
IBM Application System/400™
Technology

SA21-9540-0

Dedication

This publication is dedicated to the most
important element of business: people.

To the people who purchase IBM products, our
customers:

ii

who displayed their enthusiasm for the Sj3X

product family and their interest in providing
input and feedback that helped us meet and,
we hope, exceed their product expectations.

To the people of IBM around the world:

who have dedicated their time and energy to
develop the AS/400 product family. To
employees in IBM manufacturing locations in
the United States, Europe, Japan, and Mexico,
who helped ensure that worldwide product
requirements were met.

To the people of IBM Rochester and Toronto:

who have provided their ingenuity,
commitment, and dedication, to deliver to our
customers products with improved cost
performance, the highest quality, and the most
advanced computer architecture in the world.

Tom E. Furey, Jr.
Laboratory Director
IBM Application Business Systems
Rochester, Minnesota

Foreword

The AS/400 system is a new generation of
general-purpose, mid-range systems from IBM.
With more than 1/4 million customers worldwide,
the product family that established the small and
intermediate business computing standard is now
setting a new standard with the AS/400 system. It
has been designed and built to combine the
strengths of its predecessors. This includes the
System/36's large application portfolio and wide
range of connectivity options, and the
System/38's programmer productivity, advanced
architecture, and integrated data base.

Significant new function has been added to
enhance ease of use and connectivity and to
support IBM's Systems Application Architecture
(SAA), online education, and direct electronic
customer-to-IBM support. The AS/400 system has
been designed to provide growth potential for
future applications, including applications with
graphics, voice, and image capabilities. The
architecture also preserves customers'
application and education investments by
providing easy migration for most applications.
The hardware, with its expanded range, is setting
new standards in quality and reliability while using
the latest in IBM's VLSI, main storage, and disk
technology. This has all been accomplished in a
hardware family managed by a single operating
system.

Such an undertaking provided many
programming, engineering, and manufacturing
challenges during development. This publication is
a collection of articles on the design and
development of the AS/400 system. The AS/400
System Overview provides a high-level look at
some of these advances, followed by three main
sections: Programming, Engineering, and
Manufacturing. These articles were written by 78
of the more than 2,000 technical and professional
people who work in these areas. They describe
some of the innovation, technology, and design,
and thus some of the advantages, built into the
AS/400 system.

James E. Coraza
Director of Advanced Systems
IBM Application Business Systems
Rochester, Minnesota

iii

Table of Contents

AS/400 System Overview R.O. Fess, K.R. Reid, C.D. Truxal, 2
R.J. Lindner

Programming 11

Application Software

An Integrated User Interface J.H. Botterill , D.A. Charland, J.Y. Harrington 12

An Integrated Data Base M.J. Anderson, R.L. Cole 20

Application Development Support G.R Karasiuk 26

The System/36 Environment JA Modry, P.J. Heyrman, SA Dahl 32

Communications Support

The Communications and Networking Structure J.O. Walts, P.R. Mattson 42

Advanced Peer-to-Peer Networking RK. Harney, C.H. Jones 50

A Structured Approach to Data Management CA Egan, D.S. Brossoit 60

Office Support

Integrated Office Support D.G. Wenz, RJ. Lindner, J.H. Bainbridge, 66
S.J. Cyr, B.W Hansen, D.N. Youngers

Security Support

Security WO. Evans, RJ. Lindner 76

Customer Support

Electronic Customer Support J.R Morcomb, M.J. Snyder, E.W Emerick, 82
D.L. Johnston

The System Capacity Planner M.J. Denney, J.M. Mickelson, J.C. Stewart 92

Software Design to Support National Languages E.L. Fosdick, M.F. Moriarty 96

Engineering 99

Processors

System Processor Architecture M.R Funk, Q.G. Schmierer, D.J. Thomforde 100

v

System Processor Technology D.R. Cecchi, R.F. Lembach 104 .1 VLSI Design Process for the System Processor J.R. Rubish, L.F. Saunders, T.J. Mullins, 108
WJ. Goetzinger

Performance Analysis of the System Processor H.F. Kossman, M.E. Houdek 112

Design of the System Service Processor WA. Thompson, T.M. Walker 116

I n put/Output

The Internal Input/Output Bus N.C. Berglund, J.N. Tietjen, WE. Hammer 120

MagnetiC Storage Device Controller F.L. Huss, G.A. Lushinsky, K.P. Gibson, 124
S.P. Batra

Work Station Controllers J.E. Remfert, T.L. Clausen, GA Dancker, 128
H.G. Kiel

The Multiple-Function Input/Output Processor CA Lemaire, R.J. Recio, S.P. Hank 134

Power and Packaging

Power, Packaging, and Cooling for the 9404 Z.D. Squillace, RA Tenley, F.J. Lukes, 142
System Unit A.P. Reckinger

Quality and Reliability

Improved Methodology for Hardware Quality K.L. Thompson, DA Spencer 146
and Reliability

Direct-Access Storage

Design of the IBM 9332 Disk Unit E.A. Cunningham 150

Digital Servo Control for Disk Units H. H. Ottesen 156

Manufacturing 161

The Flexible Manufacturing System D.L. Conroy 162

Manufacturing Card and System Tests R.W Lytle, D.L. Beck, M.W Hansen, 168
G.L. Kearns

Disk Unit Manufacturing Process J.T. Costello, G.L. Landon, T.J. Warne 172

Electronic Data Interchange R.E. Albrecht 180

About the Authors 184

vi

AS/400 System Overview

Provides an overview of AS/400 underlying concepts and a high-level view of technical innovations incorporated in the system.

Ronald O. Fess, Kenneth R. Reid, C. David Truxal, and Richard J. Lindner

Introduction
The AS/400™ system is a broad new family of
general purpose mid-range systems. The system
architecture was developed to provide a total
solution to computing needs. It employs today's
hardware technologies, combined using state-of­
the-art engineering processes, to create a family
of models tailored to a broad range of business
needs. This system sets new standards for
usability, performance, reliability, productivity,
simplicity, and training, while offering solutions
that allow it to grow with the needs of a business.
The entire family is managed by a single operating
system that provides complete end-user
consistency and application portability across all
models.

The AS/400 system provides many integrated
features that form the foundation for a productive
and extendable computing system. Operating
System/400™ (OS/400TM) provides a
comprehensive, fully integrated set of batch and
interactive work management functions that make
processing application programs efficient and
productive. Business operations are
complemented by the integrated office products
and sophisticated communications components
of this system, which effectively employ attached
personal computers and other systems within a
network to provide maximum data availability. The
OS/400 data management facilities provide a full
range of data description capabilities and a
consistent interface for application access to data.
All data resides in a single integrated relational
data base, with powerful query features that make

2

information readily available. These facilities,
combined with a range of high-level language
compilers and utilities, provide customers with a
set of highly productive application development
tools. System utilities and system management
facilities, such as message handling, spooling,
and diagnostic support, make operating the
system convenient and easy to understand.

Moving from predecessor systems to the AS/400
system is also convenient. Within OS/400,
environments are available for easy migration of
most System/36 and System/38 applications,
files, and procedures. These environments make
the applications appear as if they are running on
System/36 or System/38, thereby preserving the
customer's previous investment in applications
and in the training to use them. This means an
extensive application base already exists to meet
business needs, while additional applications are
being developed to capitalize on AS/400
advantages. The system also allows gradual
conversion of existing applications to take
advantage of the advanced AS/400 system
capabilities as the user's business needs dictate.

Many software, microcode, and hardware
innovations, plus the IBM strategic Systems
Application Architecture™ (SAN"), make the
AS/400 system a product for the future. SAA

conformance will allow application movement to
and from other conforming systems, with
application users shielded from the underlying
hardware and software differences.

System Concepts
The AS/400 system is designed and built as a
total system, integrating IBM hardware and
software components to provide optimal usability,
performance, and reliability while reducing costs.
Three basic system concepts form the underlying
structures that give this system its advanced
characteristics. The first is the layered machine
architecture, which isolates the effects of change
and makes the system function extendable in a
manner transparent to the end user. The second
is its object orientation, which permits an
instruction interface that is consistent across a
wide range of supervisory and computational
instructions. This allows the operation and use of
machine resources through logical names,
independent of the underlying hardware
specifications or characteristics. The third concept
is the single-level addressability of all storage.
This allows transparent storage addressing,
making both main and auxiliary storage appear
contiguous. This, coupled with its object
orientation, allows dynamic object creation, use,
and extendability, and permits storage and disk
additions without affecting customer applications.

Layered Machine Architecture
The AS/400 system insulates users from
hardware characteristics through the layered
machine architecture. This layered architecture
raises the level of the machine interface, creating
a high-level machine instruction set that is
independent of the underlying implementation.
Figure 1 shows the hardware with horizontal and
vertical microcode layers that comprise the high­
level machine. The horizontal microcode (HMC)

Programming
The programming of the AS/400 system has provided software advantages built
on an advanced, extendable system architecture that supports the entire range
of hardware models.

An Integrated User Interface

Describes a new dimension in user interface consistency and advancements that increase ease of use and simplify work activities.

J. Howard Botterill, Dennis A. Charland, and John Y. Harrington

Introduction
The AS/400™ system spans the range of small to
intermediate systems. It addresses the needs of
the single-user environment, as well as complex
environments with many work stations and many
users. The user interface is simple and self­
guiding for new users, and is efficient and
productive for professional data processing users.
Although the system is new and advanced, the
interface is based on the proven ease-of-use
techniques and system-wide consistency of
predecessor systems. It is a single integrated
interface that combines the strengths of user­
friendly menus, self-directing entry displays,
extensive help, powerful list displays, a
comprehensive command set, and an underlying
object structure.

While retaining these proven techniques, the
AS/400 system provides major enhancements
resulting in greater ease of use, productivity, and
flexibility. It expands interface consistency to
include consistency with other IBM systems and
between dependent work stations and attached
personal computers.

The interface is designed to be flexible to address
the broad spectrum of new and experienced
users. This has been achieved by providing a
primary method of interacting (usually choosing
from a set of numbered choices) and alternative,
fast-path methods for more proficient users.
These alternative techniques, which include
specifying multiple actions at one time, taking a
direct path to any menu, and entering commands
directly, can be used in combination with the

12

primary method of interaction. They are designed
so that users can easily graduate to them, using
the same terminology, options, and order of
specification as in the primary method. In this way,
the interface grows with the user.

The menus provided with the system have also
been improved. These menus allow the user to
operate in action-object or object-action
sequence, where the action identifies the task and
the object is the item the user wants to operate
on. (The object may not be an AS/400 object type.)
After selecting the type of object (such as file,
document, or program), users are presented with
a list of objects of that type. On the list of objects,
the user can type the number representing a
desired action (like change or delete) next to one
or more of the objects. The user can stay on that
list of objects and follow that action with other
action requests. As an added feature, a list display
has a blank list entry that can be used when the
name of the object is known. The user can type
the action and the name of an object, without
having to find the object in the list. In this same
way, the user can create a new object by typing
the number representing create and the desired
name in the blank list entry.

While the list displays allow the new or occasional
user to simply identify one action to be performed
on an object, users, as they graduate to needing
more function, can request actions to be
performed on multiple objects. These actions can
all be of the same type, or they can be different
actions requested on different objects. When an
action is requested that requires additional

information, like the options for a print request, an
entry display is presented requesting only the
required and frequently used options. The more
advanced, special purpose choices are available
by pressing a function key. In this way, new or
infrequent users are not intimidated by the full
function. They only have to deal with the
frequently used options that have meaning to
them.

At any time, users can ask for assistance by
pressing the Help key. Help is provided in the form
of online text describing the field or display area
the user is currently using. From that first help
display, a function key can be pressed to get to a
Search Index function. This Search Index function
is a significant advancement. It allows users to
request more information by supplying, in their
own words, a description of what they want to
know. In response, they receive a list of topics
from the index that satisfies their request; from
this list they can choose the ones they want
displayed. In this way, the valuable tool of an index
is automated by providing a word search into the
help information that addresses the entire system.

These fundamental features of the AS/400 user
interface allow users to initially use the system
with little training, continue to use it occasionally,
or become highly efficient users.

New Dimensions of Consistency
A consistent user interface is very important to the
ease of use of any system. With the increase in
networking and the use of personal computers,
which allow the user to interact with different host

Specific menus are provided for common groups
of tasks, such as office, programming, and
operation. A new User Tasks menu is provided for
users who are not data-processing professionals
and do not need the full function of the other
specialized menus (see Figure 3). For example,
such users may use this menu to send a message
to a co-worker (option 3) or check on their printed
output (option 5) without having to be trained as a
system operator.

USf. Usc" TaSks
Syst BII: CH ICAGO

Select one of t.he f oll ow ing:

1 . 0 f sO 1 ay or change your j ob
2 . 0 1. p i ll), llessages
]. Sl!nd II IIIBSHQ8

4 Subll ! t • job
5 . Work ,,'th your- spoo, .. d output f f ~ .s

6 . Work with your" ba t ch jobs
7 . DI 5t11.'1or chenge your lf brary 11 st
8 . Change yOlr tM!. liswor(j

9. Olange your user pro"- i 1 Ill:

go . 5117' of f

Select ion or cOMand ... ,. -- - - - --
FJ "'Exi t F4"PrOllpt F9"'~etri e "'8 F12- PrtlV!0U5 Fl3 User s uppor t
1'"16 -Sys tl!'ll I118.In llanu

RSLL360·2

Figure 3 User Tasks Menu

A command line is provided on most system
menus. Individuals who use the system frequently
can display any menu by typing GO and the menu
name. Other commands can be entered on the
command line to request functions without using
the menu option paths or leaving the current
display. For example, EDTDOC entered on the
command line of any menu (as shown in Figure 2)
runs the Edit Document function.

List Displays
When a type of object is requested on a menu or
by using a command, a list of objects, including
type and attribute information, is displayed.

(Figure 2 shows a menu request resulting in a list
of documents.) A list display provides a
convenient means to perform actions directly on
objects, without having to recall and enter an
object's name for each action. An action option
field precedes each entry, and the action options
supported are shown in the upper instruction
area. Actions are requested by entering an option
number in the field preceding the object. Figure 4
shows the list of documents with a 5 (D) typed
next to LETTER3 to request a display of the content
of LETTER3.

In the key areas of data definition, query, and
office, the AS/400 system introduces enhanced
list displays with an input-capable list entry at the
top of a list (see Figure 4,0). This entry allows
users to type the name of an object, along with
the action option, without having to roll to the
object or leave the list area. It also allows a
request to be typed to create an object that is not
in the list. The user can perform these actions in

--EI
-D

List of Doc~tc

I Type or,. Ions (and D~t) . pr._ Entar . I l-tr teo 2-118,,1 _ 3-COpy ,,-o. l e te 5-01.,1.)'

l.Optl on DOCUIIer'It 5Wject

- --INVENTOR Invent ory for we.renou.e
INVENTSM Invantor-y,-y
LETTERl Letter ta Ale CORP
L.£TT(A2 ~ to J A Scruttl.

"5 LETT£Al Mello t o J A Scrutt Ie
LETTER6 Let t er to Alstdle Pr 1ce
1£ Mello to J H Bottle
MtlIfJ ltLy Mont "l ,. accOU"lt 1ng __ r y
MONTHlYD MonthlY' detel 1 for Nov"'"
CLDI«lNTH Las t ..",thl s detail - Oct
R(POOTY£ 'feu end report

Figure 4 Example of List Display
with Extended Entry

6-P1"'Int . - Detall.

ReV' Ty ...

10/22/17 OOClKNT
3/24/81 DOClIENT
12/01/87 M£MD
12/03/ 87 M£MD
12/04/87 M£ MD
9/5/87 ""NO
10/21/11 M£MD
1Un/a1 DOCl.I£NT
12/02117 DCICl.KNT
11/02/87 DOCUENT
11/30'17 Ooo.KNT

Mor"8 •• •

RSLL363·2

conjunction with other actions on objects in the
list.

Entry Displays
Entry displays, which allow users to fill in the
blanks, are provided when more details are
needed after a task is selected. Figure 5 shows an
entry display for a print request. The entry
displays are straightforward and require a
minimum of user interaction. They have a single
column of entry fields, each preceded by a simple
descriptive phrase (called a field prompt) and
followed by a list or description of the acceptable
values for that field. The values can be numeric
values for fixed, non-command choices or actual
command values, like "NONE, for command
prompt-entry displays.

The user is asked to respond only to required and
frequently used option choices. Default values are
already entered in the fields. Choices that are only
required in some situations are not initially
presented. They are presented on a following
display if it is determined, based on the initial
responses, that more choices are indeed
necessary. For example, if a copy request refers
to a diskette file, only diskette-related options
follow. Tape or data base options are not shown.
This tailoring of the entry displays based on user
responses is called intelligent prompting. The
system tailors the prompts based on user
responses. The displays are also layered. The
fields that are less-frequently used because they
are for advanced function are not initially shown.
They can be requested by pressing F15
(Additional options). Each of these techniques
results in users not having to analyze the
individual fields or choices that do not apply to
their task.

The fields on an entry display take two forms. The
first form is an entry field, which requests a user­
supplied value, like a name (see Figure 5, D). An
underscore shows the value's maximum length.

15

For certain entry fields that accept a name, the
system can show a list of the objects to which the
user is authorized. F4 for list is shown to the right

0- Selection by
Typing Mnemonic

EJ -Selection by D -Entry Field I
Typing a Number

Specff), Prtnt Opttone

Type ChoI c.. . pree8 Entr .

D~nue • • .•

I-Pr_t.fga Elite (12 "ftCh)

=! .. ~:!:!tch) +-

.. "V'r

Cop1es

DUlJlex

Fl-£'Ill t F4-Ll.t

..!.

.!.

...!.

F'l2-Prev f out

(DI"'ODOl"'t1,,1)
4-EM1y Bold

~ of IIPI-CM f.... left
HgI of PlDr U-20)

F1S- Addltfonel ootlon1

F4 with Cursor
on Document
Name Field

D -Requested List

Select D~t

Type opt. t cr. , prone Ent .. .
l -selact HleDl.y

OptIon D....-ot SUtljtICt ... f_
INVEHTDA - 1"""tory for _rehouse 10/22/11
INY[NTSM In\lM1.ry -.-rr

:I UmAI L"t.rtoAlC COAP
3/24/11
12/'1187

UmA2 - __ to J II Scruttl. 12/03/87
UTTEAI - Letter to AI.n:IT. Price 9/S/.7

- LETTER] Lattr to Rt.nd la Prtce 9/5/81

- ME""'. Mao to J H 80ttle 10/28/11

- _THeY Monthly Icccuning .-ry 12/01/87

- tOfTHLY2 Month 1 Y ICCOU'rt t "'II -rv 12/01/87

- IIOMTItLYD Monthly deUll for Nov..- 12102/81

--rH La.t IIOntht. 4ett.f1 ~ Det 11/02111

- AEPOIITYE y..,. .-ret report 11/30'"
- A£PORTYE Year end reDOf"t 11/30/17

- REPQRTAD M nclMl ,.elXtt"t '/5/81

F12-Prev1Ot.-.

Figure 5 Entry Display to Selection List

16

........

T._
DOWIEHT
DDCIJII'NT
ME ..
ME"
"1:0"
MEMO
ME ..
DDClI4EHT
DDWIENT
OOClJ€NT
OOCllE.NT
DDCIJII'HT
DOt:UEHT
ME

RSLL36H

of these fields, and will request the list display (see
Figure 5, D). The user can then make a selection
from the list rather than typing the name.

The second type of field on an entry display is a
selection field that allows a selection from a fixed
set of choices. The choices are numbered as
shown in Figure 5, EJ , unless the choice is a
value that has significance by itself, as in the case
of a command parameter value. The user need
only type the number for the desired choice in the
same fashion as on a menu. When the prompt
requires a Yes or No response, Y and N are
accepted for Yes and No, as shown by 0 in
Figure 5. In the case of command prompt-entry
displays, the actual parameter values are
accepted and are listed to the right of the entry
field, like *REPLACE, *ADD, or *MERGE.

Command Level Support
While the display interface of the AS/400 system
is carefully designed not to require a knowledge of
commands, and even to hide commands, most
actions result in a command being processed (see
Figure 2, bottom). The terminology for the options
and choices shown on displays closely matches
the terminology for the corresponding spelled-out
names of commands and parameters. This,
coupled with the availability of a command line on
most menus (see Figure 3) and list displays (see
Figure 4), makes it very easy for users to begin
using the command fast-path approach for
frequently requested functions. A user who knows
the command can enter it instead of taking menu
options. The same entry displays that are
presented if that function is selected by number
from a menu or list display are available when
entering commands. The entry displays can be
requested at any pOint in typing the command by
pressing F4. Any parameters already typed are
carried over and filled in on the entry displays.
Defaults are shown in the entry fields for any
parameters not specified.

Online Help Information
Even with a flexible user interface, the time will
come when a user does not understand how to
use a display or how to get started on a task.
Through the AS/400 help facility, supporting
information is immediately at hand.

The help structure defined in IBM's CUA combines
help on displays with a help index. The AS/400
help facility provides comprehensive display help
and advances the help index concept by giving
users a search capability.

The AS/400 help facility provides the type of
information users need to complete their
immediate taSk, not a long discussion on how the
system or a function works. Rather than duplicate
printed manuals, the help facility takes advantage
of what the computer does best: provide quick
access to specific information. The key to quick
access is the information-module concept. All help
information is in the form of small building blocks,
called information modules, that provide specific
bits of information. A single information module
can be used individually, or linked together with
other information modules in different
combinations or sequences.

As shown in Figure 6, the help facility makes use
of the information-module approach to provide
both context-sensitive help (based on cursor
position) and a searchable index of help topiCS.
Context-sensitive help is provided for all displays
by associating specific help areas on each display
with specific information modules. When a user
presses a Help key, the help facility displays the
information module associated with the area
where the cursor is currently positioned. For
example, when the cursor is on a specific line or
field , field help is provided, as shown byDin
Figure 6. When the cursor is in other, nonspecific
areas of a display, extended help is provided, as
shown by EJ . The extended help consists of
information modules on the use of the display as a

Help for
Individual
Displays

Search
Index

EI
Dfsplay-X Hel p -----;o:;-n-e:-;-ln--;f-::-o-::-rm::-:-:a:-:ti-=-o-::n.M:.-::O:;d:-:-uO::le~-r-~

Field Xl . • - D /
Field Xl • . . . •• . 11...--1-- Help ~'---H-.l-P:-D-1s-Pl-ay""'-x----' F2

t.=.J Field X2: xxxxxxxxxxxxxxxx
Fie 1 d X3•. - XJltXXXXXXXXXXXlUI.XXXXXXXxxx J

XXXXXXXXXXXXXXlUlXXXXXXXXll
XXXXXXXXXXXXXXXXXXXXXXX,IUC

xxxXXXXXXXMoXXXXXXXxxxxxxx

FZ-Extended help ----i----~
Fll-Search index ,-----F11 -

,
Search Index

XXXltXXXXXX XXXXX.lOO!.xx
xxxxxxxx How to xxxxxxxx
xxxxxxxx Search XXKXXXXX
XXXXlO(x.)(Xx

Enter words .
move words

I

xxxxxxxxxx

Search r
I List t ~. ----of -+

Topics

Index for xx

Position cursor. type option:
S-Vl... 6-Print

Separate
Information _____
Module

r---+

User ~
S Move a block ---+- Selects
~Move a line ---,

_ Pos1tlon lfnes
_Move text left Topic 5 L

Separate ___
Information ~
Modules

Figure 6 How a User Gets Hel p

Help: Display-X
Extended help:
XXxxxxxxxxx•• •. • •• .

Field Xl:
XJtXlIUUOUUUCx •••••••••••••

Field X2:
xxxx"!'xxxxx

Fll-SeirCh index

I
F11

J
MOd~es Linked
Together

Move a block
xxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxoxxx XXlI:XXXXXXX
xxXXXJ.XXX XXXXXXXXX
xxxxxxxx Spec1 fi c xxxxxxxx
xxxxxxxxx Topi c xxxxxxxxx
XXXXXXXXX)(XXXX1UOCXXX
xxxxxxxxxxx XXXXXXXXXXX
lUtxxxxxxxxxxxxxxxxxxxxxxxx

Move a line
xxxxxxxxxxxxxxxxxxxxxxxxxx t---
xxxxxxxxxx xxxxxxxxxx
xxxxxxxxx u.xxxxxxx xx
xxxxxxxx Specific XJCxxxQX xx
xxxxxxxxx Topf C xxxxxxxxx xx
xxxxxxxxxx xxxxxxxxxx xx
xxxxxxXJtxxx xxxxxxxxxxx xx
xxxxxxxxxxxxxxxxxxxxxxxxxx xx

1 XXXXXXXXXlOtxxxxxxxxxxxxxxx

RS LL3643

whole, in addition to all of the field help modules
describing the use of individual fields. The
modules are linked together so that users can
move forward and backward through them to see
all help for the display. If users initially received
help for a specific field, they can get the extended
help by pressing a function key (F2).

explanation of a concept or term they do not
understand. Furthermore, the users can ask for
the information in their own words, not just the
terms used by the system.

The help linked to specific displays and fields
provides the immediate assistance a user needs
to interact successfully with each display. Through
the Search Index function, users can get the big
picture of how to perform a task that may
encompass multiple displays, or, if needed, an

Search Index provides a set of online indexes, one
for Operating System/400™ (OS/400TM) and
others for application packages. The index
searched is determined by the product being used
at the time the search is requested. If AS/400
Office is being used, the Office index is searched.
The index consists of a list of topics, each of
which is linked to one or more information
modules.

As shown in Figure 6, a user can request Search
Index from help by pressing a function key (F11).
Although the index is used most effectively by
entering search words, the user has the option of
viewing the entire index by simply not entering
words. If the user does enter search words, each
of the words (except for words used as simple
connectors, such as the or of) is matched against
tables of keywords and synonyms, and a list of
the topics that best match the user-entered words
is displayed.

Figure 7 shows an example of a user searching
the Office index. The user enters MOVE WORDS.

The search process compares MOVE with the
keyword and synonym tables and finds matches
for MOVING and POSITIONING. Similarly, comparing
WORDS with the keyword and synonym tables
finds matches for TEXT and LINES. As a result, the
user is presented with a list of topics on MOVING

TEXT and POSITIONING LINES.

Conclusions
The AS/400 system takes the familiar and proven
features of current systems and introduces many
state-of-the-art advancements in work station
ease of use.

The AS/400 system introduces new dimensions in
user interface consistency and offers consistency
with the future direction of other IBM SAA systems.
Even more importantly, it introduces consistency
between attached personal computers and
dependent work stations, without compromising
the potential and strengths of either.

An improved list display is used to simplify
creating and working with objects. It allows
actions to be performed directly on the objects in
the list or by typing the name. This allows all
actions to be performed from within the list area,
simplifying and streamlining work.

17

Snrch Index

SRreh index anow. you "au to t.ell tf'le .~t_ to ..arch
for aoecHlc I nfor-.t l on.

1. Type t he Phrase or word. to ... rctt for .

2. Pre.. Ent er .

When you pr •• [n"tar . the . yet _ eeara- f or too' cs
related t o the worda)'ou aJJIPl fed and displays a l1at
of topl ca fOU'ld .

If you do not t Yl'll anythIng. the .yata wil l d l.p lay
• l1 a t. Of a ll avallabl . topics .

Type worda to ... rCf'l f or . ~8S& Enter.
MOVE IIOAOS

Fl-[xlt F12-Pr...,10l.Ie

1 Enter

Indllx for 0\5/400 Offi ce

Posltfon QTaor, type option . pren Enter .
5- VI. taplc &-PrInt top ic

Ql)t Top1c
_ Novlng a blOCk of text
_ Mov Ing a si ng le ~ l ne of t ext
_ Nov1ng dtflerent bl OCka of tert t o the ea. loc:etlon
_ Movi ng cHff.,..,t lf nes of text to the IIU8 location
_ Movi ng t ext. left 01" rl",t
_ MoVI ng Lndr H ned 01" h l l1"HI1"t.ed text
_ Poaltfonlng lf nes on • dl aplay

Or- to search age ln. type ~ warda, pr .. Enter .
lOllY(WIlDS

Fl-hlt Fll - Al l topIcs F12-Prevl o...

Figure 7 Example of Search Index Displays

RSLL365-2

Whenever an action is requested that requires
additional information, an entry display is provided
that layers the request, with frequently used
options presented first, and then, on request,
more advanced options. Options whose
applicability depends on other responses are
presented only if appropriate.

At any time users can ask for help and receive text
describing the current field. In addition, they can
request more information by typing words
describing what they want to know. In response,

18

they receive a list of topiCS that satiSfy their
request, from which they can choose the ones
displayed.

With the introduction of the AS/400 system comes
an advanced integrated user interface that spans
the comprehensive facilities of this mid-range
system. The user interface is deSigned to be used
by a broad spectrum of users, and provides them
with interface capabilities not previously available
to users of general-purpose computers. The
interface is designed to allow each user to grow in
productivity, using menus, layered entry displays,
list displays, and command lines that are backed
by a sophisticated indexed help structure. The
interface capabilities can continue to be extended
with other methods of interaction as CUA is
extended, preserving consistency between GUA­

complying products and a state-of-the-art
interface.

References
1. Botterill, J.H., The Design Rationale of the System/ 38 User

Interface, IBM Systems Journal, Volume 21, Number 4,
1982.

2. Systems Application Architecture, Common User
Access: Panel Design and User Interaction, SC26-4351 ,
December, 1987.

TMAS/400, Operating System/400, OS/400, Operating
System/2, OS/2, Systems Application Architecture, and SAA

are trademarks of International Business Machines
Corporation.

19

An Integrated Data Base

Describes the AS/ 400 integrated data base that can appear as multiple, interface-specific data bases using a single data base manager and
storage representation.

Mark J. Anderson and Richard L. Cole

Introduction
The AS/400™ data base is different from
traditional system data bases because of its
innovative design which integrates the data base
with the operating system software and integrates
support for several different interfaces into a
single data base manager. The design goal for the
AS/400 data base manager was to support
application migration from the System/36 and
System/38, provide Systems Application
Architecture™ (SAN'"') support, and allow for future
data base enhancements. Therefore, the disk data
management interface of the System/36 and the
data base interface of the System/38 are
supported as an integral part of the AS/400 data
base. Also, the interactive data definition utility
(IDDU) and tile SAA data base interface, called
structured query language (soL), provides data
dictionary and relational data base interfaces to
the AS/400 data base. The single, generalized
data base manager understands all functions
necessary for these interfaces, ensures they
conform to their definitions, and coordinates their
interaction.

Choosing an Integrated Data Base
An integrated data base design allows
applications written for each interface to coexist
and operate using the same data. Because a
single data base system manages a single
storage representation of data, users may choose
the interface appropriate to the application they
are building. For example, an application
containing embedded SOL can be used to do

20

queries or mass updates, while another
application using the more efficient AS/400 data
base techniques could be used to randomly
update records. Also, programmers with a
System/38 background can use the Operating
System/400™ (OS/400TM) System/38 environment
support to create and manage data base files,
while other users could use the simpler IDDU

interface.

The traditional approach to satisfy these diverse
requirements is to bui ld separate, independent
data base data management systems for each
interface. This approach requires data to be
replicated in each data base. Besides the obvious
disadvantage of outdated or inconsistent data
between the separate data bases, users are
burdened with extracting data from one data base
and moving it into another. Even when a single
representation of data is maintained, the
traditional system has separate, nonintegrated
data base managers. These multiple data base
managers are not coordinated and, between
them, lack data integrity, concurrency, and
usability.

An integrated data base is easier to manage.
Support for a single data base means that saving
data, journaling data base changes, recovering
data, controlling data authorizations, and so on,
are much easier because only one set of system
functions or commands must be learned. Other
implementations require users to learn new data
base object management procedures for each
data base product.

Also, a single data base avoids redundant control
requirements. For example, with nonintegrated
data base managers, users denied access to data
in one interface might obtain it through another,
unless all independent interfaces had been
similarly restricted . Any function used by a
particular interface that has persistent operational
ramifications, or any constraint (such as an index
that enforces the uniqueness of key values) that is
applied through one interface, is enforced through
all interfaces. For example, once a file is
journaled, all changes to the file's data are
journaled, regardless of which interface started
journaling or which interface is changing the data.

Additionally, an integrated data base provides
users with a much easier way to migrate from one
interface to another. For example, a System/36
user that wishes to modify an RPG II application to
take advantage of the additional capabilities of
embedded SOL can do so one piOgram at a time.
The converted program can be used concurrently
with any of the unconverted programs. If the
traditional approach had been chosen , the
complete set of programs and all files would need
to be converted at the same time, because a
migrated application either has a separate data
base or an incompatible data base manager.
Having to convert all an application's programs
and files at the same time makes it impractical to
use new functions in current applications.

In addition to improving end-user productivity, the
integrated data base approach allows for more
productive systems software development. The

interface and changes made in one take affect in
all.

The AS/400 data base manager maintains a set of
files that contain basic attribute and cross­
reference information about all files . These files,
like any other data base file, can be queried by
users. The cross-reference information tells which
data dictionary describes each dictionary­
described file, how files are interrelated, and how
they are dependent on each other. The data base
manager uses this cross-reference information to
build catalogs for the Sal interface and to
generate reports on where data definitions are
used for IDDU.

Journaling records changes that users make to
data. Users may use the journal to: help recover if
a file is damaged; decrease the time required to
save; provide an audit trail or activity report; and
provide job accounting information. The AS/400
data base can treat multiple changes to a file's
data as a single transaction. At the end of the
transaction, the changes can be committed or
rolled back. When the system or job ends
abnormally, any uncommitted changes are
automatically rolled back.

Data Base Interfaces
AS/400 data base uses a single operating system­
level representation for all files and an integrated
set of functions to operate on those files. The files
and functions are available to any interfaces that
can support them. Figure 1 shows this structure
of interfaces to the AS/400 data base.

While all facilities are available to all interfaces,
some use a subset of them. For example,
because the syntax of the Sal language cannot
describe multiple format files (files composed of
more than a single record definition), such files are
not allowed in libraries created to hold Sal files.
The AS/400 data base manager can ensure the
consistency of the Sal interface because it knows

22

the file types that are not allowed and the libraries
created primarily to hold Sal files.

System/36 Disk Data Management Interface
System/36 disk data management supports four
basic file types: sequential, keyed, direct, and
alternative index. Sequential and direct files are
implemented as simple non-keyed AS/400
physical files having no field-level definition.
System/36 keyed files are implemented as keyed
AS/400 physical files that contain fields as
required to represent the key definitions.
Alternative index files are simple logical files.

Because of the integrated data base, users of the
System/36 environment can access files created
using other interfaces. A System/36 application
that can migrate need not know whether the file
was created from within the System/36
environment or System/38 environment, using

Sal or IDDU. This level of transparency in the
interface is possible because the AS/400 data
base manager understands all types of data base
files; the System/36 file support is an integral part
of the data base manager. (For more information
about the System/36 environment, see the article
The System/36 Environment.)

System/38 Data Base Data Management
Interface
The System/38 data base interface uses all of the
AS/400 file types except view logical files. The
data definition, data manipulation, query
processing, generic object functions, file
journaling, and commitment control used by the
System/38 interface are all subsets of the AS/400
support.

Again, because the System/38 file support is part
of the integrated data base manager, the

Operating System/400

System/36 System/38
Environment Environment

AS/400 IIDDUI ISOl
Data Base Interface Interface
Interface 1 1

IIDDU U I Sal 0
1 1

System/36 System/38
Disk Data AS/400 Data Base Data Base
Management Interface
Interface

RSLL394-4

Figure 1 Interface to AS/400 Data Base

Future applications require support for increased
transaction rates, very large data bases,
distributed data base management, and so on.
Support and management of these and other
features is simplified and enabled as a result of
the AS/400 integrated data base manager.

Acknowledgments
The authors wish to thank William S. Davidson
and Alvin G. Grossbach for their contribution to
the content of this article.

™ AS/400, Operating System/400, OS/400, Systems
Application Architecture, and SAA are trademarks of
International Business Machines Corporation.

24

Application Development Support

Describes the features of the AS/400 application development support, which allow productive application development.

Gary R. Karasiuk

Introduction
The AS/400™ system contains an advanced set of
tools and system functions that enable users to
productively develop applications. Highlights
include integrated data base functions, the source
editor, compilers and the debugger, and work
station support. Specifically, productivity is
improved by:

• Using externally described data to reduce
redundant data descriptions and pass
information across the different phases of
application development. In our model of the
application development life cycle, the phases
are: requirements, analysis and design,
produce, build and test, and release and
control. [1]

• Integrating the source editor with the system
(and especially the compilers) to improve the
productivity of the produce phase.

• Integrating the debugger with the system to
improve the productivity of the test phase.

• Accommodating users with different system
backgrounds (System/36 and System/38).

Shared Data Descriptions
One of the important software development
trends of the 1980's is the simplification of
application programming by moving some of the
code from procedural programs into a declarative
form, which is usually a part of the data model
description. This results in two clear advantages:
reusability and simplicity. One example of

26

reusability is moving data descriptions out of the
program and into the data model. This allows
users to have a Single authoritative source for
their data descriptions. This simplifies
maintenance, as users can be assured they are
looking at the correct description, and if they
choose to change the description, they are
changing the only occurrence of the description.
This improves the quality of the application,
because different data descriptions do not exist
for the same piece of data, and also reduces the
amount of coding. In a conventional system, if a
user had an application with 10 programs that
accessed the same file, and wished to add a
validity check to one of the fields, the user would
have to add additional logic to each of the 10
programs. If the validity check could be added to
the data model, it would only have to be added
once, as is the case with the AS/400 file model
and its use of externally described data. Device
files on the AS/400 system contain externally
described data, which is stored with the file when
it is created.

All device files can be described at a field level,
with field attributes such as data type and length.
Options exist that allow specification of such
things as descriptive text and field validation
parameters for each field. The normal unit of data
transferred by a program is a record, which is
made up of one or more associated fields. This
collection of fields is called a record format. This
information is entered only once and then is used
by other components in the system (see Figure 1).

Many of the devices on the AS/400 system
support the common file model, and thus allow
input/output (I/O) redirection. Some of the different
device file types are physical (for storing data);
logical (different views of physical data); display
(for displays); printer (for page formats); and
communications (for data exchange). Applications,
for the most part, can be written so that they are
unaware of the underlying device file type.
Consequently, files can be overridden at run time.
One novel use of this capability is to replace
display files with communications files, to provide
for automatic testing of interactive applications.

A typical application development scenario
illustrates how data descriptions are passed in the
AS/400 system from the design phase to the
produce phase:

1. The internal data definitions needed by the
application are entered into a reference file.

2. The screen design aid (SDA), a utility for
designing displays, is used to define
application displays. The fields to appear on
the displays can have their definitions included
from the reference file, to ensure consistent
definitions of the same data. Integrity
information stored with the reference fields
ensures that integrity checks are performed
when the display file is accessed. Also,
displays can be quickly strung together to
form a simple prototype of the application,
allowing for early end-user feedback.

3. The physical and logical files are created,
again with some of the field definitions from
the reference file.

4. The compilers (RPG, COBOL, command
language (CL), PL/I, and BASIC) have language
extensions to extract data definitions from
files and convert (back translate) them to
high-level language data structures. (See
Figure 2 for an example of back translation.)
Compiler directives specify which record
formats are to be back-translated.

5. Other utilities also make use of the externally
described data. The data file utility (OFU)

creates applications that add, delete, and
update data records. AS/400 Query creates
reports that include features such as
breakline processing, sorting, and
summation. Using the externally described
data, Query, for example, could extract the
column headings that appear on the final
reports from the files. Both OFU- and Query­
generated programs are used to supplement
the other high-level language programs in the
application (typically RPG or COBOL).

The AS/400 file model also makes it easier for the
application developer to take advantage of system
function, and thereby save application code. This
is a natural result of the clean interface between
application programs and files. The savings in
application logic (code) is shown in these two
examples:

Subtile Support: The logic of scrolling lists of items
on the work station can be handled by the system
through subfile support. It is the system that
processes the positioning of the list. The
application need only define the characteristics of
the subfile, such as the maximum number of items
in the list and the format of a line in the list.

Data
Descriptions

Step 1
Create File

Reference
File

Step 3

Step 2
Create Displays

Create Data Base Files

Step 4

Display
Fi le

Physical and
Logical Files

Compiler Source
Statements

I Step 5
Add DFU and
Query Applications

Data Update
and
Query Apps

Compiled
Programs

Figure 1 Shared Data Descriptions

Select/Omit Support: The logic of identifying a
subset of data base records can be handled by
the system through data base select/omit
support. This saves the applications from reading
all of the records in a file and performing their own
selection logic.

The System Editor
The AS/400 system has chosen to concentrate on
the produce phase of the application development
model. As a result, the editor is well-integrated
into the system. The editor on the AS/400 system
is the source entry utility (SEU).

RSLL409-4

The editor is integrated with the compilers with its
syntax-checking support. All of the languages on
the system support interactive syntax checking.
The editor is responsible for determining the
syntactic boundaries of the statement, and the
compiler is responsible for the actual syntax
checking of the statement. Splitting up the
function in this manner has three advantages.
First, syntax checking is consistent from the
user's perspective, because only the editor is
responsible for the end-user interface. The
options that control syntax checking are the same
for all languages. Second, the compiler syntax
checkers and the interactive syntax checkers are

27

The following is an example of a payroll record description in DDS .

A
A
A
A
A
A
A
A

R PAYREC
NAME
ADDRESS

SALARY

DEDUCT

50A
100A
50A
8 2

7P 2

TEXT('ORDER RECORD')
TEXT(, Full Name')
TE XT('St reet Address')
COLHDG('St reet' 'Address')
TEXT('Annual Salary') EDTCDE (1 *)
CO LHDG (, An n u a I' , So I a r y ,)
EDTWRD('$ O. &cR')
TEXT('Ded uct ions')

This is the way the description would be automatically expanded by the PL/I compiler.

DCL 1 PAYRO LL -RECORD,
%INC LUDE PAYRO LL (PAYREC,RECORD,PR-);
1* ------ ---- --- ----------------------- ---- ---- --------------- ------- ----- --- *1
1* PHYS ICAL FILE: PAYROLL.KARS LIB *1
1* FILE CREATION DATE: 87/10/13 *1
1* RECORD FORMAT: PAYREC *1
1* RECORD FORMAT SEQUENCE ID : 37B899 FF85E16 *1
1* -------ORDER RECORD--- *1
15 PR-NAME CHAR(50), 1* Fu II Name *1
15 PR-ADDRESS CHAR (1 00), 1* Street Address *1
15 PR-SALARY CHAR(8, 2), 1* Annua l Sala ry *1
15 PR-DEDUCT DEC(7,2); 1* Ded uctions *1

Figure 2 Sample Back Translation

RSLL408·'

less likely to diverge because both products are
developed together. In fact, in some cases, the
syntax checking is performed by the early phases
in the compiler. And, finally, the structure of the
editor is simpler.

The main limitation of this approach is that not all
syntax (and few semantic) errors can be detected
due to the statement-by-statement nature of the
syntax checking. Also, due to the richness of
some of the languages, it is difficult to quickly
determine the statement boundaries. In the case
of Pl/I, heuristic methods were needed to
determine the statement boundaries.

The editor also supports prompts for different
languages. The language prompt support varies
by type of language. For Cl, the system prompt
function is called from inside the editor to provide
very complete statement prompts. The prompt
function provides command formatting, layered
prompts, and context-sensitive help text. (See the
article An Integrated User Interface for more
information on the system prompter.) For RPG, the
prompt function provides field-level support for
each of the RPG specifications, again with context­
sensitive help; for BASIC, the prompt function calls
the BASIC session manager. Other languages have
simpler prompt support.

28

The editor also supports a split-screen mode,
where a compiler listing can be browsed on one
half of the display while corrections are being
made to the corresponding source member on the
other half.

Debugging
The AS/400 system has an integrated symbolic
debugger that is built into the microcode and into
Operating System/400™ (OS/400TM). One of the
unique characteristics of the AS/400 debugger
(such as, setting and stopping at breakpoints) is
that only a small performance penalty is paid
when using it. The debugger's high-level
performance is achieved through the event
mechanism that is built into the system
microcode. (An event is signaled by the system
each time an instruction is processed so that
OS/400 can monitor the progress of the code
being run.) Programs that are compiled with the
debugging option turned on (which is the default)
have debugging tables that are generated along
with the object code. (These debugging tables do
occupy additional storage.) Users that always
generate the debugging tables as a part of the
compile step have the flexibility to debug any
program in their application without having to
recompile.

The debugger supports all of the common
debugging functions:

• Set breakpoints at high-level language
statement numbers

• Display and change high-level language
variables

• Issue any command while stopped at a
breakpoint

• Trace

The debugging support allows users to closely
monitor the application's processing. It also
increases the value of a testing session, as the
user can temporarily correct many types of errors
(by changing variables and issuing system
commands), allowing other errors to be found
before the program must be recompiled.

Through group job support, the user can have the
editor running in one group job and a debugging
session in another. The user can hot key between
the jobs as the need arises, allowing simpler
errors to be corrected while debugging.

Another system feature that aids in the debugging
phase is dynamic binding. The design of the
AS/400 system makes the link-edit step
unnecessary, allowing the user to compile and
run. Corrections can be compiled into test
libraries, which, for the programmer, are placed
ahead of the production libraries. Program calls
are resolved at processing time, causing the test
versions to be called. This allows programmers to
test corrections without having to have a separate
test version of the entire application. At the same
time, others can continue to use the production
level of the application.

Accommodating Different User Sets
A unique requirement for the AS/400 system was
the need to accommodate users from the
System/36 and the System/38. The application
development support enhances the functional
richness and ease of use of these two systems by
providing consistency, flexibility, and the ability to
migrate easily.

End-user interface changes were made to all of
the application development support. The goal
was to make all of the products more consistent
and, thus, easier to use. Another goal was to
make the application development support more
consistent across IBM'S entire product line,
including Multiple Virtual Storage (MVS), Virtual

Machine (VM), and Operating System/2™ (OS/2TM).
With these changes came additional ease-of-use
features, such as more online help information
and better field prompts.

Additionally, calling the application development
support has been made more flexible. Users now
have three ways of calling this support: through
the programming development manager (a utility
that presents the user's programming objects in
list form), the command shell, or the
Programmer's Menu. The programming
development manager allows users to look at
their programming objects (files, programs, and
the like) and then select the appropriate function.
Many of the functions have been generalized,
such as the compile function, which can be
applied to any source type. The programming
development manager also allows users to create
their own user-defined functions that can then
easily be applied in any of the programming
development manager lists. So, users can apply
functions to objects (through the programming
development manager), objects to functions
(through the Programmer's Menu), or both at the
same time (through commands).

To accommodate the wide difference in user­
experience levels, some products have expert
modes, which remove some of the help
information from the display to make more room
for the user's data. For example, the
programming development manager allows the
user to turn off displaying the options and the
command keys to allow more room for the object
list, thereby showing 17 items on the display
instead of eight. And, some products support a
fast path. The DFU fast path bypasses many of the
normal DFU prompts (the system picks
appropriate defaults), allowing simple DFU

applications to be generated quickly.

And, finally, to make the migration from
System/38 and System/36 easier, multiple dialects

of the various languages were added. For most
applications, this enables System/38 and
System/36 users to recompile their existing
programs unchanged. This has also been
extended to the screen specification languages,
where both the screen format generator (SFGR on
System/36) and DDS (System/38) are supported.

AS/400 utilities also support these additional
languages. Screen design aid supports creating
SFGR source as well as DDS source. DFU runs
applications that were created using System/36
DFU.

The AS/400 Migration Aids were developed to
facilitate moving applications, system data, and
user data from the System/36 and System/38 to
the AS/400 system. This product allows some
migration work to be done ahead of time by
providing an extensive set of facilities that run on
the System/36 or the System/38. These facilities
include:

• Analysis reports, which will find the programs
that require change to recompile successfully.
Individual source statements are flagged with
either warning or error messages, allowing the
user to identify the problem areas.

• System reports, which show the amount of data
to be migrated. They also show what has and
has not been migrated or analyzed. This allows
the migration to be performed in stages.

• A facility for automatically determining the
source type (such as RPG, COBOL, Query) for
source members that did not have a source
type previously specified.

• A facility for reconstructing source from
compiled menu, message, and SFGR objects.

29

31

The System/36 Environment

Describes an environment which supports System/36 applications and users on the AS/400 system.

John A. Modry, Peter J. Heyrman, and Steven A. Dahl

Introduction
The System/36 environment is a feature of the
AS/400™ system that supports developing and
running System/36 applications that use
procedures, Operation Control Language (OCl)

statements, utilities, menus, messages, and
application program interfaces (APls). Most
System/36 applications can be easily migrated to
the System/36 environment and just as easily
migrated back to System/36. A number of
challenges were faced in providing equivalent
function and interfaces with a preceding system
while still taking advantage of the new function
and improved usability of the AS/400 system.

