
COMMON

Proceedings of the Chicago Meeting

April 8-10, 1968

Pick Congress Hotel

<. TABLE OF CONTENTS

Date Topic Speaker Pages

April 8 A) Green words in FORTRAN R.D. Pollit 9

B) OS/DOS Data Compatibility f1

11 1800 Sound Off/Update 1
11 1620 Project 1
11 1130 Monitor Version II 1
'I 360/20 Organizational Meeting 1

11 A) OS/360 Data Management B. Ferguson 5

B) OS/360 Linkage Editor 11 6
11 Use of CRT on 1800 J 0 Gordon 17
11 22601/0 Operation for 1800 R. w. Page 23

using TSX

11 A) Experimental IBM 1620/ P.A. McCollum 37
Donner 10 - 20 Hybrid System

()
for Engineering Education

B) Subroutines for Set and Group G. Weingart 13
Mani pulation

11 S/360-DOS (BTAM and QTAM) D. Mueller 64
11 1800 -360 Communications W. Barnes 41
11 1620 Papers L. Hoffman, P. Jutsum, 55

J. Powell, R. Larne
11 1130 Users Experience Panel W. C. Gray 1

W. F. Burggrabe
11 What a University Computing E. D. Fitzpatrick 5

Facility expects from OS/360

11 A) Full FORTRAN under DOS G. Kaplan 12

B) FORTRAN Alter System O. Bufe, A. G. McKee 8
It Solution of Large Simultaneous S. R. Phansalker 10

11 1130 Sound Off G. F. Schoditsch 1
April 9 OS/360 Languages W. B. Garrison 7

11 1800 MPX Tutorial T. Candy 51

11 A) Version 3 of CSP J. Horn 1 .'
·1

====Z&&&J=;:=:n:&Qr.::.MIlt" ,A,· 1', '~'" "'" ':S .. U <I, 'o,4",.£n ,SZIt, "' "" "' 'I'''' ... "",

TABLE OF CONTENTS/cont'd
r .
. ~

Date Topic Speaker Pages

April 9 B) Commercial Applications -1130 D. Christians 11

C) CSP Extras D. Dunsmore 12

-"- D) FORTRAN Coding Sorting D. Gardner 13
Procedures

!I Control of Programming and OP P.A. Bickford 6
Costs

II A) 360-DOS Version 3 B. \Nhite 1

B) Comparison of FORTRAN to PL/I G. Kaplan 18
II 1800 MPX I-Internals P. Healey /L. Arthur 1

II A) Conversion Experiences and Tips R. L. Cornell 5

B) Computer Conversion J. Bobay 6

C) Professional Programmers A. S. Gloster 3 (and Analysts
II N/C Languages and Graphics W. Peterson 1
II The COMMON Challenge Dr. J. Porter 4
II SHARE OS/360 Report J . A. Woodworth 8

" A) Computerization in the Clinical Joan Lukin 31
Lab

B) Acquisition and Analysis of EEG Dr. E. Donchin
II IBM Direct Digital Control R. Pomerance 6

Program
II LP MOSS Tutorial C. Muller 1
II Software Development (Panel) E. F. Linick 6

R. Magee 1
II Computer Graphics and N/C J. Talkington/E. Becker 1

II A) New 1800 Lab. M-onitor System B. Polishok 8

B) Procter of Gamble's Lab D. Hutchins 22
Aut.' System

II LP/ MOSS Tutorial C. Muller 1
" 1400 to S/360-25 Conversion R. Pollit 3

, " 1130 General Purpose Plotting P. J. Woodrow 23 C
Program

2

~\:
TABLE OF CONTENTS/cont'd

Date Topic Speaker Pages

April 9 DOS Multiprogramming A. Ragsdale 1
Facilities (Panel) W. Sole, B. White

April 10 S/360 Commercial Users F. Hatfield 1
Discussion

" PID Activity D. Leeson 19
11 Systems & Prog. Proj. Mgt. P. Woodrow 22

and Open Shop / and B. Cording 2
Disk File (Panel) L. H. Baker 7

11 1130 LP/MOSS Experiences G. Schoditsch 6
Dr. S. Hathorn

" A) 1130 Multiple Regression D. Gardner 20
Program

B) 1130 Assembler Programming M. Hechter 22
Aids

0 " A) 1620 FORTRAN 11-D P. P. Emin 26 -.

B) 7094 Program for the 1620 R. S. Butler 10 --
11 Intermediate Course for P. Savides 17

Application Programmers
" Petroleum Industry Graphics J.R. Reese 2

on the Geo Space DP203 Plotter

" A) Control Optimization Program L. Schaider
for 1130/1800

B) Simplex Optimization Techniques W.A. Pease 31
for Mixtures

" 1800 Project Sound Off & Plans R. W. Forstrom 1
" DOS Physical IOCS and FORTRAN A. Saunders 11
" 1130 PLAN J. Sams/D. Weber 12
" 1130 SL/I Compiler Dr. S. Lee 7

" A) IBM SE Support W. Gillis 1

B) IBM FE Support G. Monjeau

• C) Role of IBM Marketing Rep. R . Lukeman

3

"illIlIdillWiWiw;;m;iLiI@iJbGGELCSli& UiWiR ~.~. "-

c'

c

SESSION REPORT

r: .. ""." ",..- COMMON - Chicago

Session Number MON Bl Session Name 360 Full Project ----------------------
Chairman Ae Ragsdale

--------~------------------

Time 10.30 to 12.00 Attendance (No.) 120
--~~~--------

Speakers _____ Mr _____ R_. __ D_e __ P_o_l __ li_t __ -___ I_BM ____________________________________ __

"Green Word~'in FORTRAN

OS/DOS D~ta Comp~~ilitY

o

Synopsis of Meeting "Green Words" in FORTRAN are becomming extinct_

It was stated that the main incompatibilities of data between OS and

DOS were as follows. 1) Tape labels - OS does not support DOS user labels

2) Disk incompatibilities were.

a) Track initialization

b) Location and content of VTOC

c) Labels

d) File definition and method ot del~_~~ng ".

e
records fror In~~xed Sequential Files.

Speaker:

Topic:

R. D. Pollitt

Greenwords in OS and DOS
OS/DOS Data Compatibility
Cross Use of DASD Utility Programs

Greenwords in OS and DOS FOR TRAN

Greenwords existed in unformatted, sequential FOR TRAN data sets

through DOS Release 13 and OS Release 11. Because they were not

compatible with any other 8/360 function, they were eliminated in

both DOS and OS.

A greenword was the vehicle for telling FOR TRAN that a logical record

spanned more than one physical record. Something was required because

the m.aximum length of an unformatted physical record in DOS was 256

bytes. The greenword occupied the first 4 bytes of the record. Byte 1

indicated whether additional physical records were required to com.plete

a logical record. Bytes 2 through 4 contained the record length. The

first non-zero byte 1 encountered signaled the end of the logical record

and the number of physical records.

New FOR TRANs do not handle greenwords. Therefore; IBM has provided

data conversion utilities to purge data sets of greenwords and establish

360 standard record length fields in thei~ place.

c

OS/DOS Data Compatibility

1. General

A. Data records created by the same access method are

generally the same, with some exceptions which will

be described.

B. Most incompatibilities regarding tape files are associated

with labels.

C. Disk incompatibilities involve labels, some elements of

access m.ethods and some record incompatibilities.

II. Tape Data Sets

A. Standard Labels

DOS tape files are written with one header (HDR) label.

OS/360 tape files are written with two header labels. DOS

will accept an OS created tape file as input and will auto-

matically bypass the second label. OS will accept a DOS

created tape as input, ignoring the absence of the second

label provided that its information is provided by the DCB

or DD statement. This information includes:

1. Record format

2. Block length·

3. Record length

4. Tape density.

B. Non-Standard Labels

o The DOS user provides routines in the individual program

that references non-E;tandard labeled tapes. OS/360 requires

-2-

that COITlITlon routines be coded and included in the

systeITl at system generation tiITle. These routines

are:

1. Input header

2. Input trailer

3. Output header

4. Output trailer.

The appropriate non- standard label routine is selected,

brought into ITlain storage and executed whenever an OPEN,

CLOSE, end-of-voluITle or end-of-data set condition occurs.

C. User Labels

DOS supports user labels while OS does not. OS will skip c
existing user labels and will not create new ones.

D. Unlabeled Tapes

DOS unlabeled tapes can have a tapernark before the first

file. The languages handle the tapeITlark as follows:

Ass eITlbler optional, specified by prograITlITler

COBOL generates tapemark

FORTRAN no longer generates tapemark, will

bypass if present

PL/I optional, default option generates tape-

mark

C) ..

RPG generates tapemark

o

•

E.

-3-

OS unlabeled tapes do not have the tapeITlark. A tape

created under OS and used as input to a DOS prograITl

that expects a tapeITlark as the first record will read

past the file looking for a tapeITlark.

If a tape created by DOS is used as input to an OS prograITl

and the first record is a tapeITlark, the user ITlust state

in the DD statement that the file is the second data set on

the tape. This ITlethod applies only to a single volume

'data set. The data sets could then be concatenated and

LABEL=2 can be coded in the DD stateITlent for each data

set.

Checkpoint Records

OS does not permit checkpoint records within data sets.

DOS does permit them.

F. File Name

In both DOS and OS the file name may be 17 characters.

In DOS the names can be any forITlat, including eITlbedded

and trailing blanks. In OS the label data set name must

have no embedded blanks and must not have more than 8

characters between periods.

Eg. File Name DOS OS

MASTER FILE OK NO

MASTER. FILE OK OK

MASTERFILE OK NO

---_. - ._ •.•.•• _ _• _----_._-----_.
------- - - ------------- ---- --- - ----

III. Disk Data Sets

A. VTOC Differences

1. DOS permits the VTOC to be on cylinder 0, track 0.

Under OS, the VTOC may not be on cylinder 0, track 0.

2. DOS does not build a Format 6 DSCB for split cylinder

files. as does and, therefore, OS could not process

split cylinder files created by DOS.

3. OS maintains a Format 5 DSCB to describe unused space.

DOS does not. as uses this to provide automatic control

of direct access space allocation and could not perform

this function on a DOS generated pack.

B. Track Initialization c
1. The BPS DASDI (Initialize Disk) used by DOS USers to

initialize a disk and the as DASDI are quite dissimilar.

Some of these differences are significant enough to prevent

interchange of disks between the two systems.

2. Flagging of defective tracks during initialization is handled

differently. In as, the RO data length is set to 0. BPS

DASDI sets the RO data length to 8. DOS interprets the OS

data length of ° as an end-of-file condition.

C. Direct Access Space Allocation

OS provides the capability of automatic control of direct access

space allocation. The user mus t specify only the estimated o
minimum size of a data set, plus the size of one or more incre-

c'

o

•

-2-

mental additions; the system will automatically allocate this

space dynamically as the data set is generated and/or stored.

If more increments were specified than were needed, the system

will release the unneeded increments for other uses. DOS has

no such capability.

D. Direct Access Method Differences

1. In OS, when the direct access data set is created, dummy

records are written for those records which do not exist

at creation time. The capacity record indicates that no

space exists on the track. When a new record is created,

the dummy record is overlaid with this new record.

In DOS, only valid records are written when a Format F

data set is created. The capacity record reflects the

remaining available space. When new records are added

to the DOS data set, the capacity record is interrogated,

the data record written and the capacity record updated

to reflect the addition of the new record.

This difference forces the DOS user to convert such

direct access data sets before using them in an OS system

or to refer to them in OS as Format U data sets .

-3-

2. In DOS, direct organization files occupy absolute extents

assigned by the programmer. In retrieving a record, the C
user must present IOCS with a specific track addres s of

the desired record. In as, direct organization files can

occupy extents assigned by DASD space allocation routines.

In retrieving a record, the user can present the access

method with the track address relative to the beginning of

the data set. BDAM will compute the actual address,

dependent upon the current actual location of the data set.

E. Index Sequential Access Method

1. In DOS, the user must establish his own convention for

indicating which records are delete records and he must

also decide how and when to delete them.

2. OS provides a feature for deleting records automatically.

The first byte of the data record is reserved for a delete

code. This code is specifically "FF" hexidecimal. When

sequentially retrieving, "FF" records are not retrieved.

When randomly retrieving, "FF" records are returned and

the user must check and delete. Deletion records are

automatically dropped from a data set when:

a.

h.

An addition to. the track containing the record

marked for deletion displaces this record from

its prime track (it is dropped rather than displaced

to an overflow track).

The data set is reorganized.

c

c

c

o

•

F.

-4-

A conversion process generally must be performed for DASD

volumes created under DOS before they are usable with OS

programs for the reasons stated above.

__ 0".--

c

c

()

o

•

Session Number Mon B2

SESSION REPORT

COMMON - Chicago

---------------------- Session Name 1800 Soundoff

and Update Chairman R. W. Forstrom

Time 10.30 to 12.00 -------------------------------- Attendance (No.) 130 ----------------

Speakers __ ___

Synopsis of Meeting Question and answer session between users and

IBM. New SRL manuals available.

C26-3720 MPX Subroutines

C26-3724 MPX Techniques

.......!&WiiiIiGW&Il!Ji D""Jb~--

SESSION REPORT

COMMON - Chicago

Session Number MON B3
--------~-------------

Session Name 1620 Proj,ct

Chairman H. B. Kerr

Time 10.30 to 12.00 AM
------~~~~~~~~~----------

Attendance (No.) ____ 5~5 __________ _

Speakers George German

Prank B*sh

c

Synopsis of Meeting Well attended. Excellent presentations. Good

questions and answer. session. Space was far too small and cramped.

Good visual aids were present and were used.

c

------------------------------------~-~~-

C'

o

•

SESSION REPORT

COMMON - Chicago

Session Number MON B4 Session Name 1130 MONITOR Version 11 ---------------------
Chairman P. J. Woodrow

Time ------------------------------10.30 to 12.00 Attendance (No.) ----------------218

Speakers Mr. Dudley Dinshaw and Mr. Gene Lester - IBM. San Jose

NOTE. This session was repeated at 5.30 PM Monday to about 30 people

who could not fit into original roam

Synopsis of Meeting this tutorial session. primarily Oft differances

between the 1130 Disk MONITOR. Version 1 and Version 2. vaa split into

two talks. Mr. Dinahaw discussed the new features of the .'Mmbler and

FORTRAN caapiler. Mr. Lester discus.ed changes in the Disk Utility

'rogr.. and Supervisor. Numerous questiona were .sked (and most

&nswered ~ediately) concemina various aspects of the new version of

the IBM 1130 Disk Monitor System •

-

SESSION REPORT

COMMON - Chicago

Session Number ----------------------MON B5 Session Name 360/20 Organizational

Chairman R. L. Mason Meeting

Time 10.30 to 12.00
------~~~~~~~------------

Attendance (No.) 8
--~------------

Speakers R. L. Mason - Westinghouse

Van Hettinser - IBM

Synopsis of Meeting The meeting wa. conducted to determine what interest

there misht be in eatabliShius a SIp.rate project group within eommon

for the 360/20 users.

An informal discussion followed which indicated interat on IBM

application package. for the Model 20. Three of the participants were

representiD8 mult-plant companies which in turn could provide a source

of attendees at future meetings.

Tentative plaDs were'made to conduct another se.sions in Philadelphia

to. 1) Further organize the group aDd 2) have a s.parate •••• 10n for a C
Bill of Material Proces.or discu •• lone

CI

o

SESSION REPORT

COMMON - Chicago

Session Number MON C1
--~~~~-------------

Session Name 360 - Full Project

Meeting Chairman W. Norton

Time 1.30 to 3.00 PM Attendance (No.) -----------------

Speakers Mr.:' B. Ferguson - IBM. Chicago

Synopsis of Meeting Data Management and the Linkage Editor.
--------------~--------------------=-------------------

a&iiWi&&iiGWI\I&lmm;j6lldfl&ii:m:.m; ;It;;;;;:;,#~ 'f,,¥+':N-,f,!Tf.If,f.fllf'$$4fiiM?, if,NI·W,f#i A41l1. ;;;"+';/4';;;,,. 4, AM

c

MINCl

'.
I&GtiOC&&iiWIi1'&Miinm::aXItJ,UAIkWZgpi#,", ,'\#¥AA?lA ,"T,'," 4······ pill.

I

I

as
CONTROL FACILll~IES

· LOCATION OF DATA
, Lt\ ~ EL~lr\j G

· CA 'r A LOG 0 F
D A er A S,E ~r f\~ A N] E S '

' .. A lJ ~'73 0 l\/J fJ'" ft1-';:r,,') I C' V o~ I 'La 't!l ~::' C ~~. f ~,' 0 \1 J :$'~ ~.~ '~,;;>". . 9 S v D {!''-"Q~

RECOGNI~rIOf~ Lj

· DIREc~r ACCESS SPACE

MANAGEftAEN'T'

•

['".it ... > ~.)...1

(7::!
:::c,j
(,}')
~i':"')

C.,. .::\~

"~

. 4t'J,c!

(.:~'
C·L..·!'...~

(("f)
c::.r
(C] ;.,.~:..

(" .. '<c"'»

~
c::" -.~

C:~"!
(f)
r-I~·\:;;'~

',~ c;'
£: .. ,~
~.~" (.-:~~

~J)
til7.~..:: .•

(2)

~:,"~

c,::3:
(j)

(r·· .. ".,
':)

~: ..
,"" ... ~

.:.' ~:..~\)

t:::)
(?J

tIC:"'" ~~-~~
C'.·;;,~ (;-~-:"

c;1: (/'~?
~~

~'~ [:,;~~-
t', ~

tis) f'E) ·· 1 . .:.~~

c: --: I
_:-}!,~~w:!. _'j.""'~ A::r:.. '.t-';"::-:':. .~."i'.:-:.r;;:n;; ... t::.~. ':r::~t~~·~·.P .. Ut"!:1..y. ~;::-.!..':"",~;:':.-~~':.,.',!\:::~::: •• :i?'"' .": t ~.:::.".<;,~p.~~ ~ ... "':.f'-~::':'."\J.:r.. -J~~'::~""": :t:~"'~'Al,,~ ~.':',!l...;..'l.~.~;::;~:.7i.:~

:::(,,!
(~ ~,: .. ~.~ ;;';;~ C!'~

t:;.,~ <:1' (.".':;,

~
c,.--:,:.J,;:.;I

C',"t"at;

r~~
t\~·",-» £.:"'1(r ...

C'.~ ;.::.:.~; c,,";J>
"-~~

c~~! t,f1;J (.. ;)
~~? :~~~j C;;:."::~ .. ;, c: .:)

(l') (;9 C) t. ... >,:>

LiP ~.:::lJ t,'1.J t n 5 :'e)
" . .:.. • ..:,:a

c::Q:
... : .. :.::

(~ (J) c.:: -";)

£:;£,".3
~.'~:'! c.

~.c;:. •• C' (" " i .• ,) ;)

V=- C~' c ~

;:i~
~ .. ;-:9 cmz_.::.1 (~:~~

l~J t~;~
t,!l~B t·::·:~., r'~ tt C:-.\

en c::;.. .",
t~ v,:'.:-:-':lJ "',=:';'''1

:;.::) e;:""~ ' ... J)
~~:,.. f".f1,J f 1\ J tf1·9

,~U L·r
»", e"-""~ ~ c:~:~ C:t:' :,.;.'. ~o

l>-4. f:

t~....J.ft:::·· t~.::§
.,. :J:!>

("-1! t:.;,~
~:~:-;~

t • .-.. ,'3

Cs:.: €Jt~ C·;:~ (} ":~~<li' c.:-::;.-,') ~l-. .. W

~~J ~~~

iI.1iGiillMWiilJiilliihGiWlWMlWJUM&ll\ltWOOlZl&ill1ltf oM &1A£=:,,;;;;;;;;;; iUMm it "; IUi;:aS Ai"'; FW'

AC C E S S FA elL tTl E S
~")I ~QPO~ ~'!GQ.~""":"~~~""'~.4!l;th~.tIIiiiI&f~~~i;;~~ : ~~~ .. ~~;,r";I.~;.l."~""';'G';;'~.v'l"i.'"

• DYNAMIC USAGE

OF COR E

/. E)(C L U S I V E . CON T f~ 0 L

OF RESOURCES (CPU,

DATA SETS» RECORDS,c

PROGRAI\4S t E~rc.)

"RE ORGANIZATION

INFORM/\·fION

o·

() OPERATING

SYSTErvl

(~\
,/

•

I

i /360

L_INI<AGE

EDITOR

--~-------------------------"-,---- -,-,-,----,-,-.--.-,."'"-,--,,~~"~ ,~--- .. -,-, -, ... ---.-.------~.,.-.•. --,- , ... ,." -"- .. -

c

15 K
. 18.< .

/
(

44l(
8SK c

I ~,~ 'I<: '

o

c

Cj
""If

•

o
=.~.

~;=.~~-=-~'\.",,,,"':!!;.~"'T!i.".UJ:';'?l:';:-";'A.=I'lI!" ... ~n~n,.,.,;;,-:;c::;;.'.~'T.1i'Jl:'/;VIIi2/
. ')

~~=;'¥.I:r~=:I:r..l4:.-:c,.!/~C!'l.>."",t:l"""~;r:.l'!,~;,~",,,,,;.~e:=~~JI;ilri!,,.;r .. ,",,,~'lI;.~;::'~,

~~·v=>~·~:~_J
l:'}

r~~"~?J:.?liI>.:5..;"'r?''''"':ffi:::.;r..'.;;;:;.A~.r:;.,.~:".,(,¥;::,=::C":,':"'~':"""~·;;~~=!(!;'1: ;;"J;.'i'.-''\-:-='::_:<::':~~:'';'

o
&&&1lL

o

SOURCE
PROGRAM

SOURCE
PROGRAM

SOURCE
PROGRAM

Q

LINf(AGE EDITORP'RO-~·Slr~G­
fv10DULE Llf\JKAGE

LANGUAGE
TRANSLATOR

LANGUAGE
TRANSLATOR

LAr~GUAGE

TRANSLATOR

08 'I='rT I
v~v, I

MODULE I

OBJECT
MODULE ~

OBJECT
MODULE

LINKAGE
EDITOR

LOAD
MODULE

CONTROL
PROGRAM

o

MAIN
STORAGE

I

o
........
0\
U"

'WH"wmm'arnw .. · .. rwr· . 'lI"g,

cos LINKAGE
EDI-=rOR

LOAD MODULES

• E)(E C u'r A B L E
• PUT.... I &\,,1'0. T' 0 p' R'~ a V A ~~f' fe C .~.. '\ u .' ~+. u ~

LIBRARY

• A T T f~1 B U ""f E S

LOAD ABL.E

•
_;.,i,,-

/

I

. .

()

o SESSION REPORT

COMMON - Chicago

Session Number MON C2 Session Name Use of CRT on 1800 ----------------------
Chairman R. W. Page

Time 1.30 PM
----~~~~~------------------

Attendance (No.) 100
--~~----------

Speakers Jerry Gorden - Indiana University

R. W. Page - New York State Electric & Gas Corp.

o

Synopsis of Meeting The application of 2260 Display Stations was ex-

plained. Mr. Gordon presented a specialized routine to handle ltmited

conversation mode exchanges between various research "students" .sing

the 2260 Display Unit. His paper also outlines in detail the CCW, CSW.

loee and XlO formats used in 1800-2260 programming.

Mr. Page presented a generalized routine for handling 2260 on an

1800 system. This routine allows the user to fully use all the capa-

bilities of the display units. A handout described the routine, i_ts ___ _

• logie, use, and actual coding. Several slides were shown to indicate

actual Operation and applications.

!llIIIIMiJAYltk, "~,,,

····1

CONTENTS

I. Indiana,University Psychology Dept., 2848/2260 Confi~~ration

II • Composite of Commands, Instructions and Status \vords

III. Flowcharts of Interrupt Servicing Routine and tvrite/l~rase
I/O Routine (Simplified)

Compliments of J. L. Gordon
Indiana Uni versi ty
Psychology Dept.
Bloomington, Indiana

o

o
f

r.-1
~ 2260 ;
;--.. ~

•

I
. _ .. _ ... -._ -.-. _._. -.... -.----" ... --- -_._.--t

1801 PROCESSOR/CONTROLIER .1

,16K C ORE-~EC-12 INTERRUPT lEVEIS \
, .,:-~~--.. ;-......... -. ----- i -.- .--

I .
__ ~ ___ L __ ._ .. "j

' . . DA.TA CHA .. NNEL I I ADAP:TER r'-- .
I

1fi&&tffiJ .. _ .• 1

';
I

EA

.-~~~~------~-----------.-,--.-.".-.,-~=

Fig. 2

XIO AND IOCC INSTRUCTIONS o no (First Word)

0 1 2 '3 4 5 6 7 e 9 10 11 12 11 14 15

- 0] COtE ... F ,!~G IA - M(DIFJ ~ -- - --- -
0 Code -Execute I/O

-Specifies one or two word IIO instruction
- Speoifies register for address modifioation (0-3)
-Indirect Addressing option

Ioce (First Word)

Address .2!.~ - Address of first word of CCW if the Function
Code specifies start I/O.

Ie co (Seoond Word)

,,", 1 2 '3 4 5 6 1 8 9 10 11 12 1'3 14 15 v

-- _ -...-. - -MO OIFD JiS - AB EA - FU~ 8t.t°~ - --- ~2 348 J DmE ~S~ ~2 e60 J ~DRE ~S~
EA & 1

Area Selector Channel area code.
F\i'ii'Ction- (011) Sense intf}rrupt level specified by modifiers.
£29! (100) Halt 1/0 on Selector Channel addressed by Area.

(101) start r/o on 2260· speoified by modifiers.
(111) Sense Selector Channel status. Modifier bits

13 and 14 determine which of the four words to select.
Bit 15 when on resets all status except status pending.
bit.

Modifiers- Bits 8-11 speoifies 2848 address. 4[)
-'. Bits 12-15 specifies 2260 address.

Cl
"

o

•

Fig. 3-1

CHANNEL COMMAND WORDS (CCW)

BYTE COUNT (First Word)

0 1 ,2 3 4 5 6 7 8 9 10 11 12 11

- B' TEe PUNT ~

~ Count - The number of 8 bit data bytes ill
r/o data area addressed in the third word of CCW.

FLAGS AND COMMAND CODE (Second Word)
,--'--- ,--'--' - ,--,-._- ,----

0 1 2 '3 4 5
--~-r D C '-~

~ -C C I --
Flags - (See Fig. }-2)
Command - (See Fig. 3-2)
~

6 7 8

NO' .. -USE.D - -
9 10 11 12 1'3

, C(MMAN J) CO DE

14 15
-.. -

I
14)5

--
-.. ...-

-,-- '----

--, -

FLAGS AND COMMAND CODE WORD (Second Word) of eel-.

o ~~~~~~~~~~~~~~-.-_~I-_-5~~1~-6~~-7~-r--;--1-- 9 1~-1---~---~-~-1--~--~-14
1 2 1 15

~ ~!
~ ~t1 I
~ .
til I
c;l !

I
c+.:o (I) 0 ts t-i I
~ (1) ~ (b

0asoo CD "0 (1) ::.r
til CD· t1 (+

1

(1). C+O Sb 0
~ c+ c+ O"d o a:o 0 ~. C} CD

.:r'" g a:;~
::rts c+ 0 c4~. c+
CD::TtT .. ts~·
ts (+(1) '" ::r ...,. 0
.::T ::s CDc+ts
trCDts ts ts~·
~ (1)(1) Sbtl)
c+: O"'~..... 0"' c+ "d

C<C+ ~CDCD
~ct- ~ c+ tl- 0
(IJ (1)(') CD ~.

Q(+ ""·OH)
OO~O O)::s ~ ::s 0" ::r <D
I.t~ CD Otsp..

tst·~: 0) ts 0
ciOQ • t1a'

::s (+1 s'<
~~ r , ~c+
H)I-'- =r
~~5' gCD
CD c+ sa
,:Lc+ '" ~ 10

D"r <II
Cc:t t c+P>

(') Po ~ &:s
c+1o ·ti 0 s:l-tT (1)' ::s
~ (IJ 0

P> (I) 0 0
"d::S ~ s:l-
t1s:l- Sb CD
<II::S 0
(l)Op. ~~.
CD 0 .., •

~~p; ~ c+
~ ::s ::r or; CD I c+ CD

~s:l-
. ~~

CDJ)
Ot(JQ

L rn

~

tr1~
~~
H~
o~

~&1
t3(1)
~t;-t

~
~
::t:

,-..H
~g
CD 0

t1
(tlt1
CD (l)
..... 0
CDc+ o
S-~
t1 ::s
o~

r~
~·ft

o
CIlSb
c+c+ Sb ...,.
c+0
s:: ::s
(I)

a:~
0'"0
'-'''0 p.,t1
-(1)

. (I)

(IJ
(1)

s:l-
1:-'.
t-f)

0'
~.

c+
I-'­
(I)

o
ts •

H;1
~o
S~
~~
~o
~~
z:~

o
OtT

~§
~~
(1)
::SOQ

Q)

O"'ts
~CD
c+t1

Sb
I-'-C+
(I) CD

(I)
o
p ~
~
'::;S
c+
CD
t1
t1

~
c+
o
o ::s
~
c+
~
o ::s
s::
~
::s
~
Q)

c+
a

i

~

T . - - -·-T~---r

rn l~ NOt USED , co+wrn COpE i I ~I
~ ; I !

"d I I ~ I

I· I·' 0 I 0 0 0 0 1 0 I 0 0

'I I' j 1 . . \ cified lin the ~odifiel

"'(1)
(J) s::
Sb'"CS
j:l."O

~~
~ (I)
o (I)

~ b·
a~ .. ~
op.
t1~
(I) ~
CD
::::s c+ m t1
(J) ~

::s o (I)
"OH)

CD (J)
t1 t1 ,
Sb
c+c+
~·o o ::s (I)

a:g-
::rt1
(J)·SU
='OQ

(J)

0"'
..... s:l-
c+~ ...,. ~.
(I)~
o
::::s ~
•

t1
CD
~
j:l. .

~---- .1 .-the-~OCC, leTi P J pres4Ilt

- __ ..l...----_~ .. -
t

.1.

"'" ,-j

nel. ! I
I

WR E DS B FFER S ORAGE I , .
o . 0 0 0 I 0 1 0 I 0

I l I :
t "I

A frite 0 eratio is beg~n to tqe 2260 !peCifi~d
i the Mo ifier ield oflthe IOqC. Dat will Ue
tjanSferr d from the I/~Data :\~.ea. spec fied il1
t e third yord 0 the C until lthe byt countJspe-
c fied in the fi st yord ~f the iCCW is ~ecreme ted
t zero. ;, I

f1ITE DS pNE ADWESS I
o 0 lOt· 0 , 1 ~ 0 I I .. I
!! ,

Afite °f;rati.O~ is in: iated ~o the 2160 on

i e ~;~: P:~i:~~e~:e~hfnf!~:t~~~~:~ ~ ~~ :3:
C • (Se Fig. ~-3;. 1

I

R¥ DS t¥UAL ItUT
00 0 0 o o I o

I
I

I

A ~ead o~. ration lis init~ated tttranSf~1 r ~anu~lly
e~ered m ssages and dat~ from e 2260 All
c aracte displ yed bet een th start ymbol d the c:~~sor 0 th.e de lice Wi{r be tr nsferre or un1:1 the b~e co t 1S d~rementtd to ze o •

__ "--__ ~. _, 1

o

J

I-zj

~
w
I\)

,-.1

• ~ o

o 1 2]] 5_ .1' 6 7 r 8 1· 9 i 10 ~-r--li o 1 2. 1 -"- 12 11 14 15

1 ,

1
;
I . I

~ I CTCO~ I >1

I
, . I.

i
" i I

! !

j~ _____ I
t --~,--~--~----~----~

READ W DS lUFFER i
1 o 10 Too 0 i l.

A ReSioperat'on is itiatel to trJnster ~'l data
displ ed on he 226 .. .peei led in ~he IOC to the
chann • Tr sfer c tinues until .. err av lable
data sition i8 tr ferred or unt$. the . e eouxft,
is de emente to ze. , I
NO 0.101 o . 0 o o

I
I
!

01 0 1

o

1

No dai is tr sferrefd. The 2848 C~trol Ufit resijonds
to th co d with ~hannel End an~ DeVice, End in ~he
Unit dress/ nit Stilus Wor ot thl CSW. I
ERASE STO ' I

~ 0 0 0 I 1 1 1

All d~a disp~ayed o~ the 22fO spec~ied inlthe IOqC is
erase~ and tht curso~ returntd to t~ first positidn.

I

~

~ •
-tjJ
I\)

-n
o
~ -e

".,_., .,,",-~ .• """~_ .' ~L L_ ---..... ----....... --__ ____ -i. ____ ...1 ____ ..J
. :.~n_~,~F ,

......,..,:'~.J..;

'I

FIRST DATA WORI OF l/e DATA A...-qEA SPECIFYING LINE ADDRESSING

Q I 11 2 I--r--r"'~-' -T·'~~·-'u~~~'~-_'f.;~ ~-~'T~'-"7"" II ! ---1
t 1 :

I .. I

f
!

i
j

! . -_. __ _._ _-_ .. -.. __
o n

'"

1 1 0 n v

1 1 0 o·
1 0 0
1 1 0 1
1

.. , 0 1

!
. 1 1 ~ '1 . 1
f 1 1
t 1 1
1.1 1
tIl

I
f I

j
j

I
(j

o
0
l.

1
0
0

I

L
I
t

o
1
o
1
o
1

!
·~· .. ·t

I
!

I
I

~

.. - 'r" .-..... - '.-.~~ ..•.. ". ... ----: ..•. --,.-'- --...... -~ ... - .• ---..
• i i

fl 9 10 11 i

i
T~--- ~ ~~.------~--.-

(Link 1): I
• I

(Lin~ 2) ,
(Linb 3)
(Lin~ 4)
(Linr 5)
(Lin, 6)

I

i

I
I

t

11 14 15

tozj ...,-
CJQ

'f
w

(')

. ·CHANNEL STATUS WORDS (CSW)

UNIT ADDRESS/UNIT STATUS (First Word)

0 1 2.° . '3 4 5 6 7 8 9 10 11 12 11 14 15

- ~4HH ~T }Y: !RESp - - UN~ T ST ~TUS
...... - 2 260 :J

- - -2 IIlIJK .. ; ''is L..f:JtJtrJf: ti.."i

Unit Address - Bits 0-3 specify control unit and bits 4-7 specifies
---- 2260 in the last XIO executed. (See Fig. 7)
!l.!E:1 Status - (See Fig. 4-2).

BYTE COUNT (Second Word)
- -- .. _---

0 1 2 1 4 5 6 7 8' 9 10 11 12 13 14 15
r-- RE! IDUA ~ BY'] E CO ONT -- -
~ Count - Residual byte count from last CCW.

()

Co~~and Address - Specifies an address J higher than the last CCW used.

SELEC;'OR CHANNEL STATUS (Fourth Word)
-

0
, 2 l 4 5 6 1 B 9 10. 11 12 11 14 15 A.

.,.

~ CHJ NNEL STA~ US -- -
Channel Status - (See Fig. 4-)

•

rO
M

~ UNIT CHECK

f"" DEVICE
,... END

~ CHANNEL END

~ BUSY

o CONTROL
r-4 UNIT END

-

Condition exists requiring programming investigation. In-! 0' ,

valid commauo or flag. detection of & parity error in a ..
command or data being transferred in a Read operation
could cause this condition.
This bit set at the completion of 2260 operation and
indicates that it is free to perform another operation.

This bit set at the completion of 2848 operation.

2848 in a busy stat us.

Signifies that 2848 free to accept a new command.

g 0\ STATUS MODIFIER This bit set during a Short Control Unit Busy Sequence
and indicated that 2848 busy.

I

~t---"--6··· --- _ .. _ .. ----_ .. _---_ _. __ .-... _-------------
~
N

8 - - --" ----f--...... -....... - _ --.-.---.---.----------- -._- "-'

H

~

!---~- --- .. _--_.-.... _ .. - .. " .. ----.• --~.----------.---.. -------.. ---------
I J ~

t---+----....... ~.--- . "' .. _ .. _-_ .. _--------_._----.-,-----------
tJ)

(\j ~
Q

~---~. -.-.. __ .. - .. _- .-------------------.--------------

()
o

'v ~ ------- -" ".- . __ ._---------------_.....-._--------

::::
tf.)
0.

r.x-.
0

'd
H
0
~

..c
+>
14
;j
0

r.x-.

0 Q
0::;
0
~

U.l .. -.,
E=~
<.~
8
Cf)

+ ~I
~J
Z

~
::r::
(.)

p:;
0
8
0
:lJ
;:...:J
::)

•

Fig. 4-3 -

1
lJ'\
f""'t

.~
,.::t ,....

-

I f¥'

j
,....

•. _-_.- ~. --_.
-----~- ... - . -

r .. ,~
I
I

r-'-- _. --'-' --
I
!

,....
! ,....
I
I

t· -- ~.-.. ---- -- -- ._---
I

I 0
I

... --_ ... _._-------- .-t -.. -~ ___ --

i i l~

C'j ,
-,

i

'-4) ,

!
~-- ..
I

i

I ('J

-.. .. -" . __ . __ ... - _.-_._-. 1-._-_.
"-

Channel executing a Start I/O operation. This bit is on
UNIT until ending status is received. If this bit net on with-
OPERATIONAL in 32J.ts after XIO. channel hung up.

... ----. -'-- .-..... __ .-........ --.-,,---f..-----,.. --... -------.--------.-___ ._ _

ADAPTER ! Channel executing a previous XIO instruction or servicir ... ?

BUSY i a 2260 or 2848 request.

INCORPECT
LENGTH

HEEEF!('E
CC:~-?H: .. : CHECK

C'H.-\~N},:

--1iP-hC)G}- A~;·

CONTRC .
n-r:'E~ ~.: i']

·UI{I';·
STAI'U~

PENDING

*NOT

i ~ . - --.... ~~..-. --_.-
Number of bytes s~ecified in the byte count word of the
CCW does not agree with the number of bytes read from

, or written to a 2260.

~- .
!

i<a.lfunctl.on of a device indicated. 2848 responded with ar.
address other than that specified by the cha.'1nel. 2 or
mor:e In-tags from -devices occur simultaneously.

,:harme.l dete;;'!ted parity error in data trans ferred or
storage protect violation has .o.ccurred ('lt1.r:~~g a read or

I :-;ense ope'ration to data. address in CCW.
. - --_. __ .,,-... _._---

.rogra.mmingerrors detected on the ::hannel. Invalid data
'tddrE'ss 'sp'ef"ifiec in.CCW Gutside the ma:n f·,orage. Pari~<y
-'r'rG-f detectf!d tn tne:C :.... or c.'CW.

..~~ - ~""':- ~ -.... ..;.,., '-~-~'~" ~ ---.-. -.--.. -~- .' -~". " .. _. ~ .. --_ " -.. ~. ---. -.-~----...
, UccurSl4hen:.··ehannelfetchesa (TW, if the PrGgra.I'r.. Contro':

Inte:oruption (PCI) bit is on ir: theCClh.

-.~~~.-: ~·.··.~~;..·~·~,::4:· .~~-, .. , .. ~.~~-' - " ~.,---............ -,-.. __ "' __ _... ______ _

~cclirs\th~ri;a2848 control unit has presented its ending,
staek.,·d;':. busy,or unusual condition status to the channe~ .•

----....... --.-.... ---... --"--.-.--'-~---'------

o OPERATIONAL
226G'~~#~~;ed . inmod.ifier of IOCe no~~' recognized by
2848 ·(j~'~lf,i2~~~:':'specir:tecl '1:nmodifier' o;'.IOCCnbt on systen ••

~..a,...; __ -~-_"._._" ,-
,.:".',.; ..

I
i

i ,,...
I r-4

j

Fi • 5

-.--- -•..... ----...... ~...------.... ---,-----.. -. ---_.. . .. --------------~

~~. ---' . '-... __ .. _-_ ; --
f .
~
I

I ..
f
i

o
I 1""1
I

- ---- -.. -- - -----jt--------------'------------------J

Butter par1t1err~rdl.coyered by 28~8 during" Read
OS Butter op.r.tJ~.

f~1tl erro~. i~ 0011III.&I14 4)r incoming' data byte
ct.tected bl·28~8 •

...-........ - _.-.....-.,. ', ... ~.r_-:----:-~ --:-o -------------....... ------

. tll.'tJ.c clorc:~4'¥1th1a ... &l14 tl .. ·inaecop,d
YOI'4otCCW •.

o

c

o

o

)

•

~OT
OP£~"T'O"'t..L

liT ON

UNIT
c ... eCt(
81T' 0'"

F\6. 6-1

!.lQ
SENSE sr\.~CTO~
cHA. .. NEL ~T"'S

UNIT STATUS
Pf.MD'''' e,,. ON

llQ
SOlS£ \AN \T AOt>ft/

UN\T ST"""'S

zewo ~
CC4"'TE~S

>--,~""'I.Ia...---::.tfOR C"~""~El

,""Ovt. 28~8 ANO 12t.O
AbOrtUS.S F'toti
"'N ,T AO~RIi$S/ 1.1" IT
STATUS W"ORO OF C:SIJ
TO STAtlT I/D Ioec
"'OO'~I;~

PlotT INPUT' D~TA

tl"'" "Ot>~ESS
I"ott TM'S ~~'D ,I4TO

t)~T" APo~ess wDRO
0" TMI RIM) c.t.w

AijO Z.U

o l"ALlOw ~e -
COROlw6 OJ:" OAT~

~~D~ "f""~ 22~
\.ANTIL P~DG>~~1"1

MAl(.!S ALLOtJ~"'c.e

TuRil 0'"
M~"'\C~'-l1.Q.

STAtft ~Jo
~ __________ ~~'NPWT IW-~--~~

/3

tiaC~TOIt.
F'O't' 2Z6O

(j

WOT' C)~e.~A'-' ON~L
STATU.S eR~o~

\NC~EMEa..IT"

1'-I0i- OP

>----!iP! E ~RO~

SAME AS ~OT­
OPERb-TIOtJA.L
S1' ~\~s E ~f(01<!
(SEE. "BovE)

CO\.AtJiE~

?ROGf(AM CHEC,,,,,
STA.TLAS Et\J(OR

{:"1G. 6-2

c

()

o

~,o

SfMSe. 2~
CONTROL I4W IT"
SENSE wO~D

ERROR ROUTlWE S (CONTO)

~NIT' CHEc..~
STA..T"lS E ~~ot{

\N~EM

NO ~lioV:T I~"
\t.~,..ot&..

CALL DSPLA. (NOC.RT) II\R#)..'V) LOA) L\ NNO)

CALL E~ASE(NOC.~T)

LO~ Le~6\~ o~ Ai(R''''-<

~\6. 6-3

l\rJNO L\NE NUMseR (0 IF t-b L..\tJE AOt>~)

!!Q
'SE'VS8 ~\:.\.~~c~
C\ol.t..'H~£L ST"'TiA.S

~
SEHS~ COt.1~OL

\AW" S'T~TI.AS'

NO

Y£S

NO

o

c

()

()

•

W'RITE/ES?ASE ROUTlNE (CONT'D)

PlACE 2848·22&0
AQORESS It.lTO

10C MOC>''''lt:f(

PL~E fR~SE

CC \II ~l>1>R I~TD
>----.....;;:-~\~~T WWt) or: 1-----.....

~,. .. ~ Va IOCC.

\N~O i~\~~ woQb

os: v..n~'TE.. OS
~~~rER CCw 

PL~ £lyre. 
c Oc..W'- , '-1"0 
S:IRSr WOfl. D C J: 
~\T DS c.c.w 

VlACE WR \ T£ I)S 
""/'-awE It)OR£SSI 

>-____ .. Cc.w Abl>R. I tJT.O ...... ---... 

P\.1I£e.. VJI?\'E D~ 
e"'t:"Fe~ STo~A6E 

t=,~~ woR~ O~ 
~ ... ~ \ 0 IO( 

Cc.w ACOR '~TO 1----------------...... 
~I RST' W~Rb O~ 

~""~T I Q loe" 

~\6 6-3 (cot-fro) 

Ex\r 



c 



c 

o 

• 

2260 I/O OPERATION FOR THE IBM 1800 UNDER TSX 

R. W. Page 
New York State Electric & Ga s Corp. 
4500 Vestal Parkway East 
Binghamton, New Yor k 13902 
April, 1968 

-=m .... 



DISCLAIMER STATEMENT 

Although this program has been tested by its contributor, no warranty, express 0 
or implied, is made by the contributor as to the accuracy and functioning of the 

program and related program material, nor shall the fact of distribution constitute 

any such warranty, and no responsibility is assumed by the contributor in connection 

therewith. 

o 



2260 DOCU~AENTATION 

Cj 
1 . Disclaimer Statement 

2. Table of Contents 

Introduction Page 1 

Reference Material Page 1 

Calling Sequences Page 2 - 4 

Logic Diagram - Display Routine Page 5 - 6 

2848 Interrupt Routing Page 7 

Logic Diagram - Interrupt Routine Page 8 

Hardware Address Assignments Page 9 

Notes on Use of 2260 Routine Page 9 

Typical Machine Configuration Page 10 

0 2260 I/O Program Listing Page 11 - 17 

Sample Calling Program - As sembler Page 18 

Sample Calling Program - Fortran Page 19 

• 
_=a:ma::rx:u _=="'"'w_ llD&&&Gti5ll====== 



Introduction: 

The 2848/2260 I/O routine is designed to provide an easy means of 

handling I/O operations between 1800 programs and 2260 display terminals. 

The routine was written in Assembler, resides in Skeleton, and occupies 

approximately 306 words plus one word in Skeleton Common. 

The routine performs two major functions for the user: 

1 . Performs I/O operations when requested via CALL DSPLY statements 

in either Fortran or Assembler programs. 

2.· Handles attent,ion (operator initiated) interrupts by posting in skeleton 

common a bit indicating which 2260 caused the attention interrupt, 

and then call s a user written attention handling routine by setting a 

program interrupt. 

Reference Material 

In addition to the 1800 System Reference Material the user of this 2260 I/O 

routine should have a working knowledge of the following material:. 

(1) IBM Selector Channel - Principles of Operation RPQ C0837 by J. B. 

Sampson and N. L. Gillette I Ir. 

(2) IBM 2260 Display Station 

IBM 2848 Display Control 

Form A27 - 2700 - 1 

1 

o 

c 

() 



Calling Sequences for DSPLY: 

The 2260 I/O ro'utine will be an INSKEL subroutine which is linked to by 

a standard TSX CALL statement. The CALL statement must pass either two (2) 

or five (5) parameters to the DSPLY routine depending on whether a test function 

or an °1/0 function is to be performed. 

The Fortran CALL for a test function is: 

CALL DSPLY (FUNCTION, RESPONSE) 

The Assembler CALL for a test function is 

CALL DSPLY 

DC FUNCTION * 

DC RESPONSE * 

* These must be address constants 

o The Fortran CALL for an I/O function is: 

CALL DSPLY (FUNCTION, STATION, DATA, LENGTH, RESPONSE) 

The As sembler CALL for an I/O function is 

CALL DSPLY 

DC FUNCTION * 

DC STATION * 

DC DATA * 

DC LENGTH * 

DC RESPONSE * 

• 



*These must be address constants 

a) The FUNCTION" parameter specifies what operation is to be performed by 

the DSPLY routine. 

b) The STATION parameter must be the address of an integer 1 thru 8. This 

parameter specifies which 2260 the I/O operation should be performed on. 

c) The DATA parameter must be the address of the left most word of th~ I/O 

area. I/O operations proceed from left. 

d) The LENGTH parameter must be the address of an integer which specifies 

the length of the I/O area in bytes (2 bytes per word). 

e) The RESPONSE parameter is the address of an integer which the DSPLY 

routine uses to communicate information back to the calling program. 

Operation 

Write DS buffer and wait for completion 

Start write DS buffer 

Write DS line address and wait for completion 

Start write DS line address 

Read MI buffer and wait for completion 

-Start read MI buffer 

Read DS buffer and wait for completion 

Start read DS buffer 

Erase DS buffer and wait for completion 

Start era se DS buffer 

Test for completion of last operation 

FUNCTION VALUE 

1 

2 

3 

4 

5 

6 

7 

8· 

9 

10 

11 

c 

c' 

() 



c 

o 

• 

Condition RESPONSE VALUE 

Previous operation complete 1 

Previou s operation not yet complete 2 

Requested I/O operation performed successfully 3 

I/O operation cannot be started due to channel problem 4* 

CALL is illegal (Invalid function, invalid station, 
byte count - or greater than 960 , I/O area outside of 
variable core) 5* 

I/O operation is complete but an unrecoverable error 
occurred 

*Response codes 4, 5, and 6 are accompanied by an error 

me s sage on the system printer (1816). 

4 

6* 



DSPL,( 

MAS\IC:. oUT-OF­

coe£;; 'NTERRUPT~ 

22~o OrSPI..A'( ROUTINE' 

~~~------------~~.-

CALER.

T"{PE "ILLE~A.L

"-'--'--~ CA '-L." E Rl2:oR

'" e-~ :SA.~ e

SeT' RE.~PON6E

PA~AME;TE.t2.. To

5

5

SeT RE~PONSE
PA~AJv'\ETeC2.. TO

i

SET RE5PON!>E.
PARANt t::.TE.'2.. ,0

2

I • C~.'·-'

I ' 0"'"

o

c

o

o

os EN S E 5 EL£CTO~

cHANNEL STATUS

WOR.D

ser UP 2.2.60

,ADDRESS IN

:race..

SET"" up CotAMAND

CODe, DA.TA ADDJ<}

AN D B'(T E C.OUN T
IN T\-te CCw

"START" I/o

OPEK'ATION

10 gN 0 t-J B u S''{

lNDIC ATOR

'1ES

T~PE cHANN e.L

FAt LURE ER120R

MESSA~ E W \11--\
c.s'tJ BITS

'S~:r Re SPONSE

PARAME.1"Et<. ,-0
4

SE-r RESPONSE

'>-=-=---.-------------tao1PA~ AMETEQ. ,0

YES

3

RE,5TOeE S'l.5TE.M

__ ------P1T C> PRE.V\OU~

MASK. '5TATL)S
TYPE E."RRO~

MESSAC"::\EWITr\

SlAiUS INfO(2/V,AilOr-J

IOE~R..

SET R e5 PONSE

PARAM.E.TER TO

G:>

RE.TURN

~-----------------------6
SJ

,."U··_-nYUUZ"fW.i.ru.,-mUUW"W--f'--\·· ··5fij,-- i ,I

2848 Interrupt Handling Routine

The 2848 interrupt handling routine handles end of I/O operations, error

retrys and attention 'handling.

Attention interrupts are recognized by turning on a bit in the first word

(high address) of skeleton common. Bit 15 corresponds to 2260 address

0000, ·bit 14 to 0001, etc. If the word is 0000000001001110, then 2260's

I, 2, 3 and 6 have caused attention interrupts.

A user supplied routine is linked to when an attention interrupt is received.

The routine that is called should reset the bits in skeleton common.

/ c 7

o

c

o

•

INTRT

.:sENSE THE

CSw

SENSE UN IT

SAVE D£;:Vt<:E

ADDRESS

BUs" IN D.

EI2j;?oR. lND. O~F

RETR'{ iN D. O~F'

ExtT

"T'CPE C.HAt-Jtv E L

>'i:.-.E_S __ ~"'1 FAILutZE ERROP-

MESSA~E

NOA,T

TUI<.'" ON BIT

2648 INTE~euPT l-tAt-JDLINq

ROUTINE..

ES
IN C.OMMON FOR.

"T~\·S ZZ<oO

SET PRoC2tRAM

IN"TERRUPT

NO

NO

F'Nl~

E:RROR IND. OFF

BLl&,-(tN O. oFf::
t(!E:.rt2.'((NO. 01=;::­

S\...E.TO C2E.TR.'1' o~

·8

'{ES

SET R'ETR't

It--lD\CA.TOR ON

QEPEAT I/o

No

_Hardware Address Assignments

1. Selector channel area code ~n IOCC) is 10010. (Are~ .. code is 18)

2. 2848 control unit address is 0001.

3. 2260 addresses run from 0000 to 0111.

'4. The "first" word of skeleton common is reserved for the 2848 interrupt
routine to post attention by unit. NOTE! First word in FORTRAN common
sense. (i. e. highest address or rightmost word of skeleton common)

5. The contents of core storage location 156 which gives the" starting
address of skeleton common" actually corhf1ins the address of the highest
address word of skeleton common plus 1. (i. e. - if skeleton common runs
from 7AO to 7CO then the contents of 15610 is 7Cl). This is the way TSX"- II
is set up.

6. The program interrupt which is set on an attention interrupt is a program
interrupt on level 11.

Notes on Use of 2260 Routine

1. The routine permits overlays of I/O with processing by allowing start
I/O operations to be executed. A means of testing for completion is
also provided. Note I however I that the I/O area is in variable core and
as such must be maintained by the calling program. The calling program
is responsible for insuring that the I/O area is not altered inadvertently
until the I/O is complete.

2. The routine should not be called from an interrupt level of higher priority
than the selector channel.

3. The routine is not re-entrant. The routine masks out of core interrupts to
eliminate the requirement for re-entrancy. The routine should not be call­
ed from an in core routine for this reason.

4. The CALL DSPLY must pass addresses as a FORTRAN CALL would.

CALL
DC
DC
DC
DC
DC

DSPLY
FUNC
STATN
DATA
LNGTH
RESP

9

'-""

All are addre s s constants

o

c

___ illlllliiiiiC-,:,.

MACHINE CONFIGURATION FOR 2260 I/O UNIT OPERATION

1801/02 --=:J
Data Channel #3222 $16/month

Selector Channel
$230 (inc!. 1826) month

RPQ - C 08037

2848 CU 2260 Attachment

RPQ - C - 08085
$717/month

2848 Display Control Unit

I
2260 I/O Units $ 51/unit/month

Approx. Monthly Rental - $1270 - Supports 6 2260 I/O units of 960 characters

each with keyboards. Selector channel is also available to support many other

system 360 I/O device s .

•
10

*

*
....

*
*

.f,

*

HONG ·2260 I/O ROUTINE

2848/2260 I/O ROUTINE

. THIS ROUTINE HANDLES I/O OPERATIONS
TO IBM 2260 DISPLAY TERMINALS ON AN
1800 SYSTEM EOUIPED WITH THE RPO
SELECTOR CHANNEL AND A 2848 DISPLAY
CONTROL UNIT •

THE ROUTINE CONSISTS OF TWO MAJOR
SECTIONS.

1. DSPLY ROUTINE. THIS SECTION IS
LINKED TO BY A CALL STATEMENT AND
IS USED TO PERFORr.1 I/O OPERATIONS.
2. INTRT ROUTINE. THIS SECTION
HANDLES INTERRUPTS FROM THE SELEC­
TOR CHANNEL.

ISS 01 DSPLY
DC
DC

20
INTRT

lAC FOR SELECTOR CHANNEL
1NTERRUPl ENTRY POINT

ORG *-2

THE FOLLOWING EQU STATEMENTS DEFINE
REFERENCES TO THE FIXED AREA OF CORE.

MSKRG EQU
OUT EQU
CORE EQU
COMN EOU
IOXIT EQU
X2000 DC
PIOO EQU

46
108
145
156

90
/2000
162

*10CC FOR MASKING
OUT OF CORE INTERRUPTS
GIVES FIRST ADDRESS IN VAR
GIVES COMMON ADDR~SS

EXIT ADDRESS FOR I/O ROUT.
OP CODE FOR STORE STATUS
PI LEVELS 11~-23

*

*
*

ENTRY POINT FOR A CALL DSPLY.

SAVE STATUS. ACCUMULATOR & IX REGS ••
MASK OUT OF CORE INTERRUPTS AND SET
UP FOR PARAMETER TEST.

OSPLY DC *-* PLACE FOR PARAM. LIST ADRS
SAVE STATUS

*
*

STS L STATS
LO L STATS
OR L X2000
STO L STATS
STO L ACClH"
STX Ll SAVElf,l
STX L2 SAVE2&1
LD
STO
OR

L MSKRG
L RESTR
LOUT

STO L MSKRG
XIO L MSKRG
LOX I 1 D,SPL Y

GENERATE STORE STATUS INSTR

SAVE ACCUMULATOR
SAVE IND~X REGISTER 1
SAVE INDEX REGISTER 2
GET CURR£NT MASK STATUS
SAVE FOR LATER RESTORE

*TURN ON OUT-OF-CORE BITS
UPDATE CURRENT MASK STATUS
MASK OUT OF CORE INTERRUPT
LOAD PARAM~ LIST ADDRESS

TEST PARAMETERS FROM CALL FOR ERRORS

11

o

c

c

c ,I

o

o

o

LD I 1 0
CMP K 1 1
MDX
MDX

MDX

CALFR

NDTST

TEST

NOTST BSC L CALER, f,

1 L D I 1
CMP

MDX
MDX
BSC
LD
CMP

MDX
MDX
BSC
LD

CMP
MDX
NOP

CALER LIBF
DC
DC
DC
LD
MDX

K8

CALFR

:::&2

L ,CALER t &

I 1 3
K960
CALFf~

::~ &2

L CALER,&
L 1 2

L CORE
OKAY

TYPEN

/2001
EF~R 1

o
K5
EXIT

t,:FU I,le T I ON con F TO I-\-h' E G.

COM~ARE 10 ~LEVEN

ERR 0 R I F () V f ~~ 1 1

NOT TEST Fur,IC. IF HFLn\'J 11

TEST fur·)c. IF r:OU/\L TO 11

E RHO R IFf U t·,' C. l'J n T PUS e

::~ S TAT I 01,1 C Of) F T () A - R F G •

C en1 PAR E 1 (J FIG H T

F. R R fJ f~ I F (] V E R ~)

OKAY IF FOIJlI.L T fl 8

ERROR IF NOT POS!TIVF.

*DATA LFN~TH TO A-REG.
C()I"~ p I\C~~ T (I 9 (, ()

ERR 0 R I F 0 V f- F~ 960

OKAY JF FOlJAL

f. R RCl f~ IF N () T P [) SIT I V E
I/O ARFA A[)D~~ESS TO A-f-<>EG.

COMPARE TO FTV END POINT
OKAY IF OVF::R

ERR 0 P I F E 0 l) A L 0 ~.(L F S S

TYPE ERROR ~ESSAGE

CONTROL lO \'.'RITE TO 1816
ADDr~ESS nr: r/IFSSAGE

LOAD ERf-<O f< f-?FTURN CODE
GO TO EXIT ROUTINE

... ... ROUTINE TO PERFORr:\ TEST FLJHCTION

* -TEST LD

NO

*

SSC L
LD
sse L
LD
MDX
LD
MDX

OKAY LD

BUSY

NO,Z
Ef~ROR

I OERR, Z
Kl
EXIT

K2

EXIT

LOAD RUSY 11'!DICAlOR

BRANCH IF NOT CfH/iPLFTE
LOAD FRROr~ II\ID I CAT()f~

,BRANCH IF IN ERROR

LOAD COMPLETE RFTURN CODE

GO TOE X I T R rJ UTI N F

LOA 0 I 1'-' C fli'.1 P l~ F T F R F T 1I R N CD.
GO TO FX!T RQUTINE

\I} A I T FOR CCH/1PL ET ION IF AhJ I/O OPFf<A­

TION IS CURRENTLY IN PROGRESS

BUSY

SSC L OKAY,Z
LOAD FHJ5Y I".'DIC~.lnR

WAIT FOR BUSY TO GO OFF

* oJ • ...
oJ • ...

oJ • ...

XIO
sse L
SLA

BSC L

LIBF

DC
DC

DC
LD
MDX

CHECK SELECTOR CHANf'\IEL STATUS BEFORE

ATTEr,1PTING TO START A'" I/n OPERATION

CS\'J
GO t &-
4
GO,&­
TYPEN
/2001

.ERH2

o
K4

EXI T

SENSE THE CS\'/

SHOULD. BF ZERO

SHIFT nUT INTEF-~RUPT BITS

OKAY ~~ I NT E RFH J P T HAN D LED

TYPE ERRnR ~ESSAGF

CONTROL TO "'RITF TO 1816

ADDRESS [:F r,1ESSI\GF:

LOAO EF~RnR r<FTUR'" CODE

GO TO F X I T R 0 UTI f'J F

B U I LOT HE: I DC C

12

..J,
'.'

GO

*
*

*

*

*

GOOD

WAIT

*
*

LD
S
OR
STO

LD
STO
LD
STO
LD
A
STO

I 1 1
K1
BASE
10CC£.1

*STATlnN CODF Tn A-RFG.
CONVEF~T TO ut\!l T ADD:-<E55
ADD Af<Ffo., Fur,!C [, 284a ADt~S

STor~F IN IOCC

B U I L D THE C C V/

L 1 2
CC\,I+2

I 1 3
CCVI

I 1 0
ADDR
:!, & 1

DATA ADDRESS FROM C~LL

::'TO CCVl
*SYTE COUNT FROM CALL
::'TO CC\\f
::,FUNC T I00.! T [) ACC 1Ji.~UL II TOR

ADD CClf',1MA ND T APL F=: ADDRF SS

L 0 L ::'-:!,
ADDRESS TO NEXT LO INSTR.
COMr"'iAf'!D CODE FPOi\1 TAEiLE

STO CC\'/& 1 TO CCto!

XIO

LD
STO

SLA
STO
LD
BSC
LD
MDX.

LD

START THE I/O OPERA1ION

10CC START I/O

TURN ON BUSY INDICATOR

K1
BUSY

1 TO A....,REG
BUSY ON

WAIT FOR COMPLETION IF THIS WAS NOT
A START FUNCTION

16
STRT

11 0
L WAIT.E

K3

EXIT
BUSY

MAKE A ZERO
INDICATE A WAIT FUNCTIUN

*FUNCTION TO A-REG.
EVEN FUNC INDICATES START
RETURN C(iQr. FDR SUCCESS

GO TO EXIT ROUTINE

SSC L WAIT.Z
GET THE RU S Y I t\ID I CA TOR
LOOP UNTIL NOT BUSY

LD ERROR
BSC L GOOD,&-

GET THE ERROR INDICATOR
BRANCH IF f\tO ERRORS

UNRECOVERABLE I/O ERROF< ROUT HJE

IOERR LI8F
DC
DC

TYPEN
/2001
ERR3

TYPE ERROR MESSAGE
CONTROL TO WRITE TO 1816
ADDRESS OF MESSAGE

DC 0

*
*
* ,t •
."

LD

STO
EXIT STO

LD
CMP
MDX

K6 RETURN CODE TO fo.-REG

EXIT ROUTINE.
STORE RETURN CODE. PESTORF STATUS,
ACCUMULATOR, INDEX REGS. AND MASK,
CALULATE RETURN ADDRESS AND EXIT.

'STRT
11 4
11 0

K 11
ADD5

INDICATE START I/O ONLY
*RETURN CODE TO CALLER
*FUNCTION CODF TO ACCUM.
COt~ PAI~r: TO 11
GO TO ADD 5 IF FUNCT I Of-"

13

c

o

c

___ IIJ--

c

o

MOX
LO
MOX

ADDS LD
ADD A L

ADDS
K2
ADD

K5
DSPLY

STO L DSPLY
LD RESTR
STO L MSKHG
XIO L MSKRG

SAVEl LOX Ll *-*
SAVE2 LOX L2.*-*

LD ACClH1
STATS DC *-*

BSC I DSPL Y

IS NnT TFST
SET UP TO I\DD 2 For~ TEST
GO TO ADD RJ\SE

SET UP T[l J\[)D S

ADD BASE
STOF~F RETURI,' Af)I)F~ESS

GET PREV I GUS r,ll-\S I< STATUS
C HAN G E C U f< ~~ F N T S 1 A T 1I S HAC K

RES TORE r,~ ASK S TA TUS
RESTDRF.: IX 1

RES TORF 1 X~
RESTORf:-: !\CCUMULA lOR

~~RES TORE S TA TUS
RETURN TO Cf\.LLFR

CONSTANTS AND DATA "REA FOR DSPLY

AccurJ\ DC
RESTR DC
K 11 DC
K8 DC
K960 DC
K5 DC
ERr~OR DC
BUSY DC
Kl DC
K2 DC
K4 DC
BASE DC
ADDR DC
K3 DC
K6 DC

BSS E

CS\'J DC
DC

IDCC DC
DC

ccw DC
DC
DC

STRT DC
SVCSW DC
oJ_ ... -

TABLE DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

,'-
"..

,'­-r

o
o
1 1
8
960
5
o
o
1
2
4
/9500
TABLE-l
3
6

o
o
/9701
CC\'/

o
o

P LAC E TO S A V E A C C lH:i U L A T 0 ~~

PLACE TO SI\VF MASK STATUS
US ED TO CH F CI(F Ut'-.IC e conE
USED Tn CHECK STA T I ON CODE
US ED TO CHE CI< PY 1 F: COlnlT
CONS TA1'IT OF 5

PLACE FOP ERROR INDICATOR
PLACE FOR HUSY INDICATOR
CONS T At'-IT OF 1
CONS TAI'-!T OF 2
CON S TAN T 0 F l~

*8ASE OF Ieec 2ND WORD
BASE OF CO~~AND TABLE
CONSTANT OF 3
CONSTANT OF 6
MAKE EVEN FOR IOCC S

IOCC TO SF: NSE
~~CHA NNEL S TA TUS

IOCC TO PEF~FORr/' I/O
OPERATIONS

CHANNFL
COt·ft,r.,IAI'ID

\'!O~~D

PLACE FOR START I/O IND.
*SAVE AREt FOR CSW CONTENTS

TABLE OF CCW CO~MANDS FOR EACH
FUNCTION CODE

/2001
/2001
/2005
/2005
/2002
/2002
/2006
/2006
/2007
/2007

*Vlr<I TE OS BUFFER
*START WRITE OS BUFFER
*WRITE OS LINE ADDRESS
*START WRITE os LINE ADR
~::READ MI 8UFFEr~
~~ S TAR T F~ E />' [) ~,~ I 8 U F FER

;';:READ os BUFFER

*START RE~D OS BUFFER
~~ERA SE OS BUFFER
*START ERASE OS RUFFER

ERROR MESSI\GES

14

---.----.---,,~-,~,-"~

ERRl DC 10
DMES "RINVALID 2260 CALL IE

ERF<2 DC 8
DMES IRCHNL HDV,/ ERROR'E

ERR3 DC 8
DMES IR2260 I/O ERR(H .. ~' E

* :;:
~# INTRT ROUTINE. THIS SECTION * #,'

.... HANDLES INTERRUPTS FROtJl THE: oJ. ',' #\'

~. THE SELECTOF~ CHANf'IEL ~: 'i"

~# oJ.
"I' ~

~, THIS ENTRY PO INT SERVICES I'LL
'i" ','
oJ, 28'J.8/2260 INTERRUPTS ... ,
". "{'

* * :!c SAVE STATUS,ACCUMULATOR, AND XR 1 *
~c oJ,

'\'

INTRT STS

STO
STX

EXITI
ICU,JI

1 ISAV1&1

SAVE STATUS
SAVE ACCU MUL J\TOR
SAVE I X 1

*

*

*
*
*

*

SENSE THE CHANNEL SlATUS WORD

XIO CS\'J CSW TO ACCUMULATOR

STO SVCS\'J *SAVE CONTENTS OF CSt" WORD
CHECK FOR CHANNEL FAILURE

AND BFFF
BSC L FAIL,Z

TURN OFF UNIT STATUS PEND
ANY OTHER BITS I~PLY ERROR

SENSE THE UNIT STATUS WORD

XIO US\'!
STO UNIT
SLA 8
BSC L NOATT,-

UNIT STATUS TO ACCUMULATOR
SAVE UNIT ADDRESS
SHIFT OUT ADDRESS
CHECK FOR ATTE"ITION STATUS

TURN ON ATTENTION BIT FOR THIS 2260
IN SKELETON COMMON

STO USTAT
LD UNIT
SLA 4
SRA 12
STO TEMP
LOX 11 TEMP
LD Kl
SLA
STO

1
TEMP

LOX I 1 C Oi.1N

LD 1-1
OR TEMP
STO 1-1

SAVE UNIT ST/\TUS
ADDRESS BACK TO A-REG.
SHIFT OUT 2848 ADDRESS
2260 ADDRESS Tn LOW ORDER
MOVE 2260 ADDRESS

TO INDEX REGISTER 1
PUT BIT IN LO-ORDER OF A
CALCULATE BIT TO BE SET ON
SAVE IT
ADDRESS OF COMMON TO IXl
ATT. WORD FROM COMMON
TURN ON BIT FOR THIS 2260
STORE UPDATED AT1. WORD

SET PROGRAM INTERRUPT - LEVEL 17

LD L PlOD

15

0 I ,

c

o

.1.
'f'

.'

.1 • ..,.

! fF'Snrnrr51!1'trm'U,SUXm
n

!! ... fMf" Ft"W'wn USTftfEtW:C"W1T --m r flIT -- "Ftw¥¥W"'j"jj" -:-IT tr Ifflr"lff§;tmfffi5ti"f&ffl5ll ftW {-'KNite#" {'-fti" t

OR PINTF~

STO L PIOO

CHECI< FOR ANY OTHF::I~ S 1 ATU5 En TS

LD USTAT
SLA 1

/ SSC L EXITI~+-

MDX NOATT&l

RELOAD S·LA.TlJS HIlS
SH I FT OUT A TTl:t,'T I ON BIT
GO TO EXTT IF ATT. (IHLY
GO TO H/\N DLF OTHFf-< nITS

'DETERMINE IF NORMAL END OF 1/0

NOATT SLA 1 SHIFT OUT ATTENTION RIT
SHUT OFF C Hf'JL F "In, DEV. E t'-!D

GO TO ERR OR ROUT I f'IE
AND E700
Bse L ERR,Z

... ,
'f'

*

*
*
.1,
ERR

... ,
oJ,
"',

*

SLA
STO
STO
STO
LD
STO
MDX

LD
BSC L
LD
BSC L
LO

STO
XIO
MDX

FINIS LD

*
*
*

STO
STO
SLA
STO
STO
MDX

FAIL LIBF
DC
DC
DC
MDX

*
*

SHUT OFF I ND I CA Tnr-<s FOR f'IOR r'l1AL END

16
BUSY
ERROR
RE TF~ Y

Kl
STRT
EXITI

MAKE A ZE RD
BUSY· OFF

ERROR OFF
RETRY OFF
GET A ONF:
RET R Y A [-3 L F () F F

GO T DE X I T R nUT I I" E

RETRY I/O ON ERROR CO!'IDITI()j\·1 IF

POSSIBLE %IF IT \'lAS A \"AIT FO!-~ COl'ol­
PLET ION FUt'ICT ION

STRT
FINIS,Z
RETr-<y

FINIS,Z
Kl
RETRY
Ioce
EXITI

LOAD RFTRYABLE INDICATOR
BRANCH I F "If I F<F TI-<Y

LOAD RETRY INDICATOR
BRANCH IF I1.LREADY RETR lED
GET ,'l. ONE
RETRY ON
RETV-<Y
E x I TAN 0 \" t\ I T F nRC (J t.1 P LET E

SET INDICATORS FOR UNRECOVERABLE
I/O ERROR CONDITION

Kl
ERROR
STRT
16
BUSY
RETRY
EXITI

GET A 1
ERROR I NDI Ct,TOR Of"
RETRYABLE OFF
MAKE A ZFRO
BUSY INDICI\TOR OFF
RETRY OFF

GO TO ·EXI T ROUTINF

TYPE ERROR MESSAGE FOR CHANNEL ERROR

TYPEN
/2001
ERR2
o
FINIS

CONTROL TO WRITE TO 1816
ADDRESS OF MESSAGE

GO TO SFT INDICATORS

EXIT ROUTINE

16

------ - - - - .. __ ._. --.-.-----.. -"" ... ~--.-.. , __ .,._. __ .. __ ._""'-..... =_._ """ _"= '-'-"-' == _.- .~ .. ;;.;.:.;.;.:.;.;;~~;:;:.:.::. .. ;;~.: .. ;:.;.;:;.:;:.;.;.;,;:;..: . .:..;.;.;.~:.;;.;;,:;;:;---.:;;.;. •. ;.:; .. ~.;;, .. ;..:::-. __ ._=',. = ... ~='--.. '= -'-=." .. -=~ ... "=-.-~= ... -'-'""=="=. -."'--'-" = -.. """-.-"~=" .. "=-"~.-... = ... "~'~. _. -~,

. R r: S TO t< EST A T US. 1\ C C UM U L II 1 n R A 1" D I X 1

* EXITl LOS *-*
ISAVI LOX Ll *-*

LO ICUM
BSC I IOXIT

)~

~. CONSTANTS '.-
~": INTERRUPT

* I cur.., DC 0
BFFF DC /BFFF
UNIT DC 0
USTAT DC 0
TEI,,1P DC 0
E700 DC /E700
RETRY DC 0

BSS E 0
US\"J DC 0

DC /9703
P I NTr~ DC /1000

END

RESTORE STATUS
RESTORE I X 1
RESTORF ACCUMULA10R
RET URN Tn fv1 I C

AND DATA A f<E A S FOR
ROUTINE

PLACE TO SAVE A ccu r'iUL A TO r~
MASK TO TURN OFF U.s. PEND
PLACE TO SAVE UNIT ADORE SS
PLI\ CF- Tn SAVE LJf\1 I T STATUS
TEMPORAf":?Y STnf<AGF APFA
~1ASK FOR CHhJL, DF::V ICF END
RETRY I h! [) I CAT [Jr.~
MAKE EVEf'! FOP. IOCC c--,
IOCC FOR

.... SENS I r'JG UNIT STATUS
PI ON LFVEL 17

17

o

c

o

o

o

•

ASSEM8LER CALLING SEOUENCF FOR 2?60 I/O ,',

','

START CALL

DC
DC
DC
DC
DC

,', ->,

LIBF
DC
DC
DC

oJ,
','

LD
STO

,,-... '
CALL
DC
DC
DC
DC
DC

,.,
'.'

LIBF
DC
DC
DC

oJ,
'.'

CALL
DC
DC
DC
DC
DC

,', ->,

LI BF
DC
DC
DC

.... , ...
EXIT

$3 DC
$1 DC
$0 DC
$16 DC
LINE5 DC
IRES DC
OUTPT EBC
ONE DC

DMES
T~'/O DC

DMES
THREE DC

Df\1 ES
END

DSPLY
$1
$1
OUTPT
$16

IRES

TYPEN
/2000
ONE
0000

LINES
OUTPT

DSPLY
$3
$1
OUTPT
$16

IRES

TYPEN
/2000
TI}JO

0000

DSPLY
$0

$1
OUTPT
$16

IRES

TYPEN
/2000
THREE
0000

3
3
o
16
/F 4l~0

a
•
1

• R 1 ' E
. 1

• R 2' E
1

• R 3' E
START

\'IR I TE DS 8 UF

\AIR I TE L I NF ADDF<

INVALID FUNCTION

TEST MESSAGE •

18

** 'TEST OF 2~60 I/O CALLING ~EQUENCE FROM A FORTRAN PROGRAM

C***~*****************************
C ,I 1 ... ~;~ ',""','

C • 0, ... ' 1 ...
'0' .. , , ...

C .. ' 1 .. ~:c ','" ~ ...

C, ' ... ,. , , ...
C ... t • 0, , .. 'I'

C ,'
'0' , , ...

C ... ' ' ... ,I. , ... '"
C ,', .. ' 1 ... ',- ... ,

e .. I ,.. .0, .. , ','
e '" ... t, "

'" '.""

C ", "'l ' ..
e ::!:: :::: ~:~

e ~::: ::~ * e .. ' 1

e ,J 'J, , .. ',-
e ,', t ...

',' ... , , ...

C ,', .. , ',-
C ~!: i.~ ~:,

C ... ' I, ~: ... , , ...

e ' , --. ..

2260 I / 0 FRO T· i FOR T HAN P r~o G R A i':i S

FORTRAN CALLING SEQUENCE
CALL DSPLY (FUN,STA,DATA,LENGTH,f~ESPOt'·'SE)

\~.rHEF~E FUN = FUhlCT I ON TO BE PE RFDRr·:l ED
1 = \'/ R I T ESe R E E N
3 = \'/R I TE LINE ADDRESS
7 = RE~D DISPLAY SCREEN
9 = ERASE DISPLAY SCREEN

STA = 2260 PHYSICAL UNIT NUMeER
STA. NUMBERS FROM 1 THRU 8 ARE VALID

DATA = I/O AREA (LEFT MOST BYTE OR WORD)
I F I /0 A f~ EAR E FER ENe E SAN A P f~ A Y , T r-![~: D A T A V A R I A H L E
SHOULD REFER TO THE LAST ELFf,1EI'IT OF THE ARR/\Yo
(FORTRAN ARRAYS ARE STORED RACK~ARDS IN CORE)

LENGTH = NO OF BYTES IN I/O AF<EA (2 BYTFS / V;ORD)

T~'!O EBCD ICC HAR ACTE RS / VJORD
RESPOf\ISE = VARIABLE FOR COMi'·lUNICATION OF INFOf-<fvll\TIOt"

BACK TO CALLING MAINLINE

.. 1 1 I, , , ..
...' 1 , , ..

::n:c .. ,', J } ... , ,

... 1 ' ' ,
..)"' .. 1

"'.'" 'j'" "',"

.. ' 1 ... ,,1,
"'I~

.,,) 1 "
... 1 1J , ,
... ' 't'1 ...

.......... 1 ' ...
"'l ,

C***~*****************************
DIMENSION XMES1(S)

C *** TEXT STORED BY DATA STATEMENT IN ARRAY FORM (BACKWARDS)
DATA XMESI/IE 1 ',.'SSAG',·O ME',' 226','TEST'/

C ***' LINE ADDRESSING PARAMETERS
C ~:~ ~:~ ~:~ I X 1ST H ELI N E ADD F~ E S SIN G PAR A '.1 F:: T E f<

C ~:~ ~:: ~:: I X FOR LIN Ell S F 0 (H EX) (FIR S T B Y T F. () F I /0 A. REA)
e ::1:. ::~,:: I X FOR L I NF: 2 I S F 1 (HE X)

DATA IX/ZEFOO/,Il/ZFOOO/
C *** ERASE SCREEN (FUN=9,UNIT=3,NO I/O AREA OR 8YTE CT.,RESPDNSE VAR

7 eALL DSPLY(9,3,O,0,ITEST)
C *** WRITE MESSAGE ON EACH LINE OF DISPLAY ~CREEN

DO 5 1=1,9
IX=IX+256
CALL DSP~Yt3,3,IX,1,ITEST)

5 CALL DSPLY(1,3,XMES1(5),20,ITEST)
I X = 1 X-9~:: 256
CALL DSPLY(9,3,Q,O,ITEST)
DO 6 1=1, 10
CAL~ OSPLY(3,3,IX,1,ITEST)
CALL DSPLY(1,3,ll,I,ITEST)
IX=IX+256

6 I 1=11+256
C *** PAUSE - FOR OPERATOR ENTRY OF DATA THRU 2260 KEYBOARD

PAUSE 2222
TEST SENSE S\,1 I TCH TO REPEAT TES T PROGRj\M

CALL SS'IJTCH(l,J)
GO TO (8,9), J

......... ' , ,
..,), .. 1

'
,

= !TEST ~:~

C *** READ DISPLAY SCREEN - READ 20 CHARACTERS AND STORE IN ARRAY XMESl ... ', , ,
8 CALL DSPLY(7,3,XMES1(5),20,ITEST)

IX = IX -2560
I 1 = I 1 - 2f:i60

GO TO 7
9 CALL EXIT

END

19

c

•

SESSION REPORT

COMMON - Chicago

Session Number MONC3
--~~~~-------------

Session Name 1620 Project

Chairman H. B. Kerr

Time 1.30 to 3.00 PM
----~~~~~~~~~-----------

Speakers Charles Weingart

Paul McCollum

Attendance (No.) 50 -----------------

Synopsis of Meeting Well attended. 800d presentationa •

AN EXPERIMENTAL IBM 1620/DONNER 10-20 HYBRID SYSTEM

FOR ENGINEERING EDUCATION

by

Prof. Paul A. McCollum

Dr. Jack M. Walden

Oklahoma State University
School of Electrical Engineering

Stillwater, Oklahoma

presented at the

COMMON meeting
The Users Group for Small IBM Computers

Chicago, Illinois
April 8, 1968

c

c

•

ABSTRACT

A hybrid computing and control system has assembled by inter­

connecting an IBM digital computer with a Donner 10/20 analog computer.

The 1620 is equipped with an additional RPQ input/output channel,

and a logic interface .was designed and built locally for the purpose

of coupling the I/O channel to a 9 channel A/D converter and a 5

channel D/A converter. Other features include programmable control

and interrupt lines.

Use of the equipment" is being introduced at the fourth and

fifth year levels in the Electrical Engineering curriCUlum. The

situlation of sampled-data control systems, and the hybrid solutions

of problems making use of iterative techniques, are representative

of the types of problems currently being solved on the system .

c

Introduction

A new facility, recently added to the 1620 computing system at

the Oklahoma State University, is making possible the introduction of

realistic problems and experiments in digital control and hybrid

computation into certain courses in engineering. The project has been

promoted by the School of Electrical Engineering, and the results are

being introduced 'at the fourth and fifth year levels. It was never

intended that this "hybrid" computer should be able to compete with a

regular hybrid computing system. However, it does provide a low-cost

system with which students and faculty can experiment and tryout various

ideas.

The Engineering Computing Laboratory at OSU is a facility maintained

separately from the University Computing Center. The 1620 was purchased

in 1962, and most of the digital equipment in the lab was obtained

through the aid of matching funds from the National Science Foundation.

The lab is operated on an open-shop basis, and a 24 hr/day, 7 day/wk

schedule is maintained. The computer is, truly, a machine for the

students. Figure 1 depicts the equipment in the laboratory, and attention

is directed to the hybrid addition, which is the topic of this paper.

The decision to expand the 1620 system to include basic hybrid

capability was dictated by the following reasoning, 1) the machine

1

o

o

•

---,
I
I
I HYBRID ADDITION

LOGI C INTERFACE

OSU

I
---------, I

SPECIAL 1/0 I
p...-

RPQ I
"""--_____ .." I

I

CHANNEL

1311 DISK

PLOTTER
CALCOMP

565

I
1620 COMPUTER

MODI. 20K

I 6 KEYPUNCHES

870 SYSTEM

407 PRINTER

1622 CARD 1/0

L ___ , __________ ,

AID CONVERTER

EECO 762

O/A CONVERTER

EECO 764

6 CONTROL LINES

2 SENSE LINES

~I
•2 ,

............ '--<9

..... - 1
I 2
I
I 5 ,.

-. I

I
,,2

I

• 6

~A

~B

ANALOG

COMPUTER

DONNER 10/20

Figure 1. Block diagram of OSU computing system •

2

I
I
I
I
t
I
I

__ ...1

is owned by the school, 2) for teaching basic digital control and

hybrid computation, a fast system is not necessary, since problems

can be scaled to run in "slow-motion", 3) the design and construction

of the logic interface would make an interesting and challenging

project, and 4) the project could be undertaken at a rather low cost.

Now that the facility is at a usable stage of development, it can

be said that the results of applications, thus far, have been most

gratifying.

The special I/O channel, pictured in Figure 1, was purchased

from IBM. This device provides for the input and output of BCD digits.

In addition, it provides several other features, such as extra control

functions and branch indicator functions. These features will be

discussed later in more detail.

The 1620 special I/O device emits and accepts BCD data, serial by

character, parallel by bit. Both of the external data converters

handle BCD data parallel by character, parallel by bits. Thus, the

OSU interface provides for the translation and buffering of the data as

well as generating parity bits and necessary synchronizing control

signals.

The Donner 10/20 analog computer is an ideal machine for the

application at hand. It is a 100 volt, solid-state machine,with

several features attractive to a hybrid project of this nature.

These will be discussed further along.

3

o

o

o

The Special Input-output Channel

The Special Input-output (SIO) channel is an RPQ(#W97370) for the

1620 Modell, obtained from IBM. Actually, it is considered to be no

longer available since the 1620 is now an obsolete machine. With respect

to the project at OSU, the SIO was shipped in "kit form", and the local

IBM customer engineer performed the assembly.

The SIO provides the 1620 with the ability to communicate with

external input-output devices in three modes; READ, WRITE, and CONTROL,

without changing any of the standard computer functions. The particular

mode is determined by the OP code (0
1

O2) of the machine 'instruction.

Numerous I/O devices may be interfaced to the SIO, and a particular

device is selected with the Digit-Branch register contents (Qa Q9) as a

"device address". In the CONTROL mode, the contents of Qll are also

presented to the external device for selection of various control functions

to be performed. Also, two additional indicators (90 and 91) are

provided, which can be "SET" by external devices and testing by the

usual BI or BNI instructions. These indicators can be set at any time

by pulses or levels, and are reset by testing. They will be immediately

set again by a continuing level input.

Along with the previously mentioned "working" I/O facilities,

there are numerous timing, signaling, and control lines. They provide

the necessary synchronization of operations in what is basically an

asychronous "start-stop" mode.

4

==============i&«Miil.:;J\fIii!lIilitMI& ,_I

"".-.. --.-----......... -.. ,-----.-'-.--.-" - .. "~-'._ ... _ _ .. ---,-~.-,.-,-.,-............ ~,-~~-,---''''.".,.,.".'''''''~-.,~~~~~------, .,.--.. -~-. --""""",,,,' "= ... = = ... _"= ... ,=,. '=''',''''.''''''''''''''.'''''''''.'-'.''--

The A/D and D/A Converters

Since the 1620 is a BCD(8421) machine, some of the problems were

alleviated by obtaining A/D and D/A converters which utilized BCD(8421)

for all digital data.

The EECO(Electronic Engineering Company of California) Model 762

A/D converter was purchased with 3-digit BCD and sign in signed-

magnitude representation. Digital output is ± 999 for ± 5 volt analog

input. Maximum conversion rate is 33,000 samples/second. In addition,

the unit provides a randomly-addressable 10-input multiplexer, with

input selection by an externally supplied BCD channel number.

The EECO 764 D/A converter is a companion unit, accepting ± 999

BCD signed-magnitude digital data, and delivering ± 100 volts analog

output. The analog output is delivered to any 1 of 5 output channels,

randomly addressable by an externally supplied BCD channel number.

Nonaddressed channels are held at their previously set output value.

Interface Requirements

The 1620 SIO delivers and accepts signals at the IBM standard C

levels.

+ C = + 2.0 volts

C = 3.5 volts

Output lines (from SIO) are "ON" (Logic 1) with + C levels, while input

lines (to SIO) and "ON" (Logic 1) with -C ~evels.

The EECO units utilize digital and control levels of

ON (Logic 1) = 0.0 (±0.25)V

OFF (Logic 0) = - 9.0 (±3:0)V

5

o

o

o

•

Thus, in addition to the logic and control functions, the interface

must provide and accept appropriate voltage levels.

Logic Functions

The 1620 810 channel provides communication with the 1620 in a manner

very similiar to that required for paper (or magnetic) tape input and

output. Basically, it can be described as "parallel-by-bit" - "serial­

by-character". For example, once the WRITE command is in E cycles

(execution), the 8-4-2-1 coding of the first digit in the output record

appears simultaneously on the output data lines. This is in the conven­

tional paper tape X-O-C-8-4-2-1 code on 7 lines. When the external unit

signals that it has "received" this character, the 1620 fetches the next

character in the record, which again appears in parallel on the output

lines. This continues, character-by-character, until three digits

have been sent which terminates the WRITE operation. This de-activates

the external device, and causes entry into I-cycles for the next instruction.

Similar character-by-character sequences occur during the READ operation,

except that the external device signals "end-of-data", which causes a

record mark to be set in core, followed by device de-activation, and

entry into I-cycles for the next instruction.

Thus, the interface must transmit and accept, in serial fashion, the

BCD digits of the digital data.

Contrasted to this, the EECO equipment provides and accepts digital

data in a parallel-by-character mode .. When conversion is complete, the

A/D converter presents all 3 BCD sigits simultaneously-holding them until

a new conversion is initiated. The D/A converter requires that all 3 BCD

6

digits be present when conversion is initiated.

Thus, two functions of the interface are apparent:

1. In the AID READ operation, it must "commutate" the output digits

of the converter data to the 1620 in sequence as the digit-by-digit

READ sequence progresses.

2. In the WRITE DIA operation, it must accept and store the output

digits from the 1620 as they are presented serially, and present

all digits in the register in parallel to the DIA converter when

the WRITE terminate signals for the conversion.

In the process of handling this procedure, the logic must accept

and generate many control signals, and initiate internal operations.

A few of these are:

1. Acknowledge to the SIO that a READ, WRITE, or CONTROL function,

which "addresses" units connected to the interface, has been sensed,

and that operation can proceed.

2. In the WRITE operation -

(a) Accept an SIO signal that the next digit is present on the

output data lines.

(b) Initiate storage of the data in the interface.

(c) Signal the SIO that storage is accomplished, and the next

digit can be set up.

(d) Accept the "last digit" signal from the SIO, initiate DIA

conversion, and signal SIO to continue to next instruction.

3. In the READ operation -

(a) Accept an SIO signal that READ AID is desired, and initiate

conversion.

7

o

c

=m

o (b) Accept S10 signal that it is ready for next digit.

(c) Set up next digit on data input lines.

(d) Signal S10 that data is set up, and to proceed.

(e) After third digit, signal S10 to terminate READ operation.

In addition to the direct A/D READ and WRITE D/A operations, which

are fundamentally data handling, a number of auxiliary functions must

be performed:

1. Accept and decode the SIO CONTROL outputs, which are used to control

miscellaneous external devices from the 1620. Some examples are

(a) Operate a relay.

(b) Switch analog computer to RESET (IC), HOLD, or COMPUTE.

(c) Stop and/or reset analog computer digital clock.

(d) Raise or lower plotter pen.

2. Provide for setting the 1620 indicators (90 and/or 91) which are

used to control the 1620 from external devices, such as,

(a) Relay closure,

(b) Time pulse from analog computer digital Clock,

(c) Wait-loop in 1620 while analog in COMPUTE,

(d) initiate 1620 READ (A/D) while analog is in COMPUTE,

(e) Initiate 1620 WRITE (D/A) while analog is in RESET (IC).

3. Block any interface action or signal outputs except when specifically

addressed - a "bug" that showed up because of 1311 disk operations

that were not contemplated when the SIO was designed. The fetching

of the disk-control field threw the interface into complete

confusion without this feature.

8

AID

D/A

OV

q"

ov
qv

C
\..~\Ia'-~
+~v
-3.SV

1---_________ _

Figure 2. System data levels.

..... ,

:rSM
I&~O So

SIO
lE\lii!..S

CPU -- ..
'0
-I~V

The interface unit was designed and constructed at OSU, using

DEC (Digital Equipment Corporation) R-series logic module cards.

Although the specified logic levels for these modules are 0 volts and -3

volts, it was found that as inputs they would accept both the IBM C

levels (+2V., -3.5V.) and the EECO levels (OV., -9V.) without conversion.

The DEC W602 Bipolar Output Converter was used to provide signals to

drive the SIO. It was necessary to fabricate drivers locally to drive

the EECO inputs. The DEC logic was very easy to work with, and few

problems were encountered in obtaining desired functions with straight-

forward logic design techniques. The pulse actuated inputs require rise-

times of the order of 40 nanosec., maximum, for reliable operation.

This required some "sharpening" of SIO signals, which in most cases was

adequately performed by simple inverters. In a few instances, Schmitt

triggers were used for pulse shaping.

9

o

c

C>

o

o

•

The interface was wired and tested over a 6-month period by a

graduate student working part-time. The interface design follows

the originally conceived organization with minor alterations.

No areas where major significant improvements could be obtained with a

different philosophy have be found.

10

I

'I

I

AID

CONVERTER

INITIATE

CONVERSION

D/A
CONVERTER

INITIATE

CONVERSION

SEQUENCE < CLOCK

SHIFT ... CLOCK

CHANNEL NUMBER

SEQUENCE CLOCK
READ

CHANNEL NUMBER

I
I

PARALLEL

SHIFT CLOCK

COUNTER

COUNTER

1-

I~

READ

WRITE

< READ REQUEST

< WRITE REQUEST

SIO DATA INPUT

01 B (Q8 09)
CHANNEL NUMBER

SIO DATA OUTPUT

----« READ OP

----« READ DISCONNECT

t-fI--------------< WR IT E OP

CONTROL

FUNCTION

LINES

I
2 ~---t

DECODE

MATRI X

TERMINATE WRITE

01 B (Q8 0 9)

CONTROL OP

INDICATOR "SETII

INPUTS. CAN BE

SWITCH CLOSURE,

PULSES, OR LEVELS

----.. E~ INDICATOR 90 (SLA)

____ E"ITT J-----[>INDICATOR 91 (SLB)

Figure 3. Simplified block diagram of the logic interface.

11

0

o

o

o

•

- R"Wf"T -r 'WV"WH.MFtUtlWiiNfr JCr
- -rmBJM--Wf -"'TrWTlT -grPi?'fWffifhHf)'fiffttij'it#)5rHhtH .. r mo -reiWff1ffi,.tttt*i5fittfW

o

.. ;

The Analog Computer portion of the System

The Donner 10/20 analog computer is ideally suited as the analog

portion of a hybrid system such as the one being discussed. It is a

solid-state machine with an operating range of ± 100 volts. The amplifiers

are very stable, and the integrators are arranged for separate mode

control. All computing resistors and capacitors are located inside

the modules under oven control, and the setup of a problem is accomp-

lished through the wiring of a removable problem board. The patch cords

are compatable with IBM standard cords (407 type). There is room in the

cabinet for nine modules of various selectable types, 24 potentiometers,

and a tray underneath will accomodate 4 diode function generators.

The complement of the OSU machine is shown in Figure 4.

o
00

o
o
o

Figure 4. The analog computer module layout.

~ IV)

~ t
lL <"
I \lJ

0...
J Q

tL 2
<

x J(

<r" (/)

o

The four operational amplifiers in module no. 3325 can be used

as summers, inverters or in conjunction with integrator networks.

This module also contains patching terminals for a function generator,

12

four free diodes, potentiometers and operational switches.

Module no. 3329 contains networks and controls for four integrators.

Any free amplifier may be used with these networks. This module also

includes two multipliers (quarter-square), an operational relay, and

terminals for more pots.

The no. 3320 integrator module contains two integrator networks and two

operational amplifiers.

Module no. 3322A includes two operational amplifiers that can be used as

inverters, and the facilities are included for their convienent connection

as comparators. Two operational reed relays are also included as are

four free diodes.

The logic module no. 3326A contains six RST flip-flops and six, three-

input AND gates. Four solid-state relay drivers, capable of driving

integrator mode relays, are included in the module.

The clock time event module no. 3328 contains a one-kilohertz crystal

controlled clock with three decade dividers, three decade counters,

and one gated relay driver. Through the use of the clock and the AND

gates, time control can be accomplished in increments of 0.001 second

to 100 seconds maximum.

13

r,,\
I.:. I
~,'

o

c

The Hybrid Language Features

Communication with external devices, through the SIO channel, is

achieved by the standard READ, WRITE, and CONTROL machine instructions.

In general, this is accomplished by the addition of new "unit addresses"

to the standard list.

For the READ-WRITE instructions, each command utilizes the QaQg

digits to address a particular I/O device, as follows:

01 - Typewriter

02 - Paper Tape Punch

03 - Paper Tape Reader

04 - Card Punch

05 - Card Reader

07 - 1311 Disk File

Added to this list are:

10 - A/D or D/A Channel 1

20 - A/D or D/A Channel 2

50 - A/D or D/A Channel 5

60 - A/D Channel 6

gO - A/D Channel g

The A/D unit addresses apply only to READ instructions, and the D/A unit

addresses only to WRITE instructions.

The SIO channel itself will accomodate both alpha-numeric and numeric

READ-WRITE commands, with the accompanying data coded into the X-0-C-8-4-2-1

(paper tape) code by the 1620 internal code translation circuitry.

However, for the A/D - D/A data, only numerics are possible, so that the

14

W,·'-

I

,I

'I

READ NUMERIC (RN, 36) and WRITE NUMERIC (WN, 38) instructions only

are utilized in this application. In this mode, negative numbers are

handled by the flag (X-bit) on the low-order digit.

READ - WRITE

Typical machine-language instructions for AID and DIA operations

might be as follows. Consider the input instruction -

36 12345 01000 - Read AID channell, and store at address 12345.

If the analog voltage on channell input happened, for example, to be

+ 3.01 volt at the time of conversion, the stored result is:

A\I:.---------address = 12345

For a - 4.15 volt input, the stored data is:

4~ _________________ address = 12345

Notice that:

1. The field-definition flag in location 12345 is stored.

2. There is an inherent 2:1 scaling in the AID converter input-output.

3. A negative number is flagged in location 12347.

4. The * is set in 12348.

5. Exactly 3 digits (plust) are transmitted from the AID converter -

no variation from this is possible.

6. The data is integer, with the"implied" decimal point between

the first and second digits.

15

c

·:rTf·

o Now consider the output instruction ;

38 11111 03000 - Write data from address (record) 1111 on D/A Channel 3.

If the data stored is:

A~. __________ -------------address = 11111

the analog output from D/A channel 3 is + 84.6 volts. If the stored data is:

1~ __ ----__ ------------__ address = 11111

the analog output is -54.3 volts. Notice that:

I. The field flag in 1111 is optional.

2. ·A negative number should be flagged in location 11113.

3. Exactly 3 digits must be in output record for proper conversion.

Because ±999 digital output from the A/D converter represents a

c ±5V input, and the same digital range of ±999 represents a D/A range of

±lOOV., there is an inherent "Scaling" of 20:1 in an AID - D/A sequence.

CONTROL

The CONTROL instruction (K, 34) is utilized with additional

"unit addresses" in Q8Q9 and control functions associated with Qll·

This instruction provides the capability for the 1620 program to exercise

control over external devices. This control is not in any way directly

associated with the A/D or D/A conversion - they are completely separate

functions and may be utilized in any way that is appropriate.

As the SIO unit is presently wired, the Q9 digit must be 0, and

• 16

only when it is ° will the interface receive a correct unit address signal.

Thus, the allowable Q8Q9 codes are 10, 20, 30, ... , 90. The allowable

Q
ll

codes are 1, 2, 3, < < c, 90

In the interface, no particular distinction between Q8 as a "unit­

address" and Q
ll

as a "function" is maintained. The two are utilized as

a two digit "function number". That is, the instructions are:

34 00000 01001 -Function 11

34 00000 02004 - Function 24

34 00000 09009 - Function 99

A conventional decoding matrix accepts the bits of Q8 and Q9 and output a

logical 1 on the appropriate function line - all others remaining at

logical o.

In the current application, only 12 of the function circuits have

been completed. They are not used directly individually, but serve to

SET or RESET the six CONTROL LINES which go to external equipment such

an an analog computer" The functions work like this:

Function 11 - SET CONTROL LINE 1

Function 12 - RESET CONTROL LINE 1

Function 23 - RESET CONTROL LINE 6

This is implemented by using the function signals to set or reset a

flip-flop, whose output is the CONTROL LINt, and an accompanying relay

closure.

17

c

c

o

Once a CONTROL instruction is transmitted to the interface by the

SIO, the 1620 is in HOLD (clock pulses inhibited) until a signal is

returned to the 1620 fr'om the interface that the "operation" is completed.

In the present use, this requires only enough time to set or reseL the

CONTROL LINE flip-flop. However, for instances where a Function initiates

some external physical action, such as starting a 50 horsepower motor,

further processing can be suspended until the action is complete, as

signaled by a conta~t closure.

Sense Lines

External devices can control the 1620 by means of two additional

indicator-codes for use with the conditional branch (BI, 46) and

conditional no-branch (BNI, 47) instructions. These indicators, coded

()
90 and 91, can be set by the interface from switch closures, pulses, or

levels, as desiredo The indicators are reset by testing, unless the "set"

signal is still present.

Typical 1620 instructions to utilize these indicators might be:

46 12345 09000 - Branch to 12345 if indicator 90 is SET (ON). Reset 90.

47 02402 09100 - Branch to 02402 if indicator 91 is RESET (OFF). Reset 91.

Programming

Simple procedures can be directly programmed in machine language

using the appropriate instruction formats previo·u.sly outlined. However,

for most applications this is too tedious and time consuming to be

practical. The SPS language can be utilized with its full capabilities.

However,there are no dIrect mnemonic codes which will directly assemble

the SIO instructions. This simply means that ·the "general" RN, WN, K, BI,

and BNI mnemonics mu.st be used. For example:

18

~-"""""'~--------~""'''-''''''-'''''~'''''''''''-'-'-------'''-'-''''I.

WN DATA,2000 will generate machine code 38 12345 0200.

Or, going one step further:

WN DATA,DA2

DA2 DS ,2000

or

K ,SETCLl

SETCLl DS ~1001

will allow fully "symbolic" programming.

For more diverse applications, the FORTRAN language will allow for

more powerful numeric processing and the use of floating-point arithmetic.

A package of FORTRAN subroutine subprograms and Function subprograms is
c

planned. These can be permanently stored on the disk file, and called into

any application program. A typical list might be:

CALL GETADF(K,X) - Read AID channel K, store at X, floating point.

CALL GETADI(K,N) - Read AID channel K, store at N, integer.

CALL PUTDAF(K,X) - Write X, floating point, on D/A channel K.

CALL PUTDAI(K,N) - Write N, integer, on D/A channel K.

CALL SETCL(K) - Set CONTROL LINE K

CALL RSETCL(K) - Reset CONTROL LINE K.

CALL CFUNC(K) - Turn on FUNCTION K.

CALL TESTSL(K,N) - Test SENSE LINE K(90 or 91); if ON, N = 1,

if OFF, N = O.

Function subprogram versions of these same routines would be:

19

0

•

X = READAD(K)

N = READAD(K)

y - WRTDAF(K,X) y is "dummy"

y = WRTDAI(K,N) y is "dummy"

y = SETLN(K) y is "dummy"

y = RSETLN(K) Y is "dummy"

y = FUNCTN(K) y is "dummy"

N = SENSL(K)

While expanding the digital computing capability and convenience, the

use of FORTRAN may slow down computation considerably. Whether this will

be a serious problem mainly depends on the particular application.

For the present system, a minimum machine-language program to READ

AID, store, increment storage address, test for top-of-core, repeat, will

run at a speed of approximately 800 samples per second. A program to

READ AID, and WRITE D/A on the same data will operate at approximately

1000 samples per second. This procedure is a convenient and novel way to

make a routine check of equipment operation. The input and output data

waveforms (say a sine wave) can be viewed on a 2-channel oscilloscope.

The preceding figures of speed are obviously far below the maximum

conversion rates of the converters. They are held down by the 1620.

However, for use in a simple hybrid, and model hardware control appli~

cations, it is quite adequate since the analog side can be time-scaled

as necessary .

20

.---.. -.-.....•... -."-~~--------------

Applications of the Hybrid System

In order to show in more detail the nature of typical problems that

are being demonstrated and solved on the equipment, two examples will be

presented. The first problem deals with a sampled-data control system

and the digital computer is used to generate a Z-tranform function. for com­

pensation purposes. The second problem utilizes an iterative technique to

determine a parameter in a simple boundary-value situation. The physical

system model is run on the analog computer and the digital computer is used

to test the variables involved and to process the iterative scheme. The

digital computer outputs successive parameter values to the analog computer

until convergence is achieved.

As mentioned at the outset, the use of the equipment is being

introduced at the fourth and fifth year levels in the School of Electrical

Engineering. The courses involved at present are courses in control

systems, electronic computers and analog and hybrid computation. The

equipment is also available to graduate students who may wish to do a

report or thesis relative to computer control of a physical system as

well as any other hybrid computer application.

21

o

o

c

o

o

Example Problem No.1 - Digital Compensation of Continuous System

Control theory tells us that the continuous system represented by

the block diagram of Figure 5 is a "Type 0" system.

R(s) E(S) ~ QL
c.(S)

11.::(5 ~ (/I-~S)(I,,""S) ..
lr-(t) - e(t) - ,

C(-C)

Figure 5. A Type 0 Control System

The principle characteristic of a Type 0 system is that of exhibiting a

steady-state error when the input excitation is a step-function.

More specifically, for a step-input, the steady-state error is

R
ess (t) = 1 + K

P

K is the position constant or true gain of the system. For the.
p

1

system at hand, Kp = 2. If the system of Figure 5 was r (t) = 50.U_l (t),

then

e ss
(t) = 50 = 16.6

1 + 2

In order to study the characteristics of both analog and digital

compensation, the given system was modeled on the Donner 10/20 analog

computer. Figure 6 shows the analog model. 1:1 scaling was used

for the amplitudes of all variables in.the model and the analog model

runs in real-time.

22

2

+IOOV

,-~-----"-~" .. ----~~------------ -..,."...."""""",,,,,,,,,,,,",,,",,"" '""","""",,"," ='" """"""'""","'",,,,,,='-'-'-=-""=-"-'-=-=="==~

C(i)

Figure 6. Analog model of a Type 0 system.

With a forcing function of r(t)'= 50.U_
l
(t) volts, the response

of the system, c(t), is shown as curve (1) in Figure 7. Note that

there is a steady-state error of 16.6 volts as was predicted by Eq. (2).

Curve (1) in Figure 8 shows the complete error response for the original

system.

Again, control theory tells us that this steady-state error can

be eliminated, for a step input, by raising the type classification

of the system. For this system, this may be satisfactorily accomplished

through the application of integral-error compensation. This was first

done analog-wise by replacing the link A-B in Figure 6 by the analog

model of Figure 9a which has for an output,

e(t) + ay(t).dt .

The transfer function of this integral-er.ror compensation circuit

is recorded in Figure 9b.

23

3

o

o

o

•

:m:rrwr'RT

en
t­
...J
o
>

TIME - SECONDS

Figure 7. Analog System Output.

30
en
~
0
> 20

10

0

-10
0 2 4 6 8 10 12 14

TIME - SECONDS

Figure 8. Analog System error response.

24

16

....................... "" _ " " " ,,===--'-

y _5_~_Q_---'~

(b)

Figure 9. Analog model of integral-error compensation.

Through testing of the compensated model, the coefficient, a,

was adjusted so that the transient response of the system, as evidenced

by the overshoot property, was approximately the same as the original

systemo For a step-input of 50.U_l (t) volts again, the output response

of the compensated system is now seen as curve (2), Figure 7, and its

error response is curve (2), Figure 8. These characteristics show that

the objective of eliminating the steady-state error has been accomplished

while retaining approximately the same nature of transient response.

Without going into an argument of analog compensation vs digital

compensation, it was desired to demonstrate the use of a digital computer

in the compensation of a continuous analog system. This time, the link

A-B, referring to Figure 6, was replaced by the 1620 hybrid system.

This new configuration is now pictured in Figure 10.

25

c

o

o

•

c c.t) TyPE 0

SYS'c\"l\
r-------~-------~

+

Figure 10. The analog system with the digital computer in the loop.

To accomplish integral-error compensation, the digital computer

must approximate the function of Eq. (3). Due to the discrete nature

of the digital data, the finite-difference function that was programmed

was .1=11-1

VB(nT) = e(nT) + aT I e(kT)

,k. .. I

a is the same coefficient as in (3), and T is the sample period in

seconds. In this problem, T = 0.5 second.

The original program for use with this problem was' written in

,machine language and is listed in Table 1. The. sample period time, T,

was regulated by adjusting the program execution time. It will be noted

that this was controlled by the Transmitt-Record instruction at location

00522. This is a practical and very convienent method of time control

when the program is short. To start the problem, the two computers can

be started together, or the analog system can be turned on with no forcing

function, the digital computer then being started, followed by the application

of the system forcing function.

The output response of the system when digital compensation is used

is recorded as curve (1), Figure 11. The error response of curve (3)

again settles to zero in steady-state, thus indicating that the desired

26

-----.--.-.. -.,------~

Table I O!

Digital program for integral compensation

Instruction
location

00402 TFM 16 02000 00000 Zero the accumulator area

00414 RN 36 00900 00500 Read a.T into 900

00426 H 48 00000 00000 Pause

00438 RN 36 01004 01000 Read e(nT) on AID channel 1

00450 M 23 01006 00903 e(nT) x aT

00462 A 21 02000 00099 Add to accumulator area

00474 MF 71 01996 02000 Move sign flag

00486 A 21 01006 01996 Add accum to output area

00498 MF 71 02000 01996 Move sign flag back 0
00510 WN 38 01004 02000 Write output on DIA channel 2

00522 TR 31 07750 07550 Kill time

00534 BNI 47 00438 00100 If SSI is ON - repeat program

00546 B 49 00402 00000 Branch

Before loading the program, clear memory and set a record mark at 19999.

c
27

o

•

----..,._ ... , --- - ,- ~
-.~ -L---···r.:.... ... - -•.•... -. . ..• - .

... ~~~:-1_ =-'.:> .:~:: .. ~: -. :-:'.: --. -..
• ,.-.- .- ,- ..•• t·· -

40-' . ,'.-,- .~.--.- ~ -..,......... .. ~ .. :.~ ,.-~. ~..,.. ---_. __

. -. -..... , •.. , .:. .: ~ ..

30
(/)
..J

n-I
',:':: ':~~ e(nT) + oI: e(k'!')'"

k", •

0 . (2) OUTPUT OF DIGITAL COMPUTER'
> 20 1-+----jF-+---l--+---+---:::::::l--+---"-'--+'-" --'-'--.:.~ r~~:'::::,--.-..l--.: __ +-___ _t

10

0

-10
0 2 4 6 8

TIME - SECONDS

0: 0.325
T = 0.5 SECOND "
INPUT = 50'U(t)

-I

10 12 14

Figure 11. System response with digital compensation.

(/)
30 --

....

..J
0
> 20

10

I
0

0

.. -.

2 4

(I) OUTPUT- ANALOG COMPENSATION

(2) OUTPUT-DIGITAL COMPENSATION

6 8 10
TIME - SECONDS

Pigure 12. Com.parison of system outputs.

28

•• , I

12 14

16

16

--~ -,.-,---.-.-----~-.. ~~---' ~-' -" ._' -'

effect has been accomplished. The same value of the coefficient, a,

was used for both cases of compensation. Because of this, the output

responses of the two cases are slightly different. A direct comparison

of these output responses are made in Figure 12. It will be noted that

the digitally compensated system has more overshoot in evidence in its

transient period. For the same value of coefficient, a, this is to be

expected. Control theory of sampled-data systems tells us that a

zero-order data hold device has an effective lagging phase shift of

wT/2 radians. Since the Type 0 system itself has a phase lag property,

then the addition of more phase lag to the control loop can be shown

to contribute to a more oscillatory response. By using a smaller value

for a, the digital case could be made from the D/A converter. Approximately

the same as the analog case. Curve (2) in Figure 11 represents the out-

put of the digital computer. The zero-order hold property is very much ..

in evidence in this data.

By appropriate programming, the 1620 hybrid system can be made

to represent almost any conceivable Z-transform function. Realistic

models of sampled-data systems.can be set up on the IBM 1620/Donner

10/20 configuration. Classic cases, such as minimal prototype systems,

can be modeled and studied, as well as many others.

29

o

o

o

c

•

Example Problem No.2

A Split-boundary Value Problem

Given:

d
2

x dx
--2- + 4 --- + l6x = l600.U_l (t)
dt dt

where x(O) = 0

and x(O) = to be determined

The problem is to determine that value of x (0) which will cause

x(t) to have a desired value of 130.0 at t(time) = 0.5 second.

The problem is scaled so that time on the analog computer is 10

times slower than real time. Thus, the 0.5 second in real time becomes

5 seconds on the computer. Also, because of the magnitude scaling, the

value of So. x (t) becomes, xD = 65, on the model. The scaled analog

model is pictured in Figure 13, and the timing control diagram is shown

in Figure 14.

The algorithm for the solution of the problem is as follows:

The starting value of Six (0) is set from the digital computer. Turn on

the analog computer in RESET for 3 seconds. Put the analog in COMPUTE

for 5 seconds. At the end of the'COMPUTE period, put the analog in HOLD

(3 sec.). Sample the value of S6x(t) with the AID .conver.ter and compare

to the desired value, XD = 65.0. If S6x(t)<~D~ then increment 81*(0)

(XDOT) by a DELTA of 10. Repeat the run. When Sox(t) becomes) XD, then

reset XDOT to its previous value and diyide DELTA by 10. .Repeat the problem

procedure until ABS(Sox(t) - XD)~ specified EPS or until DELTA = 0.1.

Write out the answer for XDOT from the digital computer. The flow chart

for the digital program is shown in Figure 15. The digital SPS program

is listed in Table II.

30

--" .. """"--.".,-..... -,.-... -,~~~~~--------

figure 13. Analog model for problem 2.

~\...e r;..c:.iOR ~
So:. O.S
SI .. O. I
S~. 0.05
SL 1.0

AID 1.

8¢--....
C¢--~

1-------1---i
1 R 0 H ~~~~..r~ \ II----'R-t--lo \

TO eLL

83---f

e</> ---f

FF-A

r-----+-I5
j

RE.SE.T (+?UL..SE.)
-I-»3V (OFF)

ov (ON)

~t:i'CJC:lClO

" 0 0 0

8 0 0 0

7 0 0 0

"0 0 o~
S 0 O~ 0 ~
4 011) 0" 0

3 O~ o~ 0 ~
~ 0\-= o~ 0 ~
I 0 0 0

o 0 0 0

C. B A
CLOC K.
(SECONC~)

I
BJ.

CJ..
o

8~

CB ____ ~~6-~----~~S ____ ~

~ :---=-t
~

7z::J SeNsE.
1----:213'1

L/NE~

Figure 14. The timing system for problem 2.

31

A.NALOG
MOO~
INPUTS

c

c

o

o

CD
I

T=8

Figure 15. Flow chart for digital program.

32

Table II C
* SPLIT-BOUNDARY HYBRID PROB LEM NO. 1
*

START H 02402 48 00000 00000
TFM KOUNT,~,10 02414 16 03099 000~0
WN ZEROES,2000 02426 t8 03100 02000
BI *+12,9000 02438 6 02450 09000
81 *+12,9100 02450 46 02462 09100
RNCO 1 NPUT 02462 36 03104 00500
SF INPUT 02474 32 03104 00000
SF I NPUT+5 02486 32 03109 00000
SF I NPUT+10 02498 32 03114 00000
SF I NPUT+15 02510 32 03119 00000
TF I e, I NPUT+7 02522 26 03186 03111
WN le-2,2000 02534 38 03184 02000

WAIT BNI WAIT,9000 02546 47 02546 09000
RN X,1000 02558 36 03188 01000
TF DIFF,INPUT+2 02570 26 03194 03106
S OIFF,X+2 02582 22 03194 03190
MF SAVEF,DIFF 02594 71 03195 03194
C EPS,DIFF 02606 24 03116 03194
BP ENDER 02618 46 02762 01100
BNF STEP ,SAVEF ~2630 44 02726 031~5
CM KOUNT,2,10 02642 14 03099 000 2
BE ERROR 02654 46 ~30~0 0120~
s IC DELTA 02666 22 031 6 03121
TF DElTA,DELTA-I 02678 26 03121 03120
CF DELTA-l 02690 33 03120 00000
TOM DELTA-2,0, II 02702 15 03119 0000~
AM KOUNT,I

A
I0 02714 II ~3099 00~~1

STEP A IC,DELT 02726 21 03186 03121
BI * 90~10 02738 46 02738 09000
B WAIT-12 02750 49 02534 00000

ENDER K 0,1001 02762 3400000 01001
RCTY 02774 34 000~0 00102
CF INPUT 02786 33 03104 00000
CF IC-2 02~98 33 03184 00000
TD MSG+14, INPUT 02 10 25 03211 03104
TO MSG+16,INPUT+l 02822 25 03213 03105
TO MSG+20,INPUT+2 02834 25 03217 03106
MF SAVEF IC 02846 71 03195 03186

C TO MSG+3~,IC-2 02858 25 03235 03184
TO MSG+40,IC-l 02870 25 032~7 03185
TO MSG+44, I C 02882 25 032 1 03186
TO MSG+66,x . 02894 25 03263 03188
TO MSG+68,X+l 02906 25 03265 03189
TO MSG+72,X+2 02918 25 03269 03190
TD MSG+86, EPS-2 02930 25 w3283 ~3114
TD HSG+88,EPS-1 02942 25 03285 03115
TO MSG+92,EPS 02954 25 03289 03116
BNF POS,SAVEF 02966 44 ~3026 03195
TOM MSG+31,2 02978 15 03228 00~02

WRITE WATY MSG 02990 39 ~3197 00100
H 03002 48 00000 00000

.' B START 03014 49 02402 00000
POS TDH I"1SG+35,1 03026 15 03232 00001

B WRITE 03038 49 02990 00000
ERROR RCTY 03050 34 00000 00102

RCTY 03062 34 00000 00102
WATY ERMSG 03074 39 ~3293 00100
B ENDER 03086 49 02762 0000~

KOUNT DC 2,0 03099 00002 "00
ZERO DC 4 000@l ~3103 00004 ~00:j:
ZEROES OS 8~ERO-3 03100 0~1000
INPUT DSS 03104 00080
IC DC 3,0 03186 0Qi003 ~00

DC 1,<.'il 03187 \il0001 :j:
X DSC 3,0 03188 00003 000

DC 1,@ 03191 00001 :j:
OIFF DC 3,0 03194 00003 000
SAVEF DC 1 ,~; 03195 00001 t3
DELTA OS , INPUT +17 03121 00000
EPS OS INPUT+12 03116 00000
MSG OAC 48,FOR XD=99.9, XDOT=+99.9, XACTUAL=99.9, EPS-01.\I.i(il

031.37 0009.0
ERMSG DAC 15,NO CONVERGENCE~

0 03293 00030
OEND START 02402

END OF ASSEMBLY.
03322 CORE POSITIONS REQUIRED
00077 STATEMENTS PROCESSED

SYMBOL TABLE

ZEROES 03100 DELTA 03121 DIFF 03194 ENDER 02762 EPS 03116 0 ERMSG 03293 ERROR 03050 Ie 0.3186 INPUT 03104 KOUNT 03099
MSG ~3197 POS Vl3026 SAVEF 03195 START 02402 STEP 02726
WAIT 02546 WRI TE 02990 x 03188 ZERO 03103

33

__ ~WI

o

To summarize:

So x(0.5) = XD = 65.0

SlX(O) starting value = Ie = 0.0

DELTA starting value = 10.0

EPS = 0.1

The problem solution, with this particular set of data, required 16

iterations. The final value for SlX(O) = XDOT = +11.2. This is the

magnitude scaled value. The true value is XDOT/Sl = 11.2/0.1 = 112.0.

