PROCEEDINGS |
THE ANNIVERSARY MEETING
| | : COMMON
JUNG HOTEL |
R NEW ORLEANS, LOUISIANA
NOVEMBER 28, 29, 30, 1966

ii
PREFACE

This volume records in part the technical material presented at
the COMMON Meeting held in New Orleans, November 28, 29 and 30, 1966.
A number of committee reports and discussion session summaries are also
included. No attempt has been made to include all discussions dealing
with the reorganization of COMMON since this topic will be included in
subsequent issues of the Secretary's Report.

A real and permanent contribution to this COMMON Meeting is the
technical material contained in this volume, Credit for this must go
to the authors and the various session chairmen,

Special acknowledgment is due the Local Arrangements chaimman,
Mr. Earl Dobbs, and his entire team,

I would also like to thank Mrs. Linda Bower, who typed the many
iterations of the agenda and assembled this proceedings.

Wiltz P, Champagne, Jr.
Program Chairman
COMMON - New Orleans, 1966

I.
II.

Table of Conténts

preface . L L] . L] v L] . . . L[] L] L] * L]
Agehda . L] . [] L] L[] . . [} *
Monday Session

General SesSiOnN + « ¢ ¢ o+ ¢ ¢ o o
Chairman, D, A, Jardine

Divisional Meetings

Minutes of Systems Division . , .
Chairman, James Stansbury

Minutes of Applications Division,
Chairman, Frank Maskiell

Minutes of Administration Division.

Chairman, Laura B. Austin

Minutes of Installation Management Division

Chaiyrman, Paul A, Bickford

1800 TSX Comitteeo . L] L] e . [] L]
Chairman, C, Pearson

1800 Systems Project I. . « « « + .
Chairman, Open

1800 Systems Project II .,
Chairman, Open

1130 Systems Papers
Chairman, Peter J, Woodrow

"1130 Monitor'" - Gene Lester. . .

""1130 Compiler' - Dion Johnson, .

.

""1130 Disk and Card Programming‘Techniques"

1620 Systems Papers
Chairman, James Stansbury

"SYMTRAN: The Addition of Formal Algebraic Manipulative
Capabilities to FORTRAN with Format' - Mary Clo Carey. . .

"A Processor for both SPS and FORTRAN" - James R. Oliver and
Guy George L] * L] L] L] * L] L] (] L] . L] . * [] .] v * L] C‘ . L *

iii

Page
ii

14

18

59

61

62

73

"University of Mississippi Test Scoring Program"
Richard Ds ROSS « o o o ¢ o s ¢« o o o ¢ ¢ o o

"A Computer Plotting Language' - James R, Oliver

John McMahone « o« o ¢ o & ¢ o ¢ o ¢ o ¢ o o o

Applications Divisione « o ¢ « ¢ ¢ ¢ s o o s
Chairman, Frank Maskiell

360 Systems PrOjeCto PR T T T S T S S S S T N
Chairman, Richard Pratt

Installation Management and Personnel Training
Chairman, Paul A, Bickford

1620 Systems PrOjeCt R S S S T T S S S S ST Y
Chairman, James Stansbury

Minutes of S. S. P. Application Division . . .
Chaimman, Frank Maskiell

1620 Application Papers
Chairman, Guy George

'""Relocatable Daté-Conversion Subroutines for 1620 SPS II' -

]

We NOorris TUttles « o o ¢ o o o @ o ¢ 6 ¢ s ¢ ¢ o 0 o o o4

"Teletype Input to the 1620 on an Interrupt Basis While

Operating Under Monitor I" - Prof. Don Box, James H, Hughes
and HUgh By Kerre « o o o ¢ o ¢ ¢ ¢ o o ¢ ¢ o o 8 ¢ o o o s

“"General Card to Printer Program'" - Janet Allen., . . .

"General Format Conversion Program' - Robert B, Balder

III, Tuesday Session

Utilities Project. A T R R R R T T T T S T S R

Chairman, E. J. Orth, Jr.

1800 Systems Director-Advanced, Tutorial
Chairman, C. Pearson

"Systems Director' - V, BoyeTs o« o s o s o o ¢ s o o o

1800 Papers
Chairman, C, Pearson

"Hybrid Computer Simulates Stell Process" - Everett L.

1130 Systems
Chairman, Peter J. Woodrow

Keener

.

iv
Page
84

111

128

134
149
161

189

236

' Page
"Commercial Subroutine Package (FORCOM)'" -
RQ Ll Louden L]]] . » [] L) []]] . L) [] . L] L) 1] . L] L] . . * . . 253

Languages prOjeCt R R R T R T T T T Y Y S TR ST S S} *
Chaiman, James Stansbury

University Education Papers
Chaimman, Marv Goldberg

"Computer Requirements for the Undergraduate College"
RObert CoBushnell & o o o o ¢ ¢ ¢ o o o ¢ o ¢ v o o o« o & o o 259

nComputerized Library Circulation" - Guy George + + « « o+ o & + 265
"USL Student Scheduling'" - Jack D, Testerman and Earl K, Turner 272

360 Systems Papers
Chairman, Richard Pratt

"Scientific Computing at an Astronomical Observatory, FORTRAN
Language Timings on 360/30, 360/40 and 360/50'" - Robert L,

Shutt [L] . . [] . 1] . . [] L] L] [] [. . . []] . L] [] L)] . L] . . [2 76
"FORTRAN Debugging on the IBM 360" - James S, Taylor. « + « « » ¥
"1620-360 Simulation' - H, Klysen v e s e v s e s 4 s e s s e 282

Installation Management Division
Chairman, Paul Bickford

""1800 Education Plans'" - G, Wolf, . 4+ ¢« & ¢ ¢ ¢ ¢ v ¢ ¢ o o o « 283
1800 Available RPQ's and Special Systems' - F, Schneider . . . *

1130 Systems Papers
Chairman, Peter J, Woodrow

"Small University Accounting Systems'' - Peter Rhodes, « « « + . *
"1130 User Experience Panel', « ¢« v o o o ¢ ¢ o ¢ o ¢ ¢ 0 o o o %

1620 Information Retrieval Papers
Chairman, James R, Oliver

"A Diagnostic Case Presentation Program'' - Roger Gudobba, James
L. Grisell and Peter Beckett « « o « ¢ o o o o o o o ¢ » o o o 287

"An Information Storage and Retrieval System for Radiological
Surveillance Data" - Nancy A. Paquin and Claudette Thompson, . 295

"RAGE - An Information Retrieval Language' - Jack D. Testerman
and Joseph B, Tinker « v v o« ¢ o o+ ¢ o o o o 0 ¢« o o s s s o » 318

UTliverSity Education ~Pr°ject ® 0 8 1 4 s 4 e e s e s e e eeee
Chairman, Marv Goldberg

3608ystemsPrOjeCt.....o....o............
Chairman, Richard Pratt *

1800 TSX Committee
Chairman, C, Pearson

"1800 I/0 - Advanced Tutorial' - B, LandecK. o o « o o o« o ; .

1800 Systems Paper
Chairman, Open

"1800Prospro"-H.BaSS..........‘~........

1130 Papers
Chairman, Peter J. Woodrow

"On-Line Débugging on the IBM 1130" - Peter J. Woodrow ., . . .

1130 Data Presentation System, Graphic Plotting Language' -

RiChard EO weber. $ & 8 -8 8 & 6 4 92 6 & + S s 4 6 6 s o 0 &

1620 Math § Statistics Papers
Chairman, Jack Testerman

"A Disk-Oriented Cross Tabulation Program'" - Donald L. Wright,

"Sampling with Unequal Probabilities and without Replacement"
RonaldG.Kleibrink.....................

"Estimation of Power of F Test by Patnaik's Approximation" -
SudhirN.Dalal.-......................

"Reliability Predictions Using an IBM 1620 Computer" - M, J.
aniffeandW.H.Bleuel..................

General Interest Papers

Chairman, Greg Payne

"Computer Assisted Painting" - James R, Oliver o + « o o & & &

"Computational Linguistics Program'" - James R, Oliver and
SamBaty.octcootoooocbooooooco'oooo

"Useful Hints for Writing High-Speed Compilers'" - R. S, Milner

Paﬂel On T/S VS. Starld Alme . . L] [] L] L] . [] . L] [L] L] * L[] [] [] L]
Chairman, D, A, Jardine ‘

1800 Absolute COding EXampleSe ¢« o ¢ ¢ o o o o o ¢ ¢ o ¢ o o o
Chaimman, C. Pearson ‘

325

357

378

393

401

406
426

1130 Continuous System Modeling Program
Chairman, Peter J. Woodrow

"Continuous System Simulation' - Robert D, Bremman

Open Board Meeting @ 8 8 0 ¥ 6 B 4 ¥ e s e & & & & 8 8 0 s o @
Chairman, D, A. Jardine

Engineering Papers
Chaiman, Guy George

"Three-Dimensional Plotting Using the IBM 1620 and CALCOMP
564 Plotter'" = R, Ge NElSON « ¢« ¢ o ¢ ¢ o o o o ¢ 0 s o o o

"DRAFT" « Jy Ry Birdwell ¢ o 4 ¢ v ¢ o o ¢ ¢ o ¢ ¢ 0 ¢ o o o

1620 Data Processing Papers
Chairman, Mrs, Carol Hall

"The 1620 as a Data Collector'" - Robert L. Shutt . « « « + «
"An Alumni Records System for the 1620" - William L. Paxton.

"Student Record Keeping by Computer' - James R, Oliver,
Russell Schouest and Ronald DeKerlegand « o« ¢« o o ¢ o & + &

IV. Wednesday Session

IBM 1500 Instructional System
Chairman, Frank Maskiell

1500 Computed Assisted Instruction (CAI)" - Dr. J. L. Stone

1800 Systems PrOjeCt I I R R I R R T R A N
Chaiman, C. Pearson

Contributed Program Library
Chairman, Laura B, Austin

"Contributed Program Library' - Fo As MeYKSs o ¢ @ o ¢ ¢ o &

ConverSion PrOjeCt (SystemS) L T S T T Y S S S Y S S S S R S
Chairman, James Stansbury

1620 Application Papers-Operation Research
Chairman, James R, Oliver

"Network Analysis in Health Program Management'' - Norman L.
Dmfee o o @ [I } L] [] . [] L) e L] L] LI] [} . [] [[] L I] ¢« o . .

"The Analysis and Design of a Standarized Program for
Continuous Forest Inventory" - John F, Jewell « « « « o o &

vii

Page

433

436

457

458

466

473

489

viii

' Page
"Project Management - Status Simulator'' - Ernest R,
Johnson + + o 4 4 4« L I I R R T R N S S S 504

Engineering Papers
Chaimman, John Meriwether

"A Subroutine Set for Automation of Logic Circuit Design' -’
Peter Schneider , « + + & ® 4 8 0 4 6 s o0 s s 4 e e e e e s 528

"Engineering Algorithm Decoder" - John R, Ruckstuhl, Mervin C,
BUdge and Larry J{ LeBlanCes o 4 o ¢ o o o ¢ ¢ ¢ 0o 0 o o o « « 543

UniverSity Education PrpjeCt DI I T T T S S S WY S S S SRPSR *
Chairman, Marv Goldberg

Impact of Standards on Computer Users
Chaiman, Paul Bickford

"Impact of Standards of Computef Users' - J, Farley. « « « « « 556

Genefal Interest Papers
Chairman, Mrs. Carol Hall

"German-English Translation on the IBM 1620 Computer' - James A,
Lawler and Mrs, Mary C. Kerr. " o 5 8 o 6 6 & b s s e e s e s 562

"A Self-Organizing Program' - James R, Oliver. . 4+ « « & « & } 593
"A New Type of Random Number Generator" - R, G, Fryer. 597

1620 Applications Papers
Chaimman, Greg Payne

"Computer Programs for Material and Process Selection"
Donald Jt Kingo I L T S S S S Y TN T T T S S S S S 608

"Management Simulation Games' - Dr, R, L, Jensen . « « « « « . 615

Civil Engineering Papers
Chairman, Open

""Computer Analysis of Pipe Stress" - T, E, Bridge. « + o « . « 624

"On the Efficient Solution of Large Structures" - Norris L.
Hickerson . © 0 4 5 5 6 0 8 6 6 s s 8 4 s s s 4 s s s e e 0« 6506

Syste’ns Division [) [} . [2 .‘ L] [] L[] * e] . [L] [] * L] [] . [} [] L] [] [*
Chaimman, James Stansbury

Applications DiViSicno L[] [] [] . [] L[] [] . [] L] . [] ' L] L] 0 L[] L] [] L[] L] . *
Chaimman, Frank Maskiell

Ad!ninistrativeDivision.....................
Chairman, Laura B, Austin

Installation Management DiviSion: + o« o o+ o o ¢ ¢ ¢ s ¢ ¢ o o & .-

Chairman, Paul Bickford

* This report or paper was not available at time of printing.

ix

Page
*

C

New Orleans COMMON - Anniversary Meeting
AGENDA
November 28, 29, 30, 1966

Headquarters Room 261

IBM 1130 = Room 263
Sunday, November 27, 1966
T:00 -~ 10:00 p. m, Registration - Upper Mezzenine
Monday, November 28, 1966
7:00 = 8:30 a, m, Registration - Upper Mezzanine
T7:30 - 8:30 a, m, New Member Breskfast, Dutch Treat
8:30 - 10:00 a, m, Session M=l
M=1l,1 General Session
Chairmen, D, A, Jardine
‘:} Presidential Salon, Lower Mezzanine
10:00 - 10:30 a, m. Coffee - Imperial Salon, Lower Mezzanine
10:00 = 11:00 a, m, Ladies Hospitality Coffee - Pavilion Room,
First Floor
10:30 = 12:00 a, m. Session M-2

Divisional Meetings

M=2,1 Systems Division
Chairmen, James Stansbu
Presidential Salon, Lower Mezzanine

M-2.,2 Applications Division
Chairman, Frank Maskiell
Terrace Suite # 1 & 2, Sixth Floor

M=2,3 Administration Division
Chairmen, Laura B. Austin

Terrace Suite # 4, Sixth Floor

M-2.,4 1Installation Management Division
Chairmen, Paul A, Bickford
Meeting Room # 10, Second Floor

’ 12:00 = 1:30 p. m, Luncheon, inclﬁded in Registration
” Tulane Room, Lower Mezzanine

1:30 - 3:C0 p. m.

3:00 - 3:30 p. m.

3:30 - 5:00 p. m.

Session M-3

M-3.1

M-3.2

M-3.3

M-3.4

M-3.5

M-3.6

M-3.7

M-3.8

1800 TSX Committee, By Invitation Only,
Chairman, C. Pearson
Meeting Room # 3, Second Floor

1800 Systems Project I
Chairman, Open
Meeting Room # 4, Second Floor

1800 Systems Project II
Chairman, Open
Meeting Room # 5, Second Floor

1130 Systems Papers

Chairman, Peter J. Woodrow

Meeting Room # 2, Second Floor
See below for list

1620 Systems Papers

Chairman, James Stansbury

Terrace Suite # 1 &€ 2, Sixth Floor
See below for list

Applications Division
Chairman, Frank Maskiell
Meeting Room # 10, Second Floor

360 Systems Project
Chairman, Richard Pratt
Perrace Suite # 4, Sixth Floor

Installation Management and Personnel
Training '

Chairman, Faul A. Bickford

Meeting Room # 9, scoond Floor

Coffee - Imperial Salon, Lower Mezzanine

Session M-4

M-4.1

M-4.2

M-4.3

1800 TSX Committee, By Invitation Only
Sesgion M-3.1 Continued
Mecting Room # 3, Second Floor

1800 Systems Project I
Sessicin M~3.2 Continued
Meeting Room # 4, Second Floor

1800 Systems Préject II
Session M-3.2 Continued
Meeting Room # 5, Second Floor

o

3:30 - 5:00 p. m.
Continued

6:00 - 7:00 p. m.

M-u 0“

.M‘“‘cs

M-4.6

M-4.7

M-4.8

1130 Systems Papers

Session M-3.4 Continued

Meeting Room # 2, Second Floor
See below for list

1620 Systems Project
Chairman, James Stansbury .
Terrace Suite # 1 € 2, Sixth Floor

S. S. P. Application Division
Chairman, Frank Maskiell
Meeting Room # 10, Second Floor

360 Systems Project
Session M-3.7 Continued
Terrace Suite # 4, Sixth Floor

1620 Application Papers

Chairman, Guy George

Presidential Salon, Lower Mezzanine
See below for list

Cocktail Hour, Royal Salon

8:30 - 10:00 a. m.

Tuesday, November 29, 1966

Session T-1

T"lol

T-1.2

T-l.3

T-1.4

- T-1.5

Utilities Project
Chairman, E. J. Orth, Jr.
Meeting Room # 2, Second Floor

1800 Systems Director-Advanced, Tutorial
V. Boyer, IBM

Chairman, C. Pearson

Meeting Room # 4, Second Floor

1800 Papers

Chairman, C. Pearson

Meeting Room # 5, Second Floor

Session Starts at 8:45 a. m.
See below for list

Commercial Subroutine Package (FORCOM)
1130 Systems, R. K. Louden, IBM
Chairman, Peter J. Woodrow

Meeting Room # 3, Second Floor

‘Languages Project

Chairman, James Stansbury
Meeting Room # 9, Second Floor

8:30 = 10:00 a, m,
Continued

10:00 - 10:30 a, m,

10:00 « 11:00 a. m,

10:30 - 12:00 a, m,

12:00 = 1:30 p. m,

T‘loé

T'loT

University Education Papers

Chairman, Marv Goldbert

Meeting Room # 10, Second Floor
See below for list

360 Papers Systems

Chairman, Richard Pratt

Terrace Suite #E, Sixth Floor
See below for list

Coffee ~ Imperial Salon, Lower Mezzanine

Ladies Hospitality Coffee - Pavilion Room,

First Floor

Session T=2

T=2,1

T=2,2

T‘2'3

T-Q.h

T‘205

Tw2,6

T=2.7

Iunch

Utilities Project
Session T-l,1 Continued
Meeting Room # 2, Second Floor

1800 Systems Director
Session T=-1,2 Continued
Meeting Room # 4, Second Floor

1, 1800 Education Plans, G. Wolf, IBM

2. 1800 Available RPQ's and Specisal Systems,
F, Schneider

Chairmen, Paul Bickford

Meeting Room # 5, Second Floor

1. Small University Accounting Systems,
Peter Rhodes, IBM

2. 1130 User Experience Panel

Chairman, Peter J. Woodrow

Meeting Room # 3, Second Floor

1620 Information Retreival Papers

Chairman, James R, Oliver

Terrace Suite # 1 & 2, Sixth Floor
See below for list

University Education Project

Chairman, Marv Goldberg
Meeting Room # 10, Second Floor

360 Systems Project
Chairmen, Richard Pratt
Terrace Suite #4, Sixth Floor

o

1:30 - 3:00 p. m. Session T-3

0 T-3,1 Utilities Project
Session T-1.1 Continued
Meeting Room # 2, Second Floor

T-3.2 1800 I/0-Advanced Tutorial, B. Landeck, IBM
Chairman, C. Pearson
Meeting Room # 4, Second Floor

T-3.3 1800 Prospro, H. Bass,"EBM
Chairman, Open
Meeting Room # 5, Second Floor

T-3.4 1130 Papers
Chairman, Peter J. Woodrow
Meeting Room # 3, Second Floor
See below for list

T-3.5 1620 Math € Statistics Papers
Chairman, Jack Testerman
Terrace Suite # 1 & 2, Sixth Floor
See below for list

T-3.6 General Interest 1620 Papers
Chairman, Greg Payne
Terrace Suite # 4, Sixth Floor
m See below for list

T-3.7 Panel on T/S vs. Stand Alone
Chairman, D. A. Jardine
Meeting Room # 10, Second Floor

3:00 - 3:30 p. m. Coffee - Imperial Salon, Lower Mezzanine

3:30 - 5:00 p. m. Session T-4
T-4.} Utilities Project
Session T-1.1 Continued
Meeting Room # 2, Second Floor

T-4.2 1800 I/0-Advanced Tutorial
Session T-3.2 Continued
Meeting Room # 4, Second Floor

T-4.3 1800 Absolute Coding Examples
" Chairman, C. Pearson
Meeting Room # 5, Second Floor

T-4.4 1130 Continuous System Modeling Program,
20 minutes, Robert D. Brennan, IBM
Chairman, Peter J. Woodrow
Meeting Room # 3, Second Floor
Demonstration after talk in Room 263

3:30 - 5:00 p. m.
Continued

T-4.5 Open Board Meeting
Chairman, D. A. Jardine
Terrace Suite # 1 &€ 2, Sixth Floor

T-4.6 Engineering Papers
Chairman, Guy George
Meeting Room # 10, Second Floor
See below for list

T-4.7 1620 Data Processing Papers
Chairman, Mrs. Carol Hall
Terrace Suite # 4, Sixth Floor

See below for list

8:30 - 10:00 a. m.

10:00 - 10:30 a. m.

10:00 - 11:00 a. m.

Wednesday, November 30, 1966

Session W-1

W-1.1 1500 Computed Assisted Instruction (CAI),
' Dr. J. L. Stone
Chairman, Frank Maskiell
Meeting Room # 3, Second Floor

W-1.2 1800 Systems Project
Chairman, C. Pearson
Meeting Room # 4 & 5, Second Floor

W-1.3 Contributed Program Library, F. A. Merks, IBM
Chairman, Laura Austin
Meeting Room # 9, Second Floor

W-1.4 Conversion Project (Systems)
Chairman, James Stansbury
Meeting Room # 2, Second Floor

W-1.5 1620 Application Papers-Operation Research
Chairman, James R. Oliver
Terrace Suite # 1 & 2, Sixth Floor
See below for list

W-1.6 Engineering Papers
Chairman, John Meriwether
Meeting Room # 10, Second Floor
See below for list

Coffee - Imperial Salon, Lower Mezzanine

Ladies Hospitality Coffee - Pavilion Room,
First Floor

10:30 - 12:00 a. m.

©

12:00 - 1:30 p. m.

1:30 - 3:00 p. m,

3:00 - 3:30 p. m,

Session W-2

W-2.1 University Education Project
Chairman, Marv Goldberg
Meeting Room # 9, Second Floor

W-2.2 1800 Systems Project
Session W-1.2 Continued
Meeting Room # 4 &€ 5, Second Floor

W-2.3 1Impact of Standards on Computer Users,
J. Farley, IBM
Chairman, Paul Bickford
Meeting Room # 3, Second Floer

W~2.4 General Interest Papers
Chairman, Mrs. Carol Hall
Meeting Room # 2, Second Floor

See below for list

W-2.5 1620 Applications Papers
Chairman, Greg Payne
Terrace Suites # 1 § 2, Sixth Floor
See below for list

W-2,6 Civil Engineering Papers
Chairman, Open
Meeting Room # 10, Second Floor
See below for list

Lunch
Session W-3
W-3.1 Systems Division

Chairman, James Stansbury
Terrace Suites # 1 & 2, Sixth Floor

W-3.2 Applications Division
Chairman, Frank Maskiell
Presidential Salon, Lower Mezzanine

W-3,3 Administrative Division
Chairman, Laura Austin
Meeting Room # 10, Second Floor

W-3.4 Installation Management Division
Chairman, Paul Bickford
Meeting Room # 2, Second Floor

Coffee - Imperial Salon, Lower Mezzanine

3:30 - 5:00 p. m.

Answers to Sound Off Held During General Session
M-1

Chairamn, D. A. Jardine

Presidential Salon, Lower Mezzanine

»

€

O

USER & IBM CONTRIBUTED FAYERS

m Section Title and Author

M-3.4 1. "113C MYonitor" - Gene Lester - IBM - 60 min.

2. "1130 Compiler'" - Dion Johnson - IBM - 30 min.

M-3.5 1. "SYMTRAN: The Addition of Formal Algebraic
Manipulative Capabilities to FORTRAN with Format" -
Mary Clo Carey - University of Southwestern
Louisiana - Elementary - 25 min.

2. "A Processor for both SPS and FORTRAN'" - James
R. Oliver and Guy George - University of
Southwestern Louisiana - Intermediate - 20 min.

3. '"University of Mississippi Floating Point
Subroutines" - Richard D. Ross - University of
Mississippi - Elementary - 25 min.

4. "A Computer Plotting Language" - James R. Oliver
‘:j and John McMahon - University of Southwestern
Louisiana - Intermediate - 20 min. '

M-4,4 1. "1130 Compiler", continued for M-3.4 - Dion
Johnson - IBM - 30 min.

2. "1130 Disk and Card Programming Techniques" -
Krauf - IBM -~ 60 min.

l M-4.8 1. '"Relocatable Data-Conversion Subroutines for

| 1620 SPS II" - W, Norris Tuttle - General Radio
‘ Company - Intermediate - 20 min.
|

2. '"Teletype Input to the 1620 on an Interrupt Basis
While Operating Under Monitor I" - Prof. Don Box,
James H. Hughes and Hugh B. Kerr - Tennessee
Technological University - Intermediate - 20 min.

Section

Title and Author

M-4.,8, contd.

T-1.3

T-1.6

T-1.7

T-2.5

"General Format Conversion Program' -
Robert B. Balder - Rockville, Maryland -
Intermediate - 25 minutes

"General Card to Printer Program'' - Janet
Allen - PIONEER Computing Department -
Eléméfitary -=-25 minutes

~ "Hybrid Computer Simulates Stell Process" -
Everett L. Keener - Applied Research
Laboratory, U. S. Steel - Elementary - 30 minutes

"Computer Requirements for the Undergraduate
College" - Robert C. Bushnell - Oberlin
College - Elementary - 30 minutes

"Computerized Library Circulation' - Guy George
University of Southwestern Louisiana - Inter-
mediate - 20 minutes

"USL Student Scheduling" - Jack D. Testerman
and Earl K. Turner, Jr. - University of
Southwestern Louisiana - Intermediate - 30 minutes

"Scientific Computing at an Astronomical
Observatory, FORTRAN lLanguage Timings on
360/30, 360/40 and 360/50" - Robert L. Shutt -
National Center for Atmospheric Research -
Elemeptary - 15 minutes

"FORTRAN Debugging on the IBM 360" - James
S. Taylor - Systems Analysis Department -
Intermediate - 45 minutes

11620-360 Simulation" ~ H. Klissen - IBM -
30 minutes

"A Diagnostic Case Presentation Program" -
Roger Gudobba, James L. Grisell, and Peter
Beckett - Detroit, Michigan - Intermediate. -

30 minutes

10

) W'

o

11

Section

Title and Author

T-2.5 Contd.

T-3.4

T-3.5

2. "An Information Storage and Retrieval System
for Radiological Surveillance Data’ - Nancy
A. Paquin and Claudette Thompson - Rockville,
Maryland - Elementary - 30 minutes

3. '"RAGE - An Inforamtion Retrieval Language® -
Jack D. Testerman and Joseph B. Tinker -
University of Southwestern Louisiana -
Intermediate - 30 minutes

1. "On-Line Debugging on the IBM 1130' - Peter
J. Woodrow - Princeton, New Jersey - Inter-
mediate - 45 minutes

2. "1130 Data Presentation System, Graphic-
Plotting Language'' - Richard E. Weber -
IBM Manufacturing Industry Development -
Advanced - 45 minutes

1. "A Disk-Oriented Cross Tabulation Program" -
Donald L. Wright - Georgetown University -
Intermediate - 30 minutes

2. "Sampling with Unequal Probabilities and Without
Replacement’ - Ronald G. Kleibrink - University
of Texas, Medical Branch - Intermediate -

15 minutes

3. "Estimation of Power of F Test by Patnaik's
Approximation' - Sudhir N. Dalal - University
of Texas, Medical Branch - Intermediate -

15 minutes

4. "Reliability Predictions Using an IBM 1620
Computer" - M. J. Cunniffe and W. H. Bleuel -
Rochester, New York - Intermediate - 30 minutes

1. ‘"Computer Assisted Painting’ - James R. Oliver -
University of Southwestern Louisiana -
Elementary - 20 minutes

2. ‘“Computational Linguistics Program" - James
R. Oliver and Sam Baty - University of
Southwestern Louisiana - Elementary - 20 minutes

Sectidn .«

Title and Author

T-3.6, Contd.

T-4.6

T=4.7

W-1.5

W-1.6

3. '"Useful Hints for Writing High-Speed

Compilers'" - R. S. Milner - University
of the West Indies - Intermediate -~
45 minutes

"Three-~-Dimensional Plotting Using the

IBM 1620 and CALCOMP 564 Plotter' -

R. G. Nelson - Bell Telephone Laboratories
Intermediate - 30 minutes

"DRAFT" - J. R. Birdwell - Dow Chemic&l
Company - Elementary - 45 minutes

"The 1620 as a Data Collector” -
Robert L. Shutt - Sacramento Peak
Observatory - Intermediate - 30 minutes

“An Alumni Records System for the 16207 -
William L. Paxton - Bucknell University -
Intermediate - 30 minutes

"Student Record Keeping by Computer" -
James.R. Oliver, Russell Schouest,

and Ronald DeKerlegand - University
of Southwestern Louisiana - 20 minutes

"Network Analysis in Health Program
Management'" - Norman L. Dunfee -
Rockville, Maryland - Intermediate -
30 minutes

"The Analysis and Design ol a Standarized
Program for Continuous Forest Inventory! -
John F. Jewell - Michigan Technological
University - Intermediate - 30 minutes

"Project Management - Status Simulator” -
Ernest R. Johnson - General Motors
Institute - Intermediate - 20 minutes

“A Subroutine Set for Automation of Logic
Circuit Design” - Peter Schneider -
Watson Research Lab, IBM - Intermediate -
S50 minutes '

12

C

®

C

Section

Title and Author

W-1.6 Contd. 2.

W-2.4 1.

w“"2-5 lc

W-2.6 1.

"Engineering Algorithm Decoder' -

John R. Ruckstuhl, Mervin C. Budge,

and Larry J. LeBlanc - University of
Southwestern Louisiana - Intermediate -
50 minutes

‘German-English Translation on the IBM
1620 Computer” - James A. Lawler and

Mrs. Mary C. Kerr - The Tennessee
Technological University - Intermediate -
40 minutes

"A Self-Organizing Program' - James R.
Oliver - University of Southwestern
Louisiana ~ Intermediate - 20 minutes

'"A New Type of Random Number Generator -
R. G. Fryer - Sylvania Electronic Systems
Williamsville, New York, 14221 -
Elementary - 30 minutes

'"Computer Programs for Material and
Process Selection - Donald J. King -
Flint, Michigan - Intermediate -

45 minutes

‘‘Management Simulation Games' - Dr. R. L.

Jensen - Emory University - 30 minutes

“Computer Analysis of Pipe Stress' -

T. E. Bridge -~ Philadelphia, Pennsylvania
Technical - 45 minutes

“On the Efficient Solution of Large

Structures" - Norris L. Hickerson -
Tennessee Technological University -
Elementary - 20 minutes

13

Adninistration Division
November 28, 1966

The Administration Division held an organizational meeting at which the
objectives and scope of the Division and projects were discussed. There
were 18 people in attendance.

