o XXX XXX
Online Ordering XXX XXX
00} HE A e XXX XXX

RSLL404-2

Figure 1 Measurement Profiles as Input to Capacity Planner

capacity planner to see their effect on the system.
Also the user can add other types of work to this,
such as the RAMP-C™ benchmark program, batch,
and spool profiles. Objectives for throughput
(transactions per hour), response time, and active
work stations can also be specified as input to the
capacity planner.

Configuration Component

The configuration component ensures that the
capacity planner analyzes only valid combinations
of processor models, main storage, disk devices,
and communications devices. This helps the user
order hardware upgrades. In a proposal situation
(the user does not have an installed system to
measure), the configuration component’s first job
is to calculate an initial configuration: a starting
point to work from. This initial configuration is then
analyzed by the capacity planner and is modified
until the user’s objectives are met.

To calculate the initial configuration, the
configuration component looks at the user’s
throughput objectives and the application
characteristics (number of instructions, disk
accesses, working-set size) and applies queueing
theory to calculate the number of devices required
to keep the utilization within recommended levels.
(The working-set size is the main storage
requirements for a job and includes all of the
objects necessary for a job to process.) From this
point on, this component’s job is to ensure that
any configuration changes result in valid system
combinations and to know the proper hardware
needed to upgrade each device.

Analytic Model Component

The analytic model component predicts the
response times, throughputs, and utilizations
based on the work load and configuration
components’ output. Because the model
processes quickly, it can produce a range of
performance predictions for the current
configuration by repeatedly increasing the number
of active work stations and analyzing the results.

The user can then see, at a glance, what the
predicted performance will be as the system gets
busier.

The queueing model for the capacity planner is
comprised of several submodels. These
submodels, with one exception, use an
approximation of the mean value analysis.
Resources modeled using this technique include
the System Processor, the disk subsystem,
activity levels within the interactive storage pool,
the work station controllers (local and remote),
and the remote lines. The exception to the mean
value analysis is the model that predicts the
number of disk accesses per transaction, referred
to as the paging model. This model is essential to
predict the amount of main storage necessary to
accommodate all of the active jobs.

To model paging, many measurements were
reduced into paging curves, where the
overcommitment ratio of main storage is the X
axis, and the number of disk accesses per
transaction is the Y axis. The overcommitment
ratio is calculated based on the number of active
jobs, the jobs’ estimated working-set sizes, and
the size of the main storage pool where the jobs
run. Thus, the overcommitment ratio is a ratio of
the amount of main storage to contain all of the
active jobs’ objects compared to the amount of
main storage available in the storage pool.

The pre-characterized work load in the capacity
planner (RAMP-C) has a paging curve. The
measured profile input by the user, however, does
not have a paging curve; this profile is only one
point on a paging curve. To produce a paging
curve for a measured profile, the RAMP-C paging
curve is adjusted to pass through the measured
profile’s one point. The curve is then adjusted
based on the difference between the estimated
working-set size of the measured profile and the
estimated working-set size of RAMP-C (see
Figure 2).

et

Disk Accesses per Transaction

Overcommitment Ratio

® @ @ RAMP-C Paging Curve
P Pointin Measured Profile
* * * Paging Curve Generated for Measured Profile

RSLL337-3

Figure 2 Measured Profile Paging Curve

Evaluator Component

The evaluator component provides the expertise
in analyzing the output of the model. The
evaluator knows when system performance is
unacceptable or close to being unacceptable. For
example, if the interactive portion of the processor
utilization is 75% (the processor is busy 75% of
the time), performance may still be acceptable.
However, the system does not have much reserve
capacity, and performance will degrade rapidly if
this utilization goes up as a result of adding more
work load. In this situation, the evaluator will
recommend a faster processor.

However, some performance problems are not as
easy to identify. For example, a high disk
utilization may have multiple causes, such as:
excessive paging due to insufficient main storage;
high disk to input/output (1/0) processor utilization;
or high disk to controller (A-Box) utilization. The
evaluator can identify each of these and
recommend a change to fix each problem. The
evaluator also tells the user if the change is

93

required or optional. Required means that
utilizations are above recommended levels;
optional means that utilizations are approaching
these levels and the user should be concerned.
The values for these levels are set to reflect the
performance observed in benchmark
measurements, provide reasonable and
consistent average response times, leave
expansion room for future growth, and account
for variations in the work load on the system
throughout the day.

When the evaluator has identified the problem and
recommended a change, the user can either
accept the recommendation or make a different
change to the configuration. In either case, the
configuration component will validate the change,
the analytic model will predict the performance,
and the evaluator will analyze the results again.
This process continues until the user is satisfied
with the configuration.

The evaluator was originally implemented using
expert system tools and techniques. A typical
expert system consists of a rule base and an
inference engine. The rule base contains the
domain-specific knowledge in the form of I
condition, THEN action statements, called rules.
The inference engine decides which rules should
run based on the available data.

The evaluator consisted of a set of performance
rules that were easily implemented with the rule
base and inference engine approach that expert
systems use. The expert system approach
allowed the rule base to be easily modified as
more rules were needed or if the rules needed to
be reorganized. The developers could
concentrate on perfecting the performance rules
and did not have to be concerned with program

The evaluator was eventually translated into a
conventional program because Operating
System/400™ (OS/400™) currently does not have
any expert system support. Also, because the
capacity planner is avaiiable on systems using
Virtual Machine (v™m), a completely different
operating system, a high-level language that is
supported by both operating systems was
necessary.

Growth Component

When the system configuration has been
determined, growth predictions can be done to
determine the long-range data processing
equipment needs. The user could accomplish this
function by repeating the entire capacity planner
procedure for all periods of interest (one, two, and
three years from now, for example) by calculating
the number of active work stations for each
period, based on the expected growth rate, and
creating the input for each analysis. This could be
a time-consuming process.

However, the capacity planner allows the user to
specify a growth rate for each application with
three time periods to analyze. The growth
component calculates the number of active work
stations for each period and then uses the model,
evaluator, and configuration components to find a
system configuration that will handle the additional
work. Each configuration will have utilizations
below the recommended levels and response
times that are below the user’s objectives.

Conclusions

The AS/400 capacity planning function provides
AS/400 customers with a way of planning for their
initial and future requirements. Its integration into
the AS/400 Performance Tools provides a
measurement interface and a level of analysis that

arrive at a balanced system configuration are
handled by the capacity planner’s analysis. The
sophistication of its decision-making process
assists in solving the very complex problem of
data processing equipment planning.

flow or where each rule should be located; the
inference engine took care of that.

greatly enhance its function and usability. The
many variables that need to be considered to

™ AS/400, RAMP-C, Operating System/400, and OS/400 are
trademarks of International Business Machines Corporation.

94

95

Software Design to Support National Languages

Describes software packaging based on the physical separation of textual data from operational program code using a building-block design,
allowing licensed programs to be distributed and installed in multiple national languages.

Eric L. Fosdick and Michael F. Moriarty

Introduction

IBM designs software products that allow user
interaction in the national language or languages
chosen by the user. The textual data displayed or
printed by a software product is available in many
national languages, such as English, French,
German, and Japanese.

This textual data consists of messages, prompts,
displays, and online documentation. A software
product that contains textual data in a specific
national language is called a national language
version.

Typically, the process of packaging, testing, and
distributing multiple national language versions for
many licensed programs was very involved. Each
national language version was created at a
different location around the world in a process
that was time-consuming and difficult to control.
This process also makes the capability of having a
concurrent, worldwide availability date for all
national language versions very difficult, if not
impossible, to achieve.

The design of the AS/400™ software separates
textual data from operational program code when
it is packaged on the distribution media. This
separation is achieved using a building-block
concept for software packaging.

The AS/400 design provides several positive
results. First, the process makes concurrent
worldwide availability of licensed programs in
multiple national languages practical. Textual data
for licensed programs is translated into multiple

96

national languages, tested, and packaged
independently from code. In addition, this method
of software packaging supports multiple national
languages simultaneously available on one
system. The user can select one or more national
languages when installing software products. And
finally, the textual data can be updated by national
language between software releases, thereby
giving the system user more timely support.

Separating Textual Data From Operational
Program Code

Previously, textual data was designed to be
separated from the operational program code as
unigue objects to allow for text translation from
English to each supported national language.
Creating national language versions of the
licensed program involved two basic steps: first,
the English text was translated into a specific
national language; and second, the translated
textual data was integrated with the operational
program code to create a national language
software package for each licensed program.

The AS/400 design does separate textual data
from operational program code to allow for
national language translation. But, this design
continues the separation of textual data from
operational program code when they are
packaged on the software distribution media. This
allows for a software packaging methodology that
uses a building-block concept [1].

For each licensed program, two separate building
blocks are used for software packaging: the code
building block and the textual data building block.

The code building block contains all of the code
objects for a specific licensed program, while the
textual data building block contains all of the
textual data objects for a specific licensed
program. Each language has a separate textual
data building block.

The operational program code and textual data
building blocks are sent to a software distribution
center, where they are packaged as separate
entities on a customized tape that is sentto a
customer. The operational program code and
textual data are finally integrated into a common
library during the licensed program installation
process on the AS/400 system.

To fully support national languages, some
licensed program code is national language
dependent. An example is an operational-
program code-page transformation table used to
convert graphic characters from one operational-
program code page to another. (This type of code
is called national language dependent function.)
The AS/400 design supports the packaging of
national language dependent function in either the
operational program code building block or the
textual data building block for a specific licensed
program. This packaging choice is determined
individually for each national language dependent
function.

The AS/400 building-block design and the
resulting national language version of the
licensed-program build process improves the
capability of having a concurrent worldwide
availability of all software products. This design

allows the process of creating national language
versions of the licensed program at the translation
centers to consist of translating, packaging, and
testing the textual data objects only. This is
simpler and less time-consuming than creating
national language versions with both textual data
and operational program code integrated.

Distributing to a Worldwide Audience

A primary result of the software building-block
design is a better methodology for distributing
software products to a worldwide audience.
AS/400 software is distributed to the customer
using a customized software tape containing the
operational program code and primary national
language textual data for each licensed program
ordered. An additional tape is sent for each
secondary national language that is ordered. The
secondary national language tape contains the
translated textual data for all licensed programs. It
does not contain any operational program code.

The process of creating a customized software
tape for a customer order is: (see Figure 1)

* The development laboratory sends the
completed operational program code and the
English textual data to the software distribution
center. It also sends the English textual data to
the translation centers.

¢ Each translation center sends the completed
national language textual data for each licensed
program to the proper software distribution
center.

« The software distribution center creates a
customized software tape using the
corresponding operational program code and
national language textual data that matches the
customer order. The distribution center also
creates a separate tape for each secondary
national language ordered.

Development Laboratory

English Textual
Data for LP1

Sent to Each Translation Center

Translation Center

Translated Textual
Data for LP1

English Textual
Data for LPn

Code for LP1

Code for LPn

i

v Vv

Y

Software Distribution Center

Translated Textual
Data for LPn

v

Customized Tape

Code for LP1

NL1 Textual Data for LP1

Code for LP3

NL1 Textual Data for LP3

Code for LP9

NL1 Textual Data for LP9

Each customer order is filled. The following example is for licensed programs 1, 3, 9 (LP1, LP3, LP9) with
national language 1 (NL1) as the primary national language and NL2 as a secondary national language.

Secondary National Language Tape

NL2 Textual Data for LP1

NL2 Textual Data for LP2

NL2 Textual Data for LP3

NL2 Textual Data for
eachlPa o« o« o« o &

NL2 Textual Data for LPn

Figure 1 Process Flow Using Software Building Blocks

RSLL395-3

97

Although the current software distribution
methodology for the AS/400 system uses a
customized tape, the building-block design can be
used to support other software distribution
methods, such as all available software products
packaged together on the distribution media.

Another result of the software building-block
design is the capability to update national
language textual data independent of scheduled
updates or new releases for licensed programs.
This capability provides the translation centers
with the flexibility of staging the textual data
translation between product releases. This is very
important when high volumes of textual data are
being translated.

National language textual-data updates can be
created whenever the transiation centers send
updated national language licensed-program
textual-data tapes to the software distribution
center. The distribution center then builds and
distributes an updated national language textual
data tape to the affected customers without
having to redistribute a customized software tape
containing operational program code and textual
data. This updated national language textual data
tape is built the same way that a secondary
national language textual data tape is built.

Installing the Software

The software is installed by reading the
operational program code and textual data from
the distribution tape and writing (restoring) them
to libraries on the system. The software is
installed in two phases.

In the first phase, the initial program load (1PL)
process installs the vertical microcode (vmc) and
the operating system. For the first system ipL, the
IPL prompt contains the 1BM logo and a single

98

input field, into which the user selects the desired
primary national language. This prompt is
designed so it does not require translation. The
tape also contains translated versions of the
remaining IPL displays in each national language.
The IPL process, however, exposes the user only
to displays in the national language specified on
the first prompt. If the language selected is not on
the customized tape, the IPL process asks the
user to insert a secondary national language tape.
When ipL completes, the operating system is
started and uses the language selected by the
customer.

In phase two, operating system commands and
menus are used to install the optional parts of the
operating system and the licensed programs. The
primary language for these is the same as
selected in phase one. The operating system also
supports multiple secondary languages, and the
textual data for each is installed into its own
unique language library. A menu interface guides
the user in selecting one or more secondary
languages.

Just as the textual data for the primary national
language was initially installed in two phases, it is
also updated in two phases. During phase one,
the user specifies on an IpL prompt that only the
textual data is to be updated. The IPL process
stops at the appropriate time and requests a new
language tape be inserted. The textual data on the
new tape replaces the old textual data for the vmc
and the operating system. In phase two, the
system menus allow the user to update the
primary national language textual data for the
optional parts of the operating system and the
other licensed programs. The menus also allow
the user to update the secondary national
language textual data.

Conclusions

AS/400 software was designed from the outset to
support a worldwide audience with many different
national languages. Translatable textual data is
physically separated from the operational
program code until the user installs it. This
separation enables the user to install updates to
the textual data and to install additional national
languages independent of the operational
programs. Usability is enhanced by extensive
prompts and menus that guide the user through
the installation process. Another aspect of the
design is that textual data and operational
program code are packaged in building blocks
that can be rearranged to meet future packaging,
distribution, and installation processes in
response to new technology and customer needs.
These advanced features demonstrate a
significant improvement in national language
technology.

References

1. National Language Information and Design Guide
Volume 1: Designing Enabled Products, Rules and
Guidelines, SE09-8001. September, 1987.

™AS/400 is a trademark of International Business Machines
Corporation.

System Processor Architecture

Describes the layered machine interface developed for the AS/400 System Processors, which provides for enhanced system function and

performance.

Mark R. Funk, Quentin G. Schmierer, and Dale J. Thomforde

Introduction

A primary AS/400™ characteristic is the unique
high-level machine interface (mi). The machine
interface separates the application programmer
from the actual AS/400 hardware implementation
and is the lowest-level instruction set available to
the user. The instruction set used by Operating
System/400™ (OS/400™) and high-level
languages is also defined by mi instructions. As a
result, mi allows programming independence from

machine implementation and configuration details.

Many of the basic supervisory and resource
management functions of the operating system
are implemented within mi. The actual support for
M is distributed through two internal
microprogramming levels, vertical microcode
(vmc) and horizontal microcode (HMc), and
physical hardware. In Figure 1, the variable depth
of each layer represents the distribution, or
amount of support, of any mi function performed
within that layer. The characteristics of the
multilayer architecture and the flexibility of the
internal interfaces allow function to be moved to
lower levels of the machine in an evolutionary
manner. This movement provides enhanced
system function and performance.

The Machine Interface

M is supported by a microprogramming level
called vertical microcode (vmc), which is
separated into two distinct classes of support.
One class is the operating system, including such
functions as storage management, data base
management, and input/output (1/0) support. The
second class is the translator, which converts

100

Hardware

RSLL410-1

Figure 1 AS/400 Architecture

machine instructions into instructions at the
internal microprogramming interface (Imp1) level.
The conversion supported by the translator can
be visualized as a compiler step. Individual mi
instructions are converted into one or more
sequential IMPI instructions, or into calls to vMmc
routines. The vmc routines themselves consist of
IMPI instructions that implement the requested
function.

IMPI also consists of two distinct classes of
support. One class, as with vMc, pertains to
operating system support. Within this class are

instructions that do such diverse operating
system functions as storage management,
security and system integrity, data base
management, task dispatching, task and message
queueing, and 1/0 processing. The second class
consists of machine instructions and extended-
function imPi instructions. IMPI instructions are
interpreted by the next lower level of
microprogramming, called horizontal microcode
(Hme). The interpretation is supported by HMC
routines, consisting of one or more HMC
instructions called control words. The hardware
directly decodes and processes the HmC control
words.

AS/400 System Processor Features

The basic operations within the imPI instruction set
consist of a set of machine instructions similar to
System/370 instructions, including register-to-
register (RR), register-immediate (Ri), register-and-
storage (rs), storage-immediate (si), storage-
storage (ss), and branch-type instructions.

The register set in the System Processor consists
of sixteen 48-bit base registers. These base
registers are accessed in 8-, 16-, 32- and 48-bit
mode by the RR, RI, and RS instructions.

The sl instructions typically process 8, 16, or 32
bits of storage against an immediate field in the
instruction. The ss instructions process variable-
length strings of characters and signed-binary or
packed-decimal integers with a single instruction.
Also at the IMPI level are instructions supporting
IEEE floating-point, zoned-data (unpacked

main and disk storage. Instructions within this
class have been found to have a relatively high
frequency of use. As such, the functions they
support were excellent candidates for moving into
the hardware. These instructions also support the
conversion between the 64-bit mi pointer address
and the 48-bit virtual address at the impi level.

The System Processor includes many advanced
data base management instructions. They
support higher-level instructions used at the
machine interface and in vmc. For example, the
System Processor hold-free mechanism is used
by the vmc seize-release routines and by mi lock-
unlock instructions. This mechanism is
implemented by a group of IMPI instructions
supporting chained-hold records. The hold
records represent lock or seize activity for a given
system or data base object by all active
processes.

IMPI task-dispatching instructions provide task or
context switching from one procedure in a given
task to a procedure in a different task. Queueing
instructions support exchanging information and
synchronizing the flow of control between tasks.
The synchronization is provided through a send-
and-receive message approach. 1/0 processing
support is closely coupled to the built-in functions
of queueing and task dispatching. The System
Processor contains additional instructions that
support subscript address generation for arrays,
stack-space maintenance, various modes of
context switching, and timers.

The System Processor 6-byte virtual address
allows addressability to any byte within a 281-
thousand gigabyte address space. The single-
level storage aspect of the AS/400 system is
supported using this virtual address scheme.
Most storage references are made through a 6-
byte virtual address generated through a base
register plus displacement calculation. Any of the
16 System Processor base registers can be used
in this manner.

decimal), and conversions between data formats.
The large set of primitive operations allows
generating compact and efficient code with short
functional path lengths.

Of particular interest within the branch-type impI
instructions are the composite, conditional test-
branch, and compare-branch class. This
frequently used class of iIMPI instructions is
translated one-for-one from a similar class of mi
instructions. This is an excellent example of
function that has been moved in an evolutionary
manner from vMmc to HMC, and then into the
hardware with no impact to high-level
applications. The functions supported by the
branch-type class of instructions include the basic
conditional branches, indirect and indexed
branches, internal and external routine calls,
function calls, supervisor calls, and associated
returns.

In addition, the System Processor supports the
more complex operating system functions of
storage management, security and system
integrity, data base management, task
dispatching, queueing, and 10 processing. The
storage management instruction class includes
instructions that range from the simple translation
of virtual addresses to the more complex
determination of appropriate candidates for
purging pages from main storage. The
instructions in this class perform functions
associated with the primary directory, which is the
primary translation table between the impi 6-byte
virtual address and the physical main storage
address.

The security and system integrity class of
instructions includes IMP! instructions that process
and verify Mi pointer objects. The mi pointers
support 64-bit virtual addresses. An Mi pointer is
an object that is used only for addressing and
does not permit examination or manipulation of
the implied physical address. The validity of the
pointers is assured by including a special tag bit in

Horizontal Microcode Features

The processor hardware does not process IMPI
instructions directly. The impI1 instructions are
converted into a series of sequentially processed
HMC control words. The control words are directly
decoded and run by the System Processor. In
general, one HMC control word is run per
processor cycle. For the lower-level iImPi
instructions, a single control word, thus a single
processor cycle, is required. More-complex
System Processor functions are supported by
multiple controls words and take proportionally
longer to process.

Each HMmc control word is 42 bits in length and is
encoded into one of 13 different formats. The
control word is subdivided into a variable-length
opcode and a number of fields that are used to
control the processor hardware. The fields control
functions such as register gating, the arithmetic
logic unit (ALU) operations, virtual address
translation, memory accesses, and generation of
the address for the next control word to be
processed.

The position, size, and content of the control word
fields were chosen to make maximum use of the
System Processor hardware. Performance was
enhanced by allowing parallel processing of
important functions. Control words that take more
than a single processor cycle to run are buffered
to allow the Processor to continue fetching new
control words without interference. With a single
control word it is possible to add a displacement
to a virtual address, translate the address, and
initiate a memory access while moving data
between other registers in the processor. An ALU
operation could take place at the same time as a
data move between registers and a memory-
access request. System Processor status
controls and generation of the next control word
address are done in parallel with each control
word. In addition to the synchronous parallel
operations within the System Processor, which
are under direct control of the HMC, many

101

asynchronous operations can also be initiated by
the HMC or by the hardware, and are processed in
parallel with an HmcC control word.

High-speed random access memory (RAM) on the
System Processor card is used to store control
words. It contains either 8192 or 4096 locations,
depending on the system model. Not all of the
control words needed for System Processor
support fit into control storage. Infrequently used
HMC resides in main storage and is automatically
retrieved by the Processor into reserved locations
in control storage when it is needed. Control
storage is loaded during initial microprogram load
(iMPL) and is another example of system flexibility.
Enhancements or new functions supported by
HMC may be installed without any hardware
changes.

Hardware Features

The System Processor cycle time is between 60
and 120 nanoseconds, depending on the system
model. Most HMC control words run in one cycle.
The System Processor is partitioned into six
independent functional units. On the higher
performance models of the system, the six
functional units are implemented in six modules,
with one chip per module (see the card on the
right in Figure 2). Each high-performance bipolar
chip contains the equivalent of up to 14,000 2-
input NAND gates. Up to 240 functional 1/0 pins
reside on each module. Other models package
the six functional units into three single-chip
modules (see the card on the left in Figure 2).
Each module contains a cmos chip with the
equivalent of up to 40,000 2-input NAND gates and
a maximum of 231 functional ;0 pins. The
partitioning of the functional units across the chips
maximizes parallel operations while minimizing
chip-to-chip signal crossings. The control word
formats were designed to match the hardware
partition. (For more information, see the article
System Processor Technology.)

102

Two of the functional units provide main storage
control. One of the storage-control functional units
provides address and controi for the storage
cards. Each storage access can take from one to
three cycles. Three independent address busses
allow interleaved accesses across the address
space. Up to 96 megabytes of main storage is
supported. The functional unit also provides
refresh control and storage-card control lines. Up
to six storage cards, two on each address bus,
are supported. The other storage-control
functional unit provides error checking and
correction (ecc) for data fetched from main
storage. It also provides an interface for 1,0
storage accesses, which are interleaved with

Figure2 AS/400 CMOS and Bipolar Processor Cards

System Processor storage accesses. Data is
written to and read from main storage across an
80-bit data bus. This includes 8 bytes of data, 14
bits of Ecc check bits (used for error checking and
correction of data, and error checking on main
storage addresses), and a single tag bit (used for
marking system pointers). The Ecc algorithm used
is capable of detecting and correcting single and
double 4-bit package errors.

HMC control words directly control the remaining
four processor functional units. Three of the
processor functional units contain ALus that are
under HMC control. The hardware supports 8-, 16-,
and 32-bit ALU operations. One of the functional

units supports pre-fetching impi instructions from
main storage. An instruction pre-fetch buffer is
used to reduce the amount of time spent waiting
for the next instruction. It also contains a 16-bit
ALU to process IMPI instructions, which modify
base registers and calculate effective addresses.
Another functional unit was designed to support
storage, shift, and multibyte string instructions.

The third processor functional unit generates the
control storage addresses and fetches control
words. HMC conditional branching, branch and
link, control storage overlaying, processor
exceptions, and interrupts are supported by this
unit. It contains an 8-bit ALU and a fast array that
are used by HMC for process control information.

IMPI instructions address operands through a
virtual address. Effective addresses are generated
for ImpPI instructions through a base register plus
displacement calculation. The resulting virtual
address must be translated into physical main-
storage addresses prior to initiating a main-
storage access. The fourth processor functional
unit is responsible for this address translation.
The translation hashes the virtual address to
generate an address into a high-speed translation
look-aside buffer. The look-aside buffer contains
the most recently translated virtual addresses.
The probability is better than 99% that the new
address can be translated through one of the
1024 entries in the look-aside buffer. If the look-
aside buffer translation was not successful, the
hardware attempts to translate the address
through the primary directory located in main
storage. The primary directory is a table listing all
virtual pages currently residing in main storage.
Virtual addresses that are translated successfully
through the primary directory are placed in the
look-aside buffer with the corresponding physical
page address. If the translation through the
primary directory is unsuccessful, the status of
the System Processor is saved and the virtual
address being translated is passed to vmc, which

will then copy a 512-byte page of data, starting at
the requested address, from disk storage.

Conclusions

Given the high-level function supported by the
AS/400 System Processor, the classical concept
of the performance of a processor (instructions
per second) becomes less descriptive. Such
factors as the processor cycle time, the main
storage data-bus width, the instruction pre-
fetching, the 48-bit registers, and the many single-
cycle IMPI instructions are indicative of the power
of the AS/400 hardware. However, the
performance of the System Processor is more
than these hardware-related factors alone. The
high-level System Processor function, which is
efficiently supported by Hmc (often with the
appropriate hardware assistance), is indicative of
the System Processor’s performance.

Further, iMpI and HMC do not limit the growth of
IMPI hardware. In fact, they are tools to achieve
still greater levels of performance. By enhancing
Hmc and hardware, the System Processor’s
performance is increased beyond what could be
achieved with hardware alone. All processor
functions benefit, whether basic or high-level.
Because of the flexibility, new function can be
added to the System Processor.

As vMmc supports the machine interface, it can also
make full use of the enhanced System Processor,
whether the function is provided by HMC or by
hardware. Enhanced system function, with
associated improvements to the machine
interface, can be distributed through the levels of
support best suited for the function. Additional
performance improvements can be achieved at
each level. Performance in such an environment
(in terms of throughput, response time, and other
high-level methods of measuring performance)
improves at a greater rate and with greater
potential than cycle-time related measures of
performance.

The layered machine interface support allows
remarkable flexibility and optimization within the
supporting layers. As processor technologies
improve in speed and density, a highly used
function at the processor level can be moved
closer to the hardware level by enhancing the HmMC
control words and underlying hardware. This
allows greater performance with no impact to
programs written at a high level. Also with this
method, processors at varying levels of
sophistication and resulting cost can support a
constant level of iMpi through the appropriate HMC
support.

In like manner, vmc routines deemed appropriate
due to performance considerations can be moved
into HMC by enhancing iMPI. New IMPI instructions
can be added and others deleted. Because none
of these things affect the machine interface, the
user is never affected. New AS/400 functions can
be partitioned into the various layers of the
machine, as appropriate. This flexibility has
allowed function to move to lower levels of the
machine in an evolutionary manner, providing a
consistently competitive system.

™AS/400, Operating System/400, and OS/400 are trademarks
of International Business Machines Corporation.

103

System Processor Technology

Describes the advances in chip and circuit design used in the AS /400 System Processor design.

Delbert R. Cecchi and Robert F. Lembach

Introduction

The AS/400™ System Processors incorporate the
most advanced technologies available. These
technologies allowed reducing the processor to a
single card containing the processor logic, the
writable control storage, and the virtual address
translation mechanism.

The use of these, the densest gate array and
standard cell chips ever used in an 1BM processor,
required advances in circuit design, logic design
and verification tools, and physical design tools.
These advanced tools provided the means to
design, verify, test, and manage the processor
design in an organized and productive manner
within the 1BM Engineering Design System[1].

The System Processor design features an
innovative dual implementation. The same basic
design was implemented in bipolar gate arrays
having over 14,000 equivalent gates per chip, and
a 1.0 micron cmos standard cell family having up
to 40,000 equivalent gates per chip. (Figure 1
shows a 14,000-gate bipolar logic chip, while
Figure 2 shows a 40,000-gate cmos logic chip.)
These advances have allowed the entire bipolar
9406 System Processor, consisting of 86,000
equivalent circuits, to be packaged on a single
card, including the high-speed static random
access memory (rRam) for the control storage and
the look-aside buffer. The cmos implementation
(9404 System Processor) adds one input/output
(1/0) bus and the base 4 megabytes of main
storage on the same card as the System
Processor, bringing the circuit count on the card
to 150,000.

104

Figure 1

14,000-Gate Bipolar Logic Chip

Chip Logic Technologies

The bipolar circuit technology used in the logic
chips in the larger models of the AS/400 system is
an enhanced version of a family of technologies
used on the 1BM System/36 5360 Model D
processor [2]. It uses a transistor-transistor logic
(TTL) circuit family in a 2.5 micron oxide-isolated
bipolar process with four levels of metal. Each
internal cell on the chip contains five transistors
and five resistors. This allows the construction of
a four-way NAND in one of four power levels or 1
bit of rRaM in a single cell. To make the best use of
available components and increase the density
and performance of designs on the bipolar gate
arrays, a number of special-purpose macros were
designed, including RAMs, a general-purpose

Figure2 40,000-Gate CMOS Logic Chip

register stack, and a 9-bit parity checker and
generator. These special macros were jointly
developed by 1BM, East Fishkill, NY, and 1B8m,

Rochester, MN.

While the bipolar implementation was able to
achieve a 60-nanosecond cycle time and,
therefore, the performance necessary for the
larger models of the AS/400 system, a less
expensive and easier-to-cool logic chip
implementation was desirable for the smaller
models, while preserving the investment in
software and microcode. Due to its dramatically
lower power requirements, single-supply
operation, higher density, and lower per-circuit

cost, a 1.0-micron cmos process developed by
ieMm, Burlington, VT, was chosen as the technology
for the smaller models. A standard cell design
system was jointly developed by iam Burlington
and iem Rochester [3]. Thus, it was possible to
convert the bipolar logic design 16 cimos.

In both technologies, 1O Circuits were designed
with controlled transition drivers and high noise-
tolerant receivers to maximize the number of
drivers that can be switched at the same time and
mimmize any chance of noise causing an error.
Both technologies also allow the construction of
storage arrays on the chip. The logic chips are
packaged in single-chip modules, having up to
264 pins on 2.54mm centers. Heat sinks and
internal thermal enhancements are used on the
higher-powered chips to minimize the chips’
junction temperature and maximize reliability. The
characteristics of both technolagies are shown in
Figure 3.

While many of the interfaces used in the system
are TTL-compatible, such as that to the main
storage cards, extensive analysis revealed the
benefits of using a smaller swing where not
prohibited by compatibility concems. A joint effort
with the technology developers in 1emM Burlington
and 18m East Fishkill resulted in the definition of a
new set of signal levels. Though similar to 1T, the

up level from the driver is controlled carefulty to be |

between 1.55 and 2.2 volts, while the down level
remains at 0.5 volts. The maximum signal
fransition is thus 1.7 voits, or about half of a
typical T transition. It is therefore possible to
drive a full transition over a normal 80-ohm
printed-circuit transmission line with a 16 mA
driver. The transient current in the power
distribution network is also halved compared to
TTL drivers having the same performance.