Use of a Multiplier in place of a Servo set Potentiometer

In order to solve problems that require a problem va;iable to be

multiplied by a constant, which in turn is to be set·by the digital

computer, a servo set pot is frequently used. Since the present system

does not yet have servo pots, the multiplier connection depicted in

Figure 16 has been used.

A prog£~~
Variable p.Q(t)

p-output from D/A

Figure 16. Use of a multiplier to control problem variable from 1620.

Future Plans for the Hybrid System

In order to expand the versatility of the system, several servo set

potentiometers are being.installed .. These will be set through the use of

CONTROL functions and D/A outputs.

Several projects which are planned will use the hybrid system to

control actual hardware model systems,.such as a model power generation

plant and distribution network, and a model manufacturing process.

34

"," .. "-.",,"",",",, "'""" '''"" '"""'" """,,-"""'""-,-,,""-""----,,-'"'""""""--"----"""

o

o

o

•

Subroutine s for Set and

Group Manipulations

by

Charles Weingart

Rockhurst College

COMMON meeting

April 8 - 10, 1968

At Rockhurst College the 1620 Computer is used primarily for

educational or mathematical purposes. Therefore, it was decided to

attempt to write programs which would help demonstrate certain ideas

in various branches of mathematics. So, programs were written find-

ing prime numbers, doing modular arithmetic, performing numerical

integration, computing pi, and other similar programs. These programs

used, for the most part, the arithmetic or computational abilities of the

1620.

However, the course in abstract algebra did not benefit; since, in

this course, numbers are rarely used. Instead, only symbols or char-

4. ",<:1
acter -strings are used efto manipulated. Potentially, the 1620 is capable

of doing such manipulations; but the languages available are not suitable.

The SNOBOL language seemed most suitable for manipulating symbols; c
however, the present implementation for the 1620 operates much too slow-

ly and consumes most of core storage. Finally, FORTRAN was chosen,

because object programs execute quickly, have most of the storage

available, and is probably the most widely used, especially at Rockhurst

College. So, the programs were written as multiple augment subroutines

for FORTRAN.'~

Before discussing the subroutine~ some bac.kground is neces sary. A

Set is a named collection of elements, each element normally being a

character string. In FORTRAN, this is easily represented by an array,

usually, the elements are in "A" format, to keep the generality desired. o
A Mapping is a general function of the elements of the set. A mapping

is a generalization of the functions Sin, Cos, etc., in FOR TRAN.~ Ii

-nru- rrrE;;--fRn - U-Tn- TWIIT n-::r

o

•

2.

A Product is a binary operation, or function of two elements at a time,

giving a third element. If the elements of the set were numbers, this operation

or "product" could be normal addition. In FOR TRAN, if the Set is an array

of order N, the product could be defined as a doubly dimensioned array,

having N squared elements. If the elements of the set to be operated has

subscripts I and J, then the product element could be subscripted (I, J).

This approach gives the fastest operation for long tables and is easily im­

plemented.

The product is said to be closed if all of the' answers are in the original

set. If there is an element in the set which does the same thing as a 0 (zero)

for normal addition, this element is called the identitYQ If, given an element,

there is another element such that the two, when operated by the product,

give the identity, the elements are each other's inverse. That is, they

correspond to positive and negative numbers.

The subroutines were written to test all of these properties and to check

for symmetricity, count the non-duplicated elements in sets, and subroutines

to look up products, mappings, or single elements.

These subroutines were written for a version of AFIT FORTRAN. This

is a derivative of FORTRAN I with a larger symbol table and greater diag­

nostics than FORTRAN I. For these subroutines, the processor was patched

to allow multiple arguments in functions, arrays may be mentioned without

subscripts in function arguments, and the mode of the function is determined

by the first letter, as in norrnal variables. The subroutine deck included an

extra subroutine to extend and simplify input-output, and allowed one sub­

routine to call another.

_ ___ ~, .. dJ __ .>oI.-. __ M'_--~~~==··=-··-""" .. ·'··=-'· .=_ ="--= ... ,-=----===-

Since the arrays are those of FOR TRAN I, a simple formula enables the

subroutines to locate an element in an array. If A is the base address

transmitted in the argument of the subroutine, and I is the number of the

element, it's address is A - 10 * I + 10. If B is the base of an N by N

product table, the address of element (I, J) is B - ((I - 1) * N + J - II * lO.

This is because the elements are stored column-wise.

The tests are obvious. Closure checks if each element in the table is in

the set specified. The identity test looks for an elem.ent whose row and

column duplicates the original set. The inverse subroutine looks for the .,.

identity in the table. The group routine does these three tests, and checks

that there are no duplicates in rows or colum.ns.

The various tests are then directly implemented in S. p. S. and placed in

the subroutine deck. It is not important to these routines whether the arrays

are integer or floating point in nature.

Here are the descriptions of the individual subroutines. N is assumed to

be an integer variable or constant.

NSTP (A)

This subroutine Il s trips" the mantissa of the argument from internal

alphanumeric form to integer form. For example, from A format to I for-

mat. Consider this program. A maybe subscripted:

READ I, A
FORMAT (A 4)
I = NSTP (A)

If 1234 is read in, A - • 71727374
and I = 1234.

S~e. ~". 1.

3.

- ~ .. -.- ... -.. -.. -"-- -" .. _-

1=.,< 3

o

o

•

If 123 (blank) is read in, A = • 71727300 and I = 1230 (Blanks are converted

to zeroes)

If 123M is read in , A = • 71727354 are I ;;: - 1234. (Flag on input number

makes it negative.)

FILL (N)

This subroutine performs exactly the opposite function as the NSTP sub­

routine. N may be subscripted.

If N = 1234, FILL (N) = • 71727374 etc.

4.

CLOS (N, SET, OP)

SET is a set name having N elements. OP is the name of an NxN product

table, presumably of the elements of SET times themselves. This sub­

routine tests to see that every element of OP is in SET. If they are, the

answer is 1. If not the answer is O.

AIDN (N, SET, OP)

N, SET, and OP are under the same restrictions as in CLOS. This sub­

routine looks for an element of SET such that when multiplied by every

member of SET, either element first, the product is that (other) member.

The answer is that element found. If none is found, an answer of Q EO

If none is found, an answer of O.iEO is returned (all blanks in A 5 format).

If A is from SET, we want E to be the identity, such that A x E = E x A = A.

AINV (N, SET, OP)

N, SET. and OP have the same restrictions as in CLOS. This subroutine,

given that the product table has an iridentity (AIDN). Then if every element

of SET is multiplied by another certain element, either element first, the

... ""","',"'_, _.-.. _. __ ._._ .. ,-' .. , •.... _ - -_._-- ._. __ ._. __ .-_._-----. .,._,.,. .• "'-,

5.

product of these is the identity, i. e. if A is from SET, then there is a B o·
such that A x B = B x A = E, the identity. AINV automatically calls AIDN

to get the identity. The naswer has the same form as the CLOS subroutine.

GRUP (N, SET, OP)

N, SET, and OP have the same restrictions as in CLOS. A group is a set

and a product defined over the set, and having the qualities of closure (CLOS),

identity AIDN, every element an inverse (AINV), and associative, i. e.
\

Ax(BxC) = (AxB)xC. This subroutine performs all of these tests. The

answer has the same form as CLOSo<i

NORD (N, SET)

SET is the name of a set and N is the maximum number of elements in it.

The answer is the number of non-duplicate non-duplicate non-blank (0. EO)

elements in SET. All duplicates are set to O. EO and moved to the end of

the set.

NELT (N, SET, ELT)

N and SET have the same restrictions as NORD. ELT is compared against

each element of SET, and the answer is the element it matched. If it

matched SET (1), 1 is returned; SET (2), 2 is returned, etc. If no match

was found, 0 is returned, Nand ELT may be sub-scripted.

HINV (N, SET, OP, ELT)

N, SET, and OP have the same restrictions as CLOS; Nand ELT the same

as NELT, ELT is checked in the product table to see which element of SET

is its inverse, i. e. such that ELTxB = BxELT = E, the identity. The o
The answer is the inverse. If ELT does not have an identity, or ELT

is not in SET, and answer of O. EO is returned.

o

o

•

RIDN (N, SET, OP)

This subroutine performs the same function as AIDN, except only the

right identity is checked for, i. e. and element E such that AxE = A for

any A from SET, The answer is the same.

RINV (N,SET, OP)

This subroutine performs the same function as AIDN, except only a right

inverse is check for, that there is a B so the ELT x B = E, the right

identity. The answer is the same as for HINV.

GPRD(N, ,SET, ELTl, ELT2,OP)

N, SET, and OP have the same restrictions as in CLOS. If SET and OP

form a group, the product of ELT 1 x ELT2 is found and retu;rned. If

not, O. EO is returned:

RCD (A)_

The RCD subroutine is different from all the other Algebraic Compiler

Subroutines. Its purpose is to m.odify the Fortran input and output

routines ,to be m.ore adaptable for the type of operations necessary for the

Algebraic com.piler.

If A is - N. N = 0, 1 , 9

A card is read once then can be re-read N times by calling READ.

o. This resets all input m.odifications (-N, 1., 2., 3., 4.)

1. This restores the I/O Buffer see 2

2. This restores the I/O Buffer to allow an output operation

while retaining free input .

3. This allows free-type input under Form.at control: Leading blanks

are elim.inated on A, E, F, G. and I form.ats. New card read if only

/lJ

6.

-------------------~~~--~~~~~~~-.~ . .~,-.~--.-.-.---," ... -....... -...... --------.... --.---.. -_ ...•... -.. _ ... _ __ ._ .. _.

blanks on present one.

4. There is no read on an input) useful with 3.

5. The I/O Buffer is not cleared on an output). New output data is

added after old.

6. There is no output on a) if not the last. Useless without 5.

7. There is no output on last). The output record remains in the Buffer

for future operations.

8. Restores all output modification. (5., 6., 7.)

Unlike all other subroutines. This one may have various numbers

of arguments. i. e.

ReD (0. 3., 4.)
ReD (8.,5.,7.)
ReD (2., 7.)

ReD (-3., 3.)
ReD (-1.)
ReD (0., 8.)

These are all valid, and perform the specific function in the older

of the arguments.

Here is a small program illustrating these subroutines. Statements 1

through 20 read in the set and the operation table. The remaining state-

ments test for closure, identity, inverse, and group qualities. Granted,

7.

this program has limited applications other than educational, it illustrates

the priciple described here.

Here is an assymetric operation table. The program tests and types the

A bcy.(.
results within 5 seconds. Ee]QUT it is a smaller, symmetric table,

which is a group. This test is completed in shorter time. Ff'l$ '1 J 'I-

o

c

c

c

Fa" 1

o

o

SET1 ••• A B C

SE12.'. F G H

A
B
c
0
'E

F G H

A F K
B G L
C H M
0 I N
E J 0'

READ 1 A
1 FORMATtA4)

.1=NSTP(A)

INPUT
1234
123
123M

A
. A= .71727374

A= .71727300
;A= .71727354

0

P
Q
R
5
T

E

1
1= 1234

1= 1230
1= -1234

1

SET •• A E

PRODUCT. o.
- -

A E

A E A
E A E

SET. o A E

PRODUCT. oo

A E

A
E

SET ••

A
A

A

PRODUCT •••

A

A B
B E
C D
D C
E A

A
E

B

B

E
C
E
B
B

2

0

C 0 E C

C 0 E

D E A
E B B
C E C
E 0 0
C D E

o

3

OJ:,

;'

SUBROUTINE LENGTH

NSTP (ANUM) 38

FILL (N) 50

CLOS (N,SET,OP) 404
- ...

AIDN (N,SET,OP) 620
... ...

AINV (N,SET,OP) 664
... ...

GRUP (N,SET,OP) 520
... ...

NORD (N,SET) 42"
...

NELT (N,SET,ElT) 320
... ...

HINV (N,SET,OP,ELT) 780
...

(J\ ABEL (N,OP) 450
, ~I ...

GPRD (N,SET,OP,ELT1,ELT2) 620
- - -

RIDN (N,SET,OP) 428
- -

RINV (N,SET,OP) 588
-

RCD (ANUM) 762

e

DIMENSIONA(900),B(30) 0
C READ SIZES
1 DUM=RCD(0.)

READ,N
NSQ=bI*N

C READ SET
DUM=RCD(3.,4.,-0.)
00 10 l=l,N -

10 READ 100"B(I)
100 FORMAT(AS)
c READ PRODUCT TABLE

DUM=RCD(-0.)
00 20 l=l,NSQ

20 READ 100,A(I)
C CLOSURE TEST

IF(CLOS(N,B~A» 201, 202, 201
201 PRINT 200, 84562.-

GOTO 203 -
200 FORMAT(/9HCLOSURE ,A4)
202 PRINT 200, 5556.
C FINO IDENTITY
203 D=AIDN(N,B,A)

PRINT 300,-0
300 FORMAT(12~IDENTITY IS ,A5)
C CHECK INVERSE ~ C: IF(AINV(N,B,A» 401, 402, 401
401 PRINT 400, 684562. - -

GOTO 403 - _
400 FORMAT(9HINVERSE ,A4)
402 PRINT 400, 5556. -
C FINAL GROUP TEST
403 IF(GRUP(N,B,A» 501, 502, 501
501 PRINT 500,684562. - -

GOTO 503 -
500 FORMAT(7HGROUP .A4,/)
502 PRINT 500, 5556.. -
503 STOP
END

F,... (..
Sa rtl\ple. P,.o, ,..4,..,

o

o

CI If'

•

2
A
E

E
A A

CLOSURE YES
IDENTITY IS E
INVERSE YES
GROUP YES

2
A
A

E
A A

CLOSURE YES
IDENTITY IS E
INVERSE NO
GROUP NO

5
A B C
B E D
8 p E

E C C
(, " E"

CLOSURE YES
IDENTITY IS E
INVERSE YES
GROUP NO

F,~. '1
s Q. ~ p' ___

au t pu't

"9t \~

E

E

D E
E A E C E B
C

B E 0 0 A B

o

()

C.l'\ "

o

•

SESSION REPORT

COMMON - Chicago

Session Nurnber __ ~M~Q~N~D~lL-__________ ___ Session Name __ ~3u6~0~DO~S __________ _

Cha i rma n-.--..A~.t--.lRowalWlglirls~d l""'.iJ--______ _

Time 3,30 to 5.00 Attendance {No.) __ 8_8 ____________ _

Speakers Mr. Don Moeller - IBM (BTAM and QTAM)

Synopsis of Meeting BTAM - Basic Tellecommunications Accesa Method for

high speed and low speed terminals. Capabilities of BTAM. 1) Ter.minal

polling, 2) Message receiving. 3) Terminal addressing, 4) Me ••• ge sending,

5) Terminal dialing, 6) Call answering. etc.

QTAM - Queued Telecommunications Access Method. A complete message

handlins lansUAse for lOW speed terminals. QTAM Capabilities. aa well

as all the BTAH capabilities we have 1) Dynamic buffering, 2) Checkpoint

for communication lines. 3) Time and date stamping, 4) Messase s~uenc~

checkina. 5) Queuinl of messagea on disk or in core storage, 6) Logging

of messages, 7) Rerouting of undelivered messages, etc.

r

o

MR. DON MOELLER - IBM

Chicago Field systems Centre

214 North Michigan Avenue

Chicago, Illinois 60601

c

COMMON Chicago Conference

360 DOS project

Session MON-Dl

DOS BTAM and QTAM

C" 'I

.'

Foi I 1 •

Foil 2.

Foil 3.

o
Foi I 4.

Foi I 5.

Foi I 6.

• Foi I 7.

Presentation To COMMON On DOS BTAM And QTAM

The two major IBM supplied programming s.upport packages for DOS
teleprocessing users are BTAMand QTAMo BTAM is an access method,
i.e. it is a set of macro instructions which greatly simplify the program-
er's use of terminals as I/O devices. QTAM is an extensive message handl ing
language.

DOS BTAM provides programming support for a wide range of terminals.
Among these are tone transmission terminals such as the 1001, 1092
and touch-tone phones; start-stop terminals, including both IBM
terminals (1050, 1030, 2740, 1060) and teletype terminals (83B3, 115A,
TWX); higher speed synchronous terminals-the 2780, 1130 and S/360
model 20; and other 5/360 systems. OS BTAM provides simi lar support,
excepting tone transmission terminals and locally attached 2260 graphic
termina Is.

The overall environment in which the terminals operate is shown here.
Moving inward from the remote end of the communication line we find
the terminal with its various components such as keyboard, card reader,
paper tape reader, printer, video display, etc. The termina I interfa~es
to the communication line via a data set or other line adapter. The
communication line itself falls into one of two general categories­
nonswi tched or swi tched. A second da ta set or Ii ne adapter provides
a line interface at the communication control unit (2701, 2702, 2703,
7770 or 7772) 0 The control unit interfaces to the 5/360 pl!ocessorr
normally through the multiplex channel.

The first four BTAM capabilities relate to reading from and writing
to terminals on nonswitched lines. The next two are required to place
and accept calls automatically on switched lines. These six functions,
together wi th error detection and recovery; provide norma I access
method capabilities. In addi tion, BTAM provides other facilities
important to "real-time" systems. These include on line terminal
testing, error statistics, terminal list modificationJbuffer pool man­
agement, and the ability to operate in a multiprogrammed environment.

Message processing is a user responsibility not only with BTAM but
with any teleprocessing system. The other functions on this list
must be coded by the BT AM user. We wi 1/ find later that these
are provided by QTAM.

The BTAM macro instruction set, though providing a powerful tele­
processing capability, is small in number. Training in the use and
coding of these macro instructions can be accomplished in three or
four days of classroom work.

Operation of BTAM in a multiprogramming environment depends on
two factors. First, the user must code a multiple WAIT macro in­
struction in his BlAM program.

~\

Foil 8.

Foil 9.

Foil 10.

Foil 11.

Foi I 12.

Foil 13.

- 2 .-

The DOS Supervisor in response to this coding wi II give CPU control
to another parti tion. Second, the DOS Supervisor wi" immediately
respond to an interrupt generated by the completion of a message
sending or message receiving operation. The Supervisor wi II give
CPU control back to the BTAM program. Thus, the BTAM program,
when it has highest priority, will not relinquish control of the CPU
unti I the programmer allows this to happen. It wi /I regain control
of the CPU as soon as it has useful work to perform. No other program
running simultaneously can prevent BTAM from receiving CPU control.

BTAM is designed to manage a number of communication lines
si mu I taneousl y • Once the read or wri te opera tioA on each line
has been started by BTAM, no further processing is requi red un-
ti lone of these operations has completed. The CPU is free to be
used for processing of a background job in a lower priority partition.

A typical BTAM inquiry program consists of two major elements.
The first is the line control function which consists of BTAM reads
and writes with a STAM WAIT as the controlling element.
The second is the logical processing performed on the inquiry after
it arrives at the CPU o (This part of the program is outlined in dotted
lines .)

The most straightforward way to write a BTAM program is as a unified,
one partition program. If the total time required to process a message
is less than the average interval between'messages,this is completely
satisfactory. However, there may be peak periods of message activity,
such as between 4:30 and 5:00 P.M. Because the BTAM program can­
not accept messages from the network any faster than they can be pro­
cessed, the desired peak arrival rate may not be satisfied and messages
may temporatily queue at the terminals.

A more flexible technique uses two partitions. Since the line control
partition is not related to message processing ',speeds, it can react readi Iy
to transmission peaks. Message processing sti" proceeds at the same rate,
but a disk queue now acts as a buffer at the times when message input
rates exceed message processing rates.

A two partition system involving BTAM inquiry handling in the fore­
ground and a batch processing job in the background is used for estimat-
ing core storage requirements. .

The core storage requirement for BTAM control blocks, tables, macro
instructions and subroutines necessary for a system of four communication
lines and sixteen 1050 terminals is estimated as 6940 bytes. This is
exclusive of message input/output areas ..

c

o

Foi I 14.

Foil 15.

Foi I 16.

Foi I 17.

Foil 18.

Foil 19.

o Foi I 20.

Foi I 21 •

•

- 3 -

Increasing the network size by a factor of five does not have an
equivalent effect on BTAM core storage requirements. Instead, these
storage requ i rements increase by I ess than 500/0 0

If the background partition is established at 14K, this two partition
BTAM system is estimated to require approximately 42,000 bytes
of core storage.

DOS QTAM also supports a wide range of terminals. It differs from
DOS BTAM in that it does not provide support for the higher speed
term ina Is-the 2780, 1130, S/360 model 20 and other S/360 processors.

A comparison of BTAM andQTAMcapabilities shows the many additional
message handling facilities provided by QTAM.

The QTAM macro instruction language can be divided into five major
categories. The total is seventy macro instructions, with message
handling macros accounting for about forty percent of the total.

The QTAM system always uses a multiple partition environment,
as previously described in connection with foil 11. This provides
an excellent generalized approach for communications systems.
It keeps the line control function entirely independent of the
message processing function.

A DOS QTAM syffem must have a message control program for
communication line management. This must be in the highest
priority partition. If messages are only being switched between
terminals, a message processing program is not a requirement,
except when it is time to shut down the message control program.
If processing is required for all or some of the messages, one or
two message processing programs may be multiprogrammed with
message control. Two message processing programs may be used
to improve system thruput by providing the capabi Ii ty for con­
current processing of two messages.

A message segment enters a core storage buffer area in the QTAM
message control parti tion. The segment is processed by a set of
message handling macro instructions referred to as the Line Procedure
Specification. The message segment is usually written on a disk
process queue. The segment is also placed in a core storage process
queue of limited size. In response to a GET macro instruction issued
by one of the QTAM message processing programs, the message segment
is moved to a work area. If this segment is no longer avai lable in the
core storage process queue, it must be recalled from disk before the GET
can be performed. After processing is completed any response is PUT
from a work area in the message processing partition to core storage
in the message control partition. It is then written to a disk output queue •
When the line is available for transmission, the response is recalled from
disk, processed through the output portion of the Line Procedure Specific­
ation and transmitted from a'n output buffer.

Foi I 22.

Foil 23.

Foil 24.

Foi I 25.

Foil 26.

Foi I 27.

-4-

A typical QTAM environment which can be used for estimating
core storage requirements consists of a QTAM message control
partition, a QTAM message processing partition and a background
batch job.

Core storage requirements for a QTAM message control program
which manages four lines and sixteen 1050 terminals is estimated
to be 21,310 bytes. This does not include communication
I ine buffer areas.

A simi lar QTAM message control program for a network five times
as large is estimated to require approximately seventy percent more
co-r.e-: s-tOira ge .;;; ; -! ,; "

The message processing program requirement, exclusive of user coding,
is estimated as 3935 bytes.

With 14K assigned to the background batch partition, the total core
storage requirement for this three partition system is estimated to be
approximately 58,000 bytes.

In reviewing the additional functions offered by QTAM and not
found in BTAM we find that th-ese functions fall into five general
categories. These are:

1. An IBM supplied queuing technique.
2. A complete set of macro instructions for analysis of all

fields in the message header.
3. Special macros for handling of undeliverable messages.
4. A ready-made line control program structure.
5. Checkpoint/restart facilities.

o

o

".

,',
J "

e,

CD
D 15 k 0 PEr~A-r! N G S'('s·~r·E!v\

" "

8/~ .. ~ 'c "'r"t: l .. E C Q rv \ cv\ ',1 r.~ leA. -r~ I 0 l'-l.S A c C~·~~.S

\\:\.e~C"i~) J) f::O \~.: J-\ \ c\ \~\ S'.pt! £ \) .~~! n

· . Low' S '(>~.t.~D l~i<.\'>\\h(;~LS.· .

. I

t~\.li!lJEj) '"(E'!..ECOMMlU·[lcA-nOl'-!S Access

l\'\-t·i~ f"{ ~ n -- A C () lY\ \l t. t-·r ~ {'v'{ S"s,~ 1\<3 £.

."

•

. '.

1
< •.

. STAM
.. TERMINAL SUPPORT

TERMINAL'

1001

1030

1050 (SWITCHED)

1050 (NON-SWITCHED)'

1060

1092/1093

1130
2260 (LOCAL)

'.

2260 (REMOTE) ..

2740 I & II .

2780

5/300 MODEL 20

. 5/360 MODELS 25~ THRU 75 .' .;

AT & T 83B3

W/U 11SA

AT & T 33/3S (1WX) "
;.,' .,

" . "

• ,. 1 I

DISK'
OPERATING
SYSTEM

X ..

X

X

X'

,X

X

X

X

X

X I·

X

X"':
"

x · .. · ' .
.' : ., ..

'.: .. ' .. < .. -,
X .':'. '.:

" . :'

X':::":·":··'
" !: ., '.' .• ", . .".,., ••..

• of'

OPERATING
SYSTEM

X

X

x.

.. x

·x

x
x

X.

X'~: .

x

x·
..

.... -:. X':.

. : x~·

.... ' .. ,.
; ... ' .

. "

. .

o

o

----------------...... " .

o

• •

Terminal Devico

..

l
1

Communication Network

Nonswitchcd line

I

Jncomi n9 MessaGes .). ----

CODc:
. T = Terminal

OS = Data Set"
'CPU = Central Proc:enillQ Unit,
'C·~ponent

l

I
I
J
I
1
I
f
1
I
I
I
I'
I
I
I
I
I
J
r
j
f
I
f ,
J •

I
I
I ,
I , I

'I
J

I , r·
I

,I .

I
" .

J

CentrQ I Doto . CD
P(oceuing Location

2701 ••
. 2702
or
2703

Multiplexor
Channel

•

7no
or
7712

CPU

Figure' 1. Configuration of a Te~eprocess~ng Installation
, ..

--- - .. " .. : . ,­
'. ,.

,

6T/.\M CAPAS JL)1--'/ cS
:

',t

, .

o E g~~re D~"1SC-rIOI'oI. r!:. REeQv'=J~Y

Tc Ie M J l~ I~ 1....

'.' . .

·0 TS" l;N'\u.1 AI... . 1'4 .. ~JI"~' Ere~oie ··Co UN7S

o TEI~J.'l'lINAL..· L t~., 1"'1 0 0., FH.A-rlo J l

C~~ ,'I. () e...J~ c-r -r/~ e)'" : e_ ••

t I

-, .l ,

0'

c'

()

..

D . L 'G 1 re" c"E SS ltv ;;J

.. '

'of

. , '

Be -r ws 11'1\{. - . PA ~-;, -r~<J AI.$. .

. -
' ...

, :

e'

" ¢.. De·Ct..4i2A -1'r;;-'c
t3TJVi OJ)

MAcreos
.01::' l-;e IYl L. S' -r

o -,-FS1- LE R 8 .. ~.; ... ' , ..
',.

. ~ {R AN oS I ~ZN -r . JYj A C fa 0 ~ .
OPEN CLOSe. '.'

Lo.pcN . .

•. . ~. DA-rA · .. ·I-IANOL.INGMACreO~

o

. Rr; AD ~. WA/-r .. ' · .. ·0
t-JR IT C, . : .. Ill./ A J T

, . .

. Co N-rreo '- .' .. -L e f\ pre---r' .
C I-lG':NfR Y . TIeAJ-JsLA-rt'··· .- .

.... 're E S f:.T PL.·' . '.- '" ."-"
"

<> . L3 "" F' F z; re.'. MA'" A G It .,..,6"'."1.' {Ill A. c.. R. () s' .. ,... ,- - _
. . . . lC e: Q 8'-lF. .', ~ ~ 1..13 tJ~

'.

':r:ewm::m . IInmrw ." ... t!!!TIII . ·t . ; . 'POOl', •

'1
.i~-rA~l IN A ~~\~b,«~ PROG/~f\MM.l"~· cflVIRoJvl'~crJr

------VVAII.~~ ________________________ -,
~ <....,..

. _..... ... _ -
'1':----

-.- -

I
.... --- FtlJ R.·E c, R 0 UN I) .CI 2. .-_.-._._-._- - .-...... -----.--

.a--: .. ___ .> = ..
- - ... _ ..•.. -... __ ._. __ ... -.....

t,..,R.,-rE
..-r:;~ __ ... __ __ . __ __ .. __ .. " _ _ •. ~ _ ..•. _ ... _. ______ ._.~ ___________ A

....
. ~. _ ...• _ ... _---_. -_ .. __ ...

WA/-r

--
-:-- .. -.-- _ .

.. _----,-_._-_ .. - - ... --
... -,-~---- , -=-~'-.--~=~:-~ . C ~/q~_~_~-,~!.e:~Jl.U-e •. -:L~=·_·: ___ ··_ --.. __ .. _-----"- .. --. ._._ _----- - -- ... --.. -~ .. -.-- -_ .. _ .. -' -_ .. ,', _. __ _.- -.~ --- ----"-'- - -, .-- - oo .. ".. • • _ _ • ---

-_ L---';'---"';"'--.s-u-,~e-"~v-,.s~()~I2----------"·1 .. -----.-.
-, ... - ... _-_ .. _ ... __ .•. _._.t--... _-;:. _-;_ .. _. __ . __ -~ -.---.. - .. -.--.-.--.---.... --......... ---- - .. --_.-

.' ,

e--··

-'") \o.~. It } II
L) 1/"'·\ t\"l

~ -1\.eD ~.: ... ~.' ~ Of'..1 l.,ltV c: ~~ / .. ~~ :--.... =."ae == SJl!UUU

j?,GAO ON~ l-I/\//j' ~" .J.t <2
=

Vv'TGI 7~ ON t.IWG ~ 3'
=- .;;:5CQ ... iAV"O..... ::Ii;; ':.I':U5::Qil! I j ...,.: ... AJ42#*

au IU

:'=-a&C2iiWW'

(; 'If 4 1i.

,
(I, ~

\ (\ .
~/

o

L::;..... : (.a:.:

/ZIJAD 0 N t...ll\llr~~. . ~ .. : €
..... M~h aLb ~

we)t!, RcA 0
... --. . .- -_ -. :.--- -- ... ;: '-'-'--:-.' .. -. -_ ... -.... -.. -.: . -. ~. M . ,..

~ .
"~-.. --.-------. .---.-.-... ----.--:.----.- ~iZZZ?22 .. --.~ .. - .. -----
. --•..... ------.-..... --"-------.-.. ~. -----.- ... -.. --.----.---.. . . .

• "t.·

.== == r A

wa 17C ON
7 • -ace a:uc

. '.

S7AC1'"
~(G)('T
£r:"A.[;)

o tI t-II\II!
t14

s,gg;"

0iGLSiIIi&i0J . §

P\~c.~ss
IN~)u·r
.1) l17A

$:'; fh .f:, tj; t

2

..... _ -_ - ,.- .- ":.-

'0 ~ .,-••

_ 10_

; ; . :'J

I

I
R,G A () 0/\/ 1_I/VC·:-1· 7 _. i

i
-~~~~~~:~~G~~$.~~=z:~;~~~&=q~'~g~r~=-==-=I~c~~~n~~~==~~;i~'~ria!==Dm3ff~~~==~·~;~a=~~~===7~~~x=w

I -,
I

," I
,?27Z </~ z· ZZ.Zzz Z21'" -'--.~~.-. ---,...--:-:--e?7~Z7
----.7-- t3 A~I('\:llGO UNO .. -~Pl~ eli' 55 1l\./G . __ __ .. ---.. ---'-';--'-' . 6 A t.~ G ~o UN 0 .-:
_:. _____ .. ___ ... :.. _._._._~ _. ___________ ._~ __ . __ ~. __ ._. ___ ____ .. _ ___ e.~~_ ~_£r.ss J}~.~

.. ' .. . --. __ ._ _ ------- -....... -----~--:----•. --~-......... _': .. --.-. -----. -- ... -- -•. -- . ---- -. -- - . --_ _ ---
...

.. -.- - --.-. -.- - -·-----------------·--~--:"'-·-----.:..?~T---·---:·~--· .-~---.--.-.. -------.. -- ... -.--. ----:
. " . . -' _, - -..."'_ ._"0 _ __ _ .. _._.~ --_:___ •• -.. ... ____ . ____ ... _ & •• _ _ •• _ •• __ _ •• , ___ ~ _____ • __ ___ ._.... _ ._... _ ____ ~ __ ._ .. ~_ •• __ .. _.. ..

. .
: ,------~ .. "" ... _ --..... -- -.----...... ---...... _ ... _ .. -..-_ .. _ .. __ -_._ - ._._ -"--,-- .. --- ... ~. _ .. -.- - ... --_ _ - .()."

. . -.- -..... _._.- . __ ";' -_ ... -....... -.--....... -. --.. ~ -------- .. -- -- _--_ .. -... _-.. _-- - ... -._ - -

:;) ,. "

. ... - _.- - --._.- _ ---- -- - '··-1 __ ... _. ____ .•• __ • __ .•• - •. _____ • ____ .

'" .

o

•

. ')'

START

, . '.~: :.- .--::.,,_/ ---,:

'. . .
STAM
WAIT

. .'
• 'It ." .- ,.. . ..

. . .' ~

.. '\ ~
, .-.

. ..'
.' ,

. I

(
'.J/ , (

'/
/'

.; : . ~ . :.: :

1

-.t\.

WRITE

,; .. -
~. . '.'

. ~. '. . . -.: ,: " .<~~':'~ ~.:~ ~,<'::.":< ~::;; .. ··.· ... 1 WAITF

~ " .' ~, ,':',',.' .. ~~, ,': ' ... ":' . ;. ~ :~, :' ':.. ':.' '1', . .' "., . «:, ':,. ">,< .. 'T. _
.-. ~ . , .. , .. ". 'I ,_~/------

. '. .-.'
. " :' ,.-: ~ ,: ... - . iRE"-"'AINING

...........

I
. I

I
I
I .

I
(

, I
f .,~,

, I

. '" :.,.';,.: J" PROCESSING
. I

. 1 .

. . ' . .
1- __ 1_ - -- .~.J

fIGURE -1
.

DOS STAM

..

Co h.!-r/z 0 . L- & .. ' ••.••.• - ".•. •. i

'1~~tiSSii\'(1' ..
.. 2 . " : . '.... ' .•...... :.... . ~-. ,: ... ".. .. . -.... ;:- . ~ ...

..
. .

. PR:~ C). ClA ;"1
• • ••• 0' .• :

• , p •

.. '.....
."

':; ~ . -. ... -
.. ":. ,.... " .. '-:

_elltJ4 ••

. • .•••.• '. " . - '.-;" ..• - .. ~ -----------• ...w;..; o .' ~ .. ':' .. ?,: ~ ._. · .'~, . ' _.... .. 0'" .•• •• '" •.•• ~~ •.• "

•••• __ e •• .:. ••••. _ _ ••••. :.' ~ _ ••••.•. _ .:.: " _ .~ ~ .:.., .~IQa.--'
. , .. .- , - .. - --. .•.. -........ . , ...

. I.
• . fl.. • •. e•

• t.

~

, CJi< /

I •

.'

"-r(!.?f1U,f/t (.,
'h'1S G. Q. \I (ll ~

J ;--.-: I . MSG.
,,~'O C. £S.$
e' -,-t'Mi!

.. ~ "- -. - '

.e -_ ' ... -. -~: .

'.
.

. . :. " ..
r~ Ani' · :' ,,<·'~~:":I : .. ":': LLLLt i· {:J
1,,-. ~ ..,. C.'< "11,'v:'-\ ~ .

'I .r ~ 1\-1SS. ~ I.tt/.J~ .', :... ~:·:·o ES 1 ~ S'~ . ,.\fl a IV,.'\ c. 12A r.~
';1 ... ~ 1 ... ,. , '. . . .
J :;;::::.,':. '. :;' 12Z2:221SSSSS[7ZZ2JSSs :S4?)6· ..
i1·· :...::. : .:.: ,~.':.' : . ..;: " .:': q~" ~~ ~s', IJ'M Co . .'
I~ .~ • . ••
11 .. II&"! _~ 1:--.... • .
I •

.' , C"·"

'C"·,·" ..

~
~_I

·13 7/--\ ;~1

l.. I At k- ~. ~~ 0

?l~'-" G IZ A t1

~
~~,~--------------~

VI s r; R.
PR.o C i!. S.s. IlvG
l'l< fJG Ii ,~ '-1

o

•

. _. • t

I J? -
-- ._----_ .•. -._----_ •....

·0

.. ···IN(~(jI~ 'f
FJ'L~

'0

STAM CORE STORAGE ESTfMATE
C~ (DOS) , /

,'/

BTMOD (BASIC MODULE) 2930

ERROR CORRECTION 2070

ERROR COUNTS 190

TERMI NAL TESTS 690

MODEL CHANNEL PROGRAMS 84

CONTROL SLOCKS 600

STAM MACRO INSTRUCTIONS 240

POLLING LISTS 56

ADDRESSING LISTS 80

! 6940

'el

4 LINES
16 1 050's' (4 PER LINE)

·'

•
_&&& L£L&L&llSGO

BTAM CORE STORAGE ESTIMATE 0 I" ,I

(DOS)

BTMOD (BASIC N~ODULE) 2930

ERROR CORRECTION 2070

ERROR COUNTS 190

TERMI NAL TESTS . ~690

MODEL CHANNEL PROGRAMS 84

CONTROL BLOCKS 1240

BTAM MACRO INSTRUCTIONS 480

POLLING LISTS 280

ADDRESSl NG LISTS 400
.'" _to

... BUFFER MANAGEMENT 1470

9834 0

20 LINES
80 1050's- (4PER LINE)

."

o

o

o·

•
•

I
I

'(·1 ··-7- \ ~ 1\ hll~~ /" , .. '" !' ~ I \ ~ . '"
-'. <iI'. ... II ...

. ~

9 ,,~- 4. I ~! f: S A l'\! 0 J 0 ·..".·· .. 0 & n, ..
• ' _.J

,-::.) r&;T n~ .M) . ,~
. l-' \'\! ~ _ S {; .. \~,. . L 0 ~~ t \. A ~ 1-" c s

S E ('~ ~! r:: 1'1 -i J A " L 0 c. ... I \. /J.. J... I 0 C S
.TN o. S ~Q. .. :.r /0 A l~ f* A

f' r'~ ... ,J t,) .::;;.

S fi..Q ~t ~ ,,, 71 A f- .:r /0 Ij~ fC,S A-S (2)

L ,C~ M M U ," I CA,. If 0 ,../ Lllv€ E 1.1f:' F= f?l2.5 (4)
. .

I N Q \,11 R ~ PfCo C t SS IlvCiJ .. Pe-o G /ZA~

15'

I I l o.

400

800
520

i ()11 (' I ... til !

QTAM
TERiv\INA-L SUPPORT

0
.

TERMINAL DISK OPERATING
OPERATING SYSTEM

. SYSTEM

1001 X

1030 X X

1050 (SWITCHED) X X

1050 (NON-SWITCHED) X X

1060 X X.

1092/1093 X
.. &., ..

1130

2260 (LOCAL) X 0
2260 (REMOTE) X X

2740 I & II X X

2780

S/360 MODEL 20
-

5/360 MODELS 25- rHRU 7S

AT & T 8363 X X

W/U 115A X- X

AT & T 33/35 (fflX) X X

TOUCH-TONE]
PHONES

TOUCH-CALL"ING -- -
X

I' e

------~----

- 1"~
Q . J c" R M l N l\ \ _ .,;, l __ t. J l'J C,

~ f~Jl ~ s.s.~\G C R~c,: JV)J~! G

~ 7[; F~:·"1j hi /<\ l.. A, D;~ \: ~j J l~ G
.... !\/l" r~ to:: l" J\r: ~ s- I ,. J \. 4..' "~~/"~"': \; .""fll:~ II

'0 n "vi
~ ~)W pp~ t~· tu f)~. 1 {APi/'\ G e (vi ~ .\! ··r
" ,

to D '(i\/;\ : 11 c ' {3 tJ i:' /-- 'Z ~;; 1 N G

o D I i\ L J I'! (') /\ 7c· /(1 i~1 J AI /\ L

~ /5-R i\ ~) :~ D f. (ti C or/I ~) I" AN C> C Q R I'C: e c -rIo "I
o ~.~ 7t: (~ l'-1 J l\!.C\ t. 77-!~~ sr s

~ fvrJ.\I.~ 7~ AI AI'J' (~ 0 r- f:~: s?c t? S'''T/~ '-/'1 S ?;., C S

• Clal ~ c I~· Po I J--J 7' s;:" 'z· lo r~1/~1 \~ Iv I CA ·r I 0"/ L I/V'::- ,,r;

~ N 57 tvv 1< re' Co ;-../ -rle 0 (.... 7;; It.: 1--11 /~/ A b

o 7i I'~; ~ ;t\ Iv'" D f) ~\ "'/' if' 5·, "1 M f~ IIV G

o /lrj c$SA (?-; e S (!r.~ vtt "Ie € C;./ 1:;' C' Ie I/v G
J' .. t" . --I D ,.,

co. \;"lCS-S,:J.Gc YP'e I\SCoGA/I/f:QIV

• Q f...,(F. (,! /1{"6 0 ~ I~/!I s.s P. C, Ii S 0,,(1'/) IS f'­
O/~ //,r" C\")R.~ .. S 7'0 RAG E

, Lo G G flvG 0 r- I-r~;-t:;.,r:; A G c::s

... li("n:i?.C{~f7/1)1{ O"t: J.f7;:SSA..(7~~ F~I? AN-.

0\/, 0 t= S c /(\;'/ c e· fe ,-e /-'1IA/,.,t\ (_

• 41 l\ C" r<Q 1.(;'(11VG 0 r: G!;V /.J/: L .. / Vt·,~ jl.l?t. c- !'"'Ie-SSA f;e: S

•. Ef'::J~Of' NQYI1:I(:~-rr\) /\./ "70 '7iirc'''''l1l'-//<V.F, .

C I~ tY c ,~ C-C. J~ -;'(0 1/- .(() F. t: R R. c> /c It.'i tOW .s SAG F. .<;

.• ,' 1'7

,..... .: . ..:. ~ ,
t j I (.. "'.... , . ,

~
........... ~"='!' .• ;,.I ,.t':.-.,y~.., '_." •.

,

Jz" , \

~\;?

/\
'y \
'"" 0\ ." \

V
.,I'\

. QTAj\1 l-ANG U;.~ G[

o G rc D U ~f) J •

Ilo DI:"l= /f,J,.f1QJ.J) Irv/-rt/J.,. ·r(ON) 7;",'--111'1 A '1"1'01../-

...... Gr~o\~p 2-
..... .. C '0 ,,! -(~ Q l..

. . . _. -

B t. Q tie) . fA fH. tt J.. B 1.1 F PI! /l '. J)f: F IlJ , n.~'I./-

~. . G 1<"'0 \,,1 f~. 3 ..
/\1 E S SAG 1~

.. - . . _ ~ - __ ... -'" _._ .. -- - - ' ..

• G ((.0 \A po C("
.. /)l! '-Itvll r~R S -

.• G (C.~ ~I P !:{'
. .

... ' lV cs -r vvO f' Ie '. ~ /'-..f-I'/-c 0 /... -

•

"

------~~-------- ~-----

.0

I'? --.

reC

13
~<.~

.7()

()

o
~
----~

. z j

.
o. p c ~ I~ -rJ ,\Ie; f: 1'1\/ J Ie 0 Jy M £: 1'1-(

Q-t f..\tJl

IVt i! S SAC, {!,
C~ rJ-r~OL­

PR.O C l?'/, 1--1

...

-..

r~-,...." '\I;
\,;~ II r\ \ \

e~o.~~s~

Q\JG:c"!~S
r""~
~

Qu-r?'-AT ~.
l~--------------------~

. QU(;c.r£-S

C\
,I

•
WU==U&iA4

Q-t-A,"./\
. J~ S~.sA C-a ~
p~ O. cr:: ss II" G,
?ROG{(Atv{

•

_ ~'s eta .
-' .. D A "A-' . --- .. - ".--' ~~--' .

'--____________ ._ _ _ ____ _ _~.e-(s ___ .. ____ . ____ .

.. . . , ... --- --. : .. __ ._._-- _-.. _--_ •.. _----_._._._.-•.. _- .. -- --- --- -........... "-, _.... ' ..

\ .

-.- _ _--_ _ - ---......... _.- _ .. _---... .. _-----... _ _._---_. __ ... - _--_. ,- ----.-.-

"f', .
-_ _ ---- ... ---.. ·.-:·---·-- .. ---7-... ----- -~- .. !...L· __ -;-- _ __ __ ... __

.4 "

- ••••••••••• -..... '" - - .-............... ~ •• __ •••••• __ .. _ .. _M •• __ ~ ••• __ _ •• __ ~ __ ... __ ._ __ _.

---:--~~~ .. "" .. "'.-.,,-.-.-"-----,~~~ _--_ """" ,, ..

t .

USt

Q74vvl M£SSP4G~

Co N7tao La ? ~oG f! Av.PJ

". G?7A II) CVi E SlAG ~
'?Q.\)tESJINC,"· .

PRoC.,aAM :.'".,,"
0"

I ,.

\ ' " .. "

0 1

-. _.~: - ---.~ ---.~ ----

": -- ,,- --- -" --0

~,~ .__ ___" _. "0

~,

;!t. Q7A M lVif"SSAC;c. P~ClSSJA/C, "?~C:JflAM" M",(S 7

A ??E MG h{ toti C. \) f 1fl-~S Go. .0 p;-\(:. ,-((-1i'OA/.:: \,,:'-/~:!

o

.. ~.

o

... . .

• I

?!!!!V"fTTUrn- - - -,;-

(.

:--____ 1
l) t~v c. 6~ S
Q\JG'\.4 ~

®
..

. ',.8 .'
. --

"..;....:.:.:;~..:.:.;.-;;.;;.;.;;;;==:;:.~._ .. _ ... =_ ... ~.,~~ .. _ .. ___ =_ ==._. ___ ='_ =_". __ _=_ _._,=~_ .. _ .. _.=_. ___ ... _~._. .~ .. , .. ~ .. ,_~ .. _ ~ _. .~..=.i'.-=""""'-'"~,_"..bII'_,_.wIj _

C_or-e.

. -- --- -~---r---_____ --t:---r--~-~~:------:

'" QT,~M
111 r::s s~~ U ~

'/ / ~. / / ,/
// / ./ / / / /. : - /

'/ / / / / / .. /, / /

/ / /A .' ~ / /
/. / / w iA !V, / / . .. / /.

/
/ / IVI€SS.,~,,~' / / / ./

/
/. /-- P(COC~SS/l~~ / / I

/ . . / / /

/ / ·preoG!2Ai1/· / . /
/ / / / .. /. /

'. . ~. ..-
. .;. ..

/
/ / /. . / / / . /' - /. /

._ _ . / . / / I / / /

... ---_ ..

'. ,. __ S J\ ~ t(G e 0 v N P
. - '.' .. -? ~ 0 C., EA·M .

~----------------------~~----~

. . -
" _ " _ _ .' ,- _ -.... ._.. . ~ -. . - - -

- 22.- -
----_. ---------

o

o

o

DOS G) -lA M C ().~ € S -,0 R:AC-, r,: E S-;'j:·'iP:/.;. .

CJ\1tSSAG~ CoJ",--,reoL F'R()'G)I?/~l-1)

BAS J \, (~) -r~, fVt jVl 0 J) ~I t~~~ S

.r-c R. fYl J l'i /~ c. -1'1::.---.s -r. tv'(D 0 'vll~. If:. . I 3 ~~j c;
. C ~!. r:: c!e p ~ } N -r JVj () 1) V L r~ . '. _) I cy 0 .
)\1 A C, ri 0 :l~" S "r /C _ ce . S \,1 i3 P. '0 f.,f eDt' ir~e.s . 3 ,5- C) ()

Us (~ .. !2 Co l? t:.._ .. _.... _ .. .

-. C /-1 /.\ /'1 IV E L PR. 0 C, !2 1.\)'v1 .S

I C>/{)" j, . ,

03 / .
21 31 C)

4 LIN~~S·
I G / OD~O s C LJ. prn2 LI/./r:;)

- .. -..... -. --- -- -*_ - -~ .. -.".--.-", .. - -._._ _ _ -- .- ,,_ .. _.- .. - - -- ... - _._-.
l

•
' "

. '

... ,.... ".
,- ~ 23

......... -_._ _••. __ .•. _--,,- ~-

lr.~ A.s .1 f' r,) ~/' ... :" ".1 A\ fj f\ ~..' . ~ ~ '" ~ .-#;.'\ J' t I \,// 0 I:) (,1 c.. f-·S

. C H li e/C p~~ I ,,,/ .. ; j\1~ O~~) v (: e-
C) P t:: R r;7('! I~ ~ w·Y,e 0 LtV! 0 L) c,! t.. t;

-I --..... j) S . /'vj AeRO jl1"S rr~- ct Valeo L-I ~?IIVt: .. S

US .E-~ Co pe; _ ... ,. _ .' .. -__ .-.... ,-.

. C N A Ai 1\1 t$" '- Ail! '0 G a A I~rl .s
C ON-7f~~;·t.... i8f...OCIC.s A/-.(D· 7AeL.€'.s
.Cl-lffC/CPOIJ\/--f A~~A· ___ .. ', __ '.".0" __ ., ••

.2000
I ()2] C~

8G3,~
C 77.~;: .

'.35124:

20 L"v£s,: ·.··1
(3 Od/ OS 0 s (' 4- Pf a'LlJvt;). J

. .~..

0 1

c

o

•

I) a S C~) -r-jJ, j\/{

C ;v\'f:: SSf\G r~

(; E ~r I P \.,,/ -r PC f\ t Ie 0 oS c(S 1,/ 6' r::, 'U (~{ Y IIvci~.J'
o 7H .(:."/2 /\.1 A C iC o.s cf.. S /,/.-:7 /2.. I;) I.rr; I 0./ e .s

. i/\(OR'(' AJ2!:/,\S ._ .. _._ ... _._

. c. ~ "'-; (e ;, L.. ··B (_ 0 tIC$.

~

. -.- -..... -

" .- -. -.-.-. ". "?-" ••••• _.-.

. _ ... -... _ ... _
".

•
.. -. -.

- ... -.. - -,." _... . -

3 C) ()

Ib 1-

~.,.\.-

j o· ... r /~ t... t:"\ "'7-. .-j)" /"'/
\.,. \' .. :' I "'\. .. I

...... ~
r.. .. ~ -11 ~vt .IJ.. --/~ ~-- J -- .. ;''\ ---..;

~ ---A .Av"t \..:Ji { Ii; . ..

. .

16 /OSD 7£"ie/VJI/vA L£

1~1 j:" S S,':~.G ~

Po 0 L,.

r-- . ' IG 714/1-1 jV(c:)SAf..c Prf.:OCf.·SSJ.~/(~
L USt..":/{! C:>c ~ r-t)IC /'v'1~~ssAGe 1-1~!~v')l.lt/G

26

2/310

I ? 7 2

c

c

o

:0

MAJOR REASONS FOR SELECTING
QTAM OVER STAM

.. QTAM QUEUING TECHNIQUE

~ HEADER ANAL YSI S

~ ERROR MESSAGE HANDLING FACILITIES

ERRMSG
CANCELM
REROUTE
INTERCPT

. " # TASK MANAGEMENT

RD/WR TO COMMUNICATION LINES
... ,~' RD/WR TO DISK QUEUES

WRITE TO TAPE OR DISK LOG
ACQUIRE CORE BUFFERS FROM POOL
RELEASE CORE BUFFERS TO POOL
BUILD CHANNEL PROGRAMS
PASS MESSAGES TO N~ESSAGE PROCESSING PROGRAM
RECEIVE MESSAGES FROM MESSAGE PROCESSING PROGRAM
PERFO RJ\A MESSAGE HEADER ANALYSIS

• CHECKPO'"INT/RESTART \

27

o

'.

. ,

S~$IC Te-L.ECQMMUNICV\7tONS ACf!ft!Ss

\~'\a'·Hab· Foe· .~--\\Ov\-\ S.p~co AN~

LowS ~~£t) Ti'i(.M"" At...S

QTAJ\'\
Q\J€:UEb Tr:!.£CCMMl.IMfCAT/QNS AccEss

MJr-rH'On - A C-o M"l.l-r~ Mtl"SSAG(t'

I-\ANOL.lI~G lANGUAc::-t FO/t Low S:~r.tG9
TE~1\11~A 1..S

.. .. () c· . ' .'

~ ".-- .
. , I

,.
,;

•

o

o

o

-.--r
.< s

LJ
..

•

CODE:
. r Ii.: ·'"crmir.d

DS II: Data $of
C?U • Cc:r.ttcl ?;OCC5Z!r.Q U S,
C .. Com;>en~nt

I· .r

I:. ::.;:;. ~~~:;.~
C·~~~~~~j

, ..•..• 1 ""'1-----
~WII .:..--.;

-I c;: :.i rm r-;
:..! _____ d.l

.. ,....:6>; ...

.I./J~

."

1001

'&030

1050 (SWITCHED)

1050 (NON-SWiTCHED)

1060

1092/1093

1130

2260 (LOCAL)

2260 (REMOTE)

2740 I & II

2780

S/3'6O MODEL 20

,S/36O MODELS 30 THRU 75

AT & T 83B3

W/U 115A

AT & T 33/35 (TWX)

STAM
TERNUNAL SUPPORT

D:SI<
O.PERATING
SYSTEM

x

x

x

x

x

x

x

x

x

x·

x

x
X

x

x

x

. . PHONES
TOUCH-TONE J .

x
TOUCH-cALLIN

o·

I

I

o ?::R.:~\ T~N G
SYSTEI\l.

x

x

x

x

x

x

x

x

·X

x

x

·x

x

c·

o

___ tilililW_.tdiillililtfiilliliriilillilWrt_iittillliiirttiiiliitMlifeiliiillitiilliliitit=iiiiiiii-¥_ttb.Wit_j§m_5it_twiliii:!b_i#i'i#_bit_~t#_r_iWiIIliNiiiilliiiWt""""'iiiIiiiIiIiiiilWNiililiffIliilllilwuiliiiiiIIr-FIlillliliW¥fiililiiliffifE_e.lilliie::UIIlIiI'!I"IiiIIIIIWr_:,,,.m_!!fn_wr_r ----------------"-

c

•

.. ·O a ('j ,-"

~~.' ... , -:.~<_'I__"' .. r' •. ""O' ..• ,".;.~-.".'"' ,... _It;!: ..

~7t:a>:.':\..1'oCl!:ltJ'· '"''-.. ,.~. ··;;r·'';·"_''l·'1··~'''IfYo~,.~.".; ___ ,,",,,~ ••

"..,. . .. ~

...

' ..

~

(rit~"'/N~

~ ~~-r ~I 001 r;: fJ r...A-r1 0 "J
r~\.;·t Q,f; ~/~ ~)

RAtg.,JS LA7/Q N°
\

@ t U -';""'1£ S~~2)NC, I,JI-tM 07'l'1t(! 'PA~-r4"1/0/JS
~

'-{

, ~

~~) ~-~ 1~\.cJOi.'·'~ I" G' . ,Q·f;: U··· ~:: . ,..';4* ,,;.'" .~ _ . .. /-, {} : ,>\,2 " H' ~ '.' . . rl':.I' ",' I?"~\ "'" ",' " IJ ow. "- V 1.01' ~'¥ \j V ~,

f,..;:;a.

t~

/..,., ,~ , / ,/'
rJ Vi ,)","

o

o

•

B7A M fViACeo S

<> De Cf-A/Z A-rr'Ve ' /v1A C1<! 0 S

e T }VI 0 .D 0 F -r Ie ML. S -r
OTF8T LER8'

"

ASM-r;e-r,a. B

<> -r RAN S II~N -r ' 1'-1 A C 2 o~
OPEN

LOPt!N

<> 0 A-rA /-1 A.N Dl../~/G
ReAP
~RITE

Co N-rJaol...... .
C H G,.N-rRY

',.

CLOSE

, TWAJT

L€f\.PFeT
TRAJ.JsLA-rt' .

feESr:7PL

<> (3 U F F,e r~, MAWAGt£M6N T " PtA "{(oS
ree:Q8\4'F . ~ ~cL.I3U ~ ,

, .

- . 'c,

...... "'~_,_~ _~ _______ ~~ __ ~ ____ ~. ~ ~ ,~ __ ~_M~ __________________ -_~ - ; - .. -." ... -.-.. ------.

~ ..
cGla

.- [4£AG
~ -GCb

I
~

.. ::: :~:~ \N'A fT .. _.~-~...._ r'''-':-- . • ..----... ~-. . -,.
~ ~~~~~~~~~~~~~~~~~.

j . -..

--I
~ ..

111m,) -.-... . ' .

§ C.:r/o l'NTErtflVP,..
...aD
~ -­...

.)

;'

l . -. - ~

I------ -- . -- - .

i

\'1.·' I-...... -- ..

. . ,

o

o

1#r2, 0 "'fIr; ON I.IW£ ~s 3
::.:-g e t t 4 ; ;

.~

:.- .:;; ZZ"IfO i fWd- ~

M

I;.;;

..

=-~:;!:' :'T.:.~:~-':':':a!·JZ: <,~?; 4:~P d)? vf~~~7 ... ?::/.7 Irlz:2j
" -.' . as A~I(Cbrc.o UN~' ····,eo t6 SS ItJG .

, - .. ~ .

•

<;arB' ;;; " if Y

: .. -,..;;:::;;0

{:. ·'·t' $:

; : : ;w ?J

4. II :;:s

.

..... ·..,~·t··~~

r. --- . , ... , .. "... .i-'"

G~t~G~OtJtJ£)
P Ito Ccr SS3 "\1 Gg

i

''''~-'''''----------7-'V' J ...

\
': ... ":iy'/~" .. ' ~ "'...-i i,JI

~~,2'~

'~j >~:; U
I .

i
- ,

VJRKTc
H"----'"
r
I'

\1/

~

~ ,~~ __ ~ __________________ ~t,\.
;',-<.~~-- '." !
~

, ~

1'--------------------~
t-
" ~
~
~
~l

-"

C rJ.,::, :;.;~

V.lA:1
r
~.

l
t!

-1\ '

o

:1
,0;/

~
V

r,
ri
\J

11

"
~
~

" ,j

u
~~
w

,
'1
Ii

i-I
;1

\)

r.
U
,~;,

~l

U

'" n
J

" r
iJ

n
U -

F
~
~

~
a

~

,.

--:0 t,

..... ~1 ---
'< L-:

v:~:~71::·. ~

v~C:2S2~>~~'~

~

'1:~)

/ fDrrS:,~

\ 0/0 I
;,

L
\i'/

:1
VJ~U~: ~

~ I,
~
H

i
"J,:9

1

~2r.J~uN~;~G ij
~

~~OCESSfiNG
/' ,

- I - - -

" \:
Ii

0

,;
I',
oJ

1\

.a... ~

o

.. - -." -_.... -- ." .. - -.... - _ _- -

o

o

--v a'i: f'~ u ... t:t ~
t~'ijS G. Q \J(t/~

a

~ ___al

• I b& , Ll'~

/

J

6'" Sc,. ~ ~ ~
. '~f~ n, \';..1 t. ~i ______ .:;;<;)'-' ______ ~\~.' ______ ~i.J

(lrJ.'II!·

·MS~.

P~~t£>S
--,tMf!

-- . (\ ;:: S ' ~ ~ I'j b' \,; •• ~ 'W'"

~ ~

~I
·~I
~~ ~

,\ '

67A Jt1
L.IAIE X 10
p~'(J GIZA M

Q.~ t

~~~-----------------------I 
i UScR. 

PRo c E. S S Ilv ~ 

PIZ 0 G/lAr~ 

· ......... _ .................... -........ ~,~.'"=-.= ......... = ......... = ... -... _== ........ ~=:.---.-.... "" .. -'" 

c 

i 
I C'<--;.1~""''''''''''''1 

;1 ~ 
i 
~~----------------------. I I I SVPc/l.VtJorl.· I 

o 



o 

smOon 

-

o 

• 

~~ -

D U F FER t k\J (, 

~ . ~ rf 
~ J ti 
~4-----------~~i ________________________ ~ ______ ~.r--~ 

... 

,'t 

; 

D 

• 

13 t,f ~~~~ 

• 

- r -z-..-



.~-~=' .. '--~' '-=_. __ ._=._-_.,=-'_ .... ==. -_ ... ",.,,,---_. --_._----._----_ .... _._----- .-

/~ 

L @ C\.1() ~ J([J; ~ /~4 711 t) l~ 
1'(f..Q) 

It ::3 V'f ~ 9tY G o 

t~------------------~tl ~ ) 

" 1 

, . 'Q ... i 



wtnft:ft"ii!tit"'*¥RUf _Her -TTHPP rrmrnmwr:!!!'!! 7 

C: 

o 

C1J'V~~ CORE STor~\GE ES7Hv\A If 
(DOS) 

Ei~~OR CO~l~~CnON 

E~OR COUNTS 

~.AODEL CHANNfL P~GMMS 

CONT~l OLOCKS 

01AfJ.jVAC~O INSTt:tUCnONS 

POLLiNG LISTS 

ADDRESSING LISTS 

.. LINES 
16 10501, (4 PER LINE) 

2070 

190 

-e4 

56 



131AM CORE STORAGE fST!J~4ATE 
(DOS) 

C7.\/.OD QAS~C MODUlZ) 

fR~OR COliRECTfON 

ER~OR COUNTS 

MODEL CHANNEL PROGRAMS 

CONTROL SLOCKS 

GTAM tVACRO INSTRUCTiONS 

POLl~NG LISTS 

ADD~fSSING LISTS 

OUffER MANAGEMENT 

20 LINES 
eo 1050°, (4 PER LINE) 

,t " , -' 

o 
2930 

2070 

o 

o 



f~\ ()". S [,1 ;) , I 

~ .. 

~-:-' c.::."'-'.8,{~, ~;.,./1 

W I i--~" '/ \~ 

i /'1 ~,' c:;, ,/,p"" 
f "-~ ~. C" ""~ 

~t:o,,;;;J "* 

• 

c· 

• 



~~\~I'U\L 

leOl 

1030 

1050 (SWITCHED) 

QTAM 
TERMINAL SUPro~T 

D!S!( 
QyERA11NG 
SYSYEf~ 

X 

X 

X 

1050 (NON-SWITCHED) X 

lOCO X 

1092/1093 X 

11~ 

2260 (LOCAL) 

2260 (REMOTE) X 

2740 I Sa II X 

27"w 

S!3CO MO"DEL ~ 

5/360 MODELS 4O·THRU 7S 

AT & T 83S3 X 

W/U 11SA X 

AT & T 33/35 (TWX) X 

TOUCH-TONE 
PHONES X 

TOUCH-cALLING 

c 
OI"""""'1~-'''-'G 'i.:~'.;";.~';;....J . 

SYS~Y.~ 

X 

X 

X 

X 

C 
X 

X 

X 

X 

X 

0 



__________________ <"i 

, T~"R M', NAl. pQ '-t.INC, 

" r~1eSSAG c i?ECEJ""NG 

Q Te~.'1Jl"AL. A~DRtSJ/NG . 

o ;'.IfesSA\,( S~NDING 

• B WFFeiC PoOl. MANAGe N tNT ".. . 

o D'(NAio1lt " Bv FF!'Zf:'II/6 

.. DiAL'r'lC"1 A 7e~MINAL. 
• J.NS,"-IER'IIIC1 ~ CAL .. ON D,AL.. fA. e/l-I.",! 

• COD~ TRAWS i.ATIIJN 

• 

o CRf{Ii~ f)~TEC-r19'" ANOCOletae C-floA/ 

.- 7ctf! MIl\! A '- Tes T S 

; OMA" .. /"reNAwte 0 F fReolt SorA '7"S -r,C s 
. • CM':! Co k Po. "'.,. r= c) 'l CoM "'" v /1/ ICA -r, 0 t../ I. I/t/Iit S 

... Na"fWOR"· Co ",-r/eo," 7e~MI/"AI-
• 7ip.'f1.! AN'O /)A7'c SYAM P"oIG 

• f'4t-SSA~~ St!Vl.Vl!NC~ C~/.f! CIC,wG 
01> JVies,sAGE T'ipff?ECoGwr,-iQ/'J 

• QUE'U'I'('~ OIC" H~$.s. A (, E S 0", f) IS. It 

C>1t "\1' ··Core.e .s 70 RAG E 

• LOG G rflf'G 0(: H~·SSA G t!"S 

• r/'(·T(!.,,!c~P"'/I},{ (it: IV7~s.sA.G~s. F"'l AW. 

Ovr 0': S~,?V'C~ Ui( "",Io/At.. 

• RfIRov..",yG 01: U'dDe.Lr.rrRAff'( H~SSA e .. (s 
o F;:{!oie. NOY'F,C..t:t-r/o·,..r 'To 7iRMII~ALS 
• CA toIt~ '-Co A -r{o 1./ 'OFt 1: ~()It f1~5t AG £ s 

.1'. 

~ e:-~; >~ ~ c:.,""";/\ (,.:I 
U d ,. ~ I 4 ~) ',: l 

.. ,' 

--
~\..? 
~, 

' .. ~ 
~~ 

\~ 
A 

)( 

X 

--'.91 
~, 

,~ 
;t., 

~ 
/\ 
V 
"\ 
,~ 

~\ 
,~ /, 
,-, J", 
'-? ~ .. ;\ 

)( 
~.~ 
~\, 

'''' "\ 
'\.? 
~\ ,., 
.1'\ "., 
/\ 
\?' 

" ,~ 
'" "!,, 
'\ ,,, 
'" 

\.-1 
. ~, 

'. "'\ \i' 
,; ~ -- - . -. - . ~l\ 

X 



I-
I 

I· 

.Q7AM JVlACRO LANGUAGe 

~ GROUP J. 

:r 10 0 IS" 1= I j.J I 7"10 ,../ ) Xv l-rt A -rtO "'.J 7i Il M'I'/ A Y'/o ,../ -

• G~ovP 2. 

o . o 

C " N.., R 0 L. B L. 0 tiC: 1 ; TAs " t! J. B \./~ pe,t' J)e F,,,, I "T(,p!/ -; I Z. 

• G 1(.0 V +'4 3 . 
(VI E S SAG ft, J-IA~/D LING -

~ G (2.Q 1,;4 p 4-. 
D{!LlrvlI7~RS -

• G re-~ uP ~ 
1\{r;-r"(rVORIC' CoN-rlZo,-" 

-'. 

:r 

(07AI- -

2.7 

10 o 

70 

c 



• c . Q7A.M Op~rcA-rH"C, r;tJVJI~oNMe"'-r 

~ 

c 

• 

Q7AM 
/Vi c S SAC, (!. '. 

C'ON-rRoL. 
.P~OG1CAM 

Q-rAfJ\ 
Me:~.sAC,E 

P l< 0 C, Ii S S II" €., . 
p~O GRAt1 

- . 

I . 
. i 
.-cs----z~ 

I 
i 

.... 1_s_u_P~.\l __ . 2_V_' S_O·_re.. ___ ..... 1 
. \-.( seta 

OA7A 
~ETS 

.. . ... . - . . . 

QTA?-1 
Y~Qc:.~5S;, 

ca\1cru~s 
~ v 

Qu-r~\4, .' 
ca\tG u£-S 

. . ~ 



l, QrP\M M~5SAG~ 
. ~ " I. CC N7ao La r te,()G I8AM ~ " 

! 

I M"tS7 G£' IN ~1I('Hf'1S1' ?~'<lI!Jl'rt I 
. . PAR ." 7/~N 4 .... ,,,,,,,,,. ,;;;;,,',;,~ 

Q7AM M(S~AG£ 
PRo t £ss ,wG 
fe.OC1RA~ Oil 

I 
, . Q7AM ~(s.sAGr 

?~\)tESJiNC., 
'RoC-,flAM 

c 

• I . 

c 

~.: Q7A M M£"SSAC,£ P~CESSIA/a, p~c,eAF1 ~'t~ 7" I 

AP}>f~ · '1'1 tOt/£. of -O-J.!s£ PAk-r('1i'OW'.s wNfItJ O. 
"elZ/t;l/~A-r'I/() -1fl£ tli~SAC~E CoW7l~c' fllfJf$;;'~\;~/Jo 

~t 



o 
. M ~o.. COf\t7~~'- P~cJG. 

~-~ I 
". 'NPU-r "t)~FI=~{~ 

~--Z::-'" 0 \,J"T "\1" aUt=',:, ~ 
~-,--~--~~--) 

. ". 

--
-----PUT --
-- . " " ----

• 

J 

-, I 
.CU,-

I 

OUT PU-r f .. 
<l\le~~ 

( 



f3v.f+~.,...· 

lot~,J'Qn 

~.- . ~"" "- -~ " " ~~." .. " ." A 

-.. " .. ' -_ :. ~ .' ". c. . 

- "\) .. 

, .... .. 
.... .. . ... ... .. .... ...... .' 

" :. ".-' .: . ~ .. E" . " '. 

.". .." , \" 

""~. 

..... '0 

MSG.-:PI HO" 

I 

o 



o 

o· 

• 

. .., . 

. . ~---------------1 ~--~->-i J 

C t-lA 1\11\1 G L. 

. P~O~RAM 

... 

. ... .. . ... .. 

13 c-( F' F' ~ re "S 

,'( F~OM B'-I F F S n P\") \) L. ') 

• 

. _. . - . - . - . 

/ 

. . , .1,. "-t' .',. __ .'. ".. _" 



Q'TAJ~ 

C or- e. 

'QTAM 
/Vi t; :; $,4. Cl t: 
~1\f7'~ f) '­

PRoGRAM 

"/ 

/ '/ / ~ / / 
/ /,/ /. / / / 

/ / / / / . //' 
/ / /~ . 'M ./ /' . /. 

/ / / W -rA / ./;. / / / 
. / /. /VI e S S.,4. " e: / / /' ~ / . , 

/. / P~OC~SS/i~G / / I 
/ / / / 

./ / PreoGJ2A/1 / / / 
/ /, / / 

/ / / /. / , /' / 
/ / /1 / / / / / , 

SA." lC G e ~ V N P 
?~oC1J2AM 

, ' 

o 

c 

0, 



13 AS I~ Q T;!\ M, /\1 00 LI, I:.-S 

-re.~ R. ~111"'.4\" 7c.s -r /VI 0 D 1.-1 J.' e 
C rJ:r elC p~ II~f . ;\'1 Of) V~ <r , 

'0 Pc::R ,q7ol( Co f\/7te 0 (. MOD (,f~ if:. 

IV{ !4CRO T/Ys rte. cf. S v8Jeo "" -rlrl~.s 
tis Ete Co oe 
C' HANlv~ L.. PJa06 It AI..,., S· 

C'ON-r12o (. Bt...()CIC3 A/"O· '7Aot.€-S 
o C J-IIf'CICPQ '1\17 . A ~ A' 

'20 (lIVeS 
80 . lOS-Os (4 Pfl2L.llvl!J 

.~ . 

• 

i 190 
3 D '2~Q8 

~ ,(j r) :: ... (1 }) 
~yVV 

~ .. e:'~' ff"JJ 

OD~O 

277S-
35124 



-~---~.-.---.-----.... --........... ,,----.-~--.--~.-~.-.-.....• ---------~----.-----" ... -~ .... ---... -.".--" ....... "" •. 

. . 

DOS QTAM CORIS S70eA("~ ES-rIf.r:~\~7Z C 
CM€ SSACt;! C.O}J-r~o,- Pi~OGeAN ') 

l3 AS It Q TA M . IVI Of) VL.C S 

Te RM II" A L. Te-s -r" Jv'( 00 U l-.rt: 

C ~!·E etc Pro JI'IT ]V/ O DVl.~ . i I 90 
. J\1 A C reo r rJ s -rfC • <£ S' \J i3 Ie '() r.,-r/tVf".$ 

L1 s {!' R. CODE:' .. 
~ ~,1\,~ 
~ '-" V L:I 

. C 1-1 A Nrlil.. PI2 0 G lZAM oS . .. 

C '0 N"Tre 0 (. B to 0 (./c.s AN /j ~F.lI..E oS 

C' H cC i<: Po 1/"7 . A ~~A 

·'.4 (.INE S· 

16100-0 s C 4- ~6"t2 L/we) 

I (} 00 
2.6$ 

19/D 
, (;31 

21310 o 

c 



0 ', ", 

• 

j)OS QTAjVI 
(MESSAGE; 

Co~~ SrOiCAGc fs-nr--tA-r£. 
PR.OC.cSS'NG PeOC,rlAf"1J 

. G c-r I Pl.I! MA·tJeO~ d. Svo/c:o 1J,('Y'/lvC'J . 

O-rHe~ 1"1 AC,eo.s ,d. SVl]tz..o Lt""/I!/e-.$ . 

WO~/C AJa&:AS . 

C,q I\I-t' f( 0 L.. B t.. 0 tieS 



-,-
i.OrAL. S YS -'eM - LIslI-JG, 

r coree- S-rOftAGC 

Q FORI;G1eOUtvl). 1 - CV7Af'""l )'1(!SSA(,1!' ·CoI'./-;rJo:", 

t:"tllt~GeO\'INo ~ -. Q7AH lVJc-S.sAGf ft?cc~.sJ/;>'/6 
f3 At-ICG fOVNO ;... flA-r(..H 

.- 4 I.. iNtS-s AND Ie, If)~-o 7i:i~M'NA '-s 

[ Q7AI'1 M (!sSA C"l.~ Co N'''''I?O~ 
, f3Vr:-~Ete Po o(. 

B/92 

'~/310 

1272· 

[ . Q7AM tvre S.sAG, ~ PRO Ct: SS',";C"I .. 393S' 
LIs c ,~ <::0 VEt:o a. N I!' S.JA G ( I-~",~" I~b 7 0 0 p 

· ~604S-_ 

o 

c 

c 



.=." ~"'_\N_ttu'_'#nt_#itt_wwr_!ti_ie'-_*,ff&_iHit_(-,_UTW_" "!tt!¥l:iiIiiilii" Oitilililiiila*_Wt_ifitt_tW*IiiIiIiId'_ttWiiiiil"UhMiliiiWIIiIiIIUiiliiiWi'iIiiIiIiiiIWtt.","#liIiIiiI=r "IiiiIiIiIIIrlg:WWilliiu ttililtlll'C."1"tliiiliiilf,i'.'"M.-""iiilirr_w:-.ziTiIiIiiiIIIT!!7Ii1111l-W_WfI7.ru::'.,-: m_:!!Wlillile" .. lMIrrmlllllTt'lIIIirUIIiiIII" ________ i" 

. , . ' 

. . .. 
. . .. . . .. , " 

, . 
. , . 

.- , . . '", 

. , ... .. --
'~ 

.. '. , 
. .' ." . 
•• • e' • • 

, ' APPU~.TlONS FOR DTAM AND QJAM ~ . 

, . , 

. "n~fE C=OlLOWING TAOlE ANSWERS QUESTiONS REGARDING THE ADIUTV Of BTA~A AND 
o Q1AJ.~ V/ITH OR WITHOUT USER WRITTEN PROCESSING ROUTINES TO SATISFY THE RE-' 

.. ',QUlWAENJ"S OF VARiOUS TIP APPUCATIONS. . ,I' • , • . . ... 
. . 

. ' 

APPLICATION TYPE " . ' .. ·PROGRAMMING APPROACH, 

' . " DrAM 
ALONE • 

DiAiA 
. AND 
. USER 

. .. '. . 
• • a, " .~. 

PROCEsslNG 

o 

OCAlA CO"u.eC110N . . \7"'~ • 
• ".' '0' ~"" .... ~ .' . . 

, ' . . , 
. PJ":SSAGE ~/ITCHING . , .. ~. 'NO' · m. \~ 

• 
, .: .... : ;,' o. ~'. .0'. I • 

~OQUM~' lilIi'" ••• " 
. ,:~: '. ~,. 

'. 
NO" , ~e;AL iiMfai PROCESSING 

. . 
NO . . . .. 

. . . . -
~,~TAM PlUS A USER PROCESSING PROGRAM REQUIRES rNO PARTITIONS UNDER DOS • 

• 
. . 

'., 

• 
\ . 

1 

." 



MAJOR REASONS FOR SELECnNG 
QTAM OVER BTAM 

• QTA,\A QUEUING TECHNIQUE 

• HEADER ANALYSIS 

•. ERROR MESSAGE HANDLING FACILlnES 

ERr:MSG 
CANCELM 
REROUTe 
INTERcrr 

. .. TASK NANAGEMfNT 

RO/NR TO COMMUNICAnON LINES 
RO,lWR TO DISK QUEUES 

. WRITE TO TAPE OR DISK lOG 
ACQUIRE CORE BUFFERS FROM POOL 
RELEASE 'CORE BUFFERS TO POOL 
8UILD CHANNEL PROGRAMS 
PASS MESSAGES TO MESSAGE PROCESSING P~OGW'-A' 
RECEIVE MESSAGES FROM MESSAG~ PROCESSING PROG~ 
PERFORM 'MESSA'OE HEADER ANALYSIS 

• CHECKPOINT/RESTART 

. J / 

! \ 

0·" 

c 

C' 
, . .i 



o 

• 

SESSION REPORT 

COMMON - Chicago 

Session Number MON D2 Session Name 1800-360 Communication ----------------------
Chairman R. W. Page 

Time 3.30 
----~~~----------------------

Attendance (No.) 100 
~~~----------

Speakers Wayne Barnes - Pacific Gas and Electric Company

Synopsis of Meeting Mr. Barnes gave an excellent talk on 1800-360

Remote Job Entry. Hia system runs under TASK (Non-Process Mode) but

could be run underTSX with slight modification. The session paper

gives details on application and implementation including much of the

coding •

---------------------------------------_ .. _-_.

An IBM 1800 - S/360 Remote Job Entry System

Presented at the

Chicago Meeting of COMMON

April 8-10, 1968

by

Wayne R. Barnes

Computer Systems Analyst

Pacific Gas and Electric Company

245 Market Street

San Francisco, California

o

c

o

c' " LIST OF FIGURES

Fig. 1 P. G. and E. Service Area Map

Fig. 2 Schematic Diagram of 1800 Computer System

Fig. 3 Schematic Diagram of S/360 Computer System

Fig. 4 Schematic Diagram of Communication System

Fig. 5 Logic Chart of S/360 R.J.E. Routine

Fig. 6 Logic Chart of 1800 TPSTR Routine

Fig. 7 Logic Chart of 1800 Receive Routine

Fig. 8 Logic Chart of 1800 Send Routine

Fig. 9 Listing of 1800 TPSTR Program

o

•

I

II

TABLE OF CONTENTS

Introduction ..

Background of P. G. and E. Computer Systems.

III Remote Job Entry Programs for 1800

IV

V

VI

Remote Job Entry Programs for 360·

User Experience·

Conclusions and Recommendations·

1

· 2

· 5

· 7

· 8

. 9

o

o

o

•

INTRODUCTION

The concept of entering data into a computer from a remote location

is not new to the computer industry. Many early techniques were successfully

developed, but in most cases they were not economically feasible. It is

only during the last year or so that improvements in the field of multi­

programming together with advancements in computer communication techniques

have become advanced enough to make remote job entry economically attractive.

Before describing to you the remote job entry system that was developed at

Pacific Gas and Electric Company (P. G. and E.), I would like to briefly

describe our facilities and relate a few pertinent statistics about

our Company.

Pacific Gas and Electric Company is one of the largest combined gas

and electric utilities in the country. Figure 1 is a map of our service

area. As can be seen, it stretches from the Oregon border, south to

Bakersfield, east to the Sierras and west to the Coast. This service

area includes 47 counties and 94,000 square miles of territory. We service

a total of approximately eight million people and have 22,000 employees.

Because of this far flung service area and the trend toward central­

ization of data files, remote job entry to a large central computer

system is becoming an extremely important consideration in the planning

and development of Company computer resources .

-1-

II BACKGROUND OF P. G. and E. COMPUTER SYSTEMS

EARLY SYSTEMS

The use of digital computers at P. G. and E. has evolved in the

traditional manner of many large business corporations. The first use

of a large scale in-house computing system was for'data processing and

was primarily dedicated to such applications as billing and general

accounting functiol.1s. Early systems at P. G. and E. were therefore

configured along the lines of the 705 - 7080 series computers with

1401's for peripheral support. Early attempts by our engineering and

scientific personnel to make extensive use of these types of systems

for "mathematical" calculations proved uneconomical. It was considered

far more economical to send the Company's scientific and engineering

type applications to service bureaus which on a contract basis leased

time on their scientific type computers. I am sure that this sounds

fami1ar to many of you since this was a common practice in the late

1950's and early 1960's.

While our engineering and scientific computer requirement increased

significantly over the years, it never reached the point where it could

convincingly support the expense of a large scale stand alone insta11a.tion

for scientific computing.

SYSTEM 360/65

The procurement by our Company of a System 360 Model 65 temporarily

reduced our dependence on outside computer time. This computer system

which is shown in figure 3 can economically handle both scientific and

-2-

c

o

o

commercial applications. It has not, however, fully solved the problem

of accommodating the needs of engineers who are located significant

distances away from the central' computer complex. In "order for ou'r

Company engineers to make use of the System 360/65 it was necessary

for them to use a courier service to pick up and deliver the work to

the computer center. There soon developed a significant material

handling problem which greatly reduced the "turn-around time" for

jobs being submitted to the computer.

1800 COMPUTER SYSTEM

It was decided after a review of several alternatives that the

lease of an appropriate satellite computer with provisions for remote

job entry to our System 360 would significantly improve turn-around

service to users, reduce our dependence further on outside computer

services and most importantly alleviate a serious material handling

problem. We selected an IBM 1800 computer for this task for the

following reasons:

1. It can compile and execute Fortran programs.

2. It can support many I/O devices including paper tape,

magnetic tape (1130 systems did not have this capability at the

time of evaluation) and an incremental plotter.

3. It can interface with the System 360 via standard

telecommunication lines.

4. It has the facilities for the possible development of

a conversational time sharing system.

5. It is economically suitable.

-3-

Figure 2 is a schematic diagram of our 1800 computer system which

consists of the following equipment:

UNIT MODEL

1802

2310 Al

1442 6

1443 2

1816 1

1627 2

2401 1

2401 1

2701 1

DESCRIPTION

C.P.U., 16K, 4 microseconds

Disk Storage - 512K

Card Read-Punch - Read @ 300 cpm
Punch @ 60 cpm

Line Printer - 240 lpm

Console - Keyboard

Incremental plotter - 12" or 30"

Paper Tape Reader - 700 Chars/sec

Paper Tape Punch - 160 Chars/sec

7 Track Magnetic Tape Drive - 30KC

9 Track Magnetic Tape Drive - 30KC

Data Adapter Unit

The 1800 computer system is presently being used by all technical

computer users in the Company. Small and medium size applications and

those requiring unique computer output facilities are processed directly

on the 1800. The larger, production oriented applications requiring the

higher power and software elegance of the System/360 are being transmitted

to the System/360 by way of our remote job entry system. Figure 4 shows

how this is accomplished schematically. It should be noted that the 1800

and System/360 communicate with one another over a 2400 BAUD, full duplex,

voice grade communication line.

-4-

{)

o

III REMOTE JOB ENTRY PROGRAMS FOR THE 1800

4:) Our 1800 computer system is currently using the TASK operating system.

o

•

Our programs are executed in an off-line mode by the non-process monitor.

In order to develop a remote job entry system on the 1800 it was necessary

to develop our own software routi.nes for the 2701 Data Adapter. The routi.nes

that we developed could be easily modified to operate under TSX or MPX and

probably, in some cases, be easier to implement. The routines for our

remote job entry system on the 1800 consist of the following programs:

1800 TPSTR PROGRAM

TPSTR is an 1800 subroutine that provides interface between the 2701 STR

device and the 1800 system. This routine is written in 1800 assembly

language. A logic chart for this routine is shown in figure 6 and a

complete program listing in figure 9. TPSTR is called via a standard

LIBF and contains the following features.

1. Opens line for receiving or transmitting.

2. Provides an adapter busy routine.

3. Provides all line control and I/O instructions.

4. Closes line upon receipt of proper control record.

5. Sets up an address in the TASK Interrupt Branch Table and

provides an interrupt routine to test for proper execution of I/O conunands.

6. Provides an error retry routine and control messages for the

1800 console operator.

7. Contains a program switch routine to drop invalid records without

losing line control.

8 . Can operate in either a normal or closed loop test mode.

-5-

-- --

1800 RECEIVE PROGRAM

Figure 7 is a logic chart of the P. G. and E. 1800 Receive routine. This 0
routine was written in 1800 assembly language and performs the following

tasks.

1. Reads records from the line via the 1800 TPSTR sllbroutine.

~. Contains a LINEPR subroutine that translates the characters

from 4/8 code to EBCDIC.

3. Expands the condensed records in the buffer to the' proper format.

4. Logs System/360 "//JOB" records on .1800 console for accounting

purposes.

5. Decodes System/360 records to provide the proper l44~

carriage control and print functions.

6. Overlaps the line routine with the 1443 printing to provide

maximum throughput.

1800 SEND PROGRAM

Figure 8 is a logic chart of the P. G. and E. 1800 Send routine.

This routine was written in 1800 assembly language and performs the

following tasks:

1. Reads input from the 1442 card reader.

2. Removes extraneous blanks. from the right hand side of

records based on the type of input.

3. Contains a HOL48 subroutine which translates cha.ra.cters

from 1442 card code to 4/8 line code.

4 .. Places the condensed rec.ords" in a 320 work buffer. (2 chars

per word).

-6-

c

c

-------------------------------____ ",lI

5. Modifies the CARDN routine to accept System/360 "//JOB"

cards and also sets up the Mask and IaCC word in the TASK Interrupt

I.D. Table.

6. Logs the System/360 "//JOB" records on the 1800 console

for accounting purposes.

7 . Send s reeo rd s to the Sys telil/ 360 v ia the 1800 TPSTR

suhroutine and overlaps line transmission and card reading to

provide maximum throughput.

IV REMOTE JOB ENTRY PROGRAMS FOR S/360

o

•
$.M=4$M2ZE -#, ,,'" U"U"&U.J$,' t J

Programming requirements for the System/360 R.J.E. package were

greatly reduced through the use of the IBM Synchronous Transmit-Receive

Access Method (STRAM) routines. STRAM is a MACRO language at the

assembler level that provides:

1. Environment definition

2. Line control

3. Data transmission

4. Buffer Management

5. Data translation

6. Error procedures

STRAM routines require O/S option 2/MFT release 11 or later.

It is the responsibility of the user to write a tailored program,

using the STRAM MACROS, to handle his requirements. Figure 5 is a

logic chart of our routine which was written in 360 assembler language

to perform the following tasks:

-7-

rt:: II 1U$I,tti.UU,eUtAAtl UtMk4iAlM4AU,QIJ"nWiii======= ___

5/360 RECEIVE SUBROUTINE

1. Reads a 640 byte input record from the line via

the STRAM routines.

2. Translates from 4/8 code to the BCD subset of EDCDIC code.

3. Deblocks the buffer, expands the records to 80 chars.,

and creates a O/S 360 SYSIN tape.

4. Writes Message records on the S/360 console.

5. On receipt of proper code closes the line and closes

the SYSIN tape.

S/360 TRANSMIT SUBROUTINE

1. Reads the standard SYSOUT tape.

2. Removes entraneous blanks from right hand side of the

records.

3.

4.

Translate records to 4/8 line code.

Creates a 640 cyte buffer record and sends records

to the 1800 via the STRAM routines.

5. Closes the line and the SYSOUT tape upon receipt of

the proper control record.

V USER EXPERIENCE

Early attempts (Spring 1967) to implement the communications routines

on the 1800 proved frustrating. The channel adapter for the 2701 is an

R.P.Q. device which means, of course, that it is not supported by the 1800

software systems. The early documentation that we were able to obtain was

inadequate and in some cases incorrect. Even the valiant efforts of our

IBM S.E. 's and C.E.'s proved futile and it was necessary to obtain the

-8-

o

o

o

o

•

help of plant technicians before we vlere able to get "on the air." After

we obtained the proper instruction on the use of the selector channel we

were soon able to transmit and receive data. The only other major problem

that we encountered was a problem in duplication of transmitted records.

This problem was soLved with a hardware fix to the 2701.

On the 360 side problems of implementation were minimal. The System

360 fully supports the 2701 Data Adapter and provides the STRAM routines.

All that was necessary to make an effective package was to include our user

written subroutines. In addition the use of MFT with partitioned memory

insures full utilization of our System 360/65. If there is any criticism

to be noted it would be in the area of operator instruction. Most of the

early "failures" on the System 360 were caused because the operator did not have

proper written instructions. Documentation in this area is very limited and

standard operating procedures must be developed as soon as possible to insure

effective results.

Overall our experience with our 1800 - 360 R.J.E. system has been favorable.

Aside from the problems which I have described we have been communicating

with the System/360 since the summer of 1967 with excellent results.

VI CONCLUSIONS AND RECOMMENDATIONS

1. Our 1800 - 360 Communication System does what it was intended

to do. We are able to enter jobs for the System/360 through the 1800

computer and transTIlit them to the 360 for processing. We are also able

to transmit the results from the 360 back to the 1800 where they can be

printed or plotted .

-9-

2. All Hard\vare and Software, with regard to 1800 - 360 connnunication,

is currently working satisfactorily. There are very few I/O errors and

"turn-around time" for the System 360 jobs has been greatly improved.

3. Voice grade line speed (2400 BAUD or 300 Chars/sec) is inadequate

for high volume I/O in a remote job entry system.

4. Programming for I/O devices attached to the 1800 selector channel

is not compatible with System/360 programming for the same devices.

5. It is not economically feasible to print all the 360 generated

output on the 1800 - 1443 printer. Any job in which "turn-around time"

is not a critical factor should use the 1800 - 360 R.J.E. system only to

transmit the input data to the System/360.

6. Documentation of the IBM selector channel R.P.Q. C08037 should

be revised. Our major problem in developing this system was caused by lack

of the proper technical information on the use of the selector channel.

7. If the nonnal 1443 printer workload for the 1800 is quite heavy

there is a need for an additional 1443 to be added to the system which

could be dedicated to the printing of 360 output. Thi~ could also

apply to 1442 usage.

8. The user should develop efficient record compacting routines

in order to eliminate the transmission of unnecessary blanks.

9. Operator training for both the 1800 and the System/360 is

essential. Console messages to the operators that can be placed in

the normal job stream are extremely vital and should be used frequently.

10. Proper communication between the IBM C.E. 's and the telephone

company technicians must be established early· in order to avoid possible

system failures do to "misunderstandings."

-10-

o

__ lIIiIrIiiiiiWiiiii'jliM.II1I11f11Iii11i!T'Iiiiii"J!'lirIiil
Tt

•
U

lllillrnlliiiTPIII!!511117!IiIrllr!!!IiIIiIWIIIW.-_lIlililinIilTIiI" __ IIiiI--IIIZIll:r:rIlll,, __________________________________ ~,,;---

o

o

•

ACKNOWLEDGEMENTS

1'hl' Author wishes to acknowledge the following individuals for

providing considerable advice and assistance in the design and development

of this project.

Mr. G. A. Maneatis, Chief Computer Application Engineer

Pacific Gas and Electric Company

Mr. W. M. Picks1ay, Jr., Chief Computer Application Engineer (Retired)

and

Mr. H. U. Brown III

Mr. D. E. Ees1ey

Mr. W. J. Fant, Jr.

\.JRB: tic

Pacific Gas and Electric Company

IBM Corporation

IBM Corporation

IBM Corporation

W. R. BARNES
3/11/68

-11-

• POmR VAL!.EY
~ , ,:, : '. ,,;::,\,;, '

, " ,.'.,' ~

-, '

o

•

1800 RPQ
Selector
Channel

1802
CPU
16K

-
Paper
Tape

Reader

-----

Paper
Ta.pe
Punch

1442
Ca.rd

Reader
Punch

;:;,.~h·~·natic Diagram
of

I ~,i.)O Cotr.puter System

1
1816

Console
Typewri tet-

1443
Printer

201B
Data
Set

iL.
"-

2701
.... STR "7

Data
Adapter

1627
Plotter

Figure 2

JIL To Sys tern 360 ...
...... FDX Line -;II'

/

/

,/'

r
'D

~
1052

Console

-

Adapter
Unit

,/

~

./

c

PACIFIC GAS AND ELECTRIC COMPANY

System/360 Model 65

CPU Selector
512K Channel

2870
Multi-
plexor Selector

jChannel Channel

I
!
! 2803

I I Tape
I l Control

!

!

!

!
I

I
-

I Tape. ~I . I~
, Control '.' . I. 7-Trk .. \
:....--._ __ . 2400-2 t

_ '..) - " ',._. c]

I
I

r -__ . ___ 1---,-___ r~-·------·-
i 2821 i 1403 Nl ~
I

,I

, . Control I I
Printer

i·

~".' j. J_., "" .. -ij.~ ••• -....,..---.J --t': _./~
'"~-------

/;540 I
Reader/Punch I

I
1 c

I

2314
/Direct

Access
Storage
Facility

/_._----"'"
9 \

Trk
400-2

! . __ ---l

~

.,

c

"rj
H
GJ
c::
~
w

o

System

360

Mu1ti-
p'lexor

Channel

f
2701
STR
Data

Adapter

o

•

Schematic Diagram
of

1800 - S/360 Telecom System

201B
Data
Set

~ Full Duplex 240

201B 2701
Data STR
Set Data.

Adapter

!~.UU

Selector
Channel

tRPQ

1800
Computer

System

Figure 4

o BAUD

ost console evcn~1
Control Block to

ind ica.te No J
Reply Outstanding

Open
STRAM

Write to Opera.to
'STR Routine

Waiting'

Write to Operator
'Reply one
Character'

R to receive
T to transmit
E to end job

Yes

SYSTEM 360/65

Remote Job Entry
Logic Chart

WTOR Write
perator with

, STR Ready'

Return

Figure 5
Page 1

o

o

o

•

Wait and test
For Completion

of SINCR or
WTOR

Yes

Yes

SYSTEM 360/65
Remote Job Entry

Logic Chart

Open
Tape Output
Data Control

Block

SWAIT
Wait and

est for Completio
of SOFF

Figure 5
Page 2

! .

I

I

SYSTEM 360/65

Remote Job Entry
Logic Chart

Write to Operator
On 'End trans receive

~--------~ /----------{
Without EOT'

Move recor to
Workarea
SFREEBUF

Return buffer

Translate Record
From 4/8 Code

to BCD

Scan
Workarea

For Record
Mark

lear Tape Output
Area and Write

the Record

Yes

SFREEBUF
Return buffer

STR buffer
Pool

Yes

Figure 5
Page 3

Turn SW
No EOT

On

o

o

o

o

•

Open Label
Input Tape

Type J
MACRO

Remove blanks
From Right

Side of Recor

SYSTEM 360/65

Remote Job Entry

Logic Chart

SGETBUF

for
STR Line

TTOBCD
Translate
Workarea

From BED to
4/8 Code

SPUT

Figure 5
Page 4

Send 640
Character

Move
Input Record ~--~

to Output
Workarea

------------------ .--.-~~-." ----

SYSTEM 360/65

Remote Job Entry

Logic Chart

Adapter
Turn off
Adapter

SWATT
for
SOFF

Figure 5
Page 5

o

o

o

•

Load
Control

Parm

Dec
Return Addr

2

........

(Exit)
\.Via. TVEXT J

13()O TPSTR SUBROUTINE

No

Store Data
Addr-Count

in CCW

Turn on
Adapter Busy

Switch

Yes

Yes

Figure 6
Page 1

.~

Yes

Set up
CCW
to

Open Read

Turn on
Open

Swi tch

Yes

1800 TPSTR SUBROUTINE
Logic Chart

(0
I

Set up
CCW
to

Write

Exit
Via TVEXT

Figure 6
Page 2

o

o

o

'UL" -Jl7.m.'V.3'5.W.t!.'f."N.-MW~-.-ij.W~t.#.e.ffl ••• -M.~M5fMW'.J.!I!.Tf.;-~.--.W~[fl1.%!I.mT.-".p'.rrMnr.l!U.'wMeu.'WMT.Tn.?!!.:rr.".:::rMr:ZM::r.!TIt.-.-~"".!1n.r.!!.nr.!!r.w.w.r.--.. ..

c -i~t-~-r rupt---'"
Entry

o s

•

1800 TPSTR SUBROUTINE
Logic Chart

to

Turn OFF
Adapter Busy

Switch

Return to
Mrc

Q

Return to
Mrc

Figure 6
Page 3

cmvert smtus
Codes to
1816 Code

Set up
Status MSG

For
EAC

Seot up
Bad I/O

MSG
For EAC

_N~J

Yes

1800 TPSTR SUBROUTINE
Logic Chart

Set up
Invalid Code

MSG for
EAC

Link
to

Error
Routine

Exit
Via TVEXT

Set up
Bad I/O
MSG for

EAC

Link
to

Error
Routine

ink to)
Standard

EAC
Routine

Return

Figure 6
Page 4

o

o

c

•

..... -------
Slart

Load Next
Word in
Working
Buffer

INC
Buffer
Address

+1

.1.600 Receive Routine

Logic Chart

Count in
Print PARM

Turn
on

Switch
'END'

Restore
TASK

Intrpt
Table

Figure 7

SWitch-..) Buffer
Addr's

0-

Start

INZ Buffers
With 4/8

Blanks

Turn On

sw 80

No

1800 Send Routine

Logic Chart

Yes

Figure 8
Page 1

Turn off ·1
sw 80

Turn on

sw 80

Turn On

SW 80

Turn On
)-----~ La s t Card

SW

On

Set
Scan Addr
For 80 Chars

o

o

o

,---------------___ ,; ..

o

•

Set
Scan Addr

For 72 Chars

Scan
Buffer

Right to
Left

Dec

1800 Send Routine

Logic Chart

Calc
DIP Buffer

Word Count

IBF HOL48
Convert

Card Code
4/8

Inc
Buffer

Address

Yes

Scan Yes
Count

1

Place "END"
Char. After

Last
Significant Char.

Off

Switch
OIP Buffer

Address

INZ
DiP Buffer

Work Count

Figure 8
Page 2

On

\LIBF TPSTR
\ Glose
\ Line

\
\

Resto're

TASK

0000
0000
0001
0002

Figure 9

TPSTR-RDL~~N~ FOR 1800-2701 STR PAGE

..•

* *CALL SE~UENCE AS FOLLOWS FOR READ OR WRITE

*
*

. ---, .. ~.

*
*
*

LIBF
Q(;

DC
DC

TPSTR
.. t.AXX'X

AREA
NNNNN

* CONTROL CODES
* 3- CLOSE
* 4- OPEN
* 5- WRITE
* 6- RECEIVE

* ******
*

_c.uNTRQL.
I/O AREA
DECIMAL CHARACTER COUNT

._ ... ~~AL.I,..._~.EQVff'J.CE; A$ FOLLQW.S .. TO TEST fOR BUSY
* LIBF TPSTR

* DC 0

* MDX

* ***
.................. _ .. _._---_._-_ _._*-....... _ _-_._._._ -.-.. -.-.--...... -... ---..... -..... -..... ..

2:35E.2609
0 0012
1 0092

LIBR
ISS
DC
DC
ORG

1 TPSTR
18
TPINO

IA CODE
lNTERUPT ROUTINE

•.. __ _----_ -........ ----.... -... - .. --.. - .• -.--.---... -.--~--.- - "'"''

OOAC
OOAD
0037

0000
0001
0003
0005

0 0000
00 448000AC
00 65800037
00 74030037

TVSAV EOU
TVEXT EOU
WK5 Eau

172
173
55

* ***
--~ _. __ .. _• - _._------_.- -_.", .. _-_ _. __ ... _-_ .. " .. ---- -~-.- ,. -.--.'.'

TPSTR DC ENTRY POINT TO ROUT.INE
8SI I TVSAV
LOX I 1 WK5 XRl POINTS TO PARAMETERS
MDX L WK5.3 .MODIFY RETURN ADDRESS

*

1

____ ... _. ______ . __ . _____ ~~ NAb)',~.~ __ ~QNIRQ.L. eAB~~.EB _. _____ __ .. __ ._ --........ . .. q.----.-----.---.-.------.... --- , ... ---.----.

* 0007 0 CIOO TPT5 LO Xl 0 LOAD CONTROL TO ACC
0008 0 l88e SRT 12 SHIFT I/O FUNCTION TO UNI T
0009 01 4C200017 BSC L TPTl.Z IF NOT TEST BRANCH

* *TEST FOR ADAPTER BUSY

o

...• - ~-.-. - -. -.-"-.-.-- ... - --~-'" ~-~-.. , ---~--.-- -,' .~~---"'-............ -... __ .- ._-_._--',. ~- ... '-- - .. -'--'-_.' - "¥.,'.-
. ,_ ... __ . __ .c.~

* 0006 01 C40000BA TPT6 LO L W8BSY SENSE OEVICE BUSY
Ooop 01 4C200013 SSC L TPT2.Z BRANCH IF BUSY

* 0 OOOF 00 74FF0037 MOX L WK5.-1 RETURN ADD NOT BUSY
0011 00 448000AD 851 I TVEXT

*

----.-... _--_ .. __ .-._-
0013 00 74FE0037

TPSTR-ROUT~NE FOR 1800-2701 STR

TPT2 MDX

BSI
L WK5.-2
I TVEXT

... . ..

RETURN ADD BUSY

PAGE

COO 15 00 448000AD

* ***
*SET DATA ADDRESS AND COUNT INTO CCW FOR WR/RD
*IF NOT BUSY PREPARE FOR READ OR WRITE ---------_ .. - ... --- .. ---_.,,". ----_ .. - •.. - ..•. _ .•. - -" _ .•... - .. _....

**

0017 0
0018 01
OOIA 0
0018 01
0010 01

ClOt
04000236
CI02
04000234
740100BA

*
TPTI

*
*

LD Xl 1
STO L DADO STORE DATA ADDRESS

LD Xl 2
STO L BCNT STORE COUNT
MDX L WB8SY.+1

*ANALYSE CONTROL PARAMETER

*
* ------ ---_ .•. _ - .. __ .. -"'-'

. __ .. _--_ ...• _---_._ .. -
OOIF 0 CIOO
0020 0 6204
0021 0 1240
0022 01 4E800023

*

..- .-

LD Xl
LOX 2
SLCA 2
SSC 1'2

-o
4

............. _ ... _ ...• _ ...• -

LOAD PARAMETER
LOAD SHIFT COUNT
SHIFT FOR TEST

__ 00 2 ~ __ 1 . . __ 9..QQ.~ .. _. __ .. __________ . __ .. .J?~_ . ERR2
TPT3
TPT7
ERR2

CONTROL CODE 1 __ _-... ----_.- - , ...• -_._-.--- .. ' .--- ,.' ._-- -.--.~- .. _--_.-.--

0025 1 0028
0026 1

00027 1

0020
0004

*
*

Q.(L~e . Q ..---.JQQ1. ___ ._ .. __ .. ___ T£I.~
0029 01 4CI00052
0028 01 4C00008E

*
*

DC
DC
DC

.$.~~-­
BSC L
Bse L

OPENR.­
CLOSE

CONTROL CODE 2 OR 3
CONTROL CODE 4, 5, 6. 7.
CONTROL CODE 8 OR MORE

OPEN READ ON 2
CODE 3 - CLOSE

.,

0020 0 1001 TPT7 SLA I CODES 4.5.6.7
__ 002E; .. Q.L.~~.!Q~Q.~~ ___ _____ .. ~~~ .. h __ ._:r.P.J.~, - _.~_._. ___ J!B_~.~_~tL.9-~. ,!~_QR ~--.--.-.. -... --.... -.- -

0030 0 1001 SLA 1
0031 01 4C2800P4 BSC L ERR2.&Z
0033 01 4C000086 BSC L TPT4

*
*

BRANCH ON CODE 7
CODE 6 READ

INVALID

0035 0 1001 TPT8 SLA 1
0036 -'0"1·'· 4Clo 0 031'·'·_-'-- .-.-----. BS c··--·C--·"OP-ENW ;-----O-P-E-N-··WR-fT E" C)'N-···4·- .. --.--.. --.--.. -.--..
0038 01 4C000080 BSC L TPT9 BRANCH TO WRITE

*

2

*** OPENO * OPENO
~_. __ 90~~ QJ .. Q;l_Q90 ?_gA._ .. _ .. _ QPE;J~W .~D~ . ___ ~ ~ .19<; wA _. __ SEI_.\)P .. Q.e.r=.:~._I.Q. .. ?J~ND --.. ----.-- ..

003C 01 OC00022E XIO L IOCWC TEST SENSE SWITCH 0

003E 01 4Cl00049 SSC L NORML.- IF OFF NORMAL MODE

0040 01 CCOO0262 LDD L TMODE 0 ON-LOAD TEST MODE AND

0042 01 DCOO025E STD L MODE TEST WRITE

0°04
4-

01 C4000264 LD L TREAD LOAD TEST READ

0046 01 04000260 STO L CN02
0048 0 7013 MOX TAG

·•. "- ~.-.• -•.. " .• "., " "., -,, -... ".,-.-.................. ~~~~-~~-~-~--------~~-~--.----------

Figure 9

TPSTR-ROUTINE FOR 1800-2701 STR PAGE

0049
0048
0040
004F
0051

_ .. Q9S2
0054
005t:>
0058
005A
OOSC

_ ... ~ -- --... ~.- .. --.. -. ~ .

01 CCOOO266
01 OCOOO25E
f)l C4000268
01 04000260
0 TOOA
01 CCOQQ?6(>
01 OCOO025E
01 C4000268
01 04000260
01 65000232
0 691C

NORML

._ .QPENR

TAG

0050 _0.J._2~.Q-'! .. Q.Q .. B~._._ .. ___ .. _ .. _.
005F 00 C400005A
~061 01 94000250
0063 0 0003
0064 0 0006
0065 0 0007

LOO L NMODE ..
STD L MODE
LD L NREAD
STO L CN02
MOX TAG
LOO J", NMOOI;;
STO L MODE
LO l.. NREAD
STU L CN02
LOX Ll IOCWf;:
STX 1 MOOIO+l

. __ .MPX. ... b .. SQP~Ntt_t
LO L 90
S L CON8
STO *+3
5TO *+6
STO *+7

~ """'~--' - " .. _. . .. -.. ~ ~. --". ' - ,-.. ~-... -." .-..
LOAD NORMAL MODE AND
NORMAL WRITE
LOAD NORMAL READ

.JQACL .. N.QRJ~1AL MOOt; . .ANQ .. __ ._ ...
NORMAL WRITE
~OAO NORMAL R~AD

seT UP OPEN TO RECEIVE

__ 00~~._.Q9 ?~!iQ...Q90Q. ___ _ ~ .. __ . .§.I~ __ .b __ ._/QO qQ~/49. .. ___ <;_~f;.AR $TORAGE P..~.PT~~T. ~J T~ __ _
0068 01 65000092 LOX Ll TPINO
006A 00 60000090 STX Ll /0000

I

006C 00 2C410000 STS L /0000,/41 WRITE STORAGE PROTECT BITS
OO~E 01 740100BA MDX L WBBSY,+l
0070 01 OC000224 XIO L IOCWS DISABLE AND SET MODE

. ___ .. 99]2 0 1 ~.4J!QQ.9J?'_~. __ ._. __ _._. __ . ___ ~P ~ __ W~BS Y _._ .. ___ ... ____ __ ._"_ ,,._,, __ . __
0074 01 4C200072 BSC L *-4.Z
0076 01 740100BA MOX L WBBSY,+l
0078 00 OCOOOOOO MODIO XIO L *-*
007A 01 C40000BA LD L WBBSY
007C 01 4C20007A SSC L *-4.Z

___ .Q..Q.1.~ .. Q. 9._ .. ~.~ .~_Q Q.Q~. 0 _____ ._. ___ ... _ __ fJ .. ~ 1 ____ . _1._ .. . _1 .Y.t;)(.I _.___ ____ .

*
* ***
* *SET WRITE OR READ COMMAND IN CCW

----.... - .. -.-.--.-----.-.----~.---.-.... ---.•. -.- ... -.--...... ---...... -- -- .. - "'---'-'." -.. -.. _----------_._ ... -----
0080 01 C400025F TPT9 LO L eNOl SET UP CCW FOR WRITE
0082 01 04000235 STOL W~$RD

0084 01 4COOOOBA Bse L TPW2

* 0086 01 C4000260 TPT4 LO L CN02 SET UP CCW FOR READ
~~§_~ __ Q.l_._Q..~.Q.QQ . .? 35_. _______ . ___ . ___ 5 T.Q. __ ._~ __ WB~B_'L._

008A 01 OC00021E TPW2 XIO L IOCW2 EXECUTE WRITE OR READ
OOSC 00 44BOOOAD aSI I TVEXT

*
*
*************************~*************************

OOBE 01 OC000230 CLOSE XIO L IOCWO

OPENO

3

o

·---06-9-b- -.- 00- _." 4-4800--0·A·D~----··---·----·-"--'-··~-BSI'-····--··'·i-'" . --"-VE" X~T' -- -.... ""---~--.--.--- .. ~-.- .. ~-~-.~-.-... -~ ".~ ~ ... " -.. ----.-.. ------~--... ~ .. ---.~-.----- .. ~-.. --~ --,,-.--.--q.

*
*

..

BHTYP

*************************.************************* BHTYP
*** TPINO
*TP~~O IS INT~RRUPT RO~TI~E FOR TPSTR _.IPINO
*** TPINO

o

C

Figure 9
.. -- -- --_ .. _._ .. - - - __._- --- -. -'- _.

!~STR~ROUTINE FOR 1800-2701 STR

0092
0094
0096
0097
0099
009A
009C
009E

* 01 OCOO022C TPINO XIO L IOCWa
01 04000257 STO L WORK3
0 1001 SLA 1
00 4C9000SA esc I 90.-
0 1001 SLA 1

- •• _~. ____ ... ____ .. ______ ••• _._ .• .-•• 0' ____ .• _ •• 0 ___ • __ •.. ___ ._ ._ .•••• _. ________ •

01 4C20010F
01 OC000222

BSC L
XIO L

TPIN6.Z
IOCW4

01 04000258 STO L WORK4
OOAO 01 C40000BB LO L SOPEN
00A2 01 4C1800AE esc L TSTUS.+-

CHANNEL STATUS W/O RESET

PENDING BIT
BRANCH IF FALSE INTERRUPT

BRANCH IF CHANNEL ERROR
SENSE UNIT STATUS

PAGE 4

TPINO

__ 0 0 A4~) C4 00 0-_2c,;...5:;:...8-"---_____ . _ . __ l:-Q _______ h_.wq'3_~~. ________ U_.;.._N_I __ T_-,S_T_A __ T_U_S ___ ~-__ --_----_--_--__
OOA6 01 F40000BC EOR L COND

_Q_QAB 01 ~C20010F TPIN6.~

OOAA 0 1010 16
- _______ QJ)_~~ ____ Ql ~~Q_9QO~~_ _ _ SOPEN

OOAO 0 7006 TPEXT
OOAE 01 ____ ~~=-~~C~4~0~0==0~2=5~8~ __ ~~~~_== __ ~~~w9~~4 ______________________ ----------------------1
OOBO 01

..... ____ Q_Q6? .- 01
0084 0

F40000B9 CONUS
~(;~_9QQEl()_ J FE OT. Z
1010

1
_J~_RA~<;tf _t~ JlNIT ~TATU_S ERR
NORMAL STATUS

____ Q()~_5 ot o.~9_Q QQ§~_____ _ _______________ S T 0 L
1

16
WBSSY
90
/020e

CLEAR BUSY SW ._ _. __ - ._.- - .. _ _ .•.. ,

0

00B7 00
89 0

OOBA 0

OOBS 0
OOBC 0
OOSO 01
OOSF 01
OOCI 0
00C2 01

4C80005A esc
020C
0000
0000
0200
OC000228
C4000259
100B
4CI0010F

Wsasy
SOPEN
COND
IFEOT

DC
DC
DC
DC
XIO
LO
SLA
BSC

L
L

L

o
o
/0200.
IOCW7
WORK7
11

RETURN TO MIC
NORMAL UNIT STATUS
BUSY SWITCH
OPEN SWITCH

SENSE DEVICE STATUS _._... _0. _

TEST FOR EOT ON RECEIVE

BRANCH IF NOT EOT
00C4 0 70EF MOX

TPIN6.­
TPEXT

* *** __ ... __ • ____ .. _. ______ ._ .. __ . _______ . __ . ..•... ___ •.... ""'._"' ___ '_'" ... __ ... _ ___ .•. __ . __ . - ___ ._.... "· __ ·R.. __ .. __ ._ _ ... __ ___ ._._._._

*STANDARD CALL TO TSX EAC PRINTER

* __ ._OOC_~JL __ C!<l.9JL _______________ ER~_pr ___ Q~____ _____ *-* _______________ ._. ____ ___________ .. __ . ___ .. _ _______ . ______ ... _ .. _. _____ . ___ ' .. ___ . ___ " __ " __

00C6 00 oe000032 XIO L 50
____________ OJt~JLJHt _ Q C CH!Q g~~ ________________ ~l!L ___ ~ _______ §~ ____________________ ... _______ .. _______ ._.__ -----.... -.-.------------ -.----.-.---.---.. --.--.---... -.-.---.------------11

OOCA 00 65000000 ERPTI LOX Ll *-*
ooee 00 44800099 SSI I 153
OOCE 00 OC00002E XIO L 46
0000 00 OC000030 XIO L 48 -~ .. "' •... _._- ... -- .. _---- . _ _- .-_ --.-- ...•... - ----_._ .. _ _ ... -... --."-" .. -.-- --- _ .•. _.
0002 01 4C8000C5 BSC I ERRPT RETURN TO CALLING LOC+1

0006 01 9400025C

*
*

00Q8 0 1 44J~_Q_QOJ;~ __ . __ . ______ _
OOOA 01 DeOOOlBO
OODC 01 C4000195

••. _______ 4_"_' _ •••. _. __ ._ •• __ •• ___ . __ _

OODE 01 040000CB
OOEO 01 440000C5
OOE2 00 448000AO

S L CON03
_~§_l_ .. ___ ~ __ . ___ 13 t-I I._'{~_. _____ .. -------.------ ---- -.- ... -.----- .--------------- -- --------------.- . -.----------- ----'---'--'---iI

STD L EMS2B
LD L EMES2 --'--------'--'--'-----'-' --... -.- --------- ... -.----.--------------.-.---.-------------... _--_. __ .-.-._-----_._------------_._--------------1
STO L ERPT1&1
aSI L ERRPT
BS I I TVEXT

OOE4 0 0000
OOE5 0 1890
00E6 0 6204
OOE7 0 18C4

T P S Tk -~~ U u 11 Nt:: FOR 1 R 0 0-270 1ST P

.~. ..-.~ -- _ .. ", ~ ..

Figure 9

PAGE 5

****************************~**********************
*CONVERT BIN IN ACC TO TYPEWRITER HEX IN A&Q

*** BHTYP

*
*
* 8HTYP DC

SRT
LDX

BHTY RTE

-
16

2 4

BHTYP
BHTYP

.. 6H T.YP ... __ ._

00E8 0 180C SRA
4
12
~~t

BHTYP
6HTYP
BHTYP
SHTYP
BHTYP

__ ...:=.00 E 9. __ Q __ . Q .. Q9.1 ___ . ________ . __ .. _~. T Q. _. ___ ._._ .. __ ._.......eH TYP
OOEA 00

.QQEC 01
OOEE 01

__ . ___ .QQ.~ 0 0
OOFt 0
o 0 E_~._ Q_ ...
00F3 0
OQF4 0
OOF5 0

. __ . _ ... __ J~ .. Q.F 9 0

65000000
C50000FF
D60000FA
72FF
70F5
COOA
1008
E:809 ..
1890
C;QO_~ ._ ... _ ..

LDX
LD
STO
MDX

Ll BHTAB
L2 HBTAl-l

2 -1
MDX BHTY

.. ______ ~Q.._. __ ... _______ Jj§T t\l!!.g __ ._. __ . ____ _
SLA 8
OR
SRT
... 0

HBTAl&3
16
HeTAI .

BHTYP
BHTYP
BHTYP
BHTYP
BHTYP

........ __ .. _ ... _____ _. ___ ._ . .f! H.I-YP_ .. __ .
BHTYP
SHTYP
BHTYP
SHTYP .

00F7 0 1008 SLA 8 BHTYP
__ O::....O~r: .. {LJt ... _.t;.~ 0 3 . ________ . _____ .___.QR. __ _H6_ I..A 1.k1---_ ... __ ._. ____ _. __ _ ___ . __ . ___ .. ___ .. _.,_ __ . ..6: ttl. YE._-,--_

00F9 01 4C8000E4 BSC I BHTYP BHTYP
BHTYP OOFB 0 0000 HBTAl DC *-*

OOFC 0 0000 DC *-* :~~,; OOFO 0 0000 DC *-*
OOFE 0 0000 DC BHTYP

------...• --... --.--... ------"-.~----.-......... -............. _. __ . ___ .'-_ , _._ ... 6J1 T..YP __ _
OOFF 0 00C4 BHTAB DC /OOC4 0 BHTYP

SHT,(P
BHTYP
BHTYP
BHTYP

0100
0101
0102 . --- .. -.--~- .. ~ ...• -.--- .

0103

0
0
0
0

OQFC
0008
OODC

" .