By direction of the Executive Vice-President under the full Executive
Board, the Administration Division will have broad responsibilities for
all activities which are necessary to operate COMMON as an organization.
The Division will carry out these responsibilities thmugh projects under
the following categories:

Program Library
Reference Manual
Meeting Plans
Communications

Each project is further defined below.

A. Program Library - Scope and Objectives.
1. Act as a steering committee in all matters pertaining to program

information distribution from the IBM Distribution Center with
the following guidelines:

a. Determine program and documentation standards for customer
contributed programs.

b. Maintain clear channels with IBM for customers to obtain
contributed programs directly.

c. Establish procedures for review of contributed programs and
their subsequent certification or decertification.

2. Scope will cover program information distribution for 1620, 1130,
1800, and 360. COMMON members from the 360 area will work with
representatives from GUIDE and SHARE and IBM in a Jjoint effort.
The representatives for the other machines will work with IBM
Program Information Department representatives.

B. Reference Manual - Scope and Objectives.

1. Present to all member installations the information necessary to
understand the organizational structure, the obligations and
advantages of membership, and the standards set forth by COMMON.

2. Scope of the Reference Manual will cover:
ao By-LaWS-

b. Lists of officers and Executive Board members.

-1-

1k

15

c. Membership list.

d. List of current projects and their directors and the
latest progress reports of project activity.

C. Meeting Plans - Scope and Objectives.

1.

2.

To coordinate the planning of all COMMON meetings with the ob-
jective of presenting a unified program of interest to all mem-
bers and fostering the continuation of existing projects and
initiation of new projects.

This project will guide the individual Progream and Arrangements
chairmen and assist them in every way possible.

D. Communicetions - Scope and Objectives.

l.

2.

The scope of this project is twofold, communications with members
and inter-user group communications.

For communications with members the project shall be responsible
for distributing through the International Secretary all corres-
pondence, project reports, and submitted articles or items deemed
to be of interest to the general membership. This will also
include announcements from the Executive Board, ballots, and infor-
mation from other users groups.

Inter-user group communications will be handled by a member of

the Executive Board and will include receiving and giving of
information pertinent to other users groups in our relations with
IBM and professional groups such as ACM and the American Standards
Association. Information deemed to be pertinent to the membership
will be forwarded by this project to the International Secretary
for inclusion in the Secretary's distribution.

The following Pro tem chairmen were selected for this Division:

Contributed Program Library - PREP Forms

Miss Gaye Baber (145k)

Research Division

National Education Association

1201 16th Street, N.W.

Washington, D. C. 202 223-9400

Reference Manual

B. Roswell Russell (3363)
College of Wooster
Wooster, Ohio L4691

-

16

Inter Users Group Communications
J.U.G, Inter Library Exchange
Walter A. Delegall

Schering Corporstion
Bloomfield, N. J.

£
¢

7

Meeting

Administration Division

Attendees

Charles E. Maudlin, Jr.

Gaye M. Baber

Robert B. Balder

Norman I,. Dunfee

Walter A. Delegall
Maxwell Marks
Robert H. Wilkin
J.AN. lee

B. Roswell Russell
P. Ionergan
Arthur ¥F. Hallem
Fred Caprez

Carol A. H., Hall
James R. Oliver
John F. Keller
Joyce E. Stout
Stanley G. Knight

Robert C. Allen

November 28, 1966

Indiana State University, Terre Haute,
Indiana

National Education Assoc., Washington, D.C.

U. S. Public Health Service, Div. of
Radiological Health, Rockville, Md

U. S. Public Health Service, Div. of
Radiological Health, Rockville, Md

Schering Corporation, Bloomfield, N.J.
IBM Corporation, White Plains, N.Y.
Hooker Chemical, Niagara Falls, N.Y.
University of Mass., Amherst, Mass.
College of Wooster, Wooster, Ohio

IBM Corporation, White Plains, N.Y.
Firestone Tire and Rubber, Akron, Ohio
Tacoma City Light

Touisiana State Univ., Baton Rouge, Ia.
Univ. of Southwestern Ia., lafayette, Ia.
ILoyola Univ., New Orleans, Ia.

Dow Chemical, Midland, Michigan
Trunkline Gas, Houston, Texas

University of Victoria, Victoria, B.C.,
Canada

PRELIMINARY REPORT OF THE
TSX REVIEW COMMITTEE

Presented at:
COMMON Meeting
New Orleans, Louisiana

November 30, 1966.

Members:

Wayne Barnes
Dick Edsall
Cliff Foerster
Max Felix
Charls Pearson
Sterling Weaver

Gio Wiederhold

18

SHARE
IBM
IBM
COMMON
COMMON
IBM
SHARE

&

e

INTRODUCTION

This 1s a preliminary report of the Time-Shared Executive
System for the IBM 1300 Data Acquisition and Control System
by the joint TSX Review Committee (TSXRC). COMMON, IBM
and SHARE participated in this review. GUIDE was invited
to participate but did not elect to do so. The report has
been reviewed by IBM for accuracy.

The reader should be aware that the comments in the following
sections, for the most part, are concerned with functional
aspects of the system rather than performance characteristics.
The report is critical in tone since the Committee felt its
Jjob was to discover and report potential deficiences in TSX
rather than iterate and praise the desirable features, of
which there are many.

19

TABLE OF CONTENTS

Introduction

Philosophy

1800 TSX System Generation

1800 TSX System Director

1800 TSX Nonprocess Monitor Supervisor
1800 TSX Disk Utility Program (DUP)
1800 TSX Assembler Language

1800 TSX FORTRAN

1800 TSX Core Load Builder

1800 TSX Subroutine Library

1800 TSX Simulator

1800 TSX Diagnostics

1800 TSX Languages

1800 TSX Manuals

Page

o v = M

13
16
19
2l
25
26
29
34
37
39

20

©

21

PHILOSOPHY

Early in the Commitice's investigation of TSX, three important
subjects were discusccd. These three subjects continually re-
appeared. The Committee believes that they have a major impact
on the design of an operating system. As such, the Committee
strongly recommends that Users Groups provide definite input on
these areas.

The first involves the trade-off between Multiprogramming and
Core Exchange methods. The TSX Committee agrees that multi-
programming, as a design objective, 1s necessary for some
applications and extremely desirable for the user who is
willing to buy a 32K multi-disk drive system. The Committee's
definition of multiprogramming is:

Several independent programs residing concurrently within a
single main computer storage that makes maximum use of all
available machine cycles by transferring control between programs
based on some form of priority and the availability of both
process and system I/0 devices.

For systems with 8K or 16K memory, the core exchange method,
such as TSX, is adequate for many applications and utilizes core
more efficiently. However, this is generally at the expense of
throughput due to the problem of overlapping I/O.

Secondly, there is the distinction between process and non-
process Jjobs. The Committee agrees there are installations
where it is difficult to make a distinction between process and
non-process Jjobs and also there are times when non-process Jjobs
may have higher priorities than process Jjobs. However, other
installations require a more rigorous discipline and distinction
in the area.

The manner in which Time-Sharing is utilized in a 'particular
installation determines, to a great extent, whether a dlstlnctlon
between process or non-process should be made

The third subject involves the type of installation and/or
applications, of which there are many. For example:

Dedicated installations
Integrated installations
Mature applications

Research oriented applications
Laboratory data acquisition.

Ul F=w -

The type of application for which the system is intended controls
many of the design considerations. The Committee feels that
system modularity is the key concept involved here, but questions
whether it is the answer to all problems of this type.

L

22

The TSX Review Committee recognizes the need to establish a more
effective relationship between User Groups and IBM so that a match
between user requirements and future operating systems can be
achieved.

ke

1800 TSX SYSTEM GENERATION

INTRODUCTION

This report is based on a review of Phase I TSX Systems Generation.
Any changes in generation of TSX Phase II are anticipated to be
minor. '

System Generation is a process, or series of steps, that
generate the TSX system for the 1800. The main purpose 1is to
process certain routines and build the various components which
comprise the TSX system and construct the system on the resident
disk file. Ideally the only role that the user should have to
perform in System Generation would be to define his physical
system parameters and assign interrupt levels. The actual
building or generation of the TSX system should be handled
through the 1800 by a series of system programs that require
little or no intervention by the user.

METHOD

The method used in generation of 1800 TSX is to provide the user

with a set of detailed procedures that will provide step-by-step
instructions from card box to on-line processor. There are M“\
approximately 80 (at last count) of these detailed steps that &
must be performed by the user. In addition, the procedures

involve much card manipulation, hand filing of cards, and also

involve settings of data, sense, and program switches. The

format of the relocatable object decks used for constructing TSX

is identical to the format of object decks derived from the TSX

FORTRAN and Assembler.

PREPARATION

It is advisable to thoroughly review the entire written procedure
before attempting System Generation. The step-by-step
instructions, dictionary of all error messages, as well as the
formats for all control cards, are presented in the 1800 Operating
Procedures, C26-3754. Sinece the control cards define the entire
system to TSX, including interrupt levels, considerable care
should be exercised in the planning and preparation of these cards.

REQUIREMENTS
Machine - 8192 words of core, 2310 disk, 1442 card read-
punch, 1053 or 1443 or 1816 printer.
Time - QSystem Generation time varies considerably
based on individual specifications. Initial |
system generation requires a minimum of {E}

approximately 3 hours:

-5-

23

a) 1/2 hour system load time.

b) 1-1/2 hours Task Assembly (including
1443 output).

c) 1 hour System Director assembly.

Subsequent skeleton builds involve the time
required for the recompiling or assembling of
user subroutines on line and approximately a
5 minute off-line time to perform the actual
skeleton build function prior to new process
cold start.

RESTRICTIONS

Skeleton Modification

While relocatable programs can be deleted and replaced on
line by the Disk Utility Program (DUP) there is no known
method of modifying any features of the TSX skeleton on
line. Changes in the skeleton area (including user
written skeleton interrupt routines) will require an off-
line skeleton build. .

System Area Modification

Any modifications (including IBM distributed modifications)
of the following system areas must be done off-line using
the system loader.

FORTRAN Core Load Builder
Assembler Error Detection Prog.
Disk Utility Prog. Supervisor

Simulator Cold Start Prog.

However, modifications to the subroutine library may be
performed on-line through the Disk Utility Progran.

Logical Unit Number

The logical unit numbers (LUN) associated with FORTRAN I/0
statements must be assigned during System Generation.

There is no way of reassigning the LUN at program execution
time.

CONCLUSION

l.

Initial System Generation involves many manual procedures
that the user must perform. The more manual intervention
required the greater the chance of error.

Modification to the skeleton area and many of the system
programs requires the user to go off-line. This will present
a major problem to some totally on-line users (off-line means
not controlling process).

2y

3. Logical unit numbers (LUN) cannot be assigned at program
execution time. This restriction should be removed to
facilitate exchange of programs between users.

RECOMMENDATIONS

1. Possible development of an IBM SyStem,Program for multi-
drive users that would build a user 1800 TSX system from an
IBM supplied TSX Nucleus and user defined system parameters.

2. Modification and rebuilding of the TSX system should be
possible on line under control of TSX.

3. A control card method should be developed to assign logical

unit numbers at program execution time.

°

25
1800 TSX SYSTEM DIRECTOR

INTRODUCTION

The system director directs the handling of interrupts, mainline
process programs and error routines and makes the system available
to the non-process monitor.

METHOD

The system director resides in core at all times as part of the
skeleton. It is read from disk only during a cold start or EAC
re-load operation. Primary entry is from internal and external
hardware interrupts and calls from the user's programs. The
principle components are (see also Figure 1):

a MIC Master Interrupt Control
b PSC Program Sequence Control
c TSC Time Sharing Control
d ITC Interval Timer Control
e EAC Error Alert Control
f Mainline Core Load Queue Table
g Level Work Areas
A. The MIC (Master Interrupt Control) is a re-entrant routine.

It directs all hardware interrupts (internal, I/0 and
external) and programmed interrupts to the desired
routines. Control returns to MIC as long as unserviced
interrupts exist.

Interrupts are directed by fixed words in lower core (addr.
11 and up) to the individual Level Work Areas in the
skeleton (104 words - one area for each interrupt level)
where indicators are set and the index registers are saved.
Control is then transferred to MIC which first saves the
accumulator and the status word for the interrupt level
already in process. The ILSW for the interrupt level to
be serviced is sensed. A branch is made via the Level
Work Area through the Interrupt Branch Table (IBT) residing
within each core load in transient core. From the IBT I/0
interrupts are directed to the required routine. For ‘
Process interrupts, MIC is re-entered to sense the PISW. A
skeleton resident Interrupt Core Load Table (ICLT) is
assoclated with each PISW. The ICLT indicates for each bit
in the PISW one of the four possible methods for servicing
~the interrupt and it contains the required addresses.

1 In-core-with-skeleton :

2 Out-of-core interrupt core load
3 In-core-with mainline

L Record

Methods 3) and 4) may require different information in the

_8-

; : . 26
ICLT from one core load to another. The Program Sequence
Control PSC makes the necessary changes to the ICLT when

the core load is read into core. It obtains the
information from the Interrupt Status Table (IST) which
resides with each process mainline.

The number of interrupt levels to be serviced must be defined
at system generation. Not all the levels defined must be
used. The user can, and in fact should, make allowance for
future expansion. Should it be necessary in the future to
change the number of defined interrupt levels, all core loads
without exception will have to be reassembled. This is
because the Interrupt Branch Table (IBT) and the Interrupt
Status Table (IST) which reside with the core loads have to
be amended accordingly. If the ICLT contains no specific
information, the interrupt is recorded by default.

Recorded interrupts can be interrogated and reset by the

QIFON call in any user written routine, interrupt or mainline.

They can also be reset by the execution of a CALL CLEAR.

Whenever an out-of-core interrupt core load is being
processed, TSX will mask all other interrupt levels for

which out-of-core servicing has been specified. There is

no software queueing facility for out-of-core interrupt core
loads. The core exchange operations wait pending completion
of all I/O operations which depend on parameters or data
areas in transient core.

The PSC (Program Sequence Control) is responsible for the
orderly transfer of control from one core load to the next.
A core load may also temporarily be saved on disk pending
the processing of another core load (CALL SPECL, CALL BACK)-.
All PSC functions are restricted to process mainline core
loads.

The next core load to be executed is indicated to PSC by the
execution of CALL CHAIN or CALL SPECL statements or by the
VIAQ subroutine.

Though the queue table itself 1s part of the System Director
the qu’eue statements QUEUE, UNQ, QIFON AND VIAQ are designed
as subroutineswhich can be kept in skeleton or with the main-
line at the user's discretion. Processing of mainline is
not suspended as a result of queuing a higher priority main-
line.

Multiprogramming was not part of the objectives of TSX.

Some degree of time sharing is achieved by the core exchange
method under TSC (Time Sharing Control) which is entered from
the execution of a CALL SHARE. This statement may be part
of the user's process program intended for special
applications where time sharing is desired without the use of
the queueing technique. The VIAQ also contains this state-
ment for execution when the queue table is empty. As a
result, the process core load which is in progress or has

@

27

just been completed, is saved on disk and control is
transferred to the nonprocess monitor or the nonprocess
core load if one has been previously interrupted and

stored on disk. The computer remains in the nonprocess
mode for a user specified time unless a CALL ENDTS is
eXecuted by an interrupt routine. As a result, a complete
core exchange again is made and the process program is
pursued at the instruction following the CALL SHARE.

When located in the VIAQ subroutine, it may simply result
in a loop back to CALL SHARE, if the queue is still empty,
followed by another core exchange. All waits are performed
in the nonprocess mode.

The programmer of the nonprocess core load has no control
over the occurrence of a core exchange during the execution
of his program.

The ITC (Interval Timer Control) services all interrupts
involving the three machine timers A, B and C, the nine
programmed timers and the programmed real time clock. The
programmed timers and the real time clock are based on timer
C. It is reset by subtraction rather than by loading of a
fixed value. Accurate time is therefore kept even when
the response to the timer interrupt itself may be delayed.
Timer C also services the "no-response routine" for the
1053/1816 Printers in the skeleton I/0. As an option it
services the Operation Monitor during nonprocess execution.
Periodic interrupts are available from interval timers
rather than from a real time clock. The programmed timers
interrogate the ICLT, but only skeleton count subroutines
are entered into. If there is no such routine the
condition is recorded.

The EAC (Error Alert Control) program is called to process
all error conditions. The user has the option at system
generation time to specify that core be saved under certain
error conditions. A user written error subroutine can be
included with each process core load. This subroutine is
entered before EAC's error decision subroutine. The latter
analyses the error, prints an error message and indicates
one of the four possible recovery procedures:

Continue through the I/0 routine

Reload the System Skeleton and Cold Start Program
Call the User Specified Restart Core Load
Continue Through the Interrupt Level.

PROBLEMS AND SUGGESTIONS

1.

The Interrupt Branch Tables (IBT) incorporated in each
individual core load (non process, process, interrupt and
combination) play vital roles in the servicing of all
interrupts. Being located in variable core, they cannot

9a

28

be storage protected and thus are vulnerable to destruction
by programming bugs. The fact that the IBT's depend on the
number of interrupt levels defined at system generation time
requires the user to plan ahead by defining levels to the
system which will not be used initially but possibly at a
later date.

A new system generation is required for the definition of
additional levels and all core loads have to be rebuilt.
The user may thus be required to remain off-line until the
required core loads are again available. It has been
suggested to include a basic Interrupt Branch Table IBT in
the skeleton with all branches to in-skeleton routines

storage protected. Branches to interrupt routines residing
with mainline may be filled in at core load time and reset
on exit from that core load. Their format should be

compatible with changes in the number of defined interrupt
levels.

The Interrupt Status Tables (IST) which reside with all
process mainline, and combination core loads depend also
on the number of interrupt levels defined.

QIFON is the only means offered by TSX to interrogate
recorded interrupts. The desired decision may not always
be the queueing of a core load. It is suggested to add a
routine to test the recorded interrupt and execute a branch
if on.

A suggested additional function to TSX is to have in-
skeleton "load-on-call" servicing of disk resident interrupt
routines. A read-in area in the skeleton should be
provided for each level of interrupt for which this type of
servicing is desired.

Some users feel that they are restricted by TSX offering
only one level of core exchange for interrupt handling.
The reasons for only one level were considerations of disk
storage requirements and exchange time.

The core load queue is restricted to one entry for each
individual core load with the same priority.

The VIAQ routine calls SHARE if the QUEUE is empty. When-
ever the time period, specified for SHARE by the user at
system generation, is up a core exchange takes place before
TSX checks whether any core loads have been queued. There
is a delay in the attention to newly queued core loads even
after execution of the ENDTS routine until the program
timers are updated.

It is suggested to provide a more efficient method for time

sharing than SHARE when queueing techniques are used, which
avoids unnecessary core exchanges and give immediate

-10-

lo.

29

attention to core loads entered into an empty queue.

It is realized that the distinction between process and non-
process work cannot always be clearly made. The programmers
should therefore be provided with some option to prevent

suspension of "nonprocess core loads" during critical phases.

Consider the following types of core loads:

a) Core loads of very short duration, which must be
executed within a matter of seconds at random or
periodic intervals.

b) Core loads of several seconds duration at random or
periodic intervals of one minute or longer, which
must be executed within their interval.

c) Core loads of several minutes duration at low
frequencies.

d) Nonprocess monitor jobs.

e) Background process core loads of lower priority than
monitor Jjobs.

On-line core loads (a) whose repeat frequency period or
permissive time delay is considerably shorter than the
execution time of core loads (b) must be able to suspend
servicing the latter.

A similar requirement exists for core loads (b) to suspend

(¢)-

However, TSX permits servicing of on-line core loads at
two distinct levels only, namely INTERRUPT and PROCESS
core loads. The servicing of "background" process core
loads has not been part of the objectives for TSX.

As such, TSX does not have the ability to service all of the
above core loads as core loads in a true priority fashion.
In order to handle the situation, the user must make core
loads (a) skeleton interrupt subroutines. To obtain true
priority execution, the user must include in skeleton all
interrupting programs except one (i.e. one level of
interrupt core-load is provided).

To alleviate the problem, some users feel multi-level
exchange is required while other users want a multiprogramming
capability or even a combination of the two.

It is suggested that the Interval Timer Control (ITC)

-11-

lll

i2.

30

provide as an optional routine a job scheduler. This should
be able to queue core loads at fixed times or at periodic
intervals with a specified offset to the full hour or the
full minute. Specifications to be accepted from control
cards and able to be modified when the system is on-line.

Similarly, a calendar routine would be useful for some
users.

When the EAC initiates a skeleton reload the ICLT and the
printer message table are saved and restored. The same
philosophy is not maintained in respect to INSKEL COMMON
and the queue table. To let the system continue on-line
may depend on the availability of meaningful data from
INSKEL COMMON and the regular execution of queued core
loads. It should be studied how TSX could insure this.

A method should be investigated to provide job accounting
routines. .

-12-

o

O

* Not Always in Skeleton

Figure 1. ‘
SYSTEM
DIRECTOR
| TsC PSC | MIC QUEUE | EAC ITC | TABLES
| Table { evel work
. areas
—{SHARE —cHaIN — INTEX] QUEVE*| || EAC COUNT* ICLT
| in~core Communications
Table
ENDTS} |{SPECL {LEVEL "Error - friMER}
| _|Decision} ,
E——__l | Sub- | —{EAC Work 2r=a |
_[CLEAR? ‘ . Routines CLOCK* | '
—{paus | __[Back]
Error , ~arle
EXIT arron*! | Disk | _pETCLY Save Area Tzzle
» Program

Interript lavel
Work. Area z

£

32

1800 TSX NONPROCESS MONITOR SUPERVISOR

INTRODUCTION

The Nonprocess Monitor (NPM) Supervisor directs the execution of
all nonprocess core loads either IBM supplied as part of the TSX
package (FORTRAN, Assembler, Core Load Bullder, Disk Utilities -
and Simulator) or user written. It normally operates under the
System Director's Time Sharing Control. It can also be run as
a dedicated Monitor under TASK.

The functions of the NPM Supervisor are to analyze monitor
control record cards; call and transfer control to the requested
core load; perform the JOB initialization, PAUS and END OF ALL
JOBS functions. It also analyzes control record cards following
the *STORECI and *SIMULCI for the core load builder.

METHOD

The NPM Supervisor, including all monitor programs, must reside
on logical disk drive zero where it occupies 21 sectors. The
first 168 words of sector zero on this disk contains the Non-
process Communications Area which provides the logical links
between the monitor programs and the users programs. It resides
in the 1 8 words at the high end of core. This area slso
contains the loader for the monitor programs. There are some
unused words in which the sector address and word count for
additional system programs could be located.

Entry to the NPM Supervisor occurs through Console Interrupt,
from the system director's SHARE routine or from the Disk Utility
program.

Analysis of monitor control record cards extends over columns one
to five only except for the JOB card. All control records are
printed on both the system and the list printers. Invalid
control records result in an error message and cause an abort.
Blank cards are bypassed and not stacker selected. The card
read routine in the Skeleton is used if present and is designed
to recognize cards with a / in column one which turns control
over to the NPM Supervisor.

The JOB card resets the abort indicator and the effective address

for the nonprocess working storage on disk. It can also specify

which of logical disk drives 1 and 2 are expected to be running

and checks the labels on their disk packs when indicated.

The END card directs the NPM Supervisor into a wait state.

Manual intervention is possible by:

1. Depressing the 1800 CONSOLE INTERRUPT with PROGRAM SWITCH 7
ON to:

-13-

C

33

a Enter the monitor initially (Open the Card file)
b Abort a job in progress prematurely and search
for the next JOB card. :

2. Depressing the 1800 START to continue after a //PAUS card.
This still results in the desired continuation of the nonprocess
function even though the computer may be in the process

or interrupt mode.

3. Stop and restart the 1442 card reader if a job is in

progress.
The NPM Supervisor operates in several phases. The largest one
occupies 3692 words of core. Analysis is performed at card read

speed for most control cards.

RESTRICTIONS AND PROBLEMS

1. The NPM Supervisor, as well as all programs in the monitor
package, (FORTRAN, Assembler, Disk Utility, Core Load
Builder and Simulator) are limited to the use of the one
1442 card reader with the lower logical unit number.
However, this restriction does not apply to the user's

programs .
2. Control records can be entered from cards only. It 1s
agreed that this may be satisfactory to the majority of
TSX users. '

3. There is no END OF FILE control record. The user must
devise his own ways to determine the end of data input.

L. Because the high end of core is overwritten by the Non-
process Communications Area, the FORTRAN COMMON area
cannot be passed from one monitor function to another
except by the use of fixed files. NPM core loads can
pass COMMON to another one by the CALL LINK. -

5. TSX does not provide a way to split the NPM Supervisor and
Disk Utilities from the Assembler, FORTRAN and Simulator.
Tn multidisk installations it may be desirable to keep the
latter group on a separate (off-line) disk pack to conserve
space on the on-line system disk.

6. Individual programs or phases of the monitor package can
be reloaded separately, but only when the system is off-
line.

T The absence of utilities for cards, paper tape and magnetic
tape has been noted. Of these, the lack of routines to list
and reproduce cards will be most severely felt. The
monitor package also offers no routine for the loading of

14~

34

card resident core image programs directly into core
without going through disk. There is no facility for
spooling card I/0 to disk for unattended operation of
time consuming nonprocess programs.

8. When voltage process interrupt is disconnzcted or turned
off, interrupts may occur because of the zero voltage
level. Since nonprocess programs cannot CALL MASK, the
continuous voltage interrupt cannot be masked out when
using the stand alone nonprocess system.

9. Message stored previously by an aborted job are not
cleared from the message buffer.

10. There is no provision for source input from magnetic tape
or disk for ASM and FORTRAN.

CONCLUS IONS

A considerable part of the NPM Supervisor is dedicated to the
analysis of control records for the core load builder. All
supervisor functions are relatively simple and executed
efficiently.

The restrictions should be carefully reviewed.
Consideration should be given to the complete separation of
the FORTRAN Assembler and Simulator programs from the NPM

Supervisor. They could be subjected to the same TSX functions
like the user's nonprocess programs.

~-15-

35

1800 TSX DISK UTILITY PROGRAM (DUP)

INTRODUCTION

The DUP is a group of routines for the maintenance of data and
programs on disk packs while the TSX system is on-line. A few
functions, however, can only be executed when the system is off-
line. One option provides a listing of the contents on the
disk packs.

METHOD

DUP is immediately linked to the Nonprocess Monitor (NPM) Super-
visor. Like the latter, it must reside on logical disk drive
zero where it occupies 68 sectors. It is kept on disk in
"wrap-around" address format and operates in about 18 different
phases. The largest phase occupies 3692 words of core storage,
always at the high end of core. The mode of operation remains
the same for all core sizes. Principal entry to DUP i1s from
the NPM Supervisor. Other entries can occur from Assembler

and FORTRAN to perform the temporary store of the newly compiled
program and to complete the program header information.

DUP uses the card I/0 routines in the skeleton if present. Blank
cards are skipped and stacker selected when searching for control
cards. Other non-DUP or non-monitor cards result in an error
message. All DUP control records and messages are printed on
both the system and list printer.

Control cards use a column oriented fixed format which, as far
as possible, is identical to the IBM 1130 system.

Pre-requisites for most DUP functions to communicate with a disk
pack are:

a Sector Addresses.
b Numeric Lable in Word O of Sector O.
c Disk Communication Area (balance of Sector 0).

This gives information on the size and location of work
storage areas and on the Location Equivalence Tables
for the relocatable program area (LET) and for the
fixed area (FLET) containing core loads and data.

d) Valid entries in LET/FLET.

'DUP assumes exclusive responsibility for spotting and deleting

programs, core loads and data areas on disk packs and for making
corresponding entries in LET/FLET. The disk area for relocat-
able programs and LET can be packed to eliminate unused spaces
which have resulted from deletions. No packing is possible in
the fixed disk area for core loads and data (FLET). Unused
spaces in this area are used for storage of new core loads or
data, provided the space is sufficient. FLET is searched for
this purpose and the first space large enough is chosen. The
search is not extended to find the smallest possible space.

~Adjacent void areas are combined into one. No consideration

is applied to disk cylinder boundaries.

-16-

36

RESTRICTIONS AND PROBLEMS

1. Practical guide lines for estimating the requirements for
the LET/FLET areas are lacking in the reference manuals.
Once defined, the allocated space cannot be altered with-
out loss of all data on the disk pack.

2. The *DEFINE CONFG function is a System Generation function
and must be done off-line. '

3. Some users desire the means by which they can specify the
location or re-define the size of core loads or data areas
in the fixed area on the disk with appropriate entry in
FLET.

Leaving this responsibility as it is, to DUP, may be
satisfactory for fairly dedicated applications where few
changes and additions to the initial set of core loads and
- data areas are anticipated. In applications where frequent
changes and additions are made, it will lead to eventual
fragmentation of the fixed disk areas. In other words,
core loads and data areas will be interspersed by small
blocks of unused disk sectors which are too small to store
‘programs. Core loads and data areas may unnecessarily be
spread over cylinder boundaries. Increased access times
may result. The implementatien of packing techniques for
the core load area is very difficult.

L. There is a very real danger of destroying valuable information
on a disk by the *DLABL function if the pack label was left
off on the preceding job card.

5. It has been suggested that TSX provide a default routine
which causes a simple abort if the user does not specify a
re-start core load.

c. The printer output from the *DUMP and *DUMPDATA options
lacks addresses. It is restricted to hexadecimal format.
To enhance the value of these options, absolute disk
addresses and relative addresses should be provided on the
margin. Fixed point decimal and floating point data
output format are desirable.

Te The printer output from the *¥DUMPLET routine 1is only
legible to the trained eye. There are no headings.
Improvements to the format and the addition of a version
with output (LET * FLET combined) in alphabetical order
from one or more disks would help to make it a very valuable
tool. o

8. Once an interrupt core load has been assigned to an
interrupt level and bit, the user cannot get rid of 1it.
He is required to maintain a dummy core load for this
purpose. Deletion of a mainline may cause similar
problems.

-17-

G

10.

11.

12.

13.

37

To many users the *STOREDATA control card fails to imply
the true functions of this routine which is not restricted
to data. It can be used for core image programs as well
as for allocating data space. Storing of actual data or
programs 1is practically limited to re-loading of cards
obtained by the *DUMPDATA option. It would help the users
if the dump would also punch a ready-made *STOREDATA card
complete with all parameters. It has been suggested that
these functions be identified by unique control card names
which describe the functions more clearly. :

The folloWing‘foutinés'are absent from DUP:

a) DUMP and LOAD routines with parameters in terms of
disk blocks. : ‘ » B

b) COPY routine for all or part of a disk.