Chip Array Technologies
The large arrays, such as the horizontal control
storage arrays, are implemented in stand-alcne

Logic Bipoiar CMOS

Technology 2.504LM 1.0 n-well DLM

Cells {wirable} 7250 Internal | 27,720

Circuits {equiv. 2w}| 14,000 (max) | 40,00C (max)

Delay/Ckt {W C) 14 ns 2.1 ns
Power/Cki 54 mw A mrw
Power/Chip 7 wiatls 1.5 watts

Personalized| Custom

Imbedded Arrays

Metal Pitch 6.6 microns | 3.3 microns
' Size T4mmsg. | 9.4 mmsq. 1
110 240 231
RAM 7
Chip Bits 18K 144K
Module Bits 72K 288K
Access Time 20 ns 30 ns

ASLLIFE-3

Figure 3 Comparison of Logic and Array
Technologies

RAM chips. A companion set of static ram
modules was provided by iBm Burlington. The
bipolar Ram chip is organized 2Kx10, with 9 bits
being used. It is packaged with up to four chips in
a 24mm-pin grid-array module. The chip is
fabricated in a 2-micron trench-isolated process
and dissipates less than 1 watt in standby (worst
case) and 1.4 watts when active.

The cmOs static Ram is implemented in neariy the
same 1.0-micron cmMos process used for the logic
chip. It has an access time of 30 nanoseconds
and is available in one- or two-chip modules, The
characteristics of both these ram technologies are
shown in Figure 3.

Methodology

Once the cmos design system and process
capability was in place, and the bipolar design
was reasonably stable, it was necessary to
conven the logic description from the bipolar book
set to an equivalent cmos one. (The indivigual
types of gates available in a design system are
known as books, which together form the library
for a given technology.) Of necessity, the book
sets are different. A set of programs, developed
using the Logic Transfaormation System {LTs), is
able to convert a design from ¢ne circuit family to
another automatically, while taking into account
the differences in function, fan-in, fan-out, and so
forth. Different algorithms are available to optimize
the resuiting design, depending on the needs of
the designer. The new design is compared to the
old design; conceptually, the truth tables (or
boolean equations) for both designs are derived
and compared for equivalence. The simulation
test cases are re-run, and the timing is optimized
to correct any deficiencies. (For more information,
see the article VLS/ Design Process for the System
Processor.)

The chips can be fully tested using Level-Sensitive
Scan Design (Lsso). LsSD is a design technique for
enhancing the ability to test logic chips by
connecting all of the latches on the chip serially
into one or more shift registers, or scan rings, Test
patterns are then shifted into, and results shifted
out of, the scan rings through special test lines.
This makes all internal-state information available
and controllable during the test. As a result, test
coverage is better than 89.5%. While scanning the
patterns, a special test input is activated that
holds the drivers in a high-impedence state, to
eliminate the noise caused by large numbers of
drivers switching at high frequency during the
scan process. Special circuitry is also
incorporated on the chips to make the RAM
macros accessible directly from the pins for ac
testing.

105

To use the cmos technology, it was necessary to
provide equivalent macros to those available in the
bipolar technology. Rather than design each of the
RAM macros individually, macros were compiled to
meet the designer’s size and performance
specifications. These RAM macros are completely
compatible with the rest of the design system
elements. Space is left in the macros for wires to
pass through to reduce wiring congestion and
allow placement flexibility. The system
automatically generates all of the design system
rules so a designer can use RAM macros like any
other library element.

Optimizing the Logic Chip Physical Design
Physical design has traditionally consumed 10 to
20% of the computer time used while designing a
chip. Traditional chip physical design practices
were strained in an environment using both
bipolar and cmos circuit families, with multiple chip
images per family. To keep pace with the growth
in the number of circuits on a chip, placement and
wiring algorithms were required that scaled well
computationally and produced consistently high-
quality results. The goal of increasing process
automation and efficient algorithm use demanded
dependable physical design methodologies.

Circuit placement directly affects performance and
density, and so was one key process. Wire length,
wiring congestion, critical nets, and pin-density
metrics were optimized during placement.
Constraints included preplacement biases, widely
varying sizes of circuits and macros, simultaneous
switch, clock skew, and second-level package
wirability. Placement of circuits on these gate-
array and standard-cell chips is a hard
combinatorial optimization problem due to these
many, often conflicting, metrics used to judge
solution quality.

A unified circuit-placement approach was used to

manage this complexity across the different chip
images and circuit families. This unity was based

106

on simulated annealing [4], a multivariate
optimization algorithm developed within 1Bm and
integrated into 1BM’s Engineering Design System.
In Rochester, the advantage of this novel
algorithmic approach in a production environment
was seen as early as 1983.

Optimization algorithms are judged by their
relative time complexity, such as their speed and
ability to scale with problem size, and by their
relative performance, such as the level of solution
quality. Simulated annealing was found to scale as
N, where N is the number of circuits to be placed.
For the bipolar and cmos chips, typically 10- to 20-
million moves were made on the 5,000 to 10,000
various-sized circuits per chip during placement
evolution. Chip wire-lengths fell 10 to 25%
compared to prior constructive and iterative
algorithms in similar run times. This lower wire
demand required less total time for the wiring
task, yielded a 50% reduction in wiring overflows,
and resulted in fewer timing problems. Overall
physical design cycle time was reduced, on
average, by 25% compared to prior system
designs.

The control of timing critical paths, the placement
of both large and small objects, the capability to
perform quick incremental changes, and the ability
to restrict circuits to specific areas to bound
simultaneous switching and enhance card
wirability placed additional burdens on the
physical design methodology.

Control of critical logic timing, such as clock trees,
was accomplished with minimum and maximum
capacitance goals applied during placement
evolution. On the bipolar chips, capacitance limits
existed on all nets due to timing goals and
technology restrictions on the maximum net
capacitance each circuit could tolerate. With this
approach, all nets were viewed as critical, with the
priority being application-specific.

The presence of both large and small objects
complicated the chip physical design task. This
task was not partitioned into subtasks because
the interaction of the circuits was, in general, not
disjoint. As such, placement was allowed to move
all objects under the guidelines of suitable metrics,
such as macro blockages. Experiments showed
that the resulting solutions mimic manually
generated solutions, and often yielded novel
solutions. After placement, chip plots were made
with the circuits colored based on their function to
provide insight into the underlying hierarchical
logic structure and to yield evidence of reasonable
chip floor plans. Because placement is a dynamic
activity, a videotape of several thousand circuits
being placed was produced to better observe and
understand placement evolution for both random-
logic and macro-dominated designs.

The capacity to manage incremental physical
design changes is important due to the parallel
design activities in which chip physical design
coincides with system simulation. The incremental
change strategy attempted to minimize disruption
of existing placement and wiring for circuits that
were already timed. Incremental placement
inserted new circuits into available positions while
being guided by a minimum wire length goal.
Incremental wiring used mazerouting and manual
embedding.

In some cases, the physical design influenced the
logic design. As the logic evolves from the
hardware description language though synthesis
and ends up in a target technology, logically
equivalent signal sources are connected to
logically equivalent signal destinations in an
arbitrary fashion that may aid or hinder physical
design. Reordering these equivalencies was
performed after circuit placement to reduce wire
length. Scan paths were modeled as travelling
salesman problems and solved using simulated
annealing. For the case of equivalent sources
driving equivalent sinks, such as in repowering

trees, a simulated annealing program was
developed to reassign these connections based
on minimum wire length and balanced loading.
Typically, 150 unique reordering sets were
manipulated. Total chip wire length was reduced
up to 10% using both of these programs.

I/0 circuits were grouped into specific areas for
several reasons. Simultaneous switching was an
important consideration due to the large number
of chip 170, and the potentially unpredictable
results from large current pulses causing noise
coupling to nearby quiet drivers or receivers
during the switching time. By controlling the
placement of the buses, the electrical noise
generated is reduced considerably, enhancing the
reliability. Intelligent grouping of signals also
enhanced card wirability.

Conclusions

The design of the AS/400 System Processors
using state-of-the-art technologies required many
advances. The semiconductor process
development, the physical design system, and the
system logic design were done in parallel,
requiring close interaction between technology
developers and system designers. For example,
while the semiconductor manufacturing process
was still under development, hundreds of circuit
books were designed and simulated. At the same
time, major processor implementation decisions,
such as the partitioning of the function into
individual chips, setting the clock cycle time, and
designing the packaging, were made. Because
modification of dense chips to correct mistakes is
impossible without another chip pass, great
emphasis was placed on the accuracy of the
design in all aspects. Successfully running the
operating system on the first-pass design, at the
designated cycle time, was proof of our
methodology.

Acknowledgments

Significant contributions to the technology and
tools were made by individuals at several 1BMm
locations. Their efforts are truly appreciated.

References

1. Freeman, W.J. lll and V.J.Freund, Jr., A History of
Semicustom Design at IBM, VLS| Systems Design’s
Semicustom Design Guide, 1986.

2. Brenner, S. et al, A 10,000 Gate Bipolar VLSI Masterslice
Utilizing Four Levels of Metal, 1983 ISSCC Digest of
Technical Papers.

3. Aldridge, A. et al, A 40K Equivalent Gate CMOS Standard

Cell, Custom Integrated Circuits Conference, Portiand OR.

1987.

4. Kirkpatrick, S., C.D. Gelatt, Jr., and M.P. Vecchi,
Optimization by Simulated Annealing, Science, Volume
220, Number 4598. May 13, 1983.

™AS/400 is a trademark of the International Business
Machines Corporation.

107

VLSI Design Process for the System Processor

Describes the unique methodology by which the System Processor was designed and verified.

James R. Rubish, Larry F. Saunders, Timothy J. Mullins, and William J. Goetzinger

Introduction

In today's world of advanced information
processing and very large scale integration (vLsI)
logic designs, automated methods of design and
verification are essential. Many motivating factors
drive one overall design goal: to abtain functional
hardware on the first attempt. One of these
motivating factors involves reducing the time and
cost of obtaining the high-technology vLsi
prototypes required for laboratory testing. To
obtain this functional first-pass hardware, high
levels of quality must be achieved in logic entry,
timing evaluation, and functional verification.

The vLsI design process used for the AS/400™
System Processor is shown in Figure 1. Once the
definiticn for the specific processar architecture
has been completed, the next task is to translate
the ideas, timing diagrams, and data flow pictures
from the functional specifications into an actual
logic design (AND and ©R gates). This logic entry
must be done in a timely manner with a high
degree of quality to ensure the integrity of the
original definition. The methodology for logic entry
in the AS/400 System Processar involves both
high-level and low-level descriptions.

Once the logic entry phase is completed, verifying
that resultant logic is the next task. This process
involves the use of timing evaluation and
functional verification. This may be the most
critical phase, in that a one-pass design is

- improbable without large amounts of testing
before the hardware is actually built.

108

As verification is completed, any changes or
modifications to the design are reapplied in the
logic entry phase. Although this process was used
in the past, significant enhancements in each of
the key indicated activities leads to a higher quality
design. Not only is each of the activities important
by itself, but the manner by which the transfer is
made from one activity to the next makes the
design methodology unique for the System
Processor. Once the vLsI prototype hardware is
built, this design methodology is evaluated based
on the resulting hardware.

Automation in each of the areas of logic entry,
timing evaluation, and functional verification is a
key factor in the attempt to design a functional
first-pass processor exhibiting high standards of
quality. Although the processor is but a small part
of the system hardware, achieving quality for the
entire system involves quality on each of the
sublevel components. (For examples of how these
guality standards are defined and met for the
AS/400 system and the associated subsystems,
see the article Improved Methodology for
Hardware Quality and Reliability.)

Logic Entry

The first step in the design process of any
processor is to create the definition (functional
specification) of the computer hardware to be
built. This definition includes information about all
aspects of the computer’s operation and detailed
design.

When the functional specification for the AS/400
System Processor was completed, the next task

was to enter this description into a functional
format. As shown in Figure 1, a high-level
description and a low-ievel description were
created. Each of these formats uses a different
hardware-description language (HDL) to illustrate
itself. HDL's are specially adapted computer
languages used to describe the workings of digital
computers. AS/400 legic models, to be described
with these HDL's and stored in an 1BM Engineering
Design System (eps) computer data base [1],
form the basis for all ASf400 processor designs,
verification, and manufacturing. All future work
with the processor design is established with a
variety of different 1ism EDS computer programs, all
of which operate on one of the two logic models
created. This work includes sublevel simulation,
timing analysis, design-rule checking, test pattern
generation, and other logic verifications. By
completing this work in a model environment on a
computer, the need to actually build hardware to
ensure the processor’'s proper operation is
eliminated. This type of automation not only saves
time, but greatly reduces the possibility of human
error, thus enhancing the quality of the final
product,

The logic models forming the System Processor
were written in two different languages: system
design language {$pL) and basic design language
for structure {(pLys) [2]. soL, the high-level
language, was used to describe abstract logic
behavior while omitting the underlying design
details. BDL/S, the lower-level language, was a
netlist description used to describe logic
structures on an integrated circuit chip for one
given technology.

Definition

Technology-
Independent
High-Level
Description

Technology-
Dependent
Low-Level
Description

Functional
Verification

Meet

Requirements
?

LY

Build
Prototype

RSLL323-1
Figure 1 AS/400 VLSI Design Process

The strategy used for HDLs on the System
Processors is analogous to how languages are
used in computer programming. SDL is similar to a

programming language such as FORTRAN Or PL/I.
These languages are independent of any
particular computer, and can be used on any
computer having an appropriate language
compiler. The language compiler translates the
programming language statements into machine-
specific code. spL, in a similar way, describes logic
behavior in an abstract manner independent of a
specific technology, but can be translated into any
one of several technology-specific logic
structures. High-level languages such as FORTRAN
and soL are generally easier and faster to write
than low-level languages, and are conceptually
easier to understand. BbL/s is similar to assembler
language. Assembler language is dependent on a
particular computer, and may only run on that
computer. BDL/S, in the same fashion, describes
the logic structure of a specific integrated chip
technology.

Because large design changes in spL are very
easy to accommodate, functional verification of
the spL is desirable before the conversion is made
from spL to BDL/S. This highly detailed sublevel
simulation is accomplished using the 1BM EDS
variable mesh simulator [3]. This simulation
involves writing a preliminary set of test cases,
each exercising a different aspect of the
processor’s operation, and applying them to the
sbL model using the variable mesh simulator.
Upon successful completion of this sublevel
simulation, the spL logic model can be translated
into the low-level BDL/s model. This translation can
be accomplished either automatically using
computer translations, or using a manual process
involving a language rewrite by the computer
designers.

The automatic process of converting sbL to BDL/S
is known as logic synthesis [4]. This is
accomplished using many levels of computer
programs to convert the sbL behavioral
description into a technology-specific logic
structure. Using this process, the technology-
independent spL language can automatically be

converted to the technology-specific BDL/S
language. This process is very fast, with a total
vLsI design being converted in only minutes. This
is analogous to using a FORTRAN compiler to
convert the high-level computer-independent
FORTRAN language into low-level computer-
dependent assembler language. Advantages of
using synthesis to convert to technology-specific
BDL/s include the speed at which this can be
performed, and the ability to write one HDL model
and then synthesize to several different target
technologies. The AS/400 system, using more
than one vLsi technology over its range of
processor models, provides an example of how a
different vLsi technology can be used with no
redesign needed.

A second method of converting sbL to BDL/S is
through the manual translation process. In this
method, the designer identifies the underlying
technology-specific logic structure implied by the
spL, and then writes out the equivalent BDL/S
statements by hand. This is used when the
specific implementation desired by the designer is
not equivalent to the implementation received
through the automatic translation tools. This may
result when the method of implementation chosen
by the synthesis programmer is different from the
method of implementation chosen by the design
engineer. One advantage of using manual
translation is the ability to match the functional
needs of the design to a precise physical
characteristic of a technology. This may include a
physical size or functional speed characteristic of
that technology. Both synthesis and manual
translations were used to design the AS/400
System Processor.

Timing Evaluation

Upon completion of the logic entry phase, the
resultant BDL/s must be verified considering the
machine cycle time. As shown in Figure 1, timing
evaluation becomes one of the next phases in the
vLsI design process. For the AS/400 system,
close timing tolerances were used to maximize

109

the system performance while minimizing the
required hardware. Special logic circuits have
been developed outside the standard technolegy
set, and the clocking scheme has been tailored to
favor longer logic paths in the design. This was
accomplished by building in a small amount of
overlap intc adjacent clocks that define a machine
cycle boundary. Extensive machine timing
analysis (Ta) becomes a critical aspect in achieving
a one-pass functional design. By the conclusion of
the development process, all System Processor
timing requirements were satisfied to statistical
worst-case limits, a significant accomplishment in
view of the cost/performance approach to the
design.

AS5/400 delay analysis was based on the 1BM
Engineering Design System timing analysis
(EDSTA) and the 1BM early timing estimator (ETE)
program sets. Statistical values and internal circuit
delay equations implemented in the TA delay rules
are provided by a circuit development group. Off-
chip driver delays are calculated using a circuit-
model analysis program which takes intc account
the details of the net configuration on the circuit
card. The analysis programs are flexible enough
to allow timing refinements at various stages of
the design. Such stages include pre-wired chips,
circuits placed within a chip, circuits completely
wired in the chip, and chips wired on a circuit card.

The scope of the AS/400 model evaluated by Ta
encompassed the processor complex that
packages the logic chips, the control storage
arrays, and all main storage cards. All interfaces
among these units were evaluated for delay
characteristics. The boundary of the design is the
asynchronous input/output {1/0) bus interface. Two
types of Ta runs evaluate the logic timings of the
processor design. Figure 2 illustrates the basic
clocking scheme and timing requirements. Late
Mode Ta checks for logic delays that exceed the
Jatch-to-latch timing limit imposed by the machine

110

+C1
Clock

- Machine Cycle Time |4—

- pl 4—Clock Overlap

+C2
Clock)
Maximum Late Mode ol
I Logic Delay ‘
w Minimum Early Mode
’ .- Logic Delay
C2 L2 — Logic — - L
C1

R51L1324-2

Figure 2 Basic AS/400 Clocking Scheme

cycle time. Such a timing path is initiated by a C2
clock and captured by a C1 clock, and is the
Maximum Late Mode Logic Delay identified in
Figure 2. Early Mode Ta checks for logic that does
not meet the minimum delay required between
two latches, which is also identified in Figure 2.
Through the use of Ta, the final AS/400 processor
design met all timing requirements. Correct Late
Maode and Early Mode function was guaranteed.

The A5/400 System Processor uses several
bidirectional buses that were implemented using
three-state devices rather than open-collector
circuits. Although this achieves a performance
gain on the affected busses, a more in-depth
analysis must be completed when using these
devices. Logic simulation does evaluate some
aspects of bus contention when using a three-
state device; however, this analysis does not
check within the scope of a single machine cycle.
For the System Processor, Ta ensured that no
driver-overlap problems existed where three-state
control mechanisms were implemented.

One such bus control method implemented
involves the gating of a bus enable/disable
decode signal with a free-running oscillator pulse.
Standard timing tests at the point where decode
and oscillator logically combine verify that the logic
signal arrives satisfactorily with respect to the
oscillator edge.

A second bus control mechanism involves direct
control of driver-enable signals by latch cutputs
and combinational logic. This is a more complex
case to model. Path delays are evaluated using
switching times for both voltage threshold-based
delays for off-chip drivers, as well as current
threshotd-based delays. Through the AS/400 Ta
work, fully functional, reliable, and high-performing
bidirectional bus interfaces were guaranteed.

Finally, timing evaluaticn was used to quantify ofi-
chip driver switching activity. Delay-analysis
results determined the degree of coincidence of
switching drivers. Because of the large number of
off-chip drivers available ¢n each logic chip, limits
are placed on simultaneously switching drivers to
avoid induced noise. An analysis program was
developed to interpret the delay times at chip
outputs, and then plot switching activity as a
function of time. This invaluable aid allowed each
chip design to achieve maximum switching activity
while not exceeding limits imposed by induced
noise concerns. As a result, design hazards
caused by induced noise have been thoroughly
investigated, and an extremely sound, reliable
processor implementation was produced.

Functional Verification

In parallel with the timing evaluation phase shown
in Figure 1, the logic must also be functionally
verified. Aithough sublevel simulation has been
completed, a more sophisticated means of
functional verification must be used to model the
entire system. The challenge undertaken by the
System Processor verification group was to
achieve the goal of a single-pass design given the
complexity of the Processor.

To meet this challenge, a system-simulation
philosophy was adopted. This concept includes
surrounding the System Processor by the other
system components and modeling them in a
simulation environment. High-level test cases are
run to verify the function of the design using the
actual system microcode. This microcode is
loaded into the processor model, which is the
actual BpL/S model received from the logic entry
phase. By running test cases in this way, a
detailed and realistic system environment is
produced, and any problems found can be
corrected before prototypes are actually built.

Although this may sound simple, a sophisticated
means of implementing this concept is required.
The simulation vehicle used must possess the
speed and capacity necessary to perform this
type of system simulation. A review of state-of-
the-art simulation methods culminated in the
selection of the Engineering Verification Engine
(eVe) [5] as the AS/400 simulation method. EVE is a
hardware simulation engine: a specialized, highly
parallel computer developed specifically for the
simulation of hardware designs. The ability to
simulate hundreds of thousands of gates,
combined with the speed necessary to run
millions of instruction cycles, made EvE an ideal
choice for system simulation.

With the selection of EVE, system simulation
evolved into two components. The first, internal
microprogramming interface (IMPI) simulation,
verifies that the AS/400 architecture is
implemented correctly. The second, bus
simulation, ensures that the processor properly
interacts with other system components (/0
devices, for example).

IMPI simulation actually imitates the debugging
work that was done later in the laboratory during
initial system bringup. The processor model was
loaded with the same horizontal microcode (HMC)
that is used on all AS/400 systems. IMPI test

cases, the same as those used by the HMC
developers to verify both the microcode and the
hardware, were run on the simulation model.
Those extensive, high-level test cases provided
the measure of whether the System Processor
design adhered to the architecture specifications.

Although impI simulation is used to verify internal
operations, the external processor interfaces
must also be exercised to ensure their validity.
Because of this, bus simulation was developed to
ensure the System Processor 1/0 channels were
implemented correctly. This was accomplished by
coupling the System Processor model to other
models for various 1/0 devices. To give credibility
to the simulation, these 1/0 models were derived
from actual device designs. Bus simulation was
used to test initial program load (1pL), direct
memory access (DMA), bus error sequences, and
various functions used for hardware problem
debugging. It ensured that the system could be
initialized to the run state, from which normal
system processing could occur. Bus simulation
also verifies that various debugging facilities were
operational, should they be needed during the
laboratory bringup that followed.

Using MPI simulation and bus simulation as parts
of the overall system simulation strategy
undoubtedly saved time and resources, as well as
improved the overall quality of the System
Processor.

Conclusions

The motivation to obtain functional first-pass
hardware has brought about changes and
success to the vLsi design process.

Logic entry has evolved so the designer is
removed from the trivial details of technology-
dependent issues to allow more emphasis on
architectural advancement. The timing results
seen at the completion of the project met all the
requirements set in the beginning. All logic paths

were implemented successfully to achieve
functional timings under worst-case conditions.
The system simulation method of functional
verification successfully operated the hardware,
microcode, and test cases together as a system
before any parts were built. This allowed the
laboratory bringup to become the last step in the
verification process, not just the start of hardware
debugging.

The resultant hardware obtained from this
process was functional on the first pass. This
functional hardware was then given to the
programming groups, allowing their efforts to be
undertaken shortly after receipt of the first-pass
vLsI parts. This design process provided
significant improvements over past designs for
scheduling, productivity, and above all, quality. It
has set the standard by which future designs will
be measured.

References

1. Dunn, L.N., An Overview of the Design and Verification
Subsystem of the Engineering Design System,
Proceedings of the 20th Design Automation Conference,
Miami, 237-238. June, 1983.

2. Maissel, L.I. and H. Ofek, Hardware Design and
Description Languages in i8Mm, 18M Journal of Research
and Development, Volume 28, Number 5, 557-563.
September, 1984.

3. Case, P.W. et al, Design Automation in 18m, 1BM Journal of
Research and Development, Volume 25, Number 5, 631-
646. September, 1981.

4. Saunders, L.F., An Approach to vLsILogic Design,
Proceedings of European Conference on Electronic
Design Automation (pa '84), Conference Publication 232,
33-34. March, 1984.

5. Blank, T., A Survey of Hardware Accelerators Used in
Computer-Aided Design, \Eee Design and Test of
Computers, Volume 1, Number 3, 21-39. August, 1984.

™AS/400 is a trademark of International Business Machines
Corporation.

111

Performance Analysis of the System Processor

Describes the techniques used, primarily statistical modeling methods, to ensure that AS /400 performance requirements were met.

Harold F. Kossman and Merle E. Houdek

Introduction

Applications are becoming more complex,
increasing the path length run to perform a given
function. The use of application generators usually
creates less-efficient code and further increases
the path length. The development of user-oriented
systems is also required for user productivity. The
net result is a requirement for a high-performance
processor.

One of the integral parts of processor
development activity is processor performance
analysis. This analysis started when the
processor data flow concepts were generated,
and continued through the detailed design and
build phases of processor development. The
resulting AS/400™ System Processor design not
only met the processor performance objectives,
but achieved the best performance for the
technology used for the processor design. This
processor allowed a user-oriented system to be
built with the capability to run more complex
applications.

Methodology

A frequently used method for simulation-
performance modeling consists of using an
existing machine to generate a trace of
instructions and main storage accesses, and then
writing a program simulating the hardware to
process those instructions and use those main
storage accesses. This method is fine when the
instruction set the machine processes is small or
when the time available to do the analysis is great.
On a processor that uses horizontal microcode
(H™MC) to process the instructions, all microcode

112

must be available for all instructions before the
instruction trace can be run. If the processor’'s
instruction set is small or the processor
architecture does not require significant change to
the microcode, this does not present a serious
problem. However, the AS/400 internal
microprogramming interface (iMp1) instruction set
contains over 250 instructions and the AS/400
architecture changed extensively to satisfy
required performance objectives. (See the article
System Processor Architecture for more
information.) With an instruction set that large,
microcode development for all instructions is a
very large task and is typically not complete until
late in the development cycle. It is not possible to
generate that amount of microcode quickly to
evaluate various processor architectural
alternatives. Therefore, two models were created:
one very detailed simulation model used for
microcode development and verification, and
another simulation model that used a statistical
approach to generate instructions and main
storage accesses. Though both models provide
input to the development process, the statistical
model provides needed input early in the process
(see Figure 1).

To optimize the time to develop and debug the
model, the model was written in A Programming
Language (APL). APL allows for efficient
manipulation of matrixes, which is desirable when
using a queuing structured model. The model was
run on an i8m 3081 Model D, with 32 megabytes
of storage; the model used 35% of the processor
for approximately 45 minutes. Again, to decrease
debugging time and increase the time to make

Detailed Simulation Model

!
Statistical Model
H

i
i

v
Architecture Design Build Test Ship
RSLL369-1

Figure 1 Impact of Two Modeling Methods
on the Product Cycle

corrections and alterations for different conditions,
the run time was considered a necessary
expense.

The statistical method consisted of analyzing an
instruction mix and a main storage trace and
extracting the important characteristics affecting
performance from each. Then, the frequency in
which these characteristics would occur was
predicted. A model was created that used these
frequencies or statistics, replacing the need to
analyze actual traces. The model was then run
against these statistics, generating an average
instruction time. The statistics were individually
changed to determine their sensitivity. When one
was found to be unacceptably sensitive, it was
replaced with a more detailed, modeled
description of that facility.

Inputs to the model included instruction mixes,
HMmc for the instructions, statistics concerning
locality of reference of main storage (for both data
and instructions), and hardware structures and
timings (see Figure 2).

Instruction Mix

The instruction mixes and main storage trace
statistics were determined empirically by running
a large set of applications on an iBm System/38
Model 700 and collecting instruction usage and
main storage usage statistics. Choosing
benchmarks to run while collecting statistics is a
difficult decision. Many different benchmarks were
used, including actual customer applications, as
well as synthetic benchmarks developed
internally, in an attempt to establish a
representative field of applications that tested all
aspects of the system. Five applications were
selected and run, and instruction-usage data was
collected for each application. (A total of 2 billion
instructions was accumulated from the five
applications.) The individual application data was
then normalized and combined, such that the
resulting mix was a single list of instructions,
weighted and ordered by contribution, to the
resulting average instruction time. This new
instruction mix was used to make the overall
prediction for average instruction time. However,
individual application mixes were also used for
studies of specific areas.

When analyzing these instruction traces, the top
10 instructions (figured by contribution to the
average instruction time) contributed over 40% of
the total average instruction time. The top 25
instructions contributed 60% and the top 40
instructions contributed over 70% of the total
average instruction time. To analyze the various
architectural alternatives, a significant confidence
factor could be obtained by running a subset of
the total 250 instructions in a mix based upon the
probability of occurrence of each instruction. In
addition, many instructions had multiple path

Measured Data

From System/38
Model 700

Instruction Mix
Main Storage Usage

HMC Processor
Strings Structures
Model for
New Processor
- » Complex
Hardware 1/0 Bus
Timings i Structure

AlIT / /O Bus Bandwidth
Contention Points
Facitity Utilizations
Statistics for Future Machines
RSLL368-3

Figure 2 Information Inputs for Processor
Performance Analysis

lengths, such as the move-character instruction.
The various paths were statistically analyzed for
frequency of occurrences and for the contribution
to the overall average instruction time to
determine if they needed to be broken down
further into several representative paths. The
number of instructions run in the model varied as
the degree of confidence in the design became
more secure. Early in the cycle, when high-level
architectural decisions were being made, few
instructions would be used; as the confidence
increased, additional instructions were added as
the microcode became available.

Model Generation

When the instruction mix was determined, the
engineers responsible for the HMC started writing
the microcode for the instructions that contributed
the most to the total average instruction time.
Because the primary focus of the analysis was to
generate a preliminary analysis of the

performance for the proposed processor
architecture, pseudo-microcode was developed.
This pseudo-microcode allowed a level of
simulation that ignored non-performance details,
but still captured all pertinent information
necessary to analyze System Processor
performance. And, because this pseudo-
microcode was a subset of the actual microcode,
it was much easier to change. Therefore,
alternative microcode strings could be quickly
generated and tested. Initially, the few instructions
that provided the greatest contribution to the
average instruction time were coded and were
able to provide a statistically significant
confidence factor in the accuracy of the results.
As the proposal for the processor architecture
was finalized, and the microcode became
available for additional instructions, these
instructions were added to the model to improve
the average instruction time contribution and
confidence.

As this progressed, the capabilities of the
proposed hardware facilities and timings were
being modeled. The System Processor, the virtual
address translator, and the main storage unit run
asynchronously with respect to each other. The
virtual address translator operations and the main
storage accesses can overlap with the control-
word processing within the System Processor,
and the degree of overlap depends upon the
microcode sequences. In addition, within the main
storage unit, different main storage accesses also
operate somewhat independently with respect to
each other. The average instruction time model
simulated the processing time of microcode
sequences and all of the interactions between the
System Processor, the virtual address translator,
and main storage. Because many proposals and
alternatives were expected to be evaluated,
results needed to be available quickly to be most
useful for design decisions. Therefore, a modular
queueing structured model was chosen to

113

generate results quickly. This modular structure
consisted of separate facilities to evaluate each
independent function within the System
Processor, virtual address translator, or main
storage area, with easily changed parameters for
scheduling processing durations for those
facilities. As a facility was processing, it became
unavailable for other use, though it could call other
facilities. The called facility, if not busy, would then
run. If the called facility was busy, the processing
request and the required parameters were placed
in a queue for that facility. The calling facility
continued, if possible; if not, it would be placed in
a hold-off situation, just as a real processor
would. When a facility completed processing, it
would reset its busy signal and requests on its
queue would start processing.

Processor Evaluation

When the model was generated and the inputs
were agreed upon, the results were evaluated.
This was done in several different ways. First,
traces of the modeled-processor operation were
generated for the instructions run on a cycle-by-
cycle basis, and the development engineers
reviewed the traces against their expectations of
the operation, looking for accuracy of both
microcode and hardware facilities. In addition,
statistical collection facilities were placed within
the model to measure various parameters and
utilizations. These results were then compared
against previous models and differences were
investigated to determine whether the difference
was expected and explainable, or if the difference
represented a problem in the model. When the
final hardware was actually measured, the results
were found to be within 1% of that predicted by
the performance model, due to the intensity of the
model verification process.

