PROCEEDINGS
COMMON MEETING
CINCINNATI, OHIO

SEPTEMBER 6-7-8, 1967

C

SESSIOM

Ne0e0
'u""l] 01
bl 2.2

TABLE OF CONTENTS

TNPIC
NEW MFEMRERS MFETING
GENFRAL SESSION
1130 USERS MEETING

He?oetEW 3.4 360 USERS MEETING

e ?eb
We3,e2
W.?.é
He3 ol
Welal
Wedo?
o & ot
Wedob
HedoT

Teloe
Tels

L]
[]
BN -

—
o o o .

NN NN
e O o ¢ [
o = o™

LI)
L[]

B

NS /360 PROJECT MEETING

1130 1ISFRS MFETING

QYSTEM BRFFFRENCE LTRRARY PAPER
N</360 COMMITTEE MFETING

1620 USFRS MEETING

1130 USFRS MEFTING

D.N.S. PROJECT MEETING

FNUCATION PROJECT MEETING

MTII SYSTFM/240 DATA RETRIFVAL SYSTEM

NTSK NATA STORAGF ROUTINE 'DDSR!
AVERLAPPFD I1/0 FOR 1130 FORTRAN PRNGRAMS
RFPORPT OF 360 HARDWARE COMMITTEE MEETING

PERSOMMEL SFLECTINN AND JOBR DESCRIPTIONS IN MEDIUM-

TN=-SMALL INSTALLATIONS

PRNGRAMMER SELECTIOM

ORGANTZATINN AND SELECTION

PIL/T PRESENTATION RY IBM

MOMTMATING COMMITTFE MEETING

'PMERG!' FAST SNRT-MERGE FOR 1130

PRAFESSINNAL PROGRAMMERS AND ANALYSTS - PROBLEMS
TN PERFNRMANCE EVALUATION

PROGRAMMFR EVALUATION

PRNGRAMMER EVALUATION

ADDRFSS BY MR. GeW. WOERNER, T.R.M. VICE PRESIDENT

DeNaSe TIT

NS/360 MEETING REPNRT

FARTRAN PROCESSOR FOR DNRILLING TUBESHEETS ON N/C
MACHINE

CHEMICAL ENGINFERING APPLICATIONS OR '*CSMP!

CUSTOMER-IBM RELATIONSHIP WITH RESPECT TO FE, SE,
AND SALES

'360' DPERATOR TRATINING

OPEN ROARD MEETINMNG

PLANMING SESSTON FOR EDUCATION PROJECT

PAGE

15
16
17
18
19
29
30
31
32
33
34

80

83
109
114
120
122
136

137
139

202
207
208
224
231
240

241
254

258
278
299
327

wn
m
wn
[72)
—
fe)
=z

*
L]

TTmTmTm T M
N = s bt et et et
° ® o © 4 o

NNV DN -

T T M T T
6 o © o ¢ o & o
o o O o & 4 o o

NN PN W

TOPIC PAGE
'360-30/40' RPG FOR FUN & PROFIT 328
REQUIREMENTS FOR THE PROGRAM LIBRARY 360
A COORDINATED STUDENT DATA SYSTEM 363
LABORATORY AUTOMATION BASED SYSTEMS 384
FUTURE MEETINGS PROJECT REPORT 401
'1620' PROGRAM FOR A.C. CIRCUIT ANALYSIS 403
OBTAINING MAXIMUM RESULTS USING A COMPUTER FOR
ENGINEERING DESIGN 430
SUBROUTINE 'DATAR? 436
AN EXPANDED EDUCATIONAL COMPUTER SYSTEM-THE '1041! 448
TRM PROGRAM LIBRARY PROCEDURES 459
COMPATIBITY OPERATING SYSTEM MEETING REPORT 464
STORAGE & RETRIEVAL OF PERMANENT 1620-1311 FILES 466
360 PROJECT MEETING 474
COMPUTER TIME STUDY ANALYSIS FOR WORK MEASUREMENT 476
0S/360 COMMITTEE MEETING 488
1130 AND OUICKTRAN DEMONSTRATIONS 489

LIST OF REGISTRANTS - ALPHABETICAL ORDER BY LAST
NAME 492

LIST OF REGISTRANTS - ALPHABETICAL ORDER BY CITY 525

SESSION NUMBER O

SPEAKERS
JIM STANSBURY
LAURA AUSTIN
CHARLES MAUDLIN

DISCUSSION
WELCOME TO NEW MEMBERS. EXPLANATION OF KINDS OF SESSIONS AVAIL-
ABLE. SUGGESTIONS OF SPECIFIC SESSIONS OF INTEREST TO NEW MEMBERS.
DISCUSSION OF INFORMATION TO GIVE TO SECRETARY-TREASURER TO
OFFICIALLY BECOME MEMBER.

SESSION NUMBER W.l.l
GENERAL SESSION
SPEAKERS
JAMES STANSBURY,

PRESIDENT

TRANSCRIPTION

GENERAL ASSEMBLY

COMMON, CINCINNATI, 6 SEPTEMBER, 1967

LI

Page 1

JAMES STANSBURY, CHAIRMAN -

At Boston, I took off on the members enthusiastically, wildly, and
with not too much result, but I can't preach to the people that attend
today. We've tried to set up a meeting that meets the objectives and
requirements that you people gave to us at Boston, and in conversation
afterwards., We're still making mistakes, but I think we've done

far better than we did then. Hope you will enjoy it and benefit from
it.

I'd like to say one thing about the interests of COMMON. I've had
numerous inquiries from people who aren't certain whether COMMON
is what they want to join, or not. They would join GUIDE possibly;
if they had a large machine, they might join SHARE. They aren't
qualified for these on the basis of machines, so they say, fine, we'll
join COMMON., The special groups in this organization are the

ones you people want, If you people have a common interest then get
together with a birds of a feather session, organize a project, and,

if you convince the Executive Board that you are serious, you'll get
to be a project. The people here are the only ones to make those
projects run - make them beneficial. That's about all I intend to say.

I'll start off here by introducing members of the Executive Board, then
I intend to have each one of our Divisional Managers present a short
description of what his division is doing. Jim Tunney has some cor-
rections on the agenda and IBM has requested some time to make a
short presentation, which they will think will be of interest to all
members - a new hardware announcement.

On my left over here is Dick Pratt, Executive Board Member, next to
him is Norman Goldman, President of the Eastern Region. Paul Bickford,
who was appointed to fill the vacancy created by Don Jardine's re~-
signation. Bill Lane, Western Region President., On my right, Frank
Maskiell, Executive Board Member, and on the far right, Chuck Maudlin,
Secretary-Treasurer, Since Chuck is a rather ethical character, I'm
going to apologize for him. There have been a great many problems

with communications with the Secretary-Treasurer - lack of installation
support. He's changed installations; he assures me that he has his
backlog down now to a reasonable value, and that in the future we

can expect reasonably prompt responses from him. Is Laura Austin

Page 2

here? Jim Taylor?

We'll start out with the Applications Division since we have
the Division Manager present,

FRANK MASKIELL -

I wasn't prepared to dissertate on the Applications Divisions. We

have six projects in the Applications Division. First, I might state

the objectives of the Applications Division. You all will have a

chance to read them more accurately in the COMMON Reference

Manual, which will be forthcoming shortly, I understand. In the
Applications Division, we are particularly concerned with problems

of installations which are not particular machine problems. We're
concerned with what you're doing on tlie machine,on the computer, not
what computer you are using to accomplish the results of these problems.
To this end we have these six projects, specifically, they are the
Techniques Project, which is concerned with mathematical packages,
some statistical work. We have the Electric Utilities Project, what

has operated in the past, particularly in the Eastern Region, as the
Electric Utilities Team. We have the Petro-Chemical Engineering
Project, hopefully serving the needs of installations in these industries.
The Civil-Mechanical Project, who at this meeting, I believe, will

be meeting withsome of the members of Cepa. We have the Education
Project, which gathers together the large number of university people
who, in some sense of the word, have problems all of their own.
Meeting at Cincinnati, for the first time, are a fair number of individuals
interested in numerical control. This is a project which is just now
getting started. We hope to see it grow as others find information
available in this area, and can be served by this as a project.

CHAIR -

An now that Laura Austin is here, the lady sitting on the far right, I'm
going to ask her to discuss the Administration Division next. She also
has some announcements to make.,

LAURA AUSTIN -
Thank you Jim.

I would like to point out some of the Sessions to be held for the Ad-
ministration Division first. The Administration Division is a working
division of COMMON. It is one from which you, as a individual, will
not realize a great deal of benefit for your installation, in terms

Page 3

programs that you have obtained through participation in a project.
It is a division in which we feel you can contribute a great deal to 0
COMMON, and thereby benefit your installation through the overall

operation of COMMON, and through what we hope will be an efficient

operation of COMMON, The first session I would like to call to

your attention is at 10:30 on Thursday, which is the session on nom-

inations. We will be, within the next year, drawing up a slate of

nominations for officers of COMMON. Since COMMON has grown

to be such a large organization, it is difficult for us to get around

to know each member. We would like to have people who are in-

terested in serving on the Executive Board of COMMON, or who

are interested in serving as Chairmen of Committees, or as Managers

of Divisions, to make themselves known at this nominating sessions,

so that we can become better acquainted with you, and so that we

can have a slate of people to draw from for our nominations for the

next year. We feel that you will benefit a great deal from taking part

in COMMON, from getting right into the working side of COMMON,

whether it is as a Committee Chairman, or as a Project Chairman, or

as an Executive Board Member.

The next Session that I would like to call to your attention is at 8:30
on Friday. This is the Future Meetings Session. In this one, we

will be discussing the locations of future meetings, the cities and
hotels, and we also would like to solicit help from members of @
COMMON for Program Chairman and Local Arrangements Chairman.
Again, you contribute a great deal to COMMON by offering your
services in this area. If you will be at all available for any of these
positions, we would like to have you come to this meeting on Friday.
We can give you more detail as to what is involved in carrying out
these duties at that time. Then, at 10:30 on Friday, is the Program
Library Project. We are hoping this will be one of the largest sessions
of the conference. In this particular session, we will be discussing
the use of the PREP forms, what the PREP form is, what its purpose

is, and how it can be of help to your. We will be discussing the
Program Shipment Analysis form, in which we are trying to work with
IBM in finding out where the problems are in the shipment of programs,
and in the distribution of them. We will also be discussing the new
360, 1130, 1800 Library, and I'm sure this is going to be of interest

to most members. We will be discussing the standards for submittal,
the procedures for ordering, and what catalogs will be available, etc.

Another part of the Administrative Division has been the Reference
Manual Committee, This has been largely made up of one person -

Mr., B. R, Russell, who has contributed a great deal of time and

effort in preparing for us a reference manual, I'm happy to say that
today, I have a preliminary copy of the Reference Manual for COMMON.

Page 4

This will be mailed to every installation in about two weeks. You
should be receiving the complete binder, dividers and the material.
Now, this first issue of the Reference Manual is not complete. There
are some sections that have not been submitted yet. We felt that

we wanted to get it out to the members as soon as possible. The

things that it does contain are something about the history of COMMON,
what are the advantages of membership, the obligations of membership,
what is the coming calendar for COMMON meetings, the organizational
structure. We hope here to have completed before too long a list of

all the projects that are currently active in COMMON =~ their scope and
objectives. The Reference Manual will not include current reports on
project progress. These will be covered in CAST, but the Reference
Manual will give the scope and objective of each project; it will give
you a list of all of the Project Chairmen, so you will know who to con-
tact when you want to have some correspondence regarding a project.

It also contains information for you about the information services of
COMMON, In other words, how do you submit things to CAST, what
can you expect to see in CAST and the Newsletter. How do you submit
information to the Newsletter, and what is the purpose served by the
Newsletter. And some information regarding the Program Information
Dept., better known to you as the Program Library. This will talk

about the ordering procedures for material from the different machine
type libraries, will talk about submittal procedures for programs, the
PREP form, and the shipment analysis form. We hope the Reference
Manual will be of great benefit to you. There is one other thing it will
contain, a membership list which is indexed by company name and by
user group number, The company names are in alphabetical order, and
will give you the installation number. The full address of the installation
representative is given under the installation code listing. Later, it will
also have a geographic list, listed according to region of the country.

I think that this describes what we have for you in the Reference Manual,
and I'm sure you will be looking forward to receiving this within the
next two weeks.

CHAIR -
The next division which we will consider is the Installation Management ~

PAUL BICKFORD -

Thank you, Jim. I want to welcome all of you this morning to our meeting.
I would like to begin by outlining the objectives of our Division. We
primarily exist for helping to form guide lines to our management in the
areas of Personnel and Operation Management. We presently consist

of two projects. One in Personnel and Operations and, in a way, one

Page 5

in Education. As a result of the Boston meeting, we outlined some
activities for this meeting, and are currently responsible for such
presentations as the Job Description and Personnel Selection Pres-
entation. Also a presentation on Programmer Evaluation. We also
requested IBM to make a presentation on the Systems Reference Library
and one on 360 Operator Training. We would like to solicit at this
time any of you who are interested in participating in the activities

of our group. We will have a planning session this coming Friday.

We have about 30 people in our Projects. We would like to have

more people participate actively in our group. So, if you new members
or old members are interested in becoming involved in these activities,
please be at the Planning Meeting on Friday. Thank you.

CHAIR -

I would like to particularly suggest to all members, new and old, -
The Thursday afternoon session on the IBM Customer Engineer
relationship should cover a discussion of the APARS, and of something
called a Programming Systems Memorandum, which has just been
made available by subscription. It lists all the APARS for a given pro-
gramming system, and comes out every two weeks. It's the best
source I know of to find out what bugs are where and when., It's ex-
tremely useful. Jim Taylor is not here; Dick, do you want to discuss
the Systems Division?

DICK PRATT -

Frank said he was unprepared, I'm extremely unprepared. About alll
can tell you about the Systems Division is that it consists of machine-
oriented sessions, and you will find these in your program, Some of
them have probably been changed. These will be announced. There
are sessions for 1620, 1130, 1800 & 360, and these will take most of
the day today, and part of the day tomorrow, I imagine you can find
the session you are interested in by just looking through your machine
type. There are some sessions scheduled at the same time you might
want to split yourself between — somebody has already complained to
me about that - unfortunately, there is only so much time. You just
sort of have to take a choice or go back and forthe, I don't really
have any information as to what is scheduled in any of these machine-
oriented sessions, except for the 360. The 360 will have some pres-
entations by IBM on PL-I, which has just come out in DOS, and on

Page 6

DOS, Version 3, which has just been announced, and will be
available in April. And, while I am standing up, I would like to
say that I'd like to meet very briefly after this session with the
Chairmen of the 360 committees, so we can sort of get things
straightened out. I assume the rest of the mcahine-oriented
sessions are already straightened out. If they are not, I don't
know what to tell you to do about it.

CHAIR -

I should say that Dick is not the Systems Division Managef. He's
the Chairman of the 360 Project, as well as a member of the Executive
Board.

There is one comment that I would like to make about that - particularly
in the 1620 area - there will be applications papers presented within
the Systems Division. Where we felt that they were sufficiently
machine-oriented that they would not be of benefit to anyone other

than a user of a particular machine type, we put the applications papers
in the machine-oriented sessions.

Bill Lane has an announcement, and Jim Tunney has some modifications
on the agenda.

BILL LANE -

I notice that this is about the first and last General Session according
to the agenda. I notice also that, according to the agenda, Friday
afternoon until 3 P. M. there is a general time set out for planning

of the next meeting. The next meeting will be in San Francisco at

the Sheraton Palace and, getting word in for the people of the Golden
State, we'd sure like to have you come out. We're quite proud of

San Francisco and if you want something to see that is different go

out to Ashbury and see the Hippies. I went out to check about a week
ago, or two weeks ago, I gues it was, and they're fantastic. For
those of you who are worried, they are not around the Sheraton Palace.
But, anyway, I would ask that you harken to the call for papers, and
also the call for help, because the Executive Board can't put on the
meeting by themselves, and I sure as heck can't put it on by myself,
We'd like you all to help. We'd like to have you consider today, to-
morrow, and Friday morning, rather than just Friday afternoon, as to
what you would like in the next meeting, and what type of papers you
think would be appropriate, Please, when you do find these out, either
get information to the Division Chairman or, better yet, get information
both to the Division Chairman and to me.

Page 7

In CAST 7 there is a little duestionnaire-type form that all you do

is check things off and send it back to me - it requires a five cent
stamp now, I guess. We'd sure appreciate it. I'm looking forward
to a good meeting today, tomorrow and Friday, as well as in San
Francisco. Come on out., It's great in December - the weather's not
bad. In fact it might even be warmer than in the East.

LAURA AUSTIN -

In conjunction with Bill Lane's announcement, I might mention for
this Future Meetings Session that we have for Administration Division -
so that you can be considering this, maybe I should tell you where
the meetings are going to be so you would know whether you'd want
to volunteer to be Program Chairman or Local Arrangements Chairman.
December of '67 will be San Francisco, as Bill mentioned -

April of '68 will be in Chicago - so anybody from the Chicago area -
we'd be interested in having volunteers to help on that program.
September of '68 will be Philadelphia,

December of '68 will be Houston, Texas.

April of '69 will be Los Angeles.

That is as far ahead as I will go right now, but, if you are from any
of these local cities, we'd certainly like for you to consider volunteering
for help on those programs.

CHAIR -

Thank you, Laura.

Jim Tunney has some announcements and program changes -
JIM TUNNEY, PROGRAM CHAIRMAN -

Since there is going to be a series of program changes through out

this meeting, I am going to try each time to go down the list in the
same sequence these things appear in your program so that you can
make the changes as I go -

The fir'st change is on Page 14, I believe, the Session W2.2, which
is 1130 - OK, page 12, in W2.2, in which there is the 1130 project,
there will be a presentation on 1130 Commercial Applications by Mr.
J. Elan.

| @

—_—

Page 8

Then on Page 16, W4.4, the PL-I presentation has been moved
from there. That session will be chaired by Mr, Mc Ilvain, rather
than Richard Pratt, and will include comments on DOS, The PL-I
presentation has been moved to T2.1, which is on page 20 - that's
the next item., T2.1, which is again Don Mc Ilvain's session, will
have the presentation by IBM on PL-I. T2,1l is PL~1 under DOS.

The next change is on Page 22, which is T3.1. T3-~1, of course, has
the DOS Version 3, which is correct as stated. Down under T3, 3, the
paper on Expanded AUTOSPOT for 1130, which is B in T3.,3, will be
given by Charles Newman, instead of D. Carlson. Page 23 - The
Education Project there — those presentations from IBM will be made
by Mr, H. Codowé& G. Wolf, Their names somehow were omitted
here. That is in T3.6.

Down at the bottom of that page, in T3.8, R. Brennan is going to
give that paper.

I'd like to talk to Jim Fisher after session here. His paper right now
is scheduled in F3.1, and there is some question as to whether that's
when it will be presented.

Also, on page 27, in Fl1l.7, the paper by Mr. Groft will be moved to
another session. I don't know where yet, but the one that is scheduled
for 9:15 on AC Circuit Analysis will really take place at 8:30 inthat
session. I gues that's all I have.

CHAIR -
As usual there are always afterthoughts -
PAUL BICKFORD -

One little note - we are interested in forming a panel here at the
meeting of people, two or three people, interested in discussing 360
operator training. We would like for people interested to participate

in this panel. It will be Session F2.2, on page 28, So if you are
interested, and would like to participate in a spontaneous discussion
here, please meet me up here after this session., Also, we are in-
terested in getting together people who are interested in a CAI project ~
Computer Assisted Instruction - Bill Lane is interested in meeting with
these people, so if you will see him here after the session, he will

‘IH

Page 9

speak with you then.

CHAIR -

We are trying to cut this session short today, so that there will be
time for registration for the people that didn't get there last night.
IBM has requested permission to make a presentation on some new
hardware -

Paul Manikowski of IBM will make the presentation.

CHAIR -

I heard the laugh when Paul read the statement of intent. How many
of you people have received CAST 7? Possibly half. There is a
letter in that, which is basically the same as the speech by Watson
to GUIDE, discussing IBM's policy regarding Program Announcements.
I don't know - we have not requested any specific coverage here, so
I'll give you the gist of it,

IBM has adopted a policy that program announcements will be deferred
until such time as they are reasonably certain that the program will

do what the intend for it to do. In some cases, it may even mean that
the program announcement will not be made until a program is actually
in Alpha or Beta Tests. Because, in many cases, this would be too
late to do the user any good, they have indicated that they will make
a statement of intent, which indicates what they are trying to do, but
makes no committment on their part to do it. Their men are saying -
we are going to try to do this, it may not be exactly what we say
here. We will do something in the area, but we may even abandon
the project. It's not very good, but possibly better than slipping pro-
grams, and having unsatisfactory programs issued. In addition to

that, there was a statement made by Watts Humphrey, of IBM, at
SHARE XXIX, to the effect that there would be no extension to the
FORTRAN AND COBOL capabilities of OS. Any extension of capa-
bilities would be done in PL-I, unless there was very serious
market pressure to implement an extension to FORTRAN OR COBOL,

With that - that's about what we had for the General Meeting. I
know that there were a great many of you who didn't get registered
last night. This hopefully will give you time to do so., Also give
you time to catch up on the breakfast you missed.

Dave, or Jim Tunney - You know when the morning coffee break will
occur and where, Jim? There will be coffee at 10 o'clock, outside
in the registration foyer area. I'll see you then.

Pages 13 and 14 were not made available when Proceedings were published.

\ W»

C

/3

14

SESSION NUMBER W.2.2

SPEAKERS
NO FORMAL PRESENTATION. MEETING WAS CHAIRED BY LARRY ARMBRUSTER.

DISCUSSION
REQUESTS FOR INFORMATION AND ASSISTANCE COVERING THE FOLLOWING
TOPICS WERE MADE
MIXTURES OF FORTRAN & ASSEMBLER LANGUAGE
COMMERCIAL SUBROUTINES W/ OVERLAPPED 1/0
‘ ALLOWANCE FOR MECHANICAL FAILURE IN IDEAL FORTRAN
PLOTTER MALFUNCTIONS
| BETTER ASSEMBLER LANGUAGE INSTRUCTION MATERIAL
| SOURCE CODING OF THE OPERATING SYSTEM
| DISK COPYING PROBLEMS ON THE 1800
| EARLY MORNING START PROBLEM
\ USE OF OTHER PLOTTERS RATHER THAN 1627
‘ GENE LESTER OF IBM WILL PRESENT A TALK ON PRIORTY, INTERRUPT
PHILOSOPHY AT SESSION W4.2.
A PROPOSAL TO SPLIT INTO SCIENTIFIC AND COMMERCIAL SUB-PROJECTS
WAS VOTED DOWNe.
A SHOW OF HANDS INDICATES THAT ALMOST ALL PRESENT USE ASSEMBLER
LANGUAGE TO SOME EXTENT.

».

s

SESSION NUMBER We2e4e & We3e4e

SPEAKERS
360 USERS THEMSELVES
MODERATED BY Re.L. PRATT & De.Re. MC ILVAIN

DISCUSSION
OPEN DISCUSSION ON PROBLEMS ARISING IN 360 INSTALLATIONS - MOST
ATTENDEES CONCERNED WITH DOS. LACK OF PROPER IBM ATTENDENCE
HINDERED RESPONSE TO MANY ITEMS., THE FOLLOWING ITEMS WERE
REVIEWED :
DISCUSSION OF ERROR DIAGNOSTICS IN FORTRAN & LACK OF
INTERPRETATION.
BETTER REFERENCING AND INDEXING OF MANUALS IS NECESSARY
FOR THEIR EFFICIENT USE.
PSM NOW TO BE DISTRIBUTED BY IBM WILL GIVE USERS A BETTER
REFERENCE TO EXISTING APAR'S, ANTICIPATED CORRECTION TIME,
AND POSSIBLY IMMEDIATE TEMPORARY CORRECTIONe THE RETAIN
SYSTEM FOR THE FE'S AND SECOM FOR SE'S IS IN USE BY IBM TO
AID THE DISTRICT OFFICES TO BETTER SUPPORT THE USERS.
FORTRAN DOES NOT AUTOMATICALLY OVERFLOW UPON SENSING qzm
CHANNEL 12 PUNCH. A PATCH EXISTS FOR LEVEL 9, BUT WOULD NOT
FIX THE MOST RECENT ISSUE OF DOS.
029'S ARE SENSITIVE TO REPRODUCING HEX-PUNCHED CARDS AND
ARE LIKELY TO BREAK THE CODE PLATE, PRINTING OR NOT. IBM
MENTIONED THAT THE 029 HAS A NEW FEATURE AVAILABLE (CODE
INHIBIT FOR $3.00 A MONTH) TO LOCK OUT THE EXTENDED SET,
REDUCING THE KEYBOARD ENTRY POSSIBILITY FROM 64 TO 48 CHARAC-
TERS. IT WAS REPORTED THAT AN 024 IS SATISFACTORY FOR
REPRODUCING THESE CARDS BUT SOME HAVE HAD POOR EXPERIENCE
HERE TOO.
REVIEW OF PL/I EXPERIENCE UNDER DOS. EXPERIENCE WAS
LIMITED BUT INDICATED GOOD ACCEPTANCE WITH THE COMMENT OF
POOR OBJECT TIME DIAGNOTICS.
IT WAS SUGGESTED THAT A FORM BE MADE AVAILABLE TO USERS
FOR USE IN SUBMITTING PROGRAMMING TIPS TO THE NEWSLETTER.
THIS WILL BE PURSUED BY THE DOS COMMITTEE.
JOB ACCOUNTING (AUTOMATICALLY) IS STILL A DESIRED FEATURE
IN THE SYSTEM SUPPORT. HOPEFULLY SHARE'*S PRESSURE IN THIS
AREA WILL AID OUR REQUESTS.
THE DSR TYPE 3 PROGRAM IS AVAILABLE FROM THE LOCAL OFFICE
FOR INCLUSION AT SYSGEN TIME FOR LOGGING OF DIAGNOSTICS.

C

/6

B —

SESSION NUMBER W.2.6 O0OS PROJECT

SPEAKERS
NO SCHEDULED SPEAKERS.

DISCUSSION
WE PLANNED AN AGENDA FOR THE FOLLOWING SESSIONS. THE THIRTEEN
ATTENDEES DISCUSSED PROBLEMS OF CONCERN TO THEM BRIEFLY. AFTER
ESTABLISHING AN AGENDA, IBM'S REPLY TO BOSTON RECOMMENDATIONS WAS
| READ AND COMMENTED UPONe. EVERYONE IN THE 0OS COMMITTEE AGREES THAT
| COMMON SHOULD SUPPORT THE EFFORTS OF USASI X3.6 TO OBTAIN A
| NATIONAL STANDARD FOR HAND CODED GRAPHICS.

/7

SESSION NUMBER W.3.2

SPEAKERS
JIM ELAM OF IBM SPOKE ON 1130 COMMERCIAL APPLICATION PROGRAMMING.

DON GARDNER SPOKE ON SOCALS AND REMEDIES HE HAS FOUND.

DISCUSSION
DAVE DUNSMORE HAS BEEN ELECTED CO-CHAIRMAN OF THE 1130 PROJECT.
THE FOLLOWING SUBJECTS WERE OPENED TO THE FLOOR FOR DISCUSSION-
IMPROPER DIMENSIONING
DISK READ ERRORS

/&

SESSION NUMBER We.3.6

SPEAKERS

MRO Gowo GOESCH’

IBM CORP.

ON THE SYSTEMS REFERENCE LIBRARY

/7

PROJECT:

SUBJECT:

SPEAKER:

FOR
PRESENTATION:

COMMON
Cincinnati, Ohio

Management Installation Division, Operation Project
The Systems Reference Library

Mr. G. W. Goesch, Manager, Product Publications
IBM Corporation, San Jose, Calif.
Telephone (408) 227-7100

Wednesday, September 6, 3:30 PM, Session v
8 Pages Text

‘ ",
‘ "4

The System Reference Library

I'm Gordon Goesch, Product Publications Manager, IBM, San Jose, California.
While I am not involved in the development of all types of IBM publications,
other areas of our organization have the same mission for similar publications
in various parts of the country.

When one looks at a manual, it is not impressive, there doesn't seem to be
much to it, but when you get into all the ramifications in publications, it's a
little like an iceberg in the ocean - most of it is below the surface of the water.

We haven't solved all our problems and I'm not sure that we will completely -
but you may be assured that we (like yourselves) are certainly constantly trying
to improve our operation.

That is the reason I am always happy to talk to groups such as yours about our
publications. Because it gives us an opportunity to discuss with you our
Publication Library, its organization, its purpose, and revision service - as
well as to update you on the library's operation procedures - because even with
a good system - you must understand how to use it - if it is to be effective

for you.

I think that this type of a meeting can be a two-way street for information: We

develop the literature; you provide feedback. We do get feed back from you via
Reader's Comments forms - we want more of your comments and we certainly

appreciate them.

I don't know how knowledgeable you are about our publications; therefore, for
the benefit of the new members and also for the updating of the veteran members,
I'll run through a few slides which I think will tell you the publication story.

Slide #1 To begin, we have what we call the IBM Branch Office Library
BOL (BOL). BOL contains much information. Not all, but the major
portion of BOL is made up of publications for users of our
equipment.

You have probably seen the publications display in the main
convention lobby. The display, I am sure, contains publications
of interest to you. Many of the publications on display have been
published since your last COMMON meeting. Feel free to
examine them in depth but please do not take them away, as
there is only one copy of each and we want many people to
benefit from the display.

Slide #2 In order to call to your attention what publications we have
FYI For Your Information

' 2]

Slide #3
Swamped

Slide #4
SRL

Slide #5
Library
Shelves

Slide #6
Mr. SRL

Helps Select

Slide #7
What,
Where,
How

Slide #8
System

Slide #9
System X

Slide #10

Slide #11
SRL Key

Slide #12

and to help you avoid being swamped by ordering blindly as the
man shown in the slide

we have developed the Systems Reference Library (SRL). As

you probably know the SRL is a rather extensive library system.

However, before you start pulling arm fulls of manuals from
its library shelves

let Mr, SRL help you make the correct selection.

He will acquaint you with the SRL and tell you:
a. What is available
b. Where you can get the information
c. and, how you can go about getting it.

First, you must make some determinations:
a. What System or Systems interest you

b. What size library do you want - everything for
that system or just those parts that pertain to
your specialty?

Considerable thought and effort was spent in the design of the
Systems Reference Library - for both the needs of the reader
and the type of publications necessary to support our products.

Each SRL is an encyclopedia for a particular system - with
separate publications for Major Subject areas. It consolidates
all the basic reference literature necessary for you in:

Planning

Programming

Installing, and

Operating that system.

The key you need for opening any of the System Reference
Libraries

is the SRL Bibliography for the given system.
Currently there are 13 major System Reference Libraries,

ranging from the 1130 to the System 360 - and of course each
system has its own separate Bibliography. You will find,

: 22

Slide #13
Bibliography
& SRL
Newsletter

Slide #14
SRL
Masthead

however, that Bibliographies make cross references to
pertinent publications of other systems.

Each Bibliography is actually an Index of all the current publi-
cations about a specific system. In it, publications are listed
both by subject code and by machine number - and it contains
abstracts describing each available publication. (We will
discuss subject code a little later.)

You may have noted that now Programming Logic Manuals
(PLMs) are listed in the Bibliographies. While they are sub-
ject to restricted distribution, they are available if a real need
is evidenced. The PLM details the internal logic of the pro-
gram (like a large map of the listings),

Now, how do we update the Bibliography?

Each Bibliography has its own Newsletter (its color is green)
and it is issued monthly (when there are changes). The
Newsletter updates the Bibliography, provides abstracts of new
publications, and lists Type I programs with their latest
modifications.

Actually, the Bibliography newsletter is a current '""accumula-
tive Index of Publications and Programs'' available for a given
system.

From the publishing mechanics point of view, Bibliographies
are periodically scheduled for revision - when that occurs, the
current information from the newsletter is merged into the
Bibliography.

Each SRL publication, listed in a system bibliography, is
identified by a file number and a form number, located on the
upper right hand corner of the publication cover - as shown in

the slide.

The file number performs two functions: the first part, speci-
fies the system (s) number; the last two digits the subject code

The Subject Code is made up of a group of two-digit numbers
(00-99) assigned to the various system components, e.g.
00 Includes, Bibliographies, System Summaries,
Configurators
01 Machine System (CPU)
03 Input/Output Units
05 Magnetic Tape Units
20-50 Programming Systems

Slide #15
SRL, TNL

Slide #16
TNL
Mast Head

A recent change now places Application Program manuals
under code 60.

The subject code 13 shown in this slide, indicates that this
publication is about Special and Custom features.

The form number is self explanatory; however, the form
number suffix indicates the editorial level of the publication.

Because of the dynamic nature of computer technical informa-
tion, frequent changes occur.

When changes occur, technical newsletters (TNLs) are issued
to update the publications involved.

Consequently, not only is the Bibliography updated by its own
newsletter but each and every SRL manual can have its own
TNL.

In most cases TNL packages are made up of an identifying
cover page and replacement change pages for the parent
publication ~.when you receive such a TNL you merge it into
its parent manual and throw away the old pages.