OOFO
__ 0 1 Q!!-_.~L_._ 00 F 4-

0105 0 0000
0106 0
0107 0

.Q198 0

0004
00E4
OOEQ

0109 0 003C

DC /OOFC .. l.
DC /0008 2
DC /OOOC.;3.
DC /OOFO '+

.. ____ _Q£ '_" .. ' __ '" _I.Q.Q.E.4-_. __ ._--=-5_. __ . ____ .. _______ ... _ .. _ ____ . _ .. _~ ____ . __ .. _ .. ___ e.,H r.y..P._ .. _ ..
DC /0000
DC
DC

/90Q4
/00E4

6 BHTYP
.7 BHTYP
8 BHTYP

DC /OO~Q 9 BHTYP
DC /003C A BHTYP

__ -=-0.-=..1 ° ~ Q.. ___ .Q 0 18 ••• __ 0 _____ • __ •• _. __ • 0 C .. _ .. _ ... ___ . __ "."L.Q.~ 1st .. _ ... __ . __ 8_ ... ____ ... _. _ .. _ _ ___ ,-'--___ ... _. ___ .. 51:iT..Y.E.._. __ _
010B 0
OIOC 0
0100 0
OIOE 0

OOIC
0030
0034
0010

DC IOOlC C BHTYP
DC /0030 C:>. BHTYp
DC /0034 E BHTYP
DC /0010 F BHTYP

* BHTYP
___ 0_1 ~~ _ ... _~}. __ ~4 0_0 0_~.7_3 __!.~!~~ __ .. L t?_. ___ ~ .. _ §.~_t;.§.? .. __ . __ .. _____ ._ __ .. _~ .. _._. ___ _ ... _ _• ____ ... __ .. _ __ "" _ _____ ._

0111 01 040000CB
0113 01 440000C5
0115 01 OC00022E
0117 0 1004
0118 01 4C280128
OllA 01 OC00022C
011C 0 1007

RETRY
, _. ~, ,

STO L
BSt L
XIO L
SLA
BSC L
XIO L
SLA

ERPT1& 1
ERRPT
IOCWC TEST PROG SWITCHES
4
TPIN8.&Z o
I (JC \\fS .~!=NSE .. CHANNEL STATu.s
7

')'V

TPSTR-ROUTINE FOR 1800-2701STR

CJbllD 01 4C28011A
011F 01 OC00021E
0121 01 OC00022C
0123 0 1007
0124 01 4C280121
0126 00 4C80005A

*

BSC L RETRY.+Z
X 10 L I DC W.2

XIO L I ClCWS
SLA 7

SSC L *-S.+Z
BSC I 90

0128 01 OC000220
012A 01 9400025B
012C 01 04000255
0'12E 01 C4800255
0:130 01 04000256

TPIN8 XIO L IOCW3

--_._----_ - - _ _._ ... _._.

0132 01 C4000257
0134 01 440000E4
0136 01 DCOOOloO
0138 01 C4000258
013A 01 440000E4
0'13C 01 DCOOOIE2 -----.. ----- --_. - .. -~ .' - --
0:13E 01 C4000259
0.140 01 440000E4
0' 1 42 0 1 0 COO 0 1 F.O

0144 01 OC000226
0146 01 440000E4

S L CON02
STO L WORK1
LD I WORK 1
STO L WORK2
Lo L WORK3
BSI L SHTYP
STo L TST2B
LO L WORK4
BS I L BHTYP
STD L TST2C
LO L WORK7
SSI L SHTYP
STO ·L
XIO L

·851 L

_____ Q.!.4.~ ._9J.Q~.~QQ . .tf~ _... STO L

TST2 .. b
IOCW6
BHTYP
TST2E
WORKl
CONOI
BHTYP ..

014A 01 C4000255 LD L
~14C 01 9400025A S L
~014E 01 440000E4 SSI L

01~0 01 oC000208 STO L
0152 01 C4000256 LD L
o 15'± Q_L4l~.QQQQt;!!._. ___ ._ __ ~~l . b.
0156 01 DC000212 STD L
0158 01 C400025E LD L

TST2F
WORK2
BHTYP
TST2G \
MODE

015A 01 440000E4
015C 01 DC00021C

BS I L HHTYP
STD L TST2H

*
___ .. QJ.;?~. 0 L. ~4:9QQ .!.~.§.............._._

0160 01 D40000CB
0162 01 440000C5
0164 01 C4000184

.k . .P
STO
BSl
LD.

0166 01 D40000CB STO
0168 01 440000C5 BSI

~MES5

ERPT 1& 1
ERRPT'
EMES8
ERPT1&1

BRA NCH I F t3U~; y

SW ONE OFF RE-TRY I/O

COMMAND ADDRESS

COMMAND
CHANNEL STATUS

UNIT STATUS

DEV I ·:E St::NSE

BYTE COUNT'

CALC tcw ADDRESS

CURRENT COMMAND

EXPECTED MODE'

Figure 9

PAC)E 6

./

TPINO

TPINO
·H.; I NO

TPINO
TPINO
TPINO
TPINO
TPINO
TPINO
TPINO
TPINO
TPINO
TPINO
TPINO
TPINO
TPINO
TPINO
TPINO
TPINO
TPINO
TPINO
TPINO
TPINO
TPINO
TPINO
TP I NO//'

/?
/$.;/0

016A 00 4480003E WAITC 8S1
__________ ._ • __ ._ •••• _._. • • __ •• ___ ,_. __ __ " _., __ •• _.~ •• _ ••• __ .. ". __ ---.., _____ ~W~

016C 01 OC00022E XIO
SLA

L
L
L

L
L

L

I
L

ERRPT
62
IOCWC

....... /
:./ 0

016E 0 1004
016F 01 4CIOOI1A
0171 00 4C80005A

*

SSC
BSC

__ .. .9-1 7 ~ .. L __ Q .. l? ~L .. _"' __ .. _. ___ ." .. r;.M.~~ 7 QJ~ ...
0174 0 OOOF
0175 OOOA

•

017A 0014
; 184 0000

0184 1 0185
0185 e oeOF
0186 OOOA

DC
TST3A DMES

DMES
TST3C BES
EMES8 DC

DC
TSTiJ.A DMES

L
I

o

4

RETRy,
90

.8R TO RETRY IF SW 1/4~F
DROP ReDS -CONTIN~

. J~/",'

* TST3C-TST3A
'RBAD I/O 'E ~~

/

. '/ . /' "

• R PROG sw ~ DETA I LS"'~' E
I /' :,'
\

/ * . . /
T~ T4B-TS T 4A..,/·
'f-< PKU\..~ S W l' l E /,.

.J".

0188
,0190
0195

OOOA
OOOA
0000

0195 1 0196
0196 0 002E
0197
01A6

OOIE
0012

TPSTR-ROUTINE FOR 1800-2701 STR

Figure 9

PAGE 7

DMES
DMES

TST48 8ES

'ROFF RETRY'E
'RON IGNORE'E
o

-...... , --.---,,.-'---------------,,-----0

*** TPINO
* ERR40
~ * * * * * * * * * * * * * * ** * * ~_* *~*-,~_~,,*- lit ~* *- * _* * * * * * * * ~_~~_*~_~ *-_~_~~~_ ,E;BR 4-_Q_

* EMES2 DC *
DC EMS2C-EMS2A

EMS2A DMES
DMES

o 'RINVALIO CONTROL CODE IN TPSTR'
LIBF LOCATED AT '2S'E

__ Q-.!l!Q __ -_____ .-9 __ Q_Qg_ .. "' __ .. _. ___ .. ____ ~M.§g~ SS,§ ~ ?
0182 0026 DMES 'R'E
OlCS 0000 EMS2C BES 0

*
* OlCS 1 01C6 EMES5 DC *

TEST1
TEST2

_. __ 0-1~§_, _ ~_, __ .. Q.9_S 7 _ ____ . ___ .. _________ Q~_ .. ___ _ . _I~ T.?_I~J'.~.J:~~. ______ . ___ ... ______ _."" __ " .. ___ .. ______ ._ .. ____ .T_~~_ I? _.''-'"
0lC7 0012 TST2A DMES 'RCHANNEL'STATUS 'E
0100 0002 TST2B BSS E 2
0102 OOIE DMES
OlE2 0002 TST2C BSS

'SSUNIT ADDRESS AND STATUS 'E
E 2

TEST2
TEST2
TEST2
TEST2

OlE4 0018 DMES 'RDEVICE SENSE REGISTER 'E TEST2
__ .g_.~_EQ_ .. ________ .Q9"Q~_ ... __ .. __ ._"'. ___ ._!~.!.g_Q __ ~§S E _" ? "_"'_' __ '''_"' _ ... ____ . ______ . __ ... _. __ ... ". ___ . __ .. _" ... _____________ rES T~? __ . __ ._ ..

01F2
OlFC
OlFE
0208

0012
0002
0012
0002

DMES
TST2E BSS

OMES
TST2F SSS

'SSBYTE COUNT 'E TEST2
E 2

'RCOMMAND ADDRESS 'E
E 2

020A 0010 DMES 'RCOMMAND CODE 'E

TEST2 0
TEST2

TEST2
TEST2

___ Qg~?_. _ _ .. _0 OQG ______ .. ________ T.§I.? G.. J:? ~$. _';. ___ 2 _ .. _ _ .. __________ Tt; .. S_u... _____ _
0214
021C
021E

0010
Q002
0000

DMES
TST2H SSS E
TST2I BES

*
*

'REXPECTED MODE
2
o

'E TEST2
,' __ ., TEST2

TEST2

OPENO
---- ._----_ ---- --._-_._----._-_._---.-----_.- --.. ~~.~ ~ *-~.~ *-~~~*- *--*--~.~ ~. ~-~-~ *- *-* *- * *--~.!.~.~-~-~~~--~ ~~.!.~~~ * * ~ * *- *- * ~-~ ... -- ._--_._--_ ... __ .

*
* * * *- * * *- * * * * * * * *-** * * * ** * ~ **.* * * *- ** *-* *- * * * * * * * * * ~.* * * * * *
*Ioec AND eew AREA

* __ .. _9£L~ __ . .. __ 9 .. Q9 0 ___ ... _ ... _______ ... J:.3._§~ , ____ .!; .. _.Q._._. ______ .. __ . ___ _ ... ___ ... _ ... _ .. __________ _

*
021E 1 0234 IoeW2 DC BeNT WRITE OR READ IOCC
021F 0 9502 DC /9502

*
0220 0 0000 IOCW3 DC /0000 lace FOR SENSECOM ADO
0221 0 9705 DC /9705

"--.--~. ".'_ .. ~ .. -- e __ • ____ .~_ •• .-... .- .

*
0222 0 0000 IOCW4 DC /0000 IOCC FOR SENSE UNIT STATUS
0223 0 9703 DC /9703

*
0224 1 0237 IOeW5 DC CCWWl IOCC TO START CHAINED CCW
0225 0 9502 DC /9502 TO OPEN-WRITE ,- - ."---.-.

*

0228 1
0229 0

0252
9502

... -

IOCW6

* IOCW7

* ___ w_. ___ ~ __ •• __________ ~ _______ •• _______ •

DC

DC

.DC
DC

022A 1 0230 IOCWA DC
0228 0 9502 DC

* 022C 0 0000 IOCWB DC
0220 0 9700 DC

* _._-_._--_._ .. _--_ _. __ ... -. -•. _ - ..

022E 0 0000 10CWC DC
022F 0 0760 DC

* 0230 1 024C IOCWD DC

/0000
/9707

CCWW7
/9502

/9502

/0000
/9700

/0000
/0760

CCWW5
0231 0 9502 DC /9502

lace FOR SENSE COUNT

10CC FOR SENSE DVICE STAT

ENABLE,TEST SYNC8 SEND

SENSE CH STAT W/O RESET

,'- _-- .. _-- .. -....... _. __

10CC FOR SENSE PROGRAM SW

10CC FOR CHAINED EaT

Figure 9
PAGE 8

0232 1Q 246 . __ . ___ . __ . IOCWE .. R~ ____ ... __ . __ c. .. ~ .. W~~ .. _ .. _______ _ __ _ .. _._ _ _ _ ... _ ... _. __ ._. _____ .. _ _ .. _ .. __ .. ______ ..
0233 0

0234 0
O?.~~ 0
0236 0

9502

0000
()Q()cL

0000

DC /9502

* BCNT DC
~R~~P. DC
DADO DC

*

/0000

-
/0000

BYTE COUNT FROM TPTl
COMMAND CODE FROM TPT4-9
DATA ADDRESS FROM TPTl

-------_ .. _ .. __ .. _--............. _._ .. --_ __ _ .. -.. _-- .. _ ... _------_ _--................. -----. _ .. __ ._-_._--_ .. - _--_._-----_. __ ._--
0237 0

0" 6'~"~:"~
0000
602F
0000

CCWWl DC /0000
DC /602F
DC /000

* 023A 0 0002 DC /0002

DISABLE

.. . _____ ..Q .. g 3B ___ g ____ g_Q .. ~~. _____________ . __ P_~ _ . ______ !...?9. g. ~ ... ___ .. _._. ___ ~~_! .. ___ ~_Q .. Qg .. _ _ .. _ ______ _ .. __ ... ____ . __ .. _ ... _____ _
023C 1 025E

0230 0 0000
023E 0 6027
023F 0 0000

* CCWW2

*

DC

DC
DC
DC

MODE

/0000
/6027
/0000

ENABLE

.. ---.--.-.------.~. -~-.. - .. -.--... ---.- . __ _ _- - _----_._--_._-.-- .. --." " -. __ _ ' _-_._-.. -_ .. "-'''-''-'-'---''-'
0240 0
0241 0
0242 0

0243 0
0244- 0
0245 0

0246 0
.. Q .. 2~7 .. 0
0248 0

0249 0
024A 0
0248 0

0 024C 0
0240 0 -.-- _ .. _

024E 0

0050
6033
0000

* ."----- -_._---- - "---".
0003

DC
DC

/0050
/6033

DC /0000

DC /0003
2038 _____________ 0_C ___ . __ /_2_0 36
0000

0000
.. . _t?Q27

0000

0003
2006
0000

0005
6037
0000

DC

* CCWWE DC
DC

/0000

/0000
. (~.9?7

DC /0000

* DC /0003

*

DC
DC

CCWW5 DC
DC
DC

/2906
/0000

/0005
/6037

TEST SYNC

SEND INQ .
~---' --........ -- ----.-.. --------~-.... - .. -..... --

••• _ ~ .. , •••.•• "._ •• ~ •• _ •••• _~ ••••• " •• " •••••• _._ ••• "._ ••••• _ .•.• -·~::::;;; ... 'i:.:· • .;-=';;.;.; .. ;,;,;,;~ .. ~;w., •. ;:':':~

Figure 9

PAGE 9

*
.. -. _.- ... ----- .. -.--.... -.. --.-- -'0--

024F 0 0000
0250 0 202F
0251 0 0000

*

DC
DC
DC

/0000
/202F
/0000

DISABLE NO CHALN

____ . ___ O~~.~. {'L ... _Q..Q.Q_?-___ . __ . __ ._._ .. _ ... __ <;.c;WW1_ .. 0.<";. '. /0 Q .. Q-'-..... __ . __ ._ .. _ _ ... _ .. _ __ ._._ .. __ ._. . .. _ .. __ ._._. _ .. __ . ___ .. _______ . ____ . __ ... _. __ _
0253 0 2004 DC /2004 SENSE DEVICE STATUS CCW
0254- 1 0259 DC WORK7

* _. __ . _ J~.g5.s 0 OQQO WORKl DC
0256 0 0000 WORK2 DC *-* CHANNEL STATUS WORD
0257 ___ ~_. 0000 . __ ...:W:::...:QB_~.~ .. j?~ ______ . __ ~_~~ .. __ ._. ____ . ____ . ____ . __ . ______ ._. __ ... _._. ______________ .. ___ . __ . ____ ._
0258 0 0000 WORK4 DC *-* UNIT ADO-UNIT STATUS WORD
().?59 0
025A 0

00.0.0
0001

WORK7 DC
CONO 1 DC

025B 0 OOo.~ CON02 DC
025C 0 0003 CON03 DC

-
/0001
/0002
/003

DEVICE STATUS WORD

___ .Q~~r;L. Q_. ___ QQQ 8 _._. __________ .. t..o..N6_ ._. Q..C. _ .. __ 1.f).0 .. 0.6_ _ .. _ ... __ . __ . __ ... __ . ___ . _. ___ .. __ ___ .. _._. __ ... _____ .. _ ... __ . ____ . _____ . _______ _ _____ _
025E 0000 ass E 0
025E 0 0000 MODE DC o
025F 0 0000 CNOI DC o
0260 0 0009 CN02 DC 0
0262 0000 BSS E 0

. NORMAL OR TEST MODE STORED
NORMAL OR TEST WRITESTORED
NORMAL OR TEST READ STORED

1- ~ ~:~ -~---~~~ ------- }~~~ -~~ ----- -~-~~ ~;------~~i -~~E--------------· .. ---·-·--· .-.-.--.. ----
, 0264 0 2012 TREAD DC /2012 TEST READ Gil

0266 0000 BSS E 0
Q2~6 0 2001 NMODE DC /2001 NORMA~. MODE
0267 0 2001 NWRIT DC /2001 NORMAL WRITE

__ 02 68.Q_ .. _ 2 OO£ _______ .. NR g~.Q __ ._Q.~ _____ ___ _t_ag9.~ ___ . NORM_ALREAQ_ .. ___ ..
026A END

------_.-- .--_._---------_._-_._-- _.-.. ---_ _-_ ---. -- .. -----......... _---------------------_ _-_ ... _---_ .. -.. ---

------------_ .. __ ... __ __ . __ ._----------

o

Figure 9
SYI"!'.;;·jL "t' .~l~LE Page 10

0 BeNT 0234 BHTAB OOFF BHTY 00E7 BHTYP OOE4 CCWWE 0246
CCWWl 0237 CCWW2 023D CCWW5 024C «(~."'i"7 025;? CLOSE 008E
CNOI 025F CN02 0260 COND OORC CONUS 00fJ9 CONOI 025A
CON02 0258 CON03 025C CON8 025D DADD 0236 EME 5£2 0195
EMES5 OleS EMES7 0173 EMESB 0184 EMS2A 0197 EMS2B OIBO
EMS2C 0lC5 ERPTI OOCA ERRPT OOC5 ERR2 00D4 HBTA1 OOFS
IFEOT ooao IOCWA 022A IOCWB 022C IOCWC 022E IOCWD 0230
IUCWE 0232 IOCW2 C21E IOCW3 0220 IOCW4 O~-~22 IOCW5 0224
IOCW6 0226 IOCW7 0228 MODE 025E MODIO 0078 NMODE 0266
NORML 0049 NREAD 026ti NWR IT 0267 OPENR 0052 OPENW 003A
RETRY 011 A SOPEN 0088 TAG 005C TMODE 0262 TPEXT 0084 - ---_._-----_. ---._.
TPINO 0092 TPIN6 OlOF TPINfj 0128 TPSTR 0000 TPTI 0017
TPT2 0013 TPT3 0028 TPT4 0086 TPT5 0007 TPT6 0008
TPT7 0020 TPT8 003S TPT9 0080 TPW2 OOSA TREAD 0264
TSTUS OOAE TST2A 01C7 lST2B 0100 TST2C 01E2 T5T2D OlFO
TST2E 01FC TST2F 0208 TST2G 0212 TST2H 021C TST21 021E
TST3A 0175 TST3C 0184 TST4A 0186 T5T48 0195 A TVEXT OOAD

--------- - - --- _._0 ...

A TVSAV OOAC TWRIT 0263 WAITC 016A WBBSY OOBA A WK5 003i
WORKl 0255 WORK2 0256 WORK3 0257 WORK4 0258 WORK7 0259
WR$RD 0235

NO ERRORS IN ABOVE ASSEMBLY.

DUP FUNCTION COMPLETED

•

SESSION REPORT

COMMON - Chicago

Session Number MON D3 Session Name 1620 Project -----------------------
Chairman H. B. Kerr

Time 3.30 to 5,00 PM
------~~~~~~~~-----------

Attendance (No.) 48
----~-----------

Speakers ___________ P_e_t~e_r~J_u~t~s~um~ __ _

John Powell and Richard LaRue

Lanny Hoffman

Synopsis of Meeting Well attended. a'ood presentations. Spirited

discussion.

o

o

o

o

•

by

J. Cooper and L. Hoffman
Guggenheim Labs
Forrestal Campus

Princeton University
Princeton, N.J.

Our interest in data collection with our 1620 Computer dates back

to about 1963 when we asked IBM about an analog-digital converter (ADC) to

connect to our 1620. At that time, the 1711 ADC was slow and expensive

(about 20 samples per second). We needed at least two orders of magnitude

faster than that. So we did nothing in the area of automatic data collection

for several years. Then, in 1965, we found an entire stand-alone data col­

lection system in the surplus listings. The system was an old CEe Millisadic

contained in three large cabinets. It was a vacuum tube system with a multi­

plexor of 100 inputs, a clock, an analog-digital converter, control circuitry,

an intermediate storage digital tape, and a serial to parallel converter for

punching cards on a 523 summary punch. We were able to break the system into

several parts which now constitute our present data collection system. The

1620 requires serial BCD data so that we were able to essentially substitute

the 1620 in place of the Millisadic digital tape. The output of the Mil1isadic

control unit is from a blocking oscillator, which is a highly damped oscillation

from +150 to -250 volts. The input levels to the 1620 are 0 to -10 volts, so

that this was the starting point of the interface. Mr. Cooper designed and

built the present interface, which will be described in a later section. The

output of the Millisadic control un'it is BCD, so no code conversions were

necessary. Also, there is 8, pulse available that occurs for every digit and

a pulse that occurs at the end of 10, 15, or 20 samples or at the end of com­

mutation of the multiplexor. The digit pulse is used to tell the 1620 that

there is a digit on the input lines and the end of the scan or commutative pulse

is used as an end-of-line (EOL) to terminate the· read instruction for one mode

of operation. The input to the 1620 is through the paper tape input lines.

We have a paper tape reader but we have put a set of relays in the signal lines

which will transfer the input fram either the paper tape reader or the ADC~.

To use the paper tape inputs without having the real paper tape reader active,

.. -----.... ---,-.... " -....... , ... ,.",-,."" .. -,,'.,.'~ '., .. ' _

- 2 -

certain control gates on the 1620 had to be artifically turned on. These

are merely connected to the correct voltage when the relays are activated

to switch,input lines.

We have basically two modes of operation of the data collection

system; record mode and burst mode. The record mode automatically samples

only 10, 15, or 20 samples with one read instruction and then disconnects

for processing by the program. Burst mode will continuously enter data into

core since no EOL is present. The read instruction is terminated by manual

operation by the ''Release'' key on the console of the 1620. Data can wrap

around core if the operator does not watch the Memory Address Register CMAR).

The core address of each digit is visible in the MAR so that the operator

has an indication of how far the data is in core.

The basic differences in the two methods are:

1) burst mode has a limited total sample time (core) while record

mode has an unlimited total sample time,

2) burst mode provides an equal sampling interval for as long as

data may be taken, but record mode sampling interval depends on the amount of

processing done on each record and can never provide equal sampling intervals

due to the need for synchronization of the 1620 and the ADC.

To provide an idea of the data rates we use, several examples fol1ow~

1) we can sample one channel of information at 1200 samples per

second, so burst mode can only read about 8 seconds of data.

2) we can sample multiple channels at a rate of 400 samples per

second, so that burst mode reads about 24 seconds of data.

3) record mode is used by one experiment where we sample for about

six hours and store the information on disk.

4) in another experiment, the analog information is read from an

analog tape recorder at such a slow rate that we can use the 1620 as a pro­

grammable card punch.

The synchronization of the ADC and "the 1620 is quite simple; for

burst mode, the 1620 must be started before the ADC (the 1620 waits for a

"sync" pulse from the ADC), and for record mode, two sequential "read" in­

structions (RNPT) will insure that the data is placed in the correct core

locations. (The first read can come at any point in the ADC scan since the

o

Q

o

•

- 3 -

ADC is free-running, thus, the second read will start at the beginning of the

scan.)

There are two general purpose programs in use for this system.

One is a FORTRAN subroutine that returns an integer array of the data and the

time of reading the data. This, of course, operates ,)nly in record mode.

The other general purpose program is written in SPS and uses the typewriter for

logging run numbers, titles, etc. and stores the information on disk. This

program uses burst mode. Many runs may be stacked on a disk and operator

messages keep the system and operator in synchronization. The data stored

on disk is very basic; time and data are stored with no separation into channels

since we do not want to occupy the experimental facilities any longer than

necessary. A second program, which is rather specialized for each experiment,

(but based on a single package) is then run to produce cards with channel

separation if necessary. Each data card is of a standard format, 8 values of

t~e and the data value at those times, with each card completely identified

with a run number, tape position, channel number, and sequence number. Each

set of cards also has a title card as the first card. Our plot routines and

most data reduction programs have this format for the data input so that some

very basic operations may be performed on the data with no special programming

necessary.

Four programs are listed in Appendices I-IV. Appendix I is a short

Fortran program to read 10 strip chart recorders and punch the data on cards on

connnand. The subroutine "ADC" is an SPS subroutine listed in Appendix II.

The arguments are time, data values, and number of channels, all integers.

The number of channels read under record mode is 10, 15, or 20, depending upon

certain switch settings in the A-D converter. Subroutine ADC determines the

setting by checking the position of the record mark generated by the EOL. The

subroutine is written to allow the use of non-standard IIf and k" precision by

changing only the subroutine header card. Appendix III is our general purpose

data collection routine for burst mode data. The program should have an addi­

tional se~tion added to allow decoding of any mUltiplexing arrangement. The

checking for this is in the program but the decoding'section has not been written.

We have not found a need for decoding at data time because of the extra waiting

time that the test cells wou~d have while the 1620 punched cards. Core is

- 4 -

initialized to flag zeros so that it is possible to determine the amount of

data entered. Appendix IV is a special program to sample and store data on

the disk· over approximately a six hour time period.· Twenty channels of data

are read and stored if there is any channel with a non-zero valueo Four sets

of samples are accumulated and stored on the disk. All processing for twenty

channels must occur in less than one ADC record time, 50 milliseconds o Certain

disk functions are broken into segments to keep processing time at a minimum.

No loops are used since we need every machine cycle we can save. The timer is

not used here because it is more accurate and faster to just number the records~

The ADC Interface System:

The ADC Interface System was designed and built in the sunmler and

fall of 1965, before the era of inexpensive integrated circuitsm Because IC's

were not at that time competitive in the small quantities involved, the inter­

face was designed and built using discrete components Q

The Millisadic (ADC) Output

The Millisadic output lines of interest provide four digits (1, 2, ~
4, & 8) and an end-of-scan o A binary zero is indicated on these lines by the

presence of a b~ocking oscillator pulse having a peak to peak amplitude of

225 volts and a total duration of 5 microseconds, as measured with a 20 kilohm

load. (See Fig. 1.) A binary one is indicated by the absence of a pulse

(ground leve 1) •

The 1620 Input Requirements

The 1620 input lines· require a rectangular pulse having a rise and

fall time of less than 5 microseconds, a nominal amplitude of 10 volts and a

duration of more than 3·machine cycles (60,psec.). A binary zero is in­

dicated on these lines by a -9 volt (nominal) signal. A binary one is in­

dicated by placing the lines at ground level (0 volts nominal). The 1620-

1621 interconnection has 12 lines, of which.eleven (eight data and three

control) must be actuated in order to enter data into the 1620. The eight

data lines are the five digits (0, 1, 2, 4, & 8), the check (e) bit, the X

bit and the end-of-line (EOL) signal. The three control lines are the

Tape Synch Exit (digit pulse), Nonprocess Runout (NPR) and the Reader Ready

(RDRY). The twelfth line carries the Clutch Drive signal to the 1621 PTR

and does not require interfacingo

o

o

•

- 5 -

Interface System Functions

The interface system must perform three functions: Convert the

Millisadic output pulses into signals electrically acceptable to the 1620,

generate the additional data and control signals required by the 1620, and

provide for easy transfer of the 1620 input between the Millisadic and the

1621 PrR.

Interface System Construction

In designing the interface, the option existed to either derive

the additional data and control signals using the vacuum-tube techniques

employed in the Millisadic and then convert to the transistor logic levels

required by the 1620, or to first convert the Millisadic output to tile

1620 transistor logic levels and tQen generate the additional data and con­

trol signals. The later approach was selected in order to take advantage

of the compactness, reliability and economies inherent in semiconductor

circuitry.

The interface circuitry was contructed on 6-3/4" x 4-3/4" single­

sided phenolic plug-in circuit boards.. These are housed in a 6-3/4" x 19"

relay rack card holder contaiI,ling provisions for up to 17 circuit boards.

Input, output and intermediate test points are available on the front panel

along with the EOL control switch. Inexpensive commercial components were

used, and no selection of components, including transistors, was required.

The output stages drive the more than 50 feet of Belden #8753 cable (11 pair

telephone type, unshielded) connecting the interface with the ADC-PTR trans­

fer relay box (located near the PTR)~ Ten volt zener diodes are connected

across all the interface output stages to prevent positive or excessive

negative voltages at the 1620 input lines in the event of component failure.

The interface power requirements of +12VDC @ 100 ma. and -12VDC @ 50 mB. are

readily supplied from the 1620 "D" Gate power supply. The transfer relays

draw an additional 300 rna from the "D"~12VDC Volt supplies when the ADC is

in use. One switch on the 1620 console is used to select between the 1621 PTR

and the ADC •

- 6 -

Interface System Analysis:

A functional block diagram of the ADC Interface System is in­

cluded as Figure 2. The four digit (1, 2, 4, 8) and end-of-scan lines

of the Millisadic output are fed to identical 75)lsec. "pulse conditioners".

The output of these units is electrically acceptable to the 1620. They

deliver a binary zero 75 microseconds long to the 1620 every time an input

pulse is received from the Millisadico The conditioned end-of-scan signal

is suitable for use as an EOL signal. By means of a front panel switch

the operator can select the EOL signal or connect the 1620 EOL input line

to a binary zero (-12VDC) for burst mode operation.

The 75 microsecond conditioner is designed to trigger from the

fast, positive rise portion Millisadic output pulse. This is accomplished

by differentiating the input pulse, selecting polarity, and limiting ampli­

tude. This conditioned pulse is then used to trigger a 75 microsecond

monostable multivibrator whose output is fed to an inverting line driver.

The pulse conditioner schematic is shown in Figure 3.

The absence of a zero digit line from the Millisadic output re­

quires generation of the zero bit within the interface. The outputs of the

1, 2, 4, and 8 pulse conditioners are fed to the zero bit generator which

generates a binary one on the 1620's zero-bit line only when a binary zero

is present on all of the other four digit lines. The zero bit generator is

a four input TDL NOR circuit whose schematic is included as Figure 4.

The absence of a "c" bit from the Mi1lisadic output requires it

also be generated within the interface. The 1620 logic requires odd parity

amongst the 1, 2, 4, 8, 0, X and C bit lines. Since only numbers are being

entered into the 1620, the X bit line is set at a binary zero (-12VDC) in

the ADC-PTR transfer relay box when ADC operation is selected. Since the

X-bit is fixed during ADC operation, only the 1, 2, 4, 8, and 0 bit lines

need be connected to the check bit generator.

The check bit generator is composed of four cascaded RTL EX-OR

c

o

o

nzurnp"",z-:n""E!!! 'T'T rrnn - ::rm

c

o

•

- 7 -

circuits followed by an inverting line driver. A block diagram of the

check bit generator is shown in Figure 5, and schematic diagrams are given

in Figures 6 and 7. The check bit generator delivers 8 binary one to the

1620 C bit line when any even number of binary ones occur on the 1, 2, 4, 8

and zero bit lines, and a binary zero for any odd number of binary ones.

A special connection was brought out from the Millisadic so as to

derive a synch (digit) pulse. This pulse occurs for every digit and can be

used to tell the 1620 that there is a digit on its input lines. The 1620

synch line requires a binary one that becomes a zero halfway thru the

machine cycleu The digit pulse from the Millisadic is fed to a 10 usec.

pulse conditioner followed by a non-inverting line driver. A schematic of

the synch pulse conditioner is shown in Figure 8.

The remaining two 1620 control lines (NPR and RDRY) are auto­

matically connected to the -l2VDC bus at the transfer relay box when the

ADC is selected. This supplies the binary zeros required on those lines

for proper operation in the ADC position.

Switching between the ADC and PTR is accomplished in the transfer

relay box by three 6-Pole double throw relays. Besides switching the 1620

input lines between the PTR and ADC, they also apply pmver to the ADC

interface system. A schematic of the relay transfer box is shown in Figure

9.

A power supply board, used to provide power supply decoupling for

the interface system, is shown in Figure 10.

The Interface System has been in operation since the winter of

1965. Its zero failure record during the past three years has given us con­

fidence in its reliability, and we think the future holds great promise for

us in the use of this equipment. Even though our equipment is old and some­

what hard to use, we feel that our students h~ve a good understanding of data

collection equipment when they finish a set of runs .

c

J J ,,"'": £" I ::;:;p 1"" (.f " .. './' _ I AA l,::'t .. v I.'~ .. ' .', •....•..• (.~.' '?.~., ""'.'.,,![•• .!// t.· .. ; ,.' ,.r".. ~"'.' "(""0/ ~ l~ ~ t.- I·] ; ,(l ~"_." ",. ~"f - - • ..: '~.

"

VERTICAL ()/V/~S /0 Yl

-1-15('1 r"'--- : -... , :-- -rOo .. ·-1·· .. ·-···1' ~.--~.... ..
!, I' o

o
GUGGENHEIM LABORATORIES TITLE MILL I':-!: ole.)/) r(J!Fr- {"JUL .. ~. ;_.

DRAWN BY l){(:7\ DESIGN APP~ .. I ENG. APPR.
'-"-'-

DEPARTMENT OF AERONAUTICAL ENGINEERING

PRINCETON UNIVERSITY DATE tt,,/lf/1 Ii 15K. NO. F" ~- '."" !::) :~~ r~:~ 1-
D • W 8LUEPiliNT co. 378 •••

o

o

! D. (} .

,."~~p,.(t 2. ~<--...... -) ~,---,-,

OUT PIJr

I

I------~,

• .>
'>

<; /00 ') 33 OA.r.S

I

l
~
~ /0
') .,. ,-r" "/
" J ' / l ' "

r
i:!/()% { ~ /0%

I
!
!
i
! -!:;.:, \:0(, II' ... ~ ___ . ___ .. ,_o _____ . __ - .,-----L----L----- ~

" ~- - ,-,~ ... "' -.~ ~~ --..

Iyt>'tes ~ l-lt /11/ . .. 'V~C;i.c.··t)'/" d /,'1,:,'; ~" i'-"/~' ·f~,'t .• -·,/,'''f~...,'i'-,;::.:,:,+'~·;, t_/;<.·,~ ~ XC",i/"/ I~'~" • r~ ... 1 ,/ .. , ..,- '-.,.'/ " •. ; _ "." ,. •

2.. fill
as

('~'~' .. I :s. !l~' 5 ~ t"£ y;:~v./. Ccv;ftJ:;' Ii: (.1 ,'; WI, th: V (/ /:.(, ... :.~ 4; 1.11 if, /0 f' j'J ":';, C Y (0 ;:: / ' ;--

J-·)ot/~·d. ' ", ,-

3~ All •
/..s 'AI ",' -'!',., 1/ <t!" , of ~";f;' 5//'/,w._~· .. '· "/ilt'~, ~ I' t. /' 1'1·) ;'/;>"'''',' j", ...

<....c:.Tl··~~.·lf •.. ' ~J~' ,. r t,¥' V1,i.~iz,-,t~".', n, /'

G UGGENHEIM LABORATORIES TITLE 70' M te ro ::f~ / -:>,ul Pi..! i":>' ('bnd ,l>f)j\ I'<""r
. RTMENT OF AERONAUTICAL ENGINEERING DRAWN BY ijb'~ I DESIGN APPR. R,81' I ENS. APPR. J~--P~

PRINCETON UNIVERSITY DATE "1.u;/i,~ SK. NO. Frr. #3. I .. -. t..,..,. , ,~"<
~"<,:,."gI;~'-~

" & ~,. 'H UCF'RINT co .• ? ••• f~"O •. ,g •. ,,,~,, .

II:J" D.C.

o

12.
(;t"r)u",J I I

. ,
~~7" P<>;tat S~<--......-,-----.....j~---.-,---------, f"~~

T~'" Po.~,.r 4 . • oM7f,tT-.

G-~y.,'td 9 ~-... - ---.--~t---.... - - ___ ~---..I
~5i P.""r '~-+-------------e-___ ~-~t---+---.....f--------'

17
/.D /Lf- ~
35Vj'!2~

c

ouTPU7-

~ /00

$1/D%

/0 _
1::/0%

-1';: VD'~ll .. (--------,---.

j J ~ ..,., ~~

!Vtlte.,s! /". A/I rt'::/~!{)~ I c:tI!{I-t'Ii','\V ,~"'(:/~·(:/t;c-.f~':~ - 5'~;; CXt:.("f! '15' ~1(';lP",

2. A/I (-l·~,I.,,:rf)r·$ r;J"~Y~W. CCt'1,t .. -J/;',111 \4I,th vtJ/'.tt,·e-; /YI j(,/"hYll:'" e¥cepr"
t1 S n Cf'~l·d.

3.. All CJ {"I c ttl- Y ~ 'H~ S tI v,t' ,;w, Wit h h1tf;, "': I,; !.f' .,'-X C.c7/ :)~; fl O ff>d: 0

GUGGENHEIM LABORATORIES
DEPARTMENT OF AERONAUTICAL ENGINEERING

PRINCETON UNIVERSITY

TIT,LE 7S:-/A:..5~~.~_E..'-Pu"e. (PrJ J tlf)h ~r­
DRAWN .BY bF~J~:~,16N,APPR.· ENG. APPR. f~""~ ..

DATE.",/.u,·,,· ,SK.,NO.-FrQ,~~·3A . ~ d.' ____ ________ _ __ --= ___ ___ _" __ ._,. .. ,,_~
at • W .LU U .. T co~ . .,.~ ••

C

C

•

G-1"O(.4 .J

G-rOLlt'l/

,::1
§.I

t5%
G-rot.f "J

Test p~ilfr 8 2# 1301-

"," Sir t.ln~ I

.. -, , . ('.8 V) 2 S,r t..."fl 2.~"v-
~ II~J ,{..j-7 /s t:5?;,
::'l l,l/

Q.. tl'1- Bit L iiI ~ 3 ~v\,r\/'v~-
~ 11165"/ /.5-
N ·sj, 8/1 L,,,, ~ .tf~- ~ .. ~

IN'5? I~-

reSf PCJIJ-I ,...
'->

Te,. POI h ,. 12<:. --1 II'!
-' I

, f

2,7 ~~
,>ts"fo <0 III 0

1 <~
-I'LVDC /1< or l-

ib' biT b utfu1 /4<;-,..,......-.......-""-.. _. __ ..

t(bTES:
I.. All Re.~1 stDrs d Y'~ Yz. Mktt) r: It> % (;~mf'(:'J+f: i :~':;lrf j Va / II e..!

9 /"'€\'\ IVi f\,JtJWas ew:cept as noted .

/N7/4-

GUGGENHEIM LABORATORIES
DEPARTMENT OF AERONAUTICAL ENGINEERING

PRINCETON UNIVERSITY
DRAWN BY d'h~ I DESIGN APPR~ .»fJt' I ENG. APPR. , .. /l>~."
DATE 12. / to + I SK. NO. !=' / G U R C+_

D • W ."UErJlatiT co •• .,.... 101 .. 0

-'~""-""-""''''''-"''''''.''''''''.''''''"'''

;...,.
....

Cl:J ~

~
.,: 0' Q.-\J t ...

l\l ,~
::t r-·
\.J

'\.)

A
/ lJ...l

~r-i
r·, ,; " .~ ~

'4
.....
-j

. ~

~ \J V
t,:. ~ ~ '- - -"-...J

..... t-
ct) --q:)
~

i- ~ --
Q.l (Q QJ

.........
""'~ ~

... ~ •
,~ ,\\) .~

GUGGENHEIM LABORATORIES. ,------.;..,_-...-----~--_ __1

DEPARTMENTOFAERONAUTICAl'ENGINEERIN$
PRINCETON UNIVERSITY I-'---,--........... --'-----4r---'-~~~-1

D II W Ba..UEPRINT~ • • "' •• 4,~, 10140

o '~~ ____ . . __ .. _-------.....--_ .. _----,.
,

I .<: ~ /0

INPU T A 2. ~~("\/ ~----f 2N 13 04:

~~/O

tN P IJT B +~<------_+_--_

2N /3.01-

'I -~""J."

- {2. V DC " ~------.---............ __ --_-

() u:r-p u. r 14-~<------ -_____ _

,,-
Notes. : TR. U;-ft TAELE.

A 8 ou;
-10 -/0 0 ..

0 -/0 I -/0

-/a o 1-10 I (

0 o i 0 i

I. All r~s J 5'''0('5,. qY~ Y2- W4 t 'r (...~ .. '*":"fl)~·-6I/ /e>;1 !:: /I)~
Va/up s '11 Kif ohw,S eX' c e pi"' 4.~;. t'}::: tlF,d.

... \ i

1'-: l ~

6U66ENHEIM LABORATORIES TITLE __ ~Tt... E.X-OR C' - T ~Jc ill l"AT:t." .• 1-, :. LJ J ,,'1 I ~.

DEPARTMENT OF AERONAUTICAL EN61NEERlN6 DRAWN BY fh/I J DESIGN A;PR/.f!tt! I ENG. APPR. ,i~l~;t~
PRINCETON UNIVERSITY DAt&·V~'~ I SIC. NO. FI G-U·RE. 6"

•
..

•• w ~~!!,~~.~~~. : ;j ;. ;",;;, };';"
",I. "'li-i. ••.. 10'''0

'''1
,< t------------~----------------~--~ ,
I < ~ 1.0

IN i 11-

.,.~~·1 Poi" t b ~-__ ---

INPf) T A 2..~~ \,....-...:-. '2N 1304-
. 6 .. e'

tNPUT B +~----------~-----.~

I b.8 .

Test P<'.'It,1 'Z~ ____ .' ~---a-----~ 2fJ I

o

- J 2.. V 1)(II ~ ____ ----.l~_

I _____ w. __

..... .-. -.
TAurH TABLE

I. A S OL/T

:. 10 -I() -10

D -/0 0
-/a 0 ~DI 0 0 _.

GUGGENHEIM LABORATORIES TITlE
~----~~~--------.~~~--~~~~

DEPARTMENT OF AERONAUTICAL ENGINEERING

PRINCETON UNIVERSJt¥

o

0,: .
::~
~t.',:

~ -1'1,1.

/·CI'I

::,::c. :~6-<_""A_~_'"_''-_--+-)'-.... -_-_'-_'''-.... -.--'-''-'':-'''-'!' .. -----r
1-7..0 1.0 ..

~'ItJ"'"": ., 4i!-........ "

12.

',t~S'" ~;"t.5· ---t-. ----......~----_.._-_i 1-··-.................
~.,. f>~,tf'r f ~-+---...... -----...

G-~ ~ •• ,J
..,.~ 1 Pe ·,.t

.lluTPUT .

8.2. ,
tJO%

/00

(,.60' .

. .

.. /0
tlt)%.·,:,~

-/"; VO(~ II ----------..... ----------~ --'

AI t'es' .' I. 'All /~I'! "I d'" .• ".~. .J,.;i1..t~4 , ~ _+ r~ (_-'. v ~,.;I.'o.t·, AI ... C,. ..!1 .• ~,I-.J.". 'vb. . . •. , ;-' :J j:- Dr" .,. l l~t~7(" lIt t 'i "'t· ~~·i'~'. :.' J~' C' r.-{;... f ",I ... 0;.' ~,.,.

2.. All- ~,::;; tor! l1tf~ y~ w- t.CPf!W'I1.1611 .~' tit V41 .. ~·'!f. In' j(,fe,I1"l.f ~ eitt;.-efr- . 4_ /'!ct':'J, . ..'

J. . All t:4f'4~/t~~'!: . ~.1..r~ sll~~r"'·I"'~t· w,tl, l,~k.~:. Jif .!,f:,' ~?JI·c.'i!7J.~ hot~tI.
• ,'l\t~

••• ~co • ..,.... '\.. . . . - .-
10140'

a
III

~
III ,.
c:
11\
"II
Z

i
1

?
fI

" Gl
.(1

i.

° m

~ ;:om
"EC: ;:om(j) _ Z r:\. Z -t \1.#

oom
ITI'"TI

Z
-f»::r: omm
zo~

Z C.>:;
Z3·0l
< (fO
m>~ ;::::or-,--
(l')m>
-z-f
~920
z~

"
INTE I~ FACE i~b~ C T R lJ IV I C -S I rID; ~,~v'

I I >, ~~~?' I!--- i "---~'-~'-~'-'-"'6J""'---"""-'-'-------- ------" " -.~--.~.

M/I/JsaJie. I _.' rt---··-:f~t--------'--·- --I
76 /(.':Z~('. I i. i . i .~ I

2.1 fl-</sc i, f I ~I-I'-r-I------------~------
':'0>1

4
, I I ~ ~ ~ JlJ I --r

1 l'::- Z e)-0 L 1 I iii -"I I .

I I, 1. p.~(] I! ? ~; ~ ,--I> I I I W i I
4- J > pulse rr: --.. (,re.'1. I i. I i L~~ Chec.k ' I' ~" rIll ,--s I {.o.yj '\ <> ... ~ ... __ -i g ~ "---.-=-- BI·-f

. ! L_~~ .r.. (.,_ I

O'ttpv.iS t. ...'~. ,.~ j '..re. q. i 1 1
.. J7r .--", Ii! ... ~ /l ~,. (. t ~ i 81 71 ~.t{./~e r ~-~. -.-·~.-..'!o...¥----r . . ; ; i

r,;-... ----, , 5~uaf.;

ADC

I
II !

m·­mm
C!. (;.n
Z
(j)

I
. C.~hd, I -/'1. '/. J P~"\Jc.,..:

I'?,l($('.::1 j I r J .
. . _ ,.---1 $t/~<:.h~ < j Crr d, I

,
. t;i" /t £¢L . '. 7~~;.1QClf--_-4 I I I'''! - ~ ~""f .It. ~ ~;"i'!:-r ..• ~. ' r-~

Putse I p ·J$e
• ~4nd

! 1,1: I
: · f
1 I t J f • a

ii' ill I! Ii ~
.0. 0l::! » ::0 -t » r­
m ~ m

,...J Z
i::'- ~

-:~. ~ ~
r;':' . ::-::' ::::
~.~-:.~

c.n .' l ..)
~ .) .;~

r' . Z 0 ::~

o rn ,")
• (J) --..
7t1 z·:t,
N>o -0

\fl ;g.f\
C· ~ -- .. ;:
~ ; "" ~J
fq 7k

-~

t·) -,,,
J \,. {~

~ ~ ~

I :<
-0 .' ". C.'

?C~.2: ~ ", r)

I

/ / z ... · .f
(0 U

. I!: I ~ Jj i ; I I I ! 1 :: \ !\il\;

r~-~~~~P:1
'T

I ADC- TR. A NS c R Aoe - PIR L -i PT~
C.'Hrtci, I I _ -1' .. I

I 1C0'
i ----1,-' _, .., PT ~ T.1fl(.1J J 1-

k i~-LAY
f~' .. ~\ '.
L '- <

(:..<- :;f:~ 11-7..7-1 ! I

" " I !!11V..
D C.,.~ '1 C ~-" ,------.... -- -.----~ ... - i I {, ?J P r Po J

p(l~liv21J~i i /0':" 11-
2
2)

1 I

! I r /'\/>"\/ '"':'~ ,;"', J r:.: ! ~----'. .
\0.- V 'I" .1,.1 '- I-. 1 iJ 1/ I.~ ') .. J I

• ".1 ~.,. I I ------- I p tOJ
()

__ c~

ICI

C" ') , ,.r

•

~
<l-
Q-.

:s
\I)

~

~
~
,0

-:-....

~
Q

~
4

~
;-
~
~
~

l-l

q,

- 1-.7 OhhlS

+-11.. Vt(l(j<~---I~a:~~)

~ lot) /< f.
~ 215' V

GRD(} N D ~ 3----O----------..A
IS"

-t...... lool'-/;
~ 'ZS Y,

'1~ ;,' 1-12.. VDC /1 <E'-------------------...A
~ "V "t- _

14" s:
t:

~ i-
'-J

1- ..:t.,
:f til t-.. ill \l DC 7 ~./-------------_-----'
::t

o

GUGGENHEIM LABORATORIES
DEPARTMENT OF AERONAUTICAL ENGINEERING

PRINCETON UNIVERSITY
D til W BLUEPRINT CO. 3788.4

TITLE _ POW E I~ S U pr) L. '(PI L TE:R.

ORA WN BY Q{{!.., I DESIGN APPR. ~/;{!..I ENG. APPR~ Ol~

DATE '!~5"" I SK. NO. FIG U ~ E. /0,

APPENDIX I

A SAMPLE PROGRAM TO USE A SUBROUTINE TO
READ THE A-D CONVERTER AND PRESENT THE
DATA IN AN INTEGER ARRAY.

C PROGRAM TO READ TEN STRIP CHART RECORDERS ••••••••••••••••••••
DIMENSION IX(20),IY(10)
EQUIVALENCE (IX,IY)
TYPE 4

4 FORMAT(16H TURN SW. 1 ON .)
PAUSE

1 CONTINUE
C IF SENSE SWITCH 1 IS ON , DO NOT READ CONVERTER.

IF (SENSE SWITCH 1)1,2
2 CONTINUE

CALL ADC(ITIME,IX,IN)
C PUNCH ONLY 10 RECORDERS UNDER ANY CIRCUMSTANCES.

PUNCH 3,ITIME,IY
3 FORMAT(IIO,lOI5)

GO TO 1
END

(.

o

c

o

o

AUTO
AUTO
AUTO
AUTO
AUTO
AUTO

AUTO
AUTO
AUTO
AUTO
AUTO
AUTO
AUTO
AUTO
AUTO
AUTO
AUTO
AUTO

C
AUTO
AUTO
AUTO
AUTO
AUTO
AUTO

•

ADC

APPENDIX I I

AN S.P.S. SUBROUTINE FOR FORTRAN TO READ
10, 15, OR 20 CHANNELS OF DATA, DETERMINE THE
NUMBER OF CHANNELS, AND PRESENT THE DATA
AND CONVERTER TIME IN A FORTRAN
INTEGER ARRAY.,

DORGlI036
OS 5

ITIME OS 5
IX
IN

:::C
....
','

START

)"

"

OS 5
OS 5
OS 7

END OF ARGUMENT ADDRESSES
START LINKAGE •

AM START-l,5,010
TF ITIME ,START-l,Olll
BNF *+36,ITIME ,01
CF ITIME ,,0
TF ITIME ,ITIME ,0111
AM START-l,5,010
TF IX ,START-l,Olll
BNF *+36,IX ,01
CF IX ,,0
TF IX ,IX ,0111
AM START-l,5,010
TF IN ,START-l,Olll
BNF *+36,IN ,01
CF IN ,,0
TF IN ,IN ,0111
AM START-l,2,010
B AROUND" °
DORG:::c-3

SYMBOL TABLE AND CONSTANTS HERE •••
KK OS 2,404
INPUT OS 1

OS 120
TIME DC 10,0
ZERO DC 7,0
FLOC OS 5
AROUNDRNPTINPUT"O,t FIRST READ TO SYNCRONIZE A-D CONV.

RNPTINPUT"O,~ SECOND READ TO GET DATA FROM ADC.
BI AROUND,00600,O" READ AGAIN IF READ PARITY ERROR.
TO TIME,INPUT+35,Ol
TO TIME-l,INPUT+29,01
TO TIME-2,INPUT+23,Ol
TO TIME-3,INPUT+17,Ol
TO TIME-4,INPUT+ll,Ol
TO TIME-5,INPUT+5,Ol

* FINO FLAG SET LOCATION IN FIELD TIME.
TFM FLOC,TIME+l,017
S FLOC,KK,O
SF FLOC,,06
TF ITIME,TIME,016" STORE FORTRAN TIME IN CORRECT LENGTH •
A IX,KK,O
TF TIME-3,ZERO,Ol" SET UPPER TIME IEMP. TO ZERO.
TFM LOOPSF+6,INPUT+2,017
TFM COUNT+ll,INPUT+4,017

LOO PSF SF
COUNT TF TIME"O

CF TIME-2"O
SF FLOC" 06
TF IX,TIME,016" STORE FORTRAN SAMPLE IN ARRAY IX.
A IX,KK,O
AM CGUNT+ll,l,OlO
BNR *+20,COUNT+ll,0111" CHECK END OF SAMPLE.
B END"O
DORGl!c-3
AM LOOPSF+6,6,010
AM COUNT+ll,5,010
B LOOPSF, ,0
DORG*-3

END SM COUNT+ll,INPUT+59,017
Bl NIO, ,0
SM CDUNT+ll,30,010
Bl N15,,0

N20 TFM TIME,20,08
B SFIN"O
DORG:!c-3

N15 TFM TIME,15,08
B SFIN"O
DORG*-3

NIO TFM TIME,lO,08
SFIN CF TIME-3"O

SF FLOC,,06
TF IN,TIME,016
B START-l,,06
DEND

-'1

i
j I

o

c

•

APPENDIX III
A GENERAL PURPOSE S.P.S. DATA COLLECTIUN
PROGRAM FOR BURST MODE DATA FROM
THE A-D CONVERTER. SEVERAL RUNS
MAY BE STACKED UN THE DISK.

DATA COLLECTION PROGRAM FOR MULTICHANNEL OR SINGLE
CHANNEL OPERATION.

DORG402
TYPEHDRTM HEADER,~::+12" GO TO LABEL, TAB, DATE SUBRDUT INE.
,'

,',
','

SEND ADDRESS OF NEXT INSTRUCTION
SF NUMBLK-49", SET FIELD LIMITER ON NUMERIC BLK. STRING.
TFM
TF
TF

TYPEHD+l,41,10,'NOP' THE HEADER ROUTINE.
LASTAD,MEMCAP"ASSUME LAST FILLED ADDRESS IS UPPER MEMORY.
OLDSEC,NXTSEC", STORE BEGINNING SECTOR OF DATA IN OLDSEC.

RCTY
TBTY
\"JATYLABE L
TBTY
TR INPUT,FLGZER
TR INPUT+47,FLGZER
RATYINPUT
BC4 ~~-48

TOM INPUT+92
DC 1, I ,*
TR CARD,INPUT-l
TOM CAR 0+93, , ,
DC 1 , ' , *
BTM OUTPUT

INITIALIZE INPUT RUN DATA AREAS.

STORE A RMK IN CARD ALSO TO ALLOW LAST.

TOM CARD+93,0", REMOVE RMK IN OUTPUT AREA.
MEMINITFM COUNT,INPUT" BEGIN MEM. INITIALIZATION TO FLG. ZEROS.

TR CDUNT,FLGZER,6,TRANSMIT 50 FLG. ZEROS AND ONE RMK.
AM COUNT,50,10" INCREMENT COUNTER BY 50 TO REMOVE RMK.
C COUNT,LASTAD" HAVE ALL USED INPUT POSITIONS BEEN CLEARED.
BP INIOUT", IF SO, LEAVE LOOP.
B MEMINI+12",
DORG*-3

INIOUTRCTY"" RETURN TYPE. CARR. TO ACCEPT RUN DATA.
RUN NUMBER (5 DIGITS)

....
','

~.

','

*,..
....
t,:

~:(

.A.

TFM RUN,O,7"
T F M T PO S , ° , 8 , ,
TF CHANNL,ZER10"

TAPE FOOTAGE (4 DIGITS)
CHANNEL CONFIGURATION (10 DIGITS)

INITIALIZED TO RMK'S •
TFM SPERC,O,lO" SAMPLES PER CARD (2 DIGITS)
TFM CPERS,O,lO" CARDS PER SECOND (2 DIGITS)
BTM TYPEIN,RUN" ACCEPT RUN NUMBER (FROM 1-5 DIGITS)
BTM TYPEIN,TPOS" ACCEPT TAPE FOOTAGE (1-4 DIGITS)
8TM TYPEIN,CHANNL"ACCEPT CHANNEL CONF. FOR CHAN. 0-9

ALL 10 DIGITS MUST BE FILLED.
IF A CHANNEL POSITION IS NOT USED,
THAT POSITION MUST HAVE A RMK TYPED IN •

NOTE THAT IF ONLY ONE CHANNEL (NON-COMMUTATED) IS USED,
THEN ONLY ONE DIGIT NEED BE TYPED.

8TM TYPEIN,SPERC" ACCEPT SAMPLES PER CARD (2 DIGITS)
THIS IS USED TO FIND TIME LOCATION •

8TM TVPEIN,CPERS" ACCEPT CARDS PER SECOND (2 DIGITS)
CF RUN-4", REMOVE FLAGS FROM ALL RUN
CF TPOS-3", DATA TO ALLOW A NUMERIC

HOP

CF CHANNL-9",
CF SPERC-1",
CF CPERS-1",
SF CARD1-1
TOM CARD1+78""
DC 1,',*"

PUNCH OF ALL DATA AS
INTEGERS FOR FORTRAN.

TF CARD+79,CARD1+78", MOVE OUTPUT RECORD TO DISK I/O AREA.
CF CARD
BTM OUTPUT""
TOM CAR 0+ 79 , ° , ,
SF RUN-4",
S F T PO S - 3 , , ,
SF CHANN L-9, , ,
SF SPERC-1",
SF CPERS-1",
RC TY , , , ,
RCTY
W A T YO PIN S T , , ,
H , , ,
BC1 *+32",
RN P TIN PUT, , ,
B *+56, , ,
DORG*-3

HEADER CARD OF DATA IN CASE MEMORY IS BOMBED.
REMOVE RECORD MARK IDENT. FOR LABEL CARD.

RESTORE FIELD FLAGS TO RUN DATA.

RETURN TYPE CARR. FOR OPERATOR MESSAGE.

OPERe INSTRUCTIONS •••••••
ALLOW OPERATOR TO DO ABOVE INSTRUCTIONS.
USE CONSOLE SWITCH TO CHOOSE CARD OR ADC
SELECT A.D.C. AND WAIT FOR IT TO START.

**
TFM COUNT,INPUT"
RNCDCOUNT, ,6"
AM COUNT,80"
BNLC~c-24 '"

INPUT
CORE

DUMPED
CARDS

**

*
*
*
*
*
*
* t,c

*
*
*

BNI *+44,00600"
RC TY, , ,
WATYRDERR",
B HO P" ,
DORG*-3
BTM BEGEND,O,lO"

IF NO READ ERRORS, PROCESS.
A READ ERROR HAS OCCURED.
NOTE THIS TO OPERATOR.
TRY AGAIN.

FIND BEGINNING AND END OF DATA.

SORT CHANNELS, FIND TIME, OUTPUT TIME AND DATA
ACCORDING TO THIS FORMAT----------

FORMA T (8 (15, 13) ,3 X, 15 , 14, I 1 , I 3)
8(TIME, DATA POINT), RUN NO., TAPE FOOTAGE,

CHANNEL NO., AND SEQUENCE NO.
BOTH TIME AND IT1S DATA POINT ARE OUTPUT
TOGETHER BECAUSE OF THE GENERALITY OF

COMMUTATION SEQUENCING.

TF SEQNO-3,NUMBLK"CLEAR LAST 53 COL. OF DATA CARD IN CASE
* T HER EAR E NOT 2 ° SAM P L E S •
*
*
*

*
*
*

TFM SEQNO,l,9" SET FIRST SEQUENCE NO. = 1
DECODE CHANNEL INFORMATION FOR SEPARATION.

CHECK IF ONLY ONE CHANNEL USED (NON~COMMUTATED)
TFM COUNT,CHANNL-8, , LOOK~T SECOND CHANNEL LOCATION.
TOM ONECHN,Ot, ASSUME MORE THAN ONE CHANNEL USED.
BNR *+24,CHANNL-8", IF NO RMK IN CHAN. IND. 2~THEN MORE THAN

ONE CHANNEL USED.
TOM ONECHN, 1 , , ONLY ONE US ED.

ONECHN=l IF ONLY ONE CHANNEL USED ••••• ~ •••••
FIND ALL DATA FOR CHANNELS 0-9

TFM eC,0,10" SET UP CHANNEL NO. ° -1

.~

o

o

o

I\IEXTCHTFM
TFM
TOM
TF

COUNT,CHANNL-9" SET A COUNTER WITH FIRST DIGIT OF CHANNL
TEMP,TCHAN" SET A COUNTER WITH A CHANNEL MASK AREA.
NOCHAN,Q" ASSUME NO CHANNEL OF THIS NO. USED
TCHAN,ZER10" INIT. MASK TO RMK'S TO BE REMOVED

* IF CHANNEL IS PROCESSED.
CHANBRBNR COMPR,COUNT,ll" DO NOT EVEN CONSIDER THIS CHANNL IND.

IF THERE IS A RMK (CHANNEL NOT USED)
AM COUNT,l" INCR. CHANNL COUNTER
AM TEMP,l" INCR. MASK COUNTER
CM COUNT,CHANNL+l" CHECK IF ALL IND. MASKED.
BNE CHANBR",
BD PUNCH,NOCHAN" GO TO PUNCH ROUTINE IF A CHANNEL HAS BEEN
R INCRCC"" FOUND.
DORG*-3

COMPR TO CCM,COUNT,ll"
TOM ceM-l,O,ll"
C CC,CCM"
Bf\IE CHANBR+12",
TOM TEMP,1,6"
TOM NOCHAN,l"
B CHANBR+12",
DORG*-3

BRING CHANNL DIGIT TO COMPARE FIELD
FILL OTHER COMPARE FIELD DIGIT
COMPARE CHANNEL NO. AND IND.
NO MATCH
SET MASK TO MATCH INDICATOR
REMOVE NO-CHANNEL IND.
CONTINUE SEARCH

PUNCH NOP
TFM
BTM

LOOPCD+ll,INPUT", INIT. INPUT STRING COUNTER.
TIMER,TIME-5",STORE TIME OF FIRST SAMPLE.

~.

",'

GET TIME OF NEXT CARD INTO A TEMP. TIME
TO COMPUTE DELTA TIME •••••••

A
BTM
S
SF
SF
S
TF
LD
o
SF
TF

BEGIN,CDL", SET ADDRESS OF NEXT CARD
TIMER,TTIME-5"GET TEMP. TIME
BEGIN,CDL", BACK TO ADDRESS OF LAST SAMPLE.
TTIME~5", SET FIELD LIMITS

SFTEM TIME-5", SET FIELD LIMITS
TTIME,TIME" DELTA TIME ICARD
SFTEM+11,99" STORE CARD LENGTH
98,TTIME" SET DIVIDEND TIME
93,SPERC" DIVISOR IS SAMPLES PER CARD.
91, , ,
TT I ME , 96 , , STORE DELTA TIME FOR THIS CARD.

* FORTRAN VERSION OF THIS SECTION.
~
','

~:06 06*
C ~~ READ S CORE DUMP ,INTO CORE AND STORES IN ARRAY FOR OUPT
C * START WITH OOOXXXT ON FIRST CARD

* DIMENSION IN(240),IA(40),ITEMP(6)
* IF(SENSE SWITCH 9)99,99

99* CONTINUE
* READ 1,11,12,13
* PRINT 98,11,12,13

98* FORMAT(1H1,36H CORE DUMP PROCESSOR FOR CHANNELS ,I2,lH"I2,
98* 1 1H"I2/)

7* CONTINUE
* READ 1,IN

1* FORMAT(8011)
C ~~ PULL TIME

)~ J=O
* DO 2 1=7,37,6
* J=J+l

2* ITEMP(J)=IN(I)
* I T I ME =0

* IT=100000
* DO 3 1 = 1,6
* ITIME=IT*ITEMP(I)+ITIME
* IT=IT/10

3~~ CONT INUE
* J=l * DO 4 1=4,238,6
* IA(J)=100*IN(I)+10*IN(I+1)+IN{I+2)
* J= J+ 1

4* CONTINUE
* PUNCH 5,Il,I2,13,ITIME,IA
* PRINT 5,Il,I2,I3,ITIME,IA

5* FORMAT(lX,3I2,5X,I6/20I4/20I4)
* IFe SENSE SWITCH 9)99,7
* END

* BD *+20,ONECHN" PROCESS ONE CHANNEL ONLY.
B MUlCHN", PROCESS MULTIPLE CHANNELS.
DORG*-3

* ONE CHANNEL PROCESSOR •••••••••••••••••
OUTPUT PHASE 1 - lX,3I2,5X,TIME/40 SAMPLES.

~:t

ONECH TF CARD+79,NUMBlK-18", BLANK OUT CARD AREA.
TF CARD+48,NUMBlK",
TOM CARD+2,O,lO" STORE CHANNEL NO. AS ZERO.
TOM CARD+4,O,10" STORE CHANNEL NO. AS ZERO.
TOM CARO+6,O,10" STORE CHANNEL NO. AS ZERO.

CCNT20DS 2,*-2
TF CARD+17,TIME" STORE TIME IN CARD •••
CF CARD+12", CLEAR FLAGS FOR NUMAERIC OUTPUT.

CNT3 OS· 2,*
BTM OUTPUT"" OUTPUT CHAN. NO. AND TIME.
TF CARO+48,NUMBlK", CLEAR OUT OLD TIME.
TOM CCNT20,O", SET CARD COUNTER FOR FIRST CARD.

NEWCD TFM LOOPCD+6,CARD " START OUT ON BEGINNING OF CARD.
NEWDATAM LOOPCD+6,l,10" INIT. AND FILL TO 14 FORMAT

TFM CNT3,3,lO" COUNTER FOR 3-DIGIT REMOVAL.
AM LOOPCD+11;3,lO" GO FOR NEXT SAMPLE.

LOOPCOTD "" P AND Q FILLED BY PREVIOUS INST.
BNR *+24,lOOPCO+6,ll" CHECK FOR 'RMK' IN DATA.
TOM LOOPCD+6,O,6" REPLACE RMK WITH ZERO.
AM lOOPCD+ll,l"
AM LOOPCD+6,l",
SM CNT3,l,lO,t
BNZ LOOPCD,,~ 3 DrGITS NOT PULLED YET.
CM LOOPCD+6,CARD+79,, CHECK END OF CARD.
BNN PCHl", PUNCH THE CARD.
B NEWDAT", FILL REST OF CARD.
DORG*-3

PCHI BTM OUTPUT",~ OUTPUT CARD •••
C LOOPCD+ll,END" CHECK END OF DATA SET.
SNN TYPEHD", READY FOR NEW CONVERSIONS.
SO PUNCHl,CCNT20" SEE IF FIRST OR SECOND CARD.
TOM CCNT20,l" SET SECOND CARD IND.
B NEWCO, "
DORG*-3

PUNCHIAM BEGIN,240,9" UPDATE TtME LOCATION.
BNC3PCHSS4"" CHECK S.S. 3 TO SEe IF RUN ABORT.
RCTY

.)

1

)

0 1

II. ;

c

o

o

•

WATYRABORT", NOTIFY OF RUN ABORT.
TF NXTSEC,OLDSEC", MODIFY DISK ADD. FOR NEW RUN.
B TYPEHD"" RESTART.
DORG*-3

PCHSS4BNC4PUNCH+24", FIND NEW TIME AND PUNCH IF NO ABORT.
RCTY
WATYPABORT"" LABEL TYPED PAGE WITH NOTE.
B TYPEHD
DORG*-3
OS 5

OUTPUTNOP
TF SECTOR,NXTSEC", MOVE SECTOR ADDRESS TO DCF.
SM NXTSEC,l,lO", POSITION NEXT SECTOR ADD. TO CORRECT SECTOR.

********** 420 CARDS PER MINUTE EOUIV. PUNCHING.
DISK WN DCF,00702", TRY TO WRITE ON DISK.

BNI OKAY,03900", NO DISK CHECKS.
BNI DERR,03600", TRUE DISK ERROR.
K DCF,00701", SEEK CYLINDER.
B DISK"" TRY AGAIN.
DORG*-3

OKAY NOP
CM NXTSEC,201",CHECK THAT CYL. 0 NOT VIOLATED.
BNP DERR"", ERROR, TOO MUCH-WRITTEN ON DISK.
BB "" GO BACK TO CALLING ROUTINE.
DORG*-9

DERR RCTY
WATYDERMES", NOTIFY OF DISK TROUBLE.
H
B *-12
DORG*-3

MULCHNB ONECH
***** RCTY
***** WATYNOMULT"", NOTE THAT MULTIPLE CHANNEL OPERATION NOT IN.
***** B MULCHN
*****NOMULTDAC 44,MUlTIPlE CHANNEL OPERATION NOT IMPLEMENTED.'"

* ALL OF THIS CHANNEL HAS BEEN PROCESSED,
* INCREMENT AND CHECK FOR LAST CHANNEL.
INCRCCAM CC,1,lO" INCREASE CHANNEL NO.

CM CC,9,10" CHECK LAST CHANNEL NO.
BNP NEXTCHi"
H

CONSOLE DATA INPUT SUBROUTINE
----------~------------------

DORG*+5
TYPEINTR TEMPIN,FLGZER+39"INITIAlIZE A TEMPORARY INPUT AREA.

RNTYTEMPIN+1", IMBED INPUT IN AN AREA OF FLAGGED ZEROS.
BC4 *-24", GOOF SWITCH
BNR ERRIN,TEMPIN+11"IF NO RMK AT END OF TEMP, TOO MUCH TYPED
TFM COUNT,TEMPIN+I0"SET UP TRANSFER COUNTER.

BNFSC BNF STRIN,COUNT,11,THIS LOC. HAS NOT BEEN TYPED IN.
B STRIN+24", DO NOT STORE ANY INPUT DATA.
DORG*-3

STRIN TO TYPEIN-l,COUNT,611" STORE A DIGIT.
SM TYPEIN-l,l,lO, BUMP RECEIVE AREA COUNTER DOWN BY 1
SM COUNT,l,lO, BUMP INPUT AREA COUNTER DOWN BY 1
CM COUNT,TEMPIN" AT BEGINNING OF INPUT AREA YET
BNE BNFSC", IF NOT, CHECK NEXT LOWER lOC.
TBTY", TAB TYPEWRITER FOR NEXT INPUT DATA.
BB '" RETURN TO CALLING PROGRAM.
DORG*-8

ERRIN RCTY",
WATYERRIN1",
B INIOUT",
00RG*-3

TOO MUCH INPUT TyPED ••••••••
TELL OPERATOR.
GO BACK TO BEGINNING OF DATA INPUT.

ERRINIDAC 37,YOU HAVE TYPED TOO MUCH, START OVER.'"

* SUB~OUTINE TO FIND BEGINNING AND END OF SAMPLED DATA.

DORG*+2
BEGENDTFM COUNT,INPUT+3"SET INPUT AREA COUNTER TO FIRST SAMPLE.

MM SPERC,6,10" FIND HOW FAR AWAY THE NEXT CARD BEGINS.
SF 97", DEFINE 3-DIGIT FIELD
TF CDL,99", STORE CARD LENGTH

CHECK THIS CARD FOR A RMK IN HUNDREDS POSe OF EACH SAMPLE.

TF TEMP,CDUNT" TRANSFER CARD BEGIN COUNT TO TEMP. COUNTER.
A COUNT,99" INCR. CARD BEGIN COUNTER BY SAM/CARD * 6

BNRIT BNR INCR,TEMP,11" IF NO RMK, INCREASE THIS CARD COUNTER.
B *-36", THERE IS A RMK, FIND NEXT CARD.
DORG'~-3

INCR AM TEMP,6,10" FIND NEXT SAMPLE ON THIS CARD.

*
*

*

C TEMP,CDUNT" AT END OF THIS CARD YET
BNE BNRIT", IF NOT, CHECK NEXT SAMPLE FOR RMK.
S COUNT,99" THIS CARD HAS NO RMK'S.
TF BEGIN,COUNT" SET BEGINNING ADDRESS .FOR PROCESSING.

SEARCH FOR END OF CONVERSION.{FLAGS PRESENT).

A CO UN T , 99 , ,
BNF *-12,COUNT,11,
TF LASTAD,COUNT"
S COUNT,99"

TF END,COUNT",
BB , "
DORG*-8

DORG*+5

LOOK ONLY AT FIRST SAMPLE.
IF NO FLAGS, INCREASE CARD COUNTER.
SET END OF MEMORY INTIALIZATION.
A FLAG HAS OCCURRED, DO NOT PROCESS

THE LAST CARD OF PARTIAL RESULTS.
SET END OF PROCESSING ADDRESS.
RETURN TO CALLING PROGRAM.

SUBROUTINE TO PULL TIME

TIMER TF CDUNT,BEGIN" SET UP FIRST SAMPLE COUNTER
AM CDUNT,3,10, INCR. TO FIRST TIME LOC.

TFMST8TFM *+8,7,10" .SET NO. OF TIMES THROUGH LOOP COUNTER
TF TEMP,TIMER-1"LOAD TIME AREA COUNTER
TO TEMP,COUNT,b11, STORE TIME DIGIT
AM COUNT,6" INCR. DATA COUNTER TO NEXT TIME DIGIT
AM TEMP,1" INCR. TIME AREA COUNTER
SM TFMST8+8,1,10, DECR. LOOP COUNTER
BNZ *-48", NOT DONE
BB '" RETURN TO CALLING PROGRAM
DORG*-8

OPINSTDAC 36,MAKE SURE A-D CONVERTOR IS STOPPED. I"
PABORTDAC 18,PUNCHING ABORTED.'"
RABORTDAC 30,RUN ABORTED, NO CARDS STORED.'"
RDERR DAC 43,READ PARITY ERROR IN CONVERSION,TRY AGAIN.'"
DERMESDAC 40,DISK OVERWRITE OR FATAL HARDWARE ERROR.I",
LABEL DAC 6,LABEL'"
RMK DC 2, 0' , ,
MEMCAPDS 5
lASTADDS 5

o

COUNT ns 5
TEMP OS 5
CDL OS 3
CAROl DNB 2

C DATE OC 6,0
DNB 5

RUN DC 5,0
DNB 6

TPOS DC 4,0
DNB 5

CHANNLDC 10,0
ONB 8

SPERC DC 2,0
ONB 8

CPERS DC 2,0
ONB 17

TEMP INOSS 12
ONECHNDS 1
CC OS 2
CCM OS 2
NOCHANDS 1
TTIME OS 6
TCHA~' OS 10
FLGZERO 0,0,01234567891011

0 0,0,01234567H91011

° 0,0,01234567891011
0 0,0,01234567891011
DC 2,-0
DC 1, ' ,

0
FL GRMKDSC 1 , , ,

OSC 1 , • ,
DSC 1, I ,

DSC 1, I ,

DSC 1 , I ,

DSC 1, , ,
DSC 1 , • ,
DSC 1 , • ,
DSC 1 , • ,

ZERIO DSC 1, • ,
BEGIN OS 5
END OS 5
CARON DNB 1
TIME DC 6,0
OATAI OS 1

OS 69
SE (JNO OS 3
NUrv1BLKONB 50

OS 1
OAS 1

CARD DS 1
DS 79
OSC 15,0

NXTSECOC 5,09999", SUPPLY SECTOR ADDRESS FOR NEXT WRITE.
OLDSECDC 5,09999",SAVE ADDRESS OF BEGINNING OF DATA SECT ION.

******************** DISK CONTROL FIELD *********** • DAS 1
DCF DC 1, 1
SECTORDS 5

DC 3,1
OSA CARD

••• _,_ •.• ,~_ ..•. ~."_'_'~.'~ .••.••.• _ ~ __ .• '" ._ .•• __ " .0- •.••.. _ .•• _

******************** ********~~*~:c
INPUT OAS 1
* SUBROUTINE TO PRINT HEADER AND ONE-TIME INFORMATION.

OORG*+5
HEADERRCTY",

WATYEOLOFF
RCTY
WATYABORT

SET TABS

RCTY
WATYMESLST
RCTY
WATYSETTAB""
RCTY",

OPERATOR INST. TO CLEAR TABS.

H
WATYBLK",
H
WATYBLK",
H
WATYBLK",
H
WATYBLK",
H
WATYBLK",
H
RCTY

POSITION CARRIAGE EVERY 15 COL. FOR TABS •••

WATYHDINS1"" OPERATOR INSTRUCTIONS FOR DATE.
TBTY
BTM TYPEIN,OATE" ACCEPT DATE AS 6 DIGITS(MO. DAY YEAR)
RCTY
RCTY
WATYHDINS2"" OPERATOR INSl. FOR RUN DATA.
RCIY
WATYHDINS3"" CAUTIONS.
RCTY
WATYHOINS4
ReTY
WAlYHD5", TYPE RUN NO. LABEL
TBTY
WATYHD6""
TBlY

TYPE TAPE FOOTAGE LABEL

WATYH07""
TBTY

TYPE CHANNEL CONFIGURATION LABEL

WATYHD8""
TBTY

. TYPE SAMPLES/CARD LAB EL

WATYHD9"" TYPE CARDS/SEC. LABEL
B HEADER-1"6,, RETURN TO CALLING PROGRAM.
DORG*-3

BLK DAC 16, I"
EOLOFFOAC 47,TURN END-Of-LINE CHARACTER OfF fOR BURST MODE.'"
ABORT OAC 45,SW. 4 ABORTS DISK WRITING, SW. 3 ABORTS RUN.'",
MESLSTDAC 46,FOR END OF RUN, TYPE A RECORD MARK fOR LABEL.'"
SETTABDAC 49,CLEAR TYPEWRITER TABS, SET TABS WHEN TYP. STOPS.-"
HDINSIOAC 39,TYPE DATE AS 6 DIGITS- MONTH DAY YEAR.'"
HDINS2DAC 41,TYPE RUN DATA UNOERAPPROPRIATE COLUMNS.'"
HDINS3DAC 36,00 NOT SPACE OR TAB THE TYPEWRITER.'"
HDINS40AC 34,SPACING AND TABS ARE SET FOR YOU.'"
Ho5 oAC 11,RUNNUMBER'"
Ho6 OAC 13,TAPE FOOTAGE'"
H07 oAC 12,CHAN. CONF.'"
HOB OAC 13,SAMPLES/CARo',t

. (I

o

o

o

o

•

H09 DAC 11,CAROS/SEC.'"
START TR 39999,RMK-1",

BLC *+12
SF FLGRMK", SET A FLAG 10 RMK'S DOWN FROM ZERI0.
BNR *+32,0", CHECK MEM. SIZE BY CONTENTS OF LOC. 0
TFM MEMCAP,39999",40K CORE MEMORY SIZE
B *+ 20, , ,
DORG*-3
TFM MEMCAP,59999",60K CORE MEMORY SIZE.
B TYPEHD"" GO TO REAL START OF PROGRAM.
DENDSTART

I v

APPENDIX IV
A SAMPLE PROGRAM TO SHOW HOW DIFFERENT
FUNCTIONS OF A OATA SYSTEM MAY BE SEPARATED.
MINIMUM PROCESSING TIME RESULTS FROM EXPANSION
OF LOOP STRUCTURES.

DORG 402
SEEK NOP

SM OCF+5,1,10
K OCF,00701", SEEK TO FIND FIRST SECTOR.
AM DCF+5,1,10 ",~NOW ADDRESS OKAY.

START RNPT ADCIN", READ A-O CONVERTOR
RNPT ADCIN", READ A-D CONVERTOR
AM RECNO,I,lO", INCREASE RECORD NO.
TF TIME,RECNO", STORE RECORD NO.
TO X-19,ADCIN+3" TRANSFER TENS OF SAMPLE
TD X-IA,ADCIN+9
T f) X-I 7 , A DC I l\j+ 1 5
TD X -16, A DC I l\j+ 21
TD X-15,ADCIN+27
Tn X-14,ADCIN+33
TO X-13,ADCIN+39
TD X-12,ADCIN+45
T 0 X-II, A DC I N+ 51
TO X-IO,AOCIN+57
TO X-09 ,AOC I N+63
TO X-08,AOCIN+69
TO X-07,AOCIN+75
TO X-06,AOCIN+81
TO X-05,AOCIN+87
TO X-04,AOCIN+93
TO X-03,AOCIN+99
TO X-02,AOCIN+I05
TO X-Ol,AOCIN+lll
TO X,AOCIN+117
SF X-19
C X,ZERO", CHECK IF RECORD NnN-ZERO
BE START
SM DCF+5,1,10 "" CORRECT SECTOR ADDRESS.
BNC4:!:+24
TOM TIME-4"" STORE RMK IN TIME FOR END OF SCAN.
DC 1, ' , *, ,

YTART RNPT AOCIN", READ A-O CONVERTOR
RNPT AOCIN", READ A-O CONVERTOR
AM RECNO,l,lO", INCREASE RECORD NO.
TF YIME,RECNO", STORE RECORD NO.
TO Y-19,ADCIN+3" TRANSFER TENS OF SAMPLE
TO Y-18,ADCIN+9
TO Y-17,ADCIN+15
TO Y-16,AOCIN+21
TO Y-15,ADCIN+27
TO Y-14,AOCIN+33
TO Y-13,ADCIN+39
TO Y-12,AOCIN+45
TO Y-l1,AOCIN+51
TO Y-IO,AOCIN+57
TO Y-09,ADCIN+63
TO Y-08,ADCIN+69
TO Y-07,ADCIN+15
TO Y-06,ADCIN+81

i 7

o

o

o

o

•

*

TD Y-05,ADCIN+87
TOY -04 , A DC I N+ 93
TO Y-03,AOCIN+99
TO Y-02,AOCIN+I05
TO Y-Ol,ADCIN+lll
TOY, A DC I N + 11 7
SF Y-19
C Y,ZERO", CHECK IF RECORD NON-ZERO
BE YTART

C DCF+3,SEEKAD
BNN ~'c+36

K DCF,00701
SM SEEKAD,2,10

CHECK FOR SEEK TO OV6RlAP OPERATIONS.

* ARMS SHOULD BE IN CORRECT CYL.
ZTART RNPT ADCIN", READ A-D CONVERTOR

RNPT AOCIN", READ A-D CONVERTOR
AM RECNO,I,10", INCREASE RECORD NO.
TF ZIME,RECNU", STORE RECORD NO.
TO Z-19,AOCIN+3" TRANSFER TENS OF SAMPL6
TD Z-18,AOCIN+9
TO Z-17,ADCIN+15
TO Z-16,AOCIN+21
TO Z-15,ADCIN+27
TD Z-14,ADCIN+33
TO Z-13,ADCIN+39
TO Z-12,AOCIN+45
T 0 Z - 11 , A DC I N+ 51
TO Z-10,AOCIN+57
TO Z -09 , A DC I N+ 63
TO Z-08,AOCIN+69
TO Z-07,ADCIN+75
TO Z-06,ADCIN+81
TO Z-05,ADCIN+87
TO Z-04,ADCIN+93
TO Z-03,ADCIN+99
TO Z-02,AOCIN+I05
TO Z-Ol,ADCIN+lll
TO Z,AOCIN+117
SF Z-19
,C. Z,ZERO", CHECK. IF RECORO.NON:-ZERO
BE ZTART

CM DCF+3,2,9
BP WTART
RCTY
WATYOONE
H
B ~~-36

CHECK FOR WRITE ON CYL. O.

WTART RNPT ADCIN", READ A-D CONVERTOR
RNPT ADCIN", READ A-O CONVERTOR
AM RECNO,I,10", INCREASE RECORD NO.
TF WIME,RECNO", STORE RECORD NO.
TO W-19,ADCIN+3" TRANSFER TENS OF SAMPLE
TO W-18,AOCIN+9
TO W-17,AOCIN+15
TO W-16,AOCIN+21
TO W-15,ADCIN+27
TO W-14,AOCIN+33
TO W-13,ADCIN+39

TO W-12,ADCIN+45
TD W-11,ADCIN+51
TO W-IO,ADCIN+57
T D ~J - 09 , A DC I N+ 63
TO W-08,AOCIN+69
TO W-07,ADCIN+75
TD W-06,AOCIN+81
TO W-05,ADCIN+87
TO W-04,AOCIN+93
TO W-03,AOCIN+99
TO W-02,AoCIN+I05
TO W-Ol,ADCIN+lll
TO W,ADCIN+l17
SF W-19
C W,ZERO", CHECK IF RECORD NON-ZERO
BE WTART

OISK WN DCF,00702
B START

DERR RCTY
WATYOERROR
H
R ~:~-12

RECf'.-ln DC 5,0
DE RRn ROAC 12,DISK ERR OR. ' ,
SEEKAODC 3,098
DONE OAC 11,OISK F UL L. ' , ,
ZERO DC 20,0

DAS 1
TIME DC 5,0
X OS 20
Y H~E DC 5,0
Y OS 20
lIME DC 5,0
Z OS 20
\..J 1M E DC 5,0
W OS 20

DC 1, '
OS 2

;):c ::!c: :::~ :;:::: :;:: ~:::: ==!c :::::: ~c 01 SK CONTROL FIELD •• **********
DAS 1

DCF DC 1, 1
,I.
',' DISK ADD. 1 HIGHER tHAN FIRST ACTUAL SECTOR

DC 5,10000
DC 3,1
OSA TIME-4

**
AOCIN OS 120

DENDSEEK

o

o

- 1 -

A Data Processing System for a Regional Group of Seismic

Stations.

'!he prlmary object of recording seismic waves at a network of

stations is to determine the locations of the points at which the rock

fractures occur; that is the hypocentres of the earthquakes. This is made

possible by observing the arrival times of the elastic waves that originate

at the hypocentre at several points on the surface of the Ea.rth. Although

there are many different types of wave originating from an earthquake, the

two principal body waves are the ones used for hypocentre location. 'lhe

first of these, the P-wave, is a compression wave whose velocity is known

in terms of the density and elastic constants of the rocks through which

it travels. '!his is the highest velocity body wave and it is the first

arri val at any station. '!he S-wave or shear wave has a velocity that is

also known in terms of the density and elastic constants but which is

less than the P velocity by a factor which is nearly a constant for most

rocks. Since the density and. elastic constants of the material of the

Earth vary with depth, the two velocities also vary and the paths of the

waves are not straight lines. '!hUB, for accurate travel times, a table

of time against surface distance to the epicentre and depth must be

consulted even though: an approximate value may be fOl.md by assuming constant

velocities. The epicentre is the surface point immediately above the

hypo cent re •

'nle seismograph is an instrument which gives a continuous record

of ground movement and it is from this record that the times of arrival

• of the seismic waves are fOl.md. The P- arrival will normally be measurable

to a greater accuracy than the S- arrival as it occurs when the ground is

- 2 -

nearly stationary whereas the S- arrival may be obscured by the tail of

the P-llave. For this reason, although the S-waves are used in the prelim­

inary distance calculations, final hypocentre coordinates are based as far

as possible on P-waves only. However, a second order equation gives a

fairly accurate distance estimate in terms of the P-S interval.

If the P-S interval is measured at at least one station, the distance

from that station, and hence the origin time, can be estimated. If the

P- arrival time is known at at least two more stations the distance

from these two stations can be estimated from the origin time and hence

this represents a minimum amount of information upon which to base a

hypocentre determination. In theory the P- arrival times at four stations

would be sufficient information for a hypocentre determination, but the

technique of the preliminary determination of the position presents a

great many problems and since it is a very rare occurrence to observe

P without S at as many as four stations , it is not a serious matter to

ignore the possibility of the altemati ve approach.

When the position of the hypocentre of an earthquake has been

established" measurements of the amplitude and frequency of the ground

movement at known distances from it enable the amount of energy released

to be calculated. '!he logarithm of the amount of energy is a measure of

the magnitude of the earthquake. 'lhe distance and azimuth of the

event from each of the observing stations can als 0 be calculated. All

this information constitutes the routine output of a regional seismic

research organisation. The calculations represent a considerable amount

of labour and automation of the system is clearly to be desired.

o

o

o

o

•

- 3 -

'!he regional group of stations for which the data processing system

being discussed was devised is that of the Caribbean, with the main station

in Trinidad. The stations which form the group, including those which

contribute observati ens but whi ch are not directly part of the group,

fom a chain through the islands of the Lesser and Greater Antilles together

wi th one on the mainland of South America in Caracas. The arrangement of

the stations presents some problems that would not apply to more satis­

factory arrangements, but this is dictated by the absence of land in

many of the desirable locations. '!he computer available ~s a basic

card I/O 1620 with 20K storage and an off line card-sorter. The programmes

were written in S.P.S. for this machine and had to be segmented in order

that core storage would be sufficient. '!his is not a tremendous disadvantage.

'lhe discussion will be as far as possible independent of the machine

configuration or programming language.

As is usually desirable, the data read from the seismograms is punched

into cards at the earliest opportuniy. rrhis is in the form of the actual

length measurements on the seismograms without any preliminary calculation.

'!hese measurements are made en the relative positions of radio controlled

time marks on the trace and the local clock marks, and they are made on

the relative position with respedt to local clock marks, the amplitude and

the frequency of seismic waves arriving at the station. Two types of card

are punched. One enables a continuous series of clock corrections to be

made and the other enables arrival times etc. for each phase arrival to

be calculated. The overall processing system is illustrated in the flow­

chart of figure 1 •

- 4 -

'lbe first part of the programme performs a very small amount of

calculation, but the amount of data is quite considerable. A check is made

for apparent sudden changes in the local clock rate at each station and

for discrepancies which might result from the misidentification of a

clock mark on the trace. 'lbe output is a set of preliminary phase cards

for each station. These contain station identification, date and time

of arrival, phase identification, ground amplitude, wave frequency,

seismograph type and some other information which is not relevant to

the discussion.

Mechanical sorting enables all the preliminary phase cards Off

all the stations to be merged in chronological sequence. Although a

larger computer would probably enable this sorting process to be compined

with the first part of the progr&mme, this is not entirely desirable

since the data from the several stations for the same period may not all

be available at the same time.

'lbe second part of the programme represents the most important

section of the system. In it the phase cards are examined to find any

grouping of observations tha.t may have arisen from one event, and when

these groups are found, the hypocentre position is calculated. The

output is a set of hypocentre cards giving origin time, latitude, longitude

and depth. The selection of phase cards to form groups must necessarily

be done using arbitrary cri teriaand it is possible that this may result

in some wrong grouping. Checking at later stages will generally eliminate

errors from this cause. The arbitrary grouping is done on the basis that

the first and last arrival time observed by any stations for the same

event cannot be separated by lo-ger than the travel time between the two

o

o

o

---------------------------->' ~ .I'!J·- T?U"rW!w· -II!! - II!t,vm?!!!!!!"'!' 't!1I1!1nU"'U'.WtHWtMYfI !!!!!C?]twr,,!

c

•

- 5 -

most distant stations, and also that the P- and S-waves observed at one

station cannot be separated by more than a time corresponding to the limit

of the region of interest. If a group is found for which at least 3 P­

arrivals have been recorded and where there is at least one S';" arrival,

an attempt is made to compute a hypocentre. 'Ihe flow-chart of this

grouping process is illustrated in the first part of figure 2.

The most difficult part of the process of determining the position

of a hypocentre is the finding of a plausible place from which to start.

If a good guess is made of this position, the refinement process is almost

routine. In large networks such as the worldwide systems, or in

networks where-the station locations form a desirable grid, this is .not

as serious a problem as it is in the case being considered. Itusually

is sufficient to assume that the hypocentre is very close to the station

at which the first arrival was recorded and refine from there. But when

the stations are constrained by geographical considerations to being

arranged in a chain, especially when the events being observed are also

near to that chain, a wrimg choice of the starting position mB\Y easily

lead to a false final hypocentre. '!he criterion of refinement of the

hypocentre position is that the r.m.s. deviation of the individual station

estimates of the origin time from the mean should he a minimum. It is

not difficult to see that a hypocentre that is really a little to one

side of the chain will produce an image minimum on the other side.

'nle second part of figure 2 illustrates the programme that has been

developed to find the best start point by an empirically satisfactory

technique, and figure 3 interprets this technique graphical.ly •

When the position o~ the hypocentre for which the r.m.s •. residual

- 6 -

has been found it is tested to see whether the minimum value is acceptable.

An r.m. s. resi dual of 0.5 se conds is hoped for and if this found it is

concluded that a false grouping of phase arrivals has not occurred. If

the r.m.s • residual is not as Chow as this, the residual of the worst station

is examined to see whether this observation can reasonably be concluded

to be unrelated to the set. If so, the refining process is continued

with this station deleted, provided that it is possible to do so. It

is not possible to continue refining if less than three sllations are left.

When no further improvement can be made to the r.m.s .residual, the

hypocentre card is punched. It may happen that this is a false determination

and a check is made for plausibility of all hypocent:res found. So far

no spurious one has turned up.

The final phase of the programme computes distances, azimuths, residuals

and magnitudes and is more or less routine.

o

o

o

o

•

II'T,,,,,e (. ... ~.$

Jr~TfCH If

,
I' PII~t £ t,1I~J;'

S-rATlfJN A
I;

" "

c.., ~.« eG ~ • .>
PIIA.$e CAO~
Si.,-Ar.elW a

1
eA~" ilfTE. ,,;..cc,,"
c..cMI£.c..TIO",$. IlI(JJ
II",P,.., ru')e..s IIN~

J"'t.o HA64.rE.))
t--,-Pi4ItSS LA IOU

lIrr-A"TIi)It/ If

Me.~4& 14U- ~::----
..... ___ $irltr, () IV.) P;lIJS G

, trl41tJ>, 72) PC 1:.". ~,, ___ _

f:,;f(~Nf) i.l:}t, "lfl. F 1U2," P/tOb.h.: J!. '~DI(ItI! c!-rEJ
PI-I If.s e., t.A ~.$

~/_----..,/ ~
(CiJ/iIt P J,.. /1.. 'r-4 .~i!-_rJ
I'l'l:. e l-J ""'N~ II! 't' ,...--------tl PH4,l:!. P Ii-£!

$4~1ia- s. • .,..$ I) F

PHItSS (J.AII:.l>S '"

,c.:.DJVI It a,;rl$. AN 1>

, I

J

'. /(15j:1 NIj.. Hi(Pot.CN1I~

e..eaOI:]>;N A-r1LS 19 Nj)

I
t
I

I

I

,
,,. HYP&<~ltIr« ~

c.l~ JI'U>..s

M~JC,4 !I'I'-Dt·a,.,rt.

1"'_~"'IIItN 1> P ~ Ii I.J MlJltI" lit. Y
., ~iI"J~ e-ft~.$ "rl A. (;,., C; u:, t t,./t £;..,

t! ItI..~,~ £.04 .;-tJ. .), ~1""'N4t:'

A~'MlJrH$; .ll'tJl~N''Ma1

.JA/-------,,/.~-------... ANb Its'S Itf '" • "/lilt ,
.~ ___ ""'I~/NIII- P 1I.,.1i. NUM&U' .

'---___ .."V

Stat- Plow-Chart. Pieee 1 •

(START

NO

L.e. Avft. 'THe c,,"i ~ .1)

.:JV$ i It€"'.b- / N

me.. il'vp",·r AKGA

F'iguN 2, :part A..

o

o

o

c

o

•

L

I
, PIlIfS £. t,1l~~;'

STAT/I)N A
loll

I
'CCA.AI!G~

p,.A$/!. c.AJU,S
$TA"",O/!/ 8

1
M E.~4 & 14 i..J-

1
e '" J-L iJ .. /If TE. Go ... ~c '"
c.c1V>: I!.t.TlON-S. III(JJ
fl/lllP ... , 7"'4J,)e..l !JAI)J

PIt,,])ih.:}i. (:.D~lta4.trEJ

"'u HRf$..a.rE. ~
I--"~ PHItSS LA ~

$rA"TI()N A

_ '\, 5:-1t r, () N.) P'" IJS G.
....---~

P~/IIS.e. t.-A o.s-

". t:,;41(j>.I 7» t= c ,.". ~i-P ___ _

~t»Nf)iJ)e, ",.1- P/~ r-"

~L ___ --..,/ ~
I
'CQ~ P40.I!.-1"'"4 .~i!--_J
I'I:E L..J,.. IHIIt ,: 't'

,--------....... PHIf 1:5. t= ~i..e. V

s aI-ad s,.r~ I> F

PH/tSt: C-AJ:.])S"I >

-c:.DMI' ... rS- AN1>

..
f

; R..tI.~1 N6. H·'('PcUN'1i!4

~(;I!.>;N A"re.,s 4 Nj)'

I
t
I

I

I (::>1('40" -"'-,"""/Il.$

rHVP&(A!/IIIrl:. l!­

I c;. ,~ ..u.s

M.E:ICC;£ II'I"D("~NT~.

.a-_--l"'II1tNJ> PREI-IMI""''' ~y
.,.. ~;I"Je. e.-IfO.:C

"1'1 it (I ,., C. J..t;):' t';'''''''''

" t ItI",tl,V £.A -r/'l.. ~,~ rA-Mt:'

14~'MlJrHS; ~Jt~N'~_

~/"------~~/W:~~-----"'A/'I}) itSS ,t:, '" i.l'IlII4,
lII!!~o-_ f PIIIII".. PI£..15. ~ NIIM&U ~ .
r-1t......o.-__ --"V

C srfiRT

e. ",,-:-e:. ~ 1/10/ '110::'

'------~ rM8~'=~ l'lr'Ir"';oj

S.7"7-t1"'/()N 9)~7''J't
e'it.-.

I...e.ltvl't.. 'THIl:. c,/~~~

:Jf)$i It€ "",1> / N

me iJ'VP;"·,. AAt:M

Pigu" 2, part A.

o

o

o

c

o

r-'N.~ 1t1I!AH

O~t4 iN f"flYI£

nN» »G v'-p'7"/ON.S,

~
t.h;~ MeAN Og,c,,,.,,

riMe.. To r:: IN.)

.1>I.>r"Ni.E.J P,.'!.c,v)"
,qi-.. ~ ~ I 117"1 eN.$.

'ToNI rUf i.>1!. TH/~

ep-t,{l~rKE.. AT THt;

C."~I:.f!.LI ~l>; .. T 'tN'· e
~a·sr C::- lVe.If (e$T

.sr~"'-I ('~N

cit RK. Y 0 ""'r "we
c.. ~ L- _IE. i. (,) ~

I-ftJ .1trIr IN .:'{'

(Sell r.: it.. 3)

Figure 2, Part B.

..... --~

R6.:b"i.:.e THf! ~ "·U
~€~~]) ... ;.f!- IN c~ '&';;'11
-(",Me E~··rIJIIIRn~.J r-~

f'I MJIV/!t1vM 15:­

Sn;P/'), ~ I';;fCd·I c: y

111 e rJ.t It IE. E. -~ P /1~.c.
t,..:".K."b,NlJre.\ '<'\t

n:;:.IV. c.)j/f, 'J7.if.:.

OJ;..'4 .. N ',I'-fe. ,4: '~J. 'i
p .. \; /Ii.J:> .4 P 'T H J$ ~ t.:..
/~~e. ON4.-(3
S iJ17'";~ AI.)" C!7'1-i~JII"';'. ~£

(!HO't'$E. TI-f(!

e fl/ (,../!.t¥TA e.. w"'1-/
THe. j....,()We..-'T RMj

I't;:S' .1>V";L.. IIV .:)1.: l.tjiN
"rIM;.! eS'r, JoItA·l·E..~

R;:P.e.A"'- a&;·,
::.-r/~ x r'N~ GASi

()F NcAI1..E.J 7-

~;-H'-'C AI

(~
"SJr----~

l'>iJl';~ "R/4 IN

>--_~;..:a.I. 'r I i~ £ Il N)~ lit'" I' .
~t,..;:'iVT1itl :!.."O~_)J

c..1=J I! _.J> ---t'
·NrJ

1>e I-e.TI£ T7I1!

loVe ,I\: .rr ~ T,,"rl C Ai

FiE!:e 2, part c.

o

o

o

o

•

•

•

3
•

Figure 3.

I

I ..
8 '

• II

.2---------,
3-----------------------------

The points 1,2 and 3 represent the positions of the observing

stations. Prelimina:t7 oalculations of distances are represented to

scale at the bottom right. The points A and A' are obtained by measuring

the appropriate distanoea to the East and to the West ot the nearest

station respectively. The point B (:S') i8 obtained by measuring the

appropriate distance along the line I,A (I,A') trom the point 1.

The point C (0') is obtained. by aeasuring the distance from 3 along

3,B. D, E and F are obtained similarly_ It can be .een that, tor

the more aPpropriate starting point, the tth1Poaentre" converge. to

a stable position whereas for the other starting point this does not happen •

AUTHORS:

S.P.S. FUNCTION AND SUBROUTINE SUBPROGRAMS
TO BE CALLED BY FORTRAN MAINLINE PROGRAMS.

RtCHARD LA RUE & JOHN POWELL
THE UNIVERSITY OF SOUTH DAKOfA
VERMILLION, SOUTH DAKOTA 57069

REFERENCES:

o

1) IBM 1620 MONITOR I SYST~M REFERENCE MANUAL FILE NO. 1620-36;
FORM C26-5739-4 C

2) IBM 1620-1443 MONITOR I LISTINGS & FLOW CHARTS 1620-PR-033(CARD) I

MACHINE REQUIREMENTS:

1) 1620 MODEL I, 20,000 DIGITS CORE STORAGE
2) (1) IBM 1311 DISK STORAGE DRIVE
3) I ND I REeT AD DR ES~' I NG

OPTIONAL EQUIPMENT:

1) IBM 1443 PRINTER
2) ADDITIONAL INSTRUCTIONS: MF. TNS, TNf

o

o S P S CON T R 0 leA lOS NEe E S S A It Y TO ASS (-·13l. E 1'. ;~ D S TOR E (l\ NO L t S T)

S P S SUBPROGRAMS

0,
I'

•

.

CARD COLUMN 1111111111222
123t567B901?'3~567890'2

*A;SEMRlE RELOCATAAlE

*~TORE RElOADABlE

*U/lJ'E xxxxxx

*t.IST PRINTER

'­, ...
j

~,

The Indicator Record (Monitor Manual page 1~4)

Each subprogram to be called by a FORTRAN program must contuin a
header record to i denti fy the routi ne and" to" provi de other essentj al '
information., The SPS instructions ne'cessary to, create,th,is reco<r~': '
a re shown be' ow: " """ "" ," """ • cJ-...~" 1'-"/0:':'';0:
1 i ne 1 S DS. *+ 10 1 ,,' " :YllVr'~'.-0--' y -
line 2 DC 6.987898,5-~ ~ ,,~cr~-0
line 3 OAC 6,NAME~~~ : · · , ,
line 4 DVLC 22-S,5,LAST,2.ff.2,kk.5,Entry ,Address-6,5.0
line 5 DC 30,0,66-S'
line 6 OSC' 17,0,0
line 7 OORG 5-100

Comments:

1) lines 1 and 2 are standar~ and required.
2) line 3 must contain 6 characters--the name of the program-­

left justified.
3} line 4: The storage operand 22-5 is standard

LAST is the label of the last digit stored
ff is the floating mantissa length
kk is the f1xed point word length
Entry Address~6 is' required and 1~ the label of 1st

1~struction-6 .
The 5,0 is standard and required

4) line 5: The 30 digit DC refers digit for digit to the subroutine
listed in Table 11 page 126.

Place a 1 instead of .a 0 in each po~1tion corresponding
to a library subroutine to be called from the SPS sub­
routine.

S) lines 6 and 7 are standard and required.

, ~ >l~e(,
The following three statements must conclude each subroutine:

DAC 1,0
LAST DC 1,@

DE NO 1

forces next available, position to be. even
required record mark (see LAST in DVlC statemel.t)
operand indicates number of entry points

o

o

j
i
~

J

I
I

I

o

o

0

CAll SORT2(A(1).J(1),N) will cau,e the FORTRAN comptler to gener~te
the fol1owt"9:

8T~1 SORT2, tl+ 11
OSA A(l).J(l),N

·+11~~
17 XXXXX XXXXX

Address <~f A(l) XXXXX
Address of J(l) XXXXX
Address of N XXXXX

The fol1o\'/ing is now that portion of the SPS subprogram that moves'
these arguments (A(l),J(l),N) over to the subprogram and calculates
the return address to the mainline which will be the next even posi-
t ion f 011 ow i n 9 the s tor age 1 0 cat 1 0 n . 0 f the add res S 0 f the 1 as tar 9 ~-.. <:~:
ment (N). - .~--

MATRIX OS 5
COL DS 5
N OS 5
RETURN OS 5
SORT2 AM RETURN.5 •

TF MATRIX.-RETURN.2
AM *-6,5
eM *-18,*-37
SHE *-48
AM RETURN.2
TFM SORT2+18.MATRIX
TF CHECK.-N
SM CHECK,I.lO
BNF GO 1. t'1ATR I X
TF MATRIX,-MATRIX

GOI J,
The first three OS statements are to store the addresses of A(l), Jel),
and N. The fourth is to store the return address to the mainline. The
functions of the other instructions are described belQw_

SORT2 AM RETURN,S

The instruction ca1culates the address of the address of A(l). The
\. value at RETURN was *+11 or the Qll digit of the 8TM instruction gen­

erated by the CALL statement. If you add 5 to this we get the address
of the units position of the first address in the DSA"staternent fol­
lowing the BTM instruction.

TF MATRIX.-RETURN,2

Brings the address of ACl) over to the area addressed by the symbol MATRIX .

•

•
L4

At·, *-6.5

Updates the P operand of the previous 1nstruction by 5 thus making this
the address ass 1 gned the symbol COL. 0:

c r~ * -18 J 11 - 37

This compares the number in the P operand of the instruction
TF MATRIX,-RETURN,2 with the number *-37 which is equal to the core
address assigned to the symbol RETURN.

BNE *-48

If the resuit of the last compare was zero the addresses of all argu­
ments have been moved in.

AM RETURN,2

Calculates the next even address following the add~esses in the OSA
statement generated by the CALL statement. This is the return address.
(Note: We would add one if there was an even number of arguments.)

TFM SORT2+18;MATRIX

Restores the P ope~and of the instruction following SORT2 so that the ~~
subprogram can be called again by the FORTRAN program. ~

,
TF CHECK,-N

Moves the data whose address is at N to CHECK.

SM CHECK,I,lO

Reduces CHECK by one.

BNF G01,MATR'IX
CF MATRIX
TF MATRIX~-MATRIX

If the actual argument used in the FORTRAN was A(K) instead of ACl)
then MATRIX contains the address of the address of the argument. These
three 1nstructions will put the address of A(K) at MATRIX which is
assumed in the instruction:

GOl TF X,-MATRIX

o
I',,· :' 'I

c

•

\

. ~4 0003?0070 13600032007024902402511963" 11300 1 07. =1*..1 0 13. • . . .
.... f)t.A? .'
~: n F lET S IlI-~ T 2 .
::l:.*JQI3
T: .SP.:s

. t.: LIS T P R I ~J TEn

::=ASSEf·1HlE RElLJCATAKlE
*STORE RElOAnABLE
~:~iAf'·l Esor< T 2 , * t,= S p S S IJ R R {)U TIN G T (J SO R T THO C U L U 1-1 i'd S c::J 1 ~ FIXE D, t~ 1 o. F. IT H F. R s_ ---os, :!;+ 101

DC 6,9B7R98,5~S
DAC 6,SUkT2 ,7~S .
DVLC?7.n S,5, LAST, 2,08,7., 10, 5?S(jr~T2 ?6,5,O,30,O

'. nsc 17,0,0 .' '., "
DORGS lZ3 100

~: ,.J A T R I X IS' AD D RES S 0 FAR RAY T U RES n RTF. D (F I X I:: D n R F LO A T I ~.J r,)
~: COL IS AnDRESS l1F' ARr~AY TO .. BE' CAfH~IF.f) I\Lf)~.IC; (t.iUST RF FIXED)
;:: N ,I S ADDRESS' OF r'·JUNnF.!(OF ELE'.!ENTS .
. ~: R F. T URN I SAD U R F. 55 0 F' I'·J EXT I i\I S T R LJ C T lOr! I N r·j A I ~\Il I i\! E
r·1ATRIXDS . 5
COL DS 5
f'! DS . 5
RETURNDS 5.
SURT2 AM RETURN,5.

TF MATRIX,cRETURN,2:
A f·' ~:&::J6 t 5. • '
C r4 t,c ellS, ~: ca 3 7
B~·IE *c::J4H
AI·' HETURN,2
TFf.} SORT2' +l8,r·IATRIX,·,RE5l-:T FUR j .. JEXT. PASS * ·SET NUMBER OF ELEMENTS AT CH~CK
TF CHECK,c:JN

>GDl

.FIX

.... . .,.

Al

1\2

S~'l CHECK, l, 10
BNF GO 1, r·iA TRI x
CF r·1ATR I x
TF . f"lA TI~ IX, aJNATR I X

SE.E IF DATA IS FIXED POINT OR FLo.~T:ING PO,Ir'..!T
T F X ,. o(-iA T R I X
B[\IF FIX,X~l

B FLOAT
H CHECJ<,KK
SF 95

PUT STARTING ADORESSES AT ADDRI. ANl1. ADf)l{?' ..
TF . ADDRl,MATRIX
TF AOOR4,COL

PUT Er~DING' ADORESS' AT ADO~3
TF AOOR3,AUORl
A AOf)R3,99
TF AODR2,AbORl
TF
A
A

ADDR5,AOOR4 .
,AODR2,I<K
ADDR5,KK

C . cAODRl,c::JADDR2
. BNH A3
:rF TF.f;lP,~A[Jl)Hl
JF cAODRl,~ADDR2

TF ~AODI{ 2, T Er.tP ..
TF' .TEN·P, r::.A DOR4
TF" -ADD,HL,.,ClAlJDR5

~:'~'T1: -ADDK5t TEr:,p ..

."

.'
..~ .

'.'

p,/.J~~.~ I
A3 A ADDR2,KK

A A[lDR5,KK
C AOf)H 2 t AUl1lt 3

t

Ol
f

~NH /\2 I

l

A AODR 1, KI{
A ADDK4,KK
C AflOR 1 t J\UOR 3
BNE 1\1
B =RETlJRN

* oJ. F LOA T ING){UUT I t,'E ""
)"
.~

FLOAT TF ADOR 1, r'IA TR I X
TF ADDRl;., COL

,N CHECK, FF ' •

SF 95
TF . ADOR3,A[JORl
A AOOR3t99

HI TF A()[)R2,AiJOHl
A AODR2,FF
TF ADDR5,AODR4
A AODR5,KK

A2 ~T TOFAC, ADDRI
BT FSB, ADDR2
BTi", F r~t F ACt T E [·1 P
BNF *+2lr, TEiI IP=2
B R3
BT . TOFAC, ADDRI '0
BTN Fr'I~AC, TE f.1P
tiT TOFAC, Af)[)k2
BT Ff·1FAC, AODRI
BTi;i TOFAC,TENP
BT Ft·1FAC, AODR2
TF TEt·iP.,=aADOR4.. .
TF cAODR4,c::2AODR5
.TF CIA DOR 5 t T E f",P

A3 A ADDR2,FF
A ADOR5,KK
C ADDR2,ADDR3
HNH R2
A ADORl,FF'
A AODR4,KK
C Af)OR1,ADDR3
BNi: Rl
B aRETURN

CHECK DS 10
AOORI DS 5 •
ADDR2 OS 5
ADOR3 DS 5
AOOR4 DS 5
APOR5 DS 5
X OS 30 .
TEr··lP DS 30 o
* FF IS FLO A T I h!r, j\lANTI SSA LENGTH + 2

" '7

FF

CI .'.
'0"

~~ \~

F i\C
TifF /H:
FI·,F!;C
~SH

l/~ST

C'\
,II

•

Of. 2,10
" I(r" , I ~

DC 2,10
j)C) ,24"2
ns ,34(8
US 7 ;~ 4'j;;
US , ';f'A(,
J 'J~C 1,]
Dr. 1 r;'
nFj,:f;]

THE FIx,:fJ :-lor.n) i. Fhlr,TH

'.
I

~Lt000320'07U 13600032()070?4902402 511963011300 1 O?
-J;#FOI!><.s-c:t '
~(L 1 ST pn INTER

o u-' E'~ S I Ut,l A (20,5') , tl (2U t 5) t L (20)
fHJ 10 I = 1, 2 U
fHI 10 J :: 1,5
f\! (I t J) :: ~ I ::; J

lOA (I t J) :: i'-i' (I , J)
- P rfI P T 1 U 1 t ((A (I , J) , J = 1 , 5) , I = 1 , 2~))

101 FORMATflHl/(5FlO.2»
.()() l~ t·, = 1,5
DO '5' I = 1,?.0

5 L(I)=I
CA L l S()I~ T 2 (A (1 t 11) , L (1) , '-0)

15 PHI~.!T 102, (L(J) ,A(J,H) ,J=l,?O)
10? FtlRi·l/,T(lHO/(IS,F10.?»

PRII"'f 103, (((.!(I ,J) t J=l, 5) f 1=1,20)
103 F(1I1i:;J\T(lHl/(~110}) .

f) n 14 r·l = 1 , 5
DO 25 I = 1,20

25 L(I)=I .
C4lL sn~T2(N(1,M),L(1),20)

1 t.. P ~ I NT 1 04, (L (J) ,h (J , r· j) , J = 1 , 5)
104 FURMAT(lHO/(2110)

CALL EXIT
ENO'

'S~PL~'

. .'

.'

CS,' .

'.'

j
.-,.,; ,

" v

•

o

. 0

~~Jo8
~~p&A P
:!:DEL ET F LllA T
¢:~...J()e.

$,.:t:SP$

~c"S S Ei·'f\ L F. R2 LUC A TAB L E
~cSTnRE RELOAnJ.\HLE

):; lIS T P l{ I ~"! T f. R
:::NAr·\E FLOAT

S OS t):~+ 10 1
DC o,987R9H"cS
DAC ,6, F LUAT ,7~S
OVLC22~S,5,L~ST,2,OO,2,04t5,FLOAT~6,5,O

DC 30,O,66c S
DSC 17tO,O
nOKGSI:'.IIIOu

ARG OS 5
RETURt~DS 5
FLllAT Ar·': RETUkl~t 5

TF ARG,c:JRETURtJ
Ar·l ' RE TURN t 2

TF FAC,uARG
B T t·} SF L U AT, 0, 10
B7 aRETURN

SFLOATDS ,4042
FAC OS ,2492

OJ\C l,a
LAST DC I,d

DENDl

•

•

I ,

r~.JoB
#PIJAP
:::OF.lETIFIX
~~ol3

fF*'-S pS
*NA(·1E I F IX
S::ASSEf'.1BLE RELUCATI\P,LE
*STORE RELUAOARLE
*LIST PRINTER

S US t*+101
DC 6,987R9B,5C":1S
OAC 6,IFIX ,7c S
DVLG27.=S,5,LAST,2,OH,2,04,5,IFIXa 6,5,O
DC 30,O,66n S
DSC 17,0,0
Unl{GSc:t100

Ar~r, DS 5
RETURNDS 5
IFIX AM RETURN,5

TOFAC
, FIX

LAST

TF ARG,~HETURN
At·; RE TURr·,,!, 2
BNF :::+36, ARG
CF ARG
TF ARG,cARG
BT TOFAC,ARG
BTH FIX,Q,10
B7 cRETURN
OS ,3[1-08
OS' ,3854
DAC 1,a
DC 1,@
DENDI

I I

0

o

••

~·F.JQ 0.
:t't·F~.aeX ~

.• ;-; l I ~) f P 1\ I J ! f t: ~:

\.
-:,,:: n E i.1 t" I F i H{ 1 F I X A f'.I !) f Ul A 1 c:JU F I J~.1 r. T I U h! S lJ BPI{ U (; f{ 1'\1-1 S H H r T T ~ (\I INS P S

X = 14.

)
r = ~
X I ::: I
Y = X/XI
PRr~IT I.tV
y- = o.
Y = X/FLOAT(I)
PHINT 1, V.
J = ·IFIX(X)/I
PI{ If"T ~, J

1 FnRMAT(lHO,FIO.~)
2 FORNAT(lHO,IH) ~,

END

. ... ~-.

'.'

..

'0·', , ,

Absolute Monitor Addresses to certain subroutines one might wish to use.

FAD OS ,4090, ,Entry Address to Addition Subrout1ne

FSB OS ,4066"Entry Address to Subtraction Su~routfne . •
FMP OS ,4138,.Entry Address to Multiplication Subroutine

FD DS ,4162 tt Entry l'\ddress to Division Subroutinn

FIX OS ,3854"Entry Address to Fi .. ~ Subrout1 ne

FLOAT OS ,4042"Entry Address to Float Subroutine

FAC OS ,2492"Low order position of FAC (Floating Accumu 1 a to\")

TOFAC OS ,3408"Entry Address to load FAC

F~1FAC OS ',3452, ,Entry Address to unload FAC

ENTLN DS / ,2248"Entry Address to log Subroutine G
ENTEXP OS ,2253"Entry Address to Expon. Subroutine

ENTSQT OS ,2318, , En try Address to SQRT Subroutine
cI

ENTABS DS ,2323,.Entry v A<fress to ABS Subroutine

•

o

o

o

SESSION REPORT

COMMON - Chicago

Session Number MON D4 -----------------------
Chairman W. C. Gray

Time 3.30 to 5.00 PM
--------------------~------------

Speakers W. C. Gray

Wagner Electric Corp.

11444 Lackland Road

St. Louis. Mo. 63141

Session Name 1130 Users Exper­

ience Panel

Attendance (No.) Esttmate 275

w. F. Burggrabe Jr.

NOOTER, Inc.

140 South Third Street

St. Louis. Mo. 03166

Synopsis of Meeting 1. Preventive Measures to keep from bombing pack.

1) Operator training, 2) Disk Maintenance. 3) Proper use of job cards.

11. Ease of recovery. Use "Darm" Type 11 program

Ill. How to repair "DCOM"

IV. How to repair Disk sector addresses. Procedures for III and IV will

be submitted to CAST.

Mr. Gene Lester of IBM stated most of these procedures are being included

in DCIP of Monitor Version 2.

SESSION REPORT

COMMON - Chicago

Session Number MON D7 Session Name 360 OS Committee -----------------------
Chairman W. Norton

Time 3.30 to 5.00 PM
------~~~~~~~~------------

Attendance (No.) ----------------

Speakers Eugene D. Fitzpatrick - Illinois Stat University

Synopsis of Meeting The speaker presented a paper entitled, "What a

University COmputiDI Facility ExPects From the OperatiDI System."

------------------------------------_ _-_.

o

o

C r,
,!

•

1. OS COMMITTEE

2. "WHAT A UNIVERSITY COMPUTING FACILITY EXPECTS FROM
THE OPERATING SYSTEM"

3. EUGENE D, FITZPATRICK

4. ILLINOIS STATE UNIVERSITY

5. 106 MOULTON HALL, COMPUTER SERVICES, ILLINOIS STATE
UNIVERSITY, NORMAL, ILLINOIS 61761

[)

6. MONDAY, APRIL 8, 1968 AT 3:30 P.M. SESSION 8-7

7. THREE PAGES OF TEXT •

c

"1'

o

o

o

WHAT A UNIVERSITY COMPUTING FACILITY
EXPECTS FROM THE OPERATING SYSTEM

AN ADDRESS TO THE "SYSTEMS 360 OPERATING SYSTEM COMMITTEE"
BY EUGENE D. FITZPATRICK

WHEN YOUR CHAIRMAN, MR. WADE NORTON, INVITED ME TO PRESENT
A PAPER TO THIS COMMITTEE I EXPLAINED THAT OUR UNIVERSITY
HAS NOT AS YET INSTALLED OUR SYSTEM 360/40 COMPUTER. HIS
RESPONSE INDICATED THAT THE COMMITTEE WAS MORE INTERESTED
IN EXPECTATIONS THAN IN A RECITAL OF COMPLAINTS CONCERNING
LIMITATIONS AND SHORTCOMINGS OF THE OPERATING SYSTEM. THIS
ADDRESS THEREFORE WILL INCLUDE MANY FEATURES CURRENTLY IN­
CORPORATED IN THE OPERATING SYSTEM PLUS ADDITIONAL FEATURES
WHICH WE WOULD LIKE TO SEE INCORPORATED. WHILE ALL OF THE
FEATURES LISTED ARE TECHNICALLY POSSIBLE, IT IS RECOGNIZED
THAT SOME OF THESE FEATURES WILL BE DIFFICULT TO ACCOMPLISH
AND MAY THEREFORE BE REJECTED BY THE IBM PROGRAM DEVELOP­
MENT DEPARTMENT.