When the model was written, debugged, and
accurate, results were generated. (For the actual
methodologies, see Figure 3.) The processor
performance analysis found many unexpected

114

Code horizontal microcode for top instructions based upon contribution to total AlT.
Generate Instruction stream to be analyzed based upon measured instruction mix.
Run model processing instruction stream.

Calculate average processing time for each instruction modeled:

all paths

AT, = 12 (T N)%F,

J

T,-Represents accumulated time for the jth path through for the ith instruction.
N;-Represents number of times the jth path was run for the ith instruction.
F,-Represents the frequency of occurrence for this path for the ith instruction.

Calculate contribution to AIT due to simulated instructions:

number sim

CONT_ = o) AIT. = FREQ,
sim i i |

FREOI—Represents frequency of occurrence of the ith instruction.

Calculate AIT ratio to S/38 Model 700 for simulated instructions:

AITR, = CONT_ (NEW MACHINE)/CONTme“ (S/38 Model 700)

Assume AIT ratio for non-simulated instructions; previous experience has shown that, because design opti-
mization occurs on the top instructions, a good approximation for bottom ops is:

AITR = .9 % AITR
non-sim sim

Calculate contribution of non-simulated instructions:

CONT = CONT,

non-sim meas

(S/38 Model 700) * AITR

non-sim

Calculate total AIT:

AlIT = CONT__ + CONT
tal sim

to non-sim

Calculate instruction throughput:

TP =1/ AT,

total

RSLL450-1

Figure 3 Methodology for Calculating the AIT

bottlenecks and contention points that were
eliminated or minimized throughout all areas of
the System Processor, the virtual address
translator, main storage, and the input/output (1/0)
bus areas. In addition, hundreds of questions
were answered for the developers concerning
complexity-versus-performance tradeoffs, such
as considering the performance gained if the
virtual address translator process was reduced
one cycle under certain conditions.

I/O Bus Evaluation

After the processor was analyzed, the processor
average instruction time was analyzed after
considering the 170 bus contention for main
storage. In addition, the 1/0 bus performance was
analyzed after considering main storage
contention due to the System Processor. Also,
because some of the system’s models have
multiple busses, contention for bus facilities exist
as well. These questions were answered when a
model of the 110 bus structure was added to the
processor model, because the System Processor
already included the main storage facility. A
statistical simulation model of the 1/0 bus was
developed using the same methods described for
the processor model and was integrated into the
processor model. The i/0 bus and the System
Processor were then run simultaneously several
different times, with some 1/0 busses performing
either reads or writes and other performing reads
and writes. As the /0 model was run, statistics
were kept of these contention points within the 1/0
area, and curves were generated based on the
effect of contention on both the System
Processor and the bus. Information from this
analysis resulted in significant design changes
and resulting 1/0 bus performance improvements.

Conclusions

A statistical model was developed to study the
characteristics of the AS/400 System Processor. It
used a subset of the instruction set and a
statistical characterization of the main storage

reference patterns. 1/0 requests for main storage
cycles were also included to support the design of
the 170 connection into the System Processor and
determine its effect on Processor performance.

The design of the System Processor simulation
model had many goals, including: evaluate various
architectural proposals to determine which one
best suited the objectives; predict performance
early to indicate that the design kept pace with the
objectives; provide performance evaluations of
design proposals in a timely manner, to help the
designers make the best design tradeoff; identify
problems with the design early in the design cycle;
evaluate processor /0 bus contention; and
provide input for system performance analysis.
This approach allowed the analysis of proposals
in the architecture and design phase of the
development cycle to meet these requirements.

™ AS/400 is a trademark of International Business Machines
Corporation.

115

Design of the System Service Processor

Describes the Service Processor designed specifically for initial program load (ipL) and service of the AS /400 System Processor, including the
important advancements implemented in the Service Processor, such as advanced fault isolation, error reporting, and fault tolerance.

William A. Thompson and Thomas M. Walker

Introduction

The AS/400™ Service Processor provides an
independent system component to start the
system, including verifying and initializing the
hardware, finding and loading the microcode, and
starting the 9406 System Processor. Additionally,
the Service Processor provides new functions,
such as remote and timed power on and improved
diagnostic support to the central processor for
detecting, reporting, and diagnosing catastrophic
failures.

The AS/400 system is designed around the
system input/output (1/0) bus architecture, which
connects intelligent 1/0 bus units to the central
processor. Figure 1 provides a high-level view of
the AS/400 hardware. (See also the article The
Internal Input/Output Bus.) An 1/0 bus unit
communicates with the System Processor and
controls the devices attached to it, including
magnetic media devices, work stations, and
communications lines. Each 170 bus unit must be
loaded with microcode to communicate with
Operating System/400™ (OS/400™). All system
code resides either on disk devices, which are
accessed at primary initial program load (ipL), or
on tape, which is accessed at alternate IpL. The I/0
bus unit that controls the disk and tape devices on
which the system code resides is referred to as
the load-source 1/0 bus unit. When the system is
first powered on, the Service Processor assumes
control of the bus, and uses the load-source 110
bus unit to obtain its microcode, and
subsequently, the System Processor microcode.
The control panel is the user’s first interface to

116

power-on, power-off, IPL, and select service
functions. The Service Processor provides the
operating system interface to the control panel
functions.

To meet reliability and serviceability requirements,
each piece of the system, as it is powered on,
must verify that its hardware is functioning
correctly, or be verified by another system
component, and must notify the Service
Processor or operating system of failures.
Failures that prevent a successful IpL are
displayed at the control panel by the Service
Processor. All other failures are logged to the
system error log for later analysis by automated
service functions in the operating system.

If a catastrophic failure occurs in the System
Processor, it is automatically analyzed by the
Service Processor and the results are displayed at
the control panel.

Control Panel Interface

The control panel connects to the Service
Processor (see Figure 1) and provides a simple
external interface to the user for selecting the IPL
source and for indicating status and error
conditions. The control panel microcode interface
provides the Service Processor and operating
system access to control panel functions through
a set of messages that enables and disables
panel functions and retrieves panel and power
control status. The control panel is the control
point for the AS/400 power system and it directs
the power system to power on and power off. The

system may be powered on by the user using the
power-on switch on the control panel, remotely
through a modem with a special connection to the
control panel, or at a user-specified time using the
time-of-day clock. The Service Processor, in
conjunction with the control panel, also provides
the capability for automatic system restart and 1PL
when power is restored following an unexpected
utility failure. The effects of utility failures are
prevented if the system has an uninterruptible
power source attached to it. Uninterruptible power
source status lines can be connected to the
control panel so that transition to and from the
uninterruptible power source, and status of the
uninterruptible power source, may be monitored
and reported to the system through the Service
Processor. A normal power down is initiated when
an authorized user enters a power-off command
at a work station. The operating system requests
the Service Processor to send a power-off
message to the control panel. The control panel
power-off switch can also be used to power off
the system; however, this is viewed as an
abnormal power off and may result in extended
recovery time for the next 1pL.

The I1PL mode is a system parameter that
determines the source of the IPL code. It may be
changed by the user at the control panel or by the
Service Processor as directed by the system.
Mode A and mode B cause a hormal load from
disk devices, while mode D selects a tape device
as the load source. The two disk modes, A and B,
provide a way for the user to manage new
releases or repairs to the Service Processor or

System Processor

Applications

Operating
System/400
(0S/400)

vMC

HMC

Central Processor

Private
BCU BCU BCU

Bus

Service Processor

Service
Processor
Code

TOD | SYS VPD

Micro-
Processor

Power System
(control on/off)

Power System
(status)

__ Remote Power On
’ (control)

\ UPS
(status)

Control Panel

‘ ;110
Bus 1
s 1/0
Bus 2

LLegend:

Load-Source IOBU

BCU - Bus Control Unit

IOBU - /0O Bus Unit

VMC - Vertical Microcode

HMC - Horizontal Microcode

TOD - Time-of-Day Clock

VPD - Vital Product Data

UPS - Uninterruptable Power Supply

, System

‘ 7 1/0 Bus

10BU
—
W S CP
ot e e 0 0O 0
r a mr
k t g} (&
i u
o n
n i
Cc
a
t
i
(o]
n
S

Figure 1 High-Level View of AS/400 Hardware (Model B60) and Software

RSLL325-3

System Processor microcode loads. For example,
mode B can be used to test new microcode. If a
problem develops, the user can perform another
IPL in mode A to revert to the normal loads. This
capability, to apply and back out new microcode
easily without re-installing it, previously existed
only in the operating system for operating system
programs and application programs. Mode D is
used to install or restore code to the system disk
devices from the microcode saved on tape.

Bus Control

The system 1/0 bus is the channel connecting the
Service Processor, the System Processor, and
the 170 bus units (see Figure 1). One bus unit on
each bus is designated bus control unit. The bus
control unit provides control over arbitration, error
recovery, and IpL functions on the bus. The
system 1/0 bus has bus control unit function in the
System Processor and the Service Processor, but
only one is active at a time; the other functions as
a standard 1/0 bus unit. The Service Processor
assumes bus control during 1P and after
catastrophic System Processor failure. Bus
control is passed to the System Processor when
sufficient code is loaded to provide the function.

Each 1/0 has some read-only storage (ROS)
microcode that runs diagnostics on its hardware
and 10 devices. However, to become fully
operational, each 1/0 bus unit must load
microcode into its random access memory (RAM).
Bus units with disk and tape devices attached are
capable of loading themselves from that storage
medium. All ;0 bus units must be capable of
downloading their microcode from the bus control
unit. All microcode loads are stored on the load-
source /0 bus unit. The entire IPL process is
directed by the bus control unit, which follows a
command sequence across the system 1/0 bus to
each bus unit. The Service Processor directs the
loading of the load source, the Service Processor
itself, and the System Processor.

117

Control lines between the Service Processor and
System Processor provide the capability of
switching the bus control from the Service
Processor to the System Processor and vice
versa. These control lines are referred to as the
private bus (see Figure 1). The private bus is
necessary because the System Processor has ne
ROS and cannot provide bus control function until
it is loaded. The Service Processor controls the
bus to access its own code and the System
Processor cede from the load-source 170 bus unit.
The Service Processor diagnostic support uses
the private bus to regain control of the bus when a
catastrophic error occurs in the System
Processor.

The IPL Sequence

The Service Processor containg roS from which
instructions are run as scon as the system is
powered on. The rROS microcode performs the
initial hardware basic assurance tests on the
Service Processor. Then, this microcode
performs the basic assurance tests on the system
Iy0 bus. When this is completed, the Service
Processor Ros microcode begins the search for
the load-source device (disk or tape) based on the
IPL mode.

For the larger models of the AS/400 system, the
Service Processor must search multiple bus units
on the system ;0 bus. This search consists of a
sequence of bus commands that first identifies
the bus configuration, including location and state
of each bus unit, and then queries each bus unit to
find the Service Processor load. The bus unit
acknowledging the query is the load-source |0
bus unit. Having located the load-source 170 bus
unit, the rROS Mmicrocode now loads the Service
Processor's Ram control storage with the Service
Processor’s run-time code and turns control over
to that microcode.

For the smaller models of the AS/400 system, the
Service Processor is part of the Multiple-Function
110 Processor. On these models, the Service

118

Processor is combined with disk, diskette, tape,
and communications support. This simplifies the
search for the load-source 170 bus unit during I1PL,
because the system ;0 bus need not be searched
to get the Service Processor microcode load. The
IPL is performed from directly attached disk or
tape devices. (See the article The Multiple-Function
Input /Qutput Processor for more information.)

The Service Processor Ram microcode performs
some initial diagnostics on the System Processor
using commands across the system 1,0 bus. It
then directs the loading of the System
Processor's control storage and main storage
from the load-source 110 bus unit located earlier.
The System Processor’'s control storage is loaded
first with a sequence of basic assurance tests that
verify the System Processor is functioning
properly. The System Processor's vertical
microcode (vmC) nucleus is loaded into main
storage, followed by the run-time horizontal
microcode (Hmc) which is loaded into the System
Processor’s control storage. The System
Processor is started and, when the nmc is
initialized, the Service Processor microcode
directs the System Processor to begin running the
vMC instructions.

When vmMc initialization is complete, control of the
system ;0 bus is transferred from the Service
Processor to the System Processor's vc. The
System Processor’'s vmc continues the ipL
sequence by loading the remaining 10 bus units
on this system ;0 bus and any additional 1,0
busses attached to the system, When
catastrophic error conditions occur, the Service
Processor regains control of the bus control
function on the system 10 bus to run diagnostic
procedures.

The Service Processor not only initializes and
loads the system, it also provides for system
problem analysis and reporting before the system
software is loaded and when catastrophic failure
prevents the system software from providing this

function. During the IPL process, the Service
Processor must verify that its hardware, the
system /0 bus, the load-source 1,0 bus unit, and
the System Processor are operational. It also
provides specific fault information to the user in
the event of a failure during this verification
process.

System verification is done in a stepwise fashion,
allowing each piece of the system to be verified
before it is used and to report its failures to the
user. This building-block methoed begins in the
Service Processor itself, using Service Processor
basic assurance tests, system reference codes,
and the fault tolerance of the Service Processor.

Service Processor Basic Agsurance Tests

The Service Processor basic assurance tests
verify the Service Processor hardware is
operational in the same stepwise fashion as the
system is verified, beginning with critical hardware
registers and working through all hardware
interfaces. Because basic assurance tests are
critical to the correct diagnoses of failures, the
microcode is processed using fault-tolerant Ros to
avoid Service Processor failure due to ROS
failures.

In the event of a failure, the basic assurance tests
isolate the failure within the failing module, and
then report the error to the user in a methed
determined by the severity of the fault; the most
severe errors are reported directly to the user
through the control panel.

A special feature of Service Processor basic
assurance tests is the capability to continue when
hardware defects not critical to the completion of
the Service Processor’'s main task (initializing and
loading the System Processor) are detected.
When these types of errors are encountered, they
are logged in a software buffer and retrieved later
by the System Processor’'s vMmc.

When the Service Processor basic assurance
tests have verified the Service Processor’s
hardware, additional Service Processor
microcode continues to verify the system. In the
event of a System Processor failure, diagnostics
in the Service Processor determine the cause of
the failure. If control of the system 1/0 bus has
already been passed to the System Processor
when the catastrophic failure occurs, bus control
is retrieved using private bus control. When
system 1/0 bus control is returned to the Service
Processor, actions, such as main storage dumps
and diagnostic analysis of failure data, are taken
as required.

System Reference Codes

System reference codes displayed on the control
panel by the Service Processor provide error
information to the user. In the event of a system
failure, multiple-word system reference codes are
provided to diagnose the problem. They enable
quick fault isolation in a user environment, and
provide module fault isolation for the
manufacturing environment, which reduces
manufacturing costs and, in turn, helps reduce the
cost to the user. The identification information
available in a multiple-word system reference
code can consist of the unit type, model, location,
a unit reference code, device type, device model,
device serial number, device location, device
reference code, and other data specific to the
failing unit. The Service Processor gathers this
information, formats it, and displays it at the
control panel. This configuration information is
necessary because of the infinite number of
system configurations possible.

Service Processor Fault Tolerance

The AS/400 Service Processor is a critical
component of the system. The System
Processor’s ipL should not be halted due to minor
failures of the Service Processor. For this reason,
fault tolerance is designed into many critical
portions of the Service Processor hardware. The

Service Processor continues to function, if
possible, after hardware failures are encountered.

The microprocessor gives the microcode the
flexibility to use alternative methods, continue
after finding an error, or choose default values in
the event that proper values are unattainable from
the hardware. For example, a default-value iPL
mode is provided if the correct value cannot be
read from the control panel. The fault-tolerant
portions of the design include the rRAM, vital
product data, time of day, ROs, and control panel
communications. For RAM, ROS, and some vital
product data failures, corrective action can be
taken. Failures in the time of day, control panel
communications, and some parts of vital product
data can be ignored. In each case, if a failure
occurs, it is logged and the system ipL continues.

The Service Processor microcode attempts to
recover from system 1,0 bus failures while it is the
bus control unit. Failing bus units may be disabled
by the Service Processor as needed to allow the
IPL to continue. The vmc attempts to recover these
units later in the 1PL and may post system
reference codes at the control panel or system
console. The Service Processor will try several
times to load the System Processor to overcome
intermittent failures.

Conclusions

The Service Processor is an integral part of the
AS/400 system. It provides necessary IPL
functions, the interface to the control panel, and
assistance with failure isolation in the System
Processor. It manages many new functions
including timed power on, remote power on,
automatic power on after power failure, system
time of day, and system vital product data.

The private bus gives the Service Processor the
capabilities needed to control the system 1/0 bus.
It can also give up that control and provide
diagnostic support to the System Processor

during catastrophic errors. The Service Processor
operates as a bus unit independently of the
System Processor, allowing needed flexibility to
meet its diagnostic and 1pL requirements. The
Service Processor diagnostic routines provide
fault isolation and display system reference codes
that identify the failing unit, the error code from the
unit, and the location of the failing unit within the
system, resulting in faster repair times and
reduced down time.

™ AS/400, Operating System/400, and OS/400 are
trademarks of International Business Machines
Corporation.

119

The Internal Input/Output Bus

Presents an overview of the hardware and low-level software elements of the AS /400 input/output structure.

Neil C. Berglund, John N. Tietjen, and William E. Hammer

Introduction

The input/output (1/0) structure of the AS/400™
system incorporates a new 32-bit 1/0 bus
developed for the AS/400 system and the 1BM
9370 systems. The new bus is used in both the
AS/400 9404 System Unit and the AS/400 9406
System Unit. The /0 bus architecture provides
communications using fixed-length messages and
variable-length packet direct memory access
(DMA) operations. The System Processor’s
hardware and software supports multiple 1/0
buses; the number of buses supported depends
on the system model.

The AS/400 1/0 bus uses an asynchronous
protocol, logical addressing, and serial arbitration
to provide configuration flexibility and extendibility.
With few restrictions, 1/0 controllers can be
plugged into any board socket to provide virtually
unlimited configurations. For additional capacity,
each bus may be serially extended to additional
boards.

Emphasis was placed on providing facilities for
detecting and identifying failing 170 bus units. The
system can continue operation with a failing 110
controller logically removed from the
configuration. Predecessor systems typically
require the recurrence of a failure to locate a fault.
The AS/400 110 bus uses capture techniques to
record a failure as it occurs to improve intermittent
and permanent fault analysis.

1/0 Hardware Structure

Figure 1 illustrates the AS/400 hardware
structure. The System Processor (which includes

120

the bus control unit), the 170 controllers, and the
bus extension units are attached to the 10 bus
and are called 1/0 bus units. 1/0 controllers provide
disk unit, tape unit, work station, communications,
and local area network 1,0 functions for the
system.

Packaging

The 9406 System Unit is comprised of system
components installed in a 1.5-meter(m) rack.
Within frame structures called card enclosures,
logic cards plug into zero insertion-force
connectors (card slots) on horizontal boards. All
card slots in a card enclosure not allocated to
storage or System Processor cards are wired as
standard 1/0 bus slots. The 9406 Models B30 and
B40 provide one 1,0 bus with eight 1,0 slots in their
base configurations. For increased throughput
and capacity, multiple 1/0 buses are standard on
9406 Models B50 and B60. Model B50 has two 10
buses providing a total of 14 1/0 slots in its base
configuration. Model B60 has three buses
providing a total of 17 1/0 slots in its base
configuration (see Figure 1).

Additional 1/0 slots are obtained with 12-slot 1/0
expansion card units. The expansion unit is
connected to the base enclosure or another
expansion unit by a cable with a card on each
end. One card is plugged into the base enclosure
and the other into the first slot of the expansion
unit. Cable length can be up to 8 meters,
permitting an 1/0 bus to physically span multiple
racks (refer to Beu1 and Beu2 in Figure 1). Bus
extension can be repeated to connect up to three
expansion units to each bus supported by a
processor.

The 9404 Models B10 and B20 are packaged in a
versatile, low-cost system unit. The system unit,
.65m (h) by .35m (w) by .75m (d), is self-contained
with the System Processor, storage, 110
electronics, magnetic media devices, a power
supply, and a Battery Power Unit. A single 1/0 bus
is provided in a seven-socket logic enclosure.

1/0 Bus Characteristics

The 110 bus is comprised of a 36-bit multiplexed
address and data bus (32 data bits, plus 4 parity
bits) and control and arbitration lines. The 170 bus
operates asynchronously and uses a priority
serial-arbitration mechanism. Each 10 bus can
address up to 32 /0 bus units including the
System Processor. Bus extension units are used
to serially extend the bus and do not require a
logical address like an /0 controller. Each i/0 bus
requires the function of a bus control unit, which is
provided by the System Processor (see Figure 1).
The bus control unit provides master control over
arbitration, error handling, and IpL functions. 1/0
bus unit addresses are set by the processor
software at each initial program load (IpL) to allow
physical configuration flexibility. Non-volatile data
in each /0 bus unit is used by the system to
identify the system'’s 1/0 configuration and to
provide the appropriate microcode load during IpL.

Information is exchanged between the originator
of a bus operation (master) and the bus unit
selected by the master (slave). The information is
in the form of fixed-length messages or variable-
length bma operations. All bus units (including the
processor) are capable of sending and receiving
bus messages. These messages are used by the
software 1/0 protocol to initiate and signal

10BU

10BU

BCU

L

BCU BCU
1 2

1/0 110

Bus Bus

1 2

y/
/ //
(5 Slots) (6 Slots)

10BU

10BU

Communications

Interface

AS/400 Model B60 Example

B60 Base I/0 Slots

10BU - I/0 Bus Unit

BCU - Bus Control Unit
BEU - Bus Extension Unit
LAN - Local Area Network

Optional
/0 Expansion Unit

1/0
Bus

//
(12 Slots)

Figure 1 Sample AS/400 Hardware |/O: Model B60 with Three 1/0 Buses

LAN
Interface

RSLL366-4

completion of /o0 requests. Data is moved by 110
controllers, which access System Processor main
storage as bmA masters while the System
Processor’s bus adapter functions as bmA slave.

Bus Fault Detection

The 1/0 bus was designed to minimize the
disruption caused by the failure of single bus unit.
Each 1/0 bus unit contains facilities to detect,
identify, and recover from failures. A time out
occurs when an 1/0 bus unit detects a bus failure
and suspends bus operation. The bus control unit
detects the time out and causes each 1;0 bus unit
to store pertinent error information into a status
register. In this way, hardware in each 1/0 bus unit,
including those not involved in the failing
operation, is an independent monitor of bus
failures. The status captured at the time of failure
permits isolation of intermittent and solid bus
failures.

The 10 bus unit involved in the time out enters a
disabled state and is unable to participate in
subsequent normal bus operations. This
mechanism prevents failing 1/0 bus units from
disrupting communications between the System
Processor and other 10 bus units for many bus
failures.

When a time out occurs, software in the System
Processor uses special bus commands (only
available to the bus control unit) to collect status
from all the bus units on a bus. The collection of
this status is transparent to software in the 10
controller; consequently, operations in controllers
not involved in the time out are unaware of the
failure and recovery activity. This collected status
is used to identify which 10 bus unit caused the
failure. The disabled 170 bus unit is then either
enabled to try the failing operation again or left
disabled until repaired.

121

Software Structure for Input/Output

One of the capabilities introduced with the 170 bus
in the AS/400 system is the ability for an 1/0 bus
unit to send unsolicited work requests to the
System Processor. To facilitate this capability, a
process-to-process programming mechanism
was designed (see Figure 2). The process-to-
process programming mechanism provides
symmetrical flows between the System Processor
and the 10 controllers on the 170 bus. With
symmetrical flows, the 10 bus units and the
System Processor have the same functional
capability to initiate and perform work.

A program’s interface to the 1/0 bus has been
defined in terms of a set of verbs. Verbs are the
commands or functions that the process-to-
process mechanism can perform. For example,
RECEIVE DATA and SEND REQUEST are verbs.
Communications between processes is in terms
of sending and receiving messages and data over
a logical connection between them. A layer of
code in each 1/0 bus unit, referred to as the bus
manager, determines the capabilities of each unit
it communicates with (slave bMA, master bma, or
both) and controls the flow of messages and data
across the 1/0 bus.

For the bus managers in the System Processor
and an 1,0 controller to communicate, they need:

» Bus messages: Fixed-length control information
to be transferred from one bus unit to another.
Two principle messages are op-START and
OP-END.

* Request-response control block: Controls the
movement of data, commands, and control
information between the requestor and server.

Work is started in process B (the server) when a
request is presented at the verb interface (see
Figure 2) by process A (the requester). Because
process B is in a different processing unit than

122

Bus Unit 1 (System Processor)

Bus Unit 2 (1/0 Controller)

Logical
Connection

Send to B

- Data

- Request

Verb
Interface
Process-to- Process-to-
Process Mechanism Process Mechanism
Bus Bus
Manager Manager
2 4
Slave DMA Master DMA
y 110
Bus
RSLL367-2
Figure 2 Process-to-Process Mechanism and Bus Manager, Normal Flow

process A, the unit 1 bus manager builds a control
block, the request-response control block, and
sends an OP-START bus message to alert the unit 2
bus manager that a request is pending. The op-
START bus message has sufficient information for
the unit 2 bus manager to move a copy of the
request-response control block into bus unit 2.
The bus manager, through the unit 2 process-to-
process mechanism, can now alert process B that
work is to be done. Process B transfers the data
between the bus units. The pacing of data

transfers is controlled by bus unit 2. Unit 2's copy
of the request-response control block is used by
its bus manager to control the transfer of data
between the bus units. Bus unit 2 signals
completion of the request by sending an op-END
bus message to bus unit 1. Process A is notified
by its bus manager when the or-END is received.

In the AS/400 system, 110 bus-attached 1/0
controllers do not have slave bma capability.
Therefore, to maintain symmetry of the data

movement at the process-to-process interface, an
additional data transfer method, reverse flow, is
supported by the bus manager.

With reverse flow, it is possible for an i/0 controller
(170 bus unit) with only master bMA to request an
operation from a server process with only slave
DMA capability. In this instance, a pool of buffers in
System Processor storage (the bus unit with slave
DMA) is available to the bus manager in an 110
controller (the bus unit with master pma and
containing the requester process). The System
Processor’s bus manager controls the number of
buffers available to the 1/0 control unit. The 170
control unit uses the buffers as required. Work is
initiated at the process interface and the bus
manager is started as before. The bus manager in
bus unit 2 (see Figure 2) realizes the asymmetric
DMA capabilities and builds the request-response
control block, then moves the request-response
control block and data, using bMA, directly into the
remote buffer storage in the System Processor
that was allocated for iy0 bus unit use. At this
point, the bus manager in unit 2 sends an
OP-START bus message to unit 1 to notify it that a
request is pending. The server process in the
System Processor requests data through the
process-to-process mechanism, which results in
data being moved from one location (the buffer) to
another within the Processor’s storage. When the
Processor has completed the request, an or-END
bus message is sent to the 170 control unit
indicating the operation is complete. The same
bus messages and control block are used,
although the underlying hardware support is not
the same.

Conclusions

The 1/0 structure of the AS/400 system is based
on a new 32-bit 170 bus. The 110 bus supports a
bus control unit and up to 31 additional,
independent 1/0 bus units. The bus is designed to
provide flexible /0 configuration and expansion,
and intermittent and solid 10 bus fault detection.

System models with one, two, or three 1/0 buses
are supported. In addition, a process-to-process
communications mechanism has been designed
such that the System Processor and the 1/0 bus
units have the same functional capability to initiate
and perform work. This functionality, together with
newly designed 1/0 controllers, offers /0 functional
capabilities normally associated with much larger
systems.

Acknowledgements

The authors would like to thank Richard A. Kelley,
1BM Boca Raton, FL, for his contributions to the
definition and documentation of the bus
architecture. Thanks also to Richard E. Zelenski,
IBM, Rochester, MN, for the guidance he provided
in the early stages of system 170 definition.

™ AS/400 is a trademark of International Business Machines
Corporation.

123

Magnetic Storage Device Controller

Discusses the unique microcode design which optimizes performance while maintaining concurrent operations between multiple devices.

Fred L. Huss, Gene A. Lushinsky, Kevin P. Gibson, and Surinder P. Batra

Introduction

The Magnetic Storage Device Controller, used in
AS/400™ 9406 System Units, provides the control
and data transfer path between the system input/
output (1/0) bus and the P13 bus. '

A single device type, or a combination of disk,
tape, and diskette units, can be attached to the
Storage Device Controller, which must maximize
the data transfer rate between the device and the
9406 System Processor, while managing
concurrent operations with multiple devices (for
example, reading data from disk unit 1 while
writing data to disk unit 2). Providing concurrent
device support, combined with varied device
performance characteristics, requires three
solutions. First, the time a device is idle must be
minimized, so the Storage Device Controller must
provide parallel processing. It does that by
minimizing the sequential processing time with
each device. Also, as the number of system
operations increase, the microcode must minimize
the effect of increasing device and controller
usage. According to queuing theory, run time
increases by a factor of one divided by one minus
the utilization (1 / (1-U)). As the utilization
increases, the run time increases dramatically and
must be reduced. The microcode operation
minimizes the use of the controller and the device
while processing heavy 1;0 loads. And, finally,
commands and data transfers to the devices must
be started and continued on a timely basis.
Unique device timing characteristics require
prompt data transfers to prevent extra disk

124

revolutions or tape backhitches (a brief rewind and
restart). These key performance requirements
were met in the innovative design of the Storage
Device Controller.

Hardware Structure

The hardware provides separate direct memory
access (bDMA) and control processor buses that
allow the bus interface hardware to operate
independently of the control processor (see
Figure 1). For read or write data transfer
operations, the control processor sets up the
system adapter, device adapter, and bMA
controller to provide the data path between
system storage and the device. The bmA
hardware controls the data transfer but
periodically interrupts the control processor to
continue or complete the data transfer. Maximum
throughput is obtained during a write, for
example, by allowing the device adapter to empty
DMA storage while the system adapter fills it.

Microcode Structure

The microcode consists of two priority interrupt-
service routines and three tasks (referred to as ISR
in Figure 2). Work items are placed on a task’s
queue by other tasks or by one of the interrupt-
service routines. The control program activates a
task if a work item is on the queue and the priority
of that task is higher than any other tasks with
work items queued.

The system and IpI-3 bus managers are interrupt-
service routines that support the bus adapter

hardware. The interrupts signal the microcode
that the System Processor has an 1/0 request, that
a device is ready to service an /0 request, or that
a DMA transfer has completed.

The primary task is the device manager, which
translates system storage I/0 requests into 1Pi-3
bus protocol and manages concurrent device
activity on the 1p-3 bus. The services connection
manager and the reliability and serviceability (RAS)
manager are the two other task functions that
handle logical connections used for
communications, diagnostics, error logging, and
configuration functions of the controller and the
devices.

Performance Implementation

Solving the performance problems while still
providing concurrent device support (automatic
multiplexing between active disk, tape, and
diskette devices) requires a unique controller
microcode solution: two interrupt-service routines
and the device-manager task minimize
synchronous time, as shown in Figure 3. The
unique design allows the interrupt-service
routines to share device queues and data
structures with each other and with the device
manager task. In addition, the next device
command is initiated from the interrupt-service
routine before completing the active operation
(shown as IOP Microcode Sequence in Figure 3).