Incidentally when a publication is ordered, you will automatically
receive the latest technical (suffix number) level copy as well as

all the outstanding TNLs available against that publication.

This slide shows the upper right hand corner of a TNL. It
indicates how the TNL identifies itself with its parent
publication.

It carries the file number and form number of the parent
publication it updates (and it is form number suffix sensitive)

Below that is the TNL's own number, publication date of the
TNL, and the form numbers of any previous TNLs outstanding
against the parent publication.

Incidentally, all page replacement TNL pages carry similar
identifying information.

Outstanding TNLs are incorporated into the parent publication
when it is being revised. TNLs may also be merged into the
parent publication when it is being reprinted.

O

Slide #17
SRL, NL
Parent Pub.
Manual

Slide #18
2 Biblios. -
2 NLs

Slide #19
In-Out

Slide #20
Wrapped Up

Slide #21
DPT

Slide #22
Series of
DPTs

Slide #23
KWIC

Slide #24
KWIC &
TNL

Information regarding the technical level of a publication and
the TNLs that may have been merged into it may be found
inside the front cover of any SRL manual.

This slide shows a manual, a corresponding TNL, and a green
SRL newsletter. With this combination on hand you have all the
publishing reference you need for the parent manual.

Keep in mind that the best SRL publishing information source is
the green SRL newsletter, because it not only updates its own
parent publication (the bibliography) but also lists all the
existing publications that are current for that system as well as
their outstanding TNLs

and of course that each major system has its own bibliography.

Thus, the SRL system keeps you well posted on what is in
(current) and what is out (obsolete) for an effective library.

Basically, you have at your disposal a "living-doll" of a library
system.

Via the SRL, you can develop and maintain a library for one
system or more - and tailor your library to your own needs.

An additional source of information is the '"Data Processing
Techniques' (DPT) Bibliography (Form F20-8172). It indexes
a series of publications of techniques for Study, Analysis,
Design, Implementation, Programming, Documentation,
Installation, Operation, Scientific, etc.

This Bibliography is also updated by its own Green Newsletter.

This slide shows some of the DPT manuals.

Another excellent Index for your use is the KWIC Index of
Marketing Publications (Form 320-1621).

It is published quarterly and updated by a monthly TNL.
The KWIC Index is based on an abbreviated 30-position publica-

tion title - listing and cross-referencing publications by the
important words in the title.

5 /25—

Slide #25
3 Way List
1-2-3

Slide #26
2 More List
4-5

The KWIC Index is listed in five ways:

Alphabetical

Machine or System Type

Form Number

Type I & II Programs in System Sequence
Type III & IV Programs in System Sequence

(2 I SN VU R\

For example, this slide shows 3 separate word listings for a
single publication - '""Programs for Petroleum Engineering"

and here, the same publication listed by machine number and
by form number.

The latest KWIC Index was prepared from 11, 546 publication
titles which generated 29, 122 listings.

Actually, the KWIC Index lists many publications other than
SRL publications, such as Executive Guides and Brochures,
tools and techniques manuals, applications manuals and briefs,
educational material,

Another way of putting it is that all SRL publications are
Marketing Publications but all marketing publications are not
SRL.

Hence the KWIC Index provides wide IBM marketing
publication coverage.

Therefore, to start a System Reference Library, it is necessary
that you contact your IBM representative, and work through
him, using the three key publications we have talked about, the:
1. Bibliography
2. its SRL newsletter
3. KWIC Index of marketing publications-

You can select and build your own reference library to support
your system.

However, please do not order your publications by writing to

Produet Publications (the address shown on the manual) or our
Distribution Center in Mechanicsburg, as it will only delay the
order. You must order through your local IBM representative.

Now that you have established the base for your library, let's
discuss its maintenance.

®

E

c

Slide #27
SRL, TNL
Revision
Service

Slide #28
Subscrip.
Card

Slide #29
Mailman
w/Pkg.

Slide #30
SRL & Rev

Phkg

Slide #31
The Key
Is Yours

Slide #32
Key to
Knowledge

a. If you desire, you may continue ordering specific
publications through the IBM Branch Office.

b. However, you may prefer to subscribe to the
"Publication Revision Service'' that the System
Reference Library offers.

The Revision Service provides automatic shipping of revised
manuals and newsletters directly to you without having to go
through the IBM Branch office each time.

However, Subject codes 00-60 only are supplied by the
Revision Service. This excludes installation supplies,
education literature, and other supplementary information.

Here's how it works:

The IBM representative fills out a subscription card with you,
using the green SRL Newsletter to indicate those publications on
which you want the updating afforded by the subscription
service. After the card is approved, IBM Distribution Center
takes over and a single copy of each TNL or revision involving
the indicated items will be mailed to you.

Remember that only one copy per subscription can be mailed.
Additional copies must still be ordered through your IBM
representative, just as were your initial manuals. Any changes
in your Revision Service are made via a new subscription card.
Again, if multiple copies are ordered through the Revision
Service, it only complicates and delays matters.

It is important to set up a library and assign responsibility for
updating and maintenance to make the service effective.

Now, you are all set, you know what is available, you know

how to select the publications, and you know where to get them.

The key is yours.

Use this key to open up a tremendous amount of timely
knowledge about your system through the IBM Systems
Reference Library.

Slide #33
SRL

I hope that the result of all this, will make you as happy as the
man in the next slide - careful planning of your library 0
may help!

Most of you have probably noticed the Reader's Comment Form
that is appearing on the back of many manuals these days.
Some of you may have filled one or more out. The response

to these has often been very gratifying and we appreciate it.

I want to encourage you to use them as it is one of the means,
along with meetings like this, by which we get the feedback from
our readers that is essential if we are to improve our publica-
tions and make them more useful to you.

This form is self-addressed and post-paid and will be directed
to the correct publications group. As a reminder, please

don't use the form to order manuals as we have to redirect such
orders back to the Branch Office with a consequent delay.

On behalf of the publications groups, I want to thank you for
your attention and for your comments and pledge to you our
whole-hearted effort in providing first rate publications support
for your systems.

Thank you again for giving me this opportunity to talk to you.

®/

SESSION NUMBER We3.7.

SPEAKERS
1. WADE NORTON
2. NORMAN GOLDMAN
3. NORMAN GOLDMAN
DISCUSSION
1. REREAD
2. GENERATING WITH A 2 DRIVE CUSTOMIZED SYSTEM.
3. ACCOUNTING ROUTINES.
4o VARIETY OF TOPICS.,

SESSION NUMBER We4.l

SPEAKERS
MR. HERBERT RUDERFER

DISCUSSION

MR. HERBERT RUDERFER PRESENTED BOTH THE FACILE & FACET PAPERS.
MRe WILLIAM SILER PRESENTED HIS PAPER IN ANOTHER SESSION.

30 |

O

SESSION NUMBER We4.2

SPEAKERS
GENE LESTER OF IBM SPOKE ON PHILOSOPHY,
PAUL MANIKOWSKI OF IBM SPOKE ON EDUCATION INCLUDING COURSES,
PROGRAMMED INSTRUCTION, AND LITERATURE AVAILABLE.

DISCUSSION
TWO NEW PIECES OF LITERATURE TO AID IN ASSEMBLER LANGUAGE ARE
AVATLABLE.
l. PROGRAMMING THE 1130 AND 1800 BY R.K. LOUDEN - PRENTICE

HALL o

2. P.l. COURSE = CONTACT DON JOHNSON
HINSDALE CENTRAL HIGH SCHOOL
HINSDALEs ILLINOIS

3l

SESSION NUMBER W.4.4

SPEAKERS
MEETING MODERATED BY D.Rs. MCILVAIN.

DISCUSSION

THE PRESENT STATUS OF THE DOS COMMITTEES IN GUIDE & SHARE WAS
GIVEN. ESSENTIALLY NO COMMENTS HAD BEEN RECEIVED FROM THE GROUP
AT LARGE PRIOR TO THIS MEETING - PRE-SUBMITTAL IS NECESSARY FOR
EFFICIENT OPERATION OF THIS COMMITTEE. COMMENTS ON FORTRAN &
COBOL WERE PRESENTED BY MESSRS. GWILLIAM & CUNNINGHAM. THE
RESPONSE FROM IBM TO OUR QUESTIONS ON FORTRAN WAS RECEIVED BUT WAS
VERY POOR AND THE OUESTIONS WILL HAVE TO BE RESUBMITTED. GUIDE IS
MEETING IN ENDICOTT WITH THE IBM DOS IMPLEMENTATION GROUP LATE IN
SEPTEMBER, 1967 AND COMMONS DOS COMMITTEE WILL HAVE REPRESENTION
AT THIS MEETING AND WILL EXPLORE SOME OF THE ITEMS OF INTEREST
TO COMMON.

SESSION NUMBER We4e6

SPEAKERS
PANEL DISCUSSION I
DR. Re. GABRIEL
MR. M. GOLDBERG
MR. N. GOLDMAN
MR. P. KOEPSELL
PANEL DISCUSSION ITI
DR. R. GABRIEL
MR. H.B. KERR
MR. P. KOEPSELL
MR. D. LA PORTE

DISCUSSION

le ECONOMIC JUSTIFICATION OF THE UNIVERSITY COMPUTING INSTALLA-

TION.

2. EQUIPMENT SELECTION FOR COLLEGES AND UNIVERSITIES.

ATTENDANCE 36

i3

SESSION NUMBER W.4,7

SPEAKFRS

FREN W, MATFJCFK, COMPUTER CENTER ON NIU SYSTEM/240 A DATA
RETRIFVAL SYSTEM AS APPLIED TO A LIBRARY INVENTORY

34

C

NIU System/240

A Data Retrieval System
As Applied To a Library

Inventory

Fred W. Matejcek
Computer Center
Northern Illinois University

TABLE OF CONTENTS

Acknowledgements o .

List of Illustrations.

Introduction . « « &
The Problem Defined
Special Conditions .
The NIU Solution . .

File Creation and

Organization

Servicing Requests. « +

Maintaining the Inventory

Maintaining Records . . .

Future Prospects . .
Appendix A . . . &
Appendix B . & & « &
Appendix C . + & « &

Appendix D o & & « &

* e o °

* L] . *

Page
. i
o i
o iiiev
1
. 2
« L
. L
. 19
. 26
. 29
. 33
. 35
. 36
. 37
. 38

3

ACKNOWLEDGEMENTS

Much of the success of this system, for it has been
operating successfully more than a year now, must be attributed
to: Dr. Robert Hunyard, Head of Northern Illinois University's
Audio-Visual Department for recognizing the problem and the
possibility of a computerized solution; Mr. Clyde Givens,
Director of the Computer Center, on whose analysis the system
was initiated; and Michael Roldan, Director of the Film Library
and his staff, who learned to use the various facets of the system
as they were designed to be used, without which the best design
never becomes operational. Finally, the existence of the system

is in no small way due to the patience of my spouse, Elizabeth.

Figure

1

€ A NNEEAN & SRR sl W}

~

10

11

LIST OF ILLUSTRATIONS

Disk Layout. e o o o o

Disk T,ble of Contents

Custcmer Files e o o o

Film Number o o o o

Film Record Formats.

.

.

.

Invoking the System (Activity Chart)

KWIC Index,

.

.

Processing Requests (Activity Chart)

Processing Billing (Activity Chart),

Request Growth CUrve o« o o o o o 0 &

Updating The System (Activity Chart)

ii

L]

.15
.18

20
.22
.25

30

3¥

o

INTRODUCTION

NIU System/2L40; Northern Illinois University and the
system we developed. It took on the project number "2LO"
identifying the application area with which we were dealing
within the University, Audio-Visual Aids. This is a data
retrieval system developed on the 1620 to solve the inventory
problem faced by the film library at NIU in the AVA Department.
The manual solution to the problem was unable to handle the
growth both in terms of the student body (see next page) and
something refered to as the "information explosion". This
is the first point we see under"justification" for the system,

the economic aspect. Extra clerical staff to handle the
volume could not be hired for the same expenditure involved
in the operation of System/2L0,

The second point under justification is better and faster
service using System/2L0., User requests that are received in
the morning are confirmed by the afternoon mail, This is in
comparison to the normal two week response time by other
libraries in the area,

The third and last point is the additional predictive
information to be gotten from the system based on the records
kept by the system. So much for justification. How new or

unique is the system?

iii

i;é
~

INI D[RR T LHIZEIRIV s

3¢0/s0o
Grow th
3¢0 /40
|
wIY S l
l /U SYSTEM/240 -
ISK o s TeM/240- |
MY SysTEm/240. | |
STRRTED l
l
|
/10K + /620 '
|
l
|
|
sk NIU |
l |
| |
STATE TEACHER'S l
ColnEGE I
. . ' - -
® 0 % 0 o
r
@_?9 o o N - s

A review of the literature shows that NIU System/2LO was,

at the time it went on-line in April of 1966, the only
application of its kind in the country, and is to date the most
comprehensive of exisiting systems, irrespective of hardware.
How did we arrive at this solution? To answer this question
we will look at the problems facing analysts when embarking
upon the creation of any data retrieval system to solve an

inventory problem and then look at how we faced these problems.

=

THE PROBLEM

To give structure to the following discussion we will
separate the problems and their respective solutions into
four classes. This taxonomy covers the basic problems
faced in the design and implementation of a data retrieval
system,

Our first classification covers the creation of files;
something common to the early phases of most systems, because
in creating a new system or converting an old system from
manual or other means, the files must be put into machine
usable form. The second class of problems concerns the actual
servicing of requests by users for the item contained in our
inventory. The third is the maintaining of-the inventory.

We must have a means of deciding how many of a given item to
have on hand., The last basic class of problems is that of
maintaining records. Our problems demand that we maintain
records on both our users or customers and our inventory.
Before elaborating on these four problem areas and providing
the corresponding solutions to the problems, let's look at
the special conditions which are placed on our example

application, the NIU film library.

72

A RECIRCULATING INVENTORY

A film library is a special sort of inventory. It embodies
a recirculating scheme by which films are supplied to the user
and then returned to the shelves of our inventory. Therefore
the normal input which maintains the "on hand" number of items
that we have decided upon, is from the user, not a supplier,
In other, or what we may call "one=way" types of inventories,
the input which maintains the "on hand" number in the inventory
is from an outside supplier. The only time which the recirculating
inventory gets its input from an outside supplier is when we
wish to change the "on-hand" level because of increased demands.,
In designing the system, this recirculating scheme forces
special considerations in three areas, All three fall within
the scope of the inventory file maintenance,

First, because we "reuse" items, we must keep track of
each and every item within a given type, rather than simply
being concerned with the total number of that item available,
We must know whether or not print three of a given film will
be back in the library in time to fill another request.

Second we need a method to tell us when to go to the
outside supplier and beef up our inventory. This is more
complicated in the recirculating inventory than in the one=

way inventory.

-3-

The third manifestation of our special conditions is
possibly a blessing in disguise. Because quite often orders
are placed more than a year in advance, our files must be large
and complex, but the potential blessing comes in the preview
of demands to come that we can glean from these advance orders,
But this is only potential. We must take advantage of it.

Having now looked at the justification for the system,
the structure of the discussion to follow and tne special
conditions a film library places on an inventory system, (and
hopefully having put you in mind of the special conditions of
your particular inventory problem) let's see what we did to
cose with the four general classes of problems embodied in

the design and implementation of a successful inventory system.

04 d

THE NIU SOLUTION

First i3 the area of creating new files, We will consider
our basic tocls in terms of hardwzre and then software. The
hardware ccnsists of an IBM 1620 Model II with 60K, which has
been uodated to include a 1311 disk drive and luL3 printer.
The 1311 disk drive is the medium that we use for our mass
stcrage of records, The software will also be cornsidered in
two parts; that whieh is supnlied by IBM and that which is
supolied by the Northern Illinois University Computer Center.

The Meonitnar I is the normal support system supplied with
the 1311 disk drive omt as used, has been somewhat modified
frem the original IBM version., Though we do compile FORTRAN
we do this utilizing another disk thus erabling us to delete
FORTRAN TI-D, its subroutines, and some unused utilities from
our production disk and in turn make this room available to
System/2L0, Since three of the four basic programs are in SPS
and 90 percent of our running is execution rather than comopiling
we do not really lose any flexibility.

The four programs developed as the full compliment in
NTU System/2L0 are named AV=-LOD, AV-DLY, AV-RPT and QIKLOD,
AV=BPT is the only one written in Fortran and is used for
our quarterly reports., - AV-L0OD and AV-DLY are the only ones
that are disk resident and used on a daily basis, QIKLOD is

a key part of our back-up.

o)

-5 -

Since we have only a one drive system, a strict disk to disk
back-up can not be provided, but with QIKLOD and the card output
that is produeed during our daily procedures we are able to
provide card back-up. Figure I shows the status of our disk and
if you are familiar with the normal organization you can see
where things have been rearranged or deleted. This includes
limiting the Monitor work area to the minimum 11 cylinders.

There are basically two files in the NIU/CC software,

The one is a file that contains all the information pertaining
to our users. This file is broken again into two parts that may
be termed our "billing and shipping files". We have run into
the necessity of creating these two files by the nature of our
users,

In dealing with schools or other large institutions we are
often asked to bill a central office or school district, but in
turn they want the items, in our case films, sent to individual
users within their system. So we are faced with the problem of
billing to one address and shipping to several addresses within
that particular users juristiction. We will look closer at
these files as we get into the structure of the actual records.
The other file that we keep on the disk is a complete file of
all the items, again in our case these items are films,

Our film library is divided up into 21 logical categories
by subject matter., We use these logical categories as actual

physical categories in our disk organization. For each category

V&

@:D

T T p— e — e 7T T

AV- L op Anp AV-DLY

CATEGORIES
3= 14

DISK UTILITY PROGRA

DISK UTILITY PRoGRAMS AND SP

fj

MONITOR WORK A&EA"—Jf#”’/,,,//”//////ﬁ
BILLING AND SHIPPING

ADDRESSES

CATEGORIES L, 2,€ 19

OIM AND EQuUIVALENCE TABLES

—

ECTDOR
/SND DKRESS

o VAR S|

OHUS5 3

o4 794

05079
05279

16958
17127

18109
19394

19406

1aaqq

that you would find in the film catalogue you find a corresponding @:EJ
physical category on the disk. Down near the bottom of Figure I
you will find a "Disk Table of Contents" at sector location 19,06,
This disk table of contents is our systems table of contents

that tells the software what the status of our files is, In
other words, what condition the last program that operated on
these files left them in., Referring then to the next figure,
Figure 2, we see the "Dynamic Table of Contents", which is

in reality the table we see located at 19406 of Figure I. The
static table exists only in the programs themselves because

it is actually unchanging from the time of the original compiling
of the program. On the other hand, any of the programs in

System/2L0 may modify the information stored in the dynamic P
R

table of contents, but every time it is modified it is restored
to the disk destroying the old information., The static table
contains one entry per category.

Each entry is the beginning sector address of a given category,
Looking for category 1, we would pick out the first field and
would find that a given address in that field is the beginning
sector address of category 1.

The dynamic table of contents contains three entries per
category on the disk., The first field represented by "Ats" is
the active level to which the category is filled. 1In its initial

form, when a category is empty before we have loaded any films]

to it, we would find that the field of "A's" or the active level

S

Y

Y
z >..om8tuU
T \ﬁOWU...G,U
(\)N
J
TN N YO Y

=2smou A T
= T] T > T ¢ T Y { ¢ v 2 —ﬂqmqwqm.lm..—
- ane48
SUNILNOD \0
s 77gUL 2SI
© O o

would be exactly equal to the field of "B's" or the beginning QCD
address of a given category, for the active level would be the
beginning address of the category. The second field, or the
field of "N's" indicates the last film number within that
given category. Each category starts with a film number one
and goes on to the last number within that category. The last
number is the number that appears in this field so that in our
search we are able to check immediately the last number and see
whether or not the film specified is a legal film for that
category, i.e., if it falls within this range. The last field
or the field of "L's" as it appears, is the limit to which we
may fill this category. When a category is completely filled,
the converse of the situation we mentioned earlier occurs. The o
field of "A's" and the field of "L's" are equal because the e
category has been filled to its limit., Within that static table
there are two additional entries, one is the beginning address of
the customer, or the billing file; the other is the beginning
address of the shipping file,
Now going to the organization of our two customer files,
if we have an individual requesting a film and the request
indicates that he is to have the film sent to the address he is
to be billed at, this customer is entered in only one of our two
files = he is entered in our billing file, If though, we have a
customer that wishes to be billed at an address separate from the

address to which he is having the film shipped, he is entered in

50

both files., We give each customer a four digit number. If he

is a customer with the same billing and shipping address this

is all the number that he gets., If the customer does desire a
separate shipping address, one separate shipping address or
several, then on the initial cards that we use to create his
records on our disk file the two cards that contain his billing
address also contain a 1 in card column 7.1 This indicates that
there will be shipping addresses to follow these billing
addresses and these will have the same four digit customer number
but will alsc have a two digit shipping number tacked onto the
end of this, These records are then filed on our shipping address
file. Then we have a billing address number which is tied to

one or several shipping addresses and a sequence number which
makes each shipping address unique. If we look at Figure 3, we
see the example of customer 101 in our billing file with a 1
coded following the 10l which indicates that in the shipping file
we will find at least one shipping address if not more for him,
When we make a request for the customer number 10102 this request
is serviced by going to the billing file, finding customer 101,
finding out whether or not the 02 is valid for this customer =

in other words whether or not the customer does have separate
shipping addresses by the fact that there is a one following his
number on the file and then going to the shipping file and finding

customer two or shipping address two of customer 101,

1Card Formats appear in Appendix A,

5/

Figure 3

ON DMIIIHS '‘ON NN\ e

EEERIEZR

20| 1010| F——

i3 33INALSND

SIINAN 33NALBND

Moving on to the organization of our film file, we'll look

at the key to this file or our film number. In Figure L, we
find an example of our film number. The first digit of this
film number is a length and color code. The two digit category
which is the logical category mentioned above and the physical
category that we find on the disk. We have then within the
category a four digit number which uniquely identifies a
particular title of a film, Tacked on to the back of that we
have a two digit number which uniquely identifies a given
print for that given film, Here again we see our special
conditions showing up. In this recirculating inventory we have
to keep track of not only the total number of a given item but
of each and every item as a unique entity., This is our print
mimber, We have multiples of a given item, i.e. a given title
of a film, Very popular films have several prints.

A footnote to this; the DAVY group which is to the educational
film industry as COMMON is to IBM, is trying to come up with a
coding system to be presented to the Federal Government as a
suggested national standard for the entire educational film
producing industry. Though we did develope Northern's numbering
scheme independently, we find a great resemblence to the
DAVY number in the one created for System/2L0 at Northern.
We have the two digit medium which corresponds to our category,
one digit storage area which corresponds directly to our length
code, a sequence number of four digits (this is our "title number")
and the two digit print number which we just refered to. In

addition they carry a two digit year of acquisition number. This

53

Figure L

L
5 O \) o
M ! va&.o %mo %a ,.% N %.x» A..@
P O I
T ﬁ T T :
b
IANYA
Ill 1 1 I — ! _
%o«rnvv Q & ¥ o
.39 Y & A %&« o
3 v
X IgWNIN

@)

-1 -

number we carry internal to our record but do not put on our
key.

If we look then at Figure 5, we have the two formats
of our film records. The first is the general information on a
given film, information similar to that which we would expect
to find on any inventory system. We have the film key which
we just mentioned above, the film title which corresponds to
the item description, a rental amount which would correspond
to a selling price, the cost of the film to us which would
correspond to a users purchase price and the number of times
this particular item was requested by a user plus the number
of times we were unable to fill a customer's request because
the film was not available at that time, In addition we have
the alternate film number.

The alternate film number is a number that is used if the
customer indicates that the time period that he has requested is
very important to him but that the particular film is not
important and that a film covering comparable material would
be satisfactory to him if we can make a suggestion. This
alternate film is automatically booked for him on the given
dates if he indicates that we can make this substitution for him.

The second record is also an outgrowth of our special
conditions - added problems to the normal inventory system that
we had to cope with., This is the record that we keep on each
individual print, each individual item within an item type. This

gives us summary informmation, frequency of use, the contract

s

qh\-us-vsé.hs-!-f\ //-Qscﬁu

[T aaiq|

aanooq siva

A0
SwmN00Q w7 o

£6

" 09 é
4
&
<3
FILIL Wl
b
QNN“SQ wnd B -
FLINIIL Y AIN
Q2023 w4
IFlL WrlS

S@¢023F S/

-16-

under which we obtain this particular print, may it be through
a govermment grant, under some sort of leasing condition, or
some sort of share-the-rent basis., We indicate the vendor from
which it was purchased and follow this by the purchase date (which
DAVY has put into their record number as was mentioned earlier).
The rest of the record is devoted to the particular dates on
which this item will be out of the inventory. We say "will be"
very correctly because as this particular item is checked for
requests, we also check for bookings of that film which have
been sent out and returned. These bookings are cleared from
our records at the time they become obsolete. Date coding is
as follows:

The date is calculated relative to April 1, 1966 and
translated to a four digit number, i.e. April 1, 1966 = 0001.
This shipping date is stored in the four digit disk code and the
return date plus one (extra day in shop for checking) is expressed
in a one digit increment to the shipping date. This code is
capable of a twenty-one day block out using five digits. One
day indicated by the four digit date plus a maximum of a 20

day increment. Increments are expressed as follows:

Code # Days Increment
From Shipping Date
0 1
1 2
2 3
0} °
9 10
0 11
1 12
9 20

57

-17 =

Any date earlier than April 1, 1966 is translated and printed
as blank,
Examples:
April 1, 1966 to April 6, 1966 = 00015
April 9, 1966 to April 28, 1966 = 00099
AV-LOD is the program that creates, maintains, updates, and
restructures (when necessary) the above mentioned files.,
Figure 6 shows the normal invoking of a disk resident program
in addition to the extra step included in all System/2L0

programs; retrieving the DTC,

5¢

Figure 6

FOVIOLS
3300
az 9l

104Nl Qgvo ZTo!

NN
QQTzcdeﬁWA‘ Ln

JOVIALT

"

,6mu

SINZNGY 4 yqgvd A

>

W3LSAS L ONIAOANI
WY3903d ATV OhT/ WILSAS OIN

SERVICING REQUESTS

Looking back now to the four parts of our problem, we
have run through the first one, creating our new files., Now
we want to move on to servicing our requests., Let us look
first at the types of input or types of requests that we
can get, In the final form the input to the computer is in
card form. How do we get it in card form? There are three
ways, with a fourth under consideration., First we may have
a phone call from our on-campus users or off-campus users for
an immediate request delivery. The pertinent information on
that particular request is coped down by a clerk and then
edited and submitted to keypunching. The second form is that A
of a request received through the mail which is edited and sent
again to keypunching., The last of the existing types is
received in card form. Let's take a look at exactly how we
accomplish this, how we relieve ourselves of not only
keypunching but also the clerical editing and put the responsi=-
bility for the validity of the information on the user. 1In
order to do this we supply the user with two bits of information,
one is the KWIC index, a sample portion of which can be found in
Figure 7. The other is a master card file, with a card per film,
or partially punched request cards,

Here we have the titles of our films alphabetically listed

by each significant word in the title. In other inventories

60 | C

KW

LFGFND OF JOHNNY

HOME FLECTRICAL

GAS LAWS THFIR

Figure 7

APPLESFEFD 00650%

APPLTANCFS 00190%*

APPLLTCATIONS 0200230

GRANT LFF AT

RAL YOUR NDIFT HLTH

MFECHANTCAL

NEMONSTRATING

HFAT FNFRGY

LAWS OF

HEAT ENFRGY GAS

GAS

APPOMATTOX 0400395%

APPRNCF 0100190*

APTITUNES 0100190

GARDEN PLANTS HOW, THEY GROW 0100190%
GAS LAWS 00285%
CAS LAWS CO575%

GAS LAWS THFTR APPLICATIONS 0200230%

GASES 0100190%

GASOLINE AGE 0200485

LAWS 005756%

LAWS THFTIR APPLICATIONS 0200230%

PRESIDENTIAL
STYLE OF

NDFVFLOPING

LEADFERSHIP 0400425
LEADERSHIP 00450%

LEADFRSHIP 0100190

INDE X

512007701

217001301

406025101

603025401

208006801

205023401

214016901

406009401

606037701

406025101

206014701

503042101

606037701

406025101

603030101
605014901

205021301

-?] =

this will be a description of the item. A user can then,
assuming half-way reasonable descriptions of your items,

look up a given idea and find several films on the idea or
subject. In the example in Figure 7, if he were looking for
something on gas laws or applications of gas laws, he could

look under APPLICATIONS and find a film referenced as L06025101,
The user could look under GAS and find "Gas Laws and Their
Applications" also referenced as 406025101, Under LAWS he would
find the same film with the same number, Using this reference
number and going to the card reference file which we supply the
user, the customer need only duplicate this master card and
punch the dates required into the reproduced card. If he

wants his name to appear on the address he can also include at
the end of the card in the "attention to" columns the particular
name that he wishes on the address. (The card is identified

by a 5 in card column 1 and the format can be found in

Appendix A with the others in the system.,) This card is then
sent directly to us and becomes input to our system,

Yet under consideration is a mark sense form to be
distributed to faculty and customers. The dates and film number
would be coded on this and processed by our 1230, The cards
output from this would be in request card form and processable
by the machine. These then are our inputs. We have covered
the method of invoking the system in which we pull the program
off the disk and begin reading our request cards. Figure 8

shows the program steps involved in processing a request. The

62

€

.

A e — e e e

st i s

Figure 8

L10dNI A43vO

/

N

—eeee | Q
NY—
M/ 0N o

104100 J2UINRE Zhhl

Q
e

Vo] -

2 3Y4 - Y
..:Z

I

1|1

Q

l

‘I‘|lll|.l||llll|

————t————
A —————————art.

O rsncnt—
A ———————

L

S A e

SLS3MUAA SNIS5I003A
S3AN@E0Ad AIVA OHT/ WALSAS OIN

‘ e e

63

-23 -

program upon reading a request pulls the required film from the @:Q
disk file, the required customer from the disk file, and checks

to see if the film is available for the dates requested, if so,

it begins printing out a confirmation slip, if not, it prints

out the confirmation slip indicating that the film is not available
for that date but if it is we also punch out an activity card
which is used in our internal system. (The activity card form

also appears in Appendix A). The form of the confirmation is

in the Appendix B and this is a multi-part form. The upper

part seen in the Appendix is the top sheet, the lower part on

the Appendix representation of this form is the bottom sheet of

the four part form. The top sheet is sent out directly to the
customer immediately after processing his request to indicate

the status of his request and the lower right hand corner of

the fourth carbon becomes a shipping label for the item. This
portion is torned off, the back of it is already gummed and this

is stuck directly on the film mailing case. In the case of
customers who supply us with card input to the system, we also
supply them card form output that goes into their accounting
systems and provides them with some statistics on our performance
for them, Our billing operation is then performed on the basis

of these activity cards that we have produced during the successful
booking of a film for a customer. When the film comes back, the
packing slip which was a part of the confirmation is matched

against one of these activity cards. When a successful match

-2l -

has been made, i.e. the film has been received back from the
customer, these cards provide input to our billing system, the
activity chart of which appears in Figure 9. As these activity
cards are read, the customer information on the disk providing
us an address to bill to is pulled off the disk. Pertinent
film descriptions that apply to the customer's bill are also
pulled and this detailed information is printed on his bill,
We then print the bill and also punch a card which becomes
input to our University accounts receivable system. (The
billing form is included in Appendix C.) This then covers

our second point of servicing the requests to our customers.
We now move to the third point of the problem and the third

point of our solution - maintaining our inventory.

¢S5

Figure 9

o () o

| —4 ’ 104100 Q3
. .. 10dN!

g_wﬁm aav

S 3 5aayY
= .k Al ALINLDY
o Y . e
T i |
—
g?

FOVAALS ASIg

ONTIE O WALSAS IN

66

MAINTAINING THE INVENTORY

If we look at Figure 10, which is labeled REQUEST GROWTH
CURVE, we are trying to develop here a buyer's indicator by
keeping records on particular films, This curve describes the
demand on a new item from the time of thé user's awareness of
its availability to some time out beyond that. As the demand
for this film grows; as we go up on the axis labeled™umber
of requests", we can also mark it off in intervals indicating
number of prints of that film, or number of that item which
we have to keep in our inventory in order to satisfy these
requests, When we reach the doted line, we have a choice to
make, whether to purchase, lease, or by some other means obtain
the items in order to catch the peak of this growth and get
these requests, or at this time to stop our purchasing and teo
realize that we are going to have to take some '"not availables"
or find that we are unable to satisfy the customer's request,
but in so doing not have obtained films that will not be in
demand beyond time "y", It is our job to come up with an
equation for this curve. At the current time based on our
recrods, we can find a breaking point - point B = where the

curve starts to come back down or it starts to change direction

somewhat., When this happens we can cut off or we can lease items

¢7

5133003
3Q J3IINAN

INAND HIMKD 1330033

68

- 28 =

for a short amount of time in order to fiil in this area and
pick up these extra requests. But our job is simply to supply
this buying information to management so that intelligent
decisions can be made on growth and trends within the inventory.
This is the heart of the successful inventory and the conclusion

of the third portion of our solution,

67

MAINTAINING RECORDS .