The primary design goal of the System/36
environment was to allow System/36 applications
to work on the AS/400 system, both functionally
and in terms of the interfaces seen by the users of
the applications, without requiring source code
changes. The System/36 environment is
operating system support that is designed to
provide System/36-equivalent function, using
underlying AS/400 facilities and constructs
wherever possible. Any AS/400 function can
access, update, delete, and rename the migrated
objects from a System/36. The user's compiled
programs, messages, display formats, data file
utility (DFU) programs, files, libraries, and so forth,
are all AS/400 programs or objects when being
accessed or run by the system. Two significant
advantages of the System/36 environment
approach are:

• The performance of the System/36
environment is approximately the same as

32

using equivalent Operating System/400™
(OS/400TM) function.

• The System/36 environment provides access to
AS/400 functions. This allows most System/36
applications to be expanded to use AS/400
commands and programs without requiring that
the application programs be rewritten, and
allows interactive users to call AS/400
commands and programs while in the
System/36 environment.

A variety of approaches were used to design the
System/36 environment. For some functions, the
complete System/36 design was used and re­
implemented for the AS/400 system. For other
functions, extensions were incorporated at
various points within the AS/400 system to
provide the functional equivalent of System/36
support. In some cases, System/36 user
interfaces were extended to be more functional
and to achieve consistency across the entire
AS/400 system. The different approaches blend
together to produce a System/36 environment on
the AS/400 system that provides support for
System/36 applications, while maximizing
performance, usability, and extendibility.

Structure
The System/36 environment consists of AS/400
objects that represent various parts of a
System/36 application, as well as the programs,
objects, and the like that support the System/36
environment.

Object Structure
On System/36, applications are stored in files and
libraries. Four types of library members exist:

• Source members contain editable information
that is input to another process, such as a
compilation. Examples of source members are
high-level language source statements,
message source, and display format source.

• Procedure members contain OCl statements
that are similar in function to control language
(Cl) statements on the AS/400 system.
System/36 procedures are interpreted by the
System/36 Reader/Interpreter.

• Load members are the internal form for objects,
such as compiled programs, display formats,
message members, and configurations.

• Subroutine members are the output from a
process such as compilers, Query, or DFU. On
System/36, program subroutines are combined
to create load members.

Figure 1 maps some key System/36 objects to
AS/400 objects.

On the AS/400 system, source and procedure
members are mapped to source files so a single
editor can change source statements,
procedures, Cl program source statements, and
so forth. This eliminates the need to learn multiple
editors to change source members.

System/36 Object

Library

Source Member

Procedure Member

Compiled Program (RPG II and COBOL)

Subroutine Member

Compiled Display File

Compiled Message Member

File (Sequential, Direct, and Indexed)

Alternative Index

Virtual Disk

Folder

Documents

Data Dictionary

Library #LlBRARY

Figure 1 Mapping of System/36 to AS/400 Objects

Support has been provided to handle the special
System/36 attributes for an object. For example,
the System/36 procedure attributes (such as
multiple requesting terminal (MRT) indicator, and
log statement indicator) and System/36 source
attributes (such as never-ending-program (NEP)
indicator, and maximum number of MRT
requestors) are supported. In addition to the
existing System/36 attributes, new attributes were
defined. One of these attributes indicates that a
program was compiled for the System/36
environment and must be run in the System/36
environment.

User profiles on the AS/400 system support all of
the System/36 user profile attributes, including:
initial sign-on menu, initial sign-on procedure or
program, initial current library, mandatory-menu
attribute, and mandatory procedure or program
attribute. In addition, a new user profile attribute

AS/400 Object

Library

Member of Source File aS36SRC

Member of Source File aS36PRC

Program

Program

Display File

Message File

Physical File in Library aS36F

Logical File in Library aS36F

Shared Folder in Library aDOC

Folder in Library aDOC

Documents in Library aDOC

Data Dictionary and a Set of Files Within a Library

Libraries #LlBRARY and assp

RSLL397·3

indicates if a user's job should have access to
System/36 environment functions.

The library structure for the System/36
environment has been changed from the library
structure of System/36. On System/36, the
system library, #LlBRARY, contains all of the IBM­
supplied objects for the System/36 operating
system (System Support Program, or sSP).
Because #LlBRARY is always checked when
searching for objects, customers often place
applications that are used by many users in
#LlBRARY. On the AS/400 system, library assp

contains all of the IBM-supplied programs,
procedures, and files for the System/36
environment, and #LlBRARY is used to hold user
applications. This two-library approach allows
new operating system releases to be installed
without affecting the applications in #LlBRARY.

To maintain information about the System/36
environment, a System/36 definition object has
been created (object type ·S36). This object
includes information about:

• Display stations, printers, the diskette unit, and
tape units to be used in the System/36
environment.

The System/36 environment maps the AS/400
1 O-character device names to two-character
names. This allows System/36 applications that
use the two-character device names to be
migrated to the System/36 environment.

• System/36 environment file information.

The default library that contains files is QS36F.

This library name can be changed with the
System/36 environment definition support.

• Session information.

This includes information on items such as the
default library for a display station, the printer
associated with a display station, and so on.

• Spool information.

This includes printer lines per page, characters
per inch, default forms 10, and so on.

• MRT security information.

This information defines how the System/36
environment controls access to resources used
by an MRT.

Tailoring of the System/36 Environment
Tailoring the System/36 environment is an
extension of the AS/400 configuration process.
Because the System/36 environment assumes

33

default values for all of the System/36
environment definitions, this tailoring process is
optional. The user can tailor the System/36
environment to meet specific needs using the
Change System/36 Environment command.

On the AS/400 system, all jobs operate in a
subsystem (the AS/400 concept of a subsystem
should not be confused with the System/36
concept of an Interactive Communications Feature
(SSP-ICF) subsystem). Jobs running in a subsystem
can be controlled independently of jobs in other
subsystems. The System/36 environment support
is an element of the AS/400 subsystem support.
The System/36 environment sets up the
necessary control blocks that allow the System/36
environment to maintain information about the
current subsystem and the System/36
environment. This includes a lists of procedures,
MRTs, and other subsystem information.

When starting a subsystem, the System/36
environment determines if a System/36
environment definition object exists. If the object
does not exist, the System/36 environment
automatically creates the object and supplies
default values for all of the definition information.
These defaults include defining System/36
environment display stations, printers, the diskette
unit, and tape units based on the AS/400
hardware configuration .

In addition to automatically creating the
System/36 environment definition object,
hardware devices are automatically added to the
System/36 environment definition object when
they are added to the AS/400 system. When a
display station, printer, diskette unit, or tape unit is
added or removed from the system, the AS/400
configuration support notifies the System/36
environment, which changes the System/36
environment information for that device. This
combination of the AS/400 support and
System/36 environment support allows

34

customers to attach a new input/output (I/O)
device and immediately start using it.

In addition to the definition process of the
System/36 environment, customers have the
opportunity at initial program load (IPL) to change
certain system values to tailor their system. One
of the system values determines if all user profiles
should be given access to the System/36
environment. This allows the system administrator
to set a single value instead of setting the
System/36 environment attribute in multiple user
profiles. The System/36 environment system
value can be overridden by the individual user
profile. Another system value specifies whether
the system should create device names in the
two-character System/36 format or the 10-
character AS/400 format.

Accessing the System/36 Environment
These three ways are used to access System/36
environment functions:

• For users who always want to operate in the
System/36 environment, a special environment

attribute can be set in their user profiles to
indicate that the user is a System/36
environment user. When a System/36
environment user signs on the system, the user
has access to all functions available in the
System/36 environment. Similarly, if a
System/36 environment user submits a batch
job, the batch job has access to all System/36
environment functions.

• For users who occasionally need access to the
System/36 environment, two commands (Start
System/36 Environment and End System/36
Environment) are provided that allow a user to
enter and return from the System/36
environment.

• For users who occasionally need to run a single
System/36 environment procedure, a command
(Start System/36 Environment Procedure) is
provided that accesses the System/36
environment, runs the procedure, and
automatically returns users to their previous
environment.

File, Library, Folder

Individual Objects
Within a Library
and Folder

I

F
u
n
c
t
i
o
n

Mandatory Menu
and/or Procedure

Password I
I

Non-Secure I I

I I

1-------- ----- - System/36 - - --- - - --- - - +-- AS/400 System -

Time
RSLL398-3

Figure 2 AS/400 Security Time Line

Security
To accommodate both the broad range of security
requirements and the differing levels of
sophistication of a given customer, the System/36
implemented security so that users can progress
through the levels of security as their
requirements change. As shown in Figure 2, the
user can begin with no security and, as
requirements change, progress to requiring
passwords and menu security, and eventually to
secured libraries and files.

This same philosophy has been adopted and
expanded on the AS/400 system. The security
administrator can use AS/400 authorization lists
to grant and revoke security levels to libraries or
objects within a library for groups of individuals.
Different levels of security can be selected by the
security administrator (unsecured, password and
menu, full object-level). The user can grant rights
to an individual user or to a group of users for a
set of objects. The administrator can, in turn,
selectively exclude members of a group from a
given resource. The System/36 support for
securing a data base file when it is created is
provided on the AS/400 system using authority
holders. (For a broader discussion on how
System/36 security capabilities have been
incorporated into the AS/400 security architecture,
see the article Security.)

User Interface
The user interface consists of the way the user
accesses a function and the information seen
while the function is running. The System/36
environment supports the System/36 interface
used to access a function. The same commands,
messages, and other interfaces to System/36 are
supported. System/36 users do not have to be
retrained to run System/36 environment functions.

Because many System/36 environment functions
call AS/400 support, a single interface can be
used to manage the system. For example, the

AS/400 display to manage currently running jobs
is the same as the System/36 environment
display. (For more information on the AS/400 user
interface, see the article An Integrated User
Interface.)

The expanded library search list facilities of
OS/400 allow multiple national languages to be
supported at the same time. The System/36
environment uses this support for displaying such
items as messages, menus, and display formats.
(For additional information, see the article
Software Design to Support National Languages.)

Operator Control Commands
System/36 operator control commands, such as
Status Print and Change Print, are used by
programmers, operators, and general users to
display and control jobs, spooled print files, and
the like. In addition to providing a familiar
command interface for System/36 users, the
System/36 environment support allows menus
containing operator control commands to be
migrated to the AS/400 system. System/36
commands are supported by one of these
techniques:

• Some commands are supported by specialized
System/36 environment programs that provide
similar functions to the System/36 commands.
For example, the Status Session command
calls a System/36 environment program that
displays information, similar to that on
System/36, about the current job.

• Some commands are supported by directly
mapping the System/36 command to the
corresponding AS/400 command. In many
cases, the System/36 environment support was
incorporated into the AS/400 support. For
example, the Status Print command is mapped
to the AS/400 Work with Spooled Files
command. The information displayed is very
similar to that on the System/36.

• Some commands are not supported directly.
Users must provide information different than
that on the System/36. In these cases, a
message is issued to the user, instructing the
user on how the task is performed on the
AS/400 system. For example, the Change Print
command results in a message describing how
to cause one print file entry to print after
another print file entry. After the user responds
to the message, the AS/400 Work with Spooled
Files display is presented and the user can
change the spool file entries so the spool files
print in the desired order.

This method of giving instructions to
accomplish the function with AS/400
commands is an easy way for users to learn the
AS/400 commands. Once the user learns the
names of these commands, the users can use
the AS/400 command names directly, rather
than the System/36 environment commands.

Message Support
The four types of System/36 messages (user,
program, console, and subconsole) are available
on the AS/400 system.

• User Message: A user message is sent by a
user or procedure to either a work station or
user by the MSG command. An example of this
is "Peter, can you attend a meeting at 2:00
today?"

The underlying message support of the AS/400
system is functionally very rich and flexible.
OS/400 automatically creates a message queue
for each user as he is enrolled, and for each
work station or printer device as it is created.
The user can modify the characteristics of these
message queues. For example, a message
queue on the AS/400 system can operate like a
System/36, where it immediately notifies the
user when a new message is received. The
system also allows the user to hold messages

35

and not notify the operator, or to interrupt
immediately what the user is doing and display
the message.

• Program Message: A program message is sent
by a program to a work station when an error is
detected. The operator has a choice of ignoring
the error, retrying, or canceling the function. An
example of a program message is "Library
lEDGER already exists."

The System/36 environment program message
support is designed to present messages like a
System/36. Program messages sent by
System/36 environment functions and
applications are presented in the same format
as they were on the System/36, with the same
options, and the ability to return to the
procedure prompter ($HElP function of
System/36). System/36 automatic-response
values for application messages will continue to
function, and the user can take advantage of
other automatic-response capabilities provided
by the full AS/400 message support. The
System/36 message manual is now online, and
can be viewed without leaving the work station.

• Console Message: A console message is sent
to the system console operator to manage
system resources or batch jobs. An example of
a console message is "Please insert diskette
ABC in the diskette drive."

36

The AS/400 system has a single system
operator message facility designed to handle all
environments. The AS/400 system operator
message queue (aSYSOPR) is used like the
system console message queue on the
System/36. The System/36 commands and OCl

statements for sending a message will send
messages to aSYSOPR when the console is
specified. The system operator message queue
can be viewed by anyone from any work

station. It is not restricted to a specific device as
on the System/36. When a program message is
sent to the system operator message queue, an
informational message is also sent to those
using that program, to inform them that the job
is waiting for operator action.

• Subconsole Message: A subconsole message
is sent to a subconsole operator who is
managing a set of printers that are near the
work area. An example of a subconsole
message is "Please mount forms CHECKS into
printer P2."

As stated earlier, each printer has a message
queue. The operator responsible for managing
a printer or set of printers can use the Work
with Writers command (similar to the System/36
Status Writer command) to view all of the active
printers. If the status of the printer indicates it is
waiting because of a message, the operator
can then display the messages for that device
and correct the situation.

Menu Support
System/36 environment menu support is an
extension of System/36 menu support and is
integrated into OS/400. User menus for both the
System/36 environment and the AS/400 system
consist of a display format and a message file
(message member on System/36). The
System/36 interface for creating menus is
supported (FORMAT, CREATE, BlDMENU, and SDA

procedures), in addition to the AS/400 methods
for creating menus (Create Display File, Add
Message Description, and Start Screen Design
Aid commands). The System/36 interfaces to
display a menu (Menu operator control command
and MENU OCl statement) are supported by the
System/36 environment, similar to the support
offered on System/36. In addition to displaying
user menus, the System/36 environment has
been enhanced to display AS/400 system menus.

The AS/400 system menus guide the user in
performing system tasks, in the same way as the
help menus provided on System/36.

The operational characteristics of menus have
been changed from System/36. For example, on
System/36, the Dup key was used to retrieve the
last function only, while the AS/400 system can
retrieve any previous function. The user can
display and select from all of the functions that
were entered on a menu during the current
session.

System Request/Attention Key
The system request support on the AS/400
system is combined with the inquiry (attention)
support from System/36. The support is a
common interface that is tailored to the
environment the user is currently operating in.
This merging of the functions was accomplished
with these changes:

• The System Request key shows the System
Request menu from any signed-on display
station.

• The System/36 system request function to
display the messages sent to the system
operator is an option on the System Request
menu.

• The options are tailored to the current operating
environment. For example, if a System/36
environment job is running, the Display current
job option shows the status of the job using the
System/36 environment Status Session
command. If an AS/400 job is running, the
Display current job option shows the status of
the job using the AS/400 Display Job command.

Unlike the System/36, the Attention key is not
reserved for use by the system. The System/36
environment user can use the support available to

all AS/400 users to define a program to be run
when the Attention key is pressed. This attention
key program can be defined in the user's profile
or by issuing a command (Set Attention Program).

Application Interface
A major design consideration was to ensure that
the primary application interfaces on System/36
(RPG II, COBOL, OCl, utilities, and so forth) are
supported by the System/36 environment. The
System/36 environment was designed so
information produced by these applications, and
the interfaces seen by the users of these
applications, are equivalent to that of the
System/36.

Languages
The language heritage of the System/36 began on
the System/3 and has evolved and grown to meet
the ever-expanding interactive processing, work
station, and communications requirements of the
data processing community.

For example, on the System/3, communications
was principally batch-oriented and was accessed
using the telecommunications specification. The
System/32 supported a small built-in display that
was six-lines long and 40-characters wide. RPG II

Keyboard, Console, and CRT file specifications
were added to accommodate accessing those
devices. System/34 added the concepts of MRT

programs, NEPs, no requestor-terminal programs,
read under format, and SSP-ICF operations.
System/36 in turn added work station file
specifications to allow for a data dictionary
speCification for externally defined SSP-ICF

formats.

To protect application investments and to provide
an easy migration path for System/3, System/32,
System/34, and System/36 customers, the
System/36 environment RPG II and COBOL

compilers have maintained all of these language

extensions. System/34 and System/36 are not
strongly data typed. Users can leave blanks in a
numeric field and the System/36 would treat that
as zero and allow arithmetic operations on the
field. The base instruction set of the AS/400
system supports the stronger data typing of
RPG III , COBOl'8S, Pl/I, and BASIC and will detect a
decimal data error if the user attempts an
arithmetic operation on a field containing non­
numeric data. Extensions to the base instruction
set allow it to operate similar to the System/36 if a
decimal data error is encountered when
performing zoned arithmetic. The System/36
environment functions also provide additional
support for System/32, System/34, and
System/36 language extensions, so RPG II and
System/36 environment COBOL programs must be
processed within the System/36 environment.

AS/400 programs (RPG III, COBOl'8S, Cl) can also
run in the System/36 environment. Because the
System/36 environment is an integrated part of
OS/400 and has all of the facilities of the operating
system available to it, an RPG III program runs in
the System/36 environment without using the
System/36 environment-sensitive functions.

In addition to the functions currently available to
the System/36 application developer, the
System/36 environment compilers provide
expanded capabilities. These items, for example,
are available to RPG II programmers:

• Greater than 64K program size

• Maximum number of arrays is increased from
75 to 200

• Ability to call any other program on the system

• Maximum number of files used by a program
increased from 20 to 50

To enhance programmer productivity, the
System/36 environment supports the full AS/400
debugging facilities for RPG II and COBOL. (For
more information on the System/36 environment
compilers, see the Application Development
Support article.)

Operation Control Language
A key part of any System/36 application is the
procedures the programmer has developed to
control the flow of programs within the
application.The AS/400 system supports both
System/36 OCl within the System/36 environment,
and compiled AS/400 Cl, which is syntactically
quite different from the System/36.

A programmer can include Cl programs and
AS/400 commands in a System/36 procedure.
This allows a programmer to access new
functions or facilities provided by OS/400, without
having to rewrite the System/36 procedures as Cl

programs.

The System/36 environment OCl reader and
interpreter supports:

• The individual OCl statements themselves.

• Procedure control expressions that allow the
user to build conditional logic into the
procedure. The types of functions available
include testing for a file's existence, performing
simple mathematical functions to control
iterative operations, or checking the volume 10

on a diskette.

• Substitution expressions that allow the user to
extract data from the system and incorporate it
into an OCl statement. For example,
substitution expressions are available to
request the user 10 of the person initiating the
procedure, the current system time or date, and
the value of any parameter passed to this
procedure.

37

support. The System/36 environment supports
the OCl FilE statement (which is required for every
disk file used in a System/36 application) by
mapping the parameters to the equivalent AS/400
data base functions, and allocating any files
indicated by the FilE statement.

The System/36 environment supports improved
performance when an application uses the same
data base file in consecutive programs called from
the same procedure. This is a fairly typical
scenario because the 64K program size limit on a
System/36 often results in splitting an application
into many small programs, each opening the
same file. The System/36 environment keeps data
base files open after a program has completed. If
the next program uses the same file, the
System/36 environment connects that program to
the open file. If the next program does not use the
same file, it is closed.

The System/36 environment data base support
takes advantage of the additional function
available on the AS/400 system. For example, the
limit on the number of open files has been
increased significantly, thus allowing a single
program to perform file updates that would have
required multiple programs on a System/36.
Another advantage is the AS/400 disk
management capabilities. A file does not have to
be located in contiguous storage locations and
space is not reserved until it is needed. Users also
have access to the data integrity and recovery
functions of the AS/400 data base.

Display and Communications Support
The System/36 environment provides support for
System/36 applications that interact with any
combination of display devices and
communications devices. Functions necessary for
System/36 compatibility that are not part of
AS/400 data management are incorporated as
extensions of AS/400 data management and are
only used when an AS/400 application is running.

The basic support and structure of AS/400 data
management for display devices was adopted
from System/38. System/36 display formats are
migrated to AS/400 display device files. In
addition, OS/400 Intersystem Communications
Function (ICF) was incorporated into the AS/400
data management structure. The concept of ICF, a
generalized high-level interface for
communications applications, was adopted from
System/36. Support was incorporated into
AS/400 data management for ICF files, which are
used for I/O to all types of communications
devices supported by the AS/400 system.
System/36 communications formats are migrated
to ICF device files . (For more information on
AS/400 data management support, see the article
A Structured Approach to Data Management.)

Major capabilities were built into the System/36
environment to make migration transparent to
most System/36 applications. The structure (work
areas) of System/36 data management is
organized to support programs that issue I/O

operations directly to devices. The structure of
AS/400 data management is organized to support
programs that issue I/O operations through a
device file to a device. On the AS/400 system,
multiple device files can be open at the same time,
and work areas representing a program's use of a
device through a particular file are needed on all
I/O operations. Information stored in the work
areas on an output operation is required to
successfully process the next input operation. No
comparable requirements exist on System/36, as
all information required to complete an I/O

operation is associated with the program and the
device, and not with the use of the device through
a particular file. The System/36 environment
masks these differences to provide support for
System/36 applications, including the support for
read under format.

A System/36 program can do I/O through both
display formats and communications formats and

can simultaneously wait for an I/O response from
multiple display devices and multiple
communications sessions. The AS/400 system
does I/O through formats contained in a device file.
The System/36 environment allows an application
to issue a single input operation (Accept Input) to
a display file (with one or more display devices
attached) and an ICF file (with one or more
communications sessions attached). The
operation is satisfied by the first I/O response to
complete.

Finally, the System/36 environment allows
System/36 applications to use System/36 two­
character device names instead of AS/400 10-
character device names. The System/36
environment device name mapping takes into
consideration the system-level device name
information, as well as application-level device
name mapping provided through OCl statements
(WRKSTN and SESSION). The System/36
environment determines the appropriate device
name mapping and passes it to AS/400 data
management using generalized device-name
mapping interfaces before calling a System/36
application program. Therefore, AS/400 data
management is not aware that it is working with
System/36 device names.

Read Under Format
To provide compatibility for System/36
applications, the System/36 environment
supports read under format, which allows a
System/36 program or procedure to read a format
that was displayed by a previous program. The
program can read through a different format and a
different file than that used on the output
operation. (The application program doing the
read must know how to process the data it is
receiving.) Read under format allows the user to
enter data on the display while the second
program is initiating, thus improving overall
response time.

39

Conclusions
The System/36 environment provides AS/400
support for System/36 applications and users.
The System/36 environment provides a high
degree of source-level compatibility for System/36
applications. This includes support for APls such
as RPG II , COBOL, procedures, OCl, utilities, menus,
commands, messages, display formats, and
communications formats. End-user interfaces for
accessing System/36 functions are supported
and mapped to corresponding AS/400 functions.

The System/36 environment consists of operating
system extensions that were designed to provide
System/36-equivalent function, using the
underlying support of the AS/400 system
wherever possible. This approach results in
performance for System/36 applications that is
equivalent to that available for AS/400
applications, and enables the System/36
environment applications and users to have
access to the new functions of the AS/400
system.

Users may easily migrate most applications and
data from a System/36 to the System/36
environment, as well as from the System/36
environment back to a System/36. This allows the
System/36 environment to serve as a growth path
for existing System/36 users, as well as for
developing central-site applications that will run on
a System/36. In addition, users may choose to
gradually rewrite their System/36 applications to
take advantage of new AS/400 functions. Users
content with the function provided by System/36
applications can continue to run in the System/36
environment, while obtaining the performance
benefits of the AS/400 system.

Acknowledgments
We would like to acknowledge the contribution of
Guy W. Vig and Michael P. Anderson in supplying
information relative to the utility support,
System/36 to AS/400 Migration Aid, and
coexistence support sections of this article.

™ AS/400, Operating System/400, and OS/400 are
trademarks of International Business Machines Corporation.

41

The Communications and Networking Structure

Describes the data communications hardware and software structure in the AS/400 system and discusses how it supports today's function
while laying the foundation to meet future requirements.

James O. Walts and Paul R. Mattson

Introduction
The interest in and use of data communications
and networking facilities has grown dramatically in
recent years. Part of this growth has been driven
by market demand, while part has been driven by
technology.

The information managers in business and
industry recognize that their information is a
valuable corporate resource. What information will
be collected and how it will be managed and used
has become very important. Getting accurate
information to the correct places in a timely
fashion for decision makers to take action has
become an integral part of businesses' challenge
to remain competitive.

Data communications plays a significant role in
meeting these challenges. Business has become
more and more dependent on its data
communications facilities as these challenges are
met. In many cases, even the very way business is
carried on has changed due to emerging data
communications technologies. As a result, a
growing demand exists for functionally rich,
reliable, and manageable data communications
functions, products, and facilities.

In a complementary way, technology has
contributed to the growth in data communications
products and services. Increasing processing
power and storage capabilities at lower and lower
costs have allowed new applications that were
once prohibitively expensive. Existing function is
enjoying new levels of performance for the price.

42

The AS/400™ system features many of the
capabilities that have been driven by the data
communications market demands, including the
AS/400 implementation for various
communications protocols. Some of these
features are common application facilities,
Systems Network Architecture (SNA),
management services, and separate input/output
(I/O) processors. The AS/400 system delivers
these functions today by integrating advanced
hardware and software technologies into an
overall structure designed for functional
expansion tomorrow.

Design Objectives
The AS/400 data communications structure was
designed with a number of goals in mind. First, the
structure had to provide comprehensive functional
capability at a competitive price-for-performance
level. In addition, the data communications
structure had to support multiple architectures in a
flexible and extendible fashion, by supporting
multiple, concurrent data communications
architecture implementations and the sharing of
physical resources where meaningful. It had to
have an extendible common framework, within
which various communications protocols could be
implemented. The various communications
protocols had to be presented to the application in
a consistent high-level fashion, thus shielding the
application writer from much of the protocol detail.
And, the structure must maximize the ability of the
AS/400 system to communicate and operate with
other IBM and non-IBM products today and in the
future, including the rich complement of SNA
capability, asynchronous communications

support, binary synchronous communications
support, as well as affinity with the emerging open
systems interconnection (OSI) architectures. And
finally, the structure had to allow the system and
data communications operator to configure
networks easily, check their status, and monitor
their behavior. The data communications operator
must be able to get maximum utility from the
network with minimal management effort. The
structure of AS/400 data communications was
designed to meet these objectives. An AS/400
sample network is shown in Figure 1.

Data Communications Structural Overview
The AS/400 data communications structure can
be viewed as a two-dimensional matrix. Each cell
within the matrix provides a particular
communications function. (Figure 2 shows this
communications matrix.)

The vertical dimension of the matrix shows the
distribution of architectural layer functions (such
as application, presentation, and session
functions). AS/400 function has been distributed
across the System Processor, the I/O processors,
and physical hardware attachments. Function is
distributed throughout the system, depending on
such parameters as sharing architectural layers,
sharing physical hardware, and performance.

The horizontal dimension shows various
communications protocol implementations (such
as SNA, asynchronous, and binary synchronous
protocols). This horizontal dimension depicts the
integration of dissimilar architectural

S/36

9404

LAN

PC

9406

S/38

Figure 1 AS/400-System /370 Sample Network

9404
9406

9406

X.25
PSDN

RSLL309-2

43

implementations into the same structural layers of
the system. It also shows sharing common
system functions and packaging at several of the
vertical layers (for example, a common
communications I/O processor is available for all
protocols).

This matrix structure is presented to the user
through management services and common
application facilities. Common application facilities
provide the user with consistent access to
communications functions. These facilities are
common to all protocols, thus providing a uniform
interface. Management services permeate all
structural layers of the system. In this way they
can control and monitor all communications
functions. The hardware and software, which is
self-defining and self-diagnosing, aids the
operator in network configuration, interrogation,
and monitoring.

Data Communications Relationship to SNA and
OSI Models
Figure 3 provides a composite view of the
components of the initial ASj400 data
communications offering. The overall ASj400
implementation is shown with a comparison of
SNA and OSI implementations. The figure shows
the details of how the functional layers of SNA have
been implemented in the ASj400 system and how
the physical, data link, and network layers of OSI

have been embodied in the ASj400 system. As an
example, IBM Token-Ring Network and X.25

protocols serve as alternative data link controls
for the SNA Path Control function. Also,
independent protocol implementations can share
a physical resource. As an example, the ASj400
system can communicate with an ASCII host
system and an SNA host system concurrently over
the same X.25 physical port. The ability to share
physical resources is important to satisfy the
second ASj400 design objective of supporting
multiple architectures in a flexible manner.

44

USER or APPLICATIONS

Common Application Facilities

Application

Presentation

M --------- -- -------------------------
a
n
a Session
9
e
m --------------------------------_.-
e
n
t

S
e --------------------

r
v

c
e
s

----------------------------------- -- _."

.. _-_._-----------------------_._----------------- ---
L..-__ ~~~ ___________ ____', _____ ________ __ ___ _____ ________________ __ _________ _____ _

..
Independent Protocol Implementations

Figure 2 Two-Dimensional Matrix of the Data Communications Structure

A
r
c
h

e
c
t
u
r
a
I

L
a
y
e
r
s

RS LL310-3

Problem Management: Problem management
assists C & SM in problem determination, problem
diagnosis, and configuration monitoring. The
problem management interfaces work with the I/O
processor services to perform activation and
deactivation of network resources, to test network
resources, and to collect statistical information on
the network resources. Problem management
then reports the resulting system reference codes
(SRCs) for each of these operations to the C & SM
facilities. These SRCS are processed by C & SM. If
the situation cannot be handled locally, it is
reported to the focal-point problem management
system through the use of C & SM generic alerts
facilities. These functions provide the ability to
manage the system from a central site.

Intersystem Communications Function
Intersystem Communications Function (ICF)
provides the common application facilities shown
in Figure 2. In Figure 3, the various protocol
implementations (SNA, asynchronous, and binary
synchronous) appear below ICF. ICF presents a
common application interface for easily accessing
these communications implementations. The
communications protocols are implemented in the
vertical dimension shown in Figure 2. Therefore,
ICF is a consistent interface across all protocol
implementations. This common application
interface shields the end-user application from the
detail of each individual protocol. It allows the
application programmer to define the application
data externally to the program and independently
of the protocol type. The specific protocol is
selected according to the configuration.

The AS/400 system has several of its own system
applications that are written to the ICF interface.
One such application, SNA distribution services
(SNAOS), provides a set of asynchronous services
consisting of queueing, safe storage, and
scheduling services, which support distribution of
a variety of data objects. Examples of other IBM
applications are distributed services node

executive (OSNX) and interactive terminal facility
(ITF).

Networking Facilities/Machine Interface
The machine interface contains a set of
instructions for accessing all network facilities.
These instructions provide the means for
configuration, activation and deactivation, I/O, and
problem handling. The instructions operate
together to provide a group of control point
services that set up an optimal route for delivering
application data with integrity and security, for
supporting network management and for
providing network recovery. These functions are
provided by the station I/O manager (SIOM) in
conjunction with the management services control
point. The request I/O (REQIO) machine instruction
is the main instruction for performing data
transmission and reception . This instruction is
processed by the station I/O manager shown in
Figure 3. The station I/O manager provides the
capability to share, on a session basis, the
resources of a remote system. It multiplexes the
data for a set of sessions to a data link control
facility. It also provides session-level error
detection and recovery on behalf of the
application. The station I/O manager is established
by the management services control point during
controller description vary-on processing. The
station I/O manager task, based on the controller
description and device description, provides a
particular Lu-type protocol service for an
application.

Data Link Control Facilities
Data link control facilities provide SNA and non-SNA
(refer to Figure 3) applications with a common
interface to the components that deliver the data
to the adjacent system in the network. They are
designed to transparently multiplex several
different station I/O managers to a single physical
port that supports logical adjacent links, for
example, X25 and IBM Token-Ring Network. As an
example, the X.25 data link control can

concurrently multiplex the following dissimilar
communications environments to the same
physical X.25 port: the AS/400 system as a
secondary SNA station role when communicating
with the host System/370; the AS/400 system as
a primary SNA station role when communicating
with a remote personal computer; and the AS/400
system as an asynchronous pad station when
communicating with an asynchronous host
system. This high level of concurrency of
communications environments provides maximum
use of the hardware.

The line I/O manager (LlOM) is shown in Figure 3
under the data link control facility box. The line I/O
manager provides a transparent interface to the
station I/O managers independent of the
underlying data link protocol and network being
used. It is this transparency that allows the
addition of new data link controls into the
structural matrix without affecting those types of
station I/O managers that currently exist. In a
complementary way, new session and transport
layer implementations can be introduced to share
the existing physical network support. The line I/O
manager is put in place by the management
services control point during line description vary­
on processing. It manages the physical link-level
activation for the management services control
pOint, multiplexes a set of station I/O managers
onto a single physical port, and participates in the
second-level line recovery as directed by the
management services control pOint.

I/O Processor Facilities
The AS/400 I/O processor is a general purpose
processor that is attached to the System
Processor through the system I/O bus. (For more
information, see the article The Multiple-Function
Input/ Output Processor.) Its purpose is to off-load
support of I/O interfaces and their associated
protocols from the System Processor.

47

The I/O processor provides a multitasking
operating system and management functions that
allow it to support a number of communications
ports concurrently. For each port, a set of protocol
support tasks are put in place at the time the line
is varied on. This facilitates the efficient use of I/O

processor storage and processor resource. A
number of data link and physical controller tasks
are available in the ASj400 system (IEEE 802.2, X.25

packet-switching digital network, synchronous
data link control, asynchronous, and binary
synchronous).

Each set of I/O processor protocol tasks has a
corresponding line I/O manager task in the System
Processor. The connection between the line I/O

manager task and the I/O processor protocol task
(IPeF) provides a full duplex and queued message­
based service. This service masks most of the
details of the bus structure and physical I/O

processor card addressing from the line I/O

manager. That is, it provides a location­
independent service to the line I/O manager and, in
doing so, also provides a transport mechanism
independence. This allows for repackaging
hardware and changing function distribution
without upsetting the line I/O manager design or
any of the I/O design above it.

Within the I/O processor, the functions provided
are also distributed across a number of tasks.
This distribution is based on the SNA and OSI

implementations. At each layer within the I/O

processor, connections are established to the
System Processor, allowing the System
Processor to take advantage of any of the
exposed layers shown in Figure 3. This is key to
sharing the same physical port while using
different upper-layer protocol services.

48

The ASj400 I/O processors have provided a
means to move compute-intensive operations
(such as data link controls) out from the System
Processor. This relieves the System Processor
from those burdens, allowing for efficient I/O

processor microcode implementations and
greater overall system throughput.

Conclusions
The ASj400 communications structure provides a
distinct environment for integrating dissimilar
communications protocols into the operating
system. This structure allows the designer to
concentrate on the protocol function rather than
how to accommodate the protocol in the system.
The result is a well-integrated set of dissimilar
communications protocols.

The ASj400 communications and networking
structure supports all the functional capabilities of
preceding products, as well as providing the
structure on which to expand its initial offering.
Through the common applications facilities, new
protocols can be integrated and new hardware
attachments added without disrupting an
investment in communications applications
software. In addition, a rich set of communications
architectures is provided from which to build
networks, while offering easily accessed complex
environments. Management services provide the
operator functions necessary to efficiently
administer the communications facilities.

The ASj400 system provides an integrated
communications hardware and software solution
which is designed to grow with tomorrow's needs.

™ A8/400, Operating 8ystem/400, 08/400, and NetView are
trademarks of International Business Machines Corporation.

49

Advanced Peer-to-Peer Networking

Describes the implementation and advanced networking features that enhance system-to-system and program-to-program communications.

Raymond K. Harney and Christopher H. Jones

Introduction
The expanding AS/400™ telecommunications
market requires networks built with low-cost
systems that are able to grow and participate with
existing IBM Systems Network Architecture (SNA)

networks. In addition, allowing distribution of
resources among different processors without
requiring end users to be aware of the physical
location of these resources is central to the
usability of a distributed operating system. This
transparency of network location and the physical
medium used to gain access to these resources
will be an integral part of corporate
telecommunications strategies as the networking
environment grows during business transitions of
the 1990s and beyond.

In March of 1987, the Low-Entry Networking
architecture was announced as the strategic
networking element for common communications
support in the Systems Application Architecture™
(SAA TM) strategy. The System/36 and System/38
combine the verb set and application program
interface that is advanced program-to-program
communications/logical unit type 6.2 (APPCjLU type
6.2), with the Low-Entry Networking, or node type
2.1 transport layer functions, into product
implementations called APPC. The AS/400 system
has built upon this implementation of the Low­
Entry Networking architecture with the
development of advanced peer-to-peer
networking (APPN) to meet growing distributed
processing requirements. Advanced functions are
offered, such as distributed directory searches,
dynamic route selection, and intermediate session
routing based on transmission priority. (For early

50

networking requirements in an intermediate
system environment, see Baratz et al [1].)

AS/400 APPN support allows applications written
for the APPC/LU type 6.2 application program
interface to communicate with remote partner
applications without modification when multiple
AS/400 systems are providing networking
services. In addition to providing networking
services for AS/400 users, other systems that

System A

Program 4 Program 1

implement only the base Low-Entry Networking
architecture will also be able to use these
services. (For a list of IBM systems that have
implemented the Low-Entry Networking
architecture, see Sundstrom et al [2].)

The Evolution of APPC and APPN
In 1983, IBM introduced an SNA peripheral node
type, node type 2.1 (or as it is known today, Low­
Entry Networking) that supports point-to-point

System E

Program 2 Program 3

.--_-+_-+ __ -,~ Local Operating System ~

Transport Network

Figure 1 Example of Point-to-Point Communications

One Physical Link
Connecting the Two Systems

RSLL301-2

communications [3]. The first implementation of
this architecture, known as APPC on the
Systemj38, provided the capability to carry
parallel LU type 6.2 sessions, thereby allowing
multiple partner applications to be active and
communicating concurrently. Figure 1 shows
Program 1 on System-A using the services of LU-A

to establish a conversation with Program 2, which
is using the services of LU-E on System-E.
Similarly, Program 3 and Program 4 have
established a conversation using a different
parallel session between LU-A and LU-E.

It can be observed how these distributed
applications use the services of the local
operating system to communicate on a logical
point-to-point, or direct connection, basis. The
logical unit (LU) provides the port for an application
program to establish conversations and to send
and receive data from partner applications. The
transport network, which consists of path-control
and data-link control elements, is then used to
actually deliver the data to the remote LU. In type
2.1 nodes, the transport layer provided data
transport on a pOint-to-point, or one-hop, basis.
Therefore, the logical point-to-point connection of
LUs and applications was also a physical pOint-to­
point connection of systems, due to the functional
capabilities incorporated into the transport
network of type 2.1 nodes.

By taking advantage of the layered ASj400
implementation, the path-control layer was
enhanced and a set of system tasks was added
that resulted in the ability to incorporate advanced
functions without affecting the operational
characteristics of the applications and the LUs

being served. (See the article The Communications
and Networking Structure for a description of the
data communications hardware and software on
the ASj400 system.) Figure 2 shows the
architectural model of the SNA layers in a type 2.1
node, and how that model was implemented in the
ASj400 system. Highlighted is the separation

between the LU and the transport network. In this
figure, the APPC function manager represents the
LU type 6.2 verbs that are issued by the LU, and
APPN represents the type 2.1 transport network
and the control point functions.

USing the properties of the nodes and links in
the network that are maintained in a local
topology data base, the best route from the
local control point (system) to the remote
control point is calculated according to the
class of service selected by the user.

The advanced facilities provided by APPN can be
summarized into four main functions, in the order
they are automatically performed within the local
node:

3. Activation of a non-configured remote LU.

1. Distributed searches of the network to locate
any remote LU requested by a local
application.

Once the correct route is determined, the
configuration that was manually configured
and activated with APPC is now automatically
created and activated by the operating
system.

This alleviates the requirement to manually
define every remote LU with which the local LU

may establish a session.

4. Adaptive pacing and transmission priority.

2. Topology and route selection services based
on a class of service selected by the user.

SNA Layers AS/400 Layers

Applications Programs User Application
and Devices Programs and Devices

r
SNADS,DDM

Transaction Pass-Through
Services (lBM-Supplied

Programs)

LU Presentation APPC Function
Services Manager

Data Flow
Control Node Type 2.1

Transmission
Station
Input/Output

"- Control

While establishing the session, the transport
layer assigns transmission priority to
message units and allocates buffers
according to user-specified parameters and
systems capacities.

I
Intersystem Communications

~ Function (ICF)
Appl ication Interface

...--- Machine Interface

Control Point
------------- -_ .. --- ------------------------ -- --_._-- ---------- -----,

... _ ... -.-... _----------------.... ------.... _-
1

Path Manager
Control

Data Link X.25, TRLAN, SDLC
Control Data Link Control

I Transport Network

Figure 2 SNA Layers Mapped to AS/400 APPC/APPN Implementation

Directory i

I:::: ~~~!:~r TO::: ::: nd
Route Selec­
tion Services ! ______ _______ _________________ _______________________ ~ ___ ______ l

RSLL302·3

51

Figure 3, when compared to Figure 1, illustrates
how APPC applications and their serving LUs can
take advantage of these functions. Shown is LU-A

in System-A and LU-E in System-E retaining the
appearance of the same logical point-to-point
connection as in Figure 1, while the transport
network provides for multi hop sessions between
physically non-adjacent systems.

Planning the Communications Network
The ASj400 system incorporates significant
enhancements over the two types of type 2.1
nodes that exist today. Network nodes contain the
advanced functions in the path-control layer that
allow intermediate routing to be performed within
a type 2.1 node. Also included in a network node
is a set of tasks, collectively referred to as the
control point, that performs the functions of

System-A System-B

Program 4 Program 1

distributed searches of the network to locate a
non-configured remote LU and to calculate the
best route from origin node to destination node
based on user-specified criteria. An end node
provides a subset of the network-node function
and relies on the services of an attached network
node for session requests that involve multiple
nodes. End nodes also provide the ability to
register their local LUs with a network node server,
thereby alleviating the network node operator
from having to configure manually the LU names in
all of the attached end nodes for which it is
providing services.

Figure 4 shows these different node types,
connected by the different types of physical media
and the related data-link protocols that can be
used. Of special interest is the ability for network

System-C

Local Operating Systems

Transport Network

One Physical Link Connecting All the Networks

Figure 3 Physically Non-Adjacent Systems Retaining Logical Point-to-Point Connection with APPN

52

nodes to route sessions into the wide-area
network for nodes that reside on the IBM Token­
Ring Network.

All models of the ASj400 system can be
configured as either a network node or an end
node, and all models may also communicate using
synchronous data link control (SDLC) leased and
switched connections, X.25 permanent and
switched virtual circuits, and the Token-Ring
Network. In the sample network, systems A, B, C,
D, and E are configured as network nodes that
are connected to each other by SDLC leased and
switched connections. These network nodes are
providing network services for all local users and
also for all users of directly connected end nodes.
Each system in the network (both network nodes
and end nodes) is uniquely identified by a special

System-D System-E

Program 2 Program 3

RSLL303·2

Key:

NN = Network Node
EN = End Node

TRLAN = Token-Ring Local
Area Network

Joe

X.25 Switched
Virtual Circuits

I

t
(/)

ill

ill
0'
C

<{

(/)

o
~

cC"l

SOLC
_ _ __ Le~ased

SOLC
Leased

Figure 4 Fully Connected APPN Network

Chicago

Chris

RS LL304-2

LU name, called the control point name. This name
serves a dual purpose: to uniquely identify each
node for routing purposes and to be used as an
LU name for user applications. Both node types
also provide the capability to define additional
local LUs within a single node. However, because a
control point name uniquely identifies a system in
the network, a node can only be defined with one
control point name.

The task of configuring an APPN network of any
arbitrary size consists of configuring the local
control point name and node type, and then the
control point name and node type for each
adjacent partner. An example would be for
network node-A in the sample network shown.
First, it is configured as a network node with a
local control point name of A. Then, network
nodes B, C, 0, and E are configured as adjacent
network node control pOints. Finally, all of the end
nodes that it wishes served are configured. The
characteristics of the links being used are also
specified during configuration; default values are
provided according to the protocol and physical
interface but can be modified by the user.

For the control point to perform the directory
services and topology and route selection
services, adjacent network nodes (and optionally
end nodes) use a pair of parallel sessions, or
control-point to control-point sessions, to
exchange network information. Management of
these sessions is performed automatically by a
separate task in each control point and is
transparent to the users at these nodes. Token­
Ring Networks, X.25 switched virtual circuits, and
SOLe switched lines, which are logically switched
facilities , can be configured in such a way that
they are activated only for user sessions; the
connection is dropped when all user sessions
have ended. Because the existence of a control­
point session will prevent switched facilities from

53

AS/400 system, five mode and class-of-service
definitions are automatically created during the
initial program load (IPL). These definitions allow
users to choose between routes and transmission
priorities that are favorable for batch or interactive
traffic. Users can also modify these supplied
definitions or create their own class-of-service
definitions to control session routing according to
their requirements.

After the session origin and destination control
point names have been resolved by the directory
services component, the topology and route
selection services component uses information
that it has stored in its local topology data base,
and any information possibly returned on the
search reply (when end nodes are involved), to
calculate the best route from the origin control
point to the destination control point. Because
topology data base updates are sent and received
by the topology and route selection services
component as characteristics of any resource
change, every route is calculated with the most
current information.

Consider when Lu-Chris is attempting to establish
an interactive session with Lu-Ray. The selected
class of service for an interactive job specifies that
the links with the fastest line speed and shortest
propagation delay are preferred over links with a
slower line speed and longer delay. Assuming in
this example that all the nodes and links were
operational and available for use, the route End
Node-Chris to Network Node-O to Network Node­
B to Network Node-E to End Node-Ray would be
calculated.

As a second example, consider the scenario
where Lu-Chris is requesting a session with LU­
Ray for a batch job. The class of service for batch
jobs prefers a route with a longer propagation
delay in an effort to leave the shorter propagation
delay links for the interactive jobs. This time, the

session route calculated would be End Node­
Chris to Network Node-O to Network Node-A to
Network Node-E to End Node-Ray. The route
calculated would cause the switched links
connecting the network nodes to be activated for
this session, because the topology and route
selection services component calculated that
activating the switched satellite link with a fast line
speed, but long propagation delay, yielded the
best route for the batch class of service.

Dynamic LU Activation and Session
Establishment
Once the route has been determined by the
topology and route selection services component,
APPN automatically creates and activates the LU
description associated with that path. This is the
same LU description that would have been created
if the user had manually configured each LU for
each transport link. By dynamically creating the
description of the LU, the network eliminates the
need for explicit system operator definition for
each remote LU to which the local system
communicates. (For more information, see the
article A Structured Approach to Data
Management.)

To establish a session between the local and
remote LUs, a session activation request is routed
through the transport network. The session
activation request contains an ordered list of the
nodes and the links used to reach the destination
LU. As the activation request crosses the network,
each intermediate node puts in place a temporary
routing entry. The routing entry contains
addressing information, generated at the previous
node, for use on the link that the activation
request arrived on. It is then automatically
assigned a second address for use on the
outgoing link. This allows subsequent session
traffic to be routed simply by giving the session
address of the origin LU, and eliminates the need
for fixed routing entries in the transport network
(see Figure 5).

Adaptive PaCing and Transmission Priority
The objectives for the transport network were to
provide efficient and equitable data transfer for all
sessions, while still allowing selected sessions to
be assigned priority. APPN accomplishes this
through the use of adaptive pacing and three
levels of transmission priority available for user
sessions. Note that one transmission priority,
network, is available only for network control
functions.

Adaptive pacing allows the receiving transport
layer to change or adapt the pacing window size
based on its buffer resources and traffic patterns
in the network. The previous APPC flow-control
algorithms depended on fixed pacing. The pacing
window, or the number of message units that
could be transferred over a session before
receiving an acknowledgment from the receiving
transport layer, was negotiated at session
establishment and was fixed for the duration of
the session. The receiving transport layer can now
allocate its session buffers dynamically, efficiently
using its available resources. It also has the ability
to slow down the transfer of data, or even stop
receiving at any node of any session, thereby
maximizing equity in the transport network by
adjusting the flow of messages for any session
that may be contributing to congestion problems
in the network.