With the exkception of all system relocatable subroutineSg

TSX system programs are not accessible to DUP functions althdugh

FORTRAN, Assembler and Simulator can be removed*once\the
system has ‘been built. : : '

Just as it 1s possible to specify at core load build time -
(*STORECI) that the core load is to be executed as an
interrupt core load when the specified interrupt occurs,
it should be possible to specify automatic priority queueing
of a mainline core load. The QIFON routine is inadequate
for that purpose and depends on high frequency interrogation.

The maximum size of fixed data files is £5K words on the
*STOREDATA card.

-18-

38

1800 TSX ASSEMBLER LANGUAGE

INTRODUCTION

There has been considerable discussion over the past years in
regard to desired assembler functions. Many committees have
made recommendations outlining the desired approach in the
development of assemblers. There have been several highly
sophisticated assemblers developed which operate efficiently in
a relatively small amount of core. ;

The purpose of this review however, is not to discuss assembler
criteria but to evaluate the current 1800 Assembler as specified
in the IBM Manual C2-5882.

The purpose of the 1800 Assembler as defined in the manual
is to generate binary instruction code from mnemonic symbols and
use labels for other fields of an instruction. The conversion
is one for one; i.e. one machine language instruction is
produced for each symbolic instruction. While this approach
may be inadequate for an effective assembler, it nevertheless
defines what the 1800 Assembler accomplishes. It should be
pointed out at this time that the 1800 Assembler was designed to
operate in a UK core environment.

METHOD

The Assembler Program resides only on logical drive zero and
occupies approximately 7 cylinders. = The, source program is read
and processed, one statement at a time, twice during each
assembly. During the second pass, the statements are read
either from the disk or the card reader. If the second pass is
read from disk, the assembly is said to be in a one pass mode
which is the normal mode for TSX assemblies. If the second pass
- is read from the card reader, the assembly is said to be in a two
. .pass mode. The Assembler consists of 15 phases which use core
based on an overlay method. The phases are loaded and processed
automatically and require no manual intervention.

The Assembler uses an 80 word I/O buffer (SAREA) for all I/O
functions. The contents are right justified one character per
word and the card image format is converted to EBCDIC code one
column per character and replaced in the buffer. The time
required to perform an assembly seems to be dependent on the
speed of the I/0O devices used.

RESTRICTIONS
1. The Assembler Program can reside only on logical drive zero.
2. Input to Assembler must be from cards. Paper tape and

magnetic tape input is not supported.
3. Only one 16 bit word is generated for each DC constant.

This increases the size of the source deck thereby increas-
ing read time.

-19-

G

&

10.

11.

12.

39

There is no automatic relationship provided with INSKEL
COMMON . The only way in which this relationship can be
established is through a reference to 2 words in the fixed
area which contain the high core address and size of INSKEL
COMMON .

If an END card is not present in the input stream, pass 2 of
the assembly is not executed and results are not obtained.

The END card remains inside the 1442 until the first card is
punched at the end of pass 2. A separate card feed should
be issued at the end of pass 1 so that the entire source deck
is available to the operator insuring against the misplacement
of the END card.

Blank cards encountered in the input stream cause an
illegal op code diagnostic during pass 2. It should be
possible to ignore and stacker select blank cards prior to
the END card.

Use of a period to indicate EBCDIC coding in DC statements
causes confusion since in other languages this indicates a
constant with a decimal point.

All transfer vector LIBF subroutine calls generate a short
BSI instruction tagged by index register 3(XR3). If the
assembly language programmer utilizes XR3 within his program,
it becomes his responsibility to restore XR3 to point to the
transfer vector (TV) prior to issuing a LIBF. This is
accomplished by an (LDX I3 103).

The EPR statement does not change library subroutine calls
to extended prevision format nor does it change floating
point constants to extended precision.

The operation of MDX and BSC instructions pefform a multi-
tude of functions. No mnemonics are provided to help
identify each function. ' ,

There is no cross reference listing of symbols indicating
the various places in the program where the symbols are
referenced.

CONCLUSION

In general, the 1800 TSX assembly processor appears to be quick
and reasonably efficient. The language itself could use more -
mnemonics to clarify statements; e.g. MDX and BSC, but also
important is the need for MACRO instructions. IBM supplied
MACRO's e.g. I/0 routines and internal record movement are
essential for an effective assembly language. Perhaps even
more critical however, is the need to provide the programmer
the facility to construct his own MACRO's. Without MACRO

-20~-

Lo

capabilities, the Assembler is reduced to the simple role of \!:®
mnemonic translator.

RECOMMENDATIONS

Solutions to the restrictions presented in this report should
be reviewed for possible early implementation into the
Assembler. This is especially urgent in the case of MACRO's
and providing additional mnemonics.

C

-201-

IT

1800 TSX FORTRAN

INTRODUCTION v

The 1800 FORTRAN compiler was evaluated in comparison with
currently existing FORTRAN compilers, specifically on IBM
1620, 7090 and 360 equipment.

The sections following summarize the external and internal
aspects of the 1800 TSX implementation.

LANGUAGE
The language is substantially like the

ASA BASIC FORTRAN as described in reference (3).

General

The language, although still basically BASIC, has been
enriched in several useful respects. Certain features of
the implementation for process usage introduce incompatib-
ilities.

The following items should be noted when using TSX FORTRAN
to compile decks used on other FORTRAN systems:

1) //FOR control cards have to precede every routine
in the deck to be compiled.

2) FORTRAN COMMENT cards may not appear before continuation

cards nor after END cards.

3) Requirements on the placement of DIMENSION, COMMON,
EQUIVALENCE statements. The requirements are not
unreasonable, but have to be checked when converting
existing programs. See also Section III(1).

4) It is possible to equivalence a one word integer
array with two and three word integer arrays. Care
should be exercised when doing this.

5) Additional disk input/output statements such as FIND
are included and will prove to be very useful in
reducing overhead. These instructions do not exist
in the smaller 360 FORTRAN compilers.

6) Arrays may be 3-dimensional.

7) DATA statements are included.

8) Hollerith fields may be specified in quotes, thus
‘avoiding many counting errors.

-oo-

ITI

9)

10)

11)

12)

13)

14)

15)

REREAD, that is: "The ability to read a card,
analyze its type, and then reread it with an
appropriate format" is absent here as it is
from all of IBM's FORTRAN compilers. This

feature, however, is very desirable. See reference

5.

Alternate FORTRAN I/O subroutines for free field input

would be useful in some environments.

Integers, although assighed two or three words

for

reasons of proper equivalencing, use only one word

and are therefore limited in size to +32767.

This

is sufficient for subscripting and counting use,
but not generally for integer computations (payroll,

integer linear programming, etc.). It would

be

desirable to include two-word integer arithmetic.

Due to the 2's complement machine logic there

is no

integer representation for minus O. This feature
has been frequently used in statistical programs on

7000 series machines to indicate missing data,

rather

than O value data. The same problem exists in the

System/360.

One special COMMON block:/INSKEL/ is defined to
communicate with skeleton data areas. This feature

follows the syntax of full FORTRAN.

STOP, CALL EXIT and CALL LINK-are only to be used in

nonprocess programs, whereas process programs
similar functions have to issue CALL VIAQ and

CHAIN. This complicates the change of program status

from non-process to process and vice versa.
confusing and not necessary.

EXTERNAL statement is included.

PRODUCED OBJECT CODE AND OTHER OUTPUT

for
CALL

This is

The compiler produces code with many subroutine references
for the basic operations which limits speed of execution
somewhat, but is probably by far the best compromise in
the core size versus speed argument.

1)

k2

When non-process compiling is done to process programs
that are to be run as process the ONE WORD INTEGERS
control card should be used to avoid incompatibilities
between the two modes. Without this precaution the

EQUIVALENCE mechanism is altered and DATA entries may

be changed when recompiling.

-23-

A

&

Iv

L3

Individual declarations by variable name (see FORTRAN
360-H level) would be desirable to enable the
specification of one word FORTRAN integers used in
process control and leaving all other integer sizes
compatible with real variables of either regular or
extended precision.

2) The code is unique in that in order to provide soft-
ware - memory - protection all subscripted store and
read statements are compared with the limits of
variable core (not with the dimension declaration) to
protect process-routines and the systemn. The error
messages given by the System director (see chapter on
Diagnostics) are unfortunately not helpful in locating
the source of the error. An expanded error message
would be a major help in debugging.

A side effect is that repetetive store operations of
a subscripted variable may, in order to save some
execution time, be better carried out using a
temporary variable. The relative speed gain is not
much though since all operations, even stores, are
executed through subroutines; also more core storage
may be required. Example: Summing the columns of a
matrix S into an array A:

DO 11 =1, 10 DO 10 1 =1, 10

TEMP = O. A (I) =)

DO 10 J =1, 10 rather than DO 10 J =1, 10
10 TEMP = TEMP + S (I,J) 10 A (I) = A(I) + S (I,J)
11 A(I) = TEMP

3) An adequate listing of variables and their relative
locations is produced. There is no means, however,
of obtaining a symbolic or even hexadecimal listing
of the compiled code. This will make the deter-
mination of clobber-type errors considerably more
difficult.

4 The compile time diagnostic capabilities are non-
mnemonic (See Diagnostic report).

IMPLEMENTATTION

The method of compiling is described in the Program Logic
Manual.

Essentially the entire deck is read into a core memory area
in squeezed form and then the 28 sequentially phases of the
compiler transform the text in a more and more coded
representation while on the other side of this core area a
symbol table is buillt up. Eventually the symbol table
information can be written out as a MAP and then the
transformed source program has become the object program -

-0l

VI

Ly

and is written out. A large amount of handling of the
source information and its transformation takes place
since the source string waxes and wanes throughout this
process. However, since in this machine the processor
is so much faster than input-output this approach leads
to fairly fast compile times. The program size is limited
by the size of the core memory area, namely to about 120
cards for an 8K system. An 8K system, however, will not
normally be able to lead useful programs of this size, so
that this limitation 1s then valid only when execution on
a larger machine is desired.

STORAGE REQUIREMENT AND TIMING

Core Storage: Minimum 3692 at the high end of core.
Disk Storage: 103 sectors.
Speed for 150 statement program:

Without Punching: 47 statements per minute.

With Punching: (50 cards) 38 statements per minute.
REFERENCES
1 IBM 1800 FORTRAN Language C26-5905-3
2 IBM 1800 TSX System, Program Logic

Manual Y26-3702-0

3) Communications of the ACM Volume 7 #10 Page 591
ASA Standards for FORTRAN
ASA Standards for Basic FORTRAN
4 0S/360 FORTRAN-H Level Programmers Guide
SHARE Secretary Distribution 157 c-4462:
ENCODE/DECODE facilities for memory
to memory data conversion and transmission
in 360 FORTRAN

-25-

©

L5

1800 TSX CORE LOAD BUILDER

INTRODUCTION

The Core Load Builder (CLB) builds all core loads that are to be
loaded and executed in variable core. These core loads may be
under control of the System Director or the Non-process Monitor.
The basic purpose of the CLB is to combine a relocatable program
with all called relocatable subroutines into an executable core
load. This includes establishing all subroutine linkages,
hardware interrupt servicing linkages, and creates all
communication areas that are required.

METHOD

CLB uses a 2 pass method each consisting of various phases.
Both passes are processed under control of the Master Control
Routine (MC). Pass 1 contains the initialization and scan
phases. The initialization phase sets up loading tables for
use in subsequent phases and also creates entries in the loading
tables based on information contained in the Control Record
Entry Table (CRENT). The scan phase determines subroutine
entry points, load addresses, and core storage requirements.
Pass 2 contains the adjustment phase and load phase which are
necessary to finalize the communication area and complete the
building of the core load.

RESTRICTIONS

Subroutine names that appear in a calling sequence, e.g. CALL
TIMER (SUB,I,J) must be defined in an EXTERNAL statement. There
is no check made by CLB to insure that the subroutine name was
defined in an EXTERNAL statement for system subroutine of this type.
Under these conditions, an improper core load will be built and
executed with unpredictable results.

CONCLUSION

In general, the CLB appears to perform all of its required
functions in a satisfactory manner. The CLB is essentially
I/0 bound and the elapsed time for building core loads varies
from a few seconds to approximately 2 minutes depending upon
the size of the core load, the number of disk drives utilized
by the system, and the number of core loads in the system.

06—

II.

IIT.

1800 TSX SUBROUTINE LIBRARY

. [
INTRODUCTION : (:D
The arithmetic and input/output libraries are discussed in
the following sections. No tests have been run to verify
accuracy, timing, etc., by the TSX Review Committee.

ARITHMETIC LIBRARY

The Arithmetic Library contains both the routines visible to
the FORTRAN programmer as well as the many routines that are
used by the FORTRAN generated object code and that may be
used by the ASM programmer.

The Function - Evaluating routines use polynominal approx-
imations to avoid the slow divide procedure, and call many
of the invisible routines. Square root is evaluated by
iteration. Arithmetic is symmetrically truncated to follow
the rules for the machine logic. An indication of time
required is given in Section V. The times required are
significantly increased over those of other 1800 routines
due to the requirement for re-entrant coding which enables
these routines to be used from many levels concurrently.

All calls are of the standard format, but all have entry
points also to allow argument communication via the
accumulator. The checking for variable core limits is to
be done outside of the routines. (]>

An additional, and very useful feature exists that allows
testing of error indicators set by the functional routines
through a FORTRAN call. This feature is lacking in all
other FORTRAN systems and would be even more useful if
standardized and made available in the other systems

Among the routines invisible to FORTRAN programmers 1is a
double word fixed point-fraction multiply and divide
routine which could be useful to ASM programmers that are
willing to do their own scaling.

INPUT/OUTPUT LIBRARY

The library routines support the data processing I/0 in a
straight forward manner. There is no central IOCS so
that all error checking is done per I/O call. This leads
to the fact that there is no system overlap of computing
and I/0 during DPI/O operations with the exceptions of the
1053 and 1443; however, the assembler user can overlap
I/0 with computing. Certain features of the 1442 are not
describable by FORTRAN statements. This led to the fact
that its stacker select feature and its last card indicator
is not usable from FORTRAN. The disk routines use the
disk in such a way that no rotational delay occurs if

there is no interference from higher priority level programs. ‘Mﬁ
) 4

-27-

Iv.

k7

All the I/O routines follow standard linkage conventions.
Most of them save in addition, the A register to
facilitate the interrupt coding.

There is also a 420 eord routine FBTD/FDTB to convert from
standard and extended floating point to EBC (1800 EBCDIC)
which is not used by FORTRAN I/O but can be used by ASM
programmers to save memory space by avoiding the FORTRAN
I/0 routines. If there are any FORTRAN I/O statements,
however, it would be advisable for the ASM programmer to
use FORTRAN type I/0 calls.

PROCESS INPUT/OUTPUT LIBRARY

The process input/output library allows FORTRAN control over
all process input/output operation, a facility that has not
been previously present within FORTRAN systems. A fair
knowledge of the machine and of FORTRAN is required to make
effective use of the routines.

It is yet too early to evaluate fully the usefulness of

these routines. Experienced process engineers may prefer

to use assembly language input/output because of the
straight-forwardness from an engineer's standpoint, but may
find that the interrupt structure of the 1800 is such that

the much greater ease using these subroutines will become

an over-riding consideration. The processing of an I/0
interrupt takes approximately 100 microseconds on a 2 micro-
second machine, which compares favorably with the approximately
60 microseconds achievable by hand coding.

Recommendations

1) Re-entrant Code

It would be desirable to have a separate set of non-
re-entrant subroutines for batch processing use and
single-level on-line use for maximum throughput.

2) Input/Output Subroutines

It would be desirable for IBM I/O subroutine to notify
the user of operation complete. This can be
established through the inclusion of a subroutine
name in an I/0 calling sequence. This would allow
the user to overlap I/O operations, thus avoiding

I/0 busy testing.

-28-

V. TIMING (2 microsecond mémory)

These are approximate indications only.

Function

sine and cosine

arctangent
square root
logarithm

hyperb. tang.
+ X

-X

= (ve. =x)

*

/

/(oo /%)
fetch

float

fix

| x |

bin to dec
dec to bc

Name

FSIN, FSINE, E...
FCOS,FCOSIN,E..
FATAN,FATN,E...
FSQRT,FSQR,E.,..
FALOG,FLN,E...
FEXP ,FXPN,E...
FAXI, FAXIX,E...
FAXB,FSBXB,E..
FTANH,FTNH,E...
FADD,FADDX,E...
FSUB, FSUBX, E...
FSBR, FSBRX, E
FMPY,FMPYX,E..
FDIV,FPIVX,E...
FDVR,FDVRX
FLD,FLDX,E..
FSTO,FSTOX,E...
FLOAT

FIXI, FIXIX
FABS,FAVL,E,..
FBTD

FDTB

-29-

Time

Standard Precision

3.2ms

5.1
5.2
4.6
1.9
2.5
7.9
4.2
.49
.49
.80
.46
o795
.78
.27
.27
.70
.49
.28
12,0
23.0

48

Time
Ext. Precision

5.2ms

9.2
11.8
4.5
4.2
3.7
14.9
8.0
.51
.51
.82 @
1.06
2.10
2.34
.32
33

.29

Lo
1800 TSX SIMULATOR

INTRODUCTION.

The simulator is a major advance in debugging tools for the on-line

programmer and will be highly useful to most installations,
whether on-line, or off-line. It operates under control of the
TSX Nonprocess Monitor, and allows the programmer to check out
or test a program without interfering with or endangering the
regular operations of the on-line system.

Because so little information has been generally available about
the simulator, the TSX Review Committee felt it advisable to go
into somewhat more depth in this section than in most others.
METHOD

The siImulator can be used to debug process and non-process
programs alike. It checks all core references, especially
stores and branches. Simulated COMMON can be dumped on cards

so that a run can be executed in several different parts.

There are options for:

a Branch trace
b Snapshots
c Dumps .

In addition, the branch and arithmetic trace provided by the
compiler can be operative in the simulator mode, but there 1s no
full trace in the simulator.

Process input values may be read from cards or obtained from a
random number generator. However, it may not be read from the
1816, directly from the process inputs, or calculated by user
defined function routines. '

If a program were being simulated under control of an off-line
system, it would take about 120 times as long to execute under
simulation as under direct execution. However, when under the
control of the system director, it could take much longer due to
the demands of the on-line process. There is no output option
to show how much time a program would have required in real time.

SUBROUTINE SIMULATION

If the simulator knows (by a set of internal tables) that an
IBM subroutine does not use I/0, then it is executed at machine
speed; however, the simulator uses its own copy of the sub-
routine. IBM routines which use I/O are functionally

simulated rather than being simulated step by step. User
written utility routines could be added to these lists by the
following methods; there are three cases: :

50

a) Skeleton routines to be executed (non-I/0). There are two
‘tables in the Initialize 2 (INIT2). section which must be

modified. SXT contains data about skeleton subroutines to be ex-
ecuted, and NAll contains the EBC names of all subroutines in

SXT. These tables can be modified by ordering the simulator

in source form through IBM branch office procedures (however,

this is about 20,000 cards and requires special assembly
procedures). The user can add the entries to these two
tables and then assemble the simulator.

b) I/O routines to be functionally simulated. Again, there are

two tables which must be modified, NAll and either FST or TRT
which are similar to SXT in that they contain data about the rou-
tines. The difference between FST and TRT is explained in the
discussion of calls which terminate simulation. I/0 routines
which are functionally simulated must have consistent linkage

format with those produced by the TSX compiler.

c) Any other programs - IBM recommends very strongly against
eXecuting or functionally simulating any programs other than
those discussed in (a) and (b).

CALLS WHICH TERMINATE SIMULATION

Simulation terminates with the execution of calls to:

BACK
CHAIN
VIAQ
- SPECL
INTEX
DPART
STOP
PAUSE

The simulator tests one program at a time. There is a way for the
user to modify the simulator so that anyone or more of these calls will

never be terminated. The TRT table contains entries for all the

calls which terminate simulation. By moving the entry for a given

call from the TRT table to the FST table and adjusting the NAll
table to correspond, that call will no longer cause termination.
However, if termination is removed for other than CALL PAUSE, the
user must evaluate the consequences very carefully. A rewrite of
the whole simulator could be involved.

SIMULATOR SECTIONS AND EXECUTION PHASES

There are nine sections of the simulator executed in five phases
as in the following phase transition diagram:

-31-

51

NPM = Non-Process Monitor
CLB = Core Load Builder
Phaseg=—3 1 2 3 b 5
s (1) >
— {2} -
' X ~
Core e 5 .
o

Sections

Hxecutive Monitor

Resident 1

Initialize 1

Initialize 2

Resident 2

Subroutine Monitor

Instruction Interpreter

Subroutine Processor

Termination

CONCEPTIONS AND MISCONCEPTIONS

The simulator is not meant to simulate a process or any other
random, parallel, asynchronous event. Since it is not aware of time,
it is not aware of parallelism as such. Thus, 1t cannot be used as
a system scheduler and resource allocation for an operating system
as some users have suggested. Nor can the simulator be used to
simulate the user's process as in a general system simulator or
digital differential analyzer. Once the user accepts these facts,
he will find that it is a rather good diagnostic and debugging
tool. The program might be renamed to eliminate this confusion.
It perhaps could be called the Diagnostic Interpreter since it in-
treprets 1800 instructions on the 1800 for diagnostic purposes.

O 00~ OVUT =0 1O H

-32-

52

RESTRICTIONS & RECOMMENDATIONS

1)

3)

)

5)

Options to allow reading of data from the 1816, or direct- ‘Z@
ly from process inputs should be considered. Reading

directly from the process inputs would require a special

system parameter to denote whether reading analog input

directly from the simulator is legal or not since in

certain instances this could interfere with the normal

on-line functions of the system. Simulations of the

I/0 test feature would have to be changed if access

to actual process inputs were allowed.

There is no output to show how much execution time a
program would have required, assuming no on-line inter-
ference. An instruction count in the snapshot information
could be added. The user could multiply this by an average
instruction time for the instruction mix being executed

to tell how much time would have been required.

The requirement for punching leading zero's in control
cards 1is a minor ineconvenience. It was done to make the
coding shorter in a program for which space was limited.

The DISKN simulation routine will write only into the non-

process work area. If a process program being simulated

tries to write in the process work area, it will print

the first and last 8 words on the list printer and

does not write anything into the process work area. This

would present problems if the program is attempting to Valhe
write into the process work area and then read it back, N
but is necessary to protect the process.

The following restrictions and recommendations concern the
data input facilities of the simulation:

a. Simulator does not provide specification for multi-
plexer address on card input. The problem of read-
ing random multiplexer addresses from a sequential
card hopper could be solved by reading all data
cards to disk and setting up a separate file for
each multiplexer address. The simulator could call
each input by referring to the proper file based on

“the multiplexer address of the point to be read.

b. A multiplier option for data cards that would act-
across repeats for AIP and act across addresses
for AIR would be useful.

c. There should be an option to specify random number

generation on individual data cards when CARD has
been specified on the control card.

-33-

6)

53

The ability to take simulated core and disk off-line
as in a checkpoint and restart from the same simulated
core or just get further diagnostics should be con-
sidered for multiple drive systems.

The XIO and WAIT control cards should be changed to NO
XIO and NO WAIT for functional clarification.

CALL PAUSE should be simulated rather than causing
termination.

It should be pointed out that there is one discrepancy
between the actual operation of the comparator feature
and the way it is simulated.

In actual operation, the ADC reads one analog point at

a time and the comparator checks for a limit violation

in parallel. The reading and comparing proceed independ-
ently of each other. If a violation occurs, the I/0
routine exits to a user subroutine. This subroutine
returns control to the I/O routine. When the next point
is read, the system may either take the check routine
again or continue reading points as the data dictates.

In any case, the end-of-table interrupt routine is always
executed whether a limit violation occurred or not.

The comparator is simulated by first reading all the data
for one analog read and then starting a programmed compare
sequence. If no compare violation exists, control is
transferred to the end-of-table interrupt routine. How-
ever, if there are one or more limit violations, the first
1limit violation causes an exit to the check routine.

The check routine returns control to the program mainline
at the first instruction following the analog read in-
struction instead of back to the simulator compare sequence.
The end-of-table interrupt routine will not be processed,
and if there are more than one limit violations, only the
first one will be detected and checked. ’

-34-

1800 TSX DIAGNOSTICS

INTRODUCTION

The diagnostics from the various segments of the system are
summarized below. A separate section is devoted to the
implementation of the memory protection facility of the 1800.
The utility of diagnostic messages is increased if the time
to take corrective action is minimized. In order to achieve
this, diagnostics should be: ‘

1) Addressed to the person capable of taking corrective
action

2 Clear

3 Complete.

In addition, errors affecting on-line use of 1800 system
should require special care.

METHODS

The following list covers the TSX system areas with some
remarks on their diagnostic methods:

1 TASK :codes for user lookup
2 System Loader :codes for user lookup
3 Cold Start :codes for user lookup
4 Skeleton Builder :codes and very abbreviated messages.

The above four areas are such that most errors are caused
by incorrect deck set up by the programmer. During the
above tasks one can assume that a responsible and knowledge-
able person 1s either present or available.

5) System Director :codes with additional information.
There are both messages that are routinely operator-oriented,
and others that can be caused by the programmer, and some

of these are of the type that may occur in checked out
production type problems.

The 23 codes prefixed by 9 or I are generally operator-
oriented. The remaining 24 codes prefixed F, M, P, Q,

or X are program oriented. With these messages time,
device, program and location are given. The last two, if
available, are not necessarily linked directly to the source
of the error. Certain of these errors are machine errors

and have therefore the priority level O. More than one of
these in succession forces a reload action. Some of these
23 codes may require operator action to continue the process
program operation. ‘ ‘

-35-

ITT.

Iv.

25

6 Supervisor :codes and abbreviated messages
7 DUP :codes and small messages

In the two systems above, many of the messages are programmer
directed. Some, however, indicate operative problems. It
seems doubtful that an operator will be able to sift through
these quickly.

8) The Assembler :codes with messages, or flags on
error lines.
The error flags follow established practire and
specify sufficiently the error cause to the programmer.

9) FORTRAN :codes only of form Cxx.
General

The first four parts of the system, used during system
generation, have different format, conventions, content
and location of their error indications; however, all
on-line messages have a basic error format.

Where the system is operated by non-programmers, difficulty
may be experienced in training operators to sift the system
output for information relevant to them. A lack of messages,
or excessive abbreviations, may be felt as an annoyance in
many practical situations.

RECOMMENDATIONS
1) Special indications for errors that may be operator
correctable

2) Mnemonical diagnostic codes for FORTRAN, with an
indication of column or text item causing the
diagnostic.

Currently a message: "C27" which becomes after lookup
in the operations manual (they are not listed in

the FORTRAN manual) "SYNTAX ERROR IN FORMAT STATEMENT"
is not as helpful as a diagnostic should be.

3) The system director messages for internal errors should
include the contents of the Instruction and Index
Registers, Accumulator and Extension to facilitate
trouble shooting.

HARDWARE DIAGNOSTICS

Some CE hardware diagnostics can be run in the 1800 system
through special hardware facilities without disturbing other
programs and operations, during the running of the TSX

system. These routines can exercise minimally the I/0O devices.
The full CE diagnostics monitor cannot run under TSX.

~36-

56

STORAGE PROTECTION
W\‘
The storage protection feature is used by TSX as follows: M:M

The system~director code is protected from destruction.

This is accomplished by the cold-start routine which assigns

a storage protect bit to every non-zero word. Zero words :
are assumed to be non-changeable programs and to be storage '
protected except where they appear in a cold-start exception ‘
table.

Code generated by FORTRAN follows the above rule, and of
course, ASM generated code can be written by the programmer
to satisfy this rule too, so that this storage protection
scheme could be expanded by the user in a very useful way.
Input/Output routines, however, have tables containing non- !
zero words which are modified by execution of input-output '
instructions and therefore cannot have storage protection.

An expansion of this scheme would require specifications to

except these tables.

If extended use of storage protection is desired, the above
scheme might be a basis for a COMMON standard. It is very
probable that such an extension will become desirable in the
future.

Assembly programs can alter protection bits only if a hard-
ware key is set appropriately. ‘FORTRAN programs do not FaN
have access directly to storage protection bits. @LW

The current use of this feature by TSX is limited but probably
sufficient in conjunction with the FORTRAN software mechanism
to protect the system during careful operation. It does not
do much to protect the users' programs themselves. The
mechanism is definitely not foolproof.

-37-

o

5T

1800 TSX LANGUAGES

INTRODUCTION

There has been a considerable amount of discussion and develop-
ment work on languages for process control over the past few
years. However, the purpose of this report is not to discuss
language criteria but to list those languages supported by TSX.

LANGUAGES CONTAINED IN TSX SYSTEM

1. TSX Assembler Language
See separate section on Assembler Language for the Committee's
evaluation. NOTE: Machine language is not a subset of the
TSX Assembler Language. It is only possible for the programmer
to write in machine language by special manipulation. The
Committee feels that this is a good decision.

2. TSX FORTRAN
See separate section on FORTRAN for the Committee's evaluation.

The Committee has discussed the desirability of separating both
FORTRAN and TSX assembler language from the TSX system and treat-
ing all languages uniformly as user programs; but it has reached
no definite conclusion on this matter.

LANGUAGES WHICH ARE NOT CONTAINED IN THE TSX SYSTEM

There are several additional languages that will run as application
programs under TSX

1. PROSPR0O/1800

PROSPRO stands for 1800 Process Supervisory Programming
System and is a generator language for writing process
programs. It will be distributed as a Type II program.
The announcement letter states that PROSPRO is fully
compatible with TSX.

2. COP/1800

COP stands for 1800 Control Optimization Programming System.
As with PROSPRO, this is an applications development rather
than a systems development language.

3. DDC (Direct Digital Control)

There is no information available about TSX support for

DDC, although the Committee knows of several installations
which are involved in this application. The number of
questions would indicate wide interest in this topic and

if this is so, a special discussion session will be arranged
at a COMMON meeting.

-38-

CONCLUSIONS

The Committee received inquiries regarding various languages
which have not been developed for the 1800. Those which re-
ceived considerable interest were:

PL/1

List Processors

Decision Tables Languages

Report Generators and Data Handlers
Sort/Merge

Process Control Language

U FWw o H

The Committee did not evaluate which of these are desirable
and which are not, in an on-line operating system for data
acquisition, teleprocessing and control. We would like to
hear more discussion on this point by all the installations
using 1800 TSX.

We urge that a project committee work to define a process
control language.

39

58

C

N

59

1800 Process Systems Committee Report

An organizational meeting was held Monday, November 28, 1966.
After lengthy discussion, two subcommiti{ees were agreed upon,
realizing that they could not be mutually exclusive and
requiring conaiderable interaction.