THE UNIVERSITY WHERE I AM CURRENTLY EMPLOYED HAS AN ENROLL­
MENT OF APPROXIMATELY 12,000 STUDENTS AND IS SUPPORTED BY
STATE REVENUE FUNDS. IN INSTITUTIONS SUCH AS OURS IT SEEMS
TYPICAL THAT THERE ARE LIMITED FUNDS FOR INSTALLING COMPU­
TING FACILITIES; CONSEQUENTLY, WE FEEL FORTUNATE IF WE CAN
AFFORD TO INSTALL A MODEL 40 WITH 128 K BYTES OF CORE MEMORY.
THIS ONE MACHINE MUST SERVE THREE MAJOR PURPOSES IN THE
ACADEMIC SETTING, (1) ADMINISTRATIVE DATA PROCESSING, (2)
ANALYZING RESEARCH DATA FOR FACULTY AND/OR STUDENTS AND,
(3) PROVIDING LABORATORY FACILITIES FOR THE INSTRUCTION OF
STUDENTS. SINCE EACH OF THESE FUNCTIONS IS ESSENTIAL IT
IS DESIRABLE TO OPERATE IN THE MULTI-PROGRAMMING MODE.
SINCE THE UNIVERSITY IS LIKELY TO REFLECT THE NEEDS OF
ALMOST EVERY OTHER TYPE OF INSTALLATION THE REQUIREMENTS
ON THE OPERATING SYSTEM WILL BE MANY AND VARIED.

THE INSTRUCTIONAL NEEDS OF THE UNIVERSITY WILL COME FROM
MANY AND DIVERSE DISCIPLINES SUCH AS MATHEMATICS, BUSINESS
ADMINISTRATION, ACCOUNTING, CHEMISTRY, PHYSICS, PSYCHOLOGY,
EDUCATION, SOCIOLOGY, ECONOMICS, AND MANY OTHERS. IN ORDER
TO MEET THESE DIVERSE NEEDS IT IS DESIRABLE TO HAVE COM­
PILERS OF THE MOST FREQUENTLY USED LANGUAGES SUCH AS COBOL,
FORTRAN, RPG, ALGOL, AND PL/1. ALTHOUGH MOST OF THE PRO­
GRAMS WRITTEN BY STUDENTS ARE LIKELY TO BE BRIEF, IT WOULD BE
NICE IF THE OPERATING SYSTEM HAD A PAGING TECHNIQUE SO THAT
A GIVEN PROGRAM OPERATING IN A GIVEN PARTITION WOULD HAVE
SEEMINGLY UNLIMITED CORE IN WHICH TO FUNCTION. MODULARITY
AND CHAINING ARE PERHAPS DESIRABLE GOALS IN PROGRAMMING;
HOWEVER, SUCH LIMITATIONS ARE A CONFOUNDED NUISANCE TO A
GROUP OF NOVICES WHO ARE TRYING TO LEARN THE PRINCIPLES OF

COMPUTER OPERATIONS o IT WOULD ALSO BE A BOON TO THE OCCA­
SIONAL USER IF THE SUBROUTINES WRITTEN IN A GIVEN LANGUAGE
COULD BE CALLED BY ANY OTHER LANGUAGE. ALL OF THE SUB­
ROUTINES WRITTEN IN A GIVEN LANGUAGE COULD BE CALLED BY ANY
OTHER LANGUAGE. ALL OF THE SUBROUTINES ARE ULTIMATELY
TRANSLATED INTO MACHINE LANGUAGE IN ORDER TO FUNCTION, SO
IT WOULD SEEM THAT THEY SHOULO BE AVAILABLE TO ANY MAINLINE
PROGRAM REGARDLESS OF THE LANGUAGE USED. ANOTHER VERY
DESIRABLE FEATURE WOULD BE A COMMON DATA BASE IN THE FILE
STRUCTURE. THE SECURITY OF RESTRICTED FILES IS OF COURSE
PARAMOUNT, BUT THERE ARE MANY FILES THAT CAN BE OF VALUE
TO MANY PEOPLE. IT WOULD SEEM DESIRABLE FOR SUCH FILES TO
BE AVAILABLE TO THESE PEOPLE REGARDLESS O~ THE LANGUAGE
THEY ARE USING.

IN MANY UNIVERSITIES SUCH AS OURS THE DISCIPLINE OF INDUS­
TRIAL TECHNOLOGY IS BEING UPDATED TO TAKE ADVANTAGE OF
NUMERICAL CONTROL OF THE VARIOUS MACHINES. THERE SHOULD
BE SOME PROVISION FOR COMPUTER PROCESSORS OF NUMERICAL
CONTROL PROGRAMS o MORE FLEXIBLE PROGRAMS FOR CONTROLLING
INCREMENTAL PLOTTERS ARE ALSO NEEDED BY UNIVERSITY COMPU­
TING FACILITIES SO THAT THEY WILL BE ABLE TO SERVICE THE
REQUESTS FROM MANY DIFFERENT DISCIPLINES SUCH AS CHEMISTRY,
PHYSICS AND THE BEHAVIORAL SCIENCES, AS WELL AS INDUSTRIAL
TECHNOLOGY.

IN .OUR INSTITUTION LEVEL E COBOL WILL PROBABLY SATISFY MOST
OF THE PROGRAMMING NEEDS FOR ADMINISTRATIVE DATA PROCESSING;
HOWEVER, THERE WILL BE TIMES WHEN THE ADVANTAGES OF LEVEL f
COBOL SHOULO BE EXPLOITED. ONE SUCH TIME IS AT THE END OF
THE TERM WHEN THE PROCESSING OF GRADES BECOMES THE HIGHEST
PRIORITY JOB. IT THEREFORE SEEMS DESIRABLE TO HAVE AN EASY
METHOD OF REDEFINING THE PARTITIOt~S OF THE SYSTEM IN ORDER
TO SWITCH FROM ONE SET OF PRIORITIES TO ANOTHER. IT WOULD
ALSO SEEM DESIRABLE TO INCORPORATE WHAT MIGHT BE CALLED A
"WARM START" IN ADDITION TO THE TRADITIONAL "COLD START"
SO THAT JOBS REQUESTED IN ONE PERIOD OF PROCESSING COULD
BE COMPLETED IN A LATER PERIOD OF PROCESSING. IN THE CUR­
RENT "COLD START" PROCEDURES IT IS NECESSARY TO RESUBMIT
REQUESTS FOR INCOMPLETE JOBS WITH A SUBSEQUENT WASTE OF
VALUABLE COMPUTER TIME.

AS REMOTE TERMINALS ARE ADDED TO THE SYSTEM FOR TELEPROCES­
SING IT WOULD SEEM DESIRAB.LE FOR A TELEPROCESSING SYSTEM
SUCH AS RAX TO BE OPERATING IN ONLY ONE OF THE PARTITIONS
RATHER THAN CAPTURING THE ENTIRE PROCESSOR. IT WOULD ALSO
SEEM TO BE DESIRABLE FOR LANGUAGES IN ADDITION TO FORTRAN
AND BASIC ASSEMBLER TO BE ABLE TO OPERATE IN THIS TELEPRO­
CESSING ENVIRONMENT. SUCH ADDITIONAL LANGUAGES SHOULD, OF
COURSE, HAVE COMPILERS THAT WOULO FUNCTION IN CONVERSA­
TIONAL MODE THROUGH THE REMOTE TERMINALS SO THAT WE CAN
HAVE A MORE EFFECTIVE MAN/MACHINE INTERFACE.

-2-

o

c

o

c

o

•

AS TELEPROCESSING BECOMES INCREASINGLY FLEXIBLE THERE MUST
BE GREATER EFFORT IN HAVING THE COMPUTER AUTOMATICALLY
PROCESSING THE COMPLEX ASPECTS OF THE MAN/MACHINE INTER­
FACE SO THAT THE OPERATION OF THE REMOTE TERMINAL WILL
BECOME A RELATIVELY SIMPLE AND EASY TASK. IT MUST BE RE­
MEMBERED THAT MANY OF THE POTENTIAL USERS OF REMOTE TERM­
INALS WILL BE HIGHLY SKILLED IN DISCIPLINES OTHER THAN
COMPUTER TECHNOLOGY AND WILL CONSEQUENTLY PREFER TO DEVOTE
THEIR TIME AND ENERGIES TO MAKING DECISIONS IN THEIR AREA
OF SPECIALTY RATHER THAN LEARNING TO BECOME COMPUTER TECH­
NOLOGISTS. IT WOULD THEREFORE SEEM THAT THE SUCCESS OF OUR
ATTEMPTS TO HAVE PEOPLE AT THE ADMINISTRATIVE LEVEL TAKE
ADVANTAGE OF THE INFORMATION THAT CAN BE SUPPLIED BY A
COMPUTER WILL DEPEND PRIMARILY ON THE EASE WITH WHICH THEY
CAN OBTAIN THIS INFORMATION.

I WISH TO THANK MR. NORTON AND THE COMMITTEE FOR INVITING
ME TO DELIVER THIS PAPER. IT IS HOPED THAT BY DISCUSSING
THE EXPECTATIONS OF A UNIVERSITY COMPUTING FACILITY WE CAN
CONTINUE TO IMPROVE THE OPERATING SYSTEM FOR THE 360 COM­
PUTER AND ITS SUCCESSORS.

-3-

.--~~"-~~-. "-~"-•.. ~ .. ~." .. " ..•..•. " ... ,.".,,.",,

c

o

SESSION REPORT

COMMON - Chicago

S02sion Number MON El Session Name 360 DOS ---------------------- --------------------
Chairman A. Ragsdale

Time 5.30 to 7.30 PM
----------~--~------------~---

Attendance (No.)
----~----------

95

Speakers 1) Mr. Gerry Kaplan ~'IBM (Full FORTRAN UnderOOS)

2) Mr. Otto Bufe - ArthurG.McKee Company (FORTRAN' "Alter"

System)

Synopsis of Meeting 1) Full FORTRAN Undex- DOS was announced by Mr. G.

Kaplan oflBMo Availability was stat,ad as,thefl'rst quarter of 1969.

The additional facilities provided will:be. aY'LQGICAL'IF"tatement,

b) DATA Statement, c) more than, 3 dimensions, d) DEBUG facility,

e) CALL passing a literal, f) Object tLm. FORMAT statements. g) LABELED

COMMON, h) Generalized TYPE statements, etc. The recommend reference
manual is FULL FORTRAN C28-65IS.
2) The User Paper "The FORTRAN 'Alter' System" was presented~ Mr. Otto

Bufe. This is a method of convientlyup,~ating FORTRAN source modules,

and is well suited for use in testi~,.and deb~ging procedures. Card

4E) handling and card readi~_are reduced,to a min~um.

o

.~ FORTRAN IV F~atures
not in

BASIC FOR TRAN IV -e'«<J, ~~
~ . __ ~'"-. ~ De;..s· ./). ·.A-c.-~ .

~
• . "'.'

..
o ••

• ?;Z£S£ M7£ 2>.' . .8,/ ..
~: I? ·~·P~~·A.j 0,

° /8 ~ " zU~. ~ ;-',.'. ~ L1 . '. .

.' .' .'.'&: r ~ rr/ .AJ.s'
() ,.

~ S· '. ' ... ;
y .£SS/·~A.J'.Hc.A.lIE/ .

c

o

o

LOGICAL IF,LOGICAL

DATA, BLOCK DATA, LABELLED COMMON

DEBUG
COMPLEX
More than 3 DINENSIONS,

ADJUSTABLE DIMENSIONS,
GENERALIZED SUBSCRIPTS

GENERALIZED TYPE STATEMENT, IMPLICIT

CALL BY NAME, CALL (fLITERALr),
ENTRY, RETURN i

ASSIGN,· ASSIGNED GOTO

OBJECT TIME FORMA T STATEMENTS,
PRINT, PUNCH, READ b, list, END, ERR
NAMELIST, PAUSE LITERAL, G, Z, L,
FORMA T CODES

COMPLEX, LOGICAL, LITERAL, HEX CONSTANTS

----------------------;-----------~.-"''".-.,~=~~,-'--

•

c

* LOGICAL IF

IF (LOGICAL EXPRESSION) STATEMENT

IF (A. LE. 0) GO. TO 25 .

A = 0

c

o

•

*DATA INITIALIZATION STATEMENT

DIMENSION A (5), B(3,3), L (4)
DATA A/ 5*1. 0·1, B/9'1.:2. 0/,

L/4*. TRUE. /, C/'FOUR'/

*LABELED COMMON

" . COMMON A, B, C /ITEMS/X, Y,Z

*BLOCK DA TA SUBPROGR.AM

BLOCK DATA
COMMMON ••
DIMENSION •••
DATA
EQUIVALENCE
TYPE

*DEBUG FACILITY .

DEBUG SUBCHK (A), TRACE,
INIT (B, Cl, SUBTRAC·E .

AT
TRACE ON
TRACE OFF
DISPLAY X, Y, Z

*COMPLEX DATA and ARITHMETIC

•

o
.1

. I

o

ARRAYS:

* More than 3 DIMENSIONS

* ADJUSTABLE DIMENSIONS

CALL SUB (A, 5, 4)

SUBROUTINE SUB (A, I, J)
DIMENSION A (I, J)

A (K, L) = ...

* GENERALIZED SUBSCRIPTS

+ B (. 3~:~A(M, N»

,/ ".f-

" .. _._ _-" _ .. _'""' _ ... " -.. -"'-.... "'-.. "- ...•.... '" .. -."' .. ~ .. - .. =' =

*GENERALIZED TYPE STATEMENT

One STATEMENT DESCRIBES
TYPE
LENGTH
DIMENSION
INITIALIZA TION

REA L A (5 , 5) / 2 0 ~:~ 6. 9, 5 ~:~ 1. /, B (1 00)
/100*0. /, TES T~:~8(5)

*IMPLICIT

IMPLICIT INTEGER~:~2(A - H),
REAL ~:'8 (I -K), LOCICAL (L, M)

o

c

*CALL BY NAME.

ARRAYS, SUBPROGRAMS,
VARIABLES IN SLASHES

SUBROUTINE SUB (/x/,x)

*CALL ('LITERALr)

c~ *ENTRY STATEMENT

*RETURN i

CALL SUB (A, & 30, &40)

SUf3ROUTINE SUB (B, *, *)

RETURN

RETURN 1

RETURN 2

o

1;, :.,

o

*ASSIGN, ASSIGNED GOTO

ASSIGN 30 TO A

GOTO A (20, 30, 40)

"

o

/')

c.\ Ii

o

*OBJECT TIME FORMAT STMTS

READ (5, FMT) LIST

*READ b, LIST
PUNCH b, LIST
PRINT b, LIST

*READ (A, B, END = c, ERR = d) LIST

READ (4, 10, END = 300, ERR = 900) LIST

...... Ow

I ; ~ '._

*NAMELIST

'-NAMELIST /NAMl/A, B, I, J
WRITE (6, NAMI)

&NAMI A = 4. 00, B =" 267. 34 •
& END

*PAUSE rDO NOT PROCEED'

*FORMATS

G - GENERALIZED
(INTEGER, REAL, COMPLEX, LOGICAL)

Z - HEXADECIMAL

L - LOGICAL

*CONSTANTS
COMPLEX, LOGICAL, HEX, LITERAL

•

o

o

o

o

OTTO E. BUFE
PROCESS ENGINEER

FORTRAN "ALTER" SYSTEM

PRESENTED AT THE

COMMON MEETING

APRIL, 1968

CHICAGO, ILLINOIS

ARTHUR G. McKEE & COMPANY
CLEVELAND, OHIO

-- ,,-,,-----~---,,~-,-,-, .. '" ... "" .. '"'''''''' .. , ... -~--.,~'"'''."~~~-~~~~-~~~-~-----------------------

Page 1

FORTRAN "Altertt System

Sunnnary

The FORTRAN "Alter" System is a method of conveniently updating

FORTRAN source modules, and is well suited for use in testing and debugging

procedures. Source modules are stored on disk in the Assembler sub-library

and most of the operations are performed on disk, resulting in increased

efficiency of operations. Card handling and card reading are reduced

to a minimum.

The "Altertt system is comprised of 7 McKee utility programs as

follows:

1. Card to disk

2. Sort

3. Update

4. Produce control cards for catalog function

5. Documentation program

6. Wri te last record on punch file

7. Disk to printer

The programs are written in E level FORTRAN IV, and are presently

operating on a 64K Mod 30 under release #14 of DOS.

Background

Soon after operations were started on our 360, we realized that it

was very inefficient to run a comp.ile-and-go on most FORTRAN testing,

. due to the slow operation of the 'FORTRAN compiler. Fu~thermore, since

o

o

()

C',
'/

o

o

Page 2

FORTRAN "Alter" System

DOS does not furnish the ability to compi+e directly from source module

to relocatable library, many test runs could not be conveniently put

into a job stream.' We were able to stand this at first, since initially

there was a fair amount of available time on the computer. J:Iowever, as

the work load lncreased, the time for testing and debugging was accordingly

reduced, and we started thinking about procedures to make better use of

the test time. Development of the "Alter" system was 'a step in the right

direction.

Description

For maximum speed on our system"(4 disk drives, 2.tape drives), most

of the operations would have to be performed on disk, meaning that FORTRAN
'" .

source modules. must reside on disk. The DOS residence disk was selected

to hold these modules rather than a separate disk. The Assembler sub-

library in the Source Statement Library was used to store·the FORTRAN

source modules, due to lack of a FORTRAN sUb-library. Because of our

philosophy of operation, we are able to dedicate about 1/3 of the residence

disk to the source library. All of our FORTRAN modules at McKee are

presently storedtn this sub-library.

Under the operation of the system, all FORTRAN source modules,

when first coded and punched on cards, are put into· the Assembler sub-

library using McKee utility program #1 mentioned before. All modules

Page 3

FORrRAN "Alter" System

require a header card, giving a 4 character name and an 8 character name,

which will correspond to the name of the module in source and relocatable

librar ies respect.i vely. The program puts an identificat ion on all cards

in cols. 73-80, the first 4 characters being the source library name and

the last 4 being an " integer multiple of 10, indicating the card position

within the module. This identification limits the effective number of

cards per module to 999, but we have not found this ~o be a problem.

After the source module is in the source statement library, McKee's

utility programs are used to perform various functions, such as updating

the source and/or relocatable libraries, or performing documentation

functions. Input to the first util~ ty program (1/:2) in the job consists

of the type of function to be performed, and the change cards for each

module (if iequired). The program reads the cards and sorts the change

cards (if present) to assure the correct sequence of records for updating •

. McKee utility program #2 also creates an input file for the source

statement library service program (SSERV)to access the FORTRAN modules

from the source statement library and an input file for McKee utility

program #3.

McKee utility program #3 updates the source modules, if required,

and creates input files for the FOR'rRAN"compiler (if required) and the

maintenance routines in DOS. If"the source modules are updated, the

source stateme'nt library is updated with the latest versions of the

o

C 'I

.i

o

Page 4

FORrRAN .. Alter" System

modules. The procedure used in updating is similar to the one used in

the QUIKTRANoperating· system. In QUIKTRAN, any source statement in a

module may be inserted, deleted, or replaced by specifying a line number

and the altered coding, if applicable. In the McKee "Alter" System,

the modules are renumbered as they are updated.

McKee utility program #4, used in conjunction with the FORTRAN

compiler, produces the header card (CATALR name) necessary to catalog

an object module to the relocatable library. The program accepts the

header card for eaCh module as input and produces it on the punch file.

Note that several header cards may be produced in series if one or more

compiles in the job are terminated. In this case, the valid header card

is always the last one in the series. If the compile of any module is

terminated, this utility program effectively deletes the object module

in the relocatable library.

Some of you may be familiar with the documentation type program

that we included in the "Alter" system as McKee utility program #5. The

original program is available through cosr~c, an information center

set up to distribute NASA computer programs, and produces a flowchart

from FOR+RAN source statements. We have made a few modifications to the

program, one of whiCh "ras to enable the program to arrange the statement

numbers of a source module in ascending sequence, and revise the

corresponding statement· numbers in the transfer statements of the module.

A control statement specifies the first statement number of the program,

Page 5

FORTRAl~ "Alter" System

if the statement numbers are to be arranged. A zero statement number in

this card will perform the flowcharting function on the following cards

of the module. We have found this program to be useful in debugging and

testing as well as in documentation. If patches to a progra~ are to be

made involving new statement numbers, these numbers can be readily

determined.

McKee utility program #6 is executed after the last module in the

job has been read by the FORTRAN compiler (if object modules are to be

catalogued to the relocatable library). The program writes several

records on the punch file to effectively close the file and return

system control to the card reader.

At this point, I would like to show a few overlays to illustrate

•

the system. Overlay 1 is a display of a FORTRAN source module from the

source library. Note that the header card is given an integer identification

a flowchart of the same FORTRAN module, made on a 1403 printer.
I

flowchart program reqUires no input other than the FORTRA}T source statements •

•

Modifications to the Compiler

Before the "Alter" system could run successfully using disk files,

it was necessary. to modify the FORTRAN I/O module (IJTFIOS). The original ·0

c'

O· I'j~

o

Page 6

FORl'RAN If Alter" System

module writes 260 byte records on disk, which is unacceptable to either

the FORTRAN compile~ or maintenance programs, both of which accept 81

byte records. The modification consisted of revising the Channel Command

Words for the READ and \\fRITE routines so they will accept 81 byte records.

The number of records read or written per track was increased from 11 to

25.

Another modification to the IJTFIOS module was necessary for the

flowcharting function of McKee utility program #5. Since a full printed

line was necessary for this function, the 2nd modification to the IJTFIOS

module consisted of changing only the Channel Command word for the READ

routine to accept an 81 byte record, leaving the WRITE routine to accept

a 260 byte record. McKee utility program #7 then' could be used in
I

conjunct jon with the documentation program to read several short records

and print a full line.

Note that no modification of the IJTFIOS module is necessary if t~pe

files are used in the operation of the "alter" system. In fact, the

"alter" system was first implemented on a combination disk-tape system,

where only the initial and final operation involved disk. However, our 2

tape units are the slowest and most error prone 2415's IBM makes, and

we really get hung up waiting for the tape~ to re~ind! Needless to say,

we converted to a complete disk operation as soon' as possible. •

Page 7

FORTRAN "Alter" System

Techniques Used

We used some sp.ecial techniques in the McKee "Alter" System to

reduce the number of control cards to a minimum. Five extra disk

files (in addition to the 4 standard files) were created by ~eans of the

Standard Label (STDLABEL) option. Four of these additional files were

given the same extents and label information as one of the 4 standard

files. One of the files created was a SYSIN file, whi~h is assigned

to various disk units at different times during the execution of the

programs.

The two modifications of the IJTFIOS were catalogued into the

relocatable library under different header names. There are now 3 object

modules existing in our relocatable library with ide~tical program names.

By using an INCLUDE control card with the name of the. modified IJTFIOS,

we can override the original module.

We have been using the "Alter' system at McKee now for about 5 mon~hs

and the FORTRAN programmers are well satisfied with it. Programmer

efficiency has been increased because more can be accomplished with one

computer run. There is a slight increase in compile speed, due to the

input being taken from disk instead of cards, and also an increase in

speed in cataloguing both to the source and to the relocatable libraries,

all adding up to increased computer efficiency. •

o

c

. 01

C:

o

•

SESSION REPORT

COMMON - Chicago

S e s s ion Number",--, _"--s...=M=O.:.;N:.-:E=2:...-' _...:-.. __ ___ Session Name; Solution of Larse

"'Simultantous Equation. Chairman W. A. ·Pease. Jr.

Time 5.30 to 6.15 PM ,Attendance .' (No. ') -----------------

Speakers Suresh R. Phansalker of the Badger C0mt_ny

Synopsis of Meeting Solution of Large Systems of Simultaneoas

Equat10ns of the lei ne.rNonbomQleneous type, which display the

characteristics of symmetry and sparseness of the coefficient matrix

is uneconomical, when it is necessary to hadle and store the entire

matrix.

By using Cholesky's method for the half symmetric ban running

diagonally across the overlapped area of the two subject matrices.

much core space and operating time may be saved. The program 1s being

presented to the library and the technique i8in the paper pre.ented.

tlSOLUTION OF LARGE SYSTEMS OF LINEAR NONHOMOGENEOUS

SIMULTANEOUS EQUATIONS WITH BAND SYMMETRIC

COEFFICIENT MATRIX "

A paper presented by

Suresh R. Phansalkar atthe

Chicago COMMON meeting on o
April 8, 1968

c

THE BADGER COMPANY, INC

o

o

SOLUTION OF LARGE SYSTEMS OF LINEAR NONHOMOGENEOUS
SIMULTANEOUS EQUATIONS WITH BAND SYMMETRIC
COEFFICIENT MATRIX

INTRODUCTION:

In many scientific applications, it is often necessary to solve large systems
of simultaneous equations of the linear nonhomogeneous type which further
display the characteristics of symmetry and sparseness of the coefficient
matrix. It is uneconomical both in computation time and core storage if
it is required to store the entire coefficient matrix and operate on all of
its elements, most of which may be zeros.

Choleskyls method affords a very convenient means to secure both these
obje cti ves • For a gener al s ys tem of n equations, Choles ky I S method 1
re.qu~res.: n 2 + (~numb~ of the order of n) operations; whereas the Gauss
ehmInatIon requIres: _ + (a number of the order of n 2) operations.
Further economy is efft?cted by taking into account the symmetry and
sparseness of the coefficient matrix.

BASIC THEORY:

The theory underlying this method as well as the method itself has been
well known for sometime. For a system of equations

AX C (I)

the method consists of determining a lower triangular matrix L with which
the system of equations (I) can be reduced to the unit upper triangular form,
viz
TX

where

K ------------ (2)

A - coefficient matrix in original system
C - vector (s) of constants in original system
T = unit upper triangular matrix
K ,- derived vector (s) of constants
X = ve ctor of unknowns

Thus in es sence, by pre-multiplying the system (2) by the lower triangular
matrix L, system (1) is obtained.

rt'
THE SADGER COMPANY, INC: ~

~,

Then:

L(TX - K) .-- AX - C

This implies:

LT
LK

A - - - - - - - - (3)
C - - - - - - - - (4)

or, by adding (3) and (4)

-2-

= o

L [T + KJ - A + C --------(5)

It is known 2 thatfactorization of any arbitrary square matrix, such as A,
into a lower triangular and an upper triangular matrix, as is implied in
equation (3) above, is uniquely pos sible if the elements on the principal
diagonal of either L or T are given known values. In Cholesky's scheme,
the elements on the principle diagonal of T, the upper triangular matrix,
are all taken to be 1.

Once the unit upper triangular matrix T and the derived vector of constants
K are obtained, the u.nknowns X are obtained from s ys tern (2) by
a simple proces s of "backward sweep".

In practice the elements of L and the augmented T + K matrix are
obtained from the parent A + C augmented matrix row after row, from
left to right. The formulae to obtain the elements Iij and t i . respectively
of the Land T matrices are: J ..

b)

c)

d)

n == no. of equations

Where a represents elements of augmented matrix

That is, firs t column of L is s arne as firs t column of

[A + C] .
[A + cJ ·

t Ij .- ~
-. __ c=o-.-. j = 1 - - - = = - - (n + no. of sets of right hand cons tants)

a 11
j- 1

1· . - a .. - ~ 1. t rj 1J 1J 1r
r=I

j ::: 1, to i

[aij i- 1
t .. ~

1 - L 1. tru 1J 1.. 1r
11 r=l

j - (i + I), to (n + no. of sets of right hand constants)

THE BADGER COMPAI'JY. INC.

c

c

c

o

•

-3-

c) and d) above ;clearly explain how elements of both Land T are obtained
row wise.

Forexarnple, for a generalized coeff. matrix A (s lide 2), an
element, such as, say, 163 of the lower triangular matrix L
is given by:

a63 - ~ 6 1 t 13 + 162 t23]

~61 t 16 + 162 t 26 + 163 t36 + 164 t46 + 165 t5 6J

r67 - (161 t17 + 162 t27 + 163 t37 + 164 t47 + 165 t5~

CASE OF BAND SYMMETRIC ItA" MATRIX

AssuIne now that the matrix "A" is known to have sYInInetry @the principal
diagonal and non zero eleInents only within the region bounded by the 2 off­
diagonal lines . (Slide 1) For such a matrix, it can be shown that the upper
triangular matrix T will. also display the characteristic of non zero elements
within the band width only.

Further, the Land T matrices for such a matrix dis play the additional
property that;

lij ~ tji x Ijj i I: j

This can be readily seen from the illustrative example [Slide 3]

This then suggests that:

1) Only elements in the band width as defined in Slide 1 need be stored as
the coefficient matrix, eleInents below the principle diagonal being
unnecessary.

2) Only the diagonal eleInents lii and the elements of the upper triangular
Inatrix T, tij' need be calculated, elements lij O<i) being cOInputed
only as an intermediate product and not required to be stored.

THE B A C G ERe 0 M PAN Y. INC.

-4-

METHOD USED BY AUTHOR:

It is possible with a slightly different approach to the computation of the
elements lii and t .. to automatically eliminate operations on zero elements.

lJ. .'

Consider the triangular wedge starting with row 4 and ending on row 8
(Slide 2) with t 48 , l88 and t812 on its apex points.

Then if elements 188 and t8· are being generated, the elements in row 4
i. e.; 144 to t47 will be s!<?ipped over and the product of

t 48 184 .:.: t 48 (t 48 x 144)

will be formed and retained as a progressive sum. Further, when elements
in the 5th row are being processed, elements 155 to tS7 will be skipped
over and the product tS8 x 185 ~ tS8 x (tS8 x 155) will be formed and
added to the previous value 0 Thus, when the product

t78 x 187 .::. t78 x (t78 177)
is formed and added to the previous sum, we can compute 188 = a88 - SUM

Similar progressive products are formed and added and elements such as
say, t 810 are formed by:

t 810 :: _1 fa. 8 10 - suMl
188 [J

Thus, to compute the elements of the 8th row, 188 and t89 to t 812 , only

the elements in the triangular wedge directly above are required.

In the above example~ if rows 4 to 7 are in core memory the elements of
the 8th row in the triangularized matrix could be generated without any
reference to disk storage.

In the program, the variable T is designated to hold Na>RD rows, each
row containing NB3 ::: NBI + NLDC elements.

Where:

NBI = band width
NLDC =,; No. of sets of right hand constants.

For a large band width, say 100, and 20 sets of right co~stants, each row
of the upper triangular matrix T will contain 120 elements and NORD that).
equals 1200 := 10 rows. Every time Na>Rn rows of the upper triangular
matrix ar~~nerated, they are written on disk.

THE SADGER

o

c

C
~'
)

o

,-5 -

The auxiliary variable Tl(1200)is usedtoa bring in the previous rows of
the triangularized matrix, since a total of (NB 1- 1) previous rows of the
T matrix (Slide 2)is r~quired to generate the: e'lements in the last row of T.
It would have bee,n pos~ible to double try.e ext~nt of T i~st~ad of having a
separate variable T 1 but then wh,en new:er previous. rows are brought in
T the pr~vious contents of T (excepting 'the last row) will be lost. This
means that it would be necessary to write the triangularized array row
by row'. It was, therefore~ thought preferable to write NQ)Rn rows of T
at one time. Every time the last row is generated, rows are shifted up
by 1. Thus after NORD cycles, NORD rows of array T will be written
on disk.

USE OF ONE DIME'NSIONAL ARRAYS:

If the array T 'wereto be defined 3JS T(12, 100)" N<i>RDcould not exceed
12. But if in f1; very lar.ge system, ~:he band width is say~ just 10 and t.here
are two sets of right hand constante~, \:vith one dimensional subscripting,
it is possible to process N<i>RD ;;..: 100 rows in the array T. Thus, the
triangularized matrix can be written at the rate of 100 rows at one time,
instead of 12~ for. 2-·dirnensional subscripting. Incidentally even the object­
time dimensioning fa.cility in FORTRAN IV does not afford this Jlexi~ility,
w'hich can only be obtained by one diInensional subscripting.

Once the entire triangularized matrix (T + K) is written on disk,NBACK
rows (starting from the1ast row towards the first) can be brought in
meITlory and solutions obtained sirnu,1taneously to all the NLDC sets of
constants, in c1.uste.:t"s ofNBl. The solutions are written on the diskin
contiguous manner, so that all the n solutions for the unknowns
corresponding ,to the 1st set of right hand constants ar~ grouped together,
then those for the next set of right hand constants and so on.

DISK WRITE OPERATIONS:

The program written for I. B" M., 1620~ us~s a precision of 10
significant digits for floating pqintarithn:leti'coThus, a 'sector on
the 1620 disk would contain 8, ~ords'o' Although the p,rogram uses one
dirnensional subs,c~lpting, triangula~iz~dmatrix is written in u~its
of 1 row each. In other ~ords"~ eve~y row containin'g (NBI "+ NLDC)
elements is written on an integral number of sectors to facilitate the
read back operation-

THE I3ADGER COMPANY INC

-6-

The solutionsto equations obtained in N LDC sets simultaneously
in clusters of NBI are written so that NBI solutions of the first
set occupy an integral number of sectors, (containing l'fNB 1 ,values
where NNBI ~ NBl) NB1 solutions of the next set occupy the',same
number of integral sectors, with enough s pace left in between to
a~commodate the remaining solutions of the first set.

B) L Bo M. 360/44

The author has a version of the program for an 10 Bo M. 360/44 also.
The chief point of difference is that the minimum record size on the
disk in this cas e is 360 bytes and care must be taken. to prevent waste
of disk space. A, special DISKIO routine was, therefore, written
which effects buffered writing in units of 90 (single precision) words.
The in core calculations are performed in double precision but the
triangularized matrix is written on, disk in single precision to save
disk space.

SUMMARY:

The L B. M. 1620 version of the program3 which is in the form of a,main
program, can solve about 250 equations with 10 sets of right hand constants.
By redefining the working area on the disk and/ or adding more disk drives
to an installation, the program could be used to solve larger systems.
The version for an 1. BoM. 360/44 (with 2 single disk storage drives) can
handle about 1000 equations with the use of one 2315 disk for wo~k area,
assuming that some disk space would be reserved for the program utilizing
this routine.

The program output consists of the triangularized matrix, unknowns solved
for in back sweep (N LDC sets of NN B 1 values), sets of solutions fetched
in memory (one at a time) and the rearranged actual solutions.

The augmented coefficient matrix ~ + C] is read in row by row from cards.
(Only non zero elements above the principal diagonal are required.) The
difference in input to a general purpose routine for simultaneous equations
and that to the author's version is seen from Slides 3 and 4.

THE BADGER COMPANY, INC

o

c

o

o

o

-7-

An illustrative example of 12 equati~ns with 5 sets of right hand constants
and a band width of 5 has been solved and the output of the author's

program is attached as Appendix.

Cholesky's method, known to be the fastest 1 of the elimination methods,
has thus been effectively adopted by the author to solve large systems of
simultaneous equations with band symmetric coefficient matrix and a
number of sets of right hand constarlts, so as to ~liminate all operations

on ze ros outs ide the band width.

REFERENCES:

1. M. G. Salvadori, & M. L. Baron; Numerical Methods in
Engineering

2. V. N. Faddeeva; Computational Methods of Linear Algebra

THE BADGER COMPANY. INC.

APPENDIX·

(Solution of Large Systems of Linear Nonhomogeneous Simultaneous
Equations with Band-Symmetric Coefficient MatrixY

1) Program Output Sheets 1 through 6··

2) Slides Sheets 7 through 12

THE BADGER COMPANY. INC.

c

o

o

, ________________________________ 1;'

SESSION REPORT

c COMMON - Chicago

Session Number MON Gl Session Name 1130 SOUND OFF ----------------------
Chairman G. F. Schoditsch

Time --------------------------------8.00 to 10.00 PM Attendance (No.) ----------------175

Speakers Vann Hettinger and Gene Lester - IBM

Synopsis of Meeting I Members proposed questions to IBM regarding the

MONITOR system version 1 and 2, hardware problema, tyPe 11 packages,

and other user questions and question areas. IBM took note of the

4[) following items' 1. Improve compatibility of 1130 and 360 FORTRAN

2. Lmprove Assembler Manual

o

3. Remove the restriction in DM2 that an integer
S3XMSRM~ax~ constant used as a subscript may not point to an

element outside the range specified in the DIMENSION.

4. Establish default option for ONE WORD INTEGERS

5. 1~03 will space or skip even thouah READY.

6. Include 1403 and 1132 carriage clutch in not ready

signal to 1130.

7. The "Green Sheet" (Bibliography) i8 3 months late

announcing DM 2.

8. Type 2 program notes.
A. Time Delay Routine needed for CSMP
B. Electric Load Flow should be Type 11 supported
c. PCS ahould aupprt Pree Ploat
D. ECAP should be Type II supported ~!
E. A routine similar to "360 Matlan" supported

Session Number TUE Al

SESSION REPORT

COMMON - Chicago

----------------------- Session Name 360 Full Project

Meeting Chairman W. Norton

Time 8.30 to 10.00 AM Attendance (No.) ----------------

Speakers W. B. Garrison - IBM. Chicago

Synopsis of Meeting A presentation was made of the 05/360 Languages.

-------------------------------------_ ... _ " __ ._.

l

c

o

c

1£
o

o

7'LtE A-I

05/5tO L()A~?

~~~kt0':(/ _. ~,o~ 
ItSSG~113J,GR E F 

"I 

C 08()L Ej t= 
PoI21!2AAI C/ ') I-f 

PL/I r-
AkGc)L r-
!ePG E 

etWI4C~lU of ~ ~ s,~-wJ 

A · rMat;~ - :; ttl. A",,(C~h"~ q"~ ~~~ ~ 
- ~~~/.Nk~~~J~ 
- ~ MtMlW.$r,;::4. - :Jdw".; oJ ~ -(sYSbEIJ) 
- ~ IC(JPJ'~ 
- 'j)~ ~.,,~;I. f· C",J;J ~ ~ 
- ..,~ Jdnd~ 

~~Vu;~ 1~ 
/(~~ ~~ 

~ E (/l'tfJ fJMd F(e;1/()~~ 

- !/!ed ~ lOt! ta.. ~ ()S/JltJ 
- 1/ JJ 1. ~.-I ~ - ~'IIU. ~ wiA4 

s.....)&.~ ;Jv~:w,;p';f1 
~~ I!~ ieJ .~rr-
fI~ ~ t'J4 44t tp~ ~ 



E. C 0 (3 6 L E ( I 7 1<) Cv..c{ ::: ( 80 () 
- 18;!1 CoC3IJL - COGo/.. IGC W~;"~i'... w..d!;._,c:;2Zx:.::X~ 

"­
\ 

o 



o 

o 

c. F0(21lcAAI F (/g /() G (e () Id 1-1 ( :Zoo Ir ) 

- liSA 51 (;1 SIl) fJ4S I (. (tE) c;;,c/ f:U (6) 1-/) 

~ c D r10()~ ~) ~ GIk' PIC (.5/)6'0) ~l?rnJf. 
- I;' (), ..... " " l'/:lP .... r"'/'i r ~/'r-.,/)- • I,; .",-.. •. ,~ ...,;.,t' V<"'~·~·.., I:'v"'vv- • ~ 

,tI , "" 

~-:::r--rJi2{~t;!r~; .. :'::::=t;;'l:;~.:~~~~~::::-: -;~/.:.~-~-~--ft':-~~~:--:li!: .jcifJy( t! A D
j 

0(2 / r t£ 

1)~ f~ ~(h7'~tie 
'JJv~:.1 ;;-" ... u.&. ~"M~ 
yJM~ ~I ptftw.d A/4 .w~ r( '/.II ~s. 
T I 1'" 0). .. I e-u;a t;:o.,A. • 

"5 ~;1h ~ aM.c~ 
p-~~ 

- W ~~" 
eI~ ~ .t.,,*~~ /~~ f4 f'~ -
1MP/"IC/T ~~~~ 

~ ~ ~i1.td- (~t;f ~.) 
au ~f~ , c. I C<V.M...a t.tC.x" 
~ o/a1L- JU;~~ P,c:-:.:JJ. ,£ Mcit ~.!.~~ M~ 
~)f'2 t'i- 7 ~~-;Wv~etq'44 
!l/AA'lPtls, rt- 210 w~~ .u~AiJ ('F:M. 
H~ C01t4t~ ~ r:~ ~ 

- C ..&;~~~ " . . 

~ ~ &Lq-,?~ ~~ ~ 
~~t~v"",~~?==':~ew..~lElttt1JF:- . 

-- &e.o G, G I II 
G F fJ4)f ~~' ~:;.v.t.:l sLdvy< 
G tl , , f.J/ 4r~ I dr4v.pj /41. 

,1--1. b(MA sJ u fod tit ~~~_ ~ _~~.1 ~'tI. 



C~.'"·· , ,..I 

Y. PL/I 

C 1 
. ,., 



o 

o 

IE· At G 0 L F ( '14 /() 
- GCMA +IFJP ~ '1 AJ..(()L 'bJO 
- 8S4M a:.lo ~~ . . 
~ ttJ. af,.,(J ~..,IIZ...'" t- .. ~ 
w~ /q-. J!Jdd' 

- . M4-- Mf""u 7,d-~-

F. f( P&' E· O~?() 
- ' {JMoIJ ~;;1- (lP6 .~ p-/u4:" . 
~~ ~~~Wi: 
tM~ 
~r h-.f.CIr.. (~) 
rp s,4;fJ1 B PA;l/ -+ ISI/d . 
-~~~ 
- ~ fi ~1Af~ ~. ~ ~~ · 
- (jJ~ ~ ~"~",,dA /) () Ii C().i; /.I2tJ 
~ I#'~ - ~.i". C(J('jCJ'J pt/I.. . 



o 

o 

c 
" . 

I \ " 



c 

o 

SESSION REPORT 

COMMON - Chicago 

Session Number TUES A2 
----~~--~-----------

Session Name MPX I Introduction 

Chairman R. P. Walker 

Time ______ ~8~1~3~O~t~o~1~Q~.uO~O~AM~'~ ________ __ Attendance (No.) ___ 9~1 __________ __ 

Speakers Tom Candy - IBM 

Tutorial Session Synopsis of Meeting -------------------------------------------------------

--------------------------------_--:....._---_._-_ .. _--_. 



PREFA,CE 

The objective of this marketing guide is to provide you with a . 

fundamental understanding of the new 1800 Multi-Programming 

Executive System (MPX), for the purpose of communicating this. 

information to customers and prospects. 

The guide is organized firstto provide a general systems 

summary and then a more detai led specification. 

The illustrations and diagrams in the guide were designed 

to help meet educational requirements, permitting view graph 

foils to be made directly from this material. 

The word "area" is used frequently in the discussion of MPX in .. 

this guide, and is synonymous with the much used word "partition". 

c 



o 

o 

o 

TABLE OF CONTENTS 

SYSTEM SUMMARY PAGE 

I Major Features -------------------------------------------- 1 

II Ph i losophy ------------------------------------------------ 2 

III Operating System Organization ------------------------------ 3 

IV High lights ------------------------------------------------- 4 

V Time- S ha ri ng ---------------------------------------------- 7 

V I MPX Compared To TSX -------------------------------------- 9 

V II Th roughput Analysis --------------------------------------- 10 

VIII Multi-Programming vs Core Exchange ----------------------- 11 

SYSTEM SPECIFICATIONS 

I Min i mum mach in e req u i rements ------------------~---------

II, Core, Storage Organization ----------------------------------

III Executive Director ------------------------------------------

Master I nterrupt Control (M I C) -------------------------

12 

13 

15 

16 

New I nterrupt Concept ---------------------------------- 17 

Program Sequence Control (PSC) ------------------------ 19 

I nterval Timer Control (ITC) ---------------------------- 22 

Time-Sharing Control (TSC) ----------------------------- 28 

IV Executive 1/0 ----------------------------------------------- 29 

1/0 List Structu re -------------~------------------------ 31 

Type 1 Exit Ca II ----------------------------------------- 33 

Type 2 Exit Call ----------------------------------------­

Type 3 Exit Call ---------------------------------------­

FORTRAN Type 3 Call ------------------------------------

35 

36 

37 ' 



TABLE OF CONTENTS (Con't) 

SYSTEM SPECIFICATIONS 

Error Alert Control (EAC) -----------------------------~--

V Batch Process Monitor --------------------------------------

Disk Management Program (DMP) -----------------------­

Real-Ti me Executions -----------------------------------

FORTRAN ---------------------------------------------­

Assembler ---------------------------------------------

V I Dynamic Storage Protect Subroutine ------------------------

SYSTEM GU IDANCE 

I System Simplicity ------------------------------------------

II . Configuration Gu idelines -----------------------------------

III Typical Core Layout and Level Assignments -------------------

PAGE 

38 

39 

41 

42 

43 

43 

44 

45 

46 

47 

IV TSX to MPX Conversion Considerations ---------------------- 48 

CI 

o 

c 



MPX 

o 
FEATURING----------

- 26 PARTITION MULTIPROGRAMMING CAPABILITY 

- COMPLETE INPUT/OUTPUT OVERLAP 

- AUTOMATIC PROGRAM SCHEDULING 

- MAXIMUM ON-LINE AVAILABILITY 

- ON-LINE HARDWARE DIAGNOSTICS 

o - FLEX I B IL ITY TO F IT MANY APPLICAT IONS 

-1-
o 



PH I LOSOPHY 

MPX is defined as a real-time multiprogramming operating 

system capable of maximizing the efficiency and throughput of 

the I,BM 1800 Data Acquisition and Control System computer 

(figure 1), It is designed to asynchronously time-share several 

independent processes with concurrent background batch 

processing functions (figure 2), The increased throughput 

provided by MPX is accomplished through sophisticated inputl 

output handling techniques, making the central processing 

unit ava i lable du ri ng a II 110 operations. The capability exists 

for the MPX system to be configured into a maximum of 26 

unique multiprogramming areas. 

MPX control programs are designed modularly to provide 

extended flexibility in covering a wide spectrum of applications, 

th us minimizing the probability of user modifications due to 

unique application requi rements. 

Multiprogramming is achieved through the use of the 

programmed settable interrupt feature in the 1800 hardware, 

eliminating time consuming list searching techniques. The 

major objective with in the design of MPX is the minimization 

of overhead, or unproductive processing. 

-2-

o 

, , C,'" 

0, 



o 

o 

o 

HIGHLIGHTS 

The System Executive with in MPX provides an extremely 

flexible set of subroutines to manipu late the hardware and 

software interval timers. Periodic interrupts are nowauto­

matically generated for the user, thus alleviating the scheduling 

problem. It is also possible to create a specified time delay 

occurring between two instructions or statements within the 

same program. Th is interval of time is then allocated by the 

system to other programs requiring service. The ability to 

cancel any of the interval timers is also provided through a 

subroutine call. 

Multiple programmed interrupts per level are provided, 

including a new interrupt handling concept which makes it 

possible to simu late the occurrence of an actua I process interrupt. 

Coreloads may automatically be queued in to designated areas 

with the occurrence of a process, programmed, or periodic 

interrupt, alleviating nearly all of the scheduling burden. 

The background Batch Processing Monitor is automatically 

allocated idle real-time by the Time Sharing Control program. 

The entire background operation can be prioritized relative to 

other real-time programs queued into the same area of core, 

giving an override capability when batch processing is immediately 

required. 

-4-



Source level distinction is minimized between real-time and 

non real-time programs providing an easy transition from program 

development in the batch stream to on-line execution as a real-time 

program. 

Subroutines requiring immediate response to timed, process, 

or programmed interrupts are now built into a special coreload 

wh ich is designed to reside in core until some modification is re­

qu ired by the usero Th is provides fast in-core response and user 

modification capability while the system remains on-line. 

Complete flexibility in the handling of real-time errors is now 

o 

possible th rough user intervention, and direction of error diagnostic C' 
and recovery options. Subroutine calls provide restart, reload, and 

abort fu nctions. The error pri nt routi ne provides information wh ich 

helps in identifying the real source of the error and is directly call-

able by the user" A diagnostic dump analysis program clearly 

labels all pertinent areas of core to expedite checkout in the early 

phases of an installation. 

The Disk Management Program (DMP) dynamically controls the 

a lIocation of bulk storage to MPX system programs, subroutines, 

user coreloads, and data files. An option exists for the user to stra­

tegically position data files and coreloads, giving better response and 

throughput. C 

-5-



c' 

o 

• 

A System Maintenance program operating under DMP permits 

on-line modifications to disk resident IBM system programs and 

library subroutines due to I BM supplied modifications. To complement 

this, On-Line Diagnostics are supplied for the 1053 printer, 1442 

card read/punch, 2310 models A and C, and the Analog to Digital 

Converter in DPC mode. 

A very useful set of utilities are available to perform disk copy, 

disk patch, dumps, and general system documentation. 

FORTRANREAD/WR ITE operations are overlapped to take advantage 

of the mu Itiprogrammi ng capabi lity. Also, all input/output control 

routines are directly callable at the FORTRAN level, eliminating time 

consuming overhead of FORTRAN linkage subroutines. 

System Generation is performed under complete control of the 

Batch Processing Monitor, providing streamlined operating procedures. 

I fl summary, the MPX Operating System is designed with the 

objectives of maximizing on-line availability and throughput, and 

min im izi ng overhead. 

-6-



TIME-SHAR ING 

Time-sharing is a term most often misunderstood in its 

relationship to the application disciplines of control systems. 

MPX TIME-SHARING 

Time-sharing as defined under MPX is the allocation of 

resources by the central processing unit between several in­

dependent real-time applications wh i Ie concu rrently perform ing 

background batch processing functions. 

Time-sharing under MPX should not be mis-construed as 

a massive terminal oriented time slicing system providing an 

increment of time by rotation to hundreds of users. 

Figure 2 illustrates the interplay ona priority response 

basis between several real-time programs and a background 

batch processing function. 

-7-

o 

c 



o 

MPX COMPARED TO TSX 

TSX is a single area operating system designed on a core 

exchange concept for the smaller user. Due to its one area 

design, disk I/O time cannot be overlapped during program 

loadi ng, except randomly th rough higher priority executions. 

TSX operates very efficiently where the process or real-time 

programs reside in fixed core and the background is reserved 

for the Non Process Monitor. However, when real-time 

programs are disk resident, the time-sharing capability can 

get bogged down due to frequent core exchanges and non­

overlapped disk I/O time. 

MPX on ·the other hand is an un" area multiprogramming 

system, where lin" is defined as twenty seven minus the number 

of 110 device levels. Assuming at least one level of I/O, its 

maximum number of areas is 26. I n most cases three to five 

areas will be typical. The use of multiple areas of core to con­

tain disk resident programs gives the advantage of executing 

one program wh i Ie another is on its way to core. 

MPX is designed for the large user who may have several 

processes to control and needs to squeeze the last available 

increment of time out of his 1800. 

-9-



MPX THROUGHPUT ANALYSIS 

Figure 3 illustrates a graphical comparison of the MPX and 

TSX philosophies. By utilizing area 2 for a real-time coreload, 

MPX can avoid two disk operations of saving and restoring core, 

while improving response time to the real-time coreload by one 

disk operation or 100 percent. Core exchanges occur in TSX 

whenever the transition is made between process and non-process, 

or for interrupt coreloads. 

By overlapping the disk load time of the real-time coreload 

and internal 110 TIME such as analog input, and at the same 

time avoiding two disk operations, a substantial gain in throughput 

can easily be realized. 

Figure 3 is not meant to unconditionally state that a 40% gain 

in throughput will be inherent in MPX. Careless MPX systems 

design can produce a negligible advantage while, on the other 

hand, the proper configuration of an MPX system can in fact 

improve th roughput by large percentages as illustrated. 

-10-

._.--_._-- .. _-----_ .... _._-----

() 



~ ... ; ~, 

o 

SYSTEM SPECIFICATIONS 

MPX MIN IMUM MACH INE REQU IREMENTS 

A. 1801 or 1802 with 24 K words 

B. 1053 printer 

C. 1442 card read/punch 

D. 2310 A2 (2 disks) 

NOTE! A 16 K one disk system is feasible with MPX 

but will probably be severely limited in multi­

programming capability. This is due to minimum 

core requ irements of 7.5 K words for the System 

Executive and 5120 words for the Batch Processing 

Monitor, leaving approximately 3 K words for extra 

coreload areas. The use of assembler language 

could perhaps make multiprogramming feasible in 

a 16 K 1800. 

-12-



~~~~' "''''''~-~-~''--''-''''''''''''''''''''-----'--~-
-_ .. _ ... _._ .. --_ .. -._ _.-_ .. _." .. " ... " , ,-, .. ,.~,"" .. ~~-.~~~~----- -_.

MPX CORE STORAGE ORGANIZATION

During system generation (SYSGEN) core storage is partitioned
into a configuration which should best meet the response
requirements of the processes under control. Core is organized
into two basic functions; (FIGURE 4)

A. SYSTEM EXECUTIVE (core resident)

- Fixed Area (approximately 300 words)

- COMMON I INSKEL I (user defined)

- Executive I I 0 (disk, printer, etc.)
includes Error Alert Control Minimum 7.5 K

- Executive Director
includes M I C, lTC, PSC, TSC

- User and MPX included subroutines

- Patch area (whatever is left)

- Executive Linkage Tables (EBT, ETV, etc.)

B. CORELOAD PARTITIONS

~ Specia I Core load A rea (S PAR)
contains interrupt subroutines requiring fast response
which are capable of being modified on-line.

- Coreload Areas (for real-time coreloads) 23 Maximum

- Variable Core (mimimum 5120 words)
contains either real-time coreloads or
the Batch Processing Monitor.

NOTE! A 26 area system includes; 23 coreload areas, SPAR,
Variable Core, and the user subroutines in the
System Executive.

-13-

o

c

o

•

MPX

EXECUTIVE

DIRECTOR

-15-

rJ

EXECUTIVE D I RECTOR

MASTER INTERRUPT CONTROL

Automatica lIy queues coreloads to any a rea

Expanded programmed interrupts CALL LEVEL (LL, BB) 16 per level

Process interrupts may be simulated

Permits user writtan I SS routines

Interrupt coreloads are interruptable by higher level interrupt coreloads

Out of core interrupt handling is optional

All interrupt subroutines end with RETURN

All coreloads end with CALL EX IT

I nterrupt subroutines may be rebui It on-line in the S PAR area.

-16-

CJ "

o

o

Master I nterrupt Control

New I nterrupt Concept

MPX external and programmed interrupts are now handled

consistently by a tech nique utilizing a pseudo PI SW word.

Process interrupt bits and programmed interrupt bits are both

ORed into the pseudo P ISW word when their respective interrupts

occur. Often there are many unused bits within a PISW ,on each

level. These bits may now be used for programmed interrupts.

Also a program normally activated as the resu It of a process

interrupt, may also be activated by the appropriate level and bit

combination for a programmed interrupt. This is useful not

only to simulate the occurrence of an actual process interrupt,

but also applicable in certain real-time situations.,

The new interrupt concept is extremely powerful since four

unique types of programs may be activated under either condition;

A. I n-core with the System Executive

B. S PAR resident subrouti nes

C. Automatically queued coreloads (any area)

D. Interrupt Coreloads.

-17-

~

EXECUTIVE DIRECTOR'

PROGRAM SEQUENCE CONTROL (PSC)

- Directs Linking and Chaining of all coreloads

CALL LINK (NAME)

- Standard exit procedure for all coreloads

CALL EX IT

- System option exists for the followi ng :

CALL S PECL (NAME)

CALL BACK

-19-

CJ o

• o

EXECUTIVE DIRECTOR

PROGRAM SEQUENCE CONTROL (PSC)

- 'Queues eoreloads into specified areas on a priority basis

CALL QAREA (NAME, PR lOR, LEVEL, AREA, ERROR)

Where,
NAME = Core load . name

PR lOR = Sequence priority

LEVEL = Execution priority

AREA = Area number for eoreload

ERROR = Variable which is set to :

I = entered into queue

o

2 = not entered s i nee queue was fu II

-20-

i,,/''''';

-c.
<:

c

EXECUTIVE DIRECTOR

PROGRAM SEQUENCE CONTROL (PSC)

- Remove a coreload from the queue

CALL DEQUE (NAME, PRIOR, LEVEL)

Where,
NAME = Core load name

PR, lOR = Sequence priority

LEVEL = Execut~on priority

- Completely clear out a given level queue

CALL CLERQ (LEVEL)

W~here,
LEVEL = the queue for the level specified

-21-

o. o

e

•• ,,""--.J

~
"'=~.~

EXECUTIVE DIRECTOR

INTERVAL TIMER CONTROL (lTC)

- Sets a programmed interrupt at the compl~tion of a time delay

CALL DELAY (LEVEL, BIT, TNO, I NTVL)

Where,
LEVEL = Programmed interrupt level
BIT = Programmed interrupt bit (pseudo)
TNO= Timer number (I-II)
INTVL = Desired interval' for delay

NOTE :(LEVEL, BIT) specifies either an interrupt subrouti ne
which can reside in SPAR, or an automatically
queued coreload •

-22-

o

c

EXECUTIVE DIRECTOR

INTERVAL TIMER CONTROL (ITC)

- Provides automatic periodic execution of a programmed interrupt
subroutine or queued coreload on a specified cycle.

CALL CY ClE (LEVEL, BIT, TNO, I NTVL)

Where,
lEVEL = Programmed interrupt level
BIT = Programmed interrupt bit
TNO = Ti mer number (I-II)
I NTVl = length of periodic cycle

NOTE: (LEVEL, BIT) is either a programmed interrupt subroutine
or an automatically queued coreload executing on a
periodic cycle.

-23-

o o

• o

EXECUTIVE DIRECTOR

INTERVAL TIMER CONTROL (ITC)

- Suspends execution of a coreload for a specified increment of time

CALL SUSPN (TNO, INTVL)

Where,
TNO = Timer number (I~ II)
INTVt = Time increment for suspending

the core load prior to in itiati ng
the next statement or instruction

NOTE: The entire time interval is overlapped
in a multi-programming mode.

-24-

c

c

EXECUTIVE DIRECTOR

INTERVAL TIMER CONTROL (lTC)

- Execute subroutine (NAME) at the completion of a time interval

CALL DEFER (NAME, TNO, I NTVL)

Where,
NAME = Subroutine which executes on timer level
TNO = Hardware or software timer number (I-II)

where, 1,2 = hardware timers
3-11 = software timers

I NTVL = Desired time interva I

-25-

() o

o ~ o

EXECUTIVE DIRECTOR

",

INTERVAL TIMER CONTROL UTC)

- Provides automatic periodic'execution of a subroutine on timer level
'. " ,- 'i ' .. :. ,:

... ': ~ . f' ~ ,:'

CALL REPET (NAM~, TND, I NTVt)

Where ." .' ': '
. 'NAME = S ubroutineon timer. level

4'
I~ ~ TNO . "= Timer numbe'r- (I-Il) l .

I NTVL = Peri.odlctime interval
. _ ..

NOTE: This CALL would be normally issued at cold start.
From then on(s ubrouti ne (NAME) wi II be periodica lIy
called into execution.

-26-:-~: c'::" .~ t.: '.: ~ ~{

c'

EXECUTI"VE DIRECTOR

INTERVAL TIMER CONTROL (ITC)

- Cancel the operation of a specified "timer.

CAll CANCl (TNO)

Where, TNO = Timer number (I-II)

-Read the real-time clock in hours, mi·nutes,and seconds

CAll TIME (HH, MM, SS)

- Read the real-time clock in hours and thousandths

CAll CLOCK (H)

- Set the real-time clock in hours and thousandths

CAll SETCl (H)

-27-

CJ o

• o

EXECUTIVE DIRECTOR

TIME SHARING CONTROL (TSC)

- Automatically allocates idle CPU time to the Batch Processing Monitor
if a CALL EX IT is made and the mainline level queue is empty.

- Automatically suspends the Batch Processing Monitor if a coreload is
queued for the mainline area with a priority higher than that established
for the Batch Processing Monitor.

- Queued core.loads with a priority lower than the Batch Processing Monitor
are executed between batch jobs in the main Hne area.

- The Batch Processing Monitor may be given top mainline level priority.

-28-

c

M PX

EXECUTIVE

I I 0

and

CONTROL

ROUTINES

(IOCR)

c

o

C':

EXECUT IVE I I 0

- Queues requests for II 0 when device is busy

- I nitiates all II 0 operations

- Suspends user coreloads during II 0

- Re-enables suspended coreloads when I lOis complete

- Transfers to user subroutines when I lOis complete

- I nitiates previous Iy queued requests when device is free

- IOCR directly callable from FORTRAN

- Overlap II 0 within a coreload as in TSX

- Notifies the user of I I 0 errors

- Queued lists are dynamically storage protected

-30-

•

EXECUT IVE I I 0

List Structure

The II 0 list is the heart of MPX multiprogramming capability.

The list structure format illustrated in the following diagram is

basically the same for all I I 0, with the exception of process I I 0

where extra control information is required.

The Li"nk/Busy word is used to point to the next 1/0 list queued

in some other area waiting to be serviced. When the II 0 operation

has successfully been completed, this word is set to zero and can

thus be tested for a successful operation if desired.

The Exit Type word is used to determine the type of II 0 call.

If this word is non-zero, a type 2 call is ass u med,a nd the address

in th is word denotes a user operation complete subroutine wh ich is

entered when I lOis terminated. If this word is zero and the call

is from a coreload area, it is considered as a type 3 call and the

coreload is suspended for the duration of the I I 0 operation. If

the same call is made from Variable Core, it is treated as a type 1
(

call requiring a user busy test to determine II 0 complete. This

same procedure is used in TSX.

-31-

o

c

c

o

o

•

The next four words in the list are to be reserved for the

system and are used to contain various addresses and data

necessary to carry out the I I 0 operation.

The Error I ndicator word is set to various integer values

depending on what happened during the II 0 operation. A

value of (I), tells the user that a successful operation occurred.

Other values are set dependent on the type of error encountered.

The Control word is similar to TSX in that four hexidecimal

digits are required to specify the type of II 0 operation desired.

The Area word is a Iso like TSX, specifyi ng the location of

the data input or output buffer.

To maximize system integrity, the entire II 0 list is

dynam ica lIy storage protected on Iy du ring the I I 0 operation.

-32-

J~

a _______________ • __ ____ _ ... ________ ''"-====_=_ .. =_ .. = ____________ a_

o

c

o

o

Type 1 or 3 Exit

DC 0

DC 0

RETURN ADOR.

INTERRUPT ENT.

LEVEL I AREA

I I 0 BUSY ADDR.

c o

EXECUTIVE II 0 LIST STRUCTURE

Type 2 Exit

CALL

OPCOP

LINK I BUSY

EX IT lYPE

System use on Iy

ERROR IND ICATOR

CONTROL

AREA

c

EXECUTIVE I I 0

TYPE I EX IT (As in TSX)

I
I
I ,

CALL IOCR

DC LIST
I
I
I ,

Executi ve I 10
Transfers Control
Back Immediately
After Initiating
II 0 Operation

(J

List link I Busy

Exit Type

Error Ind.

Control

Area :J
/

I~

;

.-j

DC 0
DC 0

System
Reserved

DC 0

IABCD

Area
I

Word Count

Datal

Data2
•
•

Datan

o

• ~ o

EXECUT IVE II 0

TYPE 2 EXIT (Operation Complete Subroutine) 4a

I
I
t

C
CALL
DC
CALL

IOCR
LIST '
EXIT

II 0 Control ·Transfers
Back I mmediately After
I nitiating the II 0 Operation.
When the II 0 is Complete, a
Transfer is made to Subroutine
(OPCOP)

LIST CALL

OPCOP ~

~

System
Reserved

Error Ind.

Control

Area 7

Area I Word Count

Data

Data2

•

Datan

EXECUTIVE I I 0

TYPE 3 EX IT (S uspends Coreload)

I
I ,

• CALL IOCR

DC LIST .-

~_MDX L

SSI

"

I
I
I

I
Y

LIST +6, -}

ERROR ---~

, I Skip if No Error

I I 0 Control Transfers Control
l I to CALL +2 after Enti re I I 0

Operation is Completed.

c ~

List Link I Busy

Exit Type

Error Ind.

Control

Area /

DC 0

DC· 0

System
Reserved

Area I Word Count

Data}

Data2
Data

3

Data
n

o

o o

EXECUTIVE 110

fORTRAN lYPE 3 EXIT

D IMENS ION LI ST(9),
DATA LIST(2) / ZABCD
DATA IAREA(IOI) / 100 ,

I AREA(IOI)
/

.
LIST (I) = IADDR (IA
CALL IOCR (LIST(9))

-~~ GO TO (10, 20, 20, 20, 2!
20 CALL ERROR
10 .

~EA(lOI))

0,20,20), LlSl (3)

JTROL I S TRANSFERRED
rHIS STATEMENT ONLY
ER I/O IS COMPLETE.

-

.. ,.

..

..

LINK/BUSY
EXITlYPE

ERROR IND.
CONTROL
AREA "-

..........

100

•
•
•

1
J

o

ST(9)

YSTEM
ESERVED

ST(I)

AREA(lOI)

AREA(I)

c

EXECUTIVE I I 0

ERROR ALERT CONTROL (EAC)

- User intervention and di recti on for error recovery procedu res

- Error Print Subroutine available to the user

- S ubrouti ne ca lis avai lable to :
A. Restart or abort a coreload
B. Re-load the system

- ARe-load coreload may be specified

- Error printing occurrs in unmasked mode.

- MPX programs notify user on a CALL basis of resultant errors

- A Diagnostic Dump Analysis program clearly labels all system and
user coreload areas to expedite debugging.

-38-

c "

c

•

MPX

BATCH

PROCESSING

MONITOR

BATCH PROCESS ING MONITOR (BPM)

The MPX Batch Processing Monitor is very similar to the

TSX Non Process Monitor in design. However many new features

have been included under its contro I:

- On-Line hardware diagnostics for 1053 printer, 1442

card read/punch, 2310 model A and C disks, and the

analog to digital converter for direct programmed control.

- Real-time multiprogrammed coreload execution under

control of the supervisor.

- Streamlined SYSGEN procedures under complete control

of the monitor (BPM)'

- Re-entrant or Non Re-entrant subroutines selected by

MPX builders or through control cards.

- The time of day is printed when encountering a /I JOB card

providing assistance for user job accounting.

-40-

o

o

o o

BATCH PROCESS ING MaN ITOR

DISK MANAGEMENT PROGRAM

I mproved performance

Defines sizes of various coreload areas

User may specify actual disk locations for better optimization

of core loads and fi les

Reserves fi Ie space without movi ng data

Documentation printouts of coreload name tables and system

executive tables

On-line system program maintenance

On-line disk patch, disk copy, dumps

On-line modifications to coreloads and interrupt subroutines

-41-

o

o

c

o

o o

BATCH PROCESS ING MONITOR

- Real time coreloads may be executed in different areas from a batch job.

BATCH JOB

/I JOB

I/XEQ NAME]

/I XEQ NAME2

/I XEQ NAME3

/I XEQ NAME4

MPX
SYSTEM

EXECUTIVE

SPAR

Coreload Area 1

Core load A rea 2

Coreload Area 3

Variable Core

n

___ . , _ ••..• _ ••• • ____ .- ••• , •. _._. ••.....• - ..•. ,~ .•••.. -r.;~.- .. -.-'--.--.- .• -.--.• - ..•..•. - .•. _ •..... _-_.-

1800 MPX

FORTRAN IMPROVEMENTS

- FORTRAN 110 overlaps all READ/WR ITE
operations through the use of a Type 3110 exit.

- I nput Output Control Routines (IOCR) are
directly callable in FORTRAN eliminating the
overhead of linkage subroutines.

- TSX - FORTRAN Compiler is used in MPX

- Multi-level shared FORTRAN 110 buffers

ASSEMBLER LANGUAGE

- TSX - Assembler is used in MPX

-43-

o

o

o

o

•

DYNAMIC STORAGE PROTECT SUBROUTINE

- This subroutine may be called by the user to protect and

unprotect programs and/or data on a dynamic basis.

CALL STORP (FUNCT, ADDR, WDCNT)

Where, FUNCT = 0 Protect all words

-44-

= 1 Protect non-zero words
= 2 Unprotect a II words

ADDR = Starting address
WDCNT = Total number of words

SYSTEM GU IDANCE

SYSTEM SIMPLICITY

The MPX System provides tools which win automatically assume

the real-time programming burdens facing the TSX user.

In TSX if a co reload was to be queued as the result of an external

interrupt, it was the users' responsibility to write the subroutine

which performed the queueing and terminated time-sharing. Also

in TSX if a core load was to be executed periodica Uy, it aga i n was the

users responsibility to write the scheduling subroutines to generate

a periodic schedule. All of these user written subroutines were

core resident and could not be modified unless the skeleton was

rebui It with the system taken off-Ii nee

The MPX system has the facility to automatically queue coreloads

into any multiprogrammed area upon the occurrence of an external

interrupt, or an MPX supplied periodic interrupt. This greatly

simplifies the job of programming and elimi nates off-Ii ne rebui Ids

in order to change the scheduling parameters.

The flexibility of allowing the user to write his own scheduler

remains in MPX. A Special coreload area (SPAR) is designed to

contain subroutines of this type and permit on-line modifications

to a II sub routi nes withi n it.

-45-

o

MPX CONFIGURATION GU IDELINES

A very flexible system such as MPX must be carefully configured

to avoid possible conflicts in interrupt level usage. The primary

consideration to keep well in mind is to completely divorce II 0 levels

from execution levels. The disk and timers should be at the top two

levels. Other considerations are; coreload levels should be unique

to each area and assigned to the lowest priority interrupt levels

defined in the individual system. The flexibility of multiple levels

within a given area is designed to allow coreload areas to dynamically

change priority relationships between themselves. This added

flexibility will not however be a normal mode of operation. Resident

o and SPAR subroutines should not normally conflict with II 0 and

coreload levels.

•

A very efficient use of disk data channels is seen in the following

illustration, allowing simultaneous loading of coreloads into all

three areas. However, it is not necessary to uniquely assign a disk

drive to a particular area since I lOis queued in cases where

conflict exists •

-46-


~~~""'-="~~. =_ .... = ...... -='0 ..... = .. _--= ... ""' ....... = .... ,="_ .. = .. = .. . ---==.-.-=.-.. =~-... -,.-... ~.- --.. -.~'- ..... ---o;:.;; .... " ..... ;~~;;;:o;..~.:;,~;.;/ ............... = ..... =. =-==, .====~==.= ..... = .......... ,== .. = ... = ... """ .... """ ..... = ... = ..... = ... = .. ~ 

o 

c 

o 



o TYPICAL CORE LAYOUT AND LEVEL ASS IGNMENT 

EXECUTIVE 
1/0 

II 0 LEVELS 
(0-3) 

EXECUTIVE 
DIRECTOR 

RESIDENT LEVELS 
SUBROUTINES (4, 5) 

SPAR LEVELS 
0 SUBROUTINES (6-9) 

CORELOAD LEVEL 
V) 

AREA 1 10 ...J 
LU 
> LU 
...J 

..... CORELOAD LEVEL 
::::::> AREA 2 11 u 
LU 

~ 

VARIABLE LEVEL 
CORE AREA MAINLINE 

• 



~-- -."' ......•. -.-.-~-....... "." ... " ..... " ..... ".-.-~~~-~~---------- -.--~-•. """"'"'". -=~~ 

CONVERTING FROM TSX to MPX 

A conversion from TSX to MPX will require new systems 

design considerations. The conversion CQuid result in no in­

creased th roughput i'f a straight conversion is attempted. However 

even a minimal conversion, placing all process coreloads in one 

coreload area and reserving variable core for batch processing, and 

an occasional optimization or log can produce excellent results. 

A more thoughtful design will produce the best results. 

Interrupt coreloads in TSX could be assigned to a separate core­

load area eliminating many disk operations.. I nterrupt subroutines 

in the TSX skeleton should be placed in the SPAR area of MPX 

giving the flexibility to modify thelTI on""Une* 

Using the automatic queueing feature of MPX will greatly reduce 

the amount of small interrupt scheduling subroutines scattered 

th roughout the TSX skeleton~ 

The careful use of the MPX IOCR routines will be the key in 

how much benefit can be obtainerJ frorn rnultiprogramming capability_ 

"·48- Printed in U.S.A. 320-0949-0 

-- .--~-.. ---- ---

o 

c 

o 



o 

o 

SESSION REPORT 

COMMON - Chicago 

Session Number TUE A3 Session Name 1130 Systems ----------------------
Chairman D. Gardner 

Time 8.30 to 10.00 AM 
----~~~~~~~~~----------

Attendance (NO.) 150 
--~------------

Speakers (1) ~ohn Horn - IBM "Version 3 of CSP" 

(2) Don Christians - Beloit Tool Corp."Commercial Applications 

Using the 1130" 

(3) Dave Dunsmore - ORVWSC "CSP Extras" 

,4) Donald Gardner - General Foods Corp "FORTRAN-Coded Sortldg 

Procedures" 

Synopsis of Meeting (1) John Horn introduced Version 3 of the Commercial 
Subroutine Package. He also introduced the group to the 1130 USERS 
Guide which will be published by IBM around June 1. 1968. 

programs 

(3) Dave Dunsmore explained several subroutines he wrote to overcome 
some of the difficulties in using CSP. He will aummarize the.e and 
subDilt abstracts to CAST for publication. 
(4) DoDald Gardner explaiDed two FORTRAN-coded subroutines whttb are 
helpful in sorting applications. A single sector sort ina subroutine forms 
the basis for the second subroutine. 



"COMMERCIAL APPLICATION & THE 1130." 

D. D. CHRISTIANS 
MANAGER OF DATA PROCESSING 

BELOIT TOOL CORPORATION 
P. O. Box 38 
So. BEL 0 ITt ILL I NO I S 61080 
AREA 815-389-3461 

GIVEN TUESDAY APRIL 9, 1968 
SESSION #A3 

COMMON CHICAGO, ILL. APRIL 7-10 

! 
-------_._._------_ .... _------

o 

o 

o 



o 

PREFACE 

10 ) This abstract is divided into the following parts: 

a 0) Tab Ie of Programs 
b.) Card Layouts 
c .. ) Sample Forms & Cards 
do) System Flow Charts 
eo) Source Program Listings 
f 0) System Description 

2.) Beloit Tool Corporation was first founded in 1955 0 ' From that year until 
November 6, 1967 all data processing needs were satisfied by a "Tab Installation 
in House" consisting of a 403 Accounting Machine (Full Capacity), a 514 Re­
producing Punch, Sorter, Collator, and Key Punches •. There were also 5 major 
applications done "out of house II by various servi ce bureaus because of tci:> equip­
ment limitationso 

3.) As of 1 March, 1968, all applications were running on the system with the exception 
of the Moster Gross Sales Report which will be described latero 

It is my ambition to get everything running smoothly and as soon as possible, then. 
by June of next year to revise systems and programs into final state o By final state, 
if I may create a new word, I mean the "disk-ilation" of every possible 
app Ii c ati on 0 

I welcome any remarks, suggestions, constructive criticisms and discovery of any .. 
"bugs" uncovered either in systems and/or programming area. 

4 0 ) The entire operation at Be loit Tool Corporation centers around a Model 2B, 8K 1130, 
Model61442Card I/O Unit, a Model 1 1132 Printer, and single disk system 0 

Computer rental totals $ 1594./Mo 
EAM rental totals $412./Moo 

5.) A very note-worthy fact is the increase of time uti lization after installation of the 
system: (Metered Hours). 

1130 
1132 
1442 

November 

69 0 32 
58 0 94 
68.01 

01 

December 

110. 11 
92 0 03 

101 .. 23 

January 

134 0 31 
119.56 
129.22 

Do Do Christians 



TABLE OF PROGRAMS: 

1 .) Prepare Shi ppi ng Orders 
20) Invoicing 
3.) Statements 
4.) Overdue Orders & Backlog 
5.) Dai Iy Sales & Cash Receipts 
6.) Invoiced Items Listing (4 card run) 
7 .) Product C I ass Report 
8 0 ) PrOduct Detail Listing (3 card run) 
9 0 ) Controllers Tri 01 Balance 

-10.) Sales Commissions 
11 0 ) GroSs Sales Report 
12.) Demonstration - Tour 
13.) Master Mai ling - Gross Sales Fi Ie Edit-
140) Inventory 

MISCELLANEOUS: 

10) 80/80 List 
2.) Payroll 
3 0 ) Operator Effi ciency Study 
4.) Optional List & Count 

- 5.) Reproducer & Sorter Simulator 
6 0 ) Prepare W-2 Forms 
7 0 ) Prepare FICA 941 Report 
8 0 ) 2-Up Mai ling Labels 
9 0 ) Master Gross Sales Mai ling Lobe Is 

//) 
J'- 2 3 

o 

o 

c 

.." ..... to..; 

; ./ :'.~ .. ' 



o 

SYSTEM DESCRIPTION 

1 0 The series of appl i cati ons about to be described is a "package" that cou Id 
be adapted, with little or no modification, to any business o 

The strong points I fee I to be of great interest are: 

a. All programs are in Fortran source 0 

b. Use of commerci a I subrouti nes for overlap of I/O and ease of 
programm i ng 0 

Co Complete business "package II with numerous uti lity programs 0 

do Not tied to disk in concept 0 

eo Very flexible A/R accounting o 

20 The system begins with the receipt of a handwritten order, a teletype 
order, or a typed di rect order from other plants 0 The orders are coded 
with a part number and then given to the Data Processing Centero 

Sold to and Ship to addresses are hand pu lied from two tub fi les and form 
the order set 0 The key punch operator inserts the misce lIaneous Data #2 
card and #5 postage card as we II as punching the order number in all 
cards 0 The order set is as follows: 

( ~l ~ 
~ r Postage 

3

J 
3= 

'~em Detail(s) 
.1 

-"~"Sold To" 

( "--V-_ 
(- It--] ~ Misc o Data 

~~ -~ "Ship To" 

Names and addresses can consist of either 1 or 2 # 1 cards giving the possi­
bi�ity of a four line address o "Sold toll address is optionaL It will print 
the same as the "Ship to" if missing. There is no limit to the number of #3 
item detail cards o The order set's are sorted on order number and entered to 
the computer for shipping orders to be runo 

After the shipping copy returns from the Shipping Department with quantity 

-1-



shipped and postage changes written on it, the orders are hand pulled 
from the "Open Order" fi Ie, information punched, and entered to the 
computer for i nvoi ces to be run 0 

The invoicing run yields, besides the invoices, balance totals on gross, 
net, AIR, postage and rUT 0 It also produces AIR Summary cards and control 
listing as we II as a #4 Summary Card fi Ie and control listing 0 

The A/R cards are merged twice weekly into the "A/R Open Order Fi Ie" 
held by the Accounting Department" As payments are received the cards are 
relieved from the AIR file o Immediately after the last invoice for the month 
is run and A/R cards are merged, statements can be run. The statement pro­
gram is at full printer speed and yields an aging breakdown as well as aged 
overall fi nal totals 0 

The #4 Summary cards are kept for monthly balancing, product class report, 
commissi ons and gross sales reports, and quarterly inventory run. I might 
mention here that the weekly, as well as monthly balancing is done by means 
of the "Optional List-Count" program 0 This program will count any field as 
determined by the user and list or not list .... concurrentlyo 

The monthly commission report, as well as printed output and summary of 
totals, yields a monthly product summary card for each distributor o This card 
is merged with the Master Gross Sales Data and History File and used to list 
the Monthly Gross Sales Reprto These two applications are by for the largest 
reports volume-wise and both operate at maximum printer speed" 

30 Some other system programs of interest are: 

a. "Overdue Orders & Backlog": Scans the shipping order open order 
fi Ie and either extends and prints month-end backlog or orders over­
due past a certai n flexib Ie date 0 

b. "Daily Sales & Cash Receipts It: Produces listing for payment record of 
the A/R fi Ie 0 Gang punches the date paid i ntothe cards for future 
payment history records o 

co" Product C lass Report ": Vie Ids totals of sales by a 2-di gi t product 
c lass code" Also lists cause reports as we II as totals of credi ts issued 
duri ng the month 0 

do "Sales Commissions": Figures monthly commissions and detail listing 
of sales by distributor within state within territory" Summarizes sales 
by states and territories and prints summary listings of each. Produces 
summary card for each distributor and distributos soles byproduct class 

code" 

/' 

-2-

o 

o 



c 

C''\ 
.~ 

eo "Gross Sales Report": (Program currently being written) •• 000" 0 0 0 

Provides field salesmen and representatives with sales information 
from 1963 to present month by distributor 0 Also list company name 
and address along with 2 contact names o Provides summary sales 
inf~rmation by distributor, states and territories. 

L "Demonstration-Tour:" Mainline and 5 option sub-programs to 
provide effective and fast demo to any interested people 0 Fifth 
option prints well known pictures of "Edith"a 

g. "Inventory": A set of two main programs, file maintenance and 
computation, to provide user with reorder points, economic order 
quantities, extensions and full report on a scientific basis o 

ho "Payroll": Two Mainline and three sub-programs to compute pay­
roll, pri nt check, distribute amounts to accounts and punch a 
check reconci I iation card. Routines include 4 di fferent state 
routines as we II as a city taxo Also inc ludes profit sharing and 
so lory bonus plans 0 

I. "Operator Effi ciency Study": Determines shop machine operator 
efficiency using variables such as set-up times costs and time, pieces 
produced and classification of operations and machineso Output 
used to help determine employee merit rating 0 

jo "Optional List & Countfl: A extremely useful program to total on 
a variable field and either list or not list concurrently. 

k. "Reproducer-Sorter-Collator Simulator": Provides the following 
operation at overlapped I/O speeds: 

1 0 Move data from one field to another. 
20 Gang punch o 

3. Number cards sequenti ally (any starti ng value and increment)" 
4. 80/80 reproduce. 
5. "Au Itiply and extend any two fie Ids 0 

6. Sort out any punch in anyone column (stacker se lect)., 
7 • Sequence check any fie Id 0 

L "Master Gross Sales Mailing Labels": Print moiling labels from 
Moster Sales fi Ie working with the followi ng types of cards: 

1 0 Company name and addresses. 
20 Contact cards. 
3. Company employee cards. 

Program provides to either print company address or people home addl"l'ss, 

-3-



which ever is present, follow postal reg~lations and places Zip Code on 
last Ii ne indented 2 spaces 0 

40 All programs are in Fortran Source. IBM commercial subroutines are 
utilizedo Reference H20-0241-2- "1130 Commercial Subroutine Package 
(1130-SE-25X), Version 2 Program Reference Manual 0 II 

5. Beloit Tool Corporation will also be installing an IBM 633 Billing System 
in one of their Subsidiary companys, The Dvrst Corporation 0 They plan on 
using the card output for entry into our 1130 for application such as 
inventory, monthly statements, sales analysis and management reports 0 

-4- 1 

o 

o 



o 

---1 CLERICAL 

OPE RAT I ON 

( CARDS 
---

SYSTEM 

1130 

( KEY \ 

\ PUNCH )1 
\~------' 

PAGE . - CONNECTOR 

o~ SORT OR 
COLLATE 

REPORT Oiil 
DOCUMENT~ 

---------

BELOIT TOOL CORPORATION SYSTEM 

FLOWCHART SYMBOLS. 



ORDERS 

I---__ ~ SH~~~~NG / 
'ADDRESSES/ 

/ 
/ 

PRE 

~--------------~ 

RUN 

SHIPPERS 

')o--._YE_S __ ~ 

~~I pp -ING I - ACKNIYN 
ORDERS r-- LEOUEMENTS 

DELIVEj TO 
H t PP 'N.;a . 

DEPT. 

o 

o 



o 

o 

• 

PRE B I LL1 
ORDER SET 

COpy 

3 
2 

GHIPPING ORDER 

---.- .------ ...... ,... 

5 

UNCH POST) 
& QUAN. 

SHIPPED 

\ 

RUN 

INVOICES 

( 
( 3 

---_._- ._----------

5 

ORDER 
SET 

---·-2J .-
1 ._. 

E 

INVOICES 



1 2 

DESTROY I 

. SUMMARY FILES 

#4SUMM. CCt4TROL 
CARD 

3 

\ 

HOLD FOR 

. REPORTi 

AIR 

AIR 
CARP 

. / 

5 

c 

CO\JTR~ 
LlSTING~ 

---. 

(:4-) 



c 

o 

C S p EXT R A S 

David A. Dunsmore 

COMMON # 3428 

Presented in Chicago 

April 9, 1968 

Session TllE-A3 



CSP EXTRAS 

David A. Dunsmore 
COMMON # 3428 

My presentation of five called subroutines, one functional subroutine 
and one program will be restricted to a synopsis or abstract of each of these 
programs because of time restrictions during this session. I will assume 
that all attendees have a general knowledge of FORTRAN,ASSEMBLER and CSP. 

1. Subroutine DPUT (JCARD, J, JLAST, VAR, ADJST, N) causes a nine digit 
or less real variable to be placed in a ten digit or less output 
area with a decimal placed "N" positions to the left of the right­
most significant digit and logically suppresses leading zeros. 

The general use is the same as the CSP "PUT" subroutine except the 
"N" must be negative or the routine will act as through "PUT" had 
been called instead of "DPUTu

• 

This routine first fills the users defined output field with blanks, 
then computes the location of the decimal and places the decimal in 
the users field. Then leading zeros are suppressed and the remain­
ing digits are "Edited" into the area defined by the user. 

2. Subroutine JPUT (JCARD, J, JLAST, IAR, ADJST, N) causes an integer 
variable (IAR) to be placed in the users defined output area. This 
subroutine is identical to the "PUT" subroutine except for the fact 
that "PUT" handles real variables decimally truncated and "JPUT" 
handles integer variables. 

3. Subroutine IZSUP (JCARD, J, JLAST) causes leading zeros in the de­
fined users field to be suppressed. The basic advantage of this 
routine is that an edit mask is not required as would be the case if 
the CSP "EDIT" routine were used. 

4. Subroutine RE.ADT (JCARD, J,JLAST, NER) . causes paper tape records of 
variable length, but not exceeding 80 characters other than case 
shifts, deletes and new line (NL) to be read in the same manner that 
one would read a card of 80 columns or less. However, conversions 
are not overlapped because of some inherent difficulties with the 
library functions of both PAPTI and P~T.N. It is my belief that 
routines similar to "SPEED j

, will be required for paper tape if over­
lap during reading, or punching for that matter, is to be a.chieved. 

o 

The general advantage of this routine is that users can read paper 
tape while reading cards or typing on the consQlekeybOa.rd and printer 
using other CSP routines. Current restrictions of FORTRAN READ or () 
WRITE preclude this. 

l:' -' " 

-------- ----- --- --- -- -~--- ---- - ---



o 

o 

5. Function LEAP (YEAR) - YEAR is an integer variable. This functional sub­
routine determines if the current year is a leap year. If so, LEAP 
is set to 1, if not, LEAP is set to 2. 

This routine requires the use of the following CSP or user submitted 
subroutines: 

DPUT, FILL and NCOMP 

General use of the routine might be: 

INTEGER YEAR 

K • LEAP (YEAR) 
GO TO (10, 15), K 

10 ROUTINE IF LEAP YEAR 

15 ROUTINE IF NOT LEAP YEAR 

6. Subroutine PRINN (JeARn, J, JLAST, NERR) This subroutine is similar 
to the CSP "PRINTII subroutine and may be used in conjunction with 
"PRINT". The routine does not contain a "SKIPII subroutine. The 
basic advantage of this routine over the CSP "CALL PRINT" is that 
dat4 listing may be performed at 120 lines/minute instead of 80 
lines/minute. The data must not be a.lphabetic (A - Z) or, if it 
is alphabetic these characters will not be printed. Only digits 
zero thru nine and specia.l printer characters such as COMMAS, DECI­
MALS, ASTERISKS, etc. will be printed. The basic advantage is the 
50% increase in output speed to the 1132 Printer for numeric and 
special character printing. 

This routine is used in the same way and in any place that the CSP 
"PRINT" subroutine is used. Existing user programs which print only 
numeric and/or special characters need only change the source program 
from the current "CALL PRINT" to "CALL PRINN". 

7. "CDPRT" - Program to: minimize I/O time from card to printer. 

This program "CDPRT" will read cards from the 1442 card I/O and list 
the card image on the 1132 printer at either 80 or 120 lines/minute 
depending on the type of characters to be printed. If any characters 
of the alphabet (A ·thru Z) are present on the card to be listed, the 
listing takes place at 80 lines/minute. If no such characters ext§t, 
then the cards are listed at 120 lines/minute. 

The program exits to Monitor after the last card has been read and 
printed. 

2 



No checking is done for Monitor Control Records or any channels de­
tected while printing. Thus any card may be listed but no page skip­
ping is attempted. The programming concepts employed in this program 
could be used by a user to write his own optimal print subroutine 
for any print job required in any CSP program. 

After compilation and storage on the 1130's disk, the user need only 
use an "XEQ CDPRT If Monitor Control Card to list the deck of cards 
desired at the fastest print speed available on the 1132 printer. 
This program, as written, requires that the subroutine "PRINN" be 
available on the disk at execution time. 

In summary, five CSP called subroutines, one functional subroutine and 
one program have been presented. A source listing with documentation has been 
included as an app~ndix to this presentation. Copies of the source listing and 
an abstract are available from this author. Inquiries should be sent to: 

Ohio River Commission 
414 Walnut Street 
Cincinnati, Ohio 45202 
Attention: David A. Dunsmore 
COMMON User # 3428 

3 

(} 

o 



c 

o 

• 

II JOB 
II ASM 
* LIST (1137 PRINTER) 
* NAME PRINN 

ENT PRINN SUBROUTINE ENTRY POINT 0041 17649555 
* CALL PRINN (JCARD, J, JLAST, NERR3) 
* PRINT JCARD(J) THROUGH JCARD(JLAST) ON THE 
* 1132 PRINTER. PUT ERROR PARAMETER IN NERR3. 
* ONLY PRINT NUMERIC 
ONE DC 1 CONSTANT OF 1 
SPACE 'DC /4000 

( I D) 

CSP08190 
CSP07390 

CSP08250 
CSP08260 

CSP08300 0000 a 
0001 0 
0002 0 
0003 0 
0004 
0041 0 
0042 20 
0043 () 
0044 0 
0045 0 
0046 01 
0048 20 

0001 
4000 
0000 
0000 
0030 
0000 
176558Fl 
0000 
70FD 
691A 
65A00041 
01647880 
0002 
0003 
0004 
007A 

JCARD DC 0 
JLAST DC 0 

JCARD J ADDRESS 
JCARD JLAST ADDRESS 
WORD COUNT & PRINT AREA 
ADDRESS OF 1ST ARGUMENT 
CALL BUSY TEST ROuTINE 
BUSY TEST PARAMETER 

CSP08320 
. CSP08330 

0049 
004,A 
004R 
004C 
004D 
004E 
004F 
0050 
0051 
0052 
0053 
0054 
0055 
0056 
0057 
0058 
0059 
005A 
005R 
005C 
0050 
005E 
005F 
0061 
0063 
0064 
0066 
0067 
006A 

1 
1 
1 
o 
o CORb 
o BORI 
C lAOl 
o DOR3 
o C103 
o DOl? 
20 195ClOD2 
1 0002 
1 0003 
1 0005 
20 17655AFl 
o 4000 
1 0004 
1 0063 
o (OAS 
o DOFR 
o 7104 
o 6903 
00 65000000 
00 4COOOOOO 
o 0000 
00 D4000000 
a 1810 
01 4CA00063 

AREA BSS 61 
PRINN DC 0 
TEST LIBF PRNTI 
. Dt 10000 

MDX TEST 
STX 1 SAVE1&1 
LDX 'Il'PRINN 
LIBF ARGS 
DC JCARD 
DC JLAST 
DC AREA 
DC 120 
LD AREA 
A ONE 
SRA 1 
STO AREA 
LD 1 3 
STO ERR&l 
LIBF RPACK 
DC JCARD 
DC JLAST 
DC AREA&l 
LIBF PRNTI 

WRITE DC /4000 
DC AREA 
DC ERROR 
LD SPACE 
STO WRITE 
MDX 1 4 
STX 1 DONEl&l 

SAVEl LOX Ll 0 
DONEl BSC L 0 
ERROR DC 0 
ERR STO L 0 

SRA 16 
BSC ERROR 
END 

NO ERRORS IN AAOVE ASSEMBLY • 

REPEAT TEST IF BUSY 
STORE IRl 
LOAD 1ST ARGUMENT ADDRESS 
CALL ARGS ROUTINE 
JCARD J PICKED UP 
JCARD JLAST PICKED UP 
CH~RACTER COUNT PICKED UP 
MAX CHARACTER COUNT 
GET CHARACTER COUNT 
HALF ADJUST 
DIVIDE BY TWO 
STORE WORD COUNT 
GET ERROR WORD ADDRESS 

I .. STORE IT IN ERROR ROUTINE 
CALL REVERSE PACK ROUTINE 
JCARD J ADDRESS 
JCARD JLAST ADDRESS 
PACK INTO I/O AREA 
CALL PRINT ROUTINE 
PRINT PARAMETER 
I/O AREA BUFFER 
ERROR PARM~Er'.ER 
LOAD PRINT WITH SPACE 
STORE IN PRINT PARAMETER 
INCREMENT OVER 4 ARGUMENTS 
STORE IRl 
RELOAD OR RESTORE IRl 
RETURN TO CALLING PROGRAM 
RETURN ADDRESS GOES HERE 
STORE ACC IN ERROR PAR AM 
CLEAR ACC 
RETURN TO PRNTl PROGRAM 
END OF PRINT SUBPROGRAM 

CSP08340 

CSP08360 
CSP08370 
CSP08380 
CSP08390 

CSPOB410 
CSP08420 
CSP08430 
CSP08440 
CSP08450 
CSP08460 
CSP08470 
CSP08480 
CSP08490 
CSP08500 
CSP08510 
CSP08520 
CSP08530 
CSP08540 
CSP085~O 

CSP08560 

CSP08580 
CSP08590 
CSP08600 
CSP08610 
CSP08620 
CSP08630 
CSP08640 
CSP08650 
CSP08660 
CSP08670 
CSP08680 
CSP08690 
CSP08840 



II JOR 
II FOR 
*LIST SOURCE PROGRAM 
*ONE WORD INTEGERS 
*NAME CDPRT 
*IOCSCDISf() 

DIMENSION INPUT(SO),IOUT(SO) 

~~--.. --.. --.---.......... -.-.-

C NE IS ERROR PARAMETER FOR CARD READ ROUTINE (CSP) 
NE=-1 

C READ INPUT CARD (80 Al - FORMAT) 
1 CALL READCINPUT.l,80.NE) 

C MOVE INPUT RECORD TO OUTPUT AREA 
CALL MOVECINPUT.l,80,IOUT,1) 

C CHECK ALL 80 COLUMNS OF CARD FOR ALPHA-NUMERIC CHARACTERS 
DO 2 1=1.80 

C LIST ALL NUMERIC AND BLANK CARDS AT 120 LINES/MIN 
C LIST ALL ALPHA-NUMERIC CARDS AT 80 LINESIMIN 

IF(IOUTCI)+4032)3,2.2 
C SKIP TO PRINT IF ANY ALPHA-NUMERIC 

2 CONTINUE 
C PRINT NUMERIC AT 120 LINES PER MINUTE 

CALL PRINNCIOUT,1.80,NER) 
GO TO 4 

C PRINT ALPHA-NUMERIC AT 80 LINESIMIN 
3 CALL PRINT(IOUT,1.80,NER) 

CHECK FOR LAST CARD 
4 IF(NE)l,5.5 

C EXIT AFTER LAST CARD IS PRINTED 
5 CALL EXIT 

END 

FEATURES SUPPORTED 
ONE WORD INTEGERS 
IOCS 

CORE REQUIREMENTS FOR CDPRT 
COMMON 0 VARIAALES 164 PROGRAM 66 

END OF COMPILATION 

o 

c 

c 



II JOR 
II FOR 

O,*LIST SOURCE PROGRAM 
*ONE WORD INTEGERS 
* NAt\1E DPUT 

SUBROUTTNEDPUTCJCARD.J,JLAST.VAR,ADJST.N) 
DIMENSION JCARD(lO).JSAVE(9) 

C 

C 

C 

C 

C 

C 

C 

C 

C 

IFCN)1,2,Z 
IF N IS NOT NEGATIVE. TREAT AS A REGULAR 'PUTt 

2 CALL PVTCJCARD,J~JLAST,VAR.ADJST,Nl 
RETURN 
HANDLE DECIMAL CONVERSION FROM FORTRAN TO CSP (AI-FORMAT) 

1 AN=-N 
SHIFT DEC1MAL TO EXTREME RIGHT END OF FIELD 
AVAR=VAR*CIO.**AN) 
PUT FIELD IN JSAVE WITHOUT DECIMAL 
CALL PUTeJSAVE,I.9.AVAR.O.5,O) 
FILL USERS OUTPUT AREA WITH BLANKS 
CALL FILL eJCARD.J.JLAST,16448) 
COMPUTE-LOCATION OF DECIMAL FOR USER 
L=JLAST-AN 
PUT DECI~AL IN USERS FIELD 
CALL FILL(JCARD.L,L,19264l 
L=9-AN 
SUPRESS LEADING ZEROS 
DO'3I=l.L 
IF(JSAVE(I)+4032)4.3.4 

3 CONTI NUE 
CHECK FOR NEGATIVE NUMBER 

4 IF(VAR)5,6.6 
INSERT MINUS SIGN IF NEGATIVE 

5 CALL FILLCJCARD.J.J.24640) 
PLACE VARIARLE (VAR) IN USERS OUTPUT AREA WITH DECIMAL 

6 CALL EDITCJSAVE,r.9.JCARD,J.JLAST) 
RETURN 
END 

FEA-TURES SUPPORTED 
ONE WORD INTEGERS 

CORE REQUIREMENTS FOR DPUT 
COMMON 0 VARIABLES 16 PROGRAM 150 

END OF COMPILATION 

,0 



II JOR 
I I FOR .. --.- .. -.--- .... -.. . "'CSP01810 
*LIST SOURCE PROGRAM 
*NAME JPUT"-"-- .. ... ..... 
*ONE WORD INTEGERS CSP01840 

"-,, . ----·-·-·_---·-CSPO·1Sr SUB ROO T 11t1"N e-e -J-nP'!hO"T"TP'"lC"""JT'I'C'""lIAreR""'O i·~,li~~SiiTJtR"i1tD"JST·iN r·--··'·"··· .. 
DIMENSION JCARD(lO) . CSP01880 

C-----PUT·YAR INTO "JC"AROCJl THROUGH JCAROfJL.AST1.· 
C-----ADJST = A NUMRER TO HALF ADJUST THE VARIABLE VAR. CSP01900 
C-----N= THE NUr-rAER-OF POSrTr ONS THE""·DtC1M~]'IOJNTSHOIJLD·B£--MOV£D "~E'FTCSFO 191 0 

DIGS= eIABSCIAR)+ADJST) CSP01920 r F CNl- 3 '. 3',T' - . . .... " .... -.-.--~-.-.-.-.. ~.-... --.. . ... , "--,,, .. ----.... - '.- "CSP'O 1 CJ3 0 

1 DO 2 JNOW=l.N CSP01940 
2 DIGS=WHOLECDIGS*Oill CSP01950 
C-----PUT DIGITS IN FIELDCSP01960 
3 JNOW=JLAST 'CSP01970 
4 DIGT=WHOLE(DIGS*O.l) CSP01980 

JTEST= I F I X (D-rGS-l o. O*D'IGT) CSPO 198 2 
11 IFeJTEST-I0)9.10.10 CSP01985 
10 JTEST=JTEST~lO CSP01988 

DIGT=DIGT+1.0 CSP01991 
GO TO 11 CSP01994 

q JCARDeJNOW)=256*JTEST-4032 CSP01997 
DIG S = DIG T "-1:'5? 0 2 0 0 0 
IF(JNOW-J) 6.6.5 CSP02010 

5 JNOW=JNOW-l CSP02020 
GO TO 4 CSP02030 

c-----PUT 11 PUNCH OVER LOW ORDER DIGIT IF riEGATIVE. CSP02040 
6 IFctAR) 7,8.R CSP02050 
7 CALL NZONE( JCARD.JLA'ST.2 .JNOWr .... -.. ----_ ..... , CSP'02060 
8 RETURN CSP02070 

END CSP02080 

FEATURES SUPPORTED 
ONE WORD INTEGERS 

CORE REQUIREMENTS FOR JPUT 
COM~ON 0 VARIABLES 

END OF COMPILATION 

10 PROGRAM 158 

o 

o 

o 

",.i, 

\1 



o 
I II JOR 

• 

II FOR 
*LIST SOURCE PROGRAM 
*ONE WORD INTEGERS 
*NAMF IZSUP 

SUBROUTINE IZSUpeJCARD.J.JLAST) 
DI~ENSION JCARO(120) 

C 5UP-RES-S'- LEAD I NG ZE'ROS I N USERS DEF I NED AREA 
DO 1 I = J.JLAST 
IF(JCARD(IJ+40!2)3.2.3 

2 CALL FILL(JCARD.I.I.16448) 
1-CONTINUE 
3 RETURN 

END 

FE AT lJR E S SUP-PORT E D 
ONE WORD INTEGERS 

CORE REQUIREMENTS FOR IZSUP 
COMMON 0 -VAR tABLES 2 PROGRAM 

END OF COMPILATION 

,'-

!::., 

44 

/, 
I 

/ 



II JQR 
II AS~ 
*LIST ,l' ., 

** READ AND' PUNCH -'SUBRCtfT'tNE5-~FOR T130 --tSP-Pl(F£R'-TAPE- rro-) C'SP0652U-'--
* NAME READT . (10) CSP06530' 
00 CC 1 9"1:4rrzr---"·---·· " :' ENT .--.-·· ..... ·~REA·D r -·----·· .... -S·OB'R,o,oTlffe-·ENTRY -PO rNr"C5F055 ~)'O" 

* CALL REAO (JCARD, J t JLAS T t NERR 1 ) . CSP06560 
"'-'*"R'tA'tt'-eolUMNS FROM BEGINNING OF CARD INTO JCARO( J) CSP06570 

* TH~OUGH JCAROeJLAST). PUT ERROR PARAMETER IN CSP06580 
"·*·NETrRI. -- .. -o'CSP06590 

0125 179150E3 ENT PUNCT . SUBROUTINE ENTRY POINT CSP06600 
·· .. · .. --·- .. ··-·-··"···* .. ·~'A·(I·~·P'Of·fcHr.JcARDt '-J ,c- JIJ(ST-'--' NERR2-r'" 'CS"P06610 

* PUNCH JCARD(J) THROUGH JCARDeJLAST) INTO THE CSP06620 
* -BEGINNTN'G OF A CARD". PUT-'ERROR PARAMETER INTO c-SP06630 
* NERRZ. CSP06640 

0000 0 0000 JeARO--OC 0 JeARD J ADDRESS CSP'066'SO 
0001 0051 AREA BSS 81 1/0 AREA BUFFER CSP06660 
005'2 . - 00-7'(}' ..... - "'--"""'AR"E'AT"'S'SS' 121 
COCA 0 0000 FLAG DC 0 ERROR INDICATOR CSP06670 
ooce 0 OOOO"'REAr:rr-~O"C-' 0 'FI RS T ARGUMENT ADDRESS C-SP06680 
ooeD 0 6936 STX 1 SAVE1&1 SAVE IRl CSP06690 

. ooeE--Ol 65'~01)OCC- -·· .... ·----····-··cox -'rlRFADT'~-' "GET 1ST A-RGUMENT. ADDRESS 'C-SPU6100 
0000 0 4030 SSt SETUP GO TO SETUP CSP06710 

. U orrr-7Q··!W·S·7BFT--···_···_-_· .. ·_ .... _'-_·tTBt······· ··PAPTt'·· .. ······ .. ··· .- ... '"-.. :.;--.. ~.~...... .............. . ...... ~.--.... --..... . 

0002 0 1000 'DC 11000 READ CSP06730' 
00-'0'3'-1- ·0·052'''· .. ------,------- ------rrc· .. ----" '- -AREAr--------ARE1r-P-ARA'M'ElER -espoo 740 
0004 1 0107 DC ERROR ERROR PARAMETER CS:'06750 
Olj[Y5"" Z'O . 1 70'57'S F'r-- -... - '-'-' .. --.. ---T:.:TBr----." -. P-APT 1'-'-'- .-----...- --- . ..- . - . -. -.----... 
00D6 0 0000 DC /0000 aUSY TEST PARAMETER CSP06900 
0'00 7 0 .... ,cyrn-------·---· MUX _._ ........... -"3" ... ~ .. --·--···~c:~T-TF .. ·troSy-"'- . -.-.---.----... -- .. __ ..... _.- .......... . 

0008 0 6914 STX 1 SAVE+l SAVE XRl 
OOO-V--o---6 I89 -------.. --- -·----L-OX----"I-·-IT9~· _c..:...._._._.~ ... _ .. _ ... '-'.'- --- -- .. -----. 

iOODA 01 (50000CA LO LD Ll AREA1+l20SEARCH INPUT AREA 
,oone-'or" '4"CZBOOE4 esc to: -·rooNLr.~' ·---'FOR--NEVrt:T'Nt---CHAi"r'RA*"'-C-.T-eE~R-~-·-·-----...... -.. · .. · 

!g~-gl !g~:OOE4. '. :;~ r--:uowo.+z. . .. -<-.. ---- .. - ... -.--.---~-----.~ .. ----.-... -... -.-... 
I 00 E 1 0 7101 .'. MDX 1 1 . 
I 0 O"E'T"" -0-- ·-70F7·----...... -~--·-~-·-··'MOX"-.. -----,:.v .. ---... :-......... -.~-.-----.-.. -.-.... --..... -.--.. - .... .-... -- .... ------"--..... .-...... -

igg~~g~6i---~--·rOUNO- ~.g~ .... -.... } .~~--...... -.----- .. h"STORE"c~l!t~ .. NKS"--B-EYONtf .. ---· .. ---O""-·--· ... - -

'ODES 01 60000001 STX 1..1 AREA ..,. 
ou'rr-o"'"'--crr3"C-''' .. ---' _.. CD BLAJqK -]VE1r~ ... -.--
OOES 01 050000CA 5TO 5TO L..l AREAltzlr2·,g ,:",,':,.:,<,: 
OOEA -"tr-----;rQ I -. MDX I I '_~:"""'::'i ~~-

00E6 0 70FC MDX 5TO 
OO'E"C""-mJ()5000000 SA"9r-tOX-'''lI 0 REstOREXRl "'--.. -----.. ------.... ---.. --- .. -....... - .... . 
00££ 20 17057213 t..l'SF· PAPHL CALt.:CONVERSION ROUTINE 
OOEF 0 0000 ¥ DC 70000 ':--P.'" CODE ro CARD CODE 
OOFO 1 0053 DC AREAl"'l' 'tlOM'.·AR~Al+1 
'oon--r--umrz---' -'-~-. - ... ~ ....... -. -"XRU1;l-. tQ,,'XR'EA+l 
OOF2 0 0000 CNI DC . 0 :;'>:," 

'U'crn--'ZO - 225C5144 ·co",,,,· tl'" 'SPIEr):, ·,':~>':t.et:"'~ON'ER~ioN- RouTINE 
OOF4 0 0010' ,OC,: 10010" ,. :;<t~R~b"(Ob!' TO ,EBCDIC eSP06770 

-MO*O--P --5 -1 ..... ·· ---f'O""'OI'1'lOI"""t2-------""!;"""I. t)I!nC-' -------A*'I.AD1E!'1IAh+:."""tl--~, ....... '"RW;""I1rIM,..,. ...... A·.Eer-~ .... · ; . ..,.;. . __ ...... ---.....-..;,~.-.---.-.. -.. __ . 
OOF6 0 0000 "LAI1. Cleo: '. ··.· ••. ·J¢A.O'.JLASTC$P·06790 
oor-,-- 0 0000 eNT 1 be oCM.".efIS CQUH't tSPOi800 -. 
OOF8 0 (002 LO FLAG ERROR 'NO.teATOR CSP06810 
OOF9 o-t 4C180~'-- esc tFSNAt ....... AttOCHE IF ZERO --- .. -----.. ---- 'CSP06'B"20-' 
OOFR 0 lRlO IRA 16 CLEAR Ace CSP06830 
9l'FC'O"··-ooce: 5 ro FLAG CtEAR THE fMC I Cit( I OR -. C5P06840" .. -
!OOFD a 70F5 MDX CONVT CONVERT "AGAIN CSP06850 
'OOFt: 20·-2Z91t9~~·ftN.t;; '. tlSF .. ---- SWING-------·tttvERSf-'TRE"·ARRAy----·-----·-·· CSP06B6lJ---
OOFF 1 0000 DC:"'. .ICARD t!! ·~Q~.~'ARD J CSPQ6870 
cto-o--t""- ~.. DC --~~~;lt'Al'l' .'~tiC*RD JtAST <:5110.880 

,e . . '.:'r .. ;.. " . _. . , . . . ~ , ··~·t .,', ,: , , 

o 

c 



c 

o 

o 

0101 0 7104 
0102 0 6903 

. 0103 00 65000000 
0105 00 4COOOOOO 
0107 0 0000 
0108 00 04000000 
010A 01 740100C5 
010C 01 4CA00107 

, OIOE 0 0000 
OlaF 20 01647880 
0110 1 0000 
0111 1 OOF6 
0112 1 0001 
0113 a 0050 
0114 0 COEI 
0115 0 0019 
0116 01 C4000001 
0118 0 DODE 
0119 0 0017 
011A 0 DOD7 

--0 11 R 0 DO 1 A 
OllC 01 D4000052 

'-ollE 0' C103 
011F 0 OOE9 

--Crr200' 1"810 
0121 0 DOA9 
-0-122 01 4CR0010E 
0124 0 1010 
-ons 0 0000 
0126 0 69DD 

-orz7-or '65800125 
0129 0 40E4 

'-OT2'A 20 22989547 
012A 1 0000 
0-12C 1 00F6 
0120 20 ?25C5144 
OT2E a 0'011 
012F a 0000 

.... 0'130'''1· 0002 
0131 0 0000 
0-132' zn 17057213 
0133 0 0011 
'0134' 1 000 2 
0135 1 0002 

'-"('-1'36---0- noaa ' 
0137 20 170578Fl 

'-'OT3'8' -0"- 2000''' 
0139 1 0001 

---un'A' . r -01-0-7 
;013B 20 170578F1 

'-oT"3'C -'u"---ourro---'-~-' 
,;0130 0 70FD 

'--Ol lEe-err .... "'70 CZ" 
5 0 140 
----,~. -- ......... ----- -_ .. _--- .---. - ..• -_ .. _.-. ---

TEST MDX 
STX 

SAVEl LOX 
DONE asc 
ERROR DC 
ERR STO 

MDX 
asc 

SETUP DC 
LIBF 
DC 
DC 
DC 
DC 
LD 
STO 
to 
STO 
STO 
STO 
STO 
STO 
to 
STO 
SRA 
STO 
BSC 

BLANK DC 
PUNCT DC 

STX 
LOX 
BSI 
LIBF 
DC 
DC 
LIBF 

---DC 
JLAS2 DC 

DC 
CNT2 DC 

LIBF 
DC 
DC 
DC 

TNZ- DC 
LIBF 
DC' 
DC 
DC' 
LIBF 

"-""'llC' 
MDX 
'~DX 

END 

1 4 
1 DONE&1 

Ll 0 
L a 

o 
L 0 
L FLAG,1 
I ERROR 

o 
ARGS 
JCARD 
JLASI 
AREA 
80 
JLAS1 
JLAS2 

L AREA 
CNTl 
CNT2 
CN1 
CN2 

L AREAl 
1 3 

ERR&l 
16 
FLAG 
SETUP 
11010 
o 

1 SAVE1&1 
11 PUNCT 

SETUP 
SWING 
JCARD 
JLAS1 
SPEED 
10011 
o 
AREA&l 
o 
PAPHL 
10011 
AREA+1 
AREA+l 

. -'0 

PAPT! 
12000 
AREA 
ERROR 
PAPT! 
o 
*-3 
TEST 

!I NO ERRORS IN ABOVE ASSEMBLY. 
,----,---'-.... ~ 

3 -- - ----- --- -

INCREMENT 4 ARGUMENTS 
STORE IR1 
RESTORE IRI 
RETURN TO CALLING PROGRAM 
START OF ERROR ROUTINE 
STORE ACC IN ERROR WORD 
SET THE FLAG INDICATOR 
RETURN TO INTERRUPT PROGRM 
START OF SETUP ROUTINE 
CALL ARGS SUBPROGRAM 
GET JCARD J ADDRESS 
GET JCARD JLAST ADDRESS 
GET CHARACTER COUNT 
MAX CHARACTER COUNT 
DISTRIBUTE JCARD JLAST 
INTO JLAS2 
DISTRIBUTE COUNT 
INTO eNTl 
AND CNT2 

PAGE 2 

CSP06920 
CSP06930 
CSP06940 
CSP06950 
CSP06960 
CSP06970 
CSP06980 
CSP06990 
CSP07000 
CSP07010 
CSP07020 
CSP07030 
CSP07040 
CSP07050 
CSP07060 
CSP07070 
CSP07080 
CSP07090 
CSP07100 

GET ERROR WORD ADDRESS CSP07110 
STORE INSIDE ERROR ROUTINE CSP07i20 
CLEARACC CSP07130 
CLEAR ERROR INDICATOR CSP07140 
RETURN TO CALLING PROG CSP07150 

PUNCH ROUTINE STARTS HERE 
SAVE IRI 
LOAD 1ST ARGUMENT ADDRESS 
GO TO SETUP ROUTINE 
'CALL REVERSE ARRAY 
FROM JCARD J 
TO JCARD JLAST 
CALL CONVERSION ROUTINE 
FROM EBCDIC TO CARD CODE 
FROM JCARD JLAST 
TO THE 1/0 AREA BUFFER 
CHARACTER COUNT 
CALL CONVERSION ROUTINE 
FROM CARD CODE TO P.T. 
1/0 AREA BUFFER 
1/0 AREA BUFFER 

PUNCH 

CSP07170 

CSP07190 
CSP07200 
CSP07210 
CSP07220 
CSP07230 
CSP07240-"'" 
CSP07250 
CSP07260 
CSP07270 

CSP'07290·· 
CSP07300 1/0 AREA BUFFER 

·ERROR-P~RAMETER . -'-CSP0'131 0' . 

"'TEST' "FORe" BUSY 
YES, REPEAT TEST 

. --NO'EXI TFROM RO'UT INE 
END OF READ SUBPROGRAM CSP07330 

7 1/ 



II JaR I I FOR' ---- --.-.-----.----- ---.-- _.....-- ---

*LIST SOURCE PROGRAM 
* ONE WORO- TNTEU"ERS­
*NA'v1E LEAP 

c 
c 

c 

c 

··FON"CTlmf·-·t::E·WfYURr···· 
INTEGER YEAR,JSAVE(7),KCARO(2) 
A =YE "R7lf.-· 
CALL DPUT(JSAVE,1,7,A,Q.005,-2) 

-l'UT····r~T TN'JSAVE STRING WITH TWO CHARACTERS- BEYOND· DE-CIMAC-POINT 
IF THE TWO CHARACTERS BEYOND THE DECIMAL ARE ZERO, THE YEAR IS LEAP YEAR 

----"CAl:I:-·n·CLTKC'Al~T,.fl·-.··2·,·-40 3'2 ) 
FILL MASK WITH EBCDIC ZEROS (-4032) 

-rFfNC'OMP"C'JS'AVE, 6. 7"tKCARD.1 ) ) 2.1,2 
IF LEAP YEAR, SET LEAP-l IF NOT LEAP=2 

l-LEA'P=1 
GO TO 3 

---'''"Z''L.-oP=2''---'' -- -.-.----.-""",..,,- .... -- ......... -... -.... -. 

3 RETURN 
'END 

FE A TlJRB---SOPPORT ED·---------­
ONE WORD INTEGERS 

CORE REQUtR£MfNTSFOR LEAP 
COMMON-' ---~ -~A'A'l.T5····~·· -14" P-fotOGRAW----------·6 .. S· 

END OF CO~AITOr\r-"-----c" .. --.--... --

Ie'" I' 

c 



CJ 

o 

FORTRAN CodGd Sortinc Procedures 
---------.----.--------~.-----------

• 
There are two sorting routines of interest - QSOI~rl' and 

MSORT - that I Vlould like to talk to you about today. 

QSORT' is th(;~ FORT'Rl\.N··coded version of an ascending O:t"d8r 

sorting algorithm vlritten by D.A. Shell originally described 

201, SHELLSOHfi' • 

QSOR1' has sev8r~-d_ capa.bilities buil t into it which can be 

usc; fn1: 

1. A second vector (optional) ~an be carried along with the 

vector being sorted. 

2. The main vector may be sorted in ascending or descending order. 

3. The starting point for sorting in the main vector can be 

specified (usually position 1, but could be any position) • 

QSORT is only one of three very similar routines differing only 

in the mode of the vectors being sorted. The following table 

shows the mode of each routine: 

Subroutine 
Name ----_._-

QSORT 
XSORT 
ZSORT 

Mode of ---'---
Main 

Vector 

Integer 
Real 
Real 

Secondary 
Vector" 

Integer 
Real 

Integer 



-2-

Sorting times on the 1130 for QSORT (and XSORT) are shown 

below for vectors of three types: a randomly order vector, a 

.' vector in .order, and a vect9r in reverse order (in- each case a 

secondary vector was not carried along) • 

Made of Time {in sec) 
Vector Random Reverse 

Routine Being Sorted Size of Vector Order In Order Order 

QSORT Integer 2000 36 14 22 

" II 1000 15 6 10 
II .. 500 7 2 4-5 
II II 100 <1 .(1 <1 

XSORT Real 2000 81 28 48 .. " 1000 34 12 22 

" II 500 15 6 10 
II II 100 1 1 1 

MSORT is a subroutine developed for multiple vector sorting 

i.e., when one wants to sort more than one vector from an inner 

to an outer sort (similar to multiple field sorting on a card 

sorter). MSORT calls two subroutines, one of which in turn calls 

QSORT. 