The transport layer also allows message units to
be transferred through the network at different
priorities. Before APPN, the type 2.1 transport layer
would simply transmit message units on a first-in,
first-out basis. There was no way of specifying or
allowing a particular session's message units
priority transmission over the message units for
any other session. This allowed batch-like
applications to consume the available
transmission media bandwidth much more readily
than applications that were interactive in nature, or
had short bursts of data to transfer. APPN allows

55

-
Transport Network

Session f •
Activation ! _ _ _ _
Request L

.... --- - - -------- ------ - - - - -- } Session
_ _ _ _ Activation

Response

• - - --... - - --
Figure 5 Single Route Activation and Data Transfer

the user to configure three session-level priorities:
high, medium, and low. The transmission priority
is carried in the session activation request at
session establishment, allowing the two halves of
the session and each routing entry along the
session path to store the same transmission
priority.

To ensure that lower-priority message units are
not preempted indefinitely by higher-priority
message units, an aging mechanism was
developed. The aging mechanism consists of a
service number, a transmission priority number
assigned to each transmission priority, a
scheduling queue, and a key-ordered priority
queue. The transmission priority numbers provide
a priority factor for each transmission priority. The

56

following values were assigned for each
transmission priority:

• Network = 0
• High = 8
• Medium = 16
• Low = 32

RSLL305-3

The service number is initialized to zero and is
incremented each time a session control block is
serviced. This number enforces first-come, first­
serve scheduling for a given priority, and also
provides an aging factor for unequal priorities.
Special wrap logic is also supported to manage
the path control priorities when the service
number wraps.

The scheduling queue contains a set of session
control blocks that represent each half session or
routing entry that has pending message units to
transmit. The session priority (high, medium, or
low) is stored within each session control block.
The message units available for transmission are
attached to each of their session control biocks.
The priority queue is ordered by ascending key
and contains one element for each of the session
control blocks currently on the scheduling queue.
The keys of the elements on the priority queue are
the sum of the service number and the session
control block's transmission-priority number.

The transport layer always dequeues the first
element on the priority queue to service a session
control block. It then transmits as many message
units as it possibly can over the underlying link
and then increments the service number. The key
of the priority queue element (which is the sum of
the service number and transmission priority
number) is then modified, and the element is
enqueued to the priority queue before the first
element of greater value. This allows the priority
for sessions to decrease gradually while still
enforcing the first-in, first-out ordering for
sessions of equal priority.

Figure 6 shows an example of several message
units being received by path control to transmit
the effect on the priority-queue elements keys,
and the order of transmission.

Figure 7 shows the relationship between the
scheduler and priority queues.

Implications for APPC/LU Type 6.2 Applications
One of the design objectives of SNA, carried out in
the implementation of AS/400 APPN, was to allow
resources, such as application programs and data
files, to be relocated without affecting the remote
applications that access them. This allows
transaction service-layer programs and US6i

Me88age Order Service_Number

1 0
2 1
3 2
4 3
5 4
6 5
7 6
8 7
9 8

The actual order of transmission is message:
9, 4, 5, 3, 7, 1,2,6, 8.

Figure 6 Transmission Priority Example

application programs to refer to a resource by its
name without knowing the actual address of that
resource or the configuration of the network.

The ability for a single control pOint to configure
multiple local LU names provides the vehicle to
move resources associated with a certain LU
name without affecting the more permanent
control point name. This is made possible by the
directory services function of determining the
owning control point for an LU name, and then by
the topology and route selection services function
of calculating the path between the origin and
destination control pOints.

Consider the scenario where applications (shown
in Figure 4) access a user data file named
USERINFO that resides on Network Node-E that is
associated with an LU name of USERINFO on
Network Node-E. During the course of normal
operations, it is determined that Network Node-D
would be a more appropriate system for this file.
Using an IBM-supplied transaction-level program
called object distribution, Network Node-E would
send the file to Network Node-D. Network Node-E
would then delete the local LU name of USERINFO,
and, at the same time, Network Node-D would
add USERINFO as a local LU name. These steps

Trans Jriorlty..J#

Low = 32
Low = 32
Med = 16
High =8
High =8
Low = 32
Med = 16
Low = 32
Network = 0

I

, Scheduling
! Queue

, - -

LJ
I
Priority
Queue

Priority_ Queue Key

32
33
18
11
12
37
22
39
8

RSLL307·2

1
SCB1 SCB2

Med I- High

1 I
I

0 / ...
MUs I MUs

~

Key=8 -. Key = 11

0

allow remote applications to continue to access
the file USERINFO associated with the LU name of
USERINFO. The ability of the control pOint tasks to
recognize that the LU name of USERINFO now
resides in Network Node-D, and the ability of the
transport network to provide the routing
transparently, is key in shielding users and LUs
from the real address of a resource.

Using an IBM-supplied application called display
station pass-through, which allows for remote­
system sign on, the sequence above could be
performed from a single control station.
Therefore, the required involvement of users on
each system can be minimized, especially if skilled
network management personnel are centrally
located.

SCB3 SCBn

r low ~ Low

1 ~ D MUs
I
I

I

~
I

• Key= 12 ----.. Key = 18 r--. •••

RSLL308·2

Figure 7 Relationship between Scheduling and Priority Queues

57

Conclusions
AS/400 advanced peer-to-peer networking builds
upon the non-hierarchical, point-to-point Low­
Entry Networking protocols implemented in type
2.1 nodes. Advanced functions developed for the
AS/400 system free users from the detailed
manual tasks that were required with previous
networking solutions.

These advanced functions are: distributed
directory searches; topology and route selection
services; dynamic logical unit activation and
session establishment; and adaptive pacing and
transmission priority. Distributed directory
searches provide the current address of a remote
LU for user applications that only know the LU by
name. The topology and route selection services
component selects the best nodes and links to
use based on a set of user-specified criteria to
access the remote LU. Dynamic logical unit
activation and session establishment serves as a
placeholder for current communications. Adaptive
pacing and transmission priority allows the
transport network to adjust the flow of session
traffic.

The layered structure of the operating system
allows new and old products to coexist gracefully,
and additional functions to be added in a natural
manner to meet future requirements. This is
highlighted by the enhancements made to the
transport network while preserving the APPC

application program interface. Advanced peer-to­
peer networking demonstrates the AS/400
commitment to provide the best networking
functions in the industry.

References
1. Baratz, A. E. et ai, SNA Networks of Small Systems, IEEE

Journal on Selected Areas in Communications, SAC-3,
Number 3, 416-426. May 1985.

2. Sundstrom, R. J. et ai, SNA: Current Requirements and
Direction, IBM Systems Journal, Volume 26, Number 1,
13-36. 1987.

58

3. Gray, J. P. et ai, Advanced Program-to-Program
Communication in SNA , IBM Systems Journal, Volume 22,
Number 4, 298-318. 1983.

™ AS/400, Systems Applications Architecture, and SAA are
trademarks of the International Business Machines
Corporation.

A Structured Approach to Data Management

Highlights the advances in display and communications data management, describing the data management structure necessary to support
them.

Carol A. Egan and Daniel S. 8rossoit

Introduction
The AS/400™ data management structure greatly
simplifies the process of accessing data from
different media by providing a consistent system­
wide method of data definition and access.
AS/400 data management supports data base, an
extensive list of devices, and communications
capabilities to many different systems. This
structure also provides the underlying support for
application portability by providing a common
interface for applications running in Operating
System/400™ (OS/400™), in the OS/400
System/36 environment, or in the OS/400
System/38 environment.

File processing and externally described data
have been implemented as the interface to the
AS/400 data management function. The data
management structure has been integrated in the
AS/400 system to incorporate this interface.
Display and communications structures, with the
primary focus given to Intersystem
Communications Function (ICF) data management,
provide a significant advancement in the AS/400
data management structure.

File Processing

All file types support the following base set of fi le
operations:

• OPEN (create the path for data transfer)

• PUT (send data to a device or data base)

Application

User Application

• GET (retrieve data from an input device or
data base)

• CLOSE (remove the path for data transfer)

05/400, 5/36 Environment, 5 /38 Environment

Common Data
Management

(PUT/GET) (OPEN/CLOSE)

Common Data Management

... +

Data Base/Device
Data Management

The file-processing interface serves as a basis
for AS/400 data management support. A file is
the object used to access data. Files supported
include data base files and device fi les. Data
base files provide access to the data base,
while device fi les provide access to input/output
(I/O) devices, such as display stations, printers,
and remote systems.

Data Base
Display
Stations ICF Printers

Diskette!
Tape Units

RSLL312·4

Figure 1 Data Management Structure

60

The data management file support is structured
with two distinct divisions: common data
management and data base/device data
management. Common data management
provides functions needed by all data
management support facilities. This includes the
open and close interface for all device and data
base files. Data base/device data management is
subdivided into multiple structures to provide the
functions unique to the various devices
supported. A remote system is treated as another
device on the system and is supported through
the ICF structure. Figure 1 illustrates the
relationship of the various data management
functions.

The OS/400 file interface allows the ability to have
externally described data. This support is
provided by data description specifications (~os),
which are part of the file description. Externally
described data allows for centralization of data
definitions in the file external from individual
programs. Using it, programmers take full
advantage of the system's data management,
improving their productivity as well as program
and data integrity. (Refer to Application
Development Support for more information on the
programmer productivity provided by the AS/400
system.)

Common Data Management
Common data management provides the
foundation for file processing on the AS/400
system. The file is identified and the relationship
between the file and the program is established
with the use of a file OPEN interface, by which
common data management creates an open data
path. The open data path provides the link
between the program and the different file-specific
routines of the underlying data management. In
addition to providing the link to the processing
routines, the open data path also contains all the
file-status information needed by the application
to access the file. The application has access to

the open data path through a user-file control
block. The user-file control block, which is created
and maintained by the compiler on behalf of the
application, is a consistent link to any file,
regardless of the file type. Figure 2 shows this link
between the program, file, and open data path.

OPEN and CLOSE operations are processed
through common data management. PUT and GET

operations, which use the open data path and
user-file control block interface, are routed directly
to the appropriate data base or device data
management routine. The appropriate file
processing routine is called to process the

Program ODP

•
•

operation due to the link established during OPEN.

This ability to tie I/O operations to specialized file
processing routines during the OPEN operation
provides the flexibility for using the same open
data path and user-file control block interface to
process operations and data to distinctly different
media, such as data base and display stations. An
application program accesses the different media
by opening two different files, which creates two
separate open data paths linked to the
appropriate processing routines. Issuing PUT and
GET operations to each file transfers the data to
the corresponding media.

Link to Data Get Open (X)

•
•

110 Interface

•
•

Close

•
•

UFCB (Xl

File Name
(A)

Figure 2 Opened File Structure

Management I/O
Interfaces

Link to File

Open
Feedback
Information

1/0
Feedback
Information

User
Buffers

Routine

Put
Routine

•
•
•

File (A)

RSLL313-4

61

Data Base/Device Data Management
The data base/device data management routines
provide the specific support for data base and
each of the AS/400 devices. Advances in data
base, display station, and ICF data management
are some of the key advances in AS/400 data
management. (For advances made in data base,
see the article An Integrated Data Base .)

Display Data Management
Display data management, part of the AS/400
data management structure, provides the
application interface for display stations. The
application issues I/O requests through the high­
level language read and write file operations. The
display characteristics are defined in the file with
DDS keywords. Because the underlying display
data management structure converts the
application I/O requests to the appropriate device
control information, the application is not
dependent on the type of display station being
used. Although display stations differ in function
and can be locally or remotely attached, the single
interface lets any given application program work
with any display station.

The application interface can be expanded using
DDS keywords, so new function can be added
easily. An example is application help; this
function is provided to the application, in a manner
consistent with the rest of the display station
interface, by DDS keywords such as Help Area
(HLPARA), Help Record (HLPRCD), and Help
Sequencing (HLPSEQ).

ICF Data Management
Comparable to the display data management
function, ICF data management provides the
AS/400 system's single interface to
communications. The ICF interface supports a full
range of function, while still maintaining a fi le
interface that is consistent with data base and all
other device support. To make communications a

62

logical extension to the file interface, the ICF

interface required special considerations, such as
the ability to request that a remote process be
started, to support both interactive and batch
remote communications.

Consistent Interface. The basic concept of ICF is
to isolate applications from the complexities of
communications protocols and hardware. The
underlying AS/400 communications structure
handles the protocol and hardware characteristics
for the application program.

Communications functions are grouped into
communications types and integrated into the
communications structure as system routines,
called function managers, below ICF data
management. ICF data management handles the
file operations and data for the application. The
function manager handles the communications
protocol needed to perform an operation. Each
communications type is designed to work with a
group of remote systems and hardware devices
through a specific communications method, such
as binary synchronous communications (ssc) or
Systems Network Architecture (SNA). The
communications types supported are advanced
program-to-program communications (APPC) , SNA

upline facility (SNUF), ssc equivalence link (SSCEL),

and asynchronous communications. Figure 3
shows the relationship of the various data
management functions.

ICF functions include:

• Establishing a communications session
between the local system and a remote system.

• Starting a process on a remote system. (The
process on the remote system can be a job.
This allows the local application to start a job on
the remote system without operator
intervention.)

• Sending and receiving data.

• Ending communications with a remote process.

• Ending a communications session.

The ICF interface is designed to support
interactive communications. Thus, an application
can be written to perform a batch transfer of data,
or to send a request for a single data record to a
remote system and then wait for the reply to be
received. To facilitate interaction, the ICF interface
provides the ability to start processes on remote
systems, and allows remote systems to start jobs
on the local AS/400 system.

The ability to provide a consistent interface across
all communications types has been achieved by
mapping specific communications functions into
DDS processing keywords. The underlying support
interprets these generalized DDS keywords in
terms of specific communications protocols. A
base set of these keywords is supported by all
communications types to provide equivalent base­
level support. For example, every communications
type supports starting a process on a remote
system with the EVOKE keyword. Additional DDS

keywords are communications-type specific to
allow full use of the communications protocol.

From an application perspective, ICF merges the
best characteristics of the System/36 and
System/38 communications interfaces. For
instance, ICF supports externally described data
and DDS keywords, a concept from the System/38
interface. ICF also supports system-supplied
formats, compatible with the System/36 System .
Support Program Interactive Communications
Feature (SSP-ICF) operations, which use program­
described data and provide similar functions of
DDS keywords. ICF functions are a superset of the
functions provided by the System/38
communications DDS keywords, System/36

User Application

Common Data Management

Data Base Display Printers
Stations

Diskette!
Tape Units

Figure 3 Communications Data Management Structure

SSP-ICF operations, and System/36 interactive
data definition utility (IDDU) support for
communications.

Remote Resource Independence. An application
program maintains independence from a specific
remote resource, such as an APPC logical unit (LU)

or an asynchronous communications display
station, through the use of a program device. All
operations in the application program are issued
to a program device name instead of to a specific
remote resource. Because of this use of a

Function
Managers

Machine Interface
RS LL314-3

program device name, there is no specification
within the high-level language program to a
particular remote resource. Because this
association is removed from the application
program, the program can communicate with
various remote resources without modification.

The program device is directed to a remote
resource through the use of a remote location
name. The program device and the remote
location name are bound by defining a program
device entry with a control language (CL)

command before starting the program. OS/400
support provides both an early binding capability
of program device and remote location name
through the use of the Add ICF Device Entry
command, and a late binding capability through
the use of the Override ICF Device Entry
command.

The remote resource is represented by a set of
one or more device descriptions that contains the
same remote location name. While program
device names allow application programs to be
independent from specific remote resources,
remote location names allow program devices to
be independent from specific device descriptions.
Remote location names allow a single logical
name to be used to access generically a set of
one or more device descriptions. The program
device is bound to a specific device description at
session allocation time. All operations at the
machine interface are issued to a specific device
description (see Figure 4).

Additional function is provided using a remote
location name to gain access to any device
description that contains the same remote
location name. These functions include:

• Selecting a route through the network at
session allocation time and then automatically
creating a device description that reflects the
route selected based on the remote location
name requested. This support is provided by
the networking capabilities of advanced peer­
to-peer networking (APPN) that are accessed
through the APPC communications-type
interface. (See the article Advanced Peer-to-Peer
Networking.)

• Allowing a single program device to represent
multiple device descriptions.

The mapping from remote location name to device
description is communications-type dependent.

63

Program OOP

I

•
•

Open (X)

•
•

I/O Interfaces

•
•

Close

•
•

UFCB (X)

File Name
(A)