A. Hardware Subcommittee responsibilities:

1. 1800 system hardware
2. Real time and process interface equipment
3. RPQ devices relative to process systems

Chairman: David Kraatz, 1001 Bedford Avs.,
North Kansas City, Missouri

B. Softuare Subcormittee responsibilities:

1. IBM supplied software
2. General interest user written routines
3. Cooperation with Process Application Committee

Chairman: Jay Ganatra, 660 South Blvd.,
Pontiac, Michigan

Initially, this committee plans to act as a collection or clear-
ing area for recommended major revisions or additions to IBM 1800
systems. It is anticipated that suggestions will be collected
and reviewed between COMMON meetings, that these and other ideas
will be discussed by the 1800 Process Systems Committee in open
sessions, and appropriate recommendations made through the proper
channels to IBM,

For smaller problems, we will begin assemblying a directory of
Process Control 1800 configurations so users, through this
office, can contact similar installations,

As more 1800's are installed mutual problem areas will become
apparent, The time spent at this COMMON meeting will give us
the structure to handle these problems,

60

Post Office Box 3621
Decenmber 6, 1966

To: Current or future users of 1800 systems

At the COMMON meeting in New Orleans, an 1800 Process ‘ystems
Committee within the Systems Division 1800 project was formed.
We want to get the followlng information from you in order to
make future recommendations to IBM for future modifications
%o hardware and software systens:

A, Installation date
B. Description of the installation

1, Configuration
2. Primary applications

. Comments on the TSX Preliminary Report
D. Any other coments

Please return your comments to me by January 31 so they may
be reviewed and organized before the March meeting.

7 i | ”

A [Vo pr

Vatal A/

Lloyd Jones

Chairman, Process 3ystems Commibtse
COMMON Users Group

61

Janusry 4, 1967

San Jose

Process Control & Small Sclentific Systems
464/062

4082

COMMON Meeting in New Orleans

Mr. G. W, Lohr

Since my presentation was a tutorial on subjects covered in the
Reference Manual and Program Logic Manual for the 1130 Disk
Monitor System, those publications can serve not only as an abstract
of my talk, but also as detailed information.

Gene Lester

GL/sn

ce: Mr. W, P, Chamm.gne«z

SYSTEMS DIVISION

SYMTRAN: The Addition of Algebralc Manipulative
Capablilities to FCRTRAN with Format

Mary Clo Carey
University of Southwestern Loulsiana

Current address:
IBM Corporation
District 21 Test Center
2640 Canal Street
New Orleans, Loulsiana 70122

529-525€ (area code 504)

Monday, November 28, 1966
1:¢30 - 3:00 P.M.
Session M-3.5

7 pages of text
3 pages of graphics

62

©

In the history of computers, numerous advances have
been made in the fleld of numeric calculations. Problems

which once required weeks, or even months, of human effort

can now be sclved in a matter of milliseconds. However,
not all problems require a strictly numerical result.
Many calculations cannot be performed untll tedious
algebralic operations have been completed; in some cases,
the algebraic result is the end in itself. Production of
this formal algebralc entity may require numerous inval-
uable, or even unavallable, man-years.

Since the computer can perform any concelvable
numeric operation which can be rigorously delineated,
why could the computer not perform purely algebrailc
operations? As early as 1954, ventures into the realm of
algebralc manipulation and its related field, symbol
manipulation, were ‘begun. Numerous routines and systems
were developed. These routines were specialized programs
designed to perform one particular operation, or were
subroutines to be called by a mainline program. All of
the routines and systems developed were for large-scale
digital computers.

Thus the decision was made to develop an algebralc
manipulative system for a medium-size computer, the IBM
1620. The ability to formally manipulate algebralc
expressions was to be included as an integral part of
the new system. In the development of the system, five
factors were taken into consideration:

1. the system should provide a tool to ease the

burden of cumbersome algebraic manipulation;

2. the system should provide for execution of a

variety of operations rather than being
limited to the execution of a single
operation;

3. the system should be adaptable to numeric as well

as to algebralc problems;

4, the system should be easily learned; and

5. the system should be capable of extension.
Closer examination of the objectives revealed that four
of the five objectives were already embodied in FORTRAN
with Format. Because of the number of persons who have
had some knowledge of FORTRAN programming, the declsion

was made to extend the FORTRAN with Format programming
system,

SYMATRAN is thus a proper extenslon of the FORTRAN
with Format programming system. All of the capabilities
of FORTRAN with Format have been retained. The ability
to formally manipulate algebralc expressions has been
added. The algebraic expression may be any combination
of varlables, constants, and operation symbols which

63

6k

adheres to certain rules. The SYMTRAN system provides
for: :

1. addition of algebraic expressions,

2. subtraction of one algebralc expression from

another,

3. multiplication of one algebraic expression by
another,

4, division of one algebraic expression by another,
and

5. exponentiation of an expression to a positive
fixed polnt power.

To accomplish the definition of the algebraic
expressions and their formal manipulatlion, the IYMTRAN
system consists of three main elements: (1) the SYMTRAN
language, (2) the SYMTRAN compiler, and (3) the SYMTRAN
subroutines., The system is strictly disk-oriented; disk
storage 1s utilized for permanent storage of the comriler
and the subroutines and for temporary storage of the
complled object program and the algebralc expressions,

The SYMTRAN language includes all valld FORTRAN with
Format statements. In addlition, formal algebralc
expressions may be defined within the SYMTRAN language.
Each formal algebraic exprescion 1s defined by being
equated to a variable name, or more correctly an
expression name, by which 1t can later be referenced. A
definition statement takes the form,

e.g. @ONE = TWO + THREE

The "@" signifies that the statement is a formal defini-
tion. The entire expression to the right of the equal
sign is the formal expression; the varlable to the left
of the equal sign (excluding "@") i1s the name of the
expression.

Certain rules must be acdhered to in the formation
of formal algebralec expressions. Constants may e any
valid fixed polint or floating point numbers. Variables
may be any comblnation of letters and numbers not to
exceed flve characters in length and must begin with a
letter. Operation symbols allowable are +, -, %, /, and
, All exponents must be constants. No parentheses
may appear In an expression which is being formally
deflined, The restriction agalnst parentheses eliminates
the use of functions, subseripting, and divisors which
are expressions. Mixed mode is allowed within a formal
definition. The algebraic expression being defined must
not exceed the permissible length of a FORTRAN with
Format source statement, l.e., 72 characters.

65

All variables appearing within a formal expression
definition are assumed to e basic, or atomic, variables.
This restriction was motivated by four factors.

1. The expression being defined 1s to be stored in

disk storage at compile time.

2. Varlables which are to assume a nunmerical value
do not have this value assigned until
execution time.

3. Variables whlch are the names of expressions may
in turn contain variables which are the names
of expressions... . The chaining could
continue indefinitely.

4, A variable which is the name of an expression
may refer to an expression which contains
the expression name, such as X = X + 5.
Recursion would result and a basic variable
could never be obtained.

Manipulation of the algebraic expressions defined
1s accomplished by the use of the usual FCRTRAN arithmetic
statements. Expressions may be combined by the operations
of +, -, *, or /. The arithmetic statement may consist
of any combination of variables, constants, and operation
symbols subject to the FORTRAN regulations for formation
of such statements., The variables may refer to a
previously defined numeric value, may refer to an algebralc
expression, or may be basic varlables. If a varlable 1s
basic, i.e., 1t has not been assigned a value, it 1is
treated as an expression consisting of a single element.

It is possible to test the result of operations on
algebraic expresslions for equality to zero, i.e., the
resultant expression consisting of only the constant zero.
To obtain such a test, the variable name assighed to the
resultant expression must be a fixed point varilable.

There are some restrictions on the use of expression
names. No variable may appear more than once as the name
of an algebralc expression that is being defined. In
general it may be stated that a variable which names an
expression may not be substituted for a varlable whose
numeric value 1s required. In particular, a name of an
expression may not appear as (1) the argument of a func-
tional subroutine, (2) the parameter of a DO loop, (3)
the variable of a Computed GO TO, or (4) the power of any
constant, variable, or expression. The results which
would take place will vary in the different cases.

The SYMTRAN compiler, in addition to recognizing and
compiling &ll valid FORTRAN with Format statements, must
recognize and operate upon the formal expression defini-
tions., All program statements are analyzed by the compiler
program. If the statement 1s not determined to be an

arithmetic statement, the appropriate object coding is
generated and compllation continues with the next source

statement. A further dlscussion of the object coding will
appear later,

Once an arithmetic statement is located, a check is
made for "@" as the first character of the statement, If
the "@" is not present, compllation proceeds as usual.
If the "@" is present, it i1s deleted from the statement,
the variable on the left side of the equal slgn 1s
collected and placed iIn the symbol table 1f necessary;
the expression on the right side of the equal sign is
compressed to remove any internal blanks. The expression
is then ready to be stored onto disk storage.

A check 1s made of the Available Space List (AVSPLS)
to determine where to store the expression. The AVSPLS 1is
active from the beginning of compilation through the
execution of the objJect program. At compile time, the
AVSPLS contains the addrees of the next available sector
wlthin the flve cylinders reserved for storage of expressions,
The first check determines whether any sectors are available;
if not, an error message 1s typed, the expression 1is not
stored, and compllation continues with the next source
statement, If there are avalilable sectors, the expression
1s stored on the disk occupying one or two sectors, If the
expression requires two sectors, a tag fleld 1is placed in
the last six diglits of the first sector giving the address
of the second sector. Following the storage of the expression,
the AVSPLS 1s updated to polnt to the next available sector
for expression storage.

As each expression 1s recognized and stored, another
important table 1s generated. Thls 1s the Table of Expression
Names and Disk Storage Addresses(TEXNM). Each expression
name and the sector address of its first sector are placed
Into the table. At the end of compilation the dlsk addresses
are placed into the symbol table for use by the object
program,

During the compilation of most source statements
object coding is generated., This object code uses the same
format as FORTRAN with Format. The object program card lmages
are stored 1n consecutive sectors on the disk., While this is
not the most efficient utilization of disk storage, it was
felt that a modification of the obJect program format should
be postponed until a later date. Once the object program has
been compiled and stored on the disk, the program loader 1is
called to bring the program from disk and load it into core
along with the symbol table and the subroutines. At load
time, the symbol table 1s completed; constants are stored,
branches to numbered statements are completed, and sector

66

67

addresses are substituted for expression names.

During the execution of a FCKTRAN object program,
the majority of the operations are performed through
subroutines. The same 1s true of the SYMTRAN system. The
majority of the modifications and additions required to
implement SYMTRAN are in the SYIMTRAN subroutines. The
SYMTRAN subroutines include the entirety of the FORTRAN
with Format subroutines plus eleven additional subroutines
to perform algebralc manipulations. The subroutines unique
to the SYMTRAN system are:

1. SYMADD to add algebralc expressions, ,

2. SYMSUB to subtract one algebraic expression from

another,

3. SIMPFY to simplify algebraic expressions,

4, SYMULT to multiply algebraic expressions,

5. SYMDIV to divide one algebralc expression by

another,
6. SSTOR to store an expression on the disk,
T. SFIND to retrieve an expression from disk
storage,
8. SYMIN to input an expression during execution
of the object progranm,
9. SYMCOUT to output an expression,
0. EXPAND to convert input form to internal
representation, and
11. SYMSUP to interrogate operands and branch to
-the appropriate subroutine.

The five subroutines which perform the actual
algebralc operations on the expresslions adhere to the
rules of algebra.

€.g8. A + 2%A will yleld 3%#A as a result
X#X##3 will yield X##4 as a result

For these subroutines to operate upon the expressions, it
was deemed necessary to have all expressions adhere to a
fixed format. Before any algebraic operations are performed
a check 1s made to determine if the expression is in the
internal representation. If not, the expression is converted
by the EXPAND routine. The basic unit of the expression is
taken to be the term. The expresslion 1s divided into terms.
Each term 1s then converted to the form: coefficlent,
variable-1, exponent-1, variable-2, exponent-z,.... All
Coefficlients and exponents are represented as floating point
nunbers, coefficients and exponents of one being inserted
where necessary; variable names are represented as five
character(10 digit) alphameric fields, left-justified;
following the term is a record mark. Following the last term
of the expression is an additional record mark.

e.g. ORIGINAL EXPRESSION
G#X + 18#Y##3/X - Y

68

INPUT FCRM C

- s wn ew e em e euw em s mm e s e e

TB1467107178146814147301672068%
INTERNAL REPRESENTATION

5000000001 67000000001000000001#1800000002
68000000003000000001 67000000001000000001 #

1000000001 6800000000100000000 1 ##

Note: Variables which are divisors are represented with
negative eee##é@&eﬁ%ﬂwex?anaw&,

The results of all algebraic subroutines are stored
onto the disk in internal representation. The SSTCR
subroutine utilizes the symbol table to locate the name
assigned to the resultant expression. If the name already
designates an algebraic expression, the previous expression
will be deleted from the disk and the addresses of the
sectors occupied by the expression restored to the AVSPLS.
SSTCR then determines the first avallable sector from
AVSTLS, stores the first 94 digits of the expression into
that sector, and inserts the sector address into the
location in the symbol table designated for the variable
name, In the event that an expression exceeds 94 digits in @:D
length, the last six digits of the sector are used as a
tag to point to the next sector occupied by the expression.
After deletions and additions in the storage area on the
disk, adjacent sectors may not be avallable, thus the need
for the tag field. The tag field for the last sector of an
expression consists of slx zeros.

Input and output of algebraic expressions present
unique difficulties in comparison with input and output of
nuneric values, Because of the innumerable variations in
length and complexity of expressions, it was determined that
input and, more partlicularly, output should follow a free
format. A FORMAT statement should not be essential in this
case. However to preserve consistency and avoild confusion,
every input-output statement referencing an algebrailc |
expression must have an associated FORMAT statement. The f
FORMAT statement may be a dummy statement. Algebraic *
expression names and numeric variable names may not be mixed
in an input-output list. Expression input follows the same
regulations as the formation of formal expressions in the
source language. Expression output wlll follow an output
form determined by the SYMTRAN system. The SYMOUT routine :
willl convert the expression, which will be in internal
representation to output form. All coefficlients and exponents
having a value of 1 (except a constant 1) are eliminated

(};

69

from the output; exponents of zero cause the associated
variables to be eliminated; coefficients of zero cause the
assoclated terms to be eliminated. A1l remaining coefficlents
and exponents are output in F format 1f the exponent is in
the range -8 to +8, else the output i1s in E format. Operation
symbols are inserted where required. If an expression exceeds
one output record in length, successive records are utilized
until output 1ls complete. There is no limit to the length of
an output expression.

The SYMTRAN system as 1t exists today 1s by no means
complete. Further extension of the SYMTRAN system is always
posslible. Some of the possible extensions are:

1. utilization of more than one disk drive to allow for

more expression storage;

2. modification of the system to support more input-
output devices, such as a 1443 printer;

3. modification of the arithmetic subroutines,
particularly EXPAND, to allow for greater
complexity of formal expressions;

4, addition of functional subroutines to operate on
algebraic expressions; and

5. addition of routines to perform such functions as
differentiation and integration of formal

- expressions.

In reconsidering the original factors taken into
consideration in the development of the system, it will be
realized that the primary objectives in the development of
the SYMTRAN system have been attained.

Although the SYMTRAN system 1s not complete, it does
represent one venture lnto the realm of algebrailc
manipulation on a medium-size computer. But more significant
i1s the integrity of SYMTRAN, SYMTRAN is not a collection
or processors or various routines each modifylng the
original input for future operations; rather SYMTRAN is a

complete gystem.

T0

[
[éx]
(O3]

SYMTRAN COMPILER

ARTTHMETIC STATEMENT
DECOMPOSITION

DECOMPOSE

O— ARITHMETIC A s

STATEMENT

DELETE @
COLLECT VAR-
[ABLE TO P
_EFT OF “w
EQUAL SIGN
N [V
INSERT VARI- INSERT SECT-
BLE IN SYM- OR ADDRESS
BOL TABLE IN TEXNM
[F NECESSARY] FROM AVAIL=~
v By JABLE SPACE
L1sT
CHECK FOR }[{
/ARIABLE IN :
T EXNM STORE
o ALGEBRAIC
EXPRESSION
ON DISK
1
I A
UPDATE
AVAILABLE
SPACE LIST
ERROR '1' ~ TEXNM = TASLEZ OF
MESSAGE BEGIN } EXPRESSICN NAMES
AND DISK STORAGE

e

: ADDRESSES
REGIN

1620 SYMTRAN SYSTEM, MAY 1966
ENTER SOURCE PROGRAM, PUSH START

27000 C
27000
27048
27048
27048
27048
27072 10
27120 999
27142

PROG SW1 ON FOR SYMBOL TABLE, PUSH START

39879 z
39869 A
39859 B
39849 000
39839 C
39829 0999
39819 0999
39809 0010

SYMTRAN TEST PROGRAM
Z = A*B+C
@A = X+Y
@B =X-Y
@C= 2%X*¥%243%Y=2
TYPE 999,Z
STOP
EORMAT(EIS.B)
ND

PROCESS ING COMPLETE

3.00 X**2,00 -Y**2,00 +3.00 Y-2,00

STOP

14

T1

147
1620 SYMTRAN SYSTEM, MAY 1966

ENTER SOQURCE PROGRAM, PUSH START .

27000 C SYMTRAN TEST PROGRAM
27000 Z=A%B*C+A*B=C

27108 @A = X+Y

27108 @B =X-Y

27108 @C= 2%Xk 24 3%Y=2

27108 7777 TYPE 999,

27132° 999 FORMAT(7/31HSUCCESS, NOW TRY SOMETH!&G ELSE)
27228 10 STOP

27276 END

PROG SW1 ON FOR SYMBOL TABLE, PUSH START

39879 z

39869 A

39859 B

39849 000

39839 ¢

39829 001

39819 7777

39809 0999

39799 0999

39789 0010

PROCESS ING COMPLETE

SUCCESS, NOW TRY SOMETHING ELSE

3,00 X**2,00 +Y**¥2,00 +2,00 X**4,00 -2,00 Y**2,00 X**2,00
+3.,00 Y*X**2,00

3,00 Y**3,00 +3.00 Y-2,00

sToP

T2

COMMON

New Orleans, Louisiana

1620 Systems Papers

A Processor For Both SPS And FORTRAN

Guy George Jr.
University of Southwestern Louisiana

Box 382 U.S.L.
Lafayette, Louisiana 70501

M3.5
Monday
November 28,1966
1:30-3:00 P.M.

Text 5
Graphics 5

73

Th

AUSYM
An Automatic Programming Language With Symbolic Capabilities
For The IBM 1620

Introduction A professional programmer encounters problems which vary

in complexity and subject matter. Each type of artifical programming
language has a set of attributes which make it desirable or undesirable
for a given problem. Often the programmer is required to sacrafice

some of the favorable attributes of one language in order to utilize
another language in the solution of the problem. It would be advantageous
to have languages which possess the favorable characteristics of

several of these artifical languages.

Two major forms of artificial programming languages are automatic
languages and symbolic languages. Automatic programming languages such
as FORTRAN with FORMAT for the IBM 1620 remove the necessity for the
programmer to be aware of the basic operations being performed by a
particular computer. The programmer does not have to manually assign
and account for variable storage or instruction addresses. Not only is
he not required to perform many tasks necessary in a symbolic programming
language such as SPS for the IBM 1620, he cannot perform the tasks
if he wishes to. This is of little consequence to the nonprofessional
programmer, but it does remove the flexibility of SPS available to a
professional programmer.

Although there exists a multitude of languages and language subsets,
few possess the abilities of an automatic language and yet retain access
to a flexible machine oriented symbolic language. There seems to be no
such flexible system available for the IBM 1620. Therefore;, the problem
stated in simple terms is that a sufficient number of applications
are in need of such a flexible system.

Available Capabilities The only integration of FORTRAN and SPS for the
1620 now in use is the ability of a FORTRAN language to accept a subroutine
written in symbolic coding. This subroutine can then be called by the
mainline FORTRAN program in various manners. Assembly of the SPS
statements is completely external to the FORTRAN statement translation.

The machine language coding generated by the SPS statements will not be
mixed in with the coding generated by the FORTRAN compiler. The FORTRAN
symbol table is not available to the SPS written routine; and to share

any data, extensive use of the COMMON statement must be employed.

The Proposed System It would be convenient to have a fully integrated
system of FORTRAN and SPS. The integrated system could have a single
symbol table. With one symbol table, it would not be necessary to

declare a FORTRAN variable to be the same as a variable in SPS. Transfers
of control between differently coded segments could be done without

restriction to the type of transfer. The system should not have interruptions

in the coding between the different segments of the program, but should

&

G

7>

flow continuously from one section to another. The system should be fast
and economical enough in the use of core to allow a symbol table and
object program of reasonable size.

AUSYM for an AUtomatic programming language with SYMbolic
capabilities is such a system. AUSYM is FORTRAN oriented and on the
level of FORTRAN with FORMAT for the IBM 1620 with additional capabilities.
Since the system is FORTRAN oriented, variables are declared in the
FORTRAN manner by mentioning them in the source program. Without a need
to declare available storage locations, the SPS capabilities consist
of imperative type statements only. The coding forms are unchanged
to preserve familiarity, and the system is written to be included on
the Ménitor I system for ease of operation.

Machine Requirements Once a language has been defined it is necessary
to be concerned with a machine in any considerations of Implementation.
The machine requirements for AUSYM are as follows: an IBM 1620 CPU

with at least one 1311 disc drive, a 1622 card read and punch unit,

a Monitor I system, indirect addressing, and the divide command. The
system can also make use of the 14U43 printer, 1621 paper tape read and
punch; and since the programmer has direct control in symbolic portions,
the 1627 plotter can be employed through programming. The machine must
have at least 40K memory and may have 60K memory without modifications.

Source Program Division As in most variations of FORTRAN, AUSYM requires
a specific order in the order in the appearance of certain statements.
The order requirements divide an AUSYM source program into two distinct
segments. The first segment of an AUSYM source program must contain,

in any order, all FORMAT and DIMENSION statements. Comment cards may

be contained in this segment of a source program. This segment is ernded
with the first card which contains an S or an F in column one.

The second segment of an AUSYM source program, signaled by the use
of an S or an F in column one, is the mainline program. In this segment
it is possible to change from a FORTRAN type coding to an SPS type
coding and vice versa.

Changing Program Languages In the second part of an AUSYM program it is
possible to change at will between FORTRAN coding and SPS coding. When
an S or an F appears in column one it indicates that it and any

following cards with a blank or a C in column one will require the same
type translation procedure. An S or an F controls the type of processing
until another F or S appears in column one.

Construction of Variable Names and Labels Variable names and labels have
identical restrictions for their construction. They may be no longer

than five characters and must start with an element of the alphabet.

The other four digits may come from the alphabet or the ten decimal digits.
After the first letter the characters cecan be arranged in any order

desired. TImbedded blanks are not permitted in labels or statement

numbers, but will be allowed at any other time without effecting the
compilation.

76

Symbolic Capabilities A symbolic language source statement is either ‘[D
a macro or a regular source statement depending on the number of object

instructions generated by the source statement. The regular symbolic

statement is the reason for the flexibility of SPS. One SPS statement

generates a single machine language instruction.

The entire command repetoire of the 1620 is available in SPS
statements of this type, which are generally referred to as imperative
statements. The imperative statement structure for AUSYM is identical
to that of an SPS statement. Each imperative statement may contain a
label, must contain an operation mnemonic, and may or may not contain
a P operand, Q operand, flag operand, or comment operand. An entire
list of the imperatives available in AUSYM is given below. Also included,
is a list of the macros available in AUSYM. They utilize the capabilities
of the FORTRAN subroutines.

An operand may contain a subscripted variable of either one or
two &imensions. The only restriction is that the subscripts are
constants. If variable subscripts were allowed, it would be necessary
to generate more than one machine language instruction per AUSYM
symbolic statement.

Automatic Capabilities The FORTRAN capabilities for the AUSYM system

are given below. The range for fixed and floating point values is the

same as the range for FORTRAN with FORMAT for the 1620. Variable names

are limited as described above. The major differences can be noted in <g'>
the listing of capabilities. The I/0 commands are similar to those '
available in FORTRAN IV. There is a PAUSE V and EXIT command. An

important variation from FORTRAN with FORMAT is the use of the address

variable. This is set up with an ASSIGN statement. Except for the

statement number used with a DO statement, any statement number in a

FORTRAN type statement may be an address variable. The exception is

because AUSYM requires a matching CONTINUE statement for each DO

statemerit. The rules governing statement construction in FORTRAN

with FORMAT are applicable to AUSYM.

Branching Between Codings If the system is to realize any significant
flexibility it must be capable of transferring control from a section
coded in AUSYM automatic to a section coded in AUSYM symbolic and vice
versa. At first this appears to be a simple matter. However, it is
important that the programmer realize the manner in which branches are
effected between codings.

When branching from automatic into symbolic coding the programmer
must make use of an SPS label used as an address variable. When the
symbol table is arranged for object time, labels in SPS will be
initialized to contain the object time address of the statement the
label refers to. This is what is set up when an ASSIGN statement is used’
to define an address variable. There 1s no extra action on the part of
the programmer. It is as though the label was a statement number.

In considering branches in the symbolic language, the position ‘CD

3

branched to may be an actual, symbolic or asterisk address. When a
branch is needed into an automatic language section, no label is available
since the statements are distinguised with statement numbers. If a
statement number is used as the label to branch to, the compiler has

no way of distinguishing the statement number from an absolute address.
For this reason, to branch from symbolic to automatic AUSYM coding
requires some action on the programmer's part. The branch should be

to an address variable used as an indirect address.

System Constituents Viewed as a whole, there are three parts to the AUSYM
system which must be placed on Monitor I. First, there are the in-core
subroutines, which are an integral part of any object program produced

by the compiler. Secondly, there are the relocatable subroutines, any

one of which is added to the object program only if it is called upon.
Finally, there is the AUSYM compiler whose job is to generate an object
code from the various input source statements.

Subroutines--In Core and Relocatable The in-core subroutines used by
an AUSYM object program are the same as the subroutines provided with
IBM's FORTRAN with FORMAT for the 1620. TFour very short routines

have been added which provide AUSYM with capabilities not available in
FORTRAN with FORMAT. These are for the operation of the PAUSE to type
up to a five digit word, for the EXIT to return control to the Monitor,
and for the reread (D=0 for READ) to rescan an input record.

The relocatable subroutines differ from those provided by FORTRAN
with FORMAT in two ways. First, the arguments address is sent to the
subroutine instead of sending the address to the symbol table. Secondly,
to allow for relocatability by AUSYM all statements were made to generate
object instructions of uniform length. The reason for this 14 the
method for relocating and loading the relocatable subroutines.

The Compiler With the source program divided as previously mentioned,

it is not necessary to retain the entire compiler in memory. Once the
FORMAT infnrmation has been processed there is no need for this portion.
In a simi... fashion, once the mainline program has been translated, its
translator is no longer needed in memory. Continuing in this fashion,
the compiler is written in definite segements which are overlayed

once their functions are completed. The various segments of the compiler
are referred to as phases and each phase has a number of tasks to fulfill.

The design of the phases was such to insure the use of as little
core as possible during any one phase. Using this approach, there is
a maximum amount of space allotted to the symbol table. With the system
on disc the time for overlaying is at a minimum,

Brief Pescription of Phases. Phase one défines constants to be used
throughout the compilation process as well as small routines to be used
repeatedly. Some of the routines included are: PRINT, to take care

of listings; ERROR, to give error messages; SMOT, to bread a symbol
from a certain location; etc. Once the size of memory has been
determined, local control cards are processed. The symbol table is

‘initialized and processing begins. This 'phase continues until the first

n

7

S or F is sensed in column one of a card. All FORMAT and DIMENSION
statements must be translated in phase one. Prior to exit, the initial
order of the symbol table is established with a sort.

Phase two is the major phase of the entiré compiler. The symbol
table search and subscript determination routines are entered with phase
two. If an SPS statement is encountered, pass one is conducted to reserve
space in the object program and to enter labels into the symbol table.

The statements are recorded for complete translation in phase three.
FORTRAN statements are analyzed for category and are either translated
as arithmetic statements or as category two statements.

" “Phase three is designed to conclude the production of an object
program. -~ This is pass two SPS processing. The records are read in
blocks ‘and special routines are used to locate the storage location on
the disc for the object code generated by a statement. If any new
variables are encountered, they are entered into the symbol table. Prior
to exit, the compile time symbol table is written onto disc and error
indicators are checked to determine whether to proceed or not. A
vector is constructed to indicate which relocatable subroutines, if any,
are required. e

Phase four actually consists of several overlaying program segments.
If relocatable subroutines are required, they are all placed in memory;
and as a subroutine's relocation is completed, the subroutine is added
to the object code on disc. Information to the operator, such as
object starting location and symbol table starting location, is typed.
The FORMAT information and the object program are read into memory.
Then, the compile time symbul table is expanded into memory. Symbol
table listings are produced. The only remaining item needed for ‘
execution is the in-core subroutines. These are. loaded, and control is
transferred to the object program.

Conclusion Included below is an example program which demonstrates most
of the capabilities of the AUSYM system. In a thesis by the author, a
description of the internal workings of the program phases is given.

This is done in a fashion to aid a reader in following the source listing.
Topics included are: Storing Format Information, The 8ymbol Table,

The Symbol Table Search, Subscripted Arrays, Pass I Symbolic Processing,
etc. The thesis also includes appendices for source listings, program
compilation, and sample runs.

78

<:§,

ARITHMETICS
A AM

‘n’ LDM D

INTERNAL DATA TRANSMISSION

TD TOM
TNF

BRANCHING INSTRUCTIONS

B8 BENF
Bl BC1
BP BE
BN I BNC1
BNE BNZ
BNA
INPUT=-0UTPUT

RN RNTY
WNCD - DN
RAPT RACD
PRNS PRA
WDN CON
CTN RTGN

w MISCELLANEOUS
' K RCTY
CF H

MACRO INSTRUCT 1ONS
FA Fs
FS IN FCOS

TF

RNPT
DNTY
WA

PRAS
RDGN
WTGN

TBTY
NOP

FM
FATN

TFM

BD
BC3
BNL
ENC3
BN

RNCD
DNPT
WATY
PRD

WDGN
CTGN

SPTY

FD
FEX

M .
CM

TR

BY
BChL
BNN
BNC/
BNV

WN

DNCD
WAPT
PRDS
COGN

BKTY

FLT
FLN

Symbolic Capabilities

MM

BTM
BL
BV
BNH
BNXV

WNTY
RATY
WACD
SK
RTN

SKIP

FiX

9

Lo

88
BH
BXV
BN
BA

WNPT
RA
PRN
RDN
WTN

SF

FSQR

Automatic Capabilities

DIMENSION VI(NT),V2(N2),V3(N3),0aqs

ASSIGN (N) TO (V)

GO TO N

GO TO (N1 N2,N3,.,.),V

IF (SENSE SWITCH N) NI,N2
IF (EXP) N1,N2,N3

DO N Vi=V2,V3, Vi
N CONTINUE

PAUSE V

EXIT

END

| READ (D,N),V1,V2,V3,...
** D=0 REREAD
D=1 READ FROM TYPEWRITER
N=2 READ A CARD
D=3 READ FROM PAPER TAPE

WRITE (0,M),V1,V2,V3, .40
*k D=0 PRINT |

D=1 PUNCH CARD

D=2 TYPE

D=3 PUNCH PAPER TAPE

N .FORMAT (SPECIFICATION)

80

Compiler‘Pha$és”;f;ﬂf

PHASE 1 .
C— PROCESS FORMAT
AND D IMENS | ON
PHASE 2
e — PASS | SPS
ARITHMETIC STATEMENTS
NON ARITHMETIC STATEMENTS
PHASE 3
— PASS 2 SPS
WRITE COMPILE TIME SYMBOL
TABLE ONTO DI3K
i
i
o
PHASE 4 ADD FZLOCATABLE SUBROLTINES
Lo

TG C2JECT PROGRAM

LOAD v ZORE SURRCUTINES
FROM G {iSK

LOAT AT {NFORMATION 4
FRe.. v :iSK ﬂ
' EXPAND COMPIL >YMBOL TasL” |
FRCA DISK i1 D 8JECT Tiie |
{ SYM3OL TABLE .. MEMORY ?