MSORT is one of two similar routines differing only in the 

mode of the vectors involved in the sorting. The following 

table describes the routines involved: 

Main 
Subroutine 

MSORT 

FSORT 

Mode of 
Vectors 

Involved 

Integer 

Real 

Other 
Necessary 

Subroutines 

ORDER 
LSORT 
QSORT 

FORDR 
GORDR 
ESORT 
XSORT 

r' 'l, 

o 



-3:-

A sim~le practice problem illustrates how MSORT works. 

The sheet labeled 'original data' shows four integer vecto~s 

(plus a sequence number at the far right), three of which are 

to be sorted in the order 3/2/1. Vector 4 is simply to be 

carried along. 

The sheet labeled 'sample problem' shows a listing of a 

simple program written to do the above task. It is an inter-

esting program because it illustrates the three basic steps 

involved in the use of a multiple (or singly) sorting routine: 

(1) read data, store on disk and generate the location vector NLOC, 

(2) sort, once or many times, and (3) print the results in the 

prescribed order. As stated above the disk was used to store 

the data and was referenced each time one of the vectors was 

needed for sorting. Note however, that all sorting is done in 

core and that the information on disk is in exactly the same order 

after the sorting as it was before. 

The sheet labeled 'output' shows the results of the sort. 

Also included in the handout are listings of all the programs 

mentioned above plus an abstract pf the routine MSORT • 

.'" 
~ 



I> 

I 

1 
2 
9 

~) 

? 

7 

-, 
I 

o. 

-
I 

2 ., 
I 

7 

iJ 

6 

" ,"" J 

'4 
4 
4 
6 
3 
L~ 

2 
L~ 

o 

') 

5 
1 

1 
2 

4 
1 

4 

4 
1 
o 

2 
4 
9 

1 
Si 

]. 

7 
1 
7' 

o 
C; 

6 
3 
9 
1 
o 

o 

~i 

t? R I G- f Ai ,4 l-

............. " ... ------.. -------~~---'-~-'--~~--~ 

C
,,· 

I I 
I. 

10 , 
.I. _ 

1 ~ 

1 :.:. 

(p .. :.' 
'V" 

J .. 

.. 
"J 

'.l. 
." ..:.. 

:~ 
3 :: 
:;, " 

Le ", 



o 

o 

o 

.,'. "", 6 ), '\ 5 r} frl/' '- ,:;. , ; .... (; . ,.:../.,:~,,-
... _. -- -~--.--.. ,~~~---:-- '~, f 

/ / FOR 
*ONE WORD INTEGERS 
*IOCS(CARD,DISK,1132 PRINTER) 

C 
C 
r 
'-

C 
C 
C 
C 

C 
C 
C 

5 

400 

1 

DIMENSION NDATA(40),NLOC(40),NWORK(40),NDISK(4) 
DEFINE FILE1(40,4,U,IVl) 

READ DATA AND PLACE ON DISK 

DO 1 1=1,40 
READ(2.400) NDISK 
FORMAT(4IS) 
NLOC( I) =1 
WRITE(l'I) NDISK 

M=3 

SORT DATA VECTORS FROM INNER SORT(3RD VECTOR) TO OUTER(lST VECTOR) 
THE 4TH VECTOR IS A *CARRY ALONG* VECTOR 

DO 3 K=l,M 
DO 2 1 = 1 ,40 
READC1'I) NDISK 
L=~-K+l 

2 NDATA(I )=NDISKCL) 
3 CALL MSORT(NDATA,NLOC,NWORK,40,1) 

WRITE DATA VECTORS IN SORTE~ ORDER 

\-JR I T E ( 3 ,40 1 ) 
401 FORMAT(lHl) 

DO 4 1=1,40 
L=NLOC(I) 
READ(l'L) NDISK 

4 WRITE(3,402) NDISK 
402 FORMAT(lH ,415) 

PAUSE9999 
GO TO S 
END 

/ / XEQ 



OUT PIJI 
'f~·; L A ~ 3- .... 1 

0 0 6 0 :;); 
0 3 0 9 ~O 
0 3 9 1 O..L 
0 6 3 7 21 ' 
1 0 4 9 0: 
1 7 4 :1 17' 
1 8 5 0 27 
2 

, 
5 1 1-.L ;i 

2 7. ., 4 2 09 
2 8 7 6 '25 : 
2 9 2 7 3~ : _ .J 

! ~ 1 6 1 06 .-" 
3 4 3- 2 04 
4 2 4 ·8 12 
4 ? 6 8 2~. 

4 6 0 2 36 
4 9 5 6 ~"" J ~) 

5 9 9 1 20 
(, 0 6 4 05 
6 5 4 0 07 
6 c::. 4 7 1; ~ .,/ 

6 6 6 1 33' 
6 7 5 5 1"'.\ ' ." . 

·7 0 1 2 26' 
7 0 7 2 2'-
7 2 2 9 16 1 

7 3 0 5 At ~ \ 

7 4 3 9 . 1: . 

7 4 5 2 22 ~ 

7 7 6 4 031 
8 0 5 0 4",1 v: 
8 5 7 9 1 i.! , 
8 6 1 9 2 ~ ~ 

8 7 
, .... i 

0 1 ~81 

9 0 6 4 10 
~9 5 5 5 (3; 
9 6 1 6 34.! 
') 6 4 3 '31"! 

. I 

9 7 3 2 39: 
9 9 5 0 '- '7 

o 



0 

• 

/ / DUP 
*D~LETE aSORT 
/ / FOR 
*ONE WCRD INTEGERS 
c 

.. c 
r 
'-
r '-c 

c 
c 
c 
C 
r .... 
C 
C 

:. C 

C 
C 
r 
'-

C 
C 
C 
C 

1 
20 

30 

41 
49 

SORT AN ;,I~\:TS(~1~R .. VECTOR, !i\lTO ASCE!"JDI ~:G OR DES(ENDIJ\G ORDER 
CARRY I NG ,L\L'Oi\IG' A, SECONDARY V Eel or~ I N' A ON E-- T O-Ci\ E 
CORRESPONDENCE (OPTIONAL) 

NA=VECTOR TO BE SQRTED 

NB=SECONDARY VECTOR 

N=~IU~11BER OF ELE~,"ENTS TO BE SORTED 

N 1 = 0 I G ~,1 0 R E ~! B 
=1 NB CARRIED ALONG WATH MA 

NUPDN=O SORT IN DESCENqINGORD~R 
= 1 SO R TIN AS C END I N G 0 R D ~R, 

NSTRT=-ST~RtING, POII\\T ,IN N.A FOR SORTII'IG (ljSUALLY 1) 

DIMENSION NA(l),NB(l) 
NDISP=NSTRT-1 
DO 1 I=l,N,I 
M=2~~!-1 

IFo/1) 30~40,30 

K=N-~',1 

J=l 
I=J 
L=I+~'~ 
II=I+NDISP 
LL=L+NDISP 
IF{NUPDN) 90,90,10 

90 IF(NA(II)-NA(LL» 50,60,60 
10 IFCNA(II)-NA(LL) 60,60,50 
50 NAS=NA(II) 

NA( II )=NA( LL) 
NA(LL)=NAS 
IF(Nl) 70,70,80 

80 N~.S=N8(II) 
NB(IIf=NB(LL) 
NBCLL)=NAS 

70 I=I-M 
I F ( I - 1) 60,,49-, 49 .. 

60 J=J+l 
IF(J-K) 41,41,20 

40 RETuRN 
END 

; / / DUP 
*STORE \.J SUA' Q 5 0 R T 



/ / :=>UP 
~~:- :-) i:: L ~ T ::. 
/ / F()i~ 

XSORT 

-l~-O:d:: \A(:':::J INTEGE(~S 
r 
c 

c 
c 

c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

SORT A RE~L.VECTOR INTO ASCENDING OR D~S(EN)ING ORDER 
C~RRYING ALONG A SECO~DARY VECTOR IN A ONE~TO~ONE 
CORRESPONDENCE (OPTIONAL) 

sueROUTINE XSORTCNA,NB,N;Ni,NUPDN,NSTRT) 

NA=VECTOR TJ BE SORTED. 

N8=$ECONDARY VECTOR 

N=NUMBER OF ELEMENTS TO BE SORTED 

N1=0 IGNORE NB 
=1 NB CARRIED ALONG WITHNA 

NUPDN=O SORT TN DESCENDING ORDER 
:1 SORT IN ASCENOING ORDER 

NS T RT =5 TART INGP'O IN T IN NA FOR: SORTING (USUALLY 1) 

REAL NA(l),NB(l),NAS 
NDISP=NSTRT-l 
DO 1 I=l,N,I 

1 ~~=2~f-I""1 
2 0 ~~ = ~fi, /2 

IF ( M) 3 0, 40,30 . 
30 K=N-~~ 

J=1 
41 I =J 
49 L=!+~1 

II=I+NDISP 
LL=L+NDISP. 
IFCNUPDN) 90,90,10 

9 ° IF ( NA ( I I ) -NA (·LLl). 50,60,60 
1 a I F ( N A ( I I ) - N A: ( L L) 6 0 , ~O , 5 0 
50 NAS=NA(ll) 

Ntd I I) =NA (LL) 
NA(LL.'=NAS. 
IFCNll70,70,80 

80 NAS=NEH.II).; 
N8 ( I 1)='N,S (Lll 
N8(LL)=NAS 

70 I = I-tv! . 
IF( 1-1) 

60 J=J+1 
IFeJ-K) 

40 RETURN 
END 

/ / DUP 
~. S TOF< E WS. UA XSORT 

" ;" :",<;~.; 

~ .. , 

c 

() 



o 

/ / DUP 
*DcL[T~ ZSO?T 
/ / FOR 

r 
'-

.~ SCRT A RE~L VECTOR INTO ASCENDING OR DESCE~DING ORD~~ 

C C A? ~ YIN G ~ L 0 i ~ GAS E CO j ,i D ,~ R YIN T ~ G E R VEe TOR Ii\ A 0 N E - TO - 0 N E 
C CORRESPONDENCE ·(OPTIONAL) 
C 

SUBROUTINE ZSORT(N.A."NB,N,N1~NUPDN,NSTRT" 
C 
C NA=VECTGR TO G~ SORTED(REAL) 
C 
C NB=SECCNDARY VECTOR 
C 
C N=NU~6ER OF ELEMENTS TO BE SORTED 

~C 

C 
C 
C 
C 
C 
C 
C 

Nl=O IGNOR:: NS 
= 1 NB CARR I ED ALOi~G \tj! TH NA 

NUPDN=O SORT IN DESCENDING ORDER 
=1 SORT IN ASCENDING ORDER 

NSTRT=STARTING POINT IN NA FOR SORTING (USUALLY 1) 

REAL NA(l) 
DIMENSION N8(1) 
NDISP=NSTRT-1 
DO 1 1=1, N, I 

1 M=2*I-l 
20 ~~=M/2 

IF(M) 30,40,30 
30 K=N-M 

J=l 
41 I =J 
49 L=I+~1 

II=I+NDISP 
LL=L+NDISP 
IFCNUPDN) 90,90,10 

90IFCNACII)-NPdLL».50,60,60 
10 IFCNA(II)-NACLL)' 60,60,50 
50 FAS=NA(II) 

NA( I I )=NA(LL) 
NACLL)=FAS 
IF(Nl) 70,70,80 

80 NAS=NB(II) 
NB( II )=N8(LL) 
NB(LL)=NAS 

70 I = I _111\ 
IF( I-I} 60,49,49 

60 J=J+l 
IF(J-K) 41,41,20 

40·RETURN 
E~lD 

/ / DUP 
~~STOi~E ~'JS UA ZSOR T 



".-... ~ ... , .. -.-........ ---........... - ... --....... - ..... , ...... ,.-., ... ----""'------

Subroutine MSORT 

Purpose: 

To sort an integer vector of numbers and produce the 
location (pointer) vec~or indicating the sort order. This 
subroutine would be used for multiple, field sorting. 

Usage: 

Call MSORT(NDATA,NLOC,NWORK,K,NUPDN) 

Description of Parameters: 

input 
input/output 

input 
input 
input 

Remarks: 

- NDATA = vector of input data to be sorted 
NLOC = location vector which must be initialized 

to the integers I-K when calling MSORT 
for the first time. This vector is never 
reset and needs only to be initialized. 
After multiple sorts have been made, 
NLOC shows the index of the original 
records in the order according to the 
fields sorted. 

- NWORK = work vector of length K 
K = length of NDATA,NLOC, and NWORK' 

- NUPDN = 0 descending order sort 
1 ascending order sort 

When using MSORT,NDATA is the data vector presented at 
anyone time. When mUltiple sorting, the data representing 
the inner or minor sort must be presented first to MSORT, the 
next data-""vector in the sorting sequence etc. until the last 
data vec,tqr which represe'nts the outer or major sort. 

'\ 

The following calls to MSORT would be used to sort in 
ascending order a record according to three. data vectors NDATI, 
NDAT2, and NDAT3 where NDAT3 indicates the inner sort and NDATI, 
the outer. (Remember NLOC is set to. the integers I":'K prior to 
call~ng MSO~T th~ first time) ~_ 

DO 1 i=I,K 
I NDATA(i)=ND~T3(i) 

Call,MSORT{NDATA,NLOC,NWORK,K,l) 
DO 2 i=I,K· 

2 NDATA(i)=NDAT2(i) 
Call MSORT(NDATA,NLOC,NWORK,K,l) 

D03 i=l,K 
3 NDATA(i)=NDATI{i) 

Call MSORT (NDATA,l-ffiOG, ~1WORK, K/l) 

• 

o 

() 



c 

o 

o 

Subroutines Required: 

ORDER, LSORT 

Input-Output Devices Used: 

None 

Method: 

Each data vector is re-ordered according to the location 
vector NLOC before being sorted into ascending or descending 
order. This has the effect of sorting a given field and carrying 
with it all the other associated fields in the record. 



! . 

. r 

II DUP 
*DELETE MSORT 
1/ FOR 
*ONE WORD INTEGERS· 

SUBROUTINE MSORT(NDATA,NLOC,NWORK,K,NUPDN) 
D n/, ENS ION N D ~ T [>.. ( 1 ) , N L 0 C ( 1 ) , N \v 0 R K ( 1 ) 
CALL ORDER(NDATA,NLOC,NWORK,Kl 
DO 1 1 = 1, K 

1 NWORK(I)=t ~. ,_ 
CALL LSORT1NDATA,N~ORK,K,NUPDN)' 
CA.LL ORDER{ NLO(, N~vORK, NDA fA, K ) 
RETURN 
END 

/ I DUP 
*STORE WS UA MSORT 

I I DUP 
*DELETE 
/1 'FOR 
*ONE WORD INTEGERS 

ORDER 

SU B ROUT INE,ORDE R (N A ~:NZ;" N K , N >. 
D H1 ENS I ON NA( 1 ) ,NZ ( 1 ) , ~,IK t 1), 
DO 1 r =l',N·, 
K=NZ(Il 

1 NK(I)=NA(K) 
002 1=1, N 

2 NA(I)=NK(I) 
RETURN 
END 

I I DUP 
*STORE WS UA ORDER 

II DUP 
-l~OELETE 

I I FOR 
tSORT 

:~ * ONE WORD INT EGERS . 
SUBROt..:rrI'NE LSORTfNA, NZ, N,NU.PDN) 
DIMENSION'NA~l)~NZ(l) 
CALL QSORT(NA,HZ,N,l,NUPDN,l) 
K.STRT=O 
DO 1 1=2,N 
IF(NA(ll-~Atl~ll) 2,3,2 

2 IF(KST·RTl.1,1,4 
'4 K=I ..... KSTRT.. ,',. , . 

CAL.L.QSQRT tN·, tNZ .~·K ,'0, 1, KSTRTJ 
KSTRT=O . " 
GO TO ,1 

3 IFC K SiR,I) 
5 KSTRT=I-l 
.1CONTINU~ 

IF f-KS TRT t, ·q .• 6t7 . 
7 K ~ N~K S,T Rr+.i:!¥~:;· 

CA L C"'::'QSOFtt:;f:NZ, NZ,K; 0, 1,KS T RT'l 
6 RETURN' 

END 
1/ -DHP' 
* STORE WS' UA LSORT 

c 



c;! 

o 

/ / D'..}P 
~;- ):LET:: FSQRT 
/ / F or~ 

• 
SU21ROUT I N::: Fr::~(;::;~ T (!\j[).i.:, T A, ULCC, r'!:.'!I':::'I~K, K, NU?D/\{) 
REAL NDATA(l),N~ORK(l) 

DIMENSION NLOC(l) 
CALL FORDR(NDATA,NLOC,NWORK,K) 
DO 1 1=1, l( 

1 N I"r 0 R K ( I ) =·1 
C /\ L L E S 0 R T ( :\l D ~, T .A , ~F'J:J R K , K , {\; UP D i\l ) 
C /\ L L GO R DR ( r: L 0 C , IY.-': 0 r~ K , [ .. j J /\ T A , :<. ) 
RETURN 
E~,:D 

/ / DUP 
~~ S T or~ E v.:~ UA FSORT 

~I / DUP 
-l~DELETE 

I / FOR 
*ONE WORD INTEGERS 

FORD~ 

SUGROUTINE FORDR(FA,N~,FK,NJ 
D I j\IjEf\\S I ON F t, ( 1 ) ,NZ ( 1 ) ,FK ( 1) 
DO 1 1=1, ;\1 

K=NZ(I) 
1 F v ( I ) = F.~ ( !< ) 

D () 2 1=1, r< 
2 F p, ( I ) = F K ( I ) 

END 
/ / DUP 
-If. STORE \I'S U ,,\ FOR D R 

I / DUP 
-Y,DELETE 
/ / FOR. 

ESORT 

*ONE WORD INTEGERS 
SU8ROUTIN~ ESORT(NA,NZ,N,NUPDN) 
R :: A L I'J l\ ( 1 ) , N Z ( 1 ) 
CALL XSORT(NA,NZ,N,l,NUPDN,l) 
KSTRT=O 
DO 1 1=2, N 
IFCNA( I )-NA.( I-I» 2,3,2 

2 IFCKSTRT) 1,1,4 
4 K=I-KSTRT 

CALL XSORT(NZ,NZ,K,O,l,KSTRT) 
KSTRT=O 
GO TO 1 

3 IF{KSTRT) 5,5,1 
5 KSTRT=I-l 
1 CONTINUE 

IFCKSTRT) 6,6,7 
7 K=f\.I-KSTRT+l 

CALL XSORT(NZ,Nl,K,6,1,KSTRT) 
6 RETURN 

END 
/ / DUP 
~}STORE h'S UA ESO~T 

/ / DUP 
*DELETC: 
/ / FOR 
*ONE WORD INTEGERS 

GORDR 

SUB R C IJ TIN E G C R D i~ ( ~.! Z , FA, F K , N ) 
D I ~" ENS I a \' f\! Z ( ]. ) , F /A ( 1 ) , F!( ( 1 ) 
DO 1 I = 1 , ,'! 
K=Ft:.(I) 

1 FK( I )=f\.!Z(X) 
DO 2 1=1, f\! 

2 NZ(I)=FK(I) 
j~ETURN 

END 
/ / OUP 
~f-STORE ~'J SUA GO R DR 



c 



c 

o 

SESSION REPORT 

COMMON - Chicago 

Session Number TUE A4 
----~-----------------

Session Name Control of Programming 

and Qperation. CQlt. Chairman P. A. Bickford 

Time 8.30 to 10.00 AM Attendance (No.} ________________ _ 

Speakers __________________________________________________________ --------

Synopsis of Meeting Two alternative method. of bUdsetlngand aeeounting 

for systems. prosremmi*&. and operatiDl eost. were outlined. Example. 

were given to show different mangement decisions ari.ina from the 

application of these methods. 



---------------, ~-.~.--.. -.--"--

BUDGET ING EDP CX) STS * 

. INTroDUCTION 

There are many reasons why companies install com-

puting equipment. Some are valid - others are not. 

In any case, the story often begins when a com-

pany decides to install a computer to handle expand­

ing research, engineering and/or business oriented 

applications. 

An individual is selected to manage the use of 

such equipment for one of two reasons: 

1). He may have been the manager of 
a unit record installation, 

or 2). He had some technical background 
associated with computer programming. 

Seldom is any consideration given to the management 

background of the individual charged with the respon-

sibility of utilizing the new computer. He soon finds 

himself subjected to rapidly increasing pressure: 

1). He receives little management direc-' 
tion. Seldom is anyone in "Top 
Management" willing to become en­
twined with a new mysterious adven­
ture. They don't understand it so 
they vote to go along with it. 

2). He is so pre-occupied with learning 
how to make the new equipment work 

*Presented at the OOMIDN USERS GROUP meeting in 
Chicago, IllinoiS, April 10, 1968. 

c 

Q 



c 
I' 

o 

o 

- 2 -

that he devoted little or no time to 
real management problems. 

3). When manufacturer proposals are con­
sidered, it is difficult for him to 
question promises of fantastic savings 
made to top management. After all, the 
potential importance of this new posi­
tion looks far too rewarding. 

4). The establishment of a new section, 
department or division with the 
prerogative to cross department lines 
does not win friends among other de­
partment heads. They begin to fear 
their own position as well as impend­
ing changes. 

To tqp it all off, the top management of the company 

decides to handle the cost of this new effort the same . . 

way other costs have always been handled. The objec-

tive of this paper is to examine the different ways 

this has been done and their implications. 

ALTERNATIVE METHODS 

The method which should be used in an organiza-

tion depends upon: 

A. Organization structure. 

B. Direct Top Management involvement in the 
review of possible areas of application. 

c. The extent to which installed equipment 
is being used. 

Each alternative will be discussed separately. 

ALL aoSTS CONSIDERED AS GENERAL ADMINISTRATIVE OVERHE~ 

Here all costs associated with the'computing acti-

vity are distributed as all other corporata, management 



- 3 -

and staff costs. Usually, little effort is devoted 

to the development of direct costs by job. In this 

environment, the value of processing different pro-

jects is not questioned or evaluated. 

Where the objective of the computing activity 

is to process large volume financial, inventory or 

Management Information Systems applications, this 

may be a satisfactory solution. However, where a 

variable mix of applications is being processed from 

several departments, this solution is not satisfac-

tory. At this level of operation there is no com-

parison of actual costs with projected costs. 

ALL VARIABLE COSTS CHARGED DIRECTLY - ALL FIXED COSTS 
CHARGED TO USING DEPARTMENTS ON A USE BASIS 

The value of this approach to the problem depends 

upon the mix of applications being processed, the de-

gree of computer use during different times of the 

year, and the top management support for the computing 

effort. This method is entirely satisfactory where the 

level of computer use is constant and there is top 

management support for the computing effort. 

Where the level of computer use varies from period 

to period, any method for allocation of overhead costs 

is at best, approximate. Furthermore, if the main 

concern of top management is the control of costs within 

o 

o 

() 



o 

o 

- 4 -

cost centers, this method will result in cost center 

management using means other than the computing ser-

vice for accomplishing major tasks. Under these con-

ditions computing facilities will not be used to capa-

city and added corporate costs will be generated where 

cost center management options for major clerical ef-

forts to accomplish major tasks. 

Where a computing service is established at the 

corporate level, division and department heads may 

pr~fer to handle the processing of all tasks within 

departments where possible, to avoid: 

or 

1). Outside inf1ue~ce, questions or con­
trols 

2). Charges from a service department. 

This can often happen where the comparative costs 

clearly favor the computing service. 

VARIABLE COSTS CHARGED DIRECTLY - FIXED COSTS CHARGED 
AS GENERAL ADMINISTRATIVE OVERHEAD COSTS 

Fixed costs are defined as those associated with 

the top administrator of the data processing effort 

and ~he basic costs of the computing equipment in­

stalled. Variable costs are those associated. with 

all added personnel, supplies and maintenance re-

qui red to complete processing for all applications. 

The conditions where this method works best .are 

obtained when: 



-."-.... ---,-.~-~.-.-.-.,.''' ... -.... "."' .. -... " ...... -' ... " ....... , .• -.•. -.--.-.-.. "-... -~--..... ,,- .... ,,-.................. " ... " .. , ....... , .. "'." ... -., .... , ..•.. -..... -.. -... "-.. -~,~-.~ .. --~~~~~~~~-

- 5 -

1). The computer is not used to full 
capacity throughout the year. 

2). Top management wants to maintain a 
cost center control and minimize 
total corporate costs. 

and 3). The level of computer use varies 
during different times of the year. 

Many organizations have major applications which re-

quire a minimum computer configuration. These organi­

zations may use their equipment close to capacity dur-

ing some periods of the year and less than capacity 

during the remaining periods. Under these conditions 

the equipment should be used for all applications where 

the increase in variable costs to do the job is less 

than the cost of accomplishing the job using alterna-

tive methods. 

C.,1 
, '. 

o 

c 



c 

() 

SESSION REPORT 

COMMON - Chicago 

Session Number TUE Bl Session Name 360 DOS --------------------- ------~~---------

Chairman A. Ragsdale 

Tl~ae 10.30 to 12.00 AM Attendance (No.) 118 
-----:..=.;::;:;~----

Speakers 1) Mr. Bob White - IBM (DOS Version 3) 

2) Mr. Gerry Kaplan - IBM (Comparison of FORTRAN to PL/1) 

Synopsis of Meeting 1) Mr. Bob White of IBM announced the availability 

of DOS Version 3. He announced the following improvements in the DOS 

system. a) complete support of the 2314. b) simplified label handling. 

c) cylinder index in core for indexed sequential files (assembler lang­

uage only), d) improved multiprogramming facilities. e) device inde­

pendence for problem programs. f) libraries may be resident on other 

than SYSRES, g) disk initialize program now resident in DOS. 

2) Mr. Gerry Kaplan of IBM pre.ented the similarities between FORTRAN 

4C) and PL/1. A good summation of the pre.entation may be found in the IBM 

Manual "A Guide to PL/1 for FORTRAN Users" - C20-1637. 

I 



l) r' S PLI I AtlD FORTRAN: A CO~'PI\H I snfJ 

PART I STI\TEf'IEtJT SIl"lILAHITY 

PART I I I CAPAB ILL TIES OF PU I BEYOriD FORTRAI~ 

\ 

I 

~ . 
1£ £' ~S ~ /\./71::-0 /? -/ . 

(;. /7 /4 /"? ; /-7 .A--/ 

• 

/.2;-7 /'-/ ·!e/~I / T£· j~ /9 / /1/ .j-

• 

l . 



c 

0 

'. 

o 

PUI AND FORTRI\N: A COr"IPI\RISON 

PART 1 - ST 1\ TEI-'lEt:T S If'lI LAR I TY 

D,~TA llEElrHTION 

EORTRAr; 

DIMENSION A (50,50), B(25,lOO), C(2) 

COr',f~10r J A 

EQUIVALENCE (A, B) 

DATA C/2*1.01 

INTEGER *2 A 

REAL *8 B 

CONPLEX D 

LOGICAL E 

pur 

, DECLARE A (50,50) BINARY (15,0) 'EXTERNAL, 

B(25,100) FLOAT BINARY (53) DEFlrJED A, 

C(2) ,ItlITIAL ( ,(2) 1.0) I 

, D FLOAT Blt!ARY COrlPLEX, 

. E BIT(l) , 



o 
FORTRArJ 

A = B+C*SQRT(E) 

A = B+C*SQRT(E); 

./ 

o 



r , 
J 

f 

'c' I d 

o 

10 

conTROL STATEJ1EUTS 

FORTRAN 

GO TO 25 

GO TO (1,3,5), fJ 

N=2 

IF (X .EQ. Y .AND. Z .GT. Y) A=B+13 

DO 100 1=1, 15,3 

100 CONTINUE 

PAUSE 'END PHASE I' 

GO TO NEXT; 

GO TO L CD: 

I=3; 

IF x=y & Z>Y THEN A=B+13: 

lllOO:DO ·1=1 TO 15 BY 3: 

ErUJ DIOO 
. 

DISPLAY ('ENDPIIASE 1'): 

{ f 

'\ .. 



PL/I 

IrJPUIOUTPUT 

READ (5,1) X,Y,Z 

I F 0 f~'1P\ T (F 8 • 2 , 2 F 4.1 ) 

HRITE (6,2) 

2 FORr·1AT (lH I, 'HEP\DI NGS') 

WRITE (8) X,Y,Z 

Ef'JDFI LE 8 

RE\11 ND 8 

GET EDIT(X,Y,Z) (F(8,2), F (5,1»; 

PUT LIST ('HEI\DING') PAGE; 

WRITE FILE (SCRATCH) FROM·(WORK) 

. DECLARE 1 WORK; 2X.,2Y,2Z; 

CLOSE FILE (SCRATCH); 

o 



c fORTRAN 

pur 

C 

o 

SUBPGOGRAM CONSTRUCTION 

CALL i1J\Tf'1PY (A, ti, C) 

FUr~CTI ON SPEC (r." B) 

SUBROUTINE XTR (:~,Z) 

ENTRY XTRA(Q, R) 

EXTERiV\L Sl,S2, S3 

RETURN (A+B+C) 

CALL MATMPY (A, H, C); 

SPEC: PROCEDURE (A, B): 

XTR: PROCEDURE (Y, Z); 

XTRA: ENTRY (Q, R); 

.DECLARE (Sl, S2, S3) ENTRY; 

RETURn (A+B+C) ; 



.--~.-.--"-'-.-.. -"" ..... -.~~-~ .... '~~~-------------

QUADRATI C f10DEL 

SA~1PLE PROBLEf1 

A + A T + 1/2 A2 l o 1 
ExporiEr\~T I ALLY Sf'100THED CO[FF I C I ENTS . 

READ IN DATJ\ 

UPDATE MODEL AND MAKE NEW FORCAST 

PRINT NEW FORCAST 

PUNCH UPDATED MODEL 

o 



o 

0"', 
, , 

PART I I - CO(1PARISOn OF SM1PLE PROGRAitiS 

fORTRAn ,-181 N PROGBAf'l 

DInENS lor! ID (5) 
1 r~TEGER *2 I D 
COi·li10N OBS, PRJ, AO, AI, A2 
\*l(11TE' (6,100) 

100 FORnAT (lH1) 
1 READ (5,101) OllS, PRJ, AD, AI, A2, (ID(I), 1=1,15) 

101 ForulAT (F8.4, 4FlO.4,15A2) 
CALL FORCAST 
WRITE (6,102) PRJ, (ID(I), 1=1, 15) 

102 FORivlAT (lH, 'F8.4, Xl, 15A2) 

103 

HRITE '(7,103)" PRJ, An,' A1,A2, (ID(I), 1=1, 15) 
FOffi1AT (X8, 4 F10.4, 15A2) 
GO TO 1 
END 

•••• 0'jJI 



· PUI t'lAIr~ PROGRAH 

SAr1PL: PROCEDURE OPT IONS G'lA I fn : 

DECLARE (OBS,PRJ,AO,Al,A2,ALPUA,BETA) 

FLOAT BINARY, ID CHARACTER (30) ) STATIC 

EXTERNAL: 

ALPHA=.l: BETA=.9: 

PUT EDIT PAGE: 

START: GET EDIT (OBS,PRJ,AO,Al,A2,ID) 

(F(8,4), ~(X(2), F(8.4) ), X(2), A(30) ): 

CALL FORCAST: 

P'UT EDIT· (PRJ, ID) (F(S,4),X(2), A(30) ), SKIP (1): 

PUT FILE (PUNCH) EDIT 

(PRJ',AO,Al,A2,ID) 

(xes)·~ 4(X(2),F (8,4) ),X (2) ,A(30) ): 

GO TO START: 

END: 

o 

o 



c .; 

. FORTRAN SUBPROGRAM 

SUBROUTINE FORCAST 

COilr10N OBS,PRJ ,AO,Al,A2, 

" REAL *ll ALPHA/ .1/ , BETA/ .9/ • 

ERR=PRJ-OBS 

TEMP=A2-ALPHA**3*ERR 

Al =Al +A2-1. 5*ALPHA **2* (2 .O-ALPHA) ~ERR' 

AO=OBS+BETA**3*ERR 

0 A2= TEr~1p 

PRJ=AO+Al+.5*A2 

RETURN 

END 

o 



.... o 
PL/I SUBPROGRN'1 

FORCAST: PROCEDURE: 
, , 

ERR~PRJ-OBS; • . ' ... 

" . .' . 

TEf1P=P,2-ALPHf\ ~*3~ERR; 
. . , . . 

.' ~. .. ,-. .. 
Al =AI +A2-1 i.5*I\LPHA **2* (2-P.LPHA) *ERR:_, 

AO=OBS+BETA**3*ERR; 
... ' 

• • .. !. " •• ~ .:' " 

A2=TEr1P: 

PRJ=AO+Al+.5~A2: 

RETURN: 

'. END: , . 
".' . 

-.' 

e' 

. " . -. ., .. 

• 

.' 

.' .: .. 

" .. 

. ' :. 
. 

" "'! 

. ~... . .. . .. : .. o 
: :" .• 

. , 

,.. 
.,' ' 



PART III 

o 
PL/I HAS SUPERIOR ARRAY HANDLING 

EXAMP LE8: 

WHERE THE VARIABLES ARE ARRAYS 

o 

• 

o 



PL/I HAS CHARACTER AND BIT STRING PROCESSING 
'I" 

EXAMP LES 

* DECLARE (HEADACHE,. FEVER) BIT' fl'}: 

IF HEADAC.HE· AND (--"7":-"FEV'ER) , 

THE N.GO T 0 AS P IR I N J 

ELSE ·GO TO PENICILLIN;' 

* DEC L'AR E.(X, A), CHARACTER ( 11) I " 

x = 
, 

XYCOMABCMON'; 

y = INDEX . eX, :", C"OM'),; 

z = INDEX (X, 'MONt); 

A = SUBSTR (X,y,3) 11 

SUBSTR (X, Z, 3); 

A WILL BE SET TO 
COMMONbbbbb 

/ 

o· 

• 

{) 

c 



o 

PL/I·HAS MORE EXTENSIVE 

I N PUT / 0 U T PUT F A C I LIT I E S' 

PUT SKIP EDIT (A, B , CJ (F (I 0 , 2) , F . (8) , 

• X (4) , A ("22»; 

PUT SKIP EDIT (I SIN ( A) = b I', SIN (A) ) .. (A ( 8) , F (10,6»; 

PUT SKIP EDIT (A, B) (R' .( F MT (I»)); 

FMT ( 1 )' ••• 

FMT ( 2) ••• 

PUT PAGE EDIT (A, B , C) ({K) F (N,M»; 

PUT SKIP FILE (OUT) LIST (-'SQUARE RO·OTS OF 100 INTEGERS', 
(X, S QR T (X), DO X + 1 to 10 0»; 

GET SKIP STRING (CHJ;\R) 

** AND ALL C·OBOL-LIKE. FA'CILITIES VIA. REA·O/WRITE 
. . ". #.~. 

FROM/TO STRUCTURES. 

. .. 



_._------------- -- _ .. _.- ----~ ,~ 

I 

'I ; 
1 ~ 

i i 

! ; 

':C 
! : 

, . PL/I HAS NORE EXTENSIVE DATA EDITlr~G 
I 

I 
( 

I 
, ; SOURCE . TARGET , 

, 

00100 **100 

10203 123 

1234.56 1.234.56 

12 . 1 2 

001.23 $1.23 

-123 $1.23CR C 
123 

+ 
123 

--123 ',123 



.' . 

EXAf1PLES 

DATE RETURNS CH;~ftACTlr~ STRI iiG YYf"1j'1lJD ' . ., 
TH'lE . RETURr~S CllP,RACTER STr{H~G HHiiilSSTTT 

SU:v1 (X) RETURt!S sun OF PILL ELl:JiEiiTS· OF X·' 
PROD(X) . RETURNS PRODUCT OF ALL ELEMENTS OF X 

'.' 

o 



P L/I HAS POWER 1.1 

* TAB L E (P) ObF V A L U E S 

• 
TO BE MODIFIED BASED ON PRESENT CONDITION 

P=P+ (.05 * P>1.0) 

+ (.10 * p) 10.0) 

() 



IN ADDITION FULL ~L/I· OFFERS: 

COMPILE TIME FACILITIES (MACROS) 

LIS T PRO C E S SIN G· 
• 

MULTI TASKING 

I NT ERR U P T CON T R 0 L CAP A B I LIT I E S 

o 

'.' 

.. 

.. 
. . 

. 0 



."-.-.~.---.--.- .. " .... ", .. ,.,""",,,,-,~,---,,-,-~~~--~-~---------------------------, 

G 

() 



o 

SESSION REPORT 

COMMON - Chicago 

Se3sion Number TUE B2 Session NameMPX I ~ Internals ----------------------
Chairman R. P. Walker 

Time ____ ~1~O~13~O~t~0~1~2~I~O~O~AM~ ______ __ Attendance (No.) 91 
--~~----------

Speakers Bruce Landeck - IBM 

Panl Heale;, - IBM 

. Lex Arthur - IBM 

Synopsis of Meeting B. Landeck introduced the speakers. Both speechea 

were tutorials. P. Healey spoke on Input/Output. L. Arthur spoke on 

system generation. Available material includes. 

MPX System Introduction C26-3718-l 

MJX Subroutine Library C26-3724-0 

MPX Programmers Guide C26-3420-0 



SESSION REPORT 

COMMON - Chicago 

Session Number TUes. B 3 

Chairman R. J. Snaller 

Time Tues., 10:30 a.m. 

Session Name"Conversion Experience & Tips" 

Metropolitan Lite (# 1495) 

A ttendance (No.) ___ 1..&.;6=--_____ _ 

Speakers ____________________________________________________________ __ 

Robert Wilkin, Hooker Chemical. Com;pa.ny 

James Bobay, Cummins Engine Co. 

Robert Cornell, Federal. Reserve Bank ot Minneapolis 

Don Forsyth, Continental Can Co. 

Robert Therklldsen, I.B.M. - Chicago West 

Reading Pollitt, I.B .M. - Wh1 te Plains, If. Y • 

Paul Koepsell, South Dakota state University 

Synopsis of Meeting As it developed there was just sufficient time to 

accomodate the presentations of all the speakers. The talks contained a 

mixture of specific methods for meeting a particular conversion problem, 

various experiences in converting and an overall look at conversions in 

general. Programs· for language conversions were described. Operating using 

emulation was cODDJJented on. Also discussed were training, load capacity, 

back-up and the need tor a conversion plan which 8hould be caretully prepared 

beforehand and adJiered to. -----------------------------------------------------

o 



o 

o 

o 

COMMITTEE: 

SUBJECT: 

SPEAKER: 

COMPANY: 

ADDRESS: 

PHONE: 

4/15/68 

Installation Management Division, 
"Conversion Experiences and Tips" panel. 

Conversion Considerations 

Robert L. Cornell 

Federal Reserve Bank of Minneapolis 

73 South 5th Street 
Minneapolis, Minnesota 55440 

(612) 333-0361, Ext. 418. 

DAY, TIME, NUMBER OF SPEECH: Tuesday, April 9, 1968 
10:30 - 12:00 A.M. 
Tuesday Session - B3. 

TEXT PAGES: 3 

GRAPH PAGES: 0 



Speaking for the Federal Reserve Bank of Minneapolis and aided 
by a great amount of hindsight, I should like to present a number of 
conversion considerations which may be helpful to others seeking "outside" 
ideas in this area. First I will present a summary of our current 
machine status, then view some of our impressions and ideas regarding 
conversion. 

Prior to installing our present IBM System/360 Model 30E, our 
"shop" included a 20K 1620 Model I, two 402 accounting machines and a 416, 
one 514 and one 519 reproducing punch and a dozen keypunches. Our 360 
was installed on July 1, 1967 with a 1620 compatibility feature a'ttached. 
For a variety of reasons we are ordering an additional 32K for installation 
this summer. 

Basically and quite briefly, Our decision to convert toa larger 
machine was based on three important needs •. First, the need had long 
existed for more raw computer power - faster processing speeds. With the 
diurnal bias of both programming and operating staff being mainly 
responsible, our operations had steadied to a 6:30 a.m. to 11:30 p.m. 
machine schedule, less and less of which was available for program testing 
or compiling. 

Secondly, we recognized a need for larger disk file storage 
capacity and a desire to provide for storage of large data files on 
magnetic tape. Following a conservative policy on destruction of old 
card-data, we were faced with a continued accumulation'of boxes of cards 
which would become unmanageable without taping facilities. Third, a 
near-future need exists to provide terminal facilities for direct data 
communications with other Feds and with the Board of Governors of the 
Federal Reserve System in Washington, D.C. A need to provide multi­
programming environment required a machine change. 

Hardware decisions are mainly a matter of selecting among the 
various promises as to what the manufacturers can and will provide for you. 
Decisions on specific readers and printers may be made based on the varying 
requirements of the installation. One tip to remember: In order to secure 
the best (and only good) bargaining position, written agreements regarding 
length and time of P.M. (Preventive Maintenance) should be made prior to 
installation date. 

As in our case, the time schedule for delivery of the new 
machine may not allow time for extensive reprogramming prior to installation. 
WhBn this occurs, it may be necessary to consider simulation or emulation 
as an aid to conversion. Having now had nearly one year of 1620 emulator 
experience on the 360/30, we would like to give a list of our impressions 
regarding this mode of operation. 

1) Emulation is often fast and impressive. For 
identical jobs, it may even run faster than 
360 DOS. Over our 1620 speeds we have reaped 
basically the gain in speed of our I/O devices; 
1620 jobs can be expected to run 2 to 4~ times 
faster under Emulator. 

- 1 -

o 

I~\ 
1Il~ 

o 



o 

o 

o 

2) Emulation causes problems in machine backup. 
Our nearest backup machine is in Des Moines, 
Iowa. The backup problem would be less 
crucial if our reprogramming effort were complete. 

3) Emulation causes problems in hardware maintenance. 
In our area we have one IBM Field Engineer trained 
in 1620 Emulator. 

4) Conversion should be swift. Any shop, subject 
as we are to programmer turnover, may find itself 
in the middle of a lengthy conversion with only , 
one or two people capable of programming in the 
"old machine" language. 

5) 1620 Emulation prevents any really full use of the 
360/30. Multi-programming is not really practical, 
and the need to be forever switching back and 
forth between operating modes does not make for 
most efficient use of the machine. 

6) Lastly, Emulation is a crutch. This is due to 
its reliability and speed, plus a programming 
viewpoint more concerned with getting new 
applications running and less concerned with 
converting old systems which do require reprogramming 
but which at least are now running under Emulation 
(faster too, remember!). 

So we have run into a bottleneck in our reprogramming effort; 
complacency over Emulator speeds has certainly slowed this effort. The 
real question regarding emulation then becomes: Can sufficient resources 
be devoted to reprogramming prior to machine installation, or should 
emulation and a longer conversion period be considered? 

Recall also that prior to installation date many of the pro­
gramming staff will be spending at least part-time effort in learning 
about the new machine and even more probably, its new language. The choice 
of primary programming language will have an effect in at least two areas. 
One, because the level of basic knowledge about the way the machine 
functions varies greatly with the choice of language, this choice will 
have a bearing on the programmer competence in the area of assembler 
language which will be required of the individual. The problem-oriented 
languages are just that, and they can free the programmer from a need to 
know a lot about the intricacies of the machine. 

Secondly, the decision on languages may have a bearing on the 
amount of core storage ordered for your machine. One of our primary 
reasons for ordering an additional 32K for our Mod 30 is the fact that we 
are a big COBOL user. COBOL certainly generates far more coding than 
could be written minimally in Basic Assembly Language. 

- 2 -



~~~~~--~----------~----------------------------------'-------------~---------

One last area which we would mention is the area of Documentation
Standards. Even for the shop where firm standards have already been
established, a conversion period is a good time to consider updating or
revamping those standards. We have found our gradual conversion to be
beneficial in this respect, for it has given us a very good "handle" on
exactly what should be required in the area of program documentation. To
repeat, there is no better time to review documentation standards than
at the time of a conversion.

In summary, a conversion should not be allowed to cause havoc
in any area - whether in machine change-over, in re-programming, or in
documentation. Reprogramming should be placed on a schedule to which it
is reasonable to adhere. Documentation, as important as any area, should
be used as a tool to guide programmers in the direction of a harmonious
conversion.

- 3 -

o

o

c

-1 (~ B.d .. ~ 1

i(u' l' S
COMPUTER CONVERSION

I l\1TRODUCTION

Planning a computer conversion passes through various stages of development sihlilar

to initial installation planning. Individual plans are greatly dependent upon the

total computer stat~s of the user. This presentation will review the planning

process and installation highlights.
-""'"

SYSTEM REQUIREMENTS

Feasibitity
"

Company policy often directs the procedures to be used in feasibility

studies of new or replacement equipment. Such a study would consist of a

complete survey of present and potential applications. At this time,

department heads should have the opportunity to make known their present

and future needs. Upon the merit of the total requirement, equipment should

be reviewed to accomplish the demand with allowance for growth. The growth

factor, often unpredictable for immature computer systems, is generally

compensated by improved technology.

One of the easiest feasibility studies attempted was the 1620 vs. the

1130 System. In most cases the cost alone satisfied the problem. However,

other factors must also be considered in computer selection.

COMPUTER SELECTION

Collect and analyze information from all possible sources. Interview all

potential users and discuss their needs •. study and evaluate each application

and the equipment required to accomplish the different tasks. A practical

. . A t:J .. f.. .'-' •• ~15t;'c. Ctl"",,,~f+.c AAt"I f -performance plan should be developed. , . .., ... ~ -
.f,f ... t,.,. .r.ve .• "t.,;te cLt'"..o,.t,o" .,.,1 ".""1'&'"''1 p"'t.~/rl.'.
Consult other equipment users concerning the equipment under consideration.

Find out the capabilities and limitations from experienced users. Study

the various hardware configurations that might be considered feasible for

I,'

- 2 -

the applications. Arrange to make production test runs to form definite

conclusions of the system capability.

Cost in most cases could be the most decisive factor of all. Similar to

buying a car, after the basic equipment is selected, many accessories are

added. The cost range of the 1130 begins at $695 and can increase to over

$5,000 by adding auxiliary units an.d system improvements. Where to begin

or stop must be determined in the feiasibility study.

Performance specifications depend upon the applications to be processed.

Such as, what records must be stored. Should disk, tape or card be used

for required processing. Cycle alone will not give a true picture of

processed through-put.

'training is always required in severl;l.l different forms. Operators must be

instructed on the proper use of all (~ontrols and how to handle routine

processing and emergency stoppages. IBM should arrange training instructions

to key personnel who can be ready to assist users at all times. Training

should also provide orientation of non-data processing personnel concerning

the capabilities of the new system.

Program convers ion is probably the 'b:Lggest in any change of equipment. Few

systems are completely compatible.]~tensive plans should be made to

accomplish this task. Language changes must be known well in advance in

order that programming p~rsonnel may make the necessary conversion changes on

schedule. 1620 FORTRAN can easily be convered through the 1130 system FLIP

program. Additional resources can be used if'1401 services are available. A

360 converter program (SIFT) is available for 1620 FORTRAN for either 1401
'-. .

"',_processing on the 360-1401 emulator. Compatibility from 1620 FORTRAN to
"''-'-.

the~is very good, howev~r, it is non-existent in symbolic ~ograms.
Itt •• ~,~ + Cii.{tow .. "'&~ i,,,,,_ Ilt Qva;I"'t,, 181Jl eellta~s :J1t CJ -&c
~~J. ~

'-

c

c

c

o

o

o

- 3--

Expansion will probably always be a 'part of almost every system. It can

take various identities: storage, speed, auxiliary Units or scheduling.

For most data-processing installations it evolves into normal growth.

Communication in the computer field is perhaps the least developed field.

However, spectacular things are sure to come in many forms of computer

communication. Already terminals are available in d::Lfferent forms:

typewriter, card, voice, tape, etc. The 1130 will soon be a terluinal to

the System 360 and perhaps it can also be predicted that there will be

remote sources of communication to the 1130.

Load capacity should always be a realistic part of every system. Of course,

there are various methods of compensation from an overload. It can first

be challenged by increasing the computer speed; other methods are: faster

input-output units, larger core capacity for better programming efficiency

and greater storage capacity. Beyond the system itself, scheduling can go

into overtime or week-end hours. The 1130 8K core capacity is comparable

to the system 360/30 32K and about equivalent to a 1620 40K.

Back-up is closely related to overload but it must be outside the system.

In the case of a breakdown or overload, is there another system available?

For some programs this is an essential element of a complete system. In

the case of FmRTRAN programs, another computer system should be sufficient,

°d d °t ° 1 ~w" • ti"..,e ,'J CL -tQ,Al,f cf (tt. .;, o T&ra proy~ e ~ ~s' ar£e enou~. .v- ,r
o-tl fill":"'" Q,,,," .3f1.,.,lct t./+ ,;" .~&'''A((S'y I'lc""N'f1

Limitations are a part of all systems. A small computer should not be

selected for major applications. Some prOjects are literally impossible

on a small system. This should be discussed with other users to acquire

an understanding of the problem. ~he system can be no better than the

service turn-around it provides. 'User acceptance will greatly depend on

service.

~ CJjfttM"#I~" e'" S'_tAltII I.. ~.t.'II"I,.tI t:U' .,.." ". ,es."""
.,.,w. ft -eJi",,;tti, c. i" ,.,,4i,,-ta;/ft;" ,f, .,.~_cl .. lC.. -.

PHYSICAL REQ,UIRE£.fEJl7rS (A26-5914-2)

3-1vIonths before delivery is a very <~ritical stage, perhaps a go, no-go

staGe. It is a time for decision, first for the computer and then the

environment factors. After determining ~,. firm order the plant engineer should

be called to ·discuss physical requiremen1~s.

1. Temperature (60 to 900 F)

2. Relative Humidity (10 to 80%)

3. Heat (Average 5900 BTU/Hr.)

4. Dust and Dirt (Normal Precaustions)

5. Fil~e Extinguisher System should be Non-Wetting

fi;~(1 6. Power Supply - 115 Vac., 3-' (2 Power, 19rd.)

7. Lightening Protection -1'

8. Cables to Specified Length I « I

1he layout should be approved by IBM so servicing can be achieved.

If program conversion is taking place, a definite schedule should now be
re vtel.4lsd

jet Enu" d as vTell as orientation of concerned personnel to the new system.

Another cr~ical item at this stage is the ordering of the monitor system.
"

"-,

I-Week before delivery several units have probably arrived and are probably

setting on the receiving dock, but it is time to make a check on environment

requirements. Several administrative tasks are:
-"""

1. Issue operating procedures

a. Time schedules

b. Services

2. Training

a. Computer concepts
flj' -I:t .6 \

b P . . la L.1t. .. 1IIII •• r .. r." 1II,,~clli":'1. "e ... a"-~~ • rogramml.ng c sses C"I'

c. System review

d. Language changes

e. Review FORTRAN level

o

Q

o

- 5 -

o P.r:OGRAl·1 DDlONSTRATION

o

INSTALLATION MANAGE~1ENT DIVISION, PERSONNEL PROJECT COMMITTEE

"Professional Progrruruners and Analysts: Problems in Performance
Evaluation"

By: Arthur S. Gloster, II
Oak Ridge Associated Universities
P. O. Box 117
Oak Ridge, Tennessee

Thursday, 10:30 a.m.

Two pages of text.

1TAE83

o

o

PROFESSIONAL PROGRAMMERS AND ANALYSTS:
PROBLEMS IN PERFORMANCE EVALUATION

Arthur S. Gloster, II

Oak Ridge Associated Universities is a nonprofit corporation in Oak
Ridge, Tennessee. The primary function of the corporation's data
processing center is to apply electronic data processing techniques,
where feasible, to research and administrative projects. The center
contains 27 employees of which 13 are analyst/programmers. The center
is divided into three groups: 1) scientific applications consisting of
6 personnel and a group leader, 2) commercial applications consisting
of 5 personnel and a group leader, and 3) operations section consisting
of a supervisor and 10 other employees. Oak Ridge Associated Universi­
ties has on site an IBM 1800 disk/tape system which is utilized by
approximately 40~ of the programmiDg personnel. Approximately 60", of
the personnel use IBM 360-50,360-75 and CDC equipment located in the
area. The analysis and programming function comprise a significant
portion of the operating costs of the.ORAU data processing center.

After discussion with personnel from other installations, we found that
there are no reliable standards by which costs can be calculated in ad­
vance, schedules established, and the performance of personnel evaluated.
Although the methods we used to establish schedules and costs are sub­
jectiveand arbitrary, they in no way approach the accuracy of the
methods developed in the hardware area. For ex.a.mple, IBM has established
rates for EAM equipment and has even produced a slide rule to use for
estimating job times.

A means of evaluating the professional analyst/programmer's job and a
means of evaluating his effectiveness is highly desirable but rarely
accomplished. Such means would be helpful predictors in determining
the staff needed for a particular application or a data processing
installation. We have found that records of intangible~, such as the
time for the application analysis and problem definition, flow charting,
coding, debugging, checkout, and finally documentation would have to be
maintained continuously to have a base tor,predicting analyst/programmer
costs and for pe~sonnel evaluation. In predicting costs of computer
programs ·and evaluation, we would like to be' able to have a magic number
representing the proper number of analYsts or programmers that could be
applied to a given situation and for our center as a whole, but we found
this to be tmpractical because we were measuring intangibles by sub­
jective means. We found that attempting to save expenses by minimizing
or restricting the availability of professional personnel caused equip­
ment to be used ineffectively. The more the programmer is annoyed with
accounting for his time and the more detailed the account for non­
productive time, the less apt he will be in cooperating in a program
that keeps up with all of the various functions he performs.

-1-

Programming personnel at OHAU are engaged in numerous types of jobs;
therefore, standards of work evaluation could not effectively reflect
the variety of tasks they encounter. One programmer may be responsible
for coding X number of instructions with relatively small amounts of
logic development, while another programmer may be responsible for ex­
tensive logic development with relatively few instructions. Thus, it
becomes difficult to measure the amount of work required on each pro­
gram, and the total work effort performed by a programmer cannot be
assessed in standards of comparison with another programmer.

At ORAU, we believe that the group leader of either the scientific
section or the commercial section, depending on the particular area,
should look at the problem in advance and then meet with the data process­
ing manager to establish reasonable target dates for each of the
previously-mentioned phases on the basis of the nature of the problem
and on their past experience. The manager or group leader must have a
detailed knowledge of the problem under study because it is his
responsibility to prepare the cost estimate and schedule. He must keep
up with the allocation of funds and judge progress of the application.
After giving several methods of job measurement trial, we have found
that there is no substitute for experienc~ in the area of predicting
costs, measuring work, and evaluating programming personnel. Programmers
respect a supervisor who gives them a job and can tell them what per­
formance is expected. The supervisor is also respected by his staff if
he remembers that good supervision is the least supervision needed to
get the job done.

-2-

o

c

c

o

.:iession Number TUE BS

SESSION REPORT

COMMON - Chicago

----------------------- Session Name N/c - Languages and

Graphics Chairman Joe Talkington

Time 10.30 to 12.00

Speakers Mr. William Peterson

Attendance (No.) -----------------

Synopsis of Meeting The speech was pr~arily on the APT Language and the

need for computer support. Distinction was made between symbolic control

and numerical control. Questions delt with the relationship of APT to

small computer users.

------------------------------------'_ .. __ ._ .. __ .. _-----

------_._ .. -.--

R.EMAR.KS TO:

Dr • .Tohn Porter
Director of Scientific Development
IBM Corporation
112 East Post R.oad
White Plains, New York

COMMON and CEPA
APRIL 9, 1968
PICK CONGRESS HOTEL, CHICAGO

o

c·

o

My topic today is: "The COMMON Challenge"

I chose this topic for two reasons: The first one is that I like puns. But
the second reason is that what I want to say to you applies, I think, no
matter how you interpret the word COMMON.

Whether you translate COMMON as the largest computer users group in the
world, measured in number of member installations, or whether you use
a dictionary definition; such as: "belonging or pertaining to the community",
as long as you mean the computing community.

Because there is a challenge to the COMMON organization, and there is a
challenge to all of us involved in'data processing and computing, it's a
complex challenge, not a simple one. This complex challenge that I see
consists of three related parts.

The first part is to make our systems do what we know they can do - - for
us, for our organizations, and for our society. The second part is to advance
the state of the art to "dream the impossible dream", so to speak, and then
make it happen. And the third part of this complex challenge is to use what
'Wa've learned -- about systems and languages, about machines and organizations,
about human factors and problem solving techniques -- not only within our ,own
organizations but in society at large.

Although the way I look at this challenge is my own - - and may be different
from yours' -- certainly its presence is nothing nevI to members of COMMON.
Your formation of COMMON eight years ago was a forward looking response
to this challenge. Your response to this challenge is what has brought us
together in this meeting and at this luncheon.

Your response to this challenge -- hour by hour and month by month and
year by year - - is what has given your eight full years of accomplishment,
innovation, and leadership -- in your own disciplines and in the data processing
and computing community at large. I daresay your response to this challenge
has meant long days and short weekends - - the invention of algorithms vlhile
you were shaving; or, if you don't shave, while you were powdering your nose -­
discovering bugs in programs vlhile you were mowing your lawn.

COMMON's eight years as a leading-edge organization -- as a group that m2.kes
things happen -- is an outstanding example of how to do in the organizational
world what Thomas Edison did in the industrial world - - organi2',e for progress.

Isaac Newton is supposed to have said that if he had been able to see farther
than others, it was because he had stood on the shoulders of giants. ~lhat
Ne~vton did as an individual, COMMON has done as an organization ..

-.-.------~'----~~---

My feeling is that COMMON is on the right track.

My advice is to stay on it.
Present more papers.
Share more experiences.
Contribute more programs
ContiI\ue to prod IBM.

page 2

Although VIe don't always move in the direction you push us -- there are many
other vectors that affect the resultant -- we want you to push us. And although
we don't always move as fast as you like, we move. Your challenge is also our
challenge.

Now I'd like to show you that IBM understands at least some of your requirements.
Let me use rny own shop as an example. Our primary concern is any use of
information processing systems by engineers, scientists, and mathematicians.
More specifically, we're interested in the techniques and disciplines which are
commonly employed in the solution of problems in scientific computation. For
example, we have produced a package of subroutines called the scientific
subroutine package which provides the basic techniques of numerical analysis,
statistics, and matrix manipulation. We have produced a series of linear
programming codes -- in fact, one of my colleagues, Harry Muller, is on
this meeting's agenda to present a tutorial on our 1130 LP Code. We have C
produced generalized network analysis programs, utilizing critical path and
pert techniques. We have produced the cont. syst. modeling program, which
allows the simulation of systems described by ordinary differential equations.

We have produced the general purpose simulation system vlhich allovls the
simulation of discrete processes. Since this group represents the leaders
in scientific computing,)Our inputs to us are quite significant in defining the
requirements for these techniques. Let me add that we will continue to provide
fully-supported application programs for these techniques and their variants.
And for a reason that is very important to both of us. It is clear that the most
important factor which will limit the growth of computing in the next 5 -10 years
is the shortage of skilled application and systems programmers. By providing
tools and techniques which meet your requirements, we can free up this scarce
resource, so that you can apply it in new, high-potential areas -- rather than
squandering it by reinventing the wheel.

NOW, in addition to the production of application programs, my shop is also
working on longer-range projects. This activity is currently under'Nay in
the scientific. centers. Since these centers are fairly neVI, most of you are
prooably unfamiliar with them; and therefore, I'd like to describe them in
some detail.

There are six scientific centers located in Palo Alto, Los Angeles, }Iouston,
Washington, D.C., New York and Cambridge. Each center is conlposed of
about 15-20 professionals plus supporting personnel. Why, you ask, are there
six srnall centers, rather than one large center ?The answer is that we feel
it r s important to work closely with leading institutions around the country where

c

o

o

page 3

we have a common interest -- that is, pushing back the frontiers of
computer science. And that brings me back to my topic --'The COMMON
Challenge. What is the challenge facing the scientific centers? We believe
that the computer potential in solving man's problems has only begun to be
realized. In recent years completely new opportunities have opened for the
computer which we are only beginning to explore - - management science,
environmental sciences, medicine, transportation systems, to name only
a few. There is every reason to expect that the role of the computer will
continue to grow, provided the correct environment is provided. Therefore,
the challenge is to take the lead in identifying, monitoring, and developing
these new areas of applications technology.

Let me describe briefly some specific projects now in process. One project
in Palo Alto is concerned with on-line experimentation using an 1800 tied
directly to multiple instruments. One facet of this work is a joint effort with
Stanford University to control and monitor experiments using the two mile
long Stanford linear accelerator.

In Los Angeles, we have sent an 1800 out to sea on an oceanographic research
vessel from the Scripps Ocenaographic Institute. It is used for data acquisition
and analysis and makes possible the use of satellite navigation to more precisely
determine the position of the ship when data is being taken.

A Houston project has demonstrated the feasibility of generating holograms
digitally. In addition to the implications for 3 -dimensional displays, we feel
that this technique could be used to improve the resolution of the electron
microscope.

In New York we are working on extensions to linear programming. Such as
integer programming, mixed integer programming, decomposition, and
non-linear programming. Specific problems being addressed include airline
crew scheduling and freight car scheduling.

Cambridge is concentratL'1g on the development of new systems techniques
to allow more efficient interaction between a user and a computer in a time­
sharing environment.

This is just a small sampling of projects in the scientific centers. In addition,
they produce internal technical reports; they publish regularly in the open
literature; they hold special seminars on subjects where they have some
expertise; and they are open for customer visits. I encourage you to find
out more about these centers through your branch office and to take advantage
of their special knowledge wherever possible.

In summary, then, I see a COMMON and a complex challenge facing all of us--

page 4

and a resultant need for closer cooperation in meeting that challenge. I see 0.-'
COMMON as a vehicle for coordinating our efforts in this regard. For what it IS

worth, I would like to give you my threefold prescription for continued success
in the future.

First, as I've already said, support COMMON. In concrete terrns, consider.
the coming election of officers. Don't wait until you1re asked, voluriteer. If
you1re asked, don't hesitate, accept. When you vote, vote for the individuals
who have the clearest view of COMMON and vlhat it should be.

Second, use COlv1MON as an interface with IBM. The 1966 reorganization of
COMIVfON was designed to make this easier for you to do. Don't overlook
the opportunity.

And third, keep up your inventiveness and creativeness. Society needs your
help.

Thank you very much.

c

c

'Wi

SESSION REPORT

COMMON - Chicago

Session Number TUE B8
----~--~-------------

Session Name OS Committee Meeting

Chairman W. Norton

Time 10.30 to 12.00 AM Attendance (No.) ----------------------------------- -----------------

Speakers J. A. Woodworth - Dow Chemical Company

Synopsis of Meeting In addition to committee business and organiza-

tional planning. a report on SHARE XXX was pre.ented by Mr. Woodworth.

t :aue ,4, .. aMiU===,Wn: •• .T.4U4;Q,;W,,"WiMiULiUM _"&wc &lit

DIVISION: Systems

PROJECT: 360

COMMITTEE: O/S

SUBJECT: Report on SHARE XXX

SPEAKER: J. A. Woodworth

SESSION: B9 Tuesday, April 9, 1968

c

c

o

'#¥t$#.¥4Q.#'llhU· anSEe;::a:."" .,ffiH·4I¥N¥MIM\If1iJM, m£ .,: h.hAtm:;e:.;,n .. "NMAtM====

REPORT ON SHARE XXX

BY

J. A. WOODWORTH
USER 5155

DOW CHEMICAL COMPANY
CE&CS DIVISION

HOUSTON, TEXAS 77027

APRIL 9, 1968

em U!!7!!mrJ!J!!W""iMtMiiii:.I:1

Introduction

On Friday, February 23, 1968 at about 4:00 p.m., I received a long distance
telephone call from Wade Norton, the Chairman of the O/S Committee, asking
if I could attend the meeting of SHARE XXX which was starting in Houston
the next Monday morning. Since I happened to be in my bosses office at
the time I received the call, he gave me an okay and so I was able to
attend the meeting. I have attempted to record as much information as
possible about SHARE's organization and, in particular, the OS/360 project.

General Comments

The SHARE XXX meeting lasted five days of which the first two days were
limited to closed project working sessions. Attendance at these sessions
was limited to project and committee members and those who had obtained
the permission of the project leader. Those interested in participating
in committee and project work were instructed to contact project leaders
before coming to the meeting.

Organization of SHARE

Since the current organization of COMMON was patterned after SHARE, there
are, of course, a number of similarities. The main divisions are: Admin­
istration Committee, Advanced Planning Division, Applications Division,
Graphics Division, Installation Management Division, and Systems Division.

Projects under the various divisions are:

1. Administration Committee--distribution and programming standards.

2. Advance Planning Division--data mapping.

3. Applications Division--applied management science, design automation,
electrical analysis, general information systems, general file main­
tenance, list processing, mathematical programming, numerical analysis,
statistical methodology and systems, symbolic mathematical computation,
and systems simulation.

4. Graphics Division--applications, hardware, and software.

5. Installation Management Division--university installation management,
and operations management.

6. Systems Division--ASP, assembler, COBOL, DOS/TOS, Fortran, HASP, OS/360,
PL/I, TSS, Model 44/Model 91.

OS/360 Project

The current working groups on the OS/360 project are: Job management, data
management, telecommunications, storage hierarchy, MFT improvements, hard­
ware considerations, performance evaluation, and system management (i.e.,
job accounting).

o

c

- 2 -

c) The first order of business was a review of the resolutions passed at
their December meeting. Some of those discussed which might be of interest
to our committee are:

1. Ability to allocate and deallocate storage dynamically.

2. Ability to allocate and deallocate direct access storage during a
job step.

3. Close and release a data set without terminating the job.

4. Nesting of catalog procedure calls.

5. Ability to add devices without going through SYSGEN.

6. Controlling tape error retries--now does 100.

7. Option--owner ID, creation dates for PDS.

8. Condense partitioned data sets more efficiently.

9. Access PDS from higher level languages.

OS/360 Project--Data Management Task Force

C' The data management group presented the following resolutions:

o

DM-Ol Look into tape error retries--now 100.

DM-02 Recommend automatic catalog maintenance and library control.

DM-03 Allow use of direct access devices by two or more CPU's.

DM-04 Improved method to condense PDS data set.

DM-05 Ability to access PDS from higher level language.

DM-06 Allow reading file protected data from Fortran.

DM-07 Ability to define and use channel to channel feature as an
I/O device.

DM-08 Request more information in PDS directory such as creation date,
etc.

Other items were discussed such as changes in Release No. 14.

Fortran Project

A presentation was made by an IBM representative on data set compatibility
between the following systems: DOS/TOS, TSS, M44, and as. Data sets should
be on tape unlabeled. The as default scratch buffer size is 800 bytes.
To .speed up I/O, use array mode rather than lists or implied do's.

a.uu;" ("(1,:5==:.1:',,,(, ",:I:" ... UJQ,a:mtWU£k,;u,:::;e,tlU.#gu====UJIQ.AA

- 3 -

The Fortran project passed 12 resolutions. Voting was by active members
of project only. Count was kept of the pro's, con's and abstentions.
The resolutions were as follows:

68-1

68-2

68-3

68-4

68-5

68-6

68-7

68-8

68-9

Allow the typing of EXTERNAL function statements External SQRT
(Rea l-k4) .

Allow variables as parameters to the define file statement.
These could be passed as arguments to subroutines.

Output the buffer of the SYSOUT data set of ABEND.

Set precision of constants by context.

Fortran setting of condition codes.

Recommended parallel APAR handling between related Fortran
compilers.

Eliminate problem of subroutine argument list when the number
of arguments is eight.

Defeated.

DO LOOP indexing parameters--have compiler issue warning message
on changing parameters inside of loop.

68-10 Fortran r/o requested improvements.

68-11 DEFINE FILE statement--c1arity manuals to indicate that in over­
lay structures, the controlling DEFINE FILE must not be overlaid.

68-12 Clarify implications of double length precision extensions to
Fortran for the Model 85.

These resolutions were then ranked by each committee member according to
three priorities:

1. Paramount importance.

2. Soon.

3. Indue time.

Format of Project Resolutions

Resolution No. Date -----------------------------------
Task Force

A. Requirement
B. Problem description
C. Resolution
D. Notes

o

c

4[;' Project Activity and Progress Report

Project

Project Chairman

- L~ -

Division _____________ ~ ______ ~ ____ _

In~tallation Code ----------------------

o

o

.==04====

Date Submitted

(The following is preprinted on the form)

Please list the following~

1. Scope·and objectives of project.

2. Recent'project bctivities.

3. Planned project activities.

L~ • Manpower needs.

5. Membership qualifications.

6. Membership roster.

J. A. Woodworth
4-3-68:cd

MCMAW':;:";; • .,,"

Recommendations for COMMON OS/360 Committee Action

1. The COMMON OS/360'Committee should maintain a close relationship with
the SHARE OS/360 project. This should probably be done by the Chairman.

2. Minutes of meetings and records of activities should be exchanged
by the respective chairmen.

3. Specific items of significance be made available to active OS committee
members or to the whole membership of COMMON depending on merits.

4. A representative from COMMON attend each SHARE OS/360 project meeting.

5. Formulate procedures for the documentation of the OS committee's activities
and recommendations.

a 1

SESSION REPORT

COMMON - Chicago

Session Number TUE C2 Session Name Biomedical ----------------------
Chairman Dr. James L. Grisell

Time 1.30 to 3.00 PM 50 Attendance (No.)
----~----------

Speakers Mr.. Joan Lukin - University of Kentucky Medical School

Dr. Emanuel Donchin - Ames Research Laboratory

Lukin - "Computerization in the Clinical Laboratory"

Donchin - II Acquisition and· AnalYlfis of EEG ,Evoked Reaponses"

Synopsis of Meeting Mrs. Lukins presented a system for the on-line

analyais of auto analysera. These are used in perfor.ming clinical

laboratory deter.minatiofts. Dr. Donchin reviewed hi. work on eveoked

responses with an emphasia on the difficulties of high _peed data

acquisition usina IBM software. The discussion after the for.mal

presentations showed that many users haye had to find a variety of ways

around the serious limitations of the system software when dOing high

speed data acquisition.

- ==

----~,~~, ~-~'"."'."," ... "',""--.-.. ---,-.. ---.---.. --.,---~--""- .. ---"--"---"",.",,,,,,-,,,,,-,,,,,,, .. -----'" ------'" ----,,~----,,"-----

COMPUTERIZATION IN THE CLINICAL LABORATORY

by

J. Lukins, M. Ball, W. B. Stewart, N. Hill, and R. O'Desky

Ie" '; -, '

c

o

o

.'d\III' 'MI,'" ==44

The purpose of this paper is to explain and illustrate the use

being made of an IBM 1800 Computer by the Cl inical Laboratory of

the University of Kentucky Medical Center. We shall point out the

need for the computer, explaining the task undertaken, and outlining

the solution developed. We shall also touch briefly upon future plans

for the computer.

;W:;;AIii¥IiMJIIJ&l&l&""'====-wa&IDW

COMPUTERIZATION IN THE CLINICAL LABORATORY

The clinical laboratory of the Univer~ity of Kentucky daily

handles a number of specimens from patients throughout the hospital.

These specimens must be transported to the laboratory and analyzed,

and the results returned to the patients' charts, a sequence of

events which at present introduces the possIbility of a number of

errors of identification, technical inaccuracy, and clerical mis-

takes. Let us trace this sequence of events, and point out as we

progress the areas in which error may be introduced. Because our

efforts to date have been concentrated in the clinical chemistry

area, we will consider only those analyses in this paper.

A patient entering the hospital is given a six-digit hos-

pital number, representing the total number of admissions to date:

if for example, he were the 368th admission, his number would be

0003684, the seventh digit being merely a check digit to assure

the validity of the six-digit number. A non-removable wrist-band

containing his hospital number is placed. around hi~ wrist. His

attending physician, upon examination, writes a request in the

physicians' order book for the required laboratory tests. A techni-

cian then completes a request slip (in triplieate) for the request-

ed tests (see Figure 1), draws the required samples from the pa-

tient in his room, labels the specimen with the same accession num-

ber as the request slip, and carries both the request and the sam-

ple to the clinical laboratory. Already error may have been intro-

c

-2-

duced: the technician may have placed the wrong label on the specimen.

C
~':
.; A technologist receives the sample in the clinical chemistry

laboratory, and, matching the accession number of the request slip

with the accession number of the sample, she gives both of them a

new number - a laboratory number - the first specimen and request

being labelled "1", the second "2 11
, etc. Here, of course, is another

possible source of error - it is possible that she may assign

the wrong request sl ip to a given sample. Next, the patient's

name and laboratory number are entered in the master log sheet

(see Figure 2) and a notation is made under each test requested.

The sample is then placed in the centrifuge, separating serum from

cells, and the resulting supernate is decanted into a clean tube,

havIng the same laboratory number as the sample tube (another possible

o source of error), and this tube is placed in a serum rack (see Figure 3).

After all specimens have been received, the technologist who

is performing glucose analysis, for example, records on a separate

log sheet the laboratory numbers of the patients requiring glucose

analysis ~ the order in which they will be run (see Figure 4); the

technologist performing blood urea nitrogen determinations does likewise

for BUN's, etc. Each technologist then draws off small samples of the

-
patients' sera, and places the samples in small autoanalyzer cups in

the ~ order as they appear on her log sheet. She then places a

series of standard solutions containing a known amount of the chemical

being measured in front of all the patients' sera (see Figure 5.).

Obviously, this series of transfers of numbers and sera introduces

the possibility of additional errors.

o

-3-

At this point the autoanalyzer assumes the responsibility for,

analyzing the sample (see Figure 6). Each standard sample is aspirat-

ed in turn into the autoanalyzer, mixed with reagents, and carried

through the colorimeter. Now, as light is passed through the result-

ing solution, some of it is absorbed by the'solution: the greater

the intensity of the color in the solution, the greater the amount

of light absorbed, and, consequently, the smaller the amount of

light that passes through the solution. A photocell receives the

light that is transmitted, and the resulting voltage is used to

drive the pen on a slowly ~oving strip chart recorder. The pattern

produced is shown in figure 7.

The technologist must now wait for t:le entire pattern to be

completed, then remove the strip chart~ and calculate the patients'

results by comparing the heights of their respective peaks to the

heights of the standard peaks and interpolating to determine the

individual results. Each answer is written on the individual log

sheet by the technologist who performed the analysis. Th~se re-

suIts are transferred by the technologist to the master log sheet,

and, finally, transferred to the original request sheet by another

technologist. The results are then punched into cards, to be kept

by the laboratory, and the original request slip is placed in the

patient's chart for the physician's information. After discharge

from the hospital, the entire chart is sent to the Medical Records

Department. Here, again, is a series of manual transfers of data

allowing for the possibility of numerous clerical mistakes. In

fact, it was found that it was in this particular series of trans-

fers that the majority of all laboratory errors occurred.

rr-"
~

w "''''!l757rl

! w[J"?!!y"!I!Y!!1m:fflf'W."Wiii:;-

-4-

Therefore, the IBM Computer (see Figure 8) was introduced to

improve the accuracy and precision of the laboratory tests, to pro-

vide greater speed of reporting, and especially, to eliminate as

many of the above-mentioned clerical errors as possible.

Here is the way in which the system operates (use figure 9 as a

flow diagram) :

When the technologist has placed the samples on the autoanalyzer

and has established a steady baseline voltage reading on the pen

recorder, she is ready to begin the sampling. She sends a signal

to the computer via the 1092 keyboard (see Figure 10) telling the

1800 wh.ich test is being performed (test code: each laboratory

analysis has been assigned as unique six-digit number), on which

o autoanalyzer it will be running (device number: each colorimeter

has been assigned a unique two-digit number), and that it should now

initiate analog input reading on that particular device. The 1800

maintains a table internally which contains all the device numbers

it is currently sensing. When the computer receives the "start

analog reading" request from the 1092, it adds that device number

to the table and establishes the direction of the peaks. Every

few milliseconds, the voltage is sensed on each of the devices

in the table. An analog to digital converter within the 1800

transforms this voltage signal to a numeric value; this value is

then compared to the value last read from that device. If the

/).X is within a certain predetermined small range, we knO\v that we

are very near to a peak value, and we save in another table

o (which we shall call ROAT (see Figure 11)) all of the values

read from this device until the slope begins to change direction;

-5-

at this point we know that one of the values Just previously read

was the peak value. 1 Whenever a peak is found for any device, this

series of digital values is placed in the file PEAK (see Figure 12).

This process continues until all of the tests have been enter-

ed. At that time, the technologist returns to the 1092 matrix

keyboard, keys in the test code and device number, and signals

the computer to stop analog input on that particular device. When

analog input has ceased on all of the devices, indicating that all

devices have completed their analyses, the routine COLAN takes

over; taking each series of digital values in the file PEAK in

turn, it finds the peak within the series, and converts it to a

floating point number. COLAN sets up a new file, which we shall

call COLOT (see Figure 13) into which it places these values, each

entry representing one peak.

But let us backtrack for a moment to the point at which the

sample and the request were given a laboratory number. We follow­

ed the fate of the serum sample, now let us follow the request

s lip.

The request slip is taken to the' keypunch operator, who

punches a card for each ~ being performed (see Figure 14). The

cards for each test are then run through the card reader in the

same order as the serum samples are placed on the autoanalyzer.

The program CRLDI places the information contained on the card

in the disk file PTST (see Figure 15), one record per patient test.

At this point, then, we have a "result" file (COLOr), and

we have a "patient" -file (PTST); now the two must be collated;

this is the Job of the program DLABI. Taking each test result in

the file COLOT and the corresponding patferit record from the file

rf"""", I

~,

o

o

c)

o

-6-

PTST, it calculates the test results by interpolation against the

standard values, 2 prepares a new record containing the patient

information, test code, and test result, and places this record

in a final disk file labelled FFLE (see Figure 16). When it has

completed this job, and has emptied both the "patient" file PTST

and the "result ll file COLOT, it calls upon the program DSRT.

DSRT prints the test results for each patient, as in Figure 17.

This printed output is then sent to the patient's chart, eliminat­

ing the need for any manual data transfer.

In addition to the printed output, another function of DSRT

is to reorganize the file just written by DLABI by gathering to­

gether all the data on any given patient, sorting the patients

by hospital number, then writing these patients with their test

results onto magnetic tape. If, for instance, John Smith had a

BUN test and a blood gluco~e analysis, he will appear twice in

the final disk file FFLE written by DLABI. Therefore, DSRT must

now merge the two test results together into John Smith's single

tape record.

We must not forget, of course, about the tests which are not

run by autoanalyzers, e.g., magnesium analyses, lipid determinations, etc.

These, too, must be entered into the computer, but in a different

manner: patient information, test code, and test result are all

keypunched into a card, one card for every test. The program DLAB

reads these cards and enters the information into the final disk

file FFLE, where it is ready to be used by DSRT, as outlined above.

One step remains, now, and that is the maintenance of the

laboraiory files. As was shown, a daily file is generated and

recorded on tape. A master file is also maintained, containing all

--7-

of the laboratory test results of all patients currently in the hospital.

Obviously, to keep this file current, each day's results must be

added to this master tape file, and the data on patients discharged

must be deleted from this file. The job of daily additions belongs

to the program DLUPD, which merges the daily tape file with the

master tape file, creating a ~ master tape file in proper numeri-

cal sequence by hospital number. The job of deletions falls to the

program PURGE, which locates the patient records to be deleted,

prints a complete summary of tests performed on those patients dur-

~ng their entire hospitalization, and punches cards containing

this same information. These cards can then be used to create

an historical file containing all laboratory data on all patients

discharged from the medical center.

What improvements, then, have been made by the introduction

of the 1800 computer in the clinical lab6ratory. First, and

probably most important, is the el imination of many technical

and clerical errors. Before the arrival of the 1800 it was deter­

mined that the majority of all laboratory errors were the result

of numerous data transfer steps, most of which have been eliminat-

ed by the computer. Our results are now more accurate, more pre­

cise, and - far from a small consideration - more legible! The speed

with which the entire process can be accomplished is another im­

portant factor - more technologist time is 'available, and fewer

clerical hours 'are required, an important monetary consideration.

From the physician's standpoint, aside from the obvious improve-

ment of more accurate, legible results,there is also a decided

advantage to the physician to s~e a weekly summary of his patients' ()

o

o

-8-

laboratory results, and, upon discharg~; ,thei"r total laboratory

picture in a consol idated form, both of which are now possible.

Of course, as with any innovation, there are numerous ob-

stacles still to be overcome, and many areas in which' improvements

can be made. We hope, for example, that in the future, labora-

tory requests will be punched into cards directly, at the time

the test is ordered, thus eliminating the ma~ual request slip

altogether. We hope, also, to develop a system of identifying

a serum specimen directly, .rather than relying upon the order

in which the specimens""are\ana'lyzed~\The:computerization of

other types of clinical laboratory equipment, e.g., coulter

counters, densitometers, spectrophotometers, etc., is also in

the near future. All of these objectives willelimin~tetechnl~

cal and clerical error, and, ultimately, provide improved patfent

care. After these goa 1 s have been rea 1 i ze!ci:, we hope to further ,~ ~!

broaden our scope to include computerizatidn of hemato-logy pro-

cedures such as differentials, actual on-line monitoring of

post-operative patients, and a complete, central'ized hospital

information system to collect and correlate patient ~ata' in all

areas of the hospital.

All of this requires the cooperation of the physician, the

laboratory personnel, and the hospital administration. But none

of it, we feel, is outside the realm of ,possibility.

III

INDEX OF ILLUSTRATIONS o
(1) Request slip

(2) Master Log sheet

(3) Serum rack

(4) Tech-log sheet

(5) Autoanalyzer carousel

(6) Technicon Autoanalyzer

(7) Strip chart pattern

(8) IBM 1800 Data Aquisition and Control System.

(9) Flow chart

(10) 1092 Keyboard

(11) Raw da ta f i 1 e (ROAT)

(12) Peak fi 1e (PEAK)

(13) Peak value file (COLOT)

(14) A test card (IBM card)

(15) Patient file (PTST)

(16) Final FIle (FFLE)

(17) Picture of output

c

o

c

o

FIr.lIHE 1
REQUEST S LIP

Fl CtH~E 2
rtASTLn LO~ SllEET

o

LHlISSVIUd

o

--- 3S0Jir:: .-~~\ ~ ;'~-O{--""""~~'-~"'--I-' ~.
.---...:.------1-- L t-I\t---,

c- . 0 U') N
• 0 N I'WU J - t-c),)0 ~ :1'"

l!'; ...,s, ;:t- ~.n a::

NIH1

1-----------_+_-

~

c)

o

o 0 0" 0' 0 0.0

0000000

EACH RACK HOLDS 200 S PECI ~iENS

FI r.urm 3
SERW·' RACK

Plf,URE 4
INfHVI DUAL LOG SHEET

o

GLUCOSE

DATE ~ .. II' le.L TI~m 9 B. In·

QUALITY CONTROL POOL GLUCOSE

SPEC~# PT.lI GLUCOSE SPEC.#: PToD GLUCOSE

1. --L.... 16. 0 -
2. -~ i7. - -
3. --i- 18. --
4. ...Ji. 19. --
5. 20. -
6. 21. -
7,. 22. -
8. 23 0 -
9. 24.

~,
-~

10. 25.

11" 26.
Pll."""C'~~

120 27.
_,w:c Cllua~ae ...:.

'-,
13. 28. , .. .~ - ~~~;:nre

C 14.

~-:-. . ~/
".

PIf,URE 5
AUTOANALYZER SM1PLER PLATE

'!!o. ', •

1 o AUTOANALYZER cup"
. ~t---U

i (
~==s

FIGURE 6
TECHNICON AUTOANALYZER

----~
. __ . _____ •.• _w ___ • ___ ____

.... rlm ... r

c

#\1
~~

··'w:

FIr.UHE 7
STRIP CIART RECORDING

t---- - - {

-,:;::: ·,.:::c :~:~ ;.~:: ~"_ :<'E:' :~~~ :::,:,:~c :::>: -::~~:: ~ 1

-~~--t:=-_~~-~~~-j. --~--: ~~-_!,: -'-~ -·~:-l·~·:.-~:~~~ .+--.-.-.--. _ .. __ . ,_ .. ,- .. -

-~ ;~.~~-~~ .. :".,~.<:.~~ '::'~ ~.~~~:.~.;: ~ .. ~ :-~'. ~ ~~.'_';_:'" ~.~i.-:: .. t ~ .i.~ .--·:...-~=f;·;~;.;.--:::' .. -.. .::,:~ ... -~.; :,~:"," ':::: .. -~-;_ ' .. ~~ ~.::\:; c: ~~.~ : .. '-;',.;. :£ .. , .~,

___ .' __ .. -~- .. _-=-~~ ~ ~ ~~_~'~~~._-~~_~~'_-.~~~~~J~= .~~_~=-~~ -
~~~.! .:' :-: --~~~- ~i=--~-.-:-.-~~i~~~-·~~~~:~ l~~~:---=--~-~. 

• t ' 

=~-': ~~-~·_~~.~~:==~-~~~~·C~~~~--·-j·~=_:~~~~~~·~-
__ - 1. ___ .:.:: _____ ~-_j'...:...: .. :..:.:.... L ..... 

I I ! 

__ .~ __ ~:.::·~=~t~:~-==:=:=-_J~~~ 
I . \.. . , 

.-.......... -1- .-" ....... --: •• _ .... .,. .......... --! .... . 

-- - --- -.I- .. --_~_~:...-_L· ___ ..:--. __ i __ . 

=-.. -_~; :~~-~-~=-: .-~~~~~-. ;=-_~_-=:=: i= . 
--~-.---.-----~ .. ------~--. ----,--
-.. -:. -- ---- ... :.-----. .:.-.:.:.! ---·--:~l-· 