L Program Device
Name

I

Link to Data 11
Management I/O Interfaces ,

Link to File I

Open Feedback Information ~

I/O Feedback Information

~~ ~ _____ u_s_e_r_B_Uf_fe_r_s ______ ~~
~~~~~~~I/~~ ~----~ 

I :" Program Device Entry 
Program 

Device I I Name Program Device Name c Ole LO;atIOO Name 

Figure 4 Remote Location Name Correlat ion 

64 

Remote Location Name 

Machine 
Interface 

Device Description (LD) 

Controller Description (CD) 

Line Descr iption (NO) 

RS LL31 5-5 

For the asynchronous communications and BSCEL 

communications types, a one-tc)-one mapping of 
remote location name to device description exists. 
Binding a program device name to a device 
description invoives selecting the device 
description that contains the remote location 
name specified in the program device. For APPC 

and SNUF, a one-to-many relationship between the 
remote location name and device descriptions can 
exist. For the SNUF communications type, the 
system uses the first available device description, 
while for the APPC communications type, the 
system selects the device description that reflects 
the route the session is taking through the 
network. 

Because the system dynamically maps a remote 
location name to a specific device description, the 
application program is also dynamically mapped 
to a specific communications type at session 
allocation time. An application program is also 
given the ability to pre-select a particular device 
description (and communications type) by 
specifying a device description name in its 
program device entry definition. 

Multiple Environment Support 
Because of the flexibility of the data management 
structure, the same internal interface can be used 
between the user application and the underlying 
data management structure, regardless of the file 
type, language, or environment being used. 
Therefore, the same data management structure 
can support applications running in OS/400, in the 
System/36 environment, or in the System/38 
environment. 

A consistent data management structure does not 
restrict the ability to portray different application 
interfaces. Two methods are used by data 
management to determine which interface to use. 
The first is by defining DDS keywords that allow 
the application to indicate the characteristic 
desired. For example, when System/36 



applications are migrated to the AS/400 system, a 
display file is created with a DDS keyword that will 
cause the display to be automatically cleared on 
all output operations. System/38 environment 
applications do not support this keyword, and 
consequently the display is only cleared on the 
first operation to the display. An OS/400 file can 
be created with or without the keyword, therefore 
an OS/400 application can choose either 
interface. 

A second method used to determine the interface 
is to define the interface characteristics based on 
the type of application and the environment it is 
running in. For example, System/36 multiple 
requester terminal (MRT) applications are 
supported for both display stations and ICF in the 
System/36 environment. Also, read under format 
is supported for System/36 display station and 
communications applications in the System/36 
environment. These functions are provided by the 
System/36 environment and data management 
extensions. (See the article The System/36 
Environment for more information.) 

Conclusions 
ICF data management is a significant advance in 
the AS/400 data management structure. ICF 

provides a consistent, easy-to-use interface 
across various communications types that 
isolates the application from the complexities of 
communications protocols and hardware. It also 
allows the ability for the application to select the 
remote resource with which it is communicating 
without changing the application program. 

To meet the immediate needs of migration from 
the existing systems, the same data management 
structure provides support for Operating 
System/400 and the System/36 and System/38 
environments, which helps provide application 
portability from a System/36 or a System/38. 

The AS/400 data management structure, and the 
file processing interface it supports, provides a 
consistent system-wide method of managing data 
across different media. The structure was 
designed to provide easy expansion of function 
for applications of the future. 

TMAS/400, Operating System/400, and OS/400 are trademarks 
of International Business Machines Corporation. 

65 



Integrated Office Support 

Describes how AS/400 Office employs the capabilities of hardware and software products to make office tasks simple and efficient. 

David G. Wenz, Richard J. Lindner, James H. Bainbridge, Stephen J. Cyr, Barry W. Hansen, and David N. Youngers 

Introduction 
The major objective of AS/400™ Office is to 
improve office productivity. To accomplish this, it 
must efficiently integrate the set of office functions 
available to office workers. The system must 
provide facilities that allow the user to organize 
and control information assets in a manner 
comfortable to the user. It must allow office 
workers to communicate easily, quickly, and 
comfortably, much like a phone conversation or 
face-to-face meeting. 

This can be difficult when workers throughout a 
company use several different tools in their day­
to-day activities. Multiple systems located at 
different sites further complicate the problem of 
communication. AS/400 Office solves these 
problems, allowing communications to flow easily 
from user to user on one or more IBM systems. 

The solutions provided by AS/400 Office can be 
described in terms of its major elements. The filing 
system provides underlying support necessary to 
integrate the hardware and software product 
capabilities into the efficient office required for 
today's businesses. Electronic mail allows 
anything in the filing system to be sent as easily as 
mailing paper today, but much more efficiently. 
The efficient use of personal computers is 
accomplished by applying cooperative processing 
techniques. A flexible and powerful editor 
transparently integrates the system functions into 
the processing of office tasks. And, the AS/400 
Office menu makes all office functions accessible, 

66 

providing a user-friendly environment for all levels 
of expertise. 

The Filing System 
The filing system is the heart of the AS/400 
integrated office environment. It is a single 
container for all office objects that can contain the 
data for any office product being used. Figure 1 
shows the various types of data that can reside 
within the filing system. Mail, documents, 
programs, and files are among the traditional 
objects that can reside in this filing system, but it 
can also contain spreadsheets, images and 
graphs, personal computer (pc) programs, and pc 
files. Data can be shared among users, with 
authorization controls specified by the owner of 
the data. (The article Security describes the 
authorization capabilities in more detail.) 

Document organization and control is a key 
element of office work. The AS/400 Office filing 
system provides document library services that 
allow a user to handle these tasks in a 
comfortable manner, using the filing system as an 
electronic filing cabinet complete with folders. 
Folder management services allow the user to 
organize office objects using these folders. 
Folders can contain other folders, and can be 
interactively searched for an office object. Or, 
familiar search procedures can be used to get a 
list of documents conforming to specified 
selection criteria. 

The key to the filing system capabilities is the 
design of the document. The text of each 

document is stored as a separate system object 
allocated from single-level storage. Associated 
with the text of each document is another portion, 
called the attributes, which includes items such as 
subject, author, and other keywords that may be 
used to search for or identify a document. The 
attributes portion of the document is stored within 
the system's integrated data base, which provides 
powerful query search capabilities. (For more 
information about the functions and capabilities of 
the system's data base support, see the article 
entitled An Integrated Data Base.) 

All documents in the filing system reside in the 
document library. This library conforms to the IBM 

strategic Document Interchange Architecture (DIA) 

[1,2]. Document content, including format and 
structure, is also governed by a strategic 
architecture, the Document Content Architecture. 
AS/400 Office conforms to Level-2, for final form 
(print format) documents [3], and Level-3, for 
editable documents, which can contain image or 
graphics [4]. DIA is made up of three components: 
library services, remote library services, and 
distribution services. The library services 
component can search, store, and retrieve 
documents in the local DIA library. The remote 
library services component can store and retrieve 
documents in a DIA library on another system 
within the network. If the document is on another 
AS/400 system, it can also be checked out for 
editing and checked in when complete. This 
allows shared processing without the danger of 
work being destroyed by another edit session. 
The distribution services component allows the 





AS/400 Document Library 

Folder 

Figure 2 AS/400 Document Library Objects 

appropriate locking and sharing automatically and 
provides recovery services. If a session is ended 
abnormally for any reason, the user has an option 
to retain or discard any changes made to the file_ 

Electronic Office Mail 
Electronic office mail is an important element of 
the comfort and productivity associated with 
AS/400 Office. The ability to communicate with 
other users on this or other systems, with path 
transparency over various communications 
protocols, sets this offering apart. Figure 3 shows 
AS/400 Office with a variety of display stations 
able to communicate locally using Office. It also 
shows the integrated support that makes remote 
mail functions easy to use. 

AS/400 Office services are an integral part of 
Operating System/400™ (OS/400TM) and therefore 
can sheild the user from the complexities of 
handling communications. Menu options allow the 

68 

RSLL415-1 

office worker to display the items in a folder or to 
compose a note using a simplified note editor. A 
simple selection or single command can send an 
item or note to another user or list of users. The 
system automatically handles the distribution 
based on the system distribution directory, from 
which the system determines the location of 
recipients. Mail directed to a user on a remote 
system, who is not explicitly defined in the local 
system's directory, is automatically handled by the 
system. This allows one system with a central 
directory to be used as a mail router, with 
directory maintenance consolidated in only one 
place. 

Maintenance of distribution lists is also simplified 
by AS/400 Office. When a user description is 
changed or removed in the system distribution 
directory, all locally defined distribution lists are 
automatically updated. Distribution lists can also 
be easily tailored by the user when sending mail. 

The user can expand a locally defined list and, 
optionally, add or remove entries for the mail 
being sent. This ability to tailor distribution lists 
reduces the number of lists needed, and thereby 
reduces the maintenance required. The number of 
lists can also be minimized using the system's 
ability to send mail to a distribution list defined on 
a remote system. The remote system expands the 
list and directs the mail based on the content of 
the list. 

Office users are informed of all new mail by a 
highlighted message on the main office menu. 
They can also be informed of high priority mail, 
when not at the main menu, through the system 
message support. When priority office mail is 
received, a message is sent to the user's system 
message queue to tell the user about the arrival of 
the mail. The message is shown to the user even 
while system applications other than office are 
running. 

Systems Network Architecture distribution 
services (SNADS) provides distribution and 
confirmation of delivery for mail sent to users on 
another AS/400 system, Distributed Office 
Support System/370 (DISOSS), a System/36, a 
System/38, or a 5520. It uses advanced program­
to-program communications (APPC) or advanced 
peer-to-peer networking (APPN), depending on the 
options specified when creating the 
communications objects. (The article Advanced 
Peer-to-Peer Networking details the advantages of 
using APPN.) The system also contains support to 
communicate with a remote spooling 
communications subsystem (RSCS) for mail sent to 
System/370 Professional Office System 
(VMtpROFS) users. 

Personal Computer Integration 
One of the most important elements to a 
successfully integrated office is integrating the 
personal computers rapidly populating the office. 



Store 
Search 
Retrieve 

Legend : 

BSC - Binary Synchronous 
Communications 

MSRJE - Multiple Sessions 
Remote Job Entry 

PC 

SNADS - Systems Network Architecture 
Distribution Services 

APPC - Application Program-to-
Program Communications 

APPN - Advanced Peer-to-Peer 
Communications 

EDD - Electronic Document 
Distribution 

DISOSS - Distributed Office 
Support System/370 

Figure 3 Electronic Mailing System 

AS/400 
Office 

Document 
Interchange 

A,~~ 
~ 

3279 

ASCII 

Send/Receive 
Store/Retrieve 
Local + HPlnnTPI 

RSLL376-5 

The AS/400 system improves function, 
performance, security, data integrity, and data 
sharing, and expands the application base 
available to the PC user, by integrating this support 
into OS/400. 

Figure 4 shows the wide range of services that 
make connection of a personal computer to the 
AS/400 system very appealing. These services 
are provided by functions, called host servers, 
that communicate to the attached personal 
computer through a work station controller or 
communications attachments within the host 
system. 

Host Processing 
The most important services provided by the host 
servers include shared folders, virtual print, file 
transfer, and distributed data management (OOM). 

Shared folders is the critical link that provides the 
data-sharing benefits described. This link allows 
the attached personal computer to share its 
objects with the AS/400 system. The value of 
system facilities, such as single-level storage, 
integrated data base, security, and 
communications, can be added to the capabilities 
of the personal computer. The host server maps 
PC functions to equivalent host system functions 
transparent to the user. For example, using the 
OIR command on an attached personal computer 
issues a list of files, their size, and the date and 
time they were last modified. However, this list can 
be large, making it difficult to find the desired file. 
Subdirectories can help to organize files, but may 
not break down the list sufficiently for some 
needs. When stored in an AS/400 shared folder, 
information about the file, such as author, 
description, or keywords, can be added without 
affecting the application. Using the search 
function of the integrated data base, AS/400 
Office can provide a list of documents written by a 
certain author, or files with a specific description. 

69 



PC 
Print 

AS/400 Office 

, 
- " - . -.j.. ...... 

PC Applications 

Legend: 

SDLC - Synchronous Data Link Control 
TWINAX - Twinaxial Cable 
TRLAN - Token-Ring Local Area Network 

Figure 4 PC Integration (RequesterIServer) 

70 

Attachment 
Transparency 

Host 
Print 

RS LL416-2 

The list can be derived from a folder or from a full 
DIA library search. 

Another service, virtual print, allows a PC 

application to use a host system printer as if it 
were attached to the personal computer. File 
transfer provides the capability to transfer files to 
and from the AS/400 system. In the process of 
transferring the files, they are converted to ASCII, 

BASIC Sequential, BASIC Random, DIF, DOS 

Random, or EBCDIC. This allows almost any PC 

application to retrieve data from the AS/400 
system. 

Finally, DDM provides an interface that allows a PC 

application to retrieve data from the AS/400 
system it is connected to or from any other 
AS/400 system in the network. DDM makes the 
location completely transparent to the application. 
Using APPN, the system selects the best route and 
handles the data transfer. 

Attached PC Processing 
The attached PC requester communicates through 
a router that provides attachment independence 
to all applications running on the personal 
computer. The router converts the 
communications request to the correct 
connectivity option for the attached personal 
computer. The services provided by attached PC 

processing include: display and printer emulation, 
the PC Support Organizer menu, message pop­
up, and multiple sessions. The attached PC 

requesters are all designed with user-friendly PC 

interface techniques available (pop-up help 
windows, action bars, and the like). 

Display emulation is the primary function allowing 
the attached personal computer to have access to 
all of the AS/400 system function. It does this by 
making the attached personal computer appear to 
the system as a host-dependent work station. The 
printer emulation function allows host system 
printing at the personal computer much like a 
host-dependent printer. 



The PC Support Organizer menu shows both 
ASj400 system and PC applications. It comes with 
a base set of office applications and is extendable 
to allow users to add other frequently used 
applications. With the PC Support Organizer 
menu, it is no longer necessary to use the hot-key 
sequence between systems to run applications. 
The user can select the application from the menu 
and is not required to know if it is running on the 
attached personal computer or the ASj400 
system. This is achieved using the shared folder 
support of the filing system. By designating a 
shared folder as a PC disk drive (a virtual drive) 
and copying the applications to this drive, the 
applications have access to all of the shared 
folder services. With this feature, the ASj400 
system can act as a file server for PC users. 

Message pop-up displays messages sent from 
the ASj400 system in a pop-up window on the 
attached personal computer. This allows the user 
to take appropriate action without interrupting 
application processing. 

And finally, multiple sessions provides up to five 
active sessions on the attached personal 
computer. This allows communications with 
different host systems, or multiple sign-ons to the 
same host system, all using the same connection, 
with all sessions active at the same time. In 
addition to using this capability for normal 
business activity, it can be used for central 
network management. A system operator can 
control a network by signing on remote systems; 
APPN performs intermediate routing. 

The attached PC user running a PC application 
views the ASj400 Office filing system as a hard 
disk (with many restrictions removed). The system 
is capable of storing gigabytes of data for the 
user. Users can share this data with anyone they 
authorize throughout the entire network. 
Additionally, file locking is provided at the byte 
level to allow PC applications to share these files 

and lock only the record, or part of the record, 
being updated. As stated, the filing system 
supports the PC naming conventions. This means 
that commands like PC Directory (OIR), Making 
Directories (MO), Changing Directories (co), and all 
of the functions within subdirectories, work 
transparently. 

Flexible and Powerful Editors 
The ASj400 system features the ASj400 Office 
editor and DisplayWrite 4, and provides an editor­
of-choice option. When a personal computer is 

DisplayWrite 4 

Legend: 

LPC - Link Protocol Converter 
PC - Personal Computer 
PCS - PC Support 
WSC - Work Station Controller 

Figure 5 Editor Attachments 

attached to the ASj400 system, either editor may 
be used. The ASj400 Office editor is compatible 
with the DisplayWrite 4 editor, and they can 
exchange documents very well. A user can take 
advantage of the improved processing techniques 
available with the ASj400 Office editor while 
working with DisplayWrite 4 documents. The 
inverse is also true. ASj400 Office editor 
documents can be shared with a DisplayWrite 4 
user by placing them in a folder. The document 
structures and many of the typing techniques are 
identical between these two editors. Figure 5 

AS/400 Office Editor 

3279 

RSLL378-4 

71 



shows how the editors relate to the AS/400 work 
station attachments. 

Although appearing very similar, several 
differences should be noted between an editor 
that runs on a personal computer while 
unattached and one that has the advantage of the 
powerful AS/400 System Processor while 
attached. The AS/400 Office editor supports the 
entire range of work stations that can be attached 
to the AS/400 system, and as work station 
hardware improves, the editor improves. Some 
examples of improvements through the work 
station family include: block cursor on the scale 
line above the actual cursor; fast cursor-move for 
word, line, and paragraph; wide display size (27 
lines, 132 columns); and color displays. 

The editor's performance is very dependent on 
the processor and peripherals performing the 
actual work. If the editor is host-system based, 
expected response time would be similar to other 
host applications; if the editor is PC based, 
response time depends on the power of the PC 

processor. The AS/400 Office editor was 
designed to take advantage of cooperative 
processing technology using two innovative 
approaches. The result is an average response 
time that is much better than the average system 
response time for host-dependent work stations, 
and better than typical PC response times when 
doing processor-intensive activities. 

The first approach, called work station controller 
text assist, relieves the host system of keystroke 
processing tasks associated with host-dependent 
work stations. The work station controller runs in 
a separate input/output (I/O) processor. The work 
station controller and the editor, through a dialog, 
allow significant processing to take place on the 
I/O processor, off-loading it from the System 
Processor. Figure 6 shows the editing function 

72 

Work Station Controller 
Action Text Assist Functions AS/400 Functions 

Status/Scale Lines Updates status line: 
audit window, pitch, and 
line number 

Tabs Processes right, center, Formats text for 
decimal, comma, and colon viewing on the display 
tabs during typing based on tabs 

Word Spill Spills words to next Adjusts line endings 
line when characters in changed text 
reach right margin 

Locate Locates characters on Locates character 
display when "Find when not found in 
Character" mode active current display 

HorizontallVertical Shows next display 
Scrolling based on cursor 

Move/Copy Makes first mark and Prompts for target 
prompts for end of block and copies/moves 

marked text 

Delete Makes first mark, Deletes marked text 
prompts for end of block, not delayed by work 

J 
and deletes within lines station controller 

RSLL319-4 

Figure 6 Cooperative Processing: Work Station Controller Text Assist 

split between the work station controller and the 
host system, using work station controller text 
assist. 

The second approach is PC text assist. This uses 
PC storage to provide an increased buffer area for 
text. It improves the average response time 
experienced by the user because it allows page­
based functions to be handled on the attached 
personal computer, using the personal 
computer's own processing power, while 
implementing document-based functions on the 
host system. PC processing includes moving, 
copying, and deleting text, as well as adjusting line 
endings. Figure 7 shows the division of editing 
function between the attached personal computer 
and the host system. 

For both techniques, the AS/400 system stores 
the documents and remains the primary 
processor for many functions that require the host 
system's resources and processing capability. 
Compute-intensive activities, like pagination, 
printing, spelling verification, and query, are 
processed on the host system. The host system 
also handles work that would otherwise require 
large amounts of data transfer, like data merge for 
editing or printing. This cooperation allows the 
processing to be done more efficiently (shown in 
Figure 8). 



Action PC Text Assist Functions AS/400 Functions 

Status/Scale Lines Updates status line: 
audit window, typestyle 
and pitch, context and 
line number 

Tabs Formats text for 
viewing on the display and 
processes right, center , 
decimal , comma, and colon 
tabs during typing 

Word Spill Spills words to next 
line when typing and 
cursor reaches right 
margin , and adjusts line 
endings in changed text 

Locate Locates characters on Locates characters 
page when "Find not found in current 
Character" mode active page buffer 

Horizontal/Vertical Refreshes current Refreshes the display 
Scrolling page buffer when the from page buffer based 

cursor moves out of on cursor movement 
the current page 

Move/Copy Makes both first and Moves/copies/deletes 
last mark, prompts for marked text that is 
end of block and target, not in the current 
and copies/moves the page buffer 
text if within a page 

Delete Makes both first and Deletes marked text 
last mark , prompts for that is not in the 
end of block, and current page buffer 
deletes the text if 
within a single page 

RSL L320-4 

Figure 7 Cooperati ve Processing : PC Text Assist 

Additional Aspects of Integration 
In addition to the integrated use of system 
functions that provides the basic underpinnings of 
support, most of which are hidden from the user, 
the ASj400 Office product integrates function 

from two more visible standpoints. The first is the 
diverse functions available while using the editor, 
and the second is document access and 
interchange through folder management services. 
These are highlighted in Figure 9. 

The office word processing function is the base 
for all text operations. Therefore, the ASj400 
Office editor becomes a very important element of 
integration, due to the internal interfaces provided 
for various office functions. If the Office mail 
function needs to edit, view, or print a note, the 
internal interface provided by the editor is used to 
accomplish the task. Office word processing also 
often requires users to merge data into a 
document while editing or printing. The interface 
to ASj400 Query allows merging while editing and, 
using the RUN instruction within the office edit 
function, inserting the output of an application 
program running on the ASj400 system directly 
into a document at print time. 

Folder management services is the basic element 
of the document access and interchange 
functions that provide application independence 
from the stored data type (see Figure 9). This 
independence is achieved by detecting 
discrepancies between the stored document type 
and the requested document type when the 
document is accessed. Document conversions 
are automatically performed before any further 
requests are processed. This ensures the 
document is in the correct format for processing, 
while freeing each office service from the burden 
of managing multiple data types. The result is a 
consistent DIA library and folder interface. 

The Office editor uses a high-level document 
access method. This provides the Office editor 
with a data management facility that works 
specifically with documents. This data 
management allows partial-document access, 
minimizing unnecessary data movement by 
allowing the editor to get, put, or replace a portion 
of a document. A single page can be updated 
without first making a complete temporary work 
copy of the entire document. The editor can go to 
specific lines and pages of a document, find 

73 



Entirely Entirely 
Function Host-Based PC-Based 

Performance Average Average 

User Interface Average Good 

Paginate, Spell, Good Average 
Print 

Sharing of Data Good Poor 

Integration Good Average 

Figure 8 The Cooperative Processing Advantage: DOing the Work Where It 
Is Most Efficiently Done 

currently active page formats, and move, insert 
and delete text, while removed from the specifics 
of how the document is stored. This access is 
supported for both host-system and PC editors. 
The host-system editor requires access by line 
and page reference, while the PC editor requires 
access by byte offset and length. 

The DIA library and folder interfaces are also 
application program interfaces (API) that follow the 
strategic Systems Application Architecture™ 
(SAA TM) standards. These interfaces are available 
to users wishing direct access to AS/400 
functions. Because these interfaces follow SAA 

standards, applications written using them can be 
used on other systems supporting SAA 

applications. An example is the Structured Query 
Language (soL) interface to the file transfer 
function. It allows a PC application to write SOL 

statements to get data from any AS/400 data 
base in the network. 

AS/400 Office Menu 

Any 
PC 
Application 

Cooperative Environment 

Host 

Good 

Good 

Good 

Good 

Office 
Mail 
Function 

PC 

Good 

Good 

Good 

RSLL321-3 

D1A Library 
Folders 

The AS/400 Office menu is the user interface to 
Office functions. Figure 10 shows the menu 
interface, designed with office activity in mind. The 
information shown is comprehensive, including 
options, a command line, informational messages, Figure 9 System and Application Integration 

74 

and the monthly calendar. The menu options 
provide access to the diverse functions supported 
by Office, including: sending notes, messages, or 
mail (or anything contained in a folder); managing 
calendars with many scheduling options; 
organizing directories and distribution lists; and 
many more office functions. Also shown is an 
option that allows the user to customize the 
interface using additional menus. APls have been 
strategically located to allow program access to 
certain Office functions. Separate functions can 
be combined or accessed in a different way to 
accommodate the office user. 

Also noteworthy is the multiple suspend-and­
resume capability. In a busy office, the ability to 

RUN 
Command 

Any 
Imbedded User 
Output Application 

Data 
Ouery 

Data Merge 

Query 

User 
Data Base 

RSLL417-3 







of a user profile satisfies the machine interface 
requirement that every job have a user profile. 
The created user profile is not deleted when the 
user signs off, anticipating the same user will 
use the system again. This design also allows 
users to customize their profile and easily move 
to a more secure level. 

• Allow unrestricted access to objects. 

Unrestricted access to objects is implemented 
using a special all-object authority ('ALLOBJ) that 
modifies the processing of machine instructions 
to eliminate any authority checking when 
accessing objects. OS/400 uses all-object 
authority as the default value for user profiles in 
a system configured with physical or sign-on 
security. 

When changing to full-resource security, the 
system removes the 'ALLOBJ authority from all 
user profiles except users in the security officer 
class. Removing "ALLOBJ special authority 
indicates the user is to be controlled by authority 
to objects and causes the machine interface to 
check the user's authority to access objects. 

User Profile Attributes 
The user profile is the object that identifies the 
user to the system. The primary use of the user 
profile is to store security-related information. 

User Class 
The user class defines the operations a user can 
perform based on the task assigned to the user. 
AS/400 security has five hierarchical user classes. 
A user class can perform all of the functions for 
lower user classes. The user classes and 
functions, ranging in order from increased level of 
access to lower level of access, are: 

• Security Officer, who performs all security 
functions including creating security 
administrators. 

• Security Administrator, who enrolls users and 
secures resources. Security administrators can 
be assigned for functional areas; the security 
administrator for one area cannot remove or 
enroll users in other functional areas. 

• System Programmer, who performs application 
development functions. Application 
programmers can be restricted from modifying 
production applications. 

• System Operator, who performs all system 
operation options. So that a system operator 
can back up the system, operators are allowed 
to save and restore objects they are not 
authorized to use. 

• Work Station User, who performs application 
functions. 

In addition to controlling the functions allowed, the 
user class controls the menu options that are 
available to the user. Easy-to-use menu interfaces 
are provided for system functions, so that 
particular menu options are presented to a user 
based on the assigned user class. The AS/400 
system has a simplified enrollment process that 
uses the user class to determine the special 
authorities granted to a user. 

The security officer and security administrator 
user classes are granted access to privileged 
machine instructions to operate on user profiles. 
This means that administrators can enroll users 
when they have the security administrator 
('SECADM) special authority in their AS/400 user 
profile. The machine interface security validates 
the user's authorization to the commands and 
privileged instructions, such as creation of user 
profiles, system backup and restore, and 
operations on other user jobs. 

Limited-Capability User 
Most system menus provide a command entry 

line. To restrict use of the command entry line and 
limit the user to selecting menu options, the 
AS/400 user can be enrolled as a limited­
capability user. The IBM and user-defined 
commands allowed by a limited-capability user 
can be individually defined. The IBM commands 
initially available to the limited-capability user are 
End Session (SIGNOFF), Display Job (OSPJOB), 

Send Message (SNOMSG), and Display Message 
(OSPMSG). Limited capability also determines the 
fields that a user can mOdify at sign on. 

Objects Owned and Authorized 
The user profile records all the objects owned and 
objects authorized to the user. The user that 
creates an object becomes the owner of the 
object. The list of all objects owned by a user is 
stored in the user profile. A second list is all the 
objects that have been authorized to the user 
profile. The virtual address of the objects is stored 
rather than the object name. The virtual address 
optimizes the machine-interface authority­
checking algorithm because the machine 
instructions use virtual pointers when referring to 
the objects. 

Authorization of Objects 
The owning user profile has the authority to grant 
other users authority, and the public authority to 
use an object. 

AS/400 security is designed with individual object 
authorization; eight authorities can be granted to a 
user. These authorities are independent (not 
hierarchical), however, for some operations a 
combination of authorities is required. 

• Object management ('OBJMGT): Rename, move, 
or authorize other users. 

• Object existence ('OBJEXIST): Delete object. 

• Object operational ("OBJOPER): View description 
of object. 

77 



• Authorization List Management ('AUTLMGT): 

Authorize users on an authorization list. 

• 'READ: Read. 

• 'ADD: Insert new entries (for example, records, 
messages, and objects). 

• Update ('UPD): Modify existing entries. 

• Delete ('DLT): Remove individual entries 
(records, messages). 

These authorities can be granted or revoked 
individually, though, to simplify security 
administration, four additional terms represent 
multiple individual authorities. 

• 'ALL: Full authority for object, including capability 
to manage security on objects except 
authorization lists. 

• 'CHANGE: Authorities to use and modify, but not 
delete. 

• 'USE: Authority to use, but not modify. 

• 'EXCLUDE: No authority. The user is restricted 
from any use of the object. 

The use of independent authorities was 
implemented because this provides precise 
control over the functions an individual user can 
perform. Descriptive terms such as 'CHANGE and 
'USE are used to improve the understanding of a 
user's capability. 

Methods of Grouping Authority 
Grouping techniques eliminate the need to 
repeatedly specify authority when several objects 
or users have the same authority. This also 
reduces the number of authorities that must be 
stored by the system. Authorization lists and 
group profiles are implemented to simplify 

78 

security administration. Performing a single 
operation can grant a user authority to multiple 
objects, or multiple users authority to a single 
object. 

AS/400 Authorization Lists 
An authorization list allows the authorization of 
multiple objects to be controlled by a list of users, 
each with a specific level of authority for all 
objects referring to the list. When an object is 
secured using an authorization list, the security 
kernel searches for specific authority to the object 
and then for authority on the authorization list. 

Figure 1 shows an authorization list that secures 
several objects. When a user (USER1, USER2, or 
USER3) is on the authorization list, the user has 
that authority to all objects secured by the 

authorization list. When a new object is secured 
by the authorization list, all users on the 
authorization list have authority to the object, thus 
eliminating the need to specify the authorities 
individually. If a user has private authority to an 
object, the private authority overrides the authority 
on the authorization list. For example, USER2 has 
the private authority 'USE to file S, which limits 
access to read operations on this file, even though 
USER2 has 'ALL authority to the other objects 
controlled by the list. 

Controlling authority of users on the authorization 
list requires a new authority concept, the concept 
of authorization list management ('AUTLMGT). 

Object management ('OBJMGT) authority indicates 
the user is allowed to authorize the objects to 
others but does not control the authority of users 

Program 

Object 
Specific 
Authority 

User2 ·Use 

Figure 1 Authority List Securing Multiple Objects 

RSLL380-2 



on the authorization list. Authorization list 
management ('AUTLMGT) is required to change the 
list authority of users to the objects controlled by 
the list. The owner of the authorization list and 
users with 'AUTLMGT authority can add, remove, 
and change users and their authority on the 
authorization list. 

The A8/400 machine interface implements the 
authorization list as an object type. The machine 
interface provides the underlying support for this 
concept by implementing the authorization list 
management interface that allows modification of 
user authorities that appear on an authorization 
list. 

AS/400 Group Profiles 
Group profiles allow users to share the authority 
of another profile and have their own user profile 
and passwords. This allows members of the same 
department to share common objects (such as 
programs and data). The authorization for all 
members of the group can be managed by 
authorizing the group profile. The group profile 
simplifies adding new profiles or removing profiles 
as different users join or leave a group. 

A user that is a member of a group has the option 
of having 08/400 automatically grant the group 
profile authority or transfer ownership to the 
group profile for objects created by that user. 
Transferring ownership or granting authority to the 
group profile authorizes all group members to the 
object. 

When an individual user profile is authorized to an 
object, that private authorization overrides the 
authority of the group profile. Individual user 
authority allows specific group members to be 
given either less or more authority to an object 
than other members of the group. 

Figure 2 illustrates three user profiles that have 
the same group profile. The user profiles in the 
group share the object authorities of the group 

profile, D46E. Individual profiles (JONES, EVANS) in 
the group have individual authorities that are not 
shared with the members of the group. For 
example, the profile EVANS has been granted 'USE 

authority to the program B. This allows EVANS to 
run the program, but not delete the program, 
because it is owned by JONES. The group profile 
D46E and JONES both have authority to file D. But, 
the private authority of 'USE for user JONES limits 
access to 'USE (read) operations even though 
other group members have 'CHANGE authority. 
This is an example of how private authority 
overrides the authority of the group. 

Authority Holders 
When a user profile is authorized to a file, the 

Group Profile 

A8/400 machine interface stores a pointer to its 
object and the authority with the user profile. 
Deleting a file causes all record of the authority to 
the file to be removed from the system by the 
machine interface. To support authorization for 
non-existent files, which is used in applications 
migrated from the 8ystem/36, A8/400 security 
implemented a file called an authority holder. The 
authority holder is a shadow object that holds the 
authorities of a file when the object does not exist. 
An authority holder can be created for a file and 
users can be authorized before the file or library 
exists. When a file is created with a name that 
matches the authority holder, 08/400 attaches the 
authority holder to the file . 

Name-D46E 
GRPPRF(*NONE) 

Owned Objects 
A *PGM 
C "FILE 

Authorized Objects 

o "FILE "CHANGE 

Individual User I ! 
Profiles I .. 

I 

Name-SMITH Name-JONES Name-EVANS 
GRPPRF(D46E) GRPPRF(D46E) GRPPRF(D46E) 

I Owned Objects Owned Objects Owned Objects 

I 
·NONE 8 ·PGM "NONE 

I 
Authorized Objects 

I 
Authorized Objects Authorized Objects 

· NONE o "FILE ·USE 8 ·PGM ·USE 

L 
RSLL381·2 

Figure 2 User and Group Profile Relationship 

79 



Figure 3 demonstrates the use of authority 
holders. No authority holder exists for file A, so 
when it is deleted the authorities are removed. File 
B has an authority holder; file B can be deleted 
and the users and their authority are retained. 
Granting a user authority to file B causes the user 
profile for that user to be authorized to the 
authority holder, rather than to the file object. 
Authority can be granted to file C even though the 
file does not yet exist because there is an 
authority holder for C. When file C is created, the 
system attaches the authority holder to the file. 
The authority holder name is simplified in Figure 3. 
The authority holder name includes both the file 
name and library name because the same file 
name can exist in multiple libraries. 

Because authority for non-existing objects is only 
a requirement for migration, authority holders only 
apply to program-described files, rather than 
every type of file or other objects. Also, the 
command to create authority holders requires 
special authorization, thus giving the user control 
over the use of authority holders. 

r -----------------------, 

User 1 
User 2 
User 3 

"ALL 
"USE 
' CHANGE 

User 1 
User 2 
User 3 

Program Adoption of Authority 
Adoption of authority is used to allow a program 
to perform operations that require authority the 
user does not have. Rather than granting the user 
additional authority, the user application program 
calls a program that adopts the authority of the 
application owner to perform the operation. A 
program that adopts authority is identified during 
program creation and uses the owner's authority 
while the program is running. 

The adoption of authority is useful when creating 
ease-of-use interfaces for application users. The 
users do not need to be authorized to objects; 
they need only to be authorized to the program 
that performs the needed tasks. This prevents the 
user from accidental or intentional misuse of 
resources. Because a program that adopts 
authority allows the user of the program to 
assume the authority of the owner, the system 
protects programs that adopt authority by 
restricting their transfer of ownership and restore 
operations. 

"ALL 
"USE 
"CHANGE 

User 2 
User 4 
User 5 
User 6 

"EXCLUDE 
' CHANGE 
'CHANGE 
'USE 

File A Has No 
Authority Holder 

File B Secured by an 
Authority Holder 

Authority Holder C 
With No File 

RS LL382-2 

Figure 3 Authority Holder Usage 

80 

Adopted authority is passed to called programs, 
but the system prevents passing authority to 
programs that interrupt normal job processing. 
Authority is not passed during message break 
handling programs, attention key programs, or 
debugging breakpoints. 

Authority Search 
The AS/400 security model provides a specific 
authority search because it allows individuals to 
be given less authority than the public; that is, they 
may be excluded from the use of an object. When 
a user is authorized to an object, the user is 
limited to the authority assigned to the user. The 
default (public) authority only applies for users that 
were not authorized. 

The search for authority is implemented in the 
machine interface to optimize performance 
(because the machine validates the user's 
authority). When the machine's security kernel 
checks a user's authority to access an object, 
program adopt authority is added to the first 
authority found when using this search order: 

1. Individual User Profile. 
a. ·ALLOBJ special authority allowing 

unrestricted access. 
b. Private authority to object. 
c. Private authority on the authorization list (if 

the object is secured by an authorization 
list). 

2. Group Profile (if individual profile has a group 
profile). 
a. ·ALLOBJ authority allowing unrestricted 

access. 
b. Private authority to object. 
c. Private authority on the authorization list (if 

the object is secured by an authorization 
list). 



3. Public Authority. 
a. Public authority to object. 
b. Public authority on the authorization list (if 

the object is secured by an authorization 
list). 

Searching the individual user profile first, and 
using the first authority found, allows users to be 
granted less (or more) authority for an object than 
the public, group profile, or authorization list 
authority. A new authority, ·EXCLUDE, can be 
assigned to a user profile to restrict the user from 
access to an object. Adopted authority is additive 
to allow a user to perform operations on objects 
while running an adopted program that is normally 
restricted. 

Conclusions 
The AS/400 security model contains advanced 
features that provide solutions for the data 
protection problems of today and the future. 
Supporting the distinctly different underlying 
concepts of previous security models has 
enhanced the ability of users to migrate to the 
AS/400 system. The increased flexibility of this 
security model will satisfy seC?urity needs of users 
that migrate and future users with more complex 
security needs. 

The implementation of this model by integrating 
security throughout the layers of the system 
capitalizes on the system strengths and optimizes 
the performance of its various functions. This 
implementation approach has also provided the 
constructs for expansion as the needs arise. 

n"AS/400, Operating System/400, and OS/400 are trademarks 
of International Business Machines Corporation. 

81 



Electronic Customer Support 

Describes integrated electronic customer support which brings an exciting new dimension to the partnership between the customer and IBM. 

James R. Morcomb, Michael J. Snyder, Earl W. Emerick, and David L. Johnston 

Introduction 
The electronic customer support functions bring 
an exciting new dimension to the customer and 
IBM partnership. Many new easy-to-use system 
support functions have been brought to the 
fingertips of the user. These functions span a full 
spectrum of support, from hardware service and 
software problem analysis to marketing technical 
support and information. 

To accomplish this on the AS/400 system, it was 
decided to integrate the support vehicles into a 
cohesive set of functions within Operating 
System/400™ (OS/400TM). This set of electronic 
customer support functions includes both support 
components and end-user functions. The AS/400 
objectives included decreasing the frequency of 
incidents on hardware and software that require 
support and providing more responsive support 
for those incidents that do occur. The design 
goals were to provide automated problem 
detection and analysis and to provide access to 
support functions at the time of failure. Integrating 
the electronic customer support function into the 
system achieves these objectives and design 
goals. 

Electronic customer support provides a single 
pOint of contact for the user to obtain support, 
which results in improved response time and 
increased productivity for the user. Figure 1 
shows that the system provides the user direct 
access to the electronic customer support 
functions through a display station attached to the 
system. The backbone of the system support 

82 

functions is the built-in communications interface 
to the IBM Marketing and Service Support 
Systems. The integrated electronic customer 
support functions operate through a set of 
interfaces with the IBM systems applications to 
bring IBM support to every AS/400 display station. 

Design Concepts 
Two design concepts were deemed essential to 
enable the desired system management 
functions. The system components had to be 
designed so they are self-identifying, and they had 
to provide problem detection and analysis at the 
time of failure. Further, a new common input/ 
output (I/O) architecture was needed to provide a 
consistent interface for new support-related 
functions. 

Self Identification 
The hardware and software components of the 
AS/400 system contain self-identifying information 
called vital product data. The hardware 
components contain within them their type, model, 
serial number, and load identifier. Type and model 
are used to identify hardware products and card 
features. The load identifier is the label of the 
initial program load (IPL) required to bring up the 
device or component. The serial number is a 
unique identifier for each component. Other 
component-specific information useful for using 
the component may also be provided. Software 
components contain their name and maintenance 
level. In addition, a header associated with each 
code component indicates loadable-code group 
membership, any dependencies on other 

hardware or software components, and supplier­
identification information. The vital product data 
contained in the hardware and software is 
essential to support these functions: 

• Error recording to the device or field­
replaceable unit 

• Automatic configuration and initial system build 

• Feature ordering and verification 

• Code-change management 

• Service or configuration activity recording 

• Code download prerequisite checking 

• Failing unit location 

• Service support entitlement 

Collecting and storing vital product data is shown 
in Figure 2. 

Problem Detection/Analysis 
The system components are designed for 
problem detection and analysis at the time of 
failure. This emphasis on capturing data at the 
time of failure permits problem analysis for only a 
single occurrence of a failure. It avoids the use of 
failure re-creation techniques that are expensive 
to develop and often fail to detect and isolate 
intermittently occurring problems. Hardware 
configuration and information about how the 











Each problem is tracked independently through 
the different states. Options to run various 
problem management functions are provided by 
the problem log manager component based on 
the state of a problem. The problem state 
definitions and the selectable problem 
management functions for each state are: 

• Opened: This is a new problem detected by the 
system. Problem analysis, problem reporting, 
and problem recovery functions can be selected 
for problems in this state. 

• Ready: Analysis of the problem is complete. 
Problems at this state have either been 
detected by the system and analysis has been 
completed, or the user defined a problem to the 
system using the Analyze Problems (ANZPRB) 

command or function. Problem reporting and 
problem recovery functions can be selected for 
problems in this state. 

• Prepared: Problem reporting has been selected 
and information has been collected for 
contacting IBM. Problem reporting, verification, 
and recovery functions can be selected for 
problems in this state. 

• Sent/Answered: Problem reporting has been 
selected and a call sent and responded to from 
the IBM Service Support System. Resolution, 
verification, and recovery functions can be 
selected for problems in this state. 

Problem Analysis 
Structured problem analysis can be initiated for 
system-detected problems by running problem 
analysis, and for user-defined problems using the 
Analyze Problem (ANZPRB) command. Additional 
problem analysis is possible through non-directed 
use of system tools. 

Problem analysis provides for the isolation and 
resolution of system-detected problems. It is 
designed based on the philosophy that isolation 

results are provided at the time an error is 
detected. This is done to reduce problem analysis 
effort and to enhance the accuracy of the analysis 
for system-detected problems. Significant errors 
result in system messages and are identified as a 
problem when the message is displayed to the 
user. Problem analysis may be started from the 
message that was displayed for a particular 
problem or from a list of problems displayed by 
the problem log manager component. 

Problem analysis provides a common way to run 
resource-specific problem analysis procedures to 
analyze a specific problem. A component 
reference-code translate table is used to 
determine whether further analysis is needed for a 
particular problem or whether the analysis is 
complete at the time of failure. If further analysis is 
required, the component reference-code translate 
table is used to determine which problem analysis 
procedure to call initially for a problem. Problem 
analysis procedures are provided by components 
of the system for analyzing problems and verifying 
repair actions for problems. Problem analysis 
procedures and reference-code translate tables 
are supplied for hardware components, such as 
devices or adapters and certain software 
components. 

Structurally, a problem analysis procedure is a 
program written in a special procedural language. 
The problem analysis component provides 
common services such as problem analysis 
procedure initiation and problem analysis 
procedure recovery. This structure isolates the 
problem analysis procedure from OS/400, allows 
the addition of new I/O, and provides a greater 
potential for using problem analysis procedures 
on other systems. 

The Analyze Problems (ANZPRB) command can be 
used when the user discovers a problem that has 
not been detected by the system. The ANZPRB 

command guides the user through a series of 
panels designed to resolve user problems, isolate 

problems to a failing component, or generate a 
symptom list for reporting to IBM. During the 
definition of a user-defined problem, guidance is 
given to ensure that a procedural error was not 
made on the part of the user. Problem analysis 
procedures are supplied by system components 
as the entry points from the ANZPRB command. 
Once the problem is isolated to a component, the 
analyze problem function determines which 
general-entry problem analysis procedure to call. 
The function generates a symptom string for a 
software error, which is later used by the IBM 

Service Support System to determine if a 
software problem already has a PTF available. 

In addition to structured problem analysis, the 
user also has the capability of doing non-directed 
problem analysis through access to the system's 
service functions. These can be called from the 
system menus, through the System Service Tools, 
through the Dedicated Service Tools, or by 
entering commands. 

Automated Problem Reporting and Service 
Support 
When a problem has been isolated through the 
structured problem analysis functions, the user is 
then given the option to report the problem to IBM. 

Selecting this option causes the AS/400 system to 
automatically initiate a communications session 
with the IBM Service Support System. The System 
Support Facility provided on the AS/400 system 
communicates, using the service call record 
interface, to software functions on the IBM Service 
Support System to perform service entitlement 
and call-record analysis, and to resolve or route 
the call. This system automatically communicates 
the requests through an LU type 6.2 program-to­
program interface. 

A service call record is passed to the IBM Service 
Support System for both hardware and software 
problems. For software problems, a symptom 
string is used to search an IBM Service Support 

87 



System data base to find available PTFs for this 
problem. If a match is found, the appropriate PTFs 

are sent to the user's system for subsequent 
application. For hardware problems, a call record 
is used to supply the IBM Service Support System 
with the failing-parts information and the IBM 

service representative is dispatched with the 
parts. If no hardware or software resolution is 
identified for a problem or the repair action 
requires onsite assistance, the call is 
automatically routed to the appropriate hardware 
or software support structure. 

Copy Screen Image 
The copy screen image function provides 
additional problem determination capabilities for 
the customer to debug applications, or as part of 
help-desk support. A value-added remarketer 
(VAR), value-added dealer, or third-party 
development support personnel can similarly use 
this function. Copy screen image also enables IBM 

support personnel to directly participate in 
problem determination on a customer's system. 

Copy screen image provides the capability for a 
user at one work station to view the displays 
being viewed by a second user at another work 
station. Through commands or menus, the user 
specifies that display images on a specific work 
station are to be copied on some other work 
station. The display being copied is the controlling 
display station and is input-capable; it is called the 
source device. The display station to which the 
controlling display station's displays will be copied 
is a display-only device. It is called the target 
device and has no input capability. 

The commands or menus used to control the 
copy screen image processing are very flexible. 
When starting the processing, the requester can 
identify, by device name, which work station is to 
be the source device and which the target device. 
Requesters can also specify that their device will 
be the source device, the target device, or not 

88 

involved in the actual copy screen image 
operation. The processing can be ended by the 
user of the source device, or by a person not 
involved in the operation, using the command or 
menu interface. The user of the target device can 
also end processing through the use of a special 
system-request interrupt. The user also has the 
capability to direct copied display-images to a data 
base file. This enables the user to process this 
data at a later time and serves as an audit trail for 
what occurred during the operation. 

Network Problem Management Support 
The network problem management functions, 
combined with the enhanced problem 
management and configuration management 
functions, provide a comprehensive set of 
functions which allows management of the system 
within a network that works together with the 
System/370 C & SM functions. A problem is 
reported in the form of an alert, generated at the 
time of the failure, from the data available about 
the condition. The AS/400 system uses IBM'S new 
generic alert architecture for the alert structure. 
The alert functions allow a high degree of 
customer selection of alertable conditions and 
provide detailed data for that alertable condition. 

The AS/400 network problem management 
functions provide flexible control mechanisms. 
The customer can indicate that alerts are to be 
sent for all alertable conditions, for all alertable 
conditions except those defined as unattended, or 
not for any conditions. The customer can also 
control the sending of alerts on an individual­
message basis by setting the Alert Indicator field 
in the message. This indicator can cause the alert 
to be sent immediately, after local problem 
analysis, only if the system is being operated in 
unattended mode, or not at all for a message. 

The AS/400 system uses messages to identify 
alertable events and to provide part of the data 
needed for an alert. Other data that is provided as 

detailed alert data is contained in the reference­
code translate table. The AS/400 system also 
supports generation of alerts from data entered 
by an operator. 

The AS/400 system can be configured to operate 
in the following roles for receiving alerts: 

• Alert Focal Point: Receive, log, and provide 
NetView™ Distribution Manager display 
capability. The configuration can optionally 
direct the system to forward alerts to a higher­
level focal point. This is the hierarchical (or 
nested) focal pOint capability. 

• Alert Forwarding: Receive and forward to a 
higher-level focal point with or without logging 
when the system is not configured as a focal 
point. 

The AS/400 system uses a sphere-of-control 
table to send requests to be the focal point for 
those nodes capable of accepting the request. 
The sphere-of-control table allows the user to 
define all the network nodes that are to report to 
the focal pOint in a single table on the focal point 
system. The AS/400 system can be defined to 
operate as a primary or as a default focal point. 

The AS/400 system receives both the new generic 
alerts and the stored-display alerts that use the 
major vector-subvector format. Alerts are received 
on either of the Systems Network Architecture 
(SNA) session types used for alerts. The AS/400 
system will forward alerts when configured to do 
so. Alerts are forwarded on the appropriate SNA 

session, independent of the session type on 
which they were received. 

Technical Support and Information Access 
Technical support and information access, as an 
integrated part of OS/400, is new on the AS/400 
system. 



Technical support and information access is 
provided locally on the user's system and 
remotely through IBM-supplied marketing support 
systems (where a marketing support system is 
accessible). Figure 4 shows the relationship to the 
support systems of the three basic functions: 
question-and-answer, IBM product information, 
and technical information exchange (TIE). 

The question-and-answer function is integrated 
within 08/400 and provides the user with a 
productivity tool for commonly asked questions 
and their answers on selected topics. The 
question-and-answer function is delivered with the 
operating system along with an initial IBM-supplied 
local question-and-answer data base. VARs and 
central-site support organizations can also use 
the question-and-answer function to supply their 
own question-and-answer data bases. IBM 
product information provides access to market 
support functions, such as system library 
subscription service lists (SLSS), announcement 
letters, and the like. Technical information 
exchange is an asynchronous file-transfer vehicle 
used to exchange files between the user's system 
and the IBM market support system. 

Online Questions and Answers 
The question-and-answer function provides the 
capability for a set of hierarchical data bases that 
users can access to improve education and 
technical information distribution. A local question­
and-answer data base can contain commonly 
asked questions and their answers, with 
associated topics and search words that enable 
an end user to quickly find information. The 
question-and-answer function is divided into two 
primary areas, the set of operations and the 
question-and-answer data bases that can be 
operated on. The set of operations include 
question-and-answer data base management and 
item management within a question-and-answer 
data base. The question-and-answer function has 
the ability to manage a number of question-and­
answer data bases that could include subjects 

Question-and­
Answer Data 
Bases 

Central Site or 
VAR Question­
and-Answer 
Data Base 

Host 
1----- - - -1 Question-and-

Answer 

IBM Service 
Support 

Market Support 
Application 
and Information 

Figure 4 Technical Support and Information Access Functions 

Fi le 
Routing 

RSLL403-5 

89 



addressing technical topics, management or 
employee briefings for company policy changes, 
procedural directions, or operational questions. 
The topics are determined by the user or the data 
base supplier. 

Each local data base can be associated with a 
remote data base. The remote data base can 
reside on an IBM host system (in one of several 
countries) or another ASj400 system. All of these 
remote data bases are accessed through the LU 

type 6.2 program-to-program interface, allowing 
the same local question-and-answer functions to 
be used for different host question-and-answer 
programs and data. 

The question-and-answer function has three 
primary user types: the general user, the 
question-and-answer coordinator, and the 
administrator. These users are established 
through normal system security and may vary 
from question-and-answer data base to question­
and-answer data base. The general user can 
perform searches on the local data base only. If 
the searches are unsuccessful, questions can be 
submitted to the coordinator for response. The 
coordinator can perform local searches, as well 
as searching the associated remote data base. 
The coordinator is also the responder for general 
user-submitted questions. The coordinator is 
considered a general user when accessing the 
associated remote data base. The administrator is 
responsible for the management or distribution of 
a data base. The administrator has all the rights of 
the general user and coordinator, plus data base 
management and distribution capabilities. 

The question-and-answer function is easily 
accessed using system help commands or an 
easy-to-use set of menus. Local end users are 
shown the same style and basic content of 
displays, regardless of whether they are 
accessing local or remote data base information. 
The user interface is consistent with other user 

90 

interfaces on the system, thus providing the 
functions in a familiar format. 

Question-and-answer data bases can be supplied 
from several organizations. IBM ships with every 
entitled system an initial set of local questions and 
answers for use by the customer online. In 
addition, IBM provides access to an associated 
remote IBM data base. The IBM local and remote 
data bases place a wealth of knowledge and 
broad range of experiences at the fingertips of the 
ASj400 question-and-answer user. The customer 
can choose to supply a local data base, containing 
questions and answers that have been collected. 
This allows administrators to distribute commonly 
asked questions to their network of systems and, 
if desired, they can also be associated with a 
larger, company-wide data base. 

The question-and-answer data base is divided 
into four primary areas: supplied, locally added, 
candidate, and conversational. When general 
searches are performed, the supplied and locally 
added portions of the data base are used. When 
questions are submitted, they are kept in the 