Having covered the creation of new files, the servicing
of requests and the maintazining of our inventory, let's go now
to the maintaining of our records., We find that in the
maintaining of our records we are going back tc the szame
system that provided us with the ability to create these
records, We have if you refer back to Figure I, the disk
layout and Figure 2 the Disk Table of Contents provided for
our user department a system that very closely parallels IBM's

index sequential on the 360, We have come up with an index

sequential type sytem for a 1620 disk system. We have quite e

the same cepabilities here - the system can create files, add
to the files, delete from the files, process the fik s
randomly or sequentially. All of these abilities are itemized
in Appendix D,

The updating is done on a daily basis, in other words, the
AV-L0OD program which provides both the creation and updating
ability is run daily just before the AV-DLY program which
services the requests, Figure 11 shows the operaticn of AV-LOD
in the update mode, but it should be noted that in our system,
creation is a special case of updating. At this point we must

look closer at the back-up system that we mentioned earlier,

70

e e e e e e e —

ST S

.Figure 11

10dNl d@avo

m:E
Jovaals s
d
3FJ0O |
QZ9) mm‘r \
\% S = N
—
& 2106
R
A

WILSAS 3HL 9NILVAdN
$341a30024 AWV OhZ [W2LSAS OIN

71

I# we have to duplicate our files we have to go through three

steps. Number one is to load th¢ monitor system on the disk,
nuncer two we have to load our basic files which amount. to our
customers two part file, billing and shipping, and our film
raecords for each category. The third step is then to relcad

all the dates booked on the films we have just loaded. The
loading of the customers and the films is done again by AV-LOD,
put the loading of the dates booked for a given film is done by
a unicue orogram ramed QIKLOD. This utilizes ovr activity cards
which are kept up to date on the basis of our billing, i.e. for
any {ilms that hzve peen returned and are no longer ovt cf the
library the transaction or activity card is pulled from our card
file and stored elsewhere. So when loading up the periods
bocked for a given film we have only current bookings. This
particular program allows us to load somewhere in the neighbor=~
hood of 5,000 bookings in an hour. The daily booking progranm
that provides us with the confirmations allows us to book
something like a thousand in an hour., We usually spend anywhere
from 3 or L mirutes to 15 minutes on the 1620, Obviously in

time periods this small the most significant time factor is not

computer time, but set-up time and general operator intervention,

Having looked at the four narts of the problem and in turn
the four parts of our solution, which involves creation of rew
files with program AV-LOD, servicing of requests using AV-DLY,

maintaining of an inventcry by vroducing a bhuyers indictor for

@.

AN

—

s’

-32 -

management and maintaining our recocrds through the use of
QIKLOD and AV-LOD and having talked a little about the pleasantly
surprising performance we have gotten from the system, lets

look at future projections for the system and areas of growth.

FUTURE PROJECTIONS

Referring to Northern's enrollment growth curve in the
Introduction to our discussion, we can see the installation
of our Model LO 360 in August of 1967. With the installation
of the machine under our belt, we are well on our way to
converting System/2L0 to 360 COBOL. As we mentioned earlier,
a large part of the development of System/2L0 was devoted
to producing our own Index Sequential system for the 1620,
This having been done for us on the 360, the strict conversion
is going rather quickly. Of course in a 360 we have additional
hardware capabilities not found in the 1620, Two of these irj

7

are the teleprocessing and multiprocessing capacities,

Using teleprocessing we can do several things, two of
which are; (1) give "immediate" response on film reques® and
(2) develop a cirriculum-building=tool in the University. In
the first case, not only can an immediate "yes" or "no" response
be given on a request, but if the response is "no" a calander
showing remaining available dates can be displayed on the CRT.
In the second case we can expand upon our existing quick index
and on request, display available material pertinent to the

subject matter to be covered plus indicating proper sequences,

74

-3 -

The multiprocessing capability gives us the technology
to be able to tie all the state libraries together so that a
request given to any of the libraries would exhaust the states
potential, i.e. over the phone, in a matter of seconds any
individual could have the entire states film resources at his
command..

We have now a data retrieval system that is updated daily.
With the new hardware to fill the gap we will have a real=-
time system.

We feel at this point that the ability of the system to
grow with increasing demands and greater the capabilities of
the hardware is limited only by the extent to which we wish

to persue it,

13145481

foe gjo00 cooooo000pOCOUOODf GO0 000/0000000CEO

10 1012 13 14 15 16197 18 1920 20 2223 24 25 26 27 28{23 30 31 3233 M 33 36

37 38 39 40 41 42 43 4445 45 47 48 43 50 §1 52 5

APPENDIX A |
{
. n
//” pGassa] [¢peu0u 1 15 &7 | 1 30 &7 02 O
REQuzsr SHIPPING Usg RETORN | 4
NEE VSTOMER
Homask l;{l‘;:;/sm DATE DATE Sate SHiPp g

Num3eR

Cancioo00p o jeiecfd

5¢ 53 55 57 30 59 60 51162 63 64 6 66 67 68 69

00
L8]
f’ﬁﬁjlﬁﬁﬁﬁ0j023101

ShipPIng
PAre

,0000000
$

7345‘7

Vumg ER

Ftum

4 A
1t II 1213 14 \5 151718 19 20 71 22.23 24 25 26 27 28 29 30 31 3233 34 35 36 37 38 33 40 41 42 43 44 45 45 47 48 40 50 51 52 53 54 55 36 51 58 §3 60 61 52 §3 54 6° 66 67 65 69 70 71 12473 14 13 15[37 78 19 82

f’TRT

4

]
’/gnsl(nre-/‘l-"g
Curge, | Flem DArEs | RE@v.cq
Dare NemBER T

L0,o00000
23456 1]83

0, ..000,0,0000,0

19 1112 13 14§15 16 17 18 19 20411 22 23

DU?lCljSElﬂl

FRc 7o

166

|
0,000,0/000000000000000000000000000000000000003000000000000020060),,00)000¢0 i
il

(

l

B0 SC

L}
DEePT.

ninl n.nl 2. LIE Y

PO FERKICKD 4582

L (5008 |
3 1 2
THSTRUCTOR

0000000GOU0O00000800B00000(0000, 090,'00000,00000°0006/2000{0000 !

24 25 2627 28 29 30 31 32 33 3¢ 35 35 37 38 39 40 41 42 43 44 45 46 47 43149 50 51 52 53 54 §

5 56 57 58 53 60 61 62 63 64 § 66 67 68 63 70 11 72473 14 15 19471 13 19 8¢ ‘

T

QURREN [4]

Pu

‘i»rlr.iﬂ? ¢ 1’21670 1‘3 1&-? OO0 LINGELS

om Dares 1 REZQu.250
NUMBER

W 21341 s T8 uin Ny

FRem TV

0,,;0},0”00,00,

[
N
Y

T,
°
~

RewraL

K3

Pricg

neh ra»E T

o

o=

Uﬂill],,;ﬂ,_

P E

::10ﬂﬂﬁﬂﬂﬂﬂﬂﬂﬁﬂﬂﬂﬂﬂﬂﬁ“ﬂﬂﬂﬂ000000000“300]00

20128 29 30 31{32 3334 35 35 37 38 39 40 41 42 43 44 45 46 47 48 43 S0 51 57 53 54 55 56 57 58 59 60 61 62 63 64 6* 66 67 58 63 70 71 N2

PRI
——|

' 48‘5’-#\\1
AN

A 1(sooe)

" RET

18|17 18 19 8

—

a a aa a9
Fiem
A a2 212 TITLE

pjpoo00,0000000,

0
]
/'.q1ﬁ£00101 EMERYONIC DEVELGPMENT Chith b

" ? 3290 LiBRARY

. ' SuGeesrEd | M)
29949 a . o Acrepyare | %
3

000000G,u00000¢0{,060000000|,00,6(,0,,,860,/,00
5!

10812 13 413 'S 1108192021 2223 24 25, ZE 21,28 23 30 3 32 33 34 33 36 37 38 39 49 «I 42 43 43 45 45 47 48 43)50 51 52 53 4 [S

n—ﬁ"’"eo

uﬁchGEUCQ 55(01F- !

0 ,

A EA
Wl e |
A T 3, <

(5005)

gecoooo000¢0

3 56 5] 59158 60 61 62 63 {54

0-
8.3
g

[e
)
o
[
(e} 0
[y

3
>
»
f S r ey
-~ <
= Srcr
EEEL

=)

0

—~
-
-~
o =
-

72 rirfR STREET

a.. . a a an

a

pooo0d9,00,,000,

§ 1091 12131418 15 118192021 2223 24 75 26 27 28 29 33 31 32 33 34 35 3]

SHIPPING 0
ADPRzsS .

-
1
alal

FURCRA ILLINGIS 80304

a a a

a n.

a.a aa

000000G0U0OD}0000000000000,08,

‘66 67468 53 70 11 12 1374 1516 1) 78 1Y l
{
@Oo&) J

,L00000000i000B0°G0G00000008

37 38 33 40 41 42 43 445 lﬁ MR Sl ‘2 i Sl SS 56 31 58 5! EU) 61 62 B3 6416 GBI BBRITO TN DI TSI TI BII KD

(- =

)
o
Lot
N
[t
[t
f

]

0

o =D
- -

—. D
- D

EORORR E RIGR STHGOL

297

L 000000000000

na L] .
JHiPr, VS

aaa Abopgss 2a.s

L0000000G0u000/00,0080¢0

910 11 1213 1415 16 17 18 192021 222324 2526 27 28 28 30 31 37 33 3¢ 35 36

R CURRDlHHYLR

Goos) \l

0000,0000009n0000000009)0000230000000000

31 38 33 40 41 A2 4348 4545 47 48 59 5051 32 53 54 55 36 57 38 59 60 61 62 63 £4| 6* 85 51 68 6% 70 1V 72 12 44 15 75 17 78 79 60

]
-
Des] BN
(s
|

0

o o
— =
=)

517 FIFIR

111 L] 1.

1

goooo00,00,,00¢0

WU NBUI KIS NNANBEBRTAYNI N B

STREET

Blteing L
ADDRESS | A R

L0800000600000/0,000000

HURORA TLLINGIS &0504 T

2. . a2

2 a2

22 14

tgseoco, 00,

573839 40 41 243 14 45 45 97 8 43 50 fs s s: 5515859 0 §1 676388 S6E1 BRI N AN RN

(5007)

,00000060[000C0°G000000000D0

i -~
oy

3 a

HURCRA P S E DIST 131

a n. na

Blb&nb’()' . LY. N

Rdogess

i

COORD INSIR MATRLS

[N [y &

(500/)

)
S5001-500% - CusremeER CR(:; I

Stoy
[oc¢ -

- Flenr cArRD 1
LAMPS REGSES F ¢IRD
Ste8 - Exrzayp, o
50¢9- cpncin Aricm CARD ;
SL10~ ALTiviruen., ;

‘

REQUEST
NUMBER

FILM
NUMBER

CUSTOMER
NUMBER

BILL
TO

APPENDIX R

NORTHERN ILLINOIS UNIVERSITY CONFIRMATION COPY

EDUCATIONAL FILM LIBRARY
DE KALB, ILLINOIS 60115

SHIPPING
DATE

IMPORTANT
SHOW DUE BACK
DATE DATE

FILM
TITLE

CUSTOMER
ORDER NO.

** RENTAL AND
SERVICE CHARGE $¢@
[]

* PLEASE NOTE ABOVE FILM 1S A SUBSTITUTE BECAUSE FILM ORDERED IS NOT AVAILABLE. **15¢ INSURANCE CHARGE ADDED FOR EACH FILM.

REQUEST
NUMBER

FILM
NUMBER

CUSTOMER
NUMBER

NORTHERN ILLINOIS UNIVERSITY

EDUCATIONAL FILM LIBRARY
DE KALB, ILLINOIS 60115

IMPORTANT
SHIPPING SHOW DUE BACK
DATE DATE DATE
FILM
TITLE

CUSTOMER
ORDER NO,

0} PACKING SLIP - NOT AN INVOICE

FROM: AUDIO VISUAL CENTER
NORTHERN ILLINOIS UNIVERSITY
DE KALB, ILLINOIS 60115

TO:

RETURN REQUESTED LIBRARY MATERIALS
16 MM MOTION PICTURE - NON FLAMMABLE

a— : e e it P, et e e, A

77

C-4458

APPENDIX C

NORTHERN ILLINOIS UNIVERSITY

EDUCATIONAL FILM LIBRARY
DEPARTMENT OF INSTRUCTIONAL MATERIALS

DE KALB, ILLINOIS 60115

l_ _.l CUSTOMER NO. INVOICE NO. INVOICE DATE PAGE NO.
** 15¢ INSURANCE
CHARGE HAS
1 BEEN ADDED FOR
L | EACH FILM.
A4
REQUEST CUSTOMER ** RENTAL AND
SHOW DATE MB
NUMBER FILM NUMBER FILM TITLE ORDER NUMBER | SERVICE CHARGE

O

PAY LAST AMOUNT IN THIS COLUMN

INSTRUCTIONAL MATERIAL
TRUST NO. 52428

MAKE CHECKS PAYABLE TO: NORTHERN ILLINOIS UNIVERSITY

SIGNATURE OF INDIVIDUAL PREPARING INVOICE/STATEMENT

MAIL TO: NORTHERN ILLINOIS UNIVERSITY. BURSAR'S OFFICE, DE KALB, ILLINOIS 60115

78

— T /Y e/ T T/ e

APPENDIX D

AV=-LOD
MANIPULATIONS
00 000000000 00000000 0000000800000 0000
. FILMS . ADDRESSING .

00 0000600000 000008000bovbostbotososnsoe

«TITLES, PRINTS 4 BILLINGe SHIPPING,

00 0000000000000 0000000000000 tsotoldioobsdoborsssnvoc

[] [4 L] [L] L]
90 0060 000 00000000000 0000000000000bbs0d0b0b0beassooe
«LOADING o 1 . 1 o 1 . 1 .
0000000000000 00000000000008oiosbdodbidbibiborbosooncoe
« AUGMENTING o 2 . 3 . 4 . 5 o
00000 0000000000000 00000060600000000000b0o00000000000
+REPLACEMENT, -6~ o -7- .

O 0 000 000 00000000000 BSOS OOOROOLOOLIOEOIOEIVPYOLELOLOENGOSOSLIOSEO O®ONDOPOS

BASIC REQUIREMENTS
AND
END RESULTS
0000000000000 00000
le INFORMATION LOADED AS 1IT
APPEARS IN THE FILM AND CUSTOMER
FILE.

2¢ OPERATION FILLS GAPS IN TITLE
LIST OUTPUTED ON TYPEWRITER FROM
STEP ONE AS 'GAP!' =--=INPUT FILM
CARD WITH NUMBER OF PRINTS TO BE
LOADED IN CC 9-10.

3 OPERATION ADDS PRINTS. INPUT
FILM CARD WITH 9-10 BLANK AND THE
NUMBER OF PRINTS TO BE ADDED
APPEARING IN CC 19-8U,

44 REPLACING POSITIONS HELD RY
DUMMY NUMBERSe AMOUNTS TO RE=~
PLACFMFENT (7)

5S¢« OPERATION ADDS SHIPPING
ADDRESSES FOR BILLING ADDRESS-
ALREADY HAVING ONE OR MORE SHIP-
PING ADDRESS.

6e OPERATION REPLACES FILM W/(O
IN CC 80)s OR W/O{(BLANK IN CC 80)
CLEARING OF BOOKINGS ON ALL
PRINTSs REPLACES WITH SAME
NUMBER OF PRINTSe. INPUT FILM
CARD W/ ¢C 9-10 RLANK.

7o OPERATION REPLACES AND
INITIALIZES BILLING AND SHIP-
PING ADDRESS INDICATED.,.

TYPEWRITER RESPONSE
@0 0 6080 0000000000000

*GAP' CC NNNN FFFF

LEAVING A GAP IN FILM NUMBERS

C - CATAGORY

N - NEXT OPEN NUMBER

F = NEXT FILM NUMBER

PLUS APPROPRIATE ERROR MESSAGES

YER' XX
XX - IDENTIFICATION NUMBER OF
ERROR
SAUGT* NNNNNNNPP LL

FILLING TITLE NUMBER GAPS
N - FILM NUMBER TO BE INSERTED
P - PRINT NUMBER FOR SAID FILM
L - NUMBER OF PRINTS STORED TO
DATE FOR SAID FILM

tAUGPt NNNNNNNPP LL
INSERTING PRINT

YINSS? NNNNSS

(SHIPPING ADDRESS)
N - CUSTOMER NUMBER TO BE INSERTED
S - CORRESPONDING SHIPPING NUMBER

*FILM REPLACEMENT' NNNNNNN-
N - FILM NUMBER WITH STORED
BOOKINGS TO BE REPLACED

'CUSTOMER REPLACEMENT?
(BILLING ADDRESS)

77

SESSINN NUMBRER Telel

SPEAKERS

MRS .

JNYCE FONFR,y, ENGINEERING
NATA STNRAGF ROUTINE DDSR

COMPUTING

LABORATORY NN NISK

§0

DISK DATA STORAGE ROUTINE DDSR

Mrs. Joyce Fodor

Engineering Computing Laboratory
B554 Engineering Building

1415 W. Johnson Street

Madison, Wisconsin 53706

Description/Purpose

DDSR is a program written in SPS II-D to facilitate permanent disk
storage of users' data from FORTRAN or SPS programs. The blocks of data
are given a name and table entries that are completely compatible with
the MONITOR I system. The user need not know what sectors on the disk are
available.

Machine Configuration Required

1. 1620 Model I or II
2. 20 K memory

3. card 1I/0

4, Indirect Addressing
5. 1 Disk drive

General Program Description

Since rapid processing of the MONITOR system tables required approximately
10000 core positions, and it was undesirable to take this much core from the
user's program, the system uses the area from 02402 to 12000, In order to dc¢
this, the routine must first store the contents of these locations on disk so
that it can restore them before returning to the main program. For this reason
the short form of the subroutines cannot be used when using these subroutines.
Both the disk write and the data recovery subroutines have routines which store
these core locations in cylinder fifteen of the work cylinders before calling
link to the main read and write routines. The read and write routines then
search the tables to find the particular entry called or the required storage,
and process the data.

All data blocks are given both DIM entries and Equivalence table entries.
When the routine is used to write data on disk permanently, the routine also
makes an entry in the sequential table.

Data blocks may be read from or written into disk in the normal course of
any FORTRAN program, and may be used as often as the user desires, but the
maximum amount of core that may be stored at one time is 20000 digits. This
corresponds roughly to a singly dimensioned matrix of dimension 2000. If
larger blocks of storage are required the arrays may be broken into parts and
stored that way.

Warnings

This program might not work with the short form of the FORTRAN subroutine
because core positions 2402 to 12000 are stored on disk and these core locations
are used as work area, If the call to these subroutines, and INDATA or OUTDATA
are located above this address the system should work.

g1

All entries in an array should be defined prior to storing them on
disk, If the array is doubly subscripted this is very important, If
it is a singly subscripted array and all the elements from one to the c:m
desired element is defined this is adequate, 4

FORTRAN CALLING PROCEDURES

To Store Data
CALL INDATA (IND, LF, LK, NR, ARRAY)

IND =1 if data to be stored is a single fixed point variable or a
a fixed point array.
3 1if data to be stored is a single floating point variable or
a floating point array.

LF Is the floating point mantissa length for the program being used.

LK Is the fixed point word length for the program being used.

NR Is the number of elements to be stored, the dimension of the array
if it is single subscripted, or M * N for a doubly subscripted
array.

A Is the name of the array or number, fixed or floating point to be
stored.

To Call a Data Block
CALL OUTDAT (IND, LF, LK, NR, ARRAY)

where parameters are the same as above, q:;

Naming the Data Block

Whenever either of the routines is called, one data card will be read
from the card reader. This card should have name of the block data to be
read or written left justified in card colummns 7 to 12, Care must be taken
to be sure that this card appears in the proper location in the data deck
or error will result and the job will be terminated.

DISK DATA STORAGE ROUTINE DDSR (1620 - 01,1.036) can be ordered from
the 1620 program library through your local representative or:

International Business Machines Corporation
DP Program Information Department

40 Saw Mill River Road

Hawthorne, N. Y. 10532

&2

— e e

SESSION NUMBER Te.l.2

SPEAKERS
G. ROEMER OF 1BM SPOKE ON THE CSMP FOR THE 1130. THE TOPICS
INCLUDED WERE THE DIFFERENCE BETWEEN DIGITAL AND ANALOG COMPUTERS,
BLOCK PROGRAMMING AN ANALOG COMPUTER, USAGE OF THE CSMP PACKAGE,
AND EXAMPLES.
P. WOODROW SPOKE ON BUFFERED AND OVERLAPPED I/0. THIS PACKAGE
WILL BE RELEASED TO COMMON SHORTLY.
MEETING WAS CHAIRED BY LARRY WHELEN.

53

OVERIAPPED .I/0 FOR 1130 FORTRAN PROGRAMS
Peter J. Woodrow

Aeronautical Research Associates of Princeton, Inc.
Princeton, New Jersey

For most types of commercial computer applications, computation
is at a minimum and input/output operations are numerous. Thus it
is desirous, even at the cost of increasing core requirements some-
what, to use I/0 routines that operate as efficiently timewise as
is possible. Unfortunately, the 1130 FORTRAN I/O routines were
designed to require minimum core. As a result, all FORTRAN I/0
routines (e.g. PRNTZ, CARDZ) use a common buffer that is filled
by SFIO. While presumably, .on output at least, the I/0 routines
could return immediately with SFIO walting for completion before
starting a new line, this is not the case at present. All I/0
routines wait internally for the completion of the requested
operation. This means generally that I/0 speeds from FORTRAN
programs are almost halved.

In order to speed up our commercial data processing, we de-
cided to write some FORTRAN-callable routines, primarily for use
with COMET (since they all use A2 format in effect). ;These routines
were each written for a specific purpose but are presumably general
enough for different applications. We have never tried using these
routines with other FORTRAN I/O, primarily because we did not wish
to have SFIO loaded (approximately 800 words), but they should work
above modification level No. 5- if the interrupt levels used by
FORTRAN I/0 are completely different from those used by these
routines. In particular, the card routine cannot be used by a
FORTRAN program that does FORTRAN I/0 on paper tape or the
keyboard/printer.

4

2.

One point to note is that none of the routines is very complex
since all usé standard assembler language I/0 subroutines. There
would almost certainly be no great difficulty encountered in writing
a. special version of PRNTZ to replace the supplied version and to
run at a speed twice as fast as the current FORTRAN version.
However, some core would have to be sacrificed. Replacing CARDZ
with a faster version is somewhat more difficult for reasons ex-
plained below in the brief write-ups that follow.

3.

SPCDR

This routine has three entry points; SPCDR, SRERD, and
SPCDP. The primary reason for writing this routine was not so
much to increase card reading speed as it was to perform some
special error checking and code conversion. If it is necessary
for computation to be done by the FORTRAN program in order to
determine whether to stacker select, this high card reading speed
is impossible. In addition, in most commercial applications,
each card is printed and hence(for the 1130) print speed is the
overriding consideration. For our application it was highly un-
desirable for the program to accept characters that would not
print on the 1132 printer (as does the FORTRAN card read routine).
In addition, since we have an 029 keypunch with the left-zero-
insertion feature, we felt it would be mandatory to accept -g
(11-¢ punch) which CARDZ translates into a blank. Following are
the various calls that one might use. SO

CALL SPCDR(NC, IFv, IFTV, TAREA, NERRC)
where

NC - must contain the number of columns that are to be
read

IFV - a vector containing field end points. The routine
performs minor checking for specified fields on
the card. If, for example, the fields were 1 - 9,
g - 19, etc., then IFV(1l) =9, IFV(2) = 19,
etc.

N.B. The last IFV element must be greater than or
equal to NC,

TEFTV - a vector containing on return to the calling program
the type of field corresponding to IFV. The
following codes are possible
1 = field contains only blanks

2 = field contains only numeric information (3?

(no blanks)

26

L,

= field contains blanks and numeric information

= ol

= field contains only alphanumeric characters
5 = field contains blanks and alphanumeric
characters
6 = field contains alphanumeric and numeric, but
no blanks
7 = field contains a mixture of all three; alpha-
numeric, numeric, and blanks
N.B. A (ll-numeric) punch in the last column of
a field is considered numeric (i.e. indicates
the field is to be considered negative).

TARFA - a one-word integer vector dimensioned to contain
the input characters. TIAREA must be dimensioned
at least NC/2 words (NC even) or (NC + 1)/2 words
(NC odd). The characters are packed two per word
as 1in the conventional A2 format.

NERRC - returned as a zero if no errors were sensed; re-
turned as a 1 i1f any character read is not
printable on the 1132 printer (the only exception
being -@(11 - @ punch)). Characters in error
are replaced by blanks.

The above routine converts characters and checks field types as
the card is being read. After the card has been read, the routine
checks the error indicator provided by CARD1l (indicating a 1442
sensed error) and retries the read and conversion if there was an

error.

In order to more fully understand the operation of the following
two calls, one must be aware of the fact that SPCDR contains an
internal buffer into which the card image 1s read. This 1s not
destroyed by conversion and is thus available for the following

two calls.

g7

CALL SRERD(NC, IFV, IFTV, TAREA, NERRC)

This call is provided so that one may reread the same card with
different specified fields and thus first sense the type of card
to be processed and then actually check the appropriate fields.
No card reading takes place on this CALL. The explanation of the
parameters is the same as that for SPCDR above.

CALL SPCDP(NC, OAREA, NERRC)

where
NC - contains the number of columns to be punched
OARFA - 1is a vector containing the characters to be
punched (see IAREA above)
NERRC - returns the error code

O = no error

1l = at least one character to be punched not
printable on 1132 printer (except -¥)

2 = an already punched column (read on call to
SPCDR) is to be punched with a different,
non-blank character; i.e.,overpunching is
not allowed

If an error is sensed, the card will not be punched and an immediate

return to the calling program is instead executed.

Note that if SRERD is called after a call to SPCDP, it will in
effect be reading the "union" of the original card that was read
and the card to be punched, i.e. the final version of the card
as it would appear if it were read agailn after punching.

Note also that for proper operation all cards must be read by
SPCDR prior to being punched by SPCDP; otherwise, spurious errors
are likely to be generated.

o

C

None of the above Troutines is particularly speedy. Their main
advantage 1s the thorough error checking that is done by them
rather than by the FORTRAN program. If maximum speed is desired
with no automatic error checking, then SFCDR which follows should
be used instead. ’

7.

SFCDR

This routine has four entry points; SFCDR, SFCDS, SFCDF,
and SFCDP. It was designed for a quite different environment.
Here we wished to read a considerable number of cards, operate
rather extensively on each card and maintain the results in core.
As a result, speed was the primary objective with no desire to
stacker select the cards. As a result, the routine was designed
with two buffers that alternate. Thus SFCDR immediately starts
reading the next card (unless otherwise instructed) and then
proceeds to convert the present, desired card. As a result of
this process conversion "on the fly" is not necessary and CARDYZ
is used. However, the SPEED conversion routine is used and thus
all EBCDIC characters are converted properly and at maximum
speed. The FORTRAN CALL's are as follows:

CALL SFCDR(NW, TAREA, NC)
where

NW - 1is the number of words in TIAREA to be filled
(i.e. 1/2 the number of characters). The
number of characters must thus be even.

IARFA - a one-word integer vector that is to contain
the converted card characters packed two per
word as in conventional A2 format. TIAREA must
be dimensioned at least NW words long.

NC - a code used to control the reading of the next
card while this one is being processed. If NC
is odd, no new card read is started (see SFCDS
below). If NC is even, then the next card read
is started unless the first column of the present
card happens to contain the card image code
equivalent of NC. Thus, if the last card of
one's deck always had a 7 - § punch in column
one, then presunably one would not want to
start reading any card following a card with a
7 - 9 punch in column 1. The Subroutine Manual

70

8.

gives the Hex IBM Card Code equivalent of a 7 = 9
punch as @@5¢ which translates to a decimal
integer of 8¢. Hence, NC should equal 87 for this
example. If you wish to start reading the next
card in all circumstances, then NC should be set
to 2.

CALL SFCDS

This call is to allow the user's FORTRAN program to make a more
extensive test before starting a read operation en the next card.
Presumably, NC would be set to 1 in the call to SFCDR, a test
quickly made on the card, and then a call to SFCDS 1f the next
card 1s to be read. Note that SFCDS just starts a read operation;
it performs no actual reading and, in fact, has no effect if the
next card is already in the process of being read.

CALL SFCDF

This call causes a wait until current card operations are complete
and then initiates a card feed (with no read taking place at all)
on the next card. Note that 1f a card read operation were under
way at the time, then the next call to SFCDR will convert that
card and not the one after the card being fed through.

CALL SFCDP(NW, OAREA)

where
NW - contains the number of words to be punched (see
SFCDR) ,
OAREA - contains the characters to be punched (see IAREA
above)

If a card read was under way at the time of this call, then the
read 1s completed, the punch data moved into the second buffer,
and the punch operation initiated. A call to SFCDR at this time
will cause proper conversion of the card that was read (and

which has already been punched by the call to SFCDP). If, however,

91l

|
|

another call to SFCDP occurs prior to the call to SFCDR, then
the call to SFCDR will cause conversion of the data that was
punched into the second card via the second call to SFCDP.

Note that this routine always keeps track of whether the next
card read has been started or not; hence, it 1s unnecessary to
call SFCDS at any time unless the obvious resultant speed increase

is desired.

72

lO'

SPRNT

This routine contains three entry points; SPRNT, SPRPT, and
SPRPC and is used to obtain high speed line-printer operation
from a FORTRAN program. Double buffering is not used because it
would result in only a very slight increase in speed at a cost
of an additional 60 words of storage. The calls are as follows:

CALL SPRNT(NW, OAREA)

where
NW - contains the number of words to be printed
(the number of -characters must be even and is
2 ¥ NW)
OARFEA - 1s a one-word integer vector containing the

characters to be printed, packed two characters
per word as in the conventional A2 format

The print operation is started on this call and a wait for com-
pletion occurs either on the next call or on a call to either of
the following routines.

CALL SPRPT(NC)
where

NC - 1s returned as a 1 if a page eject occurred
after the last line was printed and is returned
as a ¢ otherwise.

Use of this routine will cause a definite dégradation in the
printer speed. Generally, maximum speed will be obtained if an
internal line counter 1s used to control page overflow. At any
rate, the call to SPRPT should be made immediately prior to the
printing of the next line (via a call to SPRNT). Note that the
page eject to the top of the next page (channel 1 punch in
carriage control tape) has already occurred automatically if NC
is returned as one.

73

11.

CALL SPRPC(NC)
where

NC - contains a code for printer forms control. NC
is multiplied by 16 and transferred as is to
PRNT1 (see Subroutine Library Manual) for printer
control. Thus NC = 16 will cause an immediate
skip to channel 1 and NC = 2¢8 will cause an
immediate space of 1

Note that the forms control command is merely initiated by this
call; it is completed on another call to any of the above entry
points.

74

®

12.

FINAL NOTES

l) All of the above sets of routines operate independently of
one another (except that SFCDR or SPCDR may be used, but not
both by the same program). In general, their operations overlap
one another with no problems and they have been used in a number
of applications with no difficulty.

2) All sets of routines contain internal buffers into which the
characters are moved prior to a call to the proper I/0 routine.
Hence the various character vectors may be operated on or changed
immediately after a call even though the operation may only have
been initiated.

3) Since two of the sets of routines may have I/0 operations
under way concurrent with computation, PAUSE may not work
(Modification Level 5 should work, I hope). It it does not, then
use of IOND (in CSP Version 2) is suggested.

4 I will be happy to send out binary decks, but may not get

around to submitting programs to COMMON for some time. I personally

do not feel that there is anything unusual or complicated about
these routines and make no comparisons with IDEAL or CSP, Version
2. They were written for our purposes and as a result have
features peculiar to our needs. It may easily be that these
features are wasted 1n your application.