The overall response time is the most important
subsystem performance criteria as measured on

System Processor

and Storage

System 1/0O Bus

Figure 1 Magnetic Storage Device Controller Functional Block Diagram

2 /
/ 7
Magnetic
Storage
Device
Controller Control
Storage
[] D [}
e L ° D
e T o M
o A o A
DMA Control
Storage Processor
[} [}
P
o 5 o B
e T @ U
e H o S
Device DMA
Adapter Controller
p) IP1-3 Bus P
/ 7
Disk Tape Diskette
Unit Unit Unit
|
e o [BN]
Disk Media Tape Media Diskette Media

RSLL333-3

System /O Bus

ya /
/ 7
Magnetic
Storage
Device

Controller

System Bus Manager (ISR)

o

Services

Device

-0 =x~300

Connection Mahagas
Manager
(TASKQ) (TASK)
5 P
0 o o r
| o
RAS Shared g
Manager Device I
(TASK) Queues :1

IP1-3 Bus Manager (ISR)

IPI-3 Bus
RSLL334-2

Figure 2 Magnetic Storage Device Controller
Microcode Overview

125

System Operation Operation
Processor Slart End
v 4+——— Subsystem Response Time ——»

Storage Device A } BJ v | [D |_1 E|_|_ l j { L G4L " |
< .
|

A
|
|
I

Controller

Command |
A I t
v]
Status
Storage | | Dala Transfer
Device Data Transfer
Units Ly Ready J | K|
o B NI |
Device e
Media |
Time Async ' Sync Overtapped Sync Async ‘
Periods L h Pt »
I‘ i
Engueue Degueue I
| Point Point
i Step 1 Step 3
o]z-;7-.--5
Microcode SE; ’ ‘b — = f
Sequence Step 2 !

STORAGE DEVICE CONTROLLER MICROCOCDE:

- Preprocess operation (Enqueue)
" Send IPI-3 command

- Poll for data

- Initiate data transfer

- Continue data transfer

- Finish and poll for response

- Process status (Dequeue)

© Send operation end

STORAGE DEVICE UNITS:

| © Decode command
J ! Build response status
K - Transfer response status

DEVICE MEDIA:

L : Align Media (Seek})
M Data transfer

TOMMDO D@

ASLLI3S-2

Figure 3 Magnetic Storage Device Controller Performance Time Periods

the system i/0 bus from the start to the end of the
operation. Several performance time periods must
be optimized to obtain the best performance.
These time periods are illustrated in Figure 3,
where the concepts of asynchronous,
synchronous, and overlapped times and the

are defined as:

« Asynchronous time: Both the controller and
device are active.

126

enqueue and dequeue points are shown. These

= Synchronous time: The device is waiting on the
controller.

« Overlapped time: The controller is waiting on
the device (the controller is free to service other
operations).

« Enqueue point: The point where a new
operation must wait for a current operation to
the same device to complete.

« Dequeue point: The point in the current
operation where an enqueued operation to the
same device is allowed to continue. The current
operation is temporarily suspended while the
controller dequeues the waiting operation.

AS/400 applications and system programs often
access data that is physically stored on the same
media. The system forwards these operations to
the controller and it must decide whether to
process them immediately or queue them
temporarily while waiting for a previous operation
to complete. As the AS/400 system becomes
heavily loaded, the queuing of requests in the
controller becomes more frequent and then
synchronous time becomes more important to
performance.

For the subsystem to avoid extra disk revolutions
and maintain streaming tape operations, the same
key microcode design requirement to minimize
synchronous time applies. To avoid an extra disk
revolution or to prevent a tape backhitch, the
device must be sent the next command within a
very short time (synchronous time).

Cverlapped microcode time is best for
performance, because the controller is waiting for
the device and may service operations to other ;o0
devices. The asynchronous time period is the next
best; though the controller time adds to the
subsystem response time, the device is not
waiting for the controller, even under queued

conditions. Synchronous time is the least
desirable situation because, under queued
conditions, the device is waiting for the controller,
unproductively increasing the device utilization.

The microcode design minimizes synchronous
time by moving function from the synchronous
period into the asynchronous period. When the
current operation finishes data transfer, it is
temporarily suspended while a new operation is
dequeued and the device is restarted. Once the
device has been restarted with the new operation,
the microcode resumes processing of the
temporarily suspended operation. The function of
dequeuing the new operation is processed in
interrupt context, rather than task context, to
minimize this time. When a new operation is
received and must be enqueued because the
current operation to the same device is not
complete, the microcode does as much pre-
processing of this new operation as possible. In
addition, an algorithm sequences the enqueued
operations to minimize the disk-seek distance,
and thus the seek time, as the operations are
dequeued.

Allowing interrupt-service routines and the device-
manager task to share common functions and
control blocks requires a design that matches
device characteristics to the controller microcode
function. To maintain the flow of data from a
device and minimize synchronous time, the
microcode gives priority to device-adapter
interrupts. This is accomplished by forcing a
lower-level, internal-microcode interrupt for the
system adapter, thus preventing multiple back-to-
back system interrupts from locking out device
interrupts for long periods of time. The system-
adapter interrupt-service routine also allows
device-adapter interrupts to be processed before
it has finished; this is especially important for tape
streaming. In addition, suspending the op-end
processing (step 1 in Figure 3) while initiating a

new operation (step 2), and then resuming the op-
end processing (step 3) requires innovative
control techniques in the interrupt-service
routines.

Conclusions

The AS/400 Magnetic Storage Device Controller
solves the performance problem of maximizing
the data transfer rate between the device and the
System Processor while maintaining concurrent
operations between multiple disk, tape, and
diskette devices. This is achieved by a unique
controller microcode design of interrupt-service
routines and task microcode that minimizes
synchronous time, which is the key subsystem-
performance time period.

™ AS/400 is a trademark of International Business Machines
Corporation.

127

Work Station Controllers

Discusses the functions provided by AS /400 work station controllers and describes the microcode and hardware structure developed to

implement those functions.

Jeffrey E. Remfert, Trent L. Clausen, Gregory A. Dancker, and Harvey G. Kiel

Introduction

AS/400™ work station controllers provide a cost-
effective means for attaching display stations and
printers to the system by supporting a wide
variety of synchronous and asynchronous display
station and printer devices (see Figure 1). Display
station screens range from 24 lines by 80 columns
to 27 lines by 132 columns. Printer speeds range
from 40 characters per second to 2000 lines per
minute. In addition, the 1iBM Personal Computers
and Personal System/2™ family can be attached
for use as programmable work stations.

The primary function of the AS/400 work station
controllers is to perform data stream and
keystroke processing for attached display
stations. Additionally, the controllers provide
protocol-conversion support for Ascii printers and
data stream pass-through mechanisms for
synchronous printers and attached personal
computers. The distribution of data stream and
keystroke processing frees the host system for
application processing and allows attachment of
cost-effective display stations. The display station
and printer data stream support provided by the
AS/400 work station controllers facilitates
System/36 and System/38 application program
portability.

The work station controllers can be connected
either locally to the AS/400 input/output (1/0) bus
or remotely to the AS/400 data communications
subsystem. AS/400 work station controller
enhancements include: support for directly
attaching asynchronous (ascii) display stations

128

and printers; improved functional transparency
between local and remote work stations;
integrated national language support; and
improved word processing support.

Key work station controller design objectives were
to: present a common operating system interface;
provide functional transparency between local and
remote controllers; integrate national language
support; and provide highly reliable, easy-to-
service hardware and microcode. A layered
microcode structure and highly integrated
hardware logic were used to develop the family of
controllers. The layered-microcode design
approach minimized development effort and
provided functional consistency between the
controllers. Extensive performance modeling was
used to help make design decisions.

Layered Microcode Structure and Function
The microcode functional layers, shown in Figure
2, are organized into three major groups:

1. Host-system attachment components
2. Common-function components
3. Device-attachment components

The microcode components can be bound
together to form the following controllers: a local
synchronous controller is formed by binding
components (in the figure, connected using----), a
local asynchronous controller is formed by binding
components (connected using -), and a remote

synchronous controller is formed by binding
components (connected using - --).

Host-System Attachment Components

The first group of layered microcode is the host-
system attachment interface, consisting of two
types: a system 1/0 bus interface for a local
controller and a data communications interface for
a remote controller. The 1/0 bus interface
component uses the AS/400 110 bus protocols to
communicate with the host processor. Bus unit
messages are used to transfer control information
and direct memory access (bMA) is used for
transferring data. The data communications
interface for a remote controller uses
synchronous data link control (SDLC), X.21, Or X.25
protocols to communicate with the host system
across a telecommunications line.

Common-Function Components

The next group of layered microcode is the
common-function layer used by both local and
remote controllers. The Systems Network
Architecture (SNA) component, supporting LU-LU
session types 4 and 7, is used to establish,
maintain, and end sessions between the user
application programs and the attached display
stations and printers. The sNA component
provides a mechanism for transporting user data
streams between the host system and the
controller, and facilitates functional transparency
between local and remote controllers. Data
streams supported are those defined for the 5250
Information Display system. To support display
stations, the controller data stream and keystroke

System Unit

Host System

Processor

System /0 Bus

Data
Communications
Controller

Local

Local ‘
Attach

Attach

Remote
Attach

Work
Station

IBM ASCII Display Stations
IBM ASCII Printers
OEM ASCII Display Stations

Work .

Station

Twinaxial Display Stations
Twinaxial Printers
PC Based

Work
Station

Twinaxial Display Stations
Twinaxial Printers

PC Based
----------- Local Asynchronous/ASCIl Work Station Controller

------ Local Synchronous/Twinaxial Work Station Controller

Remote Synchronous/Twinaxial Work Station Controller

Figure 1 Work Station Controller Subsystem Overview

components work together to process the user
data stream and control the display station. The
data stream contains commands and orders that
tell the controller how to format the display data

RSLL330-3

and define input-field edit characteristics. AS/400
work station controllers are editing controllers,

meaning the controller validates the data entered
by the work station operator based on each input

field’s characteristics. The data stream
component handles pPUT and GET operations,
which write information to the display station and
read information from the display station. The
keystroke component processes display station
keystrokes. When a key is pressed, the keystroke
component receives the keyboard scan code from
the display station, translates it into a character,
then writes the character to the display station
screen. The translation process involves a unique
translation table for each type of keyboard
supported. Keyboard types are based on
keyboard style (layout) and national language.

National language support is an integral part of
AS/400 work station controllers. The national
language support provided by the synchronous
controllers is divided into three groups. (The
asynchronous controllers support a subset of
these groups.)

« Two-shift keyboard and left-to-right display
support

 Four-shift keyboard and left-to-right display
support

¢ Four-shift keyboard and bidirectional display
support

Countries using the two-shift keyboard and left-to-
right support have languages that require two
layers of characters on their keyboards. Character
and field directions are from left to right. Examples
of languages in this group are English, French,
German, ltalian, and Japanese Katakana.

Languages requiring four-shift keyboard, left-to-
right support need four layers of characters on
their keyboards, where the selection of a
character involves shifting into the appropriate
layer for the desired character. Character and field
directions are from left to right. Examples of
languages supported in this group are Cyrillic,
Greek, and Thai.

129

Functional Microcode

Layers

Components /T/

Host-System
Attachment
Components

System /O Bus

Interface

Communications
Interface

Common-Function
Components

SNA
i R
A

s

Data Stream i S
k Manager Printer
M | Text Assist | & M
g | NLS f
" | Keystroke r\P/IC