conversational portion of the data base. The 
candidate portion of the data base is used for the 
staged or controlled publication of items. This 
structure allows the user the freedom to tailor the 
searchable set of items in anyone data base 
without affecting the supplier's information. The 
structure of the data base also allows the supplied 
portion of the data base to be refreshed without 
destroying any questions and answers that are 
being responded to (submitted questions), being 
published, or that have been locally published to 
all users. 

The question-and-answer function also provides 
functions to create, distribute, and manage a new 
question-and-answer data base. Once created, 
the user can use the question-and-answer edit 
function to establish a base set of questions and 
maintain these items in the data base. After 

selected items are developed, the user can create 
a distribution copy of the data base from either 
the supplied portion, the locally added portion, or 
a combination of both of these portions. When 
this data base load is installed on another system, 
it provides that local user with a new supplied set 
of items to work from. 

Questions and answers can be added to any local 
data base (including the IBM-supplied) at the 
customer's discretion. These items can be 
published for other users to access in their 
searches. Items can be published immediately or 
in a controlled fashion. Immediate publication of 
an item allows the user one chance to edit a 
question prior to publishing it. The less-formal 
user would likely publish questions and answers 
immediately when the general-user audience is 
smaller. The more sophisticated user (for 
example, a VAR or central-site user) would typically 
stage the publication of questions and answers to 
ensure accuracy, style, and content. These 
questions and answers are added to the locally 
added portion of the data base and do not affect 
the supplied portion provided by the supplier of 
the initial data base. 

Marketing Technical Support 
IBM product information and technical information 
exchange (TIE) work together to provide a set of 
technical support functions and information to the 
user. 

IBM product information provides access to 
support tools that are available on the marketing 
support system. Examples of the available 
support tools include SLSS lists, ASj400 
configurator, and access to marketing 
announcements material. Using the ASj400 3270 
device emulation support, IBM product information 
provides the capability for the support system to 
use both display (LU2) and print (LU3) capability. 





The System Capacity Planner 

Describes the advanced capacity planning functions available as part of the AS/400 system. 

Michael J. Denney, James M. Mickelson, and James C. Stewart 

Introduction 
Given the normal growth within a business and 
the ever-increasing application demands being put 
on the data processing area of a business, the 
need to plan for initial and changing system 
requirements is apparent. The overall goal for the 
AS/400™ capacity planner (the Model System 
command, MDLSYS) is to provide an easy-to-use 
tool that can assist with these tasks. 

The AS/400 capacity planner represents unique 
approaches in the area of capacity planning. The 
capacity planner is made up of five major 
components. The work load component assists 
the user in defining and characterizing the 
applications running on the system. The 
configuration component validates the system 
configuration, while the analytic model component 
uses the work load and configuration information 
to predict end-user response times, throughput, 
and system utilizations. The evaluator component 
analyzes the model predictions and recommends 
a configuration change to improve the response 
time, throughput, and utilization levels based on 
the user's objectives and design guidelines. The 
growth component allows the user to analyze 
future system requirements based on annual 
growth rates. These five components work 
together to provide an easy-to-use capacity 
planner. 

Work Load Component 

system work load is treated as a collection of 
measurement profiles that correspond to the 
various business components. On an installed 
AS/400 system, this data input is automated 
through a measurement profile generated using 
the Print System Report (PRTSYSRPT) command. 
The PRTSYSRPT command is available as part of 
the AS/400 Performance Tools. 

Figure 1 illustrates generating measurement 
profiles for the three business components 
accounting, sales, and online ordering. Within the 

o 

_Plan 

t 

capacity planner, the measurement profiles are 
combined to give a total system view of the work 
load. This combined set of measurement profiles 
is referred to as a response file. 

This ability to characterize work being done on the 
system at the business component level has a big 
advantage. Growth within a given business 
component while holding other components 
constant can be examined. New applications that 
have been characterized in the form of a 
measurement profile can be added using the 

Accounting 

~ Collect 

Measurement 
Data 

Data 
Reduction 

Sales Measurement 
I-cO='n""l7'j n=--e-:O=-r-:d:-e-:ri-ng-ll- ----l Profiles 

Input 
Capacity Planner Response File 

Accounting .• . • 
Sales .....• 
Online Ordering. 
TOTAL .•.... 

Objectives T Predicted 
· .••• XXX XXX 
· . . . • XXX XXX 
· . ••• XXX XXX 
· .••. XXX XXX 

RSLL404-2 

The work load component allows the user to 
characterize the application work load. Because 
system resource requirements are generally tied 
to specific components of a business, the total Figure 1 Measurement Profiles as Input to Capacity Planner 

92 



capacity planner to see their effect on the system. 
Also the user can add other types of work to this, 
such as the RAMP-C™ benchmark program, batch, 
and spool profiles. Objectives for throughput 
(transactions per hour), response time, and active 
work stations can also be specified as input to the 
capacity planner. 

Configuration Component 
The configuration component ensures that the 
capacity planner analyzes only valid combinations 
of processor models, main storage, disk devices, 
and communications devices. This helps the user 
order hardware upgrades. In a proposal situation 
(the user does not have an installed system to 
measure), the configuration component's first job 
is to calculate an initial configuration: a starting 
point to work from. This initial configuration is then 
analyzed by the capacity planner and is modified 
until the user's objectives are met. 

To calculate the initial configuration, the 
configuration component looks at the user's 
throughput objectives and the application 
characteristics (number of instructions, disk 
accesses, working-set size) and applies queueing 
theory to calculate the number of devices required 
to keep the utilization within recommended levels. 
(The working-set size is the main storage 
requirements for a job and includes all of the 
objects necessary for a job to process.) From this 
point on, this component's job is to ensure that 
any configuration changes result in valid system 
combinations and to know the proper hardware 
needed to upgrade each device. 

Analytic Model Component 
The analytic model component predicts the 
response times, throughputs, and utilizations 
based on the work load and configuration 
components' output. Because the model 
processes quickly, it can produce a range of 
performance predictions for the current 
configuration by repeatedly increasing the number 
of active work stations and analyzing the results. 

The user can then see, at a glance, what the 
predicted performance will be as the system gets 
busier. 

The queueing model for the capacity planner is 
comprised of several submodels. These 
submodels, with one exception, use an 
approximation of the mean value analysis. 
Resources modeled using this technique include 
the System Processor, the disk subsystem, 
activity levels within the interactive storage pool, 
the work station controllers (local and remote), 
and the remote lines. The exception to the mean 
value analysis is the model that predicts the 
number of disk accesses per transaction, referred 
to as the paging model. This model is essential to 
predict the amount of main storage necessary to 
accommodate all of the active jobs. 

To model paging, many measurements were 
reduced into paging curves, where the 
overcommitment ratio of main storage is the X 
axis, and the number of disk accesses per 
transaction is the Y axis. The overcommitment 
ratio is calculated based on the number of active 
jobs, the jobs' estimated working-set sizes, and 
the size of the main storage pool where the jobs 
run. Thus, the overcommitment ratio is a ratio of 
the amount of main storage to contain all of the 
active jobs' objects compared to the amount of 
main storage available in the storage pool. 

The pre-characterized work load in the capacity 
planner (RAMP-C) has a paging curve. The 
measured profile input by the user, however, does 
not have a paging curve; this profile is only one 
point on a paging curve. To produce a paging 
curve for a measured profile, the RAMP-C paging 
curve is adjusted to pass through the measured 
profile's one point. The curve is then adjusted 
based on the difference between the estimated 
working-set size of the measured profile and the 
estimated working-set size of RAMP-C (see 
Figure 2). 

c 
o 
o ro 
(IJ 
c 
ro 
'-
I-
'-w 
n. 
(IJ 
w 
(IJ 
(IJ 
w 
o 
o 

<C 
.Ott. 
(IJ 

o 

Overcommitment Ratio 

••• RAMP-C Paging Curve 
P Point in Measured Profile 

x 

* * * Paging Curve Generated for Measured Profile 
ASLL337·3 

Figure 2 Measured Profile Paging Curve 

Evaluator Component 
The evaluator component provides the expertise 
in analyzing the output of the model. The 
evaluator knows when system performance is 
unacceptable or close to being unacceptable. For 
example, if the interactive portion of the processor 
utilization is 75% (the processor is busy 75% of 
the time), performance may still be acceptable. 
However, the system does not have much reserve 
capacity, and performance will degrade rapidly if 
this utilization goes up as a result of adding more 
work load. In this situation, the evaluator will 
recommend a faster processor. 

However, some performance problems are not as 
easy to identify. For example, a high disk 
utilization may have multiple causes, such as: 
excessive paging due to insufficient main storage; 
high disk to input/output (I/O) processor utilization; 
or high disk to controller (A-Box) utilization. The 
evaluator can identify each of these and 
recommend a change to fix each problem. The 
evaluator also tells the user if the change is 

93 



required or optional. Required means that 
utilizations are above recommended levels; 
optional means that utilizations are approaching 
these levels and the user should be concerned. 
The values for these levels are set to reflect the 
performance observed in benchmark 
measurements, provide reasonable and 
consistent average response times, leave 
expansion room for future growth, and account 
for variations in the work load on the system 
throughout the day. 

When the evaluator has identified the problem and 
recommended a change, the user can either 
accept the recommendation or make a different 
change to the configuration. In either case, the 
configuration component will validate the change, 
the analytic model will predict the performance, 
and the evaluator will analyze the results again. 
This process continues until the user is satisfied 
with the configuration. 

The evaluator was originally implemented using 
expert system tools and techniques. A typical 
expert system consists of a rule base and an 
inference engine. The rule base contains the 
domain-specific knowledge in the form of IF 

condition, THEN action statements, called rules. 
The inference engine decides which rules should 
run based on the available data. 

The evaluator consisted of a set of performance 
rules that were easily implemented with the rule 
base and inference engine approach that expert 
systems use. The expert system approach 
allowed the rule base to be easily modified as 
more rules were needed or if the rules needed to 
be reorganized. The developers could 
concentrate on perfecting the performance rules 
and did not have to be concerned with program 
flow or where each rule should be located; the 
inference engine took care of that. 

94 

The evaluator was eventually translated into a 
conventional program because Operating 
System/400™ (OS/400TM) currently does not have 
any expert system support. Also, because the 
capacity planner is available on systems using 
Virtual Machine (VM), a completely different 
operating system, a high-level language that is 
supported by both operating systems was 
necessary. 

Growth Component 
When the system configuration has been 
determined, growth predictions can be done to 
determine the long-range data processing 
equipment needs. The user could accomplish this 
function by repeating the entire capacity planner 
procedure for all periods of interest (one, two, and 
three years from now, for example) by calculating 
the number of active work stations for each 
period, based on the expected growth rate, and 
creating the input for each analysis. This could be 
a time-consuming process. 

However, the capacity planner allows the user to 
specify a growth rate for each application with 
three time periods to analyze. The growth 
component calculates the number of active work 
stations for each period and then uses the model, 
evaluator, and configuration components to find a 
system configuration that will handle the additional 
work. Each configuration will have utilizations 
below the recommended levels and response 
times that are below the user's objectives. 

Conclusions 
The AS/400 capacity planning function provides 
AS/400 customers with a way of planning for their 
initial and future requirements. Its integration into 
the AS/400 Performance Tools provides a 
measurement interface and a level of analysis that 
greatly enhance its function and usability. The 
many variables that need to be considered to 

arrive at a balanced system configuration are 
handled by the capacity planner's analysis. The 
sophistication of its decision-making process 
assists in solving the very complex problem of 
data processing equipment planning. 

™ AS/400, RAMP-C, Operating 8ystem/400, and 08/400 are 
trademarks of International Business Machines Corporation. 





Software Design to Support National Languages 

Describes software packaging based on the physical separation of textual data from operational program code using a building-block design, 
allowing licensed programs to be distributed and installed in multiple national languages. 

Eric L. Fosdick and Michael F. Moriarty 

Introduction 
IBM designs software products that allow user 
interaction in the national language or languages 
chosen by the user. The textual data displayed or 
printed by a software product is available in many 
national languages, such as English, French, 
German, and Japanese. 

This textual data consists of messages, prompts, 
displays, and online documentation. A software 
product that contains textual data in a specific 
national language is called a national language 
version. 

Typically, the process of packaging, testing, and 
distributing multiple national language versions for 
many licensed programs was very involved. Each 
national language version was created at a 
different location around the world in a process 
that was time-consuming and difficult to control. 
This process also makes the capability of having a 
concurrent, worldwide availability date for all 
national language versions very difficult, if not 
impossible, to achieve. 

The design of the AS/400™ software separates 
textual data from operational program code when 
it is packaged on the distribution media. This 
separation is achieved using a building-block 
concept for software packaging. 

The AS/400 design provides several positive 
results. First, the process makes concurrent 
worldwide availability of licensed programs in 
multiple national languages practical. Textual data 
for licensed programs is translated into multiple 

96 

national languages, tested, and packaged 
independently from code. In addition, this method 
of software packaging supports multiple national 
languages simultaneously available on one 
system. The user can select one or more national 
languages when installing software products. And 
finally, the textual data can be updated by national 
language between software releases, thereby 
giving the system user more timely support. 

Separating Textual Data From Operational 
Program Code 
Previously, textual data was designed to be 
separated from the operational program code as 
unique objects to allow for text translation from 
English to each supported national language. 
Creating national language versions of the 
licensed program involved two basic steps: first, 
the English text was translated into a specific 
national language; and second, the translated 
textual data was integrated with the operational 
program code to create a national language 
software package for each licensed program. 

The AS/400 design does separate textual data 
from operational program code to allow for 
national language translation. But, this design 
continues the separation of textual data from 
operational program code when they are 
packaged on the software distribution media. This 
allows for a software packaging methodology that 
uses a building-block concept [1). 

For each licensed program, two separate building 
blocks are used for software packaging: the code 
building block and the textual data building block. 

The code building block contains all of the code 
objects for a specific licensed program, while the 
textual data building block contains all of the 
textual data objects for a specific licensed 
program. Each language has a separate textual 
data building block. 

The operational program code and textual data 
building blocks are sent to a software distribution 
center, where they are packaged as separate 
entities on a customized tape that is sent to a 
customer. The operational program code and 
textual data are finally integrated into a common 
library during the licensed program installation 
process on the AS/400 system. 

To fully support national languages, some 
licensed program code is national language 
dependent. An example is an operational­
program code-page transformation table used to 
convert graphic characters from one operational­
program code page to another. (This type of code 
is called national language dependent function.) 
The AS/400 design supports the packaging of 
national language dependent function in either the 
operational program code building block or the 
textual data building block for a specific licensed 
program. This packaging choice is determined 
individually for each national language dependent 
function. 

The AS/400 building-block design and the 
resulting national language version of the 
licensed-program build process improves the 
capability of having a concurrent worldwide 
availability of all software products. This design 



allows the process of creating national language 
versions of the licensed program at the translation 
centers to consist of translating, packaging, and 
testing the textual data objects only. This is 
simpler and less time-consuming than creating 
national language versions with both textual data 
and operational program code integrated. 

Distributing to a Worldwide Audience 
A primary result of the software building-block 
design is a better methodology for distributing 
software products to a worldwide audience. 
ASj400 software is distributed to the customer 
using a customized software tape containing the 
operational program code and primary national 
language textual data for each licensed program 
ordered. An additional tape is sent for each 
secondary national language that is ordered. The 
secondary national language tape contains the 
translated textual data for all licensed programs. It 
does not contain any operational program code. 

The process of creating a customized software 
tape for a customer order is: (see Figure 1) 

• The development laboratory sends the 
completed operational program code and the 
English textual data to the software distribution 
center. It also sends the English textual data to 
the translation centers. 

• Each translation center sends the completed 
national language textual data for each licensed 
program to the proper software distribution 
center. 

• The software distribution center creates a 
customized software tape using the 
corresponding operational program code and 
national language textual data that matches the 
customer order. The distribution center also 
creates a separate tape for each secondary 
national language ordered. 

Development Laboratory 

English Textual 
Data for LP1 

English Textual 
Data for LPn 

Code for LP1 

Code for LPn 

Sent to Each Translation Center 

Software Distribution Center 

Translation Center 

Translated Textual 
Data for LP1 

Translated Textual 
Data for LPn 

Each customer order is filled. The following example is for licensed programs 1,3, 9 (LP1, LP3, LPg) with 
national language 1 (NL 1) as the primary national language and NL2 as a secondary national language. 

Customized Tape 

Code for LP1 

NL1 Textual Data for LP1 

Code for LP3 

NL 1 Textual Data for LP3 

Code for LPg 

NL 1 Textual Data for LPg 

Secondary National Language Tape 

NL2 Textual Data for LP1 

NL2 Textual Data for LP2 

NL2 Textual Data for LP3 

NL2 Textual Data for 
each LP. • • • • • 

NL2 Textual Data for LPn 

RSLL39S· 3 

Figure 1 Process Flow Using Software Building Blocks 

97 



Although the current software distribution 
methodology for the AS/400 system uses a 
customized tape, the building-block design can be 
used to support other software distribution 
methods, such as all available software products 
packaged together on the distribution media. 

Another result of the software building-block 
design is the capability to update national 
language textual data independent of scheduled 
updates or new releases for licensed programs. 
This capability provides the translation centers 
with the flexibility of staging the textual data 
translation between product releases. This is very 
important when high volumes of textual data are 
being translated. 

National language textual-data updates can be 
created whenever the translation centers send 
updated national language licensed-program 
textual-data tapes to the software distribution 
center. The distribution center then builds and 
distributes an updated national language textual 
data tape to the affected customers without 
having to redistribute a customized software tape 
containing operational program code and textual 
data. This updated national language textual data 
tape is built the same way that a secondary 
national language textual data tape is built. 

Installing the Software 
The software is installed by reading the 
operational program code and textual data from 
the distribution tape and writing (restoring) them 
to libraries on the system. The software is 
installed in two phases. 

In the first phase, the initial program load (IPL) 

process installs the vertical microcode (VMC) and 
the operating system. For the first system IPL, the 
IPL prompt contains the IBM logo and a single 

98 

input field, into which the user selects the desired 
primary national language. This prompt is 
designed so it does not require translation. The 
tape also contains translated versions of the 
remaining IPL displays in each national language. 
The IPL process, however, exposes the user only 
to displays in the national language specified on 
the first prompt. If the language selected is not on 
the customized tape, the IPL process asks the 
user to insert a secondary national language tape. 
When IPL completes, the operating system is 
started and uses the language selected by the 
customer. 

In phase two, operating system commands and 
menus are used to install the optional parts of the 
operating system and the licensed programs. The 
primary language for these is the same as 
selected in phase one. The operating system also 
supports multiple secondary languages, and the 
textual data for each is installed into its own 
unique language library. A menu interface guides 
the user in selecting one or more secondary 
languages. 

Just as the textual data for the primary national 
language was initially installed in two phases, it is 
also updated in two phases. During phase one, 
the user specifies on an IPL prompt that only the 
textual data is to be updated. The IPL process 
stops at the appropriate time and requests a new 
language tape be inserted. The textual data on the 
new tape replaces the old textual data for the VMC 

and the operating system. In phase two, the 
system menus allow the user to update the 
primary national language textual data for the 
optional parts of the operating system and the 
other licensed programs. The menus also allow 
the user to update the secondary national 
language textual data. 

Conclusions 
AS/400 software was designed from the outset to 
support a worldwide audience with many different 
national languages. Translatable textual data is 
physically separated from the operational 
program code until the user installs it. This 
separation enables the user to install updates to 
the textual data and to install additional national 
languages independent of the operational 
programs. Usability is enhanced by extensive 
prompts and menus that guide the user through 
the installation process. Another aspect of the 
design is that textual data and operational 
program code are packaged in building blocks 
that can be rearranged to meet future packaging, 
distribution, and installation processes in 
response to new technology and customer needs. 
These advanced features demonstrate a 
significant improvement in national language 
technology. 

References 
1. National Language Information and Design Guide 

Volume 1: Designing Enabled Products, Rules and 
Guidelines, SE09-8001 . September, 1987. 

TMAS/400 is a trademark of International Business Machines 
Corporation. 



Engineering 
The AS/400 hardware was designed using IBM's most advanced engineering 
processes and implemented in IBM's latest very large scale integration (VLSi). 
main storage. and disk technology. 



System Processor Architecture 

Describes the layered machine interface developed for the AS/400 System Processors, which provides for enhanced system function and 
performance. 

Mark R. Funk, Quentin G. Schmierer, and Dale J. Thomforde 

Introduction 
A primary AS/400TM characteristic is the unique 
high-level machine interface (MI). The machine 
interface separates the application programmer 
from the actual AS/400 hardware implementation 
and is the lowest-level instruction set available to 
the user. The instruction set used by Operating 
System/400™ (OS/400TM) and high-level 
languages is also defined by MI instructions. As a 
result, MI allows programming independence from 
machine implementation and configuration details. 
Many of the basic supervisory and resource 
management functions of the operating system 
are implemented within MI. The actual support for 
MI is distributed through two internal 
microprogramming levels, vertical microcode 
(VMC) and horizontal microcode (HMC), and 
physical hardware. In Figure 1, the variable depth 
of each layer represents the distribution, or 
amount of support, of any MI function performed 
within that layer. The characteristics of the 
multilayer architecture and the flexibility of the 
internal interfaces allow function to be moved to 
lower levels of the machine in an evolutionary 
manner. This movement provides enhanced 
system function and performance. 

The Machine Interface 
MI is supported by a microprogramming level 
called vertical microcode (VMC), which is 
separated into two distinct classes of support. 
One class is the operating system, including such 
functions as storage management, data base 
management, and input/output (I/O) support. The 
second class is the translator, which converts 

100 

Hardware 

RSLL41 0·1 

Figure 1 AS/400 Architecture 

machine instructions into instructions at the 
internal microprogramming interface (IMPI) level. 
The conversion supported by the translator can 
be visualized as a compiler step. Individual MI 
instructions are converted into one or more 
sequentiallMPI instructions, or into calls to VMC 
routines. The VMC routines themselves consist of 
IMPI instructions that implement the requested 
function. 

IMPI also consists of two distinct classes of 
support. One class, as with VMC, pertains to 
operating system support. Within this class are 

instructions that do such 'diverse operating 
system functions as storage management, 
security and system integrity, data base 
management, task dispatching, task and message 
queueing, and I/O processing. The second class 
consists of machine instructions and extended­
function IMPI instructions. IMPI instructions are 
interpreted by the next lower level of 
microprogramming, called horizontal microcode 
(HMC). The interpretation is supported by HMC 
routines, consisting of one or more HMC 
instructions called control words. The hardware 
directly decodes and processes the HMC control 
words. 

AS/400 System Processor Features 
The basic operations within the IMPI instruction set 
consist of a set of machine instructions similar to 
System/370 instructions, including register-to­
register (RR), register-immediate (RI), register-and­
storage (RS), storage-immediate (SI), storage­
storage (ss), and branch-type instructions. 

The register set in the System Processor consists 
of sixteen 48-bit base registers. These base 
registers are accessed in 8-, 16-,32- and 48-bit 
mode by the RR, RI, and RS instructions. 

The SI instructions typically process 8, 16, or 32 
bits of storage against an immediate field in the 
instruction. The ss instructions process variable­
length strings of characters and signed-binary or 
packed-decimal integers with a single instruction. 
Also at the IMPI level are instructions supporting 
IEEE floating-point, zoned-data (unpacked 



main and disk storage. Instructions within this 
class have been found to have a relatively high 
frequency of use. As such, the functions they 
support were excellent candidates for moving into 
the hardware. These instructions also support the 
conversion between the 64-bit MI pointer address 
and the 48-bit virtual address at the IMPllevel. 

The System Processor includes many advanced 
data base management instructions. They 
support higher-level instructions used at the 
machine interface and in VMC. For example, the 
System Processor hold-free mechanism is used 
by the VMC seize-release routines and by MI lock­
unlock instructions. This mechanism is 
implemented by a group of IMPI instructions 
supporting chained-hold records. The hold 
records represent lock or seize activity for a given 
system or data base object by all active 
processes. 

IMPI task-dispatching instructions provide task or 
context switching from one procedure in a given 
task to a procedure in a different task. Queueing 
instructions support exchanging information and 
synchronizing the flow of control between tasks. 
The synchronization is provided through a send­
and-receive message approach. I/O processing 
support is closely coupled to the built-in functions 
of queueing and task dispatching. The System 
Processor contains additional instructions that 
support subscript address generation for arrays, 
stack-space maintenance, various modes of 
context switching, and timers. 

The System Processor 6-byte virtual address 
allows addressability to any byte within a 281-
thousand gigabyte address space. The single­
level storage aspect of the AS/400 system is 
supported using this virtual address scheme. 
Most storage references are made through a 6-
byte virtual address generated through a base 
register plus displacement calculation. Any of the 
16 System Processor base registers can be used 
in this manner. 

decimal), and conversions between data formats. 
The large set of primitive operations allows 
generating compact and efficient code with short 
functional path lengths. 

Of particular interest within the branch-type IMPI 
instructions are the composite, conditional test­
branch, and compare-branch class. This 
frequently used class of IMPI instructions is 
translated one-for-one from a similar class of MI 
instructions. This is an excellent example of 
function that has been moved in an evolutionary 
manner from VMC to HMC, and then into the 
hardware with no impact to high-level 
applications. The functions supported by the 
branch-type class of instructions include the basic 
conditional branches, indirect and indexed 
branches, internal and external routine calls, 
function calls, supervisor calls, and associated 
returns. 

In addition, the System Processor supports the 
more complex operating system functions of 
storage management, security and system 
integrity, data base management, task 
dispatching, queueing, and I/O processing. The 
storage management instruction class includes 
instructions that range from the simple translation 
of virtual addresses to the more complex 
determination of appropriate candidates for 
purging pages from main storage. The 
instructions in this class perform functions 
associated with the primary directory, which is the 
primary translation table between the IMPI 6-byte 
virtual address and the physical main storage 
address. 

The security and system integrity class of 
instructions includes IMPI instructions that process 
and verify MI pointer objects. The MI pointers 
support 64-bit virtual addresses. An MI pointer is 
an object that is used only for addressing and 
does not permit examination or manipulation of 
the implied phYSical address. The validity of the 
pOinters is assured by including a special tag bit in 

Horizontal Microcode Features 
The processor hardware does not process IMPI 
instructions directly. The IMPI instructions are 
converted into a series of sequentially processed 
HMC control words. The control words are directly 
decoded and run by the System Processor. In 
general, one HMC control word is run per 
processor cycle. For the 10wer-levellMPI 
instructions, a single control word, thus a single 
processor cycle, is required. More-complex 
System Processor functions are supported by 
multiple controls words and take proportionally 
longer to process. 

Each HMC control word is 42 bits in length and is 
encoded into one of 13 different formats. The 
control word is subdivided into a variable-length 
opcode and a number of fields that are used to 
control the processor hardware. The fields control 
functions such as register gating, the arithmetic 
logic unit (ALU) operations, virtual address 
translation, memory accesses, and generation of 
the address for the next control word to be 
processed. 

The position, size, and content of the control word 
fields were chosen to make maximum use of the 
System Processor hardware. Performance was 
enhanced by allowing parallel processing of 
important functions. Control words that take more 
than a single processor cycle to run are buffered 
to allow the Processor to continue fetching new 
control words without interference. With a single 
control word it is possible to add a displacement 
to a virtual address, translate the address, and 
initiate a memory access while moving data 
between other registers in the processor. An ALU 

operation could take place at the same time as a 
data move between registers and a memory­
access request. System Processor status 
controls and generation of the next control word 
address are done in parallel with each control 
word. In addition to the synchronous parallel 
operations within the System Processor, which 
are under direct control of the HMC, many 

101 



asynchronous operations can also be initiated by 
the HMC or by the hardware, and are processed in 
parallel with an HMC control word. 

High-speed random access memory (RAM) on the 
System Processor card is used to store control 
words. It contains either 8192 or 4096 locations, 
depending on the system model. Not all of the 
control words needed for System Processor 
support fit into control storage. Infrequently used 
HMC resides in main storage and is automatically 
retrieved by the Processor into reserved locations 
in control storage when it is needed. Control 
storage is loaded during initial microprogram load 
(IMPL) and is another example of system flexibility. 
Enhancements or new functions supported by 
HMC may be installed without any hardware 
changes. 

Hardware Features 
The System Processor cycle time is between 60 
and 120 nanoseconds, depending on the system 
model. Most HMC control words run in one cycle. 
The System Processor is partitioned into six 
independent functional units. On the higher 
performance models of the system, the six 
functional units are implemented in six modules, 
with one chip per module (see the card on the 
right in Figure 2). Each high-performance bipolar 
chip contains the equivalent of up to 14,000 2-
input NAND gates. Up to 240 functional I/O pins 
reside on each module. Other models package 
the six functional units into three single-chip 
modules (see the card on the left in Figure 2). 
Each module contains a CMOS chip with the 
equivalent of up to 40,000 2-input NAND gates and 
a maximum of 231 functional I/O pins. The 
partitioning of the functional units across the chips 
maximizes parallel operations while minimizing 
chip-to-chip signal crossings. The control word 
formats were designed to match the hardware 
partition. (For more information, see the article 
System Processor Technology.) 

102 

Two of the functional units provide main storage 
control. One of the storage-control functional units 
provides address and control for the storage 
cards. Each storage access can take from one to 
three cycles. Three independent address busses 
allow interleaved accesses across the address 
space. Up to 96 megabytes of main storage is 
supported. The functional unit also provides 
refresh control and storage-card control lines. Up 
to six storage cards, two on each address bus, 
are supported. The other storage-control 
functional unit provides error checking and 
correction (ECC) for data fetched from main 
storage. It also provides an interface for I/O 

storage accesses, which are interleaved with 

Figure 2 AS/400 CMOS and Bipolar Processor Cards 

System Processor storage accesses. Data is 
written to and read from main storage across an 
80-bit data bus. This includes 8 bytes of data, 14 
bits of ECC check bits (used for error checking and 
correction of data, and error checking on main 
storage addresses), and a single tag bit (used for 
marking system pointers). The ECC algorithm used 
is capable of detecting and correcting single and 
double 4-bit package errors. 

HMC control words directly control the remaining 
four processor functional units. Three of the 
processor functional units contain ALUs that are 
under HMC control. The hardware supports 8-, 16-, 
and 32-bit ALU operations. One of the functional 



units supports pre-fetching IMPI instructions from 
main storage. An instruction pre-fetch buffer is 
used to reduce the amount of time spent waiting 
for the next instruction. It also contains a 16-bit 
ALU to process IMPI instructions, which mOdify 
base registers and calculate effective addresses. 
Another functional unit was designed to support 
storage, shift, and multibyte string instructions. 

The third processor functional unit generates the 
control storage addresses and fetches control 
words. HMC conditional branching, branch and 
link, control storage overlaying, processor 
exceptions, and interrupts are supported by this 
unit. It contains an 8-bit ALU and a fast array that 
are used by HMC for process control information. 

IMPI instructions address operands through a 
virtual address. Effective addresses are generated 
for IMPI instructions through a base register plus 
displacement calculation. The resulting virtual 
address must be translated into physical main­
storage addresses prior to initiating a main­
storage access. The fourth processor functional 
unit is responsible for this address translation. 
The translation hashes the virtual address to 
generate an address into a high-speed translation 
look-aside buffer. The look-aside buffer contains 
the most recently translated virtual addresses. 
The probability is better than 99% that the new 
address can be translated through one of the 
1024 entries in the look-aside buffer. If the look­
aside buffer translation was not successful, the 
hardware attempts to translate the address 
through the primary directory located in main 
storage. The primary directory is a table listing all 
virtual pages currently residing in main storage. 
Virtual addresses that are translated successfully 
through the primary directory are placed in the 
look-aside buffer with the corresponding physical 
page address. If the translation through the 
primary directory is unsuccessful, the status of 
the System Processor is saved and the virtual 
address being translated is passed to VMC, which 

will then copy a S12-byte page of data, starting at 
the requested address, from disk storage. 

Conclusions 
Given the high-level function supported by the 
AS/400 System Processor, the classical concept 
of the performance of a processor (instructions 
per second) becomes less descriptive. Such 
factors as the processor cycle time, the main 
storage data-bus width, the instruction pre­
fetching, the 48-bit registers, and the many single­
cycle IMPI instructions are indicative of the power 
of the AS/400 hardware. However, the 
performance of the System Processor is more 
than these hardware-related factors alone. The 
high-level System Processor function, which is 
efficiently supported by HMC (often with the 
appropriate hardware assistance), is indicative of 
the System Processor's performance. 

Further, IMPI and HMC do not limit the growth of 
IMPI hardware. In fact, they are tools to achieve 
still greater levels of performance. By enhancing 
HMC and hardware, the System Processor's 
performance is increased beyond what could be 
achieved with hardware alone. All processor 
functions benefit, whether basic or high-level. 
Because of the flexibility, new function can be 
added to the System Processor. 

As VMC supports the machine interface, it can also 
make full use of the enhanced System Processor, 
whether the function is provided by HMC or by 
hardware. Enhanced system function, with 
associated improvements to the machine 
interface, can be distributed through the levels of 
support best suited for the function. Additional 
performance improvements can be achieved at 
each level. Performance in such an environment 
(in terms of throughput, response time, and other 
high-level methods of measuring performance) 
improves at a greater rate and with greater 
potential than cycle-time related measures of 
performance. 

The layered machine interface support allows 
remarkable flexibility and optimization within the 
supporting layers. As processor technologies 
improve in speed and density, a highly used 
function at the processor level can be moved 
closer to the hardware level by enhancing the HMC 

control words and underlying hardware. This 
allows greater performance with no impact to 
programs written at a high level. Also with this 
method, processors at varying levels of 
sophistication and resulting cost can support a 
constant level of IMPI through the appropriate HMC 

support. 

In like manner, VMC routines deemed appropriate 
due to performance considerations can be moved 
into HMC by enhancing IMPI. New IMPI instructions 
can be added and others deleted. Because none 
of these things affect the machine interface, the 
user is never affected. New AS/400 functions can 
be partitioned into the various layers of the 
machine, as appropriate. This flexibility has 
allowed function to move to lower levels of the 
machine in an evolutionary manner, providing a 
conSistently competitive system. 

TMASj400, Operating Systemj400, and OSj400 are trademarks 
of International Business Machines Corporation. 

103 



System Processor Technology 

Describes the advances in chip and circuit design used in the ASj400 System Processor design. 

Delbert R. Cecchi and Robert F. Lembach 

Introduction 
The AS/400™ System Processors incorporate the 
most advanced technologies available. These 
technologies allowed reducing the processor to a 
single card containing the processor logic, the 
writable control storage, and the virtual address 
translation mechanism. 

The use of these, the densest gate array and 
standard cell chips ever used in an IBM processor, 
required advances in circuit design, logic design 
and verification tools, and physical design tools. 
These advanced tools provided the means to 
design, verify, test, and manage the processor 
design in an organized and productive manner 
within the IBM Engineering Design System[1]. 

The System Processor design features an 
innovative dual implementation. The same basic 
design was implemented in bipolar gate arrays 
having over 14,000 equivalent gates per chip, and 
a 1.0 micron CMOS standard cell family having up 
to 40,000 equivalent gates per chip. (Figure 1 
shows a 14,00o-gate bipolar logic chip, while 
Figure 2 shows a 40,000-gate CMOS logic chip.) 
These advances have allowed the entire bipolar 
9406 System Processor, consisting of 86,000 
equivalent circuits, to be packaged on a single 
card, including the high-speed static random 
access memory (RAM) for the control storage and 
the look-aside buffer. The CMOS implementation 
(9404 System Processor) adds one input/output 
(I/O) bus and the base 4 megabytes of main 
storage on the same card as the System 
Processor, bringing the circuit count on the card 
to 150,000. 

104 

Figure 1 14,OOO-Gate Bipolar Logic Chip 

Chip Logic Technologies 
The bipolar circuit technology used in the logic 
chips in the larger models of the AS/400 system is 
an enhanced version of a family of technologies 
used on the IBM System/36 5360 Model D 
processor [2]. It uses a transistor-transistor logic 
(TTL) circuit family in a 2.5 micron oxide-isolated 
bipolar process with four levels of metal. Each 
internal cell on the chip contains five transistors 
and five resistors. This allows the construction of 
a four-way NAND in one of four power levels or 1 
bit of RAM in a single cell. To make the best use of 
available components and increase the density 
and performance of designs on the bipolar gate 
arrays, a number of special-purpose macros were 
designed, including RAMs, a general-purpose 

Figure 2 40,OOO-Gate CMOS Logic Chip 

register stack, and a 9-bit parity checker and 
generator. These special macros were jointly 
developed by IBM, East Fishkill, NY, and IBM, 

Rochester, MN. 

While the bipolar implementation was able to 
achieve a 6o-nanosecond cycle time and, 
therefore, the performance necessary for the 
larger models of the AS/400 system, a less 
expensive and easier-to-coollogic Chip 
implementation was desirable for the smaller 
models, while preserving the investment in 
software and microcode. Due to its dramatically 
lower power requirements, single-supply 
operation, higher denSity, and lower per-circuit 





To use the CMOS technology, it was necessary to 
provide equivalent macros to those available in the 
bipolar technology. Rather than design each of the 
RAM macros individually, macros were compiled to 
meet the designer's size and performance 
specifications. These RAM macros are completely 
compatible with the rest of the design system 
elements. Space is left in the macros for wires to 
pass through to reduce wiring congestion and 
allow placement flexibility. The system 
automatically generates all of the design system 
rules so a designer can use RAM macros like any 
other library element. 

Optimizing the Logic Chip Physical Design 
Physical design has traditionally consumed 10 to 
20% of the computer time used while designing a 
chip. Traditional chip physical design practices 
were strained in an environment using both 
bipolar and CMOS circuit families, with multiple chip 
images per family. To keep pace with the growth 
in the number of circuits on a chip, placement and 
wiring algorithms were required that scaled well 
computationally and produced consistently high­
quality results. The goal of increasing process 
automation and efficient algorithm use demanded 
dependable physical design methodologies. 

Circuit placement directly affects performance and 
density, and so was one key process. Wire length, 
wiring congestion, critical nets, and pin-density 
metrics were optimized during placement. 
Constraints included preplacement biases, widely 
varying sizes of circuits and macros, simultaneous 
switch, clock skew, and second-level package 
wirability. Placement of circuits on these gate­
array and standard-cell chips is a hard 
combinatorial optimization problem due to these 
many, often conflicting, metrics used to judge 
solution quality. 

A unified circuit-placement approach was used to 
manage this complexity across the different chip 
images and circuit families. This unity was based 

106 

on simulated annealing [4], a multivariate 
optimization algorithm developed within IBM and 
integrated into IBM'S Engineering Design System. 
In Rochester, the advantage of this novel 
algorithmic approach in a production environment 
was seen as early as 1983. 

Optimization algorithms are judged by their 
relative time complexity, such as their speed and 
ability to scale with problem size, and by their 
relative performance, such as the level of solution 
quality. Simulated annealing was found to scale as 
N, where N is the number of circuits to be placed. 
For the bipolar and CMOS chips, typically 10- to 20-
million moves were made on the 5,000 to 10,000 
various-sized circuits per chip during placement 
evolution. Chip wire-lengths fell 10 to 25% 
compared to prior constructive and iterative 
algorithms in similar run times. This lower wire 
demand required less total time for the wiring 
task, yielded a 50% reduction in wiring overflows, 
and resulted in fewer timing problems. Overall 
physical design cycle time was reduced, on 
average, by 25% compared to prior system 
designs. 

The control of timing critical paths, the placement 
of both large and small objects, the capability to 
perform quick incremental changes, and the ability 
to restrict circuits to specific areas to bound 
simultaneous switching and enhance card 
wirability placed additional burdens on the 
physical design methodology. 

Control of critical logic timing, such as clock trees, 
was accomplished with minimum and maximum 
capacitance goals applied during placement 
evolution. On the bipolar chips, capacitance limits 
existed on all nets due to timing goals and 
technology restrictions on the maximum net 
capacitance each circuit could tolerate. With this 
approach, all nets were viewed as critical, with the 
priority being application-specific. 

The presence of both large and small objects 
complicated the chip physical design task. This 
task was not partitioned into subtasks because 
the interaction of the circuits was, in general, not 
disjoint. As such, placement was allowed to move 
all objects under the guidelines of suitable metrics, 
such as macro blockages. Experiments showed 
that the resulting solutions mimic manually 
generated solutions, and often yielded novel 
solutions. After placement, chip plots were made 
with the circuits colored based on their function to 
provide insight into the underlying hierarchical 
logic structure and to yield evidence of reasonable 
chip floor plans. Because placement is a dynamic 
activity, a videotape of several thousand circuits 
being placed was produced to better observe and 
understand placement evolution for both random­
logic and macro-dominated designs. 

The capacity to manage incremental physical 
design changes is important due to the parallel 
design activities in which chip physical design 
coincides with system simulation. The incremental 
change strategy attempted to minimize disruption 
of existing placement and wiring for circuits that 
were already timed. Incremental placement 
inserted new circuits into available positions while 
being guided by a minimum wire length goal. 
Incremental wiring used mazerouting and manual 
embedding. 

In some cases, the physical design influenced the 
logic design. As the logic evolves from the 
hardware description language though synthesis 
and ends up in a target technology, logically 
equivalent signal sources are connected to 
logically equivalent signal destinations in an 
arbitrary fashion that may aid or hinder physical 
design. Reordering these equivalencies was 
performed after circuit placement to reduce wire 
length. Scan paths were modeled as travelling 
salesman problems and solved using simulated 
annealing. For the case of equivalent sources 
driving equivalent sinks, such as in repowering 



trees, a simulated annealing program was 
developed to reassign these connections based 
on minimum wire length and balanced loading. 
Typically, 150 unique reordering sets were 
manipulated. Total chip wire length was reduced 
up to 10% using both of these programs. 

I/O circuits were grouped into specific areas for 
several reasons. Simultaneous switching was an 
important consideration due to the large number 
of chip I/O, and the potentially unpredictable 
results from large current pulses causing noise 
coupling to nearby quiet drivers or receivers 
during the switching time. By controlling the 
placement of the buses, the electrical noise 
generated is reduced considerably, enhancing the 
reliability. Intelligent grouping of signals also 
enhanced card wirability. 

Conclusions 
The design of the ASj400 System Processors 
using state-of-the-art technologies required many 
advances. The semiconductor process 
development, the physical design system, and the 
system logic design were done in parallel, 
requiring close interaction between technology 
developers and system designers. For example, 
while the semiconductor manufacturing process 
was still under development, hundreds of circuit 
books were designed and simulated. At the same 
time, major processor implementation decisions, 
such as the partitioning of the function into 
individual chips, setting the clock cycle time, and 
designing the packaging, were made. Because 
modification of dense chips to correct mistakes is 
impossible without another chip pass, great 
emphasis was placed on the accuracy of the 
design in all aspects. Successfully running the 
operating system on the first-pass design, at the 
designated cycle time, was proof of our 
methodology. 

Acknowledgments 
Significant contributions to the technology and 
tools were made by individuals at several IBM 

locations. Their efforts are truly appreciated. 

References 
1. Freeman, w.J. III and V.J.Freund, Jr., A History of 

Semicustom Design at IBM, VLSI Systems Design's 
Semicustom Design Guide, 1986. 

2. Brenner, S. et ai, A 10,000 Gate Bipolar VLSI Masterslice 
Utilizing Four Levels of Metal, 1983 ISSCC Digest of 
Technical Papers. 

3. Aldridge, A. et ai, A 40K Equivalent Gate CMOS Standard 
Cell, Custom Integrated Circuits Conference, Portland OR. 
1987. 

4. Kirkpatrick, S., CD. Gelatt, Jr., and M.P. Vecchi, 
Optimization by Simulated Annealing, Science, Volume 
220, Number 4598. May 13, 1983. 

TMAS/400 is a trademark of the International Business 
Machines Corporation. 

107 





I 

Definition 

1 
Technology-
Independent 
High-Level 
Description 

1 
Technology-
Dependent 

~ Low-Level 
Description 

1 
Timing Functional 
Evaluation Verification 

N 

y 

Build 
Prototype 

RS LL323-1 

Figure 1 AS/400 VLSI Design Process 

The strategy used for HOLs on the System 
Processors is analogous to how languages are 
used in computer programming. SOL is similar to a 

programming language such as FORTRAN or PL/I. 

These languages are independent of any 
particular computer, and can be used on any 
computer having an appropriate language 
compiler. The language compiler translates the 
programming language statements into machine­
specific code. SOL, in a similar way, describes logic 
behavior in an abstract manner independent of a 
specific technology, but can be translated into any 
one of several technology-specific logic 
structures. High-level languages such as FORTRAN 

and SOL are generally easier and faster to write 
than low-level languages, and are conceptually 
easier to understand. BOLlS is similar to assembler 
language. Assembler language is dependent on a 
particular computer, and may only run on that 
computer. BOLlS, in the same fashion, describes 
the logic structure of a specific integrated chip 
technology. 

Because large design changes in SOL are very 
easy to accommodate, functional verification of 
the SOL is desirable before the conversion is made 
from SOL to BOLlS. This highly detailed sublevel 
simulation is accomplished using the IBM EOS 

variable mesh simulator [3]. This simulation 
involves writing a preliminary set of test cases, 
each exercising a different aspect of the 
processor's operation, and applying them to the 
SOL model using the variable mesh simulator. 
Upon successful completion of this sublevel 
simulation, the SOL logic model can be translated 
into the low-level BOLlS model. This translation can 
be accomplished either automatically using 
computer translations, or using a manual process 
involving a language rewrite by the computer 
designers. 

The automatic process of converting SOL to BOLlS 

is known as logic synthesis [4]. This is 
accomplished using many levels of computer 
programs to convert the SOL behavioral 
description into a technology-specific logic 
structure. Using this process, the technology­
independent SOL language can automatically be 

converted to the technology-specific BOLlS 

language. This process is very fast, with a total 
VLSI design being converted in only minutes. This 
is analogous to using a FORTRAN compiler to 
convert the high-level computer-independent 
FORTRAN language into low-level computer­
dependent assembler language. Advantages of 
using synthesis to convert to technology-specific 
BOLlS include the speed at which this can be 
performed, and the ability to write one HOL model 
and then synthesize to several different target 
technologies. The AS/400 system, using more 
than one VLSI technology over its range of 
processor models, provides an example of how a 
different VLSI technology can be used with no 
redesign needed. 

A second method of converting SOL to BOLl S is 
through the manual translation process. In this 
method, the designer identifies the underlying 
technology-specific logic structure implied by the 
SOL, and then writes out the equivalent BOLlS 

statements by hand. This is used when the 
specific implementation desired by the designer is 
not equivalent to the implementation received 
through the automatic translation tools. This may 
result when the method of implementation chosen 
by the synthesis programmer is different from the 
method of implementation chosen by the design 
engineer. One advantage of using manual 
translation is the ability to match the functional 
needs of the design to a precise physical 
characteristic of a technology. This may include a 
physical size or functional speed characteristic of 
that technology. Both synthesis and manual 
translations were used to design the AS/400 
System Processor. 

Timing Evaluation 
Upon completion of the logic entry phase, the 
resultant BOLlS must be verified considering the 
machine cycle time. As shown in Figure 1, timing 
evaluation becomes one of the next phases in the 
VLSI design process. For the AS/400 system, 
close timing tolerances were used to maximize 

109 





To meet this challenge, a system-simulation 
philosophy was adopted. This concept includes 
surrounding the System Processor by the other 
system components and modeling them in a 
simulation environment. High-level test cases are 
run to verify the function of the design using the 
actual system microcode. This microcode is 
loaded into the processor model, which is the 
actual BDL/S model received from the logic entry 
phase. By running test cases in this way, a 
detailed and realistic system environment is 
produced, and any problems found can be 
corrected before prototypes are actually built. 

Although this may sound simple, a sophisticated 
means of implementing this concept is required. 
The simulation vehicle used must possess the 
speed and capacity necessary to perform this 
type of system simulation. A review of state-of­
the-art simulation methods culminated in the 
selection of the Engineering Verification Engine 
(EVE) [5] as the AS/400 simulation method. EVE is a 
hardware simulation engine: a specialized, highly 
parallel computer developed specifically for the 
simulation of hardware designs. The ability to 
simulate hundreds of thousands of gates, 
combined with the speed necessary to run 
millions of instruction cycles, made EVE an ideal 
choice for system simulation. 

With the selection of EVE, system simulation 
evolved into two components. The first, internal 
microprogramming interface (IMPI) simulation, 
verifies that the AS/400 architecture is 
implemented correctly. The second, bus 
simulation, ensures that the processor properly 
interacts with other system components (I/O 

devices, for example). 

IMPI simulation actually imitates the debugging 
work that was done later in the laboratory during 
initial system bringup. The processor model was 
loaded with the same horizontal microcode (HMC) 

that is used on all AS/400 systems. IMPI test 

cases, the same as those used by the HMC 

developers to verify both the microcode and the 
hardware, were run on the simulation model. 
Those extensive, high-level test cases provided 
the measure of whether the System Processor 
design adhered to the architecture specifications. 

Although IMPI simulation is used to verify internal 
operations, the external processor interfaces 
must also be exercised to ensure their validity. 
Because of this, bus simulation was developed to 
ensure the System Processor I/O channels were 
implemented correctly. This was accomplished by 
coupling the System Processor model to other 
models for various I/O devices. To give credibility 
to the simulation, these I/O models were derived 
from actual device designs. Bus simulation was 
used to test initial program load (IPL), direct 
memory access (DMA), bus error sequences, and 
various functions used for hardware problem 
debugging. It ensured that the system could be 
initialized to the run state, from which normal 
system processing could occur. Bus simulation 
also verifies that various debugging facilities were 
operational, should they be needed during the 
laboratory bringup that followed. 

Using IMPI simulation and bus simulation as parts 
of the overall system simulation strategy 
undoubtedly saved time and resources, as well as 
improved the overall quality of the System 
Processor. 

Conclusions 
The motivation to obtain functional first-pass 
hardware has brought about changes and 
success to the VLSI design process. 

Logic entry has evolved so the designer is 
removed from the trivial details of technology­
dependent issues to allow more emphasis on 
architectural advancement. The timing results 
seen at the completion of the project met all the 
requirements set in the beginning. All logic paths 

were implemented successfully to achieve 
functional timings under worst-case conditions. 
The system simulation method of functional 
verification successfully operated the hardware, 
microcode, and test cases together as a system 
before any parts were built. This allowed the 
laboratory bringup to become the last step in the 
verification process, not just the start of hardware 
debugging. 

The resultant hardware obtained from this 
process was functional on the first pass. This 
functional hardware was then given to the 
programming groups, allowing their efforts to be 
undertaken shortly after receipt of the first-pass 
VLSI parts. This design process provided 
significant improvements over past designs for 
scheduling, productivity, and above all, quality. It 
has set the standard by which future designs will 
be measured. 

References 
1. Dunn, L.N., An Overview of the Design and Verification 

Subsystem of the Engineering Design System, 
Proceedings of the 20th Design Automation Conference, 
Miami, 237-238. June, 1983. 

2. Maissel, L.I. and H. Ofek, Hardware Design and 
Description Languages in IBM, IBM Journal of Research 
and Development, Volume 28, Number 5,557-563. 
September, 1984. 

3. Case, P.w. et ai, Design Automation in IBM, IBM Journal of 
Research and Development, Volume 25, Number 5,631-
646. September, 1981. 

4. Saunders, L.F., An Approach to VLSI Logic Design, 
Proceedings of European Conference on Electronic 
Design Automation (EDA '84), Conference Publication 232, 
33-34. March, 1984. 

5. Blank, T., A Survey of Hardware Accelerators Used in 
Computer-Aided Design, IEEE Design and Test of 
Computers, Volume 1, Number 3,21-39. August, 1984. 

TMAS/400 is a trademark of International Business Machines 
Corporation. 

111 



Performance Analysis of the System Processor 

Describes the techniques used, primarily statistical modeling methods, to ensure that AS/400 performance requirements were met. 

Harold F. Kossman and Merle E. Houdek 

Introduction 
Applications are becoming more complex, 
increasing the path length run to perform a given 
function. The use of application generators usually 
creates less-efficient code and further increases 
the path length. The development of user-oriented 
systems is also required for user productivity. The 
net result is a requirement for a high-performance 
processor. 

One of the integral parts of processor 
development activity is processor performance 
analysis. This analysis started when the 
processor data flow concepts were generated, 
and continued through the detailed design and 
build phases of processor development. The 
resulting AS/400™ System Processor design not 
only met the processor performance objectives, 
but achieved the best performance for the 
technology used for the processor design. This 
processor allowed a user-oriented system to be 
built with the capability to run more complex 
applications. 

Methodology 
A frequently used method for simulation­
performance modeling consists of using an 
existing machine to generate a trace of 
instructions and main storage accesses, and then 
writing a program simulating the hardware to 
process those instructions and use those main 
storage accesses. This method is fine when the 
instruction set the machine processes is small or 
when the time available to do the analysis is great. 
On a processor that uses horizontal microcode 
(HMC) to process the instructions, all microcode 

112 

must be available for all instructions before the 
instruction trace can be run. If the processor's 
instruction set is small or the processor 
architecture does not require significant change to 
the microcode, this does not present a serious 
problem. However, the AS/400 internal 
microprogramming interface (IMPI) instruction set 
contains over 250 instructions and the AS/400 
architecture changed extensively to satiSfy 
required performance objectives. (See the article 
System Processor Architecture for more 
information.) With an instruction set that large, 
microcode development for all instructions is a 