" . .:.----- ---- -~.- ---. -- --. --------,-, : + J 

---_. ;--~.----:-=~'.-:: ~~.~~-~=-~~~.=-=~~.--~-. 
---._------_ .... _--------_._--
~~~~:_~_=_ ~-~~h=·.~~~.~~_~~_~~·~-.. =.-l_ 

=~~J·.~ . ..:._=I:=~~-~~~~j~:=- -J.
~_ i-~--..:-:--. -__ -__ ~-- I

:.:- .~.l-~~~ __ ~~=.;~~~~ -~:=t-:.~
--- -+=:~==-~ =i~:_~~~_~~-Ji
-L.. ___ '_' f ______ L.

-------------- ------ ... - --_._- .. _ .. '-----, '

----- -- ... - ----- -----_. __ ._. '-'. -.- ---- ~ ------
,---------j ----_._-!._._--- .-.-~-.- -.----.!~.----.

I -_¥_-- ... -- -- _ .. __ .-; -.-.--- ._----; ._._-----_ .. , .-----.
-----~--.-.--.. ----~--.-- .. -~- -------,---

.- ----- -----------.---_._._---_._----,-- _.j ---'-'-

-.~-~ --_. -' ~.-- - ~ -- ----- .~-----~:-.~.-.: -:''-:'''_:
I , ----- .. ----.--~--- --------_. _. __ . __ ... ---_.

I- -
, ,

.--.- -----;---- - -.---.----.-- .. -- ~------- -------~.--.-

"1-. -.----... --- -.,.-
.:. "---; - -'~--=--=,~--~.- :-'---~.!---

~ .. ~ .• ;~-==.L~ .. -~--.-- t-~. ~=!~~~-~
-1=---
-- I~=:':':"':"--

-:~ ._;-- - --------;·--··----:-----·---i--:-··-----!--·--
--.-l--
~-. ___ 1 __ .. _______ M_ ••

-- _ -.----~-.-

------------- .. ---
I

': ___ i __ ._ .. _____ ~. __
; --_ .•. _---_ .. _. __ ._.- ._-

I --- .. - ----_ .. _------

-- ------l----
-_._------
-- --_.-_-. -_ 1-- -----

-----.--~ .. ---- --_.---"" .. -----
-.----- .. '_._._._--_ .. - --. . , -----.--- ----

, I ------ - '- .----_.~.- --_._---_ _--._-
i !

--_ ... --···-------i--------- -- r----·---
..... -. ---- - : •.. -.------ __ ._--_._ ... -. -- ---

___ .-' ________ ~r ____ , __ ._..:..:....:..._1 _______ _

-!~.

+--.~-.~
+~~.-.~~ !--
----- ----

-;-----
! --_.-

. --------.
-.~.=---":":"-

-7·----

j. -. -.­
. --l------.

,
r··-----·

.(--

-f- .
t-',-­

_L _
_ L
-{--_ .

I
-1-:-

-j-

f -;--

~J=~
i

·.I:::'~··

. -~.-.'--

+-_.

.'
,

-- ~.-

-+. -,
'--.:-:r
_:.·_L

I - ~:-r-

J-

, .

. -1:=:~
1-

-r~'
----,_

-.:.::~- .
____ 1.:..=.:..:....::-.:.j_
._ ...:..!.:.=.= __ ~_i.':'
--------_!_----_ ... -
___ L_...:·...:.:. ___ i. ___ . ___ ;

------------:-----'-.----;------t--
~ - . - - .. I . ., - . - - r' -.. . .

~-. - -. -i -.~~-~~--:----::--.:-- .~:-::-~::--! -::-:--:-:-:-:.
.---.. ---- ---------.- .--.-.--------t----

~ -. - - I ;

~.~~~. ~.~~=:: -. ·:~~~:.L=~-- -.. _~j_-=~~~.:.~~L~~
, I

.. _._' _______ l ______ ~ ________ __.,.;. __ • __ •

____ • ___ i_. ____ . ___ .: ________________ _

-- .. - '1 - •. -
.--- ----.---- - -_ .• --_ .. -.----.- ------

- -,----.-:-:.---, -------- .-•.. --_._-- --------
- -------_.;------ --! _. - --------~ - --.---

_. _______ .1-________ ._:. _____ . _____ :. ___ _

, .- - -- ..; - .-- .. i - .. --- ---!. -' - -'-
:_--:::-~::-:'--. r:-~~--::_:·.r=:_::_·-._::-~-=-; =:~.~-::
. --.-.----- :---- ----~---.------..;. .. ----
---------··-1-·-------:- .-.--._ ... ----

- --- .. ! -------_._-------_._---- ---. . .. -------- .-------- ---_._------
---_._-_._--- - --~'---------, ----

•.• - -" -low • ,
-- ------_ .•. _---_._- - --.. - .-._._! ----

·f· -.

i -------_ _--_._--:----------_ .. _-----
-i ... - --.

-'--'- - .•. - - ..• -.---- ... - ,-"-- .------ ... _--, ..
____ • __ . _0' ______ ._._. ____ __ _

---r--·---, - -,-'-----.---
----1~.:.~~~j _. -' .---.. --.--~:.---.

... _-_ .. -_ - --_.- •.... - --,--------

-j---'-
.-; .-.-. ----------_._--: .------.~- --.-.--.----

r • ; .. j - .- -.- .. _-'-___ ~ ______ J. •• ____________ _

_! ____ i·-·--- -- i ___ .. __ ~ __ . ____ . _
• ~ '--'-- ... -. ,.-. . .'- ·i·--

--- ---':'--"-.-'--- _.-----\-:-- -----:.- .-.... _-
_ . ___ ~ _ .. ______ •• ___________ i-:-. __ . ___ .. __ .~. _ .. _. ____ _

- ., .. ---·------·--------T-·-----~--·---· ---
- .-- - -.-_ .. _----- --------- - .. _._---_. __ ._ ----

-.. -' . _._-- ---- ~ - - -_._-_. -~ --- -.- - -- .
\0

~-:- .. ~ ~---~ =~- :':~-~---.:..-. .! ----=:.--~j~-=-.~-=~- Q ---~-
. ~ :

-. -_ - •.. --.'--- ---. -----.- ~---·---- • __ -f .-----

::~==lq;=-[;i~~--=c=-~::~~-:l~
.. j' , ----.--... -------

-·T-~-~ ... -=--.;:~~ ... -.. --.~!=-~~=--=~~:;;~;~~~.
- iI .. ~--.~ -~--~=-=-=__:~=_ _ _=_~.~.~===~~L=-_-=.- .-:---.---.-------;-----~:-.;-:-::-:.-::-::~.--: -.~=~:~.:.-~~~-~ .~--- --~-.-~-~~------~~~~-:=
• SI _2-----~--· '~f='~'" -~~:=i~_=~_~ ~:~=_~-----:~-~-~.~ ____ ... __ ~ _ ~ _ _ __ ~ ____ ._. _._._ . __

:7~~~:=,~~~-_=-:.~~~,~~~~F=~,~~=+~~=¢r:>=~t~r~~f:~ti~~_~I~~:=~=~==-==

FI r,UIU.': B
HH1 1800 C()~·~Ptr.4·;:f<

IBM 1800 Data Acquisition and C~trol System

I: • .; . ~

o

ADMITTING
OFFICE

PATIENT'S
ROOM

PATIENT GIVEN A HOSPITAL NUMBER

1
REQUESTS WRITTEN FOR REQUIRED TESTS

SAMPLE DRAWN FROM PATIENT

FICUCE 9
FLOL' DI:'\rl~.'\~'

CLINICAL
LABORATORY SAMPLE

+
CENTRIFUGE

~
SERUM CELLS(DISCARDED)

t +
FOR: MAGNESIUM

~

REQUEST

!
KEYPUNCH

I +
BUN REQUEST

+
BLOOD GLUCOSE REQUEST BLOOD GLUCOSE BUN

~
HAND METHOD AUTOANALYZER

!
RESULTS CALCULATED
BY TECHNOLOGIST

~
RESULTS RECORDED
ON REQUEST

!
KEYPUNCH

~
CARD READER

1092 KEYBOARD

V
DEVICE NUMBER

TEST CODE
"STOP"

1092 KEYBOARD
DEVICE NUMBER

TEST CODE
"START

II

CARD READER

ANALZ - PEAK PICKING ROUTINE
USES: RAW DATA FILE(RDAT)

CRLD-I - KEEP FILE OF PATIENTS
AND REQUESTED TESTS.
USES: PATIENT FILE(PTST) PEAK FILE (PEAK)

COLAN - CALCULATES REAL VALUES
USES: PEAK FILE (PEAK)

STANDARD FILE(STDF)
REAL DATA FILE(COLOT)

DLAB -I - ASSOCIATES PATIENT WITH HIS RESULTS. WRITES A

DLAB-WRITES PATIENT INFORMATION REAL DATA FILE(COLOT) I
RECORD ON DISK FILE.
USES: PATIENT FILE (PTST)

AND RESULTS ON DISK FILE FINAL FILE (FFLE)
USES: FINAL FILE(FFLE)

I~----------------------V
DSRT - GATHERS TOGETHER ALL TESTS ON EACH PATIENT IN FINAL FILE{ FFLE)

AND THEIR TEST RESULTS. WRITES THESE PATIENTS AND RESULTS INTO
A DAILY MASTER TAPE IN NUMERICAL SEQUENCE

1
PRINTS LABORATORY REPORTS. PRINTS NU. MERIC LISTS OF PATIENTS

DLUPD - MERGES DAILY MASTER TAPE INTO GRAND MASTER TAPE

~
PURGE - DELETES PATIENT FROM GRAND MASTER TAPE UPON HIS DISCHARGE.

PRINTS A COMPLETE LISTING OF ALL TESTS RUN ON HIM DURING
HIS HOSPITALIZATION.

C-_:
- -

c

\

I

\
\

" \

\
-~~~ "',

FIGURE 10
1092 KEYBOARD DEVICE

. . '.~, .•.. ' ,.~." .• '..:' - . ~ . .-. ", .'" .

@\

@'
@~

@~

@'
@\

@
@

@ @ @

@' "@" @>
@\

G'\
@)

@l
@)

@
@
Q'\

@

@
G" .

>@
@; @",

@\ @'
@')" @!
@\ @,

@\ @'
""@1 @,

I,g

.~ _ .. ~ ... _-_.- ,-,. ... ,.

tI)
t,;
z
o
< ..u
~

U.J
t,;.

Flr.URE 11
FILE: RIJAT

~ ... ,_ ___ ,..,_-:r __ .. ""' __ '~ IItIrlI __ ··-....l" """ """_ .. __ .,.., .. ____ ,.. _____ "'-__ ... ,.

C
:>
~

~
c.;
......
Q

f·

~ ---'I---........... ..-. .. t-......... -i.i

c

PI(;UPE 12
FI LL: PE.I\I\

.
S " ..
--H

~.
C

r~==:-"~-~- _l_~,tL '"iJr~~:~[~:u=[~~/t~l::~1
:.r ~ ~1--illll622L ,/. -:um:1~~'

~~::::: ____ ~_~ __ ~._~~._-~~_q~:[l~~~~'

(

v:
~
:::
~

FIr.UP.E 13.
FILE: COLOT

;; ·l"'Y·'.~.4'':'-'''''·'''''~·''''·''''""''','''''',''''''h''''''~'''''~''·'''·':;·''''''''''''-·.,..." .• "::.- .. ,, •••. <:. ... ,.,~ ,....,,":"-~ .. - ... =.------ -7> .

~----~---~~ ~--~----~-----

.-------+--_.p...-

10------....... ---- , ... -,~--... -.-_,-~ __

-~,----,-.--.. - '[' - ".' _r-·
-------, ._- - -- - --~

f.--~-. ~. ._!.-~~-__ ~~
.~ .~
~_/

c

c·

o

0::
UJ
S

~ ...:..
::>

~ % ",.,~

Z • ..J C
-< foot Z
f-4 Z IJJ cr.:
t... t-4 0
V) ~ .0
Q ...J - 0.. U.

1002854 SMITH JOHN

L

~
C
E-<

E-< U
t/) <
~-, tt.
t:;
0 Z
..J 0
0
~ !; a ~
L!J t-4
~ 0

(.lJ
0
C
u
f-
V)

~

PIGUHE 14
TEST CARD

8
-"-
<.(
.-,.
"'~

foot
V>
CJ
~

~~ ~ ;. 0 0 0 0 0 0 2 0 0 . 0: 0 0 0 . 0 0 0 0 0 0 . 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 boo
I 2 l C 5 I 1 • , 10 II t7 13'14 IS II 17 11 " 2021 222324 252611 282930 31 323334 353531 33 J3 40 41 41 4344 4546.' 4S H 50" 525354555651 5a 59 60 ~I 626364 65 65 61 &8 69 70 11 12 13 14 15 76 71 '.73.0

111111 I I 1111111. 111 I 111111111111111111111111 I 1 111111 t 1 111 111 111 I 111 I 1 I 11 I I 11111 I

222J22222 .22222222222222222222222212222 222~22122'2212222222222 :222222222222221

. 3 JJ 3 3 3 j 3 : 3 : 3 3 3 3 3 3 3 3 3 3 3 3 J J 3 3 3

'44444(444' 44 '444444444444444444

55555:'555555555555 55555~55555~55S5 55555555~S55S5555555555555555 .55555555555555

6G6666GG66666GG6 66666666&666t66&6 666666666666&6 GGGG66GGGGGG6 '6G6&&66GG&S~6GG

1777711171117111711171111111771177177117111'77117717171 17111.17717171177171117111

8888: 8 a 88888 a a 8. 88 a 8 8 8888888888888888888888888888 B 8 8 8 8 8 8 8 a 8 B e 8 8 8 8 a 8 8 8 8 8 8 8 8 8 8 & 8

99999999999 999 5999999999999999
1 2 3 • S I , • , 10 II 11 13 ... 15 " 11 13 " 21171 n 1H05 167111 19 JO " '21J3f 35 3S n II 3HO '''7 flU 45 (C H'.'1!l 51 52535' 5,565153 SHJ GI 62 SH' <;5 ,561 £16' 7Q 71 1] I) 11 7575 n " l~ !\l

"'-__:[;;;;;.iT_ ... -;;;;;"ii]iJ]_!" _______________ "......"7'r."l<' _~ ___,...,:-..,.~~ • .,.."....""'"~.":.~~, _____ _

.
c
Z

;.:..:l ~ Q "- :2 c <
~ Z E-.....
E-< E- c..
tl) V- C/:
;.:...l :.:..l £ E-< E-o

" . . ~~

J.Q.QillL- ·..J.U..J:i.Llll·O:Z .. ~!U - -

L ... 6 .. 3 0 0 () 0_, _~_~~ ...LLJ'.JJl.P.2#-:J.,6.- 2A - C)
;;

z c
t-4

~ .~ -. u
<: 0
Z ...:I

E-o t: ...,.
"" .. 1'--.

t:J t.:..:
t-4 H

~ .~
Co. c...

j
~J,lO •• _ • ~D.6..2~~""-+.J1' .. 'O-,,:,~,,·li ... \!~~o.;;l0,.:,''''·''''-~''''''~''

V

FI~URE IS
FILE: PTST

o

~
C

E-o
E-o u f--

tI)
en < t.:J
t-4 '-=- E-o c..:;
c z ~
...:I 0 0
C t-4

2S t: CI)

(3 ::J t-
H

;.:J t-4 !3 E- C
'-"'-~'"

c

c

o

o

pm· wrwnTi!?IlW

FIGURE 16
FILE: FrLE

FI~URE 17
PRINTED OUTPUT

__ . __ .. _ r _-"_ .. _ •• _ .• ____ ... _ ___ ... _ ' .• _ •• _ _.~ _ .. __ .~ __ '-. ~ ._""~ __ • _. __ • __ __ ... ___ ._ ~ ._ __ _ __ :- _ ". _ ___ ___ ,; ___ ._, _. ___- _ •• __ "'_.-.:. ._~"'._ --4 .----.. - -. ,;..

(} G o:::i ~.<~
o DO :.:. EO. :-1

0003 c.::)

Sf·lI T H .. _ JCJ H1'I ..
. RUf'!.

SL GLUe
r'·lAGNES I U~.1

11.6 hRS
i··ii<;/l OO:-iL
f'i ,G/1 00 "':L
i"iG/ 1 OOf/,L

.03/11/6!:')
J /\:-1

.f\!>~H

BRL

o

P l\ T H 1"1 L () GIS T
~. ... ~~-·".r.;..."f"""~~lr __ ~ .. '1-t~~..;:.:..·ra..:-; ... ~...:~:~··" ... ~~:.e~-._ ... :t'~~~-;.;~".:...~;;:,.,;;.;...;~~-~~~~~~,-:v.......-. .. _~{ --·:;rr""":"T.'If't~..,.,..-, t1W' ~-~~~ ... -:~~ ·• ~ ___ ~ __ _

--"--.,---- - ---.~ .. --.------------~.---.----- ... -------_____ .-__ ... __ .ar roo-~ .. _' w _____ ... ______ ·::. ... _____ _ ... ·"""'''»,.;....,,_~_ _.4!'J;_'''" ... ·: •• _ __

092: 6:"i L,: ...•. / ~:~~i:KE LL'V>'--SHA F'(O N'

0926S L!- BUN 20
09265 L!.

- --"" ._.- --

11.6 HRS
r-:iG/100;\1L

it.6'HRS
r';iG/100t,lL'

i":IG/1 0 or··IL

03/11j6~:

JAH

........ . .;, '>,....-,. "-o.l ~ ... /!. _____ .~ _-.... •. ,..,...., .. .,...-.,.,.... __ •. ~ __ .. ~ .. ··_ 'l~I~_(..... ,..... ___ _,.....~-...-_. ____ .'" •• 1W"..-~.~ __ ~~~, _____ _

c/\pnf_

SL GLUe
F8

103

II.A HRS
r·;G/I00ilL

03/1 1 / f) Pi. " ...

i'JRH

d t.J., ..• 'f ~.'

c

Otl.? 0 fJ (J

o I~ ~~ 0 t':l ,:1

(: Ii· r.~ 0 (, ;1

o ll· 2 () 6 (~
Ol~2 Oi',.s
C{:·2D(-,n

Ol;.':;:: G6 ~)_

Ol~2068

'. O~~.2, ~~~; "
o£,· 2o::..~.::>

L I 1\1 f) S F Y ~) /\ P ': /I ~ l\

h Ei': [] c.; L (:H

. UR I i'jj'.. L YS
UF~ I p:~

URI GLUe
'tF~ l' . p~: nT,

- Uf.--~ I R~3C

UR I \., [3C

?+
20-30
10-15

FIGURE 17 CO:\TINUEfJ
PRINTED OUTPUT

FE)

15.A

'PH UI'J 1 TS
C U ;" ~ F.: 1ST I X

1 1 • 6 H :-! :~:,

G j'.; / 1 00 r·o, L

SUL r=nS!:..L l-\C I r)
/HPF
/HPF

CAS.TS .. 8AR~ HYALrN~ CAST

FE~8UDDI~GYEAST SEEN'

iJ3/11/(1P

~ - . . -_. .

\l •• __ ;~- i'""'·· r.-',,·.,;,·.}.~,-:~ ; ,: -~-: .. ro~'''''''':r,....~'':''' """,:.,;",,,;~."'r::"'''''-;~:='''''"l'C;O-;'''<>.,r..:~q.-:-;.,_-v-,. '':' ... ~.,,,,.,.-._._~ __ " ___ .. __ ~ ::..::.2~J:~C! L_[i (:, 1~~~,_ .. ____ . __ . ___ _
: . . ,'-----1

____ .. Q_Q 2 l\ 03
-

f<:/062 i~ 0 3·
_. __ ~Q624Q3 ... ·_

062403
06c L!.03

'06~403

. 06~L[.03

062 LL 03

_.Q 6 2 ~~ O:j

Pf-: C rf':,f I\! CJ F

l<.f::rLI N

S TAP H C ILL If":

OXYTETRACYCL

SPUTU\'

s
E
S

.. F L~

19
. 302

11.6 Hr·<s
i-! G / 1 0 0 r~! L

i c'iG/lour'c:L

03/1 1 /n;~

J~H

:~ST

JCL
c (] ;\.1 T /\ I 1\1 SST /:" :::> H f.. U R E USC lJ ,:\ G P r-) S

K;-\f'-lAi···IYC! i··1

OXACC ILL Ij\l
CHLOP,l\ j.iPHE ;'J I

Ol','iYC 11\1

".

R

P E 1"'! 1 elL L I 1'·1

p. U L Y C ILL I i'i
EF<YTH'--UJ,"lYC I N

STRE:PT'"]:·iYC I h! .s

.;.;..:;,;,;.;.;,;;.;;;;:;;;.o;.;~~,;~;.O:;;.~:;;,,;.~-;.;,;.;:;;;;;:.::. ; .. k -- ._-_._ ... _~'_'"'.' .• _ .• =._ '= __ =._~~.=_ ... U.=._._'_= ... _ .. -=" "='"=.-'--= .. -.-.=.-... =~--.. -.= .. " "._, . .= ~ .• "= ... -.-=" ==~~=~~_~~.JIl:U:I\IrlII"",'!.\IW ___ " __ ._' __ '"''''''''''

FOOTNOTES

1. See the paper IIData Reduction Techniques in a Clinic~l Laboratory"

by R. Q'Desky, M. Ball, and \-I.B. Stewart (to be published).

2. The 1800 has the Inherent capability of using more sophisticated

interpolation schemes; however, linear interpolation between standards

appears adequate for the laboratory's present needs.

3. \1hen a complete Hospital Information S"ystem is introduced into the

hospital, all of these fi les could be read dt rectly from" the 18bo

computer into a larger, centralized hospital computing center.

o

c

c

o

Se3sion Number TUE C3

SESSION REPORT

COMMON - Chicago

----------------------- Session Name Direct Digital Control

Chairman 2. P. Walker

Time 1.30 to 3.00 PM
------~~~~~~~~~-----------

Attendance (No.) 23
--~-------------

Speakers R. Pomerance - IBM

Synopsis of Meeting Discussion of Direct Digital Control program devel­

oped by IBM. DocumeDtation ia pre.ently in PID and should be released

soon. Dick discussed the various optlODS available and showed sample

problems. He passed out the attacbed abeets ShowiDg the options. He

also showed slide. of an aetual applicati.on by IBM in San Jose and

emphasized how the process was controlled through an operator's panel

which included an IBM 1892 <mnBol ••

PVR FIELDS COMMON TO ALL CALCULATIONS

LABEL WD BITS

IDENT
LPOUT

ADCBT
GTRW

ALGOP

RECSZ

POLLT
FAZE
INFRQ
INSUB

DCN1
DCN2
ECN1
ECN2

o
1

01
01

, 1

1

02
02
02
02

02
02
02
02

00-15
o

01
02-03

4-07 •

08-15

00-03
04-07
08
09-11

12
13
14
15

DESCRIPTION

PVR IDENTIFICATION
1 IF LOOP IN SERVICE

IF NOT ',VALUES-CAN BE DISPLAYED,
BUT NO CALCULATIONS WILL BE MADE

1 = ADC READING REQ,D
MEAS SOURCE IF NOT ADC RDG

o = l-IEAS, THIS PVR
1 ,= IJ.lEAS, ANOTHER PVR
'2 = OUTPT, ANOTHER PVR
3 = TABLE IN CORE

ALGORITHM OPTION CODE
o = MEAS/CONVERSION ONLY
1 = MEAS/CONVERSION/LIMIT CHECK
2 = P+I CONTROL CALCULATION
3 = 'P+I+D CONTROL CALCULATION
4 = P+I+NL CONTROL CALCULATION
5 = P+I+ERR BIAS CONTROL CALC
6 = P+I+OUTPT BIAS CONTROL CALC
7 = RATIO CONTROL CONTROL CALC
8 = WGTD SUM CALCULATION
9 = MATERIAL INTEGRATOR
A ~ USER FUNCTION
B = ARITH CHECK CALCULATION
C '= OUTPUT TRACKING FUNCTIO~
o = DAC/COS CHECK CALCULATION
E = ADC CHECK CALCULATION
F = COLD JUNCTION COMPENSATION

WORD COUNT OF THIS RECORD

CYCLE TIf;1E = 2**POLLT SECONDS
PHASE TIME IN SECONDS
LINEARIZE FOR CONTROL CALC=1
INPUT SUBROUTINE OPTION

0= NO CONVERSION SUaR
1 = ZERO CHECK/ADJUST
2 = ZERO CHECK/FLOW CONVERSION
3 = PT-PTRH13 TIC CONV(50'MV)
4 = FE-CN TIC CONV (50 MV)
5 = CR-AL T/C CONV (5'0 MY)
6 = UNDEFINED
7 = UNDEFINED

1'= DISPLAY CONSOLE 1
1 = DISPLAY CONSO~E 2
1 == ENTER CONSOLE' 1

. 1 == ENTIRCONSOLE 2

----~~--.. --- --- .. -----------

r,:.,
~' t

o

o

PVR FIELDS COr.U10N TO ALL CALCULAT.IONS

LABEL WD BITS DESCRIPTION

INMAD

EDTCH

INDIT
PUNIT

03 00-15 MEAS ADDRESS liORD
= HPX ADDRESS, IF ADCBT = 1.
IF ADeBT = 0, USE THE FOLLOWING
= PVR IDENT, IF GTRW =1,2.
= TABLE INDEX, IF GTRW = 3.

05 00-02 DEC POINT FOR ENG DISP
o = xxxx. 1 = xxx.x
2 = XX.XX 3 = x.XXX

4-7 = .xxxx
05 .03 1 = DISPLAY IN ENGINEERING UNITS
05 04-07 UNITS CODE

o = BLANK 8 = LB/M
1 = PERCNT 9 = PSIG
2 = DEGo F A = RATIO
3 = GPM B =
4 = MCFH C =
5 = IN H20 D =
6 = IN HG E =
7 = MV F =

CONA 06 00-15 CONA = 2 • SPAN FOR ENGR SCALE

CONB 07 00-15 CONB = ZERO VALUE FOR ENGR SCALE

MEAS 08 00-15* VALUE OF MEAS AFTER CONVERSION

PVR DESCRIPTION - TYPE 2 .. P+I CONTROLLER CALCULATION

LABEL

INBAD
RTCH

FLTYP

FLCOT

SAUD

LPALM
ALMOR
LPMWT

INAST

INADB

INAHI

INALO

INCN'l'

INHIL

WD BITS DESCRIPTION

04 00-01* COUNTER POR INPUT BAD SUUR
04 02-03 RATE OF CHANG'E LIt"IT

0 .'NO TEST 1 = 5'0 PCNT
2 = 10' PCNT 3 = 5 PCNT

04, 04-07 FILTER 'OPTION
0 = NO FLTR 1 =- ocu FLTR
·2 = ~P.,F~TR 3 = NO FILTR

04 08-15 FILTER" CONSTANT
= 2S'6.'8ETA

05 08 * 1, = HORN HAS'BEEN SOUNDED,
RESET ALARM BUTTON NOT PUSHED

05 ,,09 * 1 =, VARiABLE' IN ALARM
05 11 . * ALARM f-1ESSAGEORIGINATED
05 12~1S* ALARM MESSAGE' WAITING

09 00-01·

09 02-03

09 04-07

09 08-11

09 14-15·

10 00-15

B 121=NORMAL MESSAGE WAITING
B13-14 O~NO ALL\{ n~r. NAITING

1= INPUT t-iL,,,,,, ,GE WAITING
2= ERROR,HESSAGE WAITING

,3..QUTl?UT MESSAGE WAITING'
B1 5 "()=:LO'ALARM MESS.

, 1 = 'HI ALARM MESS

INPUT ALARM STATUS
BO. = 1 , INPUT IS'.IN ALARM,.
B1 = 0, LOW ALARM
B1 = 1 , HIGH ALARM

INPUT ALARM DEAD BAND
0 = 0.1 PCNT 2 = 5.0 PCNT
1 =1.0 PCNT 3 = 10. PONT

ALARM ACTION, INPUT HIGH
B4 =1, PUT ON l-1ANUAL
as = 1 , HOLD OUTPUT
B6 = 1 , SOUND AUDIBLE ALARM
B7 =1, PRINT ALARM MESSAGE'

ALARM ACT.ION , INPUT LO~~

B8 = 1 , ,PUT ON MANUAL
89 == 1 , 'HOLD OUTPUT
B10= 1, SOUND AUDIBLE Ala\.RM

'8'11.,1, PRINT MESSAGE,:,
COUNTBa' FOR LIMIT ,ALARM CRICl(:

INPU':t' ,jIGH LIMIT:
"

"

;(~\
\~

C'

C""':
.,y'

o

PVR DESCRIPTIOn - TYPE 2 - P+I CONTROLLER CALCULATION

LABEL t'lD BITS DESCRIPTION

INLOL 11 00-15 INPUT LOW LIt-lIT

SETPT 12 00-15 VALUE OF SETPT

SPCHI' 13 00-15 VALUE SET CHG + LIMIT
SPCLO 13 00-15 VALUE SET CHG - LIMIT

ERRHI
ERRLO

14 00-15, ERROR HIGH LIMIT
14 00~15 ERROR LOW LIMIT

ERAST 15 00-01* ERROR ALARM STATUS
BO = 1 ERROR IS IN ALARM
B1 = 0, LOt"l ALARM
Bl = 1, HIGH ALARM

ERADB . 15 02-03 ERROR ALARM DEADBAND
o = 0.1 PCNT 2 = 5.0 PCNT
1 = 1.0 PCNT' 3 = 10. PCNT

ERAHI 15 04-07 ALARM ACTION, ERROR HIGH
B4 = 1, PUT ON MANUAL
B5 = 1, HOLD OUTPUT
B6 = 1, SOUND AUDIBLE ALARM
B7 = 1, PRINT ALARl1 MESSAGE

ERALO 15 08-11 ALARM ACTION, ERROR LOW

OUTPT

OUTHI
OUTLO

OUTAD

COSGP
COSBT
XALB
XALW

B8 = 1, PUT ON MANUAL
B9 = 1, HOLD OUTPUT
al0= 1, SOUND AUDIBLE ALARM
Bll= 1, PRINT ALARM MESSAGE

16 00-15* VALUE OF OUTPUT

17 08-15
17 00-07

18 00-15

18 04-07
18 08-11
18 08-11
18 12-15

OUTPUT HIGH LIMIT
OUTPUT LOW LIMIT

OUTPUT ADDRESS WORD
IF MASTER LOOP,OUTAD HAS SLAVE 10
IF OUTPUT TO COS,
LOGICAL COS GROUP
PULSE BIT FOR COS
EXTERNAL ALARM LIGHT BIT
LOGICAL ECO FOR EXTERNAL ALARM INO

---, -.---------.------~-~~.~ .. ~ ... "~.'.'

PVR DESCRIPTION - TYPE 2 - P+I CONTROLLER CALCULATION

LABEL WD BITS DESCRIPTION

OUAST

OUADB

OUAHI

OUALO

OUTCH

OTOK
EXAM

MAUTO
MAULA
STUPC

CABSL
ISSLA
MASTL
MASLK

REVAC

KPROP

KINTG

RSTl

RST2

19 00-01* OUTPUT ALARM STATUS
BO = 1, OUTPUT IS IN ALARM
Bl = 0, LO\v ALARM
Bl = 1, HIGH ALARM

19 02-03 OUTPUT ALARM DEADBAND
o = 0.1 PC NT 2 = 5.0 PCNT
1 = 1.0 PCNT 3 = 10. PCNT

19 04-07 ALARI~ ACTION ,OUTPUT HIGH
B4 = 1, PUT ON MANUAL
B5 = 1, HOLD OUTPUT
B6 = 1, SOUND AUDIBLE ALARM
B7 = 1, PRINT ALARM MESSAGE

19 '08-11 ALARM ACTION, OUTPUT LOW
B 8 = 1, PUT ON t-1ANUAL
B9 = 1, HOLD OUTPUT
B10= 1, SOUND AUDIBLE ALARM
B 11 = 1, PRINT ALARM t1ESSAGE

19 12-13 OUTPUT CHANGE LIMIT
o = 100 PCNT " 2 = 5 PCNT
1 = 10 PCNT l = 1 peNT

19 14* 1 = OUTPUT IN SERVICE
19 15 * 1 = EXTERNAL CONTROL

20
20
20

2'0
20
20
20

20

00·
01 .
02

03
04
05
06-07

08

* 1 = LOOP IN AUTO
• AUTO/MAN STATUS LAST TIME

STARTUP OPTION
o = START UP ON MANUAL
1 = START ON LAST CONDITION

1 = CAN BE SLAVE
• 1 = IS SLAVE

1 = t-1ASTER LOOP
. OUTPUT LOCATION OPTION,MASTER PVR

OUTPUT OF THIS LOOP GOES TO
o = NOWHERE 2 = BIAS
1 = SETPT J = KP

OF ANOTHER LOOP
1 = REVERSE ACTION CONTROLLER .

21 00-15 PROPORTIONAL CONSTANT
= GAIN*128

22 00-15 INTEGRAL CONSTANT
= GAIN*1024

23 00-15* WORD 1 OF RESET TERM

24 00-15* WORD 2 OF RESET TERM

/
I
'--

o

c

o

E' I'.', srnr:rrn 5!!!1ES"?TM= mTl5ll7! gp""r mrmnzrrlittnrz!5TlT't

SESSION REPORT

COMMON - Chicago

Session Number TUE C4 Session Name LP/MOSS Tutori.l -------------------------
Chairman W. A. P •••• , Jr.

Time ____ ~1~.3~O~t~o~3~.~O~Q~P~M~ ________ __ Attendance (No.) 92
----~~----------

Speakers ______ ~Mquulul~eur~o~fL__lMBM~ __ __

Synopsis of Meeting After a scr'-ble for an overhead projector, the

eession proceeded with the presentation of the Aluminum Alloy Blending

Problem from the LP/MOSS manual.

The presentation was too advanced for most of the newar user •• e

only 29 returned for the continuation in Se.sion Tues - El later.

SESSION REPORT

COMMON ~ Chicago

Session Number Tuesday C-S

Chairman Paul Bickford

Time 1:30 to 3:00 P.M.

Session Name Software Development

House Repres. and Users

Speakers Evan Linick, Bob White, Don Weber, Roland Maqee

Synopsis of Meeting Evan pointed to good reasons for permitting

"Software houses" to make pressnt'ations withou,t mak.i.n9p,SOMMOI.~,,\...::~_'-__ _

"Side Show". Bob pointed out the complexion of software ,development

,~\
U .J
~

has changed and COMMON shouldp'ermit Software houses to fill in what C'
they cannot get with, the t'radita..on,al approach to developing systems.

Ron raised the question of whether we should let software houses

make Presentation when there is;llot time for member presentations.

Don pointed out that one may want' to give part of our program.

rrhe l~eetings was well attended' (,75 people) and went, smoothly. It was

terminated by requesting those present who had opinions pro and con

about the subject being disc'Uss,ed were asked to foX'Ward them to the

Program Chairman.

,I
c

o

Introductory statement made by Evan F. Linick, Manager, Research and Development,

Software Resources Corporation at COMMON Panel Discussion (Session Tue-C5),

April 9, 1968, Chicago, Illinois.

Statement of Topic

There has been some confusion regarding the exact topic that we are to discuss today.

Although the meeting agenda indicates a slightly different subject, what had been

agreed upon as a discussion topic was "Should software companies be allowed to make

presentations at COMMON meetings." I believe this question is really part of a more

general one: "What should be the relationship of COMMON to software companies

(and perhaps even hardware companies) which offer products and services of direct in­

terest to COMMON members?" My remarks will be directed toward this more general

question.

Background

One of the reasons why we are discussing such a topic today has to do with the large

number of software companies which have come into existence over the last several

years. There are now at least 500, and perhaps well over 1, 000 such companies special­

izing in programming services - principally contract programming. Of immediate

interest to us is the latest innovation of these companies, the marketing of software

packages. (Of course, the marketing of software packages today is not I imited to soft­

ware companies, many individual users are also attempting to market packages which

they have developed.)

There is not time during this session to go into the detai Is of why this has happened or

the different types of packages which are currently avai lable. Very briefly - there

are today, many packages available in the areas of systems and applications software,

at prices averaging about 100/0 of the cost of development.

While discussing this background, there are a few side comments which I would

like to make. Today, there are many companies (and not all of these are software

companies) whose existence depends on the programming and use of IBM computers

and who do not qualify for membership in COMMON. COMMON may want to

consider a distinction that perhaps did not exist previousry - the distinction between

being an IBM user group and an IBM customer group. Also, as mentioned previously,

there are today many hardware companies offering useful products to IBM users.

These products include such items as peripheral equipment, terminals, communications

gear, etc. The remarks made here today relative to software companies may apply in

many cases to these hardware companies as well.

How does this relate to COMMON?

COMMON is composed of organizations - companies, educational institutions, gov­

ernment agencies, etc. Attendees at COMMON sessions are representing these

organizations and their interests. The basic purpose of COMMON and other organiza­

ti ons of its type has been to exchange information of mutua I interest, to benefit by

common experience, to save time and money, and to use computers more profitably.

One way in which these basic aims have been pursued has been to provide a means

of free exchange of computer programs. The questi on that arises now is whether the

commercial availability of such programs conflicts with the free exchange promoted

through COMMON. In this regard I would like to suggest that although exchange of

programs has been of benefit in some cases, it has generally not been a successful

method of achieving the desired goals. There are a number of reasons for this:

1. Users have discovered that programs obtained through exchange are not

really free - there is often a considerable cost associated with making these

programs operational.

2. Despite efforts that are sometimes (but not always) made, there are almost

always serious problems associated with screening and verifying the quality

of programs submitted to a user exchange library and assuring that adequate

documentation is avai lable.

c

c

c

rW!!f!i!f!t!illW7YP1IIf7!UT""""F'.'u, • .,,=rmMtlM' ... :!n

3. There is usually little or no support available with programs obtained

through exchange. In fact, there is often a great re I uctance on the

part of those having good programs to submit them to an exchange library

because of the nusiance and cost involved in answering requests for addit­

ional support from those obtaining the system.

4. Many users with excellent programs don't want to give away something that

cost them many dollars to develop. In almost all cases program libraries

have not provided equal value to all of those participating.

The ability to purchase software packages is something that is quite new. It provides

another possible answer to the problem presented by our luncheon speaker today. As he

pointed out, the availability of good programs in a vast variety of areas is going to be

a significant problem to all users over the next several years. Because of this, the

commercial availability of package programs should be of extreme interest to all

COMMON members and it is certainly appropriate for COMMON members at COMMON

meetings to exchange information on this alternative resource.

What might be appropriate for COMMON?

There are a number of ways in which COMMON may appropriately attempt to exchange

information about commercially available software packages. These include:

1. State-of-the-art papers or discussions.

- Types of programs avai lable.

- Sources of packaged programs.

- When to consider using a package.

- How to evaluate a software package.

- User experience with purchased software.

2. Current controversial items.

- Protection of proprietary programs.

- Separate pricing of software and hardware.

3. Presentations of specific packages.

- Technicai', non-sales oriented, presentations similar to those currently

presented on user developed applications. (There is some precedent for

this in Guide and Share as Bob White will discuss.)

- Sales oriented presentations conducted concurrently with, but independently

of, COMMON sessions.

4. Development of applications and systems specifications.

- Development of specifications that could grow into joint ventures with

software companies outside of COMMON.

- Specifications submitted to IBM mayor may not get a satisfactory response.

Specifications made to a software company many result in a good product,

well-documented and supported, available quickly, and because of these

reasons worth the price associated with them. (Bob White's remarks

should shed further light on this approach.)

How should th is be done?

The specifics of how to proceed along these lines is up to COMMON. My main point

today is that COMMON should not avoid the problem and hope it goes away - no matter

what position COMMON may want to adopt, there should be some definite policy

statements made as quickly as possible.

Some approaches that should be considered include:

1. Presentations made at C OMM ON meetings could be on request or pre-screened.

2. Presentations could be made in regular COMMON sessions, or in special

sessions, or in private sessions held concurrently but independently of COMMON

meetings.

3. A special bulletin board could be provided at COMMON meetings where infor­

mation on commercial products may be posted or announcement of the availability

and location of representatives of software companies could be posted.

o

c

C.'·

()

o

Individual COMMON members would then be free to follow up these

notices at the ir own discreti on.

If COMMON does seriously consider these matters and act quickly to provide them­

selves and the software companies with specific guidelines, all of this can be done

without over commercialization of COMMON meetings or unnecessarily distracting

commercial side shows. Exchange of information on commercially available softWare"'

packages if done in this way wi II certainly be in the better interests of COMMON, "

COMMON members, software companies and even IBM itself.

SHOULD Co.Mr'-10N ALLOH SOFTvvARE HOUSES f'.1AKE

PRESENTATIONS AT OUR MEETINGS?

Session Tuesday C-5 R. H. Magee

.,.

I think there are probably qui te a few reasons why ·we should ,.
not, but I am only going ·to discuss two of them. Ib~lieye
these are practical reasons which should be considered.

The first is the question of time. I feel that we currentlv
have enough topics to cover without trying to fi t fn o'ther-'
types of presentations. There were more papers presented fo~
this meeting than could be used; and there is talk of extend':'
ing the Philadelphia m~eting to four days to cover the. topics.
I, for one, do want to see these meetings extended for four
days.

The second reason seems to fit logically with the first and
that is one of interest. Vle presently are commi tted for the
1620, 1130, 1800 and at least 4 models of the 360. To me,
this is a lot of machines to cover. Not only hardware, but
also software wise. If COJYT ... MON is to present meetings of
interest to this wide range of installations, then I d.o not
see how there is going to be time left for the software houses.

I do not see how a software house can make a presentation which
would be of interest to enough users to justify the scheduling
of such a presentation.

The program chairman has a hard enough job to get the revelant
papers and topics in the schedule without placing a further
burden on him.

I believe that these two reasons alone are enough to eliminate
the presentations by Software Houses.

Thank you.

R. H. Magee

o

c

o

Session Number TU! C1

SESSION REPORT

COMMON - Chicago

---------------------- Session Name Computer Graphics and

Numerical Control Chairman Joe Talkington

Time 1.30

Speakers Joe Talkington

Ed Becker

Attendance (No.) ----------------

Synopsis of Meeting Mr. Becker talked about IBM support for N/Cusers with

IBM 1130's. Most of the presentation was Oft the Type 3 program entitled

"Romance".

Joe Talkington discussed a government spoDsored NDEA Institute entitled

"Computer Graphics".

SESSION REPORT

COMMON - Chicago

Session Number TUE C8 ---------------------- Session Name Laboratory Auto-

Chairman G. Hertel mation - Petrochemical Project

Time 1.30 to 3.00 PM Attendance (No.) ----------------

Speakers B. Polishok, IBM and D. Hutchins. Procter and Gamble

Synopsis of Meeting (1) Polishok - "New 1800 Labs Monitor Sy.t~mh

_ .. {Z) Hutchins - .t Proeter 6£ Gamble', Lab Automation System"

c

o.

Laboratory AutoDlation talk given by B. H. Polis hook at COMMON
on April 9, 1968 to the Petrochemical Project

I am pleased to be here arid have the opportunity of talking-

about what I believe to be one of the fastest growing areas of interest .

to the COMMON organization today. rrhis is the area of laboratory

automation wherein one can fipd nurperous 1130's, 1800's, Model 44's

and other Systeln/360 computers interacting with laboratory instru-

mentation. The exciting thing about this whole field is that we are.

rapidly grovling out of the data logging stage of just acquiring data

and are beginning to do things in the laboratory which vjould have been

impossible without the computer.

Due to the growing- interest in laboratory automation, w-e felt

a forum for users should be established. As a result, we have been

trying to stimulate the interest of the COlVIMON organization to establish

a continu.ing project in this area. r:roday's session represents the third

t.i:rp.e in a row that talks have been given on laboratory automation. The

-first time was in Cincinnati in September of 1967. There we raised

the original qu.estion of establ~shing a contInuing group in laboratory

. automation. Also, Ray Edwards of my staff outlined the general area

of laboratory automation and discussed various approaches and prog-ress

to date. The second session vIas in San Francisco last December. There

. - 2 -

Dr. lIenry Gladney of IBJ\1' s San J ose Resea~ch Laboratory discussed

his laboratory systeln. Again, Ray Ed\vards provided the group vVith

a pr,?gress report.,

You will note that the ~peakers at these sessions have corrie

solely from IBM. We have always hoped that such support wou~d b~

temporary to solicit initial interest. ,The activity must now become

self-sustaining with the diree,tion coming frorp. the members of the

COMMON organization. COMMON can offer an excellent forum for

the ~sers of laboratory automation systems. It can offer a point of

. contact in discussing programming- approaches~ application programming
)

needs, and to exchange programs. This is vital to the growth of

laboratory automation activities. I hope therefore tl~at at the end of

this COMMON Meeting you will discuss these sessions with your

laborato'ry personnel and ensure that there is a continuing interest and

desire to sustain laqoratory automation activities in COMMO.N.

My purpose in being here t.oday is not only to discuss the need

'for continued laboratory automation support within COMMON but also

again to provide you with a pro'gress report. As p.reviously mentioned,

progress reports were given in the last two sessions. One would suspect

. that progl;'ess cannot continually be made on such a short term basis.

~o~ever, this is not the case in laboratory automation as we are presently

seeing ~ revolution as opposed to an evolution. The most interesting

.)

c

C'

- 3 -

thing that.has occurred over the last three months has been the

19th Annual Pittsburgh Analytical Chemistry and Applied Spectroscopy

Conference. This is a technical conference 'which started out as a

local event in Pittsburgh. The~r success in putting on these annual

conferences grew to the point where it became the conference of the

year for presentations of original papers and for the announcement of

new products. This year, due to labor relations problems, a new

home had to be found for th~ conference. It was therefore placed in

Cleveland. In looking at the computer papers given at the conference

as a percentage of the total papers given, an interesting trend can

be observed over the yea~s--------in 1963, 1.8% of the papers VJeTe

computer oriented; in 1964,00 3.2%; in 1.965, 9.3%; in 1966 it dropped

to 3.5%. In 1967, it was up to 13.5% and in 1968 it was dov/n to 8.4% .
.

These statistics suggest that the computer within the laboratory is

being recognized on a par with the instrumentation in the laboratory.

In fact, one
o

can look at the computer as if it were an instrument itself.

In this particular case, it is an instrument which can enhance the data

acquisition function of other instruments and can utilize sophisticated

mathelnatical techniques to analyze data to provide meaningful information.

It can mana9~e this information for display, graphics or inforination

. retrieval purposes and finally can rnanage an experiment froTIl one

operating level to another based on previously analyzed data.

•
." - 4-

In .1966, two computers were shown at the conference, in 1967 there

were about 12 computers and this year there were 19 'computers including

an. 1130 and 1800," which were part of the IBM exhibit.

I would no\v like to discuss with you what the 1130 and 1800

were doing at the conference. The' 1130 was used for infrared spe.ctral

data retrieval. Infrared spectroscopy is a mo.st useful analytical

technique to identify compounds and to determine their specific composition.

The technique involves an infrared energy source radiating through

gases, vapors, or thin film solids. The absorption of infrared energy

at a particular wave length results from the presence of a particular

(or a class of) "chemical compounds. A typical result from such an

infr~red experiment would be a plot of percent transmittence of the

radiation versus the wave length at which the transmittence occurred.

The reciprocal o~ transmittence is, of course, the absorption of the

infrared energy. In turns out that each compound has a characteristic

)

transmittence curve which could be used as a fingerprint of the compound.

Therefore, one need only match the"curve of an unknown sample to that

of ~ known sample to identify the unknown sample. However, the problem

. is not that simple. There are over 125, 000 infrared standards in
.

existence today and the task of matching is' quite laborious.

The program· on the 1130 was written by Dr. DUncan Erleyof

the -Dow Chemical Company in Midland, Michigan. In this particular

C,
.: '

- 5 -

.C systen1 SOIne 40, 000 compounds and significant inforlnation about

their spectral data characteristics 'vi/ere put on a disk. Each con1pound

entry contained such information as its serial number, its elemental
.

grouping, and finally several words devoted to the translnittence of

infrared energy at specific wave lengths. The process of identifying

a sample under investigation \vas started by its analysis on

a spectrophotometer provided by Perkin-Elmer. This pr.0vided

a strip chart recording shov-Jing traI).smittence versus wave length.

Information on the transmittence curve such as where the absorbence

occurred and vJhere it did not occur was then keyed into the 1130. The

matching process was then initiated. The searching rate is about)

1, 000 standards per second and so in about 40 seconds the experimentalist
. .. .

could determ.ine the number of potent.ial matches that occurred ..

If numerous matches occur~ed, several options allowing grea~er

discrimination in the matching process could be initiated. Once the 1130

had either provided the user vJith a unique inatch or a srnall enough number

for him to revievJ personally, he would oIlly have to look up the serial

numbers of the rnatches on ASTM tables. In this way he' could

determine the identity of the sample under irrvestigation. The ability

to search a library of standards is probably one of the most irnportant

. aspects of laboratory automation. Almost ~very instrumental technique,

\vhether it be the gas chromatograph, infrared spectrometer, atomic

•
- 6 -

. "

absorption spectr(~nneter, mass spectrometer, m~R, etc., has a

group of standards - each of which are characteristic of a specific

com~ound.

At the Pittsburgh Conference the spectrophotometer was not

on line. :However, work is now going on to put it directly on line to

the 1130. One method is through paper tape. A second method would

:'be .direct~y through tf:1e SAC channel. Whe~ the equipment is."put on

.line, sophisticated data analysis ca~ be introduced. The data can

-- _b~ smoothed to enhance the signal to noise ratio. This helps in
\

determining the specific point of maximum absorption of energy as

opposed to the' observable point on the strip chart recorder. It also .J

helps in decreasing the time'" required for the experiment. For example,

the slower that one changes from one wave length-to another concurrently

with multiple dat.a taking at each wave length, the more precise the

initial raw data can be. However, this results in extremely long

experiment times. .On the other hand, if one sweeps through the

experiment at a rapid rate the computer can be utilized to massage

.the data to provide precise inform.ation. rrhis, of course, is one of

the great benefits" of utilizing the computer. In fact, the utilization
.

of the computer may indeed have advanced instrument accuracy by

. ?t least an order of magnitude.

c

o

o

o

- 7 -

The second part of the IBM dernonstr?-tion consisted of

demonstrating the results of an exploratory effort between the.

IBM Palo Alto Sci~ntific Center and Varian A.ssociates, als·o of

. Palo Alto. This next section of the talk is based upon two of the

papers that were available at the IBM exhibit at the Pittsburgh

Conference - Papers attached: (1) "A Computer System for

Automation of the Analytical Laboratory" by C. H. Sederholm,

p .. cT· Friedl, T. R. Lusebrink, (2) Applicati?n Programs for

1800 Laboratory Automatlon System .

. The third part of the IBM exhibit involved a neVJ film

covering various customer uses of IBM equipment in the laborato.ry.

(ShOwing of film) .

In sumlnary, I have tried to discuss our interest in making

COMMON a forum for laboratory automation computer users and to

give you some idea of sonle of the recent progress in this field. Once

again, let me request that each of you talk to your colleag-ue~ in your

company and advise them of these activities at COMMON.

• IBM

Application Programs for 1800 Laboratory Automation System

This paper descrioes the various application programs demonstrated

at the March 1968 Pittsburgh Conference on Analytical Chemistry and

Applied Spectroscopy held in Cleveland, Ohio! Although these programs

were .written to support specific analytical instruments (A- 60 NMR

Spectrometer, M- 66 Mass Spectrometer and two Gas Chromatographs)

and instrument-computer interfaces, all manufactured by Varian

Associates, the programming system language and applications and

control techniques are easily applied to instruments of other makes,

models and functions.

Each instrument has associated with it a master program resident

on an 1800 disk storage unit. When an experiment is to be performed

the master program is loaded into the 1800's core memory by command

from the 1800 console typewriter. The function of the master program

is to provide control to the instrument-computer interface and to

establish a data path between the instrument, the interface and the

computer. The various push buttons and indicator lights on the interface

enables the llser to direct the master program to select and load into core

memory specific application programs ass~iated with his experirnent.

Later versions of the system will allow the user to select and load a

master program from either the console type'Writer or the interface.

*These programs operate under the 1800 Laboratory Automation Systenl

described in 'fA Computer System for A utomation of the Analytical

Laboratory" by C. ·H. Sederholm, P. J. Friedl, and T. R. Lusebrtnk.

------- .~-----

G

C"

o

- 2 -

Once the master program has been used to load application programs,

it automatically is returned to disk storage. Subsequently, the parameters

for a specific program can be entered through the use of thumb

switches on the interface.

A. Nuclear Magnetic Resonance Spectrometer Programs

The NMR master program arms four push buttons on the interface.

T'hese buttons are used to select one or more of the following

programs described below:

1. Time Averaging (TA) Data A.cquisition Program

This prog-ram coordinates the data acquisition activityJor

the NMR, and allows several options regarding the mode of

recording the spectrum. Appropriate parameters are entered

by thumb switch on the interface. The parameters consists of

the initial and final sweep positions in ppm, sampling rate, .

number of sweeps, and number of samples to be taken at each

)

value of the field. Time averaging can be carried out by taking multiple
- .'

readings of the NMR signal at given values of the magnetic field

or by taking multiple sweeps.

The spectrometer scan is controlled by transmitting a

sequence of digital v"alues ot the desired settings for the magnetic

field fl'om the 1800 to the interface . The interface converts these

digital values to corresponding magnetic fields in the NMR instrunlent.

--....-.----- ---... ------.-------~-.'"--""" "." .. """ ... ''''''''~'".''"'''"" .. '''.''." ... ~".,.,~ .. '''' .. ''''-" ... '"'''''' .. " ... -,,-

- 3 -

The resultaI).t NMR signal is then digitized by the interface

and sent back to the 1800.

2. Data Presentation

Several options are "available during the data acquisition

phase. For example, a sweep may be plotted on the NMR

recorder simultaneousiy with a single sweep of the instrument.

Or, if time averaging is being used,~ it is possible to stop the

data acquisition function and have the averaged cumulative curve

plotted in order to see whether the data have been sufficiently

improved by the time averaging technique. If improvement is

noted, the user may terminate the program; if not, the data

acquisition function may be restarted. ,

3. Digital Smoothing Program

In addition to the time averaging technique described

above, it is also possible to use digital smoothing methods

to improve the signal-to-noise ratio (Savitsky ~nd Golay,

Anal. Chern., 36, 1627 (1964)). Upon execution of the ,smoothing

prog:ram the data is taken from a disk storage unit and when

smoothed written into another area of the disk storage unit."

o

c

c

o

o·

- 4 -

4. NMR Field Homogeneity Adjustment Program

This program optimizes the curvature and y-gradient

adj ust.ments on the NMR instrument in essentially the manner

described by Ernst (Pittsburgh Analytical Conference, March

1967). A course grid is calculated to cover ranges of curvature

and y-gradient settings. The 1800 then positions the controls at

these settings and records the height of a standard NMR peak for

each setting. The coarse settings which yield the maximum peak

intensity are used to calculate a finer grid of pOints about the first

approximation. The pOints in this second grid which yield the best

signal are then used as the basis for yet another finer grid, and

so on until no further improvement 4.s possible.

By preSSing the appropriate button the interface, the user

can execute this program at any time he chooses, or the program

could be e:alled into execution periodically. by the NMR master -

program in order to monitor the field automatically at any desired

intervals.

B. Mass Spectrometer Application Programs

rrhe master program for the mass spectrometer arms four push

buttons .on the nlass spectrometer interface. These buttons are

use.d to select one or more of the following four programs:

- 5 -

1. Data Acquisition Program

. Parameters relative to the initial mass, mass range, and

sampling rate are entered by the user via thumb switches on the

interface. The data acquisition program subsequently controls the

scan rate and the recording of data. The resultant data are stored

on a disk storage unit. An option allows the data to be simultaneously

plotted on the spectrometer plotter.

2. . Plotting Program

This program allows any portion of the above spectrum to

be plotted back on the recorder, with the x-axis expanded to cover

the entire recorder range. The initial and final masses are read

in via the thumb svlitches on the interface.

3. Identification of Compound from Spectrum

This program utili~es the input parameter and the raw data

on the disk to find all the nominal mass peaks with an intensity

greater than a predetermined hei~ht. The five highest peaks are

determined and normalized so the highest peak equals 100. These

five peaks are then used to find the com·pound in a partial table

taken from th~ ASTM Index of mass spectral data which is stored.

on the disk. If the compound matches·a known spectrum, a report

giving the name of the compound and the values for the five peaks

is printed on the 1800 line printer.

c

c'

c

o

6 -

4. IdentUication of Cornpound from Interface

This program allows the user to read in mass and intensity

values of the five highest peaks via the thumb switches. The ASTM

table is then searched and an identification is made in the same

manner as in the previous program.

C. Gas Chromatography Programs

For the purpose of the demonstration, two gas chromatographs

were coupled to the computer through a single interface . When

the master program is loaded into the computer, it activates the

interface so that initial parameters for the system (i. e., bot h

chromatographs) may be entered via the thumb switches. These

parameter-s a:l."e the total sampling rate for the columns and

sensitivity factors for peak detection. The system parameters

may be changed for either chromatograph by activating a sen~e

switch which designates data sent from the interface as belonging

to that instrument only. The data acquisition program i.rnp)lernented

depends on the use of. iir£t and second derivatives to sense peaks and

inflection points.

Signals from both chromatographs columns are continuously

digitized by the interface once the master program has been

- 7 -

loaded into ~ore memory. However, data are not saved until

the sampl~ is inj ected and the start button is activated for a

chromatograph. When one or both chromatographs are started,

the program sorts the data and stores the data for each inStrument

in separate areas on the disk storage units. The scan is terminated

by depressing the end button.'

Analysis of the chromatograms is then carried out by the two

programs described below.

1. Peak Definition 'and Integrated Areas Program

This program uses first and second derivatives to sense

the beginning, maximum and end of each peak. The peaks are

defined as to type, 1. e., single peaks or a leading, connected"

or following peak in an unresolved group of peaks. The areas

)

of the peaks are integrat~d to a base lin~ of zero, so that if the

actual base line is above zero or there is a base line drift, further

corrections must be made. The area and position data pertaining

to each peak are then stored on the disk storage unit for additional

processing.

c'

- 8 -

Peak A.rea and Base Line Correction Program
"-

For th~s demonstration, only two options for the calculation

of areas unresolved peaks have been implemented. * The first

method is to drop a vertical line from the minimum between two

peaks; a reasonably satisfactory estimate if the peaks are moderately

well resolved and not too asymmetrical. When relatively small

peaks follow a large asymmetrical peak, the user may select the

option of an area "slice". This slice is roughly equivalent to smoothing

out the larger peak and equating the area of the smaller peak to

the area above this smoothed line.

o This program also calculates the net peak area by subtracting

the trapezoidal area between the actual base line and zero. The

total area is then normalized to 100% and the area of each peak is

qalculated to give th~ weight percent of the sample .

. * In order to provide significant improvement in peak resolution

over the two options implemented, it would be necessary to analyze

the line shapes in detail. This procedure is quite complicated

(as the various line slopes are not related) and is best handled at

this time by large scientific computers. Several programs for

such analyses are available in the literature.

o

- 9 -

The output report is printed on a line printer and contains

identification by job number and instrument number.' Peaks

are listed in order to emergence in the first column of the ,

report. The second column lists the- elution time in seconds

while the third column lists the weight percent.

Additional Programs

When the previous application programs do not require all of the

1800's tIme, additional programs may also be run. These can ,)

consist of programs called by the real-time data acquisition

programs to further process the data, or they may be programs

which use data from other sources. .Examples of such programs

are: A spooling program which reads a deck of cards and, prints

a listing on the line printer, and a plotting program which plots

a previously prepared logical tape on a digital plotter.

Another example involves a series of linked programs to process

data from a Vari~n C-I024 time averaging device. A spectrum

can be dumped from the C-I024 to punched cards as long as the

integer numbers are to base 8. The first program reads the

octal data from cards to disk in order to free the card reader as

soon as possible. These data are then converted to decimal. integers c
and stored on a logical tape. This program then calls a second

c

o

-1.0-

program and relinquishes its space in core. The accord

program searches the logical tape for maximum and minimum

points and shifts the base line to zero by subtracting the minimum

from all points. This program then calls a smoothing program

and relinquishes its space in core. The smoothing program

·carries out a nine- point digital smoothing calculation on the

data in the logical tape and calls a plotting program before it

relinquishes its space in core. The last program scales the

smoothed data, "plots" the data on the line printer and then

relinquishes core space. A minimum of core is required by

this linking process because each program gives up its core

as soon as it has called its succeeding program. Furthermore,

the system is very flexible in that a program may call more

than one program and have several programs executing simul­

taneously. For example a program doing analysis may initiate

a data acquisition program. Thus, data may be analyzed and

the spectrometer then activated to take additional data based

on the results of the analysis of the original data.

Systerns capability for handling background batch processing

job streams are present. However, facilities for such processing

have not as yet been implemented.

-I Text of a talk to be presented by C. H. Sederholm at the Pittsburgh Conference
on Analytical Chemistry and Applied Spectroscopy, March 4-8, 1968

II
IBM

A COMPUTER SYSTEM FOR A.UTOMATION OF THE ANALYTICAL LABORATORY

C. H. Seder holm
P. J. Friedl

T. R. Lusebrink

As was demonstrated at l,ast year's conference, a large number

of instrument manufacturers and a reasonably .large number ~f instrument

users have already taken the first s~eps toward automation. They have

automated individual instruments with remarkably good results. A few

of the more advanced laboratories have already started to automate entire

laboratories. Surely widespread laboratory automation appears to be just

around the corner.

In general, instrument ~utoma!ion has taken place by devoting and

interfacing a small computer to an individual instrument. When one considers

. automation of an entire laboratory containing many such instruments, the
. .

question arises as to the advisabi~~ty of acquiring many small computers,

one attached to each instrument; or whether it would be preferable to have .
. .

a single computer system which se:rves the entire laboratory.

There are three reasons for attacking the problem of laboratory

. automation in terms of successive i~strument automati0!l; i. e., us"ing one

small stand-alone computer per instrument. -The most important consideration

is one of isolation. Each individual user does not want to concern himself
,.

with any problems but his own. He does not want malfunctions of other instru-

ments' or their interf~ces to jeopardize his interface to the computer system ..

~<
\1l..;IIO;

c

IV
- 2 -

The progranlming considerations associated with his own instrument are suffi-

. cjently complex that he ·doesn't want to worry about other users' programming

problems too. He is rightfully afraid of being forced to factor parts of his

programming requirements into general purpose programs which serve the

entire laboratory (programming by committee).

To a somewhat lesser extent, availability of the computer system

encourages one to favor nlultiple computers, one per instrument. Waiting

for a few seconds, or at most orie or two minutes for computer facilities to

become available would not be intolerable; but the prospects of having to

schedule one's experinlents and schedule the use of the computer facilities lon~

in advance is very unpalatable to most users. In general, users prefer fe\.ver

() facilities which are routinely available to larger facilities available by appoint-

ment only. }Ience, the desire for availability tends to favor multiple instrument

auto111ation. over laboratory automation.

Finally, the question of cost shou] d be considered. A. c0mputer

system which is capable of automating an entire laboratory ·JJill, of necessity,

be more expensive, even in its most stripped-down version, than a computer

system capable of automating a single laboratory instrument. Therefore,

when one is taking the first step toward laboratory automation; that is,

the autorllation of a single instrument, there is a very strong tendency to

autornate that instrument using one small corClputer. "Worry about laboratory

automation after the first fevJ instruments have been automated." Rovlever,

o if one considers automatio"n of the entire laboratory as ap ultimate goal

- 3 -

from the beginning, many of the considerations below imply that a single,

shared, laboratory computer would give more performance per dollar.

The automation of a laboratory by tre use of a single, shared

computing facility has several outstanding advantages over multiple

. automated instruments. The purpose Qf automation is not only to acquire.

data but, also, to control the instrument during the data cquisition step,

to process the data which has bee~ acquired, to standardize it, to compare

it against known parameters (e. g., to compare an unknown spectrum against

a file of spectra of known compounds for identification), and finally to present

the results in a form which is usable to the experimenter. The data acquisition
~

and control steps can very often :be adequately performed by a small computer.

Ho'wever, the data reduction steps, the comparison with data files, and the

presentation of results in usable form, often require much larger qompute

capabilities. One solution to this is to record the raw data which has been

acquired with a snlall stand-alone computer on ~ recording medilLT!l

such as magnetic tape or punched paper tape. This data may then be

processed on a large computer when time is available. However, if the
. .

rav! data is at all volurninous, and magnetic tape must be used, the cost of

the magnetic tape drive relative to the cost of the small computer can become

ver y high. Hence, going this route, one is encouraged. to minimize the

quantity of data taken, often resulting in less precise results. Likewise,

the turn-around time on very large computer facilities still is much longer

than the individual investigator would like towa,1t between epochs of his

I experiment. That is, if hecouldhavethe.data from the last epoch back

C'," I I

, ",;JV

j\

c,

- 4 -
['1

immediately, he could start planning the next experirnent and execu~ing it.
o ,

The larger shared laboratory computer then has three impelling

reasons for its use in automation of laboratories. It can have sufficient core

and sufficient processing capabilities to do reasonably large-scale data reduction

and file look-up tasks at a modest expense per instrument attached to it.

By having one' central computer facility, one may take advantage of the fact

that most analytical and spectrographic instruments have a lov! duty cycle;

that is, much of the time is spent in sample preparation or with the in,strufnent

completely idle. Using a centralized computer facility, the computer need

not be idle while an individual instrument is idle, since the computer can be '"

used for other jobs. Finally, by using a larger centralized laboratory computer,

the input/output devices may be shAred by all tj1e useTS of the system. Hence,

for a given cost per USCI' , each user f!lay have the usc of rnore sophisticated

'input/output and pe:tiplleral storage dey-ices. E. g., it is possible to have a

large disk file VJhich can hold hundreds of thousands of words. Tnis is most

useful in the analysis of spectroscopic data. It is possible to have a line

printer which increases the amount of printed output which a user .can request

and receive in a reasonable period of tinle. It is possible to have a card

reader such that reasonably massive input data can be prepared in a reasonable

iorrnat for input into the computer system. If one attached these input/output
, ,

devices to each of the individual comput~rs in a multiple instrument automati?n

situation, the total expense for ,the input/output devices alone would be far

great~r than the cost of the laboratory autornation facility.

The centralized laboratory automation facility seems to have several

• •• __ .L. _____ ~_~ ____ "_·_ -----.--.-.-•• - ••• ---- •• -.--- ••••.• ------ - ••• ---~----.---•• --•••• ~ •• ----•••••• ~" •••• ~.,~,., •• , ... ~"'.--............ -~ ~ " "' ... " -~- -'--.--"-

- 5 - . / -

important advantages. If the problems of unavailability and non-isolation of

individual users could be successfully overcome using the centralized computer

facility, it would seem to be a far more reasonable solution to automation of a

laboratory. We believed that these problems could be overcome, and hence set

out to construct a system designed to service multiple, isolated, asynchronous

users, each of whrh had demands for closed-loop control, large-scale data

reduction and file look-up programs, as well as smaller data acquisition and

control programs. The specifications of this system were aimed at automation

of a laboratory containing a group of analytical and/or spectrographic instruments.

This system has been completed to a point, and has been d~monstrated in the ,)

exhi bi tion hall during this week .. '

The system features complete pro']!am independ61ce and complete

hardware independence of each instrument from all others. An application

program for one instrument need in no way to take into consideration other

programs running in the system Simultaneously with it. An application program
..

need not be modified as a result of a change in the total instrument mix attached

to the computer system. Each instrument has its own individual data path

directly to the core of the computer via a I?air of data channels, so that there

need be no sharing of the interfaces between various instruments.

This system uses an IBM 1800 computer. It is possible to operate_

this system ona computer with 16K words of core. However, it is·on.ly

economically practical if the labora~ory to be automated is sufficiently large

to support a 24K or 32K word machine.

o
\,l,,".-I

c

c

()

o
, .

- 6 -

A new I/O dev~ce has been designed and built, specifically to

s.upport this laboratory 'automation system. This is a digital multiplexer

channel for the 1800 which provides up to 32 discrete data paths oetween

the. laboratory and the core of the computer. This device allows data to be

acquired from, or presented to, the individual instruments in a demand/response

mode with a minimum of computer overhead. The reduction in computer

overhead increases the allowable total data acquisition rate from all

instruments by more than an order of magnitude. The demand/response

mode of data acquisition is of great value in that it allows the instrument to

say when 9ata is available rather than the computer saying that data should)

be presented now. An example of the usefulness of demand/response data

acquisition is in acquiring data from an infrared spectrometer which has

automatic scan suppre$sion. Since the scan rate is a function of the first

derivative of the absorption, data acquired at equal intervals of time would

not be at equal increments in ,Nave le'ngth or wave number. However, with

a demand/response interface, the instrument could be run with scan suppression,

andde-mands to take data could be made by the instrument at equal wave

length or wave number increments.

The present operating system, known as the 1800 Laboratory System,

requires approximately 13K of core which, with additional work, can be reduced.

The rest o~ core (known as variable core) is broken up to 512-word blocks,

called pages, VJhich are assigned on a dynamic basis.

- 7 -

,. ____ ,'._ ____ ~"'''', .. '_I __ -

l"~"}

.I l

When a user wishes to sign on the system, he types a command

at the 1800 console type'Writer. This command causes the system to load

a master·program assoGiated with that instrument into variable core and put·,

that p~ogram into execution. Depending upon tp.e size of a user r S program, .

it may require one or multiple pages of variable core. If the progI'amrequires

more than one page of core, the system loads the program into any available

pages. The pages used need not be adjacent to each other.

This master program activates various buttons and indicator lights

at the instrunlent interface. By pushing one of several buttons, the user may

ask for one of several application programs associated with his instrumc:.nt.
)

When the master program recognizes which program or routine the user

wishes to run, the master program asks the system to load the appropriate

program into variable core and set it into execution. The master program then

exists, releasing the core that it occupied back to the variable core pool. The

specific application program rnay acquire parameters for the run by inter-

rogating user-operated thumb switches at the instrument interface. Then

the application. program continues with its execution .. At any time, an appli-

cation program presently in execution may be aborted from the instrument

interface. If the application program is very lengthy, the system provides

facilities for chaining smaller segments together. The system also provides

f ", c·-. -(l

_.- --~~-----"- -

o

·0

c'

()

o.

- 8 - I~

facilities for disk-reside~t subroutines which only occupy core when they

are called.

Many system s'-:lbroutines are provided, and these are also

loaded into pages of variable core when needed. If no user program presently

in execution is using any of the subroutines on a given page, that page is

returned to the.pool of variable core. Because of this dynamic allocation

of core, it is possible to use the system to execute a program requiring

15K of core, and a few minutes later, with no changes to the system, have

the same computer executing 15 different programs simultaneously, each

of which occupies 1K of core; i. e., a given instrument is not restricted to

a fixed partition of core!

Presently, users r programs may be executed with two different

priorities - - -a foreground priority used for real- time data acquisition and

control, and a middle-ground priority used for non-real- time calculations.

All users r programs operating with foreg~ound prIority have the same

priority. The system provides each program, in turn, with a 5 millisecond

time sli~e for starting or stopping the data acquisition process and/or "massaging"

current data and/or feedback control of instruments. Time slicing is also

done for middle-ground programs, only the time slices here have 100

milliseconds. Only when there is no foreground program with processing

to be done do the middle-ground programs receive time slices. If a fore-

. ground program finishes acquiring data and, hence, has some foreground pr~cessing

to do (e. g .. , for instrument control) any active middle-ground time slice is

interrupted to process the foreground program.

'j
. .,,;....-,

Once a data acquisition activity has been initiated in a fore­

ground program, the new digital multiplexer channel provides for the

activity at instrument rates. This activity procedes independently from

and concurrently VJith the executions of time sliced programs.

Systems capability for handling background batch processing

job streams are present. However, facilities for such processing have

not been implemented yet.

Data stored on the disk file is referenced in terms of logical

tapes. That is, each appJ.ication program may be written as if there were
)

available to it a large number of magnetic tape drives. Hence, an application

program may ask the system to present it with 50 words of data off of

logical tape SPEC starting with the 31, 352nd word on the tape.

As far as the application programs are concerned, the entire

system is oriented toward performing a variety of tasks, most of these

tasks being associated with input/output. In general, it takes 12 words of a

user's program to specify a task for the system. These tasks are accepted
-,-

by the system and performed as soon as possible. Multiple tasks may be

queued for a single input/output device; e. g., the line printer may have a '

current task in execution while 5 other tasks are waiting for the line printer

to be free. A given application program may have several tasks outstanding

simultaneously. For instance , a given appl.ication program mC3:Y instruct the

system to (1) acquire a block of data from a given instrument, (2) read a card

in the card reader, (3) print a line of the line printer, (4) light a light at the

o

c

c

o

o·

- 10 -

user interface, and (5) w:rite a block of data on a logical tape. These tasks

would be gIven to the system sequentially, but all five tasks would be set

into execution befor~ the first one was completed. . ,

A partial list of tasks the system is capable of performing will

demonstrate the power of the system: '

1. Read a block of 50 words from logical tape DATA starting at word 5273.

2. , Read the thumb svJitches at the NMR spectrometers.

3. Read 30,000 words from the gas chromotography columns at a data

rate of 50 points per second and write these onto a logical tape called

GCDAT.)

4. Load and set into execution'm, smoothing program (SMUTH) in the foreground mode.

(A carnInon data area between the calling program and the called

program is provided).

5. Release all core and system subroutines that this program presently occupies.

6. Read all the cards in the card reader and put them onto the logical

tape FILE.

7. Print the logical tape OUT on the line printer.

8, Dmnp core presently occupied by progranl SMUTH.

g. Plot logical tape PLOT on the plotter.

10. ,When push button X is depressed, transfer control to entry point

ENT in this program.

Having defined and constructed· this system for use in the automation

0: an entire laboratory, we wished to investigate its actual usefulness. As

- 11 -

a result, we engaged in,a joint study venture with Varian Associates of

;Palo Alto, California. Varian interfaced three of their analytical instruments

to this system. These instruments 'included an M 66 mass spectrometer,

an A60 NMR, and a pair of aerograph gas chromatography columns. Multiple

application programs for each of these instruments, were jointly specified

and written by Varian and IBM. Varian has had previous-experience with the

automation of individual instrumerits. Many of the programs previously

Written for stand-alone systenls were modified and augmented to run on this

system. For the A60 NMR, the follOwing programs have been written:

data acquisition and control, data smoothing, data catting, data presentation, ~

and field homogeneity adjustmenL The following program~ have been written

for the mass spectrometer: data acquisition aRd control, peak identification,

and compound identification based upon the position of the five most-intense

peaks in a mass spectrum. For gas chromotography, a data acquisition and

control program has been written. Peaks are detected, their areas are

resolved and calculated, and retention time and ar~as are reported.

, ~ Once the systeln was defined and operational, the coding of the application

. programs went extremely rapidly. For the programs so far written, there

has been no indication of unfavorable interaction between programs concurrently

running on the system. Several of the programs which have been written,

in particular for the mass spectrometer, could not have been written for a

small stand-alone computer "With no peripheral storage devices.

I
t

!
~I

I
I

I p
I

,
l-

I
I .

o

C' °1
,f'

o·

- 12 -

In conclusion, ,we believe that we have been able to produce a system

for use in laboratory automation which provides each individual user the

,isolation, the availability, the real-time control responsiveness, and the . .

price per instrument associated with multiple computers, one per instrument.

In addition, this systeln provides sophisticated input/output devices, disk

files, and a large amount of support for the I/O devices and the files, which

,would not be available on a smali computer associated with a single instrument.

Each user, then, has t:1e impression that he has a large computer attached

to his instrument and completely at his disposal.

)

e& ~iM ... mD&&M&IIMI&M61.Mg;:;,Jr.' -"".

....... ,_ ... _-_._-----

'\ C".,

c

o

o

SESSION REPORT

COMMON - Chicago

Session Number TUE 11 Session Name LP/MOSS Tutorial ----------------------
Chairman W. A. Pease. Jr.

Time 5.30 to 7.00 PM
----------~--~----------------

29 Attendance (No.) ----------------

Speakers ______ ~M~u~l~l~e~r~o~f~l~B~M~ __ __

Synopsis of Meeting Continuation of Tue 04, with reduced attendance.

Hr. Muller asked that all inquire. be .ent to him. He also said that

a specialized syate. vas a better aolution for problema with 60 or le ••

equationa, The way to. get such a ayate. 1s shown in the 1130 LI/MOSS

manual on page. 11.2 and 11.3. Faster runn1na and le •• ~ork and

overhead ia the payoff here.

~~A)G~ • 4~<. / r r'
TOPIC; 1400 TO SYSTEM/360 MODEL 25 CONVERSION .:-r;;£ 87"

1. Model 25

A System/360 Model 25 is upward compatible with other $/360

models within memory capacity and channel capabilities.,' The

basic Model 25 is available as follows:

Core size --

16K, 24K, 32K, 48K

Native devices --

Up to 4, 2311

1 - 2540

1 - 1403 .. 2 or 7

1 - 1052 c
Tape via channel --

2401/2803

2415

Channel --

Multiplexor ~s elector

Wide rangeo£ devices

ll. Compatibility

1400 series compatibility is handled through use of a 16K 'l".loadable

control storage. Device rela tionsare:

1401

l40Zto 2540 native

1403 to 1403 native

o

c

1440

-2-

1311 to 2 311 native

tape to tape - selector channel 2401/2803 or 2415

1442 to 1442 - channel

1443 to 1403 - native

1443 to 1443 - channel (144 print position)

13 11 to 23 11 native

tape to tape - selector channel 2401/2803 or 2415

III. Channel Selection

An optional selector or multiplexor channel is available. The choice

of channel is determined by device requirements. For example, tape

requires the selector channel. If possible, unit record devices should

use the multiplexor channel. Certain tape systems will require non­

native unit record devices, in which case the selector channel must

be specified. Non-tape configurations should specify the multiplexor

channel optiono

IV. Program Conversion

Native unit record devices provide greater throughput than do channel

attached 1440 compatible devices. Consideration should be given to

converting 1440 programs to 1401 mode wherever pos sible. The Type III

library now has a conversion program to perform this conversion. While

not 100%, it does provide an assist. Further field efforts are now under­

way. Significant throughput gains can be achieved just by the change in

unit record devices now available on the Model 25 to the 1440 user •.

v.

-3-

Disk Data Conversion

File conversion is required to transfer data from 1311 files to 2311

files. To accomplish this conversion:

Use 1401/1460 or 1440 utility program to dump 1311

files to card or tape on the 1400 system.

Use the standard System/360 initialize disk program

to initializ e the 1316 pack.

Use the 1401/1460 or 1440 clear disk utility in

compatibility mode to format the 1316 pack for 1400

operations.

Use the 1400 utility in compatibility mode to load card

or tape to 2311.

,',

o

Session Number TUE ES

SESSION REPORT

COMMON - Chicago

---------------------- Session Name General Purpose

Plottlns Program for the 1130

Attendance (No.)

Chairman D. Dunsmore

Time 5.30 to 7.00 PM ----------------

Speakers Peter J. Woodrow - 'ARAP

Synopsis of Meeting Mr. Woodrow presented a pap.r entitled. " A Small

General Purpose Plottil1Jt System for the IBM 1130"

A SMALL GENERAL PURPOSE PLOTTING SYSTEM
FOR THE IBM 1130

by

Peter J. Woodrow, Associate Consultant
Aeronautical Research Associates of Princeton, Inc.

Princeton, New Jersey

Presented at the Chicago COMMON Meeting, Apri18-l0, 1968

{)

Cr

c
1

ABSTRACT

This paper describes the overall characteristics andcapabili­
ties of a small general purpose plotting program for use with the
IBM 1130 and IBM 1627 or other incremental plotter. ~vhile specific
details are contained in a reference me .. nual, th:!.s paper describes
the general features of the prog:::-8.m. Also briefly described are
general purpose subroutines that were developed for use with the
program but can easily be used for other applications.

As is inevitable t'rith such a program, a number of other pro­
grams and subroutines have also been developed, primarily for pur­
poses of tabular input to the plotting program (and other programs)
and providing facilities f:>:;. ... very large amounts of data to be gene­
rated and plotted without exceeding disk capacity. These additional
programs and subroutines are discussed in later sections of the
paper.

C) Throughout the paper comments are made as to future mod.ifica-

c

tions and additions to the package that are planned or desirable.
Some of these modifications will requi~e alteration of IBM 1130
systems programs or subroutines.

2

I. INTRODUCTION

Aeronautical Research Associates of Princeton~ Inc., is a
small indepe:1cJent re3earch and consulting company engaged primarily
in government sponsored research in various areas of aeronautical
sciences. To proviae computational facilities, ARAP has had some
form of computer system since 1958. In June }-966, an IBM 1130 com­
puter system (with a 1442 card read/punch, and 1132 line printer,
8K of core and disk) was installed to handle increased computational
requirements. After the system had been operational for almost a
year, company management (i.e., the president) was finally convinced
that an on-line plotter 't'J'ould' be a worthwhile investment even though
it represented a car':..tal expe~be (small companies rarely have much
free capital) . Accordingly, =_n September 1967, a Benson-Lehner
Model 105 digital incremental plotter was added to the system.

One of the argurrients that was used to convince management
was the availability of very extensive, IBM supplied, software
support for such a plotter in the form of the Data Presentation
System (DPS). Unfortunately it quickly became clear that DPS had
a number of drawbacks, in particular:

1) DPS disk file structure is incompatible with FORTRAN disk I/O.
Thus, a program generating data to be plotted via DPS would either
have to punch cards (to later be read via DPS) or use the DPS disk
I/O routines. The latter solution would have required extensive
modifications to existing programs, would result in reduced core
availability, and, worst of all, would prevent the use of LOCAL/
SOCAL's (an essential facility for most programs we run on the
IBM 1130).

2) Even a minimal version of DPS requires at least 400 sectors
on a disk cartridge. As we are unable to spare this much space
on our master disk cartridge, extensive cartridge changing would
have been required. The time wasted in changing cartridges would
be prohibitive.

()

3

C: 3) Use of DPS is not easy. Many of the users are engineers who,
while competent, are unwilling to spend a numter of hours learning
a completel~r r.e~q :"er..i:S"I.J.ge (j~~Rt to produce fairly st!'aightforward
plots.

4) While considerable effort has been made in DPS to reduce wasted
(i.e., non-productive) computer time, the amount of time DPS re­
quires for a typical plot is excessively large.

5) The current version of DPS is completely incompatible with
the IBM 1130 Disk Monitor, Version 2. Since the new version offers
a number of desirable features, we plan to start operating with the
new version as our standard version as soon as Modification Level 1
has been installed (as delivered the new version has a large number
of "bugs", mostly minor) •

It was therefore clear that DPS would not provide the necessary
software support for our new plotter. In order to start plotting,
a few users decided to use the IBM supplied plotting routines
designed for use with FORTRAN. These users soon discovered a new
set of problems. When they tried to make plotting a part of their
main program, they found themselves short on core space. In addi­
tion, the FORTRAN routines will not operate properly when SOCAL's
are required. Thus, most of these initial users were forced to
either abandon their efforts or output their plottable data on the
disk and then write another main progrrun to do plotting exclusively.

This latter approach caused a considerable amount of duplicated
effort. In addition, the FORTRAN plotting routines require an ex­
tensive amount of programming in order to produce an acceptable
graph complete with labels and titles. In fact, most of those
attempting to use the FORTRAN plotting routines required at least
three (and often as many as ten) recompilations before their plot
was acceptable.

Thus it was decided to develop a reasonable general plotting
program designed to operate within a disk file containing data to
be plotted. A number of users were queried as to their desires

4

insofar as program capabilities were concerned. From this discussion
evolved a basic set of requirements. The program described below
was developed around these requirements, sane of which were spec1-
ficr3.lly oriented to\';ards two very large and important programs
that have between them accounted for more than 50% of the IBM 1130

usage. During development, additional features were added whenever
it was obvious that such features were desirable and easy to accomo­
date within the basic design framework. Needless to say, a number
of additional modifications are currently contemplated as a result
of extensive experience with the program.

This small, but rather general, plotting program has proved
exceptionally useful over the past three months it has been in use,
despite a rather rigorous format and certain restrictions. As
stated above, the program was developed 'primarily to satisfy the
somewhat specific requirements of two large programs. Nevertheless,
essentially every user has by now made use of the program at least
once and most of them now make a habit of incorporating a plott&ble
output file (i.e., a file in ASPP format) in all new programs.

Because of the availability of the ASPP plotting program, a
number of supporting programs have been developed. One set of such
programs is designed to input (from cards) one-or two-dimensional
tables and to output a file which is plottable,as well usable as
a table file in some ?ther program. If these programs are used
consistently to create all tabular data flles, then the result 1s
that, as a byproduct, all input tables to any program can be plotted
if and when the user desires.

A second set of programs and subroutines arose from the desire
to maintain a single disk cartridge operation. The two large
programs mentioned above are both capable of producing very large
amounts of plottable output during runs which may exceed 50 hours.
In particular, one of these programs produced data at 1800 points
(25 variables per point). A disk file of at least 140 sectors would
have been needed to contain this data and, since the run was broken

c·

5

c) into short segments with a total period of two weeks, this large
file would have had to reside on the disk for at least two weeks,
an intolerable situation with regard to our master disk cartridge.
In addition, since the run took a total of 50 hours of computer
time to produce the data, it was highly desirable to retain the
plottable data on punched cards in case replots were needed at a
later date.

('",'" , ,
y

o

To satisfy these requirements (as well as others) a set of
programs and subroutines was developed to read and punch binary
cards, each card containing a checksum, indicators, up to twenty­
five two-word floating point (or integer) variables and card iden­
tification. These programs permitted the punching of a plot out­
put file whenever it filled up, combining the decks from each seg­
ment,and reading selected varlables onto the disk for plotting.
In the problem described above, 1800 cards were sufficient to
contain all the data and at no time were more than 30 sectors
permanently allocated on the disk (if it had been necessary, even
fewer sectors would have been required).

It is reasonable to expect that in the future, other programs
will be written to support the basic plotting package. We believe
that this open-ended approach will always require much less disk
space than that needed by DPS. Already the system provides a
number of features not available under DPS. As a final remark,
it should be noted that the comp'lete set of subroutines for the
basic plotting program requires less than 33 sectors of disk space.
Even with all of the support progra~ms described above, it is un­
likely that the requirements exceed 60 sectors.

The following sections describe in somewhat more detail (al­
though insufficient detail for actual.use) each of the programs and
general purpose subroutines incorporated in the overall system as
currently implemented. In addition, coraments are frequently made
in the discussion concerning desirable and/or planned modifications
to the existing modules.

6

II. ASPP - ARAP SPECIAL PLOTTING PROGRAM

This section describes in some detail the features of the
ARAP plotting program. An interested user should read the detailed
reference m.anual for full instructions on use of this program.
In order to enable the potentia.l user to determine whether this
program is at all suitable, the restrictions on the use ot the
program are stated below:

1) ASPP uses a special version of PAPTZ to pro'vide a FORTRAN
reread faCility (see III.A.); therefore, any FORTRAN program
stored on the same disk as AS~P must not use FORTRAN paper-tape
I/O. This restriction will be removed when we are able to modify
SFIO to incorporate the necessary reread facility within SFIO
itself (using unit 0).

2) As currently implemented, ASPP can provide only linear (as
opposed to log or log-log or monthly, etc.) plots. This fact has
not yet caused problems, but there are plans to add log scales in
the near future (the primary limitation now is core space). Also
the program is incapable of providing multiple scales, reference
grids, or any other "special effects". Some of these can now be
accomplished via an appropriate data file and some may be added.
to the program, but most will not. The program is designed to be
used by the average engineer without extensive training.

3) As is the case with DPS, data files to be plotted via ASPP
may contain two-word floating point (real) variables only (i.e.,
extended preCision cannot be used). If necessary, it is quite
easy to write a combination FORTRAN/ASM program to convert a file
containing extended precision numbers to standard precision; we
have not yet needed such a program. In addition, all plot data
values must be of type real (certain integers are, however, used
as indicators). Programs may use one-word integers if some care is
taken in creating the plottable data file.

7

These are the most serious limitations of ASPP; others, less
sign1ficant , will become obvious belovl.

A. Plottable Data File Structure

Since all comunication (of data to be plotted) between the
user's program and ASPP is accomplished via the data file on the
disk, it is important to note the structure of this file. The file
must be defined in the user's program as a two-word-per-record file
with a maximum of 32,000 records in the file (200 sectors). The firsi
record of the file must contain the number of variables (NV) per
"bloCk" in the file. This number must be between 1 and 25 inclu­
sive and is stored as an integer in the first word of the record.
The next NV records in the file must contain the Itnamesll of each
of the variables in a "block ". These Itnames " are used for communi­
cat1onpurposes only so that the user need not specify to ASPP the
position of a desired variable within a block; he merely specifies
the "name" .. Each "narne ll consists of 1-4 characters as read into o areal varia.ble us1ng A4 format (or the DATA statement 1n Version 2
can be used).

Following the file header are a series of data blocks, each
consisting of NV records. The order of the variables in each data
block must be the same as the order of the "names" in the header.
If the first word of the first record in a data block is the inte­
ger 1 or the integer 2 (easily distinguishable from a floating point
number), 1t indicates that the record is a control record. The
integer 1 signifies the end of data on the file and must be present
somewhere in the file. The integer 2 is used to indicate a curve
break; i.e., during plotting, the pen is lifted when this record
is sensed and set down again at the next specified point in the
f11e. If the record contains the int~ger 2, the record is skipped
and the next data block is assumed to start with the next record
after the curve-break-indicator record. Note again that integers
should not appear within data blocks and that a data block starting
with any other integer than 1 or 2 is assumed to be valid data; very
clearly undesirable plots will result in either case.

====''',. =4,,",&=1£;;'0 itA: .; .9hk4&&4fhW,,, ;tP4hh .M ,4 q : ; __ ¥AM. 44#2.4$#i~

8

The file structure described above is assumed by all programs
within the system. All programs check the validity of NV andindi­
cate an error.if it is not between 1 and 25 inclusive. All pro­
grams also expect an end-of-data-lndicator record. Because data
files may be of variable length (each program assumes the maximum
of 32,000 words and allows the loader to truncate the size for
smaller files), SDFIO will indicate a FIOl error if the end-of-data­
indicator record cannot be found in the proper place (a~ the first
record of a data block). All plotting systems programs are written
in such a way that this record may be the last record in the file.

B. Plot Specification

Plot specification is accomplished by a somewhat arbitrary
mixture of scale specification cards and· plot specification cards
(i.e., the program reads each card in A4 format, determines whether
the card is a scale or plot specification card, and then 'rereads"
the card using a format appropriate to the card; however, each scale
card for any variable specified on a plot card must have appeared {)
before the plot card) •

A scale specification card specifies the "name" of the variable
to be scaled (the "name" must agree with one of those in the data
file header), the scale textual label, special scale indication
(whether the scale should be drawn at its normal position or zero
of the opposite scale, and whether a reference line should be drawn
at zero of this scale (with or without tickmarks every inch) paral­
lel to the opposite scale), scale delta (= no. user units/inch)
indication (whether the scale delta is specified on this card or
is to be computed by ASPP from the data or is that specified in
a previous card for some other variable)" scale minimum indication
(same options as for scale delta), length ot this scale in inches,
scale delta or "name fI of variable providing scale delta (unless
automatic scale delta specified), scale minimum data value or
"name" of variable providing scale minimum (unless automatic scale

C'·~'
, '

9

4:;1 minimum specified), and linear transformation parameters (any
variable may be transformed from x to Xl = ax + b where a,b are
specified on this card).

The plot specification card specifies the "names" of the X(ab­
scissa) variable and Y(ordinate) variable, type of plot indication
(point, linear, or uquadratic" smoothing between points), overlay
plot indication (whether this plot is an overlay and whether next
plot is to be an overlay), tagging specification (tag character and
no. of data points between tags), and plot textual title (one or
two lines of text).

The input progrrun makes very extensive checks on the validity
of the input specification data, printing an explicit error message
as well as the card image for each error encountered. The program
attempts to find as many errors as possible on each card. If a
specification card is in error, the program ignores it and goes on
to the next. At the end of specification input, the user has the o option of making those plots which w'ere specification-error-free
or of reinputting all specification cards (after corrections have
been made). The input program also provides the user (if he so
desires) with a list of the maximum and minimum values of each
variable in his data file and prints a warning message for any

scale card specifying scaling such that data points will be off­
scale; however, such an occurrence is not considered an error.

o

c. ASPP Capabilities and Plot Features

In order to fit the program into core,ASPP is divided into
two links, ASPPI, which reads the specifications cards and outputs
a specifications file and ASPPP, which does all of the actual plot­
ting. While the loading time of ASPP:}: is annoying, the load'ing time
of ASPPP provides the user with just a.bout enough time to ready the
plotter-· and insert the pen. In any case, the two loads are only re­
quired onc'e· for a whole series of plots (a typical 8 sector specifi­
cation file can accomodate specif1c~t~ons for 25 scales and 24 plots)
This mode of operation

10

also allows the user to just reexecute ASPPP if he desires multiple
copies of plots or if there is a mechanical plotter failure during
plotting.

As shculd be obvious from the cescription of specifications
cards above, plots produced by ASPP have a rather rigorous format
which is described below. Nevertheless, a number of features of a
plot can be altered (see D.); nominal values for all variable
elements are given below.

1) The X{abscissa) scale is drawn from the initial pen position
parallel to the edge of the paper. Scale annotation and label are
drawn to the right of the scale. Tick marks are provided every
inch. One-half inch is needed tor annotation and label.

2) The Y{ordinate) scale is drawn fro~ the initial pen position
perpendicular to the edge ot the paper. Scale annota.t1on and label
are drawn to the left of the scale (i.e., outside the plotting
area) with the annotation paralleltb the X scale and the label
parallel to the Y scale. Annota.tion and label take up 1-1/4" to
the left of the scale. Tick marks are provided every inch.

3) The plot title is drawn such that the bottom of the last line
of text is parallel to the X scale arid. 8.5" from the initial pen
position.

4) At the end of a plot (incluc1ing any overlay cur,,~es) the pen
is pOSitioned 411 beyond the end of the X scale and at the same Y
position as the initial pen position.

5) The size of the scale annotation characters is .12", the scale
label characters .18"" and the title characters .24". The routines
used provide eye-pleasing variable character Widths. Each text
field (the longest line of the title) is. centered automatically on
the appropriate scale.

6) Tags are plotted so as not to inte'rfere with the curve (except
that a special cross-hairs tag may bElspec1.f1ed through which the
curve passes).

c

11

() 7) When using "qua.dratic" interpolation bet\'~~een data paints, the
program actually plots a series of straight line se~~ents approxi­
mately .10 u in length.

8) The pr':>gram auto:natically inhitits any plotting outsj,de the
plot region (the recta..lJ.gle "formed" 1J,} tte X, Y scales). The pen
is lifted before the curve goes off-s~a:e and is set down again
when the curve comes back on-scale.

9) Points closer than .01" are not plotted.

10) Switches are used to specify Itinunediate fl termination of current
plot and setup for next plot, suppression of plot title, and suppres­
sion of sca.le i:'lformation plotting.

11) ASPPP uses a modified version of the DPS UP,DOWN and DRAW for
plotting. Versions can be supplied to work with either a .Ollt step
or .005" step plotter. If the latter version is used, line start
and end can only be spec1f'j.ed to the neares·t 1/100", but line seg ... o ment plotting 1s done to an accuracy of .005" (:!-.e., the routine
takes advantage of the finer step size to provide a more pleasing
line) •

o

12) If autoscale delta is specified, ASPPI se: ... ects a delta which
is 1, 2, or 5 times e,n appropriate power of ten.

13) If' autoscale minimum is specified., ASPPI selects a minimum
which is an integral multiple of the scale delta and which is such
as to cause approximate centering of the curve on the plot region.

D. ASPP BasiC Paran~ter Modification

ASPP was deSigned to require the user to specify only those
quantities he would be most lil;:ely to want to vary from plot to
plot. However, wherever possible, other "fixed" paremeters were
treated as variables input tram a basic p~ra.meter file which is
set up by another program in the system. Thus, a number of the
quantities given above can actually be changed if the user desires.

12

The parameters t11at can be easily altered to suit individual·
requirements are: ori~in, rotation, subdivision (tick mark) inter­
val, 8,nd text rotation for X or Y scale; shortest distance allowed
between points (points closer than this are ignored); size of space
allowed for tag; X or Y di;3placement from appropriate scale for
X or Y scale lab8l; rotation of X or Y scale label; rotation of
plot tttle; scale label X- or Y- font SiZ9; plot title X- or Y-
font size; tag chara2ter X- or Y- font size.; X or Y scale maximum
length (for checking purposes); Y displacement of plot title from
X scale; Y displacement per line of plot title text; maximum number
of lines allowed in plot title; char3.cter used to denote special
cross-hairs tag; up to twenty autoscale values (currently 1, 2, 5,
19); any character used to denote special action (e.g., P in column
1 currently denotes plot specification card and S scale specifica­
tion card; these could be changed to U and V if so desired).

One parameter that is fixed by the DPS routine used to draw
scale annotation is the size of the annotation characters; both
x- and Y- font size must be .12". In addition, annotation is pro­
vided at intervals of no less than lit regardless of what the sub­
division interval happens to be.

E • Possible ASPP PI'obram Modificat:"ons

Some of the possible luodifications listed below are definitely
planned; others are desirable b'llt would involve extensive programming
and are thus not currently anticipated. The" order of the modifica­
tions listed below is of no consequence.

1) Replace the scale annotation routine (ANOTS from DPS) with
one that provides a fixed number of digits after the decimal point
for each annotation value.

2) Add the ability to specify a scale as logarithmic.

3) Provide for text specifications cards (optional) which could
place specified text of specified X- and Y- font size and specified
rotation anywhere within the plot region. Two types would be pro- C

13

(~:~ vided, one of which would ~ause text to be placed on every plot un­
til a new specificati~n is encountered, the ot:ber which would only
apply to the most recent plot card processed.

o

4) Provide for user prog,.L"aIll-generated, plottable, text input,
probably in the form ')f an additional (optimal) input file to ASPP.
A spec~tfication card might be added to select a specific text field
for p2.otting on the most recent plot.

5) Add two new types of plot, one for linear Y interpolation,
quadratic X interpolation ru1d the other for linear X interpolation,
quadratic Y interpolation. The present system of quadratic inter­
polation provides some rather peculiar curves for sparse data, es­
pecially when one of the variables 1s known to be monotonic (such
as time).

6) Provide automatic tag update whenever a curve break is en­
countered in the data file.

It is inevitable that any user of the system would suggest a
number of desirable additions. Howe'ver , it is important to keep
the original design objective in mind, that of providing an easy
to use plotting system requiring small amounts of disk space and
designed primarily for plotting program-generated data for engi­
neering uses. Again, we do believe that the current program satis­
fies these objectives very well.

----------------------- ----.. -----.-.------------~---

14

III. GENERAL PURPOSE SUBr"'10UTlNES IN ASPP

Hhere feasible, routines developed for ASP:? were designed to
be of g2neral use. Those that may be useful are described briefly
below.

A. FORTRAN Reread Facility.

Once the basic specifications for ASPP had been settled, we
found it necessary to provide the capability of rereading the same
card with a different format. Since we do not have paper tape,
this feature was added partly by replacing PAPTZ with our own special
version. Whenever SlOBF is called in a FORTRAN program, it saves
in a special area the current contents of the FORTRAN I/O buffer.
Whenever unit 4 (paper tape) is used in a READ statement, the spe­
cial PAPTZ transfers the current contents of the special buffer to
the FORTRAN I/O buffer. SFIO proceeds as though a new "card" had
just been read. A WRITE to unit 4 causes no I/O action and thus
is an easy means of suppressing debug output. It can also be used
to write information to the buffer in one format and read itw1th a
different format with no actual I/O taking place.

B. BUFDR, BUFDW, BUFCL - Buffered Disle I/O

As any IBM 1130 user quickly discovers, FORTRAN disk I/O is
notoriously inefficient. ThUS, this multiple entry point routine
was added. BUFDR and BUFDW work with a l61-word (real) buffer,
up to one for each file being referenced. BUFDR "readS" a number
of words (2-word variables; will not work with one-word-integers)
from the disk, executing a disk read only if the data required is
not in the specified buffer. BUFDW "writes" a number of words,
executing a disk write only if the record to be written is not
contained in the specified buffer. In addition, BUFDW sets a flag
indicating buffer contents modified so that the buffer will be
written out if a new sector is read from the disk. BUFCL is used to
force output if the specified buffer has been modified.

tr''';<.,
~~.

c

15

These routines \'Jil1 p:."obably be~ollle obsole te once we have re­
;.2.aced FORTRAN disl~ I/O (SDF!O) with a slightly modified versj.on
, .. Jhich -:'rill execute a d.isk ~0ad only if the nec€'38ary information·
1.:3 no"~ contained in t.ne EE>2·:.or in its buffer and wj.ll provide over­
lap with computation;t\fl!en 'I\('~iting on the disk.

c. :Modified Version of Dr3 UP,DOWN,DRAW

We have modified this DPS routine by add~ng a new entry point,
SPLTB, which is used to set up a specified length buffer for the
routine. Thereafter,calls to any of the entries, UP, DOWN or DRAW,
cause the command to be inserted in the buffer if tr..e r01.~_tine is
busy. Thus, only if the buffer is full, will the routine wait
until the previous operation is complete. 1~e have found that this
modification can significantly increase plotting speed for certain
applications.

In addition, we have discovered a simple way to modify the
C routine so as to support a .005" step plotter such as we have.

o

D. CHTST - Character Test Routine

Since we decided to use a number of DPS subroutines with
ASPP, and since ASPP uses variable width characters, we were forced
to write a routine to compute the length of a text field. ThUS,
this routine scans a vector of text (as read in using A4 format),
determines if ~~y invalid characters are present, determines if an
end-of-text delimiter is present, determines the number of lines
in the text vector and the length of the longest line in DPS
"X-units II •

Some of these subroutines have found extensive use in other
segments of our plotting system; some·have only been used in ASPP
at this point.

,c _ ,._, " _ ... __ ." .. "

16

IV. TABUL.AR INpiJT/OUTPUT FOR USE WITH ASPP

This section describe~ a number of programs and a subroutine
designed to work with ASPP structured data files. The purpose of
the program is to input tabular data for use with a user's program,
but in such a format that the file is immediately plottable vi,a
ASPP. In addition, the header on the file provides a user with the
means for verifying in his program that the correct file has been
specified on the FILES card.

A. PLTBI - Plottable Tabular Input

This program provides the' facility to read in data cards
containing up to 14 dependent variables and 1 independent variable.
The program makes up an ASPP-compatible file which may also be

,;

accessed by a user's program. It the first input card (specifying
total number of variable s and variable "names ") is blank" the,.C\\T­
rent contents of the d.ata file are printed with appropriate page .
headings containing the "names" of the variables.

B. TDTBI - Two-Dimensional Tabular Input

This program provides the facility to read in data cards eon­
taining up to 8 dependent variables defined at intersections of
2 independent variables. The file created by the program is not
directly plottable, but 1s useable with PLTDT and SRDTB (below).
If the first input card is blank (specifying number of dependent
variables, number of paints of second independent variable, and
"names" of' all variable s), the current contents ot the file are
printed with appropriate page headings.

c. PLTDT - Plottable Two-Dimensional Tabular Data

This program reads an input tile produced by TDT!I and produce$
an output file that is plottable via ASPP. The plottable tile
contains a number ot segments separated by a curve-break-11'ld1ca,tor

c

o
17

record, one segment for eB.:::h value of the first indep endent variable.
Each segment specifies a r.umber of curves versus the second inde­
pendent variable, one for each dependent variable. Thus~ ASPP will
automatically produce for ea.ch plot a family of curves, one curve
for each value of the first independent variable in the original
file. It is up to the user to label the curves on the plot with
the appropriate values of the first independent variable.

D. SRDTB - Search Disit Tabular Data File

This subroutine is designed to locate a specific data block
within an ASPP-compatible data file (or a file produced by TDTBI).
The first variable of each data block is assumed to be the inde­
pendent variable. The subroutine will search forwards or backwards
from the current position as necessary and will call a specified
error subroutine with a specified integer error number as the
parameter 1f it cannot bracket the input value with two data blocks

() contained in the data file (i.e., between the header and the end­
of-data indicator record). A data file used with SRDTB cannot con­
tain curve-break-indicator records. Output of the subroutine 1s the
two data blocks bracketing the input value and a quantity that can
be used in a linear interpolation scheme.

Eventually a routine will be written that can be part of the
disk SOCAL overlay which will do the actual searching (at high speed
since no overlay will take place during search; floating-point com­
parison will be built into this routine). SRDTB will then call.
this new routine and will compute the quantity to use in linear
interpolation. It will, 1naddition, decide if search is neces­
sary (to prevent unnecessary SOCAL overlay if input value is
bracketed by current data blocks).

v. BINARY CAHD 1/0 PROGRAMS AND OTHER SPECIAL
PROGRP~S FOR USE WITH ASPP

18

As mentioned in the introduction, certain programs produce
extensive quantities of plottable data while a run may require an
extended period of time. Where the necessary data file has been
deemed too large to reside on our master disk cartridge, these
programs were ,modified to fill up a much smaller file, print a
message to that effect, reset the record pointer to pointer at the
first data block, and exit to the resident monitor after saving
enough information in some other data file for later restart pur­
poses. The contents of the plottable file are then punched using
PFTBC, and the program restarted. When the run is complete, the
binary card decks produced by PFTBC are combined into one deck
which is fed into BCTPF. BCTPF puts selected variables from the
master deck on the disk in a format suitable for plotting. Since
the plots are made il1"lnediately, the data file can be considerably
larger (the file is only temporary; it is destroyed as soon as plots
are complete). This procedure has proved. highly satisfactory for
those users which require it, allowing them to run on the master
cartridge intermixed. with other user jobs. PFTBC and BCTPF, among
other programs, are described briefly below.

A. PFTBC - Plot File to Binary Cards

This program uses FIMGR to read in the first data card con·
taining from 0 to 8 characters of gang-punched deck identification.
It then proceeds to punch the contents of an ASPP compatible file
on cards using SBINP. Up to twenty-five Variables are punched on
each card along with a checksum, a binary card index, an indicator
as to number of variables on card, an EBCDIC card index, and a deck
identification character string. More than one data block may be
punched on each card with the one proviso that a data blockroay
not be split across cards. Card punching continues at maximum 1442

G

19

4(:\ Card Read/Punch speed until the end-of-data indicator record is
punched. The progrrun then exits to the reonitor.

o

B. BCTPF - Binary Card to Plot File

This program reads in three data cards using FIMGR. The first
card specifies those variables which are to be checked for mono­
tonicity from data block to data block, the second, those variables
which are to be listed on the 1132 line printer, and the third,
those variables which are to be stored on an ASPP-compatible and
plottable file. The program then uses FBINR to read in binary card
decks as punched by PFTBC. The program will accept multiple decks
provided. that the headers on e very deck are identical. The first
blank header card terminates input and, if the very first header
card is blank, BCTPF uses the output ·file as input (i.e., it will
list and/or contract an ASPP-compatible file). The program checks
each card for proper card index, but will permit cards to be left
out if user so specifies via data switches. This feature is useful
for removing "bad points" before plotting.

C. EDTPF - Edit Plot File

This program edits (alters) specified records of an ASPP-com­
patible disk file. The record can be located either by record
index (this is printed by BCTPF if file is listed) or by a specified
variable being tlclosest" to a specified value (i.e., content­
addressable file in some sense). Once a record is located, any or
all of the variables in the block can be changed to new values.
If any variables are changed, the contents of the data block before
and aftereditlng are listed on the line printer. This program
provides even more facility than BCTPF for editing data prior to
plotting.

20

D. AVGPF - Average Plot File

This program computes the "time rr a'lerage of spe.cified variables
in an ASPP-compatible file. The first specified variable becomes
the independent (rrtime") variable and the remainder of the variables
are averaged over .specified intervals in the independent variable
by integrating (using trapezoidal integration) each dependent
variable over the interval and then dividing by the interval size.
The interval may either be specified. (the actual interval, however,
extends from one data point to another) or may be computed by the
program as the interval between two minimum points of the first
dependent variable. Output is. in the form of lire printer output,
punched card output (optional), and an ASPP-compatible (plottable)
file. This program is very useful for smoothing highly oscillatory
program-generated data.

E. Binary Card 1/0 Subroutines

All of the binary card I/O subroutines are callable from a
FORTRAN program which does not use FORTRAN card I/O (or FORTRAN
Typewriter/Keyboard I/O in Version 1 of Disk Monitor Systenl). The
basic card format is the same for all; the first two words (l6-bit
words) on the card comprise a check sum, the next two 16-bit inte­
gers communicated from or to the userls program; the next 50 con­
tain up to 25 t\,lo-word variables (real or two-word-integer).
Columns 73-80 are available for card identification. Each of the
routines has a parameter specifying whether overlapped 1/0 is
desired. The salient features of the various routines are:

1) XBINP - LBINP - XBINP serves merely to LIBF to LBINP so that
LBINP may be part of the I/O subroutine SOCAL overlay (overlap
~ not be specified if this is the case). LBINP is an entirely
self-contained binary card punch routine. It thus cannot be used
within the same program as any of the routines below. It also does
not check cards to be punched for blanks in all columns. However,
it is by far the shortest (including card I/O requirements) of any
of the binary card punch routines.

c

c

c'

rrr:m

o

o

'S = n ,

21

2) FBINP - This subroutine is identical to XBINP - LBINP except
that it uses CARDl to read/punch each card. Each card 1s checked
for blanks prior to being punched; if nonblank, an error wait is
executed followed by a retry on the read.

3) SBINP - This subroutine is similar to FBINP except that it
punches cols. 73-80 of each card with user provided deck information
and card index.

4) FBINR - This routine 1s the binary card read counterpart of
FBINP. It has one additional parameter which indicates the result
of the comparison of the computed checksum with the checksum on
the card.

F. SEQBC - Sequence Binary Cards.

This program essentially performs the functions of SBINP on
a deck punched by LBINP or FBINP - namely, it adds deck informa­
tion and card index to each card in cols. 73-80.

G. FIMGR - FORTRAN Card Image Read

This subroutine was designed for use with programs that use
FBINR or SBINP. It reads a specified number of columns of a card ..
and transfers them to a two-word-integer vector with n2 translation.
Thus, the result is a set of integer words which contain card col­
mnn images. The progrrun provides deck identification input for
programs using SBINP and switch input for programs using FBINP,
SBINP or FBINR (e.g., BCTPF).

c

o

o

SESSION REPORT

COMMON - Chicago

Se3sion Number rUE F1 Session Name 360 DOS ----------------------- ---------------------
Chairman A. Ragsdale

Time 8.00 to 10,00 PM
------~~~~~~~~~----------

Attendance (NO.) 63
----~-----------

Speakers A. Ragsdale - General Food. Ltd.

Mr. W. Sole - Polymer Corp. ,Ltd.

Mr. B. White - IBM

Synopsis of Meeting This session consisted of a Panel discussion and

tutorial on multiprogramming facilities as they are available under

DOS. The discussion ranged fram SYSGEN requirements to ~plementation

and operation. Application of Spooling and Multiprogramming were dis-

cussed at great length.

SESSION REPORT

COMMON - Chicago

Session Number WED Al Session Name 360 Commercial Users ----------------------
Chairman Fred A. Hatfield

Time 8.30 to 10,00 AM
------~~~~~~~~----------

Attendance (No.) ----------------20

Speakers Mr. Hatfield plus floor discussion

Synopsis of Meeting The meeting consisted.of two parts. The first was
supposed to be a continuation of the full 360 project to consider two
resolutions which were presented by Wade Norton. Resolution I 1 was a
request to IBM to make the SORT/MERGE control cards of os Arid DOS
compatable with each other or to specifically publish that they were
not meant to be. Resolution Passed. Resolution I 2 was a request to
IBM that format 6 labels of OS be accepted by DOS even though ignored.
This resolution was referred to the DOS committee since partitionea
data sets are not even known to DOS.

Part 2 of the meeting was discussion of COS for the most part. Fred
Hatfield told of his company's work in expanding the 1405 being emulated
to addresses greater than 99999, currently-going to 124999 on five 2311
packs. Jean Louis (1724) told of work done to run multiple 1401 jobs
concurrently. Al Cunningham (1628) told of change. to permit printing of
BALTA registers on one line. Fred Hatfield also reported on a job
recording scheme taken from EL-TAS, Lib I 360 D 00.04.009. --

:t""'\
~-v

c

o

c

o

SESSION REPORT

COMMON - Chicago

Session Number WED A2
----~--==-------------

Session Name Introduction to IBM's

Chairman Walter Arntson prQlram Information Department

Time S,30 ---------------------------------- Attendance (No.) 60 -----------------
Speakers Mr. Dan Leeson, IBM

Synopsis of Meeting The functions of the IBM ,rogram Information

Department were described. The resources available to IBM customers

were explained and certain significant points relative to the utiliza­

tion of Type 1 and Type II programs. An hours discussion followed the

half hour talk. Users complained of missing cards in program deck.,

time required to secure programs, why a complete deck could not be sent

upon a reVision of a program rather than the necessary cards, .tc.

J

Good Morning Ladies and Gentlemen:

It'is a great pleasure for me to have the opportunity to

speak once again at COMMON.

The subject of my talk th is morning will be on the Progra m

Information Departm.ent wh ich is located in Hawthorne, New York.

(SL I DE #1)

Most specifically, I·would like to talk to the new users among you

who have not had an opportun ity to draw upon the services of th is
,

facility at any great length. Perhaps sorne of th is material will be

old hat to many of you, 'but for the purposes of establ ish ing good

rapport with the newcomers, I thought that th is kind of talk would

be satisfactory. At the conclusion of th is discussion, please feel

free to bring up any questions or comments wh ich you may have .

o

. ' ,~~-~ .. '~~:":-_~:::~~:~.' .'-':=~:~=:_~. ~::~~~~::=,~",,:~:'<~~.:.~:.':~",'> -~~==~:= ... :~':::~';.: ;~'~-=_:::.:L:o:~,:.:2::i::: .. :=:=~,:~::=::~" =::::~:''''''"'"'. =.~~ ~.:~ ... ~.:. ~ .
. . , -

c

- ----_. -_._._------

For the newer members of COMMON, the questions
(~:

relative to the Program I nformation Department that are probably

going th rough you r minds are:

1. What is it?

2. How do I discern what its contents are and what is

applicable to me?

. 3. How'do I obtain programs?

4. What do I do with them when I obtain them?
,

Basically, my talk will center around these points.

o

The first poi nt I wou Id I ike to address is what is PI O?

The Program I nformation Department of the I BM Corporation

is the official center of program distribution activity for the IBM

Domestic Corporation. Th ere are equ ivalents of PI D for our World

Trade customers. For instance, there is the European Program library

in Paris, the Asian Program library in Tokyo, the Canadian Program

library in Toronto, the South American Program library in Rio de

Janeiro and the South Pac~fic Program library in Sydney.

Programs received from the I BM development centers

throughout the world enter into the distribution complex of the

Corporation at the Program I nformation Department. It is th ere th at

the material is determined to be complete and reproducible, and it is

also there to which orders for programs should be sent.

The material that PI D distributes essentially falls into two

categories. They are Type IIII programs and Type IIII IV programs.

Type I11I programs are developed by the I BM Corporation and have a range

of support associated with them about wh ich I am going to s'peak at some

length toward the latter part of rny talk.

c

c

II'W""iHil''tIt:t!·M@@e''tMtlltbl:M'HtI.u-'·'!!!rrp'

Type III/IV programs are contributions made to th is

distr ibut iOrl center by both ! BM employees and cu stomers of I Brvt

I n the case of Type 1111 IV programs we act as a distribution agent

for these items and have no cognizance relative to the functionability

of these prograrns. There are several types of standards that Type III/IV

programs adhere to. As a matter of fact, COMMON was a party to

the development of Type IV Standards, and the Type III)tanda rds

bear considerable sim ilarity to those of the user groups. PI D does
I

act as agent for enforcement of these Standards, however.

I ell',

Thus, I hope my first question of. what is PI D has been

appropriately answered. I n its simplest terms, PI D is a b.uilding

containing progr ams wh ich you may order.

~A.. ~ . ~ ,.,-.. •... _." _. ~ ~ .. , •. _: ,..'.,.-1y"..,....---...... -7"11'~ - •• ~ ___ "':-.... ~.."..,,-:o..':.------.- - -.. ~ .. 4._~~'!"'O-'1"'"" ~-.~...,.....~_ .• :~~"!""""" ... _ "-"~':'~~'..,........,.??~'~~'":""~"':ff,. _~-- ~~.~1r~'''''''''''''!"''~'':o-.,...r .. ~",;,,;-,'''-.-.-- __ "_~""''''-;'"''. ~.'_' ~ , ~ ",~_ __ • __ •• , , " .,. ~.,..

""-.. ••••• _~ •• __ .• ~ __ , _ ~, ,~ ' , ••. ~_ _ :--:..- _ ~;.. ~ ,_ • ___ J.<.... •• ~_-.... ... ,..:,:.~+_; ~ ~. . _,~ .. _ ,~ __ ._ ,....;::~ ... ;j;~!--:~~.:.-::.._.~:-"""'_: ,._~...:... •.. ~-...:.;.;... .. _ ... :~_.....:.::~_~ .. J..-..~ .• ,~ ~:~_ ._ .• _ •.•• __ ._" .'--._ .• --. •.•••

o

It is very important for you to know what the specific

resources of PI Dare, wh ich ones apply to you, and how th is

intell igence can be used to serve you.

Published several times a year are documents called the

Cata I og of P rog ranl s ~

(SLIDE#2)

These Catalogs are published by system type; that is, there is a

Catalog of Programs for the 5/360, a Catalog of Programs for the
,

1130, 1620, etc. With in each Catalog is a discussion of the programs
c'

applicable to that system type. In general, you require the Catalog

for only the system type of concern to you.

One of the most important items in the Catalog is the KW IC

Index.

(SLIDE#3)

Here you w'ill find whether or not a program is available based upon

a keyword.

c

c For instance, if you were interested in a program having to

do with electrical power, note that either "power" or ~'electrical power"

would be used as a keyword.

(SL I OE #4)

The entry in the Catalog of Programs reads "Load Flow Performance

Calculations of Electrical Power. II Th is particular program is for an
. .

1130, whose configuration we will determine in a moment, and. is

described on page 22.
I

Turning to page 22

Cl (SLIDE#5)

we find that the full title is

(SL I DE #6)

"Load Flow Performance Calculations on an Electrical Power

System ". Th is program n umber is 16.4.004, and the author and th e

availabil ity date are also given with in the abstract of the program.

Th is particular program, as you can see, is a Type III program, and

the configuration of the specific 1130 is given with in the abstract.

o Having this information provides you with t'le intell igence to decide

relative to its desirability.

Th~s, through the array of Catalogs, you are able to discern
,

the contents of PI D. Th rough the specific Catalog in question, the

Keyword- in-Context I ndex enables you to find a specific program by

functional capability and the abstract of the program with associated

information may then be located.

Catalogs of Programs for all systems are available from your

local I BM representative. Once you are registered for a specific

Catalog, maintenance to it will be sh ipped to you periodically enabling
. I

you to know how the contents of PI D are altered as ,per your require­

ments. Also from time to time the Catalog will be completely reissued.

I i

c

c

'"M!!rt'W"'''''''1'M'rm'''!'''

o

c

Once you are sure as to the nature, number, name, etc. of

the, program \Nh ich YOLJ wish to order, you will find that you can place

an order on several types of order forms.

(Sll DE #7)

The first of these is generally used for Type I1II programs

only. The second, or tan colored card, should be employed for Type

IIIIIV programs. The last one wh ich is a rather large order form

should be employed only when ordering 5/360 operating systems. By

th is I do not mean OS/360 but rather any operating system with a

collection of orderable items wh ich is runnable on the compatible

5/360 family. Specifically that includes OS, DOS, TOS and BOS.

There are also certain cards especially designed for user

group members, and from time to time, you will have an opportunity

to employ these cards.

(5ll DE #8)

The result of using an incorrect order form could conceivably

be the rejection of the order so it is appropriate that you know wh ich

form for wh ich program type. Upon completion of the order form for

Type ,1/11 programs, the material should be 'given" to your locaf IBM

representative \Nho will authorize sh ipment of material to you and

forward the order forms to us.t1
A4ii&Mi&JJiiWUY4ii4M,; ML\("M", ,m #il%f\4 "

--------""-'"~~-~---~~-~.~-.. ~~---~---

Please be cognizant of the nature of the distribution media

for the prQgrams that you wish because in some cases,. it might be C;

necessary for you to forward to us a reel of magnetic tape, a 2315

disk cartridge or a 1316 disk pack.

(SL I DE #9)

If the Catalog of Programs indicates that the program is available in

cards or paper tape or Distribution Tape Reel (DTR), these will be

forwarded to you with the appropriate data contained on them.

(SLI DE #10)

You are not obliged to take any action relative to these distribution media.

Once the order has arrived in P"ID, our~p'olicy is to have the
". ~""

material on the way to you within ten working days. Every attempt is

made to guarantee the integrity of the data that is being sh ipped to you.

I n the event that you are concerned about the status of an order, you

will find that the m03*~ rapid response can be obtained by communicating

directly with your I BM representative.

Now I come to a portion of my tal k wh ich sou nds al most

C obvious in its nai vete; that is, what do you do with a program when

C',,)
J

you obtain· it? There is, of course, the immediate reaction -- use it,

of course! But I wish. to comment about those th ings wh ich will

permit you to use the program in a much more effective fashion,

and I wish to contain my comments exclusively to Type I and Type II

programs.

When you receive such a program from PI 0, the first

question that should be on your mind is what constitutes the totality

of th is program, or more specifically, what is lIitll? A Type I1II program

is a lot more than a deck of cards. ·It is an aggregation of documents

and mach ine readable mater.ial, each of wh ich h as a spe~ial ized fu nction

and all of which are designed to permit maximum efficiency in the
. .

in stallation and ru nn ing of th e particu lar programm ing system in

question. All of these items are described in a single document wh ich

is al so part of the package you r~ceive~ I n my experience, th is document

is generally th rown away shortly after receipt of the program.

Th is document is termed the Program Material List.

(SLIDEH11)

I n ~y view, such a document is the most important item wh ich you

have received because with it the contents of the product are described,

the volume of the material you have received and the currency of each

item is specified. With it you will be able to keep your product current.

Please note on the program material list wh ich I h ave shown here that

this particular product, which is the 1130 Card Fortran Compile"r,

consists of five items. One of th·ese is a manual whose number is

C26-3629-1.

The last digit, that is the -I, indicates the currency of th is particular

manual. Two of the items are decks of cards, the first of wh ich is the

Fortran Cornpiler itself at 933 cards, and the second is a sample Fortran

program at 101 cards. There are also two items of informal documentation,

each of wh ich has an identification key and each of wh ich is important

in the scheme of th is program. Please note that the top of th is document

describes a Fortran Compiler at a specific currency number; that is

Version I, Modification Level 1.

o

c

m··'·ZMllrr_fflWir.r:="WTT1!!r:::!I!rnr!f?wtrt'''·w i!T'M"TI!7XP!!!Ii '"rr55!1l!li.=·nw'I,=, 'P!!7" !'P'·,='.'.iii.l I

You will have such a program at that currency level only when
,

you have all five of these items, each of wh ich is at a specific level. If

you had ordered th is program when it was at Version 1 Modification

level 0 and subsequently had received Modification Levelland had

applied it properly, your Fortran Compiler would t1en be at 933 cards.

On the other hand, if you ordered th is program at Version 1 Modification

levell, you receive in effect Modification Level 0 Compiler with Modifi­

cation Levell appl ied wh ich is by defin ition 9~3 cards. As subsequent ,

modifications are received by you and the mach ine readable material

applied to the deck, the quantity of cards will alter and so should your

material list. The alteration to the material list fs'itself described in a

document accompanying the specific modification.

I nstructions are sent with each modification wh ich describe

how the addition of that modification affects your current package;

therefore, visualize yourself at some point in the future, let us say

Version 1 Modification Level 3, and an error appears. The first question

that is generally asked by the Field Engineer or Systems Engineer

0 1 servicing your account is "What is the currencY'of your product?"

The statement "I am at Version 1 Modification Level 3" is not with in

itself sufficient. Rather what is your deck supposed to look like if you

are at that modification? What other publications should there be with

that modification level and what is the currency of each of those items?

It is an appropriate set of answers to th is type of question wh ich enable

you to determ ine whether or not you really have the product.

Please note that you will receive maintenance not only to the

mach ine readable material contained in the product but to every item

contained in the product. Should a subsequ~nt operator's guide be

published at a -2 level, you will receive it automatically. ~hould any

o

of the informal documents be altered, you w'ill either receive refreshed 0

copies or instructions on the updating of the copies in your possession.

Not,only are new manuals .sent to you when they are printed but should

change pages, called Technical Newsletters (TNLs), be issued, you will

rece ive th em a I so.

Th us, getting back to my original comment of what do you do

with the pacl<age when I obtain it, I submit first that you should identify

it and by "it" I mean all portions of it. This is done through the

material list. The second tf-}ing that you should do with your package

is to be scrupulously careful about maintait:lrng it. In the case of
c

machine readable material, it often presupposes ~hat you never employ

the program -received from PI D but rather a copy of it. I n some cases

. the media'of transmittal is too expensive for you to have this luxury

but a backup copy of the mach inereadable material should always be

made available. As an example, in the case of 1130 Disk Monitor

Version II, the media of distribution is disk; and when the user punches

out its contents, a copy of th is deck should be made. The original

punch out should be retained in. the event of an unrecoverable error.

In my view the proper utilization of a program for its ultimate

o design consideration, that is solving problenls, is best ach ieved by

a careful attention to.the contents of the package and the maintenance

to each of th ese item S8

I n the case of Type III/IV programs, the mechan ism for

reporting errors is not as formal as in the case of IBM Type I1II pro-

grams. In this former case, communication should be directly with

the author.

I have dealt at some length with Type I11I programs wh ich are

o basic. By basic, I mean that material wh ich is sent to you in fulfillment

of our comm itment to have a program of a nature such as we described.

There is also material available known as the optional program package

wh ich is generally the source code from wh ich the basic package was

developed. The media of distribution for optional packages varies with

the size and complexity of the package. Generally, however, the avail-

ability is limited to magnetic tape. There is a program material list

associated with optional packages which describes each item in the

package and its currency.

The essential difference between a basic and optional package

is that there is no automatic mpintenance for 'optional program packages.

, We do assure that at any point in time the most current one is always

available from PI D. Th us, at any point in time should you request the

optional package, you will receive the current one. However, the

responsibility of ordering another or updated version of the optional

package rests with you, the ultimate user.

One final point before we get off th is subject is that there is

generally a variety of I iterature called reference literature wh ich is not

sh ipped with part of the basic package. The fundamental decision

associated with literature going with a program depends upon the anwer

to the Question "Does the user need th is document in order to properly

install and run th is program?1! When the answer to th is question is

c

o

o

lIyes", the document becomes a part of the basic package. If the

. answer to th is question is IInoJl, references are made to the document

in severai' locations and ordering it is left to the discretion of the user.

Each of you will over the next few years have occasion to

draw upon the resour,ces of P I D. We look forward to an opportun ity

to be of service to you and to provide those items wh ich will permit an

abundant utilization of your equipment. While we are scrupulously

careful about production tech n iques, you may from time to time

encounter difficulties directly associated with the packaging. We

would be most grateful if you would commun icate the nature of those

difficulties to us on the special form which is also enclosed in the

package sh i pped to you.

(SL I DE #12)

However, non-functionabil ity of a program should never be reported

to PI D unless the cause is specific to the packaging. Very frequently

we receive the type of document I have displayed here with a variety

of technical questions on it. These are,' of course~ forwarded immed­

iately to an appropriate department but the return of an adequate

response is often delayed by this vehicle,of communication.

In the case of technical difficulties, th·e most rapid response

can be obtained by communicating the nature of the difficulty to your

I BM representative.

o

c

Thank you for the opportunity to have spol<en to you today,

and now I would I ike to open the floor to any questions wh ich you

may have .

. ~ •. - .. ::--:.,.~ ---~ ··-.· ~-'~ ... -~;-.~ ... ".~.,' ~~.¢~.,.~.~~.,.~~". .. :-.,~ •. v:7-"~~f"~:~ ... ~~~ .. ·-~1"~ . .,~!""~t""';":":"' ~~.~.,~:"': .. J'!.'f~ ... t: .. !~ -:::,. : .. ~ .. (?~,. .. -T: .. · .. I·..-:~.\,...~-: ·~· •• k~~.~.·.~.~ ... ·-~ '7'" __ j."!; ~"":"""":'""'.~.~:--::.~ __ ' ._: ~."'" .

~ . .tW.........;.... ... ~"- _::. .• ~ I' 'c' '.. ..' -.......--..... .. ,.,' ~~-w:.~·.A:40~"'~.;I~~~:...n.._~~~ .. ;""~·~ . .:..;~ ... ~~~.i"""";;;'~·.""_":~.4~ .. :~,.,..~·"-~T~6~_";'_".\:"""" .• Jot :..~._&:·~·.:,:.r..-:' •. ~!",.:"",,, •. ~:... ~~,.~ .:..~~_. 4_·_.~ ..• , .

I

-; .,,~

o

r--'.
I'_,;?J

c

c'

o

Session Number \lved. A 3

SESSION REPORT

COMMON - Chicago

---------------------- Session Name Systems & Programming

Project & Open Shop Disk File Chairman Paul Bickford

t1aintenance

Time 8:30 - 10:00 A.M.
--~~~--~--~--~~-----------

Attendance (No.) 34 --------------------

Speakers First Presentation: Pete Woodrow; Second Presentation:

Larry Baker, Sam Lynch, Beryl Cording and Ed Hess

Synopsis of Meeting Open Shop Disk File Maintenance

Well attended and- this topic was discussed in detail. Several questions

were answered. Presentation time was 35 minutes. Panel discussion

followed with each member's presentation.

There was considerable confusion about what the panel was going to

present. The abstract was misleading and several people thought the

whole session was devoted to Open Shop Disk File Maintenance.

A DISK FILE MAINTENANCE SYSTEM
FOR THE IBM 1130

by

Peter J. Woodrow, Associate Consultant
Aeronautical Research Associates of Prj.nceton, Inc.

Princeton, New Jersey

Presented at the Chicago COMMON Meeting, April 8-10, 1968

c

o

o

1

ABSTRACT

rrhis paper descripes a disk f lIe maintenance system for the
IBM 1130 consisting of two program segnlents and a strategy designed
to maintain in general a single disk cartridge operating environ­
ment in an open shop (or closed Shop) computer operation. The
system is designed to give the computer operations management an
up-to-date report on the user ownership of each user file on the
disic as well as a listing by user of all current files, file lengths,
file type, file creation date, and total disk words per user. Also
included in this paper are detailed operating instructions for each
of the programs in the system.

2

I. INTRODUCTION

A. Computer Operations Environment

Aeronautical Research Associates ot Princeton, Inc., is a
small independent research and consulting company engaged ~r1marily
in government sponsored research related to various areas of aero­
nautical sciences. In the research process we have used a computer
since 1958. In June 1966, to incre.ase our computing capability,
we installed an IBM 1130 and have since built usage up to more than
250 hours per month.

Because the size of our programming staff has always been
limited, a number of staff engineers have been encouraged and as­
sisted to learn programming and computer operation. At present,
approximately 30% of the staff is able to program and operate our
IBM 1130 computer. Up to now we have operated the computer1na
completely open shop mode and have permitted any capable engineer
to operate the computer at any time of day, night or weekend. Until
recently no restrictions were placed on usage. However, of late, (;,
increased usage has forced the imposition of a number of regulat10ns
for efficient computer utilization. One of these regulations re-
stricted each user to a maximum of one half-hour each time he used
the computer. The second regulation forced each user to account
for each of his files on the disk.

B. File Ma1ntance Problem

Efficient utilization of an IBM l130with a single disk drive
requires that operation be restricted to a single disk cartridge as
much as pOSSible, especially when each user is restricted to a
half-hour of computer time. Unfortuna.tely, ina completely open­
shop environment, a e1ngle disk cartridge: is rapidly filled up. In
a research organization in particular" many programs are short-lived
and many of those that do enjoy a long-life are used relatively
infrequently. However the IBM 1130 p1skMon1tor System, unlike

,
" ..

C'
".

o

3

many large computer systems, offers no facility for identifying the
ownership of each file on the disk. In addition, most users are
lazy and of short memory with regard to their old disk files •

.
There are two possible solutions to this prob18m within the

framework of the Disk Monitor System, neither of them very successful
The first is the use of the temporary job mode proV"iCied for by the
monj_tor system. This solution will work whenever each subjob of a
job execu.tes successful2-y. However, if, for ex.ample, a compilation
subjob results in compilation errors, any later execute subjobs will
be bypassed. If a new job is initiated (temporary or not), any files
previously created are destroyed (in Version II of the monitor even
a cold start ca.rd initiates· a new job). Anotr.:er failing of this
solution is that, even if binary cards are used, the card read time
will cut down efficiency of computer utilization. The solution is,
nevertheless, practical and necessary for programs using large tem­
porary data files.

A second possible solution for limiting disk file buildup is
to dump the contents of LET (Location Equivalence Table) at inter­
vals and attempt to identify files that are no longer needed. This
was the procedure we a(!tually employed for some time. Unfortunately,
the procedure is impractical because there is no easy way to trans­
fer information from one LET dump to the next. Thus each user is
required to spend an inordinate amount of time identifying his files.
From experience it can be stated that the average user does not have
the patience or time and will object strongly if his undeclared
files are deleted by management.

c. Solution to Disk File Maintenance Problem

The ideal solution to the problem of identifying ownership of
user files is to modify the monitor system to store in LET a user
ID number which would appear on every JOB card. This solution is
actually quite practical and might also help eliminate some problems

4

caused by two users coming up with the same file name (in a case of
conflict, the user ID could be used to resolve the conflict).
Unfortunately, this solution would require extensive, unsupported
modifications to the monitor system and represents a commitment
we are unwilling to undertake.

An acceptable solution had to satisfy a number of requirements,
not the least of which was a small amount of programming. One key
requirement was that each user should bear the primary responsi­
bility for identifying his files without requiring an unreasonable
amount of the user's time. Other requirements were that the system
not require extensive amounts of computer time or disk space and
that it be open ended to provide for system expansion. The adopted
solution also had to provide a relatively easy way to specify the
deletion of inactive files.

The solution finally arrived at was adopted in two phases, the
first designee to provide up-to-date information on each file on
the disk and the second designed to p:rovide operations management
as well as users with a listing by user of all current files on
the disk. The completion of the second phase was actually forced
by the arrival of Version II of the IBM 1130 Disk Monitor System.
It enabled us to provide each user with a list of his current files
on the Version I master cartridge so that he would know which of
his files to transfer to the new master cartridge.

The first phase consists of a program which inputs a deck of
cards containing file names, stacker selects cards specifying de­
leted files, and punches new cards for files not specified by the
deck. All cards contain file name, file type, file length, and
date card was punched. The first phase also consists of generous
amounts of user cooperation (enforced by.occasional threats to
delete unidentified files).

Filescards are kept in a card tray near the computer. The cards
are sorted into four categories,current-identified, current-uniden­
tified, delete, and deleted. A memo circulated to all users stated C.'" .1

c

o

5

that on Friday morning of each week a list of new files (i.e.,
created since the previous Friday) would be posted. Users would
be required to punch their identificatton (see below) into each
card specifying a new file belonging to them sometime during the

subsequent week. The memo also stated that on each Friday morning
a list would be posted of files to be deleted sometime over the
weekend unless the user too~ immediate action. This latter list
consisted of all files for which either cards had been moved to

the delete section or cards still remained in the current-uniden­
tified section. Initially users were given two weeks to identify

files cards (management toolc responsibility for punching identifi­
cation on all cards specifying system files (basic IBM library

plus ARAP library)).

Except for the inevitable occasional prodding of users, the
system has worked quite well. Users have in general been coopera­
tive, largely because the system has operated to their advantage
in that the average user does not have to worry about changing disk
cartridges. The primary value of phase one, per ~, lies in the fact
that a number of files, created by users, have a useful life of only
a few days. Thus, rather than bother to specify identification,
most users allow such files to be deleted for them. Thus, a number
of files have an enforced lifetime of less than two weeks.

As some indication of the usefulness of phase one alone, when
the system first went into operation, some 100 files were found to
be unneeded (the deletion of which took over six hours). Whenever
the program is run (usually at intervals of about two weeks) at
least twenty (and often as many as forty), new files have been cre­
ated and no more than five deleted in general. Of the new files,
at least 25% remain unidentified or are specified as delete and
are deleted when the need arises. Until quite recently, phase one

alone was sufficient to provide enough room on our primary disk
cartridge for all but commercial applications users (these have

always been kept on a separate disk).

6

Unfortunately, phase one yielded insufficient information to
prevent the primary cartridge from becoming overloaded. Thus, phase
two was completed. It reads the current deck of files cards, sorts
these by user, by project, and by file name, providing for each
unique ID totals of the nUlnber of d1s1{ words used by that ID.
With the use of this latter program at more infrequent intervals
'tve expect to maintain single cartridge operation for the foreseeable
future without undue hardship worked upon the users.

The following sections describe the two programs (LETUD and
SPMDD) comprising the two phases of the system. Also included are
some hints as to ways of keeping a cartridge relatively free of
outdated files.

It should be mentioned at this point that, since all of the
information resides on punched (interpreted)cards, additional prog­
rams (or modifications to existing programs) maybe written to pro­
vide other forms of information. For example, we may find it neces­
sary to modify LETUD to stacker select all files cards specifying
files whose lengths have changed significantly from that specified
on the files card. We may also write programs (or modify SP~IDD)
to provide information on only those files exceeding some specified
length or with a "creation" date prior to some specified date.
However, we have found that just knowing the "worst offender" in
terms of large disk files is a great help in maintaining single
disk cartridge operation.

c

c

7

II. LETUD-LET/FLET UPDATE PROGRAM

A. De sign Objecti ve

The objective in the design of this program was to provide a
program which would read LET/FLET into core, sort the directory and
then read a set of files cards, stacker selecting those no longer
present on the disk and punching new cards for files not specified
by the input deck. Since the program was to be run fairly fre­
quently, it was important that reasonable amounts of computer time
be sufficient for each run. It was also important that the pro­
gram be relatively straight-forward so that programming costs would

not be excessive.

As it turned out, 8.11 the objectives were ,met quite satisfac­

torily. There are, however, a few restrictions to simplify coding.

These are:

1) The file type is indicated by a single digit (0 = DSF format,

2 = DCI format, and 3 = DDF format).

C,··) 2 The maximum file length that can be handled is 99,999 words
(if the actual length exceeds this, the first digit will be a 9
and remaining digits will be correct). It was felt that even a
file of 99,999 words would be unreasonable for a master disk

cartridge.

3) The length of the file as specified on an input card is ignored.
Thus, even if the length has changed radically since the card was

punched, no indication of this fact is given.

4) The version of LETUD designed to operate with version 1 of
the monitor system only examines LET (not FLET). In addition, the

length punched includes any padding necessary at the time the
card is punched. This version of LETUD will also destroy the
resident monitor (in core) if LET is f'fouled up" in a particular

fashion.

5) The version of LETUD designed to operate with version 2 of the
monitor system examines both LET and FLET, but does not indicate

8

on the punched card which directory contained the file. In addition,
this version ignores all padding (lDUMY) entries in LET/FLET. If
LET/FLET is "fouled up" in a. way such as to cause incorrect opera­
tion of this program, the progrrun exits to the dump entry point
in the resident monitor to dump all of core and then go on to the
next job.

6) If LET/FLET is sufficiently "fouled up", either version will
destroy core. In other words, both versions assume a maximum
directory length which may be exceeded if pointers in LET/FLET are
destroyed. Neither program checks for this condition.

7) Both versions require 8K of core and neither version could
benefit by an increase in core.

8) The version of LETUD for monitor, . version 2, does not support
multiple disk drives. The program could however be easily (but
crudely) modified to provide such support. The basic design is,
however, such as to provide support for at most one drive each
execution.

B. Program Design

In order to simplify design (with very little increase in run­
ning time), the program inputs all of LET/FLET twice, the first
time to sort the file/entry names alone and the second to insert
the file length or lint\: to the main entry point. During the first
pass over LET/FLET the program reads a sector at a time, removes
the type indicator bits and length, and packs the result into as
few words as necessary (IDUlvLY entries are also removed). An inter­
change sort is then done on the current sector. The result of
the interchange sort is then merged with the master list in core.
It turns out that 8K is sufficient to hold all of LET/FLET plus
the prograrll.

The second pass then rereads LET/FLET a sector at a time,
looking up each name via a binary search on the master list, and

·c~

o

o

9

inserting file type and length (in Ciisk 'blocks) or , if the name
is a secondary entry pOint, the address of the primary entry point
(with bit 0 set equal to 1). Both passes require a total of less

than 15 seconds for an almost completely full LET (30 seconds for
a full LET and FLET).

The third pass reads in files cards, one at a time, and looks

up the file name in the master list in core. If the name is
present, the program zeros the length/link word corresponding to
the name. If the name is not present, the program stacker selects

the card. The first card containing a blank in column 1 signifies
the end of input and is immediately stacker selected. The master
list is then scanned and for each nrune having a nonzero length/
link word a card is read, checked for blanks, and punched containing

the file name, file type, file length/link and any other informa­
tion in the master card (see below). All punched cards are also
selected to staclc.er 2.; thus stacker 2 at job completion contains

all cards specifying file status alteration. The program exits to

the resident monitor when the master list scan is complete.

The card read pass proceeds at essentially card read speed
because of the binary search (even for a full LET/FLET). As a

result of the program design the caro.s may be in any order desired

(except that blank carC:s must folloVl the first blank card). Because
of this feature, cards stacker selected as a result of file dele­
tion should be saved for awhile. It may be that this prograrn was

run at a time when the user had momentarily deleted the file. If
all cards for supposedly deleted files are added to the end of the
current deck, the cards will still be stacker selected if the files

are still missing, but, if the file nas been put back on the disk,
the card will not be stacker selected and may thus be reinserted
into the main deck, saving the user some time. As a final note,
the program will accept more than one card with the same file name;

it will cause no trouble (althou@1 reasons for its presence are

not clear).

10

c. Progrrun Operation

1) The XEQ card should specify DISKO (0 in column 19).

2) The first card following the XEQ card is the master card.
Any columns punched in this card are gang-punched into every card
punched by LETUD. If the master card has nontlank columns where
the program will insert variable data (see below), these colurnns
will be overlaid by the variable data. The punching speed is regu­
lated by the last nonblank colwnn to be punched (whether variable

data or gang-punch data). Any informatior may appear on the master
card (except see III. SP~IDD for restrictions if the cards are to
be later process2d by SPIvlDD); in particular, the master card may be
used to gang-puncl1 a system ID for all files in a freshly generated
system disk cartridge, or the dete on which the LETUD is being
executed.

3) Following the master card comes the deck of files cards, the
only constraint on these being that column 1 be nonblank and that
any file name be left-justified (i.e., these cards need not have
been punched by LETUD).

4) Following the input deck, and signifying the end of the input
deck, is a blank card. This card is not punched, merely stacker

selected. Thus, if it has a different corner cut than the remain­
der of the cards, it serves to separc.-te files cards for deleted files
from files cards for ne,,'l files. Note that the program does not
recognize monitor control cards.

5) Following the separator card comes a deck of blank cards.
Each card is read to make sure it is blank befo"re it is punched.

When the program finishes punching cards for each new file,

it exits to the resident monitor. Each card punched by this pro­
gram has the following format:

Columns

1-5

8

10-14

11

Contents
File name left-justified (consists
of letters, numcers, and/or blanks)
File type (C=DSF format, 2=DCI format,
3 = DDF format)
File length in decimal words right
justified with leading zeros punched
OR name of primary entry point (DSF
format only) if this card specifies
name of secondary entry point.

All other columns contain information as punched on master card.

This program has only one internal prograrr~ed wait (other than
the normal CARDO, DISKO waits) and that occurs if a card about to
be punched contains a nonblank column. The version for use with
monitor, version 1, will wait for each nonblank column and will
then proceed to punch the card without rereading to check for blanks.
The version of this program to be used 'tIli th monitor, version 2, waits

C) only once if there are any nonbl'ank columns and then rereads the
card, again to check for blanks, before finally punching the card.

o

12

III. SPMDD-SORT AND PRINT MASTER DIRECTORY DECK

A. Design Object:Lve

The objective in the design of this program was to provide
the ability to read a card deck containing information punched by
LETUD and additional information puncned by the user, sort the
deck (internally) first by user ID and then by file name. The
information was then to be printed on the 1132 line printcr in a
reasonably condensed format. As with LETUD this program was to be
designed at minimum cost and to require minimal running time.

The design objectives have been essentially met, except that,
as with LETUD, a number of re'strictions were inlposed to simplify
the de sign and spee d operation. Those wh~.ch are not part of
input/output format (described later) are detailed below:

1) The principal restriction is that in an 8K computer only a
limited deck can be sorted and printed. ~he size depends on the
number of different user ID's present in the deck. On an 8K
machine all of LET may be sorted (maximum of 840 file names) if
all ID strings are of less than 3 elements and there exist no
more than 100 unique ID st:rings. However, thls restriction will
not be a burden, since procedures are available to omit from the

sort all files telonging to selected ID strings (e.g., system
library). In addition, a change of a. control card in each of the
links will allow for larger table area if more core is available.

2) . The program is designed to operate under monitor, version 2,
only, but since decks punched by LETUD are the same for both
versions, this program can process a deck produced by LETUD operating
under monitor, version 1. The program cannot be reasonably modi­
fied to assemble under monitor, version 1, as it makes extensive

use of the new mnemonics available uncleI' version 2.

o

13

B. Program Design

(;: The program was designed to accept identification strings for

C''''t,,:
, ,I

c

each file up to five elements (names). These elements form a

hierarchy with the first element becoming the major sort key, the

second the first minor sort key and so on, with the file name
being the lowest sort key. The first element might be assigned to

company name, the second to project, the third to program, and the
fourth to programmer. The assignment is entirely up to the compu­
ter operations management making use of this progrrun. Once fixed,
however, the order cannot be changed. The first ID name on each
input card is always the major sort key, etc.

As a result of simplifying program deSign, names should con­
tain only letters, digits or blanks. Any other character will re­
sult in a blank on printed output and a "garbage" character on
punched output. In addition, the program accepts and prints/punches
only the first five characters of each ID name although the input
card may contain up to ten characters per ID n[-lme.

To provide maximwn processing speed, the program is divided
into two links, SP~IDD which processes all inp~t (and sorts) and
PRMDD which provides all printed or punched output. In addition,
to economize on design effort and speed execution, the sort is
done via a linked list structure in core "on the fly" as the cards
are read.

The table area used by the program consists of a mixture of

four-word ID name blocks and six-word file name blocks. The con­
tents of these blocks are:

Word
1

ID Name Block

Contents
Address of next block in current ID string
(next ID element in hierarchal order) or address
of last block in file string corresponding to
this ID string if this is last element in a valid
ID string (bit 0=1 in this case) 2£ 0 if no file
string attached to this ID string yet.

-_._----_ _.-. .--------................................... '"• ~ -.-.---~~---------------

Word

2

3,4

Word
1

2

3,4

5,6

14

Contents
Address of block at same hierarchal level con­
taining ID name in an ID string whose first
"N" names are the same as those in current
string. The new string sorts after the current
string. If this word is zero, there is no such
ID string yet.

ID name in name code (left-justified). If
bit 0=1, this current string up to this point
was specified as a control ID string (see C.
Program Operation).

File Name Block

Contents
Address of a file block to sort before this file
name and attached to same ID string. If this
word is zero, this is the last (sorted first)
block attached to ID string.

Creation date (as specified on input card) in
code - «(Year - 66)* 12 + Month - 1)* 31 +
Day - 1).

File name in name code (left-justified). Bits
0,1 specify file type (0 to 3).

File length (in words) or name of primary entry
(if this name is that of a secondary entry
point) in name code (left-justified). In the
latter case bit 0 is set to 1.

C''.

(~'I
,/

15

Example of Link Structure:

Input:

File Name ID Names

A XA YB ZC

C XA YB ZD
B XA YB ZD
D XA YF ZC

X XA YE ZD
Y XA YB ZC

Link structure:

XA~YB - -:;. ZC ·~Y ~A
I

1
I ..

ZD --~C ~B

YE ---4 X

1
YF ---4>D

This structural form internally provides q.ulte rapid searching
(not as fast as binary, but two passes would ce needed to produce
a binary table) to determine whether the same ID string has already
been input. It also permits efficiency with v6.riable length ID
strings (variable no. of elements). Only as mB.ny blocks are used
as there are nonblank ID name elements (except if XA, XA XB are
both valio ID strings, then the program would force XA (blank),
XA XB).

This scheme also permits sorting "on the fly" as input cards
are read. Since a file string attached to an ID string is linked
in reverse sort order, then, if the input deck is sorted by file
name in normal order, no searching 'lJ·ill be necessary to add the
new file name to ,the file name list. Since the deck produced by

~~---------.j

16

LETUD is in lexicographical order (and can be easily kept that way C;i
by appropriate filing of new cards), this procedure minimizes sort

time. In fact, for an ordered (by file name) input deck, input

proceeds at card-read speed (300 cards/minute).

Once input is complete it is a simple matter using a pushdown
list to trace through the link structure and print/punch output in
sorted order (the links in each file name string do have to be
reversed, but it is desirable to scan the list to get the total
length of all files prior to output anyw"ay - this does not seem to
slow down output in any way).

The current version of the program seems to provide all de­
sired objectives with the possible exception of the ability to re­
tain only those files created before (after) a certain date or only
those files longer (Shorter) than some specified length. For typi­
cal directory decks (with the exception of linking time) it operates
at least at 1442, 1132 speeds.

C. Program Operation

1) Neither link uses disk I/O so that column 19 should be blank.

2) The first card following the XEQ card is the parameter card
and specifies which options are desired.

Column
1

2

3

4

Contents
Blank - if the program should ignore all control

ID strings (see belOW)
Nonblank - if the program should process only those

ID strings which start with control strings.

Blank - see column 3
Nonblank - no printed output

Blank - print all files
Nonblank - print only ID strings and totals

Blank - punch ID string cards
Nonb1 ank - no punched card output

o

o

17

The next ten columns correspond to each of the five possible
ID's, a two column set for each ID. The first column of a set
specifies the lONest hierarchal level (highest-numbered) ID element

sorted upon; i.e., if column 2*N + 3 is nonblank, but columns
2*1 + 3 (I=l, N-l) are blank, then IDls N, N+l, etc., are ignored
and thus not part of the sort.

The second column of a set specifies when page ejects occur;

i.e., a page eject will occur whenever IDn takes on a new value

(name) if columns 2*1 + 4 (I=l,N) are blank.

3) Following the parameter card is a set of control ID string
cards specifying strings either to be ignored (column 1 of para­
meter card blank) or to be processed (column I nonblank). It is
important to noiethat, if, for example:> XA YA and XA YB are valid
ID strings, then the control string XA will apply to both XA YA and
XA YB (i.e., both will be either ignored or processed). However,
XA YA applies only to XA YA and not XA YB (but would, of course,
apply to XA YA ZA, etc.). The format for these cards is the same
as that for files name cards (see below) e.xcept that columns 1-29
are ignored and should be blank. An EOF card (any card containing
a 7-9 punch in column 1) terminates the set of control ID string
cards (the set may be empty, but the EOF card must be present).

4) Following the EOF card is the master directory deck containing
cards of the following format:

Columns

1-14

20-27

Contents

Same as LETUD output format (columns 9 and 15
must contain a nonnumeric character and file
length must have leading zeros punched).

File "creation date" as MM/DD/YY (Where

M=Mon.th, D=Day, and Y=Year), MM must be
betvleen 1 and 1.2, DD between land 31, and
YY greater than 65. Leading zeros may be

30-34
L~0-44

50-54
60-64
70-74

Note: It is

18

omitted (numbers must be right-justified).t but C
not replaced by blanks; e.g., 1/12/68,
1/01/66, 1/1/69 are valid, but 1/_1/69 is
not. The colwnn following the last digit
of the year must be nonnumeric. The results
are unknown if this field is left-blank (ex­
cept that it will not affect any other field).

First ID name (left-justified preferably)
Second rr rr " " "
Third " II " " rr

Fourth rr rr rr " II

Fifth " " " " "

permissible to have all ID name fields blank.

Following the master directory deck must be another EOF card
signifying end of input (if punched output is specified, blank
cards should follow the EOF card).

5) After SPMDD has read all input cards (through the second EOF
card), it links to PRMDD to perform all output functions. Output
is a string of ID names with the total dislt word count at the right
of the line followed by a list of files (read from left to right),
five files (with full identifying information) per line. As the
ID string line is printed, an ID string card is punched in the
same format a~ (and usea.ble as) a control ID string card.

Note: Through judicious use of control ID strings it is possible
to process practically any ma.ster directory deck. Any time, for
example, a files card contains an ID string (which starts as one
of the control ID strings) and the ignore "switch" is set, the card
is skipped and no storage is wasted. If·no file names are desired,
then only one file block per unique ID string is needed (to contain
total length which is accumulated as cards are read).

o

19

Progrannned waits will occur if the program runs out of table

space in SP!VIDD (program start will cause exit to resident monitor)
or if card about to be punched in PRMDD is nonb1ank (program start

will cause the card to be reread in a check for blanks before it

is punched).

IV. CONCLUSIONS

We have found OUT Disk File Maintenance System for the IBM
1130 to be extremely useful. It has enabled us to uncover some
very interesting facts:

20

1) SSP (Scientific Subroutine Package) requires approximately
60~000 words on the disk (nearly 200 sectors) or about 12.5% of
the entire disk. We do not intend to put SSP on our monitor,
version 2, master disk since less than 10% of SSP has been used to
date. The user can put on what he needs.

2) By judicious deletion of unnecessary (for large original 1130
installation) files from the monitor, version 2, system 1ibrary~
the user can recover over 16,000 words of disk space (a saving of
40% over system as delivered).

3) We uncovered one user using almost 60,000 words of desperately
needed disk space (hov-r8ver -' we were unable to convince him that
our needs \V'ere greater than his) • c

•

SYSTEMS AND PROGRAMMING
MANAGEMENT*

Laurence H. Baker

The success of any computer installation depends.
upon many factors. Some of the more important ones
are:

A. The objectives which the data process­
ing effort is designed to fulfill.

B. Its place within the organization struc­
ture.

C. The organization of the systems and pro­
gramming effort.

D. Top management involvement in the com­
puter activity.

E. The mix of applications processed.

The key to success depends upon how well the
systems and programming activities are managed. If
these resources are planned and used properly I there
will not be maj or problems in meeting the obj ectives of
the data processing effort.

OBJECTIVES
Each objective of the computer activity must be

studied and analyzed carefully relative to the resources
required to accomplish it. If each obj ective can be
analyzed and planned realistically I all other factors
which can influence the success of the computing ac­
tivity have been properly adjusted in the organization.

A variable mix of applications in different periods
of the year can pose added problems requiring competent
individuals and knowledgeable individuals in more than
one area of application.

* Contribution to panel discussion on Systems and Program­
ming Management at COMMON Users Group Meeting -
April 10 , 1968.

- 2 -

ORGANIZATION STRUCTURE
The place of the systems and programming effort

in the organization can have a large measure of in­
fluence on its future. If they are established at the
corporate level such that systems work can be carried
ou t a s a staff function I there mayor may not be co­
operation. Probably I this depends upon the involve­
ment of top management in the review and encourage­
ment of computer applications.

A useful alternative approach to the problem is to
establish one or more key systems and computer liason
personnel within each division. If these are key posi­
tions and report to the general manager or president of
each division, they can playa very important role in
the successful development of computer applications.
A suggested organization chart is shown in Figure 1.

ORGANIZATION OF SYSTEMS AND PROGRAMMING
EFFORT

This must be organized so each individual under­
stands lines of responsibility I policies I their job and
opportunities for self-improvement and advancement.
A tool which can be used to achieve this end is a manual
for Systems and Programming Personnel which each in­
dividual is given the day he joins the systems and pro­
gramming staff.

The essential contents of such a manual are listed
below:

A. Policy
B. Standards and Forms
C . Publications and Instruction

D. Utility Program
E. Routine Support
F . Program Library

Courses Available

G. User Program Documentation

c

c

C~ ,/

o

SYSTEMS AND PROGRAMMING PROJECT MANAGEMENT

1. Importance of controlling the operation whether it is a new installation,
an upgrading of existing equipment, or the addition of new applications.

A. The larger the undertaking, the more important the controlling
and the scheduling of activities becomes.

B. The goals should be clearly defined, the specifications should
be well-documented, arid should be rigidly adhered to through­
out the entire span of the project.

II. A method of project control is essential to the successful completion -
on schedule - of the effort.

A. Manual methods lend themselves to small projects of a mini­
mum number of inter-related activities over a relatively short
period of time.

B. Computer-oriented techniques are invaluable for analyzing and
controlling complex projects that normally would tax manual
approaches.

III. Scientific Management techniques for project management/control are
not new although as time goes by more people are becoming aware of
their availability and potential. The more complex the endeavor I and
the more difficult it may appear to implement such a technique - the
more desperate may be its need!

A. Project FIRM, written to run on the 1401 or the S/360 Model 30
or Model 40 in compatibility I and PERT-CPM for the 1130, are
two Simple and yet very effective programs for controlling project
schedules. These are techniques that are simple to use and easy
to learn.

B. More sophisticated programs are Project Control System/360 which
runs under DOS/360 and Project Control System/1130 which runs
under the Monitor. They are designed to handle more complex net­
works and the elements of resource allocation and cost factors are
included.

C. Project Management System/360, an extension of NASA PERT/Cost,
runs under the OS/360 and has been developed for extremely com­
plex projects.

SYSTEMS AND PROGRAMMING PROJECT MANAGEMENT

- 2 -

IV. However the project is approached I however it is deemed wise to
control its many facets - none should ever be started without a
plan. The more comprehensive and thought-over the plan I the
greater the chance for a successful completion -- on schedule.
Management will respect our professionalism and be more amenable
to our needs (additional manpower I overtime I etc.) if a well­
developed and orderly schedule is used.

V. Expertise developed in the application of these Management
Science techniques to the control of the Data Processing projects;
can be readily applied to other programs within the corporation -­
whether it be building construction, assembly line development,
or engineering laboratory project control ~

c

o

REFERENCES
1. Management Handbook for the Estimation of

Computer Programming Costs

E. A. Nelson

System Development Corporation March 1967
Clearinghouse for Federal Scientific and
Technical Information

2. Toward Better Programming Management

M. L. Rubin

Journal of Data Management
Vol. 5 (12) December 1967

3. A Technique for Improving the Management of
a Computer Installation

R. L. Patrick

DPMA (Quarterly July 1965)

4. IBM DP Techniques

Organizing the DP Installation (C20-1622-0)
Mgmnt. of the Punched Card DP Dept. (C20-1611-0)
DP STDS (S360) IBM United Kingdom

5. Programmer Selection and Evaluation

A. COMMON Proceedings Dec 1967
B. COMMON Proceedings Sept 1967
C. IEEE Transactions on Human Factors in

Electronics
Vol. HFE-8 (1)
March I 1967

An Explanatory Investigation of Programmer
Performance Under On-Line and Off-Line
Conditions
E. E. Grant & H. Sackman

- 2 -

6. EDP: Its Controls and Economics

J. V. Miccio

Journal of Data Management June 1967

7. Management by Crises

J. A. Campise

Journal of Data Management April 1967

I
h /

PRESIDENT

Gen I I M gr. Di v. A Computing Svcs GeniI Mgr. Div. B

Systems Liason Div. A I-- - - - ~ -(> ~- - - - ~ - -- - -. -. -
Systems Liason - Div. B

Systems and
Operations

Programming
I ~

P .11"1 ('I 1. [) i 3 C US;) ion 2) C ~:; :::! ion '!:: t. j - /\ 1

::./: Beryl Cordill~ , Orlan(!o Utili t .. iCfi COr:tT;l.L~iSi(ill.

The implementation of any project should devote a consid­
erable effort to the definition of the problem and to the system
design. It has been my experience that more effort should be
expended in this area than in the actual writing of the program
and its implementation. Considerable time should be spent
studying the interplay of activity and the flow of records
involved in the application. It is important to document this
phase and to review it in detail with the affected personnel
in the other divisions of the company. This review should
establish that the activity analysis accurately reflects the
operations now being conducted and should be approved not only
by the involved operating personnel but the next higher level
of management.

All of the activities and events which must take place
to accomplish a conversion should be enumerated, scheduled,
and checked off as they are accomplished. It is most important
to arrange these activities in.the proper order and establish
a reasonable period of time of their completion. Comparisons
of actual performance to the scheduled are very helpful to the
project manager in focusing attention on the problem areas.
The thoroughness of the preparation of this schedule will
determine the ease with which the whole project can be managed
and brought to a successful implementation. A conversion
schedule or bar chart is the very least that is required for
a simple application. At the other end of the scale, some
form of critical path method, using the computer to evaluate
the attitude or progress at any given point, is the most effec­
tive tool to manage any complex project.

When management is faced with a new application in a