Manager gr

Device-Attachment
Components

Asynchronous
1/0 Manager

Synchronous
1/0 Manager

~~~~~~~~~~~ Local Asynchronous/ASCH Work Station Controller

------ Local Synchronous/Twinaxial Work Station Controller

Remote Synchronous/Twinaxial Work Station Controller

RSLL331-2

Figure 2 Functional Overview of Layered Microcode Components

For languages requiring four-shift keyboard and
bidirectional support, character and field
directions can be right to left or left to right in any
combination. Both character and field directions
are specified by the application program. In
addition to the right-to-left data entry capability,
support for the Arabic language includes an

130

automatic character-shape determination
function. In Arabic script, the shape of each
character depends upon its position within the
word. Automatic character-shape determination
facilitates the display of Arabic script by shaping
each character as it is typed. Arabic and Hebrew
are the languages supported in this group.

In addition to the basic display functions, the
AS/400 work station controllers provide word
processing functions, including: word wrap and
continuous insert (gives the user the appearance
of an infinitely-long sheet of typing paper); scale
line (shows tab stops and margin positions); copy,
move, and delete capability (on a block, line, or
word basis), center-text capability; word
underscore; and split-screen capability. The
distribution of function between the software in
the host processor and the work station controller
is tightly coupled to offer optimum performance.
Host-processor interruptions due to function keys
are kept to a minimum.

In addition to display stations, the work station
controllers support printer devices and attached
personal computers. For synchronous printers,
the data stream commands and orders are
passed through the controller to the printer where
they are interpreted; for asynchronous printers,
the controller emulates the data stream
commands and orders received from the host
processor using Ascil printer commands. The
commands and orders perform various printer
control functions, such as formatting the data and
starting a new line or page. Attached personal
computers support functions such as 5250
display station emulation, file transfer, virtual disk,
and virtual print. A streamlined data transfer
mechanism between the controller and the
attached personal computer was developed to
provide optimum performance.

Completing the set of common functions are the
task manager and the reliability, availability, and
serviceability (RAS) support. The task manager, or
control program, manages all of the activity in the
controller. Task control blocks as well as task
priorities, work queues, and a storage allocation
mechanism allow the functional components to
communicate with one another and control the
transfer of data. Additionally, significant effort was
spent in the early stages of development to



ensure reliability, availability, and serviceability of
the controllers. Error retry and logging are an
integral part of the design, as are built-in tools for
servicing the microcode. Service tools such as
read/write controller storage, set dynamic trace
points, and task control-block trace are provided.
The reliability, availability, and serviceability
component also collects performance
measurement data and returns it to the host
processor.

Device-Attachment Components

The third major group of layered microcode is the
device attachment interface, which consists of two
types: a synchronous 10 manager component for
the synchronous controllers, and an
asynchronous /0 manager component for the
asynchronous controller. The data stream and
keystroke components send requests to the
synchronous or asynchronous 170 managers. The
synchronous 110 manager interprets the requests
and generates control blocks (in controller
storage) for the synchronous hardware adapter,
to transfer commands and data to or from the
attached device (see Figure 3).

Before the asynchronous 1y0 manager sets up
control blocks for the asynchronous 1/0 adapter
hardware, a protocol conversion from 5250
display and printer data streams to Asci data
streams is performed. The requests from the data
stream and keystroke components are used to
generate and maintain a display image, in
controller storage, for the target device. That
display image is then interpreted by the protocol
conversion program, which generates the
appropriate Asci data stream for the target
device. To optimize performance, microcode
algorithms were developed to minimize the
amount of data sent to an asci display station (for
example, only the updated or changed portions of
a display are sent to the display station). The
protocol conversion is table-driven; attribute and
keyboard mapping tables are maintained for each

Functional Hardware

Layers Layers /T/
Host-System Data
Attachment System 1/0 Bus Communications
Components Adapter Adapter

Common-Function
Components

DRAM

DRAM Microprocessor | |

Controller

EPROM/
NVRAM

Controller
Bus Adapter

Device-Attachment
Components

Asynchronous
1/0 Adapter(s)

Synchronous
1/0 Adapter

|

A

Local Asynchronous/ASCIl Work Station Controller

A~

Local Synchronous/Twinaxial Work Station Controller

Remote Synchronous/Twinaxial Work Station Controller

RSLL332-2

Figure 3 Functional Overview of Layered Hardware Components

type of device. Also, in the conversion process, an
EBCDIC-tO-ASCII data translation is performed.
When the protocol conversion is complete and the
control blocks and data are set up in storage, the
asynchronous I/0 adapter hardware is activated to
transfer the commands and data to or from the
device.

Integrated Hardware Structure and Function
AS/400 work station controllers are
microprocessor-based. The overall hardware
structure is similar to the microcode structure, as
shown in Figure 3. As with the microcode
components, the hardware components (host-
system attachment, common-function, and

131



device- attachment interfaces) can be combined
to form any of the controllers.

Host-System Attachment Components

The first group of hardware layers is the host-
system attachment interface. This can be one of
two types: an AS/400 /0 bus interface for local
work station controllers or a data communications
interface for a remote controller. The AS/400 ;0
bus adapter supports bma operations and allows
bus unit messages to be transferred to and from
the host processor.

The data communications interface consists of a
module that provides bma to and from controller
storage, plus an adapter that provides standard
telecommunications electrical and physical
interfaces. This hardware is directed by control
blocks set up in work station controller storage.
Under microprocessor control, registers are
initialized in the hardware, a particular command
is issued, and the communications-interface
hardware processes the request, freeing the
microprocessor for other tasks.

Common-Function Components

The second group of hardware components
provides functions that are common to the remote
and local controllers. The microprocessor bus
interface, bus arbitration, and interrupt-priority
logic are provided in this layer of hardware. The
local controllers use up to one megabyte of
dynamic random access memory (RAM) for control
and data storage. The dynamic RamM controller
provides read and write control, refresh control,
and single- and double-bit error detection. The
erasable programmable read-only memory
(EPROM) is used for initial microcode load (ML) and
diagnostics. The non-volatile RAM is used for vital
product data (part number, serial number, and
plant of manufacture). The remote controller uses
a combination of read-only storage (Ros) and
dynamic RAM for instruction storage and dynamic
RaM for data storage. Logic is also provided for

132

the device-attachment components. This logic
provides bMA and interrupt capability for the
device-attachment components and allows the
microprocessor to write and read registers in the
device-attachment components.

Device-Attachment Components

The third hardware group is the device-
attachment interface. The synchronous 10
adapter is capable of driving up to eight ports,
with a capacity of seven work stations per port. It
is a command-driven controller that operates on
control blocks residing in the dynamic Ram. It has
internal bma capability and can address one
megabyte of controller storage. The synchronous
170 adapter has two control-block chains (the
automatic poll and 10 chains) as well as two
timers. The chains are formed by linking individual
control blocks together. This allows the
synchronous 1/0 adapter to sequence through a
string of control blocks when a single Start
Automatic Poll or Start ;0 command is issued to
it. These functions are available to the microcode
and are used by loading the internal control
registers. The synchronous 1/0 adapter handles all
work station polling on the automatic poll chain
and requires little processor intervention after the
chain is set up in controller storage. Only when a
keyboard scan code returns or an error occurs
will an interrupt be posted. When this happens,
the synchronous adapter stops processing the
control block on following cycles of the automatic
poll chain. The 1/0 chain and associated timer are
used for transmitting large blocks of data to and
from the work stations.

The synchronous 1/0 adapter was designed to be
used with a balanced-line driver/receiver module.
A single module provides the eight ports.

The asynchronous I/0 adapter consists of up to
three asynchronous 110 modules, with each
module capable of supporting six asynchronous
devices. This allows the controller to support up to

18 asynchronous devices. Devices can be
attached locally, or, using a modem, remotely. A
universal asynchronous receiver/transmitter
(uART) is provided for each device port. The UARTs
operate independently, so operating
characteristics, such as data length, line speed,
and the number of stop bits, can be individually
configured. Each UART contains a 2-byte receive
buffer and a 2-byte transmit buffer. Data transfer
between a uART and controller storage can be one
of two modes of operation. In the first, a byte-
transfer mode, the UART generates an interrupt to
the microprocessor whenever its receive buffer is
full or its transmit buffer is empty. The microcode
then reads the receive buffer or writes to the
transmit buffer to send the data. The second,
block data transfer, uses bma. Each UART is
assigned an 8-byte control block in controller
storage. The control block contains the current
and ending receive and transmit addresses. The
UART requests a bMa transfer whenever its receive
buffer is full or its transmit buffer is empty. The
DMA controller accesses the associated UART
control block and transfers the data. When the
ending address is reached, the block data transfer
is complete and the pma controller interrupts the
microprocessor to indicate completion status. The
block data-transfer mode of operation requires
minimal microprocessor involvement, thus freeing
the microprocessor for other tasks.

Performance Characteristics

Work station subsystem performance is
dependent on the characteristics of the work
station controller hardware and microcode, the
attached devices, and the attachment media. As
described, the synchronous and asynchronous 110
hardware adapters are highly functional, reducing
the load on the microprocessor. The synchronous
I/0 adapter does the device polling for keystrokes
and device busy, and both synchronous and
asynchronous 10 adapters perform block data
and command transfers to or from controller
storage and interrupt the microprocessor when



the transfer has completed. The work station
controller microcode is multithreaded, which
means that the work station controller and
attached-device processing are overlapped. For
example, when the controller has sent commands
and data to a device, it then starts to process the
data stream for the next device. This
characteristic allows the controller to maintain a
high level of performance, even as additional
devices are added.

During the development of the work station
controllers, extensive performance modeling was
done and measurements were taken. Typical work
station controller work loads were characterized.
Performance capacity limits for each work load
were studied and service times were optimized.
Display station work loads were characterized as
data processing (interactive commercial
application) and word processing (office
application). A data processing work load
emphasizes puT and GET processing, while a
word processing work load is predominantly
keystroke processing. This necessitated
interleaving PUT and keystroke 1/0 processing to
give balanced performance. Printer work loads
were used to verify that printers were driven at
their rated speeds. Attached personal computer
work loads were used to simulate file transfer
activity.

Additionally, local work station controllers collect
performance measurement data, such as:
microprocessor utilization, device-attachment 10
adapter utilization, task manager queue length
counts, and display station response time (the
time from when the operator presses the Enter
key until the work station controller unlocks the
keyboard). Each display station’s response time is
kept to indicate the actual response time
experienced by the user. A host-processor
performance monitor retrieves the performance
measurement data from the work station
controller, formats the data, and then presents a

summary of the data to the system operator. The
information presented can indicate where system
work load balancing or configuration adjustments
are needed.

Conclusions

AS/400 work station controllers allow the
attachment of a broad range of work station
devices. The controllers provide a high level of
function, including field editing, keystroke
processing, word processing features, and
national language support, that relieves the host-
processor load.

The key work station controller design objectives
were to present a common operating system
interface, provide functional transparency
between local and remote controllers, integrate
national language support, and provide highly

reliable, easy-to-service hardware and microcode.

The use of a layered microcode structure and
common, highly integrated hardware logic

facilitated the development of a family of work
station controllers that meet these objectives.

™ AS/400 and Personal System/2 are trademarks of
International Business Machines Corporation.

133



The Multiple-Function Input/Output Processor

Describes the capabilities of the Multiple-Function Input/Output Processor, the design philosophy, and the hardware and microcode

technologies used.

Charles A. Lemaire, Renato J. Recio, and Stephen P. Hank

Introduction

The AS/400™ Multiple-Function Input/Output (1/0)
Processor was developed to meet the needs of
the AS/400 9404 System Unit. The Multiple-
Function /0 Processor, a combination of
hardware and microcode, merges the functions
for a service processor, magnetic-media storage
device control, and communications control into a
one-card I/0 processor. These functions were
previously implemented by three separate 110
processors. The design is a significant
breakthrough in minimizing product costs of the
9404 System Unit. The Multiple-Function ;0
Processor gives small system models the full-
speed performance of the attached 10 devices,
with a minimum of /0 processor overhead. The
design is flexible, allowing implementations that
provide dedicated magnetic media and
communications I/0 processors to be easily
derived from the primary multiple-function design.
This approach allowed the best of existing 1/0
processor designs to be combined into fewer
cards, while allowing incremental performance
improvements in specific functions through the
dedicated 1/0 processor cards derived from the
same design.

Design Philosophy

The Multiple-Function 1/0 Processor is a
combination of hardware and microcode that
performs low-level control of disk devices or
communications lines, combining the service
processor, media storage device control, and
communications control. Commands sent by the
9404 System Processor specify the various

134

operations to be performed by each 1,0 processor
in the system.

The service processor function performs the initial
program load (1pL) for the system, provides an
interface to the customer control panel, and
diagnoses the system 1/0 bus when the System
Processor cannot. The service processor also
has a time-of-day clock supporting a timed power-
on function for the system. Special storage
contains the system vital product data, which has
numbers to identify part type, engineering change
level, and serial number.

The magnetic-media processor function services
disk, tape, and diskette /0 requests from the
System Processor, controls the magnetic media
devices and data flow, and analyzes errors. Two
interfaces facilitate attachment of magnetic media
devices. A Small Computer System Interface
(scs1) bus provides the interface for disk and tape
devices. This scsi bus is asynchronous and
supports a 1.5 megabyte-per-second data rate.
An ansi 3.8 interface allows the attachment of
either a 5.25- or 8-inch diskette drive.

The communications processor function handles
data and commands to and from the
communications lines. The microcode supports
four communications protocols: asynchronous,
binary synchronous (Bsc), synchronous data link
control (sbLc), x.21, and x.25. Three electrical
interfaces are supported: rs232, x.21, and V.35;
each of these is implemented on a separate small
book communications card.

In the process of combining the three functions
into one card, the system cost is reduced by
eliminating redundant hardware parts and using
common code routines. The hardware of a single
microprocessor, control storage and storage
controller, and system 10 bus adapter is time-
shared by the various 170 processor functions. The
control program, bus interface code, and other
common code have just one version for both the
Multiple-Function 110 Processor and the single-
function cards derived from it. On the multiple-
function card, these programs appear in main
storage just once but service several i/0 functions,
thus reducing overall storage costs.

The Multiple-Function 10 Processor was
designed to be fast enough for the system to
benefit from the full speed of the attached 1,0
devices. Dedicated, single-function 1/0 processors
were then derived by depopulating the basic
design. These single-function 1/0 processors have
better performance than the Multiple-Function /0
Processor because they do not have to spend
time switching between the various functions. The
design team was able to maximize the
performance of each 170 processor by optimizing
one basic design. The 9404 System Units can be
configured and fully functional with just one
Multiple-Function 1/0 Processor, an

internal microprogramming interface (Mp!) card,
and a work station controller. The Multiple-
Function 1/0 Processor card provides small
models with competitive 1/0 processor
performance. Incremental performance
improvement in particular areas can later be



obtained by adding dedicated-function cards as
needs arise or budgets allow (see Figure 1).

Performance improvements over other dedicated
single-function /o processoers were needed to
meet system performance objectives when all
three functicns were performed from one 1,0
processor. Enhancerments created for the
Multiple-Function 170 Processor consist of
multiple data paths (from devices cr

Main Storage

Private

System /0 Bus

communications lines to the system) through the
iy0 processor, and an embellished microcode
structure to make use of the new functions. This
improved software structure provides the utmost
quality because a single hardware design is made
to work, and work well, for all three of the major
functions.

The Multiple-Function o Processor is flexible
enough for dedicated magnetic media and

Work Stations

Bus

Disketie

ZEC0n

Figure 1 9404 System Data Flow

c
o C C C
n 0 v} (o}
1 M M M
r M M M
0

| 3 4 5
p e
a

n

[+

|

RSLL343 1

communications 170 processors to be derived
from the primary multiple-function design. The
hardgware chip set from a single design effort can
be used as a Multiple-Function 1,0 Processor, a
communications 1,0 processor, or a magnetic-
medla /0 processor.

The Multiple-Function ;0 Processor requires all
the pieces to be incorporated into a multiple-
function design taking one card slot in the system.
Two sockets are provided from the Multiple-
Function ;0 Processor for communications

cards. Customers can ¢choose among the three
different electrical interfaces for communications,
and can mix or match small bock communications
cards to meet their requirements. This minimizes
inventory requirements and lowers the cost for an
upgrade; an upgrade involves adding or replacing
a communications card, rather than replacing an
entire /O processor card.

The communications 170 processor uses the
generic modules (such as the microprocessor,
storage controller, storage chips, and the like) to
provide a dedicated controller card with three
sockets for small book communications cards.
Here again, the small book communications cards
can be mixed or matched and provide for an
inexpensive and efficient method ¢ customize or
upgrade.

The magnetic-media iy processor takes the
generic hardware modules and the magnetic-
media control chips to provide a one-card,
dedicated-function magnetic media controller. This
design is packaged on the 9406 System Unit card
to provide the larger systems with a standard scsi
bus.

Hardware Technology

The 0 processor hardware is a set of silicon
integrated-circuit chips soldered to a printed-
circuit card. This card is assembled between
covers that form a book assembiy, with

135



connectors on the edges (see Figure 2).
Communications cards containing optional
hardware in small books can be plugged into
these edge connectors (see Figure 3). These
small book communications cards customize the
1/0 processor for particular applications. (For more
details on the packaging, see the article Power,
Packaging, and Cooling for the 9404 System Unit.)

A general-purpose microprocessor with a 32-bit
internal architecture and a 16-bit external data bus
is used as the programmable controller for the
design. The Multiple-Function 1/0 Processor has 2
megabytes of dynamic random access memory
(rRam) for program storage and 64 kilobytes of
erasable programmable read-only memory
(EPROM) for control of the 1L, diagnostics, and
bootstrap loaders.

The microprocessor bus is extended to top-card
edge connectors to allow communications cards
to be attached. These communications cards are
designed to meet the specific requirements for
one of three communications electrical interfaces.
Any two communications cards can be attached
to the Multiple-Function ;0 Processor card. (The
dedicated communications /0 processor version
of the design accommodates any three
communications cards simultaneously, and
supports much higher aggregate speeds.)

Direct memory access (DMA) data transfers are
supported in two modes, single-sided or double-
sided. Single-sided bma transfers occur in or out
of 1jo processor program storage across the
system 1/0 bus or between 1/0 processor program
storage and an attached 1/0 device. Thus, relative
to the 1/0 processor, which has an interface bus
on two sides, single-sided bmas transfer data
across only one side. Each phase of the single-
sided transfers requires processor intervention to
set up and start the operation. Double-sided bma
data transfers occur directly between the 110
device and the system 1/0 bus without being

136

RSLL405-2

Figure 2 Multiple-Function I1/0 Processor Book
Assembly

routed into the 1/0 processor program storage.
Thus, a double-sided bmA operation transfers
data across both interface sides of the 1/0
processor. Single-sided transfers have the
advantage of allowing 110 processor programs to
operate on data being transferred. Double-sided
DMA has the advantage of speed and reduced
utilization of the /0 processor (see Figure 4).

Previous 1/0 processors supported only two
interleaved bma paths. As one path was
processing a transfer, the 10 processor program
could be setting up the alternate path. The bma
activity on the alternate path would be started as
soon as the bMA completes on the first path.
Typically, i/0 processor engines spend a lot of time
supporting DMA activity because each path is
limited to transferring only a single block of data
before having to interrupt the processor for a path
switch.

RSLL406-3

Figure 3 Multiple-Function I1/O Processor
Communications Cards

In the Multiple-Function 1/0 Processor design, two
significant performance enhancements were
added to the bma data transfer control: multiple
DMA paths and minimized processor intervention
through multiple-block transfer.

The first performance improvement, multiple bma
paths, therefore supports seven bMA paths for the
scsl bus, one path for the ansi 3.8-type diskette
interface, and one path shared among the
communications cards. Thus, the basic design
provides a separate DMA path for each device (the
communications lines are lumped together into
one device path by this feature). One additional
path transfers command and status messages
between the System Processor and the 1/0
processor.

The second enhancement, minimized processor
intervention, allows for multiple-block transfers




without the need for block-to-block 110 processor

engine intervention. The 0 processor engine sets

up the bma path for the entire transfer, up {0 32K
bytes. This is achieved by loading the transfer
parameters into a series of registers, then setting
a status bit in the hardware to indicate the path is
waiting to run, When paths that were previously
set up finish. the newly set-up transfer will be run
in its entirety by the hardware. The processor is
interrupted cniy after all blocks have been
transferred.

Any or all of the oma paths can be set up to
perform a bma transfer across the system 0 bus,
but only ore is given access at any one time, The
DmMA paths are granted interleaved access 10 the
system ;0 bus based upon a pricrity established
by the hardware. Each path retains access for the
duration of a single block transfer. Path priority is
re-evaluated after the completion of each block to
allow access by paths having higher or equal
priority to that of the current path. This
implementation provides maximum utilization of
the internal bus 1o support oma activity with
minimum invelvement of the ;yo processor engine,
ireeing the engine to perform other processing
tasks.

The Multiple-Function (/O Processor Scsi
controller provides all the control needed on the
sCsibus to complete an entire read or write
sequence to a device without requiring processor
intervention. This design requires the 110
processor engine to build the scsi command
block, write it to a buffer, then load the scsi
controller registers with specific oma transfer
parameters. From this point on, the hardware
performs all functions needed to send the
command to the device, transfer all required data,
and receive the ending status. Only then is an
interrupt generated to the 1o processor engine
indicating completion of the requested operation.

| System /0 Bus DRVRS/RCVRS | Control Panel Interface |
i

System Bus Adapter Controf Pansl c®
Cantral Logic Corirol Logic ] o ”
40K CMDS TK CMOS m || ©
183 110 137 110 m m
m

P la
Microprocessor o] ol
Bus v a
t | %[
d

iPL ROS .

64K X 16
M ) Storage
agnetic ntrol Logic
Media Bus ?ﬁ:-mos g _ VPD 1 E !
Q

Storage | i E
_ Bus VPD 2 m || m
256 X 4 m

i P -
Control = = 0 C
Storage Time-of- Fl.l @
1M X 24 DRAM Day Clock | ! v
d

2 |

Diskatte

Data Bufer nteal Logic
Sy 7K CMOS
| 5 RAM

137 17O

Device DRVRS/RCVRS
8CS)

Figure 4

DSKT DRVRS/RCVRS |
ANS! 3 8

Multipie-Function 10O Processor Data Flow

O o< (!;-.——.—»(‘D}'C.‘!—U—‘

RELL3E4-2



Electronic Packaging

The functions of each 1/0 processor are
aggressively packaged on single cards, 145mm
wide and 280mm high, with: two wiring planes for
power on the printed-circuit card; random
connections between signal wires on different
planes on 2.54mm centers; and up to three signal
wires between adjacent connections with
standard pin-in-hole component mounting.
Maximum utilization of available card space is
accomplished by embedding most of the circuitry
in custom very large scale integration (vLsI) cMOS
chips, and using the new 256K by 4-bit dynamic
RAMs available in a zip package (see Figure 5).

Four cmos-I gate arrays are used: one 10,000-cell
gate array providing 174 signal pins, and three
7,000-cell gate arrays each providing 137 signal
pins. The cmos-1 gate arrays use 1BM's 1.5-micron,
double-metal process involving nine standard and
five personalized mask levels, packaged in a pin-
grid-array module measuring 36 mm by 36 mm.

The cmos-Il gate array uses 1BM’s 1-micron
(effective), double-metal process involving 14
personalized mask levels. Re-formed pins on the
outer edges of the package allow the 40,000 cells
and 183 signal pins to be packaged in a pin-grid-
array module measuring 36 mm by 36 mm.
Embedded in the cMos-il array are 6 kilobytes of
RAM used for data buffering between the 170 bus
and the 10 interleaving data paths internal to the
card.

RSLL385-1

Figure 5 ZIP Package

138

Two megabytes of dynamic RAM, arranged as
1,048,576 by 24 bits, are available for on-card
program storage. Twenty-two of these bits
provide 16-bit-wide data storage with six bits of
error correction circuitry. If a failure is detected in
any of these 22 bits during IpL tests, the spare two
bits are swapped by the hardware, and the IPL is
attempted again. The 24 storage modules use a
minimal amount of card space (26 mm by

126 mm), as a benefit of using the zip package.

Design Process

The design effort was ambitious. The hardware
developers designed 22,000 new circuits, and
mapped 13,000 circuits of existing designs into
the cMos technologies. They simulated and built
prototypes of the design, verified the implemented
functions, and delivered full-function, working
hardware to the microcoders on an aggressive
schedule.

A single-pass design approach was taken,
employing high-level modeling languages to
develop new hardware functions. Functions
already available but residing in older technologies
were converted to cMmos technology using
automated mapping tools. Extensive chip-level
simulation was used to verify the new functions,
as well as the mapped functions that had been
merged with the new.

The entire card design was simulated using
parallel processor engines to verify the circuitry in
a multiple-chip environment. A high-level design
language was used to describe the signals
between the custom chips and the other card
components. Assembly-language instructions for
the microprocessor, representing the diagnostic
programs that would later be embedded in EPROM,
were run against the multiple-chip model to verify
the control and data-flow paths between the
custom chips, and the microprocessor and its
program storage. These diagnostics were again
used on the hardware prototypes, to verify the

real hardware function. On the 9404, these
diagnostics are run every time the card is
powered on, to verify continued correct operation.

Reliability

Besides the obvious advantage of lowered cost,
the consolidation of the three /0 processor
functions into one card controlled by a single
processor improves system reliability. This is a
result of a reduction in the number of ;0
processor engines, their associated program
storage and EPROMs, and the bus adapters they
require.

Redundancy was used to improve overall
reliability of the converged cards. Redundancy is
also used in the scsi data buffer. At IpL, any of the
3K-byte buffer areas reserved for a specific scsi
device can be dynamically re-allocated to any of
three back-up areas. The hardware therefore
compensates for at least three failures in the scsi
static RAM, or possibly more, depending on the
type of failure.

Software Technology

The 110 processor microcode is a set of programs
that run in the 170 processor hardware to control
the interpretation of commands, the flow of data,
and the detection and analysis of possible errors
(see Figure 6). This software consists of a set of
common service routines and a set of 10 control
programs, considered as user tasks.The Multiple-
Function 1/0 Processor operating system is an
object-oriented subsystem. An active object is
represented by a running task or process that
handles a specific set of work.

The common service routines help to insulate
each user task from the specific hardware
implementation. These routines are machine-
operating services, the Multiple-Function 110
Processor control program, the interprocess
communications facility, the bus transport
mechanism, and the system bus manager.



Machine-object services provide four functions:
object activation/deactivation, incremental
download, object configuration, and subsidiary
reliability, availability, and serviceability. The first,
object activation/deactivation, allows the 110
processor to have an object loaded in storage
only while it is needed. For example, disk objects
are always active and thus always in storage;
however, certain communications objects are
needed only when the System Processor requires
those communications services to be active.The
second function, incremental download, provides
for objects that are not used continuously and
therefore do not always need to be in storage (for
example, communications protocols). The
incremental download function allows these
objects, and subfunctions within objects, to be
loaded into the 170 processor from the System
Processor as they are needed.

Third, object configuration code obtains the
resources required by the object (for example,
control blocks and data buffers). And finally,
additional code provides error logging,
performance measurement, and diagnostic
testing functions used to isolate problems in the
Multiple-Function 1/0 Processor hardware and
software. In Figure 6, this is labeled subsidiary
RAS, meaning that it provides reliability, availability,
and serviceability for the 1/0 processor subsidiary
of the System Processor.

The next common service code, the Multiple-
Function 1/0 Processor control program, provides
a set of operating system services needed to
support a multitasking environment. These
services include: task-to-task synchronization
(using semaphores), message queueing and
handling, storage and buffer allocation, initializing
and assigning priority to tasks, exception
handling, and functions that support interrupts.

The interprocess communications facility provides
a means for two processes to communicate with

User
Application
08/400

10P [10P[10P|

nomO—-<mo

Figure 6 Microcode Structure

each other without either process being
concerned with the other’s physical location or
with the hardware and software used to carry out
the communications. The interprocess
communications facility is used by Multiple-

RSLL386-5

Function 1/0 Processor user tasks to open a
connection between two tasks (where both are
internal to the 10 processor, or where one is
internal and one external), receive requests from
the System Processor, set up Multiple-Function

139




I/0 Processor hardware to perform the requests,
and send responses back to the System
Processor.

The bus transport mechanism is used by the
interprocess communications facility to move
control blocks and data across the system 1/0 bus
(that is, between the System Processor and the
I/O processors). It also contains recovery
procedures, which are used if errors are detected
during the transfer.

The final common service code, the system bus
manager, is the microcode interface residing in
EPROM that is used to control the actual hardware
and service the system 170 bus.

1/O Processor User Task Functions

The user tasks control the three 170 processor
functions: magnetic-media storage device
interface, communications protocols, and
service processor function.

Three types of magnetic-media storage devices
are supported: disk, diskette, and tape units.
Although only one copy of task code is in storage,
each device attached to the Multiple-Function 110
Processor is provided with a separate device
task-control block. This allows other devices to
remain operational when any single device
detects and reports a hard error. Each magnetic-
media storage device task contains the functions
needed to: initialize the task; receive requests for
the task (through the common service routines);
decode the request and translate it into a
sequence of device-level commands; perform
error recovery procedures for the scsi bus and
storage devices; maintain measurements for the
devices; set up the system (using common service
routines) and the device hardware; decode device
responses; and send formatted responses to the
System Processor.

The communications code layers are composed
of data-link control, media access control, and

140

port manager layers. These layers, in combination
with the operating system code, provide
communications microcode for the Multiple-
Function 10 Processor card or small book
communications cards.

The data-link control layer provides specific
protocol support for asynchronous and three
synchronous (Bsc, SDLC, and X.25) protocols.
These four data-link control types form separate
tasks, where the machine object services facility
loads and activates the protocol dynamically,
based on system needs. The code is re-entrant,
so multiple lines can share one set of code in the
processor. The machine object services code
monitors whether the code is being used, and
deactivates the code only when all users have
finished. The four protocols are fully implemented
in these data-link control layers. The media
access control layer provides the microcode
interface to the small book communications
hardware, which provides block check character
generation and checking, interrupt generation, a
4-byte buffer, and bma control. The port manager
provides the microcode interface to the
communications line electrical interfaces (Rs232,
X.21, and v.35).

Finally, the service processor user task provides
IPL support to start the System Processor, and
provides IpL status, system status dump, and
problem analysis for the system hardware and
microcode. It further provides the interface for the
customer control panel, the time-of-day clock, and
the vital product data.

Design Process

Hardware simulation is a vital part of the design
process which is needed to reduce the
development cost, enhance product quality by
automating the analysis and verification of the
design before prototypes have been built, and
speed delivery of a working system. This allows
the designers to remove many of the errors
normally found after the high-density vLsi chips

have been fabricated. This early removal of
defects shortens the time needed for all later
phases of the debugging process. The
specification for each vLsi chip is sent to the
manufacturing facility with the idea that they are
one-pass-design parts. While some of the chips
required minor corrections and thus a second
pass, both the overall effort and design cycle time
were reduced substantially.

Also crucial to our process is the early
development of a microcode simulator. This
simulator provides a high-level view of the facilities
on the card as well as some system functions,
without trying to describe each gate and latch.
This microcode simulator was first used to debug
the test cases that exercised the hardware
simulator. This assisted in the removal of test
case errors, which had not been found in manual
inspections, and which would have been difficult
and tedious to find when searching through the
volumes of excruciating detail provided by the full
hardware simulator. The key use of the microcode
simulator occurred later, when it was used for
early debugging of the code that controlled the 10
processor. The 10 processor’s control program,
and each of the tasks that control an individual
device or communications protocol, could be
exercised before the hardware returned from the
manufacturing facility. As with hardware
simulation, the early removal of faults speeds the
later phases of the debugging process.

A major trade-off in developing a microcode
simulator is the time and resource cost involved to
develop a detailed and accurate simulator
compared to the benefit of having that improved
detail. The simulator did not implement certain
complicated features because any errors they
helped find could be more effectively discovered
and removed in the laboratory. Considerable time
was spent designing features to make the
simulator easy to use, such as the capability to do
full-screen data entry, and displays that grouped
registers related to similar functions. Much



debugging of controlier code was done on the
simulator because it was available early, was easy
to use, and was simultaneously available to many
people on display stations that were in each
designer’s office.

The software bringup and functional-unit test
process is designed to minimize the
dependencies among software components.
Rather than require that each software
component be debugged and brought up in
sequential order, the design process identified a
set of functional units that could be brought up in
parallel. This significantly reduced the time needed
to bring up and test ;o processor functions.

Conclusions

The Multiple-Function 1/0 Processor provides a
subsystem with the full functional combination of
three 1;0 processors and meets the performance
requirements of the 9404 System Unit.

Though developed on an aggressive schedule,
the Multiple-Function /0 Processor is a high-
quality product because a multitasking control-
program environment allowed much of the design
from three ;0 processor subsystems created for
the 9406 System Unit to be reused in this design.

The Multiple-Function 170 Processor provides a
configuration for the 9404 System Unit with high
reliability and lower cost than would be obtained
from a combination of single-function cards. Using
vLSI circuits and eliminating multiple components
like microprocessors, control storage, and bus
controllers, contribute to these benefits.
Customers are thus provided with an excellent,
low-cost system that can be enhanced to gain
performance through the addition of dedicated,
single-function cards based on the same design.

™AS/40015 a trademark of International Business Machines
Corporation,

141



Power, Packaging, and Cooling for the 9404 System Unit

Reviews the design of the power, packaging, cooling, and acoustics for the 9404 System Unit.

Zanti D. Squillace, Richard A. Tenley, Frank J. Lukes, and Arthur P. Reckinger

Introduction

The AS/400™ 9404 System Unit supports
individual removable modules for disk devices,
diskette devices, tape devices, a Battery Power
Unit, a Feature Power Supply, and feature cards
(see Figure 1). The structure has been designed
to provide optimum cooling of the components, in
addition to protection from radio and radar
interference and static electricity. It also ensures
low acoustical levels, achieved through optimum
fan selection and positioning. For flexibility when
choosing components, the devices are packaged
so they automatically connect to their respective
signal and power connections during insertion. A
distributed power system provides a Battery
Power Unit, and also provides flexibility for
installing future technological enhancements. The
modular system structure, the device and logic
packaging, the distributed power system, and the
Battery Power Unit are designed to make the
9404 System Unit easy to assemble and service,
and to allow flexibility to meet future growth
requirements.

System Structure

The system structure is a metal unit that houses
the system’s modular building blocks. The metal
chassis was constructed to form an enclosure
that protects the system components from
outside electromagnetic radiation when they are
installed. This was accomplished by controlling
the size of air-flow louvres, by specially plating the
components, and by using grounding springs on
storage devices, the logic cage, and card
assemblies. Extensive computer simulation and
medeling helped ensure the design would meet or

142

Control Panel

Diskette Drive

Tape Drive

Disk Drive 3

Disk Drive 2

Disk Drive 1

Feature Power
Supply

Battery Power Unit

RSLL391-3

Figure 1 Front Views of 9404 System Unit Showing Multiple Modular Units



exceed all Federal Communications Commission
(Fcc) regulations.

The system and logic cooling fan is mounted as
an integral part of the base power supply. This
location yields the best system cooling
performance and lowest fan-blade acoustics.
Additionally, modular units are used for ease in
manufacturing and field service. The tape and disk
modular units each contain an additional fan to
ensure high reliability.

To align and dock the modular units precisely, the
mating connectors were enclosed in a unique,
non-conductive floating polymer shell. A three-
dimensional computer simulation system was
used to ensure reliable docking would occur each
time with this design. The resultant docking ability
is provided with inexpensive, though highly
reliable, industry-standard connectors.

Protection from electromagnetic interference (emi)
and electrostatic discharge (ESb) was a prime
requirement in the design of the 9404. The metal
chassis is constructed to form an enclosure that
protects the system components from outside
radiation when they are installed. Flanges on the
component assemblies give metal-to-metal
contact and, for the storage devices, springs are
used in each base to achieve grounding when
insertion is complete. EMC treatment of the logic
cage, large books, and small books is
accomplished using die-cast metal enclosures
and grounding tabs at the junctions of each book