\ PROGRAM ,

81

C AUSYM SAMPLE PROGRAM TO SORT 500 VALUES US ING
C A BUBBLE SORT. THE INPUT VALUES MAY BE IN ONE
C OF TWO LOCATIONS ON A CARD
DIMENS ION X (500)
100 FORMAT(12)
101 FORMAT(10X,F10.3)
102 FORMAT(20X,F10,3)
103 FORMAT (16H ORDERED NUMBERS)
10k FORMAT (1X,F10.3)
105 FORMAT(13)
F ASSIGN (1)TO (LOOP)
ASSIGN (8) TO (BOTEM)
READ (2,105) MAX
MAX=MAX ~1
DO 1 I=0,MAX
READ (2,100) IND
IF (IND-2)2, 3
READ (0,101]°Y
GO TO FVAL
READ (0,102) Y
GO TO FVAL ,
THE INDICATOR IS GREATER THAN 2, IT IS ILLEGAL
PAUSE ILGAL
GO TO 5
S FVAL NOP *+60
TDM *-11,9
C THE FIRST READ IS MOVED INTO POS 1T 10N
TF X(500),Y
TF X (500)=2,Y-2
B LOOP,,6
F M=500-1
C THE BUBBLE SORT IS STARTED
DO 7 J=M,500
lF(X(J)-Y)6,6,7
7 CONT INUE
6 J=J-1
S SM
C
BE
MM,
AM 99,
C SAVE CONTAINS T
v

FT w Np WU

WD X

e ,
IGIT REPLACED WITH A RECORD MARK
11 |

83

SAVE-1 CONTAINS THE ADDRESS OF THE LOCATION THAT THE
RECORD MARK WILL BE IN AFTER THE TRANSMIT RECORD
TF SAVE-1,99
MM M, 10
AM 99,X(1)-19
SF ot
TF %*3+30,99
AM 99,10
THE MOVE DOWN TO MAKE ROOM FOR THE IN COMING ELEMENT IS
ACCOMPL ISHED WITH A TRANSMIT RECORD -
TR ,99,11
TD SAVE-1,SAVE,6
8 X(J)=Y |
1 CONTINUE
WRITE (0,103)
M=500-MAX
THE VALUES ARE WRITTEN IN AN ORDERED FASHI!ON
DO 12 J=M,500
WRITE (0,104) X(J)
12 CONTINUE
PAUSE END
EXIT
END

PROGRAM ABSTRACT

TITLE: University of Mississippi Test Scoring Program
Revised (UMTS-R)

SUBJECT CLASSIFICATION: 13.0.031
AUTHOR: Richard D. Ross

DIRECT INQUIRIES TO: Richard D. Ross, Director
Computer Center, Carrier 103
University of Mississippi
University, Mississippi
Phone: area code 601-232-8368

DESCRIPTION: UMTS-R is a flexible means of scoring objective
exams taken on mark sense cards. It features a card input

and card output or 1443 printer output if printer is available,
A numerical grade for each student is published along with a
grade distribution (with mean and standard deviation) and

an exam analysis--indicating how many choices per question.
UMTS-R has the following additional features:

(1)Allows multiplicity of correct answers.
(2)Allows each answer to be weighted with a weight
value from 1 to 5.
**(3)Allows omitted question numbers to be punched
following the student's grade card.
**(4)Allows question numbers incorrectly answered to be
punched following the student's grade card,
**(5)Allows weight factor to be punched beside each
question number on exam analysis output.
**¥(6)Allows identification to be punched in columns
76-80 of student's grade card,
(7)Allows additional identification to be punched in
columns 01-30 of first header card.
(8)Allows blank cards to be read at any time.
(9)Allows all key cards, alternate key cards, and
weight cards to be read in random order.
(10)Allows student answer cards to be read in random
order.
(11)Allows batch processing. ,
**(12)Allows blank card to be punched following student's
grade card.
** (13)Permits I, D. number to be replaced by sequence
number.
*(14)Permits grading of
*(15)Permits grading of
*(16)Permits grading of
*(17)Permits grading of

test without a card number.
test without a name.

test without a section number,
test without a course number.

PO

85

*(18)Allows variable length I. D. numbers (02 to 11 columns),
*(19)Allows variable length name (01 to 20 columns).
*(20)Allows variable length section numbers (01 to 03 columns).
*(21)Allows variable length course numbers (01 to 06 columns).
+(22)Replaces invalid characters with blanks, thus

eliminating check stops.
*(23)Al11 double punched columns may be considered as

omitted questions.

*Specified by "$DEFINE" card
**Specified by "$" Control Card

Another important feature of UMTS-R is the speed of
grading each student's exam. Given below is the speed of
grading:

Number of Questions Time in Seconds

50 .93
100 1.20
150 , 1.55
200 1.90
300 2.60
400 3.30

500 4,00

RESTRICTIONS/RANGE: No special instructions are required

although TNF and/or Direct Divide can be used on computers
that have these capabilities.

EQUIPMENT SPECIFICATIONS: Memory 20K, 1622, No special
instructions are required but indirect addressing is required.
Memory 40K can be used if available and also the 1443 printer
can be used if available,

ADDITIONAL REMARKS: SPS language processed by AFIT SPS
(Program Number 01.1.023). Fixed point and non-relocatable.
Running time is 1 1/2 seconds for 150 questions and 4 seconds
for 500 questions. This program is written to handle 25 mark
sense columns and split them in half putting questions 1-25
in the 9 to 5 positions and questions 26-50 in the 4 to O
positions. Each answer must be punched in a separate column
for the computer so that a half-after-four time pick up

was added to the mark sense punch to pick up coselectors and
punch each question in a separate column. However, this is
variable and may be defined by the $DEFINE card.

86

DESCRIPTION OF PROGRAM

RESULTS AND METHODS: UMTS-R is designed to grade objective
examinations for a maximum of 150 5-choice questions for 20K
machines and 500 5-choice questions for 40K machines for 999
to 99999 students per exam depending upon the specification

of the $DEFINE card. The program sets up a 10-digit constant
for each question to be graded. This 10-digit constant is
initialized to flag zeros (0 0 0 0 0 0 0 0 0 3) to represent
the answers (EDCBAEDCBA). The only possible answer for any
question is a 0,1,2,...8 or 9. Hence, this constant can be
set up to grade any question on any test.

To illustrate how this constant can be used, we will
assume that we are on question 1 and there is a possibility
of two answers that will be correct (A and C) and this ques-
tion has a weight of 4 on the test. The 10-digit constant
for question_number 1 will then have the form
0000000404, Initially the weight of each question
is assumed to be 1 and at any time a weight card is read
in the card number determines which questions are to be
weighted and if question number 1 was given a weight of 4,
the computer would check all positions of the 10-digit constant
for question 1 and change all non-flagged digits to the proper
weight. If a question is to be left blank, the computer will
fill in for the 10-digit constant 10 flagged record marks.

The address of the first position of each 10-digit
constant has the address of XXXX0. Hence, by transmitting
a digit to the zero position of the address, the computer
can readily determine if the answer is correct, incorrect,
or to be omitted. This check is determined by a non-flagged
digit, flagged digit, or a record mark respectively.

All cards are read alphabetically and the first position
of each alphabetic answer is checked for a digit to determine
if the student has omitted the question. The program will
accept double-punched columns for answers only if they are
specified by $DEFINE card.

As each student's questions are graded, an exam analysis
table is up-dated, and as the student's score card is punched,
a grade distribution table is up-dated. The output that is
obtained from this program is the student's score card, the
grade distribution with accumulative frequencies and per-
centiles along with the number of tests given, mean, and
standard deviation. This is followed by the table of choices
made for each question which includes an asterisk beside the
correct choice or choices for each question. For multiple
section exams or multiple-course exams, the above information
may be punched for each section, each course, and all courses
totalled together.

-5

The answer cards have appropriate header cards included
so that they may be printed with an 80-80 407 board. A 9-
punch is placed in column 1 of a single card for each group
to permit skipping to a new page for each group (wiring
first reading column 1 through correct coselectors to carriage
skip on a 9, and also to non-print). If the 1443 printer is
specified then each line is printed accordingly.

$DEFINE CARD: The $DEFINE card is used to completely define

a 1620 computer system and a test card layout form. The $DEFINE
card is the first card read following the object deck and

given below is the format of the card.

COLUMNS DATA

01-10 $DEFINEDbbDb

11-15 Memory Size (20000, 40000, or 60000)
16 0" or blank for card output, "1" for

1443 printer output

17-19 Maximum number of questions to be
graded (SIZE)

20-21 Maximum number of cards needed for "SIZE"
number of questions (NCARD)

22-23 Number of digits for all totals (03, 04,
or 05). 1If 03, then only 999 students may
be graded at ore time, if 04 then 9999, and
if 05 then 99999 students may be graded. (LT)

25-34 These ten columns are used to define what
' punches represent the answers A, B, C, D,
and E. In some cases an "A'" can be represented
by a "9" punch or a "4" punch, a "B" by an

0787! and V'SH punch,___’ HE" by a "5" and "0"
punch. Then the ten columns would contain
s 9876543210
to represent ABCDEABCDE
If "A" is represented only by a "5" punch,
"B" by a "4" punch,---, and "E" by a "1" punch,
then the constant would be
5432154321
to represent ABCDEABCDE
35 "1l"™ to change weight factor output on exam

analysis from B, C, D, and E to 2, 3, 4,
and 5. Otherwise a "0" or blank,

-6 -

36-37

38-39
(a)40-41
(a)42-43
(b)44-45
(b)46-47
(c)48-49
(¢)50-51
(d)52-53
(d)54-55

56-57

58-59

61-70

73

74

Beginning column for I. D, number
Ending column for I. D. number
Beginning column for name

Ending column for name

Beginning column for section number
Ending column for section number
Beginning columns for course number
Ending column for course number
Beginning column for card number
Ending column for card number
Beginning column for answers to test

Ending column for answers to test. Total
number of questions (NQ) is determined by
the beginning and ending columns of answers
to test.

These ten columns are used to define legal
double punched columns (0,1,2,...9). The
first digit of each alphanumeric test answer
is checked and normally only answers of the
form 7X are used, otherwise the answer is
considered as being omitted. In this case
columns 61-70 would contain

0000000100
to represent 0123456789
Suppose that forms 5X, 6X, and 7X were to
be considered valid, then columns 61-70
would contain

0000011100
to represent 0123456789 where
0123456789 represents the first digit
of each alphanumeric answer. If columns
61-70 are blank then form 7X will be assumed.

"0" or blank if Direct Divide is available,
otherwise, a 1"

"0" or blank if TNF instruction is available,
otherwise, a "1" '

88

&

75 "0" or blank if name is available, otherwise 8

a "1!1

76 "0" or blank if section number is available,
otherwise a "1"

77 "0" or blank if course number is available,
otherwise a "1"

78 "0" if card numbers are ¢n all test cards or
"1" if test cards have no card number. If
no card number is available then alternate
keys and weight cards will not be accepted.

80 "1" to skip typing of message
XXXXX UNUSED CODE
Otherwise a "0" or blank

(a) May be left blank if "1" specified in column 75
(b) May be left blank if "1" specified in column 76
(c) May be left blank if "1" specified in column 77
(d) May be left blank if "1" specified in column 78

No error messages will be typed if there is not enough
memory, but the computer will type the number of unused core
positions in the form XXXXX UNUSED CORE. A negative number
indicates overlap of memory.

There is a limit when specifying card columns for the
following:

ITEM Minimum and Maximum Lengths
I. D. Number 02 to 11 columns

Name 01 to 20 columns
Section 01 to 03 columns
Course 0l to 06 columns
Card Number 0l to 01 columns
Test Answers 0l to 75 columns

The I. D. number and/or course number and/or section
number and/or name may occupy the same columns on the card,
but they must not overlap. The card columns for the I, D,
number, name, etc., may be anywhere on a card, for example

I. D, could be in columns 07-14
Name could be in columns 02-06
Section could be in columns 20-21
Course could be in columns 15-19

Card Number could be in columns 01-01
and Test Answers could be in columns 25-80

depending on a particular test card format.
-8~

90

To determine the number of core positions used by UMTS-R,
the following formula may be used

CORE =13059 + SIZE(10+5%LT*2)+3 + 105*LT*2+2+NCARD*NQ*2

where SIZE = Maximum number of questions
LT = Number of digits in all total constants
NCARD = Maximum number of cards
NQ = Number of questions per card

-Ou

Program Deck
$DEFINE Card
Control Card

Card Columns

0l
02

03-05

06-08

09

10

11

12

13

14

15

16

91

INPUT

Data

All control cards contain a $ in column "1".

Number of cards per student. If there
are ten (10) cards per student then
column 2 will contain a "0".

Number of questions on the exam.

Number of questions not to be graded
(this includes only those questions
properly left blank).

"0" or blank if the grade distribution
and exam analysis by section is desired.
Otherwise, a "1".

"1" if the grade distribution by section
is to be omitted. Otherwise, a "0"
or blank.

"1" if the exam analysis by section is
to be deleted. Otherwise, a "0" or blank.

71" jf the grade distribution and exam
analysis by course is desired. Otherwise
a zero or blank.

"1 if the grade distribution by course
is to be deleted. Otherwise, a "O"
or blank.

"]" ijf the exam analysis by course is to
be deleted. Otherwise, a "0" or blank.

"1 jf the grade distribution and exam
analysis is desired on last card indicator.
Otherwise, a '"0" or blank.

"1" of grade distribution on last card
indicator is to be deleted. Otherwise,
a "0'" or blank.

-10-

17

18

19

20-24

25

26

27

28

29

30

31-60

92
"}1" jf exam analysis on last card indi-
cator is to be deleted. Otherwise, a
"0" or blank,

“1" if name is to be omitted from output.
Otherwise, a '"0" or blank.

#1" if sequence number is to replace I. D.
number. Otherwise;, a "0" or blank.

Any data in columns 20-24 of header card
will be punched in columns 76-80 of each
student’'s output card. This could be used
to give the percent of the final grade that
this test will be and the test number or
any other identification that is needed.
Another possible use for this output is to
put the instructor’s initials, or in some
cases, their last name. If left blank,
nothing will be punched.

¥}" if blank card is desired between
student answer cards. Otherwise, a
"0" or blank.

"1" if omitted question numbers are not
to be punched following the student's
answer card. Otherwise, a "0" or blank.

"1" if weight value is not to be punched M:D
following the question number on exam
analysis cards. Otherwise, a "0" or blank.

"0 or blank if questions answered incorrectly
are to be omitted. Otherwise, a "1",.

"1" to omit student's grade card output.
Otherwise, a "0" or blank.

"1" to punch student's grade card. Other-
wise, a 0" or blank. This is for 1443
printer version where information is
printed, not punched. If used in card
version, two grade cards will be punched.

Any information punched in columns 31-60
of the control card will be punched in

columns 1-30 of the first header card.

This can be used for course identification.

-11~ w)

93
3. Keys For The Exam

‘mw The key cards for the exam are the same as the student
answer cards. They are of three types: major keys, seccndary
keys, and weight cards.

A. MAJOR KEYS - Required
Contain the imstructor’s first choice of correct
answers. It must contain an amnswer for each question
to be graded.” Questions not to be graded must be
left blank.
I. D. columns specified by $DEFINE card have a 99---99,

B. SECONDARY KEYS - Optional
Contain alternate answers to those given on the
major keys. If a question on a secondary key card
is left blank, no alternate answer is assumed. There-
can be 4 or less secondary key cards for each major
key. I, D, columns specified by $DEFINE card have a
99---98 for first alternate key, 99---97 for second,
and 99---96 for third, and 99---95 for the fourth
alternate key.

C. WEIGHT KEYS - Optional

If used, the weight key will have a weight for each

question answered on the major key. An answer A on

the weight key assigns that question a weight of 1;

a B, a weight of 2; a C, a weight of 3; D, a weight

‘C@ v of 4; and E, a weight of 5. If a question is left
blank the welght is assumed to be 1.
I. D. columns specified by $DEFINE card are numbered 99=-=-94,

Card Column specified by $DEFINE card of ALL the

key cards contain:

, if the card pertains to the first set of questions
, if the card pertains to the second set of questions
, if the card pertains to the third set of questions

and so on, until

, 1f the card pertains to the ninth set of questions
, 1f the card pertains to the tenth set of questions

oo WM

Only one answer per question is allowed, but by using
the alternate key cards, if the student answers any one of
the correct answers he will get credit for that question.
Let it be stressed that one and only one answer is to be
marked per question, - T

If any of the alternate key cards or weight cards are
not marked, they do not have to be read in, but if they are
read in they are ignored.

The order by which the key cards are read in after the
control card is of no consequence.

-12-

4, Student's Answer Card
The student answer ca
$DEFINE card. The student

any particular order and t
cards for cne student be r

1. Student’s Grade Card

Card Column

Right justified to
column 03

Right justified to
column 09

Left justified to
column 15

Right justified to
column 43

49-51
57-59
65-67
72-74

76-80

2. Student's question nu

Card Column

18-36
45-47
49-51

o

77-79

ok

rds are completely defined by the

answer cards do not have to be in
he only requirement is that all
ead in together.

OUTPUT

Data

Section number (length specified
by $DEFINE card)

Course number (length specified
by $DEFINE card)

Student ‘s name (length specified
by $DEFINE card)

Student I. D. number or sequence number.
(length specified by $DEFINE card)

Number of correct answers
Number of incorrect answers
Number of questions omitted
Score

Any data in columns 20-24 of the
control card.

mbers "ANSWERED INCORRECTLY" card.

Data

Comment "ANSWERED INCORRECTLY"

First question number answered incorrectly

Second question number answered incorrectly

°

Ninth guestion number answered incorrectly

If more than nine questions were answered incorrectly, they
will be punched on the following card, etc.

-13-

O

3. Student's "QUESTIONS OMITTED" card has the same format
as the "ANSWERED INCORRECTLY" card with the exception of
the comment in columns 18-36 which will be

"QUESTIONS OMITTED"

4, Grade distribution cards.

Card Columns

Right justified to
column 03

Right justified to
column 09

14-16
18

23-26
32-35
41-44
50-53
59-62
68-71
78-80

Data

Section number (length specified
by $DEFINE card)

Course number (length specified
by $DEFINE card)

Question number

Weight of questions
Number of A answers
Number of B answers
Number of C answers
Number of D answers
Number of E answers
Number of omissions

Percent of correct answers to this
question

-14-

95

$1050003 1. 1 1R0Ss 1
99999MASTER KEY CARD 02

QOUCANEIGHT CAPDEY o1
99997 ALTERNATE KEY 01
SSURBAL TERNATE KEY (o} |

56223WILKINSON CAMILLE 01
S8377HABES JOHN D JR ol
60243SINGLETON WILLIAM 01
B87R82GBAII FY PHYM.1 IP JASO1
59089SHADDINGER MARYE JO1
54373EMBRY JANICE PHILLO1
S56120TOWNSEND JOHN HERNO1
56201YELLS STEVE C o1
5554 1LAFOLLETTE LOIS B 01
S41 36CRAWFORD BUREN R 01
58088RAY SUSAN GILBERT 01

SB28SFRAZIER BRENDA MARQL
55344GRIMES F ANITA o1
55147CURTIS MARY M Qa1
54691PASH JOHN 01
56136UZZLF ROBERT H o1

4755 1CHAMPION JOHN POWEO1
59123SL ACK CHERYL GAY 01
52850FYFE CHARLES WATKIO1
577S0ALEXYANDER STACY M .01
55497JONES SANDRA L 01
6C0S2BARNFS CLAIR CORTLO1
59232TAYLOR DIANNA TEENO1

55225EDVARDS HAROLD M JO1i

S5257EIMNCH JO CAROL 01
57767 FBRAHAM GLADYS K 01
SS659MAGEE RABERT M 01

57140LITTON PEGGY SCOTTO1
54505WHITTEN MARY ANN 01
475 13CALVIN JOHN HENRY 01
S4650GUNN VIRGINIA C 01
54383REA WILLIAM L 02
S57047HARRIS CARQOLYN ANNO2
55584L0GAN FREDERICK M 02
50037BEAVER SONDRA KATHO2

S5262FLAGG CAROLYN B 02 2

561 16TIBBEITS ROBERT N 02
5886 7NECAISE JEANNE KAYO2
55064CARVER CANDACE. ANNO2
55983SHARPE SUSAN MANN 02
53308RICE LEQ EDWARD 02
5695SDOUGHER TY PATRICIAO2
S55311GEORGE. FRED ANTHONQZ2
57123LAUGHL IN JAMES RICO2
55128C0X ALVIN C JR 0z
53526WEBE THOMAS LYTLE 02

S8576JUE . TRUMAN o2

5824 8FELLOWS DONALD K JO2
28265F00SE JONATHAN EDWO2
50208CHURCH CLARENCE H 02

SAMPLE |/F2T

1 PSYCOLOGY 201 SEC 01 +-02

20117877888788887877877 7708772233323 = 323232232332852
201199909988882777772888809999 333 T111100C00U
20118788

20119989979 77777 2222222

2011

201178773888888878/78&87?“"b22532215333232332323332
2011777888777877?8 >
2011787
20117L77?88bu0867g/7/7/777u78
2011707738738788787T87787T778
201176788 778786788 07z777 78

23 .
20117778888 7878878778 77777u77 D &
"20117E7T78ET7T788TT7T7EBTE7L8RT7TOOB22 3302323?3101J?’°”"
201177727238 7277877TT77E877777E8773 “JSLESSZSSJ 4223223
20117¢ 8786 BTYBTTT T3TTRT7 33 333 332 2 3
201177785887€E888¢&878 77797?u77u;; 32:123235323322<8
20117€7888878883887877787786 5233332 23332233]
201178778 88787767&77&?7?I?u??ﬁd;:32;3323;220u022vw3&32
20117878788388887787C7778TTETT723333233 3

;-33“5??

,20117877888888L77u7‘“77777 7£uau2£2322 322: '23333232
2011777778778778767 777777877 72232322322222232222322322
2011787588888 7EB787770C7L8034533332233323332 35332233
20117778388 78878287787737TB7H22233223323232 3535 2
20117378E3888883787T78TTTITTETTAIS33233323222 23233 2
20117 E788887T78TET8TTET7T7TTOT72253323322332232232 Z2
2011737 88878 SCT7QTTET7TEL7TEE7325332:2223223 32

2011777888878388787877777707722333253 3232228 33

0117778737868 787873
2011787888 787887877677677‘
2011777878 777887868u778877172 z
2011777778768887(677(7/777@77& 2233
2011777€888778887877 333777u7u9 23328 3
2011777008&78888C87OQ7Q/77 5233523228 .
20117(7&&88768867;787 6837977 BITIJR2T3 233323323
2011787888888877787887777788722 233 22323232222
20117L76P78788837877877mu7u TTR2235323332322233332333
2011787788878E8BTRTTLETTT77E77223332L33 322332232332¢
20117C788887858688877877 GT7B702332333 T 333235 233332
20117377888788787877774 778772223322 3 22223 233332232
01176c78788788887877877 778782233323 = 323 12232332232
20117777888 7887378787HT7 778772223332 3 322 53333232
20117”77}8&7888H7”77u77 778772233323 I 323 332232
20117777788787887877776 778732333323 2 322 333232
2011777778877_3777877778 77870¢233323 2223 J22232
20117C7783BT7ELCBETLTERTT TTR3772233323 3 33 35232
20117E877888888887L868887 778732333233 2 33 333232
201178778878ETTT78T7LET 788872232323 . 33 322232
20117677888 TTHEBTRYTETT 776772333323 2 33 33322322
2011788768778678778878T78 7T7E822 I 2 33223 233233
20117778788887887877787 7738773333323 2 323332 3333232
20117877787 788788377777 778783222333 3 33233% 332832
20117677888 78788787T7_T77778772223325 & 32223223 332222
20117878888 7877778788777778782333323252322533233333532
201177756888 7_8878877877 878872233333 2 322233232333222

O

9T

0 SAMELE ruTr

PSYCOLOGY 201 SEC 01 + 02 ‘ Ie Do NUMBER NUMBER NUMBER
SEC COURSE NAME NUMBER RIGHT WRONG OMITTED SCORE IDEN
01 201 WILKINSON CAMILLE 0000, 35 9 3 70 RQSS
ANSWERED INCORRECTLY 5 8 17 37 42 43 45 47 48
GUESTIONS OMITTED 1 2 3
o1 201 HABES JOHN D JR 00002 36 11 72 ROSS
ANSWERED INCORRECTLY 8 18 19 22 24 25 30 41 47
48 49
o1 201 SINGLETON WILLIAM 00003 35 12 66 ROSS
ANSWERED INCORRECTLY 7 9 13 16 25 37 39 41 44

48 49 S50

o1 201 BAILEY PHILLIP JAS 00004 40 7 84 ROSS
ANSWERED INCORRECTLY 8 16 26 34 37 44 47
o1 201 SHADDINGER MARYE J 00005 41 6 86 ROSS
ANSWERED INCORRECTLY 8 17 25 27 43 47
o1 201 EMBRY JANICE PHILL 00006 41 I 88 ROSS
ANSWERED INCORRECTLY 7 8 10 23 25 42
o1 201 TOWNSEND JOHN HERN 00007 33 8 6 65 ROSS
ANSWERED INCORRECTLY 7 10 15 25 34 37 47 48
QUESTIONS QMITTED 6 16 29 38 43 46
l:' o1 201 WELLS STEVE C 00008 38 9 75 ROSS
ANSWERED INCORRECTLY 10 29 31 34 39 42 44 48 49
01 201 LAFOLLETTE LOIS B 00009 37 10 77 ROSS
ANSWERED INCORRECTLY 7 15 19 21 24 25 37 43 44
47
o1 201 CRAWFORD BUREN R 00010 39 8 83 ROSS
ANSWERED INCORRECTLY S 10 26 28 31 37 48 49
01 201 RAY SUSAN GILBERT 00011 30 6 11 63 ROSS
ANSWERED INCORRECTLY 7 8 17 27 37 a7
QUESTIONS OMITTED : 3 4 5 10 11 18 31 39 42
44 45
o1 201 FRAZIER BRENDA MAR 00012 38 9 79 ROSS
ANSWERED INCORRECTLY 13 16 17 26 27 37 41 43 44
01 201 GRIMES F ANITA 00013 37 9 1 79 ROSS
ANSWERED INCORRECTLY 13 16 17 27 30 31 39 44 47
QUESTIONS OMITTED 36
o1 201 CURTIS MARY M 00014 39 8 75 RQSS
_ANSWERED INCORRECTLY 10 27 37 41 42 43 47 48
o1 201 PASH JOHN 00015 37 10 74 ROSS
ANSWERED INCORRECTLY 5 8 16 17 27 37 42 44 46
c -
01 201 UZZLE ROBERT H 00016 33 14 63 ROSS
ANSWERED INCORRECTLY 8 16 24 27 30 32 34 37 41

42 43 44 47 48

-3}

01

o1

01

01

01

01

01

01

01

01

01

01

01

01

201

201

201

201

201

201

201

201

201

201

201

201

201

201

201

CHAMP ION JOHN POWE
ANSWERED INCORRECTLY

SLACK CHERYL GAY
ANSWERED INCORRECTLY

FYFE CHARLES WATKI
ANSWERED INCORRECTLY

ALEXANDER STACY M
ANSWERED INCORRECTLY

JONES SANDRA L
ANSWERED INCORRECTLY

BARNES CLAIR CORTL
ANSWERED INCORRECTLY
QUESTIONS OMITTED

TAYLOR DIANNA TEEN
ANSWERED INCORRECTLY

EDWARDS HAROLD M J
ANSWERED INCORRECTLY

‘QUESTIONS OMITTED
FINCH JO CAROL

ANSWERED INCORRECTLY

ABRAHAM GLADYS K
ANSWERED INCORRECTLY

MAGEE ROBERT M
ANSWERED INCORRECTLY

LITTON PEGGY SCOTT
ANSWERED INCORRECTLY

WHITTEN MARY ANN
ANSWERED INCORRECTLY

CALVIN JOHN HENRY
ANSWERED INCORRECTLY

GUNN VIRGINIA C
ANSWERED INCORRECTLY

00017

00018

00019

00020

0c021

00022

00023

00024

00025

00026

00027

ooozs

0C029

00030

00031

13

16

42
17

10

[6Y]
c n

T &

16
S0

35
46
30
10
27

39
25

42
27

42
34

39
24
10

42
17

34
43
36
24
47
32

37

40
18
16
37

17

40
16

i0
49

17
30

28

37

37

26

44

25

10
41

19

19

19

24

12
17

17
18
37

12
16

11
31

15
15
44

22

19
41

47

48

49

19

34

16

47

31

27

N
~

27

34

23

21
44

44

N\

41

37

21
48

34

39

28

37

43

29

22

48

47

39

37

44

41

47

98

73 ROSS
32 34

65 KROSS
24 2%
50

76 ROSS
48
88 ROSS

86 ROSS

88 ROSS

83 ROSS

70 ROSS
37 41

74 ROSS
42 43

67 ROSS
24 27

75 ROSS
4.4 45

388 RQOSS
85 ROSS
48

74 ROSS

44 47

84 ROSS

O

SEC COUR SE

o1
o1
01
01
(¢]
o1
01
(¢31
01
01
01
01
01
01
01
01
o1

201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201

SCORE FREQUENCY

63
65
66
67
70
72
73
74
75
76
77
79
83
84
85
86
88

PN RS NN = W= =N =N

NUMBER OF TEST = 31 MEAN = 77

CUMe FREQe PERCENTILL

2 8}

4 13

5 16

6 19

8 26

9 29

10 32

13 4.2

16 52

17 58

18 58

20 65

22 71

24 77

4] 81

27 87

31 100
STANDARD DEVIATION = 7

99

QUESTION

‘SEC COURSE NUMBER

o1
o1
o1
o1
o1
o1
o1
o1
o1
o1
o1
o1
o1
o1
o1
o1
o1
o1
o1
o1
o1
o1
o1
o1
o1
o1
01
ot
o1
o1
01
o1
01
o1
o1
o1
o1
01
01
o1
01
01
01
o1
o1
01
o1
o1
01
o1