very large task and is typically not complete until 
late in the development cycle. It is not possible to 
generate that amount of microcode quickly to 
evaluate various processor architectural 
alternatives. Therefore, two models were created: 
one very detailed simulation model used for 
microcode development and verification, and 
another simulation model that used a statistical 
approach to generate instructions and main 
storage accesses. Though both models provide 
input to the development process, the statistical 
model provides needed input early in the process 
(see Figure 1). 

To optimize the time to develop and debug the 
model, the model was written in A Programming 
Language (APL). APL allows for efficient 
manipulation of matrixes, which is desirable when 
using a queuing structured model. The model was 
run on an IBM 3081 Model D, with 32 megabytes 
of storage; the model used 35% of the processor 
for approximately 45 minutes. Again, to decrease 
debugging time and increase the time to make 

Detailed Simulation Model 

Statistical Model 

Architecture Design Build Test 

Figure 1 Impact of Two Modeling Methods 
on the Product Cycle 

Ship 
RSLL369-1 

corrections and alterations for different conditions, 
the run time was considered a necessary 
expense. 

The statistical method consisted of analyzing an 
instruction mix and a main storage trace and 
extracting the important characteristics affecting 
performance from each. Then, the frequency in 
which these characteristics would occur was 
predicted. A model was created that used these 
frequencies or statistics, replacing the need to 
analyze actual traces. The model was then run 
against these statistics, generating an average 
instruction time. The statistics were individually 
changed to determine their sensitivity. When one 
was found to be unacceptably sensitive, it was 
replaced with a more detailed, modeled 
description of that facility. 



Inputs to the model included instruction mixes, 
HMC for the instructions, statistics concerning 
locality of reference of main storage (for both data 
and instructions), and hardware structures and 
timings (see Figure 2). 

Instruction Mix 
The instruction mixes and main storage trace 
statistics were determined empirically by running 
a large set of applications on an IBM System/38 
Model 700 and collecting instruction usage and 
main storage usage statistics. Choosing 
benchmarks to run while collecting statistics is a 
difficult decision. Many different benchmarks were 
used, including actual customer applications, as 
well as synthetic benchmarks developed 
internally, in an attempt to establish a 
representative field of applications that tested all 
aspects of the system. Five applications were 
selected and run, and instruction-usage data was 
collected for each application. (A total of 2 billion 
instructions was accumulated from the five 
applications.) The individual application data was 
then normalized and combined, such that the 
resulting mix was a single list of instructions, 
weighted and ordered by contribution, to the 
resulting average instruction time. This new 
instruction mix was used to make the overall 
prediction for average instruction time. However, 
individual application mixes were also used for 
studies of specific areas. 

When analyzing these instruction traces, the top 
10 instructions (figured by contribution to the 
average instruction time) contributed over 40% of 
the total average instruction time. The top 25 
instructions contributed 60% and the top 40 
instructions contributed over 70% of the total 
average instruction time. To analyze the various 
architectural alternatives, a significant confidence 
factor could be obtained by running a subset of 
the total 250 instructions in a mix based upon the 
probability of occurrence of each instruction. In 
addition, many instructions had multiple path 

Measured Data 
From System/38 
Model 700 

Instruction Mix 
Main Storage Usage 

HMC 
Strings 

Model for 
New Processor 

----.~I Complex 

Processor 
Structures 

Hardware I/O Bus 
Timings Structure 

AIT / I/O Bus Bandwidth 
Contention Points 
Facility Utilizations 
Statistics for Future Machines 

Figure 2 Information Inputs for Processor 
Performance Analysis 

RSLL368·3 

lengths, such as the move-character instruction. 
The various paths were statistically analyzed for 
frequency of occurrences and for the contribution 
to the overall average instruction time to 
determine if they needed to be broken down 
further into several representative paths. The 
number of instructions run in the model varied as 
the degree of confidence in the design became 
more secure. Early in the cycle, when high-level 
architectural decisions were being made, few 
instructions would be used; as the confidence 
increased, additional instructions were added as 
the microcode became available. 

Model Generation 
When the instruction mix was determined, the 
engineers responsible for the HMC started writing 
the microcode for the instructions that contributed 
the most to the total average instruction time. 
Because the primary focus of the analysis was to 
generate a preliminary analysis of the 

performance for the proposed processor 
architecture, pseudo-microcode was developed. 
This pseudo-microcode allowed a level of 
simulation that ignored non-performance details, 
but still captured all pertinent information 
necessary to analyze System Processor 
performance. And, because this pseudo­
microcode was a subset of the actual microcode, 
it was much easier to change. Therefore, 
alternative microcode strings could be quickly 
generated and tested. Initially, the few instructions 
that provided the greatest contribution to the 
average instruction time were coded and were 
able to provide a statistically significant 
confidence factor in the accuracy of the results. 
As the proposal for the processor architecture 
was finalized, and the microcode became 
available for additional instructions, these 
instructions were added to the model to improve 
the average instruction time contribution and 
confidence. 

As this progressed, the capabilities of the 
proposed hardware facilities and timings were 
being modeled. The System Processor, the virtual 
address translator, and the main storage unit run 
asynchronously with respect to each other. The 
virtual address translator operations and the main 
storage accesses can overlap with the control­
word processing within the System Processor, 
and the degree of overlap depends upon the 
microcode sequences. In addition, within the main 
storage unit, different main storage accesses also 
operate somewhat independently with respect to 
each other. The average instruction time model 
simulated the processing time of microcode 
sequences and all of the interactions between the 
System Processor, the virtual address translator, 
and main storage. Because many proposals and 
alternatives were expected to be evaluated, 
results needed to be available quickly to be most 
useful for design decisions. Therefore, a modular 
queueing structured model was chosen to 

113 



generate results quickly. This modular structure 
consisted of separate facilities to evaluate each 
independent function within the System 
Processor, virtual address translator, or main 
storage area, with easily changed parameters for 
scheduling processing durations for those 
facilities. As a facility was processing, it became 
unavailable for other use, though it could call other 
facilities. The called facility, if not busy, would then 
run. If the called facility was busy, the processing 
request and the required parameters were placed 
in a queue for that facility. The calling facility 
continued, if possible; if not, it would be placed in 
a hold-off situation, just as a real processor 
would. When a facility completed processing, it 
would reset its busy signal and requests on its 
queue would start processing. 

Processor Evaluation 
When the model was generated and the inputs 
were agreed upon, the results were evaluated. 
This was done in several different ways. First, 
traces of the modeled-processor operation were 
generated for the instructions run on a cycle-by­
cycle basis, and the development engineers 
reviewed the traces against their expectations of 
the operation, looking for accuracy of both 
microcode and hardware facilities. In addition, 
statistical collection facilities were placed within 
the model to measure various parameters and 
utilizations. These results were then compared 
against previous models and differences were 
investigated to determine whether the difference 
was expected and explainable, or if the difference 
represented a problem in the model. When the 
final hardware was actually measured, the results 
were found to be within 1 % of that predicted by 
the performance model, due to the intensity of the 
model verification process. 

When the model was written, debugged, and 
accurate, results were generated. (For the actual 
methodologies, see Figure 3.) The processor 
performance analysis found many unexpected 

114 

Code horizontal microcode for top instructions based upon contribution to total AlT. 

Generate Instruction stream to be analyzed based upon measured Instruction mix. 

Run model processing instruction stream. 

Calculate average processing time for each Instruction modeled: 

all paths 

Allj = j ~ (Tj IN] )lIfFj 

T J -Represents accumulated time for the jth path through for the ith instruction. 
N i -Represents number of times the jth path was run for the ith instruction. 
F) -Represents the frequency of occurrence for this path for the Ith instruction. 

Calculate contribution to AIT due to simulated instructions: 

number 8im 

CONT sim = i ~ AITi *' FREQ i 

FREQ I-Represents frequency of occurrence of the ith instruction. 

Calculate AIT ratio to 5/38 Model 700 for simulated instructions: 

AITR slm = CONTslm (NEW MACHINE)/CONTmeas (8/38 Model 700) 

Assume AIT ratio for non-simulated instructions; previous experience has shown that, because design opti­
mization occurs on the top instructions, a good approximation for boHom ops is: 

AITRnOl1_slm = .9 lIf AITRslm 

Calculate contribution of non-simulated instructions: 

I CONTnOl1_slm = CONTmeao (8/38 Model 700) lIf AITRnon_s,m 

I I Calculate total AIT: 

AIT = CONT + CONT 
total aim non-81m 

Calculate Instruction throughput: 

TP = 1 I AITtotal 

RSLL450-' 

Figure 3 Methodology for Calculating the AIT 



bottlenecks and contention points that were 
eliminated or minimized throughout all areas of 
the System Processor, the virtual address 
translator, main storage, and the input/output (I/O) 

bus areas. In addition, hundreds of questions 
were answered for the developers concerning 
complexity-versus-performance tradeoffs, such 
as considering the performance gained if the 
virtual address translator process was reduced 
one cycle under certain conditions. 

I/O Bus Evaluation 
After the processor was analyzed, the processor 
average instruction time was analyzed after 
considering the I/O bus contention for main 
storage. In addition, the I/O bus performance was 
analyzed after considering main storage 
contention due to the System Processor. Also, 
because some of the system's models have 
multiple busses, contention for bus facilities exist 
as well. These questions were answered when a 
model of the I/O bus structure was added to the 
processor model, because the System Processor 
already included the main storage facility. A 
statistical simulation model of the I/O bus was 
developed using the same methods described for 
the processor model and was integrated into the 
processor model. The I/O bus and the System 
Processor were then run simultaneously several 
different times, with some I/O busses performing 
either reads or writes and other performing reads 
and writes. As the I/O model was run, statistics 
were kept of these contention points within the I/O 

area, and curves were generated based on the 
effect of contention on both the System 
Processor and the bus. Information from this 
analysis resulted in significant design changes 
and resulting I/O bus performance improvements. 

Conclusions 
A statistical model was developed to study the 
characteristics of the AS/400 System Processor. It 
used a subset of the instruction set and a 
statistical characterization of the main storage 

reference patterns. I/O requests for main storage 
cycles were also included to support the design of 
the I/O connection into the System Processor and 
determine its effect on Processor performance. 

The design of the System Processor simulation 
model had many goals, including: evaluate various 
architectural proposals to determine which one 
best suited the objectives; predict performance 
early to indicate that the design kept pace with the 
objectives; provide performance evaluations of 
design proposals in a timely manner, to help the 
designers make the best design tradeoff; identify 
problems with the design early in the design cycle; 
evaluate processor I/O bus contention; and 
provide input for system performance analysis. 
This approach allowed the analYSis of proposals 
in the architecture and design phase of the 
development cycle to meet these requirements. 

™ AS/400 is a trademark of International Business Machines 
Corporation. 

115 



Design of the System Service Processor 

Describes the Service Processor designed specifically for initial program load (IPL) and service of the AS / 400 System Processor, including the 
important advancements implemented in the Service Processor, such as advanced fault isolation, error reporting, and fault tolerance. 

William A. Thompson and Thomas M. Walker 

Introduction 
The AS/400™ Service Processor provides an 
independent system component to start the 
system, including verifying and initializing the 
hardware, finding and loading the microcode, and 
starting the 9406 System Processor. Additionally, 
the Service Processor provides new functions, 
such as remote and timed power on and improved 
diagnostic support to the central processor for 
detecting, reporting, and diagnosing catastrophic 
failures. 

The AS/400 system is designed around the 
system input/output (I/O) bus architecture, which 
connects intelligent I/O bus units to the central 
processor. Figure 1 provides a high-level view of 
the AS/400 hardware. (See also the article The 
Internal Input/Output Bus.) An I/O bus unit 
communicates with the System Processor and 
controls the devices attached to it, including 
magnetic media devices, work stations, and 
communications lines. Each I/O bus unit must be 
loaded with microcode to communicate with 
Operating System/400™ (OS/400TM). All system 
code resides either on disk devices, which are 
accessed at primary initial program load (IPL), or 
on tape, which is accessed at alternate IPL. The I/O 
bus unit that controls the disk and tape devices on 
which the system code resides is referred to as 
the load-source I/O bus unit. When the system is 
first powered on, the Service Processor assumes 
control of the bus, and uses the load-source I/O 
bus unit to obtain its microcode, and 
subsequently, the System Processor microcode. 
The control panel is the user's first interface to 

116 

power-on, power-off, IPL, and select service 
functions. The Service Processor provides the 
operating system interface to the control panel 
functions. 

To meet reliability and serviceability requirements, 
each piece of the system, as it is powered on, 
must verify that its hardware is functioning 
correctly, or be verified by another system 
component, and must notify the Service 
Processor or operating system of failures. 
Failures that prevent a successfullPL are 
displayed at the control panel by the Service 
Processor. All other failures are logged to the 
system error log for later analysis by automated 
service functions in the operating system. 

If a catastrophic failure occurs in the System 
Processor, it is automatically analyzed by the 
Service Processor and the results are displayed at 
the control panel. 

Control Panel Interface 
The control panel connects to the Service 
Processor (see Figure 1) and provides a simple 
external interface to the user for selecting the IPL 
source and for indicating status and error 
conditions. The control panel microcode interface 
provides the Service Processor and operating 
system access to control panel functions through 
a set of messages that enables and disables 
panel functions and retrieves panel and power 
control status. The control panel is the control 
point for the AS/400 power system and it directs 
the power system to power on and power off. The 

system may be powered on by the user using the 
power-on switch on the control panel, remotely 
through a modem with a special connection to the 
control panel, or at a user-specified time using the 
time-of-day clock. The Service Processor, in 
conjunction with the control panel, also provides 
the capability for automatic system restart and IPL 
when power is restored following an unexpected 
utility failure. The effects of utility failures are 
prevented if the system has an uninterruptible 
power source attached to it. Uninterruptible power 
source status lines can be connected to the 
control panel so that transition to and from the 
uninterruptible power source, and status of the 
uninterruptible power source, may be monitored 
and reported to the system through the Service 
Processor. A normal power down is initiated when 
an authorized user enters a power-off command 
at a work station. The operating system requests 
the Service Processor to send a power-off 
message to the control panel. The control panel 
power-off switch can also be used to power off 
the system; however, this is viewed as an 
abnormal power off and may result in extended 
recovery time for the next IPL. 

The IPL mode is a system parameter that 
determines the source of the IPL code. It may be 
changed by the user at the control panel or by the 
Service Processor as directed by the system. 
Mode A and mode B cause a normal load from 
disk devices, while mode D selects a tape device 
as the load source. The two disk modes, A and B, 
provide a way for the user to manage new 
releases or repairs to the Service Processor or 



System Processor 

Applications 

Operating 
System/400 
(OS/400) 

VMC 

HMC 

Central Processor 

Private 

Bus 

Service Processor 

Service 
Processor 
Code 

TOO SYS VPO 

Micro­
Processor 

BCU 

Power System 
(control on/off) 

Power System 
(status) 

Control Panel 

Remote Power On 
(control) 

UPS 
(status) 

~ __________________ ~ ______________ ~ ______________ ~~ System 
110 Bus 

Legend: 

I/O 
Bus 2 

1/0 
Bus 1 

BCU - Bus Control Unit 
10BU - 1/0 Bus Unit 
VMC - Vertical Microcode 
HMC - Horizontal Microcode 
TOO - Time-ol-Day Clock 
VPD - Vital Product Data 
UPS - Uninterruptable Power Supply 

T 0 
a 
p 
e 

s 
k 

• • • 

Load-Source 10BU 

WS 
0 t 
r a 
k t 

i 
0 
n 

Figure 1 High-Level View 01 AS/400 Hardware (Model B60) and Software 

I 

C P 
••• o 0 • • • 

m r 
m t 
u 
n 
i 
c 
a 
t 
i 
0 
n 
s 

RSLL325-3 

I 

System Processor microcode loads. For example, 
mode B can be used to test new microcode. If a 
problem develops, the user can perform another 
IPL in mode A to revert to the normal loads. This 
capability, to apply and back out new microcode 
easily without re-installing it, previously existed 
only in the operating system for operating system 
programs and application programs. Mode 0 is 
used to install or restore code to the system disk 
devices from the microcode saved on tape. 

Bus Control 
The system I/O bus is the channel connecting the 
Service Processor, the System Processor, and 
the I/O bus units (see Figure 1). One bus unit on 
each bus is designated bus control unit. The bus 
control unit provides control over arbitration, error 
recovery, and IPL functions on the bus. The 
system I/O bus has bus control unit function in the 
System Processor and the Service Processor, but 
only one is active at a time; the other functions as 
a standard I/O bus unit. The Service Processor 
assumes bus control during IPL and after 
catastrophic System Processor failure. Bus 
control is passed to the System Processor when 
sufficient code is loaded to provide the function. 

Each I/O has some read-only storage (ROS) 

microcode that runs diagnostics on its hardware 
and I/O devices. However, to become fully 
operational, each I/O bus unit must load 
microcode into its random access memory (RAM). 
Bus units with disk and tape devices attached are 
capable of loading themselves from that storage 
medium. All I/O bus units must be capable of 
downloading their microcode from the bus control 
unit. All microcode loads are stored on the load­
source I/O bus unit. The entire IPL process is 
directed by the bus control unit, which follows a 
command sequence across the system I/O bus to 
each bus unit. The Service Processor directs the 
loading of the load source, the Service Processor 
itself, and the System Processor. 

117 





When the Service Processor basic assurance 
tests have verified the Service Processor's 
hardware, additional Service Processor 
microcode continues to verify the system. In the 
event of a System Processor failure, diagnostics 
in the Service Processor determine the cause of 
the failure. If control of the system I/O bus has 
already been passed to the System Processor 
when the catastrophic failure occurs, bus control 
is retrieved using private bus control. When 
system I/O bus control is returned to the Service 
Processor, actions, such as main storage dumps 
and diagnostic analysis of failure data, are taken 
as required. 

System Reference Codes 
System reference codes displayed on the control 
panel by the Service Processor provide error 
information to the user. In the event of a system 
failure, multiple-word system reference codes are 
provided to diagnose the problem. They enable 
quick fault isolation in a user environment, and 
provide module fault isolation for the 
manufacturing environment, which reduces 
manufacturing costs and, in turn, helps reduce the 
cost to the user. The identification information 
available in a multiple-word system reference 
code can consist of the unit type, model, location, 
a unit reference code, device type, device model, 
device serial number, device location, device 
reference code, and other data specific to the 
failing unit. The Service Processor gathers this 
information, formats it, and displays it at the 
control panel. This configuration information is 
necessary because of the infinite number of 
system configurations possible. 

Service Processor Fault Tolerance 
The ASj400 Service Processor is a critical 
component of the system. The System 
Processor's IPL should not be halted due to minor 
failures of the Service Processor. For this reason , 
fault tolerance is designed into many critical 
portions of the Service Processor hardware. The 

Service Processor continues to function, if 
possible, after hardware failures are encountered. 

The microprocessor gives the microcode the 
flexibility to use alternative methods, continue 
after finding an error, or choose default values in 
the event that proper values are unattainable from 
the hardware. For example, a default-value IPL 

mode is provided if the correct value cannot be 
read from the control panel. The fault-tolerant 
portions of the design include the RAM, vital 
product data, time of day, ROS, and control panel 
communications. For RAM, ROS, and some vital 
product data failures, corrective action can be 
taken. Failures in the time of day, control panel 
communications, and some parts of vital product 
data can be ignored. In each case, if a failure 
occurs, it is logged and the system IPL continues. 

The Service Processor microcode attempts to 
recover from system I/O bus failures while it is the 
bus control unit. Failing bus units may be disabled 
by the Service Processor as needed to allow the 
IPL to continue. The VMC attempts to recover these 
units later in the IPL and may post system 
reference codes at the control panel or system 
console. The Service Processor will try several 
times to load the System Processor to overcome 
intermittent failures. 

Conclusions 
The Service Processor is an integral part of the 
ASj400 system. It provides necessary IPL 

functions, the interface to the control panel, and 
assistance with failure isolation in the System 
Processor. It manages many new functions 
including timed power on, remote power on, 
automatic power on after power failure, system 
time of day, and system vital product data. 

The private bus gives the Service Processor the 
capabilities needed to control the system I/O bus. 
It can also give up that control and provide 
diagnostic support to the System Processor 

during catastrophic errors. The Service Processor 
operates as a bus unit independently of the 
System Processor, allowing needed flexibility to 
meet its diagnostic and IPL requirements. The 
Service Processor diagnostic routines provide 
fault isolation and display system reference codes 
that identify the failing unit, the error code from the 
unit, and the location of the failing unit within the 
system, resulting in faster repair times and 
reduced down time. 

™ AS/400. Operating System/400, and OS/400 are 
trademarks of International Business Machines 
Corporation. 

119 



The Internal Input/Output Bus 

Presents an overview of the hardware and low-level software elements of the AS/400 input/output structure. 

Neil C. Berglund, John N. Tietjen, and William E. Hammer 

Introduction 
The input/output (I/O) structure of the AS/400™ 
system incorporates a new 32-bit I/O bus 
developed for the AS/400 system and the IBM 

9370 systems. The new bus is used in both the 
AS/400 9404 System Unit and the AS/400 9406 
System Unit. The I/O bus architecture provides 
communications using fixed-length messages and 
variable-length packet direct memory access 
(OMA) operations. The System Processor's 
hardware and software supports multiple I/O 

buses; the number of buses supported depends 
on the system model. 

The AS/400 I/O bus uses an asynchronous 
protocol, logical addressing, and serial arbitration 
to provide configuration flexibility and extendibility. 
With few restrictions, I/O controllers can be 
plugged into any board socket to provide virtually 
unlimited configurations. For additional capacity, 
each bus may be serially extended to additional 
boards. 

Emphasis was placed on providing facilities for 
detecting and identifying failing I/O bus units. The 
system can continue operation with a failing I/O 

controller logically removed from the 
configuration. Predecessor systems typically 
require the recurrence of a failure to locate a fault. 
The AS/400 I/O bus uses capture techniques to 
record a failure as it occurs to improve intermittent 
and permanent fault analysis. 

I/O Hardware Structure 
Figure 1 illustrates the AS/400 hardware 
structure. The System Processor (which includes 

120 

the bus control unit), the I/O controllers, and the 
bus extension units are attached to the I/O bus 
and are called I/O bus units. I/O controllers provide 
disk unit, tape unit, work station, communications, 
and local area network I/O functions for the 
system. 

Packaging 
The 9406 System Unit is comprised of system 
components installed in a 1.5-meter(m) rack. 
Within frame structures called card enclosures, 
logic cards plug into zero insertion-force 
connectors (card slots) on horizontal boards. All 
card slots in a card enclosure not allocated to 
storage or System Processor cards are wired as 
standard I/O bus slots. The 9406 Models B30 and 
B40 provide one I/O bus with eight I/O slots in their 
base configurations. For increased throughput 
and capacity, multiple I/O buses are standard on 
9406 Models B50 and B60. Model B50 has two I/O 

buses providing a total of 14 I/O slots in its base 
configuration. Model B60 has three buses 
providing a total of 17 I/O slots in its base 
configuration (see Figure 1). 

Additional I/O slots are obtained with 12-slot I/O 

expansion card units. The expansion unit is 
connected to the base enclosure or another 
expansion unit by a cable with a card on each 
end. One card is plugged into the base enclosure 
and the other into the first slot of the expansion 
unit. Cable length can be up to 8 meters, 
permitting an I/O bus to physically span multiple 
racks (refer to BEU1 and BEU2 in Figure 1). Bus 
extension can be repeated to connect up to three 
expansion units to each bus supported by a 
processor. 

The 9404 Models B10 and B20 are packaged in a 
versatile, low-cost system unit. The system unit, 
.65m (h) by .35m (w) by .75m (d), is self-contained 
with the System Processor, storage, I/O 

electronics, magnetic media devices, a power 
supply, and a Battery Power Unit. A single I/O bus 
is provided in a seven-socket logic enclosure. 

I/O Bus Characteristics 
The I/O bus is comprised of a 36-bit multiplexed 
address and data bus (32 data bits, plus 4 parity 
bits) and control and arbitration lines. The I/O bus 
operates asynchronously and uses a priority 
serial-arbitration mechanism. Each I/O bus can 
address up to 32 I/O bus units including the 
System Processor. Bus extension units are used 
to serially extend the bus and do not require a 
logical address like an I/O controller. Each I/O bus 
requires the function of a bus control unit, which is 
provided by the System Processor (see Figure 1). 
The bus control unit provides master control over 
arbitration, error handling, and IPL functions. I/O 

bus unit addresses are set by the processor 
software at each initial program load (IPL) to allow 
physical configuration flexibility. Non-volatile data 
in each I/O bus unit is used by the system to 
identify the system's I/O configuration and to 
provide the appropriate microcode load during IPL. 

Information is exchanged between the originator 
of a bus operation (master) and the bus unit 
selected by the master (slave). The information is 
in the form of fixed-length messages or variable­
length OMA operations. All bus units (including the 
processor) are capable of sending and receiving 
bus messages. These messages are used by the 
software I/O protocol to initiate and signal 



System 
Processor 

1 
Main 
Storage 

i 
1 1 

BCU BCU 
1 2 

~ 
10BU r---- I-- 10BU 

1/0 1/0 
Bus Bus 
1 2 

r-- 10BU - r-- 10BU 

I I 

V I' 
L __ (5_S_I_ot_S) ___ (6_S_I_ot_S)_~ 

AS/400 Model B60 Example 

IIOBU - 1/0 Bus Unit 
BCU - Bus Control Unit 
BEU - Bus Extension Unit 
LAN - Local Area Network 

B60 Base 1/0 Slots 

Optional 

BCU 
3 

r--- 10BU 
1/0 
Bus 
3 

--- BEU 

(6 Slots) 1 

I ,-1 
BEU 
2 

I/O 
Bus 

1/0 Expansion Unit (12 Slots) 

Figure 1 Sample AS/400 Hardware I/O: Model B60 with Three I/O Buses 

IL---

... 
i 

LAN 
10BU 

Work 

Communications 
Interface 

LAN 
Interface 

Station ------'--- -j 

10BU 

RSLL366-4 

completion of I/O requests_ Data is moved by I/O 

controllers, which access System Processor main 
storage as DMA masters while the System 
Processor's bus adapter functions as DMA slave. 

BuS Fault Detection 
The I/O bus was designed to minimize the 
disruption caused by the failure of single bus unit. 
Each I/O bus unit contains facilities to detect, 
identify, and recover from failures. A time out 
occurs when an I/O bus unit detects a bus failure 
and suspends bus operation. The bus control unit 
detects the time out and causes each I/O bus unit 
to store pertinent error information into a status 
register. In this way, hardware in each I/O bus unit, 
including those not involved in the failing 
operation, is an independent monitor of bus 
failures. The status captured at the time of failure 
permits isolation of intermittent and solid bus 
failures. 

The I/O bus unit involved in the time out enters a 
disabled state and is unable to participate in 
subsequent normal bus operations. This 
mechanism prevents failing I/O bus units from 
disrupting communications between the System 
Processor and other I/O bus units for many bus 
failures. 

When a time out occurs, software in the System 
Processor uses special bus commands (only 
available to the bus control unit) to collect status 
from all the bus units on a bus. The collection of 
this status is transparent to software in the I/O 

controller; consequently, operations in controllers 
not involved in the time out are unaware of the 
failure and recovery activity. This collected status 
is used to identify which I/O bus unit caused the 
failure. The disabled I/O bus unit is then either 
enabled to try the failing operation again or left 
disabled until repaired. 

121 



Software Structure for Input/Output 
One of the capabilities introduced with the I/O bus 
in the AS/400 system is the ability for an I/O bus 
unit to send unsolicited work requests to the 
System Processor. To facilitate this capability, a 
process-to-process programming mechanism 
was designed (see Figure 2). The process-to­
process programming mechanism provides 
symmetrical flows between the System Processor 
and the I/O controllers on the I/O bus. With 
symmetrical flows, the I/O bus units and the 
System Processor have the same functional 
capability to initiate and perform work. 

A program's interface to the I/O bus has been 
defined in terms of a set of verbs. Verbs are the 
commands or functions that the process-to­
process mechanism can perform. For example, 
RECEIVE DATA and SEND REQUEST are verbs. 
Communications between processes is in terms 
of sending and receiving messages and data over 
a logical connection between them. A layer of 
code in each I/O bus unit, referred to as the bus 
manager, determines the capabilities of each unit 
it communicates with (slave DMA, master DMA, or 
both) and controls the flow of messages and data 
across the I/O bus. 

For the bus managers in the System Processor 
and an I/O controller to communicate, they need: 

• Bus messages: Fixed-length control information 
to be transferred from one bus unit to another. 
Two principle messages are OP-START and 
OP-END. 

• Request-response control block: Controls the 
movement of data, commands, and control 
information between the requestor and server. 

Work is started in process B (the server) when a 
request is presented at the verb interface (see 
Figure 2) by process A (the requester). Because 
process B is in a different processing unit than 

122 

Bus Unit 1 (System Processor) Bus Unit 2 (1/0 Controller) 

Logical 
Connection 

Send to B 

Verb 
Interface -r.,. •••••••••• -r----r.,. ........... ...,-

Process-to-
Process Mechanism 

Bus 
Manager 

Slave DMA 

Process-to-
Process Mechanism 

Bus 
Manager 

Master DMA 

______________ ~ __________________________________ ~ ______________ 1I0 

Bus 

RSLL367-2 

Figure 2 Process-to-Process Mechanism and Bus Manager , Normal Flow 

process A, the unit 1 bus manager builds a control 
block, the request-response control block, and 
sends an OP-START bus message to alert the unit 2 
bus manager that a request is pending. The op­
START bus message has sufficient information for 
the unit 2 bus manager to move a copy of the 
request-response control block into bus unit 2. 
The bus manager, through the unit 2 process-to­
process mechanism, can now alert process B that 
work is to be done. Process B transfers the data 
between the bus units. The pacing of data 

transfers is controlled by bus unit 2. Unit 2's copy 
of the request-response control block is used by 
its bus manager to control the transfer of data 
between the bus units. Bus unit 2 signals 
completion of the request by sending an OP-END 

bus message to bus unit 1. Process A is notified 
by its bus manager when the OP-END is received. 

In the AS/400 system, I/O bus-attached I/O 

controllers do not have slave DMA capability. 
Therefore, to maintain symmetry of the data 



movement at the process-to-process interface, an 
additional data transfer method, reverse flow, is 
supported by the bus manager. 

With reverse flow, it is possible for an I/O controller 
(I/O bus unit) with only master DMA to request an 
operation from a server process with only slave 
DMA capability. In this instance, a pool of buffers in 
System Processor storage (the bus unit with slave 
DMA) is available to the bus manager in an I/O 

controller (the bus unit with master DMA and 
containing the requester process). The System 
Processor's bus manager controls the number of 
buffers available to the I/O control unit. The I/O 

control unit uses the buffers as required. Work is 
initiated at the process interface and the bus 
manager is started as before. The bus manager in 
bus unit 2 (see Figure 2) realizes the asymmetric 
DMA capabilities and builds the request-response 
control block, then moves the request-response 
control block and data, using DMA, directly into the 
remote buffer storage in the System Processor 
that was allocated for I/O bus unit use. At this 
point, the bus manager in unit 2 sends an 
OP-START bus message to unit 1 to notify it that a 
request is pending. The server process in the 
System Processor requests data through the 
process-to-process mechanism, which results in 
data being moved from one location (the buffer) to 
another within the Processor's storage. When the 
Processor has completed the request, an OP-END 

bus message is sent to the I/O control unit 
indicating the operation is complete. The same 
bus messages and control block are used, 
although the underlying hardware support is not 
the same. 

Conclusions 
The I/O structure of the AS/400 system is based 
on a new 32-bit I/O bus. The I/O bus supports a 
bus control unit and up to 31 additional, 
independent I/O bus units. The bus is designed to 
provide flexible I/O configuration and expansion, 
and intermittent and solid I/O bus fault detection. 

System models with one, two, or three I/O buses 
are supported. In addition, a process-to-process 
communications mechanism has been designed 
such that the System Processor and the I/O bus 
units have the same functional capability to initiate 
and perform work. This functionality, together with 
newly designed I/O controllers, offers I/O functional 
capabilities normally associated with much larger 
systems. 

Acknowledgements 
The authors would like to thank Richard A. Kelley, 
IBM Boca Raton, FL, for his contributions to the 
definition and documentation of the bus 
architecture. Thanks also to Richard E. Zelenski, 
IBM, Rochester, MN, for the guidance he provided 
in the early stages of system I/O definition. 

™ AS/400 is a trademark of International Business Machines 
Corporation. 

123 



Magnetic Storage Device Controller 

Discusses the unique microcode design which optimizes performance while maintaining concurrent operations between multiple devices. 

Fred L. Huss, Gene A. Lushinsky, Kevin P. Gibson, and Surinder P. Batra 

Introduction 
The Magnetic Storage Device Controller, used in 
AS/400™ 9406 System Units, provides the control 
and data transfer path between the system input; 
output (I/O) bus and the IPI-3 bus. 

A single device type, or a combination of disk, 
tape, and diskette units, can be attached to the 
Storage Device Controller, which must maximize 
the data transfer rate between the device and the 
9406 System Processor, while managing 
concurrent operations with multiple devices (for 
example, reading data from disk unit 1 while 
writing data to disk unit 2). Providing concurrent 
device support, combined with varied device 
performance characteristics, requires three 
solutions. First, the time a device is idle must be 
minimized, so the Storage Device Controller must 
provide parallel processing. It does that by 
minimizing the sequential processing time with 
each device. Also, as the number of system 
operations increase, the microcode must minimize 
the effect of increasing device and controller 
usage. According to queuing theory, run time 
increases by a factor of one divided by one minus 
the utilization (1 I (1-U)). As the utilization 
increases, the run time increases dramatically and 
must be reduced. The microcode operation 
minimizes the use of the controller and the device 
while processing heavy I/O loads. And, finally, 
commands and data transfers to the devices must 
be started and continued on a timely basis. 
Unique device timing characteristics require 
prompt data transfers to prevent extra disk 

124 

revolutions or tape backhitches (a brief rewind and 
restart). These key performance requirements 
were met in the innovative design of the Storage 
Device Controller. 

Hardware Structure 
The hardware provides separate direct memory 
access (OMA) and control processor buses that 
allow the bus interface hardware to operate 
independently of the control processor (see 
Figure 1). For read or write data transfer 
operations, the control processor sets up the 
system adapter, device adapter, and DMA 

controller to provide the data path between 
system storage and the device. The DMA 

hardware controls the data transfer but 
periodically interrupts the control processor to 
continue or complete the data transfer. Maximum 
throughput is obtained during a write, for 
example, by allowing the device adapter to empty 
DMA storage while the system adapter fills it. 

Microcode Structure 
The microcode consists of two priority interrupt­
service routines and three tasks (referred to as ISR 

in Figure 2). Work items are placed on a task's 
queue by other tasks or by one of the interrupt­
service routines. The control program activates a 
task if a work item is on the queue and the priority 
of that task is higher than any other tasks with 
work items queued. 

The system and IPI-3 bus managers are interrupt­
service routines that support the bus adapter 

hardware. The interrupts signal the microcode 
that the System Processor has an I/O request, that 
a device is ready to service an I/O request, or that 
a DMA transfer has completed. 

The primary task is the device manager, which 
translates system storage I/O requests into IPI-3 

bus protocol and manages concurrent device 
activity on the IPI-3 bus. The services connection 
manager and the reliability and serviceability (RAS) 

manager are the two other task functions that 
handle logical connections used for 
communications, diagnostics, error logging, and 
configuration functions of the controller and the 
devices. 

Performance Implementation 
Solving the performance problems while still 
providing concurrent device support (automatic 
multiplexing between active disk, tape, and 
diskette devices) requires a unique controller 
microcode solution: two interrupt-service routines 
and the device-manager task minimize 
synchronous time, as shown in Figure 3. The 
unique design allows the interrupt-service 
routines to share device queues and data 
structures with each other and with the device 
manager task. In addition, the next device 
command is initiated from the interrupt-service 
routine before completing the active operation 
(shown as lOP Microcode Sequence in Figure 3). 

The overall response time is the most important 
subsystem performance criteria as measured on 



System Processor 
and Storage 

/ 
System liD Bus 

, 
Magnetic I I Storage 
Device 
Controller System Control 

Adapter Storage 

• D • 
• A • D CP 

• T • M BUS 

• A • A 

DMA Control 
Storage Processor 

• P • 
• A • B 

• T • U 

H S • • 

I 

Device DMA 
Adapter Controller 

I I 

/ 
IPI-3 Bus 

, 
I 

Disk Tape Diskette 
Unit Unit Unit 

I • • • • • • 

Disk Media ~ Tape Media ~ Diskette Media 

Figure 1 Magnetic Storage Device Controller Functional Block Diagram 

/ , 

/ , 

• • • 

~ 
RSLL333-3 

System liD Bus 
/ , , 

Magnetic 
Storage 
Device 
Controller 

I I 
AlIIIIIIIII 

System Bus Manager (ISR) 

~ 
... 

L.-J C 
1 0 

n 
Services 

Device t 
Connection 

Manager r 
Manager 

(TASK) 0 
(TASK) I 

-------------------- -- ---- -

~~ § ... § P 
r 

c- o 
RAS Shared g 
Manager Device r 
(TASK) I Queues a 

I 
m 

i 

IPI-3 Bus Manager (ISR) 

I I 
'---

/ , / 

IPI-3 Bus 
RSLL334-2 

Figure 2 Magnetic Storage Device Controller 
Microcode Overview 

125 





conditions. Synchronous time is the least 
desirable situation because, under queued 
conditions, the device is waiting for the controller, 
unproductively increasing the device utilization. 

The microcode design minimizes synchronous 
time by moving function from the synchronous 
period into the asynchronous period. When the 
current operation finishes data transfer, it is 
temporarily suspended while a new operation is 
dequeued and the device is restarted. Once the 
device has been restarted with the new operation, 
the microcode resumes processing of the 
temporarily suspended operation. The function of 
dequeuing the new operation is processed in 
interrupt context, rather than task context, to 
minimize this time. When a new operation is 
received and must be enqueued because the 
current operation to the same device is not 
complete, the microcode does as much pre­
processing of this new operation as possible. In 
addition, an algorithm sequences the enqueued 
operations to minimize the disk-seek distance, 
and thus the seek time, as the operations are 
dequeued. 

Allowing interrupt-service routines and the device­
manager task to share common functions and 
control blocks requires a design that matches 
device characteristics to the controller microcode 
function. To maintain the flow of data from a 
device and minimize synchronous time, the 
microcode gives priority to device-adapter 
interrupts. This is accomplished by forcing a 
lower-level, internal-microcode interrupt for the 
system adapter, thus preventing multiple back-to­
back system interrupts from locking out device 
interrupts for long periods of time. The system­
adapter interrupt-service routine also allows 
device-adapter interrupts to be processed before 
it has finished; this is especially important for tape 
streaming. In addition, suspending the op-end 
processing (step 1 in Figure 3) while initiating a 

new operation (step 2), and then resuming the op­
end processing (step 3) requires innovative 
control techniques in the interrupt-service 
routines. 

Conclusions 
The AS/400 Magnetic Storage Device Controller 
solves the performance problem of maximizing 
the data transfer rate between the device and the 
System Processor while maintaining concurrent 
operations between multiple disk, tape, and 
diskette devices. This is achieved by a unique 
controller microcode design of interrupt-service 
routines and task microcode that minimizes 
synchronous time, which is the key subsystem­
performance time period. 

™ ASj400 is a trademark of International Business Machines 
Corporation. 

127 



Work Station Controllers 

Discusses the functions provided by AS/400 work station controllers and describes the microcode and hardware structure developed to 
implement those functions. 

Jeffrey E. Remfert, Trent L. Clausen, Gregory A. Dancker, and Harvey G. Kiel 

Introduction 
AS/400™ work station controllers provide a cost­
effective means for attaching display stations and 
printers to the system by supporting a wide 
variety of synchronous and asynchronous display 
station and printer devices (see Figure 1). Display 
station screens range from 24 lines by 80 columns 
to 27 lines by 132 columns. Printer speeds range 
from 40 characters per second to 2000 lines per 
minute. In addition, the IBM Personal Computers 
and Personal System/2™ family can be attached 
for use as programmable work stations. 

The primary function of the AS/400 work station 
controllers is to perform data stream and 
keystroke processing for attached display 
stations. Additionally, the controllers provide 
protocol-conversion support for ASCII printers and 
data stream pass-through mechanisms for 
synchronous printers and attached personal 
computers. The distribution of data stream and 
keystroke processing frees the host system for 
application processing and allows attachment of 
cost-effective display stations. The display station 
and printer data stream support provided by the 
AS/400 work station controllers facilitates 
System/36 and System/38 application program 
portability. 

The work station controllers can be connected 
either locally to the AS/400 input/output (I/o) bus 
or remotely to the AS/400 data communications 
subsystem. AS/400 work station controller 
enhancements include: support for directly 
attaching asynchronous (ASCII) display stations 

128 

and printers; improved functional transparency 
between local and remote work stations; 
integrated national language support; and 
improved word processing support. 

Key work station controller design objectives were 
to: present a common operating system interface; 
provide functional transparency between local and 
remote controllers; integrate national language 
support; and provide highly reliable, easy-to­
service hardware and microcode. A layered 
microcode structure and highly integrated 
hardware logic were used to develop the family of 
controllers. The layered-microcode design 
approach minimized development effort and 
provided functional consistency between the 
controllers. Extensive performance modeling was 
used to help make design decisions. 

Layered Microcode Structure and Function 
The microcode functional layers, shown in Figure 
2, are organized into three major groups: 

1. Host-system attachment components 

2. Common-function components 

3. Device-attachment components 

The microcode components can be bound 
together to form the following controllers: a local 
synchronous controller is formed by binding 
components (in the figure, connected using----), a 
local asynchronous controller is formed by binding 
components (connected using ........ ), and a remote 

synchronous controller is formed by binding 
components (connected using .. ). 

Host-System Attachment Components 
The first group of layered microcode is the host­
system attachment interface, consisting of two 
types: a system I/O bus interface for a local 
controller and a data communications interface for 
a remote controller. The I/O bus interface 
component uses the AS/400 I/O bus protocols to 
communicate with the host processor. Bus unit 
messages are used to transfer control information 
and direct memory access (DMA) is used for 
transferring data. The data communications 
interface for a remote controller uses 
synchronous data link control (SDLC), X.21, or X.25 

protocols to communicate with the host system 
across a telecommunications line. 

Common-Function Components 
The next group of layered microcode is the 
common-function layer used by both local and 
remote controllers. The Systems Network 
Architecture (SNA) component, supporting LU-LU 

session types 4 and 7, is used to establish, 
maintain, and end sessions between the user 
application programs and the attached display 
stations and printers. The SNA component 
provides a mechanism for transporting user data 
streams between the host system and the 
controller, and facilitates functional transparency 
between local and remote controllers. Data 
streams supported are those defined for the 5250 
Information Display system. To support display 
stations, the controller data stream and keystroke 



System Unit 

Local 
Attach 

Work 
Station 

Host System 
Processor 

System I/O Bus 

Local 
Attach 

Work 
Station 

IBM ASCII Display Stations 
IBM ASCII Printers 

Twinaxial Display Stations 
Twinaxial Printers 

OEM ASCII Display Stations PC Based 

Local Asynchronous/ASCII Work Station Controller 

Local SynchronouslTwinaxial Work Station Controller 

Remote SynchronouslTwinaxial Work Station Controller 

Figure 1 Work Station Controller Subsystem Overview 

Data 
Communications 
Controller 

Work 
Station 

Twinaxia l Display Stations 
Twinaxial Printers 
PC Based 

RSLL330-3 

components work together to process the user 
data stream and control the display station. The 
data stream contains commands and orders that 
tell the controller how to format the display data 

and define input-field edit characteristics. ASj400 
work station controllers are editing controllers, 
meaning the controller validates the data entered 
by the work station operator based on each input 

field's characteristics. The data stream 
component handles PUT and GET operations, 
which write information to the display station and 
read information from the display station. The 
keystroke component processes display station 
keystrokes. When a key is pressed, the keystroke 
component receives the keyboard scan code from 
the display station, translates it into a character, 
then writes the character to the display station 
screen. The translation process involves a unique 
translation table for each type of keyboard 
supported. Keyboard types are based on 
keyboard style (layout) and national language. 

National language support is an integral part of 
ASj400 work station controllers. The national 
language support provided by the synchronous 
controllers is divided into three groups. (The 
asynchronous controllers support a subset of 
these groups.) 

• Two-shift keyboard and left-to-right display 
support 

• Four-shift keyboard and left-to-right display 
support 

• Four-shift keyboard and bidirectional display 
support 

Countries using the two-shift keyboard and left-to­
right support have languages that require two 
layers of characters on their keyboards. Character 
and field directions are from left to right. Examples 
of languages in this group are English, French, 
German, Italian, and Japanese Katakana. 

Languages requiring four-shift keyboard, left-to­
right support need four layers of characters on 
their keyboards, where the selection of a 
character involves shifting into the appropriate 
layer for the desired character. Character and field 
directions are from left to right. Examples of 
languages supported in this group are Cyrillic, 
Greek, and Thai. 

129 



Functional 
Layers 

Host-System 
Attachment 
Components 

Common-Function 
Components 

Device-Attachment 
Components 

Microcode 
Components 

System 1/0 Bus 
Interface 

' . , '. , '. , 

T 
a 
s 
k 

M 
g 
r 

Asynchronous 
I/O Manager 

I 

rL 

, , 

SNA 

Data Stream 
Manager 

Text Assist 
NLS 

Keystroke 
Manager 

Printer 

& 

PC 
Mgr 

R 
A 
S 

M 
g 
r 

, , , 
, , , . 

, , 

Synchronous 
I/O Manager 

I 

rl 
Local Asynchronous/ASCII Work Station Controller 

Local Synchronous /Twinaxial Work Station Controller 

Remote Synchronous/Twinaxial Work Station Controller 

Figure 2 Functional Overview of Layered Microcode Components 

RSLL331·2 

For languages requiring four-shift keyboard and 
bidirectional support, character and field 
directions can be right to left or left to right in any 
combination. Both character and field directions 
are specified by the application program. In 
addition to the right-to-Ieft data entry capability, 
support for the Arabic language includes an 

automatic character-shape determination 
function. In Arabic script, the shape of each 
character depends upon its position within the 
word. Automatic character-shape determination 
facilitates the display of Arabic script by shaping 
each character as it is typed. Arabic and Hebrew 
are the languages supported in this group. 

130 

I 

In addition to the basic display functions, the 
AS/400 work station controllers provide word 
processing functions, including: word wrap and 
continuous insert (gives the user the appearance 
of an infinitely-long sheet of typing paper); scale 
line (shows tab stops and margin positions); copy, 
move, and delete capability (on a block, line, or 
word basis); center-text capability; word 
underscore; and split-screen capability. The 
distribution of function between the software in 
the host processor and the work station controller 
is tightly coupled to offer optimum performance. 
Host-processor interruptions due to function keys 
are kept to a minimum. 

In addition to display stations, the work station 
controllers support printer devices and attached 
personal computers. For synchronous printers, 
the data stream commands and orders are 
passed through the controller to the printer where 
they are interpreted; for asynchronous printers, 
the controller emulates the data stream 
commands and orders received from the host 
processor using ASCII printer commands. The 
commands and orders perform various printer 
control functions, such as formatting the data and 
starting a new line or page. Attached personal 
computers support functions such as 5250 
display station emulation, file transfer, virtual disk, 
and virtual print. A streamlined data transfer 
mechanism between the controller and the 
attached personal computer was developed to 
provide optimum performance. 

Completing the set of common functions are the 
task manager and the reliability, availability, and 
serviceability (RAS) support. The task manager, or 
control program, manages all of the activity in the 
controller. Task control blocks as well as task 
priorities, work queues, and a storage allocation 
mechanism allow the functional components to 
communicate with one another and control the 
transfer of data. Additionally, significant effort was 
spent in the early stages of development to 



ensure reliability, availability, and serviceability of 
the controllers. Error retry and logging are an 
integral part of the design, as are built-in tools for 
servicing the microcode. Service tools such as 
read/write controller storage, set dynamic trace 
points, and task control-block trace are provided. 
The reliability, availability, and serviceability 
component also collects performance 
measurement data and returns it to the host 
processor. 

Device-Attachment Components 
The third major group of layered microcode is the 
device attachment interface, which consists of two 
types: a synchronous I/O manager component for 
the synchronous controllers, and an 
asynchronous I/O manager component for the 
asynchronous controller. The data stream and 
keystroke components send requests to the 
synchronous or asynchronous I/O managers. The 
synchronous I/O manager interprets the requests 
and generates control blocks (in controller 
storage) for the synchronous hardware adapter, 
to transfer commands and data to or from the 
attached device (see Figure 3). 

Before the asynchronous I/O manager sets up 
control blocks for the asynchronous I/O adapter 
hardware, a protocol conversion from 5250 
display and printer data streams to ASCI I data 
streams is performed. The requests from the data 
stream and keystroke components are used to 
generate and maintain a display image, in 
controller storage, for the target device. That 
display image is then interpreted by the protocol 
conversion program, which generates the 
appropriate ASCII data stream for the target 
device. To optimize performance, microcode 
algorithms were developed to minimize the 
amount of data sent to an ASCII display station (for 
example, only the updated or changed portions of 
a display are sent to the display station). The 
protocol conversion is table-driven; attribute and 
keyboard mapping tables are maintained for each 

Functional 
Layers 

I 
I 

I 

Host-System 
Attachment 
Components 

Common-Function 
Components 

Device-Attachment 
Components 

I 

Hardware 
Layers y y 

1 l 

System I/O Bus 
Data 
Communications 

Adapter Adapter 
, 

' . , , 

, 

DRAM 
Microprocessor 

EPROM! DRAM Controller NVRAM 

Controller 
Bus Adapter 

, , , 
, , , 

: 
, , 

I 
: , 

I I 
Asynchronous Synchronous 

I 

I/O Adapter(s) 1/0 Adapter 

I I 
~ rL 

Local Asynchronous/ASCII Work Station Controller 

Local Synchronous/Twinaxial Work Station Controller 

Remote Synchronous/Twinaxial Work Station Controller 
RSLL332-2 

Figure 3 Functional Overview of Layered Hardware Components 

type of device. Also, in the conversion process, an 
EBCDIC-tO-ASCIl data translation is performed. 
When the protocol conversion is complete and the 
control blocks and data are set up in storage, the 
asynchronous I/O adapter hardware is activated to 
transfer the commands and data to or from the 
device. 

Integrated Hardware Structure and Function 
AS/400 work station controllers are 
microprocessor-based. The overall hardware 
structure is similar to the microcode structure, as 
shown in Figure 3. As with the microcode 
components, the hardware components (host­
system attachment, common-function, and 

131 



device- attachment interfaces) can be combined 
to form any of the controllers. 

Host-System Attachment Components 
The first group of hardware layers is the host­
system attachment interface. This can be one of 
two types: an AS/400 I/O bus interface for local 
work station controllers or a data communications 
interface for a remote controller. The AS/400 I/O 

bus adapter supports DMA operations and allows 
bus unit messages to be transferred to and from 
the host processor. 

The data communications interface consists of a 
module that provides DMA to and from controller 
storage, plus an adapter that provides standard 
telecommunications electrical and physical 
interfaces. This hardware is directed by control 
blocks set up in work station controller storage. 
Under microprocessor control, registers are 
initialized in the hardware, a particular command 
is issued, and the communications-interface 
hardware processes the request, freeing the 
microprocessor for other tasks. 

Common-Function Components 
The second group of hardware components 
provides functions that are common to the remote 
and local controllers. The microprocessor bus 
interface, bus arbitration, and interrupt-priority 
logic are provided in this layer of hardware. The 
local controllers use up to one megabyte of 
dynamic random access memory (RAM) for control 
and data storage. The dynamic RAM controller 
provides read and write control, refresh control, 
and single- and double-bit error detection. The 
erasable programmable read-only memory 
(EPROM) is used for initial microcode load (IML) and 
diagnostics. The non-volatile RAM is used for vital 
product data (part number, serial number, and 
plant of manufacture). The remote controller uses 
a combination of read-only storage (ROS) and 
dynamic RAM for instruction storage and dynamic 
RAM for data storage. Logic is also provided for 

132 

the device-attachment components. This logic 
provides DMA and interrupt capability for the 
device-attachment components and allows the 
microprocessor to write and read registers in the 
device-attachment components. 

Device-Attachment Components 
The third hardware group is the device­
attachment interface. The synchronous I/O 

adapter is capable of driving up to eight ports, 
with a capacity of seven work stations per port. It 
is a command-driven controller that operates on 
control blocks residing in the dynamic RAM. It has 
internal DMA capability and can address one 
megabyte of controller storage. The synchronous 
I/O adapter has two control-block chains (the 
automatic poll and I/O chains) as well as two 
timers. The chains are formed by linking individual 
control blocks together. This allows the 
synchronous I/O adapter to sequence through a 
string of control blocks when a single Start 
Automatic Poll or Start I/O command is issued to 
it. These functions are available to the microcode 
and are used by loading the internal control 
registers. The synchronous I/O adapter handles all 
work station polling on the automatic poll chain 
and requires little processor intervention after the 
chain is set up in controller storage. Only when a 
keyboard scan code returns or an error occurs 
will an interrupt be posted. When this happens, 
the synchronous adapter stops processing the 
control block on following cycles of the automatic 
poll chain. The I/O chain and associated timer are 
used for transmitting large blocks of data to and 
from the work stations. 

The synchronous I/O adapter was designed to be 
used with a balanced-line driver/receiver module. 
A single module provides the eight ports. 

The asynchronous I/O adapter consists of up to 
three asynchronous I/O modules, with each 
module capable of supporting six asynchronous 
devices. This allows the controller to support up to 

18 asynchronous devices. Devices can be 
attached locally, or, using a modem, remotely. A 
universal asynchronous receiver/transmitter 
(UART) is provided for each device port. The UARTs 

operate independently, so operating 
characteristics, such as data length, line speed, 
and the number of stop bits, can be individually 
configured. Each UART contains a 2-byte receive 
buffer and a 2-byte transmit buffer. Data transfer 
between a UART and controller storage can be one 
of two modes of operation. In the first, a byte­
transfer mode, the UART generates an interrupt to 
the microprocessor whenever its receive buffer is 
full or its transmit buffer is empty. The microcode 
then reads the receive buffer or writes to the 
transmit buffer to send the data. The second, 
block data transfer, uses DMA. Each UART is 
assigned an 8-byte control block in controller 
storage. The control block contains the current 
and ending receive and transmit addresses. The 
UART requests a DMA transfer whenever its receive 
buffer is full or its transmit buffer is empty. The 
DMA controller accesses the associated UART 

control block and transfers the data. When the 
ending address is reached, the block data transfer 
is complete and the DMA controller interrupts the 
microprocessor to indicate completion status. The 
block data-transfer mode of operation requires 
minimal microprocessor involvement, thus freeing 
the microprocessor for other tasks. 

Performance Characteristics 
Work station subsystem performance is 
dependent on the characteristics of the work 
station controller hardware and microcode, the 
attached devices, and the attachment media. As 
described, the synchronous and asynchronous I/O 

hardware adapters are highly functional, reducing 
the load on the microprocessor. The synchronous 
I/O adapter does the device polling for keystrokes 
and device busy, and both synchronous and 
asynchronous I/O adapters perform block data 
and command transfers to or from controller 
storage and interrupt the microprocessor when 



the transfer has completed. The work station 
controller microcode is multithreaded, which 
means that the work station controller and 
attached-device processing are overlapped. For 
example, when the controller has sent commands 
and data to a device, it then starts to process the 
data stream for the next device. This 
characteristic allows the controller to maintain a 
high level of performance, even as additional 
devices are added. 

During the development of the work station 
controllers, extensive performance modeling was 
done and measurements were taken. Typical work 
station controller work loads were characterized. 
Performance capacity limits for each work load 
were studied and service times were optimized. 
Display station work loads were characterized as 
data processing (interactive commercial 
application) and word processing (office 
application). A data processing work load 
emphasizes PUT and GET processing, while a 
word processing work load is predominantly 
keystroke processing. This necessitated 
interleaving PUT and keystroke I/O processing to 
give balanced performance. Printer work loads 
were used to verify that printers were driven at 
their rated speeds. Attached personal computer 
work loads were used to simulate file transfer 
activity. 

Additionally, local work station controllers collect 
performance measurement data, such as: 
microprocessor utilization, device-attachment I/O 

adapter utilization, task manager queue length 
counts, and display station response time (the 
time from when the operator presses the Enter 
key until the work station controller unlocks the 
keyboard). Each display station's response time is 
kept to indicate the actual response time 
experienced by the user. A host-processor 