with the logic cage, and also at the junction of the
small book with its large book (see Figure 2).

Early manufacturing involvement was a key item in
the design of the 9404. A system that is easy to
manufacture was built by carefully designing
relatively large subassemblies using common
parts, which ensures easy installation of
subassemblies, and by maximizing access to all
components, fasteners, and cabling.

Large Book

Small Book

Logic Package

Base Power —

RSLL392-2

Figure 2 Rear View of System Showing Removal of Books and the Logic and Power Packaging

Designed to be expandable, new devices are
added to the system as features. The building
blocks provide the flexibility to accommodate new
devices developed in the future, including logic
families and new storage devices.

Device and Logic Packaging

The disk and diskette modules each contain a
power regulator to convert the distributed power
(24 volts pc) to the voltages required by the
device. In addition, power and signal cables are

143



provided that connect to the central cabling
assembly. This provides flexibility when choosing
devices, because they do not have to have the
same power requirements and connection
arrangement.

The logic-package cage consists of a die-cast
aluminum top and bottom, with sheet-aluminum
side plates to support the books. This gives
excellent light-weight mechanical support, as well
as EmMc protection. The books are designed with
alloy covers for mechanical strength, component
protection, tolerance control, and EMc protection.
Connections between the logic cards and the
backplane are made through industry-standard
DIN connectors. These connectors contain a
special feature for properly aligning the pins with
the sockets in the books.

Distributed Power System

The power system design for the 9404 was
changed from the usual multilevel, centralized
power system to a distributed power system. The
distributed power system was selected over a
multilevel centralized power system to provide
lower cost and to meet an aggressive design
schedule. With the distributed power system, the
utility power is converted to + 24 volts bc and
routed to regulators located throughout the
system. Figure 3 shows the various components
of the power system and how they connect. Some
of the advantages of the distributed versus central
power system are: the power distribution system
uses smaller gauge wire, making packaging
easier; the loads are next to the regulators,
reducing power distribution problems and
regulator stability problems, and providing tighter
voltage regulation; the regulators are added with
the function they support; and the heat dissipation
of the regulators is spread throughout the system,
rather than just at the power supply.

144

Card

Enclosure —___|

+12v,35V

On Back
Planar

Distribution Cable

+ 24V
B
O |
o
Charger
| Switch/
Batteries Control
(+24V) - .—I
Diskette Regulator
Tape Regulator
Disk Regulator
Disk Regulator
Disk Regulator

RSL1393-3

Figure 3 Components of the Power System and

Their Interconnection

Battery Power Unit

Distributed power also allowed a Battery Power
Unit to be incorporated easily into the power
system. This feature provides a function similar to
that of an uninterruptible power source. When
utility power is interrupted or brownout conditions
exist, the Battery Power Unit automatically
supplies the power for the system until utility
power is restored or until its batteries are
exhausted. The Battery Power Unit has a built-in,
constant-current battery charger with taper
charging to maintain full battery power during
normal operating conditions. The charger features
over-charge protection and alerts the system
when the battery charge falls below half. The
Battery Power Unit provides power for at least five
minutes on a fully featured machine, which is
sufficient to overcome most electrical
interruptions.

During the time the system is running using the
Battery Power Unit, the entire system continues to
function. Many times attached display stations are
turned off during the power outage. When their
power is restored, users can continue without
having to perform an initial program load (ipL) or
allow the device to recover before using the
system.

Conclusions

The design of the 9404 System Unit offers a
modular package that can be upgraded with
minimal changes to the mechanical package. This
modular package, combined with the packaging,
distributed power, and battery power features,
provides for ease of manufacturing, assembly,
and service. The design is also flexible, allowing
for the addition of future improvements and
applications.

™AS/400 is a trademark of International Business Machines
Corporation.



145



Improved Methodology for Hardware Quality and Reliability

Describes the unique quality and reliability approach taken to ensure the AS /400 system met its requirements.

Keith L. Thompson and Duane A. Spencer

Introduction

The standard method of determining system
quality and reliability has been to compare the
complete system target with the accumulated
component values as they become available. Such
an approach does not focus on individual
component quality and reliability early enough in
the development cycle to ensure that optimal
changes can be made.

An improved method was used to ensure the
hardware quality and reliability of the AS/400™
system. It involved establishing quality and
reliability targets for each system component in
parallel with the functional design.

Approach

Quality and reliability targets were established for
all major hardware components of the system
(logic cards, packaging, input/output (1/0) units).
These targets were based on both capability
(technology, function, previous designs) and need
(market expectations, anticipated future growth,
requirement that new systems exceed replaced
systems). Using the component quality and
reliability targets, calculations were made to
ensure that system quality and reliability
requirements would be met.

Component targets did not change based on the
system impact of other components. That is, no
component was allowed to be of lesser quality
because another component was improved. This
prevented using the system requirements as a
bargaining chip and kept each component on the
path of improvement. This method also prevented

146

the system from just marginally meeting its
requirements.

Each hardware component was compared to its
individual targets using projections of the quality
and reliability parameter values of its design and
manufacture. These projections were part of
product and service cost planning for each
hardware component. The component developers
were involved in making the projections, as were
the system users of the component.

A major advantage of setting targets and making
projections early in the design was that key
problem areas were identified while improvements
could still be made to the design and
manufacturing process. This was critical to
ensuring the system would still meet its
requirements when the designs were completed.
The projections also allowed design trade-offs to
be evaluated as the design proceeded to achieve
the most optimum results.

This approach put quality and reliability on the
same level as functionality; it was designed into
the product from the start, rather than relying on
discovering defects during testing and then
making changes to try to meet the requirements.
The early quality and reliability design resulted in
the use of highly reliable technologies,
redundancy and error retry in critical areas, and
error correction codes to correct multiple hard and
soft main storage errors.

This approach continued with changes to the
design, target, and projection values until each

major hardware component used by the AS/400
system achieved acceptable quality and reliability
parameter values. A flow chart of the approach is
shown in Figure 1.

Implementing Quality

Quality involves preventing and removing defects.
The hardware design and manufacturing areas
set targets for defect-free parameters.

Extensive use was made of design and simulation
tools. (See the article VLS/ Design Process for the
System Processor.) Design reviews and formal
tests were conducted to measure the defect-
removal process compared against projections
and targets. The parameters used were the ratio
of part numbers released versus part numbers
changed and the contribution to the system
quality level.

Concurrently, the manufacturing process was
structured in such a way to minimize defects while
testing to remove those that did occur, and
conducting audits to measure the effectiveness of
the process. Defect-free rates were projected for
the different manufacturing steps and compared
to the targets required to meet the system quality-
level parameter. (See the article Manufacturing
Card and System Tests.)

Implementing Reliability

Reliability involves performance over time, and
therefore is not as easily measured as defect-free
rates. Reliability projections emphasized accurate
detail at the hardware-component part level based
on the application, testing, and history of the



parts. A file of hardware reliability data was
compilled for each major design component to
compare with the target parameters for early-life

Trade-offs,
Target
Improvement

Projection

| - __f..-._ e

_ _ egm W Target
¥ Gorroct?

Projections
_ at System Lavel
_Acceptable?

Used tor
Levai Cuality
Retiabllity

and average-life failure rates. Any component that
was over target had to establish a plan 10 meet
the target.

Figure 1 Quality and Rehability Methodology

Identify
Key Problems

Maodification

ESLLI7A-2

Results

As projections were made and compared to
targets, an iterative set of actions based on
identified problems changed the design as it was
being compieted. This resulted in logic redasign,
technology changes, stress screening,
manufacturing testing and process changes, as
well as target improvements. (The approach is
demonstrated in Figure 2.) Each new pass of
projections was improved based on information
gained from the previous pass and corresponding
design changes enhanced quality and reliability.

Among the major changes made to ensure the
system requirements were met were: improved
cooling to reduce operating temperatures (a 10°C
change can increase component failure rates by
50 to 100%), and stress testing during functional
operation of components in manufacturing, which
removed up to 90% of the residual defects.

Overali, this resulted in a two to 10 times
improvement in the quality and refiability values of
various components (logic cards, power, and

o |
£
= | . ; |
g . . Firat Projeclion Pass
s i
c | - WWHFHSI
Pard
3 < Average Life Target
a Early Life \
g Targets
Third Projectian Pass
- — — .- — +

Ttme from System Ship
RSLLAT-0

Figure 2 Example of Reliability Improvement



packaging) from the first set of projections to the
final one.

Conclusions

Although this method cannot always guarantee
that targets will be met, the reasons for unmet
targets can be understood and quantified. For the
AS/400 system, this approach produced quality
and reliability that is superior to that achieved
through system-level or post-design modifications
alone. The outcome is a system design cycle that
increased the average system reliability over four
times its initial value, with improvement beyond
comparable predecessor products. On the
average, the AS/400 logic electronics should not
fail during the life of the product, and its magnetic
media 1/0 is the most reliable produced by 1BM
Rochester, thereby establishing the AS/400
system as the new standard for quality and
reliability.

Acknowledgements

The authors wish to thank the reliability and
serviceability work group and the reliability
department for their work in establishing the basis
and tools for this approach.

™AS/400 is a trademark of International Business Machines
Corporation.

148



149



Design of the IBM 9332 Disk Unit

Presents the hardware improvements and changes in design philosophy and procedures that provide the high capacity per cost, performance,
and reliability of the iBm 9332 Disk Unit.

Earl A. Cunningham

Introduction

The 1BM 9332 Disk Unit has 200-megabyte and
400-megabyte versions. A photograph of an open
400M file used in the rack-mounted 9406 System
Unit is shown in Figure 1.

The 9332 Disk Unit incorporates significant
improvements in capacity, performance, cost, and
reliability. This not only includes advances in the
basic magnetic components, but also significant
changes in design philosophy. These, together
with advanced electronics and data handling
processes, allow improvements in capacity and
reliability significantly above that expected from
the improved magnetic components alone.

The design philosophy used for the 9332 Disk
Unit emphasized the basic benefits of minimum
cost for capacity, high performance, and high
reliability. The capacity per cost is increased by:
increasing the area used for data, using that area
more efficiently, recording at the higher density
achieved by better components and improved
data processing, and reducing production costs.
The Disk Unit has improved seek times and a
higher data transfer rate. The reliability of the Disk
Unit is increased by basic improvements in the
head and disk, and manufacturing quality control.
The reliability and capacity are also improved by
additional recovery procedures for failures that
might occur.

These improvements are addressed in three
categories: the physical file design, electronic
design, and data handling. (For additional

Figure1  AnIBM 9332, 400M Disk Unit with the Covers Removed

150



information, see the article The Disk Manufacturing
Process.)

Physical File Design

Physical improvements were made to the heads,
disks, and actuator. The head is a manganese-
zinc monolithic of 1IBM, Rochester, MN, design.
The design improves the head efficiency, which
improves the signal-to-noise ratio compared to
that obtained with standard monolithic heads [1].
The disk’s particulate coating is prepared using a
new coating technology [2, 3] that provides a
much smoother surface, better particle
dispersion, and fewer and smaller defects than
those obtained with standard processes. The
actuator system for the 9332 Disk Unit (400M) has
two separate actuators (see Figure 1) for faster
operation and more operations per second.

The usable disk area of the 9332 is significantly
increased from previous products, providing more
useful recording space. Area usage is improved
by combining the sector-identification field with
the data field, so that only one (rather than two)
synchronization field is necessary [4]. This
improves the format efficiency, providing
additional space for data, and improves reliability
by including the identification field within the data
error-correction algorithm. Because both the
identification field and data are written
simultaneously, the chance of them being
misaligned is eliminated.

Another small factor in providing more surface for
data is the allocation of more alternative sectors at
the inner tracks, where the probability of defects is
higher, and fewer alternatives at the outer

tracks [5].

The mechanical integrity of the head to disk
interface is another important aspect of the
physical file. The development of a reliable head
to disk interface is a difficult problem, involving the

characteristics of the head and disk material, the
physical flatness of the head and disk, the fly
height for both steady-state and dynamic-access
conditions, and the effects of environmental
variations. Other concerns include possible disk-
clamping distortions, the quantity and movement
of the added disk-lubrication material under
various types of operation, and many other
variables. A significant number of personnel and
amount of equipment was dedicated to the in-
depth investigation of these effects, resulting in
the selection of the head to disk fly height for the
best possible signal-to-noise ratio while providing
a very reliable design. This was accomplished at a
small cost per file due to the large number of Disk
Units being built.

The mechanical integrity is also maintained by the
disk enclosure design and manufacturing
technigues that minimize contamination. One of
the most significant contaminants is magnetic
particles from permanent magnets that find their
way to a head. If they attach to a head near the
disk surface, some demagnetization of the
medium can occur, thus degrading the signal-to-
noise ratio of the recording. While the magnets in
a disk unit are normally coated to prevent
magnetic particle loss, the 9332 goes a step
further. The disk enclosure is closed before the
actuator and motor magnets are installed. These
components are outside of the disk enclosure.
This allows the heads and disks to be assembled
into the 9332 in a magnetically clean area, and the
inside of the completed disk enclosure thus
remains magnetically clean for the life of the 9332.

Electronic Design

The electronic design of the 9332 provides many
advantages. One is the use of an improved
baseband recording code, a run-length limited
RLL(1,7) code with a two-thirds rate [6]. The 1
refers to the minimum number of consecutive
encoded zeroes and the 7 to the maximum

number of consecutive encoded zeroes between
encoded 1's. The recording code most often used
for current disk units is a run-length limited
RLL(2,7) half-rate code. For the same data rate, the
RLL(1,7) two-thirds rate code has a maximum
recorded-transition density 12.5% higher than that
of the RLL(2,7) code, which causes the RLL(1,7)
code to have somewhat more bit shift than the
RLL(2,7) code. However, because the two-thirds
rate code has one third more time for each
encoded bit to be detected than with a half-rate
code, a significantly larger tolerance for bit shift is
allowed. The RLL(1,7) code used in the 9332 thus
provides about 5% higher capacity than that
obtained with the RLL(2,7) code.

Another significant improvement is in the arm
electronics module, which is a head-signal
preamplifier. Standard preamplifiers have a
damping resistor across the input to damp the
head resonance during write operations.
However, during reads, the thermal noise this
resistor generates significantly contributes to the
total electronic noise. The new amplifier has a
network that damps the write-current waveform
without adding any extra thermal noise during
reads, thus improving the signal-to-noise ratio.
Without the damping resistor during readback, the
head has an under-damped resonance. This
increases the high frequency data signals nearer
the resonance, which outweighs the noise
increase due to the higher source impedance.
This further improves the signal-to-noise ratio and
also provides some of the required equalization of
the readback signal. The increased signal-to-noise
ratio with the new design allows the recording
density to be increased about 12%.

Another improvement is the use of a single-burst
error correction code (ECC) as a first recovery
procedure. If a single-burst error occurs, the data
from the next sector is read and pipelined while
the correction is being made to the first sector.

151



The data buffer and fast-parallel interface
normally allow the file to continue reading without
time lost to added disk revolutions. Only sectors
with two or more error bursts require additional
revolutions to reread the data. This ecc allows the
recording density to be increased about 10% with
the resulting higher soft-error rate compensated
by the ecc. The measured performance of the
9332 shows that typically over 99% of the soft
errors are corrected by the single-burst Ecc.

Another improvement is the fault-tolerant
synchronization byte for each sector. The
tolerance allows the proper starting point of each
sector to be identified, even when a soft error
occurs in that byte [7]. This feature reduces the
number of missing-sector failures.

The addition of microprocessor control provides
an improvement by allowing optimization of each
head and disk combination. During 9332
assembly, one of eight different write-current
values and one of eight detection parameter
(delta-v) values for each head at each of three
radial bands may be selected to optimize the
performance. These values are stored on the
9332 and are loaded into active storage for each
power up. The improved performance can be
exchanged for a 5% increase in recording density.

The new servo code and control system used in
the 9332 provides an improvement by allowing the
other described improvements their full capability.
The new servo system provides the smaller head-
to-track misregistration required at the higher
track densities, where the smaller track width
causes more rapid signal loss with off-track
distance. The higher linear density reduces the
side fringing of the recorded track, which saves
space but does not separate the data as far from
interfering signals, further restricting the tolerance
for off-track distance. For more information, see
the article Digital Servo Control for Disk

Units [8, 9, and 10].

152

Data Handling

The self-testing capabilities of the 9332 assist in
determining the optimal current and detection
parameters (delta-v) for each head. The 9332
performs its own surface-analysis testing, locating
any defective sectors. These reduce testing costs
by eliminating file testers. In addition, several data
processing procedures are used in the data
recovery procedures and in data quality
maintenance, improving performance and
reliability and allowing further capacity increases.

Previously, today’s recoverable soft errors were
unreadable hard errors. Thus the early error rates
were required to be nearly as small as the hard-
error rate. With a modern system, most errors are
due to electronic noise and not due to any actual
flaw in the system. Maintaining a very low soft-
error rate required lower recorded densities to
obtain the higher signal-to-noise ratio, which, by
today’s standards, represents a poor use of the
available signal. Recording at higher linear and
track densities results in more capacity and a
lower signal-to-noise ratio, with a corresponding
higher soft-error rate. The higher rate can easily
be handled by the 9332’s data recovery
procedures. The higher soft-error rates are
associated with the natural electronic noise
deviations that are uncorrelated for each reread,
which allows very effective recovery. Although not
immediately obvious, the design using higher
density with the higher error rate actually
improves performance over low error-rate
designs.

In the 9332, the areal data density was increased
by 20% by allowing the corresponding increase in
soft-error rate. (For best results, improvements
are taken partly by increased track density, and
partly by increased linear density.) During typical
operation, the recovery time from the increased
soft error rate reduces throughput by less than
0.1%. However, the increased data rate with the
higher linear density actually increases the

throughput by a much more significant amount
than the minor loss due to the recovery times.
Thus, allowing an increased soft-error rate not
only allows increased capacity, but also increased
throughput.

The 9332 has extensive data recovery procedures
that are rapidly accomplished with the internal
control. In addition to the initial single-burst Ecc,
the recovery procedures include the standard
methods of rereads on track and off track, but
combined with the Ecc. Where a normal recovery
procedure would attempt a single-burst ECc,
recovery, the 9332 provides a double-burst
correction capability for data recovery. This allows
the correction of two independent errors within
the sector.

After all the normal data recovery procedures are
done, the remaining errors would normally be
hard errors. However, in the 9332, a unique
function has been added to the recovery
procedure, which virtually eliminates the dominant
cause of hard errors. This condition can occur if
the adjacent tracks overwrite part of the track of
interest to such a degree that no head position
allows the data to be read correctly. Because the
data tracks are placed close together to obtain
high capacity, this large interference can occur
with low probability and under extreme conditions
for heads near the maximum of the track-width
tolerance distribution. Figure 2 shows a read-head
gap, with partial edge sensitivities indicated by the
dark edge area. The head is over a data track, T2,
with severe interference from adjacent tracks T1
and T3 due to track misregistration, with the
written positions both inward from their normal
position.

Previously, to keep the probability of a hard-error
occurence to less than once in the life of the disk
unit, the written tracks had to be sufficiently
separated so that only deviations greater than 5.5
sigma in track misregistration would cause the



T1 T2 T3
| | |
] ] |
| -1 |
| |
Data ,

TMR ! :‘_ ' : TMR
[ : 1
Adjacent Adjacent

Data Track Data Track

RSLL387-2

Figure 2 Read-Head Gap Over Data Track with
Severe Interference

failure. For such failures, it was found that the
remaining signal from the partially overwritten
track was more than enough to recover the data
correctly if the interfering signals could be
excluded. The 9332 was thus designed to read
each adjacent track sector, store and verify the
information, and then pc-erase the adjacent
sectors [11]. Figure 3 shows the interfering tracks
erased. Because the track misregistration is
almost always less than the extreme value that
caused the severe problem, erasing tracks T1 and
T3 does not erase all of the interfering recorded
signal, so the sector on track T2 may still not be
read correctly. If this occurs, the head is offset to
find the position that avoids the stronger residual
interfering signal (as indicated in the figure), where
correct reading of the data is much more likely.

If recovery is still not possible with the head on
track or in multiple off-track positions, the
adjacent sectors are again bc-erased with the

T T2 T3

Erase AT AR | Erase

RSL1388-2

Figure 3 Recordings with the Interfering Tracks
Erased

head offset inward toward T2. Reading is again
attempted at several positions. If this is not
successful, the adjacent sectors are erased again
with more inward offset, and reading is again
attempted at several off-track positions. Because
the exact position of the remaining recorded track
is not known, gradual erasing guarantees that,
when sufficient interfering signal is removed, the
largest possible data signal strength remains.
After recovery, the data and the adjacent sectors
are rewritten and verified for accuracy. This
process is so effective in recovering data from
extreme interference situations, the disk unit can
be designed with the tracks placed closer
together without causing a data loss due to track-
to-track interference. The increased 9332 track
density provides 4% more capacity, improved
protection against interference failure, and
minimal error-recovery impact on throughput. The
cost of the added capacity and protection gained
by this procedure is small. The microcode

program required for this procedure is stored on
the 9332 and is read and loaded into the
microprocessor if it should ever be needed.

Another unique process added to the 9332 is that
of data-quality maintenance [12]. This procedure
provides protection from various small
degradations from continued track-misregistration
effects, slight changes due to aging of
components, or other small problems. While
occasional rereads are required due to the normal
extremes of electronic noise, more than a few
steps of the data recovery procedure indicate a
possible degradation. In this case, the sector
number and a score related to the depth of
recovery are entered into a large raw-data error
log. If a previous score exists for the sector, the
new score is added to the previous total. A
sufficiently high score indicates a degraded signal,
so the sector is rewritten and verified for accuracy.
It is then listed in a smaller log of rewritten sectors
and the raw-data error score is reset to zero.
Multiple small scores, as well as one high score,
will cause a sector to be rewritten. The verifying
procedure uses a reduced recovery procedure,
because the data should then be of good quality.
Data not verifiable with simple recovery
procedures indicates a magnetic defect in the
sector and the sector is recommended for
reallocation. With proper data verification, no
recommendation is issued. The microprocessor
uses disk unit idle time to analyze the error logs. If
this shows that significant errors have reappeared
on a previously rewritten sector, a
recommendation for reallocating the sector is
made. If either log is full, the newest entry
replaces the oldest entry. At higher error rates, the
log’s data is flushed out faster, so that only
sectors with error rates significantly above the
disk unit average are identified.

Using this process, small degradations can be
eliminated by rewriting weak sectors. The process

153



allows for different error rates in different disk
units, which prevents a high occurrence of
rewrites for high, but normal, error rates. This
process gradually eliminates the weaker sectors
of a disk unit during its early life, assuring a more
uniform and more reliable disk unit. This process
automatically occurs for any sectors being read.
For sectors that may have no read operations
during normal customer use, protection is
provided when a periodic backup reads all of the
disk unit’s data. This process thus refreshes data
and cleans out the poorest sectors on the disk
unit, providing continued data protection over the
disk unit’s life.

Other logging and analysis of non-data errors is
also done in the 9332, providing early detection
and analysis of possible electronic degradations.

This provides additional safety for the stored data.

Development

Most of the design aspects of the file are tested
on several precision test stands, such as the one
shown in Figure 4.

The test stands include air-bearing spindles and
laser-controlled access slides for precision head
and disk testing in an enclosed clean-air chamber.
The operation of the spindle, access slide, data
channel, and data handling and analysis hardware
are exercised by computer-controlled test
programs for analyzing the error rate.

The effect of data-recovery algorithms is also
tested on a precision test stand. The results
provide better understanding of the recording
system, which supports new developments. The
tests also quantify the value of each new
development. Additional testing of each new
development is done during disk unit operation to
verify the benefit expected.

154

y
Vo 3
s pardae s s
el 11

o b
iR

Figure 4

Conclusions

The 1BM 9332 Disk Unit includes basic head and
disk improvements that increase the available
signal level. A new data preamplifier design
reduces the electronic noise level. The new design
philosophy allows better use of the signal-to-noise
ratio, resulting in more capacity. Single-burst error
correction without loss of disk revolution time and
self-implemented data recovery procedures
permit a higher recording density and increase the
throughput. A patented recovery procedure and
patented servo system allow tighter packing of

A Precision Test Stand Used in Disk Unit Development

data tracks, again providing more capacity. A
data-quality maintenance system prevents long-
term degradations of the data, and the self-testing
capability of the 9332 reduces cost. These
improvements provide better capacity per cost,
performance, and reliability. Future disk units will
continue to benefit from many of the
improvements first developed for the iBm 9332
Disk Unit.



References

1.

10.

11.

12.

LeVan, D. iBM Rochester), Beverse Window Ferrite Head,
1em Technical Disclosure Bulletin, Volume 26, Number 3B.
August, 1983

Peugh, H.V. and AW. Ward (1Bm San Jose), Coating
Thickness and Wedge Geometry Control for Magnetic
Disks, U.S. Patent 4,485,758,

Hagen, J.A., M.A. Wilke, and J.E. Maloy (1IBm Rochester),
Magnetic Disk Coating Method and Apparatus, U.S. Patent
4,587,139.

Greenberg, R. and D.A. Styczinski (1Bm Rochester), Sector
ldentification Method for Hard Sectored Hard Files, U.S.
Patent 4,656,532.

Anonymous (E.A. Cunningham, izm Rochester), A New File
Defect Strategy, Research Disclosure, Number 267 July,
1986.

Adler, R.L., M. Hassner, and J.T. Moussouris (I1Bm
Research), Methad and Apparatus for Generating a
Noiseless Sliding Biock Code for a (1,7} Channel With Rate
2/3,U.5. Patent 4 413,251,

Cunningham, E.A. (IBm Rochester), A Fault Tolerant Sync
Byte for ALy(2,7} and RLi(1,7) Codes, 1em Technical
Disclosure Bulletin, Volume 29, Number 1. June, 1986.

Collins, O.W. and F.E. Axmear (1M Rochester), Phase
Modulated Servo System, U.S. Patent 4,549,232,

Collins, D.W. and M.A. Weed {iBm Rochester), Phase
Difference Demodulator, U.S. Patent 4,642,562,

Ottesen, H.H. et al (1iem Rochester), Adaptive Controt
Technigue for a Dynamic System, U.S. Patent 4,687,127

Cunningham, E.A. and D.C. Palmer {ism Rochester), Error
Recovery Procedure Using Selective Erasure, U.S. Patent
4,516,165.

Cunningham, E.A., D.W. Hegeman, and D.A. Styczinski
(1iem Rachester), Prevention of Hard Errors in Magnetic Files
Due to Long Term Degradation, 1iem Technical Disclosure
Bulletin, Volume 92, Number 10. March, 1987.

155



Digital Servo Control For Disk Units

Describes the microprocessor-based head-positioning servo control for the dual actuators in the 18m9332 Disk Unit.

Hjalmar H. Ottesen

Introduction

With the availability of low-cost microprocessors,
a revolution is under way in the design of servo
control for electromechanical systems. Typically,
the servo control was designed using amplifiers,
resistors, capacitors, inductors, and continuous
sensor inputs. This type of control, called analog
servo control, has been used to position recording
heads in disk units for more than two decades [1].
The discrete components in an analog servo
control system have initial tolerances that will drift
with age and temperature. This may cause less
than optimal system performance.

Another type of servo control is digital servo
control, in which all the resistors, capacitors,
inductors, and amplifiers are physically replaced
with a microprocessor. The sensor inputs are
sampled and the measurements are converted
from analog-to-digital (A/D) representation so that
the inputs can be understood by the
microprocessor. In the same fashion, the output
control signals from the microprocessor must be
converted from digital-to-analog (D/A)
representation to actuate the electromechanical
system. In a digital servo control, all the values of
the system parameters are represented by digital
numbers, which do not change with age or
temperature unless programmed to do so [2].

A full-scale move from analog servo control to the
more reliable, less costly, and higher performance
digital servo control has begun. The 18M 9332 Disk
Unit is part of this movement. It has a 400-
megabyte capacity on four disks, with average

156

access time less than 20 milliseconds. The 9332 is
the first 1Bm disk unit to have recording-head
positioning under total control of a
microprocessor, giving it the best tracking
performance of any announced 18m storage
device.

Digital Servo Control

The objective with a high-performance storage-
device actuator’s servo control is to move the
recording head from one track to another, and to
settle on that track within a small off-track error
limit in the shortest possible time. After the head
has settled on the track, the servo must be able to
keep the head on the track within the specified
off-track error limits.

Figure 1 shows a conceptual block diagram of the
9332 digital servo control. The recording head,
reading magnetically pre-recorded patterns
forming 74 radial servo sectors, produces
position-error information. These radial sectors

Control

D/A Uik)

Figure 1 Concepts of Digital Servo Control

are interlaced with 74 radial data sectors on each
of the eight disk-recording surfaces. The analog
position error signal, indicating the amount the
recording head is off track, is converted to digital
by an A/D and fed into the microprocessor every
260 microseconds. The microprocessor has
stored microcode representing the estimator and
controller algorithms, and will output a digital
control signal for each sample period. A p/A
conversion performed on the control signal results
in an analog signal that is amplified by the current
driver to drive the actuator voice-coil motor,
keeping the recording head on track.

The model of the actuator is a sampled double
integrator, with bias forces and time delay. The
microprocessor stores track position, estimated
velocity, estimated bias force acting on the
actuator assembly, and integrated track-position
error, which are all processed every sampling
period. These variables are called state variables
and are modeled as discrete-time linear difference

Reference

|
Position
X (k)

Microprocessor

RSLL327-2



equations. (Mathematical expressions for the
discrete-time dynamic actuator model are shown
in Figure 4, equations 1 through 5; for additional
information, see [3]).

Estimator Description

In any high-precision servo design, sensor inputs
from the electromechanical system for states of
position, velocity, and bias are required. In
general, the more relevant, independent, and
noise-free the sensor inputs, the better the overall
servo performance. Sensors, however, are
generally expensive and add complexity to the
design. The microprocessor, containing an
approximate dynamic model of the
electromechanical system, can, with just one or a
few sensor inputs, compute other states (for
example, velocity and bias). The estimated states
can now be used in the controller-feedback
algorithm, together with the measured sensor
states, to yield good overall performance at low
cost.

With each position-error signal measurement, a
corresponding control signal corrects the head
pasition. The new estimated velocity and bias are
calculated from the present position-error
measurement and previous values of estimated
velocity, bias, and controller output. The estimator
design is independent from the controller design.
Its dynamic response for this disk unit was
determined by two estimator gain constants. The
estimated velocity is used as one of the inputs to
the controller, and the estimated bias is only used
internally for removal of bias errors from the
velocity estimates. This state, called previous
contrel, is used as ancther variable in the
estimator to eliminate the effects of delay. (The
digital estimater algorithm is shown in Figure 4,
equations 6, 7, and 8.)

Controller Descriptions
For each sampling period, the controller cutputs a
linear combination of measured and computed

states. The controller has two different modes: the
track-follow mode and the track-seek mode.

Track-Follow Mode

The purpose of the track-follow mode is to keep
the recording head on track in the presence of
actuator disturbances such as bias forces,
external vibrations, disk spindle bearing run-out
and imbalance, and noise in the position
measurement. The four state variables (position,
estimated velocity, integrated position, and
previous control) are each being multiplied by
separate control-gain constants. The sum of
these four products is fed back and is the new
updated control based on the current position-
error measurement. (See Figure 4, equaticn 9, for
the mathematical expression of the track-follow
algorithm.) The controller output is converted from
its digital value to an analog-equivalent current,
which forces the actuator voice-coil motor to
position the recording head precisely over the
desired track.

Including the previous control state reduces the
effect of the total system delay caused by
microprocessor computation time, A/0 and p/a
conversion times, and actuator mechanical
transportation lag. As a result, the actuator’s
ability to settle on a track following a track-seek
operation is very fast, even though the total time
delay for the file is roughly 60 microsecends, or
about 25%, of the sampling period.

Track-Seek Mode

The track-seek control mode is used when
moving the recording head from one track to
another. The track-seek mode has two phases:
the acceleration phase and the deceleration
phase. The seek mode was guite complicated to
design, as it includes factors such as non-linear
actuator friction, voice-coil current rise time,
mechanical rescnances, and time required for the
recording head to settle on a track. The
acceleration phase provides an almost constant

acceleration until a precalculated velocity has
been reached. The precalculated velocity is
generated from one of two carefully designed
actuator deceleration-velocity profiles. A profile for
short seeks and long seeks was develcped to
minimize seek time for each type of seek. The
numbers representing the profiles are stored in
the microprocessor and present the desired
velocity during deceleration for any given distance
from the desired track. In the deceleration phase,
the servo control forces the actuator to follow the
precalculated velocity profile (see Figure 2). The
estimated velocity is subtracted from the desired
profile velocity, and the resulting velocity
difference (velccity error) is multiplied by a
velocity-gain constant to yield the correct
controller output to follow the velocity profile. {See
Figure 4, equation 10, for the track-seek
algorithm.)

The switch from track-seek mode to track-follow
mode occurs when the recording head is 15% of
one track-spacing away from the desired track.

4
pai

Velocity
Deceleration
Profile

Profile |Short Seek=B-D-0
Velocity

Tracks-to-Go
(Position)

RSLL328-2

Figure 2 Velocity Deceleration Profile Versus
Tracks-to-Go Used in the Track-Seek
Mode

157



The deceleration-velocity profile is designed so
that the head settles smoothly on the track in
minimum time.

Self-Tuning of System Performance

Typically, a storage-device actuator’s servo
performance changes with time and
environmental conditions. The disk units tuned to
optimal performance during manufacture
gradually become detuned with time and
temperature. Some disk units use various
compensation schemes to minimize this effect.
Most of these schemes are typically designed for
an average disk unit, in that all disk unit
parameters are assumed to be at their average
values. However, as hundreds of thousands of
disk units are built, the average disk unit is just a
statistical concept. It is therefore important to
measure parameter variations for each individual
disk unit while it is operating as part of a data
processing system. Once parameter changes are
identified, the gain coefficients can be
automatically changed in the controller algorithm
to again yield the optimal performance. Such a
system is called an adaptive, or self-tuning,
control system. Figure 3 shows a conceptual
block diagram of an adaptive actuator servo-
control system. The darkly shaded blocks are
electromechanical components, while the lightly
shaded blocks are microprocessor functions.

The 9332 has implemented an adaptive control
system (patent-pending) to keep its controller
tuned for peak performance over time and a
range of temperatures. Two important values that
can be measured or estimated online are: power-
supply voltage, which is important during the
track-seek mode, and a parameter called I';,
which is proportional to the loop gain of the
closed-loop servo. I', is used to update the gain
coefficients in both the track-seek and track-follow
algorithms.

158

Seek/Follow
Control

Velocity
Seek
Profile

Dark Blocks are Analog
Light Blocks are Microprocessor Functions
Blocks with a Slanted Arrow Indicate Online Tuning

Reference
Input

> X, (k)

1G]

N\
X, (k) _
Velocity,
N Bias, and
X5 (k) X, (k)
* o PRE
X4 (k) = U(k-1) t
Estimation

RSLL329-3

Figure 3 Conceptual Block Diagram of IBM 9332 Adaptive Actuator Servo Control

The power-supply voltage is measured by an A/D
converter built into the microprocessor chip. The
voltage, measured during initial and later online
calibrations, is used to recompute the velocity
profile table. Because a 1% change in power-
supply voltage can introduce a 0.4% error in a
generated profile velocity, the adaptive nature of

the system is quite important by making the
deceleration-velocity profiles independent of
power-supply variations.

The I, parameter is slightly more difficult to
estimate. The estimate can be obtained during
acceleration when the actuator voice-coil driver is



supplying a known current and is not saturating.
Position measurements and corresponding
controls are obtained for several sectors, and
estimates of ", are computed using a very simple
algorithm (see Figure 4, equation 12). The

estimate of I',.

estimates are then averaged to minimize the
effects of noise and to yield a good overall

When I, has been estimated, the controller gains
can be computed again. Then, with the updated
controller gains, the track-seek and track-follow
algorithms are modified for more optimal
performance. A 1% change in I, causes a 0.5%

Actuator Model

The actuator model has five distinct variables called state variable X,,
X2, Xz, X4, and X5. The five state variables have been normalized and
are defined (with units) at k-th sampling instant as follows:

The definition for these new variobles is given below; others have been
given aar |ier.

X1(k) - position (trocks)

Xo(k) - velocity (tracks/sector period)
X3z(k) ~ bias forces (equivalent tracks)

X4(k) - previous control
X4(k) = U(k-1)

(equivalent tracks)

Xg5(k) - integrated position (tracks)

Ufk) = control woput (equivalent tracks)

i}(k) -~ the predicted position ot the k-i1h sector based on the
information obtained from the (k-1)-th sector

)

X5(k) - the estimated velocity

N

X3(k) -~ the estimated bias force acting on the actuator

Lo, Lz - estimator coefficients

Track—Follow Mode Algorithm

A N N ~ n
Uk) = = Ky o Xq(k) = Ky o Xy0k) = Ky o Xalk) - Re o Xg(k) (9