201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201

201

201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201

OO NGO PGV

DD TOOOOONCDDDODD

50

mmmmmg O C o

3 3 3 * 3

¥*

THIS QUESTION

THIS QUESTION

THIS QUESTION

B c) E oMIT
* 30% 1
18% 12% 1
* 29% 2
19 * 1 0% 2
23% 7 1
30 % * 1
23% 8
13 18%
27% 4
20% 9
21% Ox 1
25% &%
6 25%
30% 1%
3 28%
12 18% 1
20 10 1
3 27%
7 243%
OMITTED AT THE REQUEST OF THE INSTRUCTOR
5 26%
3 28%
28% 3
9 22
9 21%
5 26%
14 17%
28% 3
27% 3 1
25x% 6
s 25% 1
28% 3
OMITTED AT THE REQUEST OF THE INSTRUCTOR
21% 10
OMITTED AT THE REQUEST OF THE INSTRUCTOR
26% 4% 1
18 12% 1
13% 17% 1
7 23% 1
31k sk
11 20%
9 21% 1
20% 10 1
16 14% 1
28% 2 1
28% 2 1
19 123%
16% 15
25% 6
3 28%

EXAM ANALYSIS

ASTERISK (%) INDICATES CORRECT ANSWER

100

PERCENT
CORRECT

97
g7
94
94
74
97
74
58
87
65
Q7
100
81
100
90
58
65
87
77

84
90
90
71

68
84
55
Q0
87
81

81
90

68

97
39
97
74

100
65
68
65
45
90
90
39
52
81
90

C

QUESTIONS OMITTED

02 201 FOOSE JONATHAN EDW 00049
ANSWERED INCORRECTLY
o2 201 CHWRCH CLARENCE H 00050

ANSWERED INCORRECTLY

4.4

10

39
16

36

49

25

13

102

81 ROSS
39 41 44 47

69 ROSS
24 31 34 41 47

o

SEC COUR SE
02 201
02 201
02 201
02 201
02 201
02 201
02 201
02 201
02 201
o2 201
o2 201
02 201
o2 201
02 201

NUMBER OF TEST

SCORE

19

54
66
69
7z
73
76
78
81
82
84
86
88
93
94

MEAN

FREQUENCY

= 79

CUMe FREQe

NP WN -

11
13
15
16
17
18
19

STANDARD DEVIATION

103

PERCENTILE

S

11
16
21
26
37
42
se
68
79
84
89
95
100

QUESTION

SEC COURSE NUMBER

02
02
02
02
02
02
02
02
o2
02
v2
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02

201
201
201
201

201 -

201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201

VCONOUBPLPpWN=

TDODDTDOONCAONOTDOT @

10
11

12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38

39 -

40
41
42
43
44
45
46
47
48
49
50

ASTERIS

D
D
D
D
D
E
E
E
E
E
K

10L

EXAM ANALYSIS PERCENT
A 8 c D E OMIT CORRECT
* % 19% ’ 100
* 14% 5% ioo
* 1% 18% 100
* 6% 13 100
* 143% S) 74
18% 1% 100
* 16% 3 84
4 153% , 79
16% 3 84
14% 5 74
13% 6% 100
14% 5 % 100
3 16% 84
19% s 100
2 17% 89
4 15% 79
13x% 6 68
4 15% 79
4 153 79
THIS QUESTION OMITTED AT THE REQUEST OF THE INSTRUCTOR
3 16% 84
1 18x% 95
18% 1 95
3 163 84
8 11% 58
2 173 89
6 13% 68
15% 4 79
17% 2 89
18% 1 95
6 13% 68
17% 2 89
THIS QUESTION OMITTED AT THE REQUEST OF THE INSTRUCTOR
12% 7 63
THIS QUESTION OMITTED AT THE REQUEST OF THE INSTRUCTOR
17% 2% 100
7 T12x% 63
8% 11k) 100
4 15% 79
19% * 100
3 145 2 74
3 16% 84
14% 5 74
10 * 1 42
18 1 95
17% 2 89
10 9%) 47
2% 16 : 1 11
17 2 89
1 18k 95

(%) INDICATES CORRECT ANSWER

‘jm

TOTAL FOR ALL SECTIONS

COUR SE

201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201

SCORE FREQUENCY

S4
63
65
66
67
69
70
72
73
74
75
76
77
78
79
81
82
83
84
85
86
88
93
94

s WS DPRONWN == WWN NN - = NN -

NUMBER OF TEST = 50 MEAN = 78

CUMe FREQe

1 2

3 6

5 10

7 14

8 16

9 18
11 22
13 26
15 30
18 36
21 42
24 48
25 50
26 52
28 56
31 62
33 66.
35 70
39 78
40 80
43 86
48 96
49 98
S0 100

STANDARD DEVIATION = 38

105

PERCENTILE

TOTAL FOR ALL SECTIONS
' QUESTION
NUMBER

CQUR SE

201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201
201

20;f

VO NOO pWN =

T T DB DOONONNTDODTE

10

11

12
13
14
15
16
17
18
l9

20 .

21

22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50

D
D
D
D
D
E
E
E
E
E
K

PR

THIS QUESTION

THIS QUESTION

THIS QUESTION

ASTERISK (*) INDICATES CORRECT ANSWER -

106

EXAM ANALYSIS . PERCENT
B C D OMIT CORRECT
* 4 9% 1, 98
32% 17% 1 98
1% 47 2 96
25% 23k 2 96
37% 12 1 74
S48 s 1 98
39 x 11 78
17 33x% 66
4 33 7 86
34 14 2 68
34% 15% 1 a8
39% 11% 100
9 41% 82
493% Y 100
5 T4 5% Q0
16 33x% 1 66
33k 16 1 66
7 425 1 84
11 39%. 3 78
OMITTED AT THE REQUEST OF THE INSTRUCTOR
8 423 ' 84
4 465% 92
46% 4 92 >
12 38 76 G
17 32k 64
7 43 86
20 30% 60
4 3% 7 86
44 5% 5 1 88
4 3% 7 86
11 28x% 1 76
453% 5 20
OMITTED AT THE REQUEST OF THE INSTRUCTOR
33k , 17 66
OMITTED AT THE REQUEST OF THE INSTRUCTOR
4 33k 6% 1 98
25 245k 1 48
21% 28 1 98
11 38k 1 76
503k % 100
14 343k 2 68
12 37% 1 74
343 15 1 68
26 22% z 44
46% 3 1 92
45% 4 1 90
29 S21% 42
183% 31 1 36
42% 8" 84
4 46% 92

NN NNNNNN

UNIV OF MISS TEST SCORING REVISED

222222
READCK
DECSRR
ADN
APA
AQUES
ASEC
BFF
BN2
CHECK
CNA2
cT
DECAX
DIV
DIvVV
ERRA
ERRS
FREQT
HCAA
HOL D2
H322
H8 22
L
LoGP
MEAN
NINE
NQDT
PLLA
PsSB
PUNCH
RCON
READ2
RPUN
sC
SFLAG
STAT
TAB1
TCNT
THRUF
WRON
XCOUR
XTOT
ZRE
ZRP
z18
Al
BB
ERR
HS
PRTT
ROSS
R22
™

13559
00408
10540
09403
08172
12138
12108
02716
03076

‘04944

00735
08487
04044
11046
11324
03892
09988
01695
03988
02451
05960
05912
12227
04832
08419
11921
03797
05620
07040
11524
11029
00570
08928
03727
00638
00784
00807
07159
04976
02271
12331
12337
01636
02096
11939
17370
13719
15061
14223
17766
14109
18030
17130

NNNNNNNN

THRUUA
READBB
CHECKK
ADR
APB
ARN1
AST
BL
BN3
CID
CONA
DAD
DECL
DIVA
DouT
ERR AA
ERR6
GRA
HCT
HP20
H&44

LAL
LOOPA
MEN
NMM
NQM1
PLLAA
PSEA

RCONX

TNF

04292
00444
13420
09400
oglg4
02140
09413
12307
03112
10208
13389
0934¢
10669
11807
10696
0392¢€
06077
12277
04056
04700
1317¢
12207
05880
041€4
09527
12309
04136
06672
06432
06485
09395
03692
13510
12297
12345
06100
00963
03327
05080
04047
12343
13189
01988
02960
11928
14083
13741
14351
14239
1376 ¢&
13877
1537¢
13645

NNNNNNNN

TAB2L1

PUNCH1

CHECKA
AID
APC
ARN11
ATDE
BLANK
BN6
cIibC
CONB
DADD
DECS
DIVE
D1X
ERRF
ERR6H
GRB

RDEC
RIGHT
RRC
StC
SI1ZE
STRT
TAR2
TESTHE
TNF
wT
xpPg2
ZEROQO
ZRG
ZRRX

PR3
RRCC
R33

(UMTS=R)

01035
11706
04220
izo8s8
08208
02164
09541

11923
03376
10230
13411

09361

10364
11517
11475
09368
06119
12287
12855
0364
06252
04435
05892

00721

12257
12267
03505
06684
06464
12359
10432
13367
13554
10302
00685
08204
0999
03471

07231

13566
11919
12081

02036
02996
11929
17406
13641
14379
14042
13780
13854
18066
145585

NN NNNNNNN

SYMBOL

TABIL1

PUNCHH

ABEGIN
ALRL
APCC
ARN3
Al4
BLC
BN66
cKA
COUR
DBN
DECSR
DIVC
pax
ERR1
ERR7
HA
HE
HP36
H4B88

TouT
wTT
XSAVE
ZRA
ZRJ
ZRZ

AT
CONA
H2
LT
PR4
RT
R4
XA

TABLE

00975
11656
00401
01096
07916
01904
102586
03809
03460
13439
10320
11368
10296
04042
11480
09693
04663
12369
13017
01763
06160
10252
05936
00719
122647
051084
03761
07340
06388
12304
00760
12174
10186
10308
123565
02560
01023
05044
0E564
13440
12323
10618
02332
01480
13810
13655
14066
14443
14079
13792
17910
15402
15102

NNNNNNNNN

STARTX
FREOTL
AAA
ANAME
APD
ARN4G
A71
BNF
BRAN
CKH
CNURC
DDA
DECX
0IvD
D3N
FRR2
EXTRA
HB
HG2
HX
HS 22
JIDC
LAY
LTST1
NCARD
NOMIT
MUY
PPAL
P SER
HAD
READA
ROSP
RRCP
SETUP
SRS
STUD
TAB21
THRA
TTN
!
XSEC
ZRi3
ZRid
Zs8
AA
Al
CORF
W22
NCARD
RCON
R1
S1ZE
ZERD

09120
01811
10723
12098
08240
01916
11889
02660
091 44
13459
10332
09353
04605
0723¢
11440
09761
12357
12531
12355
1038748
05934
10274
08972
00747
coesy
13569
09443
11685
03850
03776
00440
0RO72
13530
04328
10760
03028
01095
04256
0788¢
12361
12325
01552
03184
02866

13575

16974
14071
14533
14077
18175
151 3¢
14075
14037

NUVEMHER 18y 1966

NONNNNNNN

SQRSUL

FREQMT
ACN

CANS
APDD
ARNE
AR
EINFE
CARD
CN
COURR
DDACK
LEC1
pIivy
03X
ERR3
FREQ
HC
HOLL
H22
HS&&
JIDCC

PRAZ

FESS

HEADL
€OUT
RTR
sF
SQRT
TABZ
TAS
THRU
WET

X
XSECA
ZRC
ZRN
zZ10
A
ALG
DCK
HG

PR INC
RDR
R11
START

10724

02z38"

12128
13569
OR2EH
023446

10171

02696
12301

C725%
104544
w307
19660
11108
11487
RIN3S
01203
12693
02283
10141

ose0e
102G6
05368

‘12237

0093G
G600
04139
1169z
06698
0776
00470
G716
1355%%
00674
LpA1A
12163
1 00095
05032
02272
11727
12327
10590
03172
11931
13657

© 13839

14715
14208

14072

14080
17994
14736

107

HAGE

RIGHTT
FREQL1
ACOUR
CANSZ
APMX
ARNT
BA
BHL
CFLAG
CNAl
CON
DECA
D1Isc
DIvK
nax
FRky
FREOL
HCA
HOGLOL
24
=722
S
LCARD
HAXS
NG
MO
PC LU
BeA
EEPS
RIaME]
Ll AD
RUUTT
RTVT
SFF
START
TALBZL
THC
THRUA

it

05008
w1227
12118
13281
01744

T o27Ra4

03472
0L594
0c61a
6a729
15e61]
10711}
ceool
11060
11492
0924
01218
03976
02319
0G 068
0H 086
12217

V768
D69 00
4

DHREOE

0r7al
C066 2
ou73#.
02039
12209
042464
123463
05118
123529
01624
10882
11934
13829
16956
13644
14523
13766
16064
15294
16940

LOCTN

00402
00001
00401

00406
00408
00420
00431
00432
00443
00444
00446
00446
00458
00469
00470
00482
00493
00494
00505
00506
00513
00514
00526
00538
00850
00562
00569
00570
00582
00594
00606
00608

00612
00614

00626
00633

00637
20638
00650
00662
00674
00685
00682
00686
00698
00710
00721

00719
00722

UNIV OF MISS TEST SCORING REVISED

(UMTS-R) MOVEMBER 18, 1966 PAGE.
aP P/L Q PG/LN LABEL MNEM UPERANDS AND REMARKS
00010 % UNIV OF MISS TEST SCORING KFVISED (UKTS=R)
00020 % RICHARD D ROSS
00030 * OCTOBER 6, 1966
00040 DURG 402
00000 DISC DS slsy DISC=0 FUR NO DISC 1 FOR DISC
00000 00050 ABEGIN DS .
00060 * SUBROUTINE TO READ A CARD AND CHECK FOR
00070 * MBR-E: AND MBR=-0 CHECK STOPS
00005 00080 DS 5
37 11727 00500 00090 READCK RACD X
46 00446 01200 00100 BE READA
00005 00110 DC 55016004%
46 00446 01200 00120 EE READA
00005 00130 DC 5,01700,%
42 00000 00000 00140 READBE BB
00150 PORG %=9
16 00481 %1726 00160 READA TRM READL+11.X=1
46 00470 01200 00170 RE w412
00005 00180 DC 5501700,%
43 00482 12138 00190 READL HBD #+12,AQUES
46 00514 01200 00200 BE READ1
00005 00210 DC 5,016004:%
46 00514 01200 00220 HE READ1
00005 00230 De
49 00570 00000 00240 B
00250 DORG
15 ©048% 00000 00260 READ1 TDM READL+11,0+6
11 00481 00061 00270 Al READL+ 1151410
15 00484 00000 00280 TOM READL+1150+6
12 00481 00061 00290 Sk READL#*1151+10
49 00482 00000 00300 & READL+12
00310 DORG =4
11 00481 00082 00320 READZ AM READL+11+2410
14 00481 1885 00330 CN READL+11 s X+80%2=2
47 00470 01100 00340 BNP READL
42 00000 00000 00350 Be
00360 DOKG =9
00370 x END OF SUHROUT INE
00380 = SUBROUT INE TO FLAGS AMD CLEAR FLAGS
00005 00390 P
15 00675 00003 00400 CFLAG TDM SF+1,3 .
49 0065C 00000 00410 b SFLAG+12
00420 DORG %—4
00005 00430 DS 5
15 00675 00002 00440 SFLAG TDM SF+1,2
16 00673 #2088 00450 TF SFF+11,A10
26 00680 12088 00460 SFF TE SF+6,A1D
32 12088 00000 00470 SF SF AID
00003 00480 SIZE DS Hekss MAX THUM NUMBER OF QUESTIONS
00002 00490 NCARD DS 2,%-3,, HAXIMUM NUMBER OF CARDS
11 00673 000%#0 00500 AN SFF+11,10,10
45 00662 00673 00510 BNR SFF,SFF+11,11
32 11726 00000 00520 SF x-1
00002 00530 LT DS 2s%s LENGTH OF CONSTANTS (03, 04 DR
00000 00540 LTS DS s %=24 LT= LT = &
42 00000 00000 00550 B

"108

LOCTN

00724
00729
00735

00736
00747
00748
00760
00772
00784
00796
00807
©co808
00820

00832
00844

00856
00868
00880
00892
00904
00916
00928
00939

00940
00952
00963
00964
00975
00976
00988
00999
01000
01012
oL023
01024
0103%
01036
01048
01060
01072
G1084
01095
01096
01108
01120
01132

UNIV

oP

32

16
26
17
17
32

14
46

14
47

14
47
25
25
25
16
49

16

33

33

17
32

OF MISS

P/L

00006
00006

00760
00005
11889
11885
00408
00614
12088
00005
12093
00760

11727
02140

11729
00940
00939
00938
09348
09353
00760
00003

11889
00760
00005
08740
00008
00614
11742
0000S
12427
12330
00005
12336
00005
12331
12337
12363
12357
12346
00005
$2300
01107
01102
01096

1 109

TEST SCORING REVISED (UMTS=R) NOVENMHER 18, 1966 PAGE
Q PG/LN LABEL MNEM OPERANDS AND REMARKS
00560 DORG %*=9
00570 CNA1l oC 6+10000%
00580 CNAZ DC .6+900018
00590 * END OF SUHROUTINE
00000 00600 START SF READ
00610 LTSTL DS Sekes LTS5T1s LT#5%106G0+1
00060 00620 TEM A714500410
12081 00630 READ TF IX+80%2=2,2ERD
80000 00640 BTM READCK
90000 00650 STAT BTM CFLAG
00000 00660 SF AIDs 6
00670 TAB1 DS Se¥ee TAHL= TARL
00060 00680 cm AID+540+610
01200 00690 BE READ s s s IF BLANK CARD 15 READ,
00700 * SKIP THE CARD
000%+3 00710 cM X913510
01200 00712 ENE ARN1
00714
00716 * DISC VERSION READ IN MUMBER OF CtRIIS NEERED
00718 * oN $5020
00720 % WHICH SAYS YDU NEED TWO EXTRA COPIES AMD USE DRIVE 0
00721 =%
00000 00722 IF DISC=14840
04313 00723 [aY X+241313 8
01200 00724 BNE %472
11733 00724 o MCOPY ¢ X +4 & P=2
11731 00726 T NCORY =1y X+3%2-2
1173% 00727 T DAD WX 4552 =20y BICK UP BISC bt I OOt
80000 00728 TEH DDALO ’
00000 00729 i READ
00730 NCORY DC Ga0a
00735 % HEADER CARD
000%0 00740 TEK AT1,70,10
00000 00750 CF READ
00760 TARIL DS Seys TAUILS TAKY = LT + 1
00000 00770 CF RTTT '
00780 TAHILL DS SHa¥aes TALILL= TAHL = LT + 1 4 1}
80000 00790 BETM CFLAG
00000 00800 SF X+9%2 -3
00#10 TAHM2 (DS Sakas TAB2= TAWZ
11845 00820 TF HA+30%2=24X+60%525=2
00000 60830 SF XCOUR=1
00840 TAH2L DS Sees TARZL=E TARZ = LT + 1)
00000 00850 SF XTOT=1)
00860 TABzL1 DS LI TAHALYLE TALE = LT +# 1 + 1
00089 00870 AN XCOUR 9910
00069 00880 AM XTOV 99410
00069 00890 A WM 910
00069 00900 AM EXTRA$9.10
00000 0010 SF HGZ =9
00920 TAw21 DS Gty TARZY= TABZ+)
11727 00930 ALRL D CARD=14X 2
00729 0040 A ALRL+1 1} +CNAL
+2309 0050 ™ ALRL+6 sCARD=1+¢
01200 00960 BNE ALRL

UNIV
LOCTN OP
01144 22
01156 15
01168 15
01180 43
ot1t92 15
01203
01204 32
01215
01216 32
01227
01228 23
01240 46
01252 22
01264 24
01276 46
01288 23
01300 24
01312 47
01324 26
01336 26
01348 43
01360 26
01372 26
01384 14
01396 47
01408 26
01420 24
01432 46
01444 24
01456 47
01468 17
01480 17
01492 31
01504 31
01516 22
01528 11
01540 22
01552 31
01564 11
01576 43
01588 26
01600 26
01612 16
01624 25
01636 15
ole4s 11
01660 24
01672 47
01684 32
01695
01696 31

OF MISS

P/L

01107
12308
12300
01204
12300
00005
12302
00005
12305
00005
12301
0l468
00099
00099
01468

12301
00099
0l468
12323
12565
01372
12565
12689
12355
01420
12689
12301
01468
12304
01480
09368
10882
01022
ol181%

09403
02400
09403
09406
09403
01552

13439
1345¢
12207
01642
13439
12207
12207
0162¢
13430
00005

13460

TEST SCORING REVISED (
Q PG/LN LABEL
00738 00570
00008 00480
00006 00¢90
12301 01000
00004 01010
01020 FREQ
00000 01030 .
01040 FREQL
00000 01050
01060 FREQL1
03724 01070
01200 01080
03724 01090
12304 01100
01300 01110 |
01120
03724 01130
12304 01140
01300 01150
12329 01160
11931 01170
12343 01180
12318 01190
13185 01200
00060 01210
01200 01220
11929 01230
00682 01240
01100 01250
00685 01260
01100 01270
69985 01280
0000 01290 ZRz
00963 01300
01218 01310
. 01320 =
09403 01330
+3561. 01340
12304 01350
13350 01360 ZRE
40001 01370 .
09401 01380
01390
11931 01400
11931 01410
00061 . 01420
12207 01430 ZRD
00001 01440 ZRE
00061 01450
12301 01460
01100 01470
00000 01480 .
01490 FRIGT
01500
13350 01810

UMTS=R) NUVEMBER 18, 1966 PAGE
MNEM OPERANDS AND REMARKS

s ALRL+11,CNAZ

TDM NMM=1,5,11

TDM CARD=14+0,11

BD %+24,CARD

TDM CARD=1,1,11

DS Sk, FREG= FREO

SF QUES~2

DS Sy FREQLS FREQ = LT + 1

SF BL=2

DS 5aka, FREOLI= FREQ - + 1

M CARD »NQ

8z zZRZ-12

s 99,N0Q

4 99, OUES

BNN ZRZ=1244 NUNMEER ©IF CAKDS AND QUESTIONS

DO NO AGREE
m CARD »NQ
C 96,QUES

BN ZRZ-12

T XSAVE o XSECH

TF HEB+18%2-24210

B0 * +24 9 XNAME

TF HE+18%2<-2 3 Niih +4 52wz
TF HB+80%2=2 sHb44 +a32«2
M HG2,0,10

SBNE w+24

TF HE4+80%2-24210%2

C CARD s MCARD

=1 ZRZ=-12

< QUESSIZE

NP ZRZ

ETH ERRF sERKS

BETE ZROe s, ZRRAT TALLl, TAE2,

TR TABZ2LsTAGlL +&11

TR EGTL FREGLOLL
ZER(ANSVER TAbLE

s ADN » ADN

At ADR I ANS =G+ 1

s ADNsQUES

TR ADR sANSZ=14¢

A ADN 410001

5D ZRByADN=2
SET UP CHECK COMSTANTS

TF CKA+Z1 G

TF CKB,Z10

TEN Jels10

TC ZRE+5 44

TDh CKA,2

Al Jy1s10

< J2CARD

BN ZRD

SF CKA=Q

s Sty o FRECT= FR:=QT
ZERC CARD/OUESTION CONSTANT AND INITILIZE
TR CON=1,ANSZ~1

AND FRECT

110

COMMON

New Orleans, Louisiana

"A Computer Plotting Language"

Dr. James R. Oliver
and
John McMahon

University of Southwestern'Louisian
Box 133, U.S.L. .
Lafayette, Louisiana 70501

M-3.5
Monday
November 28, 1966
1:30 - 3:00 P.M.

Text 16

111

112

A COMPUTER PLOTTING LANGUAGE

James R, Oliver University of Southwestern Louisiana,
Lafayette, Louisiana
and
John G, McMahon, General Motors Proving Grounds,
Flint, Michigan

Results described in graphical form-are often much easier to
interpret and provide a more meaningful description than information
which is merely aligned in the rows and columns of a printed report,
The architect would like to use the plotter in formulating his design
of a building., On the drawing board, he makes a sketch of his ideas
and if any alterations are to be made, he begins again to redraw the
portions he wishes to retain in his design. Using a plotter language,
one or two of the parameter cards can be changed and the complete
drawing with the changes can be made with a minimum of time and
effort. By means of the plotter, the civil engineer is able to view
the geometry of the construction of a new street or expressway and
how it will affect surrounding property. The dimensions of the parts
of an engine can be calculated by a computer and a drawing graphically
constructed with the plotter making it unnecessary for the mechanical
engineer to draw these parts by hand from generated data, The geog=-
rapher is capable of constructing a contour map from elevation data
points by means of the plotter. There are also many other disciplines
which could use the plotter as a graphical device to great advantage,

At the present time, there are very few automatic programming
languages available which make use of an x-y plotter on line with a
small computer. In the available literature there were only two pro=-
grams designed to implement a language to make use of the plotter:
"IBM 1620-162T Fortran Plotter Subroutines" and "1620 Numerical
Surface Techniques and Contour Map Plotting". The Fortran plotter
subroutines exist in several forms but all are referenced by a Fortran
CALL statement followed by a list of parameters., Experience has
shown that this method is inadequate for many purposes and is somewhat
difficult to learn, particularly for beginning programmers.,

The Numerical Surface and Contour Map Program consists of
several programs which calculate approximations to values defining a
surface and prepare a display of the surface in the form of a map.

The input to this program must follow a rigid format. An understanding
of the program somewhat above that expected of a beginner is necessary
to utilize this system of programs effectively.

It is for these reasons that it would be desirable to construct
a plotter language which requires a minimum knowledge of computers and
computer languages, The EZPLOT language was written to allow the use
of the plotter as graphical output device with a minimum of restric-
tions and programming effort.

There are forty-eight characters in the EZPLOT language, These

113
De

include 26 letters of the alphabet, the ten decimal digits, and twelve
special characters: blank [], period [.], right parenthesis [)],
plus sign [+], dollar sign [$], asterisk [*], minus sign [-],
slash or solidus [/], comma [,], left parenthesis [(], equal sign
[=], and 'comercial at' sign [@],

Combinations of these characters are used to construct statements
in the EZPLOT language. There are three types of statements: source
statements, comment statements and data statements, ©Source statements
define operations to be performed and are decomposed by the interpretive
processor and then executed, These statements are composed of from one
to five input records. Each input record comsists of eighty columns on
a card or 80 type positions on the console typewriter, Blanks have no
meaning except in H format specification, to be discussed in a later
chapter, and hence they are ignored., Every input record which is a part
of the source statement must have a '"commercial at' sign [@] in the
first position of the input record. The source statements themselves
must be located in columns T=T2, inclusive, of the source input record.
Positions T73-80 of the source input record are completely ignored by the
processor and may be used for card sequencing, program identification or
any other purpose the programmer wishes, It is necessary that the dollar
sign character [$] be the last character in the statement, The dollar
sign indicates to the interpreter that the end of =z statement has been
reached, At this point, source statement decomposition is completed and
corresponding machine language commands are executed,

Comment statements may be used in documenting a program and are
defined by an asterisk [¥] in the first position of the input record.
The comment itself may be located in one or more positions 2-80 of the
input record. As a result of the identifying asterisk, the comment will
not be processed as part of the program and will instead serve as sup-
plementary information to persons reading the program. Comments may
also be placed after the dollar sign which denotes the termination of a
source statement since processing does not continue beyond that point
on that input record.

Data statements consist of information on an input record which
is to be read by an input statement and utilized by the program to produce
the desired results. The data input record must not have a 'commercial
at' sign [@], an asterisk [*], or a slash or solidus [/] in the
first position,

DEFINE STATEMENTS

DEFINE statements are necessary for indicating which options are
to be selected for orienting the plotting surface, or what physical
size of the plotting surface is to be used, and the minimum and maximum
values to be plotted. DEFINE statements also accomplish certain special
assigning and converting.

11k
-3-

DEFINE ORIENTATION STATEMENTS

The DEFINE ORIENTATION statement indicates to the interpretive
processor, in one of three systems, how a pair of coordinates is to be
oriented physically with respect to the plotter. This statement should
precede any plotting which is to take place in the program. It allows
the programmer the freedom of specifying whether the first or the second
coordinate in a coordinate pair is to be plotted lengthwise in addition
to designating a positive and negative directions of each coordinate,
The plotting surface is rotated internally about the coordinates of the
current pen position should any plotting have taken place.

The argument, enclosed in parentheses, indicates that the top of
the plotter drum is to move toward the front when it is used in further
plotter operations. The three systems or conventions mentioned are
Cartesian coordinates (+X, -X, +Y, -Y), geographical direction (NORTH,
SOUTH, WEST, EAST), and position in the coordinate pair (+1, =1, +2, =2).
This statement must have a single argument from the set of 12 possible
arguments mentioned above. Otherwise, an error message will be typed
at which time the error may be corrected, A positive number in the first
position of a pair of coordinates in subsequent statements is considered
to be +X in the Cartesian system, NORTH in the geographical system, and
+1 in the coordinate position system. The others correspond to the di-
rections in their respective systems. Thus:

+X is the same as NORTH is the same as +1;

-X is the same as SOUTH is the same as -1}

+Y is the same as WEST is the same as +23

=Y is the same as EAST is the same as -2,
For example:

DEFINE ORIENTATION (+Y)
This statement indicates that a positive value in the second coordinate
position (+Y) will be plotted by moving the top of the drum forward and
that a positive value in the first position (+X) will be plotted in a
direction which is to the right when one faces the plotter,

At the beginning of every progrem a DEFINE ORIENTATION (+X) is

automaticallv executed internally. The first statement of this type in
the program will perform re-orientation of coordinates. The orientation

is changed by either another DEFINE ORIENTATION statement or by initi-
ating another program.,

115
-l

DEFINE PLOT AREA STATEMENT

The DEFINE PLOT AREA statement indicates to the interpretive
processor the actual physical plot size, and the minimum and maximum
values to be plotted in each direction. This statement should also
precede any statements which perform plotting operations. The primary
purpose of this statement is to permit the programmer to scale the
drawing to the desired size.,

In a DEFINE PLOT AREA statement, there are six arguments en-
closed in parentheses and separated by commas, This statement is of
the following form:

DEFINE PLOT AREA (XMIN, XMAX, XSIZE, YMIN, YMAX, YSIZE),

AMIN, XMAX, XSIZE, YMIN, YMAX, and YSIZE are arithmetic expressions.
XMIN indicates the minimum value and XMAX indicates the maximum value
which will appear as the first coordinate of a pair of coordinates in
subsequent plotting operations., XSIZE specifies the physical distance
between XMIN and XMAX on the plotting surface in inches, YMIN indicates
the minimum value and YMAX indicates the maximum value which will appear
as the second of a pair of coordinates, YSIZE specifies the physical
distance between YMIN and YMAX in inches,

The value of XSIZE and YSIZE must be positive and less than or
equal to 999.99. The current physical pen position will be defined as
XMIN ana YMIN when this statement is encountered, For example:

DEFINE PLOT AREA (-3.0, 31,0, 6.4, 73.5, 76.5, 9.0).