fully converted shop, it is even more important to follow a
strict schedule since attention can be focused primarily on
the new application. Management must also worry about system
maintenance, the modification of operating programs, and other
changes which involve the programming staff. To provide depth
and flexibility, it is important that maintenance of the oper­
ating system be rotated among several staff members. Care
must be taken to assure that adequate documentation of the
utility and other IBM-supplied programs is provided. The use
of a check-off sheet to keep track of the progress of the
development of a new application is a very practical approach.
Similar to a conversion schedule in scope, this sheet presents
a listing of the activities that must take place from the
general system design all the way through the establishment
of operator instructions after the program has been thoroughly
tested. o

c

•

Page 2

The management of a data processing installation must be
planned and organized to delegate some of the responsibility
to the appropriate staff members since no manager can do the
entire job himself. The schedules and reports which are pre­
pared by the staff are tools to be used in evaluating the
position of the programming staff and the individual perfor­
mance of the programmers. If this approach is taken and the
staff has an understanding of why this is being done, projects
and applications can be converted successfully and on time .

== ===QZi.Q;',jiUi4f4M ,,¥,; . .4p, .n __,tt:

I!

c

II ••

SESSION REPORT

COMMON - Chicago

Session Number WED A4 Session Name 1130 LP/MOSS Users ----------------------
Chairman Dan Koster Experiences

Time 8.30 to 10.00 AM Attendance (No.) ----------------

Speakers G. Schoditsch 13438 Dr. Scott Hathorn

Monsanto Co. J. G. Boswell Co.

1700 S. Second St. Corcoran, California

St. Louis, Missouri

C','I , ,

Synopsis of Meeting Dr. Hathorn spoke on two programs he has for

generation of the cost row and constraints for his enterprise resource

allocation model in a farming environment. The programs are to be

released through PlD.

Mr. Schoditsch spoke on opt~um packing. for gas liquid chromatography

columns. The write-up follows. Mr. Muller of lBMfis.ued a plea for

feedback on Version 1 of LP/MOSS and suggestions for Version 2. He

wants to know what we are interested.

o

c'

c"
~

"

0','·'·' , i

To be presented at:

COMMON Meeting
Chicago, Ill.

April 8-10, 1968

USING LINEAR PROGRAMMING TO
DETERMINE OPTIMUM GLC

PACKING MIXTURES

G.F. Schoditsch

MONSANTO Company
St. Louis, Mo.

March 7, 1968

_______ J

Using Linear Programming To Determine
Optimum GLC Packing Mixtures

G.F. Schoditsch, MONSANTO Co., St. Louis, Mo.

ABSTRACT

Gas-Liquid Chromatograpy is a commonly used analytical tool in the
chemical industry. GLC may be used for both qualitative and quan­
tatative analyses (what is present and how much of each component
is present in a sample). An important element in the effective
use of GLC is the proper choice of packing or mixture of packings.
Linear Programming has been applied to process of selecting the
proper mixture of packings.

INTRODUCTION

In GLC, a vaporized sample is injected into a stream of carrier
gas (usually helium) and adsorbed onto a packing. The packing is
one or a mixture of high boiling components deposited on an inert
substrate. As the sample/carrier stre~~passes over the packing,
each of the components of the sample~is 'adsorbed' onto the pack­
ing. As the sample/carrier stream becomes depleted of sample,
the components of the sample 'desorb' from the packing. An inst­
rument measuring the physical-chemical properties of the eluted
components draws a graph (see Figure 1) that may be interpreted
to determine the composition of the sample.

100

50

O~ __ -J

Time

Figure 1 Typical GLC Chromatogram

Inspection of figure one shows that the output from the .GLC inst­
rument is a curve' with several peaks. Each peak is associated with
one component of the sample. The relative area under each peak is
a measure of the amount of each component present. For a given
packing'material, the distance from a known reference point to each
peak can be used to identify the component. As you can r~a~lily
understand, ~fthe peaks are too close together, not only does com­
ponent identification become difficult, but calculation of the area
under a peak is almost impossible. To improve the separation of peaks

c

C~,

o

(2)

(resolution), a mixture of packings is employed, since different
packing materials give different resolution for different sample
components. Figure 2 shows the relative retention times for a
given sample using three different packing materials.

PACKING NUMBER

1 2 3
Component

1 1.00 1.00 1.00
2 1.95 1.79 2.41
3 2.20 1.93 4.23
4 4.90 4.20 3.84
5 5.10 6.10 3.62
6 8.10 6.39 7.04
7 7.40 9.94 6.82
8 9.20 8.73 8.48
9 20.60 24.85 11.61

10 24.50 28.15 24.88

Figure 2 Relative Retention Times

If difference between retention times for each of the components
is tabulated (see Figure 3), these differences may be thought of
as the effect that the packing produces when separating the mat­
erial. The assumption of the LP approach to packing selection is
that when several packings are combined, the net effect of each
packing in the mixture is linearly additive. The object is then
to find that combination of packings that will give the best re­
solution of peaks.

PACKING NUMBER

1 2 3
Difference No.

1 .95 .79 1.41
2 .35 .14 1.82
3 2.70 2.27 -.39
4 .20 1.90 -.22
5 3.00 .29 3.62
6 -.70 3.55 -.22
7 1.80 -1.21 1.66
8 11.60 16.12 3.13
9 3.90 3.30 13.27

Figure 3 Differences in Relative Retention Times

Other approaches to this probleml have been to assume a quasi­
theoretical approach to the actual action within the packing
column and calculate the expected separations for key components
over the entire range of mixture of packings, usually in incre­
ments of about 5%. This method is usually limited to mixtures
of two or three packings. This approach also makes several assump-

SW""",,;SQJ&J4WU'; iPiAfi4* ·H ""' tiT44 %41,4. ¥ . p#i44t . 444 44$4#2I~t.

(3)

tions regarding the ideality of the sample mixtures. The linear
programming approach uses a minumum of actual data from the actual
sample to predict the optimum separation.

THE LINEAR PROGRAMMING APPROACH

Using the assumption of linear interaction between the packings,
the following set of equations can be developed from the difference
data of Figure 3:

Dl= 0. 95Xl + 0. 79X2 + 1.41X3
02= 0. 35Xl + 0. 14X2 + 1. 82X3
D3= 2.70Xl + 2.27X2 0.39X3
04= .20Xl + 1.90X2 0.22X3
05= 3.00Xl + 0.29X2 + 3.62X3
06= -O.70Xl + 3.55X2 O.22X3
D7= 1.80Xl - 1.2lX2 + 1.66X3
D8= 11.60Xl + 16.12X2 + 3.13X3
09= 3.90Xl + 3.30X2 + 13.27X3

1.0= Xl + X2 + X3

The last equation simply states that the sum of the fractions of
each packing must equal 1.0.
If equal proportions of each of the three packings are assumed,
(that is Xl = 1/3, X2 = 1/3, X3 = 1/3) the following set of dif­
ferences are predicted:

Dl = 1.05
D2 = 0.77
D3 = 1.53
D4 = 0.49
D5 = 2.30
D6 = 0.88
D7 = 0.75
D8 = 10.28
09 = 6.82

Inspection readily shows that 08 and D9 will be significantly larger
than the other seven no matter what mixture is employed. These
differences will be neglected.

Inspection also shows that 04 is the smallest difference of reten­
tion time. The object then is to maximize D4 with all other dif­
ferences subjected to restraints of being equal to or greater than
0.5, 0.6, etc until either D4 becomes equal to or smaller than any
of the other differences and the requested solution becomes infea­
ible.

C

c

. \ C.''' ..

c\

o

(4)

Following this procedure, the results shown in Figure 4 were ob­
tained using the LP-MOSS package on our 1130 computer. The runs
were made with a lower limit on all differences (except 4) equal
to 0.6, 0.7, and 0.8. The program indicated that no solution
could be obtained with a lower bound of 0.8, or in terms of the
real system, no mixture of real packings would give a relative
retention time difference of at least 0.8 for each component.
Examining the results when the limits were 0.6 and 0.7 led us to
estimate that the optimum should occur (that is, the 'maximum'
minumum difference would occur) when the lower limit was set to
0.688. Results of this run verified this estimate.

DifferenC'2 No ..
1
2
3
4
5
6
7

Pl-\CKING

1
2
3

Figure 4

VALUE. OF

0.6

.991

.600
1.836

.765
2.087
1.058

.600

.386

.388

.225

RESTRAINT USED

'0.7

1.026
.700

1.657
.677

2.224
.934
.700

.359

.352

.289

0.8

Solut.ion
Infeasible

0.688

1.022
.688

1.678
.687

2.208
.949
.688

.363

.357

.280

Tabulated Results Of Computer Runs To Determine
Optimum Packing Mixture

DISCUSSION AND COMMENTS

A packing mixture for the predicted optimum separation was prepared.
The results 'of the actual mixture approximated those predicted by
the computer (see Figure 5). Although one separation was not ach­
ieved, the method gave good general predictions. Unfortunately,
the actual differences were not large enough to give the desired
resolution. Other 'tricks of the trade' needed to be applied to
achieve a satisfactory resolution. Unfortunately also, the origin-­
al data were not generated using sample and operating conditions
near enough to actual sample compositions and operating conditions.
In any case, the predicted optimum is close to the actual optimum,
and may be used as the starting point for further experimental
study.

· .. ,." ... -..... , ...• - ~ ... ~ ... ~. -.. ~--~, ... ~-.. --... ---. ,,, ... _ ... __ '. """"

(5)

COMPONENT PREDICTED ACTUAL

1 1.0 1.0
2 2.0 2.1
3 2.7 2.2
4 4.4 4.9
5 5.1 4.9
6 7.3 7.9
7 8.2 8.4
8 8.9 9.6
9 20.0 22.3

10 26.3 25.7

Figure 5 Comparison of Actual and Predicted Relative
Retention Times

The procedure shown here is applicable to any number of compon­
ents, and any number of packing materials. All that is needed is
relative re~ention times for a sample containing all the compon­
ent for each of the packing materials. The original data should
be generated using a sample with composi·tion near that of the
samples that will be routinely analyzed by the instrument.

Data for relative retention times is also given in Kovat's indices.
Using the data from these tables a scheme may be worked out to
generate relative retention times for a mixture without having to
actually run the sample. This and several other alternates are
being examined as ways of improving the method.

ACKNOWLEDGEMENT

Grateful acknowledgement is here-with given to Mr. Fred Stewart and
Mr. John Hinchen of the Monsanto Co. Mr. Stewart supplied the or­
ginal data for the problem and verified the results. Mr. Hinchen
helped immeasureably in preparing the problem for solution using
linear programming.

REFERENCES

1. "Computer Optimization of Mixed Liquid Phasis for Gas Chrom-
atography", ANALYTICAL CHEMISTRY, . Vol. 36, No.2, February
1964, pp. 260-262.

cl

~
'~w;/

c

c')

o

SESSION REPORT

COMMON - Chicago

Session Number WED A6
--~~~~------------

Session Name 1130
--~~--------------

Chairman D. Dunsmore

Time 8,30 to 10,00 AM
----~~~~~~~~~----------

Attendance (No.) ----------------

Speakers (1) Don Gardner - General Foods

(2) Marshall Hechter - IBM, Chicago

Synopsis of Meeting (1) Gardner - "Multiple lelresslon Program"

(2) Heehter - "1130 Assembler PrograDllliag Aid."

Purpose:

Multiple Regression Program
MRP/ll30

The MRP/1130 performs standard mUltiple regression computations

on a set of data consisting of a maximum of 60 variables and

9999 observations with residuals and predictions computations

optional to the user. (This program was patterned after the

Multiple Regression Program for the 1620, 1.6.043)

Machine Requirements:

An 8K 1130 with a 2315 Disk, 1442 Card Reader, and 1132 Printer.

Program Description:

MRP/l130 is coded completely in FORTRAN and consists of six

mainline programs and seventeen subroutines for the multiple

regression computations: and three mainline and eleven add-

itional subroutines for residuals and predictions making a

grand total of nine mainline programs and twenty-eight subroutines.

Output:

The standard output of MRP/1130 consists of the following:

1. Definition of variables

2. Average, variance, and standard deviation for each variable.

3. Pairwise correlation coefficients.

4. Regression information

a. the multiple correlation coefficient of each. X-variable

with other X-variables.

(V c.

c

-2-

C'''·' \ .

b. the b-coefficient for each X-variable

c. the standard deviation of each b-coefficient

d. the T-value for each X-variable (b/Sb)

e. the constant term, the mUltiple F-value, the degrees

of freedom corresponding to numerator and denominator

of F-value, the mUltiple correlation coefficient for

the X-variables in the regression with the Y--variable,

and the residual error.

The output of the Residuals and Predictions section of the

program (if desired) is the following:

c' 1. Definition of variables (optional here)

2. A statement of the regression equation (a listing of the variable

number and the b-coefficient for each X variable in the model

plus the constant term)

3. For each observation, the following are listed:

a. the observed Y-value

b. the predicted Y-value

c. the residual value (the difference between a and b)

d. the standard error of the prediction

e. the normal deviation of the residual

4.A scatter plot of the residuals plotted against the observations

o 5. A scatter plot of the residuals plotted against the predictions

-3-

Input Deck Arrangement

The input deck is arranged as follows:

Galling Cards (II XEQ etc.)

MRP Header Card

MRP Variable Definition Cards

MRP Data Cards

MRP Trailer Card

Header Card

The format of the header card is as follows:

Cols Description

1-4 Number of observations

5-6 Number of input variables/observation*

8 0 Regression Analysis

1 Correlation Analysis (all input variables)

2 Correlation Analysis (selected variables)

* The definition of 'input variable' is most important: an

input variable is any value punched in the data cards which

mayor may not be included in the regression equation, .i.e.,

one may have more variables on the data cards than one needs.

The total number of input variables is· punched in cols. 5 ... 6)

Variable Definition Cards

These cards are used to define the X-variables (independent

variables) and Y-variables (dep~ndent variables) which are·

needed for the regression analysis(es).

c\

o

-4-

These cards are either one of two basic formats:

1. Type 1 - used to define a variable directly

2. Type 2 - used to define a variable from previously
defined variables.

Both X- and Y-variables may be defined directly or as a function

of other previously defined variable(s}. Some times a variable

is defined and used only to generate another variable. This

presents no problem since you can indicate to the program that

the original variable is to be ignored and not used as part of

the regression equation.

The variables defined directly can be coded or scaled by any

amount or transformed by one of four available transformations

(if transformations are important to the user, a total of nine

(9) can be included for use.) They are

Square Root
Log (base 10)
Exponential
Reciprocal

A variable can be defined both as an X~variable and a Y-variable

simultaneously. With the proper use of the variable deletion

procedures, one can use a variable both ways. The important

consideration i,s that the data need to be read only once under

such circumstances. Proper handling of the trailer cards giv~

the required results.

_===aUlikiCMi«ktMMffit'U:a,WitkitlifGMNWi.\MM¥ "

-5-

Data Cards

The program uses the subroutine DATAR to read the data in free

format, that is, data may be anywhere on a card between columns

1-72 (the 72 may be changed to any limit) and any nuInber~f data

cards may be used to represent an observation. This is parti-

cularly useful in regression work wp.en one wants to merge two

data decks together and the formats of each are different .;.,'no

problem when using DATAR. The only other requirement is each

piece of data must be separated from adjoining pieces of data

by at least one blank column.

Trailer Card

Each regression analysis requires a trailer card to specify

which Y-variable to use in the regression equation (one may

specify more than one Y-varictble on the yariable definition

cards, but of course only one at a time can be used). The

trailer card is also used to specify which, if any, x-variables

to delete before the inversion process. This featui~ allows

one to define more X-variables than are needed fora given

regression equation which can be useful' in the following circum-

stances:

1. For a given dependent variable (y) one would like to study

various sU1:isets ofx-variable's'e~ti:~'l: ,to, :or less than t.he;'

total nutllber of X--variables.
., ..

2. One has t\\JO or more d~pende£l'tVar~aliles and the l;e9'!essiO~,

(:'

o

o

-6-

equation for each involves a different set of X-variables.

All X· and Y-variables for a problem like this can (and should)

be defined at one time so the data do not have to be read

more than once.)\n extreme example of this kind is when you

have two problems: regress Xl -X2S ' say, on Yl and regress

X26-XSO on Y2. X26-XSO can be eliminated for an analysis

of Yl' and Xl -X25 can be eliminated for an analysis of Y2

by the use of trailer cards.

3. One has specified that automatic deletion of variables take

place. If many X-variables are in the original equation,

then after many successive deletions roundoff error can

start the creep into the calculations.

This presents no problem since you can start over with just

a trailer card eliminating those variables you do not want

and obtain a 'clean' regression analysis. This happens because

the unwanted variables are deleted before inversion.

The Use of the Disk

The following information is stored in the one permanent data

file used by the program:

1. total number of observations

2. total number of variables (both X-and Y-variables)

3. total number of definition cards

4. index of Y-variable in equation just computed

5. residual variance

-7-

6. constant term

7. vector of subscripts for X-variables in regression

8. vector of averages and standard deviations for all

X-and Y-variables

9. correlation matrix

10. inverse of correlation matrix

11. vector of b-coefficients for each X-variable in

regression.

This file can be dumped on cards (149 cards) if more work has

to be done (i.e., other analyses to be performed at a later time)

with the particular set of variables. This feature is useful, again,

so that the data only have to be read once. An example of its

usefulness is the following situation: One has two Y-variables to

be analyzed, but only time on the computer to analyze one. The

data are read and the one analysis performed. Then the file is

dumped on cards and re-entered onto the disk at a later time so that

the second analysis can be done.

Residuals and Predictions

A residuals and prediction analysis is usually performed after

a regression equation has been chosen.- Sometimes all the

original variab,les are in the equation and other times, a subset.

In any case whenever a regression analysis has just been com­

pleted,. a residuals analysis is available under sense switch

control. All that is needed is a residuals and predictions header

/

o

-8-

card added in front of the complete data deck used in the

regression analysis.

Highlights of MRP/1130

1. FORTRAN Coded

2. One Data File

- The nine mainline and twenty-eight sub-

routines are all coded in FORTRAN.

- the data file has been defined with the

following statement:

DEFINE FILE 1(3960,2,U,IVl)

All variables, singly and in vectors, integer

as well as real, are stored in this file.

This is particularly convenient because of the

lni.J-:'
need to use only/\ *DUMPDATA card when dumping

the file on cards. More importantly,

it allows for maximum transfer of vectors

of data on and off the disk to and from

core. Disk to core transfer for a vector

of 1000 real variables is 1.2 sec.

3. Model Definition - The regression equation or model is very

easy to: (1) define in terms of the original

data and (2)" define in terms of other var-

iables. In addition the X-variable deletion

procedures allow maximum control of model

definition.

· -9-

4. DATAR DATAR is the format-free input subroutine c
which retrieves K pieces of data, converts

them to floating point, and places them

in the vector X when the stat:ement CALL

DATAR{K,X) is executed. This routine can

be used in any program where format-free

read capability is wanted.

5. MXINV - MXINV is the matrix inversion subroutine

which has the following properties:

a. uses the'bordering' technique of

inversion which is useful in a regression

environment since variables are added one-

at-a-time and a new inverse computed

until all variables are in (lxl,2x2,3x3,

..• ,NxN). If at any stage the inverse

becomes' singular, the latest variable

(which caused the singularity) will be

ignored and computations will resume

~ if that variable never existed.

The index of each variable ignored in

this manner is printed out.

b~ operates upon an upper-triangular matrix

in vector form using the SSP subroutine LOC. c
c. places the inverse on top of the input

-10-

c
matrix, thus minimizing the amount of"

core storage needed for matrix inversion.

d. Sample inversion times are listed below:

Size of Matrix Time

10 3 sec
20 20 sec
30 63 sec
40 2 min 27 sec
50 4 min 40 sec
60 7 min 58 sec

o

"'LLLClld a;

, I

I

I , i
j

•••.••• C. __ , ,,,,,,,,",,,,,,,.",,,"""_~""'" ___ '''''''''''''''''"'''''''''''''''

-11-

Practice Problem

The practice problem shown on the following pages is in

four parts -- four separate analyses on a single set of data.,

The general form of the desired regression equation is shown

below:

where the Wi are the input values for each observation, tha,b.
/,<.:~

are the regression coefficients to be estimated from the data,

the b O is the co~stant term to be estimated from the data, and:>,:

Y is the response variable. (In the practice problem we have :·i:':

two Y-variables, each of which will be used in the above re~l~$iOn
equation) .

To reduce the above equation to a more familiar form,

Y=bO+~biXi' the following substitution is made:
I.~

X2 = W3

X3 = log (W4)

and X4 = (W2/1000)W7

A description of the four analyses performed on the set

of data is shown below:

Analysis

1

\~ ...• :

Description

..,

Read header card i X-and Y...:definition

. cards, the datai and the trailer card

and perform the indicatedre9t'ession
. Y

'. .1 .' '.'
analys is oIA (Au tom a tic deletion" l?f the

least significant variable'was done in
,this analysis.)

c

c
2

3

4

c

o

Read trailer card only and perform an

analysis on Yl with full equation. Then,

perform residuals and predictions analysis

on same.

Read trailer card only and perform an

analysis on Y2 with full equation.

Read trailer card only and delete X2 and

X4 . Thmdo regression analysis with

reduced equation.

c'

C'" " I

o

~ (' .!. '7 0 / f"\

J 7 1 ':/0
:;1?-()'-f

. c: (:,,/ \.J () -:: 0 0 r: •
'I1J.9G

1.~: • 'j
7 '7 • i+

, r I • :)

=) 6 • C

~
,
!.

1
1.
J
1
-
~.

.t

1
I
,

1

7).

~ 3
c) 7
"

..

t+ 7
'-! ~)

1 ~~:
~,

.'
') S
L 1

.~

1.-:.
v

L~ :,)

;.- 6
6- h,

h .,

~

n 7
:;

t; .'
C

C' O~o:J

(~

6 L~

6 ~;
") (.-

::. r--, ." -
--I

~ ;

':,...;
~

7 1

1
7 " .. '

c:,
-

I

?
"
l

L.

/.

J I: ~

..

'i
...

r:'

t:.

1

L,

4-

"/
'i

..!..

, , ? ,.j

L. .i.. :Of .'.
;.)

L. .L -
0 ... \.;

;:: 1 .,

..
'. .'
-
r, , 'j ~-...

i

-; 1 .-
(-

.'

')
, ,.

0
-,'\

,;

,- 1. ,./

fO .. i.,) ,~
~ - ~

,'.

?
, -

"

, 1 ,. 1 ol
,',,! (;

.'

?
., (."\

'-. '-

,- ::;

10." 2
1 1+
.~,

6
h

t:. Lt·
-: ...,

J

L .
I.

t L

,.:. '::.1
...,

J

!..L --: .-

.' 3

?Ji(--,7 07
~t,;':.3· (j~

??J.l
~"~~: (::

.J 1 (~:.

3U(:Z

L:,. t.~ '~ ;3
25
7L

"7 -::, tJ C
'7 ? • S
7(~alt 1 :; t :. ::: 2 ~ ? COG ? ~), ,J r. S J. ?

-rrv~ C"."....J - u""...-tr 1.

0,2

01020 l.:.

Dft-rA -----.--..-

,--~~ --•. ~-.--~.--''',".''''.'''''''-.~~~~-------

/
c ~~ F I i\~ 1 T ION OF VAFd f.,BLES o

'i
I'"

\' 1 = Z 1 l!'~PuT 2 I \....
I, _.
X ~ = Z 2 = I NP!JT 3 ~

X j = Z 3 = LOG OF I >jPU T 4

(
"7 4 = Ii\JPuT 7 L

X 4 = Z 5 = Z 1 ~: Z 4
v
1\ 5 = y 1 = I,\PUT 6 - 3UU8.JUu4

(
~ X 6 = Y 2 = INPuT 1
,

AVEf<AGES, VARIANCES, AND STANDARD'DEVIATIONS

(X AVG VAR STD
'-

1 12.9004 12.4382 3.5267
2 21.4705 2.1397 1.4627

(3 2.2562 0.0033 0.0575
'-.,

i+ 64~.4229 208619.0629 456.7484
5 303.7059 :19'9539.3441 446.6903

f 6 64.8529 182.5224 13.5100
\,~.

C'

e,-

c

c

1 2" 4 5 6

(

2 0.105 8-0.088 0.437

c.
4 0

c. 5 0.285

6 1.QOO

c.

c"

o

" . -< ... '"') \.\' i"\ /'.

1 :J So , 2 • J.

2 (' ~;32 ':1 \.,.1 •
:3 C •

.•. -), "
C:;L 7

, (I 43 -{ 5 'T V •

c C :,; S T .!l, !\ T
1 7 6 "7 9 • (j. Z 5 C 3

/~ :< 5\)i< X
1 C.b3~S

Ij ~ .. ' ...) :-.:-

21 (), ;:,:~'?e
-6~J,1113

-0.169:3

~:l : ~ (~ ..)

6::.6129
~~.3034

!,. 3 (.:) ,. 6 2 -I Lt

\...·.2324

T

-1.23

::. U L T F D F 1 LJ r :2 ! --: S ~ ;"\ i-, :: S I v U ;\ L
it • 2 6 i; 1 i. C c; b 1 6 1 "-' 11:+ 4 U • S c' 't S :)

s CUt:F
?Cl.?127
-67 • Lt 12 5

St.(tj)

~4.17b6

T
3.7i

-1 • 2 '+-
3 O.~3GC -8001.6132 -2.42

;\;ULT i: ;);--1 l;r:2 i-~.sC:~ l~r~SIGUi\L

5.54 ~ 13 G.bcl 978C2.1~5l8

SEtS) T
1 0.8271 1[9.5931
J 0.B271 -7397.2177

54.3Z6(j 3 • !~·3
-2a21

C J;' J S T A j": T
1!+546.03.i.27

x i-\S":',J;~ X
1 O,,:"u(jO

c C ;\! S T,i\ i\; T
-726.912l1

: ... ; U L. T F D ;: .. - 1 D F 2 f< S U F~ j-, E S I LJ U ,\ L
6.11 2 l~ O.~54 101566,140cO

f3 COEr
79.89CCJ

S c: U3)
2:;,3772

i< U L T F t.J F 1 D F 2 ~~ S Q i~ : ::: E SID U A L
9.91 1 l5 0.397 128163.84396

"
\.,..1,- r

______________ J

(

y~
I .,
;-j

I-

\.

C

(

c

c

.It""
\

c:

c

X i-< S l~f~ X 8 COEF
1 0.8612 219.Cl398
2 O.G329 -6e.l118
3 O.b327 -8261.5215
4 0.4375 -0.1698

CO,\~STANT fviU L T F
17679.42583 4.86

VARIAblES IN MODEL - Y 1
x B COEF
1 219.8398
2 -68~1118
3 -8261.5215
4 -0.1698

SECb)
60.6129
S5.3534

3385.6274
0.2324

T
3.62

-1.23
-2.44
-0.73

DFl DF2 RSQR RESIDUAL
4 120.618 101440.98455

C CONSTANT; 17679.42583

(I~ES I DUALSANLi PREDIC.T IONS

c. ObS y(OBS) Y (PRED) i:XES I DUAL S.E. (y)
1 67.0000 366. 3594 -299.3594 257.7266
2 -172.0000 -174. 8906 2.8906 175 .8559

(. 3 -109 .UOOO -454.6524 345 .6~24 199.5121
4 -6.0vOO -48.4609 42.4·609 144. 104U
5 ti l!. ,01.)00: 1,73.0117 .-91.0l17 21706 l+26

C 6 898 .0001 '411.1211 ' 486.0;"[89. 127.6075
7 502 .0000 292·.5274 ·269.4726 110.5231
8 60.0000 293. 1484 ~'3} .• 1484 152.984~

(9 211 .000'0 :/5.'._\ ,.'t 226 .238$: ,. ~l? 2382 152 .7211
10 286.0000' ·{4S1.6758 -145.6.758 173 .3133
1 1 542.0001 .~,::;;" 12'7,Q a60· ; .. -1 (3'5.0859 145 .6507

(12 12 5 .;0(;1 00"";"; ·361.··187.5 -2'36.1675 187.7821
13 . ·22.00;00'>······, 48 •• 3945 --26.3945 144.9513
14 -78.0000 308.7599 -380',.; 7539 142.3867

C 15 950.0UOl 542.4766 407.5234 133 .60 t+ 7
16 1488.0002 1088.7775 399.2227 212.0325
17 295 .0000 ·569 .. 945tt ';"274 •. 9453 185.0715

('
......

o

NOf<t·1; DEV
-0.939

0.009
1.085
O. 133

-0. 285
1.528
0.657

-0.732
-0.047
-0.457
-Q.581
-0.741 C:
-0.082
-1.214

1.2·79
1,253 ! i

I
I
-<.-

-0.863

490.00

392.UO

294.00

196.00

98.00

c
li.Ol,

-98.00

-196.00

-294.00

-392.00

0
-490.00

F<ESIDUAL

17.
Oi3SEi~VA T ION

-172.00 381.33 650.-UO 934.67 11.. 11 • :? j

+----+----+----+----+----+----+----+----+----+----+----.~-----~
+ A
I
I
I
I A

1
I
I
1

+ fA +
I
I A
I
I
+
r
r
I
I A
+
I
I
I
I.
+
I
I
r A
I
+ A
I A /\
I
I
I
+ A
I
I A

A
+
I
I A A
I
I A
+ A

I
I
+ A
I
I
I
I
+

+----+ _.---+-- --+-----;----.--+ --- +----+----+----+----+----+-- -----i-

I
I
I
I
+
I
1
I
I
+

+
I
I
I
I
+

+

+

+

+

+

-172.00' 104.67 381.3~ 658.00 934.67 1211.33 14~J.U0
OUSEI<VA T ION

RESIDUAL
/8

PREO 1 CT IO,\:
-500.00 -2j3.33 j~.jj 300.00 56b.67 83j.j~ 110U.0J

490.00 +
I
I
I ,
1

392.00 +
I
I
I
I

294.00 +
I
I
I
I

196.00 +
I
I
I
I

98.00 +
I
I
I
1

0.00 +
I
I
I
I

+----~----+----+----+----+----+----+----+----+----+----+----+

A

A

-t­

I
I
I
I

A +

A

+
I
I
I
I
+
I

I
I
+
1
I

A I
I

A +
A A I

I
I
I

-98.00 A + +
I I
I A I
r I
I A I

-196.00 + +'
I I
I A A I
I I
I A

-294.00 + A +
I 1
I I
I I
I I

-392.00, + A +
I I
I I
I I
I I

-490.00 + +
+----+----+-~--+----+---~+----+----+----+----+----+-~--+----+

-500.00 -233~33 ~3.33 3UO.00 566.67833.33 11UU.00
RESIDUAL p r~ E D I C T I () i~

rC'"
lIlY

C

c

o

o

.~ ~~ Su:\ X
1 u.b612
2 0.03~9

3 O.b327
4 G.Lt3I-;;

X
1
'J
..J

C J ;.~ S T A i\ T
6 J • 2S 4:>-'

i~ S Q:-~ ;<
0.8271
0.6271

c 0 t~ S T j.\ ; .. ! T
14S't8.00ulO

d (JtF
1 • L 7 3 {~
' ... J U 93

-Lr J .23"71
·-:) .. Jl11

sr.(U)
2.~2~~L~

2 0 3 lA-4
14Co9~14

0.0096

i',lUlT F OFl DF2 RSQH
1 • 1 S 4 12 () • t. -{ }

B (OEF SE(b)
189.5935 54.336G

-7397.2422 j::;' :3 2 • 16:; if-

T
0.50
1.73

-0.28
.... 1.14

AI'iALYSIS Cf Y 2

[~ES I JUi\L
1-/:).822'+7

T A ~ ,j,L\ L Y S I ~ J F Y 1
3. it e

-2.21

;,'tUlT F'
0.71

DFl GF2
14

l-\ S l~ i"'. " LSI [) U II, L
2 . 0.554 l015bS.~g4~d

Oa . -
•
........

\",

Cj ~~

o fJ,ra t ions

LD SHORT

LDD

STO

STD

A LON::;

AD

S

SO
INDIRECT

M'

0

AND

OR
X

EOR

LDS*

STS**

.* Short for~at onl y .

/1- , 6/ /~".rA..// ~e .#'~
#~cA~ *~ /-7~r~ C4.,~~ o

ACCUMULATOR OPERATIONS'

No X'R

The operand may be either a number or a
label representing a core address within 128
words ·of this instruction. Th is is the address
of the data to be operated on.

The operand may be either a number or label
representing an address anywhere in core·.
This is the address of the data to be operated
on.

The operand may be either a number or a
label representing an address anywhere in
core. This core location contains another
address. This second address is the address
of the data to be operated on ..

The operand may be either a number with in
the limits ±128 or a label representing a
core address within the first 128 positions
of core. The sum of th is number or address
and the address of the next instruction is the
address of the data to be operated on.

XR

The operand may be either a number within the limits ± 128
or a label representing a core address with in the first 128
positions of core. The sum of this number or address and
the contents of the spec if:ed index regi ster is the address
of the data to be operated on.

The operand may be either a number or a label representing
an address anywhere in core. Add to this address the con­
tents of the specified index register. The sum is the addres~
of the data to be opE~tated on.

, The operand may be either a number. or a label representing
an address anywhere in core. Add to th is address, the con­
tents of the specified index register. The sum is the address
of a core location which contains the address of the data to
be operated on.

Same as SHORT·X R.

" . . -.

"

** As a short instruction, store status stores the status of the carry and overflow indicators in the two low order bits of the word being
operated on. As a long instruction store status writes or clerns storage profect bits.

. ~·C ~ (~~)

o

Operation

LOX SHORT

LONG
01
.iJ,

lNDI.RECT

X

c n

LOAD INDEX REGISTER OPERATIONS

No X R

The operand may be either a number within
the limits ± 128 or a label representing on
address with in the first 128 positions of core.
This address or number is the address of the
next instruction that will be executed.

The operand may be either a number or a
label representing an address anywhere in
core. This address or number is the address.

. of the next instruction that will be execu­
ted .

. The operand ~ay be either a number ora
label representing an address anywhere in
core. The contents of this address is the
address of the next instruction that wi II be
executed.

Same as SHORT No X R.

XR

The operand may be either a number within the limits
± 128 or a label representing on address within the first
128 positions of core. The specified index register is
loaded with this number or address.

The operand may be either a number or a label represent­
ing an address anywhere in core. The specified index
.register is loaded with this number or address •

The operand may be either a number or a label represent­
ing an address anywhere in core. The specified index
register is loaded with the contents of this address.

....

Same as SHORT X R.

Operations

STX SHORT

LONG

Ul
~- INDIRECT

til.

vl

x

~

STORE INDEX REGISTER OPERATIONS

No X R

The operand may be either a number or a
label representing a core address with in
128 words of this instruction _ The address
of the next instruction is stored at this
address _

The operand may be either a number or a
label representing a core address anywhere
in core. The address of the next instruc­
tion is stored at th is address.

The operand may be either a number or a
label representing a core address anywhere
in core. This core location contains an
address of another core location. The
address of the next instruction is stored at
this second address.

The operand may be a number within the
limits ± 128 or a label representing a core
address within the first 128 positions of
core. The sum of this number or address
and the addre$s of the next instruction is
the address of a core location where the
address of the next instruction will be
stored.

F-,
~/

X R

The operand may be either a number or a label representing a
core address within 128 words of this instruction._ The speci- .
fied index register is stored at this address_

The operand may be either a number or a label representing a
core address anywhere i!1 core,_ The specified index register
is stored at this address_

Same as no X R but the contents of the specified index
register is stored instead of the JAR. The operand may be
either a number or a label representing a core address any­
where in core. This core location contains the address of .
another core location. The specified index register is stored
at th is second core location.

Same as SHORT X R. .~

()

o

Operation

MDX SHORT

LONG

01 .
0.

INDIRECT

x

~ ~

MODIFY INDEX REGISTER OPERATIONS

No X R

The operand may be either a number or a
label representing a core address within 128
words of this instruction. Th is number or
address is the address of the next instruction
that will be executed. (Unconditional
branch)

Requ ires two operands. The first operand
may be either a number or a label repre­
senting a core address anywhere in core.
The second operand must be a number
within the limits ± 128. The second oper­
and is added to the data in the core ad­
dress specified by the first operand. This
is the only add to core operation in the
instruction set. *

Do not use.

The operand may be either a number within
the limits ± 128 or a label representing a
core address within the first 128 positions
of core. The sum of this number or address
and the address of the next insf.ruction is
the address 'of the next instruction that will
be executed. (Unconditiona I branch)

XR

The operand may be either a number within the limits ± 128
or a label representing a core address with in the first· 128
positions of core. The specified index register is modified
by th is number or address. *

The operand may be either a number or a label representing
a core address anywhere in core. The specified index'
register is modified by this number or address.

(j

The operand may be either a number or a label representjng
a core addre~s anywhere i~ core. The specified index
register is modified by the contents of this core address. *

Same as SHORT X R.

* If the contents of the core ad~ress or index register specified goes to zero or changes sign as a result of the modification, you skip
one word in core.

U1

I'.)

/\

d,"~

Operation

sse

n

SHORT

LONG

BRANCH OR SKIP OPERATIONS

(Checking Accumulator Condition)

Requires only one operand
consisting of the condition
or conditions being te~ted.
Any combination of the
symbols C,O,Z,-,+ or E
(not separated by commas)
may be used.

One Operand
If only one operand is
given, the instruction is
an unconditional branch
to a location anywhere in
core.

Two Operands
When two operands are
given, the instruction is
a conditional branch. The
second operand spec ifi es
the conditron or conditions
to be tested. The first
operand may be a number
or label and specifies the
branch address·.·

No X R

C,O If a carry or an overflow
condition is present you execute
the n~xt instruction; if not, you
skip one core word.
Z,-,+,E If any of the condi­
tions spec ified in the operand
are present you skip one word.
If none of the conditions speci­
fi ed are present, you execute
the next instruction.

The operand" may be either a
number or a label representing
an address anywhere in core.
The branch is to the address
specified by the number or the
label.

C,O If a carry or an overflow
condition is present, branch to
the address specified by the first
operand. If not, execute the
next instruction" Z, -, +, E If
any of the conditions specified
in the second operand are pre­
sent, execute the next instruc­
tion. If none of the conditions
specified are present, you branch
to i-he address specified by the
first operand.

()

XR

Do not use.

The operand ~ay be either a nunlber of a
label representing an address anywhere in
core. The branch is to an address equal to
the sum of the number or address and the
con~ents of the specified index register.

Same as with No X R except th~ branch
address is equal ·fo the sum of the address
specified by the first operand and the
contents of the specified index register.

()

Ol

W

.....

o

Operation

BSC INDIRECT

x

c

BRANCH OR SKIP OPERATIONS

(Checking Accumulator Condition)

One Operand
If only one operand is given,
the instruction is an uncon­
ditional branch to a lucation
anywhere in core.

Two Operands
When two operands are
given, the instruction is
a conditional branch. The
second operand specifies
the condition or conditions
to be tested. The first o?er­
and may be a number or lab~l
representing an address any­
where in core.

No X R

The operanrl may be either a num­
ber or a label representing an
address anywhere in core. Th is
address contains a second core
address. Th is second ad9ress is
the branch address.

C,O If a carry or overflow
condi tion is present, branch.
ihe branch address is the con­
tents of the address specified
by the first operand. If not,
execute the next instruction.
Z,-,+,E If any of the con-
ditions specified in the second
operand are present, execute
the next instruction. If none
of the conditions specified are
present, branch. The branch
address is the contents of the
address specified by the first
operand.

: Same as SHORT NO X R.

n

XR

The operand may be either a number or a label
representing an address anywhere in core. The
sum of the address specifieJ by the operand and
the contents of the specified index register is a
second core address. The contents of this
second address is the branch address.

Same ~as No X R except for the branch address.
The sum of the address specified by the first
operand and the contents of the spec ified
index register is a second core address. The
contents of this second address is the branch
address.

....

Same as SHORT X R.

Vl

"

Operation

SSJ

""~

SHORT

LONG

~

~ ../

BRANCH" AND STORE OPERATIONS

(INSTRUCTION ADDRESS REGISTER)

Requires only one operand.
The short instruction is an
unconditional branch.

One Operand
If only one operand is given,
the instruction is on uncon­
ditional branch" to a location
anywhere in core.

Two Operands
" I

When two operands are
given, the instruction is a
co~ditional branch. The
second operand spec if; es the
condition or conditions to be
tested. The first operand
may be a number or label
representing an address any­
where in core (branch
address) .

I

No X R

The operand may be either a num­
ber or a label representing a core
address within 128 words of this
instruction. The andress of the"
next instruction is stored at th is
address. The next instruction that
is executed is at the word fol­
lowing this address,

The operand may be either a num­
ber or a label representing a core
address anywhere in core. The
address of the next instruction is
stored at th is address. The next
instruction that is executed is at
the word following this address.

C,O If a corry Oi on overflow
condition is present, the address
of the next instruction is stored
at the address specified by the
first operand. T he next i nstruc­
tion that is· executed is at the
word following this address. If
no carry or overflow, the next
instruction is executed,

()

X R

The operand may bt either a number within the
limits ±. 128 or a label representing' a co"re address
within the first 128 positions of core, The sum of
this address and the contents of the specified
index register is a second core address, The address
of the next instruction is stored at this second
address. The next instruction that is executed is" at
the word following this address.

The operand may be either a number or a label
representing a core address anywhere in core. The
sum of this address and the contents of the specified
index register is a second core address. The address
of the instruction is stored at th is second address. .
The next instruction that is "executed is at the word
following this addre"ss.

Same as No XR excepl for the branch address. !f
the branch is executed, the sum pf address spec ified
by the first operand and the contents of the specified
index reg ister is a second core address. The address
of the next instruction is stored at this second address,
The next instruction that is executed is at the word
following this second address,

C)

•
Operation

BSI

<..n
(X)

LONG

INDIRECT

c n '-'--_ .. -.

BR.A,NCH AND STORE OPERATIONS

One Operand
If only one operand is
given, the instruction is
an unconditional branch
to a location anywhere
in core. .

(INSTRUCT ION ADDRESS REGIST ER)

No X R

Z,-,+,E If any of the conditions
specified in the second operand
are present, rhe next instruction
is executed. If none of the condi­
tions specified are present, the
address of the next instruction is
stored at the address specified by
the first operand. The next
instruction that is executed is at
the word following this address.

The operand may be either a num­
ber or a label representing an
address anywhere in core. This
address conta ins a second address .
The address of the next instruc­
tion is stored at this second 'ad­
dress. The next instruction that
is executed is at the word fol­
lowing this second address.

XR

The operand may be either a number or a label
representing an address anywhere in core. The
sum of the address specified by the operand and
the contents of the specified index register is a
second core cddress. Th is 'second core address
contains a third address. The address of the next
instruction is stored at this third address. The
next instruction that is executed is at the word
following this third address. ________________ • ____________________ ~ ________________ --------1----------------------------------

Two Operands
When two operands are
given, the instruction is
a conditional branch. The
second operand spec ifies
the condition or conditions
to be tested. The first
operand Inay be a number or
label representing an address
anywhere in core.

C,O If a carry or overflow
condition is present, the branch
is executed. The address speci­
fied by the first operand contains
a second address. The address of
the next instruction is. stored at
this second address.
The next instruction executed is
at the word following this second
address. If no carry or overflow,
the next instruction is executed.

Same as No X R except for the branch address.
The sum of the address specified by the first
operand and the contents of the specified index
register is a second core address. This second
core address contains a third address. The address
of the next instruction is stored at this third
address.

Operation

BSI INDIRECT

Ol
~.

. ~ x

~

BRANCH AND STORE OPE,RATIOsNS

Requires only one operand.
The instruction is an uncon- .
ditional branch.

(INSTRUCTION ADDRESS REGISTER)

No X R

z, -, + I E if any of the conditions
specified in the second operand
are present I the next instruction is
executed. If none of thecondi­
tions specified are present, the
branch is executed. The address
specified by the first operand con­
tains a second address. The ad­
dress of the next instruction is
stored at th is second address. The
next instruction that is executed
is at the word following this
second address .

XR

The next instruction that is executed is at the
word following this third address.

•

The operand may be either a num- I Same as SHORT X R
ber within the limits ± 128 or a
label representi n9 a core address
within the first 128 positions of
core. The sum of this number or
address and the address of the
next instruction is a second ad-
dre~s . T he address of the next
instruction is stored at th is second

.. address. The next instruction that
is executed is at the word following
this second address.

()

;"1 •

()

~
.w

1'0.)

o

IBM
,~

~ '_ J

IBM 1130 Assernbler
Coding Form

n
Form X26-.5994-0
Printed in U.S.A.

Program DISt ASSEh\Bl FR INsm,OCTIONS Date ____________________ __

Programmed by __________________________ ~----------------------------------- Page No. ___ of ___ _

Label Operation - F T Operands & Remarks I Identification

21 25 27 30 32 33 35 40 45 50 55 60 65 70 75 80

• • • IS,~P. .:-. .. S,tG I. PI ,T,t=. ,ACe I l r;,1 ,Pt:>lSlJ ;r.1 ,"/.F=: I , I 1 1 I ~_ I ~_ 1

, I , _1 SilGP, -h-L , 15~J IPi ,ILl=t 14-~C. {'. 11 1& ~{'XS I T! 1\1 ,E: 10,0 IN "- A -T i ~ }S·· ,". ·1 I L' 1 ,Ii "~' -'0i~1 ~~. "" "'::Zl , i
, I I I ! I

• , 1 I • • I • I I I I , I , , I I I , • I I , I , I I I ~ i 1 ~ 1 1 1 I I 1 I I I I I

, 1 I k lB. I I I.rlf1P' , I , L ,S&~laR.tL UtN,C10iNIOJI ;TIl ,Q~'l~,L J3IRA,~JC,H, I ! I I I I I I I

, I • lBI I L A;~,AJ ,I\"'! "U,~.f!CO &\.~,D.I ,T. ~ tOI~"lt~lt_1 1?,!t;?IC!~"'ll ~t~lt\tY!l'il.HIEI ~E'I I" , I I I , I ,
, , , I I , • I I , I , " I I I I I I I I I I II I "" I I I I 1. 1 i 1.1 I I I I I I ,

• • I B,~, ~£,R.D, I I , ,BI~CIHI I] 1\=1 11~,C.ICI I I lSI ;!{'~R··Q i I ~_ I iii I J I I I , I I I

I I I I IB,N, ~!l~~ I I I I ,r?l,RCIHI 1"1 I t=1 1J~1f'.ICI 1151 F\',S&!A,T,' ,V,E~ I I I I I I I I •• I

I I I I IS,p, I PillS I I D I ,gl!~ICt~1 ,1,F, .A,ec, I I IS1 p,o,~! I t1:f ,V,E" I 1.1 L1. , I I 1 I 1

, , I I , , I I , , D , I I I I , I I I , I I • • I I I • I I I , • a 11. I 1 II I

[B~, I C,).\J(, RlV. I I ,B,R,C,~~, ,11~' IC'!i~jl~I~\}~ I; ,~~.D I ,(\i~,'-.O,t?i II.~I .C~\~l
I

, I I I I lili1J1

f---'. i II IBIO. I O.\I,i::,RIi=, I , IBRlr"'~1 .111=1 fOi'J,c;~~.L .. ln'!iVI ,j!~\~,DI,C.A,T.Q(;! ,ls ~Qr\~, E I I f I

I 1 BIOln aD,D L I I, 16'~IClrL 11J::: lACA:I.L I LSI lC,J).P) I I , i I • , I I I C I , I
I

1 I I I , • I I , I I I I I I I I I I I I I I 1'1 I I I I I I I I I I I , I I , I I--L...J I I I I I

I I t I IM,D!M :Q.o.RE,~ ,1.tp,lh ,A,D.!)' ,t,~>: ,T:~ :1 :.o~:'1:T: I :O:i\~ ~D·oC

: : : I-I : : : : : : : I I , , :_:_:~~:i~:
I I I , , I • I I I I , I

I I , I I)CC!..141 I I I I I I ,E,~t_,W,A,i\tGJ?:, i>\.CC, !fo~,!\l D E'}~IT. I I E I I I g I I I • • I I I'

I , , , I I I I 1 I 1 I I I 1 1 I I I I 1 I ! I I I I J I I I I I I I I I I i I I I ! 1 Jill I I

, I I I I 11 I I 1 I 1 III 1 I I I ~ I I III J III I I I I I I • I I I I I I , I I I I I I I I

• , I J J I ! I I I I , I I I I I I I I I I I 1'1 I I I I I & I I I I I I I I I i I I ! I I I I
I

I 1 1 J J I • I I I I I I I I I J I I I I , J J I i i _I .1. 1. .L I ~ I I I 1 I I I

I I J I I I
,

I ~l i 11 I I I I I J I I I ! I I I I I I I I , I I I I I i I I I I i I , I ! I

I 1 I I I a I ' I I I I I I I I I I I 181 I If' , 1 I I I 1 1 1 J • I t I i • IJl~lJ 1

II I I I I I J i J 1 I I I I J j I J I J 11 11 I J J J I I I I I J I I J 1 I I J I I I I I I I I

• , , I I I , I I I I I I • I If' I I I f I I I I I I I I , , Iii I I .1 I I I , I I I J I I I

I I I f I I I I I I IJ 1 I I I I 1 I ILl 1 1 i .L il ii' I f1. J ~ J 11 1 J I J I 1 I I I I I

V-6

Short Form Only

SLA

8RA

"­........

. --------- -,,-----
SLT

SHIFT INSTRUCTIONS

ND XR

The operand is a numberthat becomes
the s hltt count. If a s hitt count of
Zero is encountered, the Ins truction Is
treated as a NOP. The rightmost 6 bits

I of the dis placement are us ed to control
i the length of the shift.

XR

The XR tagged provides the s hi"t
count. The rightmost 6 bits Of the
tagged register controls the length
of the shift.

-.----4---.-, ----.. ----.. -----.--.. ---.-.--- _._-_._- -. - ---.--.. -'.-.-.-.-.-. -... ---... -.------ '" -- _ .. -..... __ ._.
1 . The Accumulator Is shifted left the number
i of bit positions indicated by either the

displacement (Tag = 00) or an index
register. Low order (rightmost) bits of the

I accumulator are set to zero.
-'--'--j ---------_._-------_. ._----,-_. __ ... _-_ ..

. f --r'· .-.---.-- -_. __ .---_._ ... __ . __ ... __ ... _._ .. -- -'-'-"'-'---'.- .. __ ._------_ .. _----
The Accumulator and extension are shifted left
as one 32 bit register (See SLA).

The Accumulator Is shifted right the number
of bit positions indicated by either the dis­
placement (tag = 00) or an index regis ter •
High order (leftmost) bits are filled with the
value of the sign bit (bit pos Ition 0) •

_____ . __ . ___ .. _,.,. '-'--'''--'-' ~ ... --. . ----l---.. . ---.. -----.-. -.. -------"--- . __ - -"--.' .. --- _._---- -" ---

SRT I' The Accumulator and extension are shifted
right 8S one 32 bit register. See SRA. ,

-.-~.- - .. ---.. -.----- -~ .. ----- --- .. -

(!) ()

---------. -----,

(-)

•
Short Form Only

SLC1\

SLC

RTE

'''-

~

I

I

i
i
!

i
I
I

smFT IFSTRUr.TIC1'T~

~TO XR

Tag)1ts or 00 cause
this instruction to 1)e

e 7 er uted as a SLA.

c

X•l
~--

The "A-Utn1.1J;)tor is shi'ted to th~ 18';t I th~
number of positions indicated by the tagged

i Index register. The six low order (rightmost)
I bits of the indicated register are used to
: determine the shift ~ount. This r"'ount is

c

(decremented by 1 for each bit position shifted.

Tag bits of 00 caus e
this instructIon to be
executed as a SLT.

Thel\.ccumulator and extension are shl rted le't
as one 32 bit register. See SLCA instrur;tion.

I .
----.• --------. --------r---- ----.----.----- -- ----- .----

The shift count Is In the i The rotate count Is found In the indicated
operand field. The low : irdex register.
order bits of the extens ion
are shifted Into the high
order bits of the accumulator.
Cons ider the accumulator and

I extension to be a continuous
I 32-blt register forming a loop.! .- ... -_._-..... -...... -.-. -.--.---.-... 'r- .--. - -'- .-.--~ .. _--- . __ . __ .. _--._-
I Exchanges the contents of the i XCH

I
, .n.ccumulator and extension • .N9.

OPERAND Is s pacified. This ! I ins truction acts as a RTE 16 l~
, ins tructlon •
i I .. _ _ ____ ._. __ ~_ .. ___ .. ~ .• __ • _. ___ .• ___ . ______ ._. __ . ___ • __ ~. • .. 1.. ______ •• _ .• ______ -=. __________ -___ ._. ____ _

Operations

SHORT

LONG
1

I

I
I
I
I

.. _--._-- ~-
INDIRECT I

- t

.E.9. ~ OPERATIONS

No X R

The operand may be either a number
or a label representing a core address
within 128 words of this instruction.
This is the address of the first word
of the IOCe. *

The operand may be either a number
or label representing an address any­
where in core. This Is the addres s
of the firs t word of the IOCe. *

-----------------_._-----
The operand m~y be either a number
or a label representing an address
anywhere In core. This core location
contains another address. This
second 'address is the address of the
firs t word of the IOee. *

x .. _ .. ' --. __ . __ ._----r -~:~-l~-p-~~~flm-ml-~!-.~e 1 ;~th:: -:-l-~~~;---

I representing a core address within
I the firs t 128 pas itions of core. The

KL

The operand may be either a number ·Nithln the
limits ~ 128 or a label representing a rore address
within the first 128 positions of ~ore. The sum
of this number or address and the contents 0·" the

, speCified Index register Is the address of the
I first word of the IOCe. * +--_ -.--------. ---- ----_ ..

The operand may be either a number or a l~l:>el

repres enting an addres s anywhere In core • Add
to this address the contents of the spe':"'t-fled Index
register. The sum is the address Of therirst
word of the IOee. *

---- ... --._---_.-.--_. __ ... __ _-----. --... -_ ...
The operand may be either a number or a label
representing an address anywhere in rore. Add
to this addres s, the contents Of the speci"f leri
index register. The sum Is the address Of a ("'ore
location which contains the address Of the rlrst
word of the IOee, *

' __ h· ... ~ ___ .. _ ____ ~--. __ ... _. ___ . __ - ___ ._ .. _. _______ -.__ _ __ __

Same as SHORT X R.

t sum of this number or address and the
i addres s of the next ins truction Is the I
~address of the first word of the IOCe. *1

. __ _._. __ ._. _____ ! _~ __ ..L' __________ ,

* The IOCe refers to the. Input 0 utput Control Command. The first word of the IOee must be at an even
boundary.

~ ~ ()

c

o

SAV12 OC 0
.. _________ - •• --.---- -- ------- .------ ._--_._--_ •• - -.- ••• -- --_._-_. ____ A

DC 6
CONI DC /8181

DC /90tj~:

DC /72C2 _ .. _-----. __ ._--------------_ .. __ ._---_._---------------.-----
BSS 3

aTYl DC 0
SAVE2 DC a

BSS E:. 0
START DC

DC
/ooou
/140LI --- -_._---_ .. _--._------------ -------_._ .. _---------------

READ DC CR8IN
DC /1200

.. -- _ .. -_ -.. - .• --_._- ----_.-._._- ... -~--'-' -_ .. -._-- --- - - -- ._--_. __ .. ------ ---- - ---.- .. _-- - _ .. -. -- .

CRDIN bSS 80
SENsa DC /0000 - -----.- .. -.. -----.--- .. --.-------. --....... ---.--.- -.. -.. -- -- .. ------.--.--.. ---- .. ------oc--·····--·-·---·- .. ;'-17-0-1---"--'--'--"--"-

SENS4 DC /aoo~') -.- --' ---------------------------------·-----T5c----i17-o2-- .---------.---.---.------.. --

ADO DC LEVQ
-.- -----.----- .----. ----.- ---------- ·---·------·----1\[5-4- ---tfC--- -----L-E \i-4'

. ADCRD DC CRt) I hi
'. --------------.------ ---------.. -.----- -.-... -- ---".--.-- [lTj~i5---LD·----L---- fe'- ---. --.-

STO L SAV12
LuX L l' LEva

STX Ll 8
_ .. -------... -----.-.. -------.------.... -- .. --- --... ----... -----.. -.. ----------··-----'[0")("-·· '--C.-I-- ·'LE··V4- -----.----.. ---- -.-.-----.-... --.-..... --- -.-.-'.

STX Ll 12
BACK XIO START

MDx *-1
·-·------LC T S '-r-CE)------C RO-IN

sse L EOJ. [,-
--- L 113F"------t5cL)"-CN--------··-------·-.----------- ----.- -.

DC CRDIN
--.---.--. - ... -.--- ... ------.--~-~----.--- ... - --.------- .. --------> - ------s·f-O-·--------QTYl·----------- --_.- ----------.-- . --.. -

LldF
------~DT.:

A

DCb I t,J
C RD I r~~-&-6~--

QTY1
.... ------- --.. ----.---.. -.-.--.------ - ... -. -------Cf8"F-----·--b-rNOC---- ---.-.. -----.-.----.-.-.. ---. "- .. ---.. -

DC CRDIN&12
-.--- --'-- .-.---- .. - .. -.-.. ---.-.. ---.-------.-.-----.--- -.-._- .. _- -->--- .--------- . ------. ~ Y-6F---'---' -.. H-OL~)R-'----------'-------'- .-... ---- .. -.,

DC /0000
DC CRD I ~!rJ 1 2
DC CON1&3

--.-- -- ... --.. -- .---------.--------.. ----.--.----- --------··---------·----bc--·----·-{;---- --.. -.---.-.--------.-----.---- ----. - .. -

l,.D L SAV12
-.-.--.----.. ---.-----.------- ·--·--:;--·-···-------·--------STO---C---·l 2 ------

12

11

10

LIBF
DC
DC ---_.-._--_._._._-_._._-_._------ .-'-------------------

9

8

WRTYO
/2000

CON 1-- 1

-7·---- -----------.------- .. --------------------------.-.----.------------.... -----.-----.----------.-.---.--------.. --.-----.--.... -----

6

5

4

-------------- .. ---------~-

--3- -------.----.. --.---.--.----.. -.------ -.--.. -.---....

2

TEST L I UF ~vRT YO

DC /OCOG
.---.-----------------.. ---- -- .•. -_._------------_ .. _---_ ... --- -- "------------- ---~----.-- ..

/'v'IOX TEST

LUX Ll LEV4 -- -.- .. -- -.---.. -----------·----·-----------STX-U---·-12-----------.----.-.-.
t3se L

LEVO De -~--*

S TX L2 S/\VE2
_ ... _--------- -" ------ --"._- - - .. _. - -----.

XIO St::NSU
x I 0 L RE l'\O ------.. ------.---.-.--------- .

LEV4

MDX
LDx
Bose
DC

L REr\D~&l

I2 SI\VE2
LEVO
*--x-

X 10 5EI'I5:A
LD ADCPC) --- ._-.-_._-... ---. ----.----.-.. ----------------------.--- s T"6--L --"R E A 0

EOJ
Bose L_ LeT S T
EXIT
END LO,L\O

._-----_ .. _------

________ ~ ___ .~ .r._ .. __ . _____ . ____ .. ___ . __________________________ :-
-----.-~------

-- _.-._._-----_._-------

i
I

·_----------1
___ r __ " ".__ _ __ ~ _____________ •• __________ ._ •.• _____ •• _. _____ .• _. ____________ •.•.• _. _______ . ____ •• _. __ . ______________________ . ______ ---' ___________ . __ .. __ " ____ . ___ . _____ .•

11

10

9

8

1

...• _-----_.
J

._---------------

._-------_ _--_ ---------_._-----_ .. _--_._-------

.. --~--- .. --.----.--.-.

)J

r,

I

• n
HE. XA DEC I MAL ID 1) E- Co.. I MIA- L c..t) f\.) VG-Y2., S 1'010 ~ U , P £

DIS: 1'L. A-Ce rr1 c' N T V A t.. ~ c.,,~

-------·---O~--f---l-1-----2--1-3~1--.---4----~---5- - -------6----I---7--·--r----·-8~--·.---9- . --- A -------8 - . c 1 D E - - -F- [I
---- . I - ' ,'.. --~ ____ ~O.! ' .-. ~---.. ---- ------ --- '-- ---- - L

o I 0 ,0 ·1 r-;I 3 I 4 5 61 7 i 8 9 1 0 11 1 2 ' 1 3 1'+ l 5 I --~-- .. --~1~--·-~-; 1-_~~28-----'-1-~- - .. ~-~- --;1 -; 2 ----; 3 I ---24 25 2 6 I 27 2 Ii 2 9 30 31 I
---.----1--------1------.1------1---\-----.. ------ ... -... , -.. _--.- ----..... - -... :-- -.---.- -_. -. -. _. --- .. " o. '. I

2 f· 32 I 33 I 34 I 35 I 36 -:, 71 3 R 39 4 0 ~L_4.? _ __ '±} ___ Lt_~I-lt-.5-- _~..!::_6 ___ .~_7. I
I I 1;

?Q ____ ~l ___ 52_ 53 _____ 5£, 1-: __ 5 5 __ ~56 57 58 59 I .. 60 I 61 621 6:3· . _____ ? ___ I ___ ... ~~~ ... I.----4.?J .. 1
i

4 64 I . 65 66 67 .68 691 70 I 71 72 73 74 15 76 77 78 79

.. _c~--5-. -A~;I--;; -. -:-; ~-i-8-~ . -~-5 1--~6·-A 7_'--88~,~ 9 _ -9 0_-91_1~~] _____ ~9 3 94 95 II

- --~'!"'__ . __ Cl,:~_ ~-'?,d l.9_Q_L~O} J):.o2 103 1041 105 I 106 I 107 I 108 I 109 I 110 I III 6 96

7 1_~ __ 1_~ __ 11 J:l} __ 1..!_~ __ J}.? __ !.~_6-'_}_1..7 _ _ 1181119 _ :20 i 121 ._122 123 i 1241 125 I 126 I 127 ,I

__ g_. _.1-128 _-12 4 -126 -125 -124 -123 -12?_ -121_ -1?'_9 __ -1~~_ :-l~_?_=}_.lJ._ ~~,t~ .. -:-}.J_?_ -:.11.~_ :AL3_

___ 9_-'-::112.1 :-J}J; I :-_U_OJ.J_O_~ =_!.0_8 _ :-1_0} = 10('.. -::)05 -:-104 -1 03 -:-102 -1 ~ 1 -1 00 - 9 9 - 9 Ii _- 9 711

___ -'~I~-6--'..::-"2-...:-9!+...L-=-93--~:-:2-2_=-9}- __ =_90t 89 -88 -P.7 -A6 -85 -84 -83 -62 I -bl 'I

~I -RQ..! -79 -7'lJ -77 -76 -7~i -74 ~..::"'--_-:-JL~~-70 ___ :?911 ... -_68! __ -:-6.7 0_6_ . .::(~51
:::..6},_~=_6_L_=_6.9 __ ~ :~9 _L -5_fj_I_~ 57 _ -5 6-55 . - 5 4 - 5 3 I - 5 21 -51 :- 5 0 I -,.91

!) _1...:--"_8 __ [_=-_4_",-- --=-_':_6 __ ~~ 5_ -.::.'+'+-1:....~-4?-1'--:--42- 1-::41 _-_40 .:.39_ _:- 38 -3 7 I -3 6 1-3 5 3 4. - 3 3

E -32 ,-31 -30 -29 I -28. -27 ...: 26 1 -2_~ --=-l:_~_. -23... --.:22 .. -2} 1_-:-}O_I--=-~_9_ -=!_B.. _:1_7

F_ ...:-J:6--'--=-} ~J-::-_~<+- __ :~_~L:-12 ~ --=_lgJ ____ '::9J_ -_8_ _ __ 7_ ... ::- 6 L_ -51 .. -4 I :-3 __ =_2__ -111

~

lit·

"t
~

~

f

~\

'\r~

~
~

~

t
~
~,

f

~

~
\;

l

" I
E

I B 1\1 1130 OPEFATION CODE TABLE
MACHINE CODE SE0.UENCE

08 XI) 100 SRA Ll r·.
09 XIO 1 108 SRT Ll '~

OA XIO 2 10C RTE Ll
OB XIO 3 lEO SRA L2
OC XIO L lEa SRT L2~

00){10 L1 lEC RTE L2
DE XIO 1.2 IFO SRA L3
OF XIO L3 IFG SRT L3
100 SJ..,h IFC RTE L3
107 SLCA 20 LOS
108 SLT 28 STS
lOC SLC 29 STS 1
110 SLA 1 2A STS 2
117 SLCli 1 2B STS 3
118 SLT 1 2C STS L
llC SLC I 20 STS L1
120 5L]I. 2 2E STS L2
127 SLCA 2 2F STS L3
128 Sn.T 2 30 WAIT
12C SLC 2 CONO I'rI ON CODES
130 SLA 3 40 BSI 08=+
137 SLCA 3 41 BSI 1 09=+0
13d SLT 3 42 BSI 2 OA=+C
13C SLC 3 43 13SI 3 OB=+CO
140 SL1~ L 44 BSI L OC=+E
147 SLeil L 45 BSI L1 OO=+EO
148 SLT L 46 aSI L2 OE=+EC C
14C SLC L 47 BSI L3 OF=+ECO
150 SL1':. L1 48 asc OO=NOP lX=-
157 SLCA L1 49 BSC 1 01=0 2X=Z
158 SLT Ll 4A SSC 2 02=C 3X=~::.

15C SLC Ll 4B BSC 3 03=CO
160 SLA L2 4C BSC L 04=E
167 SI,CA L2 4D BSC L1 05=EO
168 SLT L2 4E BSC L2 06=EC
16C SLC 1.2 4F BSC L3 07=ECO
170 SLZ:~ L3
177 SLCA L3 60 LOX
178 8LT L3 61 LOX 1
17C SLC T ..,

.u.j 62 LOX 2
180 SRi-\ 63 LOX 3
1[;8 SRT 64 LOX L
18C RTE 65 LOX L1
130 XCH
190 SRA 1 66 LOX L2
198 SRT 1 67 LOX L3
19C R'£E .. 68 STX .J.

11:,0 SRA 2 69 STX 1
lli.C SRri' 2 6A S'l'}{ 2
IP.C RTE 2 6B STX 3
1FO 8RA 3 6C STX L
le8 SRT 3 60 STX Ll (~ lBC RTE 3 6E STX L2
lCO SRA L

17
6F STX L3

Ic8 SRT L 70 MDX
ICC RTE L 71 I1DX 1

£ i ~. ! - J

'"

0
IBlJi 1130 OPERATiON CODE TABLE

MACHINE CODE SEQUENCE

12 MDX 2 Cl to 1
73 MDX 3 C2 tD 2
74 MDX L C3 LO 3
75 MDX Ll C4 LO L
76 MOX L2 CS LO Ll
77 MOX L3 C6 to t2
80 A C7 LD L3
81 A 1 C8 tDO
82 A 2 C9 LOO 1
83 A 3 CA LDO 2
84 A L CB LOO 3
8S A tl CC LOO t
86 A t2 CO LOO Ll
87 A L3 CE LOO L2
88 AD CF too L3
89 AD 1 DO STO
B~ AD 2 Dl STC 1

;C: 88 AD 3 D2 STO 2
80 AD L 03 STO 3
8D AD Ll D4 STO L
8E AD t2 DS STO t1
SF AD L3 D6 STO L2
90 S D7 STO L3
91 S 1 08 STO
92 S 2 09 STO 1
93 S 3 DA STO 2
94 S L DB sto 3
95 S Ll DC STO L
96 S L2 DD STD L1
97 S L3 DE STD L2'
98 SO OF STD L3
99 SD 1 EO AND
9A SD 2 El AND 1
98 SO 3 E~ AND 2
9C SO L E3· AND 3
9D SO Ll E4 AND L
9E SO L2 E5 AND L1
9F SD L5 £6 AND L2
AO M £7 AND L3
Al M 1 £8 OR

0 A2 M 2 £9 OR 1 "

A3 M 3 EA OR 2

.~ ___ J

;<~

~ .. ~(:

A4 M L EB OR 3
AS M Ll Ee OR L
A() 1\11 L~ ED OR Ll
A.1 M L3 EE OR L2
AS D EF OR t3
A9 D 1 PO EOR
AA 0 2 FI EOR 1
AS 0 3 F2 EOR 2
AC 0 L F3 £OR 3
AD 0 Ll F4 EaR L
AE D L2 F5 EOR Ll
AF 0 L3 F6 £OR L2
CO to F7 EOR L3

c

IBlVI 1130 OPERATION CODE TABLE
Page 1

SYNtBOLIC SEQUENCE

('~,: 80 A F5 ECR Ll ;/

81 A 1 F6 EOR L2
82 A 2 F7 EOR L3
83 A 3 CO LD
84 A L Cl LD 1
85 A L1 C2 LD 2
86 A L2 C3 LD 3
87 A L3 C4 LD L
88 AD C5 LD Ll
89 AD 1 C6 LD L2
8A AD 2 C7 LD L3
8B AD 3 C8 LDD
8e AD L C9 LDD 1
8D AD Ll CA LDD 2
8E AD L2 CB LDD 3
8F AD L3 CC LDD L
EO AND CD LDD L1
E1 AND 1 CE LDD L2
E2 AND 2 CF LDD L3
E3 AND 3 20 LDS
E4 AND L 60 LDX
E5 AND Ll 61 LDX 1

() E6 AND L2 62 LDX 2
E7 AND L3 63 LDX 3

CONDITION CODES 64 LDX L
48 BSC QQ=NOP lX=- 65 LDX Ll
49 SSC 1 01=0 2X=Z 66 LDX L2
4A BSC 202=C 3X=Z 67 LDX L3
4B BSC 303=CO AO IVi
4C sse L 04=E Al NI 1
4D Bse Ll 05=EO A2 M 2
4E SSC L2 06=EC A3 M 3
4F SSC L3 07=ECO ft,4 Ivr L
40 SSI 08=+ A5 rv; Ll
41 BS1 1 09=+0 A6 1VJ L2
42 SSt 2 OA=+e A7 M L3
43 BSt 3 OB=+OO 70 IV1DX
44 BSI L CC=+E 71 lViDX I
45 BS1 Ll OO=+EO 72 MDX 2
46 BSI L2 OE=+EC 73 MDX 3
47 SSt L3 OF=+ECO 74 N1DX L

75 MDX 11
A8 D 76 IVtDX L2
A9 D 1 77 Iv!DX L3

G AA D 2 E8 OR
AB D 3 E9 OR 1
AC 0 L E1\ OR 2
AD D 11 EB OR 3

....... ,--... _,,1 ... __ .- • " ••• , ' .. M' ••• • , ••• ,' ,. t'" -:t ••.. ~,t 'tr'I·· ':.,;~';'" .. =.';';;,;,~:~~Jt:.~.~.-.o:;~.:.~~~'~"" "k"" - .. ~, • ..• ::; -_. -"~"_'~'"""'"--I . .J.._~._ ~ ...

tBf\/J 1130 OPERA'l'ION CODE TABLE
SYlvIBOLlC SEQUENCE Page 2

90 S 100 8RA Ll
91 S 1 lEO SRA L2
92 S 2 Iro BRA L3 ~,

93 S 3 188 SRT ~I

94 S L 198 SRT 1
95 S L1 lAB SRT 2
96 S L2 188 SRT 3
97 S L3 I C8 SRT L
98 SD 108 SRT Ll
99 . SO 1 lE8 SRT L2
9A SD 2 !F8 SRT L3
9B SO 3 08 STO
9C SD L 09 STn 1
9D SO U OA STD 2
SE SO L2 DB srD 3
9F SO L3 DC STO L
100 SLA DD STO Ll
110 SLA 1 DE STO L2
120 SLA 2 DF STD L3
130 SLA 3 DO STO
140 SLA L Dl STO 1
150 SLA Ll D2 STD 2
160 SLA L2 03 STO 3
170 SLA L3 D4 STD L
107 SLCA DS STO Ll C\ 117 SLCA 1 D6 STO 12
127 SLCA 2 D7 STD L3
137 SLCA 3 28 STS
147 SLCA L 29 STS 1
157 SLCA Ll 2A STS 2
167 SLCA L2 28 STS 3
177 SLCA L3 2C STS L
IOC SLe 2D STS U
lIe SLe 1 2E STS L2
12C SLC 2 2F BTS L3
13C SLO 3 68 STX
14C SLe L 69 STX 1
15C SLe 11 6A STX 2
16C SLC L2 68 STX 3
17C SLe L3 60 STX L
108 8LT 6D srrx Ll
118 8LT . 11 6E STX L2
128 ST ... T 2 6F STX L3
138 8LT 3 30 WAlT

180 XCH
148 SLT L 08 XI0
158 SLr! Ll 09 XlO 1 C,' 168 SLT L2 OA XlO 2
178 SLT L3 Q'13 XIO 3
180 BRA 0'0 XlO L
190 BRA 1 do XIO Ll
lAO 8RA 2 O~

~ XIO L2
IBO 8RA 3 .9r XI0 L3

('~."!
iV

AE
AF
FO
FI
F2
F3
F4
IDe
lEG
ire

D L2
D L3
EOR
EOR 1
EOR 2
EOR 3
EOR L
RTE L1
RTE L2
RTE L3

EC OR L

ED OR Ll

EE OR L2
EF GR L3
lac RTE
19C RTE 1
lAC RTE 2

llBC RTE 3
ICC RTE L
lCO 8RA L

.~ __________ ,J

c

SESSION REPORT

COMMON - Chicago

Session Number WED A8 Session Name 1620 Project ----------------------
Chairman H. B. Kerr

Time ____ ~8~13~O~t~o~1LO~.O~O~ ______ ~---- Attendance (No.) ____ 4~O~ ________ _

Speakers __________ ~P=a~t_=Em==i=n~ __ ___

Scott Butler

Synopsis of Meeting Attendance dropped off since it was .the last day.

Papers were good with a small amount of discussion. A business session

was held following the last paper. Present Co-Chairman resigned.

New Chairman was elected. Plans were made for Philadelphia.

• !
f,l "\

COMMITTEE:

SUBJECT:

SPEAKER:

TIME:

.. ---~-~---~.-,-.-, .. ---- ---

1620 PROJECT

Running FORTRAN II - 0
In background mode with
spooling and check-point

PATRICK P. EMIN
University of New Brunswick
Fredericton, New Brunswick
Phone: 506 - 475-9471

Wednesday, April 10, 1968
9:15 A. M.
Session A8

NO. OF PAGES(TEXT): 23

C'\ t';

c

o

RUNNING FORTRAN II-D IN BACKGROUND MODE

WITH

SPOOLING AND CHECK-POINT

Prepared for presentation at .
the COMMON Meeting, Chicago, Illinois,

April, a-10, 1968

by

Patrick P. Emin

UNIVERSITY OF NEW BRUNSWICK

COMPUTING CENTRE

Fredericton, N. B. April 4, 1968

!

ABSTRACT

A description is given of modifications made to the
MONITOR II system and·some additional programming which permits
the formation of a disk job queue, made up of Fortran II-D
programs.

By the use of a sub-monitor, job-to-job transition
can be controlled and switched alternately b"etween card reader
and disk. Provision is also made for spooling of I/O on disk,
deferred printing or punching, and check-pointing of executing
programs.

c'

(
.~

j
"",/

o

o

CONTENTS

Subject

GENERAL. • • • • • • • • •
BACKGROUND . • • • • •

Subroutine DSTASH • •
S UBMON • • • • • • • • • • • •

. · .
· . ·

· . . . · · . .
Subroutine DPRINT ••••••••.••• ·

• • Overnight Production Line •••.
Subroutine MISER • • • • • . • • . • • •
SPOOL •••••••••• · . .

Subroutine SPOOL •••. · . . · . • •
Check-point-Restart. • . ••••

Subroutine CHKPT.. .••••
Program RESTRT.. • ••

Summary. • • • • • . • • . .

Appendices
Appendix A - Overnight Production Line

Programming Instructions

Appendix B - Overnight Production Line
Operating Instructions

Appendix C - The DISQUE Sub-monitor

· . . · . . . · . . . · . .
· . . . · . .

1
2
2
3
3
4
5
7
7
7
8
8
8

1. GENERAL

RUNNING FORTRAN II-D IN BACKGROUND MODE

WITH SPOOLING AND CHECK-POINT

1.1 In a busy 1620 operating environment, programs with
running times exceeding a few minutes usually cannot be com­
pleted during batch-processing express runs with heavy
throughput. As a result, time-consuming programs are often
returned to the user unfinished and usually with 'accompanying
instructions concerning personal scheduling of additional
time.

1.2 Consequently" a nethod hqs been devised by which,
with the addition of a new control card, and one or two simple
CALL satatements, FORTRAN II-D programs may be arranged to
perform the following.

1.2.1 Executing programs may be automatically or manually
interrupted, and automatically placed in a queue
(waiting list) on 1311 magnetic disk storage for
future resumption by a sub ... monit'or.

1.2.2 Pro~rams may suppress and postpone punched card
and/or printed, line output, and store such output
on 1311 magnetic disk. This permits the 1443
line printer and the 1622 card punch to be shut
down and left unattended for the duration of a
program e.g., overnight, and on completion, all
output may be obtained in one continuous sequence

1.2.3 Card input data associated with a program may be
read "in toto", in one continuous sequence at
the beginning of the program. The card images
are stored on 1311 magnetic disk, and thereafter
may be read as required, either free-style or by
FORMAT, each card as often as desired, and in any
order. Thus, the 1622 card reader may also be
shut down during program execution.

1.2.4 Any combination of 1.2.1, 1.2.2 and 1.2.3 is
possible. All three together will, for our
purposes, be referred to as "spoo11ng".

, ('It\
/

o

o

- 2 -

1.2.5 Long running programs may be check-pointed by
the programmer to guard against the possibility
of machine or other malfunction. The status of
the program as at check-point time is preserved
on 1311 magnetic disk.

2. BACKGROUND

2.1 By including the FORTRAN II-D control card "':::BACK-
GROUND" at the head of a .source deck, the 1620 operator is
provided with the facility for interrupting an executing
program and having it stored automatically in one of the
permanent storage areas on 1311 magnetic disk (6 at present).
This is accomplished by turning sense switch 4 ON, consequently,
like sense switch 1, this switch should not be used by the
programmer. Use of the control card *BACKGROUND increases
the length of the users object program by 8-13 percent, and
causes loading of library subroutine number 22 at run time
(length = 112 cores).

2.2 Subroutine DSTASH -- When the FORTRAN statement
"CALL DSTASH" is encountered in a program the program is
automatically interrupted and placed in one of the permanent
storage areas on disk. If no permanent space is available,
provision is made for the o1?erator to resume the program or
to store it in a temporary lpot-luck) area. It is NOT neces­
sary to include the ':::BACKGROUND control card, but as a result,
the program may be stored and resumed ONCE only, unless the
statement CALL DSTASH can be reached from within any program
loop when sense· switch 4 is found to be ON. DSTASH uses
library subroutine number 22 but itself takes up only 42
memory locations, therefore it is usually more economical than
':::BACKGROUND in respect to memory space allocation.

2.3 Program DSAVE1. This program is called into play
by the sub-monitor via library subroutine 22, with >:::BACKGROUND
whevever sense switch 4 is ON, or, by subroutines DSTASH or
SPOOL when called by the programmer. It requires no memory
space allocation by the programmer, since it overlays the
contents of memory when in use. It provides the main facility
for interrupting, storing and resuming programs in BACKGROUND,
maintains the sub-monitor switches, indicators and records,
and generally can be considered as the heart of the sub-monitor.

1. No. 7.0.078 in the 1620 program library.

- 3 -

DSAVE can also be activated manually by the 1620.
operator through the use of library subroutine 19 (LDSAVE).
However, its use in this manner is undesirable except for
temporary program interruptions, since the stored program is
not considered to be in proper BACKGROUND~ and cannot partic­
ipate fully in the Disk Job Queue (DISQUE) or Overnight
Production Line (OPL). .

2.4 SUBMON -- When the UNB Operating System disk packs
are mounted, the 1620 is under control of the IBM MONITOR II
system and the UNB sub-monitor (SUBMON). SUBMON is a sub­
supervisor within the MONITOR II Supervisor which controls
job-to-job transition between the card reader stack and the
DISQUE. When no jobs are pending in the card reader, program
DSAVE is called in to begin processing of programs stored in
BACKGROUND. DSAVE extends the supervisory action of SUBMON
by co-ordinating the functions of ~:::BACKGROUND, DSTASH, DPRINT,
MISER and SPOOL via a communications record on 1311 disk known
as DATERA, which retains a running account of disk space
allocation, SUBMON status, mode of operation and job-accounting
information (current job number, date and user name).

3. Subroutine DPRINT

3.1 When the statement nCALL DPRINT" is executed in a
FORTRAN II-D program, the normal operation of the FORTRAN
arithmetic and input70utput r,outines is modified in order to
effect the following:

3.1.1

3.1.2

3.1.3

When sense switch 1 is ON (the normal setting)
all print/punch output remains normal, being
channeled to the appropriate output device.

If sense switch 1 is found to be OFF all print/
punch output is channeled to the 1311 magnetic
disk where it is stored in consecutive records
beginning with the first available disk sector
as indicated in DATERA.

When sense switch 1 is turned ON again, the next
PRINT or PUNCH statement eauses stored output(if
any) to be channeled to the appropriate output
devices in one continuous sequence up to and
including the current record (s).

'Z

- 4 -

When "CALL EXITft is executed, the 1620 will be
interlocked with the 1443 printer or 1622 card
punch in order to output all stored records UNLESS
the program originated from the DISQUE, in which
case it will return to the waiting list in
BACKGROUND until the qu~ue has completed one
cycle.

3.2 Once DPRINT has been activated, all FORTRAN execution
error messages go to the console typewriter.

This subroutine is most effective when used during
1443 printer repair and maintenance periods, and in the
BACKGROUND mode for overnight scheduling. Subroutine DPRINT
occupies 14 memory cores and requires the use of library
subroutine 20 (length = 1930 memory cores).

3.3 DPRINT in BACKGROUND. A program which uses DPRINT
and also has included an *BACKGROUND control card may be
placed in ,the DISQUE at any time by' the 1620 operator, or by
the programmer with CALL DSTASH. The program will then be
ready to participate in the Overnight Production Line. Such
programs must run in the normal mode (sense switch 1 ON) prior
to admission into BACKGROUND, or, at least have no output
already stored on disk.

4.Uvernight Production Line (OPL)

4.1 It is quite possible to submit a FORTRAN II-D program
for diagnostic testing in a batch-processing express run,
already prepared for overnight scheduling. However, the
programmer must ensure that hiS/her program is already
thoroughly tested and debugged, or at least will be tested
during the limited diagnostic run it will be given in the
batch.. This is necessary, of course, to obviate CHECK-STOPS
or,other tthang-upsft which may occur during overn;j;ghtproduction.
(A program trace and interrupt routine is available from the
authoroti:request).

4.',2,:.,>,~~t;¥etluires three separate passes for the sub-monitor
to completea.program in the OPL •

. 4.2.1 'Eassl- the Assembly phase. The program is com­
pil~d,assembledand executed in the normal mode.
The·remay be initial output for testing and
monitoring purposes. CALL DPRINT is reached early

,in the program; during batch-processing runs this
'~ll bccur within the limited time permitted. The'
1620'operator will turn sense switch 4 ~ONto inter­
ruptthe program and transfer it to BACKGROUND,

'or, the programmer may use CALL DSTASH, whichever
occtlrsfirst.

- 5 -

4.2.2 Pass 2 - the Production phase. The sub-monitor
begins selecting jobs from the DISQUE when it
senses the last card thru the 1622 card reader,
or the 1620 operator may activate SUSMON. Each
~rogram in the queue executes to completion
\with sense switch 1 OFF, 1443 printer and 1622
card punch OFm. All print/punch output is
channeled to the 1311 disk where it is stacked
sequentially for each program. As a program
reaches completion, it returns to the DISQUE
in BACKGROUND. When the queue has cycled once,
all programs will be ready for output release

and the printer or punch will be selected and
interlocked with the 1620.

Pass 3 - the Output phase. When the 1620 is
interlocked with a peripheral I/O device it requires
human intervention, therefore pass 3 must await
the arrival of an operator (usually the morning
after). Once the required device(s) has been
activated, the stored output for each program of
the queue in turn will be released uninterrupted
in one continuous sequence.

4.3 Programming instructions for the Overnight Production
Line appear in Appendix A. Operating instructions may be
found in Appendix B.

5. Subroutine MISER

5.1 Consider the following:

5.1.1 A program whose frequency and/or extent of data
input is dependent on program execution, i.e.,
logical decisions resulting therefrom, may impose
upon the 1622 card reader for the duration of the
program.

5.1.2 It might sometimes be desirable or expedient to
re-read one or more cards, or an entire data s~t,
perhaps even under dif£ering formats, wlihout having
to re-stack them in the ca~d reader hopper.

5.2 Both of these obstacles may be overcome by the use of
subroutine MISER. Card images .. can be stored on 1311 magnetic
disk in the same order in which the cards appear in the reader,
or even in a different order, according to the wishes of the
programmer. The programmer has complete control over the
location of the card-image records within the boundaries of
the available disk space; it is merely necessary for him to
keep an index of the records (physical or logical) within the
program. The easiest method of course is to use sequential
records beginning with number one.)

I~

c

C\
"I

c

5.J

- 6 -

In its simplest form, MISER functions as follows:

5.3.1 A card is read into the program, either free-style l
or under format, e. g.,

READ, X, Y, Z, M, N

5.3.2 This is followed by a call to MISER with the posit­
ive value of the desired record number as argument,
e. g.,

CALL MISER (1)

5.3.3 The card contents are stored on disk in record
number one (1). The values read from the card
for variables X, Y, Z, M, N mayor may not be
used and have no effect upon the operation of
MISER or the storage of ' the card image.

5.3.4 The same card contents may be retrieved and re­
read many times, either immediately or at any
time during the program, under any style, and
only as much data extracted from it as desired.
This is accomplished by first placing a call to
MISER, with the negative value of the record
number as argument, followed by the required
READ statement, e. g.,

CALL MISER (-1)
READ, J

Note that any value from a card may be chosen at
'will and read into any variable, irrespective of
mode, at different readings. In the last example,
J will assume the value formerly associated with
X on the first READ; the remainder of the card is
ignored at this time.

5.4 Although the general method outlined above for using
this subroutine provides the nrogrammer with a prolific means
of exercising control over his input data, a more powerful·
concept exists with the reading and storing of entire data
sets in one fell swoop at the beginning of a program. The card
images are then available on a permanent basis, either indiv­
idually or collectively, for the duration of the program (also

4C) continued ••••••••

1. No. 01.02.019 in the 1620 Program Library.

- 7 -

LINK programs and succeeding ones in the job stream).

5.5 MISER in BACKGROUND. It is acceptable to use MISER
in the BACKGROUND mode" however" like DPRINT, it must be under
control of the sub-monitor and the program must enter the
DISQUE for the Overnight Production Line. At~resent, only
one program per queue can be scheduled in this manner,and of
course it mU$t also use DPRINT. At this point then" we will
introduce the concept of "spooling" under the sub-monitor.

6. Simultaneous Peripheral Operations On-line (SPOOL)

6.1 Spool may be familiar to users of larger and faster
computing systems (such as ,the IBM system/360).

Insofar as the 1620 is concerned" the concept could,
only be applied to the initial reading of cards and their stor­
age on 1311 disk during the 1622 clutch cycle, concurrent with
CPU processing. However this, together with the similar ·queue­
ing of output and its subsequent channeling to a selected:
device

i
should help communicate to the ~ovice some idea of the

capabi ity of the IBM System /360.

6.2 Subroutine SPOOL. When MISER and DPRINT are both
required in a program for overnight scheduling, the statement
"CALL SPOOL" will replace the previous call to DPRINT at the
beginning of the program. Using SPOOL causes DPRINT and MISER
to be loaded with the program initializes them for the sub­
monitor during pass 1 of the OPL, queues all input data, onto
disk" and then kicks the program into BACKGROUND on the DISQUE.
It is not necessary to include an):~BACKGROUND control card.

Further details on the use of SPOOL in the OPlL appear
in Appendices A and B.

Z. Check-point and Re-start

7.1 Another facility which will be familiar to users of
the IBM system/360 is that of check-pointing a program during
execution and subsequently re-strating it from one of the check­
points. The purpose of such a device is·to store a program.
complete with its status as it appears when the check-point
is reached during program execution. The disk storage area
used is transient, and will always yield a version of the program
as it existed d:uring the most recent check-pointing. Should

Continued ••••••••• C,'
"

o

- 8 -

the 1620 malfunction, or should it be necessary to cease pro­
cessing suddenl~~,or should it be desirable to follow alternate
processing paths in a long-running program then the re-start
procedure will resume the version of the program last stored
at the check-point.

7.2 Subroutine CHKPT. Whenever the statement "CALL CHKPT"
is executed in a program an image of the entrie 1620 memory
is stored in the common check-point save area on 1311 disk.
If sense switch 4 is found to be ON, the program in memory
will be terminated on an end-of-job condition, otherwise pro­
cessing will be resumed with the next statement following
in the program.

7.3 Program RESTRT. This is a disk-stored program which,
when executed, will re-start the processing of whatever· program
happens to be residing in the common check-point save area.

As an example, a programmer may'. decide that, instead
of executing a time consuming program several times, h~ can
place a CALL CHKPT at a strategic point in the program which
perhaps requires considerable time to reach. This point may
constitute a decision such as selection of additional input.
Then, whenever the program is restarted, it may ta~e different
logical paths depending on the input it receives. Re-start
is also available as a one-card utility loader.

8. Summary

8.1 Running FORTRAN II-D under control of the sub-monitor
provides the facility for manual or automatic interrupt of
executing programs, and storage on 1311 magnetic disk by
DSAVE through the use of ':==BACKGROUND or CALL DSTASH. Such
programs form a Disk Job Queue (DISQUE) and await their turn
at continuation in cyclic order, per~aps many times before
completion.

8.2 By placing the statement "CALL DRPINT" at the head
of a FORTRAN II-D program, provision is made for bypassing
immediate use of the 1443 printer or 1622 card punch and
queueing of output on 1311 disk packs. Output may" be channeled
to the appropriate devices on completion of the program.

-. 9 .-

8.3 Time-consuming programs in BACKGROUND which make use
of subroutine DPRINT, qualify for the Overnight Production Line
(OPL) and are better-equip~ed for completion within a reasonable
period of time.

8.~ Input data may also be queued on 1311 disk by the use
of subroutine MISER. The same data may be read by the program
many times and in any style, format or mode desired, without
the use of the 1622 card reader.

8.5 A program may undergo "spooling" of input and output
in the DISQUE Overnight Production Line. By calling upon sub­
routine SPOOL, the program utilizes subroutine DPRINT, subroutine
MISER, library subroutine 22 (BACKGROUND) and program DSAVE in
order to effect the necessary stages of queueing for successful
completion of the program.

8.6 A program may preserve its state at a check-point
within the program by executing the statement CALL CHKPT.
Computer memory in stored intact in the common check-point
save area on 1311 disk, and the program may be re-started from
that point by executing the program "RESTRT" or by using the
one-card re-start utility loader.

i '1

o
1:t...J."

;f"",

14."~.v

o

Appendix A - Overnight Production Line (OPL)

Programming Instructions

GENERAL

For the user who has no particular programing problem,
or no severe memory space limitation, these general instru­
ctions should suffice.

1. Programs should be checked out thoroughly, and completely
debugged before being submitted to the OPL. A program whtch
check-stops or otherwise "hangs up" will hold up the remaining
programs in the queue.

2. Include the control card "):~BACKGROUND" at the head of the
source deck with other FORTRAN II-D control cards.

Example 1
"JOB
#FORX

):~BACKGROUND

*LIST PRINTER
etc.

surname

3. Code the statement "CALL DPRINT" early in the program,
at least within the first 5 minutes of execution. If possible,
place at the beginning of the program.

4. Arrange to have all input data read at the beginning of
the program, and at least within the first 5 minutes of execution.

5. Insure that the statement "CALL EXIT" is the last executed
statement of the program (although not necessarily the last
source card before the END statement). CALL EXIT must be
reached.

Examp~.e 2 vector addition

CONTROL
CARDS O

#t0B surname

':'LI~~X PRINTER
):<BACKGROUND +-

I
CALL DPRINT ~
DIMENSION A(500), B(500), C(500)

Continu~d .•••..•••••

1

2
3

- 2 -

READ,N,(A(I),I=l,N),(B(I),I=l,N)
DO 2 I = 1 N
C(I) = A(I~ + B (I)
PR INT 3 ~ A (I), B (I), C (I)
FORMAT ~3 E 11.4)
CALL EXIT
END

6. The statement "PAUSE" and "STOP" must not be used.

7. Additional memory space required

subroutine DPRINT
library subroutine
library subroutine
:::::BACKGROUND

total

Programs With Memory Space Restriction

Subroutine DSTASH

=14 cores
20=01930 cores
22=00112 cores

=8-13% of main
program length

=2056 + 8-13% main.

A programmer who uses most of the available computer
memory for storing main program and subroutines may not be
able to use the *BACKGROUND control card for fear of over­
flowing memory. In such a case, use should be made of sub­
routine DSTASH.

1. All the steps outlined for the General method should be
followed with the exception that the *BACKGROUND control card
is NOT included.

2. Code the-statement "CALL DSTASH" at a convenient point
early in the program, after the statement CALL DPRINT and if
possible, after all input data has been read. Execution of
this statement will cause an automatic interrupt and storage
of the program on 1311 disk. This one call to subroutine
DSTASH is s~fficient for the OPL. since the submonitor pro­
vides all other interrupts necessary for the proper processing
of the Disk Job Queue (DISQUE).

Example 3 sorting a floating point array in
ascending order.

#JOB
'¥FFORX
:::::LIST PRINTER
CALL D.PRINT
DIMENSIUN X (100)
READ, X
CALL DSTASH

~\
(11 I

'~

(""'" i'll .

.,..:!J./

C""
"

/

- 3 -

1 MOVE == 0
DO 2 I == 1, 99
IF (X(I) - X(I + 1» 2,2,3

3 TEMP == X (I)
X (I) ~ X (I + 1)
X (I + 1) == TEMP
MOVE = 1

2 "CONTINUE
IF (MOVE) 4,4,1

4 PRINT 5 X
5 FORMAT tlO(lXE 10.4))

CALL EXIT
END

3. A programmer who wishes to have contiguous or unseparated
output should CALL DSTASH in his program ahead of all output
statements.

4. Additional memory space reguired

subroutine DPRINT
library subroutine
library subroutine
subroutine DSTASH

Total =

Spooling I/O on the DISQUE
Subroutine SPOOL

= 14 cores
20= 1930 n

22= 112 " = ~2 " = 2098 cores

For programs which cannot be arranged to read all input
data at the beginning of execution, subroutine SPOOL in
conjunction with subroutine MISER may be used in order to
queue both" input data and output results on 1311 magnetic
disk.

1. Apply steps (1), (5) and (6) of the GENERAL method, per­
taining to debugging, the use of "CALL EXIT", and avoidance
of PAUSE and STOP.

2. Code the statement "CALL SPOOL" (in lieu of CALL DRJR?INT)
at the beginning of the program.

Example 4 simple linear correlation

'=t1=JOB surname
'T~FORX
':::FANDK 1204
':::11ST PRINTER

Continued •••••••

-_.--_.-._" ".",.""",, , " , -."'~~~--.----.-.. --."' ... -.-.----

... 4 -

CALL SPOOL

3 SUMY == 0.0
SUMX == 0.0
SUMXY =:; 0.0
sxsQ = 0.0
SysQ = 0.0
DO 4 I = 1, 500

READ, X, Y
IF (X) 6,5,5

5 SUMX = SUMX + X
SUMX == SUMY + Y
SUMXY == SUM.XY + X:::<:Y
sxsQ = S·UMXSQ + x*:x
SysQ = SUMYsQ + y:;:(y

4 CONTINUE
6 FN = I - 1

R == (FN >:(SUMXY -SUMX:;:~SUMY }/SQRT (
1 (FN':(SXSQ-SUMX>:~SUMX) ,:~ (FN>:::SYSQ - S UMY':::SUMY))

HSQ = R' >::: R
PRINT 14~FN, R, RSQ

14 FORMAT (13HbbSAMPEbSI2E=I5, 5X2HR==F12.8,
l5XlOHR-SQUARED=F12.8)
CALL EXIT
END

3. Use of subroutine SPOOL causes what is known as "priority
schedu1ingtt of the program in the DISQUE. It will be first
to be processed during pass 2 of the OPL.

4. Additional memory space required

subroutine SPOOL = 532 cores
subroutine MISER = 1128 It

library subroutine 20 = 1930 n

library subroutine 22 = 112 tt

Total = 3702 cores

c

C:

o

Appendix B - Overnight Production Line (OPL)

Operating Instructions

GENERAL

The OPL is processed through three separate passes. The
first pass may be carried out for each program separately, at
different times during the dqy, normally by one of the Computing
Centre staff. This must be under strict control to ensure that
the program doing the largest "spooling" is added to the DISQUE
first. The staff is also responsible for setting up the OPL
data decks if any.

Pass 2 may be initiated by any operator, normally the
last computer user at night 'preceding the scheduled OPL.

Pass 3 is controlled by the first morning operator and
requires approximately 30 minutes to release a full disk of
output.

In general, should any malfunction occur during OPL in
hardware or software (machine or programs), when in doubt,
type in a branch to the MONITOR supervisor (490079R/S). More
explicit information is supplied in the instructions for each
pass.

Passl - Computing Centre Operators

General

1. Compile the program in the normal manner l and permit it
to execute for a reasonable time. If ~:::BACKGRuUND is used,
allow at least 5 minutes.

2. If the program does not execute an automatic interrupt
(via subroutine DSTASH), turn sense switch 4 ON. When the
message "~::BACKGROUND" types out turn swi tch 4 OFF again, unless
the last card has been read thru the 1622 reader and you do
not wish to activate the sub-monitor(see Appendix C).

FULL DISQUE

3. If there is no room available in the DISQUE, then carry
out one -of the three following alternatives:

a.Turn <:switch 3 ON, press start and type in a sector
, address to put the program in a pot-luch area. It
maybepbssible to finish the program presently.

Continued •••••••••••

- 2 -

b. Turn switch 2 ON, press start and resume the program
if time is currently available.

c. Press start to abort the job, and give it priority
in the next OPL. This can be done by placing a
ftCALL SPOOL" at the head of the source.

Spooling

4. If the program is ftspoolingftJ follow the instructions
given on the console typewriter. The input data for the
program must be removed immediately from the 1622 reader, or
well marked (by placing a coloured tag in front of the last
card in the stacker). This Will go to form part of the OPL
job deck and will be the first data to enter the reader during
pass 2.

5. Remember that the program using the largest disk space
for SPOOL must be run first (this will be the program having
the most input data), therefore it must be the last such .
program to enter the DISQUE.
Program Hang-up

6. Should a program check stop or otherwise hang-up, dispose
of it in the usual manner by using the UNCLE post-mortem
debugging facility.

(f---'\

"' .. /

c

- -3--

C: Pass 2 - Night Operators

GENERAL

c~,

1. Ensure that the ",CLOBBER" disk, pack no. 09999 is mounted
on 1311 disk drive O.

2. Turn all sense switches OFF.

3. Place the OPL job deck in the card reader and execute.
The deck consists of the following:

tFJOB OPL
~} (comments and instructions)
i=:J=PAUS
t=+=XEQ OPL

(data optional)

If a "DSAVE countdown" occurs, allow it to continue thru
to the selection of the first program in the DISQUE. Do not turn
on switch 4.
4. After execution has begun, press STOP on the 1443 printer
and 1622 card punch, advance the printer paper to a new page
by pressing CARRIAGE RESTORE, and place a warning card over the
printer switches stating that the printer must remain OFF unless
attended.

5. Attach the OPL instruction sheet to the 1620 log, turn
roomlights out and lock the door when leaving

Program or System Hang-up

6. Should a system error occur while DSAVE is restoring a
program to memory, the computer will come to a HALT (48 in the
OPERATION REGISTER) within 2 seconds of the message: "nSAVE
i name RESUMED". Press CHECK RESET and START to re-try. After
9 tries, CLEAR MEMORY, remove any data cards remaining in the
1622 reader for the aborted program, and LOAD the MONITOR "cold
start" card followed by the OPL job and any data remaining for
the other programs in the DISQUE.

7. If a user program fails (check-stop) after it is resumed,
remove its unused data, if any, from the card reader, replace
any other remaining data and press READER START. place the
1620 in MANUAL, press INSERT and type in: "4900796R/sn to-re­
activate the sub-monitor.

- ,4--

Pass 3 - Morning Operator

GENERAL

1. At the completion of its scheduled time, the OPL should
be finished with pass 2, and the 1620 interlocked with the
printer or punch. The queued programs will have cycled thru
execution once each, and the first one returned to memory for
output release e' Otherwise, GO TO STEP 8.

2. Turn sense switch ION. Ensure that the 1443 printer
is prepared on a fresh page of paper, and the 1622 card punch
is prepared with blank cards in the hopper. Press PRINTER
START and/or PUNCH START.

3. Attend the output devices until completion of the OPL which
requires a maximum of 30 minutes. If you must leave the room,
STOP the 1620 or the output'devices. (In completion, place the
output and card deck in the "JOBS COMPLETED" box.

Program Hang-up During Pass 2 (overnight)

4. Should the 1620 be check-stopped or otherwise hung-up
because of program malfunction during pass 2, it may be toti
late to continue with the remainder of the OPL. In this case;

a. Complete the preparations as in (2) and (3) above

b. Turn sense switch 4 ON

c. Press RELEASE-INSTANT STOP(SCE)-RESET-INSERT

d. Type in: "4900796R/S", then turn switch 4 OFF
when instructed.

This effectively switches processing from the DISQUE to
the card reader.

5. Execute pass 3 manually for each program in the DISQUE
which had been resumed during pass 2, as indicated by the type­
writer messages. This is done by reading in the following for
each program:

F=t=JOB
t.=t=XEQ DSAVE
(blank card)
(blank card)

OPL

When the message "ENTER AREA NO." appears on the console type­
writer, type in the digit corresponding to i of the message
"DSAVE i • name RESUMED" which had appeared on the typewriter
during pass 2 of the OPL. This will release the stored output
for that program.

c

c

l'"

c

o

- -5 -

Program Hang-up During Pass 3

6. If a program check-stop or other hang-up occurs after
pass 3 has begun, merely RELEASE-INSTANT STOP-RESET-INSERT
and type in "4900796R/S" to continue processing.

Running Overtime in Pass 2

7. If it becomes necessary to interrupt on OPL which is
running overtime in pass 2, do so as follows:

a. Turn sense wwitch ION. If no output occurs within
a reasonable time, turn sense switch 4 ON. to'.l·'eturn
the program to BACKGROUND.

b. Prepare the, output device (s) and make them READY
as in steps (2) and (3) above.

c. If there is output, turn sense switch 4 ON. The
program will return to BACKGROUND when output is
complete.

d. Resume each of the programs in turn as indicated
on the typewriter paper during pass 2, by manually
activating DSAVE as outlined in STEP 5 above.
(except the one which ran overtime)

1311 Disk Overflow

8. If the OPL is still in pass 2, i.e., the queue is still
undergoing its first sycle, and yet the 1620 is interlocked
with the printer or punch, this indicates that all the avail­
able disk space has been filled with program output, and the
sub-monitor is attempting to accommodate more. Proceed as
follows: (Otherwise, GO TO STEP 7)

a. Prepare the printer and/or punch, make them
READY as in steps (2) and (3) above, turn sense
switch 4 ON and allow output to continue until
the program returns to BACKGROUND, or for a
maximum time computed as follows:

Time (minutes) = 30/no~ of programs already
resumed.

b. If the time allowed is exceeded, press STOP (SIE)
on the oonsole then,

c. Press INSERT and type in "4900796R/S"

d. Resume each of the programs in turn which were
processed during pass 2, by executing DSAVE as
in STEP 5. (except the program already done above).

-------------------,,

Appendix C - The Disk Job Queue Sub Monitor

1. GENERAL

The MONITOR II Supervisor Job Card Read Routine has
been modified in order to perform the following additional
functions:

a. When END OF JOB is reached, console switch 4 is
examined. If ON, a new JOB is accepted from the
1622 reader. If OFF, the LAST CARD indicator is
examined. (This indicator goes ON when data from
the last card has been transferred to memory. It
is turned OFF by interrogation.)

b. If LAST CARD indicator is ON, the sub-monitor goes
into a 10 sec. countdown loop, at the end of which,
DSAVE will be called into memory to begin automatic
execution of saved programs. If switch 4 is turned
ON before the countdown is complete, a new JOB will
be accepted from the reader.

c. If LAST CARD indicator is OFF, the sub-monitor then
examines the Disk Job Queue (DISQUE) indicator to
determine if DSAVE has priority over new JOBs from
the 1620 reader.

d. If the DISQUE indicator is ON, a countdown begins,
which can be interrupted by turning console switch
4 ON before completion, otherwise DSAVE will go on
to execute the next background program in the queue.

e. If the DISQUE indicator is OFF, a new job is accepted
from the 1622.

Once a countdown loop is completed, DSAVE will select
one of the available saved programs from the DISQUE without any
operator action, and run it in the "background" mode. Each time
DSAVE is entered, the DISQUE counter is incremented by ONE and
the correspondingly numbered SAVE area (1,2,3, •••) is executed.
When ~ll are completed, the sub-monitor awaits a new JOB from
the card reader.

2. OPERATING PROCEDURES

c

o

a. Turning switch 4 ON before END OF JOB occurs will prevent
the countdown and accept a JOB from the 1622 reader.
Otherwise, SWITCH 4 ON will interrupt the countdown C,

••••• continued

b.

c.

d.

- 2 -

after it begins. After the message "TURN OFF SWITCH 4",
and after switch 4 is turned OFF, it may be turned ON
again immediately if desired.

Placing TWO BLANK CARDS at the end of a deck will allow
the card deck proper to be read completely without
turning on ,the LAST CARD indicator. NON-PROCESS RUN­
OUT does NOT turn on this indicator.

Once a saved program has resumed execution, it may be
suspended again at any time by the operator in the
usual manner.

Control may be passed from the MONITOR supervisor to
the sub-monitor at any time by:

(1) Reading a blank card through the 1622 card
reader, .2.£.

(2) Typing in a branch to 40048.

MONITOR
SUPERVISOR

(fNO of ~OB)'

REAP NE'W!
, ;]*c8FROMR3----.....

No
READ tlfW
uOB FROM

1622

1&22

8EGIN,
~~'O SEC

CtJUNTDO\VN

I

, yes

No
. PROCESS
NE)(TPR06
IN DISQUE

~IS~UE SUB .. MoNIT~·R

FLOW . CHART ' ' . . .

•.

• '.

c;

o

Adaptat.ion of an IBM 1094 Scientif.ic Program for

Use on the IBM 1620 II Computer

J. M. Read, Jr., R. W. Crecely, J. H. Goldstein and

R. S. Butler

The scientific user with access to a 1620 can sometimes

be confronted with a problem. Programs may exist which, while

performing the calculations necessary to his field of research,

have been written for other machines and thus are not usable

by the scientist. Common programming languages such as FOH­

TRAN to a great extent alleviate this problem but diff.iculties

still exist. In particular, problems are encountered when one

attempts to implement programs wr.itten for large, fast compu­

ters since the 1620 user may find that: (1) the program con­

sumes an excessive amount of core storage; (2) the execution

time is so slow that use of the program becomes impractical.

These problems were encountered by our installation when the

.implementation of LAOCOON II (a 7094 FORTRAN IV program for

the calculation of nuclear magnetic resonance spectra) was

attempted. Our computer is a 1620 II with 40K, floating point

hardware, one disk drive and .paper tape IO.

LAOCOON II possessed a number of basic .improvements over

the program in current use at that time. It was thus highly

desirable for the new program to be put into operatiOn. Unfor­

tunately the program was of such size that it could not be fit

o into core storage. Data storage alone required 32,000 core

AA444hl&J&AJ".,,,g""''''U',iA 1(".",k •. "., ,t1fl!T%'li\#,.,#.tAtAA,."QRiH - hl# .. -'- -

r

,II

2.

positions in order for the full capabilities of the program

to be retained. The decision was thenfnadetorewrite LAOCOON

in basic machine language but because of the stringent core

storage requ.irements the MONITOR system SPS II-D, requiring

2402 core positions at execution time, was u.nacceptable. In-

stead SPS III was used.

The problems .imposed by construction of a machine language

equivalent outside the framework of the MONITOR system became

immediately apparent. The translation of statements involving

only ari thmetic calculat.ions w'as straight forward. The real

problems were created by the absence of system routines. For

instance, there were no input-output routines for either the

typewriter or the disk. Also, routines to perform the normal

MONITOR functions of loading program links during execution

and loading compiled programs to d.isk storage did not exist.

It .is th.is facet of the project wh.ich we will primarily discuss.

The basic design philosophy of the system routines involved

the construction of programs with enough generality to handle

the various tasks required of the program but limited enough

so that core requ.irements could be held to a min.imum. Because

of the restricted nature of the routines no attempt w.ill be

made ,to prov.ide descriptions of internal program logic. In­

stead attention will be paid to specif~c examples of the use

of the substitute FORTRAN system rout.ines for the purpose of .

indicating one solution to the problems caused by the absence

of an operating system.

o

c

c

o

3.

Figure 1 shows an example of the format required for the

use of the typewriter output routine. The routine is entered

with a branch and transmit immediate containing as the Q field

data the address of a two digit field following the instruc­

tion. This first field gives the total number of items to be

assembled into the 10 buffer. In this example there are four

alphameric labels and three numbers, making a total of seven

,i tems · Follow,ing this is a DEFINE SYMBOLIC ADDRESS contain-

ing a minimum of two operands. The first gives the location

of the format list; the last gives the address of the next

instruction to be executed after the output operation has been

completed. The intervening operands, if any, specify the

addresses of the numbers to be assembled into the output buf-

fer. They can be ei ther fixed or floating po,int numbers com­

pletely interchangeably. The format list consists of a series

of four digit codes. The third digit of the code is a record

mark if control or alphameric information .is to be processed.

A flag over the second digit differentiates between the two,

with alphameric data indicated by the presence of the flag.

If there .1s no flag over the second digit and the first two

digits of the field are zeros, a carriage return is executed.

If the first two digits have a non-zero value, the indicated

number of spaces is assembled into tJ;le output buffer. In our

example the first code indicates a carriage return While the

second indicates that five spaces are to be assembled into the

output buffer. The next code contains a flag over the second

digi t indicat.ing that alphameric data is to follow. In this

.~~---- .-~ .. ----.--.. -•••..•........ --.- -...... __ ..•......•.. " _ .. _"."._. __ -" .. _ _ .. _-

4 •

case the first two digits of the code indicate the length of

the alphameric data field. The data must immediately follow

the code and have a record mark assembledas the last character.

If a record mark .is not the third character of the code word,

numeric data is indicated. A flag over the fourth d.ig.i t indi-

cates a floating point quantity; no flag indicates fixed point.

The first two digits give the total width of the field while

the last two indicate the number of places to follow the deci-

mal po.int. If the number is too large to fit wi thin the speci­

fied tield w~dth, an error is indicated and the offending value

is displayed on the typewriter in internal floating point form.

When the specified number of items have been assembled .into

the output buffer the line is typed and an exit occurs to the

last address given in the DBA.

Perhaps the most important routine which had to be wr.i tten

was the disk input-output routine. The nature of the calcula-

tion of N:MR spectra .is such as to require the frequent movement

of large amounts of data to and from disk storage. Hence a

conveniently used disk IO routine was a necessity. Figure 2

shows an example of the input data required. After the entry

to the program the first item required is a one digit code

indicating whether an input or output operation is to be per­

formed. Zero indicates input; one ind.~cates output. Next

comes the location of the sector address where read.ing or wr.i't-

ing .is to begin, followed by the return address to the mainl.ine

program. Each item in the IO list which follows is composed
,

of two or more items. The first item is e.ither a zero, one,

5.

("','" \

;/

or two in a single digit field which indicates respectively

whether a scalar, vector or matrix .is to be transferred. A

flag over this d.igit indicates that the .items to be transfer-

red are .in float.ing po.int mode. For a scalar quantity the

only additional .informat.ion required .is the address of the

scalar. For a vector the addresses of the first element of

the vBctor, the .initial index value and the f.inal index value

follow the indicator code. The entry for a matrix cons.ists

of the .ind.icator code, a three dig.it f.ield containing ,the num-

ber of elements per column and a series of addresses wh.ich

spec.ify, respect.ively, the first element in the matrix, the

ini t.ial and f,inal row .ind.ices and the .ini tial and final col-

umn indices. A record mark as the indicator character ind.i-

c~: cates that the IO l.ist has been satisf.ied and causes an ex.it

to the prev.iously spec.ified address. As .in FORTRAN when con-

trol is returned to the mainl,ine program the sector count has

a value one greater than the last sector wr.itten or read.

The extensive matrix man.ipulations required by the pro-

gram necessitated the frequent use of subscripted arrays.

Because of the large number of times a subscript routine would

be executed 1 twas dec.ided to make this operation as restr.icted

as possible. Single subscripts were calculated in line (i.e.

no subrout,ine was used for their calculat.ion) by s.imply multi-

ply.ing the .index value by the appropriate word length and .

adding to the result the address of the f,irst element in the

array. The sum was then used as an ind.irect address. Implicit

_. _____ .•.•..•. ,,"'. , .. " " ... c~.,~._· _. ~,_" ... "' .. "_., __ • __ ,_.~~~ __ ,._._,, •. , .. __ ._._' __ •. ''''''

6.

in this method is the requirement that for N items the index

run not from 1 to N but from 0 to N-l. This same restriction

was carried over into the double subscripting routine. Input

to the double subscripting routine consists of the address

associated with a DEFINE SYMBOLIC ADDRESS declarative which

has as operands the labels of the row and column indices. An

increment is calculated and placed in core such that when the

array address is added to the increment the result is the

address of the desired element in the array. Before the sub-

scripting routine can be used the column length of the array

must be stored in a fixed location in core. The calculation

of a subscript requires the execution of only six instructions

not including entry into the subroutine.

Perhaps the best example of the gain in speed at the loss

of generality is provided by the linkloading provisions. Once

the program has been compiled the core locations of the vari-

ous routines are fixed. This enables one to store the program

links on the disk in core ,image format mak.ing subsequent load­

ing very rapid. The "system loader" consists of a disk seek

instruction, disk read instruction and a branch instruction

located in an area of core storage that is never: overlayed.

When a new program link is to be brought in, possibly overlay~

ing the calling program, a disk control field containing the

appropriate information is tranferred to the location required

by the disk instructions. Also the branch instruction is sup-

plied with the address of the first executable statement in

I
i.,

o

ZlI'tll!i'Y'E

c

,)
'-.->'

o

7.

the neW' program. When the pr.ogram logic allows, .the seek will
"'~

be initiated by the callj.ng pr()gram in order .to.all.ow for pro-:­

cessing overlap. The ~ntrance. to the loader routine is then

made at the dis k read ins truction,. Under ordinary cir.cums tance s

entrance is made at the disk seek .. A routine also had to be

written to load the assembled programs into d.isk storage.

This task is accomplished through the use of TRA-TCD instruc-

tions which are used to load the program into core storage

along with the information needed to store the program on the

disk. The disk loader routine .is first loaded to core storage.

Information regarding the use of the program is typed and the

f.irst program is loaded into core by means of a TRA instruction.

Each program is begun with a DEFINE ORIGIN which places within ..

the load rout.ine the program number (for identification purposes

only), disk storage address, the number of sectors required by

the program, and the locations in core storage where the pro-

gram beg.ins and ends. Another DEFINE ORIGIN is then used to

place the program into the proper area. ~e last instruction

in each program is a TeD instruction transferr.ing control to

the disk loader which stores the program on the disk and re-

cords certain informat.ion about the program on the typewri ter.

Depending upon a sense switch setting, the loader either halts

or attempts to load the next program. A special code in the

last program terminates loading.

The finished program conSists of twenty-eight subprograms

and contains over five thousand source statements. Some idea

of the savings in core storage can be gained by noting that the

,~--.-•......... , , .. " , " .. -"~~------~-.

8.

full capabilities of the 7094 program were retained. No accur-

ate estimate of the increase in execution speed can be given

since the FORTRAN vers.ion could not be .run on the 1620. How-

ever, comparison of the machine language matrix diagonalization

rout.ine used and .its FORTRAN equivalent indicates that execu-

tion speed is increased by a factor of three.

o

()

C' , I)

FIGURE 1.

•

LIST

R2P

BTM OUTPUT,*+13
DC 2,7
DSA LIST-2,WIDTHO,HIGHTH,SPECWD,R2P
DS 1
DC 3,(4
DC 1,0
DC 3,5(3,
DC 1,0
DC 3,-14
DC 1,0
DAC 14,LINE WIDTH =
DC 4,-603
DC 3,-7'A
DC 1,0
DAC "], HZ :~

DC 1+, -702
DC 3, -25·1j)
DC 1,0
DAC 25, CM/INT SWEEP WIDTH = ~
DC 4,-702
DC 3,-li:9l.
DC ' 1,0
DAC 4, HZ?
NS I

TYPEWRITER OUTPUT FORMAT EXAMPLE

AiC&i==;mig;"ua;,:m :UU,",$U,4MiWiGM4f#MM!;;TWiit#.AJ, _ ... !i'"'"

I:
I

8TM DISKIO,LIST
LIST DC 1 , 1

DSA SECTCT,RET
DC 1,0
DSA CNSTNT
DC 1,1
DSA VECTOR,INITAL,FINAL
DC l,2
DC 3,7
DSA MATRIX, IROW,FROW,ICOL,FCOL
DC 1,Q

RET NS I

FIGURE 2. DISK INPUT-OUTPUT FORMAT EXAMPLE

o

c

SESSION REPORT

COMMON - Chicago

Session Number WED B1 ---------------------
Chairman L. H. Baker

Session Name Intermediate Cours.

for Application. Programmer.

Time 10,30 to 12.00 AM Attendance (No.) 57 --------------

Speakers ____ --=Mr~.;......;P:;;..;e;;.;t;;..;e:;.;:r~S:;:;.;:a:::..v:...:i::.:d::.;;e:;..;8=__ __________________ _

Corporate Systems Education

CHQ Dept. 684

IBM

Red Oak Lane (Soong Estate)

White Plains. New York 10604

Synopsis of Meeting The origin, content, availability and objectives

of the ICAP program were reviewed. Key points .. viewed were.

1) lCAP va. 'USS.st.d by the SET c01llDittee of Guide and

developed by IBM.

2) It 1. deslgned to proviclle an outline of an intermediate or

aclVanc.d course inprosr.-ing technique. for people who

c:an·orlanize and t.ach the material in their organization.

·lt5~8avail.ble to COMMON me.bers intere ••• d. They should

writ. directly to Mr. Savid.s.

J

ICAP

INTERMEDIATE COURSE FOR APPLICATION PROGRAMMERS

This handout consists of some representative material from the ICAP
package. The total package consists of 32 instruction modules, each cover­
ing a specific programming topic. Every module consists of the following
eJ.ements·:

1. Cov~r Page - Describes contents, objectives, prerequisites and
hInts for the instructor.

-2. Learning Plan - Overview of the module and its contents.
Suggested sequence and method of presentation.

3. Student Guide - Describes contents, relation of the module to
the student's professional growth, and hints for the student.

4. Customizing Guide - Guideline suggestions to assist the·
instructor in tailoring the module for presentation.

In addition to this material, found,in all modules, each contains some
or all of the following supportive material:

1. Foils - In printed form that can be converted to overhead
transparancies.

2. References - Abstracts of published material or spe.cially written
for ICAP to support the IBM publications.

3. Examina~ions and Special Supporting material.

The enclosed representative lCAP material is as follows:

1.
2.

3.

4.
5.

A listing of ICAP mo~ules.
Cover Page, Learning Plan and Student Guide for Module 24;

Introduction to ICAP.
Cover Pages for following modules:

5 Controls
7 Standards
8 Documentation

18 Special Characteristics of COBOL F
20 ,DASD Techniques
26 Planning for Programming
34 Arithmetic Statements and Efficiency

Cover Page ;or Module 10: Communication Techniques \L1nRages •
Customizing Guide for. Module 23; Overview and Review of Basics.

If yo~ would like additional information on ICAP please contact:

MR. PETER SAVIDES
IBM - Corporate Systems Education
CHQ Dept. 684
Red Oak Lane (Soong Estate)
White Plains, N. Y.· 10604

Phon~: _ .(914) 696-5962

...

o

?Tn., 7

CI leAP MODULES

0···,
, ~L

MODULE NUMBER

1
2
3
4

5

7
8
9

10
11
12
13
14
15
16
17
18

20
21
22
23
24
25
26
27
28
29
30

31
32
33
34

MODULE TITLE

Data definition
Program Logic Control
List Processing
Table and array techniques and

the operation of the compiler
Controls

Standards
Documentation
JCL
Program communication
Data set manipulation
Testing .
Programming efficiency
Systems
Report writer
Sort
Maintenance
COBOL F features

Direct access techniques
Cutover & conversion
Case study
Overview & revie\v
Introduction to ICAP
Modular programming
Programming planning
Program generalization
Programming systems

•

MIS and data base
Multiprogramming and ·asynchronous
. processing

Program design
IBM Programming Support
Decision table coding
Arithmetic statements and the

operation. of the compiler

lCAP COVER Pl\GE NODULE 24: INTRODUCTION '1'0 IChP

ABSTRi\C'r OF COi·J'l'ENf!,S: Provic:es for the \>lelcomo and other logis­
tics of the class" Gives the purposes of lCAP, its history, anc1
content. Revic\'.]s the. cho.ng"ing envil:onmcnt of application progrnm­
ming which, in part, led to the need for leAP. Provides a frame
of reference for the modules vlhich foll0''1. Includes the moti-
vation of students. . . '

OBJECTIVES OF HODULE -- 'rhe st.udent will:

1. KnO\" the purposes of lCAP.
2~ Put extra effort into learning, because he is made to

see the importance of reAP to his professional dev~1op­
ment and, hence, to his career.

3. Obtairi a frame of reference for the content of leAP
This frame of reference will include the objectives of
leAP I its schedule I and environment ",d. t1d. n .\oJhich
application prograr:t1nars can expect to t.-lork in the f\.\ture.

4. Be aHare of the logistics of the class ..
5. Understand the methods to be used in evaluating his

performance in leAP.
6. Use the self-evaluation aids provided in leAP.

STUDEN'L' pnEREQUISrI'ES _

Kno\11edge required: COBOL I Basic Progranulling I OS/360 I ,JCL I
DASD, Basic data processing

Experience required: 6-12 mont.hs programming in COBOL.. Have
completed one major pl."ogram.

Material to be studied: IC~~ References 24-1, 24-2, 24-3,
24-4, 24-5, 24-6, 24-7, 24-8

HINTS' FOR THE INSTRUCTOR: The spirit in \'Thich you appr.oa.ch IC]\.P
has a great deal to do with how successful your students are
at achieving the objectives of the CO\lrSC ~ It is up to yo'..~
to reveal to thera the importance of leAP to thei): future = it
is your. job to arouse their enthusiasm s.nd obt.ain their
contini tllcnt to achieveracnt.. During IC1~P, you should al",ays
se~~k higher. l.evelsof perfo,:"mance than you \~oul.dexpect in'
day-to· .. day \-lQj:-k. This striving tOiltard excellE'~nce Hill help
compensate for the inevitable slacking off and f6rgetting
which OCCU):S " aft:er a training period 1s over.

I

(r .. !
,.]'

if'''-
~~,

/: .. :/

,,,'7 !!I !lIl!!r:::llfII1"'!nnr:rtJI7!'",; Em

Ci

leAP LEARNING PLAN NODULE 24: INTRODUCTION TO ICAP

OPENING: Welcoree to leAP, the. Intermediate Course in
Applications Prog T2.:nming. Our version of ICAP Has adapted
f~om' the original course produced by I Br·i under the auspices
of GUIDE. (Iland out copies of 'outline) . HANDOU11

PREVIEN: This module handles the mechanics of the class. It
sets the pace and tone for the following two weeks. It places
the students' classwork in the context of requirements of

·their jobs and the environment of programming • ...
LOGISTICS Days and hou 18 of class. (TvlO weeks recommended)

Materials available~ (See suggested list found in
Reference 24-9) Other logistics related to local educational
conditions. .

PURPOSES ICAP is designed to begin the professionalization of the
relatively inexperienced programmer. You can call your

studertts' attention to the list of capabilities given in
Reference 24-5. Achieving more of the capabilities OPF 24-0
of the intermediate.applications programmer is only
one of the purposes of lCAP. Using OPF 24-0 explain the goals
of ICAP in your company. Have each student write EXERCISE
his int~rpretation of ~he purposes of leAP as they
apply to him. .

o EVALUATIOH Measuring performance '~gainst purposes is ·perhaps

.0

even more important in reAP than in most courses.
Because lCAP is designed oh a.professional level, the student's
evaluation of his o'-:n p'rogrpss becomes central to evaluation.
In orde~ to do a good job of e~aluation, he needs yo~r help:

1. In making. a committment to the purposes of leAP.
2. In relating his learning to purposes.
3. In establishing and using .criteria of accomplishment.
4. In determining and recording his OPF 24-1

accomplishment. . (The evaluation forms .OPF 24-2
provided with reAP can be useful here). OPF 24-3

5. In assessing his progness relative to criteria

PRo.GRAHHING
ENvr RONl·1ENT

the next
m-inor as ,
coding.
change.

of achievement in lCAP. (Examinations formed from
the questiqns provided with lCAP can serve as one
measuring instrument. You can provide other
mea~ures of achievement, .such as effort required to
complete problems.

Application· programmers find it nc;cessar:r to adjust;
to frequent changes in. their ,,,orkJ.ng. envJ.ropment.
Some of·these ch~l).ges are as important as a move to

generation of equipment and.sbft0are; others are as
a change in thc.slashingof letters in OPF 24-4
On OPF 24-4 c·xplain. the meaning ·of each OPF' 24-5
On OPF 24-S: ask 'for c6mments~ DISCOSSION

.".. ..

-2-

leAP LEAPJ~rNG PLAN l-10DULE·24

Point out how many modules within reAP deal with problems
raised by changes in the progranuning environment. Encourage
participation by all students in the discussion.

Examine the details of changes in the programmers job
as the environment change.s. Use programming
language change as an example. -

OPF 24-6
OPF 24-7

c

c

o

o

ICAP STUDENIJ.' GUIDE HODULE 24: INTRODUCTION TO lCAP

ABSTRACT OF CONTENTS: Provides for the \'lelcome and other
logistics of the class. Gives.the purposes of, ICAP, its history,
and content. Reviews the changing environment of application
programming which, in part, led to the need for leAP. Provides
a fr~me of reference for the modules which follow.

OBJECTIVES: When you complete Module 24 you will:

1 .. Know the purposes of ,leAP.
2. Have related those purposes to your own professional

,programming goals.
3. Know hO\,I to evaluate your o\o/n pr.ogress duri:lg class.
4. Be aware of h6w changes in the ~nvironment of

progranuning prompted the development of leAP.

RELATION OF HODULE TO YOUR PROFESSIONAL PROGRJ::SS: ICAP is
~esigned to prepare'you to step up into the ran~s of th~ more
experienced programmers. It is intended to:

1. C6nso1idate your knowledge and experience.
2.' Locate and fill gaps in your knowledge of the

fundamentals of programming.
3. Introduce you to ne~" concepts, techniques and skills ..

leAP provides you with ,an unu~ual opportunity to increase your
professional competence as a programmer. Properly, used, these
days in' class c~n enhance the value of your ~xperience and
provide you \vi th ne\,l co"mpetence to handle more diff icul 1:; and
rewarding assignm~nts. '

You have a responsibility.to yourself to learn as much as you
can in leAP. The intermediate applications programmer should,
possess many capabilities. Some of the~e are listed iri lCAP
Reference 24-5.

•
HINTS FOR THE STUDENT: This is the beginning of your work on
leAP; success comes from good beginnings. It is extremely
important that you begin ~y re1atl.ng the goals of leAP to your
goals as a progess~onal programmer. This undoubtedl~7 \\1i1l
require a searching examinatiQn,by you of your career to date,
your response'to those experiences, and ,your hopes for the .
'future. Such ane~amination can'not be, concluded in onc session;'
it will extend throughout rCAP and, probably beyqnd. nowever,
your irtstructor will ask you ,to makci a first iteration of this
analy'sis and to write, do:\vn ~n initial appro,ximationof the

, -2-

leAP· STUDENT GUIDE MODULE 24

relationship of y.our persona~ goals to the purposes of leAP.

The ordinary educational practices of good study'habits,
evaluation of progress, etc. apply to lCAP,as to any other
course. lCAP differs in that your job experience before and
after the classroom sess~oris is considered to be part of ,I CAP.
You will work to integrate previous expeiience with new
knowledge and prepare to make subsequent experience serve the
pu~poses of lCAP.

. '

, i-
I,

C' ,)

·c

C.' .. \ ,iI

o

IC.?\P COVER PAGE HODULE 5: CON'l'ROLS

ABS'l'Hl\.c~e OF C01~·l'El.'Pl'S ~ Covers t.he possibili ties of 10f~s of
control, the techniques used to determine control cone.i tions
and the method!..) of restoring and retaining control. Special
atten.tion is givc.n to the checking of the quali i:y of input
and outp~t. . .

The underlying considerations: Create an appreciation for
control requirements and the capability to satisfy them.

OBjEC'fIVES 01" 1'·10DULE --- 'l'.L1e student. will:
flo

1. Include sufficient validity checks in his programs.

2. Prepare a sui table. cont:cols pla.n. for the CRse study.

3. Choose control techniques appropriate to an appli-
6ation and to his local requirernantsc .

4. . Build ~ontrols in~to his prog:c?.ms \vhich \1i11 stand
up to the severe test condi~cions "imposed on them
by the instructor.

STUDENT PRJ;:;REQUISI'llF.S:

KnO'tvledge required , some farn:Lliar5.ty \'lith t.he syst.ems
implications of contl:01s .

Matcl.'ials to be s'cudied '~',ICAP Roferences 5~~1, 5-2"
I Bf!l F 2 0. 0 0 0 0 6, C? 0 · .. 16 ~- 9 (Ch " 9)

Stl'UDENT ~ ... CTIVITIES DURIl~C.; l<iODUI.g: 1 •. Prepare e. contr01s
plan, 2. Build controls into pro~p:cuns, 3. j\.t.t(~rnl.)'t 1:0
circumvent the con·trols of fello\v students,. 4. Do exC'r.'
cise~ during lecture discussion _r

HINTS FOR THE INSTRUCTOR: Because manag~ment'policy h~s a
great deal to do with the type and extent of controls, YOll

should adjust: this module -to reflect .the. policies of yorD'
manageJf:cnt. Stuacllt,S c:~l1d ne\'l programmers tend to overc~con'~
trol once they bccor~12 convinced of the need for cont-.rols.
This is normal; but can. be temncredby emphasis on the eco-. nom1C evaluatlon of .ccntrols a

lCAP COVER PAGE NODULE 7: ST l\ND.Z\RDS

ABSTRACT or COl'Y£EH'llS: The
is directly related to the
The stake of managcmont in
programmers in stC).nc1c:~rds.
lishment .. and cffect.ivcness

importance of installation standards
benefits obtained from having them.
s·l:anc1ards is c9mpC's.red vIi th that of
Prograoooer influence on the estab­
of standards is reviewed.

OBJECTIVES OF 110DULE: -- The student \vi11:

1. Use his local standards.
2. Prepare programs which adhere to standards.
3. Locate the need for standards and design standards.
4. Plan the inclusion of standards in his programs and

his prograoouing activities o .

5. Have an app~eciation of the importance of d6cumGil~
tation as embodying sig-nificant standards 0

6. Obtain the benefits \'lhich come from using standards
properlyc

7. Relate standards to his own effectiveness and to
group effectiveness.

STUDENT PRElillQUISITES --

Kno~'lJ.edge required: Kno\'1 local stcl.nde.rds

Experience required: Have worked with local standards.

Material to be studied: Local standards manual, reAP
References 7-1, 7-2

STUDENT ACTIVITIES DUHING NODULE:

1. Analyze local st«ndards~
2. Learn vital local standards.
3. Practice setting a st~ndard.
4. Comply with standards in leAP lab work.

HINTS FOR 'rIlE INSTH.ucrj~OR: Standards imply complia_ncc. This·
includes compliance in the classroom as well as in day-to-day
work. In ·this module you will be attempting to get the student
to reach a clca~c avlareness of the direct ties bet\'leen sta.ndards
and his own best interests. Thus, he should be made to see that
standards compli2..D.ce favorably influences proanctivi-'cy and quali-·
ty of output. Standards compliance reduces effort and frustration.

c

(~'
)

lCAP COVER PAGE MODULE 8: DOCUMENTATION

ABSTRl-' .. CT OF CONrrENTS: The standard progr amming documen ta tion
techniques such as flow charts, system descriptions, and
COIfullents in the coding are considered in, detail. Guides to pro­
per documentation are given. The importance of installation
standards of documentation is emphasized. '1'he unqerlying con­
sideration: how to cornrnunicate ''lith audiences at various technical
levels.

' :..

OBJECTIVES OF MODULE The student will:
'':''

1. ,Produce adequate written communications for use of
all the people interested in the program.

2. Successfully use various documentation techniques,
particularly thos~ provided by COBOL (F). ,

3. In the case study, integrate documeritation with
ot,her 'programming aqtions.

4. Document problem programs 50 that a~other student
may successfully ~ebug one withou~ questioning
the originator.

5. Inspired to document and get others to document.
6. Pass an examination on the module.

STUDgN~'PREREQUISITES:

Knowledge required: Use of NOTE., Documentation ~tandards
of his installation.

, Mat~rialsto be studi~d: Technical report on documentation
and associated handout~.

~frUDENT ,ACTIVITIES DURING MODULE:

1. Examine own documentation performance 'of past.
2. Document case study and proplems in prescribed

manner o· •

3. Use docu~entation prepar~d by oiher students.

o :1

..

..,.==At".o;U:#h'" ,;;m,M *,~#i" $$$!!JW¥bM#MiWhRI#Rh4f¥%..¥. , . ..4tpg, t ;"411 P . ;. .n~·

-.

lCAP COVER PAGE BODDLE 18: SPECIAL CHAlmCTERISTICS
OF COBOL F

ABSTRAC~P OF CONTEN'rS: Emphasis is 011 the features of
COBOL F itself (their uniqueness in that they g6 beyond
the stated featllres of COBOL). The extensions of COBOL
F are covered and distinctions' made between what is
current~¥ avail~ble and \·.~hat ~lillbe available.

• • ..
OBJEC'l'IVES OJ? HO~J~E ---The student will: " .

1. Kno\'l the CODaL F features subset.

2. Know the extensions to COBOL F

3. Use the F features and extensi6ns.

STUDENT PREREQUISITES:

Kno\,lledge required: The features of COBOL E or COBOl, '
, ·for some system other than OS/360.

Experience required: Coding of at' least 2 COBOL pro­
grams or major routines of a COBOL program.'

Materials to be studied: COBOL F Language manual.
COBOL F Programraer's Guide.

HINTS FOR THE INSTRUCTOR: ,As l'lith most of the,'other
modules, the important thing is that the student under­
stand the concepts presented rather than have a fully .
detailed capability in the concepts' use. He should
kno\'l \,?hClt the features are and ho,,,,, they can be us"ed -
and \'1here to set the details to code them. • 1

•

- .--~.-.. '--- ~-'~ -- ... ------.~

c

" 0"',

leAP COVER PAGE MODULE 20: DASD TECHNIQUES

ABSTHACT OF CON'llEN'.rS: This module covers the problems
inherent in using disk storage (primarily the 2311).
Al though considerable emphasis is on revie,,, of device
physical characteristics, the bore of the module includes
the various types of data set organization allowed and
the access methods used to create and retrieve these files.

DIREC'l' ACCESS TECHNIQUES ~ Contains the concepts and COBOL
faciliti~s which the programmer will need in order to
utilize and implement information on direct access devices
with COBOL. The underlying considerations: facility in
using direct access 'devices and non-sequential files.

OBJECTIVES OF l-IODUI .. E -:---The student vlil1:

1 It KnO'Vl the physical 'characteristics of disk storage.

2. Know how to efficiently use disk storage.

3. Know the JCL requirements to effectively use the
medlura.

4. Use new COBOL F fe~tures associated with DASD.

5. Organize,files on DASD.

S'l'UDENT PREREQUISITES:

Knowledge required: Characteristics of disk storage
devices (especinlly 2311) and file organization.

Experience required: Use of disk storage and associated
JCL statenlents to specify disk areas, data set access, etc.

Materials to be studied: DASD manual JCL chart on
disk parameters for DD cards.

HINTS FOR '~eIIE, INSTRUCTOR: You '''ill need to fill in the
student's knowledge of disk storage as an auxiliary
storage device 'in order to pave the way for showing
him hOH to mor'e effectively usc t.he medium.

~~-,-.-...... -... ,." ... -, , .. ,

lCAP COVER PAGE MODULE 26: PLANNING FOR PROGRANHING

- ABSTRACT OF CONTENTS: Planning is an activity Which should
precede all aspects of programmi"ng., Module covers planning
for each activity from program design to maintenance. Plan­
ning techniqu.es revievled.

OBJECTIVES OF HODULE -- The student will:

1. Prepare .a series of programming plans for the case

2'.
study.
Have a formal model. of planning which he kno\-lshow
to use.

3 • Realize the connections bet~een adequate planning
. and effective prqgramming.·

4. Pass an exam.

STUDENT PREREQUISITES:

Material to be studied:. leAP references 26-1, 26~2

STUDENT ACTIVITIES DURING HODULE:

Prepare prograooning plans

. . HINTS FOR THE INSTRUCTOR: The student is asked to plan iri
a much more formal manner ~han he is likely tofollovl on the
job. This formality is deliberate to ins,ure that he does
all of the planning required, and so that, you .can check'con­
crete details in his. plan's •. The, plan papers also provide
criteria against which to ~easure performanc~.' .

e'

f"\
(0:

IeAP COVER PAGE MODULE 34: ARITHrlTE1'IC S'J.1ATEr·1ENTS AND EFFICIENCY

ABSTRACT OF CONTENTS: This module covers the considerations related to
the use of'arithmeticstatements --- the Data division definitions,
the instructions operating ,on the dat~ and the expected results of the
various combinations. Through example, several precepts on the. use of
arithmetic statements are evolved.

OBJECTIVES OF MODUtE: The student will understand the differences between
decimal and binary operations ---:the 'requirements and effects. of each.
ls a result he will be able to make an intelligent choice when faced

C''''\ with the decision of choosing between them in his program.
I)

. .
STUDENT PREREQUISITES: An understanding of the COMPUTATIONAL clauses

and their coding requirements.

HINTS FOR THE INSTRUCTOR: Emphasis should be placed on tl'lO things: Empha­
sizing the importance of Reference 34-1 and making the acceptance of
these rules seem like obvious conclusions stemming naturally from the

-material In the Learning Plan.

leAP STUDENT GUIDE MODULE 10 CO~~UNICATION TECHNIQUES
(LINKAGES)

ABSTRACT OF MODULE: Introduces the terminology of program
linking and explains the processes involving the S/360
Operating System. Procedures necessary to effect linking
is fully descrIbed.

, RELATION OF MODULE TO YOUR PROFESSIONAL PROGRESS: 110dularized
program..rning is not a ne,., concept. It is more feasible with
the third generation computer ane its associated programming
systems. Large programs can be placed and maintain'ed in
relativ~ly inexpensive sto~age or they can be made up of

,I

manj pieces (usually placed on secondary storage) and called
when needed. It is important that the Professional Program­
mer understand and be able to use the conventions established
to properly integrate the individual modules into a large "
executable program, and also to identify and use self contained
re-enterable coded modules available for their use. Good com­
munications among the programmers involved is essential for":the
effective use of these Comnunication Techniques.

HINTS TO STUDENTS:, This module presents communication con­
ventions and techniques. Hodularized programming is a con­
cept dependent on both need and efficiency. It should not
be abused.

. .. ~.

c

rner:t:!trtteu:!ttMlwwrt.rm,l· T !!lrtMm . S=, S!,," m77 n

c

o

0·" , '

lCAP CUSTOHIZING GUIDE t-10DULE 23: OVERVIEt~ AND REVIEW OF BASICS

The following additional topics are suggested to fit Modllle 23
to your company:

, 1. Revie\'1 of your programming organization.
2. Review of the progr~mming cycle as it is carried

out in you r company ..
3. Review of your position descriptions in the

programming area with an interpretation of their
meaning. '

4. Review of your position descriptions in the systems
area with an interpretation of their meaning.

S. Rev;,ew of systems project and programming project
management practices in your company. -

- This module will vary widely in its scope and depth from one
" group., of -s,tudents to another~ ;,.It' i~ irilperative that you' use, a
~:,,:~cre,ell1ng"':t'est based on the top'ic,s ,you nominate for the, module ..
. 'FaJ.lure of prospective students to sho\t.J a sufficiently high
level of understanding in a topic could result in one of these
actions:

,,;,-.1., . Remedial training prior to leAP if 'only a ,fe\1
.' -students show weakness.

,', .. 2'. ,j Strengthening of the topic \tli thin the module "if
,,'., most st.udents show 'weakness. '. .,' '
, '.''3:' "'. Elimination of students' from the current ICAP
'_.',; ",.class if they show numerous \\Teaknesse,swhich Hould,

".I . -', .. take too long to correct before . the S tart of ICAP.

.,... ~ .

Note that the Learning Plan advises .djusting 'the exact content
of the module to class response. This deserves extra emphasis,
because of the review nature, of module.' HO'Ylever, the module is
also intended to introduce some n~w viewpoints for old concepts
so that students will be better pr~pare4 to learn and accept the
content qf subsequent modules. For this reason it is suggested
that you be very careful about-rejectIng the topic materials
supplied \'1i th the module.

" 'C.

o

c

c

SESSION REPORT

C
!~,

, ';

COMMON - Chicago

Session Number WED B4
--~=-~~-------------

Session Name Petro-Chemical

Chairman G. Hertel

Time ---------------------------------10.30 to 12.00 AM Attendance (No.) -----------------

Speakers J. R. Reese

C) .--

Synopsis of Meeting "Petrpleum Industry Graphics on the Geo' Space

DP 203 Platter"

o

C· I

... p'

/\ 1 ~;~'TT\I\ eT

'I'i Uc: Petro leUln Industry Graphics on the Geo Space DP 203 Plotter

by J. R. Reese

nc~cause of its unusual versatility, the Geo Space DP 203 plotter fulfills

Lhe' requirements of a wide range of computer graphics in the petroleum

i lhlustry. This plotter is being actively used for creation of engineering

dr:twinqs, piping isometrics, equilibrium charts, base maps, contour

tn:lfls, seisrnic cross sections, and sonic logs. Potential applications

Include geoloC]ic cross sections, directional survey plots, critical path

charts, process flow diagrams, and many others.

_ Two active applications, which require the variable intensity capability

of the plotter and offer unusual long range opportunities, are sensor

graphics and digital holography.

•

«)

WED B5

SESSION REPORT

COMMON - Chicago

Session Number
----------------~----

Session Name Applicatio~. COP

Chairman Larry Whelan

Time 10.30 Attendance (No.) __ ...lI2a.:l8L-___ _

Speakers Len Schaider, IBM Chicago, "Control Opt~ization Program"

Bill Peas., W. Va. Pulp & Paper Co. "Simplex Optimization of

Mixtures"

Synopsis of Meeting Mr. Schaider talked on the Control Optimization

Program for the 1130 and 1100.

Mr. Pease talked on small computers and simplex optimization techniques

f or mixture s •

.~~~'-"~~-"""""---'--"'-------'-'''''''''''''''---~-- •.. '''''''.-.......... , " " " ... ,.,."' .. ~~~~~~~

SMALL COMPUTERS AND SIMPLEX
OPTIMIZATION TECHNIQUE FOR MIXTURES

w. A. Pease, Jr., W. G. Vardell

March 15, 1968

For Presentation at Chicago COMMON
April 10, 1968

CHARLESTON RESEARCH LABORATORY
WEST VIRGINIA PULP AND PAPER COMPANY

o

c
CHARLESTON, SOUTH CAl101.INA

·c'

o

~
"~,i .•.• ~

-i-

ABSTRACT

This technique will optimize properties of any mix on a small contputer,
where the properties are functions of the ratios of the ingredients. Previous
computer methods required plotters and larger core than utilized here. It is
based on methods developed by Henry Scheffe and expanded by Gorman and Hinman.

Two things enable one to use a small computer. First, standard multiple re­
gression techniques are used, simplifying programming and reducing core re­
quirements. Second, an efficient program that generates the values for
plotting the response surface has been written. One set of runs is needed
for each property optimized.

Used as a screening device, the method is excellent for determining profitable
areas of study.

CHARLESTON RESEARCH IABORATORY

ABSTRACT

TABLE OF CONTENTS

INTRODUCTION

PROGRAMMING TECHNIQUE

METHOD OF APPLICATION

-ii-

TABLE OF CONTENTS

1. Definition of Area of Study
2. Selection of Model Equation
3. Selection of Experimental Points
4. Making and Testing the Experiment~l Mixes
5. First Computer Phase - Obtaining th.e Coefficients
6. Second Computer Phase - Generation of Response Points
7. Plotting Response Points
8. Interpretation for Optimum

CONCLUSIONS

REFERENCES

APPENDIX A - Mathematical Models Used

APPENDIX B - Program Listing

APPENDIX C - Regression Printout with Interpretation

APPENDIX D - Printout of Points

PAGE

i

ii

1

2

5

5
5
5
6
7

'7
8
8

11 0
12

13

15

18

19

o

o

•

-1-

INTRODUCTION

In 1957, Henry Scheffe (2) pointed out that the properties of any mix could
be predicted when these properties were functions of the ratios of the in­
gredients. His procedure is based on the use of a simplex as the plotting
surface, within which the coordinates for any point sum to unity. Ob­
served property values at specific points are plotted. These values are,
in reality, projections of points existing on a response surface above the
simplex. It is the equation of this surface that one attempts to derive.

Scheffe chose specific ratios so that the coefficients of the various terms
in the mathematical model of the response surface could be readily calculated
by hand. Later users (1) of this method continued to select Scheffe's points
and method of coefficient determination even though the computation was now
done by computer. Programs have also been published to plot the response
contours on simplex coordinates using X-Y plotters (3).

Inflexible use of Scheffe's points and method of determining the coefficients
has certain disadvantages, however. It requires more core than many small
computers have available. It restricts the realm of study to a triangular
area which may not be convenient. It also requires that the property must
have a measurable value at each bf the specific mix ratios on this triangular
subspace. This o~ten is not so.

Later users had overlooked that Scheffe reported his method as a form of
polynomial regression. This fact was recognized by Dr. James Walker, Depart­
ment of Mathematics, Georgia Institute of Technology, who was working with
the authors, using a minimum configuration IBM 1620.

Use of multiple regression not only permits use of a smaller computer but gives
much more flexibility to the experimenter since he is no longer tied to a given
number of specific points. Any number above the minimum of evenly scattered
points may be used. One may weight the equation for reliability in desired
areas, expand the simplex area by addition of new points, or contract it for
intimate exploration of the optimum. We are also permitted to examine sub­
spaces other than triangular areas, though oUr coordinates remain triangular.

The present paper demonstrates the programming technique used to adapt this
method of study to a small computer. The application of the method to a
sample problem is also illustrated .

CHARLESTON RESEARCH LABORATORY

WEST VIRGINIA PULP AND PAPER COMPANY CHARLESTON, SOUTH CAROLINA

-2-

PROGRAMMING TECHNIQUE

Determination of coefficients on a small co~uter was no problem, since we
were already using complex regression techniques at Westvaco. We were faced
with the problem of generating the response pOints for plotting. The type­
writer was slow, core was apparently insufficient to hold all the mathematical
models desired, and economical segmentation was impractical without disk.

The typewriter problem was overcome by screening out points not on the simplex
and outputting only effective points. Switching the order of some of the terms
in the model equation was useful to avoid segmentation, since this dramatically
reduced the number of decision statements required. This also made the gener­
ation of interaction terms fa~ter. Core limitations were also met by using one
general equation to cover all models, deleting undesired terms by reading in
their coefficients as zero. The enclosed program will give pOints for the
quadratic, special cubic, pure cubic, and special quartic math models (See Math­
ematical Models). There is room on the IBM 1130 for higher models with 8K.

Of particular interest from a programming pOint of view are the self-adjusting
upper parameters for the nested DO-loops. The method is shown below:

N5= -1
DO 50 I= 1,N3
N5= N5 + 1
N6= N3 - N5

N7= -1
DO 50 J= 1,N6

49 CONTINUE
50 CONTINUE

(This makes the first subtraction a zero subtraction)

(Zero on first pass, due to above)

(Same reason as N5 above)
(Note that N6 was defined in the next outer lOOp)

(A separate CONTINUE is required for each inner loop)

In the above, N3 equals the number of intervals desired on the simplex border
plus one. This is our chosen unit.

Variable N5 is the number of passes already made through the outermost loop.

Since the sum of the loop indices (I,J,K,L,M) must equal the chosen unit, here
11, the next loop index cannot exceed the value of (N3-N5). The same thing
applies to the next inner loops, except that there is one additional index value
over that of the previous outer loop to be subtracted in co~uting the current C"'''.
loop's upper index.

1':1', •

C~\
~'

o

o

-3-

This results in continuously decreased upper limits for the inner
loops as the outer loops progress. Inefficient passes made through
the loops are minimzed.

Generally speaking the upper index for the ith inner loop equals
(N'''2'' = N3 - N) and in each case N ,is initialized to -1

'i"1'" ~ 3+2i 3+2i
,prior to entry into ith loop.

This technique is only usable where the limits of the nested loops
must sum to an integer; in this case 11, since the base for our
unit is 10, and we need one more to get the zero values.

(The program is made to pe~it a constant being used where one for­
gets to repress it in the regression, and to make it flexible for
other uses.)

Note how the zero levels are generated. Ai is made equal to the ith
loop index minus one; thus when the index is one, Ai is zero. This
is the reason N3 is N2, increased by one.

A more economical way of programming this from a core storage stand­
point would be to put FORMAT 5 and the write loops into a subroutine
as follows:

SUBROUTINE PTWRr(MS, Nl, BP, B, X)
C MX = LOGICAL OUT PUT UNIT

DIMENSION B(l),X(l)
Y = 0.0
DO 10 r. = 1,Nl

10 Y = Y + (B(I)*X(I»
IF (Nl - 3) 12,14,14

12 Y = Y + (B(4)*B{4»
14 Y = Y + B(42) + BP

WRITE(MX,5)X{1),X(2),X(3),X(8),X(16),Y
5 FORMAT (F9.2,3X,E16·9)

RETURN

END

CHARLESTON RESEARCH LABORATORY

WEST VIRGINIA PULP AND PAPER COMPANY CHARLESTON. SOUTH CAROLINA

-4-

Then a CALL PTWRT(3,Nl,BP,B,X) statement could be substituted for state­
ments 21,26, 32, and 38. Statements after them, through their respective
WRITE statements could be removed. These four calls would replace 19 of
the present statements in the program. Expanding the WRITE statement in
the subroutine would make it useable for more than five components.

In the program, A(I) is used to get the coordinates for the response points.
Note how the zero points are generated. The reason for CONV in the program
is that some experimenters like to work with unity, some ten, and some with
one hundred as a base. This permits the printout of the coordinates to
suit their particular desires.

AN in the program is our control to test CT, the constraint variable to
insure that only pOints on the, simple surface get printed.

CHARLESTON RESEARCH. LABORATORY
WEST VIRGINIA PULP AND PAPER COMPANY CHARLESTON. SOUTH CAROLINA

o

o

o

c

o

-5-

METHOD OF APPLICATION

The steps employed in using this technique are as follows:

1. Define Study Area

The size of the area studied will depend on our knowledge of the system.
For an exploratory run, make the simplex area of investigation large
enough to detect unexpected optimums. Prior experience with a system
would permit an optimization run within a restricted area of the simplex.

2. Select Model Equation

From the model equations shown in Appendix A, use the lowest order of
equation expected to give a reasonable fit. Generally this order is one
more than the number of points of inflection believed present on the
response surface. The special cubic is a good place to start for systems
of three or more components.

3. Select Experimental Points

From Table 1, determine the minimum number of points required for the
model equation and number of components used. It is important to either
replicate or exceed these minimums to insure significance for the derived
equation.

'mBLE 1

~
Special

Chosen Quadratic Cubic
Bpecial

Quartic
Special

No. of
Cubic Quartic Quintic

Components P T P T P T P T P T P T

2 3 2 - - 4 2 - - 5 2 - -
3 6 3 7 3 10 3 - - 15 4 - -
4 10 4 11 4 20 4 31 5 38 5 - -
5 18 5 19 5 40 5 58 6 84 6 97 6

CHARLESTON RESEARCH LABORATORY
WEST VIRGINIA PULP AND PAPER COMPANY CHARLESTON. SOUTH CAROLINA

-------_._ ... _._ _ __ ._-------_.

-6-

The P-points are the experimental points. The T-points are the
additional test-of-fit points, which must be made during initial runs
to assure that the chosen mathematical model is sufficiently close to
the true response equation. These points should also be run when
switching to a different order equation in optimization runs.

It is important to distribute the points over the simplex study area
with relatively equal spacing. For initial runs the Scheffe points
shown in Figure 1 are mathematically very efficient and should be in­
cluded where possible.

3-Component
Systems

4-component
Systems

Quadratic

.FIGURE 1

Special Cubic Cubic Quartic

(The open points are centroids.)

Test-of-fit points should be equally spaced around the centroid of the
field of study.

4. Making and Testing the Experimental Mixes

Mixes are prepared corresponding to the coordina.tes for the chosen
points in the simplex area of study. For example, for a point whose
(a, b, c) coordinates are (10, 60, 30), the mix would be 10% A, 60% B,
and 30% C, where A, ·B and C may be either pure components or other
mixtures.

Prepare the mixes in a randomized order and determine their properties.

CHARLESTON RESEARCH LABORATORY
WEST VIRGINIA PULP AND PAPER COMPANY CHARLESTON. SOUTH CAROLINA

c

c

-7-

5. First Computer Phase - Obtaining the Coefficients

The percentages of each component for each mix and the observed
properties for that mix are fed into any standard multiple regression
program. The following method is used:

a. Repress the constant normally generated by regression.
b. A separate run is made for each property, using the property

response as Y.
c. Test-of-fit points are not included in initial runs.
d. Interaction terms are used according to the model equation

chosen by the experimenter.

The coefficients derived are checked, using the test-of-fit points.
If the variance is equal to or less than that for replication, the
equation is acceptable. If not, a higher order equation must be used.

6. Second Computer Phase - Generation of Response Points

Upon achieving a satisfactory fit, program C-9655 (see Appendix B)
C) is used to generate response points at the desired intervals. Input

data is defined in the program listing. Again one run is made for each
property~

•

The following comments regarding input should be helpful:

a. The value of "I" in B(I) is position of the accompanying
variable in the program's equation, as listed in the heading.
(B(I) is zero for unused variables.)

b. For more than three components, the experimenter must give the
order desired for coordinate values. For example, if 0% D is
to be the base of a four component tetrahedron, its coordinates
must be fed in first. (i.e., D must be Xl), then those for A,
Band C.

The output of this program shows the si~lex coordinates of the points
of intersection of lines drawn from the interval points of one base to
another, with the predicted value for the property at that intersection
as the response .

CHARLESTON RESEARCH LABORATORY
WEST VIRGINIA PULP AND PAPER COMPANY CHARLESTON. SOUTH CAROLINA

z& "","""=0,0 $7·

-8-

7. Plotting the Response Points

For two component systems the responses are plotted on Cartesian paper
using the Y-axis for the response and the X-axis for mix components.

With three components, triangular graph paper is used. The response
value is written at the point represented by the mix coordinates.

For more than four components the simplex is examined like a three
component mix at various interval levels, representing a constant
value for the fourth and/or more component.

8. Interpretation for Optimum Area

Contour lines are drawn through points of equal response value.
Examination of the resulting property map· will reveal best areas for
that particular property. Since it is unlikely that these will be in
the same area for all properties, an added step is necessary to op­
timize the mix as a whole.

Superimposing different sets of contour lines on the same simplex will
show where "optimums" for various properties come closest together. A
new simplex is then drawn, with this point as the center, and reeval­
uated for better definition of the optimum area.

For example, if we had the following hypothetical situation:

There is to be a product made from a mixture of A, Band C. C is the
most expensive ingredient, so we want to use as little as necessary.
Properties I and 2 should be as high as possible, and property 3 must
lie between 70 and 90. Using a special cubic model, the mixture has
been evaluated, and the predicted responses have been plotted and
superimposed as shown in Figure 2.

The shaded area in Figure 2 shows the apparent optimum area to be in
the vicinity of 30% A, 30% Band 40% c.

The optimum area shquld then be defined more accurately by reducing
the size of the simplex area under study. This has been done in
Figure 3 by making a subspace simplex which encloses the apparent
optimum. The new simplex is shown with its relationship to the old
one represented by dotted lines. New points have been run with

)

CHARLESTON RESEARCH LASORA TORY
WEST VIRGINIA PULP AND PAPER COMPANY CHARLESTON. SOUTH CAROLINA

c

o

•

-9-

additional mixtures made and evaluated in the immediate area of the
optimum. Points from the earlier run may also be included if they
fall within the area.

Figure 3 shows that reevaluation produced essentially the same op­
timum even though some of the porperties have changed slightly.
These results, combined with a cost-analysis would give us a sound
basis for choice of alternative product compositions.

CHARLESTON RESEARCH LABORATORY

WEST VIRGINIA ~ULP AND PAPER CO)4PANY CHARLE~TON. SOUTH CAROLINA

i

1"1

-10-

10~

Figure 2

Optimums

- - - - - Property 1 (Smallest Circle)

Property 2 (Between 400 Lines)

Property 3 (70 Prop 90)

100% 100%
BL-----~L1--~-1--~--~~----~~--~C

B' = (10, 70,

30 50 70 90

I
/

I

A

/"
/ \

/ \

/ \
/----­

AI = (70, 10, 20)

I
/

I

(-----R-~'"__-,
Figure 3

/
/

20) I

I
I

/

~L ____ _

\ ,
" O· =

\
~ ~ -- --- -----~~.......-.-. ~ .-. ~.-------.....C

CHARLESTON RESEARCH LABORAtORY

(10, 10, 80)

WEST VIRGINIA PULP ANO PAPER COMPANY CHARLESTON. SOUTH CAROLINA
------.-~ .. --~-

o

o

o

-11-

CONCLUSIONS

This technique can effectively contribute to the efficient screening
of various alternatives involving mixtures. Afterwards, it may then
be used to determine optimum formulations.

1620 time required is 15 minutes for a four-component system re­
gression run.. One run is made' for each property.to be optimized.
The same computer needs 45 minutes for a response print out for the
same system, using 10 as the interval on "the simplex base line.
Again one run is needed for each property. For the 1130 the times
are 2 minutes and 5 minut~s, respectively.

If a plotter is used, this will eliminate the time involved for
manual plotting and the intermediate print-out of response pOints.

It is assumed in the above sample that the special cubic mathe­
matical model is used.

Since many mix problems can be handled by this technique, it is felt
that a general awareness of it will be profitable to user installations.

CHARLESTON RESEARCH LASORA TORY

WEST VIRGINIA PULP ANO PAPER COMPANY CHARLESTON, SOUTH CAROLINA

----.- " , .. "'"' .. , .. ,,,,~.-.. -.-,,~~---------~

REFERENCES

1. Gorman, J. W. and Hinman, J. E.; "Simplex Lattices Designs f'or
Multicomponent Systems," Technometrics 4:463-487(November 1962).

2. Schef'f'e, HenrYj "Experiments with Mixtures," Journal of' the
Statistical Society. Series B, 20:344-369(1958).

3~ Cruise, D. R.j "Plotting the Composition of' Mixtures on Simplex
Coordinates," Journal of' Chemical Education, 43:30-31(January
1966) .

4~ Kurotori, I. S.; "Experiments w'ith Mixtures of' Components Having
Lower Bounds,11 Industrial Quality Control, XXII(11):592-596
(May 1966).

*These were published af'ter our report to Westvaco, upon which this
paper is based, but are included f'or convenience of' other users.

CHARLESTON RESEARCH LABORATORY
Wr:ST VIRGINIA PULP AND PAPER COMPANY CHARLESTON. SOUTH CAROLINA

o

c

C"I
v

o

-13-

APPENDIX A

MATIDMATICAL MODELS USED

The following. equations are the available models from which one may
choose. The subscripts in the equations refer to the .individual com~
ponents. A multiple subscript indicates the presence, in the factor,
of multiple components.

Models lea) and l(b) will handle most situations.

(n - No. of Components)

(b) Special Cubic: y = Same as l.(a) + L: 13. 'kX,X,x-1.J 1. J-lc

2. (a) Cubic: y = Same as l.(b)

l~i<j<k;S:n

+ L: ct . • X.X.(X. -X.)
1.J 1. J 1 J

lS:i<j~n

Special Quartic: y = Same as 2.(a) + L: 13" k X.X.X X 1.J e 1. J-K e
lS:i<j<k<e S:n

(The last term is used only when n >3)

3 • (a) Quart i c : y = Same as l.(a) + L: 6 .. X.X.(X.-X.)2 + L: [3 .. 'kr.X.X +
1.J 1. J 1. J 1.1.J 1. J-lc

lS:i<j<~n

L: [3"k X.X.XX + L: 13. "kX.:t:x + L: 13. 'kkX,X,-v2 + L: ct • • X.X.(X.-X.) 1.J e 1. J-K e 1.JJ 1. J-lc 1.J 1. J~K 1.J 1. J 1. J

Special Quintic: y = Same as 3.(a)

X,X,XkX X
1. J m e

+ L: 13" k X.X.XX + L: 13" k 1.J e 1. J--k e 1.J em

Any of the coefficients in the above equations may be zero, and it
must be emphasized that the lowest order equation, consistent with a
good fit, should be used. The choice of a more complex equation
unnecessarily distorts the estimated response surface, and makes the
optimum difficult or impossible to find.

CHARLESTON RESEARCH LABORATORY

WEST VIRGINIA PULP AND PAPER COMPANY CHARLESTON. SOUTH CAROLINA

There are no constants in the equation for we are examlnlng differences*
between the mixes) not what they have in common. It is important to
remember this) since our correlation programs for the computer normally
generate a constant. In this case) however) the constant must be
repressed by the computer operator) otherwise the coefficients will
not apply to the simplex. The simplex represents 100% of the mix)
but if some portion is predetermined (for economic reasons) for
example)) then the simplex represents 100% of the flexible portion
of the mix.

*Full advantage of this characteristic of simplexes is taken in
examining systems with four or more components. The systems are examined
at each level for three factors while the fourth and fifth factors are
held constant at these levels. This permits examining a four dimensional
simplex on two dimensional triangular pilots) which simplified inter­
pretation.

CHARLESTON RESEARCH LABORATORY

WEST VIRGINIA PULP AND PAPER COMPANY CHARLESTON, SOUTH CAROLINA

o

.-

.....

..
'-

,'
.--

•

APPENDIX B

PROGRAM 9'§S-CHR
G~·NERAT:ON OF RESPONSE POINTS FROM SIMPLEX OF Z TO 5 COMPONENTS,

U,:-" : N ... ; E r T .. : ~ R ;\ b S C L UTE V A L U E 5 0 R 0 1 F FER E N T I .£i.. L:-) •
!,}AT\4 1\10l)ELS T:""~RO.JG~": ~p~~CI,4\L QUART Ie Ii\~CLl;SlVE.

WR[TTEN BY WM. A. PEASE,JR. MARCH 2. 19~7

READ IN PARAMETER CARD CON·r~rNING Nl,N2,N4,BP,NL.AND KB F1RST.
THEN FO~L..OW WITH NL HEAl)ER Ct\RDS TO LAB[L AMD SIX PATA CARDS
CONT}\lNIHG B(I) VALUt:S FI"<C)M -­
Bl(Xl)+B2(X2)+83(X3)+B4(XlX2)~85(X1X3)+86(X2X3)+B7(X1X~X?)+
88tX4)-..S,tXlX4)+BIO(XZX4}tBll(X3X4)+B12(Xl;(2XLf)+813(XlX3X4}+
B14(X?X3X4}+-Bl~(XlX2X3X4'+81E){X5J+817(XlX5)+BlB(X2XS)+619(X3X5l+
t~20 (X1X2X5) +1321 (XJX ~,x?) +822 CK 2X3X5)+B23 (X lX2.X3X 5')+824 (XliX5 >+
625 {XIXLfX5) ;-B26 (X2X4x?)+BZ,l eX3Xl,fX5)+l3lB (XIX2.Xtl-X5')+BZ9 ()(lX3X4X~)+
BlO;XZ.X3X4XS·;+B31 {X1X2.X3X14X5)+832.((X~-X2)XIX2)+B3:;{ (.Xl-X:::)XlX3')i­
B 3lf ((X~-X3) X2X 3 i +B3 5 (()(.1-X4·) X lXIt) +838 (tX2.··X4) xzxtt)+
~37((X3-X4)X3X4)+B38((Xl-X~)X1X5~B39((XZ-X5)XZXS)+
B~O((X3-X5)X3X5'+841{ (X4-XS)X4XS)+B42

Nl = NO~ Of DIFFERENT COMPONENTS (DIFFERENT X) IN MODEL.
NZ= NO. OF INTERVALS TN 5IMPLEX BORDER (AT BASE).
~4= BASE ON ORIGINAL SCALE~ (UNITY,lO,OR 100-- FUR PER CENT)
3~::: BA SE FO;:~ PROPERTY (SMi\LLES T VALUE OBSERVeD-WHOLE No.,)
NL= Now OF lABEL1NG HEADER CARDS
B(l)= COEFFrCI~NTS IN MODE~ EQUATION.
K8= 1 FOR PURE CUBIC OR SPECIAL QUARTIC,: 0 IN ALL OTHER CASES.
X(I::: EXPRES510N IN PARENTHEsIS FOR CORRESPONDING 8{ I) IN MODEL.
B(4l,: CONSTANT IN EQUATION, WHEN USED.
X(4~)= 1 TO KEEP CONSTANT IN EQUATION.WHEN DESIRED.­
Act)= BASle COMPONENT RATIO BEFORE CONVERTING FoR BASE.
CONV= CONvERSION FACTOR TO BRING COMPONENT RATIOS To ACTUAL AMT.
AN= CONSTRAINT ON SUM OF COMPONENT VALUES.
CT= CONSTRAINT TEST TO KEEP POINTS WITH1N SIMPLEX MODEL

DIMENSION B(4B),X(48) ,A(5)
_ FORMAT (3IQ,F,.o.213)
:2 FOR MA T (8 F 9 • 0)
t.. FOR M.h. T (5 >. :;, '-! A 1 , f) X. 3 H X.2 t 6 >~ 3 H I- 3 , S i\ :3 H X 4 , 6 >(3 rl X 5 • 7 ,\ 'i H RES P 0 N S t)
5 FORM!T (5F9.2,3X.E16.9)
c FOR til I: T (I r 4 , 11 H" C eM po N r: NT S , 4 X , r 4 , 1 0 H IN T ~ 1:< V A L 5, I 4 ,S H BAS E I)
-; r 0 R M;~ T (7 21-1

8 FORMAT (lHl)
9 FORMAT (30H WHAT IS NUMBER OF COMPONENTS.)

20 FORMAT (401-1 NO. OF COMf-'ONENTS EXCEEDS 5, TOO LARGE.II)

1 0 vI R I T E (3, 8 i
READ (2,]:Nl,NZ,N4,SP,NL.KB
IF (NI) 14,15,16

14 CALL EXIT
~5 \JR I TE (3 ~ 9)

PAUSE 1
GO TO 10

16 IF (Nl-5) 18,18,17
1 7 WR 1 T E {3, 20)

PAUSE 2.
. GO TO 10

19- DO·}l I=:l,NL
RE.AD (2',1)

&&h2«A4<£M4QM4m· ,~,

\

11 WR IrE· (3 t 7 , - .. -........ -...... _.,
INITIALIZATJOH OF VARIABLES'

.00 12. 1=1,'18
X(I)= 0.0

12 B(1)= 0.0
N3= N2+1
AN= N2.
AN4=N4
CONY:: ANq/AN

WRJTE (3,6)Nl,N2,N4
WRITE (3,4)
DO 13 I::: 1,41,8· .. '" ... -........ .

-16.

1 3 READ < 2 , 2. l S (I) , Bel +- 1) ~ a (1 + 2 , ; B (I -+3) ,B C I + 4) , B (r +5) ,5 C I -+ 6) ,B (1 + 1)
X(4Z)= 1. .
N5= -1
D o· 50 I:: 1, N 3 • 1
N 5'~: N 5'+ 1
N'~·: N3-N5
A(l):: 1-1
xLl):: A(lJ*CONV
N7::: -1
00,,0 J= 1,N6.1
N7= N7+1
N8= N'-N7
Al2.)= J-l
xtZ)::; A(2)*CONV·
X{q)= X(l)*X{Z)
IF (Nl-3) 19,2.4,24

19 CT= A(l}+A(Z}
IF (CT-AN) 50,21,5C··-

2.1 y;;;; 0.0
DO 23 N= 1~2

23 y= .y+ (8(N) *x (~f»)
Y= Y+8(~)*X(4)+B(q~)+BP

_ WR I T E (3 , S') X (1) ,x (z., ,X (3 J ,x (S) , x (1 (,) ,y

c·

-~,.. GO,' TO 50 " -._. -... -- -.~ -..... -.: ~-... ¥ ' ••• - ••• '~- ~"'"'~~'.'''_''':'''_':'~'M''''''' - .•..• , .• _ _._ , , .• ", ... " -.~ - _ .. '.-.......... ' .. ~ ••. ,.... • ••. ~ ~ - , , •• ~.- ~ - ' ••

2.4 N9,: -1 ,
DO 49 K= 1,N8.1
N9-= N9+1
NIO= N8-N9
A(3)= K-1
X(3)= A(3l';~CONV·
X (5):: .x (1 , .:~ . .x (3)

X (6).: X (2.) -;1)((3)
X(7)= X{l)~x(')
IF (Nl-4) QO,28t28

,5 CT= A(1)+ACZ)+A(3)
IF (C T -AN) 49 9 Z 6 t t+ 9

26 y= 0.0
DO 27 N= 1 ,1

'27 y= Y+B(N)*X{~)
yo: Y+8 (1f.2) .;.BP
WR r T E (3,5) X (1) ,x (2) , x (3) • x. (8) , x (16) ,y
GO TO 49 ... ~ - .

2.8 Nll= -1
DO 48 l=1,N10.
Ntl:; NIl+l
N12= NIO-Nl1
A ,I,,.,::: L~l

X(S)=ACJ4.,)1f'CONV

(.. ,.

c

()

o

•

DO 29 N::l~7

29 X(N+8)= XCN)*X(Bl
IF (Nl-5) lfO!l34,34

3() CT= Atl)
DO 31 N= 2,14

31 CT=:· CT + A(N)
IF (CT-ANJ 48.3l,48

32 Y= 0.0
DO 33 N= 1,15

\33 V::: V CS(N)1tX(N))
Y-=Y+B(LfZ.)+BP
WR IT E (3 , 5) X (1) 'X (l) ,X (3) ,X,(8) ,x (16) ,y
GO TO 48

3~ DO 47 M= 1,NIZ,1
A(5)= M-1
X(16)= A£S)*CONV
DO 35" N; 1, 15"

35 X (N+ 1 ~) = X (N))f X (1 6)
IF (Ni-5} 40;40,17

36 CT= A (1)
DO 31 N= 2.5

37 CT::: 'CT+A(N)
IF (CT-AN) q7,38,~7

38 y= 0.0
DO .39 f\I= 1,31

39 y= Y+(B{N)~X(N))
Y=Y+B(q2)+8P
WR r T E (3, 5 'X (1) ,X , Z. , , X (:3) ,X, 8 , , X (1 6) ,y
GO ro 47

40 !F (I< 8) 41, l41 .4Z
Lll GO TO (19,19,ZS,30!'36),Nl
42. X(3,)= (XCl)-Xl2)).JfX(q.)

X(33)~ €Xlll-X(3»),X{S)
X(34)= lX(2)-X(3))*X"J
IF 'Nl-~) 25.43,43

43 DO qq lM= 1,3
44)((LM+3 4) = (X (lM) -X (4) >*X (LM+,)'

IF (Nl-5) 30tqS,Q5.
45 DO lf6 LM; 1,3
40 X(LM+37)= (X(LMJ-X(5')*X(LM+16j

X(~l)= (X(S)-X(S)*X(Zq)
GO TO 3b

47 CoNT 1 NUE
4B CONTlNUE
49 CONT1NUE
5"0 CON T I NUE

GO TO 10
END

FEATURES SUPPORTED
ON E WO~ f} I N TE G E R Si
EXTENDED PRECISION
loes

CORE ~£OUIREMENrS FO~
COMMON 0 VARIA8lES

END OF COMP)~AT[ON

352 PROGRAM 1318

At,,·,

-18-

APPENDIX C

REGRESSION AGAINST PROPERTY 5, SPECIAL CUBIC MODEL
09 19 66
PROB 02 15 VAR 00022 .OBSER

(Includes Y)

DEP VAR = 05 (Position of Y in input sequence)
STD ERR Y.X 37.74593
R SQUARED ·90220
SUM SQR RES 05 .12822
IND VAR USED = 14

CONSTANT TERM = .00000

**VAR

01
02
03
04
06
07
08
09
10
11
12
13
14
15

* COEFF STD ERR T RATIO VARIABLE IN MODEL EQUATION

1 75.56728 37·70075 2.00439 Xl
2 277.43881 37.68200 7. 36263 XZ
3 291.10783 37.70068 7·72155 :l.3
8 186.13024 37.68184 4.93952 ~

4 -28.26312 184.58658 -.15311 X1 X2
5 -228.92496 184.36437 -1.24169 Xl X3
9 -46.88036 184.58694 -.25397 X1 4
6 228.86202 150.87728 1.51687 XZX3

10 719·95126 991.68793 .72588 XZ~

11 -79.79975 184.58658 -.43231 X3~

7 -514.56671 1022.15720 -.70570 Xl XZX3
12 -1955·80800 2771.44310 -·70570 X1 X2X4
13 -24.48535 1069.73940 -.02288 Xl :xa~n

14 -989·20270 2784.63480 -.35523 XZX3X4

When the T ratio is as low as that for Variable 14 shown above, the
variable is considered as inSignificant. (I.e. - Treated as though
there coefficients were zero.)

Columns 2, 6 and 7 are not part of the printout.

*Order that coefficients are read into response program, normally
**Order that variables were read into multiple regression program.

(05 = Dep. Variable)
***We would use the . order on the far right, if we want to use 00/0 D as

the base triangle in our plotting. (I.e. Xl = D, X2 = A, X3 =B,
x4 = C)

CHARLESTON RESEARCH LABORATORY

2
3
8
1
9

10
4

11
5
6

14
7

12
13

WEST VIRGINIA PULP AND PAPER COMPANY CHARLESTON. SOUTH CAROLINA

(~)

... 0 _1 _O

..... -.....(j"'------~----.; . .,...,,'r------

.n .:? ... 1

•

•• •
•
•

-19-

~ ___ .li."M_"_'_" •

. _---_._._-_ .. -. __ ..•. _

for 2 components
(at interval chosen)
the printout would
end here .

\

.• v.) _15399000E+03+-

.•. 0 ... 14159J8~·'E+fJ!l.

.• (1 .13408887E+07~-
_0 ... 12543193E+04

.... 0 ~61f·3329UnE+·03

+t~ .. ~ ll~6~u 1 <'H:+lO:5
... '0 .• 7 26256~rI t-:-03

_0 :35424984E+03
_0 ... 3260Sm40E+03

__ .~ ___ ... ~.o
. t

for· 3" ~omponent8,
the printout would
end here

\ C'

I'll

'--';" --i '~ ~;) ,., "1

-C
' I~ ...) ,., ..,

.... " ~
r. "l ,

'W" ;, .., .-

I •
.. t .. _

-, .•.. ! .
• .1.1, ,..
.,)

.. -5
I

.•. 0

•. 0
~.n
vO
..... ~)

1 j
, .. , ... ;)

() ... 0 ,,",,\

(I
· .. u ... t)

'("1 .• ,() ... u
n ... 1 u

... 8 ... 1
~tJ

, ... ,,-
0.

... .,,1 ... 0
..... 9 · .. 0
.... 9 ... ,

1 .0 .t1

•

-21-

-, ,
.... v

1 ... '

... 1~~OBl~"""~}-"'(""'}E-··-:-::-0-<X-3·-------------·--­

..,h ll} 3() 31r.; E+03
" ... 1. ••

..,.3

• e)
... 1 ,., ".
... {J
.•. 1
';'U
... 0
;1
.. :2
... ;)

0 ... '

· .. 3
.')

•

... t'1
." '.'~

:t r, (j h 2 ~·n ') i:. ·'·VFJ :3 7.1~1;·59"'}6E·~-03

... 3 2~ ! 1:·b(J L:.:+03

... l:.h8 296 lHj E+tO.3

._-'-' -" ----.--... --- --.- .

_0
.... 1 1 ~1.}21 OL}t},,!8~""3r--+·I------=--:-(·---

.... :2

... {j
1

... 1

-~:j
..:0
... :1

(t ?,f1
.0

v0

.0

... :/.} 171~8 2l~0 E+0 3

... 1~1~7 3 7tl6b E+C13

..!l}250 21 L}OE+OJ3

Notice that only points whose coordinates add up to
unity are printed by the computer. (The five pages
from which this sample was taken were generated in
45 minutes on the 1620 computer.)

o

· .
~

!J 0

0
Ii

"d
W (") 0

.....
tI

g "d
.....

'0
........

w
~. oq
N ""

0
tI

~ tI 00 ~ a 0 0
~

.....
0

p.,
g

00
o

0
0;: ..

:.;~ ?

c

...

• c
o

'One program for: .

. ~. .\ ...

1130 Offline

1800 Offline

1800 Online

Manuals Available:

Users Manual

Application Description

System Manual·

Type II Progra,n:;

H20-03Sl

H20-0208

. Y20~0110

o

o

.3"'

~.

",

~, .

-,
~

'. PROGRAM ABSTRACT

General Purpose, Non~linear, Optimization PrograIll

Uses Sectional LP to Optimize Non-linear Model

Consists of 1130/1800 Assembler 'Programs

Operates under 1130 DMS or 1800 TSX

Use~ Extended Pre~ision FP Arithmetic

/ ...

,'.,j"'; ... , , • to"

rt

•. I • __ ... \.. .. l

.l, ..

-. 1 ,,' ...

·0

i,

, !

'.

'I

8' c c

PROGRAM DESCRIPTION.

User. must supply model, IPSN, and linlits

Model is set of equations relating XIS and Y I S

Model includes objective function to be optimized

Solution Method

Constraints andObF. linearized about IPSN by calcula~ing partials . .

Have matrix of partials

Result;-is: 4 '/ ~ l(ll ~

COP formulates and solves i~cremental LP (4 Y and A X)
. . ,,) . v l

Solution is set of A j and A 1\ .s

Afte; one loop, COP will re-linearize and optimize, etc. .

. Detection of Optimal

Optimum may be interior or e~eri.or

Two convergence techniques
. ,~!

CVTI -'reduce all LLIM "
CVT2- selective reduction in LLIM

o () "w

.'~" .' .

.
(Continued)

We asibilitie s

one or more variables outside· limits'

'-f
~,

X: arbitrary move made

Y: dual algorithm em~loyed
" .

, ' \ , . ! .

. , \ . "
",

""." "1>4 • ~,' '. ". ~ I ~

:
, ;' •• I

~. 1.

••

'APPN >3

PPSN 1
IPSN· J

Objective
: Function

'.

.. ;)

, '1
, I

'.

.... .'

, , · ' . I I,

• I •
•
" I·

.... '

"

.i,

Linearity
Limit

q.

. ;

c·

,.,

. ~ .

I

'j

Linearity
Limit

:. '

"

I
1
I
I
I
I
I.
I
I
I
I
I

, I f ~ k
.... APPN Upper

PPSN Limit

Xj

Gr~phi.c,al Representation of the Solution procedure,

''''.

. '
",

(.

',~ t

o

:,'"

.'

I.

'.

- -;--.. --- -.- - .-

J">'

": .. ' .'
....

.
• 0

.
~.

. .

. .
.'

.. ~. "

')(
~ •.

...... :,

,.

.... -

....
.. _._------ ... _--_.p- -----.-.--_. __ ._-- _ .•.

" '.' C\c.~.~ ..

','

~ ..

eO ..

: .

. . .

'.

. !' ':' ~ , ,'-,":

'. e. , ••

"

."
. ,-..

,. 0

.....

"

.' .; ,
..

.. " ..
c ,~.

~,.~
n Gl

~. -t p\ - -',0 _
. r.J c.

tr\

,.

.; .. ' .

"

.' y
- ... -

'V'
I

·0

--.j,

.s. .•• '.

...• . ~ . " ...

"

"

... . .

, '

'. '

" '

, .

. '

._------ ---_._---------_ .. -.--- .. , 'rf"'\

' ..

' .

. ,

, ,'.
' ... ' .. , , .J
• 0 • ,

,.

.'

. e:

..

. ,.-

"

. .•.

. :

U
"""'''', Jy""" , ..

I .< .

,~ ..
, "

. .

..

. .~ ".

"

I'

I
"

.•

SESSION REPORT

COMMON - Chicago

Session Number WED 86
----~~~------------

Session Name 1800 Plans and Soundoff

Chairman R. W. Forstrom

Time 10.30 to 12.00
----~~--~~~~~------------

Attendance (No.) __ ~8~0~ ________ __

Speakers __ _

Synopsis of Meeting __ __

Plans for next meeting developed. Committees int.re8~.d in.

(1) Documentation and Standards

(2) Data Acquisition

(3) MPX Review

Agreed to try to assemble committee or proje.ct intere.st;ed in 1800-360

and 1130-360 Communication.

Alreed to establish lnfor.mal news letter •

•
·M"" MIT.. '"

SESSION REPORT

COMMON - Chicago o
Session Number WED B7 ---------------------- Session Name 360 Project

Chairman A. Ragsdale DOS PhYsical IOCS and FORTRAN

Time 10.30 to 12.00 AM
------~----~~~--~~--------

Attendance (No.) __ ~7~9~ ________ _

Speakers Hr. A. Saunders - Traveller's Research Center

Synopsis of Meeting Mr. Saunders presented his experiencea and iaple-

mentationa while xritina his own physieal IOCS to handle tape and disk

I/O under FORTRAN. Mr. Saunders has written his own REWIND, BACKSPACE,

END FILE, READ And WRITE routines, ete. This has increased hi. per-

formance significantly.

c'
I

Alexander F. Saunders, Senior Analyst
Travelers Research Center, Inc.
250 Constitution Plaza
Hartford, Connecticut 06103

COMMON, Chicago, Illinois
360 Project, Session B7

April 22, 1968

"DOS Physical IOCS and FORTRAN"

Introduction

The reason for presenting the following material is to illustrate that

user-written assembler language subroutines in support of DOS FORTRAN are

not particularly formidable, and provide a means for performing unique func-

tions faster and with greater flexibility and control. The use of physical
i
I

IOCS routines for reading and writing binary tape records is the primary area
,

of concern, although tape control functions, etc., will also be discussed.

4[:) Whenever applicable, examples and performance comparisons with FORTRAN capabil­

ities is provided. The routines to be described have been operational for

over a year at the Travelers Research Center Computer Laboratory. The IBM

3~0/40 and 2402 mod II tape drives at that facility were used to obtain data

for this report. The mode of operation was DOS, release 14.

1. The initial impetus for attempting a user-written tape I/O capa-

bi1ity was provided by an historical requirement. Prior to obtaining its own

computer, TRe had used the IBM 7090 series facilities at The United Aircraft

Research Laboratories in East Hartford, Connecticut, and the I/O packages

developed by their personnel. To maintain a minimum amount of re-programming

effort, similar subroutines were desirable under our own system capability.

It was also necessary to generate routines which (1) executed faster than their

• FORTRAN counterparts, (2) provided greater user control, (3) were easy to use,

and (4) had a low core requirement.

2. Logical IOCS did not lend itself adequately to generalization, and,

therefore, physical IOCS became the chosen method. As a brief description 1

PIOCS allowed performance of non-data operations and control of the transfer

of data to and from external devices via four supervisor resident routines:

st"art I/O, I/O interrupt, channel scheduler, and device error.

3. Eight subroutines were written to accomplish the specified control

and read-write capability. Figure one contains a description of each. At

this time the routines are general only to TRC users, and would probably

need some revision ~o perform satisfactorily at another installation.

4. Figure twoiillustrates comparative execution times with FORTRAN,
. II

example one ~ subro.htine used to measure the execution times, and example

two demonstrates altYPiCal rewind subroutine. Figure four, though not based
I

on an I/O oriented procedure, was included to encourage assembler language

programming in c?mputational areas. It is especially attractive for produc-

tion type programs when heavy FORTRAN indexing is involved.

5. After each routine having a response indicator as one of its

arguments, a computed go to is usually employed to perform branching to the

necessary statement number. Branch time was included in collecting data for

figures two and three.

6. There are three factors involved in the performance differences in-

dicated in figure two. FORTRAN generates 63 word data records preceded, in

release 14, by two control words. Release 13 on down required one leading

control word. Computation and testing of the control words and the movement

of data to and from buffer areas also add considerably to the execution time.

By using the PIOCS subroutines these time consuming functions were avoided.

The advantage gained by writing one long record rather than a series of

shorter ones may be demonstrated by referring to figure three. The time

required to write a single 5000 word record is 0.35 seconds. If, instead,
c

()

c)

•

one-hundred 50 word records were written, the time required jumps to

2.00 seconds. To write 5000 words with FORTRAN would take approximately

4.83 seconds.

7. At this time the core required by all eight routines is 85016.

They are presently being re-written to provide facility for handling re-

cords up to 16383 words in length, and to sense for not-ready and file

protect status. Record size limitations now are within the range of 4 to

8191 words. Control routines RWD, WEF, and UNL are being changed to accept

a variable number of arguments, thereby allowing the programmer to request

mUltiple operations in one c.all statement. Incidently, the number of re-tries

in event of I/O error has been programmed at five times reading, and fifteen

8.

This;has proven quite satisfactory.

I
Discussion to this point has been almost exclusively about magnetic

I
Other external I/O devices (typewriter, printer, and card reader-

writing.

tape I/O.

punch) have also been programmed to perform unique functions. For instance,
!

re-read type subroutines, typewriter communication, and job accounting pro-

cedures, to mention a few, have been implemented using physical laCS.

9.. In addition to FORTRAN, the routines desc·ribed have linked and executed

properly with PL/I and assembler language programs. The biggest problem in

commencing PIOCS programming is in gathering the necessary material. Hopefully,

example two, the references provided, your SE, and considerable reading and

imagination will bridge the gap for interested programmers. The investment

is well worthwhile •

$g_.'

I!

"

References:

Source

IBM System/360
Di$k Operating System
Supervisor and Input/Output Macros
C24-5037-2

IBM .. System/360
Disk and Tape Operating Systems
Assembler Language
C24-34l4-4

IBM System/360 Principles of Operatio~
A22-6821-3

IBM System/360
Disk and Tape Operating System
FORTRAN IV Specifications
C24;-5014-0 . !

~ I

IBM system/36d
l

Reference Data
(Green Card)
X20-1703-3' ,

!
IBM System/360 Component Design
2400-Series Magnetic Tape Units and
2816 Switchi~g Unit
A22~6866-3

Programming the IBM System/360
App~ndix F
Staff of Computer Usage Co.
John Wiley and Sons, Inc.