The normalized digital state-space equivalent model of the sampled
actuator with delay is:

where,the Etctes haye been defined before. The controller gain constants
i s Ka v Kg , ongd Kg dre caleulaled based on Oplimal irack-follow
performance and updated online.

Xtk 1) = X (k) + X,0k) + [ o X0k + [5, © X, (k) + [, o Uk (1)

Xp(k+1) = Xo(k) + [ o X3(k) +[5 o X (k) +[5; ® UlK) (2)
X3(k+1) = X(k) (3
Xalk+1) = Uk) (4)
Xg(k+1) = X (k) + Xg(k) 5

Track—Seek Mode Algorithm

Uk = = Ry o [Xppk) = (Rpk) + [y o X4k ] = Rg e Xs(k0 (10

where some varlablas hove been defimed egrlier. The profile welocity
Xp, (k) corrected for delay is given by

the sampling period T, and the delay time h

The r:’s in equations (1) and (2) are functions of the actuator parameters,

Estimator Algorithm
The estimator state equations are:

Xpy(k) = PROFILE [X (k) + [3 o X4(k)] (1)

PROFILE = velocity deceleration profile function stored in the
microprocessor table (Figure 2)

Ry

velocity profile control gain

X, 00 = X (k=1) + Kyk=1) + [T o R kD)

s [ o Xatk=1) + [Ty » Utk=1) (6)

Xptk) = Rytk=1) + [ o Kylk=1) + [y & X, (k1)
+ (59 @ Ulk=1) + Ly o (X;(k) = X;(k)) ®))
K30 = K (k=10 + Ly o (X, (k) = X, (k) (8

[T+ = Estimator Algorithm

The estimated [ at the (k+1)-th period is a function of the second
difference of the measured position divided by the sum of the two

previous controls. [ts discrete-time mathematical expression is given by
~ Xq(k+1) = 2 o X, (k) + X (k-1)
[ R = e e (12)

UCk) + Uk-1)

RSLL414-2

Figure 4 Digital Actuator Model and Algorithms for the Estimator, Controller, and [ 7 - Estimator

159



error in the profile velocity at a given distance to
the desired track. Such a velocity error increases
the time it takes the head to settle on the desired
track and, therefore, increases the average
access time. For the track-follow mode, a 1%
change in I, results in a 1% error for all of the
controller-gain values used in the control
algorithm, causing less than optimal tracking
performance. Note that I'; will change when
changes occur in the actuator force-constant gain,
current driver gain, position-error sensor gain, A/D
and p/A gains, and so forth. I, is proportional to
the product of all the gains above. Because I, is
also an estimate of the low-frequency loop-gain,
the controller algorithm is independent of dynamic
changes in the low-frequency loop-gain.

Conclusions

The actuator servo control on the 1BM 9332 Disk
Unit opens a new dimension in storage device
design. The control algorithms reside entirely in
the microprocessor, making the servo digital in
nature. Modern digital control theory was used for
the design of this adaptive actuator servo-control
system. The adaptive controller maintains uniform
and predictable peak track-seek and track-follow
performance over time and varying temperature.
The results from servo performance
measurement tests have been very promising. In
the future, as very high-speed, low-cost
microprocessors become available, more and
more storage device functions will become self-
tuning and adaptive to changes in disk unit
components. The result will be disk units that are
almost maintenance-free and always tuned for
peak performance and reliability.

Acknowledgements

The adaptive digital servo control system for the
1BM 9332 Disk Unit was developed in a team
effort. The implementation of such a system
requires dedicated microcoding and mechanical
and electrical design efforts with uncountable
hours of testing. Credit and recognition for the

160

servo control should go to Michael C. Stich, Todd
B. Anderson, John B. Resman, and many more.
Special gratitude goes to our consultant at IBM
Rochester, Dr. G.F. Franklin, Stanford University,
Stanford, CA.

References

1. Oswald, R.K., Design of a Disk File Head-Positioning Servo,
IBM Journal of Research and Development, Volume 18,
1974. 506.

2. Franklin, G.F. and J.D. Powell, Digital Control of Dynamic
Systems, Reading MA: Addison-Wesley Publishing
Company, 1980.

3. Stich, M.C,, Digital Servo Algorithm for Disk Actuator
Control, Proceedings of Conference on Applied Motion
Control '87, June 16 - 18, 1987, Minneapolis, MN. 35 - 41.






The Flexible Manufacturing System

Describes the flexible manufacturing system designed to efficiently produce all models of the AS/400 system.

Donald L. Conroy

Introduction

The flexible manufacturing system is a low-cost
production facility capable of producing any
configuration of any model AS/400™ system, to a
customized order, with no set-up time required
between models.

With an emphasis on simplicity, this production
facility is manually oriented, provides expansion
capability, and uses a floor-control system driven
by 1BM PERSONAL COMPUTER AT’s®. This low-cost
combination provides maximum flexibility for
AS/400 manufacturing. To simplify the process, a
concentrated effort was placed on strategic
design, early manufacturing involvement,
continuous flow manufacturing, and computer-
integrated control. Other factors critical to
reducing complexity were modular product
design, minimum part content, and reduced line
storage.

Strategic Design and Early Manufacturing
Involvement

The manufacturing team for the AS/400 system
was organized while the product’s design was still
being formulated. The team’s mission was to
assist in developing a product from the
perspective of ease of manufacturing and reduced
product cost.

The modular design of the system was a direct
result of this relationship. By designing pluggable
subassemblies, the capability to customize the
product was increased, with little or no increase to
assembly complexity. The uniform design of the
subassemblies allowed the use of standardized

162

parts’ storage areas so if customer model
demands shift over time, the floor layout can
remain relatively unchanged. Set-up time between
models is eliminated, because different models
require the same basic assembly operations.
Minimizing the number of parts simplified both
assembly and parts storage. Snap covers and
thumb screws reduced assembly time and tooling
requirements. Planning such as a standardized
cable design reduced storage-space
requirements on the manufacturing floor.
Manufacturing emphasis during the design stage
clearly increased assembly flexibility and reduced
capital investment in the manufacturing process.

This was only one piece of the early
manufacturing involvement process, however.
While recommending design changes to the
product development group, the early
manufacturing involvement design team was also
feeding information back to an early
manufacturing involvement process team. This
team consisted of lead engineers representing
process, systems, procurement, distribution, and
production control. Emphasis was placed on an
in-the-door, out-the-door philosophy from supplier
lines to shipping and installation. When product
design information became available, each of the
engineers would examine the parts. Suppliers
were given early views of the part designs and
recommendations were fed back to the
development laboratory. Every part was examined
for manufacturability, delivery lead time, tooling
requirements, packaging/shipping expense, and
commonality. The results and recommendations
were continually rolled up and fed back to

development for final design consideration.
Manufacturing process evolution coincided with
product evolution.

Continuous Flow Manufacturing

The modular AS/400 design made it possible to
manufacture highly customized orders in a
production environment. The number of assembly
steps required was significantly reduced, which
enhanced process flow. Still, the number of parts
required at the assembly stations was very large
because of the variety of system offerings. Large
automated storage and retrieval systems were
considered a parts-containment requirement.
Logistics control of the high-volume, customized
process appeared to require significant
programming effort and hardware cost. As an
alternative approach, the manufacturing team
began to look at continuous flow manufacturing
(cFMm) as a solution to the parts-control problems.
It was examined from two directions: the flow
within the manufacturing process from work
station to work station (Micro-cFM), and the flow
external to the manufacturing process of parts
from suppliers and systems to customers (MACRO-
CFM). Implementing cFm reduced parts inventory
and eliminated the use of complex logistics
systems to maintain station-to-station parts
control.

Computer-Integrated Manufacturing

The computer-integrated manufacturing team,
consisting of manufacturing engineers,
distribution engineers, and systems analysts, was
formed along with the design and process teams
during the early manufacturing-involvement cycle.



Their mission was to channel worldwide order
inputs into a data base of system parts, select the
parts based on the customer order, and provide
customized assembly instructions for the
technicians to assemble the order. Interaction was
the uppermost computer-integrated manu-
facturing activity. Adjustments to the process were
identified to potentially reduce floor-control
systems architecture requirements. The system
design was looked at and adjusted to increase the
flexibility of the physical assembly process. The
team adapted the logistics systems during the
product and process development cycle to ensure
a solid transition from design to production.

The Flexible Manufacturing System

A traditional manufacturing layout is designed
around the product and concentrates mainly on
product shipment. The flexible manufacturing
system used the process flow, not the product, as
the key design point. The layout was
conceptualized before the product designs were
received in manufacturing.

Two major elements make up a process flow
design: parts coming in and product going out.
When continuous flow manufacturing is not used,
parts flow can be considered a minor design
point. Problem part locations are handled by
adding more storage space to the layout and
refilling stock less frequently. The cost is
increased space and inventory expense. With
CFM, parts storage is minimized. This means less
dollars invested in plant and equipment, but parts
must be replenished at more frequent intervals.
Because of this frequency, a good parts flow
design produces significant savings in time and
labor.

Frequent restocking, unless properly planned for,
can severely hinder product flow, which in turn
reduces output. The flexible manufacturing
system uses a U-shaped design to facilitate flow
(see Figure 1). Stations are set in place along the

U, with parts stored on the outside and product
flow set on the inside. The outside parts storage
allows easy access to the storage areas without
interrupting the work in process. The inside
product flow keeps work stations close, allowing
visible management and minimum product
movement.

The U shape focuses the flow at the shipping and
receiving dock. Parts are brought into the
receiving area and unpacked before being taken

inside the U. This eliminates congestion on the
manufacturing line caused by used packing
material kept on the line. The parts are moved to
the manufacturing line and placed in highly visible
storage areas. CFM technicians visibly monitor
these storage areas and replenish them when
quantities reach predetermined levels. Small parts
are manually transported to the line. Larger parts,
plus completed systems, are delivered by an
Automatic Guided Vehicle System to the front of
the U and the cFm technicians stock them

System Processor

Storage and Retrieval

Exp Box Disk

V

Integration |«

—

Cable Op

Cables

Parts

Pre-load

System
Rework

5|

Test

Clean
and

Claim QA

]

Slides

and = Parts

Rails

System

Unit

Build
System Unit
Storage

[SEE  |

Figure 1 AS/400 Manufacturing Process Flow

RSLL407-2

163



Figure2  Automatic Guided Vehicle Delivers Completed System to Distribution Center

manually from there (see Figure 2). Manual parts
delivery provides maximum flexibility to the
process design. Work station locations are not
governed by conveyor-spur locations and fork-lift
aisles are not needed. Shipping damage and
scheduling problems frequently encountered with
fork-truck deliveries are eliminated. The
advantage of removing fixed restrictions such as
these will be more apparent in the future when
new models are added to the existing system
configurations. The process can be adjusted
based solely on product and parts flow without
having to work them into existing, inflexible
process hardware.

164

The assembly work stations themselves consist
of modular work surfaces strategically placed on
the inside of the U. Modular stations allow the
work area to be customized not only for the
product, but for the individual assembly technician
as well (see Figure 3). This is important in a cFm
environment where the workers share tasks. Each
worker can adjust any station for size, height, and
preference. The U-shaped flow allows complete
visibility of the entire process. Bottlenecks can be
visibly identified and workers can leave their
stations immediately to assist the backed-up area
until it is on schedule with the rest of
manufacturing line.

Heavy subassemblies that could not be handled
manually were grouped into one assembly
operation, and a mechanized transfer system was
designed and installed. This transfer system is a
fixed work station, but by grouping the heavy
tasks into one operation, the requirement for fixed
work stations was restricted to this one. This
anchored station was made as flexible as possible
to be capable of handling any model in any
configuration. This required the transfer system to
operate on demand for an individual order. The
transfer car was designed to pick up specified
subassemblies and deliver them to a central lift
device where the technician could install them into
the product. The transfer car is fed by gravity-feed
conveyor spurs, limited to a maximum of four for
each subassembly. The size of four was selected
for easily visible parts management. cFm
technicians monitor the spurs to ensure adequate
supply; a flashing light indicates an empty or
malfunctioning spur. The base transfer car system
size was determined by the number of
subassemblies in the current AS/400 offering plus
six extra spurs to accommodate fluctuating
demand and model mix. The car’s drive cable is
longer than the existing track so that future
requirements for additional spurs could be served
by simply lengthening the track. The U-shaped
process was placed at one end of the building. If
demand exceeded the expansion capability of the
existing process, the modular work stations could
be duplicated (in a mirror image) at the other end
of the transfer system. This would essentially
double the maximum capacity of the line without
adding any new fixed equipment. The expense of
doubling the capacity would be limited to the low-
cost, modular work stations and some minor
modifications to the transfer system.

The assembly process flow is controlled by sets

of kanban squares. (Kanban is a term for a
marked area before and after each work station.)
A kanban is defined for each part that enters a
station and each part that leaves it. The input



Figure 3 A Modular Assembly Work Station

kanban for one station is the output kanban from
the previous station. Every square has a
maximum limit; if a square contains the maximum

number, no more parts are allowed to go into that
area until some are used up. If the squares in front
of the station are empty, a bottleneck must exist in

some operation prior to that station. The operator
would leave the station and lend assistance to the
backed-up area. If the squares behind the station
are full, a bottleneck exists after that operation.
The operator stops work at the station and again
helps out the problem area. When a square is
empty after the work station and full before the
station, the operator continues to work. This
simple concept controls the entire flow of
products through the manufacturing line. Our
flexible manufacturing system uses a kanban size
of two. The small size allows problems to surface
immediately and be resolved. If a batch of
defective parts enters the process, the maximum
number of units that can contain these parts when
the problem is discovered is two per station. The
problem is contained within the process. Work-in-
process rework costs are negligible. The defective
parts are replaced and the process flow continues
on. CFM process control is as effective as any of
the complex systems-architecture designs evident
in either process floor-control systems. Cost of
the kanban process is essentially limited to a few
rolls of colored tape used to mark the kanban
squares on the floor.

Personal computers direct the assembly at each
work station and control the transfer car, allowing
it to deliver the correct subassemblies for each
order. Personal computers also provide integrity
to the cFMm concept by ensuring that work does
not begin on an order until all previous steps have
been completed. At each station, the personal
computer displays a list of parts and their
subsequent locations within the unique order that
is about to be processed. This display of parts
and locations is limited to the tasks required at
that particular work station. Thus, the operator is
provided with instructions that allow complete
customization of the product on an order-by-order
basis. At the transfer car station, the personal
computer displays the information to the operator,
and, at the same time, directs the transfer car to
deliver the subassemblies to the operator. The

165



assemblies are delivered to the operator in the
same sequence they are to be installed on the
order. The segmented order data is passed from
work station to work station until the completed
product is finished for delivery at the work station
located closest to shipping dock.

This process provides a continuous flow of
customized systems with maximum output,
minimum expense, and no set-up time between
models.

Conclusions

Simplicity is a complex engineering challenge.
Minimizing parts storage encompasses certain
risks when parts are ordered from a single
supplier. Monitoring and managing a simplified
system is more demanding than running a system
loaded with parts and capacity. Still, the
efficiencies generated in product flow and
inventory savings outweigh the risks. By
addressing these concerns early and
concentrating on simplicity and flexibility, the
flexible manufacturing system resulted in a highly
efficient process for customizing AS/400
products.

™ AS/400 is a trademark of International Business Machines
Corporation.

166



167



Manufacturing Card and System Tests

Describes how early involvement and enhanced testing enabled the manufacturing group to deliver high-quality products at a lower cost.

Robert W. Lytle, Donald L. Beck, Mark W. Hansen, and Gary L. Kearns

Introduction

The manufacturing test objectives on the
AS/400™ system were very simple: reduce the
time and cost of testing yet deliver a system that
meets the most stringent quality criteria of any
system ever shipped from 18M, Rochester, MN.
Because our traditional test philosophy would not
meet the requirements for a shorter product cycle,
a higher-quality product, and lower manufacturing
costs, new methods were introduced to the
development and manufacturing processes.

First, manufacturing engineering became involved
in the development stage of the product to help
ensure that a stable design was delivered to
manufacturing. Manufacturing engineers stress-
tested logic cards during early engineering tests.
Second, a functional card test was used to reduce
the number of test steps and enhance the
effectiveness of the test; in a functional test, the
cards are tested in a simulated systems
environment. With a stable design and highly
efficient card testing, the final system test for the
product became a verification of the final
assembly process, rather than just a screen for
defects.

Early Manufacturing Involvement with

Stress Testing

Prior systems were released to manufacturing
when functional specifications were met. Later, in
production, stress screening indicated that too
many parts would not function within the system
specifications. This resulted in excessive scrap,
rework, and retesting.

168

To prevent this from happening on the AS/400
system, early stress tests were performed on
logic-card assemblies from early engineering
prototypes through the final design. An extra
margin of safety, or guardband, was verified in this
testing, ensuring that later manufactured parts,
obtained from multiple worldwide sources, would
operate properly through the full system-
specification range.

Guardband testing demonstrates performance
capability beyond normal system specifications. It
involves subjecting early design hardware to
extreme operating voltages, temperatures, and
oscillator frequencies to determine the actual
functional limits of a given design. By doing early
testing while development engineers were still
heavily involved, key technical people were
available to diagnose and repair potential
problems found during the tests. The early
detection of problems allowed time to modify
designs and improve manufacturing quality before
volume manufacturing began. This approach
eliminated the need to depend on a production
stress test for the life of the product.

Each logic card was stressed to at least 5°C
beyond the upper and lower temperature limits
specified for the component technologies used on
each card (see Figure 1). Some cards were tested
to as high as 90°C. The voltage stress limits were
a minimum of =+ 10% beyond the component
nominal specification limits. Where feasible,
oscillator frequencies were also varied. To ensure
thoroughness, each card was tested using a four-

<4— Stress Testing Range —ﬂ
Component '
l¢—— Specification ——| |
Range l
System ~
Operating |
Range
|4 -5 C —p ¢ +5C
S I

RSLL373-1

Figure1 TestLimits

or eight-corner test matrix. For example, one
combination of an eight-corner matrix might be
high temperature, low voltage, and a fast
oscillator.

Software test tools, such as system exercisers
and simulators, were used to run the cards during
the testing. A temperature stress chamber
environment was used to stress test each
individual logic card before the cards were
integrated into a system. Variable power supplies
were used to apply voltage stress to the cards.
Test data results, including timing measurements,
were taken as each card was stressed. This data
was tracked closely to ensure problem resolution.

The results of early stress testing were significant.
Of eight different card types tested, three failed
under some combination of stress conditions.
These problems were fixed through design



improvements or module changes well ahead of
high-volume manufacturing. When more logic
cards became available, additional cards of each
type were tested over a period of several months
to see if any module variations, due to different
manufacturing batches of cards or components,
were found.

In addition to testing individual cards, a system-
integration stress test was performed on the first
working systems. The integration stress test was
performed with temperature and voltage
variations similar to the individual card tests. This
again led to early problem detection and
resolution.

Production Card Test

In addition to the advances in early stress testing,
significant improvements were made in the
production testing of logic cards.

Single-Step Functional Test

Figure 2 demonstrates the simplified test steps
with functional testing. Previously, specialized
instruments tested different card types. The
AS/400 card functional test consists of one step
using one standard test instrument.

The functional card test is more effective than the
traditional stuck-fault test (see Figure 3). During a
stuck-fault test, the card sees patterns of 1's and
0’s, with no functional meaning, applied at speeds
much slower than in the actual system. During a
functional test, the card receives the same signals
and instructions it would see in an actual system
running in a customer environment. The functional
test takes advantage of the microprocessors on
the various AS/400 logic cards. The micro-
processor tests itself, all the logic contained on
the card, and then all external interfaces to the
card. In addition to the quality improvements,
savings were realized in engineering,
maintenance, manufacturing resources, and
inventory.

Traditional Process

Repair

IT

Analog Storage System
Test Test Verify

dl

Repair

As'};;oo Process

Figure 2 Logic Card Test Process

Selective Stress Testing

On previous products, stress tests were
performed on the complete system, stressing all
logic cards to the same limits. Although this
testing is beneficial, the AS/400 functional test

RSLL374-3

subjects individual cards to stress parameters
optimized for each card type.

Early in the production phase of AS/400 logic
cards, test results were used to produce stress

169



Figure 3

170

Logic Card Being Functionally Tested

profiles tailored to the particular failure modes of
each type of card. Using the profiles, the
automated tester subjects the logic cards to more
stringent tests, resulting in a higher-quality
product at a significant cost savings.

Real-Time Data Collection

Once the optimal tests were established, real-time
data collection was used to monitor the test
process. Components not meeting their
committed quality levels were found immediately,
eliminating unnecessary testing. The end result is
that data collection provides the information
necessary to continually improve the efficiency of
the process and the quality of the AS/400 system.

Final System Test

The final system test of the assembled AS/400
system is one additional safeguard to prevent
shipping any defective parts to a customer (see
Figure 4).

Test results on previous products showed that
only a few components had a high failure rate
after the first few hours of final test. Quality
engineering established a requirement on the
AS/400 system that all parts arriving on the final
manufacturing line must already be fully tested
and of shippable quality. To ensure this
requirement was satisfied, extensive testing was
done during the early manufacturing build cycle. A
large sample of systems was subjected to a very
long final test to ensure that systems that pass the
standard final test will continue to function
correctly.

With this requirement in place, the final system
test was done primarily to ensure the system was
assembled correctly. No extended run-in or burn-
in was needed to improve the reliability of the
system. This final test process resulted in a
higher-quality product, along with significant
savings in manufacturing costs.



Figure 4  Final System Test

To verify the effectiveness of early stress testing,
an audit stress test on a small sample of systems
was implemented to ensure once again that
quality levels were met.

Conclusions

The methods described represent significant
changes in the 1IBM Rochester manufacturing test
strategy, compared to the methods used on
previous products. The changes were driven by
requirements for a shorter development cycle,
higher quality, and lower costs. Early
manufacturing involvement was a key element in

shortening the product cycle, because design
problems were uncovered and repaired before
manufacturing began. The simplified testing in
card and system manufacturing improved the
quality of the assembled product at a significant
cost savings. The AS/400 product represents a
new milestone in manufacturing technology for
1BM Rochester.

™ AS/400 is a trademark of International Business Machines
Corporation.

171



Disk Unit Manufacturing Process

Describes advances in manufacturing processes and technology used to assemble disk units for the AS/400 system.

John T. Costello, Gary L. Landon, and Thomas J. Warne

Introduction

The assembly and test of rigid-disk storage units
is @ marriage of high technology and precision
components in the manufacturing process (see
Figure 1). The assembly consists of magnetic
heads, magnetic media, a data channel, and an
enclosure. The disk units are used for information
storage and retrieval for computer processing.

Unique techniques are used to merge heads and
disks on the Disk Unit (Feature #6100) used in the
9404 System Unit. And, on the 9332 Disk Unit, the
disk unit’s electronics and microcode perform the
surface analysis tests on itself. New supply
logistics (materials support and flow), assembly
process control, and disk unit testing techniques
provide efficient, high-quality, and low-cost
manufacturing and subsequent delivery of
extremely reliable disk units for the AS/400™
system and other computer systems.

In addition to the design, the manufacturing
process is a key ingredient for producing a reliable
disk unit. iBM, Rochester, MN, uses continuous
flow manufacturing (cFMm) to optimize production
and statistical process control techniques to
ensure high quality in shipments.

Logistics Support

CFM is our strategy now and in the future because
of the significant advantages achieved using this
manufacturing philosophy. Assembly and test
processes follow cFM concepts that are centered
around just-in-time manufacturing, more
commonly known as JiT. These concepts focus on
elimination of excesses, total people involvement,
and total quality control. To support cFm

172

Figure 1

processes in the manufacturing plant, a
continuous flow of incoming, defect-free precision
components, assemblies, and supplies is
required.

At the product design stage, an early
manufacturing involvement purchasing team was
established to work with suppliers, development,
and manufacturing. The team established supplier
selection and qualification criteria that includes

5%” and 8” Rigid Disk Storage Files with Covers Removed

using cFM and statistical process control. This
team then involved the suppliers at the design
level, allowing for better manufacturability early in
the program.

High-cost purchased parts are frequently
delivered to the manufacturing line by way of the
plant receiving dock, or puiled to the plant dock
from suppliers through a signal (phone call,
Electronic Data Interchange, or other method) as



required. Parts that are delivered directly, or pulled
through receiving, bypass inspection and
warehouse stock areas. The parts are taken to
the manufacturing line for immediate use, or are
placed in work-in-process storage areas next to
the assembly line. (For more information, see the
article Electronic Data Interchange.) The parts
ready for use are placed on a carousel. As parts
are requested, they are moved from the carousel
through a cleaner and assembled, minimizing
potential contamination. Work-in-process
inventories are kept quite small by storing them in
highly visible storage areas where they can be
readily managed.

After the disk units have been assembled and
tested, they are placed into a work-in-process
transport cart to be moved to the systems
manufacturing line or the shipping dock. The disk
units are pulled, as needed, to the systems area
from manufacturing on a daily basis, or as
needed. The signal to replenish inventory at the
system areas is empty carts. The number of carts
is kept low to minimize work-in-process inventory
between disk unit manufacturing and the using
areas.

Assembly Process Control

In the disk unit assembly process, several major
activities are used to control and monitor product
flow, including cFM, @ manufacturing control
system, statistical process control, and
automation.

Because the Disk Unit (#6100) used in the 9404
System Unit is small, operations are placed close
together to allow manual transfers. Placing
operations close together has reduced space
requirements and the need for material handling
systems. Pull logic is a cFm technique used to
control assembly build operations and production
line flow. Assemblies are pulled from upstream
operations as they are used; inventory is not
allowed to build up waiting for use by downstream

operations. Disk unit assembly improvements
resulting from cFm pull logic are management by
sight, reduced work-in-process, and inventory
replenishment based on consumption. CFm
concepts were implemented during the design
stage of this disk assembly program. (See the
article The Flexible Manufacturing System for
additional information.)

Network
Control Unit

| R

300 Active Lines
|

The manufacturing control system is a large
central computer complex that is attached
through the network control unit and coaxial
cables to each test cell, display station, and
process computer within the manufacturing area
(see Figure 2). The manufacturing control system
is used primarily for tester control, process
sequencing, and data collection. This data
provides a history of all major events in the

Micro-

\
Micro- Micro- Micro-
processor processor processor processor

Process
Control

Process
Control

File

Manufac- || Manufac- || | Manufac- ||
turing | turing turing ]

1 1 L
1 11 |1
138 Active Work Stations

I

Il I\

)

Figure 2 The Manufacturing Control System

RSLL420-0

173



Receive Parts ||

Clean Room

~ Final Test ||
and Format |}

| ship

Class 100 T
Servo Track
Writer

Non-Filtered

Air

Figure 3 Process Flow

174

RSLL390-3

manufacturing process. The control system
directs the flow of parts and ensures that the
correct build and test sequence is followed. The
test and process data retrieved by the system
from each test and process station is used for
engineering analysis of yields and process
performance. Process data is also saved in
permanent storage for later reference.

Another method used for process control is
statistical process control. This is a statistical
method used to evaluate objectively the
performance and variability of manufacturing
processes. The manufacturing control system
collects this statistical data for analysis. Control
charts are automatically generated to provide
timely feedback to engineering and manufacturing
on specific key parameters and processes. These
charts identify trends so defects can be
anticipated and prevented and process variables
reduced over time.

Process Flow

The disk unit build processes begin on two
distinct lines, the actuator build line and the
spindle build line, which merge to form a device-
enclosure line (see Figure 3). The device-
enclosure assembly proceeds through this line
into testing.

Figure 4  5%” Disk-Stack Assembly Tool

On the actuator line, arms are stacked, aligned,
and clamped to form the actuator body. Next,
electrical connections are made between the head
coil wires and the arm electronic-terminating
pads, using a solder reflow process. Solder
deposited on the terminating pads is heated
locally to a liquid state, which allows the wire
connection. Then, the actuator assembly is tested
for electrical continuity and sent to the merge
operation.

On the spindle assembly line (see Figure 4), a
bearing is placed into a sleeve that is inserted into
the spindle bore. This subassembly is then
bonded into place using ultraviolet (uv) light to
cure the adhesive. This new uv process reduces
adhesive cure time, thus lowering work-in-process
inventory buildup. Disks and spacers are then
stacked onto the spindle hub by a robot to form a
base assembly. The disk stack is centered to
ensure that all disks are concentric with the
spindle, then clamped and passed to height-glide
testing.

The primary purpose of height-glide testing is to

ensure the disk spindle assembly can be merged
with the actuator assembly without damage (see
Figure 5). Disk surface asperities and

L]



imperfections, static and dynamic disk height, and
spindle bearings are checked to verify they meet
specifications.

In the merge operation, the base assembly, with
its disk stack, is brought together with an actuator
assembly to form a disk enclosure. Care is taken
not to damage the heads or disk surfaces, or to
generate any contamination, as this could result in
loss of data, errors in read or write, and even head
crashes. Due to the closeness of disk spacing,
special tools and techniques uniquely float the
heads onto each disk during merge. This method
minimizes head and disk damage due to contact
and prevents generation of contamination.

After the merge operation, servo tracks are
written on each disk unit (see Figure 6). On the
Disk Unit (#6100), data heads are used to servo-
write and read back track positions. On the 9332
Disk Unit, for manufacturing throughput, special
heads write the servo tracks and the disk unit data
heads provide read back of track position. The
servo data is written on a dedicated surface or on
each data surface prior to each data sector
boundary, or on both, if necessary for file
performance. A laser feedback mechanism is
used to position the heads at the correct track
spacing. These tracks must be precisely written,
both radially and on the circumference, so that
data can be written and retrieved without
interference from information stored on adjacent
tracks. (For more information, see the article
Digital Servo Control for Disk Units.)

Before the disk enclosure leaves the clean room,
it must be sealed to protect it from outside
contamination. Class 100 conditions (meaning that
less than 100 particles of 0.5 micrometer size are
found per cubic foot of air) are maintained in the
enclosure and a pressure test is done to ensure
the cover is sealed properly.

Figure 5

5%” Height-Glide Tester

g
=
Z
~
S
=
=

175



Figure6 8 Servo-Track Writer

After the enclosure is moved from the clean room,
the frame and logic card are attached to complete
the disk unit, and the assembily is tested to ensure
proper function.

Precision Handling

Precision handling techniques are used
throughout disk unit assembly, including disk
handling, disk-stack assembly, head-to-disk

176

assembly, and merge. A work-in-process carrier is
used to transport the disk unit through the
assembly process. The carrier protects it from
damage, contamination, and electrostatic
discharge (EsD). It also serves as an interface to
the tools and testers. The disk (magnetic media) is
susceptible to damage and contamination. To
reduce these exposures, they are not physically
handled. Handling is done using special tools,

robots, and automation from component disk
manufacturing through assembly of the disk stack
on its spindle. Special containers are used to
transport disks, and assembly operations use
automation and robots to move and place disks
during assembly.

Due to the close spacing between disks on the
Disk Unit (#6100), special tools and techniques
are used to prevent damage and contamination to
disks or heads as they are merged together.

The actuator, a delicate assembly within the disk
unit, requires special care and handling to protect
its sensitive components. Heads and disks are the
components most sensitive to damage, so unique
head clips and head protectors are installed
temporarily onto the actuator assembly. These
clips help prevent damage from heads contacting
each other or contacting a disk during merge or
subsequent assembly. Trained technicians are
equipped with grounding straps and special
devices to prevent Esb damage and other damage
to head suspensions, actuator voice coils, motor
magnets, and electronic modules.

Contamination

Contamination control is critical when building a
disk unit. Two types of contamination must be
controlled: particulate contamination and
magnetic particle contamination. Particulate
contamination can cause undesirable head and
disk interaction (head crashes). This
contamination is minimized using an ultrasonic
cleaning process and clean rooms for assembly.
In addition, some parts have special plating or
coatings to reduce exposure to flaking and
corrosion (sources of particulate contamination).

Magnetic particle contamination causes
degradation of signals. This source of
contamination is normally associated with the
rare-earth materials used to make voice coils and
motors. These materials are coated to prevent



them from contributing to magnetic contamination
within the process or during disk unit operation.

After components and assemblies are cleaned,
subsequent assembly, and some testing, is
conducted in clean rooms. These rooms are rated
Class 100. This cleanliness is extremely important
due to the close distance (approximately 305
nanometers) that the head flies above the
magnetic media. Employees play a major role in
maintaining a clean environment by wearing
special hoods, gowns, and gloves to minimize
contamination sources. All parts assembled in the
clean room are controlled by an Automated Parts
Handling System. The system monitors the
inventory, automatically routes parts through the
cleaners, and delivers parts at the request of
operators in the clean room (see Figure 7).

Test Process

Testing is an integral part of the disk unit
manufacturing process. Not only does it minimize
costly rework by catching defects early in the
process, but it ensures quality and reliability
through statistical analysis and test process
control.

Input Parts

General Reconfigurable Automated Parts Handling System
-
-

Carousel

-

-

-
A

-

L 0 1 1 |

-

-

-

-

L LIl -
= Ultrasonic

Robot = Cleaner

... -

-

[__|

-

-

R ..

|

]

-

L1 1 |

Conveyor
Call Stations

Clean Room
Class 100

Figure 7 Clean Room Parts Delivery Control

RSL1389-3

177



Figure 8

178

8” Device-Enclosure Tester

At the device-enclosure tester (see Figure 8), each
file undergoes tests to verify that critical electrical
and mechanical parameters are within limits.
Actuator current, head-function switch time, and
seek and settle times are measured under a
variety of situations. Head-tangential, radial-offset,
and actuator-bias current (current required to hold
the actuator on track) are measured to ensure the
mechanical system is operating correctly. A
magnetic head read-and-write test is performed to
measure error performance under forced off-track
conditions. Start and stop times, motor start up,
and constant speed idle current are also
measured. A transfer function analysis test of the
actuator control system is performed to detect
mechanical vibrations that may affect disk unit
performance. A particle-count test detects any
contaminants left in the sealed enclosure.

To ensure data integrity, a surface analysis test is
performed to locate media defect sites. If any sites
are located, they are mapped by the disk unit’s
electronics and are not used for data storage.
Test data is retrieved and sent to the
manufacturing control system to be saved and to
allow the disk unit to be routed.

The surface analysis method for the Disk Unit
(#6100) uses a traditional analog test, where a
constant frequency pattern is written on the disk
and special detectors monitor the head signal for
anomalies as it is read back from the disk. The
test is designed to be fast and thorough.



Figure 9

8" Device-Enclosure Undergoing Self Surface Analysis Test (SAT)

The surface analysis test method used on the
9332 Disk Unit is unique in that the unit actually
tests itself. The disk unit is almost completely
assembled in its enclosure when it undergoes
surface analysis (see Figure 9). The
microprocessors imbedded in the product
electronics control the test so that no external
equipment is needed.

Prior to shipment, the completed disk unit
undergoes one final series of tests to detect any
latent problems. All of the interface commands
are processed and fault conditions are simulated.
The disk unit is also run in a simulated operating
environment, and then it is formatted for shipment.

Conclusions

Several new, unique techniques are used to
assemble and test the Disk Unit (#6100) used in
the 9404 System Unit and the 9332 Disk Unit.
These activities, combined with defect-free,
precision components and assemblies, allow the
production and delivery of extremely reliable
storage units for use in AS/400 systems and other
computer systems.

™ AS/400 is a trademark of International Business Machines
Corporation.

179



Electronic Data Interchange

Describes the Electronic Data Interchange system and how it affects manufacturing not only in 1BMm, Rochester, MN, but throughout the entire

1BM Corporation.

Richard E. Albrecht

Introduction

The goal to improve the quality of business
communications between 1BM and its suppliers,
and improving productivity, reducing costs, and
enhancing customer service, was met by installing
a system using available state-of-the-art
technology, thus producing a unique and
innovative system with minimal invention.

IBM’s implementation of the Electronic Data
Interchange system is linked directly to the
Professional Office System (ProFS) and integrated
into the very fabric of the internal manufacturing
applications, in a way transparent to the end user.
The system architecture was designed to be used
at all iBM manufacturing locations worldwide.

Adapting The Existing Network and Standards
The first objective of this project was to use
nationally approved data communications
standards. The American National Standards
Institutes (ansi) Accredited Standards Committee
(x12) has been chartered to provide standard
electronic data formats for generic business
transactions, usable by any type of business entity
(public, private, or governmental). These standard
formats allow dissimilar computer hardware, with
unique internal data file formats, to communicate
electronically by converting them to a common
format.

A second objective was to use an existing

provider of networking services. The network that
offered the necessary security was the IBM

180

Infermation Network, providing proven secure-
data transmission.

The 1BM Information Network (located in Tampa,
FL) is used to send notes and files, as well as
business transactions including purchase orders,
purchase-order acknowledgements, shipping
schedules, shipment notifications, invoices, and
payment notifications.

The network product, Information Exchange (a