The current pen position is defined as (=3.0, 73.5). There will be six
and four-tenths inches between the minimum and maximum values of the
first coordinate and nine inches between the minimum and maximum values
of tne second coordinate. Errors such as the wrong number of arguments,
& 'maximum value' less than its corresponding 'minimum value' or a

'size value' outside the allowable range, will be typed on the console
typewriter and the statement may be corrected at this time.

A DEFINE PLOT AREA (0.0, 99999.0, 999,99, 0.0, 99999.0, 999.99)
is automatically executed internally at the beginning of every progran,
The plot area and the minimum and maximum plot values are changed by
either another DEFINE PLOT AREA statement or by initiating another
program,

DEFINE POINT STATEMENT

The purpose of the DEFINE POINT statement is to assign a pair of
coordinates to one hame., In this way, a single point may be referred to
by one name, called a point variasble name, rather than by its two coor-
dinates, This statement has three arguments enclosed in parentheses

116
-5..

and separated by commas., It takes the following form:
DEFINE POINT (NAME, XCOR, YCOR).

XCOR and YCOR are arithmetic expressions which define the location
of the point called NAME, NAME is a point variable name synonymous
with position (XCOR, YCOR) end may be used in place of a pair of
coordinates where coordinates are required or may appear in an arith-
metic expression used to indicate one or both coordinates where
coordinates are required. NAME must not be used in any other manner.
For exsmple:

DEFINE POINT (PLACE, 3.0, 7.0).

This statement has defined PLACE as a point variable synonymous with
the coordinates (3.0, 7.0) and thus may be used instead of this pair,
As a further example, consider the following statement to follow the
DEFINE POINT statement expressed above:

DEFINE POINT (NEXT1, PLACE+L,3, PLACE+6.9).
This statement is synonymous with:
DEFINE POINT (NEXTl, T.3, 13.9).

The following statement is invalid unless PLACE has been previously
specified as a simple wvariable:

X = PLACE+1,0

An appropriate error message will be typed on the console type-
writer if any syntactical error occurs at which time the error may be
corrected, If a DEFINE ORIENTATION or DEFINE PLOT AREA statement
should occur later in the course of the program, the point variable
will be defined as if the same DEFINE POINT statement followed after
these statements.

DEFINE PEN POSITION STATEMENT

The purpose of the DEFINE PEN POSITION statement is to reassign
pen coordinates. This statement defines the present physical position
of the pen in terms of two coordinates, Thus this particular physical
point has reassigned values for its coordinates. This statement may
be in either of two forms:

DEFINE PEN POSITION (NAME)

or DEFINE PEN POSITION (XVL, YVL).

-

In the former statement, NAME is a point variable and has appeared as
the first argument in a DEFINE POINT statement. In the letter state~
ment, XVL and YVL are arithmetic expressions. The argument(s) are
enclosed in parentheses and are separated by a comme if two arguments
are used,

DEFINE RADIANS STATEMENT

The DEFINE RADIANS statement converts degrees, minutes, and
seconds to radians which are units used in angle measurement. This
statement may have from two to four arguments enclosed in parentheses
and separated by commas. It is of the following form:

DEFINE RADIANS (RADN, DEGR, MIN, SEC).

DEGR, MIN, and SEC are arithmetic expressions denoting degrees, min-
utes, and seconds, respectively, which are to be converted to radians.
It is not necessary for seconds or minutes to appear in which case it
will be assumed that they are zero. If minutes do not appesar, seconds
also must not appear in the list. RADN is & variable which will con-
tain the converted value. For example:

DEFINE RADIANS (ANGLE, 37.0, 23.0, 15.0).

Thirty-seven degrees, twenty-three minutes and fifteen seconds are
equal to (65253497 radians, As a result of this statement the value
65253497 is stored in the variable location called ANGLE. Any error
in syntax will be typed on the console typewriter and at this time
the error can be corrected.

PLOT-DRAW STATEMENTS

It is this series of statements which cause plotter pen movement
to produce plotted lines, There are six such statements defined by
the EZPLOT language. Additional commands can be added to the system.
These statements may be written with the word PLOT or with the word
DRAW, In this and each case the result is the same. In this chapter,
these statements will be typed on the console typewriter should any
syntactical errors be encountered at which time they may be corrected.

PLOT POINT STATEMENT

This statement causes the pen to be lowered and moved in a
straight line to the position specified in the argument list. The
PLOT POINT statement is of the following form:

PLOT POINT (XC, YC).

117

i 118
‘“:_'7.-.

XC 'and YC are arithmétic expressions separated by commas specifying the
terminal point of the line to be drawn. A point variable may replace

the coordinate pair. The purpose of this statement is to allow the pro-
grammer to draw a straight line from the current position of the pen to a
specified point without specifying the initial point.

" PLOT LINE STATEMENT

This statement causes the pen to be raised and moved to the first
position specified in the argument list. The pen then moves in a straight
line to the second point and from the second point to the third point
until the argument list has been exhausted., If there is a comme between two
pairs of coordinates, the pen will be in the down position when drawing the
line between those two points, If, however, there is a period between two
pairs of coordinates, the pen will be in the up position when drawing the
line between the two points. A pair of coordinates may be replaced by a
previously defined point variable. A pair of coordinates must be enclosed
in parentheses and separated by a comma within the parentheses, Pairs of
coordinates must be separated by commas indicating a line is to be drawn
or by periods indicating a line is not to be drawn between the two points,
For example:

PLOT LINE (X1,Y1), (X2,Y2), (X3,Y3), (Xk,Y4), (X5,¥5).

This statement indicates that a line is to be drawn between point (X1,Y1)
and (X2,Y2) and between (X2,Y2) and (X3,Y3) and between (XL,Y4) and (X5,Y5).
Notice there will be no line drawn between point (X3,Y3) and (Xb,Yk),

The programmer is allowed to draw several connected and/or discon=-
nected lines by means of a single statement. By constructing & compound
statement such as this, it becomes unnecessary to form many short, simple
statements, It is allowable to use PLOT LINES in place of PLOT LINE,
With the same argument list, they yield the same result,

PLOT VECTOR STATEMENT

This statement causes the pen to be raised and moved to a point,
The pen is then moved at some angle from the plus X axis a specified distance,
The pair of coordinates must be enclosed in parentheses and separated by a
comma, The coordinate pair may be replaced by a point variable. The PLOT
VECTOR statement may appear in either of the following forms:

PLOT VECTOR (XVAL,YVAL), (RADN), (DIST)
or PLOT VECTOR (XVAL,YVAL), (RADN), (DIST).

XVAL and YVAL are arithmetic expressions indicating the coordinates of the

119

8=

initial point of the line. A comma after the coordinates indicates the

pen is to move with the pen in the down position., A period after the
coordinates indicates the pen is to move with the pen in the up position
and that no line is to appear on the plotting surface as a result. RADN

is an arithmetic expressiocn indicating the angle countercloskwise from the
plus X axis if RADN is positive and clockwise from the plus X axis if RADN
is negative., RADN is enclosed in parentheses and is followed by a comma,
DIST is an arithmetic exprescion indicating the length of the line measured
in the units which are being plotted, If the distance is negative, the line
will be drawn at an angle of RADN=-3,14159265 with a length of -DIST, DIST
is enclosed in parentheses.

If the scaling constants for X and Y are unequal, that is if XSIZE/
(XMAX-XMIN) is not equal to YSIZE/(YMAX-YMIN), As specified in the last
DEFINE PLOT AREA statement, then the number of units per inch in the Y
direction and X direction are different, By convention, the scaling constant
which yields the shortest line will be used in determining the length of the
line, For example, consider the following two statements as part of a pro=
gram:

DEFINE PLOT AREA (0.0, 10.0, 30.0, 0.0, 5.0, 10.0)
PLOT VECTOR (1.0, 3.,5), (.78539816), (kL.5).

The scaling constants are as follows:

XSCALE = XSIZE/(XMAX-XMIN)
per X unit,

30,0/(10,0«0,0) = 3 inches

YSCALE = YSIZE/(YMAX-YMIN)
Y unit.

10.0/(5,0=0,0) = 2 inches per

Since the scaling constants are unequal and the Y scaling constant yields

a shorter line than the X scaling constant, the former will be used in
determining the length of the resulting line, The two statements mentioned
produce a nine inch line drawn at an angle of ,78539816 radians or fourty=-
five degrees with positive X axis from the point (1.0, 3.5).

PLOT CIRCLE STATEMENT

This statement causes a circle to be drawn, The PLOT CIRCLE state-
ment takes the following form:

PLOT CIRCLE (XCNT,YCNT), (RADUS)

XCNT and YCNT are arithmetic expressions which define the center of the
circle and RADUS is an arithmetic expression defining the radius of the
circle., The pair of coordinates must be enclosed in parentheses and sep=-
arated by a comma, The coordinate pair may have a point variable substituted
in their place, If the radius is negative, it will be made positive before
plotting the circle,

9=

If the X and Y scaling constants are unequal, the same convention
applies to RADUS as to DIST in the PLOT VECTOR statement previously dise
cussed, The actual radius of the resulting circle will be determined by
the smaller of the scaling constants., The following is an example of the
PLOT CIRCLE statement where the scaling constants are equal:

FLOT CIRCLE (7.5,5.5), (4.0)

As a result of this statement, a cirecle with & radius of four units is
drawn with center at the point (7.5,5.5).

PLOT ARC STATEMENT

This statement causes an arc of a circle to be drawn. The PLOT
ARC statement takes the following form:

PLOT ARC (XCNT,XCNT), (XARC,YARC), (RADN)

XCNT and YCNT are srithmetic expressions defining the coordinates of the
center of the circle of which the arc is a part. XARC and YARC are arith-
metic expressions indicating the coordinates of the point on the arc where
plotting is to begin., The two pairs of coordinates must be enclosed in
parentheses and separated within the parentheses by commas., A point varie
able may be substituted for either of the coordinate pairs. A comma follows
each pair of coordinates. RADN is an arithmetic expression which specifies
the size of the arc in radians and must be enclosed in parentheses, If the
value of RADN is positive, the arc will be drawn counterclockwise from the
point indicated by the second pair of coordinates. If the value of RADN

is negative, the arc will be drawn clockwise from that point. If the value
of RADN is greater than 6.,2831853 or less than -6,28319531, which indicates
an arc greater than a circle, only one circle will be drawn.

The following is an example of the PLOT ARC statement:
PLOT ARC (7.0, 5.0), (9.5, 5.0), (3.1L415927),
This statement produces a semicircle concave in the negative ¥ direction

with center at (7.0, 5.0) and radius of two and one-half units, This
statement allows the programmer to draw any segment of a circle desired.

PLOT CHARACTER STATEMENT

The PLOT CHARACTER statement causes the plotting of characters
from the set defined by the language in Chapter I, This statement
provides a means of labeling the drawing with alphameric information.
The statement appears in the following form:

PLOT CHARACTER (XC,YC), (SIZE), (ORNT), List.

120

»)

121

w]10m

XC and YC are arithmetic expressions indicating where the lower left-
hand corner of the first charscter is to be plotted. SIZE is an arith-
metic expression indicating the height of the characters to be plotted.
The value of SIZE must be greater than or equal to 0.1 and less than

or equal to 9,9, If SIZE is less than 0.1 or greater than 9.9, the
characters will be drawn with a vertical size of 0.1 inch and 9.9
inches, respectively, ORNT must be an integer constant of +1, =1, +2,
or -2, The characters will be drawn parallel to the X axis in the
positive X direction if the constant is +1 and in the negative X direc-
tion if the constant is =1, If the constant is +2, the characters will
be drawn parallel to the Y axis in the positive Y direction and if the
constant is «2, the characters will be drawn in the negative Y direc-
tion.

The list which follows the orientation constant specifies format
information and variables to be alphamerically plotted. This list
follows the same rules as the format/veriable list discussed in Chap-
ter IV with the added restriction that the solidus is not allowed as a
format specification: The following is a part of a program:

DEFINE RADIANS (TRAJ, L1.0, 25,0)

PLOT CHARACTER (150.0, =120.0), (.4), (+1),
(18HTRAJECTORY ANGLE = ,F8.5), TRAJ.

This last statement causes the following information to be plotted
alphamerically in the positive X direction beginning at the point
(150,0, =120,0) in characters four-tenths of ‘an inch in height:

TRAJECTORY ANGLE = ,T2286,

PROCEDURE, CALL AND REPEAT STATEMENTS

PROCEDURE STATEMENT

The PROCEDURE and corresponding END OF PROCEDURE statements define
a subprogram which will be stored on disk and will be available for calling
by future programs. The PROCEDURE statement is of the following form:

PROCEDURE NAME (VARLl, VAR2, VAR3, +es , VARN),

NAME is the unique neme by which the main calling program refers to this
subprogram. This name must consist of from one to five alphabetic and/or
numeric characters of which the first must be alphabetic, VAR1l, VAR2,
VAR3, 444 4 VARN are variable names which will have values assigned to
them at the time the procedure is called by the main progrem and may be
used accordingly in the subprogram itself.

122

-]l

The END OF PROCEDURE defines the terminal point of the procedure
and generates the necessary instructions to return control to the calling
program, This statement may appear with or without the procedure name
as follows:

END OF PROCEDURE
or END OF PROCEDURE NAME
If the name is included it must be the same as in the PROCEDURE statenment.

The following is an example of a subprogram which calculates the
volume and surface area of a cylinder when the radius and length of the
c¢ylinder are given:

PROCEDURE CYLIN (RADUS, LONG, VOL, SURAR)

VOL = LONG¥*3,141592T7%RADUS#*#*2

SURAR = LONG¥3,1415927%2,%RADUS + 2.%3,1415927¥RADUS#*%*2
END OF PROCEDURE CYLIN

RADUS end LONG correspond to the radius and length of the cylinder,
respectively, and are supplied to the subprogram by a CALL statement
in the main program, VOL and SURAR correspond to the volume and
surface area of the cylinder, respectively, which are calculated by
the subprogram and returned to the main program through the CALL
statement., In this way, frequently used computations may be formu-
lated once by a PROCEDURE and then used by any future programs which
require such formulas through the use of a CALL statement in the main
program,

CALL STATEMENT

The CALL statement is the method in which the programmer calls a
subprogram in the main program, provided that this subprogram has already
been processed as a procedure, The CALL statement is of the following
form:

CALL NAME (EXPR1l, EXPR2, EXPR3, «ss , EXPRN),

NAME is the name of the desired PROCEDURE and must therefore conform to
the same roles as the NAME in the PROCEDURE statement. EXPRl1l, EXPR2,
EXPR3, 44+ 4 EXPRN are arithmetic expressions the value of which will be
assigned to the corresponding variables in the PROCEDURE list., If
variables appear in the CALL list, they must agree in mode with the
corresponding variasble in the PROCEDURE list and these values will be
returned to the main calling program. A subprogrem must not contain

123
-10-

a CALL statement itself,

A variable in the main program and a variable in the subprogram
which have the same variable name are treated as different entities
unless they are defined to be the same by the CALL and PROCEDURE state-
ments,

The following segment of a program calls the subprogram which
calculates the volume and surface area of a cylinder defined in the
preceding section:

READ, (2F10.4), R, L
CALL CYLIN (R, L, V, S)
PRINT, (4LF10.4), R, L, V, S,

These statements read the value of the radius and length of a cylinder,
call the subprogram to perform the volume and surface area calculations,
and print the value of the radius, length, volume, and surface area of
the cylinder.

REPEAT STATEMENT

The REPEAT and corresponding END OF REPEAT statements define the
limits on a series of statements which are to be executed repetitively,
called a REPEAT sequence, A REPEAT sequence may be completely contained
within another REPEAT sequence up to five levels, This arrangement of
REPEAT sequences is called nesting. The innermost REPEAT and END OF
REPEAT statements define the beginning and end of the same REPEAT sequence,
and so on working outward to the outermost REPEAT sequence, This may be
thought of in terms of a last-in-firsteout push-down l1list in which suc-
ceeding REPEAT statements cause the list to be pushed down with the current
REPEAT statement placed at the top of the list. An END OF REPEAT effects
a match or correspondence between itself and the REPEAT which is at the
top of the push-down list which, in turn, defines a REPEAT sequence.

Within each REPEAT sequence there must be an IF statement defining
the conditions on which control of the program will be transferred to a
statement outside of the loop. Otherwise, there is no way to exit from
the loop to execute statements which follow and thus the same REPEAT
sequence will be performed indefinitely to the exclusion of the remainder
of the program. The following is an example of the proper use of REPEAT
sequences:

SUM = 0.0
@A =0
REPEAT

@A = @A + 1
@ =0

VALUE (@A,@B)

12k

IF (@B ,LE, 10), THEN CONTINUE, ELSE GO TO 15
END OF REPEAT

15 IF (@A ,LE., 10), THEN CONTINUE, ELSE GO TO 25
END OF REPEAT

25 PRINT, (E1L4,8), TOTAL.

VALUE (@A, @B) defines a member of an array which is to be discussed in
the following chapter. This portion of a program sums the values in a
ten by ten array called VALUE and stores the results in SUM which in turn
is printed out. In this example, the second subscript varies more rapidly
than the first subscript.

ARRAY, DELETE, AND END OF PROGRAM STATEMENTS
ARRAY STATEMENT

The ARRAY statement defines many variables by the same name, The
different variables are distinguished from each other by a number which
follows the varisble in parentheses. The array may be integer or real
and may be of one, two or three dimensions., One or more arrays separated
by commas may be defined in each ARRAY statement., The ARRAY statement
may take any of the following forms:

ARRAY NAM1 (C1l, C2, C3)
or ARRAY NAM2 (Ck, C5)
or ARRAY NAM3 (C6)

NAM1l, NAM2, and NAM3 are arrays which have three, two, and one dimensions,
respectively., Cl, C2, C3, Ck, C5, and C6 are integer constants indicating
the size of each dimension., When these array variables or subscripted
variables are used in other than an ARRAY statement, Cl, C2, C3, Ck, C5,
and C6 may be either integer or variasbles., Consider the following examples:

ARRAY ONE (7), TWO (5, 5), THREE (2, 2, 2)
ONE is an array of one dimension with seven elements. TWO is a five by

five array of two dimensions. THREE is a two by two by two array of three
dimensions.

DELETE STATEMENT

The DELETE statement causes the variable names which follow in a
list, whether they be simple, subscripted, or point variables, to be elim=
inated from the program list of variable names and makes this storage ares

¢

’

&

125
-]l

available for new variables to be defined by the program, An array is
deleted by using the array name without dimensioning information in the
list of variables to be deleted. Single elements of an array can not be
deleted, For example:

DELETE YES, NO, MAYBE.

This statement causes the simple variables, arrays, and/or point variables
with the names YES, NO, and MAYBE to be removed from the program list of
variable names.

END OF PROGRAM STATEMENT

This statement indicates to the interpretive processor that this
is the end of this program. The processor then initialized itself in
preparation for another program which may follow.

SUMMARY

With the ability to orient the plotting surface and to reference a
pair of coordinates by one name, EZPLOT, allows a greater number of options
that are not presently available in Fortran subroutines, Some of the
other advantages of EZPLOT are its capability of drawing a line given a
point, the angle, and the length of the line and plotting a circle or an
arc of a circle in an efficient manner by use ‘of specilized routines.,
Drawing a circle in Fortran involves using one of the library subroutines
which themselves require a relatively long time to execute., The Fortran
programmer must sacrifice speed to obtain accuracy or must be satisfied with
a 'cirecle' with straight sides which are quite evident to insure speed.

The circle and arc drawing routines in EZPLOT make use of certain relation-
ships and approximating procedures which improve the appearance and minimize
the time required in drawing a circle or arc., Also the form of EZPLOT state=-
ments is more meaningful to the programmer with its English-like structure

as opposed to the cumbersome CALL PLOT statement in Fortran.

At the University of Southwestern Louisiana, the Computing Center
Staff are interested in making the plotter available to as many areas of
study as possible. A subset of EZPLOT is being implemented to help fill
this interest, This subset is being written for an IBM 1620 computer,
Model I, with indirect addressing, hardware divide, and having the move
flag, transfer numeric strip and fill instructions. The additional hard-
vare requirements are 40,000 core positions, a 1311 disk drive, a 1622 card
reader/punch unit or equivalent and a 1626/1627 plctter.

The implemented language consists of READ and ACCEPT statements explained
in this chapter, DEFINE and PLOT-DRAW statements as explained earlier with
a variation of PLOT CHARACTER which is explained in this chapter. No
arithmetic is defined in the implemented language except where coordinates

126
-15=-

are required, In this case, the only arithmetic allowed is a point variable ‘:@
plus or minus a constant or variable, where the point variable has appeared

as the first argument of a DEFINE POINT statement. If the letter 'T' is

found in column six subsequent source statements are read from the typewriter

or read from the card reader if the letter 'C' is found. All source state=-

ments must have a 'commercial at' sign [@] in the first position of each

input record and may occupy up to five cards with a dollar sign as the ter

minal character in each statement.

The READ and ACCEPT statements cause data to be read by the card reader
and typewriter, respectively. These statements are of the following form:

READ, VARl, VAR2, VAR3, ... ,VARN
ACCEPT, VAR, VAR2, VAR3, ... ,VARN.

These statements cause the variables VAR1l, VAR2, VAR3, ... ,VARN to have
assigned to them the numeric values present on the input record. The vari-
able names in this list may consist of from one to five alphabetic and/or
numeric characters of which the first must be alphabetic. A variable name
may be split between two source input records. A single READ or ACCEPT
statement reads a single data input record.

The data input record which is a maximum of eighty positions in length,
consists of numeric data with each pair of items separated by one or more
blanks., This numeric data may have a preceding plus or minus sign and a dec-
imal point. If there is no sign explicitly indicated, the number is assumed ™
to be positive. The decimal point is assumed to be immediately to the right ¥ 4
of the last digit if it is not included.

The PLOT CHARACTER statement causes a string of characters to be
plotted and is of the following form:

PLOT CHARACTER (XC,YC), (ORNT) $.

XC, YC, SIZE, and ORNT have the same function as in the PLOT CHARACTER
discussed earlier. The dollar sign [$] indicates the end of source state-
ment, On succeeding source input records, the contents of positions seven
through seventy=two inclusive are plotted until a record mark [#]

(0, 2, 8 punch on card) is encountered, These are defined as source/data
records and must have a 'commercial at' sign in position one. The PLOT
CHARACTER statement and its associated source/data records must not occupy
more than five source input records. For example: '

PLOT CHARACTER (2,0, =7.0), (. L), (+1) $

VELOCITY IN FEET/SECOND, #
This causes the second input record to be plotted excluding the record mark
with the lower left-hand corner of the letter V to be plotted at position

(2.0, -~7.,0) on the graph. The characters will be four-tenths of an inch in
height and will be plotted parallel to the X axis in the positive X direction.

O

«lb-

Finally the END statement with the word 'END' beginning in column
seven signifies the end of the program and deletes all of the variable
names in the symbol table. As a result, subsequent programs are unable
to use information which has been stored by a previous program.

127

Name of Prime Committee:

Subject: Relocatable Data-Conversion Subroutines for 1620 SPS II

Speaker's Name: W, N. Tuttle

Representing: General Radio Company

Mailing Address and Phone Number: 22 Baker Avenue, West Concord,
Massachusetts 01781 369-4400

Day and Time of Speech and Session Number: Monday, November 28, 1966,
3:30-5:00 p.m., Session M-<4.8

Number of Pages of Text: 5. No graphics

RELOCATABLE DATA-CONVERSION SUBROUTINES FOR 1620 SPS II

W. N. Tuttle

General Radio Company, West Concord, Massachusetts

ABSTRACT

Much of the programming time with SPS is
usually taken up with handling input and output data-
conversion problems. A set of three general-purpose
subroutines is described to reduce this labor, and
make possible shorter programs. These are IFL, to
convert from integer to floating-point, AFL, to con-
vert from an alphameric input field to floating-point,
and FLA, to convert from floating-point to an alpha-
meric output field. FLA gives unbiased rounding and
can, as an option, change the number of decimal
places, as required, to fit a wide range of output
values into a field of given width. Only a single
macro instruction in the mainline program is re-
quired for each job. Each subroutine is loaded
automatically when its macro is used in a program.
IFL uses 859 core positions, AFL 1371, and FLA 1977.
Indirect addressing is the only required special
feature. The subroutines can be used only with the
fixed-length subroutine set and will not work without
modification in Monitor SPS II-D.

Introduction

Data conversion and the handling of input and output data
are taken for granted in Fortran programming. This is an important
reason for the popularity of Fortran and similar compilers. Pro-
grammers are frequently willing to put up with the serious limita-
tions of these compilers rather than go through the chores of data
conversion which are required when SPS is used.

Examples of the limitations are the restriction of
integer computations in non-monitor Fortran to numbers of four
digits or less, the unavailability of proper rounding procedures,
and the inflexibility of the output formats.

In SPS even quite complicated mathematics is not diffi-
cult to write, and the programs are usually better and run faster
than those in Fortran. The input, output, and data-conversion
problems, however, take a disproportionate amount of effort and
keep many programmers from profiting from the very great flexibility
and efficiency of SPS.

129

The present paper describes three relocatable subroutines
which have been written to handle some of the most frequent and
most bothersome data-conversion problems. The first, AFL, is for
alphameric to floating-point conversion, the second, IFL, is for
integer to floating-point conversion, and the third, FLA, is for
floating~point to alphameric conversion and for automatically
shifting the decimal point in any of several ways to accommodate
as wide a range of values as possible in an output space of fixed
width., The latter subroutine was described a year ago at the
New York meeting. ‘

All three of these subroutines also solve the problem of
rounding to the number of significant figures retained at any stage
of the process. Rounding is not difficult when a fixed number of
decimal places is retained, as in many output specifications, but
it requires careful programming if it is to work in all the situa-
tions that can arise in general data-conversion problems. Proper
rounding can significantly reduce truncation errors. The procedures
give unbiased rounding, which is rounding in such a way that there
is no tendency for the rounding process to increase or decrease the
average of a series of values. Rounding is discussed in detail in
the earlier paper and will not be considered further here.

AFL Subroutine, Alphameric to Floating-Point Conversion

The first problem in a program is usually to get data
into the computer, and AFL, alphameric to float, is for alphameric
read-in. If a number is punched in a card and read into the com-
puter, what appears in core will be the alphamerically coded version
of the number. This must be converted to the standard floating-
point form. Thus if -12.073 is punched in the card,
20717203707773

will be read into the input area of core. It is desired to store
the floating-point equivalent __ .

1207300002

at some other specified address. The conversi®: is a bothersome
job even when the input format is made as simple as possible. But
restricting the format complicates the problem of punching data
cards and makes it hard to cover wide ranges of the input variables.
It is hoped that AFL will fill the need for a subroutine that will
take care of this job with a minimum of restrictions on the way the
data cards are punched.

1

Output Data for Scientific Tables and Similar Applications',
Proceedings of Common Joint Eastern Midwestern Region, October 6, 7,
8 1965, pp. 535-540.

W.N. Tuttle, "A Relocatable SPS Subroutine for Editing and Rounding

130

The AFL subroutine has this 'free format" and since it
is relocatable, it doesn't clutter up the source program. The
macro, AFL, causes the subroutine to be loaded automatically, and
the necessary information is given by four operands. Three things
must be specified because of the nature of the job. These are the
address of the input area, its alphameric width, and the address
where the floating-point equivalent is to be generated. A fourth
operand, which may be omitted, is for the user's convenience. It
makes it possible in the conversion process to multiply the number
by any desired power of 10. This, for example, would permit data
to be read in parts per million without complicating the card
punching.

The form of the macro instruction is
AFL FLOT,FLD,W,PWR

This says to take the alphameric-coded number from FLD, which has
width W, multiply by ten to the power PWR, convert to floating
point and store at address FLOT. The PWR operand can be omitted
if the third comma appears. Note that the order of the operands
corresponds to that used in most of the regular instructions. The
input data is at the address given by the second operand and the
result of the operation is transmitted to the address given by the
first operand.

The input format is free in that the width of the input
area is specified but the program will accept anything that makes
sense within this space. Obvious errors are rejected, and numbers
in exponential form are not accepted. The number can start and
end anywhere within the area, the decimal point can be used or not
as desired, and leading or following zeros make no difficulty.

The program rejects numbers with blank spaces between characters,
except that the sign does not have to be adjacent to the first
character. It rejects two decimal points or two signs.

AFL as well as IFL and FLA, the two other subroutines of
the group, is handled just like any other relocatable subroutine of
the regular set. A library card is inserted in the SPS II processor
deck and the subroutine, with header and trailer cards, is added
to the fixed-length subroutine set. AFL uses indirect addressing
but requires no other special features. It uses 1371 core positionms.

IFL Subroutine, Integer to Floating-Point Conversion

This subroutine forms at a specified address the floating
point equivalent of an integer at another address. It leaves the
integer intact at its original location so that it is available for
further use if desired. IFL can also be used for handling data
read in numerically, provided that the proper flags are either
read in or added in the program to make the input numeric field
a proper integer field. This subroutine, like AFL, can multiply
the number by a desired power of ten, and it rounds to 8 digits
if the integer field exceeds this length,

131

132

This subroutine requires only three operands, as it is
not necessary to specify the width of the integer field. The sub-
routine checks for the location of the flag that defines the start
of the field. The instruction, therefore, appears as

IFL FLO,FLD,PWR

Here the integer field at FLD is reproduced at FLO in its floating-
point equivalent after multiplying by 10 to the power PWR. As with
AFL, the PWR operand can be omitted if the last comma is retained.

IFL is particularly useful when part of a computation is
done in integers and the rest in floating point. For example, an
integer in the product area can be rounded, converted and trans-
ferred in a single operation.

IFL uses indirect addressing and requires 859 core storage
positions.

FLA Subroutine, Floating-Point to Alphameric Conversion

This subroutine, described in detail in the earlier
paper, is for the conversion and editing of output data so that
mathematical tables, tables of scientific data, etc., can be
printed in final form directly from the card output without addi-
tional editorial effort.

One function performed by FLA is to fit the number to the
specified column width by decimal-point shifting so that the maxi-
mum range of a quantity can be accommodated without resorting to
exponential format. Several options are available in this part
of the process including that of omitting the decimal point and
rounding to the nearest integer. The type of output is controlled
by a code operand.

In all the output options unbiased rounding is used
whenever the number of significant figures retained is less than
eight. Biased rounding or 'up-rounding' is available as an option
for applications such as accounting, where it is traditional.

This option is also controlled by the code operand.