~~~--.--.--.-"".---.--.--.,.-

Content 

CCB (command control block) 
EXCP (execute channel program) 
WAIT 

CCW (channel command word) 

General 

Subroutine Linkage 

Channel Command Codes 
Channel Address Word 
Channel Conmand Word 
Channel Status Word 

Sense Information 

I/O Device Responses 
General Information 

~. 
V 



,..... 

PI. 
Subroutine 

i 
CALL RBT (A, NWDS, NT, NE) 

CALL RBTX (A, NWDS, NT, NE) 

CALL WET (A, NWDS, NT, NE) 

CALL RWD (NT) 

CALL UNL (NT) 

CALLWEF (NT) 

CALL RSKP (NCT, NT, NE) 

CALL FSKPX (NCT, NT, NE) 

Symbol D~finition 

FORTRAN 
Counterpart 

o 
READ (NT) (A(I), 1=1, NWDS) 

-none-

WRITE (NT) (A(I), 1=1, NWDS) 

REWIND NT 

-none-

END FILE NT 

READ (NT) 
BACKSPACE NT 

-none-

Use 
o 

-
Read a physical record a known length 
or the first N words of a longer record. 

Read a physical record of unknown length. 

Write a physical record. 

Tape rewind. 

Tape rewind and unload. 

Write a tape mark. 

Skip forward or backward a given number 
of records. If an end of file is sensed, 
skipping is terminated regardless of the 
requested count. 

Skip forward or backward a given number 
of files. 

A Name of array or variable where data is to be read into or from in consecutive fashion 
NWDS Number of words to be read or written. This is a returned value for RBTX. 
NCT Number or records or files to skip. A negative value results in backwards motion. 
NT FORTRAN uriit assignment. Values of 10 through 14 are acceptable. 
NE Response Indicator. 

Table of Responses, NE 
~sponse 
Routi~ 

RBT 

RBTX 
WBT 
RSKP 
FSKPX 

1 
OK 

" 
II 

II 

II 

2 3 
end-of-fi1e detected I/O error 

II " 
end-of-tape detected " 
end-of-fi1e detected * 

* 

4 

* 
* 
* 

5 
Wrong length record (longer 
or shorter 

,j* Word count (NWDS) or unit selected (NT) in error 

FIGURE I 

"'" 



---------~- _. 

c· 
L -1..1. 1. L i.l -'i-' .., 



o 

i 1 1 II i I I " 11 ill i ! , 
1 I 'I '11 1 i L ~~:II 

I-+-+-+-+-t-~-+-+-+I-+-+-+-+-+-l-+-+I-+-+--l-+-+-t-+I 4-+-+--,f--t--t-+-+--+-+-+-+-+-1-++-!-, +--I-l--I-H1--t,-_+f- i ,\"-f-r- ~++. ---n-+-jl. iT-
j 'I 1 'I -f-+----r-t--t--Ic-+-+,-r, I' 1'\.1 - U-r-tTTT 

t-+I -+-+-+-+-+I -rl-+-+: -+-+'-+1-+-1 +-1-+1 -+:-+i--+;-+-+-+,-f-+-+--t-+-+,--t-+-i-'-: +I-+--t 1 1 1 1 1 , 1 I' I • '\.; ,--~. Ii' I I 

t-+-+-+--i-II-+-!--+-+:-tl~i+ ,I -+'-!-+-' -t-'--i:~. )1 I ! 1 i,: 1 ' I ~iJ I I 1 I I'il-t-+, (~ 'ii i 
I-+-+-+--lH-l-+-+-!'~ I ,~ _ I r r~ i ~ ... ! , , , I 
I-+-+-+-i--+-~-+-+!£\r ~'l--+-+-+--l-+-!' +-I-+-~.-'--+--+-+--l-+--'---'I-l-,I'~r-I +-11-+-1 -I-l-+-f-+&.J.. I t';'\. ill ! ! 

'1 , " i "" II ' ~ I , I" , i , 

~!\. I 
"'l. I 

I j i 
I • I , , 

: i 
I I I , 1 I 

1 I I , 
I I 



.c 

.; 
,; 
! ... 
o c 
ill • 

o 
U 
II: 
11/ 
en 
en 
1&1 .. 

I) oJ 
'" 1&1 r: II. 
J I&. 

~ ; 
~ " 

o 



.' c ~j \yl'i 

LoC-cHfJtC-r--.too-e .. -.. ----.AOORr--}\"[ltHf2----s-rMl-.. -··SitORc-e--STATEMENT----··-·--- --.. --- --- .. _._.----- .-~.-----

-------000000··--· l' TRCTSEC START 0 CAll TIME( IT300r·-·-·-·----··----------

2 ENTRY TIME 
----00-0000·· 3' USING *,15 

4 TIME SAVE (14,12'--'-------_. __ .. _----- ·-· .... ---------·-----------------5·+-. 360N:;;';C[~453 . SAVE' -'-"'---'-CHANGE LEVEL' 2~O" - .... -.------

000000 90EC DOOC OOOOC 6+TJME STM 14,12,12+4U14+2-(14+2./16*16)(13) 
---0000045851 0000' .. -. '-00000 1 l' 5t-e-t~ . . . --. -

8· GE T I ME TU '-"- GET CLOCK T I ME TN 1/300 SEC 
---·--·--------9+* 36'ON-CL-453 GET IME" --CHANGE LEVEL 2-0' ---. -.--- ---------

000008 qaol 0050 00050 10+ LM 0,1,80 GET TIMER VALUE IN SECI16800 
--00000C--8800-'000-8' '00008--. 11 ... --.-.-.---- .. -.---. SRL 0,8 T I MER IN SEC/300 - . -. .. -----

000010 1FIO 12+ SLR 1,0 TIME OF DAY IN SEC/300 
---000012-.. 501'3---0000---------------00000----13 ". -----.. ST··-··l ,1)( 5) 

14 RETURN (14,12) 
---------15+*--360N:...CL-453- . RETURN . CHANGE LEVEL 2-0 - .. ---- ---

000016 98EC OOOC aoooc 16+ LM 14,12,12+4*(14+2-(14+2)/16*161(13) 
---·oo·oo·rA-:07FE .. -········· .. ··--------------···--·- --+---17 .. ··· .. -_·_--.... ·_-· .. - BR ... 14 -- .. " - - ..... -". 

18 END 
. ------ ---.. - .. -------

~ 

o ___ . ___ . _________ ._.__ ._. ________ .... _. __ 
-.-.-----------~---- - --> •• --_. -.-- .-- ---.--

-..... -----..... ,--~-.-----.- -_._------_ ... 

. --_ .. _- ------_._----... _-.- ------:-------------_. -----------------------------.--------.-----.---. ------- ._------ .. --- - ------. 

_ .... _----_.-- .. _-_._-_._ ..... _--- --.... _. __ ._--_ ..•.. _ .. __ . __ .. _- --"-----, ->-" .... ,-,".-

----_ .. _------_. __ ._-_.--.•... ----.----- __ " _____ . __ . __ ••.•.••. ____ - - _____ •• __ ••. _._._. o. ___ ." • _____ • _____ M. __ ... '_0 __ ._ .•.• 

- •.. _-.. _._- ----.-

----_._---_._-._----_ .. _--_. __ ... ---._._ ....... -~ -.~--.-------.------------ ... ----.~ .------.--~.~--

_____ . _____ .. ~._ .. _ .. _ ....... ___ .. ____ ..... _._._._ .... _ ... _. _ ..... ______ . ____ ._._ .. _."&.XA·M·P~~_ .. I 



---·-[O-C------OBj·ECT "-COOE ----- - ADD-R r"'-A-ODR2' --STMT---SQURCE-- STATEMENT ---

--- .--- 000000 1 TRCRWDE STA~T 0 CALL RWOINT) 
2 ENTRY RWD 

-----~-oooooo- - 3 USING·*,15 
4 RWD SAVE (14,12) 

--.--------.--------.---.. ----- ----- -------.-. ---------··------·-·5+* 360N-CI-Zt5-3--~SAVE ---.-- CHANGE LEVEL 2-0' -... ----.. -.--.---------
000000 90EC oooe 

--.--.-- .. -000004 5 8e 1 0000 
oooae 6+RWD STM 14,12,12+4*(14+2-(14+21/16*16)(13) 
00000- 7 l 12,O( 1) FORTRAN UNIT ADOR.FSS· 
OOOO? B lH 11,2(12) FORTRAN UNIT ASSIGNMENT 000008 48f\C 0002 

------OOOOOC --4880 F03C- --·--·-------0003C· 9 SH 11,=H',' CONVERT TO -SYS NUMBER ---. -.. --

000010 42AO F021 

-----000014 . 5810 F038 . 
000018 OAOO 

00027 10 STC 11,CONTROl+1 STORE IN eeB . 
·-----11· -.--.-- ... - EXCP .. · .. CONTROL EXECUTE REWIND 

12+* 360N-Cl-453 EXCP CHANGE LEVEL 2-0 
00038--------13+ .... l 1 ,=A( CONTROL} 

14+ SVC 0 
-.. -- .-.-' -----·15 .------ .. -- .. ---- -- RETURN (14, 12 ) . ~ .... --. "_ ... _._- ~-------- .. ----~ 

. 16+* 360N-CL-453 RETURN CHANGE LEVEL 2-0 
·--ouoorA-98Ec-.. DO·OC---·--------cro-OOC---11+-----·-·- .. - lM" 14, 12,12 +4* ( 14+2-( 14+2) 116* 161" (13·r---·----

OOOOIE 01FE 18+ BR 14 
-----. ----- ... '---'---'-' .-.- --.. --.. -... -.----.-.-.-.--------------.-.. -.-.-- -----19 .-CONTROl'--- CC9'---' S YSOOO', TAPE 

20+* 360N-CL-453 eca CHANGE LEVEL 2-4 
- ---000020-0000-------------------·-----·------·----··--·-----21 +CONTROL -- DC X l2 • o· - RES I DUAL COUNT 

000022 0000 22+ DC - Xl2'O' COMMUNICATIONS BYTES 
-. --00002·4-··-0000--·-·-----·--· -·-··----·---23+-----·----· ······-oc .......... Xl2 foe esw STATUS BYTES 

000026 01 24+ DC Allll) LOGICAL UNIT CLASS 
----000021·-00· -.-----.--.--.--.----------.. ---. -------25+ --·-·--·--·------------OC·· - ... -... All (O) lOG I CAL UNI T 

000028 00 26+ DC XLlI0' 
----00002 9 ·000030---------·-----·--·------·-·------------·····--21+-------·-·----- DC -- ----Al3 (TAPE) CCW ADDRESS 

OOOD2e 00 . 28+ DC R'OOOOOOOO' STATUS BYTE 
·--00002D·--000000----·--··-·--- --------·29+-·-·-------- OC-"--"-'" AL3 (0) CSW CCW ·ADDRESS 

000030 0100001000000001 30 TAPE CCW 1,*,X'OO',1 

000038 00000020 
-'--00003C' OC03- .. 

~ 

- ·--· .. ---------------31· -·-·---------END -----

. 32 =AfCONTROll 
-... --.--.----- 33 .---- -------.----. ---- .-----: H' 3' 

__ E){A M PL.tS._ -a 

o 

2-

( 
... ~ 
" -, '"'. 11< 

·7 



o 

o 

• 

SESSION REPORT 

COMMON - Chicago 

w~o 

Session Number MOM el and Dl 
--~~~~~~~~----

Session Name 1130 PLAN 

Chairman P. J. Woodrow 

Time --------------------------------1.30 PM and 3.30 PM Attendance {No.> ___ 1_3_9 __________ _ 

Speakers Mr. Jack Sam. and Mr. Dick Weber - IBM 

Synopsis of Meeting Mr. Sam. devoted the first session to an overview 

of PLAN (Problem Language Analyzer), presenting the basic reasone and 

principles for thia aystem. He announced that a new veraion of PLAN 

would be relea.ed in January 1969 whick would eupport Version 2 of the 

DiSk MONITOR System. He a180 announced that PLAN would be ayailable 

in the near future tn the IBM 360 under BT4K AI' QTAM. the •• cond 

session was primarlly devoted to qu.etlona froa the users to Mr. sams 

(principal designer of PLAN) and Mr. Weber (principal IBM user of PIAN 

for DPS (Data frel_Dt.tioD System.). A clearmajorlty of tho •• pre •• at 

indicated a de.ire to us. PLAN and a 8ubcommittee (of' the 1130 Project) 
under Mr. Woodrow waa for.ed to thorouahly lnv •• tisat. and report aI PLAN. 

! 



I 

! 

The IBM Problem Language Analyzer 

Based on successful experience with three current application programs, 
IBM has announced that a new development support package for problem­
solving applications will be available January 30, 1969. This set of 
programs is known as the IBM Problem Language Analyzer (PLAN). At 
the same time, three more engineering applications based on PLAN 
were announc ed . 

PLAN supports both the IBM 1130 and System/360. It interfaces with 
three monitor/operating systems (1130 Monitor vII, DOS, OS/360) to 
prG:?yi9.-e a uniform set of application services for FORTRAN -oriented 
in"st"allations. Using these services fully allows application modules 
to be exchanged at source level acros s system boundaries. 

It should be emphasized that PLAN simply adds to the installation 
options. It is not a separate or dedicated system. The PLAN programs 
create an interactive environment within a standard batch monitor. 
There is no unusual effect on existing batch operations. PLAN operates ~ 
a JOB. 

Within the PLAN JOB, PLAN provides several services: 

It loads program modules dynamically as directed by 
the user of the system (This control is usually indirect, 
implied by a problem statement) . 

It creates and maintains problem language description 
table~. These allow installations to have their own POL's 
without writing compilers or interpreters for each different 
language and system. 

It uses the installation defined table to decode and execute 
each ,user's problem descriptive statements, one at a time, 
or fn batches. 

To programmers supporting PLAN-based applications, PLAN provides a 
library of over 60 subroutines that produce the same effect in different 
operating systems. 

These perform program linkage, data management, and utility functions. 
Using these subroutines, and following the techniques suggested by 
PIAN allows an installation to produce modular programs that can be used 
in a dynamic loading environment. 

C
·~·,,\ 

I .\ 



f''!57!!!!! 

• 

-2-

Using these subroutines also lowers the total programming effort and 
maximizes the probability that a module can be reused in an unspecified 
future application. 

The main theme of these subroutines is their emphasiS on execution time 
definition of attributes that have usually been constants at source time. 
(Data file I/O record structure, program linkage, communication between 
user and program, etc.) 

Application design and implemen.tation under PLAN is quite different 
and much simpler than usual if the end-user of the application is honestly 
to be given a range of capability, or any degree of control at execution 
time. 

Ordinarily, extensive pre-planning is required to identify the possible 
choices and control paths that are to be supported or prohibited. The 
complication factor is at least (N * N -1) where N is the number of 
options. It can approach (N!). It usually exceeds the programmers 
skill and foresight if N > 10. Adding or changing anything re-opens 
Pandora- s box. Even successful efforts tend to age quickly and perish 
at machine boundaries. 

PLAN assumes that the end-user will be subject to certain disciplines; 
but that he has the fundamental privilege to order sequences of processing 
that were not necessarily ,anticipated. He can make errors, as he can 
make errors with a calculator. He can also succeed in solving many 
unique, one-time problems that cannot be anticipated. 

To allow the end-user to exercise control, PLAN supports installation 
definition of their own free format, problem oriented statements. Any 
meaningful combination of statements can then be processed by a PLAN 
JOB, one at a time or in batch mode, to give users results. Note that 
PLAN execution does not involve either compiling or interpreting computer 
programs. Input statements, like the higher level monitor control statements, 
direct execution of previously compiled and core imaged or link edited 
modules. These modules are obtained by standard FORTRAN orAssembler 
methods and have to be available before the PLAN JOB is executed. 

Extending of the installation- s PLAN language (collection of statement 
definitions) is a Simple matter of ADDing or DELeting individual statement 
definitions. A Single definition step serves all future users. 

Extending an application under PLAN is a process of adding or deleting 
functional modules of code implied by POL statements. Changing, recompil­
ing, and link-editing related code is not required. Growth and testing can be 
incremental, continuing, and far les s costly . 



.----~- .. -.......... "."." .. " .. " ...... " ... """.,, .. ~~~-, 

-3-

The attached diagram is a schematic of PLAN operation on a simple logical 
machine (real or a partition or a tine slice). It does not reflect real core 
allocations. In practice, PLAN occupies 2560 bytes of storage in the 
problem program COMMON area. Otherwise, the problem s pace is as 
large as it normally would be in FORTRAN operations. 

A second attachment indic ates the general scope of the PLAN program. 
The subroutine argument lists are not given; and these calls should not 
be included in current programs. The users manual of the 1130 Data 
Presentation System provides programming detail on the subset now in 
use on the 1130 under Monitor I. 

In summary, PLAN uses and augments three existing batch monitors to provide 
a problem-solving application environment. It promotes modularity and 
economy of programming. Most importantly, it offers a technique for open­
ended development of application languages and programs at the installation 
level. Using PLAN techniques can extend profitable computer usage into the 
everyday world of problems we now spend a half day solving by hand, 
without requiring journeymen to become programmers. 

Last, but not least I PLAN suggests and supports a new division of effort 
and responsibility among coders, system analysts I and users of problem­
solving sy stems. 

o 



o 

f.:J ~l- A'~ N' I ~ _ I (STAND-ALONE 

I/O l 5 TGRAGe..:DEV'C.e.S c:oNTROL.L.e.l) 
. , BY "E.~ e.C.UT'E·H PHf\ASe., ... 

; "', 

-:- ·t .• t," " 
" I • ~ ,- .. ' • 

" .. - ,t ..... r 

.. ,,r, · 
' ... 

... : "''') )jr 
,.t "'If 

• ~ J. 

• " .f'. " ' .. 
,"',; ~! 

\' 
" .~., 

" . 
'r .. ': 't. 

, " ' I' -

',. 
. "..' \' 

. ., 

, " I 



----.------.. -,--.-."'-,,---.".--.. -~"~~ 

UTI LIT Y CALLS 

r'" (~;' 

IDCS - PLAN SYSTEM DEVICE AsSIGNMENT 

ERROR - ABORT STATEMENT WITH DIAGNOSTIC 

EHRET - CoNTINLE AFTER DIAGNOSTIC 

ERRAT - CoNTINUE AFTER DIAGNOSTIC, SET ERROR LATCH 

ERREX - ABORT MoDULE AFTER DIAGNOSTIC 

ERLST - PRINT PENDING ERROR MESSAGES 

I N PUT - GI VE CALLER THE TEXT OF THE LAST INPUT 

STATSVlENT 

NDEF - ACClJvlULATOR -,0,+ AS ARGUMENT IS FALSE, C 
TRUE, REAL 

TRUE - SET TRUE 

FALSE - SET FALSE 

PARGO - rtVE ARGU\1ENT LIST TO caf[)N 

PARGI - CoLLECr ARGlI'1ENTS FROM Caff)N 

BREAK - CoNVERT AA TO FOUR RIGHT JUSTIFIED INTEGERS 

PACK - ExTRACT BYTE 

PUN P K - MASK IN BYTE 

l. 



LOADER CALLS 

LEX loAD AND ExECUTE A fVbDULE 

LIS T ArID To/REMoVE 

LIS T B ADn/REMoVE FROM BoTTOM OF STACK 

L C HEX ROLL OUT CURRENT JVbDULE, loAD AND ExECUTE 

NEW fVbDULE, RETURN TO OLD fVbDULE ON 

SIGNAL 

LOCAL LOAD AND ENTER ANOTHER ~'bDULE, RETURN TO 

CALLER 

C" ) LRET RETURN TO CALLI NG I"bDULE 

LNRET CANCEL PENDING RETURNS 

LREPT REPEAT CURRENT STATEMENT 

PUS H ExECUTE A PLAN STATEMENT FROM CoRE, RAlHER 

THAN FROM THE I NPUT STREAM 

o 

7 - 'J . 

--------------,,'-



MODULES 
(r-',f;) 
"'0 

PLAN - loADER 

PSCAN - INTERPRETER 

PHRAS - lANGUAGE DEFINER 

PERRS - ERROR PROCESSOR 

FlO C S - INPUT/OUTPUT DEVICE SELECTION 

P FIN D - DISK SPACE ALLOCATOR 

PSRTA - , DISK SORT 

PMRGA - DISK MERGE 
C,I 

PSTSV - STATEMENT SAVE 

PTDMP - lANGUAGE TABLE DUVlP 

PFDMP - FILE PUVlP 

PPDMP - PERMANENT FILE DUMP 

PCDMP - CoREDLMP 

P I D M P - INPUT TRACE 

P D I A G - DIAGNOSTIC MESSAGE MAINTENANCE 



DATA MANAGEMENT CALLS 

FIN D - INITIALIZATION 

READ - DISK TO CoRE flRRAy 

W R I T E - CoRE flRAAY TO DISK 

RELES - FREE DISK SPACE 

PSORT - DISK SoRT IN PLACE 

PMERG - DISK MERGE IN PLACE 

GDATA - INITIALIZE FOR FILES WRITTEN 
CJ Ours I DE PLAN 

WDATA - CoRElDISK FOR GDATA FILES 

RDATA - DISK/CORE FOR GDATA FILES 

PFSPC - TEST FOR AVAILABLE SPACE 

DSNAME 

Fi Ie 3 

1°" 
I 1 I! 2 I ~t n I 

Fi Ie 4 ,

0 I 1 I 2 I IQ 
• Fi 1 e 201 (0 I 1 [2 I H aI 



.~~.-.~.,-.-.-.,."' .. '''''., .. '''-~~~------

PCOMP 

PHTOE 

PBTST 

UTI LIT Y CAL L S - (CoNTI NUED) 

ARRAy (av,PARI SON 

HEXADECIMAL TO EBCDI C 

BIT TEST RoUTINE 

Ci 



i 
I 

.,"" 
, ' 

,. ," 

I/O 
«I 

TO U'. R. -DEVICES 

EBCDIC 
---,_ ..... __ ... _.--------

~UFFE..f\~ 

(SlN(;LE.. o~ 
DOUBLE..) 

'\ 

~' 

A 
E 
I 
F 
H 

.' 



-, 

,- ' 

. - ' .. ;::.. . -..... -... - . 

, .. :.;~ 

" i • 

, . ' 

", \.' .'. 
.' '. t ....... : .. ~. . .. "-

~ ... " .. ' '. --:: ... .. 
," 

~~' .. ~ -, - ...,'. 
'. . . .. , .. ,.. .. .. 

, .. ':: .. -' .' .. ,:,';' -." -. '." ". "'~":'" :,. .;.. -' .,' ':'".,:: . .-, .... 

....... ;'; .......• ~~:' IMPLEMHdTAT(ONOf.PlAN'·APPLICATIOt1 .. " 
'.:'" ':":-'. ~,:./: .. ,':."::':> ... ' ':. .' ," .' . '.' ," ,.... . -: " :' 

" ,.' ,.- . " ,':, ',;.' ..... . , "":.- '. '. , 
'.. , , '. " .. ::..... ',' . " " .. ' ~'" ,,' '. --:' ,: .. '.' :"'~,,' ",.' 

- ; ,"\J ,. " ...... . ...... • ..: - . 
• .. or • j ." .... .. , .a. .; ~.' -' .. , 

.. 

'" ' ..... '. OB'J EeT i VE: Make it easy for the ma~, v/Uh the prOblems' 

. -' '.' - . -. .-.. . -'. - . . .' ..... '.. . 

. :.'. ~': ~ :': :'. t .. " .' ' .. ;. ' .. ' to describe them .to the compt4er •. .. '.' .' -I '~', : ,: ~ -. -' " . . '. -. . . '. ~. -' .' , .-. ........ .' -. . (' 
.. .. ~ ~. ~ :.- .. ~~.~.~ ~. -. THREE GROUPS ARE INVOLVED: . ---.;~ .. ;-,~-.'-."" . 

, . 
" . 

, . 
. USERS: Tell an~Jysts vihat v/ords and phrases are 
, . required .. De~ne commands and data ternls' 

• . p~eciselYi~" .. : .':' :: .. :'.' " 
• • .... ... :. .. 0' • .. ~ - •• 

, . . 

ANALYSTS: Pefine YJords and phrases tot.he PLAN 
System.' Determine what additional 

. " prQJrammed functions are needed in • 

.. the library. Specify details o~ required· 
j programs. , ~' 

.- -

'-.' PROGRAMtviERS:' \\1rite prCY;Jrams as spscified by the ana1ysts 
, , .. , '... .. . . and add them to the PLAN library. 

. . .... 
. t·. . . . 

~- . -, ~ .. ~. ," .. ~.." .• :" .' 

t .'. . 

.... " ~­
- .. .. _ .• :":- ' ......... -: r-

• #" 

.. -, .-
-' 0J- ';'-.- .', -. a;.:;. 

" .; .... 
. ' I 

• 

r 

__ ) pO • :.. ~"'., .. ,. .J. • .. .... \ 

..' i : T.H EN: '. Use r~ desc'ribe thei r pro!llems f n the la ng uags 
. :~:"?'.~-'~ _.: ..they have defir}~~. . .. --

• 

.' .' ...... -- :~ ~,;.,. ,::-.. -
. ;- ... ' :-- .. -::. :.- . _ .',' .". _ •• ,_ .. '9 • 

;" ... ,,: . ". , ..... .. ::--: .... 

-' -

, : ... 
~.;- , 

. ': : '.::.; ~.'."~ ~t ':'~ -!: 
.. ":! .. ,: : .. 

" . '. ~: .' '/- .. '~ ":':. . -
. " ~. . .. ~. .'::. ~ 

'.T ... .' 

: - ~." ...... .. .- .... - .... :. 

'P "'; •.••• ~ ,j; •••• ..- •• 

::" .:.:,' .. ' . ~ , 

• # 

. .. . . 
. ~;. ,. _.:':,: -' -

" .::-.... .".-

.,. '~"', 

J .. 
.;. ~ ... ; 

-. , ~ .. -. - "',' 

,," .. .. 
.' ;' 

'8',." ,.~~ 
'. -

J-- , -
I

~ ~~ 
,'U _ . 

~ 

(~;/ 

c 



SESSION REPORT 

C·
J ., COMMON - Chicago 

Session Number WED C2 
--------~------------

Session Name Education Project 

Chairman ----------------------------
Time ____ ~1~'~3~O_t~o~3~.~3~O~PM=_ ________ _ Attendance (No.) ----------------

Speakers S. l.ee 
--~~---------------------------------------------------------

Synopsis of Meeting Dr. Lee pre.ented • paper entitled, "lbe SLll 

Compiler for the IBM 1130" 

• I 

:MiI 4M4.i414·,"" 



THE SL/ 1 COMPILER FOR THE IBM 1130 

Authors: M. E. Jackson (IBM Canada) 
E. S. Lee (University of Toronto) 
P. 1. P. Boulton (University of Toronto) 

Because of the growth in the use of data processing equipment in recent 
years and because of the shortage of trained personnel, the Department of 
Education of the Province of Ontario is encouraging the teaching of data 
processing in the high schools of the Province. Some schools have installed 
keypunches and unit record equipment but during the last three or four years 
a number of small computers have been installed for teaching purposes. In 
some instances, a large school will acquire its own computer; in others, the 
local school board will obtain a machine to be used by several schools in the 
area. These machines are 1620,s, 1130s or machines of comparable size, 
although some scho'ol boards are using System/360 Model 30s for both adminis­
tration and teaching. Data processing is being taught as a vocation to students 
in the commerce stream and as a tool to students in the science and arts 
stream. In 1965, the Department of Education, in an effort to promote uni­
formity and standards, published curricula for teaching data processing and 
asked a committee of university professors for recommendations on a suitable 
programming language. 
(SLIDE 1) 
The report of this committee was released in 1966. It recommended a subset 
of PL/ 1, as PL/ 1 has scientific and commercial features, is suitable for 
modular learning and contains most of the features found in high level lan­
guages today. The subset specification was not rigid; it consisted of a list 

_ of PL/ 1 features and indicated which features were considered necessary, 
desirable or unnecessary. The report stressed the need for fast compilation 
and good diagnostics and recommended implementation on a small machine, 
since a small machine in each school is more satisfactory than courier service 
to a larger central machine and the cost is less than terminals linked to a 
medium scale computer. In 1966, a group in IBM, advised by Professors 
Lee and Boulton of the University of Toronto, undertook the development of 
a compiler meeting these specifications for the 1130. 
(SLIDE 2) 
The problems we faced were that we had to write a fast compiler, with good 
compile and object time diagnostics, with diagnostics in source program terms, 
for a sophisticated language and on a small machine with an instruction set ill 
adapted to either compiling or supporting the' required language feature s. 
Furthermore,many featuresofPL/l need the services of a much more com­
prehensive operating system than the 1130 Disk Monitor. Some of the require­
ments such as fast compilation and good diagnostics are conflicting. Factors 
in our favor we,re that the source programs would be trivial in size and com­
plexity, and in execution time :requirements; only one level of diagnostics 
was required,therewC)uldbe nowarningrnessages or attempts to correct 
errors made by the programmer; a disk was required to teach file concepts 
and was, therefore, available for compiling; language specifications were 

v 
---, ,,"--.. ---~----

./~ 

i'~,,-I 



c> 

• 

flexible, enabling us to include, omit or modify features as the system 
developed; and finally, since it was to be a Type III program, we avoided all 
the red-tape associated with Type I and II programs. 
(SLIDE 3) 
The system is designed to run on an 8K, one disk system, with 1442 or 2501 
reader and 1132 or 1403 printer. There is no support for paper tape, the 
console keyboard/printer, plotter or multiple disk drives. The system 
prepared for version two of 1130 monitor will not support a card punch. 
Additional core storage is used if available which permits larger programs 
to be compiled and executed but does not provide any speed increase. 
(SLIDE 4) 
The data types shown on the slide are supported by SL/ 1. Decimal arithmetic 
was implemented to illustrate the effects of variable length fields and to avoid 
confusing students with the conversion and truncation phenomena associated 
with binary fractions. Any of the data types shown may be in array form. 
Arrays may have one or two dimensions, and dimension bounds may be nega­
tive or positive. Character and bit strings may be combined in major and 
minor structures with a maximum structure level of four. Structures may be 
dimensioned but any data element must be accessible using, at most, four 
subscripts. Full or partially qualified names may be used for referencing 
structured data. 
(SLIDE 5) 
The data types shown on this slide are not implemented in SL/ 1, although 
provision was made in the design for some of them and the hooks are still 
there. Binary was not considered to be necessary. Picture was omitted 
with regret because of implementation problems, but it has been retained in 
format statements. 
(SLIDE 6) 
The major language features of SL/ 1 are shown on this slide. Internal and 
external procedures and begin blocks were included to facilitate teaching of 
subroutine concepts, scope of names and, to a limited extent, the effects of 
dynamic storage allocation. Although storage is not allocated dynamically, 
some of its affects are simulated by making data within a block unavailable 
when the block is inactive and by reinitialising all variables, except those with 
the static attribute, when a block becomes active. For those variables which 
do not have the initial attribute, this involves initialising with "garbage". It 
is in the implementation of I/O features that we have deviated most from 
PL/1. Because of lack of buffer space, each GET or PUT statement in SL/ 1 
begins a new record instead of processing the file as a continuous data stream. 
The absence of an adequate operating system forced a lot of compromises in 
handling record I/O. Program control statements such as IF and GO TO are 
implemented as defined in PL/ 1. The ON statement is an exception; in SL/ 1 
there is no return to the point of interrupt following execution of an ON -unit. 
Unless the programmer includes a GO TO statement in the ON -unit, execution 
of the ON -unit will be followed by program termination. Variables may be 
declared either explicitly or implicitly. Some of our users consider implicit 
declaration to be a major source of programmer errors and would like to see 
the feature eliminated. Perhaps an optional list of implicitly declared vari­
ables might be in order here. 

2 -, 



(SLIDE 7) 
Expressions of arrays and structures are not permitted. The assignment 
statement, however, allows a scalar variable to be assigned to all elements 
of an array, or an array to be assigned to another array with similar dimen­
sions. A structure may be assigned to another structure provided their 
attributes are identical. For example, if A and B are both arrays or are both 
structures, then A=B is valid but A+B is not valid. We would have liked to 
include attribute factoring but, unfortunately, it used too much core and had 
to be dropped. 
(SLIDE 8) 
Implementation was kept as straight-forward as possible. The only options 
available to the user are: list/no list of source program; compile only / compile 
and go; and, execute an object program stored on disk. Only the source 
program is listed, no symbol table list, load map, etc., are provided. Com­
piler generation of in-line 1130 code was considered to be difficult and would 
make a fast compiler impossible. The alternatives, therefore, were to gener­
ate object programs consisting almost entirely of subroutine linkages or to 
generate interpretive code. We chose to generate interpretive code since it 
produces more compact object programs and is not significantly slower in 
execution than a series of subroutine linkages. The interpretive code is 
actually the machine language of a hypothetical machine. The instruction set 
of this hypothetical machine was designed so that many of the difficult source 
language feature s can be compiled as a single machine language instruction. 
For example, a DO statement, after generation of code to evaluate any expres­
sions in the statement, compiles as a single instruction. The hypothetical 
machine also has registers specifically designed for handling SL/ 1 language 
features. This approach to the design of the interpretive code takes a large 
burden from the compiler and transfers it to the execution time interpreter. 
Our goal of a fast compiler was, therefore, more easily achieved, and the 
re sulting poor execution times are justified by the high ratio of compilations 
to executions and the trivial nature of the programs in a student environment. 
The use of interpretive code and the decimal format of the data have made it 
impossible for SLj 1 programs to link to routines written in FORTRAN or 1130 
Assembler and vice versa, but this is not considered a serious drawback. It 
also forced us to write the function library routines SIN, SQR T, MAX, etc. 
in SLj 1. These routines are, therefore, slow and, in some cases, not very 
accurate. Because the source programs we expect to compile are small, 
there is no provision for spilling symbol tables, attribute tables, etc., onto 
disk. This limits the size of program the compiler can handle but usually the 
object program runs out of space before the compiler tables start to overflow. 
No provision has been made for overlays in object programs. 
(SLIDE 9) 
Compiler performance is very sensitive to the format of the source program. 
If the source program is punched multiple statements per card, then the number 
of cards compiled per minute is low but the statements per minute are high. 
Punching the source program one statement per card improves the cards per 
minute. Program.s punched one statment per card compile at about the same 
rate as the 1130 FORTRAN compiler process equivatent programs. Com-
piler performance is also affected by the language features used in the source 
program. Object program execution times depend very heavily on language 

3 

[-''-. 

ILJI? 



• 

features used and, to some extent, on the order in which they are executed. 
Apart from the arithmetic routines, which are core resident, most of the 
interpreter is disk resident and is fetched into core in sections as it is needed. 
Thus, most of the execution time is devoted to fetching routine s from disk. 
Probably the most meaningful performance figure is the through-put. This 
estimate was obtained by watching a class of beginners debugging four small 
programs each during a four-hour lab session. ~ince the system is used 
mainly for teaching commercial data processing and about 750/0 of the state­
ments executed are I/O commands, the object time performance is not as 
bad a s it looks. 
SL/ 1 is being used in about 20 installations in Canada but apparently only 
for commercial applications. FORTRAN is still being taught to the science 
and arts students, and some schools prefer to teach COBOL or languages of 
their own invention. There is some provision in the system for adding more 
language features and given a 16K machine, the through-put could be con­
siderably improved by making some or all of the disk resident routines core 
resident. At the present tiIne, we have no plans for further development . 

4 



REASONS (Slide 1) 

Standard language for all schools 
Scientific and commercial 
Easy to learn 
Rich language 
Fast compiler 
Extensive diagnostics 
Inexpensive machine 

TRADE~OFFS (Slide 2) 

Fast compile 
Extensive diagnostics 
Source language diagnostics' 
Rich language 
Small core 

HARDWARE (Slide 3) 

8K (or more) core 
1 Disk 
1442/2501 Reader 
1132/1403 Printer 
48 char. set 
BCD or EBCDIC 

DATA TYPES SUPPORTED (Slide 4) 

Character 
Bit 
Fixed decimal 
Float decimal 
Label 

Trivial programs 
Unoptimised object code 
All errors fatal 
Flexible language spec s 
Disk available 
Type III 

Arrays 
Structures 

DATA TYPES NOT SUPPORTED (Slide 5) 

Binary 
Pointer 
Picture 
Sterling 
Complex 

Task 
Cell 
Area 
Event 

)t"""" 

1.~' 



LANGUAGE FEATURES SUPPORTED ,,(Slide 6) 

Internal/External procedures 
Begin blocks 
Stream I/O (List/Edit) 
Record I/O 
IF, GOTO, DO, ON, ETC 
Explicit/Implicit declaration 

LANGUAGE FEATURES NOT SUPPORTED (Slide 7) 

Macros 
Expressions of arrays/ structures 
Dynamic storage allocation 
Multiprogramming 
Attribute factoring 
Recursive procedures 
Pseudo variables 

IMPLEMENTATION (Slide 8) 

Limited options 
Only source listed 
Interpretive execution 
Single language 
No table spill to disk 
No object program overlays 

PERFORMANCE (Slide 9) 

Compile: 

Execute: 
Thru-put: 
Max program: 

20 - 50 cards {min.. 
30 - 60 statements/min. 
25 ... lOOOstatements/tnin. 
50 programs/hour 
about 100 statements 



Session Number Wed C-5 -------------------
Chairman R. J. Sna.iler 

Session Name "Relationships Between 

Customer Be S.E., F.E., Be Marketing ' Reps. " ------------------------
Time 1:30 - 3:00 p.m. Attendance (No.) 38 ---------------------------- --------~-----------

Speakers --------------------------------------------------------------
Robert Lukeman - I.B.N. White Plains - Mark Rep. 

Warren Gillis - I.B.~ White Plains - S.E. 

Gerald ltbnjeau - I.B.M. White Plains - F.E. 

Synopsis of Meeting Each speaker made a brief presentation dealing 
----------------------------------------------------

generally with I.B.M.'s policies, procedures and training of' personnel with 

regard to his specific area. He then entertained questions from the floor. 

Some comments dealt with a particular compant,.s d1ssat1sfaction with an 

individual functioning in one of the capacities covered by this panel. There 

were favorable comments as well. Other questions promoted answers of a more . 

general and informative nature. There was very active participa.tionon the 

part of the audience. The questions dealt ,With topics such as "Unhooking" I 

AFAR's, Pl'F'Sj lBoo-TSX, and methods of expediting action under emergency 

conditions. 

The talks and following discussions brought out the team work 
required for obtaining "customer satisfaction". The customers in the 
audience seemed satisfied With this team's handling of their inquiries and 
problems. 