store-and-forward electronic mailbox system),
acts as a buffer between 1BM computer systems
and those of the supplier. This removes any direct
connection between the suppliers and 1BMm
computers and allows communications to be
restricted to designated agents at either end of
the connection.

A third objective was to integrate the Electronic
Data Interchange system into manufacturing and
office systems without disturbing existing
applications with which users were familiar and
comfortable. In fact, existing internal applications
are so interdependent that a change to one
program could necessitate changes to many
programs.

A modular design provided a solution that made it
simple to add new business transactions to the
list of transactions already exchanged
electronically between iBM and its suppliers.
Because of the way PROFs is linked to the
Electronic Data Interchange system, the only

difference between sending information within 1BM
or to an external supplier is the use of a different
destination node and identifier with the system.

The fourth objective was to allow suppliers using
the Electronic Data Interchange system to use
their own hardware and software. The iBM
Information Network allowed suppliers the
flexibility of using 1BM or other hardware in which
they had already invested.

System Architecture

IBM must provide a single Electronic Data
Interchange system solution to its suppliers, so
that those doing business with multiple 1Bm
manufacturing locations have an identical
Electronic Data Interchange system interface. The
architecture developed at 1iBM Rochester is the
basis for the Electronic Data Interchange system
architecture for the corporation. The four
components are: the internal application base; the
electronic-data standard conversion software; the
send-and-receive software; and the iBm
Information Network.

The internal applications appear unchanged and
are accessed by an end user through a display
station or an attached personal computer. A
router acts as the system traffic cop, ensuring that
transactions are routed correctly between the
internal applications, the data conversion
software, and the send-and-receive software. It
consists of a series of programs that provide the
bridge between each internal application and the
Electronic Data Interchange system.



Conversion software maps inbound and outbound
business transactions to the corresponding ANSI
x12 transaction format. Notes and files that do not
require conversion are passed directly to the
send-and-receive software. (Although only ANSI
x12 transactions are being used at this time, if a
supplier has already used another electronic data
format, the software could easily be converted to
and from any nationally approved data standard.)

The 1BM Information Network provides three types
of send-and-receive software that allows any
manufacturer’'s computer to connect to the
Network. A Systems Network Architecture (SNa)
connection allows 1BM systems to link to the
Network through a leased line or satellite
connection using the SNA communications
protocol. Remote job entry (RJE) allows an 1Bm
mid-range system, or any computer not using sNA,
access to the Network through a dial-up or leased
line. Personal Computer Informational Exchange
allows personal computers to use dial-up
capability.

The Network provides connectivity, security,
network management, maintenance, and billing,
which simplifies the support required from 1Bm
Rochester.

The supplier’'s architecture would contain the
same elements as those at i1BM. The supplier can
start using a personal computer and a dial-up
modem to exchange notes and files. The system
can grow to take advantage of business
transaction exchanges. The supplier can
implement the transactions that would yield the
greatest payback the fastest. Most industries start
with either the purchase order or the invoice
transactions, both of which are the basis for other
transactions. Additional transactions can be
selectively enabled as the supplier implements
bridges to other internal systems.

Applications
All applications shown in Figure 1 are planned to
be installed and available to our suppliers.

Two transactions that automate the receiving
process internally and aid tracking of material
shipments between 1BM and the supplier are
particularly important.

IBM's distribution-receiving function is automated
based on an Electronic Data Interchange system
interface coupled with the use of bar codes.
Suppliers are asked to send an ANsI x12 shipping
notice when material leaves their shipping dock.
On this shipping notice, the predefined control
number is converted to a bar code and affixed to
the shipment. Suppliers can use preprinted bar

Electronic Data Interchange

Application

Messages
Files
PROFS/EDI
Controls

PO/ALTER

Conversion
Schedules

PO/ACK
Invoice
Payment

Ship Notice Full X12

and (TDCC)
Bar Code

Receiving Non X12

& (370)

Network

o

Send/Receive

SNA Host

)Ry o s iy e

RJE (MINI)

PCIE (PC)

Transportation
Drop Ship

Miscellaneous

x*X~"o0s~0Z

RSLL411-2

Figure 1 Electronic Data Interchange Manufacturing Systems Environment

181



code labels (with a unique set of control numbers)
or print their own, When the shipment arrives at
1BM, the bar code is scanned, and the system is
autormatically updated to reflect the receipt based
on information preloaded on the system from the
Electronic Data Interchange ship notice. This
approach for receiving and moving material
optimizes the i8m receiving effort and simplifies
the supplier's tracking of shipments.

IBM i also pursuing Electronic Data Interchange
connections with the carriers providing
intercompany transpontation of materials. The
transpertation companies will provide 13m and the
supplier with status updates for tracking
shipments. This is especially important in the
continuous flow manufacturing world with daily,
and even hourly, shipments.

Figure 2 summarizes the types of daily
transactions that flow between buyer and seller.
All of these transactions have corresponding
electronic transaction formats.

Conclusions

The Electronic Data Interchange system provides
the common sclution for a common problem:
business communications with suppliers. It
provides the timely access and accurate
information necessary 1o improve productivity,
reduce costs, and enhance customer service,
thus ensuring 1Bm's achievement of its continuous
fiow manufacturing goals.

Continuous flow manufacturing and the Electronic
Data Interchange system are two of the tools that
enable 1Bm 10 remain competitive in a highly
competitive industry.

182

Accounts
Payable

Figure 2 ANSI X12 Transactions

Elecironic Data Interchange

Request For Quote

Purchase Crder

Purchase Order Acknowledged

Status Requesilﬁesgonse

Shipping Notice

Invoice __——

T

Payment

Selier

Crder
Processing

Accounts
Receivable

ASIL42-0



183



About the Authors

Richard E. Albrecht

Mr. Albrecht is a staff programmer in the
Corporate Manufacturing Electronic Data
Interchange project office.He joined 18Mm,
Rochester, MN, in 1979 as a systems analyst in
charge of internal purchasing and accounts
payable applications. For the past two years, he
has been working on the Electronic Data
Interchange project with suppliers. He has
coauthored a technical report on the Electronic
Data Interchange system and has participated as
a speaker in Electronic Data Interchange system
seminars held by the 1BM Information Network
Marketing group. He received his BS degree in
Computer Science and Finance from the
University of Wisconsin at LaCrosse.

Mark J. Anderson

Mr. Anderson is an advisory programmer
responsible for saL, distributed data management,
and data base as a member of the AS/400 design
control group. He also represents the AS/400
system on the saL control board. He has spent his
career working on data base related architecture,
design, and implementation. He joined 1BMm,
Rochester, MN, in 1974 after receiving a Bs in
Mathematics from Luther College, Decorah, IA.

James H. Bainbridge IlI

Mr. Bainbridge is a senior associate programmer
working in office/personal computer development.
His experience has been largely in the
development of host system-to-pc cooperative
processing functions, including pc text assist and
the pc Performance Monitor for the System/36.

184

He received a Bs in Computer Science in 1984
from the University of Wisconsin at LaCrosse.

Surinder P. Batra

Mr. Batra is a development programmer and
manager in the communications development
area. Mr. Batra defined the software structure and
led the design and implementation of the ipPcr
architecture for the test system used in testing the
I/0 processors for the AS/400 family. In his most
recent assignment, he has been responsible for
the definition, design, and implementation of the
microcode for the AS/400 Magnetic Storage
Device Controller. Mr. Batra is a member of the
Association for Computing Machinery. He
received an MA in Mathematics from the University
of Delhi, India; an mBa from McMaster University,
Hamilton, ONT, Canada; and an ms in Computer
Science from the University of Santa Clara, CA.

Donald L. Beck

Mr. Beck is a staff manufacturing engineer
working in system stress testing. He joined 1BM,
Rochester, MN, in 1968 and has worked
developing tester hardware and software within
manufacturing in the areas of card test, hard
disks, and subassembly test. He graduated in
1968 from the University of Nebraska at Lincoln
with a BSME.

Neil C. Berglund

Mr. Berglund is a senior engineer in entry systems
development. He holds 11 patents for processor
and 1/0 controller work on System/3, System/38,
and the AS/400 system. His most recent

assignment has been in developing architectures
for the AS/400 systems. Mr. Berglund holds a
BSEE from the University of Minnesota at
Minneapolis.

J. Howard Botterill

Mr. Botterill is a senior programmer in the
software strategy, architecture, and planning
group at 1BMm, Rochester, MN. He is responsible
for the user interface strategy. He joined 1BM
Rochester in 1967 and helped develop the
Muttiple Terminal Monitor Task (MTMT) system for
System/360. He worked on the Communication
Control Program (ccp) for the System/3 and had
the design control responsibility for the System/38
user interface. From 1982 to 1984, he worked at
the System Products Division headquarters in
White Plains, NY, coordinating the division’s
usability process. Since that time, he has worked
on the design of the iBM Common User Access
user interface and the design of the AS/400
interface. He received his Bs in Mathematics from
Wheaton College, Wheaton, IL, and his Ms in
Mathematics from the University of Michigan at
Ann Arbor.

Daniel S. Brossoit

Mr. Brossoit, staff programmer, was the team
leader of the location manager project on the AS/
400 system. His previous assignments have
included work on System/36 appC, System/36
APPN, System/36 mLu, and PC Support/36. He
joined 1Bm, Rochester, MN, in 1981 after receiving
a BA in Quantitative Methods and Computer
Science from the College of St. Thomas, St. Paul,
MN.



Delbert R. Cecchi

Mr. Cecchiis an advisory engineer in the circuit
technology group. Since 1973, he has worked on
the design and application of vLsi in System/36,
System/38, and the AS/400 system. He received
Bsek and MseE degrees from the University of
Minnesota at Minneapolis.

Dennis A. Charland

Mr. Charland is an advisory information developer
in the software strategy, architecture, and
planning group, where he works on the strategy
and design of user interface and user help
facilities. He joined i8m, Rochester, MN, in 1977
and was involved in developing printed and online
information for System/38 and System/36. He
received a Ba in Journalism from the University of
Minnesota at Minneapolis in 1960. Prior to joining
1BM, Mr. Charland worked at Univac, General
Atomic, and the Aerospace Corporation.

Trent L. Clausen

Mr. Clausen is a staff engineer in the advanced
systems engineering group. He was the
microcode team leader for the asynchronous local
work station controller. Previous assignments
have included microcode design on the
System/34 and System/36 local work station
controllers. Mr. Clausen joined 1B8m in 1975 after
receiving a Bsee from the University of Nebraska
at Lincoln.

Richard L. Cole

Mr. Cole is a staff programmer with the data base
management group. Previous experience includes
working as a programmer and technical team
leader on the data base, distributed data
management, and query processing components
of the System/38. He is currently responsible for
the extended control program facility data base,
query processing, journal management, and
commitment control components of the AS/400
system. He is a member of the Association for

Computing Machinery and received his Bs in
Computer Science from Michigan State
University, East Lansing, M.

Donald L. Conroy

Mr. Conroy is a new products administrator for
AS/400 systems, responsible for the introduction
of new system designs into manufacturing. He
worked as a manufacturing engineer on the
design of the AS/400 flexible manufacturing
system and as a process quality engineer
responsible for manufacturing process
certification, manufacturing verification testing,
and process capability studies. He holds an Ms in
Industrial Engineering and Operations Research
from the University of Massachusetts at Amherst.

John T. Costello

Mr. Costello is a senior engineer working on
advanced manufacturing technology. From 1984
to 1986, he worked on implementing continuous
flow manufacturing activity for rigid-disk storage
units and components. Since joining 18M in 1956
as an apprentice toolmaker, he has held staff and
management positions in manufacturing, industrial
engineering, and manufacturing engineering,
including program manager in manufacturing
technology planning. He has a s8sMEe from the
University of Minnesota at Minneapolis, an ms in
Manufacturing Engineering from Boston
University, Boston, MA, and an mBa from Mankato
State University, Mankato, MN.

Earl A. Cunningham

Dr. Cunningham is a senior engineer in disk-
storage recording component integration. From
1970 to 1974, he was Assistant Professor of
Electrical Engineering at Lafayette College,
Easton, PA. He joined 18M, Rochester, MN, in
opto-electronics, originally working in optics and
later in flex-file support. He moved to the fixed-
disk drive mission when it began at 1iBm Rochester
and has worked in that area since. Cunningham

has five US patents presently issued, two US
patents pending, and 22 disclosures published.
He received his BS, MSEE, and phD degrees from
the University of Minnesota at Minneapolis.

Stephen J. Cyr

Mr. Cyr is a development programmer in
performance evaluation, supporting AS/400
development. Previous assignments include
applications support on System/370 and
System/38, work on the System/36 5364 and the
token-ring attachment, and manager of PC
Support/3X development. He joined 18M
Rochester, MN, in 1978 with Bs degrees in
Mathematics and Computer Science from
Moorhead State University, Moorhead, MN.

Steven A. Dahl

Mr. Dahl is a senior programmer in the system
design control group. Since joining 18M in 1970, his
activities have included work on magnetic-ink
character recognition and diskette 1/0 device
support on System/360 and compiler applications,
and operating system design for the System/3,
System/32, System/34, and System/36 products.
He is currently involved with general AS/400
design and architectural considerations, with
primary emphasis on incorporating System/36
concepts and function into 0OS/400. Mr. Dahl
received a Bs in Mathematics and Computer
Science from the University of lllinois at Urbana.

Gregory A. Dancker

Mr. Dancker is a staff engineer in the advanced
systems engineering group. He was the hardware
team leader for the synchronous local work
station controller. Previous assignments have
included hardware design on System/36 1/0
controllers and adapters. Mr. Dancker joined 18M
in 1978 after receiving a BSee from the Milwaukee
School of Engineering, Milwaukee, WI.

185



Michael J. Denney

Mr. Denney is a staff programmer working in
performance comparisons. He has been involved
in performance modeling and analysis since he
joined 1BM, Rochester, MN in 1982. He has a BS in
Computer Science from lowa State University,
Ames, |A.

Carol A. Egan

Ms. Egan is currently a staff programmer in the
communications group. She joined 1Bm in 1984
after working as a programmer/analyst for Deere
& Co. She has worked on various
communications projects on both the System/36
and the AS/400 system. She has a
Comprehensive Mathematics and Computer
Science Bs from the University of Wisconsin at
Platteville.

Earl W. Emerick

Mr. Emerick is an advisory programmer in the
customer support design control group. He has
held various assignments in software
development on System/38, System/36, and the
AS/400 system in ras and customer support. His
assignments on the AS/400 system included the
development of the common ;0 architecture and,
key participation in problem management flows
and structure. He alsc made significant
contributions in the provision of the Technical
Support and Information Access functions as a
member of the design control group for customer
support. He joined 1Bm, Rochester, MN after
receiving his Bs in Computer Science from Indiana
Institute of Technology, Ft. Wayne, indiana.

Wayne O. Evans

Mr. Evans is a senior programmer in the
operational services group. He works on AS/400
programming, with overall design responsibility for
security, work management, command language,
messages, and interface. Since joining 1BM in

186

1964, his experience includes computer
monitoring of cardiovascular patients,
commmunications ;o support for the System/3,
and the Multiple Terminal Monitor Task (MTMT)
terminal system for the System/360. Mr. Evans
received a Bs in Mathematics and Chemistry from
Adams State College, Alamosa, CO, in 1962 and
an Ms in Mathematics from Kansas State
University, Manhattan, KA, in 1969. Prior to joining
IBM, he was employed by the nasa Lewis
Research Center.

Ronald O. Fess

Mr. Fess is currently the manager of the system
design group far the 0S5/400. He has previously
worked on various development projects in
System/38 crF and vMC, OS/MFT, OS/MVT, OS/VS1,
and os/mMvs. Mr. Fess is a member of the
Association for Computing Machinery. Prior to
joining 1BM in 1969, he received a Bs in
Mathematics from Augustana College, Rock
Island, IL, and an ms in Computer Science from
the University of lowa at lowa City.

Eric L. Fosdick

Mr. Fosdick is an advisory engineer in the system
design control group. He has participated in the
design of System/3, System/32, System/38, and
the AS/400 system in the areas of hardware,
software, and architecture. He joined iBM,
Rochester, MN in 1967 upon receiving a BSEE

degree from Marquette University, Milwaukee, WI.

Mark R. Funk

Mr. Funk is a staff engineer in the microcode
development crganization supporting the AS/400
System Processor. His experience includes
development of a System/38 work station
controller, development of the 5550 Japanese
wark station in Japan, and the development of
three IMPI processors. He holds three patents and
has 14 published inventions. He received his Bs in

Physics from Northern Michigan University,
Marquette, MI, and an Mset from Michigan State
University, East Lansing, ML.

Kevin P. Gibson

Mr. Gibson is a senior associate programmer
involved in designing and developing the Magnetic
Storage Device Controller microcode. His prior
experience includes design and development of
operating system and personal computer
software. He is a member of IEEE and the
Computer Society of the IEEe. Mr. Gibson received
a BSEE in 1978 from the University of Wisconsin at
Madison.

William J. Goetzinger

Mr. Goetzinger is an advisory engineer
responsible for AS/400 system simulation. He was
initially involved in the design and development of
microprocessor-based line printer controllers for
System/38. He later joined the System/38
processor development group as a hardware
designer, which led tc his involvement with
processor simulation. Mr. Goetzinger joined 1BMm,
Rochester, MN, in 1976 after receiving a BSEE
from lowa State University, Ames, IA. He has
since received an MSEE degree from the University
of Minnesota at Minneapalis.

William E. Hammer

Mr. Hammer is currently an advisory engineer in
technology and processor development. Mr.
Hammer worked on the early definition of the
AS/400 bus and was responsible for the definiticn
of the bus manager functions of the 170 bus. He
has been involved in several products concerned
with controlling 170 devices with microprocessors
and defining the attachment of 1,0 devices to
systems. He jeined 1BM in 1960 after graduating
from the University of lllinois at Urbana with a
BSEE.



Stephen P. Hank

Mr. Hank is an advisory engineer in the
configuration development group. He joined 18M,
San Jose, CA, in 1977 as a test engineer on the
3880 Device Controller. He transferred to 18m,
Rochester, MN, in 1981 where he was assigned to
engineering product support for the System/34
and, while serving in that capacity, developed the
62rC Data Recovery Program. Following that, he
became the technical project leader for the disk
adapter which attached the 9332 and 9335 Disk
Units to the System/38, and most recently, the
Multiple-Function 170 Processor. He received a Bs
in Engineering Technology from Southern lllinois
University at Carbondale in 1977.

Barry W. Hansen

Mr. Hansen is a staff programmer working in the
programmable work station group. He has been
developing 5250 emulation products since 1983,
and was technical team leader for work station
function development of AS/400 PC Support. He
holds Bsee and Mseke degrees from Washington
State University, Pullman, WA.

Mark W. Hansen

Mr. Hansen is a senior associate engineer in the
circuit package production center responsible for
the design and build of functional card testers. He
joined 1BM, Rochester, MN, in 1983 and has
worked on several different card testers during his
career. He graduated from the University of
Nebraska at Lincoln with a BSEE.

Raymond K. Harney

Mr. Harney is currently co-team leader of the appn
project. He has been involved with several
products on the System/38 and the AS/400
system including ApPC, SNA host connectivity,
node type 2.1 connectivity, SNA management
services, and 1/0 processor attachment on the

AS/400 system. Mr. Harney received his Ba in
1981 in Math, Physics, and Computer Science
from Luther College, Decorah, IA.

John Y. Harrington

Mr. Harrington is an advisory information
developer in the software strategy, architecture,
and planning group working on user interface
design and specifications. He previously worked
in the information development group as an editor,
where he worked on documentation for both
System/36 and System/38. Prior to joining 1BM in
1968, Mr. Harrington was employed by Univac as
a publications editor. Mr. Harrington received a BA
in Psychology/English in 1959 from the College of
St. Thomas, St. Paul, MN.

Peter J. Heyrman

Mr. Heyrman is a staff programmer in the
System/36 environment development group.
Since joining 1BM in 1981, his experience includes
System/36 print spooling, System/36 command
processing, and the System/36 environment. Mr.
Heyrman received a Bs in Computer Science from
the University of Wisconsin at Oshkosh.

Merle E. Houdek

Mr. Houdek is currently a senior engineer
engaged in performance analysis and modeling of
processor and I/0 hardware. His previous
assignments have been with custom systems, the
3740 Data Entry system development group, and
the System/38 development group. He joined 18m
in 1964 after graduating with a Bsee from Tri-State
University, Angola, IN.

Fred L. Huss

Mr. Huss is an advisory engineer in storage 1/0
subsystem development. He joined 1BM in 1973
and initially worked on logic design for optical
character recognition machines. He later became

involved in microcode development for display
stations and remote work station controllers,
focusing on design and implementation of sNA
and data stream protocols. He also was involved
with early project management and system
architecture definition for the AS/400 system. His
most recent assignment has been lead microcode
designer for the Magnetic Storage Device
Controller. Mr. Huss received a Bsek in 1970 and
an msee in 1973 from North Dakota State
University, Fargo, ND.

David L. Johnston

Mr. Johnston is an advisory engineer in the
customer support design control group. His
assignments have been in hardware and software
development and have centered around RAS
engineering for several optical page products and
the System/38. His assignments on the AS/400
system included the vital product data and system
reference code specifications. He also managed
the design of the tools set and processes used to
produce printed copy and online reference-code
translate tables. Mr. Johnston has seven US
patents issued, one US patent pending, and eight
disclosures published. He joined 18M, Rochester,
MN, in 1963 after receiving his Bsee from the
University of Minnesota at Minneapolis.

Christopher H. Jones

Mr. Jones is currently co-team leader of the ApPN
project. Previous assignments include work on
System/36 Appc, System/36 APPN, node type 2.1
connectivity, SNA management services, and
attachment of personal computers to the
System/36 and the AS/400 system. Mr. Jones
received his Bs in Business from Rochester (NY)
Institute of Technology in 1978 and his Bs in
Computer Science from DeVry Institute of
Technology, Atlanta, GA in 1984.

187



Gary R. Karasiuk

Mr. Karasiuk is currently in the AS/400
architecture group working on the saa application
development environment issues. He has worked
on several System/38 utilities, including seu and
cau. He has alsc worked as a member of the
System/38 design control group, representing
utilities, languages, and office. He received his Bs
from the University of Manitoba at Winnipeg in
1981 and joined 1BM, Toronte, ONT, Canada, as a
programmer after graduation.

Gary L. Kearns

Mr. Kearns is an advisory engineer in system test
engineering. Since starting with 1BM in 1967, he
has worked in new product quality engineering
performing early entry support on card, optical
character reader, and system products as well as
in the component quality and reliability laboratory
supporting vendor compenent evaluation and
release. His recent assignments have been
developing and promoting stress testing strategy
and methodology appropriate for current and new
systems products manufactured at 1Bm,
Rochester, MN,

Han—fey G. Kiet

Mr. Kiel is a staff engineer in the advanced
systems engineering group. He was a microcode
designer and microcode team leader for the
synchronous local work station controller.
Previous assignments include microcode design
on the 5294 Remote Work Station Controller and
the 5260 Retail system. Mr. Kiel joined 1BMin 1978
after receiving a Bsee from South Dakota State
University, Brookings, SD.

Harold F. Kossman

Mr. Kossman is a senior engineer in advanced
systems engineering. His current interests include
performance analysis and modeling of processor
and /o hardware, as well as system architectures

188

and configurations. He has one patent and several
published papers. Prior to joining 1Bm in 1978, Mr.
Kossman was a member of the engineering staff
at the am Corporation and at the Monsanto
Corporation. He received his Bsee from the
University of Missouri at Rolla in 1970.

Gary L. Landon

Mr. Landon is a development engineer and
manager in intermediate storage development. He
has worked in various areas of manufacturing
engineering. In recent years, he has worked on
developing manufacturing processes for storage
products. This includes the 14-inch, 8-inch, and
5.25-inch disk units.

Charles A. Lemaire

Mr. Lemaire is an advisory engineer in the 10
processor architecture and design control group.
His current responsibilities include 1,0 processor
architecture and system performance analysis
with emphasis on future enhancements. He joined
iBM, Rochester, MN, in 1976 and has worked on
System/38 Hmc doing performance medeling and
code optimization of queueing, task dispatcher,
supervisor linkage, and virtual address translation
microcode. He has also worked on the
architecture of various processors. He holds one
US patent, 10 technical disclosures, and is
recognized for his performance contributions to
the System/38 Model 7 Central Processing Unit.
Mr. Lemaire received a BSEE in 1975 and has
completed course work for an Msee from the
University of Minnescta at Minneapolis. He
received an mBa from the College of St. Thomas,
St. Paul, MN, in 1985.

Robert F. Lembach

Dr. Lembach is an advisory engineer in design
systems. His current interests include optimization
strategies for vLsI systems design encompassing
timing, placement, and routing. Dr. Lembach

received a BSEE from Marquette University,
Milwaukee, WI, and an msee and PnD from
Carnegie-Mellon University, Pittsburgh, PA. He
joined iBMm, Rochester, MN in 1979.

Richard J. Lindner

Mr. Lindner is an advisory programmer
responsible for the software development process
strategy. He joined 1BM, Rochester, MN, in 1966
and participated in both engineering and
pregramming development of System/3 with
responsibility for develeping and maintaining
many aspects of the ;0 supervisor. He then
accepted an assignment in the development of the
System/38 Control Program Facility. Since then,
he has held management assignments in both
development and development-support areas. He
became a professichal engineer through training
in the 1BM Undergraduate Engineering Education
program in conjunction with the University of
Minnesota.

Frank J. Lukes

Mr. Lukes is a development engineer and
manager responsible for mechanical packaging
and hardware integration of the 9404 System Unit.
His technical assignments, prior to being
appointed manager, were primarily in electronic
packaging of work stations and related strategic
technologies. He has held other management
assignments in advanced technology packaging.
Mr. Lukes joined 1BM, Rochester, MN in 1970 after
receiving a ssee from the University of North
Dakota at Grand Forks.

Gene A. Lushinsky

Mr. Lushinsky is an advisory engineer in storage
170 subsystem development. He joined 1BM, San
Jose, CA, in 1968, working in manufacturing and
test engineering on disk storage devices. In 1971,
he transferred to 1BM, Rochester, MN o support
the implementation and product development of



diskette devices. His responsibilities have included
both hardware logic and microcode for small
systems and 1/0 products. He has held microcode
team leader positions and had architecture
development responsibilities for work stations and
storage products. His most recent assignments
have been technical guidance for the
implementation of the storage product
architectures.

Robert W. Lytle

Mr. Lytle is a staff engineer responsible for the
final manufacturing system test for the AS/400
system. He joined 1BM, Rochester, MN in 1982 and
has worked in both hardware and software
development of manufacturing tests on system
products. He received a Bs in Mathematics in
1972 from South Dakota State University,
Brookings, SD, and an ms in Engineering from the
same institution in 1982.

Paul R. Mattson

Mr. Mattson is an advisory programmer in the
communications area. His early communications
assignments include working on the ApPC 1/0
manager, 5250 display station pass-through, and
the x.25 I/0 manager. During those assignments,
Mr. Mattson earned an ms degree in Computer
Science from the University of Minnesota at
Minneapolis. His most recent assignment included
technical design leadership for the sNa-based
data link control Iy0 managers on the AS/400
system. He is a member of the AS/400
communications design control group. He joined
1BM, Rochester, MN in 1981 after earning Ba
degrees in Mathematics and Computer Science
from Luther College, Decorah, |A.

James M. Mickelson

Mr. Mickelson is an advisory programmer in
capacity planning tools development. He joined

1BM in 1966 and worked on System/360 device
support and compiler development until 1973. He
then worked on System/3 communications
support until joining the performance group in
1978. Work in this area has included performance
modeling and capacity planning for iBM mid-range
products. He received a Bs in Mathematics from
the University of Wisconsin at Eau Claire in 1966.

John A. Modry

Mr. Modry is an advisory programmer in the
System/36 environment development group. He
joined 1BM, Rochester, MN in 1976 and worked on
System/38 work management through 1981.
Since then he has worked on System/38 3270
device emulation and had various development
and architectural responsibilities in the
development support area. Mr. Modry received a
BS in Computer Engineering and an Ms in
Computer Science from the University of lllinois at
Urbana.

James R. Morcomb

Mr. Morcomb is a senior engineer and manager of
the customer support design control group. He
joined 1BM, Rochester, MN, in 1957 and has held
various development and development
management positions with a strong emphasis
toward RAS, service, and customer support. He
managed the engineering RAS development
department on System/38 with primary
responsibility for developing the advanced
automated service support capability of the
system. In 1982, he chaired the spPD task force that
developed the mid-range systems RAs strategy
which became the basis for the RAS support on
the 9370 system and for system support. Since
1986, he has served as chairman of an
interdivisional steering committee that oversees
the worldwide implementation of system support.

Michael F. Moriarty

Mr. Moriarty is an advisory programmer in the
software strategy, architecture and planning
group. He joined 1BM, Rochester, MN, in 1968.
From 1969 to 1971, he was in the US Navy as a
programmer at the Bureau of Naval Personnel
(BupPERS), Washington, D.C. He has worked on the
software development of the System/3,
System/32, System/34, System/36, and the
AS/400 system. He received a Ba in Mathematics
from the University of Missouri at St. Louis in
1968.

Timothy J. Mullins

Mr. Mullins is an advisory engineer involved in
processor performance analysis. He has done
work in the design and development of 1/0
controllers for System/38 user display devices.
Mr. Mullins later became involved in processor
development in logic design and timing analysis.
He joined 1BM, Rochester, MN, after receiving his
BSEE degree from the University of California at
Berkeley in 1977. In 1982, he received his MSEE
degree from the University of Minnesota at
Minneapolis.

Hjalmar H. Ottesen

Dr. Ottesen, a Senior Engineer, joined iBM in 1962.
He is currently working in advanced rigid-disk
servo technology and applications. He has held
various technical positions in advanced
development of magnetic recording channels and
position servo control systems for tape, disk, and
mass-storage devices. He also spent four years in
an 18M World Trade branch office working with
customers on APL programming applications. He
has nine US patents issued and 16 disclosures
published. He received his Bs, Ms, and PhD
degrees from University of Colorado at Boulder in
1961, 1962, and 1968, respectively.

189



Renato J. Recio

Mr. Recio is a project engineering manager
responsible for the software and hardware
architecture and design of 10 adapters and
processors. He joined iBm, Rochester, MN in 1982
as an engineer working on i/0 device attachments
for the System/36. He holds several disclosures
relating to storage I/0 adapters, processors, and
devices. He is currently working on data
structures for storage 1/0 devices. Mr. Recio has a
BS in Electromagnetics/Electronics from the
University of lllinois at Chicago and is taking
coursework towards an mMBa from the University of
Minnesota at Minneapolis.

Arthur P. Reckinger

Mr. Reckinger is a senior engineer and manager
in systems packaging. He has had assignments in
card machine technology, key entry technology,
electronic packaging technology, and systems
architecture. Other assignments have included
product development on the 3747 and systems
development on the System/38. He joined 1BM in
1967 after earning his Bsee and Mset from the
University of Missouri at Rolla.

Kenneth R. Reid

Mr. Reid is a senior engineer and manager of high
performance systems hardware product design.
His experience includes design and development
of Ijo (card readers, card punches, optical
readers, printers, and check readers), System/38
service processor design, and System/38 RAs.
For the past several years, he has managed
several different departments in System/38 and
System/36 development, mainly in the area of
diagnostics and microcode development. He
joined iBM in 1964 after receiving his BSME and
MsME from North Dakota State University, Fargo,
ND.

190

Jeffrey E. Remfert

Mr. Remfert is an advisory engineer in the
advanced systems engineering group. He was the
microcode team leader for the synchronous local
work station controller. Previous assignments
have included both hardware and microcode
design on System/34 and System/36 110 adapters.
Mr. Remfert joined 1BMm in 1970 after receiving a
BseEt from the University of North Dakota at Grand
Forks.

James R. Rubish

Mr. Rubish is a senior associate engineer in
advanced systems engineering. His primary
responsibilities included the design,
implementation, and verification of the AS/400
processor. Mr. Rubish previously participated in
processor design and support for System/36. He
joined 18M, Rochester, MN, in 1984 after receiving
a Bsee from North Dakota State University, Fargo,
ND.

Larry F. Saunders

Mr. Saunders is an advisory engineer in
automation technology. Since joining 1B8M™,
Rochester, MN, in 1976, he has participated in the
development of the System/32 and System/34
processor hardware and provided support and
education to other engineers using simulation,
LSSD test generation, and structure-processing
design automation tools. Since 1982, he has led
the development of new design automation tools
related to hardware description languages and
high-level logic synthesis. Mr. Saunders is a
member of the Computer Society of the IEEE. He
received a BSEE degree in Computer Hardware
Design from the University of lllinois at Chicago.

Quentin G. Schmierer

Mr. Schmierer is an advisory engineer in the
central processor development group. His
experience at 1BM has included developing a
System/38 flexible disk controller, a high-speed
tape drive controller, and development work on
three IMPI processors. Mr. Schmierer holds an iBm
First-Level Invention Award in recognition of a
patent application and nine published inventions.
He received a BseE in 1976 from North Dakota
State University, Fargo, ND.

Michael J. Snyder

Mr. Snyder is an advisory programmer in the
system design control group. He joined 1BM,
Rochester, MN, in 1978 and has held various
assignments in software development and
management on System/38 and the AS/400
system. His AS/400 assignments included the
initial design for the customer support functions
as part of the customer support design control
group. Mr. Snyder received a Bs in Mathematics in
1970 and an Ms in Computer Science in 1976 from
the University of Missouri at Columbia. Prior to
joining 1BM, he was employed by Texas
Instruments and also served in the US Navy.

Duane A. Spencer

Mr. Spencer is an advisory planner responsible
for system hardware quality and reliability. He
joined 1BM as a customer engineer in Hammond,
IN, in 1967. In 1977, he transferred to 1BMm,
Rochester, MN, as a member of the NSD service
planning staff. Following various systems support
and development assignments in service
planning, he joined the advanced systems
development group in 1984.



Zanti D. Squillace

Mr. Squillace is an advisory engineer in system
mechanical development. He joined 1BM in 1962
and has had many technical assignments in
optical character recognition and systems
development. He received a BsME from the
University of Minnesota at Minneapolis and is a
registered professional engineer in Minnesota.

James C. Stewart

Mr. Stewart is a staff programmer in performance
measurement and analysis. Past experience
includes work in the US Navy, as an instructor in
their Nuclear Propulsion Training program, and
work for Sperry Univac Corporation, in the area of
computer-assisted instruction. After joining 1Bm in
1977, he worked in a variety of assignments, all
associated with the System/38. For the past five
years, he has been involved in performance
measurement and analysis work on the
System/38. He received his Bs in Mathematics
from Moorhead State University at Moorhead,
MN, in 1967.

Richard A. Tenley

Mr. Tenley joined 18M in 1965 in Kingston, NY. He
had various power supply design responsibilities
which included the Tsr-6 family used in the
System/370 158 and 168. In Rochester, he has
held several assignments in power systems
development. Mr. Tenley received a BsSeke from the
University of Minnesota at Minneapolis in 1960.

Dale J. Thomforde

Mr. Thomforde is an advisory engineer in the
central processor development group for the
AS/400 system. He was heavily involved in the
performance aspects of the processor design.

Mr. Thomforde has one US patent pending and 13
disclosures published. He received a BSEE in 1973
from the University of North Dakota at Grand
Forks.

Keith L. Thompson

Mr. Thompson is an advisory engineer
responsible for system hardware quality and
reliability. Past i1BM assignments have included the
development of card 170 products; display and
work station systems; display station, printer, and
disk unit system adapters; and memory
subsystems. He joined the advanced systems
development group in early 1984. Mr. Thompson
joined 1BM, Rochester, MN, in 1965 after he
received BSEE and MSEE degrees from North
Dakota State University, Fargo, ND.

William A. Thompson

Mr. Thompson is an advisory programmer in
advanced systems engineering. He is lead
designer for the AS/400 Service Processor
microcode. Before joining advanced systems
engineering, he had a variety of assignments
within the System/38 programming center. He
holds an invention disclosure for high-level data
addressability. He graduated from State University
of New York at Cortland with a Bs in Secondary-
Education Mathematics and received an Ms in
Computer Science (Operating Systems) from
Rensselaer Polytechnic Institute, Troy, NY.

John N. Tietjen

Mr. Tietjen is an advisory engineer in AS/400
engineering development. Past assignments
include printer adapter hardware and microcode,
work station controller microcode, and
department manager. Mr. Tietjen has held various
170 related assignments in System/3, System/38,
and AS/400 engineering. He joined 1BM,
Rochester, MN, in 1970 after receiving his BSEE
degree from Arizona State University, Tempe, AZ.

C. David Truxal

Mr. Truxal is a senior programmer and manager
of the design control group for AS/400 Office. He
joined 1BM in 1967 in Kingston, NY, to work on
virtual storage management. After serving in the
US Navy, he worked for Control Data Corporation.
He rejoined 1BM, Rochester, MN, in 1977. His
assignment was in the System/38 Architecture
and Design Control groups, working on the
system'’s integrated data base and security
design. From operating system design
responsibilities, Mr. Truxal moved into
management of the high-level languages and
utilities design control group for System/38 and,
from there, to an office planning position for
System/38.

Thomas M. Walker

Mr. Walker, a staff engineer, has held a variety of
assignments within processor development. He
holds one US patent and two invention
disclosures in system performance
measurements. He graduated from the University
of Washington at Seattle with a BSEE.

James O. Walts

Mr. Walts joined 18M, Poughkeepsie, NY, in 1968
as a programmer. Since then, he has held
technical and managerial positions in
communications-oriented advanced technology
projects. In addition to participating in the early
design efforts of System/38 and the AS/400
system. he was a lead designer of the Lu type 6.2
and sNA implementations. He is currently the
manager of AS/400 Strategic Communications
and Networking. Mr. Walts received his BA in
Secondary-Education Mathematics from the State
University of New York at Potsdam and his Ms in
Applied Science Systems Programming and
Languages from the College of William and Mary,
Williamsburg, VA.

191



Thomas J. Warne

Mr. Warne is a staff engineer in rigid-disk storage
unit development. He started with 1BM in 1977 as a
test equipment design engineer in disk
manufacturing. He was part of the original team
that produced 1BM Rochester’s first 8-inch disks.
Since 1982, he has worked in test engineering on
surface analysis test equipment and was a
member of the team that developed the self-test
approach for surface analysis on the 8-inch 9332
Disk Unit. He has a Bsee from the University of
Wisconsin at Madison.

David G. Wenz

Mr. Wenz is a senior programmer in the office
design control group. He started his career on
compilers, and then moved into end-user utilities,
such as source entry, data entry, screen design
aid, and text editors. He has been involved in
office products for several years, including
DisplayWrite/36, shared folders, and the PC
Support Organizer menu. He has three US
patents pending and 44 disclosures published. He
graduated in 1967 with a Ba in Mathematics and
Psychology from the University of Wisconsin at
Oshkosh.

192

David N. Youngers

Mr. Youngers is an advisory programmer working
in office/personal computer development. He is
recognized for his work with System/38 Source
Entry Utility, Screen Design Aid, and Text
Management, and with System/36
DisplayWrite/36 and PC Support/36 Office
products. He joined iBM, Rochester, MN, in 1979
after graduating from lowa State University,
Ames, |A, with a Bs in Computer Science.