performance monitor retrieves the performance 
measurement data from the work station 
controller, formats the data, and then presents a 

summary of the data to the system operator. The 
information presented can indicate where system 
work load balancing or configuration adjustments 
are needed. 

Conclusions 
AS/400 work station controllers allow the 
attachment of a broad range of work station 
devices. The controllers provide a high level of 
function, including field editing, keystroke 
processing, word processing features, and 
national language support, that relieves the host­
processor load. 

The key work station controller design objectives 
were to present a common operating system 
interface, provide functional transparency 
between local and remote controllers, integrate 
national language support, and provide highly 
reliable, easy-to-service hardware and microcode. 
The use of a layered microcode structure and 
common, highly integrated hardware logic 
facilitated the development of a family of work 
station controllers that meet these objectives. 

™ AS/400 and Personal System/2 are trademarks of 
International Business Machines Corporation. 

133 



The Multiple-Function Input/Output Processor 

Describes the capabilities of the Multiple-Function Input/Output Processor, the design philosophy, and the hardware and microcode 
technologies used. 

Charles A. Lemaire, Renato J. Recio, and Stephen P. Hank 

Introduction 
The AS/400™ Multiple-Function Input/Output (I/O) 
Processor was developed to meet the needs of 
the AS/400 9404 System Unit. The Multiple­
Function I/O Processor, a combination of 
hardware and microcode, merges the functions 
for a service processor, magnetic-media storage 
device control, and communications control into a 
one-card I/O processor. These functions were 
previously implemented by three separate I/O 
processors. The design is a significant 
breakthrough in minimizing product costs of the 
9404 System Unit. The Multiple-Function I/O 
Processor gives small system models the full­
speed performance of the attached I/O devices, 
with a minimum of I/O processor overhead. The 
deSign is flexible, allowing implementations that 
provide dedicated magnetic media and 
communications I/O processors to be easily 
derived from the primary multiple-function design. 
This approach allowed the best of existing I/O 
processor designs to be combined into fewer 
cards, while allowing incremental performance 
improvements in specific functions through the 
dedicated I/O processor cards derived from the 
same design. 

Design Philosophy 
The Multiple-Function I/O Processor is a 
combination of hardware and microcode that 
performs lOW-level control of disk devices or 
communications lines, combining the service 
processor, media storage device control, and 
communications control. Commands sent by the 
9404 System Processor specify the various 

134 

operations to be performed by each I/O processor 
in the system. 

The service processor function performs the initial 
program load (IPL) for the system, provides an 
interface to the customer control panel, and 
diagnoses the system I/O bus when the System 
Processor cannot. The service processor also 
has a time-of-day clock supporting a timed power­
on function for the system. Special storage 
contains the system vital product data, which has 
numbers to identify part type, engineering change 
level, and serial number. 

The magnetic-media processor function services 
disk, tape, and diskette I/O requests from the 
System Processor, controls the magnetic media 
devices and data flow, and analyzes errors. Two 
interfaces facilitate attachment of magnetic media 
devices. A Small Computer System Interface 
(SCSI) bus provides the interface for disk and tape 
devices. This SCSI bus is asynchronous and 
supports a 1.5 megabyte-per-second data rate. 
An ANSI 3.8 interface allows the attachment of 
either a 5.25- or 8-inch diskette drive. 

The communications processor function handles 
data and commands to and from the 
communications lines. The microcode supports 
four communications protocols: asynchronous, 
binary synchronous (ssc), synchronous data link 
control (SDLC), X.21, and X.25. Three electrical 
interfaces are supported: RS232, X.21, and V.35; 
each of these is implemented on a separate small 
book communications card. 

In the process of combining the three functions 
into one card, the system cost is reduced by 
eliminating redundant hardware parts and using 
common code routines. The hardware of a single 
microprocessor, control storage and storage 
controller, and system I/O bus adapter is time­
shared by the various I/O processor functions. The 
control program, bus interface code, and other 
common code have just one version for both the 
Multiple-Function I/O Processor and the single­
function cards derived from it. On the multiple­
function card, these programs appear in main 
storage just once but service several I/O functions, 
thus reducing overall storage costs. 

The Multiple-Function I/O Processor was 
designed to be fast enough for the system to 
benefit from the full speed of the attached I/O 
devices. Dedicated, single-function I/O processors 
were then derived by depopulating the basic 
design. These single-function I/O processors have 
better performance than the Multiple-Function I/O 
Processor because they do not have to spend 
time switching between the various functions. The 
design team was able to maximize the 
performance of each I/O processor by optimizing 
one basic design. The 9404 System Units can be 
configured and fully functional with just one 
Multiple-Function I/O Processor, an 
internal microprogramming interface (IMPI) card, 
and a work station controller. The Multiple­
Function I/O Processor card provides small 
models with competitive I/O processor 
performance. Incremental performance 
improvement in particular areas can later be 





connectors on the edges (see Figure 2). 
Communications cards containing optional 
hardware in small books can be plugged into 
these edge connectors (see Figure 3). These 
small book communications cards customize the 
I/O processor for particular applications. (For more 
details on the packaging, see the article Power, 
Packaging, and Cooling for the 9404 System Unit.) 

A general-purpose microprocessor with a 32-bit 
internal architecture and a 16-bit external data bus 
is used as the programmable controller for the 
design. The Multiple-Function I/O Processor has 2 
megabytes of dynamic random access memory 
(RAM) for program storage and 64 kilobytes of 
erasable programmable read-only memory 
(EPROM) for control of the IPL, diagnostics, and 
bootstrap loaders. 

The microprocessor bus is extended to top-card 
edge connectors to allow communications cards 
to be attached. These communications cards are 
designed to meet the specific requirements for 
one of three communications electrical interfaces. 
Any two communications cards can be attached 
to the Multiple-Function I/O Processor card. (The 
dedicated communications I/O processor version 
of the design accommodates any three 
communications cards simultaneously, and 
supports much higher aggregate speeds.) 

Direct memory access (DMA) data transfers are 
supported in two modes, single-sided or double­
sided. Single-sided DMA transfers occur in or out 
of I/O processor program storage across the 
system I/O bus or between I/O processor program 
storage and an attached I/O device. Thus, relative 
to the I/O processor, which has an interface bus 
on two sides, single-sided DMAs transfer data 
across only one side. Each phase of the single­
sided transfers requires processor intervention to 
set up and start the operation. Double-sided DMA 

data transfers occur directly between the I/O 

device and the system I/O bus without being 

136 

RSLL405-2 

Figure 2 Multiple-Function I/O Processor Book 
Assembly 

routed into the I/O processor program storage. 
Thus, a double-sided DMA operation transfers 
data across both interface sides of the I/O 

processor. Single-sided transfers have the 
advantage of allowing I/O processor programs to 
operate on data being transferred. Double-sided 
DMA has the advantage of speed and reduced 
utilization of the I/O processor (see Figure 4). 

Previous I/O processors supported only two 
interleaved DMA paths. As one path was 
processing a transfer, the I/O processor program 
could be setting up the alternate path. The DMA 

activity on the alternate path would be started as 
soon as the DMA completes on the first path. 
Typically, I/O processor engines spend a lot of time 
supporting DMA activity because each path is 
limited to transferring only a single block of data 
before having to interrupt the processor for a path 
switch. 

Figure 3 Multiple-Function I/O Processor 
Communications Cards 

In the Multiple-Function I/O Processor deSign, two 
significant performance enhancements were 
added to the DMA data transfer control: multiple 
DMA paths and minimized processor intervention 
through multiple-block transfer. 

The first performance improvement, multiple DMA 

paths, therefore supports seven DMA paths for the 
SCSI bus, one path for the ANSI 3.B-type diskette 
interface, and one path shared among the 
communications cards. Thus, the basic design 
provides a separate DMA path for each device (the 
communications lines are lumped together into 
one device path by this feature). One additional 
path transfers command and status messages 
between the System Processor and the I/O 

processor. 

The second enhancement, minimized processor 
intervention, allows for multiple-block transfers 





Electronic Packaging 
The functions of each I/O processor are 
aggressively packaged on single cards, 145mm 
wide and 280mm high, with: two wiring planes for 
power on the printed-circuit card; random 
connections between signal wires on different 
planes on 2.54mm centers; and up to three signal 
wires between adjacent connections with 
standard pin-in-hole component mounting. 
Maximum utilization of available card space is 
accomplished by embedding most of the circuitry 
in custom very large scale integration (V LSI) CMOS 

chips, and using the new 256K by 4-bit dynamic 
RAMs available in a ZIP package (see Figure 5). 

Four CMOS-I gate arrays are used: one 10,000-cell 
gate array providing 174 signal pins, and three 
7,000-cell gate arrays each providing 137 signal 
pins. The CMOS-I gate arrays use IBM'S 1.5-micron, 
double-metal process involving nine standard and 
five personalized mask levels, packaged in a pin­
grid-array module measuring 36 mm by 36 mm. 

The CMOS-II gate array uses IBM'S 1-micron 
(effective), double-metal process involving 14 
personalized mask levels. Re-formed pins on the 
outer edges of the package allow the 40,000 cells 
and 183 signal pins to be packaged in a pin-grid­
array module measuring 36 mm by 36 mm. 
Embedded in the CMOS-II array are 6 kilobytes of 
RAM used for data buffering between the I/O bus 
and the 10 interleaving data paths internal to the 
card. 

o o 

RSLL385-1 

Figure 5 ZIP Package 

138 

Two megabytes of dynamic RAM, arranged as 
1,048,576 by 24 bits, are available for on-card 
program storage. Twenty-two of these bits 
provide 16-bit-wide data storage with six bits of 
error correction circuitry. If a failure is detected in 
any of these 22 bits during IPL tests, the spare two 
bits are swapped by the hardware, and the IPL is 
attempted again. The 24 storage modules use a 
minimal amount of card space (26 mm by 
126 mm), as a benefit of using the ZIP package. 

Design Process 
The design effort was ambitious. The hardware 
developers designed 22,000 new circuits, and 
mapped 13,000 circuits of existing designs into 
the CMOS technologies. They simulated and built 
prototypes of the design, verified the implemented 
functions, and delivered full-function, working 
hardware to the microcoders on an aggressive 
schedule. 

A single-pass design approach was taken, 
employing high-level modeling languages to 
develop new hardware functions. Functions 
already available but residing in older technologies 
were converted to CMOS technology using 
automated mapping tools. Extensive chip-level 
simulation was used to verify the new functions, 
as well as the mapped functions that had been 
merged with the new. 

The entire card design was simulated using 
parallel processor engines to verify the circuitry in 
a multiple-chip environment. A high-level design 
language was used to describe the signals 
between the custom chips and the other card 
components. Assembly-language instructions for 
the microprocessor, representing the diagnostic 
programs that would later be embedded in EPROM, 

were run against the multiple-chip model to verify 
the control and data-flow paths between the 
custom chips, and the microprocessor and its 
program storage. These diagnostics were again 
used on the hardware prototypes, to verify the 

real hardware function. On the 9404, these 
diagnostics are run every time the card is 
powered on, to verify continued correct operation. 

Reliability 
Besides the obvious advantage of lowered cost, 
the consolidation of the three I/O processor 
functions into one card controlled by a single 
processor improves system reliability. This is a 
result of a reduction in the number of I/O 

processor engines, their associated program 
storage and EPROMs, and the bus adapters they 
require. 

Redundancy was used to improve overall 
reliability of the converged cards. Redundancy is 
also used in the SCSI data buffer. At IPL, any of the 
3K-byte buffer areas reserved for a specific SCSI 

device can be dynamically re-allocated to any of 
three back-up areas. The hardware therefore 
compensates for at least three failures in the SCSI 

static RAM, or possibly more, depending on the 
type of failure. 

Software Technology 
The I/O processor microcode is a set of programs 
that run in the I/O processor hardware to control 
the interpretation of commands, the flow of data, 
and the detection and analysis of possible errors 
(see Figure 6). This software consists of a set of 
common service routines and a set of I/O control 
programs, considered as user tasks.The Multiple­
Function I/O Processor operating system is an 
object-oriented subsystem. An active object is 
represented by a running task or process that 
handles a specific set of work. 

The common service routines help to insulate 
each user task from the specific hardware 
implementation. These routines are machine­
operating services, the Multiple-Function I/O 

Processor control program, the interprocess 
communications facility, the bus transport 
mechanism, and the system bus manager. 



Machine-object services provide four functions: 
object activation/deactivation, incremental 
download, object configuration, and subsidiary 
reliability, availability, and serviceability. The first, 
object activation/deactivation, allows the I/O 

processor to have an object loaded in storage 
only while it is needed. For example, disk objects 
are always active and thus always in storage; 
however, certain communications objects are 
needed only when the System Processor requires 
those communications services to be active.The 
second function, incremental download, provides 
for objects that are not used continuously and 
therefore do not always need to be in storage (for 
example, communications protocols). The 
incremental download function allows these 
objects, and subfunctions within objects, to be 
loaded into the I/O processor from the System 
Processor as they are needed. 

Third, object configuration code obtains the 
resources required by the object (for example, 
control blocks and data buffers). And finally, 
additional code provides error logging, 
performance measurement, and diagnostic 
testing functions used to isolate problems in the 
Multiple-Function I/O Processor hardware and 
software. In Figure 6, this is labeled subsidiary 
RAS, meaning that it provides reliability, availability, 
and serviceability for the I/O processor subsidiary 
of the System Processor. 

The next common service code, the Multiple­
Function I/O Processor control program, provides 
a set of operating system services needed to 
support a multitasking environment. These 
services include: task-to-task synchronization 
(using semaphores), message queueing and 
handling, storage and buffer allocation, initializing 
and assigning priority to tasks, exception 
handling, and functions that support interrupts. 

The interprocess communications facility provides 
a means for two processes to communicate with 

User 
Application 

OS/400 

10PiiOpiiopr 

, , , , , , , , , , 

, , , , , , 

, , , 

, , , , , , , , , 

--- .. _---

User Tasks 

IPeF 

BTM 
, ............................ ..... _ ............................................. . 

System I/O BUS 

Figure 6 Microcode Structure 

each other without either process being 
concerned with the other's physical location or 
with the hardware and software used to carry out 
the communications. The interprocess 
communications facility is used by Multiple-

-. 

RSLL386·5 

Function I/O Processor user tasks to open a 
connection between two tasks (where both are 
internal to the I/O processor, or where one is 
internal and one external), receive requests from 
the System Processor, set up Multiple-Function 

139 



I/O Processor hardware to perform the requests, 
and send responses back to the System 
Processor. 

The bus transport mechanism is used by the 
interprocess communications facility to move 
control blocks and data across the system I/O bus 
(that is, between the System Processor and the 
I/O processors). It also contains recovery 
procedures, which are used if errors are detected 
during the transfer. 

The final common service code, the system bus 
manager, is the microcode interface residing in 
EPROM that is used to control the actual hardware 
and service the system I/O bus. 

I/O Processor User Task Functions 
The user tasks control the three I/O processor 
functions: magnetic-media storage device 
interface, communications protocols, and 
service processor function. 

Three types of magnetic-media storage devices 
are supported: disk, diskette, and tape units. 
Although only one copy of task code is in storage, 
each device attached to the Multiple-Function I/O 

Processor is provided with a separate device 
task-control block. This allows other devices to 
remain operational when any single device 
detects and reports a hard error. Each magnetic­
media storage device task contains the functions 
needed to: initialize the task; receive requests for 
the task (through the common service routines); 
decode the request and translate it into a 
sequence of device-level commands; perform 
error recovery procedures for the SCSI bus and 
storage devices; maintain measurements for the 
devices; set up the system (using common service 
routines) and the device hardware; decode device 
responses; and send formatted responses to the 
System Processor. 

The communications code layers are composed 
of data-link control, media access control, and 

140 

port manager layers. These layers, in combination 
with the operating system code, provide 
communications microcode for the Multiple­
Function I/O Processor card or small book 
communications cards. 

The data-link control layer provides specific 
protocol support for asynchronous and three 
synchronous (ssc, SOLC, and X.25) protocols. 
These four data-link control types form separate 
tasks, where the machine object services facility 
loads and activates the protocol dynamically, 
based on system needs. The code is re-entrant, 
so multiple lines can share one set of code in the 
processor. The machine object services code 
monitors whether the code is being used, and 
deactivates the code only when all users have 
finished. The four protocols are fully implemented 
in these data-link control layers. The media 
access control layer provides the microcode 
interface to the small book communications 
hardware, which provides block check character 
generation and checking, interrupt generation, a 
4-byte buffer, and OMA control. The port manager 
provides the microcode interface to the 
communications line electrical interfaces (RS232, 

X.21, and V.35). 

Finally, the service processor user task provides 
IPL support to start the System Processor, and 
provides IPL status, system status dump, and 
problem analysis for the system hardware and 
microcode. It further provides the interface for the 
customer control panel, the time-of-day clock, and 
the vital product data. 

Design Process 
Hardware simulation is a vital part of the design 
process which is needed to reduce the 
development cost, enhance product quality by 
automating the analysis and verification of the 
design before prototypes have been built, and 
speed delivery of a working system. This allows 
the deSigners to remove many of the errors 
normally found after the high-density VLSI chips 

have been fabricated. This early removal of 
defects shortens the time needed for all later 
phases of the debugging process. The 
specification for each VLSI chip is sent to the 
manufacturing facility with the idea that they are 
one-pass-design parts. While some of the chips 
required minor corrections and thus a second 
pass, both the overall effort and design cycle time 
were reduced substantially. 

Also crucial to our process is the early 
development of a microcode simulator. This 
simulator provides a high-level view of the facilities 
on the card as well as some system functions, 
without trying to describe each gate and latch. 
This microcode simulator was first used to debug 
the test cases that exercised the hardware 
simulator. This assisted in the removal of test 
case errors, which had not been found in manual 
inspections, and which would have been difficult 
and tedious to find when searching through the 
volumes of excruciating detail provided by the full 
hardware simulator. The key use of the microcode 
simulator occurred later, when it was used for 
early debugging of the code that controlled the I/O 

processor. The I/O processor's control program, 
and each of the tasks that control an individual 
device or communications protocol, could be 
exercised before the hardware returned from the 
manufacturing facility. As with hardware 
simulation, the early removal of faults speeds the 
later phases of the debugging process. 

A major trade-off in developing a microcode 
simulator is the time and resource cost involved to 
develop a detailed and accurate simulator 
compared to the benefit of having that improved 
detail. The simulator did not implement certain 
complicated features because any errors they 
helped find could be more effectively discovered 
and removed in the laboratory. Considerable time 
was spent designing features to make the 
simulator easy to use, such as the capability to do 
full-screen data entry, and displays that grouped 
registers related to similar functions. Much 







exceed all Federal Communications Commission 
(FCC) regulations. 

The system and logic cooling fan is mounted as 
an integral part of the base power supply. This 
location yields the best system cooling 
performance and lowest fan-blade acoustics. 
Additionally, modular units are used for ease in 
manufacturing and field service. The tape and disk 
modular units each contain an additional fan to 
ensure high reliability. 

To align and dock the modular units precisely, the 
mating connectors were enclosed in a unique, 
non-conductive floating polymer shell. A three­
dimensional computer simulation system was 
used to ensure reliable docking would occur each 
time with this design. The resultant docking ability 
is provided with inexpensive, though highly 
reliable, industry-standard connectors. 

Protection from electromagnetic interference (EMI) 

and electrostatic discharge (ESD) was a prime 
requirement in the design of the 9404. The metal 
chassis is constructed to form an enclosure that 
protects the system components from outside 
radiation when they are installed. Flanges on the 
component assemblies give metal-to-metal 
contact and, for the storage devices, springs are 
used in each base to achieve grounding when 
insertion is complete. EMC treatment of the logic 
cage, large books, and small books is 
accomplished using die-cast metal enclosures 
and grounding tabs at the junctions of each book 
with the logic cage, and also at the junction of the 
small book with its large book (see Figure 2). 

Early manufacturing involvement was a key item in 
the design of the 9404. A system that is easy to 
manufacture was built by carefully designing 
relatively large subassemblies using common 
parts, which ensures easy installation of 
subassemblies, and by maximizing access to all 
components, fasteners, and cabling. 

Large Book 

Small Book 

Logic Package 

Base Power 

RSLL392-2 

Figure 2 Rear View of System Showing Removal of Books and the Logic and Power Packaging 

Designed to be expandable, new devices are 
added to the system as features. The building 
blocks provide the flexibility to accommodate new 
devices developed in the future, including logic 
families and new storage devices. 

Device and Logic Packaging 
The disk and diskette modules each contain a 
power regulator to convert the distributed power 
(24 volts DC) to the voltages required by the 
device. In addition, power and signal cables are 

143 



provided that connect to the central cabling 
assembly. This provides flexibility when choosing 
devices, because they do not have to have the 
same power requirements and connection 
arrangement. 

The logic-package cage consists of a die-cast 
aluminum top and bottom, with sheet-aluminum 
side plates to support the books. This gives 
excellent light-weight mechanical support, as well 
as EMC protection. The books are designed with 
alloy covers for mechanical strength, component 
protection, tolerance control, and EMC protection. 
Connections between the logic cards and the 
backplane are made through industry-standard 
DIN connectors. These connectors contain a 
special feature for properly aligning the pins with 
the sockets in the books. 

Distributed Power System 
The power system design for the 9404 was 
changed from the usual multilevel, centralized 
power system to a distributed power system. The 
distributed power system was selected over a 
multilevel centralized power system to provide 
lower cost and to meet an aggressive design 
schedule. With the distributed power system, the 
utility power is converted to + 24 volts DC and 
routed to regulators located throughout the 
system. Figure 3 shows the various components 
of the power system and how they connect. Some 
of the advantages of the distributed versus central 
power system are: the power distribution system 
uses smaller gauge wire, making packaging 
easier; the loads are next to the regulators, 
reducing power distribution problems and 
regulator stability problems, and providing tighter 
voltage regulation; the regulators are added with 
the function they support; and the heat dissipation 
of the regulators is spread throughout the system, 
rather than just at the power supply. 

144 

Card 
Enclosure 

±12V,±5V 
On Back 
Planar 

Batteries 
( + 24V) 

Diskette 

Tape 

Disk 

Disk 

Disk 

Charger 
Switchl 
Control 

RSLL393-3 

Figure 3 Components of the Power System and 
Their Interconnection 

Battery Power Unit 
Distributed power also allowed a Battery Power 
Unit to be incorporated easily into the power 
system. This feature provides a function similar to 
that of an uninterruptible power source. When 
utility power is interrupted or brownout conditions 
exist, the Battery Power Unit automatically 
supplies the power for the system until utility 
power is restored or until its batteries are 
exhausted. The Battery Power Unit has a built-in, 
constant-current battery charger with taper 
charging to maintain full battery power during 
normal operating conditions. The charger features 
over-charge protection and alerts the system 
when the battery charge falls below half. The 
Battery Power Unit provides power for at least five 
minutes on a fully featured machine, which is 
sufficient to overcome most electrical 
interruptions. 

During the time the system is running using the 
Battery Power Unit, the entire system continues to 
function. Many times attached display stations are 
turned off during the power outage. When their 
power is restored, users can continue without 
having to perform an initial program load (IPL) or 
allow the device to recover before using the 
system. 

Conclusions 
The design of the 9404 System Unit offers a 
modular package that can be upgraded with 
minimal changes to the mechanical package. This 
modular package, combined with the packaging, 
distributed power, and battery power features, 
provides for ease of manufacturing, assembly, 
and service. The design is also flexible, allowing 
for the addition of future improvements and 
applications. 

TMAS/400 is a trademark of International Business Machines 
Corporation. 





Improved Methodology for Hardware Quality and Reliability 

Describes the unique quality and reliability approach taken to ensure the AS/400 system met its requirements. 

Keith L. Thompson and Duane A. Spencer 

Introduction 
The standard method of determining system 
quality and reliability has been to compare the 
complete system target with the accumulated 
component values as they become available. Such 
an approach does not focus on individual 
component quality and reliability early enough in 
the development cycle to ensure that optimal 
changes can be made. 

An improved method was used to ensure the 
hardware quality and reliability of the AS{400™ 
system. It involved establishing quality and 
reliability targets for each system component in 
parallel with the functional design. 

Approach 
Quality and reliability targets were established for 
all major hardware components of the system 
(logic cards, packaging, input/output (I/o) units). 
These targets were based on both capability 
(technology, function, previous designs) and need 
(market expectations, anticipated future growth, 
requirement that new systems exceed replaced 
systems). Using the component quality and 
reliability targets, calculations were made to 
ensure that system quality and reliability 
requirements would be met. 

Component targets did not change based on the 
system impact of other components. That is, no 
component was allowed to be of lesser quality 
because another component was improved. This 
prevented using the system requirements as a 
bargaining chip and kept each component on the 
path of improvement. This method also prevented 

146 

the system from just marginally meeting its 
requirements. 

Each hardware component was compared to its 
individual targets using projections of the quality 
and reliability parameter values of its design and 
manufacture. These projections were part of 
product and service cost planning for each 
hardware component. The component developers 
were involved in making the projections, as were 
the system users of the component. 

A major advantage of setting targets and making 
projections early in the design was that key 
problem areas were identified while improvements 
could still be made to the design and 
manufacturing process. This was critical to 
ensuring the system would still meet its 
requirements when the designs were completed. 
The projections also allowed design trade-offs to 
be evaluated as the design proceeded to achieve 
the most optimum results. 

This approach put quality and reliability on the 
same level as functionality; it was designed into 
the product from the start, rather than relying on 
discovering defects during testing and then 
making changes to try to meet the requirements. 
The early quality and reliability design resulted in 
the use of highly reliable technologies, 
redundancy and error retry in critical areas, and 
error correction codes to correct multiple hard and 
soft main storage errors. 

This approach continued with changes to the 
design, target, and projection values until each 

major hardware component used by the AS{400 
system achieved acceptable quality and reliability 
parameter values. A flow chart of the approach is 
shown in Figure 1. 

Implementing Quality 
Quality involves preventing and removing defects. 
The hardware design and manufacturing areas 
set targets for defect-free parameters. 

Extensive use was made of design and simulation 
tools. (See the article VLSI Design Process for the 
System Processor.) Design reviews and formal 
tests were conducted to measure the defect­
removal process compared against projections 
and targets. The parameters used were the ratio 
of part numbers released versus part numbers 
changed and the contribution to the system 
quality level. 

Concurrently, the manufacturing process was 
structured in such a way to minimize defects while 
testing to remove those that did occur, and 
conducting audits to measure the effectiveness of 
the process. Defect-free rates were projected for 
the different manufacturing steps and compared 
to the targets required to meet the system quality­
level parameter. (See the article Manufacturing 
Card and System Tests.) 

Implementing Reliability 
Reliability involves performance over time, and 
therefore is not as easily measured as defect-free 
rates. Reliability projections emphasized accurate 
detail at the hardware-component part level based 
on the application, testing, and history of the 





packaging) from the first set of projections to the 
final one. 

Conclusions 
Although this method cannot always guarantee 
that targets will be met, the reasons for unmet 
targets can be understood and quantified. For the 
AS/400 system, this approach produced quality 
and reliability that is superior to that achieved 
through system-level or post-design modifications 
alone. The outcome is a system design cycle that 
increased the average system reliability over four 
times its initial value, with improvement beyond 
comparable predecessor products. On the 
average, the AS/400 logic electronics should not 
fail during the life of the product, and its magnetic 
media I/O is the most reliable produced by IBM 

Rochester, thereby establishing the AS/400 
system as the new standard for quality and 
reliability. 

Acknowledgements 
The authors wish to thank the reliability and 
serviceability work group and the reliability 
department for their work in establishing the basis 
and tools for this approach. 

TMAS/400 is a trademark of International Business Machines 
Corporation. 

148 





Design of the IBM 9332 Disk Unit 

Presents the hardware improvements and changes in design philosophy and procedures that provide the high capacity per cost, performance, 
and reliability of the IBM 9332 Disk Unit. 

Earl A. Cunningham 

Introduction 
The IBM 9332 Disk Unit has 200-megabyte and 
400-megabyte versions. A photograph of an open 
400M file used in the rack-mounted 9406 System 
Unit is shown in Figure 1. 

The 9332 Disk Unit incorporates significant 
improvements in capacity, performance, cost, and 
reliability. This not only includes advances in the 
basic magnetic components, but also significant 
changes in design philosophy. These, together 
with advanced electronics and data handling 
processes, allow improvements in capacity and 
reliability significantly above that expected from 
the improved magnetic components alone. 

The design philosophy used for the 9332 Disk 
Unit emphasized the basic benefits of minimum 
cost for capacity, high performance, and high 
reliability. The capacity per cost is increased by: 
increasing the area used for data, using that area 
more efficiently, recording at the higher density 
achieved by better components and improved 
data processing, and reducing production costs. 
The Disk Unit has improved seek times and a 
higher data transfer rate. The reliability of the Disk 
Unit is increased by basic improvements in the 
head and disk, and manufacturing quality control. 
The reliability and capacity are also improved by 
additional recovery procedures for failures that 
might occur. 

These improvements are addressed in three 
categories: the phYSical file design, electronic 
design, and data handling. (For additional 

150 

Figure 1 An IBM 9332, 400M Disk Unit with the Covers Removed 



information, see the article The Disk Manufacturing 
Process.) 

Physical File Design 
Physical improvements were made to the heads, 
disks, and actuator. The head is a manganese­
zinc monolithic of IBM, Rochester, MN, design. 
The design improves the head efficiency, which 
improves the signal-to-noise ratio compared to 
that obtained with standard monolithic heads [1]. 
The disk's particulate coating is prepared using a 
new coating technology [2, 3] that provides a 
much smoother surface, better particle 
dispersion, and fewer and smaller defects than 
those obtained with standard processes. The 
actuator system for the 9332 Disk Unit (400M) has 
two separate actuators (see Figure 1) for faster 
operation and more operations per second. 

The usable disk area of the 9332 is significantly 
increased from previous products, providing more 
useful recording space. Area usage is improved 
by combining the sector-identification field with 
the data field, so that only one (rather than two) 
synchronization field is necessary [4]. This 
improves the format efficiency, providing 
additional space for data, and improves reliability 
by including the identification field within the data 
error-correction algorithm. Because both the 
identification field and data are written 
simultaneously, the chance of them being 
misaligned is eliminated. 

Another small factor in providing more surface for 
data is the allocation of more alternative sectors at 
the inner tracks, where the probability of defects is 
higher, and fewer alternatives at the outer 
tracks [5]. 

The mechanical integrity of the head to disk 
interface is another important aspect of the 
physical file. The development of a reliable head 
to disk interface is a difficult problem, involving the 

characteristics of the head and disk material, the 
physical flatness of the head and disk, the fly 
height for both steady-state and dynamic-access 
conditions, and the effects of environmental 
variations. Other concerns include possible disk­
clamping distortions, the quantity and movement 
of the added disk-lubrication material under 
various types of operation, and many other 
variables. A significant number of personnel and 
amount of equipment was dedicated to the in­
depth investigation of these effects, resulting in 
the selection of the head to disk fly height for the 
best possible signal-to-noise ratio while providing 
a very reliable design. This was accomplished at a 
small cost per file due to the large number of Disk 
Units being built. 

The mechanical integrity is also maintained by the 
disk enclosure design and manufacturing 
techniques that minimize contamination. One of 
the most significant contaminants is magnetic 
particles from permanent magnets that find their 
way to a head. If they attach to a head near the 
disk surface, some demagnetization of the 
medium can occur, thus degrading the signal-to­
noise ratio of the recording. While the magnets in 
a disk unit are normally coated to prevent 
magnetic particle loss, the 9332 goes a step 
further. The disk enclosure is closed before the 
actuator and motor magnets are installed. These 
components are outside of the disk enclosure. 
This allows the heads and disks to be assembled 
into the 9332 in a magnetically clean area, and the 
inside of the completed disk enclosure thus 
remains magnetically clean for the life of the 9332. 

Electronic Design 
The electronic design of the 9332 provides many 
advantages. One is the use of an improved 
baseband recording code, a run-length limited 
RLL(1,7) code with a two-thirds rate [6]. The 1 
refers to the minimum number of consecutive 
encoded zeroes and the 7 to the maximum 

number of consecutive encoded zeroes between 
encoded 1 'so The recording code most often used 
for current disk units is a run-length limited 
RLL(2,7) half-rate code. For the same data rate, the 
RLL(1 ,7) two-thirds rate code has a maximum 
recorded-transition density 12.5% higher than that 
of the RLL(2,7) code, which causes the RLL(1, 7) 
code to have somewhat more bit shift than the 
RLL(2,7) code. However, because the two-thirds 
rate code has one third more time for each 
encoded bit to be detected than with a half-rate 
code, a significantly larger tolerance for bit shift is 
allowed. The RLL(1,7) code used in the 9332 thus 
provides about 5% higher capacity than that 
obtained with the RLL(2,7) code. 

Another significant improvement is in the arm 
electronics module, which is a head-signal 
preamplifier. Standard preamplifiers have a 
damping resistor across the input to damp the 
head resonance during write operations. 
However, during reads, the thermal noise this 
resistor generates significantly contributes to the 
total electronic noise. The new amplifier has a 
network that damps the write-current waveform 
without adding any extra thermal noise during 
reads, thus improving the signal-to-noise ratio. 
Without the damping resistor during read back, the 
head has an under-damped resonance. This 
increases the high frequency data signals nearer 
the resonance, which outweighs the noise 
increase due to the higher source impedance. 
This further improves the signal-to-noise ratio and 
also provides some of the required equalization of 
the read back signal. The increased signal-to-noise 
ratio with the new design allows the recording 
density to be increased about 12%. 

Another improvement is the use of a single-burst 
error correction code (ECC) as a first recovery 
procedure. If a single-burst error occurs, the data 
from the next sector is read and pipelined while 
the correction is being made to the first sector. 

151 



The data buffer and fast-parallel interface 
normally allow the file to continue reading without 
time lost to added disk revolutions. Only sectors 
with two or more error bursts require additional 
revolutions to reread the data. This EGG allows the 
recording density to be increased about 10% with 
the resulting higher soft-error rate compensated 
by the EGG. The measured performance of the 
9332 shows that typically over 99% of the soft 
errors are corrected by the single-burst EGG. 

Another improvement is the fault-tolerant 
synchronization byte for each sector. The 
tolerance allows the proper starting point of each 
sector to be identified, even when a soft error 
occurs in that byte [7]. This feature reduces the 
number of missing-sector failures. 

The addition of microprocessor control provides 
an improvement by allowing optimization of each 
head and disk combination. During 9332 
assembly, one of eight different write-current 
values and one of eight detection parameter 
(delta-v) values for each head at each of three 
radial bands may be selected to optimize the 
performance. These values are stored on the 
9332 and are loaded into active storage for each 
power up. The improved performance can be 
exchanged for a 5% increase in recording density. 

The new servo code and control system used in 
the 9332 provides an improvement by allowing the 
other described improvements their full capability. 
The new servo system provides the smaller head­
to-track misregistration required at the higher 
track densities, where the smaller track width 
causes more rapid signal loss with off-track 
distance. The higher linear density reduces the 
side fringing of the recorded track, which saves 
space but does not separate the data as far from 
interfering signals, further restricting the tolerance 
for off-track distance. For more information, see 
the article Digital Servo Control for Disk 
Units [8, 9, and 10]. 

152 

Data Handling 
The self-testing capabilities of the 9332 assist in 
determining the optimal current and detection 
parameters (delta-v) for each head. The 9332 
performs its own surface-analysis testing, locating 
any defective sectors. These reduce testing costs 
by eliminating file testers. In addition, several data 
processing procedures are used in the data 
recovery procedures and in data quality 
maintenance, improving performance and 
reliability and allowing further capacity increases. 

Previously, today's recoverable soft errors were 
unreadable hard errors. Thus the early error rates 
were required to be nearly as small as the hard­
error rate. With a modern system, most errors are 
due to electronic noise and not due to any actual 
flaw in the system. Maintaining a very low soft­
error rate required lower recorded densities to 
obtain the higher signal-to-noise ratio, which, by 
today's standards, represents a poor use of the 
available signal. Recording at higher linear and 
track densities results in more capacity and a 
lower signal-to-noise ratio, with a corresponding 
higher soft-error rate. The higher rate can easily 
be handled by the 9332's data recovery 
procedures. The higher soft-error rates are 
associated with the natural electronic noise 
deviations that are uncorrelated for each reread, 
which allows very effective recovery. Although not 
immediately obvious, the design using higher 
density with the higher error rate actually 
improves performance over low error-rate 
designs. 

In the 9332, the areal data density was increased 
by 20% by allowing the corresponding increase in 
soft-error rate. (For best results, improvements 
are taken partly by increased track density, and 
partly by increased linear density.) During typical 
operation, the recovery time from the increased 
soft error rate reduces throughput by less than 
0.1%. However, the increased data rate with the 
higher linear density actually increases the 

throughput by a much more significant amount 
than the minor loss due to the recovery times. 
Thus, allowing an increased soft-error rate not 
only allows increased capacity, but also increased 
throughput. 

The 9332 has extensive data recovery procedures 
that are rapidly accomplished with the internal 
control. In addition to the initial single-burst EGG, 

the recovery procedures include the standard 
methods of rereads on track and off track, but 
combined with the EGG. Where a normal recovery 
procedure would attempt a single-burst EGC, 

recovery, the 9332 provides a double-burst 
correction capability for data recovery. This allows 
the correction of two independent errors within 
the sector. 

After all the normal data recovery procedures are 
done, the remaining errors would normally be 
hard errors. However, in the 9332, a unique 
function has been added to the recovery 
procedure, which virtually eliminates the dominant 
cause of hard errors. This condition can occur if 
the adjacent tracks overwrite part of the track of 
interest to such a degree that no head position 
allows the data to be read correctly. Because the 
data tracks are placed close together to obtain 
high capacity, this large interference can occur 
with low probability and under extreme conditions 
for heads near the maximum of the track-width 
tolerance distribution. Figure 2 shows a read-head 
gap, with partial edge sensitivities indicated by the 
dark edge area. The head is over a data track, T2, 
with severe interference from adjacent tracks T1 
and T3 due to track misregistration, with the 
written positions both inward from their normal 
position. 

Previously, to keep the probability of a hard-error 
occurence to less than once in the life of the disk 
unit, the written tracks had to be sufficiently 
separated so that only deviations greater than 5.5 
sigma in track misregistration would cause the 



T1 T2 T3 

I I 
I Data I 

TMR I I I TMR 
~ 1-- --II-

I I I I 
I I I I 

Adjacent Adjacent 
Data Track Data Track 

" i, 
r' ReadHeildi ' 

'", .. , 

RSLL387-2 

Figure 2 Read-Head Gap Over Data Track with 
Severe Interference 

failure. For such failures, it was found that the 
remaining signal from the partially overwritten 
track was more than enough to recover the data 
correctly if the interfering signals could be 
excluded. The 9332 was thus designed to read 
each adjacent track sector, store and verify the 
information, and then Dc-erase the adjacent 
sectors [11]. Figure 3 shows the interfering tracks 
erased. Because the track misregistration is 
almost always less than the extreme value that 
caused the severe problem, erasing tracks T1 and 
T3 does not erase all of the interfering recorded 
signal , so the sector on track T2 may still not be 
read correctly. If this occurs, the head is offset to 
find the position that avoids the stronger residual 
interfering signal (as indicated in the figure), where 
correct reading of the data is much more likely. 

If recovery is still not possible with the head on 
track or in multiple off-track positions, the 
adjacent sectors are again Dc-erased with the 

T1 

DC 
Erase 

T2 

Data 

T3 
I 
I 
I 
I 

I I 
I I 
I I 
I I 

DC 
Erase 

RSLL388-2 

Figure 3 Recordings with the Interfering Tracks 
Erased 

head offset inward toward T2. Reading is again 
attempted at several positions. If this is not 
successful, the adjacent sectors are erased again 
with more inward offset, and reading is again 
attempted at several off-track positions. Because 
the exact position of the remaining recorded track 
is not known, gradual erasing guarantees that, 
when sufficient interfering signal is removed, the 
largest possible data signal strength remains. 
After recovery, the data and the adjacent sectors 
are rewritten and verified for accuracy. This 
process is so effective in recovering data from 
extreme interference situations, the disk unit can 
be designed with the tracks placed closer 
together without causing a data loss due to track­
to-track interference. The increased 9332 track 
density provides 4% more capacity, improved 
protection against interference failure, and 
minimal error-recovery impact on throughput. The 
cost of the added capacity and protection gained 
by this procedure is small. The microcode 

program required for this procedure is stored on 
the 9332 and is read and loaded into the 
microprocessor if it should ever be needed. 

Another unique process added to the 9332 is that 
of data-quality maintenance [12]. This procedure 
provides protection from various small 
degradations from continued track-misregistration 
effects, slight changes due to aging of 
components, or other small problems. While 
occasional rereads are required due to the normal 
extremes of electronic noise, more than a few 
steps of the data recovery procedure indicate a 
possible degradation. In this case, the sector 
number and a score related to the depth of 
recovery are entered into a large raw-data error 
log. If a previous score exists for the sector, the 
new score is added to the previous total. A 
sufficiently high score indicates a degraded signal, 
so the sector is rewritten and verified for accuracy. 
It is then listed in a smaller log of rewritten sectors 
and the raw-data error score is reset to zero. 
Multiple small scores, as well as one high score, 
will cause a sector to be rewritten. The verifying 
procedure uses a reduced recovery procedure, 
because the data should then be of good quality. 
Data not verifiable with simple recovery 
procedures indicates a magnetic defect in the 
sector and the sector is recommended for 
reallocation. With proper data verification, no 
recommendation is issued. The microprocessor 
uses disk unit idle time to analyze the error logs. If 
this shows that significant errors have reappeared 
on a previously rewritten sector, a 
recommendation for reallocating the sector is 
made. If either log is full , the newest entry 
replaces the oldest entry. At higher error rates, the 
log's data is flushed out faster, so that only 
sectors with error rates significantly above the 
disk unit average are identified. 

Using this process, small degradations can be 
eliminated by rewriting weak sectors. The process 

153 











The deceleration-velocity profile is designed so 
that the head settles smoothly on the track in 
minimum time. 

Self-Tuning of System Performance 
Typically, a storage-device actuator's servo 
performance changes with time and 
environmental conditions. The disk units tuned to 
optimal performance during manufacture 
gradually become detuned with time and 
temperature. Some disk units use various 
compensation schemes to minimize this effect. 
Most of these schemes are typically designed for 
an average disk unit, in that all disk unit 
parameters are assumed to be at their average 
values. However, as hundreds of thousands of 
disk units are built, the average disk unit is just a 
statistical concept. It is therefore important to 
measure parameter variations for each individual 
disk unit while it is operating as part of a data 
processing system. Once parameter changes are 
identified, the gain coefficients can be 
automatically changed in the controller algorithm 
to again yield the optimal performance. Such a 
system is called an adaptive, or self-tuning, 
control system. Figure 3 shows a conceptual 
block diagram of an adaptive actuator servo­
control system. The darkly shaded blocks are 
electromechanical components, while the lightly 
shaded blocks are microprocessor functions. 

The 9332 has implemented an adaptive control 
system (patent-pending) to keep its controller 
tuned for peak performance over time and a 
range of temperatures. Two important values that 
can be measured or estimated online are: power­
supply voltage, which is important during the 
track-seek mode, and a parameter called r" 
which is proportional to the loop gain of the 
closed-loop servo. r, is used to update the gain 
coefficients in both the track-seek and track-follow 
algorithms. 

158 

Seek/Follow 
Control 

x ,(k) 

Velocity 
Seek 
Profile 

X,(k) 

Dark Blocks are Analog 
Light Blocks are Microprocessor Functions 
Blocks with a Slanted Arrow Indicate Online Tuning 

/'. 
X 2 (k) 

/'. 

X 3(k) 

X4(k) = U(k-1) 

U(k) 

Velocity, 
Bias, and 

I, 
Estimation 

X,(k) 

Reference 
Input 

X,(k) 

RSLL329-3 

Figure 3 Conceptual Block Diagram of IBM 9332 Adaptive Actuator Servo Control 

The power-supply voltage is measured by an AfD 
converter built into the microprocessor chip. The 
voltage, measured during initial and later online 
calibrations, is used to recompute the velocity 
profile table. Because a 1% change in power­
supply voltage can introduce a 0.4% error in a 
generated profile velocity. the adaptive nature of 

the system is quite important by making the 
deceleration-velocity profiles independent of 
power-supply variations. 

The r, parameter is slightly more difficult to 
estimate. The estimate can be obtained during 
acceleration when the actuator voice-coil driver is 



supplying a known current and is not saturating. 
Position measurements and corresponding 
controls are obtained for several sectors, and 
estimates of r, are computed using a very simple 
algorithm (see Figure 4, equation 12). The 

estimates are then averaged to minimize the 
effects of noise and to yield a good overall 
estimate of r,. 

When r, has been estimated, the controller gains 
can be computed again. Then, with the updated 
controller gains, the track-seek and track-follow 
algorithms are modified for more optimal 
performance. A 1 % change in r, causes a 0.5% 

Actuator Model 

The actuator made I has f ive dis t inct variables co lied state var ioble X, . The def inition for these new var iabl es is g iven below; o t hers have been 
X2, X3 , X4 , and X5· The five state var i ab I es have been norma I i zed and given earl i er. 
are defined (wi th un its) at k-th sampl ing instant as fa I lows : 

-
X, (k) - the pred icted posi t ion a t the k-th sector based on t he 

X, (k) - pos i tion ( t racks) informa t ion obtai ned from the (k -1 )-th sector 
A 

X 2(k) - velocity (track s /sector period) X2( k) - the est imated ve I oc ity 
A 

X3(k) - bias forces (equiva lent tracks) X3(k) - the est imated bias force oc t i ng on the actuatar 

X 4( k) - previous control (equivalent t racks) L2, L3 - est imator coefficien t s 
X 4(k) ~ U( k- 1 ) 

Xs ( k) - integrated positian (tracks) Track-Follow Mode Algorithm 

A A A A A 
U( k) - ca"tro l input (equi va lent tracks) U(k) - - K, • X, (k) - K2 . X2 (k) - K4 • X4( k) - Ks • Xs(k) (9) 

whereAthe ~ta t es have been defined be fare . The controller gain canstants 
The norma I i zed dig i t a I state-space equiva lent model of the sampled 'K, , K2, 4, and"R s are ca lculated based on optimal t rack-fo I low 
a c tua t or with delay j s: perf o rmance and updated on li ne. 

X, (k+ 1 ) X, (k) X2(k) I , X 3(k) 1" X4 (k) + 1,2 U (k ) ( 1 ) 
Track-Seek Mode Algorithm 

~ + + . + . . 
12 + ["";, + ["";2 • U (k) 

A 
[xp 2 (k ) 

A 
+ ["";, X4 ( k» ] 

A 
X2( k+1 ) ~ X 2( k) + · X3(k) • X (k ) ( 2) U(k) ~ - Kv . - (X 2( k) . - Ks . XsCk) ( 10) 

X 3( k+1 ) ~ X 3( k) (3) 

where some va ri ables have been defined ear l ier. The profi l e veloci ty 
X4(k+1) ~ U(k) (4) XP2(k) corrected for delay is given by 

Xs( k+1 ) ~ X 1 (k) + Xs( k) (5) 
Xp 2( k ) ~ PROFILE [X, (k ) + 1" . X4 ( k) J ( ~ 1 ) 

The I, 's in equat ions (1 ) and (2) are functions of the ac t uator parameters, 
the samp l ing pe r i od T, and t he delay t ime h. PROF ILE ~ ve locity decelerat ion profile function stored in the 

microprocessor table (Figure 2 ) 

Estimator Algorithm "Rv ~ velacity profile control gain 
The est imator state equations are : 

X,(k) 
A 

I, A I ' - Estimator Algorithm 
~ X, (k- ll + X2( k-1 ) + . X3( k- 1 ) 

The est imated r, at the (k+1 )-th per i ad is a funct ion of the second 
+ 1" . X4 (k- 1 ) + 1,2 • U( k-1 ) (6) d iff erence of the measured position div ided by the sum of the two 

A A A previous controls . Its discrete- time mathematical expression is given by 
X2( k) = X2 (k-ll + 12 • X3 (k-1 ) + 12, • X4 ( k-1 ) 

+ 122 • -
U( k-1 ) + L2 • (X , (k) - X, (k) ) (7) A X, (k+ 1 ) - 2 • X, (k) +X , (k-1) 

A A - I, (k+1) ~ --- ----- ---------------- --- ---- ( 12) 
X3( k) = X3( k-1) + L3 · (X, (k) - X 1 (k» (8) U(k) + U(k-1 ) 

RSLL4'4-2 

Figure 4 Digital Actuator Model and Algorithms for the Estimator, Controller, and I, - Estimator 

159 



error in the profile velocity at a given distance to 
the desired track. Such a velocity error increases 
the time it takes the head to settle on the desired 
track and, therefore, increases the average 
access time. For the track-follow mode, a 1 % 
change in r, results in a 1 % error for all of the 
controller-gain values used in the control 
algorithm, causing less than optimal tracking 
performance. Note that r, will change when 
changes occur in the actuator force-constant gain, 
current driver gain, position-error sensor gain, AID 

and DIA gains, and so forth. r, is proportional to 
the product of all the gains above. Because r, is 
also an estimate of the low-frequency loop-gain, 
the controller algorithm is independent of dynamic 
changes in the low-frequency loop-gain. 

Conclusions 
The actuator servo control on the IBM 9332 Disk 
Unit opens a new dimension in storage device 
design. The control algorithms reside entirely in 
the microprocessor, making the servo digital in 
nature. Modern digital control theory was used for 
the design of this adaptive actuator servo-control 
system. The adaptive controller maintains uniform 
and predictable peak track-seek and track-follow 
performance over time and varying temperature. 
The results from servo performance 
measurement tests have been very promising. In 
the future, as very high-speed, low-cost 
microprocessors become available, more and 
more storage device functions will become self­
tuning and adaptive to changes in disk unit 
components. The result will be disk units that are 
almost maintenance-free and always tuned for 
peak performance and reliability. 

Acknowledgements 
The adaptive digital servo control system for the 
IBM 9332 Disk Unit was developed in a team 
effort. The implementation of such a system 
requires dedicated microcoding and mechanical 
and electrical design efforts with uncountable 
hours of testing. Credit and recognition for the 

160 

servo control should go to Michael C. Stich, Todd 
B. Anderson, John B. Resman, and many more. 
Special gratitude goes to our consultant at IBM 
Rochester, Dr. G.F. Franklin, Stanford University, 
Stanford, CA. 

References 
1. Oswald, R.K., Design of a Disk File Head-Positioning Servo, 

IBM Journal of Research and Development, Volume 18, 
1974.506. 

2. Franklin, G.F. and J.D. Powell, Digital Control of Dynamic 
Systems, Reading MA: Addison-Wesley Publishing 
Company, 1980. 

3. Stich, M .C., Digital Servo Algorithm for Disk Actuator 
Control, Proceedings of Conference on Applied Motion 
Control '87, June 16 - 18, 1987, Minneapolis, MN. 35 - 41. 



Manufaduring 
The processes used to manufacture the AS/400 system were developed with the 
participation of manufacturing and test engineers from Europe, Mexico, and. the 
United States. This ensures the ability to manufacture worldwide, with consistent 
quality, using like processes at all manufacturing sites. 



The Flexible Manufacturing System 

Describes the flexible manufacturing system designed to efficiently produce al/ models of the AS/400 system. 

Donald L. Conroy 

Introduction 
The flexible manufacturing system is a low-cost 
production facility capable of producing any 
configuration of any model AS/400™ system, to a 
customized order, with no set-up time required 
between models. 

With an emphasis on simplicity, this production 
facility is manually oriented, provides expansion 
capability, and uses a floor-control system driven 
by IBM PERSONAL COMPUTER AT's®. This low-cost 
combination provides maximum flexibility for 
AS/400 manufacturing. To simplify the process, a 
concentrated effort was placed on strategic 
design, early manufacturing involvement, 
continuous flow manufacturing, and computer­
integrated control. Other factors critical to 
reducing complexity were modular product 
design, minimum part content, and reduced line 
storage. 

Strategic Design and Early Manufacturing 
Involvement 
The manufacturing team for the AS/400 system 
was organized while the product's design was still 
being formulated. The team's mission was to 
assist in developing a product from the 
perspective of ease of manufacturing and reduced 
product cost. 

The modular design of the system was a direct 
result of this relationship. By designing pluggable 
subassemblies, the capability to customize the 
product was increased, with little or no increase to 
assembly complexity. The uniform design of the 
subassemblies allowed the use of standardized 

162 

parts' storage areas so if customer model 
demands shift over time, the floor layout can 
remain relatively unchanged. Set-up time between 
models is eliminated, because different models 
require the same basic assembly operations. 
Minimizing the number of parts simplified both 
assembly and parts storage. Snap covers and 
thumb screws reduced assembly time and tooling 
requirements. Planning such as a standardized 
cable design reduced storage-space 
requirements on the manufacturing floor. 
Manufacturing emphasis during the design stage 
clearly increased assembly flexibility and reduced 
capital investment in the manufacturing process. 

This was only one piece of the early 
manufacturing involvement process, however. 
While recommending design changes to the 
product development group, the early 
manufacturing involvement design team was also 
feeding information back to an early 
manufacturing involvement process team. This 
team consisted of lead engineers representing 
process, systems, procurement, distribution, and 
production control. Emphasis was placed on an 
in-the-door, out-the-door philosophy from supplier 
lines to shipping and installation. When product 
design information became available, each of the 
engineers would examine the parts. Suppliers 
were given early views of the part designs and 
recommendations were fed back to the 
development laboratory. Every part was examined 
for manufacturability, delivery lead time, tooling 
requirements, packaging/shipping expense, and 
commonality. The results and recommendations 
were continually rolled up and fed back to 

development for final design consideration. 
Manufacturing process evolution coincided with 
product evolution. 

Continuous Flow Manufacturing 
The modular AS/400 design made it possible to 
manufacture highly customized orders in a 
production environment. The number of assembly 
steps required was significantly reduced, which 
enhanced process flow. Still, the number of parts 
required at the assembly stations was very large 
because of the variety of system offerings. Large 
automated storage and retrieval systems were 
considered a parts-containment requirement. 
Logistics control of the high-volume, customized 
process appeared to require significant 
programming effort and hardware cost. As an 
alternative approach, the manufacturing team 
began to look at continuous flow manufacturing 
(CFM) as a solution to the parts-control problems. 
It was examined from two directions: the flow 
within the manufacturing process from work 
station to work station (MICRO-CFM), and the flow 
external to the manufacturing process of parts 
from suppliers and systems to customers (MACRO­

CFM). Implementing CFM reduced parts inventory 
and eliminated the use of complex logistics 
systems to maintain station-to-station parts 
control. 

Computer-Integrated Manufacturing 
The computer-integrated manufacturing team, 
consisting of manufacturing engineers, 
distribution engineers, and systems analysts, was 
formed along with the design and process teams 
during the early manufacturing-involvement cycle. 



Their mission was to channel worldwide order 
inputs into a data base of system parts, select the 
parts based on the customer order, and provide 
customized assembly instructions for the 
technicians to assemble the order. Interaction was 
the uppermost computer-integrated manu­
facturing activity. Adjustments to the process were 
identified to potentially reduce floor-control 
systems architecture requirements. The system 
design was looked at and adjusted to increase the 
flexibility of the physical assembly process. The 
team adapted the logistics systems during the 
product and process development cycle to ensure 
a solid transition from design to production . 

The Flexible Manufacturing System 
A traditional manufacturing layout is designed 
around the product and concentrates mainly on 
product shipment. The flexible manufacturing 
system used the process flow, not the product, as 
the key design point. The layout was 
conceptualized before the product designs were 
received in manufacturing. 

Two major elements make up a process flow 
design: parts coming in and product going out. 
When continuous flow manufacturing is not used, 
parts flow can be considered a minor design 
point. Problem part locations are handled by 
adding more storage space to the layout and 
refilling stock less frequently. The cost is 
increased space and inventory expense. With 
CFM, parts storage is minimized. This means less 
dollars invested in plant and equipment, but parts 
must be replenished at more frequent intervals. 
Because of this frequency, a good parts flow 
design produces significant savings in time and 
labor. 

Frequent restocking, unless properly planned for, 
can severely hinder product flow, which in turn 
reduces output. The flexible manufacturing 
system uses a U-shaped design to facilitate flow 
(see Figure 1). Stations are set in place along the 

U, with parts stored on the outside and product 
flow set on the inside. The outside parts storage 
allows easy access to the storage areas without 
interrupting the work in process. The inside 