75

// ASM

*LIST

*PRINT SYMBOL TABLE

0008
0000
no8n
ooou
G001
0002
0003
nonoe
000¢&
0008
000A
000R
000C
000D
000E
0010
0012
0014
nN015
0016
0017
0018
0019
D01A
Nno18
001cC
001D
001k
001F
nez20
0021
0022
0023
0024
0026
0027
nN028
0029
D02A
0028
0020
002F
0031
0032
0033
0034
0036
0038
0039
NO3A
N03R
003D
NO3E
0040
0042
0043
0045
0046

—

OO ODOOO0OO O
- O

225C3119
22645644
225C3117
0001
6973
6AT4
65800000
6905
5800000
D4000ODF
700D
000C
6968
6A69
65800008
C5800000
D4ODONDF
03059131
1000
00DF
00DA
Ccoe1l
D061
Cl1l01
DO3E
pDoz27
Cl102
D042
Cl103
DO5B
Cl04
DO5A
C056
D&48OOOTD
c057
PO57
6100
Cc050
D055
6680007F
C60000DF
4C04002D
DO4F
62CE
coan
F6000162
4C18003E
7201
T0F9
Cco43
D48OOQTD
62CE
C6000194
4C100048
C03C
95000045
EOC3C
EE000194

SRERD

SPCDR

RETRY

LOOPA

LOOPB

MATCH

IFADX

ENT
ENT
ENT
DC
STX
STX
LDX
STX
LD
STO
MDX
DC
STX
STX
LDX
LD
STO
LIBF
DC
DC
DC
LD
STO
LD
STO
STO
LD
STO
LD
STO
LD
STO
LD
STO
LD
STO
LDX
LD
STO
LDX
LD
BSC
STO
LDX
LD
EOR
BSC
MDX
MDX
LD
STO
LDX
LD
BSC
LD

AND
OR

—t
N

| ot

Ll

L2

SPCDR
SRERD
SPCDP
»
EXIT+1
EXIT+3
SRERD
SPCDR

0

IAREA
RETRY

*
EXIT+1
EXIT+3
SPCDR

0

IAREA
CARD1
/1000

I AREA
ERROR
ZERO
ERRID

1
IFAD+1
[FADX+1
Z
OFAD+1
3

IARAD

4

EROAD
ZERO
EROAD
ONE
CCNT

0

ZERO
CHTYP
CCNT
IAREA
LOOPA+2 sE
CHAR
~-50
CHAR
CHARL+50
MATCH s+~
1

LOOPB
ONE
EROAD
=50
EBCCL+50
NOTSs—
CCNT

¥*

MSKAB
EBCCL+50

SPECIAL CAKD INPUT SUBR

REREAD CARD WITH NEwW
FIELDS

CALL SPCDR{NCIFVsIFTV,

IAREA s NERRC)

7¢

C

0048
0049
O04A
0048
004D
D04F
0050
0052
0054
0056
0058
0056
N05R
005D
005E
D05F
0060
0062
0063
0064
0065
0066
noe67
n068
006A
0068
006C
006D
006E
0070
0C72
0073
0074
0076
0078
007A
0078
007C
007D
007E
007F
N08o
n081
0082
0083
0084
0085
0087
0088
008A
0088
008cC
008D
008E
0090
0ns2
0093
0094
0095
0096

0
0
0

loNoNoNoRoRoNoRONO RG]
= W -

[

O

—

OO0 OO
-

-

fo]

[oNeoNoNoRoNoNoNeoNoNoNoNeo oo oo Ro)
O =

E837
D036
CO034
4C040085
C6000194
£033
EC80007C
D48O0O0OTC
T4FFO07C
7401007F
Cco26
95000058
4C080066
coz2
180C
E024
D5000062
co17
DO1C
T1FF
1000
col8
9077
4C080028
03059121
0000
T0FD
c00D
65800008
4C200018
7105
6905
65000076
66000078
4CO0000TA
0000
0001
0001
00601
0001
0001
0001
0001
4000
OOFF
0007
C6000194
1008
D480O007C
70CB
0000
69ES8
6AE9
65800088
5800000
DO4C
Cl01
DOET
COES
DOES8

NOTS

CKEF

TFAD

OFAD

CKEC

TSTLC

EXIT

ZERO
ERRID
IARAD
ERQAD
ONE
CCNT
CHTYP
CHAR
MSKAB
MSKCH
MSKCT
SLCH

SPCDP

OR
STO
LD
BSC
LD
AND
OR
STO
MDX
MDX

BSC
LD

SRA
AND
STO
LD

STO
MDX
SLA
LD

BSC
LIBF
DC
MDX
LD
LDX
BSC
MDX
STX
LDX
LDX
BSC
DC
BSS
BSS
BSS
bC
BSS
BSS
BSS
DC
DC
DC
LD
SLA
STO
MDX
DC
STX
STX
LDX
LD
STO
LD
STO
LD
STO

e e

| S
et

Ll

L2

11
Il

CHTYP
CHTYP
CCNT
SLCHsE
EBCCL+50
MSKCH
IARAD
IARAD
IARAD s~1
CCNTs 1
CCNT

¥*

CKECs+
CHTYP

12

MSKCT

*

ZERO
CHTYP

-1
0]
CCNT
IAREA
LOOPA s+
CARD1
/0000
TSTLC
ERRID
SPCDR
RETRY 32
5
EXIT+5
¥*

o b e O XK X

/4000
/00FF
/0007
EBCCL+50
8

IARAD
CKEF

EXIT+1
EXIT+3
SPCDP
0}
IAREA
1
1ARAD
ONE
CCNT

CALL SPCDP(INCY»OAREAPNERRC)

nnov
TNOR
NCGA
Nno9C
NOGE
NOGF
NOAD
TOAL
nNCA3
NOAL
NGAS
NOAT
NOAR
DA
CUCAA
NOAR
D0AD
OOAE
nnro
HORY2
NG
NOR6
NORY
N0NRrR9
QHRA
NORC
NN
DORE
D0RF
0oCOo
GNC?
NOCY
nN0esS
nNnceét
OCOCR
Nece
NNCA
nnee
nacc
neen
NOCE
nNCF
NONG
nonl
nony
20N4
Nons
00p6
N0ONA8
NOnNag
O0ONA
00DR
00DC
0onoD
00DF
0130
0131
0132
0133
0134

N

01
01
01

01
01
01
01

nn

01

~J
—

—

QOO IDODOC LD
[

[eReReNeRa)

coE7
LTCUL4OGDE
C4ROONTC
T4FFOOTC
FOE4
NCE1
62CE
C6UHU194
FUDF
FODC
4C1RONAR
7201
TOFR
Ciuba
TOUF
C6030162
noD3
66830007F
4C1B0NRKRF
C6EUGOODF
4C1B00RF
FOCA
4C1RODRF
CO1B
NS5RHONYY
71073
69RR
7IOR5
cOCl
N6EODOODF
T401007F
COBA
9019
4CO80097
03059131
2000
O0DF
CODA
COAD
NOAD
03059131
0000
TOFD
COA9
4C2000CC
7T0E5
0002
C480007C
1808
T70C4
00DR
COA2
DOSE
4C8000DA
0051
0000
8420
8120
80A0
8000

pLP

PLPR

PLPA

PMAT

EXITP

PSTO

PREID

TSTPF

TWO
SRCH

ERROR

IAREA
CHARL

Lo

BSC L
Lo I
MDX L
AND

STO

LDX 2
Lo LZ
AND

EOR :
BSC L
MDX 2
MDX

Lo

MDX

LD L2
STO
LDX
RSC
Lo
RSC
EOR
BSC
LD
STO I
M X
STX
MDX
LD
STO L2
MDX L
LD

S

BSC L
LIBF

DC

nDC

nC

LD

STO
LIBF

nC

MDX

LD

BSC L
MDX

DC

LD I
SRA

MDX

DC

LD

STO

BSC 1
BSS

DC

DC

DC

DC

bC

[S ol el
— NN

fo

CONT
SRCHy
[ARAD
TARAD 9=1
ASKCH
CHAR
=50
EBCCL+50
“SKCH
CHAR
PVAT g +—
1

PLPA
ONE
EXITPR
CHARL+50
CHAR
CCNT
PSTCOs+-
[AREA
PSTU e+
CHAR
PSTOy+=-
TwO

2

3
SXIT+5
eXIT
CHAR

T AREA
CCHTsl
CCNT
IAREA
PLPy+
CARD1
/2000
IAREA
ERROR
ZERO
ERRID
CARD1
/00C0
TSTPF
ERRID
PREIDZ
EXITP

2

IARAD

8

PLPR

3*

ONE
ERRID
ERROR
81
/0000
/8420
/8120
/8Q0A0
/8000

PAGE

92

3

0030
0040
0050
0060
0070

w

e

0135
0136
0137
0138
0139
013A
013R
013C
013D
013E
013F
0140
0141
0142
N143
0144
N145
0146
nN1l47
0148
nN149
N14A
D14B
N14cC
nlan
014E
N14F
159
nls1l
0152
01%3
N154
0155
0156
0157
nN158
n1%59
N015A
N15R
015C
n1shH
015k
015F
n160
Nnle61
0162
0163
0164
7165
n166
nN167
2168
169
N16A
716R
n16C
N16n
Nlek
N16F
170

oReoBoRoNoRbRoRoRoNoRoRoRoRoRoNeo R NoNoRoNe)

N
2 OO

~
- =

oo BeBolwleBoRoloBoBoNoBoRoRoReNeRe RGN

4420
4220
4120
4000
3000
2420
0120
Q0AQ
9000
8800
8400
8200
8100
8080
8040
8020
8010
6000
5000
4800
4400
4200
4100
4080
4040
4020
4010
2800
2400
2200
2100
2080
2040
2020
2010
2000
1000
O08UD
D400
0200
0100
0080
00490
0020
0010
1040
4048
404D
404F
4950
40O5R
405C
405D
AO60
4061
4O6R
4079
4OTE
40C1
40C2

EBCCL

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
oC
DC
DC
DC
nC
DC
pDC
DC
DC
DC
DC
bDC
bC
DC
nC
DC
oC
DC
bC
DC
NC
nC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
nDC

DC
DC
DC
DC
DC
DC

~
(AN

DC
DC
DC
DC
DC
DC
DC
bC
DC

/4420
/4220
/4120
/4000
/3000
/2420
/0120
/00AQ
/9000
/8800
/8400
/8200
/8100
/8080
/8040
/78020
/8010
/6000
/5000
/4800
/4400
/4200
/4100
/4080
/4040
/4020
/4010
/2800
/2400
/2200
/2100
/2080
/2G40
/2020
/2010
/2000
/100

/0800
/0400
/0200
/0100
/0080
/0040
/0020
/0010
/1040
/4048
/404D
/L04E
/4050
/4058
/405C
/405D
/AQ60
/4061
/4068
/407D
/407E
/40C1
/4QC2

-w N | — X &R

— T O MmO NI >N

(=ZERO)

O XNV PLH WO ONXXXZTZLCOCANMAOTOZIr XX

- N |- XA+ ~0

T > H

~
<

0080
0090
0100
0110
0120
0130
0140
0l5¢0
0160
Cl70
0180
0190
0200
0210
0ec20
0230
0240
0250
0260
0270
0280
0290
0300
U310
0320
0330
0340
V350
0360
Q370
¢380
0390
0400
0410
0420
0430
0440
045U
U460
Ja7u
0480
U490
U500
U510
0520
053U

U550
0560
U570V
0580
Us90u
U600
0610
0620
CoH3uV
0640
U650
0660
0670

0171
n172
0173
0174
0175
0176
0177
ni78
0179
017A
ND17R
017cC
017N
017F
N17F
018D
N1l8l1
0182
nN183
N1ra4
0185
D186
n187
0188
N1R9
ND1RA
N18RK
018C
018D
018E
N1RF
n1an
n191l
0192
0193
0194

NoloNeoRoRoRoRoRe o]

40C3
40Ca
40C5
40Ceé
40C7
40C8
40C9
AODO
AOD1
AOD2
AOD3
AODG
AODS
AOD6
AOD7T
AODS
AOQD9
4082
40E3
LOEL
40ES
40E6
407
40E8
40E9
Z0F0
20F]
20F 2
20F3
20F4
20F5
20F&
20F7
20F83
20F9

nc
DC
nC
DC
DC
DC
DC
nC
DC
DC
nC
DC

D

nDC
nC
nC

nC

DC
DC
nC
NnC
DC

DC

nC
pC
DC
nC
DC
DC
DC

END

/40C3
/40C4H
/740C5
/40C6
/40C7
/4Q0C8
/740C9
/AQ0DO
/A0D1
/A0D2
/AQD3
/AQODY
/ACDS
/AOD6
/AODT
/AQD8
/AODS
/40E2
/4G=3
/G084
/405
/40L6
/4087
/40ER
/40E9
/20FQC
/20F1
/20F2
/20F3
/20F4
/20F%
/20F6
/20F7
/20F8
/20F9

S W A k= 0N X B <

o

~N W

/00

PAGE o

[OXSE 1Y)
UbYy
UT7uu
VTl
JleU
uT3su
UT4u
UTHU
viou
Uty
U780
V199
UBUu
Uolu
U3
SE -1V
0B84y
Vs ou
v3bu
(DRI AV]
yodu
UB YU
VYO
Uy lu
UY2o
7Y
UYLy
VYU
Uyou
Uy fu
UYgwv
UYSu
LUUU
L10iv
L1020

)

",
A

CCNT O007F CHAR 0081

CKEF 0056 EBCCL 0162
EXIT 0074 EXITP 0O0OBA
IFADX 0043 LOOPA 002B
MSKCH 0083 MSKCT 0084
PLP 0097 PLPA 00Al
PSTO O0OBF RETRY 0018
SRCH 00D6 SRERD 0000
ZERO O0O07A

NO ERRORS IN ABOVE ASSEMBLY.

SYMBOL TABLE

CHARL
EROAD
IARAD
LOOPB
NOT S
PLPR
SLCH
TsTLC

013¢
007D
007¢C
0033
0048
00%9E
0085
006A

CHTYP
ERRIC
IAREA
MATCH
OFAD

PMAT

SPCDP
TSTPF

0080
0078
UODF
003E
0060
00AB
0088
0oCk

/0/

CKEC
ERROR
IFAD
MSKAB
ONt
PREID
SPCDR
TwO

0066
O0DA
0059
0082
007E
oocc
0008
00b5

// AS
*LIST

#PRINT SyYMBOL TARLE

0000
0057
0093
005D
0000
0001
0002
0004
0006
0007
0008
0009
000A
000R
000C
noon
000F
0010
5011
0012
0013
0015
0016
0018
0019
001A
001R
001C
001D
001E
N01F
0020
0021
0022
0024
0026
0028
0029
002A
0028
002C
002D
002F
0031
0032
0034
0036
0037
0039
0038
n03C
003D
003E
003F
0040
N041
0042
0043
0044

M

O =

—

o]

-

OOCOOO+O

22183119
221831272
22183106
22183117
0001
6936
65800000
c5800NG0O
D034
904E
4830
1010
8048
7103
692D
4C080037
1001
DOLR
ClFE
DO1ID
C580FFFF
NO26
7401003E
4026
c023
DOOF
DOOF
DO11
6100
03059130
0000
T0FD
COlA
4C040028
F480002A
4420003F
225C5144
0000
0028
v02C
002D
C500002F
D4000031
7101
T4FF0030
T4FF0O038B
T0F6
65000039
4C00003R
0001
0001
0001
0000
0040
c811
18D0
D8OF
DOO7
800F

SFCDR

CONV
CFAD

CHCNT
FAD
TAD

RESIR
EXIT
WCNT
CODE
BUFA
CCNT
RCD

ENT
ENT
ENT
ENT
DC
STX
LDX
LD
STO
)
BSC
SLA
A
MDX
STX
BSC
SLA
STO
LD
STO
LD
STO
MDX
BSI
LD
STO
STO
STO
LDX
LIBF
DC
MD X
LD
BSC
EOR
BSI
LIBF
DC
DC
DC
DC
LD
STO
MDX
MDX
MDX
MDX
LDX
BSC
BSS
BSS
BSS
DC
DC
LDD
RTE
STD

Il
I1

Il

I

SFCDR
SFCDS
SFCDF
SFCDP
*
RESIR+1
SFCDR
0

WCNT
K40

-7

16

K40

3
EXIT+1
RESIR s+
1
CHCNT
-2
TAD+1
-1
CODE
CCNTs+1
RCD
BUF A
CFAD
CFAD+1
FAD+1
0
CARDO
/0000
H*ew3
CODE
CONVs E
CFAD
RCDs2Z
SPEED
/0000
¥*

X % %k X

—

TAD+1s~-1
WCNTe=1
FAD

X O = = = X

BUFAD
BUFAD
RAD
ONE

CALL SFCDOR{NWIAREAINC)
CALL SFCDS

CALL SFCDF

CALL SFCDP(NWsIAREA)

/02

0045 0
0046 O
0047 01
no49 20
004A O
2048 1
004C 01
004E O
004F 01
0052
0052 1
0053 1
0054 O
0055 0
0056 0
0057 1
0058 0
0059 0
N058 O
0050 1
005E O
005F O
0061 O
0062 0
0063 0O
0065 0
nNo66 0
no067 0
0068 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

s

[}

0069
NOBA !
006R
006C
006k
006F
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0G7A
007R 01
007D 01
007F 01
0081 O
0082 01
n084 01
0086 0O
0087 2
0088 0O
0089 1
008A 1
nesB 1
008C 2
008D 0

DOF7
CO0E
D480004B
03059130
1000
004C
T4FFQOO03E
1000
4C80003F
0000
00v8
OCEA
0001
0050
0028
0058
COES
4410003F
4C800057
005E&
6931
65800050
Cl101
DO1B
C5800000
90F0
4830
1010
80ED
NoOD1
7102
6926
4C0O8008F
1001
DOlB
6100
CB8EO
18D0
D8DE
D019
80DE
D013
80C3
201D
D006
co10
D480008E
C400007F
D5000081
7101
T4FFOOTE
T4FFQ038
T0F6
225C5144
0001
008BA
008R
008C
03059130
2000

RAD

BUFAD

ONE
K80
K40
SFCDS

SFCDP

PFAD
PTAD

PCFAD

PCHCN

STO
LD
STO
LIBF
DC
DC
MDX
NOP
BSC
BSS
DC
bC
DC
DC
DC
DC
wD
B8S1
8SC
DC
STX
LDX
LD
STO
LD
S
BSC
SLA
A
STO
MDX
STX
BSC
SLA
STO
LDX
LDD
RTE
STD
STO
A
STO
A
STO
STO
LD
STO
LD
STO
MDX
MDX
MDX
MDX
LIBF
DC
DC
DC
DC
LIBF
nC

~—

BUF A
K80
RAD
CARDO
/1000
*

CCNT -1

RCD

0

CBUFA
CBUFB

1

80

40

*

CCNT
RCD s~
SFCDs
*
PRESI+1
SFCDP

1
PFAD+1
0

K40

-Z

16

K40
WCNT

2
PEXIT+1
PREST o+
1

PCHCN

0

BUF AD
16

BUF AD
PAD

ONE
PCFAD+1
WCNT
PCFAD
PTAD+1
PCHCN

PAD
*

*

1
PFAD+1s~1
WCNT e=1
PFAD
SPEED
/0001

*

¥*

3*

CARDO
/2000

/O3

00RE
N008F
noel
0093
0094
0095
0094
0098
O0EA
N13C

1

01
01
20

01

008F
65000091
4C000093
0094
030591130
3000
4C800093
0052
0052

PAD

PRESI
PEXIT
SFCDF

CBUFA
CBUFB

DC

LDX L1
BSC L

DC

LIBF

DC

BSC I

BSS

BSS

END

¥ %k X

CARDO
/3000
SFCDF
82
82

/0%

PAGE

3

BUFA 003D 8UFAD 0052
CFAD A 002A CHCNT 002¢
FAD 0020 K&40 00586
PCFAD 0089 PCHCN 0088
PTAD OO7F RAD 0048
SFCDP 005D SFCDR 0000

NO ERRORS IN ABOVE ASSEMBLYe

SYMBOL TABLE

CBUFA
CODE
K80
PEXIT
RCD
SFCDS

0098
003¢
0055
0091
003F
0057

CBUFB
CONV
ONE
PFAD
RESIR
TAD

OO0EA
0028
0054
007D
0037
002F

/0%

CONT
EXIT
PAD
PRES]1
SFCDF
WCNT

003k
0039
008E
008F
0093
0038

// ASM
*LIST

#PRINT SYMBOL TABLE

0000
0072
0080
0000
0001
0002
0003
0005
0006
0007
0008
0009
000A
000C
000D
000E
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
0018
001c¢C
001E
0020
0022
0023
0024
0025
0026
0027
0028
0029
002A
002C
002E
00390
0031
0032
0033
0034
0035
0072 1

0073 O

0074 01
0076 20
0077 O

0078 O

0079 O

007A 00
007C O

007D O

007E ©

< (@) [oad

QOO OO0COCOOO0OOOOOOOCOOONOOCOOH
-

Q
(o]

O QOO QOO0 R ONOOCOCO
i o O =

225D9563
225D95E3
225D95C3
0001
6929
6A2A
65800000
C101
pol8
176558F1
0000
T0FD
C5800000
D028
9023
4C080012
€020
D023
CO1lF
8021
801E
DOOB
6200
7102
6916
CO15%
DO1l9
9019
D4000001
C6000020

-D5000022

T2FF
1000
7101
70F8
176558F1
2000
0035
008F
6500002C
6600002E
4C000030
0000
003C
0035
0001
0001
003D
0073
6987
65800072
176558F1
0000
T0FD
COBA
D5800000
7101
6981
6AAE

SPRNT

TSTPL

MFOA
MTOA

EXIT

ZERO
CONST
OARAD
ONE
EPGFL
OAREA
SPRPT

TSTPF

SPREX

ENT
ENT
ENT
DC
STX
STX
LDX
LD
STO
LIBF
DC
MDX
LD
STO

BSC
LD
STO
LD

STO
LDX
MDX
STX
LD

STO

STO
LD
STO
MDX
SLA
MDX
MDX
LIBF
DC
DC
DC
LDX
LDX
BSC
DC
DC
DC
DC
BSS
BSS
DC
STX
LDX
LIBF
DC
MDX
LD
STO
MDX
STX
STX

Il

—

b
L2
Ll

Ll
L2

S e

SPRNT
SPRPT
SPRPC
* SPECIAL FORTRAN PRINT SUBR
EXIT+1 FOR ACCOUNTING
EXIT+3
SPRNT
1
MFOA+1
PRNT1
/0000
TSTPL
0
OAREA
CONST
*+2 94
CONST
OAREA
OARAD
OAREA
ONE
MTOA+1
0

2
EXIT+5
ZERO
EPGFL
OAREA
/0001

* C

¥*

-1 '
0 i
l |
MFOA |
PRNT1 |
/2000 !
OAREA |
ERROR
¥*

5%

¥*

0 |
60

OAREA |
1 |
] |
61 !
¥*
EXIT+1
SPRPT
PRNT1
/0000
TSTPF
EPGFL

1
/06

EXIT+5
EXIT+3

PAGE 2

007F U TOAA MDX EXTIT
0080 1 0081 SPRPC DC *
0081 0 69A9 STX 1 EXIT+1
0082 01 65800080 LDX 11 SPRPC
0084 00 €5800000 LD 10
0086 0 1004 SLA 4
0087 0 EOO05 AND MSK
0088 0 8005 A CCwD
0089 0 DOO1 STO cCDwWD
008A 20 176558F1 LIBF PRNT1
0088 1 008C CCDWD DC *
008C 0 TOEF MDX SPREX
008D 0 OFFO MSK DC /OFFO
008E O 3000 CCwD DC /3000
008F 1 0090 ERROR DC *
0090 0O COA2 LD ONE
0091 0 DOAZ2 STO EPGFL
0092 01 4C80008F BSC 1| ERROR
0094 END

107

CCDOWD 0088B
EXIT 002A
OAREA 0035
SPRPT 0072

NO ERRORS IN ABOVE ASSEMBLY.

CCwD
MFOA
ONE
TSTPF

008E
001lE
0033
0076

SYMBOL TABLE

CONST 0031
MSK 008D
SPREX 007C
TSTPL 0007

EPGFL
MTOA
SPRNT
ZERO

0034
0020
0000
0030

108

ERROR 0O08F
OARAD 0032
SPRPC 0080

(‘};

SESSION NUMBER Te.l.4.

SPEAKERS
JeLs TUNNEY, JR.s CHAIRMAN S/360 HARDWARE COMMITTEE

DISCUSSION
THE MEETING CONSISTED OF A SOUND-OFF ON HARDWARE PROBLEMS,
INFORMAL SURVEY OF MINIMUM CONFIGURATIONS THOUGHT TO BE REQUIRED

FOR VARIOUS SOFTWARE PACKAGES, AND A SURVEY OF USERS OF
NON-STANDARD EQUIPMENT.

AN

/109 .

REPORT ON MEETING OF SYSTEMS DIVISION, 360 PROJECT,
HARDWARE COMMITTEE - 9/7/67

O

Attendance: Approx. 100 Chairman: James L. Tunney
J. R. Ahart, Inc.

627 Salem Avenue
Dayton, Ohio 45406
Telephone 513 - 278-4754

The first meeting of this committee since its organization
was divided into three sections:

1. A discussion of users' hardware problems and how they
have been remedied.

2, A discussion of software systems and what minimum hard-
ware requirements have proven to be in practice.

3. A survey among those attending of new or unusual equipment
that they might have on their '"360'".

SECTION I - HARDWARE PROBLEMS

€

"1442" Card Read-Punch

The majority of the complaints about this unit involved an
apparent lack of checking circuits. Reports included machines
that would punch and read without cards, others instances where
the program would proceed normally without the punches actually
going down, and still other problems of punching without feeding
the cards. One user having both a "1442' and a '"250L" found that
in order to "CATALR" from the "1442', both SYSIN and SYSRDR had
to be assigned to the "1442'",

"1443" Printer

Most problems with the "1l443'" were evidently blamed on static
electricity by the FE's. One suggestion was to install a humidi-
fier, another was to hang tinsel on metal frame over which the paper
moves, a third attendee mentioned that the box of paper must set
on the steel frame. Richard Pratt said that their printer could
throw the type-bar without leaving the ready state!

12501" Card Reader

Four attendees reported that dust accumulated in one of the
read stations and caused frequent read checks. It was felt that
on heavily used equipment once-a-week PM was not sufficient to
relieve the problem and a design change is needed. ‘!EB

110

‘§$

12540" Card Read-Punch

Read-side: One person reported a machine that read 1200
cards per minute instead of 1000/minute when delivered. This
caused excessive reader checks and proved difficult to find.

- Punch-side: Three installations reported excessive numbers
of partly punched holes without punch checks. New dies proved
to be the only effective remedy.

"1403" Printer

One user reported that on the QN print chain which is the PL/I
set with 45 preferred graphics, the single quote mark is a non-
preferred character. The net result is that any line having an
apostrophe prints at 330 lines/minute instead of 1100! Another
reported an oil leak that took 3 days to fix. Moral-put a pan
under it! Another installation reported that transfer of static
electricity from a belt to a wire resulted in character substitu-
tion.

"2311" Disk Drive

Six users reported oil leaks or hydraulic problems. Several
more said they frequently couldn't I.P.L. from certain drives. One
said the fix was to power the '"2311" down, slam the 1lid, and restart it!
Of more serious concern was the report that I.B.M. is currently
installing desensitizers on the heads of all "231l's". At least
two people reported that they had problems reading old files after
this engineering change. A theory was advanced that possibly old
"231l1l's" were already below sensitivity specs!

029" Keypunch

Duplicating ECBDIC cards with or without the printing mechanism
engaged is reported to damage the code plates. I.B.M. offers a
special '"024'" for this purpose but the users felt that the 026"
should be modified to do the job since it is the '"'360'" Keypunch!

SECTION II - MINIMUM HARDWARE REQUIREMENTS
FOR AVAILABLE SOFTWARE

T.0.S. No comment other than no amount of core will speed it up!

D.0.S. 32K and 2 Disks should be minimum.

D.0.S.-FORTRAN IV 32K minimum.

D.0.S.-R.P.G. 32K minimum.

/11

D.0.S.-COBOL 32K marginal, 64K adequate. @:}

D.0.S.-PL/I same as FORTRAN - 32K minimum.

D.0.S.-Bill of Matl. Proc. with COBOL 64K and several disks.

M.I.T. Civil Eng. Pkg. 128K and 3 disks (comparable to what used
to fit on 40 or 60K '"1620'"!

Proj. Mgmt. System Rumor suggests 4 disks or 4 tapes!

D.0.S. Utilities and Sort-Merge Good even in 16K!

SECTION III - NEW OR UNUSUAL EQUIPMENT

Record Overflow on '"2841l" An excellent feature for $10/month that
1s rendered useless by lack of software support under D.O.S.

Storage Protect Out of 12 reported installations, 3 said it took
2 months or longer to get it to work!

""1012" Paper Tape Read-Punch R.P.Q. Leonard Sites, Sunstrand
Aviation, Denver, Colorado.

"1231" Optical Reader Miami-Dade Junior College, Miami, Florida @33
reported that this is a good unit but that it is only supported 4
under B.P.S. ZLack of D.0.S. support results in an unrecoverable
unit check when D.0.S. is in core and someone readies the "1231"
or other unsupported device!

""565"" CALCOMP Plotter on '"2701l" Bethlehem Steel Company reports
that it runs at % "1620" speed under this hook-up.!

470" CALCOMP Plotter off-line, 9 channel mag tape. Don McIlvain
reports that 9 channel tape characters are very unusual and some
extra BAL programming is required for this arrangement.

2314 Disk Unit Lear-Siegler Company, Grand Rapids, Michigan.

I.B.M. Visual Display Terminal Also Lear-Siegler Company.

Data Cell Data Corporation, Dayton, Ohio

R.C.A. Video-data Terminal Also Data Corporation

/12

SESSINM MUMREFR Talaebe
SPFRAKFRS

PANEL NN JNR PFSCRTIPTINAMS AND PERSONNEL

SEI ECTINN TR MEDTUM TO SMALL INSTALILATIOMS

PALIL RICKENRD, NDEPAUW UNTVERSTITY

PARERT CORNELL, FFD., RFES. RANK, MINNEAPNLIS
NP. | oHs RAKFR, PIONEER HI-RRED CORN €0,
DR. pl\”L HFPW]T77 IOR.MQ

/13

Presentation Summary of a Member of a Panel
on

"Personnel Selection and Job Descriptions
in Medium-to-Small Computer Installations".

By

Paul A. Bickford

/14

O

INTRODUCTION

The comments below are centered around a small university (2,400
students) Computer Center which has an IBM 1620 20k, 1311 configuration
for education, a compliment of unit record equipment and an IBM 1401 8k,
3-1311 system for University Administration Data Processing. Some of
the main tasks of;the installation are: (1) Maintenance of a large
Alumni file (2) Student Admission files (3) Registration (4) Grade pro-
cessing and reporting (5) Maintenance of Student Information files and
(6) Developments of Campaign Accounting files. The Administrative
Data Processing group has always operated under a closed shop operation
philosophy whereas the Education group has always operated under an open
shop philosophy. All facilities are located in one building. The Staff
consists of eight people, one Secrétary, two Key Punch operators, one
File Clerk, one Programmer, one Machine Room Supervisor, Part-time

Delivery Boy and a Director.
PERSONNEL SELECTION

The procedures for hiring people are straight forward and derived
primarily out of necessity because of a very limited reservoir of pro-
spective experienced people. Attributes that the prospective em-
ployee's must have is a pleasant personality and who is reasonably
easy to get along with. This is mandatory because of the size of the
installation. One is constantly rubbing elbows and communicating with
another member of the staff and emotional friction here would be more

detrimental in disrupting output than an ailing CPU.

/15

EDUCATION
A high school diploma is required. College experience is desired (:D

for the positions of: Programmer and Machine Room Supervisor.

SEX
Women are employed for the positions of File Clerk and Key Punch
operators. Men are employed for the positions of Machine Room Super-

visor, Programmer and Machine operators.

AGE
Women: 18 to 60
Men: 18 to ? depends upon persons experience and our needs.

Presently, the oldest man is 31 years.
JOB DESCRIPTIONS

Because the installation is small, there is an overlapping of @SD
job responsibilities. Each person must perform numerous and varied
tasks in order that continunity may be given to the flow of work thru
the Computer Center. Sickness and vacations sometime present serious
difficulties because the overlapping of responsibilities never seems
to ke adequately or properly defined. The job titles are general ones

and the "other" tasks each person performs will be described.
KEY PUNCH OPERATOR(S)

Each must know how to operate the 548 Interpreter, 083 Sorter,
514 Reproducer, 085 Collator and the 407 Accounting Machine in addition
to the 026 Key Punch and 056 Verifier. They must eventually become

familiar with (know by heart) the field formats of 20 plus different

Iz

cards. On some jobs, the Key Punch operator will receive information

directly 1in the mail, key puncn and verify it, select the proper
Interpreter board (and somnetimes wire one) process the cards thru the
548 and then file them in the proper file. Many times the operator
nust refer to a master code book in order tnat she may supply neede
source information codes to punch into cards. Currently, one operator

is learning to program the 1401 in KPG language.
FILE CLERK

This individual primarily performs the task of hand filing updates
to the 75,000 card Alumni file which constantly changes. Presently,
this procedure is followed even though the Alumni files reside on 1311
disks. and shortly this hand task will be eliminated. There are another
15 files that constantly change and the file clerk spends most of her
time performing this function. However, she must also be able to Key
Punch and operate the other Unit Record equipment when either of the

other two operators are ill or on vacation.
SECRETARY

Besides performing the routine tasks of a secretary ie, typing
letters, distributing mail and filing etc. she must also be able to
Key Punch and operate most of the Unit Record equipment. She also
updates Alumni address changes in an Alumni Directory which is 3 feet
thick. Code sheets that are sent to the Computer Center are supplied
with additional codes (such as the student and alumni alphabetic

identification numbers) by the Secretary.

117

MACHINE ROOM SUPERVISOR

Much of the daily routine is closely watched and controlled by
the Machine Room Supervisor. He operates, wires and programs all
equipment. He accepts job requests (verbally or in writting) and
schedules them in a manner that will keep all equipment as busy as
possible. With the many tasks that must "mesh" perfectly before a
job is completed he must be constantly aware of the state of comple-
tion that each job is at so that work can progress along. This "art"
of scheduling seems to work reasonably well in our small shop environ-
ment. The peak work periods seem to always present serious scheduling
problems and sometimes some jobs get completely neglected for awhile.
The Machine Room Supervisor carries the heaviest responsibility load
in seeing that jobs are finished in a reasonable length of time and
are well done. He often communicates directly with the Faculty as
well as all Administrative offices. One-fourth to one-half of his time,
approximately, is spent in programming the less complex "One-shot" jobs

that occur frequently.
PROGRAMMER

Is responsible for programming the more complex jobs such as
Development Fund Accounting, general Alumni and Student file maintenance.
He frequently takes requests directly, does what ever systems work is
necessary, writes and key punches his own program as well as assemble
and test the program. On half of the jobs he is the only person who
knows precisely how his programs function. Having only one person res-

ponsible for major jobs leaves a small installation in jeopardy. The

/118

©

Programmer also writes the operating instructions for all of his
programs and is supposed to flow chart them also.

He is also responsible for knowing the more intimate details of
the IBM Sort Package, the Disk Utility Programs and Disk File Organ-

ization routines.
DIRECTOR

Last, but I hope not least, the Director has the ultimate res-
ponsibility of the complete operation and he spends most of his time
communicating with the various departments of the University and
monitors the progress of new needed applications. Sometimes he plays
the role of Programmer for a week or two, Machine Room Supervisor for
awhile besides carrying on the usual routine of answering complaints
(we have a few) and carrying on with correspondence. He also teaches

a course in Basic Computer Programming.

7

PROGRAMMER SELECTION AT THE FEDERAL RESERVE BANK OF MINNEAPOLIS

Roebert Cermell
OUTLINE

sic Structure

Programming staff of our company can be broken down into 5 basic units.
Programmer

Procedures Analyst

. Systems Analyst B

. Systems Analyst

. Senior Systems Analyst

nupPrwo R

Advancement along the scale follows naturally in that order, with the
"programmer" being the basic unit, or starting point.

Even from the beginning, a programmer must be trained as a high-powered
individual in the many levels of work into which he may advance. His
duties include:
1. Present job analysis.
a. Discuss job to be programmed with supervisor or department head
in charge of the operation to be programmed.
b. Study and learn the "ins and outs" of the job by working with

the clerk; acquire a thorough understanding of all facets of the

job, including special operating methods, periodic, regular and
irregular error procedures.
2. Program design.
a. Determine program objectives through consultation with bank and
systems personnel.
b. Construct a flow chart of the work to be done by the computer.
3. Program writing/cesting.
a. Writes the program - ideally in any one of several programming
languages; selection of the one most suitable to the job.

b. Designs test procedure and sees to the preparation by keypunchegs

of a "test-data deck'.
c. Run, test, debug program.
4. 1Installation/Implementation.
a. Assist in preparation of operator manuals.
b. Performs any necessary training of departmental and data
processing personnei concerned with the handling of the job.

[Ce nm 2 AT Dena i Ant
S. Cpozizl Przincts, s
a. Normal procedure is to assign new prograﬂs*to a "'system'" when
hired.

b. Most programmers will also be required, from time to time, to
help in the planning and programming of any special one-time
shots.

Airing Techniques

®
Lew

We hire on three things: 1) Pat score, 2) willingness to work; and,
3) ability to learn.

/20

)

¢

-2 -

B. Requirements
1. Education - High school diploma with good record, indication of
‘:D math interest. Any additional education, including college level
statistics, economics, accounting, or even IBM courses in functional
wiring or programming are considered; if absent, a willingness to
take course work to £fill in the gaps must be present.
2, Previous experience. We promote from within and train ourselves.
Experience required varies with the job, and may be as low as none
for a programmer, to 5 years or more of bank experience for a
Senior Systems Analyst. We subscribe to the basic belief that
"Persons with an aptitude for this type of work (programming) can
usually gain job knowledge rapidly, but without the aptitude, no
amount cf experience will produce a competent programmer.
3. Communications - In all levels of work, a fair amount of communica-
tion with other bank personnel will be required. The importance
of finding people who are willing and able to communicate concretely
and calmly with others cannot be over emphasized. 1In his limited
supervisory level of work, the ability to communicate will be of
great value.
4. Personal characteristics.
a. Programming at any level requires initiative and ingenuity.
People must be found with the ability to absorb through obser-
vation, to suggest and implement improvement.
\ b. Programming is time consuming work, and requires a good amount
of initiative to complete a project on schedule.
c. Honesty important. As an employee moves into the level of
1 systems analysis, his principal goal will be to devise improved
‘ ‘ methods, reduce costs and improve bank services. Among these
L ‘ZD as well will be the responsibility to provide safeguards against
‘ falsification and embezzlers, and against destruction - whether
‘ inadvertant or careless -~ of valuable records.
|
|

| 121

Management Installation Division

ORGANIZATION AND SELECTION

by

Dr. Paul S, Herwitz
IBM Corporation
Old Orchard Road
Armonk, New York 10504
(914) 765 - 4543

Thursday, 8:30 A.M.,

Text, 7 pages
Graphics, 5 pages

ORGANIZATION AND SELECTION

Although in the final analysis organization is people oriented, in IBM
we have a structure of jobs which seems to work very well in all of
our programming areas whether the group is large or small. I will
describe this structure to you in rather general terms without getting
into a completely detailed description of the job responsibilities and
requirements. As a matter of fact, this is an opportune time to talk
about the subject because I have been involved during the past nine
months in a study of the job descriptions that have existed for pro-
grammers for the last five years. We are just about at the end of
this now, and are making a number of revisions. In order to describe
the key positions correctly we conducted extensive interviews of
programmers throughout the company, and as a result the new
descriptions give a pretty accurate description of the basic programming
jobs being performed today.

First of all (Figure 1) there are two ways to enter programming in IBM -
with or without a college degree. Generally speaking the college graduate
can have any degree although we prefer a technical degree. (A little

later on I'll give you a breakdown of the educational background of our
people.) When the college graduate is hired he enters in a classification
called pre-professional which is not exempt from the Federal Wage and
Hours Laws. Depending upon the division in IBM in which he is hired,

our new pre-proiessional may have anywhere from six to twenty-six

weeks of programmer training. The twenty-six week training course is
populated by candidates for our programming systems activities, The
first twelve weeks of this course are formal class lecture with some hands-
on experience. During the last fourteen weeks the trainee is a member of
a kind of programming job shop, if you will, where he is managed by expe-
rienced programming managers and where his assignment is to program
actual applications on a kind of sub-contract basis. This is a type of very
careful on-the-job training that is closely supervised by people who have
extensive management and training experience. At the end of the twenty-
six week period, those trainees who have successfully completed their
assignment (and not all of them do) are given a permanent assignment in
one of the regular programming groups.

Those new hires who do not go into the twenty-six week course, but who
have a shorter term - six or eight weeks, receive formal lectures and,
of course, some hands-on training. At the end of this formal training
period they go directly into a permanent assignment with one of the
programming groups.

-1-

/23

Once the trainee has received his first permanent assignment, and
from then on, he is under the direct technical supervision of an
experienced programmer. This experienced programmer will usually
be someone with at least two or more years of experience, and may be
the actual first line manager of the project.

From this point on, then, the pre-professional's progress depends upon
what he can demonstrate. On the average, after twelve to eighteen

months, the pre-professional is eligible for promotion to exempt status.

If he does not show that he is ready for promotion after two years, then
we feel he is not eligible to continue as a programmer. This means
either reassignment, or termination from the company.

For the non college graduate, we have several programming technician
positions which are designed to take care of two problems. The first
problem we are trying to solve is that of taking care of the non-
professional activities that go with every programming job. When I
say non-professional I am really speaking in the legal sense as implied
by the Fair Labor Standards Act; and I am not trying to raise the
question of whether programming really is a profession or not.
Remember that to be eligible for a professional exemption one must
have as his primary duty "work requiring knowledge of an advanced
type in a field of science or learning customarily acquired by a pro-
longed course of specialized intellectual instruction or study, and this
work must require the consistent exercise of discretion and judgment."
Alternatively, the work must be "original or creative in character in

a recognized field of artistic endeavor" and the result must depend
"primarily on the invention, imagination, or talent of the employee."
Clearly there is much routine activity that goes along with all
programming jobs but does not meet the definition just stated for
professional exemption. Some of these activities are for example,
setting up job decks for machine processing, key punching correction
cards, preparing in-put data for automated flowcharting, to some
extent generating data for program testing, assembling program
documentation and writing procedures for the computer operator to
use, and up-dating operating systems by use of specifically designed
utility programs, and so on. Using these activities as a basis, we
have defined our first technician level job to consist primarily of such
activities, We think that one Programming Operations Alde can
perform these duties for a group of about a half dozen full time
programmers,

-2~

The educational requirement for this position is a high school diploma.
This is a new poegition that has been in existence in IBM for less than
a year, and it is frankly experimental. We won't know for another
year or two just how well it will work out. If the candidate has college
credits but no college degree, after his initial training period he
becomes a Programming Technician. The job of the Programming
T'echnician includes some of the activities of the Programming
Operations Aide, but also includes coding of well defined sub -routines
from detailed flowcharts.

At the top of our technician path we have a Senior Programming
Technician. His duties are primarily to flowchart, code, and debug
complete computer programs from well defined specifications. These
programs are usually at the level of routine utility programs, and are
essentially always self-contained. The Senlor Programming Technician
is of course also responsible for the documentation of his program, and
more or less for the installation of the program in an operational
enviroment.

The second problem we hope to solve by use of the technician career
path is, of course, the problem of scarcity of qualified programmers.
We hope to attack this problem in two ways. First of all, if indeed we
do succeed in defining the non-professional activities that accompany
the program task and in delegating these to our technicians, then we
have relieved the professional programmer of some of his less produc-
tive activity; and he will devote his time to more creative tasks, such
as systems specification and design. The net result then is to let the
more creative programmer spend more of his time in creative activity,
thus increasing the total productivity of the entire programming group.

Secondly its clear that many of the non-professional activities I have
described don't require the attention of a college graduate. Thus, use
of the technician positions permits us to consider a group of prospects
that is much broader than we could consider without these positions.
Our first level technician requires only a high school or prep school
diploma. The top level technician requires two years of college or the
equivalent.

We think the technician career path is quite good-the first level
technician, the Programming Operations Aide, can either learn
programming, or can go into machine operations. The top level
technician, the programming specialist, is certainly sophisticated
enough to go into operations management of a reasonably large comput-
ing center. On the other hand, if indeed he truly demonstrates a keen
understanding of programming, and if his manager makes the business

-3-

/135

judgment that he can be successful in programming, then he to can :
be considered for promotion to the same exempt position to which @
we promote the pre-professional. This is not a loophole; it is up

to management to present evidence that the man truly has learned

enough about the job that he can be expected to perform in all ways

as well as the pre-professional who was promoted. Our statistics

show that some twenty or twenty-one percent of our professional

programmers do not have a college degree,

Our first key position, then, is that held by our first level exempt
programmer, Traditionally he is known as an Associate Programmer.
The position is key because the Associate Programmer must truly
demonstrate that his career lies in programming.

The next key position, and probably the most important one we have,

is a position at what we call the staff level (Figure 2). There are

really three jobs at this level - all equally important to the company,

and all comparably rewarded. It is at this level that our first true

manager appears. This Project Programmer is in all respects a

manager; he is responsible for hiring, training, supervising, salary

administration, promotion, and firing. We expect him to be tech-

nically qualified to direct a project, and to he fully involved

technically in the programming activities of the project. Ideally he

manages a group of six to ten programmers. If the group is small, o™
he can spend roughly seventy percent of his time in technical matters,
the remaining time being given over to administrative and personnel
activities, If the project is larger, then he will typically have in his
group a programmer at his own level who will act as a project leader.
This project leader is called a Staff Programmer and is the second

of the three jobs I mentioned. The project leader has all of the
technical responsibilities that the project manager has, but does not
have the administrative and personnel responsibilities,

Roughly half of our staff level programmers are managers, another
quarter perform the project leader duties, and the remaining staff
level programmers-the third job-act in the classical staff capacity -
that is, they perform as an extension of management. Generally
speaking they act as trouble shooters, as gatherers and analysisers
of data, as technical consultants, and to some extent can make
decisions when the authority has been delegated to them. They also
double in brass as project leaders when circumstances warrant-
usually for short periods of time.

/.

e - ¥ - - -
St - H — —————

W T T g

We are organized this way because we want our projects to be small,
and we think the person in the best position to perform the managerial
duties is really the leader of the project, After all, he is the man on
the spot who is in the best position to know the capabilities of the
people who work for him and, therefore, given adequate training, he is
in the best position to make the managerial decisions that relate to his
people.

The use of the Staff Programmer as a project leader is really a
compromise. Since IBM's programming activities are expanding
almost as rapidly as the programming field itself, it is always difficult
to find people who are well qualified to assume the combined technical
and administrative responsibilities of first line management as we
conceive it. Moreover, many of our technically qualified people are
just not interested in becoming managers. Thus there is always a
scarcity of first level managers and we are faced with the necessity
of using technical project leaders. The problem we have to guard
against is that if a project grows too large then its first level
manager may tend to shift the administrative and personnel respon-
sibilities onto the shoulders of the project leader. The project leader
then becomes a manager without portfolio and without accountability.

From the technical standpoint, the project manager or project leader
works from objectives., He is responsible for a complex project, and
he is responsible for specification, negotiation of interfaces, imple-
mentation, documentation, the whole works. In general, he is not
responsible for the total programming system or large application,
but for a complex but recognizable sub-section, Typical examples
would be a FORTRAN compiler, a set of mathematical subroutines,
ete. The total systems or applications responsibility rests with the
next level or even the one beyond that. I won't go into detail about
these next two levels except to say that we have both managerial and
non managerial positions at these higher levels as you can see from
Figure 2. We have dual promotional opportunities in the managerial
and technical activities.

A little arithmetic (Figure 3) will show that if we restrict the project
manager to a group of six and if we restrict the second and third level
managers each to having six managers report to him, then if we
include the managers in our counts we can take care of a group of
fourty-three people with only two levels of management and this grows

-5=

/127

to 259 people if we have one third level manager. Analogously, if

we allow each first level manager to manage ten people but still say
that a second or third level manager may only have six managers
reporting to him then the three levels of management include 403
people. In the first case if the ratio of people to first level managers
is six to one then the overall man-manager ratio comes out five to
one. If the first level ratio is ten to one, then the overall ratio
becomes slightly more than eight to one.

I have just one more comment on the responsibilities of the project
manager. Clearly if the programs to be written are not so complex
as to require six programmers or more on the particular project,
there is no reason why a project manager may not have the responsi-
bility for implementing a number of small programs. In this case he
still manages a small group in which one or more of his programmers
are responsible for a complete program,

We think the entire structure is quite flexible, and have found that it
works very well for us over a variety of technical activities.

As I promised earlier, I want to show you a breakdown of the
educational background of our programmers as of the end of 1966.
Figure 4 shows the educational level and Figure 5 the field of study of
our exempt programmers. Four percent of the records I consulted
did not give the educational level, and fifteen percent did not carry
the field of study. Otherwise, the figures should be self-explanatory.

Finally, I'd like to turn my attention now briefly to the question of
selection., I say briefly because I don't have too much to tell you. I
have talked about our educational requirements. Beyond this, all
inexperienced candidates are required to take the current version of
the PAT test. We are presently involved in a study which we hope
will help us better validate the PAT test and which we hope will also
give us a lead on other tests which might possibly be used in the
selection process. Presently our study has given us ample indication
that we don't understand all the ramifications of the PAT test., This
test was originally validated against performance in training programs.
It has never been satisfactorally validated to my knowledge in IBM
against actual programmer performance. We are attempting to do
this now, and will make the results available after the study is
completed.

-6-

128

We also have indications that there will be one or two other tests that
might be very useful in predicting whether or not a programmer will
be successiul. Unfortunately, at this point in time it is premature to
discuss our findings. Again, though, we will be happy to make our
information available when the study is complete.

Beyond this, I can only tell you that the judgments you must make
when you hire programmers are bound to be subjective, In my own
experience I have found that the interviewers who are right more
often than wrong in the subjective judgments are the interviewers
who are most people oriented. In lieu of any other more objective
indicators, I think you must select as interviewers those people on
your technical staff who appear to be most sensitive to the people
around them,

/27

TFTTY
, \
Pid \
< \
Pre-Professical Sr. Powg. Tech. SR W,
1 Computer
? ? . :_ Opns. t
(Trawiee) .PQ e Tech. ‘ /
7/
fh Ao~
College (Tramee) Pawe. Opus.hde
Degree /ﬂ\ ?
College (‘l"vamee)
Creats
Rigkschool
Diplows
Figure 1

/30

P

EXEMPT PRO&GRAMMING POSITIONS
Mg Now- mgv,
Sv. Pgwr, Sv. Powar.

Developwent Ryrad Advisovy

?gmr.

Project Pgmr. | Stadf Assist,

Staft Pawmv.

T

Sv. Asscc. Pamr.

T

Assoc. Pogwmv

Figure 2.

/3/

MANAGEMENT SPAN

3vd Level Mar.

6
Znd Level 2wd Level
& 6
., | T T]
> {st Lev-el tst Level '
- (67
(6 . 6
()) E— ——
:)
I$ Thew
N&zz-a:egc.—s é_ Noun-wgvs - Y
b5t Level mgrs { All Mgvs |
Nowswaors _ 10 Now-mgrs €
tst hevel wgrs | All Mers)
Figuve 3.

/32

259
(403)

M

N

PROGRAMMERS by EDUCATION LEVEL

Assocrate of Avis

College cvedit, no degree
Ne college credit

8h or BS
MA& ov MS
L)

Figure M.

/33

12

a3
5%
]

%

/34

PROGRAMMERS by FIELD of STUDY

ofo
Business 10,§
Educatioun 2
Engmeering IS
Fine and Apphied Avts 5
Libera! Arts 4
Math ql
Secrence 8
14

Figure 5,

/35

SESSION NUMBER Toe2.1e
SPEAKERS
DAN FULLAN (IBM) PRESENTED WM. GARRISON (IBM), MODERATED BY
D.R. MC ILVAIN
DISCUSSION
PRESENTATION ON PL/I BY IBM, INDICATING THE INTENT OF PL/I,
USAGE & EXPERIENCE TO DATE, AND FUTURE PLANS (INCLUDING ADDITIONAL
PUBLICATIONS FOR USER EDUCATION).
FUTURE PLANS FOR PL/I UNDER DOS INCLUDE
1. ADDITIONAL DOCUMENTATION
2. INCLUSION OF INITIAL ATTRIBUTE
3, SCIENTIFIC SUBROUTINES WILL BE AVAILABLE FOR OS PL/I AS
TYPE 3 SUPPORT.
4. EXPANSION OF DBJECT TIME DIAGNOSTICS
5. CONSIDERATION OF CREATION OF IS FILE UNDER DOS PL/I.
6. SIFTS FROM COBOL OR FORTRAN ARE BEING CONSIDERED.
7. PL/I OBJECT PROGRAMS WILL BE AVAILABLE FOR OBJECT TIME
EXECUTING IN FOREGROUND UNDER RELEASE OF DOS SCHEDULED P
FOR 4/68. A

THE PHILOSOPHY BEHIND PL/I HAS BEEN THAT SUPPORT OF EXTENSIONS
IN 3RD GENERATION EQUIPMENT & TECHNOLOGY WOULD BE MADE
PREFERENTIALLY INTO PL/I OVER FORTRAN OR COBOL.

/36

SESSION NUMBER T.2.3.

SPEAKERS
LAURA AUSTIN

DISCUSSION
VOLUNTEERS WERE SOLICITED FOR SERVICE ON THE THE NOMINATING
COMMITTEE, EXECUTIVE BODARD, AND PROJECTS. THERE WERE 10 PEOPLE IN
ATTENDANCE. NAMES WILL BE REFERRED TO THE APPROPRIATE PERSONS.

/37

SESSION NUMBER T.2.4.

SPEAKERS
BRIAN SWAIN OF SHAWINIGAN ENGINEERING SPOKE ON THE 1130 SINGLE DISK
SORT PROGRAM., W.Ce. BLACKNEY OF DOW SPOKE ON RUNNING A MEMORYSCOPE
‘THRU THE 1130y 1627 PLOTTER ATTACHMENT.

DISCUSSION
LARRY WHALEN CHAIRED THE MEETING. WE HAVE DECIDED TO ESTABLISH
A COMMITTEE TO INVESTIGATE FORTRAN AND MONITOR V2. THIS COMMITTEE
WILL BE FORMALLY ORGANIZED AT A LATER DATE.

O

O

PMERG - A FAST SORT-MERGE

SUBROUTINE FOR IBM 1150

by

B. J. SWAIN

THE SHAWINIGAN ENGINEERING COMPANY LIMITED

SEPTEMBER 1967

/37

CORRIGENDUM

The following errors have been cobserved in the version of

this program which was distributed at the Cincinnati COMMON,

1. APPENDIX 3 (Source Listings)
Subroutine IPTSK, statement 204 + 2
Remove the following statement:
IF(IR)290,207,299
and replace by
IF(IR)299,207,290
The previous version of\%his statement caused
alphabetic sorting to be performed in des-
cending order if KEY(1,I) is positive.
2. APPENDIX 1 -~ Users Guide
Page 10.
The equation for the calculation of the length
of IWPRK is incorrectly stated as
- 2%(N*IBL@K+ IREP)+10
replace this with the equation
2%(N*IBLIK+5 ,
No program error is associated with this
correction. ‘
These corrections have been incorporated in the following

text.

/%0

o,
e

TABLE OF CONTENTS

ABSTRACT

DISCLAIMER

TEXT

Purpose

Features Incorporated

Modular Structure

Sorting Algorithm

Extraction of Keys from Records
Record Blocking

Rejection of Unwanted Records
Self-adjusted Working Storage
Performance

Compatibility

Conclusions

Appendix 1 - USERS GUIDE

Calling the Sort-merge Subprogranm
Requirements for Calling Program
Use of Record Blocking

Errors

/41

Page

ii

N O NV FE W DD R

13
15
17

Table of Contents (cont'd)

Appendix 2

PROGRAM STRUCTURE

Core Storage Requirements

Appendix 3

SOURCE LISTINGS

142

Page
18

19

21

A~
.«

O

O

C

ABSTRACT

This subprogram sorts & disk file into ascending or descending'
order as determined by any number of control fields. It is self-
adJjusting to make use of avallable storage, and if the sequence
length requires, sorts the file by sections, which ﬁre subsequently
merged. The maximum length is determined by availeble disk space.
Maximum speed 1s achieved by reduction of manipulation of data on
the disk. The subprogram is coded in 1130 Fortran, and is compatible

with COMET and IDFAL.

/Y3

DISCLAIMER

Although each program has been tested by its contributor, no warranty,
express or implied, is made by the contributor or COMMON USERS Group,
as to the accuracy and functioning of the program and related program
materisl, nor shall the fact of distribution constitute any such
warranty, and no responsibility is assumed by the cbntributor or

COMMON USERS Group, in connection therewith.

PMERG - A FAST SORT-MERGEH
SUBROUTINE FOR IBM 1130.

Purpose

An IBM 1130 computer was installed at The Shawinigan Engineering
Company Limited offices in Montreal, Canada in January 1967.
Although this machine was primarily intended for the sclution

of engineering problems, it was planned to use it for a considerable
range of commercial applications. The principasl ones of these

were Payroll, Labour Distribution, end Cost Analysis. It was
recognized that a fast sort-merge program was required, principally
in order to produce sorted reports for these commercial applications.
A subprogram vwas therefore written in Fortran. In order to incor-
porate the subprogram into several program packages it was made
self-adjusting so that the amount of working storage could be
allocated to suit the available core. Flexibility as to the nuwber

and type of sort keys {control fields) was also required.

Features Incorporated.

The followving features, which will be discussed in more detail
belcw were incorporated in order to achieve the aims required
of the program

a) Modular Structure

b) A fast sorting Algorithm

¢) Extraction of sort keys from the records.

145

C

Features Incorporated (cont'd)

d) Record blocking
e) Rejection of unwanted records before sorting.

f) Self adjusting working storage.

Modular Structure.

The modular structure of the subprogram allows i1tto be incorporated
into program packages being written by different programmers.

The subprogram itself has an argument list which describes completely
the file to be sorted, the number, position and type of the sort
keys, the availeble working core storage and disk work files,

and the disposition of the outputs Two subprograms are called

by the principal subprogram to perform first the sort and then LA
merge operation. Since these are called only once they may be o

localled against each other, thus freeing additional core space

for working storage.

Sorting Algorithum.

The sorting algorithm used is Shells method, whiph is a successive
merging process of sequences which start at 2 or 3 entries in
length and are subsequently merged until e single file results.
Advantage is taken of any previous ordering of the file, by
recognizing in the merging process that when one sequence is
exhausted then examination of the other segquence is not required.
This algorithm has been found to be superior in speed to algorithms

incorporating sorting by exchange, and does not require excessive

coding.

/96

Extraction of Keys from Records.

In view of the large access time required for the 2315 disk,
it is vital that the amount of information removed and written
on the disk is reduced as far as possible. The program was
therefore written as a tag-sort. The output from the sub-
routine is & file of one word records, each entry in the file
being a pointer to the record to be processed in the main file
in sccordance with the required order. Also,the program was built
around the concept that the sort keys would be removed from the
record on the disk and only these moved in the subsequent
processing. The procedure of removing these sort keys from
thé record also increases the number of records which can be
sorted in one phase prior to the merging process. During the
sort phase the working storage contains records organized as
follows:

Pointer to record in main file

Sort keys

Pointer to indicate position in working storage of

high order key.
In the sorting process only the pointer to indicate the position
in working storage of the high order key is moved thus increasing
the speed of the sorting procedure. At the end of the sorting
phase disk records are written consisting of the following

Record number

Sort keys

197

Extraction of Keys from Records (cont'd)

These subsidiary records are stored on working files and
subsequently merged. In the last phase of the merging process
the record numbers only are written onto a disk file which

then forms the pointer file to the main file.

Record Blocking.

In order to speed the transfer of information from and to the
disk a system of record blocking is employed. Blocking sub-
routines have been written and incorporated into the sort-merge
program, to essemble records into blocks before writing them
on the disk or after retrieving them from the disk. The
nunber of records contained in one block can be adjusted by the

user.

Rejection of Unwanted Records.,

It is frequently found that for a particular report only a
portién of a file is required. Time can therefore be saved
if only those records which are required are sorted and the
remainder not processed. The user is permitted to employ
this technique by writing & subroutine to determine for each
record whether or not it is required in the sort. The name
of this subroutine is included in the argument list in the
sort-merge subprogram and in an externsl statement in the

mein program calling the sort-merge subroutine

148

-5-

Self-AdJusted Working Storeage.

The linited core availeble on the IBM 1130 demands that space
allocated to variable storage is somewhat restricted. At the
sane time, for a sorting progrem, it is obviously desirsble

that the maximum use be made of core storage in order to reduce
the processing time. In order to achieve a balance between
these two mutually exclusive reguirements, a festure was included
in the program whereby the amount of available working storage
was used as g parameter supplied by the user thus permitting the
program to calculate the maximum number of reccrds which would
be sorted in ome phase, the nuuber of phases which would be
merged et one cycle and hence the number of merge cycles which
would be required in order to complete the merging process.
During the sorting process the nuuber of records which can be
sorted in one phase is calculated by dividing the available
working storzge length by the length of the subsidiary record
contzining of the pointer to the records in the main file, the
sort keys and the pointer to Indicate the position in working
storage of the high order key. During the merging process
vorking storage contains buffers to hold the subsidiary records
from the working files of the disk. The number of these which
can be contained simulteneously is calculated by dividing the
working storage gy the length of one buffer. In the demonstration

program given in the appendix to this paper, the availsble

/199

Self-Adjusted Working Storage (cont'd)

working storage is 1,850 words. Each record sorted generates
10 words to be contained in working storage during the sorting
process. Thus 185 records are sorted simultaneously, and the
tofal file, from which 811 records have been extracted, is
sorted in 5 phases. The read buffers have a length of 325

words, which permits these 5 phases to be merged simultaneously.

Performance.

The following sorting times have been observed:

1) Sorting 10,000 10 word records having 3 integer
sort keys - 37 minutes.

2) Sorting 811 32 word records having 5 sort keys, Pal
integer, double word integer, real and aslphabetic,
occupying a total of 8 words - 2} minutes (This
is the demonstration program included in appendix 3
of this paper).

The program has been in regular use sorting reports for commercial
applications, the longest of these requires sorting 7,000 records
having 6 sort keys occupying 7 words. Sort time for this Job

is 20 minutes.

Compatibility.

The sort-merge subprogram is compatible with COMET (library !
progrem No. 3.0.002) for handling alphabetic arrays, and IDEAL !

(1ibrary program No. 3.0.004) for handling double word integers.

150

Compatibility (cont'd)

It can be made compatible with the IBM Commercial Subroutine
Package by making appropriste changes to the calls to sub-
programs for couparison of elphabetic arrays, by substituting
variable length integers for double-word integers, and by appro-
priately increasing the storage allocation for sort keys. Due
to the increased space required for data storage, when using the
Commercial Subroutine Package, in comparison with that required
for COMET and IDEAL, the performance of the sort-merge program

would be adversely effected.

Conclusions.

A sort-merge subroutine coded in Fortran has been presented.
It has been shown that with careful coding it is entirely
feasible to perform a disk sort on the IBM 1130 computer. It
is possible to sort files containing as many as 10,000 records
in a reasonable length of time. This covers the normal

requirements of a small computer installation.

Appendix 1 USERS GUIDE

Calling the Sort-merge Subprogram.

PMERG is & subprogram to sort a disk file into ascending or

descending order, using sort merge partitioning to reduce

the core working storage requirement. The maximum sequence

length is determined by the available disk storage only.

The argument list is as follows:

CALL PMERG (IFILE, N, J, L, K&YS, IKEY, IWFRK,

JFILE

KEYS

1

NW{RK, IBUF, IBI#K, IWRKl, IWRK2,

IFPT, IUSE, KPUNT)

Nurber of disk file containing information

to be sorted. (File should be written
completely on the disk before calling
PMERG).

Logical record length in IFILE.

Position in IFILE of first record to

be sorted.
Number of logical records to be sorted.

Previously defined array to determine
position and type of sort keys in file

record. In the calling program, the

/52

C

Calling the Sort-merge Subprogram (cont'd)

-9~

array must appear in DIMENSION statement,

with dimension (L,IKEY).

sort key, the value to be assigned to

the elements of KEYS sre as follows:

For the I'th

Sort key One word Double word Alphsbetic Real
type integer integer
KEYS(1,I) 1 2 3 L
<1 if descend [|-2 if descend -3 if descend | -k if descend
ing order ing order ing order ing order
KEYS(2,1) Position in record of high-order word of key.
KEYS(3,1) Not used Character posi |Not used
tion of left
most cheracter
relative to
KEYS(2,I)
KEYS(L4,I) Not used No. of cha- Not used
racters

/53

«]10~

Calling the Sort-merge Subprogram (cont'd)

IKEY

IWPRK

NWGRK

IBUF

=

L}

Number of sort keys.

Working storage array, used to hold
sort keys and as a transfer buffer
for disk records. Required length is

2*(N*IBLgK+5). IBLPK is defined below.

- IWPRK should sppear in a DIMENSION

statement in the calling program, and
should be as long as possible to reduce

number of merge cycles,

Length of IWPRK. Corresponds to dimensioned

size in calling program.

Read buffer for disk records. Required
size is N*IBLFK+5. N*IBLZK is physical
record size to appear in define file
statement for all disk files 1.e.
IFILE;iWRKI,IWRKE,IFET. IBUF should
eppear in a DIMENSION statement in the
calling subprogram.

Number of logical records blocked to
form one physical record on disk.
Number of disk file for first working
storage. Required number of physical
records is (KPUNT-1)/(N*IBLEK/IREP)+1.

KPUNT and IRZP are defined below.

-11-

Calling the Sort-merge Subprogram (cont'd)

IWRK2

IFPT

JUSE

L}

Number of disk file for second working
storage. Required number of records
same as IWRKl1.
Number of disk file to contain returned
valueg, Entries in IFPT are record numbers
corresponding to required order. Required
number of physical record is
(Kfuwr-1) /(N*IBLEK)+1. Logical record
length is 1.
The name of a function subprogram supplied
by the user, having the form

FUNCTION IUSE (IREC)
whose purpose is to determine if a
record is to be included in the sort.
JIREC is & single subscripted array
containing one record.
The function returns 1 if this record
is to be included, and 2 if this re-
cord is not to be included.
JUSE is & dummy name. The tfue name
assigned must be included in an EXTERNAL
statement in the calling program. Use
of the subprogram INTAK included in
Appendix 3 will cause all records to

be included.