product flow keeps work stations close, allowing 
visible management and minimum product 
movement. 

The U shape focuses the flow at the shipping and 
receiving dock. Parts are brought into the 
receiving area and unpacked before being taken 

inside the U. This eliminates congestion on the 
manufacturing line caused by used packing 
material kept on the line. The parts are moved to 
the manufacturing line and placed in highly visible 
storage areas. CFM technicians visibly monitor 
these storage areas and replenish them when 
quantities reach predetermined levels. Small parts 
are manually transported to the line. Larger parts, 
plus completed systems, are delivered by an 
Automatic Guided Vehicle System to the front of 
the U and the CFM technicians stock them 

Storage and Retrieval 

System Processor Exp Box Disk 

~---~ Integration ~---""""""1Iio.. 

Cables Cable Op Slides 
and Parts 
Rails 

Parts 
Pre-load 

System 
Rework System 

Unit 
T Build 

Clean 
and 
Claim QA System Unit 

Storage 

RSLL407· 2 

Figure 1 AS/400 Manufacturing Process Flow 

163 



Figure 2 Automatic Guided Vehicle Delivers Completed System to Distribution Center 

manually from there (see Figure 2). Manual parts 
delivery provides maximum flexibility to the 
process design. Work station locations are not 
governed by conveyor-spur locations and fork-l ift 
aisles are not needed. Shipping damage and 
scheduling problems frequently encountered with 
fork-truck deliveries are eliminated. The 
advantage of removing fixed restrictions such as 
these will be more apparent in the future when 
new models are added to the existing system 
configurations. The process can be adjusted 
based solely on product and parts flow without 
having to work them into existing, inflexible 
process hardware. 

164 

The assembly work stations themselves consist 
of modular work surfaces strategically placed on 
the inside of the U. Modular stations allow the 
work area to be customized not only for the 
product, but for the individual assembly technician 
as well (see Figure 3). This is important in a CFM 

environment where the workers share tasks. Each 
worker can adjust any station for size, height, and 
preference. The U-shaped flow allows complete 
visibility of the entire process. Bottlenecks can be 
visibly identified and workers can leave their 
stations immediately to assist the backed-up area 
until it is on schedule with the rest of 
manufacturing line. 

Heavy subassemblies that could not be handled 
manually were grouped into one assembly 
operation , and a mechanized transfer system was 
designed and installed. This transfer system is a 
fixed work station, but by grouping the heavy 
tasks into one operation, the requirement for fixed 
work stations was restricted to this one. This 
anchored station was made as flexible as possible 
to be capable of handling any model in any 
configuration. This required the transfer system to 
operate on demand for an individual order. The 
transfer car was designed to pick up specified 
subassemblies and deliver them to a central lift 
device where the technician could install them into 
the product. The transfer car is fed by gravity-feed 
conveyor spurs, limited to a maximum of four for 
each subassembly. The size of four was selected 
for easily visible parts management. CFM 

technicians monitor the spurs to ensure adequate 
supply; a flashing light indicates an empty or 
malfunctioning spur. The base transfer car system 
size was determined by the number of 
subassemblies in the current AS/400 offering plus 
six extra spurs to accommodate fluctuating 
demand and model mix. The car's drive cable is 
longer than the existing track so that future 
requirements for additional spurs could be served 
by simply lengthening the track. The U-shaped 
process was placed at one end of the building. If 
demand exceeded the expansion capability of the 
existing process, the modular work stations could 
be duplicated (in a mirror image) at the other end 
of the transfer system. This would essentially 
double the maximum capacity of the line without 
adding any new fixed equipment. The expense of 
doubling the capacity would be limited to the low­
cost, modular work stations and some minor 
modifications to the transfer system. 

The assembly process flow is controlled by sets 
of kanban squares. (Kanban is a term for a 
marked area before and after each work station.) 
A kanban is defined for each part that enters a 
station and each part that leaves it. The input 



Figure 3 A Modular Assembly Work Station 

kanban for one station is the output kanban from 
the previous station. Every square has a 
maximum limit; if a square contains the maximum 

number, no more parts are allowed to go into that 
area until some are used up. If the squares in front 
of the station are empty, a bottleneck must exist in 

some operation prior to that station. The operator 
would leave the station and lend assistance to the 
backed-up area. If the squares behind the station 
are full, a bottleneck exists after that operation. 
The operator stops work at the station and again 
helps out the problem area. When a square is 
empty after the work station and full before the 
station, the operator continues to work. This 
simple concept controls the entire flow of 
products through the manufacturing line. Our 
flexible manufacturing system uses a kanban size 
of two. The small size allows problems to surface 
immediately and be resolved. If a batch of 
defective parts enters the process, the maximum 
number of units that can contain these parts when 
the problem is discovered is two per station. The 
problem is contained within the process. Work-in­
process rework costs are negligible. The defective 
parts are replaced and the process flow continues 
on. CFM process control is as effective as any of 
the complex systems-architecture designs evident 
in either process floor-control systems. Cost of 
the kanban process is essentially limited to a few 
rolls of colored tape used to mark the kanban 
squares on the floor. 

Personal computers direct the assembly at each 
work station and control the transfer car, allowing 
it to deliver the correct subassemblies for each 
order. Personal computers also provide integrity 
to the CFM concept by ensuring that work does 
not begin on an order until all previous steps have 
been completed. At each station, the personal 
computer displays a list of parts and their 
subsequent locations within the unique order that 
is about to be processed. This display of parts 
and locations is limited to the tasks required at 
that particular work station. Thus, the operator is 
provided with instructions that allow complete 
customization of the product on an order-by-order 
basis. At the transfer car station, the personal 
computer displays the information to the operator, 
and, at the same time, directs the transfer car to 
deliver the subassemblies to the operator. The 

165 



assemblies are delivered to the operator in the 
same sequence they are to be installed on the 
order. The segmented order data is passed from 
work station to work station until the completed 
product is finished for delivery at the work station 
located closest to shipping dock. 

This process provides a continuous flow of 
customized systems with maximum output, 
minimum expense, and no set-up time between 
models. 

Conclusions 
Simplicity is a complex engineering challenge. 
Minimizing parts storage encompasses certain 
risks when parts are ordered from a single 
supplier. Monitoring and managing a simplified 
system is more demanding than running a system 
loaded with parts and capacity. Still, the 
efficiencies generated in product flow and 
inventory savings outweigh the risks. By 
addressing these concerns early and 
concentrating on simplicity and flexibility, the 
flexible manufacturing system resulted in a highly 
efficient process for customizing ASj400 
products. 

™ AS/400 is a trademark of International Business Machines 
Corporation. 

166 





Manufacturing Card and System Tests 

Describes how early involvement and enhanced testing enabled the manufacturing group to deliver high-quality products at a lower cost. 

Robert W. Lytle, Donald L. Beck, Mark W. Hansen, and Gary L. Kearns 

Introduction 
The manufacturing test objectives on the 
AS/400™ system were very simple: reduce the 
time and cost of testing yet deliver a system that 
meets the most stringent quality criteria of any 
system ever shipped from IBM, Rochester, MN. 
Because our traditional test philosophy would not 
meet the requirements for a shorter product cycle, 
a higher-quality product, and lower manufacturing 
costs, new methods were introduced to the 
development and manufacturing processes. 

First, manufacturing engineering became involved 
in the development stage of the product to help 
ensure that a stable design was delivered to 
manufacturing. Manufacturing engineers stress­
tested logic cards during early engineering tests. 
Second, a functional card test was used to reduce 
the number of test steps and enhance the 
effectiveness of the test; in a functional test, the 
cards are tested in a simulated systems 
environment. With a stable design and highly 
efficient card testing, the final system test for the 
product became a verification of the final 
assembly process, rather than just a screen for 
defects. 

Early Manufacturing Involvement with 
Stress Testing 
Prior systems were released to manufacturing 
when functional specifications were met. Later, in 
production, stress screening indicated that too 
many parts would not function within the system 
specifications. This resulted in excessive scrap, 
rework, and retesting. 

168 

To prevent this from happening on the AS/400 
system, early stress tests were performed on 
logic-card assemblies from early engineering 
prototypes through the final design. An extra 
margin of safety, or guardband, was verified in this 
testing, ensuring that later manufactured parts, 
obtained from multiple worldwide sources, would 
operate properly through the full system­
specification range. 

Guardband testing demonstrates performance 
capability beyond normal system specifications. It 
involves subjecting early design hardware to 
extreme operating VOltages, temperatures, and 
oscillator frequencies to determine the actual 
functional limits of a given design. By doing early 
testing while development engineers were still 
heavily involved, key technical people were 
available to diagnose and repair potential 
problems found during the tests. The early 
detection of problems allowed time to modify 
designs and improve manufacturing quality before 
volume manufacturing began. This approach 
eliminated the need to depend on a production 
stress test for the life of the product. 

Each logic card was stressed to at least SoC 
beyond the upper and lower temperature limits 
specified for the component technologies used on 
each card (see Figure 1). Some cards were tested 
to as high as 90°C. The voltage stress limits were 
a minimum of ± 10% beyond the component 
nominal specification limits. Where feasible, 
oscillator frequencies were also varied. To ensure 
thoroughness, each card was tested using a four-

.. Stress Testing Range---1 

Component I 
SpeCification ----+ 
Range 

-------4-_-5 c----I--I_~~_~~f_,'gl_1 ~ + 5 ct 
RSLL373·' 

Figure 1 Test Limits 

or eight-corner test matrix. For example, one 
combination of an eight-corner matrix might be 
high temperature, low voltage, and a fast 
oscillator. 

Software test tools, such as system exercisers 
and simulators, were used to run the cards during 
the testing. A temperature stress chamber 
environment was used to stress test each 
individual logic card before the cards were 
integrated into a system. Variable power supplies 
were used to apply voltage stress to the cards. 
Test data results, including timing measurements, 
were taken as each card was stressed. This data 
was tracked closely to ensure problem resolution. 

The results of early stress testing were significant. 
Of eight different card types tested, three failed 
under some combination of stress conditions. 
These problems were fixed through design 



improvements or module changes well ahead of 
high-volume manufacturing. When more logic 
cards became available, additional cards of each 
type were tested over a period of several months 
to see if any module variations, due to different 
manufacturing batches of cards or components, 
were found. 

In addition to testing individual cards, a system­
integration stress test was performed on the first 
working systems. The integration stress test was 
performed with temperature and voltage 
variations similar to the individual card tests. This 
again led to early problem detection and 
resolution . 

Production Card Test 
In addition to the advances in early stress testing, 
significant improvements were made in the 
production testing of logic cards. 

Single-Step Functional Test 
Figure 2 demonstrates the simplified test steps 
with functional testing. Previously, specialized 
instruments tested different card types. The 
AS/400 card functional test consists of one step 
using one standard test instrument. 

The functional card test is more effective than the 
traditional stuck-fault test (see Figure 3). During a 
stuck-fault test, the card sees patterns of 1 's and 
O's, with no functional meaning, applied at speeds 
much slower than in the actual system. During a 
functional test, the card receives the same signals 
and instructions it would see in an actual system 
running in a customer environment. The functional 
test takes advantage of the microprocessors on 
the various AS/400 logic cards. The micro­
processor tests itself, all the logic contained on 
the card, and then all external interfaces to the 
card. In addition to the quality improvements, 
savings were realized in engineering, 
maintenance, manufacturing resources, and 
inventory. 

Traditional Process 

Analog 
Test 

Storage 
Test 

Figure 2 Logic Card Test Process 

Selective Stress Testing 

System 
Verify 

On previous products, stress tests were 
performed on the complete system, stressing all 
logic cards to the same limits. Although this 
testing is beneficial, the AS/400 functional test 

I AS/400Process 

RSLL374-3 

subjects individual cards to stress parameters 
optimized for each card type. 

Early in the production phase of AS/400 logic 
cards, test results were used to produce stress 

169 



Figure 3 Logic Card Being Functionally Tested 

170 

profiles tailored to the particular failure modes of 
each type of card. Using the profiles, the 
automated tester subjects the logic cards to more 
stringent tests, resulting in a higher-quality 
product at a significant cost savings. 

Rea/-Time Data Collection 
Once the optimal tests were established, real-time 
data collection was used to monitor the test 
process. Components not meeting their 
committed quality levels were found immediately, 
eliminating unnecessary testing. The end result is 
that data collection provides the information 
necessary to continually improve the efficiency of 
the process and the quality of the AS/400 system. 

Final System Test 
The final system test of the assembled AS/400 
system is one additional safeguard to prevent 
shipping any defective parts to a customer (see 
Figure 4). 

Test results on previous products showed that 
only a few components had a high failure rate 
after the first few hours of final test. Quality 
engineering established a requirement on the 
AS/400 system that all parts arriving on the final 
manufacturing line must already be fully tested 
and of shippable quality. To ensure this 
requirement was satisfied, extensive testing was 
done during the early manufacturing build cycle. A 
large sample of systems was subjected to a very 
long final test to ensure that systems that pass the 
standard final test will continue to function 
correctly. 

With this requirement in place, the final system 
test was done primarily to ensure the system was 
assembled correctly. No extended run-in or burn­
in was needed to improve the reliability of the 
system. This final test process resulted in a 
higher-quality product, along with significant 
savings in manufacturing costs. 



Figure 4 Final System Test 

To verify the effectiveness of early stress testing, 
an audit stress test on a small sample of systems 
was implemented to ensure once again that 
quality levels were met. 

Conclusions 
The methods described represent significant 
changes in the IBM Rochester manufacturing test 
strategy, compared to the methods used on 
previous products. The changes were driven by 
requirements for a shorter development cycle, 
higher quality, and lower costs. Early 
manufacturing involvement was a key element in 

shortening the product cycle, because design 
problems were uncovered and repaired before 
manufacturing began. The simplified testing in 
card and system manufacturing improved the 
quality of the assembled product at a significant 
cost savings. The AS/400 product represents a 
new milestone in manufacturing technology for 
IBM Rochester. 

™ AS/400 is a trademark of International Business Machines 
Corporation. 

171 



Disk Unit Manufacturing Process 

Describes advances in manufacturing processes and technology used to assemble disk units for the AS/400 system. 

John T. Costello, Gary L. Landon, and Thomas J. Warne 

Introduction 
The assembly and test of rigid-disk storage units 
is a marriage of high technology and precision 
components in the manufacturing process (see 
Figure 1). The assembly consists of magnetic 
heads, magnetic media, a data channel, and an 
enclosure. The disk units are used for information 
storage and retrieval for computer processing. 

Unique techniques are used to merge heads and 
disks on the Disk Unit (Feature #6100) used in the 
9404 System Unit. And, on the 9332 Disk Unit, the 
disk unit's electronics and microcode perform the 
surface analysis tests on itself. New supply 
logistics (materials support and flow), assembly 
process control, and disk unit testing techniques 
provide efficient, high-quality, and low-cost 
manufacturing and subsequent delivery of 
extremely reliable disk units for the AS/400™ 
system and other computer systems. 

In addition to the design, the manufacturing 
process is a key ingredient for producing a reliable 
disk unit. IBM, Rochester, MN, uses continuous 
flow manufacturing (CFM) to optimize production 
and statistical process control techniques to 
ensure high quality in shipments. 

Logistics Support 
CFM is our strategy now and in the future because 
of the significant advantages achieved using this 
manufacturing philosophy. Assembly and test 
processes follow CFM concepts that are centered 
around just-in-time manufacturing, more 
commonly known as JIT. These concepts focus on 
elimination of excesses, total people involvement, 
and total quality control. To support CFM 

172 

Figure 1 5W' and 8" Rigid Disk Storage Files with Covers Removed 

processes in the manufacturing plant, a 
continuous flow of incoming, defect-free precision 
components, assemblies, and supplies is 
required. 

At the product design stage, an early 
manufacturing involvement purchasing team was 
established to work with suppliers, development, 
and manufacturing. The team established supplier 
selection and qualification criteria that includes 

using CFM and statistical process control. This 
team then involved the suppliers at the design 
level, allowing for better manufacturability early in 
the program. 

High-cost purchased parts are frequently 
delivered to the manufacturing line by way of the 
plant receiving dock, or pulled to the plant dock 
from suppliers through a signal (phone call, 
Electronic Data Interchange, or other method) as 



required. Parts that are delivered directly, or pulled 
through receiving, bypass inspection and 
warehouse stock areas. The parts are taken to 
the manufacturing line for immediate use, or are 
placed in work-in-process storage areas next to 
the assembly line. (For more information, see the 
article Electronic Data Interchange.) The parts 
ready for use are placed on a carousel. As parts 
are requested, they are moved from the carousel 
through a cleaner and assembled, minimizing 
potential contamination. Work-in-process 
inventories are kept quite small by storing them in 
highly visible storage areas where they can be 
readily managed. 

After the disk units have been assembled and 
tested, they are placed into a work-in-process 
transport cart to be moved to the systems 
manufacturing line or the shipping dock. The disk 
units are pulled, as needed, to the systems area 
from manufacturing on a daily basis, or as 
needed. The signal to replenish inventory at the 
system areas is empty carts. The number of carts 
is kept low to minimize work-in-process inventory 
between disk unit manufacturing and the using 
areas. 

Assembly Process Control 
In the disk unit assembly process, several major 
activities are used to control and monitor product 
flow, including CFM, a manufacturing control 
system, statistical process control, and 
automation. 

Because the Disk Unit (#6100) used in the 9404 
System Unit is small, operations are placed close 
together to allow manual transfers. Placing 
operations close together has reduced space 
requirements and the need for material handling 
systems. Pull logic is a CFM technique used to 
control assembly build operations and production 
line flow. Assemblies are pulled from upstream 
operations as they are used; inventory is not 
allowed to build up waiting for use by downstream 

operations. Disk unit assembly improvements 
resulting from CFM pull logic are management by 
sight, reduced work-in-process, and inventory 
replenishment based on consumption. CFM 

concepts were implemented during the design 
stage of this disk assembly program. (See the 
article The Flexible Manufacturing System for 
additional information.) 

1-----/ 
I 

Process 
Control 

Network 
Control Unit 

I 
300 Active Lines 
I 

-/ 1-

Process 
Contro l 

The manufacturing control system is a large 
central computer complex that is attached 
through the network control unit and coaxial 
cables to each test cell, display station, and 
process computer within the manufacturing area 
(see Figure 2). The manufacturing control system 
is used primarily for tester control, process 
sequencing, and data collection. This data 
provides a history of all major events in the 

Disk 
Manufac-
turing 

Card 
Assembly 

File 
Manufac­
turing 

Head 
Manufac­
turing 

Figure 2 The Manufacturing Control System RS LL420-0 

173 



Clean Room 
Class 100 

Non-Filtered 
Air 

Figure 3 Process Flow 

174 

RSLL390-3 

manufacturing process. The control system 
directs the flow of parts and ensures that the 
correct build and test sequence is followed. The 
test and process data retrieved by the system 
from each test and process station is used for 
engineering analysis of yields and process 
performance. Process data is also saved in 
permanent storage for later reference. 

Another method used for process control is 
statistical process control. This is a statistical 
method used to evaluate objectively the 
performance and variability of manufacturing 
processes. The manufacturing control system 
collects this statistical data for analysis. Control 
charts are automatically generated to provide 
timely feedback to engineering and manufacturing 
on specific key parameters and processes. These 
charts identify trends so defects can be 
anticipated and prevented and process variables 
reduced over time. 

Process Flow 
The disk unit build processes begin on two 
distinct lines, the actuator build line and the 
spindle build line, which merge to form a device­
enclosure line (see Figure 3). The device­
enclosure assembly proceeds through this line 
into testing. 

Figure 4 51/4" Disk-Stack Assembly Tool 

On the actuator line, arms are stacked, aligned, 
and clamped to form the actuator body. Next, 
electrical connections are made between the head 
coil wires and the arm electronic-terminating 
pads, using a solder reflow process. Solder 
deposited on the terminating pads is heated 
locally to a liquid state, which allows the wire 
connection. Then, the actuator assembly is tested 
for electrical continuity and sent to the merge 
operation. 

On the spindle assembly line (see Figure 4), a 
bearing is placed into a sleeve that is inserted into 
the spindle bore. This subassembly is then 
bonded into place using ultraviolet (uv) light to 
cure the adhesive. This new uv process reduces 
adhesive cure time, thus lowering work-in-process 
inventory buildup. Disks and spacers are then 
stacked onto the spindle hub by a robot to form a 
base assembly. The disk stack is centered to 
ensure that all disks are concentric with the 
spindle, then clamped and passed to height-glide 
testing. 

The primary purpose of height-glide testing is to 
ensure the disk spindle assembly can be merged 
with the actuator assembly without damage (see 
Figure 5). Disk surface asperities and 

IlIfp'" 



imperfections, static and dynamic disk height, and 
spindle bearings are checked to verify they meet 
specifications. 

In the merge operation, the base assembly, with 
its disk stack, is brought together with an actuator 
assembly to form a disk enclosure. Care is taken 
not to damage the heads or disk surfaces, or to 
generate any contamination, as this could result in 
loss of data, errors in read or write, and even head 
crashes. Due to the closeness of disk spacing, 
special tools and techniques uniquely float the 
heads onto each disk during merge. This method 
minimizes head and disk damage due to contact 
and prevents generation of contamination. 

After the merge operation, servo tracks are 
written on each disk unit (see Figure 6). On the 
Disk Unit (#6100), data heads are used to servo­
write and read back track positions. On the 9332 
Disk Unit, for manufacturing throughput, special 
heads write the servo tracks and the disk unit data 
heads provide read back of track position. The 
servo data is written on a dedicated surface or on 
each data surface prior to each data sector 
boundary, or on both, if necessary for file 
performance. A laser feedback mechanism is 
used to position the heads at the correct track 
spacing. These tracks must be precisely written , 
both radially and on the circumference, so that 
data can be written and retrieved without 
interference from information stored on adjacent 
tracks. (For more information, see the article 
Digital Servo Control for Disk Units.) 

Before the disk enclosure leaves the clean room, 
it must be sealed to protect it from outside 
contamination. Class 100 conditions (meaning that 
less than 100 particles of 0.5 micrometer size are 
found per cubic foot of air) are maintained in the 
enclosure and a pressure test is done to ensure 
the cover is sealed properly. Figure 55%" Height-Glide Tester 

175 





them from contributing to magnetic contamination 
within the process or during disk unit operation. 

After components and assemblies are cleaned, 
subsequent assembly, and some testing, is 
conducted in clean rooms. These rooms are rated 
Class 100. This cleanliness is extremely important 
due to the close distance (approximately 305 
nanometers) that the head flies above the 
magnetic media. Employees playa major role in 
maintaining a clean environment by wearing 
special hoods, gowns, and gloves to minimize 
contamination sources. All parts assembled in the 
clean room are controlled by an Automated Parts 
Handling System. The system monitors the 
inventory, automatically routes parts through the 
cleaners, and delivers parts at the request of 
operators in the clean room (see Figure 7). 

Test Process 
Testing is an integral part of the disk unit 
manufacturing process. Not only does it minimize 
costly rework by catching defects early in the 
process, but it ensures quality and reliability 
through statistical analysis and test process 
control. 

Input Parts 

General Reconfigurable Automated Parts Handling System --

---- Robot -------- ---~ ---------- Ultrasonic 
Robot -- Cleaner ---------

Clean Room 
Class 100 

Figure 7 Clean Room Parts Delivery Control 

Call Stations 

RSLL389·3 

177 



Figure 8 8" Device-Enclosure Tester 

178 

At the device-enclosure tester (see Figure 8), each 
file undergoes tests to verify that critical electrical 
and mechanical parameters are within limits. 
Actuator current, head-function switch time, and 
seek and settle times are measured under a 
variety of situations. Head-tangential, radial-offset, 
and actuator-bias current (current required to hold 
the actuator on track) are measured to ensure the 
mechanical system is operating correctly. A 
magnetic head read-and-write test is performed to 
measure error performance under forced off-track 
conditions. Start and stop times, motor start up, 
and constant speed idle current are also 
measured. A transfer function analysis test of the 
actuator control system is performed to detect 
mechanical vibrations that may affect disk unit 
performance. A particle-count test detects any 
contaminants left in the sealed enclosure. 

To ensure data integrity, a surface analysis test is 
performed to locate media defect sites. If any sites 
are located, they are mapped by the disk unit's 
electronics and are not used for data storage. 
Test data is retrieved and sent to the 
manufacturing control system to be saved and to 
allow the disk unit to be routed. 

The surface analysis method for the Disk Unit 
(#6100) uses a traditional analog test, where a 
constant frequency pattern is written on the disk 
and special detectors monitor the head signal for 
anomalies as it is read back from the disk. The 
test is designed to be fast and thorough. 



Figure 9 8" Device-Enclosure Undergoing Self Surface Analysis Test (SAT) 

The surface analysis test method used on the 
9332 Disk Unit is unique in that the unit actually 
tests itself. The disk unit is almost completely 
assembled in its enclosure when it undergoes 
surface analysis (see Figure 9). The 
microprocessors imbedded in the product 
electronics control the test so that no external 
equipment is needed. 

Prior to shipment, the completed disk unit 
undergoes one final series of tests to detect any 
latent problems. All of the interface commands 
are processed and fault conditions are simulated. 
The disk unit is also run in a simulated operating 
environment, and then it is formatted for shipment. 

Conclusions 
Several new, unique techniques are used to 
assemble and test the Disk Unit (#6100) used in 
the 9404 System Unit and the 9332 Disk Unit. 
These activities, combined with defect-free, 
precision components and assemblies, allow the 
production and delivery of extremely reliable 
storage units for use in AS/400 systems and other 
computer systems. 

™ ASj400 is a trademark of International Business Machines 
Corporation. 

179 



Electronic Data Interchange 

Describes the Electronic Data Interchange system and how it affects manufacturing not only in IBM, Rochester, MN, but throughout the entire 
IBM Corporation. 

Richard E. Albrecht 

Introduction 
The goal to improve the quality of business 
communications between IBM and its suppliers, 
and improving productivity, reducing costs, and 
enhancing customer service, was met by installing 
a system using available state-of-the-art 
technology, thus producing a unique and 
innovative system with minimal invention. 

IBM's implementation of the Electronic Data 
Interchange system is linked directly to the 
Professional Office System (PROFS) and integrated 
into the very fabric of the internal manufacturing 
applications, in a way transparent to the end user. 
The system architecture was designed to be used 
at all IBM manufacturing locations worldwide. 

Adapting The Existing Network and Standards 
The first objective of this project was to use 
nationally approved data communications 
standards. The American National Standards 
Institutes (ANSI) Accredited Standards Committee 
(X12) has been chartered to provide standard 
electronic data formats for generic business 
transactions, usable by any type of business entity 
(public, private, or governmental). These standard 
formats allow dissimilar computer hardware, with 
unique internal data file formats, to communicate 
electronically by converting them to a common 
format. 

A second objective was to use an existing 
provider of networking services. The network that 
offered the necessary security was the IBM 

180 

Information Network, providing proven secure­
data transmission. 

The IBM Information Network (located in Tampa, 
FL) is used to send notes and files, as well as 
business transactions including purchase orders, 
purchase-order acknowledgements, shipping 
schedules, shipment notifications, invoices, and 
payment notifications. 

The network product, Information Exchange (a 
store-and-forward electronic mailbox system), 
acts as a buffer between IBM computer systems 
and those of the supplier. This removes any direct 
connection between the suppliers and IBM 

computers and allows communications to be 
restricted to designated agents at either end of 
the connection. 

A third objective was to integrate the Electronic 
Data Interchange system into manufacturing and 
office systems without disturbing existing 
applications with which users were familiar and 
comfortable. In fact, existing internal applications 
are so interdependent that a change to one 
program could necessitate changes to many 
programs. 

A modular design provided a solution that made it 
simple to add new business transactions to the 
list of transactions already exchanged 
electronically between IBM and its suppliers. 
Because of the way PROFS is linked to the 
Electronic Data Interchange system, the only 

difference between sending information within IBM 

or to an external supplier is the use of a different 
destination node and identifier with the system. 

The fourth objective was to allow suppliers using 
the Electronic Data Interchange system to use 
their own hardware and software. The IBM 

Information Network allowed suppliers the 
flexibility of using IBM or other hardware in which 
they had already invested. 

System Architecture 
IBM must provide a single Electronic Data 
Interchange system solution to its suppliers, so 
that those doing business with multiple IBM 

manufacturing locations have an identical 
Electronic Data Interchange system interface. The 
architecture developed at IBM Rochester is the 
basis for the Electronic Data Interchange system 
architecture for the corporation. The four 
components are: the internal application base; the 
electronic-data standard conversion software; the 
send-and-receive software; and the IBM 

Information Network. 

The internal applications appear unchanged and 
are accessed by an end user through a display 
station or an attached personal computer. A 
router acts as the system traffic cop, ensuring that 
transactions are routed correctly between the 
internal applications, the data conversion 
software, and the send-and-receive software. It 
consists of a series of programs that provide the 
bridge between each internal application and the 
Electronic Data Interchange system. 



Conversion software maps inbound and outbound 
business transactions to the corresponding ANSI 

X12 transaction format. Notes and files that do not 
require conversion are passed directly to the 
send-and-receive software. (Although only ANSI 

X12 transactions are being used at this time, if a 
supplier has already used another electronic data 
format, the software could easily be converted to 
and from any nationally approved data standard.) 

The IBM Information Network provides three types 
of send-and-receive software that allows any 
manufacturer's computer to connect to the 
Network. A Systems Network Architecture (SNA) 

connection allows IBM systems to link to the 
Network through a leased line or satellite 
connection using the SNA communications 
protocol. Remote job entry (RJE) allows an IBM 

mid-range system, or any computer not using SNA, 

access to the Network through a dial-up or leased 
line. Personal Computer Informational Exchange 
allows personal computers to use dial-up 
capability. 

The Network provides connectivity, security, 
network management, maintenance, and billing, 
which simplifies the support required from IBM 

Rochester. 

The supplier's architecture would contain the 
same elements as those at IBM. The supplier can 
start using a personal computer and a dial-up 
modem to exchange notes and files. The system 
can grow to take advantage of business 
transaction exchanges. The supplier can 
implement the transactions that would yield the 
greatest payback the fastest. Most industries start 
with either the purchase order or the invoice 
transactions, both of which are the basis for other 
transactions. Additional transactions can be 
selectively enabled as the supplier implements 
bridges to other internal systems. 

Applications 
All applications shown in Figure 1 are planned to 
be installed and available to our suppliers. 

Two transactions that automate the receiving 
process internally and aid tracking of material 
shipments between IBM and the supplier are 
particularly important. 

IBM's distribution-receiving function is automated 
based on an Electronic Data Interchange system 
interface coupled with the use of bar codes. 
Suppliers are asked to send an ANSI X12 shipping 
notice when material leaves their shipping dock. 
On this shipping notice, the predefined control 
number is converted to a bar code and affixed to 
the shipment. Suppliers can use preprinted bar 

Electronic Data Interchange 
Application 

Files 

PROFS/EDI 

Controls 

PO/ALTER 

Schedules 

POlACK 

Invoice 

Payment 

Ship Notice 

Bar Code 

Receiving 

Transportation 

Drop Ship 

Conversion 

Data To 

Full X12 
and (TDCC) 

X12 
Send/Receive 

SNA Host 
(370) 

RJE (MINI) 

PCIE (PC) 

Figure 1 Electronic Data Interchange Manufacturing Systems Environment 

Network 

I 
B 
M 

n 
f 
0 
r 
m 
a 
t 
i 
0 
n 

N 
e 
t - w 
0 

r 
k 

RSLL411-2 

181 





183 



About the Authors 

Richard E. Albrecht 

Mr. Albrecht is a staff programmer in the 
Corporate Manufacturing Electronic Data 
Interchange project office. He joined IBM, 

Rochester, MN, in 1979 as a systems analyst in 
charge of internal purchasing and accounts 
payable applications. For the past two years, he 
has been working on the Electronic Data 
Interchange project with suppliers. He has 
coauthored a technical report on the Electronic 
Data Interchange system and has participated as 
a speaker in Electronic Data Interchange system 
seminars held by the IBM Information Network 
Marketing group. He received his BS degree in 
Computer Science and Finance from the 
University of Wisconsin at LaCrosse. 

Mark J. Anderson 

Mr. Anderson is an advisory programmer 
responsible for SOL, distributed data management, 
and data base as a member of the AS/400 design 
control group. He also represents the AS/400 
system on the SOL control board. He has spent his 
career working on data base related architecture, 
design, and implementation. He joined IBM, 

Rochester, MN, in 1974 after receiving a BS in 
Mathematics from Luther College, Decorah, IA. 

James H. Bainbridge III 

Mr. Bainbridge is a senior associate programmer 
working in office/personal computer development. 
His experience has been largely in the 
development of host system-to-pc cooperative 
processing functions, including PC text assist and 
the PC Performance Monitor for the System/36. 

184 

He received a BS in Computer Science in 1984 
from the University of Wisconsin at LaCrosse. 

Surinder P. Batra 

Mr. Batra is a development programmer and 
manager in the communications development 
area. Mr. Batra defined the software structure and 
led the design and implementation of the IPCF 

architecture for the test system used in testing the 
I/O processors for the AS/400 family. In his most 
recent assignment, he has been responsible for 
the definition, deSign, and implementation of the 
microcode for the AS/400 Magnetic Storage 
Device Controller. Mr. Batra is a member of the 
Association for Computing Machinery. He 
received an MA in Mathematics from the University 
of Delhi, India; an MBA from McMaster University, 
Hamilton, ONT, Canada; and an MS in Computer 
Science from the University of Santa Clara, CA. 

Donald L. Beck 

Mr. Beck is a staff manufacturing engineer 
working in system stress testing. He joined IBM, 

Rochester, MN, in 1968 and has worked 
developing tester hardware and software within 
manufacturing in the areas of card test, hard 
disks, and subassembly test. He graduated in 
1968 from the University of Nebraska at Lincoln 
with a BSME. 

Neil C. Berglund 

Mr. Berglund is a senior engineer in entry systems 
development. He holds 11 patents for processor 
and I/O controller work on System/3, System/38, 
and the AS/400 system. His most recent 

assignment has been in developing architectures 
for the AS/400 systems. Mr. Berglund holds a 
BSEE from the University of Minnesota at 
Minneapolis. 

J. Howard Botterill 

Mr. Botterill is a senior programmer in the 
software strategy, architecture, and planning 
group at IBM, Rochester, MN. He is responsible 
for the user interface strategy. He joined IBM 

Rochester in 1967 and helped develop the 
Multiple Terminal Monitor Task (MTMT) system for 
System/360. He worked on the Communication 
Control Program (ccp) for the System/3 and had 
the design control responsibility for the System/38 
user interface. From 1982 to 1984, he worked at 
the System Products Division headquarters in 
White Plains, NY, coordinating the division's 
usability process. Since that time, he has worked 
on the design of the IBM Common User Access 
user interface and the design of the AS/400 
interface. He received his BS in Mathematics from 
Wheaton College, Wheaton, IL, and his MS in 
Mathematics from the University of Michigan at 
Ann Arbor. 

Daniel S. Brossoit 

Mr. Brossoit, staff programmer, was the team 
leader of the location manager project on the AS/ 
400 system. His previous aSSignments have 
included work on System/36 APPC, System/36 
APPN, System/36 MLU, and PC Support/36. He 
joined IBM, Rochester, MN, in 1981 after receiving 
a BA in Quantitative Methods and Computer 
Science from the College of St. Thomas, St. Paul, 
MN. 



Delbert R. Cecchi 

Mr. Cecchi is an advisory engineer in the circuit 
technology group. Since 1973, he has worked on 
the design and application of VLSI in System/36, 
System/38, and the AS/400 system. He received 
BSEE and MSEE degrees from the University of 
Minnesota at Minneapolis. 

Dennis A. Charland 

Mr. Charland is an advisory information developer 
in the software strategy, architecture, and 
planning group, where he works on the strategy 
and design of user interface and user help 
facilities. He joined IBM, Rochester, MN, in 1977 
and was involved in developing printed and online 
information for System/38 and System/36. He 
received a BA in Journalism from the University of 
Minnesota at Minneapolis in 1960. Prior to joining 
IBM, Mr. Charland worked at Univac, General 
Atomic, and the Aerospace Corporation. 

Trent l. Clausen 

Mr. Clausen is a staff engineer in the advanced 
systems engineering group. He was the 
microcode team leader for the asynchronous local 
work station controller. Previous aSSignments 
have included microcode design on the 
System/34 and System/36 local work station 
controllers. Mr. Clausen joined IBM in 1975 after 
receiving a BSEE from the University of Nebraska 
at Lincoln. 

Richard l. Cole 

Mr. Cole is a staff programmer with the data base 
management group. Previous experience includes 
working as a programmer and technical team 
leader on the data base, distributed data 
management, and query processing components 
of the System/38. He is currently responsible for 
the extended control program facility data base, 
query processing, journal management, and 
commitment control components of the AS/400 
system. He is a member of the Association for 

Computing Machinery and received his BS in 
Computer Science from Michigan State 
University, East Lansing, MI. 

Donald l. Conroy 

Mr. Conroy is a new products administrator for 
AS/400 systems, responsible for the introduction 
of new system designs into manufacturing. He 
worked as a manufacturing engineer on the 
design of the AS/400 flexible manufacturing 
system and as a process quality engineer 
responsible for manufacturing process 
certification, manufacturing verification testing, 
and process capability studies. He holds an MS in 
Industrial Engineering and Operations Research 
from the University of Massachusetts at Amherst. 

John T. Costello 

Mr. Costello is a senior engineer working on 
advanced manufacturing technology. From 1984 
to 1986, he worked on implementing continuous 
flow manufacturing activity for rigid-disk storage 
units and components. Since joining IBM in 1956 
as an apprentice toolmaker, he has held staff and 
management positions in manufacturing, industrial 
engineering, and manufacturing engineering, 
including program manager in manufacturing 
technology planning. He has a BSME from the 
University of Minnesota at Minneapolis, an MS in 
Manufacturing Engineering from Boston 
University, Boston, MA, and an MBA from Mankato 
State University, Mankato, MN. 

Earl A. Cunningham 

Dr. Cunningham is a senior engineer in disk­
storage recording component integration. From 
1970 to 1974, he was Assistant Professor of 
Electrical Engineering at Lafayette College, 
Easton, PA. He joined IBM, Rochester, MN, in 
opto-electronics, originally working in optics and 
later in flex-file support. He moved to the fixed­
disk drive mission when it began at IBM Rochester 
and has worked in that area since. Cunningham 

has five US patents presently issued, two US 
patents pending, and 22 disclosures published. 
He received his BS, MSEE, and PhD degrees from 
the University of Minnesota at Minneapolis. 

Stephen J. Cyr 

Mr. Cyr is a development programmer in 
performance evaluation, supporting AS/400 
development. Previous aSSignments include 
applications support on System/370 and 
System/38, work on the System/36 5364 and the 
token-ring attachment, and manager of PC 
Support/3X development. He joined IBM 

Rochester, MN, in 1978 with BS degrees in 
Mathematics and Computer Science from 
Moorhead State University, Moorhead, MN. 

Steven A. Dahl 

Mr. Dahl is a senior programmer in the system 
design control group. Since joining IBM in 1970, his 
activities have included work on magnetic-ink 
character recognition and diskette I/O device 
support on System/360 and compiler applications, 
and operating system design for the System/3, 
System/32, System/34, and System/36 products. 
He is currently involved with general AS/400 
design and architectural considerations, with 
primary emphasis on incorporating System/36 
concepts and function into OS/400. Mr. Dahl 
received a BS in Mathematics and Computer 
Science from the University of Illinois at Urbana. 

Gregory A. Dancker 

Mr. Dancker is a staff engineer in the advanced 
systems engineering group. He was the hardware 
team leader for the synchronous local work 
station controller. Previous aSSignments have 
included hardware design on System/36 I/O 

controllers and adapters. Mr. Dancker joined IBM 

in 1978 after receiving a BSEE from the Milwaukee 
School of Engineering, Milwaukee, WI. 

185 





Stephen Hank 

Mr. Hank is an advisory engineer in the 
configuration development group. He joined IBM, 

San CA, in 1977 as a test engineer 
3880 Controller. He transferred to 
Rochester, MN, in 1981 where he was assigned to 
engineering product support for the System/34 
and, while serving in that capacity, developed the 
62PC Data Recovery Program. Following he 
became the technical project leader for the disk 
adapter which attached the 9332 and 9335 Disk 
Units to the System/38, and most recently, the 
Multiple-Function Processor. received BS 

in Engineering Technology from Southern Illinois 
University at Carbondale in 1977. 

Barry Hansen 

Mr. Hansen is a staff programmer working in the 
programmable work station group. He has been 
developing 5250 emulation products since 
and was technical leader work 
function development of AS/400 PC Support. He 
holds BSEE and MSEE degrees from Washington 
State University, WA. 

Mark W. Hansen 

Mr. Hansen is a senior associate engineer in the 
circuit package production center responsible for 
the design and build functional card testers. He 
joined IBM, Rochester, MN, in 1983 and has 
worked on several different card testers during his 
career. graduated from the University 
Nebraska at Lincoln with a BSEE. 

Raymond K. Harney 

Mr. Harney is currently co-team leader of the APPN 

project. He has been involved with several 
products the System/38 and AS/400 
system including APPC, SNA host connectivity, 
node type 2.1 connectivity, SNA management 
services, and I/O processor attachment on the 

AS/400 Mr. received his BA 

1981 in Physics, and Computer Science 
from Luther College, Decorah, IA. 

John Y. Harrington 

Mr. Harrington is an advisory information 
developer in the software strategy, architecture, 
and planning group working on interface 
design specifications. He previously worked 
in the information development group as an editor, 
where he worked on documentation for both 
System/36 and System/38. Prior to joining in 
968, Mr. Harrington employed by Univac as 

a publications editor. Mr. Harrington received a SA 

in Psychology/English in 1959 from the College of 
St. Thomas, St. Paul, MN. 

Peter J. Heyrman 

Mr. Heyrman is a staff programmer in the 
System/36 environment development group. 
Since IBM in , his experience includes 
System/36 print spooling, System/36 command 
processing, and the System/36 environment. Mr. 
Heyrman received a in Computer Science from 
the of Wisconsin at Oshkosh. 

Merle E. Houdek 

Mr. Houdek is currently senior engineer 
engaged in performance analysis and modeling of 
processor and I/O hardware. His previous 
assignments have been with custom systems, the 
3740 Data Entry development group, and 
the System/38 development group. He joined IBM 

in 1964 after graduating with a BSEE from Tri-State 
University, Angola, IN. 

Fred L. Huss 

Mr. Huss an advisory engineer storage 
subsystem development. He joined IBM in 1973 
and initially worked on logic design for optical 
character recognition machines. He later became 

involved in microcode development display 
stations and remote work station controllers, 
focusing on design and implementation of SNA 

and data stream protocols. He also was involved 
early management and system 

architecture definition the AS/400 system. 
most recent assignment has been lead microcode 
designer for the Magnetic Storage Device 
Controller. Huss received a BSEE in 1970 

MSEE in 1973 from Dakota State 
University, Fargo, NO. 

David L. Johnston 

Mr. Johnston is an advisory engineer in the 
customer support design control group. His 
assignments have been in hardware and software 
development and have centered around RAS 

engineering for several optical page products and 
the System/38. His assignments on the AS/400 
system included the vital product data and system 
reference specifications. He managed 
the design of the tools set and processes used to 
produce printed copy and online reference-code 
translate tables. Mr. Johnston has seven US 
patents one US patent and 
disclosures published. He joined IBM, Rochester, 
MN, in 1963 after receiving his BSEE from the 
University of Minnesota at Minneapolis. 

Christopher H. Jones 

Mr. Jones is currently co-team leader of the APPN 

project. Previous assignments work 
System/36 APPC, System/36 APPN, node type 
connectivity, SNA management services, and 
attachment of personal computers to the 
System/36 and the AS/400 system. Mr. Jones 
received his BS in Business from Rochester (NY) 
Institute of Technology 978 and his BS in 
Computer Science from DeVry Institute of 
Technology, Atlanta, GA in 1984. 

187 





diskette devices. His responsibilities have included 
both hardware logic and microcode for small 
systems and I/O products. He has held microcode 
team leader positions and had architecture 
development responsibilities for work stations and 
storage products. His most recent aSSignments 
have been technical guidance for the 
implementation of the storage product 
architectures. 

Robert W. Lytle 

Mr. Lytle is a staff engineer responsible for the 
final manufacturing system test for the AS/400 
system. He joined IBM, Rochester, MN in 1982 and 
has worked in both hardware and software 
development of manufacturing tests on system 
products. He received a BS in Mathematics in 
1972 from South Dakota State University, 
Brookings, SO, and an MS in Engineering from the 
same institution in 1982. 

Paul R. Mattson 

Mr. Mattson is an advisory programmer in the 
communications area. His early communications 
aSSignments include working on the APPC I/O 
manager, 5250 display station pass-through, and 
the X.25 I/O manager. During those aSSignments, 
Mr. Mattson earned an MS degree in Computer 
Science from the University of Minnesota at 
Minneapolis. His most recent aSSignment included 
technical design leadership for the sNA-based 
data link control I/O managers on the AS/400 
system. He is a member of the AS/400 
communications design control group. He joined 
IBM, Rochester, MN in 1981 after earning BA 
degrees in Mathematics and Computer Science 
from Luther College, Decorah, IA. 

James M. Mickelson 

Mr. Mickelson is an advisory programmer in 
capacity planning tools development. He joined 

IBM in 1966 and worked on System/360 device 
support and compiler development until 1973. He 
then worked on System/3 communications 
support until joining the performance group in 
1978. Work in this area has included performance 
modeling and capacity planning for IBM mid-range 
products. He received a BS in Mathematics from 
the University of Wisconsin at Eau Claire in 1966. 

John A. Modry 

Mr. Modry is an advisory programmer in the 
System/36 environment development group. He 
joined IBM, Rochester, MN in 1976 and worked on 
System/38 work management through 1981 . 
Since then he has worked on System/38 3270 
device emulation and had various development 
and architectural responsibilities in the 
development support area. Mr. Modry received a 
BS in Computer Engineering and an MS in 
Computer Science from the University of Illinois at 
Urbana. 

James R. Morcomb 

Mr. Morcomb is a senior engineer and manager of 
the customer support design control group. He 
joined IBM, Rochester, MN, in 1957 and has held 
various development and development 
management positions with a strong emphasis 
toward RAS, service, and customer support. He 
managed the engineering RAS development 
department on System/38 with primary 
responsibility for developing the advanced 
automated service support capability of the 
system. In 1982, he chaired the SPD task force that 
developed the mid-range systems RAS strategy 
which became the basis for the RAS support on 
the 9370 system and for system support. Since 
1986, he has served as chairman of an 
interdivisional steering committee that oversees 
the worldwide implementation of system support. 

Michael F. Moriarty 

Mr. Moriarty is an advisory programmer in the 
software strategy, architecture and planning 
group. He joined IBM, Rochester, MN, in 1968. 
From 1969 to 1971, he was in the US Navy as a 
programmer at the Bureau of Naval Personnel 
(BUPERS), Washington, D.C. He has worked on the 
software development of the System/3, 
System/32, System/34, System/36, and the 
AS/400 system. He received a BA in Mathematics 
from the University of Missouri at St. Louis in 
1968. 

Timothy J. Mullins 

Mr. Mullins is an advisory engineer involved in 
processor performance analysis. He has done 
work in the design and development of I/O 
controllers for System/38 user display devices. 
Mr. Mullins later became involved in processor 
development in logic design and timing analysis. 
He joined IBM, Rochester, MN, after receiving his 
BSEE degree from the University of California at 
Berkeley in 1977. In 1982, he received his MSEE 
degree from the University of Minnesota at 
Minneapolis. 

Hjalmar H. Ottesen 

Dr. Ottesen, a Senior Engineer, joined IBM in 1962. 
He is currently working in advanced rigid-disk 
servo technology and applications. He has held 
various technical positions in advanced 
development of magnetic recording channels and 
position servo control systems for tape, disk, and 
mass-storage devices. He also spent four years in 
an IBM World Trade branch office working with 
customers on APL programming applications. He 
has nine US patents issued and 16 disclosures 
published. He received his BS, MS, and PhD 
degrees from University of Colorado at Boulder in 
1961, 1962, and 1968, respectively. 

189 



Renato J. Recio 

Mr. Recio is a project engineering manager 
responsible for the software and hardware 
architecture and design of I/O adapters and 
processors. He joined IBM, Rochester, MN in 1982 
as an engineer working on I/O device attachments 
for the System/36. He holds several disclosures 
relating to storage I/O adapters, processors, and 
devices. He is currently working on data 
structures for storage I/O devices. Mr. Recio has a 
BS in Electromagnetics/Electronics from the 
University of Illinois at Chicago and is taking 
coursework towards an MBA from the University of 
Minnesota at Minneapolis. 

Arthur P. Reckinger 

Mr. Reckinger is a senior engineer and manager 
in systems packaging. He has had assignments in 
card machine technology, key entry technology, 
electronic packaging technology, and systems 
architecture. Other assignments have included 
product development on the 3747 and systems 
development on the System/38. He joined IBM in 
1967 after earning his BSEE and MSEE from the 
University of Missouri at Rolla. 

Kenneth R. Reid 

Mr. Reid is a senior engineer and manager of high 
performance systems hardware product design. 
His experience includes design and development 
of I/O (card readers, card punches, optical 
readers, printers, and check readers), System/38 
service processor design, and System/38 RAS. 

For the past several years, he has managed 
several different departments in System/38 and 
System/36 development, mainly in the area of 
diagnostics and microcode development. He 
joined IBM in 1964 after receiving his BSME and 
MSME from North Dakota State University, Fargo, 
ND. 

190 

Jeffrey E. Remfert 

Mr. Remfert is an advisory engineer in the 
advanced systems engineering group. He was the 
microcode team leader for the synchronous local 
work station controller. Previous aSSignments 
have included both hardware and microcode 
design on System/34 and System/36 I/O adapters. 
Mr. Remfert joined IBM in 1970 after receiving a 
BSEE from the University of North Dakota at Grand 
Forks. 

James R. Rubish 

Mr. Rubish is a senior associate engineer in 
advanced systems engineering. His primary 
responsibilities included the design, 
implementation, and verification of the AS/400 
processor. Mr. Rubish previously partiCipated in 
processor design and support for System/36. He 
joined IBM, Rochester, MN, in 1984 after receiving 
a BSEE from North Dakota State University, Fargo, 
ND. 

Larry F. Saunders 

Mr. Saunders is an advisory engineer in 
automation technology. Since joining IBM, 

Rochester, MN, in 1976, he has participated in the 
development of the System/32 and System/34 
processor hardware and provided support and 
education to other engineers using simulation, 
LSSD test generation, and structure-processing 
design automation tools. Since 1982, he has led 
the development of new design automation tools 
related to hardware description languages and 
high-level logic synthesis. Mr. Saunders is a 
member of the Computer Society of the IEEE. He 
received a BSEE degree in Computer Hardware 
Design from the University of Illinois at Chicago. 

Quentin G. Schmierer 

Mr. Schmierer is an advisory engineer in the 
central processor development group. His 
experience at IBM has included developing a 
System/38 flexible disk controller, a high-speed 
tape drive controller, and development work on 
three IMPI processors. Mr. Schmierer holds an IBM 

First-Level Invention Award in recognition of a 
patent application and nine published inventions. 
He received a BSEE in 1976 from North Dakota 
State University, Fargo, ND. 

Michael J. Snyder 

Mr. Snyder is an advisory programmer in the 
system design control group. He joined IBM, 

Rochester, MN, in 1978 and has held various 
aSSignments in software development and 
management on System/38 and the AS/400 
system. His AS/400 aSSignments included the 
initial design for the customer support functions 
as part of the customer support design control 
group. Mr. Snyder received a BS in Mathematics in 
1970 and an MS in Computer Science in 1976 from 
the University of Missouri at Columbia. Prior to 
joining IBM, he was employed by Texas 
Instruments and also served in the US Navy. 

Duane A. Spencer 

Mr. Spencer is an advisory planner responsible 
for system hardware quality and reliability. He 
joined IBM as a customer engineer in Hammond, 
IN, in 1967. In 1977, he transferred to IBM, 

Rochester, MN, as a member of the NSD service 
planning staff. Following various systems support 
and development aSSignments in service 
planning, he joined the advanced systems 
development group in 1984. 



Zanti D. Squillace 

Mr. Squillace is an advisory engineer in system 
mechanical development. He joined IBM in 1962 
and has had many technical assignments in 
optical character recognition and systems 
development. He received a BSME from the 
University of Minnesota at Minneapolis and is a 
registered professional engineer in Minnesota. 

James C. Stewart 

Mr. Stewart is a staff programmer in performance 
measurement and analysis. Past experience 
includes work in the US Navy, as an instructor in 
their Nuclear Propulsion Training program, and 
work for Sperry Univac Corporation, in the area of 
computer-assisted instruction. After joining IBM in 
1977, he worked in a variety of assignments, all 
associated with the System/38. For the past five 
years, he has been involved in performance 
measurement and analysis work on the 
System/38. He received his BS in Mathematics 
from Moorhead State University at Moorhead, 
MN, in 1967. 

Richard A. Tenley 

Mr. Tenley joined IBM in 1965 in Kingston, NY. He 
had various power supply design responsibilities 
which included the TSR-6 family used in the 
System/370 158 and 168. In Rochester, he has 
held several assignments in power systems 
development. Mr. Tenley received a BSEE from the 
University of Minnesota at Minneapolis in 1960. 

Dale J. Thomforde 

Mr. Thomforde is an advisory engineer in the 
central processor development group for the 
AS/400 system. He was heavily involved in the 
performance aspects of the processor design. 
Mr. Thomforde has one US patent pending and 13 
disclosures published. He received a BSEE in 1973 
from the University of North Dakota at Grand 
Forks. 

Keith L. Thompson 

Mr. Thompson is an advisory engineer 
responsible for system hardware quality and 
reliability. Past IBM assignments have included the 
development of card I/O products; display and 
work station systems; display station, printer, and 
disk unit system adapters; and memory 
subsystems. He joined the advanced systems 
development group in early 1984. Mr. Thompson 
joined IBM, Rochester, MN, in 1965 after he 
received BSEE and MSEE degrees from North 
Dakota State University, Fargo, NO. 

William A. Thompson 

Mr. Thompson is an advisory programmer in 
advanced systems engineering. He is lead 
designer for the AS/400 Service Processor 
microcode. Before joining advanced systems 
engineering, he had a variety of assignments 
within the System/38 programming center. He 
holds an invention disclosure for high-level data 
addressability. He graduated from State University 
of New York at Cortland with a BS in Secondary­
Education Mathematics and received an MS in 
Computer Science (Operating Systems) from 
Rensselaer Polytechnic Institute, Troy, NY. 

John N. Tietjen 

Mr. Tietjen is an advisory engineer in AS/400 
engineering development. Past assignments 
include printer adapter hardware and microcode, 
work station controller microcode, and 
department manager. Mr. Tietjen has held various 
I/O related assignments in System/3, System/38, 
and AS/400 engineering. He joined IBM, 

Rochester, MN, in 1970 after receiving his BSEE 

degree from Arizona State University, Tempe, AZ. 

C. David Truxal 

Mr. Truxal is a senior programmer and manager 
of the design control group for AS/400 Office. He 
joined IBM in 1967 in Kingston, NY, to work on 
virtual storage management. After serving in the 
US Navy, he worked for Control Data Corporation. 
He rejoined IBM, Rochester, MN, in 1977. His 
assignment was in the System/38 Architecture 
and Design Control groups, working on the 
system's integrated data base and security 
design. From operating system design 
responsibilities, Mr. Truxal moved into 
management of the high-level languages and 
utilities design control group for System/38 and, 
from there, to an office planning position for 
System/38. 

Thomas M. Walker 

Mr. Walker, a staff engineer, has held a variety of 
assignments within processor development. He 
holds one US patent and two invention 
disclosures in system performance 
measurements. He graduated from the University 
of Washington at Seattle with a BSEE. 

James O. Walts 

Mr. Walts joined IBM, Poughkeepsie, NY, in 1968 
as a programmer. Since then, he has held 
technical and managerial positions in 
communications-oriented advanced technology 
projects. In addition to participating in the early 
design efforts of System/38 and the AS/400 
system, he was a lead designer of the LU type 6.2 
and SNA implementations. He is currently the 
manager of AS/400 Strategic Communications 
and Networking. Mr. Walts received his BA in 
Secondary-Education Mathematics from the State 
University of New York at Potsdam and his MS in 
Applied Science Systems Programming and 
Languages from the College of William and Mary, 
Williamsburg, VA. 

191 



Thomas J. Warne 

Mr. Warne is a staff engineer in rigid-disk storage 
unit development. He started with IBM in 1977 as a 
test equipment design engineer in disk 
manufacturing. He was part of the original team 
that produced IBM Rochester's first 8-inch disks. 
Since 1982, he has worked in test engineering on 
surface analysis test equipment and was a 
member of the team that developed the self-test 
approach for surface analysis on the 8-inch 9332 
Disk Unit. He has a BSEE from the University of 
Wisconsin at Madison. 

David G. Wenz 

Mr. Wenz is a senior programmer in the office 
design control group. He started his career on 
compilers, and then moved into end-user utilities, 
such as source entry, data entry, screen design 
aid, and text editors. He has been involved in 
office products for several years, including 
DisplayWrite/36, shared folders, and the PC 
Support Organizer menu. He has three US 
patents pending and 44 disclosures published. He 
graduated in 1967 with a BA in Mathematics and 
Psychology from the University of Wisconsin at 
Oshkosh. 

192 

David N. Youngers 

Mr. Youngers is an advisory programmer working 
in office/personal computer development. He is 
recognized for his work with System/38 Source 
Entry Utility, Screen Design Aid, and Text 
Management, and with System/36 
DisplayWrite/36 and PC Support/36 Office 
products. He joined IBM, Rochester, MN, in 1979 
after graduating from Iowa State University, 
Ames, lA, with a BS in Computer Science. 