/5%

«l2-

Calling of Sort-merge Subprogram (cont'd)

KfUNT = Output variasble. The number of records
found to be in this sort, when examined
by subprogram IUSE,

IREP is logical record length of record
containing sort keys and pcinter to
record to which keys belong.
Allow 1 word for pointer
1 word for each integer key
2 words for each double word
integer key
1 word for every 2 characters of
alphabetic key
2 words for each real standard
precision key
3 words for each real extended

precision key.

/56

-13-

Reguirements for Calling Program.

The calling program mist comply with the following requirements:

1)

2)

3)

k)

5)

6)
7)

It must use the *¢NE W¢RD INTEGERS option.

If double word integers are used,it must use standard
precision real variables.

It must contain an EXTERNAL statement defining the
name of the user-writer function subprogrem,referred
to as JUSE in the argument list of FMERG.

It must contain DIMENSION statements, sllocating
storage for IBUF and IWFRK.

It must contain DEFINE FILE statements for the

disk files. The physical record length for all

four files used by the sort-merge subprogram is the
same, being N*IBL¢K.

It must define the KEYS array.

It must define all other arguments in the CALI
statement, except K¢UNT, which is an output

varieble.

Use of Record Blocking.

The record blocking subroutines DZPEN, DCLES, DPUT and DGET are

used by this subprogram, and their use for all record handling

is recoumended.

The following definitions and standards are used for all record

blocking subroutines

INGICAL RECORD - the record stored in the buffer.

=1k-

Use of Record Blocking (cont'd)

| PHYSICAL RECORD - +the record stored in the file

PHYSICAL RECORD LENGTH as defined ip the DEFINE FILE

statement is either:

IOGICAL RECORD LENGTH #* Nuitber of Logical Records in Block

320

or

whichever is less.

All the following subroutines use the file buffer IBUF, which

contains control words to regulate the reading and writing of

records, and also is used for ssserdling the block of records

for transfer to and frem the disk. The following is the appearance

of the file buflfer
IBUF(1)
IBUF(2)
IBUF(3)
1BUF(k)

IBUF(5)

IBUF(6)
ete.,

n

File number
Logical record length
Number of logical records in block

File type.

i}

1 when block has only been

used for GET operations

(i.e. 1is identical to equivalent

records on disk)

= 2 when block has been used for
PUT operations.

Number of first logical record in the block

now resident in the file buffer. Set to zero

if no record has been transferred to the buffer.

Blocked records.

/158

O

O

-15-

Use of Record Blocking (cont'd)

IBUF rust appear in the calling program with dimension
LOGICAL RECORD LENGTH * Nuwber of RECORDS IN BLOCK + 5

This should be set as large as core space permits.

The subroutine asrguments lists are as follows:

CALL DPPEN (IBUF, N, J, L)
To open & file buffer. Sets initial values to the file control
words. No transfer of information to or from disk takes plsace.

IBUF = Name of file buffer

N = File number
J = Logical record length
L = Number of logical records in block.

CALL DGET (IBUF, K, IA)
To transfer logicel record K of the file to the arrsy IA. If
the required record is already resident in the buffer, it is
immediately transferred. If it is not, the bdlock of records in
the buffer is stored if necessary, and the correct block of
records obtained from disk. Transfer then takes place.

IJBUF = Name of file buffer

K

n

Required 1logical record

JA Array to contain record obtained.

Note that IA is integer. If real values are required, they can

be obtained by use of a sultable EQUIVALENCE statement, in which

/57

-16-

Use of Record Blocking (cont'd)

real variables are assigned to EVEN locations in the arrsy IA.

The real variables then occupy the designated lccation, and the

next lower location in the array e.g.

Note:

DIMENSTON IA(LO)

EQUIVALENCE (B,IA(16))

B occupies IA(16) and IA(15)

The use of an EQUIVALENCE statement in this way is not
strictly speaking permitted. However, it works satis-
factorily, providing nothing is done to force the
addresses of real variables onto uneven word numbers.

To prevent this, the following rules should be observed,

1) Equivalence only to even locations in the integer
errey, IA.
2) The integer array IA should be dinmensioned to

an even number of words.
3) If IA is in CCIMI4CN, then any previous varigbles
in COMION together occupy an even number of words.
e.g. COMMON IX, IY(2),12,IA(20%
EQUIVALEICE (1A(2),B) } is valid
COMMON IX, IA(20)

is not wvalid
EQUIVALENCE (TIA(2),B)

/€0

-17-

Use of Record Blocking (cont'd)

CALL DPUT (IBUF, K, IA)
To transfer the array IA to logical record K of the file.
Operation is similar to DGET. The contents of IA are trans-

ferred only as far as the file buffer, and not written on disk.

CALL DCI#S (IBUF)
To close the file. If & block or records requires transfer to

disk, the transfer is made.

CALL DUSE (IBUF, K, M, KEY, KL)
The subroutine is calied,by DGET end DPUT to perform the disk
reading end writing operations, and to generate a pointer to the required
record in the file buffer. It is not normélly called directly by

the user.

Errors:
One error message is included in the sort-merge subroutine
PAUSE 3333 indicates that the working storege allocated is too

sr2ll to permit at least two phases of the file to be merged.

/6]

-18-

Appendix 2 =~ PROGRAM STRUCTURE @:D

The follewing programs are included in the package:

o)
=
i=
23/
2
'

Principal subprogrem, calls SRTPH and MRGPd
to perform sorting end merging operatlions
respectively.

SRTPH - Extracts keys from records. Performs sorting
operation. Makes up a flle containing sort
keys and pointers to records included in the
sort.

MRGFH -~ Performs merging operation. Ouiputs the file
of pointers to records in the main file.

irisK - Function subprogram to compare two sets of
sort keys, in order to determine which record
should be processed first,

DJPEN - Initializes a disk buffer for blocking operations.

DGET - QGets disk records - transfers logical disk
records from disk buffer fo primary storage.

DPUT - ts disk records - transfers logical disk
records from primery storage to the disk buffer.

DCIGS - Terminates a disk writing operation.

DUSE - Called by DGET and DPUT to transfer blocks of
recbrds to and from the disk, as required.
MINY - Function subprogram to determine the minimum

two varisbles.

-19-

Program Structure (cont'd)

qQcgve) -
) COMET subprograms
QGRAB)
DISGN)
INT) IDEAL subprograms
x SD)
I
| In addition, the demonstration program requires the use of the
|
1 following subprograms.
LARGE - Subroutine to determine if & record is to be
ineluded in the sort.
MDIA - IDEAL subprogram
C A
;) COMET subprograms
| QSHUV)
Also included

INTAK -~ Subroutine to include all records in the sort.

Core Storage Requirements.

| Storage requirements are as follows:

‘ PMERG 82 words

SRTEH euy M

| MRGFH 662 "

| IPTSK 334 "

‘ DPPEN 56 "
DGET 68 "

/63

Core Storage Requirements

-20-

DPUT
DCLds
DUSE
MING
QCpMP
QGRAB
DISGN
INT

SD

TOTAL

This figure is reduced if SRTPH and MRGPH are localled.

(cont'd)

68 words

132
232
50
52
12
30
22
3L

"

"

2,478

/64

- e ——— -

Appendix 3 - Listings

// JOB
// FOR

SWAIN SORT=MERGE PROGRAMS

#ONE WORD INTEGERS
#LIST SOURCE PROGRAM

2 XaNaYaNAXAYAYaXaXaXaNaXaXaNaNalaXaNala¥a¥eXalaalaNaXalaNaaNataNaXaXaXaXaXaleNa¥aaNaNaNaNaNaYaNANA RN AN S

SUBROUTINE PMERGIIFILEsNSJsLoKEYSsIKEY S ITWORKINWORK s IBUFIBLOK

SIWRKLyIWRKZ 9 IFPTy IUSE s KOUNT)

SUBROUTINE TO SORT A DISK FILEs USING SORT=VERGE PARTITIONING)
TO REDUCE CORE WORKING STORAGE REQUIREMENTs SEQUENCE LENGTH
DETERMINED BY DISK WORKING STORAGE FILE LENGTH

CARDS MARKED EXT IN COLS 70=72 REFER TO EXTENDED PRECISION EXT
FLOATING POINT KEYSs THESE STATEMENTS SHOULD BE SUBSTITUTED EXT
FOR THE PRECEDING STANDARD PREZCISION STATEMENTSs IF EXTENDED EXT
PRECISION IS REQUIREDs NOTE THAT HIGH PRECISICN INTEGERS EXT

CANNOT BE USED WITH EXTENDED PRECISION,

[FILE=NUMBER OF DISK FILE CONTAINING INFORMATION TO BE SORTED

N =L OGICAL RECORD LEMGTH IN IFILE
J =POSITION IN IFILE OF FIRST RECCRD TO BE SORTED
L =NUMBER OF LOGICAL RECORDS TO BE SCORTED

KEYS =TABLE TO CONTAIN SORT KEYSs DIMENSIONED (4sIKEY) WHERE
IKEY IS NUMBER OF SORT KEYS. ENTRIES IN KEYSs FOR THE
I'TH SORT XEY ARE AS FOLLCWS
KEYS(1s1) FOR INTEGER
FOR DOUSLE WORD INTEGER
FOR ALPHABETIC
FOR REAL
ENTER KEYS(1sI) NEGATIVE IF SQRT IS REQUIRED IN DESCENDING
ORDER BY THIS KEY
KEYS(2sI) = POSITION IN LCGICAL RECORD OF HIGH=ORDER WCRD
OF SORT KEY
KEYS(341) = POSITION OF LEFTMOST CHARACTER WITH RESPECT
TO KEYS(2s1) = ALPHABETIC KEYS ONLY
KEYS(4s1) = NUMBER OF CHARACTERS=ALPHABETIC KEYS ONLY
IKEY =NUMBER OF SORT KEYS
IWORK=WORKING STORAGE ARRAYe USED TO HOLD SORT KEYS ANC AS A
READ BUFFER FOR MERGINGs REQUIRED LENGTH
IS 2#(N*#IBLOK+5)e IBLOK IS DEFINED BELOW
IWORK SHOULD BE AS LONG AS PCSSIBLE TO REDUCE NUMBER OF
MERGE CYCLES
NWORK=LENGTH OF IWORKe CCRRESPONDS TO DIMENSIONED SIZE IN
CALLING PROGRAW
IBUF =READ BUFFER FOR DISK RECORDSe REQUIRED SI1ZE 15 N#IBLOK+5
N#IBLOK IS PHYSICAL RECORD SIZE TO APPEAR IN DEFINE FILE
STATEMENT FOR ALL DISK FILES 14Es IFILESZIWRK1yIWRK2,IFPT
IBLOK=NO-DOF LOGICAL RECORDS BLOCKED TO FORM CONE PHYSICAL RECORD
ON DISK
IWRK1=NUMBER OF DISK FILE FOR FIRST WORKING STORAGE. REQUIRED
NUMBER OF PHYSICAL RECORDS IS (KOUNT=1)/(N*ISLOK/IREPI+1
KOUNT + [REFP ARE DEFINED BELOW
IWRKZ2=NUMBER OF DISK FILE FOR SECOND WORKING STORAGE. REQUIRED
NUMBER OF RECORDS SAME AS IWRK1
IFPT=NUMBER OF DISK FILE TO CONTAIN RETURNED VALUEe ENTRIES IN
IFPT ARE RECORD NUMBERS CCRRESPONDING TO REQUIRED ORDER
REQUIRED NUMRER OF PHYSICAL RECORDS IS (KOUNT=1)/(N*IBLOK)+1
LOGICAL RECORD LENGTH IS 1
IUSE =FUNCTION SUBPROGRAM SUDPLIED BY USER HAVING THE FORM
FUNCTION TUSE(IREC)
WHOSE PURPOSE 1§ 7C DETERMINE IF A RZICORD Is TO 3€
INCLUDED IN THE SORT
IREC IS SINGLE SUBSCRIPTED AR
ONE RECORD /

naw nn
£ W N

V]

oNs.

AY CONTAINING

i

P2

FUNCTION RETURNS 1 IF THIS RECORD IS TO BE INCLUDED

FUNCTION RETURNS 2 IF THIS RECORD IS NOT INCLUDED
IUSE IS A DUMMY NAMEs THE TRUE NAME ASSIGNED MUST BE INCLUDED IN
AN EXTERNAL STATEMENT IN THE CALLING PROGRAM

KOUNT=NOs OF RECORDS FOUND TO BE IN THIS SORT» WHEN EXAMINED

LOGICAL RECORD LENGTH OF RECORD CONTAINING SORT

KEYS AND POINTER TO RECORD TO WHICH KEYS BELONG

WORD FOR POINTER

WCRD FOR EACH INTEGER KEY

WORDS FOR EACH HIGH PRECISION INTEGER KEY
WORD FOR EVERY 2 CHARACTERS OF ALPHABETIC KEY
WORDS FOR EACH REAL STANDARD PRECISION KEY
WCORDS FOR EACH REAL EXTENDED PRECISICN KEY

DIMENSION KEYS(4910) s IWORK(100)»IBUF(320)

C
C
C
C

EXTERNAL IUSE
C
C
C IN SUBPROGRAM 1USE
C IREP I8
C
< ALLOW 1
C 1
< 2
C 1
C 2
C 3
C
C

CALL SRTPH(IFILESN

FOR INDEXING ONLYs TRUE SIZE IN CALLING PROGRAM
2 JoLaKEYSyIKEY »IWORKsNWORKs IBUFy IBLOK s IWRK]

SIREP s IBLKKs JUSEsKOUNT)
CALL MRGPHINSKEYS+IKEYs IWORKsNWORK s IBUF s IBLOKY IWRK1 9 IREP IBLKKY
SKOUNT ¢ IWRK29IFPT)

RETURN
END

FEATURES SUPPORTED
ONE WORD INTEGERS

CORE REQUIREMENTS FOR PMERG
COMMON 0 VARIABLES 2 PROGRAM 80

END OF COMPILATION

/1¢6

PAGE 02

C

-2%-

// FCR
*ONE WORD INTEGERS
*LIST SOURCE PROGRAM

a] NO NN

N 0O 0N 0N

SUBROUTINE SRTPH{IFILESN rJoLIKEYSoIKEY s IWORKs NWORK» IBUF # IBLCK »
SIWRKIWIREPIBLKK IUSE yKOUNT)

PERFORM SORT PHASE OF SORT-MERGEs OUTPUT IS FILE OF SORT KEYS AND

POINTERS TO RECORDSe FCR ARGUMENT DEFINITIONs SEE CALLING PROGRAM
DIMENSION KEYS(4910)sIWORK(500),1BUF(325)

FOR INDEXING ONLYe TRUE SIZE IN CALLING PROGRAM

INITIALISE

JLAST IS POSITION IN IFILE OF LAST RECORD TO BE SORTED
JLAST=J+L=1

JF IS POINTER TO RECORDS IN IFILE
JE=J
KOUNT=0

JUMP IS INTERVAL BETWEEN SUCCESSIVE ENTRIES IN IWORK
JUMP=0

INITIALISE THIS PHASE

NNOW IS LENGTH OF SEQUENCE IN THIS PHASE

150 NNOW=0

JG 1S POINTER TO LAST POSITION IN IWORK ACTUALLY IN USE
JG=0

LoC I3 ;OCATION OF HIGH=ORDER SORT KEY FOR NEXT RECORD
LoC=
CALL DOPEN(IBUFs»IFILE sNsIBLOK)

RETURN HERE FOR NEwW RECORD

181 [F(JF=JLAST) 15221524153
152 IF(JG+JUMP=NWORK) 154915491513
ANOTHER RECORD IS REQUIRED
154 CALL DUSE(IBUFsJF 903l sXKL)
IF({IUSE (IBUFI(KL+1))=1) 15591554158
THIS RECORD TO BE INCLUDED IN SORT
ENTER RECORD NO IN WORKING STORAGE
155 JG=JG+1
IWORK{JG) =JF
ENTER KEYS IN WORKING STORAGE
DO 103 IK=1ls»IKEY
KEYTP=KEYS({1yIK)
IF(KEYTP) 513295143514
513 KEYTP==KEYTP
514 JB=KL+KEYS(2s1IK)
GO TO(104s1059106+105) +KEYTP
KEY 1S INTEGER
104 JG=JG+l
IWORK(JG)=1RBUF(JB)
GO TO 103
KEY IS HIGH PRECISION INTEGER OR REAL
105 DO 111 1=1y2

105 DO 111 1=1,3 EXT
JG=JG+1
IWORKI(JG) =1BUF (JB=1)
IWORKI(JG)=IBUF(JB=2) EXT
111 JUB=JB+1
GO TO 103

KEY 1S ALPHABETIC

106 KK=KEYS{4,IK)
CALL QPASS(IBUF(JB)IKEYSI39IK) » IWORKIJG+1) 91 9KK)
JG=JG+(KK+1)/2 /67

~2h-

103 CONTINUE
C FIRST RECORD IN SORT»s SET IREP AND JUMP
IF(JUMP) 158,158+157 '
158 IREP=2JG
JUMP=IREP+1
IBLKK=N*#IBLOK/IREP
C WRITE LOCATION OF HIGH=ORDER SORT KEY AND
C INCREMENT SORTING SEQUENCE COUNTERS
157 JG=JG+1
IWORK(JG) =LOC
LOC=LOC+JUMP
NNOW=NNOW+1
C INCREMENT RECORD COUNTER
156 JFaJF+l
GO TO 151
C SEQUENCE COMPLETE» SORT BY SHELL'S METHODe ONLY ENTRIES SHOWING
C LOCATION OF KEYS(LOC) ARE MOVED
153 CALL DCLOS(IBUF)
M=NNOW
96 IF(M=1) 208208498
98 M=(M+2)/3
MJ=M* JUMP
M1lJ=MJ+JUMP
DO 99 [J=M1J,JGsJUMP
IMJ=1J=-MJ
11J=1J+JUMP
DO 97 LLJI=JUMPy IMJIyMJ
JP1J=11J=LLJ
JPJ=IPlI=MJ
LOC=IWORK(JPJY)
LOC1=IWORK(JP1J)
IF(IPTSK(KEYSYIKEY s IWORKILOCILOCL)=1) 99499+299
C ELEMENTS ARE OUT OF ORDER
299 IWORK(JPJ)=LOCL
97 IWORK(JP1J)=LOC
99 CONTINUE
GO TO 96
C SORT COMPLETE WRITE KEYS ON WORK FILE
208 CALL DOPEN(IBUFsIWRKL»IREPsIBLKK)
JPJ=0
IF (NNOW)301+301+302
302 DO 510 IPHAS=1sNNOW
JPI=JPI+JUMP
KOUNT=KOUNT+1
LOC=IWORK(JPJ)
510 CALL DPUT(IBUF»KOUNT s IWORK(LOC~1))
301 CALL DCLOS(IBUF)
IF FILE INCOMPLETEs GO BACK TO SORT ANOTHER PHASE
IF(JF=JLAST) 15091504159
159 RETURN
END

(@]

TEATURES SUPPORTED
ONE WORD INTEGERS

CORE REQUIREMENTS FOR SRTPH
COMMON 0 VARIABLES 28 PROGRAM 616

/€82

IND OF COMPILATION

PAGE 02

C

&

t

-25-

// FOR
#ONE WORD INTEGERS
#LIST SOURCE PROGRAM

aNaNaYaXaXaNalaNaNaXa N e | (a¥a¥a!

(g}

N 0

SUBROUTINE MRGPH(NIKEYSs IKEYs INCRKsNWORKs IBUF » IBLOKs IWRK1 s IREP)Y
SIBLKKIKOUNT 2 IWRK29IFPT)

PERFORMS MERGE PHASEs INPUT IS FILE OF POINTERS AND SORT KEYS IN
IWRKle OUTPUT IS FILE OF POINTERS IN IFPT

DIMENSION KEYS(4s10)yIWORK(100),yIBUF(320)

FOR INDEXING ONLYe TRUE SIZE GIVEN IN CALLING PROGRAM

DIMENSION NREAD(10)sNTRAN(10)»IREC(10)sNRECL(10)sISW(10)
TABLE OF CONSTANTS FOR MERGE PHASES*ENTRIES CORRESPOND TO
PHASES BEING MERGED '
NREAD =POINTERS TO START OF READ BUFFERS IN IWORK
NTRAN =POINTERS TO START COF TRANSFER BUFFERS IN IWORK
IREC =POINTERS TO LOGICAL RECCRD NOW BEING PROCESSED
NRECL =NUMBERS OF LAST RECORD IN PHASES NOw BEING PROCESSED
IsSW =PROCESSING SWITCH FOR PHASES
=1 WHEN FURTHER RECORDS EXIST TO BE PROCESSED
=2 WHEN PHASE 1S EXHAUSTED

CALCULATE CONSTANTS REQUIRED FOR MERGING
NPHAS 1S NUMBER OF LOGICAL RECORDS TC BE SORTED IN ONE PHASE

301

IF(KOUNT)622,6224301
NPHAS=NWORK/(IREP+1)

NPH IS REQUIRED NUMBER OF SORT PHASES

NPH=(KOUNT=1) /NPHAS+1
NBUF=IREP*IBLKK+5

NBUF 1S LENGTH OF READ BUFFERS IN WORKING STORAGE

NWAYS=MINOC (NWORK/NBUFs10)

NWAYS IS NO OF WAYS SORT PHASES ARE MERGED

512

NRR=1

DO 512 ITEST=1,NWAYS
NREAD(ITEST)=NRR
NRR=NRR+NBUF

TEST LENGTH OF WORKING STORAGE

[F(NWAYS=1) 50595054506

WORKING STORAGE TCO SMALL

505

PAUSE 3333
CALL EXIT

INITIALISE FOR FIRST MERGE CYCLE

IFLIP IS SWITCH TO DETERMINE WHICH WORK FILE IS TO BE READ
506 IFLIP=1

RETURN HERE FOR NEW MERGE CYCLEes NOWPH 1S PHASE BEING PROCESSED

601

603

604
625

609

NOWPH=0

JNOW=1

GO TO(603,604)sIFLIP
IGET =IWRK1

[PUT =IWRK2

GO TO 625

[GET = IWRK2

IPUT= IWRK1

DO 609 ITEST=1sNWAYS
II=NREAD(ITEST)

CALL DOPEN(IWORK(II)sIGETs»IREPSIBLKK)

TEST FOR LAST MERGE CYCLEes IF SO
OUTPUT FILE OF POINTERS TO IFILE

621
620

IF (NPH=NWAYS) 6206204621

CALL DOPEN(IBUFsIPUTsIREP»IBLKK)

GO TO 605

CALL DOPEN{IBUFsIFPTslsN*1BLCK) /€97

-26—

(2}

(]

PAGE 02

RETURN HERE FOR NEW MERGE PHASEe SET CONSTANTS
605 IHIGH=0
IHIGH IS NOe OF WAYS THIS PHASE IS TO BE MERGED
606 IHIGH=IHIGH+1
IBASE=NOWPH%NPHAS
I=1BASE+1
IREC(IHIGH) =1.
ISW(IHIGH) =1
I1=NREAD(IHIGH)
CALL DUSE(IWORKI(II)slslslsKL)
NTRAN(IHIGH)=KL+11
ADVANCE TO NEXT PHASEs AND TEST FOR END OF CYCLE OR FILE
NOWPH=NOWPH+1
IF (KOUNT=IBASE=NPHAS) 63396334634
NOT END OF FILE
634 NRECL(IHIGH)=IBASE+NPHAS
IF(IHIGH=NWAYS) 60696354635
END OF FILE
633 NRECL (IHIGH)=KOUNT
635 CONTINUE
RETURN HERE FOR NEW MERGE GROUP
629 ITAKE=0
DO 618 ITEST=1sIHIGH
COMPARE KEYSs IF EITHER PHASE IS EXHAUSTEDs THEN OTHER RECORD IS
USEDe ITAKE IS BUFFER NOs IN WHICH RECORD TO BE PROCESSED IS5 FOUND
IF(ITAKE) 62396139623
623 IF(ISW(ITEST)=2) 61556189615
613 IF(ISW(ITEST)~2) 61646189616
616 ITAKE=ITEST
GO TO 618
615 IF(IPTSK(KEYSsIKEY s IWORKsNTRAN(ITAKE) sNTRAN(ITEST))=21618+6161616
618 CONTINUE
IF(ITAKE) 61746174626
TRANSFER RECORD TO FORM NEW FILE
626 1J=NTRAN(ITAKE)=1
CALL CPUT(IBUF»JNOWs IWORK(IJ))
JNOW=JUNOW+1
GET NEW RECORD
I=IREC(ITAKE}+1
IREC({ITAKE) =1
IF(I=-NRECL(ITAKE)) 6301630631
630 II1=NREAD(ITAKE)
CALL DUSE(IWORK(II)sIsloalskL)
NTRAN(ITAKE)=KL+NREAD(ITAKE)
GO TO 629
PHASE I35 EXHAUSTED
631 ISW(ITAKE)=2
GO TO 629
THIS PHASE COMPLETEe TEST IF LAST PHASE
617 IF{NOWPH=NPH) 60516244624
THIS MERGE CYCLE COMPLETEs SET CONSTANTS FOR NEXT CYCLE
624 NPHAS=NPHAS#NWAYS
NPH={NPH+NWAYS~1) /NWAYS
IFLIP=2/1FLIP
CALL DCLOS(IBUF)
TEST FOR LAST CYCLE
IF(NPH=1) 622562215601

/70

@

-27-

622 RETURN
END

FEATURES SUPPORTED
ONE WORD INTEGERS

CORE REQUIREMENTS FOR MRGPH
COMMON 0 VARIABLES 72

END OF COMPILATION

PROGRAM

590

/71

PAGE 03

.23-

// FOR |
%ONE WORD INTEGERS
*LIST SOURCE PROGRAM

FUNCTION IPTSK(KEYSyIKEYsIGHSTsKG1yKG2)

KEYS=ARRAY CONTAINING
IKEY= NO OF KEYS

KGl =POINTER TO MAJOR
KG2 =POINTER TO MAJOR

2 IF SECOND
IF KEYS ARE IDENTICAL,
DETERMINE OUTPUT
DIMENSION KEYS (4410))
DIMENSION IP(2)sIQ(2)
C DIMENSION IP{4)sIQ(4)
EQUIVALENCE (PsIP(2))y

aYaNaXaXaNeaXaXaks

C EQUIVALENCE(PIP{3)) (G

JG=KG1
JG1=KG2
DO 201 IK=1lsIKEY
KEYIK=KEYS(1s1IK)
KEYTP=XEYIXK
IFIKEYIK) 215352169216
215 KEYTP==KEYTP
216 GO TO(202+20392044+2073)

OUTPUT IS 1 IF FIRST RE

DEFINITION OF SORT KEYS

IGHST=ARRAY CONTAINING STRING OF SORT KEYS

SORT KEYsFIRST RECORD

SORT KEYsSECOND RECORD

CORD 1S5 TO BE SELECTED

RECORD IS TO BE SELECTED

THEN ORIGINAL POSITION IS TESTED TO

IGHST(500)

(QslQ(2))
11Q(3))

s KEYTP

C COMPARE INTZGZIR KEYS

202 IGJUG=IGHSTI(JG)
[GUG1=IGHST (JUGL)
IF(IGUG) 21042119211

210 IF(IGJUGL) 21292904290

211 IF(IGJUGL) 29952124212

212 IF(IGUG=IGU51) 2904205

205 JG=JG+1
JG1=JGl+1
GO TC 221

9259

C COMPARE HIGH 2RECISION KEYS

203 DO 209ix=1,2
C 202 DO 209 1X=1,2
IP(IX)=1GHST (JG)
IQ{IX)=1GHST(JGL)
JG=JG+1
209 JCGl=JGl+1
[FICEYTP= 2) 214921492
214 CALL SD(RsP,yQ)
IF(LINT(R)) 29042014299
213 IF(P=3) 290120119299
C COMPARE ALPHARETIC
204 KL=XEYS({L,IK)
CALL QCOMPIICGHST(JG),1]
IF(IR) 29942074290
207 JGINC=(KL+1)/2
JGC=UC+JGINC
Cl JG1+JGINC

2 o \;I\:v..
C <€‘S ARE IDINTICAL
IF(KGEL=XZ2) 29192519252
P [FIKEYIK) 29252914261
291 [eTSK=1
RETUIN

13

KEYS

y ICHSTIJGL) 919Kl IR)

7
<

/74

EXT

EXT

EXT

&

299 IF(KEYIK) 2914929219292
292 IPTSK=2

RETURN

END

FEATURES SUPPORTED
ONE WORD INTEGERS

CORE REQUIREMENTS FOR IPTSK
COMMON 0 VARTABLES 22 PROGRAM

END OF COMPILATION

312

/73

-30-

// FOR
*#ONE WORD INTEGERS
#LIST SOURCE PROGRAM
SUBROUTINE DOPEN(IBUFsNsJyL) ‘:&

< THIS SUBROUTINE OPENS A FILE BUFFERsSETTING INITIAL VALUES TO
C THE FILE CONTROL WCRDS.
C
DIMENSION IBUF(325)
< IBUF = NAME OF FILE BUFFER
C N = FILE NUMBER
C J = CORE RECORD LENGTH
C L = NUMBER OF RECORDS IN BLOCK
C
IBUF(l) = N
IBUF(2) = J
IBUF(3) = L
C
C IBUF(&4) = FILE TYPE
C =1 WHEN BLOCK HAS ONLY BEEN USED FOR TRANSFERRING A
C RECORD FROM IBUF TO AN ARRAY(FOR GET OPERATIONS)
C =2 WHEN BLOCK HAS BEEN USED TO TRANSFER A RECORD FROM
C AN ARRAY TO IBUF(FOR PUT OPERATIONS)
C SET = 1 INITIALLY
C
IBUF(4) = 1
C IBUF(5) = NUMBER OF FIRST RECORD IN BLOCK
C
C SET = 0 INITIALLY
C
- IBUF(5) = O
RETURN
END W:D

FEATURES SUPPORTED
ONE WORD INTEGERS

CORE REQUIREMENTS FOR DOPEN
COMMON 0 VARIABLES 6 PRCGRAM 50

END OF COMPILATION

174 C

THE ¢

// FOR

%ONE WORD INTEGERS

*LIST SOURCE PROGRAM
‘Ey SUBROUTINE DGET (IBUFsKsIA)

THIS SUBROUTINE TRANSFERS RECGRD K OF A FILE TO ARRAY I[Ae

IF THE REQUIRED RECORD IS ALREADY RESIDENT IN THE BUFFERs IT IS
IMMEDIATELY TRANSFERRED
IF IT 1S NOT IN THE BUFFER, THE BLOCK OF RECORDS IN THE BUFFER
1S STORED IF NECESSARYs AND THE CORRECT BLOCK OF RECORDS
OBTAINED FROM THE DISKs AFTER WHICH TRANSFER OF THE RECORD TAKES PLACE

DIMENSION IBUF(325)»1A(100)

IBUF = NAME OF FILE BUFFER
K = RECORD TO CONTAIN ARRAY IA
IA = REQUIRED ARRAY

CALL DUSE(IBUFesKslelyKL)
HERE TO TRANSFER RECORD FROM IBUF
J= IBUF(2)
DO 5 JJ = 14J
TA(JJ) = IBUF(KL)
5 KL = KL + 1
RETURN
END

N [aXaNaNA NnaOaNnNNONnNn

FEATURES SUPPORTED
ONE WORD INTEGERS

CORE REQUIREMENTS FOR DGET
COMMON 0 VARIABLES 6 PROGRAM 62

0’ END OF COMPILATION

C /75

THE

// FOR
*ONE WORD INTEGERS
*#LIST SOURCE PROGRAM

SUBROUTINE DPUTI(IBUF4KyIA)
THIS SUBROUTINE TRANSFERS AN ARRAY 1A TO RECORD K OF A FILEs
IF THE REQUIRED BLOCK 1S ALREADY RESIDENT IN THE BUFFER» THE ARRAY
Is IMMEDIATELY TRANSFERRED
IF IT IS NOT IN THE BUFFER» THE BLOCK IN THE BUFFER 1S STORED
IF NECESSARYs AND THE REQUIRED BLOCK OBTAINED FROM THE DISK»
AFTER WHICH TRANSFER OF THE ARRAY TAKES PLACE.
THE CONTENTS OF [A ARE NOT WRITTEN ON THE DISKe

DIMENSION IBUF(325)51A(100)

IBUF = NAME OF FILE BUFFER
K = RECORD TO CONTAIN ARRAY IA
1A = REQUIRED ARRAY

CALL DUSE(IBUFsKsls2sKL)
HMERE TO TRANSFER RECORD FROM IA

J= IBUF({2)

DO 5 JJ = 14J

[BUF(KL) = IA(JJ)

5 KL = KL + 1
RETURN
END

a] NOOO OO NONON

FEATURES SUPPORTED
ONE WORD INTEGERS

CORE REQUIREMENTS FOR DPUT
COMMON 0 VARIABLES 6 PROGRAM 62

END OF COMPILATION

176

// FOR

*ONE WORD INTEGERS

#LIST SOURCE PROGRAM
SUBROUTINE DCLOS(IBUF)

THIS SUBROUTINE CLOSES THE FILE

IF A BLOCK OF RECORDS REQUIRES TRANSFER TO THE DISKs THE TRANSFER
IS MADE

DIMENSION IBUF(325)

IBUF = NAME OF FILE BUFFER

NnNN NN

KK = IBUF(4)
GO TO (394) KK
3 RETURN
4 N = IBUF(1)
LL = (IBUF(2)#IBUF(3)) + 5

LL = NUMBER OF LAST WORD IN BLOCK

NN N

K1 = IBUF(5)
L = MINO(320s(LL~5))

L = FILE RECORD LENGTH
NREC = (LL + L = 6)/L

NREC = NO OF FILE RECORDS IN A BLOCK
K3 =((K1/1BUF{(3))#NREC) + 1

K3 = RECORD NUMBER OF THE FIRST FILE RECORD IN THE BLOCK
CONTAINING RECORD K

NNAON NN NN n

WRITE(N'K3)(IBUF(I)sl =6sLL)
RETURN
END

FEATURES SUPPORTED
ONE WORD INTEGERS

CORE REQUIREMENTS FOR DCLOS
COMMON - 0 VARIABLES 16 PROGRAM 116

END OF COMPILATION

177

THE

=2

/7/ FOR
#*ONE WORD INTEGERS
*LIST SOURCE PROGRAM

2 ¥a¥aRataNaXaXaNaNaXaNaNaRaNalaXaaaaNaNaNaNe!

NN

NANNOONN NN

NN N

SUBRCUTINE DUSE(IBUF’K;M’KEY,KL)

DIMENSION IBUF(325)
THIS SUBROUTINE GENERATES A POINTER TO ONE WORD OF A DISK
RECORDsy SO THAT WORD CAN BE REFERENCED IN A SUBSEQUENT
OPERATION
IF THE BLOCK CONTAINING THE REQUIRED RECORD IS ALREADY IN
THE BUFFERs THE POINTER IS GENERATED IMMEDIATELY
IF IT IS NOT IN THE BUFFERs THE BLOCK IN THE BUFFER IS
STORED IF NECESSARYs AND THE REQUIRED BLOCK OBTAINED
FROM THE DISKs AFTER WHICH GENERATION OF THE POINTER TAKES

PLACE ,
IBUF =NAME OF FILE BUFFER
K =RECORD REQUIRED

M =wWORD REQUIRED

KEY =SWITCH TO INDICATE IF SUBSEQUENT USE OF POINTER WILL

CAUSE RECORD TO BE CHANGED. IF SOy KEY=2. IF NOTs KEY=1

KL =POINTER TO WORD REQUIRED
FIRST 5 WORDS OF IBUF ARE CONTROL WORDS
IBUF(1)= FILE NUMBER (N)
IBUF(2)= LOGICAL RECCRD LENGTH (J)
IBUF(3)= NOe OF LOGICAL RECORDS IN A BLOCK (L)
IBUF(&)= FILE TYPE DEFINITION =1 INITIALLY

=2 WHEN BUFFER HAS BEEN MODIFIED
BY PUT OPERATIONSs AND HENCE 1S DIFFERENT FROM DISK

IBUF(5)= NO« OF FIRST RECORD IN BLOCK =0 IF BUFFER HAS NOT
BEEN FILLED
L=1BUF(3)
Kli= ((K=1)/iL)#L+]1

K1 =RECORD NOs OF FIRST LOGICAL RECORD IN THE BLOCK CONTAIN=-

ING RECORD K
J=1BUF(2)
K2=IBUF(5)
IF(K1=K2) 13291
1 N=IBUF(1)

L2=J¥%L

L2 =NOe OF WORDS IN BLOCK
LL1=MINO(220,L2)

Ll =PHYSICAL RECORD LENGTH
NREC=(L2+L1=1)/L1

NREC=NO OF LOGICAL RECORDS IN PHYSICAL RECORD

~SAME AS BLOCKING FACTOR IF PHYSICAL RECORD LENGTH.LE.BZO

LL=L2+5
KK=IBUF (4)
INSERT THE FOLLOWING STATEMENTS IF A TRACE ON SW 15 IS REQUIRED
THESE CAUSE THE VALUES OF ALL PARAMETERS TO BE PRINTED WHENEVER
A PHYSICAL RECORD IS TRANSFERRED TO OR FROM DISK
CALL DATSUYWI(15yJJJ)
IF(JJU=1) 998,957,998
007 WRITE(3+998)(IBUF(ITII)sIII=145)9KyMsKEY
999 FORMAT (' ',10I5)
G358 CONTINUE
GO TO(3s4) KK

HERE TO STORE BLOCK ON DISK

4 K3= {(K2/L)}*NREC+1
K3 =RECORD NO, OF THE FIRST LOGICAL RECORD IN THE BLOCK

/78

O

AN

W/

-35-

c CONTAINING RECORD K
WRITE(N'K3) (IBUF(1)y1=65LL)
C
C HERE TO READ NEW DISK BLOCK
3 K3= (K1/L)*NREC+1
READ (N'TK3) (IBUF(1)1=64LL)
IBUF (5)=X1
C REQUIRED DISK BLOCK IS IN BUFFER
2 KL =(K=K1)%J+M+5
IF(KEY=1) 64655
C HERE FOR PUT OPERATIONS
5 IBUF(4)=2
6 RETURN
END

FEATURES SUPPORTED
ONE WORD INTEGERS

CORE REQUIREMENTS FOR DUSE
COMMON C VARIABLES 16 PROGRAM 216

END OF COMPILATION

179

PAGE 0

-36-

// FOR

#ONE WORD INTEGERS
*#LIST SCURCE PROGRAM

NOON

210
211
212
290

299

FUNCTION MINO(IsJ)

FUNCTION SUBPROGRAM TO CHOOSE THE SMALLEST VALUE

OF TwO INTEGERS.

IF{I)1210,211,211
IF(J)212+290,290
IF(J12994212,212
IF(I=U129049290,299
MINO = 1

RETURN

MINO = J

RETURN

END

FEATURES SUPPORTED

CNE WORD INTEGERS

CORE REQUIREMENTS FOR MINO

COMMON 0 VARIABLES 2 PROGRAM

END OF COMPILATION

48

/80

THE

O

-37-

/7 JOB

*LIST SOURCE PROGRAM

0000
0000
0001
0002
0003
0005
0006
0007
0008
0009
0008
000C
600D
000F
00lo0
0011
0012
0014
0015
601ls
0017
0019
001lA
001c¢
00lD
001F
0021
0022
0024
0026
0027
0029
002A
002C
002€
002F
0031
0032
0033
0018
0034

o o (@] o

[eNeNoNoNoNoRoNeooNe Yo NoNoNoNoNoNolleNoNeo)
o

18006517
0001
6A28
2828
£6800000
C205
Do24
cz00
1001
96800001
800cC
D024
C6800004
Do22
c202
1001
96800003
8003
7206
6A19
D4000002
Co17
18109042
D016
C4000002
18109042
9011
4C20002A
T4FF0031
T2FF
T4FF0032
T0EF
D400002C
6600002E
2000
4C000031
0032
0033
0034

%*
*

QCOMP

INST
l.ooP

STOR1
SAVE
SAVES
RETRN
SCRAD
CHCONT
ATEMP
TWO

SWAIN SORT-MERGE LISTING
// * COMET AND IDEAL SUBROUTINES USED BY SORT=MERGE PROGRAM
// ASM

THIS 1s QCOMP

ENT
BSS
STX
STS
LDX
LD
sTO
LD
SLA
S

A
STO
LD
STO
LD
SLA
S

A
MD X
STX
STO
LD
CALL
STo
LD
CALL
S
8scC
MDX
MDX
MDX
MDX
STO
LDX
LDS
BSC
DC
pC
bC
EQU
END

I2
X2

X2
12

12
X2
12
X2

NO ERRORS IN ABOVE ASSEMBLYs

QCOMP
1
SAVESL
SAVES
QCOMP
5
STOR16&1
0

1

1

TWO
SCRAD
4
CHCNT
2

1

3

TWO

6
RETRN&1
2
SCRAD
QGRAB
ATEMP
/70002
QGRASB

ATEMP

STOR1»Z
SCRADs=~1
-1
CHCNT 9 =1
Loop

NSTEL

SAVE XR2
SAVE STATUS
LOAD XR2 WITH CALLSGE1

LOAD ACC WITH RET PARA ADD
INST

STORE IN STORE PARA
LCAD SC AREA ADD TO ACC
SHIFT LEFT ONE BIT
SUB COLUMN NOe SCo
ADD TWO

STORE INTO SCRAD
LOAD CHARACTER COUNT
STORE INTO CHCNT

LOAD SECOND AREA ADDRESS
SHIFT LEFT ONE BIT

SUB COL NO FROM ACC

ADD TWO

ADD 5 TO XR2

STORE XR2 IN RET INSTR.
STORE ACC INTO XR2

LOAD SCRAD TO ACC

GET FIELD ONE CHARACTER
STORE CH INTO ATEMP

LOAD XR2 TO ACC

GET FIELD TWO CHAR
SUBTRACT ATEMP FROM ACC
BRANCH IF NOT ZERO
DECREMENT SCRAD
DECREMENT XR2

DECREMENT CHCNT

NOT ZEROs GO TO LOOP
STCORE IN RETURN VARIABLE
RESTORE XR2

RESTORE STATUS

RETURN

CHAR

/81

COMP0O10
COMP0020
COMP0030
COMPQ040
COMP0050
COMP0060
COMPOO0T0
COMP0080
COoMP0090
COMPQ100
COMPO110
COMP0120
COMP0130
COMPO140
COMPO150
COMPO160
COMPO170
COMP0180
COMP0190
COMP0200
COMP0210
COMP0220
COMP0230
COMP0240
COMP0250
COMP0260
COMPQ270
COMP0280
COMP0290
COMP0300
COMP0310
COMP0320
COMP0330
COMP0340
COMPO350
COMPO360
COMPO370
COMP0380
COMP0390
COMP0400
COMPO410
COMP0420
COMP0430

THE

-38-

// ASM

*LIST SOURCE PROGRAM

0000
0000
0001
0002
0003
0004
0006
0007
0008
0009
0008
000C

0OO000O0ODOO0OO

-

[y

181D9042
0001
1881
D002
1091
C4000006
4802
1808
EQO2
4C800000
O00FF

*
*

QGRAB

LOAD

MASK

THIS 1S OGRAB

ENT
BSS
SRT
STO
SLT
LD

BscC
SRA
AND
BSC
bC

END

x

x mx

NO ERRORS IN ABOVE ASSEMBLY,

QGRAB
1

1
LOADE1
17

*

C

8
MASK
QGRAB
/O00QFF

DIVIDE BY 2

STORE WORD ADD INTO LOAD
PUT REMAINDER INTO CARRY
LOAD WORK TO ACC

GO TO MASK INST IF CARRY O
RIGHT JUSTIFY CHARACTER
MASK EXTRA BITS

RETURN

/82

GRABO0O10
GRAB0OO20
GRABOO30
GRABOO040
GRABOCOS50
GRABOO060
GRABOO70
GRABOOS8O
GRABO090
GRABO10O
GRABO11l0
GRABO120
GRABO130
GRABO140

THE

C

G

-39~

// ASM

#L1ST
0000

0000
0001
0002
0004
0006
0008
000A
0008
000¢C
000D
000E
COOF
0010
0011
00l2
0014
0015
0016
0018
001A
0018
001C
00lE

o

0000000000000 00O0
[oNe}

042621D5

0001
6915
65800000
CD800000
4C€280011
4C08000C
€010
7006
1090
4820
70FB
cooc
7001
coos
05800001
7102
6902
65000000
4C000000
FFFF
0001
0000

ENT

DISGN

*CALL DISGN(DBL INT$ISIGN)

*WHERE ISIGN 15 RETURNED ~1+0s=1 DEPENDING UPON THE

*DBL INT BEING RESPECTIVLY NEGATIVE»ZEROSPCSITIVE

DISGN BSS
STX
LDX
LOD
BsC
BSC
POS LD
MDX
SLT
B8SC
MDX
LD
MDX
NEG LD
STORE STO
MDX
STX
INDX1 LDX
BACK BsC
NONE ©DC
PONE DC
ZERO DC
END

ZACC

I
I
L
L

Ll

—r

NO ERRORS IN ABOVE ASSEMBLYe

1
1 INDX16&1
1 DISGN
10
NEGs 26
ZACCy &
PONE
STORE
16
2
POS
ZERO
STORE
NONE
1
2
BACKEL
¥
-t
-1
+1
0

s b

RETURN CALL & 1 HERE

GET DOUBLE INTEGER
BRANCH IF NEG ACCUM
BRANCH If ZERO ACCUM
LOAD ISIGN WITH PLUS ONE

SHIFT EXT TO ACC
SKIP IF ZERO

LOAD BRANCH BACK INSTRUCT
RESTORE INDEX ONE
BRANCH BACK TO MAIN PROG

/43

IDEAL961
IDEAL962
IDEAL963
IDEAL964
IDEAL965
IDEAL966
IDEALY96T
IDEALS68
IDEAL969
IDEALSTO
IDEALS71
IDEAL972
IDEAL973
IDEALST4
IDEALST75
IDEALST76
IDEALSTY
IDEAL978
IDEAL9T9
IDEALS80
IDEALS81
IDEALS8Z
IDEALG83
IDEAL984
IDEALS85
IDEALS98S
IDEAL987
IDEALY8S
IDEALS8S

THE §

-40-

// FOR
#ONE=-WORD INTEGERS
#LIST ALL
FUNCTION INT(DBLIN)

C INT IS A FUNCTION WHICH TESTS THE SIGN OF A DBL INT WITH AN IF STATE

C =1 IF MINUSyO IF 0s=1 IF PCSITIVE IS RETURNED.

C FUNCTION - INT CALLS DISGN

IDEAL993
IDEALS94
IDEALS95
IDEAL996
ICEALS97
IDEALSGSS8
IDEAL99S

C SAMPLE IFCINT(DIONE) INEG STATEMENTZERO STATEMENTsPOS STATEMENT NUMBIDEALGOS

CALL DISGN(DBLINsISIGN}
INT=ISIGN

RETURN

END

VARTABLE ALLOCATIONS
INT =0000 1ISIGN=0002

CALLED SUBPROGRAMS
DISGN SUBIN

CORE REQUIREMENTS FOR INT
COMMON 0 VARIABLES 4 PROGRAM

END OF COMPILATION

18

/849

IDEALOCA
IDEALOGCB
IDEALOQOC
IDEALOQOD

|

=41 -

// ASM
*LIST

0000

0000
0001
0002
0003
0004
0006
0008
000A
coo0B
000cC
000E
000F
0010
0012
0013
0015
oo0l7
00l8
0019
001A
0018
Do1lcC
001D
00lE
001F
0020
0022

QOOCO0OOO0O0O0OQCOOO0OO0OO0O0O0
[N o) o

=z
(o]

22100000

0001
690F
280F
2000
65800000
Cbsooo0l
$D800002
4801
7009
D08000COO
7103
6904
6500C000
2000
4C000000
74000032
70FD
C006
3000
COES
9004
3000
10A0
T0ED
DEAF
01lC4

ENT
#CALL SD

sD BSS
STX
STS
LOS
LDX
LOD
sD
BSC
MDX
sSTD
MDX
STX
LDX
LDS
B8SC
MDX
MDX
Lo
WAIT
LD
S
WAIT
SLT
MDX
HDEAF DC
HO1C4 DC
END

ouT

INDX1
STATS
BACK

TCBIG

sD

SUBROUTINE NAME

(AsBsC) WHERE A=B=C

*DOUBLE INTEGERS HAVE STD PREC REAL VARIABLE NAMES
*IDEAL 1130 FORTRAN ERROR CODE IS /DEAF IN ACCUM,
*¥TO DISPLAY STATEMENT ALLOCATION ADDR IN ERRORs RIT
*START9ACCUM HAS FORTRAN STATEMENT ALLOCATION ADDRe
¥HIT START TO CONTINUESOUTPUT 1S SET TO ZEROs

ERRORS IN ABOVE ASSEMBLY,

1
1 INDX1&1
STATS
¢
1 sD
11
12
0
TOBIG
10
13
1 BACKS1
1 st
0
¥t
50,0
TOBIG
HDEAF

sO
HO1C4

32
ouT
/DEAF
/01C4

SUBROUTINE ENTRY POINT

INITIALIZE OVERFLOW
CALLEL ADDR IN INDEX ONE
LOAD B OF A B=C

SUBTRACT € OF A B~C

SKIP IF OVERFLOW IS OFF
GO TO IDEAL ERROR DISPLAY
MOVE TO A COF A=8~C

INTERRUPT SERVICE LOOCP
IDEAL FCRTRAN ERROR CODE
DISPLAY ERROR CODE IN ACC
LOAD ENTRY ADDRsSUB ORG+2»
AND DISPLAY STATEMENT
ALLOCATION ADDR IN ACCUMe
CLEAR TO OUTPUT ZERO VALUE

IDEAL FORTRAN ERROR CODE
DISKZ ORGIN +2

/85

IDEALT769
IDEALT70
IDEALTTL
IDEALTT2
IDEALT73
IDEALT74
IDEALT775
IDEALT7TS
IDEALTTT
IDEALT7TS
IDEALTT9
IDEAL780
IDEAL781
IDEALTB2
IDEALT83
IDEAL784
IDEALT85
IDEALT86
IDEALT87
IDEALT788
IDEALT789
IDEALT90
IDEALT791
IDEALT792
IDEALT93
IDEAL794
IDEALT9S
IDEAL79s8
IDEALT797
IDEALT98
IDEALT99
IDEALBOO
IDEALSBO1
IDEALSBO2
IDEALSBO3
IDEAL804

THE

// FOR
*ONE WORD INTEGERS
#LIST SOURCE PROGRAM

FUNCTION LARGE(IREC)
THIS 1S A SAMPLE SUBPROGRAM TO SATISFY THE CALL TO DUMMY FUNCTION
IUSE IN SUBROUTINE MRGPH :
THE PURPOSE OF THIS FUNCTION SUBPROGRAM 1S TO DETERMINE IF A
RECORD IS TO BE CONTAINED IN A SORTs ACCORDING TO RULES ESTABLISHED
BY THE USERe IN THIS EXAMPLEs A RECORD WILL BE OMITTED IF WORD 10
IS GREATER THAN 8

IREC 1S ARRAY CONTAINING RECORD
FUNCTION RETURNS 1 IF RECORD IS TO BE INCLUDEDs 2 IF OMITTED
DIMENSION IREC(32)
IF(IREC(10)=5) 19192
1 LARGE=1
RETURN
2 LARGE=2
RETURN
END

2 ¥aXaNaXaXaXaXaXa)

FEATURES SUPPORTED
ONE WORD INTEGERS

CORE REQUIREMENTS FOR LARGE
COMMON 0 VARIABLES 2 PROGRAM 32

END OF COMPILATION

/86

TH

-b3.

[y -

[sNesNeoNeoXoNaeNoRoNoNoNoNoRoNoNoNoNoNeNoNoNe]
—

(=

14044240

14062240

14109040

14889040

0000
COFE
Do71
406A
T4FFO10E
Co54
Do4E
1010
2000
D4000090
C48000E8
£048
1808
04000092
C4000090
1002
807A
1001
4C010117
8078
4C290117

// % COMET AND IDEAL SUBROUTINES USED BY DEMONSTRATION PROGRAM

ENT MADI SUBROUTINE NAME
*#CALL MADI (INPUT ARRAYsFLD STARTHFLD ENDsDBL INT)
*CALL MADI MOVES AND CONVERTS Al TO DBL WD INTEGER
*AN 11 ZONE OVER RT MOST DIGIT NEGATIVE CONVERSION
*ALL ZONES EXCEPT RT MOST ARE STRIPPED OFF.
:DOUBLE INTEGERS HAVE STD PREC REAL VARIABLE NAMES

ENT MASI SUBROUTINE NAME
¥CALL MASI (INPUT ARRAYFLD STARTsFLD ENDsINTEGER)
#CALL MASI MOVES AND CONVERTS Al TO SIG WD INTEGER
*AN 11 ZONE OVER RT MOST DIGIT NEGATIVE CONVERSION
*ALL ZONES EXCEPT RT MOST ARE STRIPPED OFFe
*

ENT MDIA SUBROUTINE NAME
#CALL MDIA (OUT ARRAY»STARTSENDsDBL INTHEDIT CNTRL)
*CALL MDIA MOVES AND CONVERTS DBL WD INT TO Al
*EDIT CNTRL OsINSERTS 11 ZONE AT FLD ENDsNO ZERO SU
*EDIT CNTRL =N»= AT END+19ZERO SUPP TO N RT DIGITS
*USE INT VARI FOR NEG CNTRL TO SAVE 5 WDS PER CALL
*EDIT CNTRL +Ns=AT END+29N DECI PLsZERO SUPP TO DEC
*EDIT CNTRL N GREATER THAN FIELD WIDTHsN IS +0 OR=0
#DOUBLE INTEGERS HAVE STD PREC REAL VARIABLE NAMES
*

ENT MSIA SUBROUTINE NAME
#CALL MSIA (OUT ARRAYsSTARTIENDs INTEGERIEDIT CNTRL)
#CALL MSIA MOVES AND CONVERTS SIG WD INT TO Al
*EDIT CNTRL O»INSERTS 11 ZONE AT FLD ENDsNO ZERO SU
#EDIT CNTRL =Ny= AT END+14ZERO SUPP TO N RT DIGITS
*USE INT VARI FOR NEG CNTRL TO SAVE 5 wDS PER CALL
#EDIT CNTRL +Ns=~AT END+2sN DECI PL#ZERQO SUPP TO DEC
*#EDIT CNTRL N GREATER THAN FIELD WIDTHsN IS +0 OR=0
#*
#IDEAL 1130 FORTRAN ERROR CODE IS /DEAF IN ACCUMe
#TO DISPLAY STATEMENT ALLOCATION ADDR IN ERROR» HIT
*STARTsACCUM HAS FORTRAN STATEMENT ALLOCATION ADDRe

#HIT START TO CONTINUESOUTPUT IS SET TO ZEROs
*
MASI DC * = SUBROUTINE ENTRY POINT
LD MASI CALLE1 ADDRESS
STO ARGMT &1 SET UP FOR ARGMT ADDR LOAD
B8S! SAVE SAVE XRS & GET PARAMETERS
MDX L BACK&ly=1 ADJ RETURN ADDR FOR & PARA
LD HD480 STO I SINGLE INT INSTs
STO ouT AT OUT INSTRUCTION
SLA 16 CLEAR ACC
LDS 0 INITIALIZE OVERFLOW
ASI STO L WORK LOAD REMAINING INTEGER
LD I FLDST FIELD CHARA TO ACC
AND HOF 00 Al DIGIT MASK
SRA 8 SHIFT TO BINARY DIGIT SIGL
§TO L DIGIT HOLD INTEGER DIGIT
LD L WORK LOAD PARTIAL INTEGER
SLA 2 WORK TIMES FOUR
A WORK PLUS ONE IS FIVE
SLA 1 DOUBLE EQUALS TEN TIMES
BSC L TOBIGsO TOO BIG IF OVERFLOW
A DIGIT ADD DIGIT /&7
BSC L TO21Gy0&62Z TOBIG IF OVERFLOW OR NEG

IDEALOOL
IDEAL002
1DEAL0O3
IDEALOO4
IDEALOO5
IDEALOOG6
10EALOOT
IDEALOO8
IDEALOOS
IDEALO10
1DEALO11
IDEALO12
IDEALO13
IDEALO14
IDEALO1S
[DEALO16
IDEALO17
IDEALO18
IDEALO1S
1DEALO20
IDEALO21
IDEALO22
IDEALO23
IDEALO24
IDEALO25
IDEALO26
IDEALO27
IDEALO28
IDEALO29
IDEALO30
IDEALO31
IDEALO32
IDEALO33
IDEALO34
IDEALO35
IDEALO36
IDEALO37
IDEALO38
IDEALO39
IDEALO40
IDEALO41
IDEALO42
IDEALO43
IDEALO44
IDEALO45
IDEALO46
IDEALO4T
IDEALO48
IDEALO49
IDEALO50
IDEALO51
IDEALO52
IDEALO53
IDEALOS4
IDEALO55
IDEALOS6
IDEALOS7
IDEALO58
IDEALOS9
IDEALO&D

=4h -

001C
001E
0020
00621
0cz22
0024
0025
0026
0028
0029
002A
0028
co02¢

002D
00ZE
002F
0030
c031
0033
0034
0035
0035
0037
0038
CO3A
0038
co3C
003D
G023k
003F
0040
0041
0043
0044
0046
0048
004A
0048
004C
004E
004F
0050
0052
0053
0054
0055
0055
0058
005A
0058
005C

605D
C05E
005F
0060
0061

loNe
-

[eNoNoNoNo]
- (=)

[eNoNoNoNeoNel

[sNeNoNoRsNoNoNoRoNoNoRoNeoNoNoNoloNoNeRORS]
— .-

COOO0OOC OO0
- [s

[eryya

QOO OO QOO COO00O00O0

T4FFQOOES
T4FFOOES
70E9
Dos6E
C48000EA
EOT7
FO74
4C200028
1010
9066
7028
Co64
7029

0000
COFE
Dos4s
403D
7T4FFO10E
<028
Loz21
1CAQ
2000
Lg58
C48000E8
EOQLF

1398

D855

€852
1082
8850
1081
4CO10117
884E
.C290117
74FFODES
74FFOOE9
70EC
D844
C48000EA
E04D
FO4A
4C200055
10A0
983C
7001
C83A
D48000EC
4CO0010A
oF00
D480
DC80

0000
COFE
0ola
4000
1090

LDASI

MADI

ADI

LDADI
ouT

HOFO0O0
HD480
HDC82
#*

MSIA

MDX
MDX
MDX
STC
LD

AND
EOR
BSC
SLA

MDX
LD
MDX

ble

LD

sT0
BSI
MDX
LD

STO
SLT
LDS
STH
LD

AND
SRT
STD
LOD
SLT
AD

SLT
B8SC
AD

BSC
MDX
MDX
MDX
STD
LD

AND
EOR
BSC
SLT
sD

MDX
LDO
$TO
BsC
DC

DC

bC

bC
LD
STO
BS1
SLT

FLDST =1
FLOWD»=1
AS1

WORK
FLOND
HF000
HDOO0O
LDASI»2
16

WO RK

ouT

WO RK

ouT

-
MADI1
ARGMTE1
SAVE

BACKEL 9=1

4DC80
ouT
32

0
WORK
FLDST
t OF00
24
DIGIT
WORK
2
WORK
1
TOBIG»Y»O
DIGIT

TOBIGsQ&Z

FLDST 9=1
FLDWD =1
ADI

WORK
FLDND
HFO0O0
HD0OO0O
LDADIZ
32

WORK

ouT
WORK
ARG4A
INDX1
/0F00
/D480
/DC80

o
MSIA
ARGMT &1
SAVE

16

THIS IS NOW NEXT COLUMN
THESE COLUMNS ARE YET TO

G

SKIP THIS IF FLOWD 1S ZERO

SAVE CONVERTED INTEGER
GET END COLUMN CHARACTER
ISCLATE ZONES

ACC IS ZERO IF 11 ZONE

CLEAR ACC

MAKE COMPLIMENT INTEGER
GO TO STORE NEG INTEGER
LOAD POSITIVE INTEGER

RESTORE

- SUBROQUTINE ENTRY POINT
CALL&1 ADDRESS

SET UP FOR ARGMT ACDR LOAD

SAVE XRS & GET PARAMETERS

ADJ RETURN ADDR FOR 4 PARA

STD I DBL INT INST,
AT OUT INSTRUCTION
CLEAR ACC & EXT
INITIALIZE OVERFLOW

FIELD CHARA TO ACC

Al DIGIT MASK

SHIFT TO BINARY DIGIT DBL
HOLD DBL INTEGER DIGIT
LOAD PARTIAL DBL INTEGER
WORK TIMES FOUR

PLUS ONE IS FIVE

DOUBLE EQUALS TEN TIMES
TCO BIG IF
ADD DIGIT

OVERFLOW

TOO BIG IF OVERFLOW OR NEG

THIS IS NOW

NEXT COLUMN

THESE COLUMNS ARE YET TO0 G

BRANCH TO MADI ROUTINE

SAVE CONVERTED DBL INTEGER

GET END COLUMN CHARACTER
ISOLATE ZONES

ACC IS ZERO IF 11 ZONE
BRANCH IF NOT AN 11 ZONE
CLEAR ACC & EXT

MAKE COMPLIMENT DBL INT
GO TO STORE NEG DBL INTEG
LOAD POSITIVE DBL INTEGER
INT TO PROG VARIABLE

DIGIT ISOLATION MASK
STO INDIRECT INST
STD A&Q INDIRECT INST

SUBROUTINE ENTRY POINT
CALLE&EL ADDRESS

SET UP FOR ARGMT ADDR LOAD

SAVE XRS & GET PARAMETERS
Cl.EAR EXTENSTION

/88

PAGE 2

IDEALO61
IDEALO62
IDEALOS3
ICEALCG4
IDEALO65
IDEALOGS

DEALOG7
IDEALO6S
IDEALO6?
IDEALOTO
IDEALOTL
IDEALOT2
IDEALO73
IDEALOT4
IDEALO75
IDEALOT76
IDEALO77
1DEALO78
1DEALOT79
IDEALO8O
IDEALO81
IDEALOB2
IDEALOB3
IDEALO84
IDEALO8S
IDEALO8E
IDEALOST
IDEALCSS
IDEALOSS
IDEALO90
IDEALO91
IDEALO92
IDEALO93
IDEALO94
IDEALOSS
IDEALO96
IDEALO97
IDEALO98
IDEALOS?
IDEAL100
IDEALLO1
1DEAL102
IDEAL103
IDEAL104
IDEALLOS
IDEAL1C6
IDEALLO7
IDEAL108
IDEAL109
IDEAL110
IDEAL111
IDEALLL2
IDEAL113
IDEALLLS
IDEAL11S
IDEAL116
IDEALLLT

iDEALL118

THE

—-— e
- CEp————

&)

-45-

-

PAGE 3

0062 01 C48000EC LD 1 ARG4A LOAD INTEGER IDEAL119
0064 01 44280083 BSI L NEGsS52Z BRANCH IF NEGATIVE IDEALL120
0066 0 D029 STO WORK SAVE INTEGER IDEALL21
0067 0 (028 SlA LD WORK LOAD WORK INTEGER IDEALL122’
0068 0 1890 SRT 16 SET UP DIVIDEND IN A&Q IDEALLZ23
0069 0 AB2F D TEN GET LOW DIGIT TO EXT IDEALLZS
0C6A O D025 STO WORK SAVE NEW INTEGER QUOTIENT IDEAL125
0068 0 1098 SLT 24 SHIFT DIGIT TO ACC IDEALL126
006C O 404E BS1 TEST TEST FOR NEG & FIELD WIDTH IDEALL127
006D 0 70F9 MDX SIA GET NEXT DIGIT IDEALLZS8
* IDEALL129

006E 0 0000 SAVE DC ot RETURN ADDR HERE IDEALL30
006F 01 6D00O0O10B STX L1 INDX1&1 SAVE INDEX ONE IDEALL31
6071 01 2€00010C STS L STATS SAVE STATUS IDEAL132
0073 00 65000000 ARGMT LDX L1 *=# ARGUMENT ONE ADDR TO INDX1 IDEAL133
0075 0 C100 LD 10 ARRAY ADDR TO ACCUM IDEALL34
0076 00 95800002 S Il 2 SUBTRACT FIELD END COLUMN IDEAL135
0078 01 D4000OF3 §TO L sSlIGNel SAVE SIGN ADDR IDEALL36
007A 0 801D A ONE ADD ONE IDEALL37
0078 0 DO6E STO FLDOND FIELD END ADDR IDEAL138
007C 0 Cl00 LD 1o ARRAY ADDR TO ACCUM IDEALL39
007D O B801lA A ONE ADD ONE IDEAL140
007 00 95800001 S I1 1 SUBTRACT FIELD START COLMN IDEALL41
0080 0 D067 STO FLDST FIELD STARTING ADDR IDEALYL42
0081 C 8016 A ONE ADD ONE IDEALL143
0082 0 9067 S FLDND SUBTRACT FIELD END ADDRESS IDEALla4
0083 0 Doé65 §TO FLOWD STORE FIELD WIDTH IDEAL145
oog4 0 DoO6s STO ZSCNT FIELD WIDTH TO ZERO SUPP IDEALL4S
0NRs 0 (103 Lo 13 ARcs4 ADDR TCo ACCUM IDEAL14T
0086 0 D065 STO ARG4A SAVE ARGUMENT 4 ADDRESS IDEAL148
0087 0 Clo4 LD 14 ARGUMENT 5 ADDR TO ACCUM IDEALL149
0088 0 D064 sTO ARG5A SAVE ARGUMENT 5 ADDRESS IDEALL50
0089 0 7105 MDX 15 ADJUST RETURN ADDRESS IDEAL151
008A Ol 6DO0O10E STX L1 BACKE1 LOAD BRANCH BACK INST IDEAL152
noaC o0 1010 SLA 16 CLEAR ACC IDEAL153
008D 0 2000 LDS 0 SET OVERFLOW & CARRY OFF IDEALLS4
0C8E 01 4C80004E 8sC I SAvVE RETURN TO SUBROUTINE IDEALL155
* IDEALLS6

0090 0002 WORK BSS E 2 CONVERSION WORK AREA IDEALL1S7
0092 0 0000 DIGIT BC 0 DOUBLE WORD DIGIT AREA IDEAL158
0093 0 0000 DC 0 SECOND WORD OF DIGIT AREA IDEAL159
0094 0 0000 EVEN DC E 0 EVEN WORD ONE IDEAL160O
0095 0 0000 ple 0 EVEN WORD Two IDEALLG1
0096 0 0000 cDD bC 0 ODD WORD ONE IDEAL1s62
0097 0 0000 DC 0 ODD WORD TwO IDEALL63
0098 0 0001 ONE DC 1 ONE IDEAL164
0099 0 O000A TEN DC 10 IDEALL6&S
009A 0 DOOO HDO0O DC /D000 11 ZONE MASK IDEALLGE
0098 0 DFFfF HDFFF DC /DFFF NEGATIVE ZONE MASK IDEAL167
009C 0 FO0O0O HF000 DC /F000 ZONE ISOLATION MASK. IDEALLl6S
009D 0 FO040 HF040 DC /F040 DIGIT MASK FOR Al FORMAT IDEALL6Y
» IDEALL170

00%E 0 00060 MDIA DC H=% SUBROUTINE ENTRY POINT IDEALLT1
009F 0 COFE Lo MDIA CALLE&1 ADDRESS ' IDEALLIT2
00A0 0 DOD3 s7o ARGMTE&L SET UP FOR ARGMT ADDR LOAD IDEAL173
00Al1 0 40CC BSI SAVE SAVE XRS & GET PARAMETERS IDEAL1l74
00A2 01 CC8000EC LDD I ARG4A LOAD DOUBLE WORD INTEGER IDEALLTS
00A4 Ol 44280083 BSI L NEGs&Z BRANCH IF NEGATIVE IDEALLTE
00A6 0 DOEE S§TO EVENEL STORE EVEN WORD OF DBL INT IDEALIZF

197

-46-

00A7
0CAS8
0CA9
00AA
00AB
0CAC
00AD
00AE
O00AF
0080
00B1
0082

coB3
0084
0085
0086
0087
0088
00839

0088
008C
008D
COBF
00C0
coc2

- 00C4

00C6
00C8
00C?
00CB
00cCcC
cocCh
00CF
¢0oD1
00D2
0003

00D5
0007
00D9
cobB
00DC
0ODE
GOOF
OCED
00E1
00EZ2
00E3
00ES
OCE®
COE7
00ES8
00£9
GCOEA
OQESB

o eNoNoNoNoNoNoRoNoNoNo]

QO O0OO0O0CO

o RoNoNeoYoXeo Xe)
e

(o NoNoNoNe)
- [

SO OO0
-

[eXe e o
[-

[

[eNeNeoNeoNoNeoNoNoNaloRe o NoRoNol
2

1090
DOEE
C8EA
ASEE
DOEs9
1090
88ES8
ABEA
DoE?7
1098
4009
70F6

0G00
baD8
COE2
D037
10A0
9807
4L8000R3

0000
E8BEQ
D480COEA
CO2E
4C0800CD
C48000ED
4£C2001CF

C48000EA
E0D2
D4800OCEA
1010
D021
740100EA
T4FFOQES

7001

7002

4C800038

C48000ED
4C18010A
4£C1000ED
800F
4C2800FC
Cooc
701C
pcos
L0009
9006
4C1000EF
corz2
Doc2
T00A
0000
0000
0000
0000

SHIFT ODD WORD TO ACC
STORE ODD WORD OF INTEGER

EXTRACT

GET LOW DIGIT TO EXT

SAVE NEW
SHIFT DI

NEXT DIGIT

EVEN WORD
GIT TO ACC

ADD ODD WORD

GET LOW DIGIT TO EXT

SAVE NEW
SHIFT DI

TEST FOR NEG & FIELD WIDTH

GET NEXT

ENTRY FOR NEG ROUTINE
STORE DOUBLE INTEGER

SET NEGATIVE SWITCH ON
SET NEGATIVE SWITCH ON

ODD WORD
GIT TO ACC

DIGIT

CLEAR ACC & EXT

COMPLIMENT VALUE IN WORK
GO TO CONVERSION ROUTINE

TEST RETURN

MASK DIGIT FOR Al FORMAT
OUTPUT RECOVERED DIGIT
LOAD SWITCH CONDITION
BRANCH TO POS IF SW OFF
EDIT CONTRCL PARAMETER
BRANCH IF NOT 11 ZONE CODE

* INSERT 11 ZONE OVER FIELD END DIGIT

SLT 16
STO 0DDE1

DIA LDD EVEN
D TEN
STO EVENG 1
sLT 16
AD 00D
D TEN
STO oDD&1
SLT 24
BSI TEST
MDX DIA

¥*

NEG DC * it
STD WORK
LD ONE
STO NEGSW
SLT 32
sD WORK
BSC 1 NEG

*

TEST DC x=%
OR HF 040
STC I FLDND
LD NEGSW
BSC L POSs6
LD I ARG5A
BSC L MINUS»Z
D I FLDND
AND HDFFF
STO I FLDND

SW SLA 16
570 NEGSWY

POS MDX L FLDAD»sl
MDX L FLDWDs=1
MDX AGAIN
MDX EDIT

AGAIN BSC I TEST

*

EDIT LD I ARG5A
BSC L INDX1jyg=
BSC L DECy=
A ZSCNT
8SC L SLzs62
STO ZSCNT
MDX sLz

DEC 370 FLDWD
LD ZSCNT
3 FLDWD
BSC L NORM,=
LD ONE
STO FLOWD
MDX SIGN

FLDST PC 0

FLDWD DC 0

FLDND BC 0

ZSCNT DL 0

GET END DIGIT OF FIELD
INSERT 11 ZONE WITH DIGIT
PUT DIGIT WITH 11 ZONE

CLEAR ACC

SET NEG SWITCH TO ZERO
THIS 1S NOW NEXT COLUMN
THESE COLUMNS ARE YET TO G
SKIP THIS IF FLDWD IS ZERO

GET NEXT

EDIT CONTROL PARAMETER
OMIT SUPP ZEROS IF ZERO

DIGIT

NO DECI POINT

CALC LEFT ZERQ MAX COUNT
N GT FLDWDsCNTRL IS =0
LEFT ZERO SUPPRESS
BRANCH TO SUPPRESS ZEROS
STORE WIDTH OF DECI FIELD
ENTIRE FIELD WIDTH
SUBTRACT DECI WIDTH

N GT FLDWD,CNTRL IS &0

MA X

LOAD ONE

SET FLDWD TO ONE FOR SIGN

BRANCH T
FIELD ST
FIELD WI
FIELD EN

ZERO SUPPRESS MAX COUNT

190

0 SIGN
ART ADDR
DTH

D ADDR

PAGE 4

IDEALLT8
IDEALL79
IDEAL180O
IDEAL181
IDEALL82
IDEAL183
IDEALLS84
IDEAL185
IDEAL18B6
IDEAL187?
IDEAL188
IDEALL18Y
IDEALL90
IDEAL191
IDEALLS2
IDEALL193
IDEALL94
IDEALL95
IDEAL196
IDEALLSY
IDEALL98
IDEAL199
IDEAL200
IDEALZ201
IDEAL202
[DEAL203
IDEAL204
IDEALZ205
IDEALZ206
IDEAL207
IDEALZ208
IDEAL209
IDEALZ21O0
IDEAL211
IDEALZ212
IDEALZ213
IDEALZ214
IDEAL215
IDEAL216
IDEAL217
IDEAL218
IDEAL219
IDEALZ220
IDEAL221
IDEALZ222
IDEAL223
IDEAL224
IDEAL225
IDEAL226
IDEALZ227
I1DEAL228
IDEAL229
IDEAL230
IDEAL231
IDEAL232
IDEAL233
IDEALZ234
IpEALZAS
THE £

*

PAGE 5

‘:b O00EC 0 0000 ARG&4A DC 0 ARGUMENT 4 ADDRESS ICEALZ236
00ED 0 0000 ARGSA DC 0 ARGUMENT 5 VALUE IDEAL237
CCEE O 0000 NEGSW DC 0 IDEAL238

* IDEAL239

* SHIFT RIGHT TO FIELD END PLUS TWO FOR DECI POINT IDEAL240

OCEF O DOFB NORM STO ZSCNT MAX LEFT ZERO COUNT IDEAL241
00F0 01 740100E9 MDX L FLDWD,1 ADJUST FOR SIGN POSITION IDEAL242
00F2 00 65000000 SIGN DX L1 %-# LOAD SIGN ADDRESS IDEAL243
00F4 0 (100 NEXT LD 10 LOAD CHARACTER IDEALZ244
00F5 0 DI1FF STO 1 =1 SHIFT RIGHT ONE COLUMN IDEAL24S
00F6 O 7101 MDX 161 INCREMENT INDEX FOR NEXT IDEAL246
OO0F7 01 74FFOQ0ES MDX L FLDWDs=1 DECREMENT DECI WIDTH CNTR IDEAL247
00F9 0O 70FA MDX NEXT SKIP IF LAST DECI POSITION IDEAL248
00FA 0 (CO1A L.D H4B40 LOAD DECIMAL POINT IDEAL249
COFB 0 DI1FF STO 1 =1 INSERT DECIMEL POINT IDEAL250

* SUPPRESS LEADING ZEROS IN OUTPUT FIELD PER COUNT IDEAL251

00FC 01 74FFQOEA sk MDX L FLDNDjs=1 THIS IS NEXT COLUMN RIGHT IDEAL252
OO0FE 01 C48000EA LD 1 FLDND LOAD LEFT CHARACTER 1DEAL253
| 0100 01 E400005A AND L HOFOO ISOLATE DIGIT IDEAL254
| 0102 01 4C20010A BSC L INDXle2Z BRANCH OUT IF NOT ZERO IDEAL255
| 0104 0 COOF LD H4 040 LOAD BLANK TO REPLACE ZERO IDEAL256
} 0105 01 D48O0OEA STo 1 FLDAND OUTPUT BLANK TO FIELD IDEAL257
| 0107 01 74FFOOEB MDX L ZSCNTs=1 MAX 2ERO SUPP SKIP EXIT IDEAL258
0109 0 70F2 MDX stz SKIP THIS IF MAX CNT ZERO 1IDEAL259
010A 00 &5000000 INDX1 LDX L1 %-#% RESTORE INDEX REG ONE IDEAL260
010C 0 2000 STATS LDS K RESTORE STATUS IDEAL261
‘ 010D 00 4C000000 BACK BSC L =% BRANCH BACK TO FORTRAN PRO IDEAL262
| _— # INSERT MINUS SIGN AT FIELD END PLUS ONE IDEAL263
h Vivur v LUuUo MINVO LD r1ouU«4y MINVI S LON LUCLALLOS
~ 0110 01 D4BOOOF3 STO I SIGN&1 AT FIELD END PLUS ONE IDEAL265
0112 01 4C0000CB BSC L Sw IDEAL266
0lls 0 4040 H4040 DC /4040 BLANK IDEAL267
0115 0 4B40O H4B&40 DC /4840 PERIOD I1DEAL268
0116 0 6040 H6040 DC /6040 DASH IDEAL269
* IDEAL270
0117 00 74000032 TOBIG MDX L 5050 IDEAL271
0ll9 0 70FD MDX TOBIG INTERRUPT SERVICE LOOP IDEAL272
: 0l1A 0 <009 LD HDEAF IDEAL FORTRAN ERROR CODE 1DEAL273
i 0118 0 3000 WALT DISPLAY ERROR CODE IN ACCU IDEAL274
| 011C 01 C4000074 LD L ARGMT&1 DISPLAY ENTRY ADDRESS IDEAL275
! Ol1E 0 9004 S HO1C4 AND DISPLAY STATEMENT IDEAL276
0l11F 0 3000 WAIT ALLOCATION ADDR IN ACCUM, IDEAL277
0120 0 10AO SLT 32 CLEAR TO OUTPUT ZERO INTEG IDEAL278
0121 01 4C000056 BSC L OUT IDEAL279
0123 0 01C4 H01C4 DC /01C4 DISKZ ORGIN +2 IDEAL280
0124 0 DEAF HDEAF DC /DEAF IDEAL FORTRAN ERROR CODE IDEAL281

0l26 END IDEAL282 .

NO ERRCRS IN ABOVE ASSEMBLY

[/ THE $

-h8-

// ASM

*#LI1ST SOURCE PROGRAM

0000
0000
0001
0002
0004
0005
0006
0008
0009
000A
000C
0000
000E
000F
0011
0012
0013
0014
0016
0017
0019
0018
001C
001E
0020
0021
0023
0025
0026
0027
0028

OCO0O00COO0O0O0OO0OTOOOOO

o -

o

o

(o]

o W
e N e}

O+ rr OCO OO0 O
- 2

185C18A2
0001
6A20
66800000
C200
1001

96800001

801E
DO18
6800004
DO19%
Cc202
1001
96800003
8015 -
7205
6510
D4000002
CO0E
181D9042
18888925
T2FF
T4FF0025
T4FF0026
T0F5
66000023
4C000025
0026
0027
0002

*
*

QPASS

LOOP

SAVE
RETRN
SCRAD
CHCNT
TWO

THIS IS
ENT

BSS

STX 2
LDX 12
LD x2
SLA X
S 12
A

STO

LD 12
STO

LD X2
SLA X
S I2
A

MDX X2
STX 2
STO L
LD

CALL
CALL
MDX X2
MDX L
MDX L
MDX

LDXx L2
BSC L
bC

DC

bl

END

NO ERRORS IN ABOVE ASSEMBLYs

QPASS
QPASS

SAVEE&1
QPASS
0

1

1

TWO
SCRAD
4
CHCNT
2

1

3

TWO

5
RETRNEL
/0002
SCRAD
QGRAB
QSHUV

-1
SCRADy=1
CHCNT 9~1
Loor

N ok ok Xk ok

SAVE XR2

LOAD XR2 WITH CALLE1L

LOAD SOURCE AREA TO ACC
SHIFT LEFT ONE BIT

SUB COLUMN NO OF sC FIELD

ADD TWO

STORE ACC INTO SCRAD

LOAD CHARACTER COUNT TO AC
STORE IN CHCNT

LOAD DEST FIELD ADD TO ACC
SHIFT LEFT ONE BIT

SUB DEST CH NO FROM ACC

ADD TWO

ADD 5 TO XR2

STORE IN RETURN INSTR
STORE ACC IN XR2

LOAD SCRAD TO ACC

GET SOURCE CHARACTER

PUT IN DESTINATION FIELD
DECREMENT XR2

DECREMENT SCRAD
DECREMENT CHCNT

NOT ZERO)
RESTORE XR2

RETURN

/72

GO TO LOCP

PASS0010
PASS50020
PASS0030

PASS0040

PASS0050
PASS0060
PASS0070
PASS0080
PASS0090
PASS0100
PASSO01l10
PASS0120
PASS0130
PASS0140
PASS0150
PASS0160
PASS0170
PASS0180
PASS0190
PASS0200
PASS0210
PASS0220
PASS0230
PASS0240
PASS0250
PAS50260
PASS0270
PASS0280
PASSC290
PASS0300
PASS0310
PASS0320
PASS0330

-hg-

// ASM

#*LIST SOURCE PROGRAM

cooo
0000
0001
0002
0004
0005
0006
0007
0008
0009
000A
000cC
000D
000K
000F
0010
0011
0013
0015
0016
0017
0018

[eReoNoNeNoNoNe o NeoNoNoNoNoNoNoNeNeNeoNel

o

—

[y

18888925
0001
po13
C4000002
1881
Do05
1091
COOF
4802
1808
E400000C
poo9
€007
4802
1008
E£805
04800008
4C800000
0000
0000
FFOO

*
*

QSHUV

AND

TEMP
TEMP]
MASK

THIS IS QSHUV

ENT
BSS
STO
LD

SRT
STO
SLT
LD

B8scC
SRA
AND
STO
Lo

‘BSC

SLA
OR
STO
BSC
DC
bcC
bcC
END

NO ERRORS IN ABOVE ASSEMBLY.

QSHUV
1
TEMP
2

1
ANDE&1
17
MASK
C

8

*
TEMPL
TEMP

TEMP1
ANDE1
QSHUV

/FFOO

STORE CHARACTER INTO TEMP
LOAD XR2 TO ACC

DIVIDE By 2

STORE WORD ADD IN MASK INS
MOVE REMAINDER INTO CARRY
LOAD MASK TO ACC

SKIP IF CARRY CFF

SHIFT RIGHT IF CARR ON
MASK DESTINATION WORD
STORE INTO TEMPL

LOAD CHARACTER TO ACC

GO TO COMBINE CHAR IF CARY
SHIFT LEFT IF CARRY OFF
COMBINE CHARACTERS

STORE INTO DESTINATION
RETURN

/73

SHUv0010
SHUV0C20
SHUV0030
SHUV0040
SHUV0050
SHUVO0060
SHUVQ0O070
SHUV0080
SHUV0O0S90
SHUVO100
SHUVO110
SHUV0120
SHUVO0130
SHUVO0140
SHUVO150
SHUVQO160
SHUVO1l70
SHUVO0180
SHUVO190
SHUV0200
SHUV0Z210
SHUV022C
SHUV0230
SHUV0240

=50~

// JOB T *SE10 42192 ol SWAIN CALL ME

// FOR

*JOCS(TYPEWRITER1132 PRINTERsDISK) ‘
*ONE WORD INTEGERS m

*LIST SOURCE PROGRAM
DEMONSTRATE PMERG BY SORTING 1000 RECORDS OF 32 WCRDS
USE 5 SORT KEYS» OCCUPYING 8 WORDS
MAJOR KEY 1S WORD 6» INTEGER
SECOND KEY IS WORDS 14 AND 13» TREAT AS DOUBLE WORD INTEGER
(SIGN AND HIGH=-ORDER BITS IN WORD 14y LOW ORDER BITS WORD 13)
THIRD KEY 1S WORD 21» TREAT AS 2 ALPHABETIC CHARACTERS
FOURTH KEY STARTS IN WORD 16s REAL
(SIGN AND HIGH=CRDER BITS IN WORD 16
LOW ORDER BITS AND EXPONENT IN WORD 15)
MINOR KEY 15 WORDS 30 THRU 32 TREAT ASs 3 ALPHABETIC CHARACTERSY
STARTING FROM RIGHT CHARACTER OF WORD 30
EXTERNAL LARGE
-LARGE 15 NAME OF PROGRAM TO DETERMINE 1F RECORD IS TO BE
INCLUDED IN SORT
DIMENSION IREC(32}
DIMENSION KEYS(4¢5)sIWORK(lSBOIoIBUF(325)
DIMENSION AREC(3)
DIMENSION NAME(25)sI0UT(11)
EQUIVALENCE(AREC(1)sIREC(16))9(DCUBYIREC({14))
DEFINE FILE 1(10153209sU»I1)
DEFINE FILE 2(30+3205U512)
DEFINE FILE 3(30»320sU»13)
DEFINE FILE 4(4193205Us14)
FILE 1 IS FILE TO BE SORTED.
FILES 2 AND 3 ARE WORK FILES
FILE 4 IS OUTPUTe CONTAINS POINTERS TO INDICATE PROCESSING ORDER @::
AS DETERMINED BY SORT KEY INFORMATION '

NONONAOONNDNNNND

NN

GENERATE 1010 RECORDS OF RANDOM NUMBERS
PMERG WILL EXAMINE LAST 1000 OF THESE TO SELECT THOSE TO BE
INCLUDED IN SORTs» AND THEN SORT THOSE INCLUDED

CALL DOPEN(IBUF 1432510

K=31525

L=899

IX=1000

IK=5

1B=10

IL=1B+IX=1
C CREATE ALPHABETIC CHARACTERS IN NAME. ALL VALID PRINTER CHARACTERS
C ARE INCLUDED
NAME(1)=16459
NAME(2)=19790
NAME (3)=20571 ‘
NAME (4)=23645
NAME(5)=24673
NAME (6)=27517 !
NAME(7)=32449 |
NAME(8)==15677 ‘
NAME(9)==15163 |
NAME (10)==14649 *
NAME(11)==14135 1
NAME(12)=~11822 |
NAME (13)==11308 ‘:;
NAME (14)==10794 \

/94 i TH

aXaXaKalaXaKa¥a!

O

nn

on

PAGE 02

NAME(15)==10280
NAME(161==~9758
NAME(17)==7196
NAME(18)==6682
NAME(19)==6168
NAME(20)==5648
NAME(21)=-=3598
NAME (22)==3084
NAME(23)=-2570
NAME(24)==2056
NAME (25)==1792
STORE RANDOM INTEGER IN RANGE =9 TO +9 IN WORDS 1-14
DO 1 I=1,IL
DO 2 J=1yl4
K=K#*L
2 IREC(J)=K/3277
STORE RANDOM REAL NUMBER IN RANGE =1C TO +10 IN WORDS 15~20
DO 5 J=1,3
K=K*L
5 AREC(J)=FLOAT(K)/3277,
STORE RANDOM ALPHABETIC CHARACTER IN WORDS 21-32
DO 6 J=1,24
K=K#L
M=K/1311+25
6 CALL QPASS(NAMEIMsIREC(21)9Jsl)
1 CALL DPUT(IBUF»s1sIREC)
CALL DCLOS(IBUF)
CREATE KEYS TABLEs TO INDICATE LOCATION AND TYPE OF SORT KEYS
MAJOR KEY IS INTEGERs WORD 6
KEYS(1s1)=1
KEYS(291)=6
SECOND KEY 1S HIGH PRECISION INTEGER» HIGH=CRDER PART IN WORD 14
SORT INTO DESCENDING ORDER BY THIS KEY
KEYS(192)=2=2
KEYS(292)=14
THIRD KEY IS ALPHABETICs FIRST CHARACTER WORD 21 COL 1» 2 CHARACTERS

KEYS(193)=3
KEYS(2s3)=21
KEYS(3153)=1

KEYS(443)=2
FOURTH KEY 1S REAL»s STARTS IN WORD 16
KEYS(1ly4)=4
KEYS(244)=16
FIFTH KEY IS ALPHABETICs» FIRST CHARACTER WORD- 30 COL 29 3 CHARACTERS

KEYS(1s5)=3
KEYS(2+5)=30
KEYS(3,5)=2
KEYS(445)=3

PERFORM SORT=MERGE
WRITE(1y102)
102 FORMAT('START SORT=MERGE!')
CALL PMERG(1932sIByIX »KEYSsIKHyIWORK9185091BUF 910929394
SLARGE +KOUNT)
WRITE(1:103)KOUNT
103 FORMAT('END SORT=MERGE'!'s16s' RECORDS INCLUDED!)

LIST FIRST 10 RECORDS IN SORTED FILE
/95 TH

=520~

CALL DOPEN(IBUF1532+10)
CALL DOPEN(IWORKs4919320)
DO 4 I=1,10
CALL DGET(IWORKsI9IPT)
WRITE(3s101)IPT

101 FORMAT (' RECORD NOs's15)
CALL DGET(IBUFsIPTyIREC)
CALL QPASS(NAME»1sICUT2191)
CALL MDIA(IOUT»1910sDOUBs=1)

4 WRITE(34104) (IREC(J)9J=1512),I0UT»AREC, (IREC(J)yJ=21432)

104 FORMAT(' '»1213911A191X23F8e4s1Xs12A2)
STOP
END

FEATURES SUPPORTED
ONE WORD INTEGERS
10Cs

CORE REQUIREMENTS FOR
COMMON 0 VARIABLES 2324 PROGRAM

END OF COMPILATION

674

/76

PAGE 03

THE

)

// XEQ L 1
*LOCAL »SRTPHyMRGPH

FILES ALLOCATION

1 0432 0065
2 0497 O0O1lE
3 0485 O0O0lE
4 04D3 0004

STORAGE ALLOCATION
R 47 0010 (HEX) WORDS AVAILABLE
CALL TRANSFER VECTOR

DISGN 1C66
QCOMP 1C32
INT 1BBA
SO 1B94
QSHUV 1B7C
QGRAB 1870
MINO 1A78
IPTSK 1940
DUSE 1855
MDTA 178C
DGET 1681
LARGE 168D
PMERG 1638
DCLOs 15Cé
DPUT 1576
npAss 184%
DOPEN 1498
MRGPH 1025 LOCAL
SRTPH 1CF8 LOCAL

LIBF TRANSFER VECTOR

FsuB 1B8CC
SDRED 0D9E
SDCOM 0bC2
SDIX 0D94
SDWRT 0DEC
FARC 184E
NORM 1824
EBCTB 1821
GETAD 1AEQ
IFIX 1AB4
PAUSE 1AAS8
SUBIN 1820
STOP 1814
SIOAF OFEF
SIOAI OFFC
SIOIX 1071

slol OFF7
SCOMP OFDF
SWRT CFD6
FSTOX 145A
FDIV 14F4

/177

THE

FLOA1
SUBSC
FSTO
FLD
PRNTZ
WRTYZ
SF10
SDF10
DISKZ

14E6
14C8
145E
147A
1398
1360
10AD
0DF1
00F4

SYSTEM ROUTINES

ILS02
FLIPR

1Fe6F
1C¢90

0B3C (HEX) IS THE EXECUTION

RFCORD
1 =1
RECORD
-7 =5
RECORD
RECORD
-g =7
RECORD
0 4
RECORD
-5 0
RECORD
-7 0
RECORD
3 0
RECORD
-l =§

NOs 764

4 2 =3
NODe 975
=4 =8 4
NOe 861

9 =6 =8
NOe« 349
-2 =1 4
NO. 773

6 =4 =8
NOe. 860

0 =5 7
NOes 632
-3 0 7
NOo» 74
=2 =5 =5
NOs 533
-9 0 O
NOe 965

0 9 1

-9 0
-9 1
-9 =6
-9 =7
~9 =4
-9 =5
=9 =2
-9 0
-9 =6
-9 5

0 =5

-7

-8

L3V]

A

ADDR.

-6

589830
589816
458760
458753
458753
458750
393219
393216
393207

327684

448669
342807
345761
147012
545974
87339
~T7e4418
4e5422
=-145309

848004

-4¢3433
945688
~4e8565
945175
~T7e5419
=Te7415
943521
347445
3¢5706

=749325

-448663
2.8877
-6¢3280
-3e2032
=046350
~0+0619
840967
645855
=9.7946

841925

XHLNP2LYVQ. 8BAWIMGCPQMI)
CODHXQ* (C=7'(5FT Z25(B&~.

eD1441K=029 J+E#U=PB#He X8

LWIN((/He=13%(22R LZFHK#*"
=y VNZBK=+KEOZZCSRTZIAM

VW sKSTLVOFWD/E#6=624//

K6&ILILC*y4RM16141TYHZYW

Ne+FF /MT e BAC=FL2LLE2UX (2

1 4VEGIUK56SCCESZ /UYH+++K

Y'RJDOIMTTYCesL U2826CS2

198

|

(3@

)

-55-

START SORT-MERRE

FND SORT-MERCE

811

RECCRDS INCLUDED

/77

-56-

// JOB #SEL10 42192 «2 SWAIN
// FOR
#ONE WORD INTEGERS
#LIST SOURCE PROGRAM
FUNCTION INTAK(IREC)
C THIS FUNCTION CAUSES ALL RECORDS TO BE
INTAK=1
RETURN
END

FEATURES SUPPORTED
ONE WORD INTEGERS

CORE REQUIREMENTS FOR INTAK
COMMON 0 VARIABLES 2 PROGRAM

END OF COMPILATION

INCLUDED IN A SORT

14

200

TR

>

SESSION NUMBER T.2.5
SPEAKERS

PANEL OM PROGRAMMER FVALUATION

A.S. GLOSTER, I1, ODAK RIDGE ASSOC. UNIV.
SeA., LYNCH, U.S. REDUCTION CO.

DRe LeH. BAKER, PIONEER HI-BRED CORN CN.
DR« PAUL HERWITZ, I.R.M,

20l

PROFESSIONAL PROGRAMMERS AND ANALYSTS:
PROBLEMS IN PERFORMANCE EVALUATION *

By: Arthur S. Gloster II

Oak Ridge Associated Universities is a nonprofit cor-
poration engaged in research and educational activities
located in Oak Ridge, Tennessee. The primary function of the
corporation's data processing center is to apply electronic
data processing techniques, where feasible, to research and
administrative projects. The center contains 27 employees
of which 13 are analyst/programmers. The center is divided
into three groups: 1) scientific applications consisting
of 6 personnel and a group leader, 2) commercial applications
consisting of 5 personnel and a group leader, and 3) operations
section consisting of a supervisor and 10 other employees.

Oak Ridge Associated Universities has on site an IBM 1860
disk/tape system which is utilized by approximately 40% of

the programming personnel. Approximately 60% of the personnel
use IBM 360-50, 360-75 and CDC equipment located in the area.
The analysis and programming function comprise a significant
portion of the operating costs of the ORAU data processing
center.

After discussion with personnel from other installations,
we found that there are no reliable standards by which costs
can be calculated in advance, schedules established, and the
performance of personnel evaluated. Although the methods we
useu to establish schedules and costs are subjective and

arbitrary, they in no way approach the accuracy of the methods

02

(¢

™.

-2

developed in the hardware area. For example, IBM has estab-
lished rates for EAM equipment and has even produced a slide
rule to use for estimating job times.

A means of evaluating the professional analyst/programmer's
job and a means of evaluating his effectiveness is highly
desirable but rarely accomplished. Such means would be helpful
predictors in determining the staff needed for a particular
application or a data processing installation. We have found
that records of intangibles, such as the time for the appli-
cation analysis and problem definition, flow charting, coding,
debugging, checkout, and finally documentation would have to
be maintained continuously to have a base for predicting
analyst/programmer costs and for personnel evaluation. In
predicting costs of computer programs and evaluation, we would
like to be able to have a magic number representing the proper
number of analysts or programmers that could be applied to a
given situation and for our center as a whole, but we found
this to be impractical because we were measuring intangibles
by subjective means. We found that attempting to save expenses
by minimizing or restricting the availability of professional
personnel caused equipment to be used ineffectively. The more
the programmer is annoyed with accounting for his time and the
more detailed the account for nonproductive time, the less
apt he will be in cooperating in a program that keeps up with

all of the various functions he performs.

203

Programming pefsonnel at ORAU are engaged in numerous
types of jobsj; therefore, standards of work evaluation
could not effectively reflect the variety of tasks they
encounter. One programmer may be responsible for coding X
number of instructions with relatively small amounts of logic
development, while another programmer may be responsible
for extensive logic development with relatively few instruc-
tions. Thus, it becomes diff:icult to measure the amount
of work required on each program, and the total work effort
performed by a programmer cannot be assessed in standards
of comparison with another programmer.

At ORAU, we believe that the group leader of either the

scientific section or the commercial section, depending on M:D

the particular area, should look at the problem in advance
and then meet with the data processing manager to establish
reasonable target dates for each of the previously-mentioned
phases on the basis of the nature of the problem and on their
past experience., The manager or group leader must have a
detailed knowledge of the problem under study because it is
his responsibility to prepare the cost estimate~and schedule.
He must keep up with the allocation of funds and judge progress
of the application. After giving several methods of job
measurement trial, we have found that there is no substitute
for experience in the area of predicting costs, measuring

work, and evaluating programming personnel. Programmers

204

respect a supervisor who gives them a job and can tell them

what performance 1s expected. The supervisor is also respected
by his staff if he remembers that good supervision is the

least supervision needed to get the job done.

0%

-5

*From Oak Ridge Associated Universities, Oak Ridge, Tennessee,

under contract with the United States Atomic Energy Commission.

c

Programmer Evaluation in U. S. Reduction Co.

S. A. Z;/ylr/}\

U. S. Reduction Co. is a producer of secondary aluminum alloys. Annual
sales are over $60,000,000. There are approximately 900 employees.
Corporate headquarters and one plant are located in East Chicago, Indiana.
There are four other plants in four other states.

Data-processing-services employees number six. In addition to a manager
and assistant manager, there are two programmers, one operator and one
key-puncher. In addition to these individuals, two other company employees
are closely related; one functions ar a senior systems analyst, the second

as a special project researcher who does his own programming. Finally,
use has been made of two outside programmers on a contract or hourly basis.

U. S. Reduction Co. uses two IBM 1130 Systems and some time on System
360/Models 20 and 30. An expanded 1130 configuration has been ordered.

Methods of evaluation of programmer-effectiveness are based on subjective
criteria, augmented by certain measurable phenomena. These include:

a. Demonstrated dedication to task and cooperation during its fulfill-
ment.

b. Speed of accomplishment of assigned tasks.

c. Feedback from users serviced by applications programmed by the
programmer in question.

d. Feedback from IBM personnel dealing with the programmer on
technical matters.

e. Extent and clarity of program documentation and general ease of
implementation.

f. Infrequency of undefined error halts, accuracy of output, and speed
of job execution.

g. Personal evaluation by the programmer during the semi-annual
salary