The macro instruction for FLA has five operands and is
similar to that for AFL in that the first three operands are the
address to which the converted number is to be transmitted, the
address of the number to be converted, and the width of the alpha-
meric field. The fourth and fifth operands are the nominal or
uncorrected number of decimal places and the code specifying the
type of conversion. Thus

FLA A,B,C,D,E

means that the floating-point number at B is to be converted and
transmitted to the alphameric area A. The alphameric width at A
is C, and the type of conversion is controlled by the code operand
E.

A

133

In normal use of the subroutine, the code operand E
is omitted, giving automatic right shift of the decimal point to
acconmodate large numbers and automatic left shift so that as many
significant figures as possible can be retained in an output area
of given width.

Automatic right decimal-point shift is illustrated by
the following table, where the width C is six and the normal
number of decimal places D is two:

12.35
123.46
1234.6
12346.

Note that two decimal places are kept until the width is exceeded.

For smaller numbers within the same width, the automatic
left decimal-point shift would give

12.35
1.23
.12
.012
.0012
.00012

Either or both shifts can be omitted if desired. Al
in the tens position of the code operand causes omission of the
left shift, a 1 in the hundreds position causes omission of the
right shift. Omission of the left shift might be specified in
the example above if figures beyond the second decimal place
were not of interest.

The code operand can also, by a 1 in the thousands
position, call for conventional up-rounding instead of unbiased
rounding. Thus the operand 1010 calls for up-rounding with
omission of the left shift.

Omission of the decimal point and rounding to the nearest
integer is available as an additional option. This is called for
by making the D operand, which specifies the number of decimal
places, equal to -1.

_ A final feature of the subroutine, always in effect, is
that an additional position in the output area is made available
for positive numbers because no space is required for the sign.

AFL requires indirect addressing and uses 1977 core
positions.

13k

A SYSTEM OF REMOTE TIME SHARING THE IBM 1620/1710
COMPUTER SYSTEM BY USE OF THE IBM 1710 SYSTEM AND
REMOTE TELETYPE CONSOLES.

by

Donald Box

Assistant Professor

Electrical Engineering

Tennessee Technological University
Cookeville, Tennessee

and
m"‘\
Hugh B. Kerr L 9%
Director

The D. W, Mattson Computer Center
Tennessee Technological University
Cookeville, Tennessee

Phone Area 615 526-9521 Ex. 325

Monday, November 28, 3:30 - 5:00 p. m.

M-4.8
Text - 12
Graphics - 2

135
SUBJECT eee A SYSTEM OF REMOTE TIME SHARING THE IBM 1620/1710
COMPUTER SYSTEM BY USE OF THE IBM 1710 SYSTEM AND REMOTE
TELETYPE CONSOLES.

DESCRIPTION eeeeee IN JANUARY 19669 A REQUEST WAS MADE OF THE D W 7
MATTSON COMPUTER CENTER AT TEINNESSEE TECHNOLOGICAL UNIVERSITY BY
THE ELECTRICAL ENGINEERING DEPARTMENT TO PROVIDE THE NECESSARY
HARDWARE AND SOFT-WARE TO PERMIT THE IBM 1710-1620 SYSTEM
TO BE USED ON A PRIORITY INTERRUPT BASISs THE INTERRUPT AND
INPUT BEING MADE FROM REMOTZ TELETYPE TERMINALSe. DUE TO
ECONOMIC CONSIDERATIONSs IT WAS IMPERATIVE THAT THIS BE DONE
WITHOUT THE OUTLAY OF MONEY FOR THE MORE ELABORATE INTERFACE
HARDWARE AVAILABLE FROM IBM (AND OTHER MANUFACTURERS) TO HANDLE
THE NECESSARY DATA TRANSMISSIONSe.

THE EQUIPMENT ALREADY ON HAND WAS AS FOLLOWS eseeeee

(A) IBM 1620 MOD I
(1) INDIRECT ADDRESSING
(2) FLOATING POINT HARDWARE
(3) ADDITIONAL INSTRUCTIONS
(4) BASIC INTERRUPT
(5) 1710 INSTRUCTIONS

(B) IBM 1710 CONTROL SYSTEM WITH 1711 AD CONVERTER AND
1712 MULTIPLEXER AND TERMINAL UNIT

(1) 10 CONTACT OPERATES (NON-LATCHING)
(2) &4 GROUPS OF CONTACT SENSE
0 (3) BASIC INTERRUPT
- (4) REAL TIME CLOCK
(5) OTHER FEATURES IMMATERIAL TO THIS APPLICATION

(C) 1BM 1311 DISK MODULE

(D) I1BM 1623 WITH 20 K STORAGE
(GIVING A TOTAL OF 40 K COMPUTING SYSTEM)

(E) IBM 1622 CARD READ PUNCH

SINCE A GREAT DEAL OF DIFFICULTY HAD BEEN ENCOUNTERED
IN IMPLEMENTING THE IBM 1710 FORTRAN EXECUTIVE SYSTEMs AND
FURTHURMORE SINCE THE 1710 EXECUTIVE DID NOT PERMIT MONITOR
COMPILATIONSs ETCes IT WAS DECIDED TO LOOK ELSEWHERE FOR AN
INTERRUPT EXECUTIVE SYSTEMe INFORMATION FROM IBM WAS
OBTAINED CONCERNING AN INTERRUPT EXECUTIVE SYSTEM WRITTEN BY
MRe EARL SPRAKER (THEN OF THE IBM ATLANTA OFFICE) FOR THE
GEORGIA STATE HIGHWAY DEPARTMENT TO FACILITATE THE AUTOMATIC
POLLING OF TRAFFIC OVER THE STATE OF GEORGIA.
WITH THE COOPERATION OF THE GEORGIA STATE HIGHWAY DEPART-
MENTs SOURCE DECKS WERE OBTAINED FOR THIS EXECUTIVE SYSTEM
THE NECESSARY DELETIONS AND ADDITIONS MADE TO RECOGNIZE A
REMOTE USER INTERRUPT(OR MANUAL ENTRY INTERRUPT FROM THE COM-
' PUTER CENTER)s SAVE THE TOP 20 K OF COREs BRING IN A eee BOOT
STRAP eee (OR ANALYZER) PROGRAM AND BRANCH TO THIS PROGRAMe
0 THE e ¢ «BOOT STRAP.e«PROGRAM SAVES THE BOTTOM 20 K OF COREs ANA-

136

LYZES THE TYPE OF INTERRUPTs DETERMINES THE PROGRAM (ONE OF
SEVERAL IN THE EXECUTIVE LIBRARY) BRINGS IN THE PROGRAM AND
BRANCHES TO ITe UPON CONCLUSION OF THE USER CALLED INTERRUPT -
PROGRAMs THE BOTTOM 20 K IS RESTOREDs A BRANCH BACK INTO THE EXE- ‘;@
CUTIVE PROGRAM IS EFFECTEDs THE TOP 20 K IS RESTORED AND THE
PROGRAM WHICH HAD BEEN INTERRUPTED IS RESUMEDe.

AS CAN BE SEEN BY THE ABOVE DESCRIPTIONs ANY KIND OF
OPERATION UNDER THE MONITOR 1 (VERSION 2) CAN BE OPERATING
AS A cee BACKGROUND eee PROGRAMs PERMITTING INTERRUPT AT ANY
TIME BY A REMOTE USER.

LIMITATIONS IMPOSED ON INTERRUPT PROGRAMS e¢eecceee

(1) THE PROGRAM MUST OCCUPY NO HIGHER CORE ADDRESS THAN 34999,
THIS IS NECESSARY BECAUSE OF THE BOOTSTRAP PROGRAM
WHICH MUST RESIDE HERE UNTIL A BRANCH TO THE INTERRUPT
PROGRAM IS EFFECTEDs AFTER THE INTERRUPT PROGRAM IS
LOADEDs 35000 THROUGH 39999 IS AVAILABLE FOR USE BY THE
INTERRUPT PROGRAMs OVERLAYING THE NOW USELESS BOOT STRAP
PROGRAM

(2) ALL INTERRUPT PROGRAMS MUST TERMINATE BY RESTORING THE
BOTTOM 20 K OF CORE (NATURALLYs WITHOUT OVERLAYING THE STILL
NEEDED INSTRUCTIONS IN THE INTERRUPT PROGRAM) AND THEN
BRANCHING TO LOCATION 1044 IN THE EXECUTIVE PROGRAMs WHICH
THEN RETURNS THINGS TO NORMAL BEFORE RETURNING TO THE
BACKGROUND PROGRAMe. THIS IS DONEs IN THE CASE OF A
FORTRAN PROGRAMs BY UTILIZING THE see BACK see ROUTINE.

(3) THE USER MUST TAKE CARE NOT TO DESTROY THE WORK CYLINDER ﬂ;}
AREA OF DISK WHICH MAY CONTAIN INFORMATION IN USE BY THE '
BACKGROUND PROGRAMes THIS MEANS THAT LOCAL PROGRAMS MAY
NOT BE USED (INASMUCH AS THEY ARE STORED IN CORE IMAGE
AT LOAD TIME IN THE SCRATCH AREA OF DISK)e IT ALSO MEANS
THAT THE eee DEFINE DISKs SEEKs FETCHs ETCeeeee MAY NOT
BE USED INASMUCH AS THEY INFER USE OF THE WORK CYLINDERS.

(4) THE PROGRAM CALLED BY THE USER MUSTs OF COURSEs BE ONE
STORED IN THE EXECUTIVE LIBRARYe THIS ELIMINATES THE
POSSIBILITY OF FORTRAN OR SPS COMPILATIONS BEING DONE
ON THE INTERRUPT BASIS FROM REMOTE TERMINALSe.

MISCELLANEQUS PROBLEMS AND SOLUTIONS
(1) SLACK TAPE PROBLEM

INASMUCH AS THE REMOTE USER PUNCHES HIS INFORMATION

DIRECTLY INTO PAPER TAPE (THE TAPE PUNCH BEING IN THE

COMPUTER CENTER) AND THEN READS THE TAPE ON INTERRUPT BASIS»

THE LENGTH OF SLACK TAPE CONTINUALLY BUILDS UP UNLESS

ADEQUATE PROVISION IS MADE TO TAKE OUT THE SLACKe THIS

[S ACCOMPLISHED IN THE «e¢ BACK see¢ PROGRAM BY FIRST TURN-

ING OFF THE TAPE PUNCH MOTORs THEN READING TAPE UNTIL THE

TAPE IS PULLED TIGHTs AT WHICH TIME THE PUNCH MOTOR IS

RE-STARTED BEFORE RETURNING TO THE BACKGROUND PROGRAM

THROUGH THE EXECUTIVEe OF COURSEs THIS CALLS FOR A ‘:ﬁ

-2

137
CONSIDERABLE AMOUNT OF VALUABLE COMPUTER TIME TO BE
WASTEDs BUT IS UNAVOIDABLE IN THE PRESENT PHYSICAL SETUP
AT TTUe THE SEEMINGLY OBVIOUS SOLUTION WOULD BE TO PUNCH
THE TAPE REMOTELYs INTERRUPT THE PROGRAM AND CALL FOR
THE TAPE TO BE READ DIRECTLY FROM THE REMOTE STATIONe
HOWEVERs THIS WOULD CALL FOR MULTIPLE eee HARD LINES eee
TO BE INSTALLED BETWEEN THE REMOTE STATION AND THE CPU
WHICH ISs TO USs IMPRACTICAL.

(2) PROBLEM OF MORE THAN ONE REMOTE STATION ATTEMPTING USE
THE INTERRUPT LINE AT ONE TIME.

WITH THE PRESENT TTU SETUPs IT IS QUITE POSSIBLE FOR
SOMEONE TO ATTEMPT INPUT FROM HIS REMOTE STATION AT THE
SAME TIME ANOTHER PERSON IS IN THE PROCESS OF PUNCHING
TAPEe WE MINIMIZE THIS PROBABILITY BY INSTALLING A SWITCH
BOX AT EACH REMOTZ STATION WITH REMOTE USER STATUS

LIGHTSe THIS eee BLACK BOX eee CONSISTS OF THREE SWITCHES
AND TWO LIGHTS AS FOLLOWS eesee

READY LIGHT eee A LIGHT THAT INDICATES TO THE USER WHEN
THE INTERRUPT LINE IS NOT BUSY AND READY FOR USEe

BUSY LIGHT eee A LIGHT THAT IS ON WHEN ANY USERS eee ON see
SWITCH IS ONe

ACTIVATE SWITCH eee TURNS ON THE TELETYPE AND ALLOWS THE
USER TO MONITOR ALL MESSAGES ON THE INTERRUPT LINE.
THE eee READY eee IS TURNED ON.

ON SWITCH eee TURNS OFF ALL eee READY eee LIGHTS ON THE
LINE AND TURNS ON ALL eee BUSY eee LIGHTS INFORMING
ALL STATIONS ON THE LINE THAT THE INTERRUPT LINE
IS IN USEe.

INTERRUPT SWITCH eee THIS IS A MOMENTARY CONTACT SWITCH THAT
CREATES THE PROCESS INTERRUPT TO PLACE THE CPU IN
INTERRUPT MODEs CAUSING THE USERS TAPE TO BE READ
AND HIS PROGRAM EXECUTED.

RULES FOR INPUT

AS IN ALL COMPUTER WORKs THE RESULTS ARE ONLY AS GOOD AS
THE INFORMATION FED TO THE SYSTEM. IN THE EVENT MISTAKES ARE
MADE IN INPUTs PROVISION IS MADE IN THE INTERRUPT SYSTEM TO OUTPUT
AN ERROR MESSAGEs IN CODE FORMs TO THE USERe THE ESTABLISHED
ERROR CODES ARE IDENTIFIED LATER IN THIS DOCUMENTATIONe IN THE
EVENT THAT AN ERROR IS ENCOUNTEREDs THE ERROR CODE 1S OQUTPUTTED
ON THE USER TELETYPE CONSOLEs HIS JOB IS ABANDONEDs AND CONTROL IS
TRANSFERRED BACK TO THE EXECUTIVE PROGRAM WHICH THEN RETURNS TO
THE JOB BEING DONE IN THE COMPUTER CENTERe

‘ THE USER INPUT TO THE INTERRUPT PROGRAM WILLs OF COURSE»s BE
VARIABLEs DEPENDENT UPON HIS DATA REQUIREMENTSe THE BEGINNING

-3-

138

OF HIS INPUT MUSTs HOWEVERs STRICTLY CONFORM TO THE FOLLOW-
ING FORMAT eeeeces

A

1ST CHARACTER - UPPER CASE SHIFT

2ND CHARACTER = 5/8 SYMBOL }

3549596 CHARACTERS - DIM NUMBER OF THE PROGRAM HE

WISHES TO CALL

®00 0000

LA N K

000000

(INCLUDE ALL eee CALL ALPHA see CHARACTERS THAT YOU
CHOOSE TO CALL AS INPUTs AND ALL VARIABLES THAT
YOU WISH TO INTRODUCE BY THE see CALL KEAD eeee
ROUTINE. BE SURE TO INCLUDE AS MUCH INPUT AS YOU
INTEND TO CALL FROM THE PROGRAM)

NUMERIC INPUT
ALL NUMERIC INPUT MUST BE FLOATING POINT NUMBERS»
SUCH AS THE FOLLOWING EXAMPLES eeecee

«000165%
125432%
126%

33
01635%

THE DECIMAL POINTs IF NOT INCLUDEDs WILL BE ASSUMED TO BE AT
THE RIGHT OF THE LAST DIGIT OF THE NUMBERe EACH NUMBER MUST BE
FOLLOWED BY A $ (DOLLAR SIGN)e THE INPUT OF EACH NUMBER

WILL BE CALLED BY THE FOLLOWING FORTRAN STATEMENT ecees

CALL READ(X)

WHERE eeee X ssee MUST ALWAYS BE THE SYMBOLIC NAME OF A
FLOATING POINT NUMBERe ONLY ONE VARIABLE MAY BE READ BY ONE
CALL READ STATEMENTe THE NUMBERSs WHEN READ FROM TAPEs WILL
BE STORED AS 8 DIGIT MANTISSA FLOATING POINT NUMBERS AND
STORED IN THE APPROPRIATE MEMORY LOCATION.

NUMERIC OUTPUT

ALL OUTPUT WILL BE STANDARD El4+8 OUTPUT ANDs THEREFORE»s MUST
BE A FLOATING POINT NUMBERe. THE OUTPUT OF EACH NUMBER WILL
BE CALLED BY THE FOLLOWING FORTRAN STATEMENT eeseees

CALL WRITE(X)

WHERE eee X see IS THE SYMBOLIC LOCATION OF THE FLOATING POINT
NUMBER TO BE OUTPUTTEDe.

IF YOU NEED CARRIAGE RETURNS OR LINEFEEDS ON THE
TELETYPEs YOU MUST CALL FOR THEM BY USE OF THE eee ALPHA oo
ROUTINE OR THE eee FORM eee ROUTINEe MAKE SURE THAT ALL
INPUT HAS BEEN MADE BEFORE ATTEMPTING ANY OUTPUT WHATSOEVER.

ALPHAMERIC INPUT/OUTPUT

IN ORDER TO PERMIT A VARIATION (FROM ONE PROGRAM EXECUTION
TO ANOTHER) OF PROBLEM IDENTIFICATION OR QUTPUT IDENTIFICATION,

-4-

AN INPUT/OUTPUT STATEMENT IS PROVIDED AS FOLLOWS seccese

CALL ALPHA(JsK)

C : WHERE J

= 1 IF THE STATEMENT IS TO BE USED TO
READ ALPHAMERIC INPUTs OR = . ’
2 IF THE STATEMENT IS TO BE USED TO
© . ~MAKE AN ALPHAMERIC OUTPUT
K = A LOCATOR NUMBER (OR IDENTIFICATION

'NUMBER FOR THIS ALPHAMERIC INFORMATION)

AS AN EXAMPLE OF THE USE OF THIS ROUTINEs LET US SUPPOSE THAT
YOU WISHED TO READ IN FROM TELETYPE TAPEs SOME ALPHAMERIC INFOR
MATIONe YOU WOULD USE THE FORTRAN INSTRUCTION ees

CALL ALPHA(1,100)
THIS WOULD CALL FOR ALPHAMERIC INFORMATION PUNCHED INTO TAPE
AND TERMINATED BY AN UPPER CASE SYMBOL FOLLOWED BY A DOLLAR
SIGN TO READ INTO MEMORY AND STORED UNDER THE IDENTIFICATION
NUMBER 100s '

LATER ON IN THE PROGRAMs YOU WOULD WISH TO OQUTPUT THIS
INFORMATION ON YOUR TELETYPE CONSOLEe YOU WOULD DO THIS BY USE
OF THE FOLLOWING FORTRAN STATEMENT eevseeces

CALL ALPHA(25100)
THE PREVIOUSLY READ ALPHAMERIC INFORMATION WOULD THEN BE
PRINTED OUT ON YOUR TELETYPE CONSOLEes ALL CARRIAGE RETURNSS
LINEFEEDSs BELLSy ETCs THAT YOU NEED ON THIS QUTPUT WOULDs OF
COURSEs HAVE BEEN ENTERED AS CHARACTERS IN THE STORED ALPHA-
MERIC INFORMATIONe A MAXIMUM OF 100 ALPHAMERIC CHARACTERS ARE
ALLOWED IN ANY FORTRAN PROGRAMe THE eeeCALL ALPHA«.ee CAN BE USED
ANY NUMBER OF TIMES AS LONG AS THE TOTAL CHARACTER COUNT
DOES NOT EXCEED 100e

THE NUMBERS J AND K MAY BE EITHER SYMBOLIC OR ACTUALs BUT
IN EITHER CASEs MUST BE FIXED POINT NUMBERS OR VARIABLESe

REMINDER - THERE ARE NO AUTOMATIC LINEFEED OR CARRIAGE RETURNS
PROVIDED BY THE eee ALPHA osee¢ ROUTINEe. THEREFOREs IF THEY
ARE NEEDEDs THEY MUST BE PROVIDED IN THE CHARACTERS THEM=
SELVESe

REMINDER - DO NOT ATTEMPT ANY OUTPUT UNTIL ALL INPUT HAS BEEN
FINISHED.

ALPHAMERIC OUTPUT OF STORED STATEMENTS
MANY TIMESs IT WILL BE USEFUL TO IDENTIFY ALPHAMERICALLY
CERTAIN OUTPUT WITHOUT THE TIME CONSUMING USE OF THEeeo
ALPHA oeee READ ROUTINEe TO SUPPLY THIS NEEDs THE eseee FORM
eese SUBPROGRAM HAS BEEN DEVISEDe THIS ROUTINE IS
CALLED BY THE FOLLOWING FORTRAN STATEMENT eeeo

CALL FORM(N1sAsBsCsD)

WHERE N1 IS THE NUMBER OF FLOATING POINT ARGU=-
MENTS TO BE CONVERTED TO ALPHAMERIC OUTPUT
(MAXIMUM VALUE OF 4)

AsBsCsD (A MAXIMUM OF 4) ARE FLOATING POINT

-5-

. 1ko
ARGUMENTS CONSISTING OF ALPHAMERIC PAIRS OF

DIGITS TO BE OUTPUTTED.

AS AN EXAMPLEs LET US SUPPOSE THE STATEMENT eee ROOTS @Z@
ARE REAL eee IS TO BE OUTPUTTED ON TELETYPE TAPE. THIS
MAY BE ACCOMPLISHED BY THE FOLLOWING FORTRAN STATEMENTSeeeee

=e¢59565663 (ROOT)
B=¢62004159 (S AR)
C=¢45005945 (E RE)
D=e¢41530000 (AL)
CALL FORM(43A9BsCsD) R
ANY CARRIAGE RETURNSs LINE FEEDs BELLSs ETC MUST BE
PROGRAMMED BY THE USERe

CORRECTING TELETYPE ERRORS

IN THE EVENT THAT YOU MAKE A MISTAKE AND RECOGNIZE THE
MISTAKE IMMEDIATELYs YOU MAY ERASE THE FAULTY CHARACTER BY
FOLLOWING IT IMMEDIATELY BY THE FOLLOWING eee

UPPER CASE
174 SYMBOL
PROPER CHARACTERs ETC

THIS WILL CAUSE THE FAULTY CHARACTER TO BE ERASED AND REPLACED

BY THE PROPER CHARACTERe 1IN THE CASE OF DATA ENTRYs THIS MUST,

OF COURSEs BE DONE BEFORE THE INCLUSION OF A DOLLAR SIGN. qm\
-

GENERAL INSTRUCTIONS FOR WRITING INTERRUPT PROGRAMS

THE USER PROGRAMS MAY BE WRITTEN IN FORTRANs SPS OR
MACHINE LANGUAGEes ANY PROGRAM WRITTEN TO BE USED ON INTERRUPT
BASIS SHOULD FOLLOW THE GUIDE LINES OUTLINED BELOW eeee

1 SINCE I/0 OPERATIONS ARE INHERENTLY SLOW ON TELETYPES
YOU SHOULD LIMIT YOUR INPUT AND OQUTPUT TO THE
MINIMUMe. YOU MAY CALL THE eee READ ese AND ees
WRITE eee ROUTINE AS MANY TIMES AS YOU DESIRE BUT
YOU MAY STORE AND CALL WITH THE ALPHA ROUTINE A LIMIT
100 CHARACTERS

2 SINCE YOU ARE INTERRUPTING ANOTHER PROGRAM EXECUTING)
YOUR INTERRUPT PROGRAM SHOULD BE REASONABLY SHORT
IN EXECUTIONe A REASONABLE MAXIMUM TIME FOR AN
INTERRUPT PROGRAM TO REQUIRE MIGHT BE CONSIDERED
TO BE 4 MINUTESs ALTHOUGH MOST INTERRUPT PROGRAMS
WOULDs HOPEFULLYs BE OF SHORTER DURATION.

3 YOUR PROGRAM MAY BE NO LONGER THAN 35,000 DIGITS IN SIZE
4 SINCE THE INTERRUPT EXECUTIVE IS BRINGING IN YOUR PROGRAM

IN CORE IMAGE FORM (TO SAVE TIME) YOU MAY NOT USE eee P
LOCALese PROGRAMS (THE LOCAL PROGRAMS ARE NOT STORED IN (};

-6-

1k
THE DISC SCRATCH AREA).

5 YOU MUST ALWAYSs REPEAT ALWAYSs TERMINATE YOUR INTERRUPT
PROGRAM WITH THE FORTRAN INSTRUCTION eee

CALL BACK

WHICH WILL RETURN CONTROL TO THE INTERRUPT EXECUTIVE
PROGRAM AND ALLOW RESUMPTION OF THE WORK THAT WAS INTERRUPT=-
EDe

ERROR MESSAGES

ER 1 THE EXECUTIVE PROGRAM HAS READ IN 400 CHARACTERS IN AN
ATTEMPT TO FIND YOUR DIM ENTRY NUMBERe. IT MAY BE THAT YOU
HAVE NOT ENTERED AN UPPER CASE SYMBOL IMMEDIATELY
FOLLOWED BY THE 5/8 SYMBOLe IT MAY ALSO BE THAT TOO MUCH
SLACK TAPE HAS BEEN ACCUMULATED BETWEEN THE TAPE READER
~AND THE TAPE PUNCHe IN EITHER EVENT, THE EXECUTIVE PRO-
GRAM RINGS THE BELL 24 TIMES (TO GET THE ATTENTION OF THE
COMPUTER CENTER PERSONNEL)s TYPES OUT THE MESSAGE ee¢e ER1 oo
AND ABANDONS YOUR JOB (IT ALSO TYPES OUT A MESSAGE ON

- THE COMPUTER CONSOLE TYPEWRITER TELLING THE COMPUTER CENTER
PERSONNEL TO TAKE THE SLACK OUT OF THE TAPE)e IT WILL DO
YOU NO GOOD TO RE=INTRODUCE YOUR DATA UNTIL THIS DIFFICULTY
IS CORRECTED.

ER 2 TOO MANY CHARACTERS HAVE BEEN READ IN THE eee READ asee
ROUT INE

ER 5 BAD DIM ENTRY NUMBER (THERE IS NO PROGRAM STORED USING
THIS DIM ENTRY NUMBER)

ER 6 TWO POSSIBILITIES EXIST eee (1) NO SUCH ALPHAMERIC FORMAT
NUMBER IS STORED AS THAT CALLED FOR IN THE eee CALL ALPHA oo
ROUTINEs OR (2) TOO MANY ARGUMENTS ARE CALLED FOR IN THE
eee CALL FORM eee ROUTINE(A MAXIMUM OF 4 ARGUMENTS ARE
ALLOWED) »

ER 7 MORE THAN 100 ALPHAMERIC CHARACTERS OF STORAGE ATTEMPTED
IN CALL ALPHA STATEMENT.

ER 8 TWO POSSIBILITIES EXIST eee (1) WRONG CODE FOR ALPHA
INPUT OR OUTPUT (SOMETHING OTHER THAN A 1 OR 2) OR
{2) YOU HAVE USED AN INVALID CHARACTER IN THE
see CALL FORM eee ROUTINE

ER 9 YOU HAVE TRIED A CALL ALPHA OUTPUT WITH NO ALPHA INPUT.
ACCEPTABLE ALPHAMERIC CODES FOR CALL FORM ROUTINE

THE CHARACTERS THAT WILL BE PRINTED OUT ON THE TELETYPE TYPE~-
WRITER WILLs OF COURSEs DEPEND UPON WHETHER THE TYPEWRITER IS IN

-7-

1k2
UPPER OR LOWER CASE SHIFTe THE CODES FOR UPPER AND LOWER CASE SHIFT
AS FOLLOWS seevscctccescncssese

37 UPPER CASE SHIFT
38 LOWER CASE SHIFT

DO NOT FORGET THAT IT IS UP TO THE USER TO SPECIFY ALL CARRIAGE
RETURNS AND LINEFEEDS ON THE TELETYPEe THESE TWO FUNCTIONS MAY BE
PERFORMED WHILE IN EITHER UPPER OR LOWER CASE SHIFT AND ARE AS
FOLLOWS L0 BC I A I I W R N

36 TELETYPE CARRIAGE RETURN
35 TELETYPE LINE FEED

YOU MUST REMEMBER THAT THE TELETYPE TYPEWRITER STAYS IN THE UPPER
OR LOWER CASE SHIFTs ONCE PLACED THERE AND THE USER MUST PROGRAM ANY
AND ALL SHIFT CHANGESe THE ONE EXCEPTION TO THIS IS THE SPACE (00)

WHICH USUALLY (DEPENDING UPON WHAT TYPE TELETYPE YOU HAVE) CAUSES THE

TELETYPE TO DROP INTO LOWER CASE SHIFT AND TO STAY THERE UNTIL
UPPER CASE SHIFT IS PULSEDe. FOLLOWING ARE THE ACCEPTABLE CHAR-
ACTERS THAT MAY BE USED IN THE esee CALL FORM eee SUB PROGRAM sesseee

UPPER CASE SHIFT LOWER CASE SHIFT
03 DECIMAL POINT () 41 A
04 CLOSED PARENTHESES) 42 B
20 MINUS SIGN 43 C
21 SLASH / 44 D
23 COMMA (s) 45 E
24 OPEN PARENTHESES 46 F
70 ZERO 0 47 G
71 NUMBER 1 48 H
72 NUMBER 2 49 I (LETTER 1, NOT ONE)
73 NUMBER 3 51 J
T4 NUMBER 4 52 K
75 NUMBER 5 53 L
76 NUMBER 6 54 M
77 NUMBER 7 55 N
78 NUMBER 8 56 O (LETTER O)
79 NUMBER 9 57 P
00 SPACE 58 Q
59 R
62 S
63 T
64 U
65 v
66 W
67 X
68 Y
69 V4
SPACE

SAMPLE PROGRAM

¢

- 0

50
60

20

10

30

143

PROGRAM TO SOLVE THE ROOTS OF A QUADRATIC

PAUS
CALL

CALL
CALL
CALL
CALL
P=e3
Q=el
R=e3

=e3
E=e7
F=e7

RAD=B#B~4 ¢ #A%*C

E
READ(A)

READ(B)
READ(C)

ALPHA(1+100)
ALPHA(2+100)

6353865
1536445
8005646
8006737
1000000
2000000

IF(RAD)10+20+520
X=(-B+SQRT(RAD))}/ (2+*A)
X1=(-B~SQRT(RAD}))/(2e*A)

GO T
X=99
X1=9

0 30
9
99

OQUTPUTO9#S TO SHOW ROOT IMAGINARY
FORM(49PsQsRsS)

CALL
CALL
CALL
CALL
CALL
CALL
CALL
END

FORM(1,E)
WRITE(X)

FORM(43P sQeRsS)

FORM(14+F)
WRITE(X1)
BACK

NOTE 1 --

NOTE 2 ==

THE eeePAUSEeee IS NECESSARY AS THE FIRST INSTRUCTION

IN THE FORTRAN PROGRAM. "WHEN ASSEMBLED BY THE COMPUTER
CENTER PERSONNELs IT IS ALTERED TO A eeee NO OPERATION ecooe
CODE» ‘

STATEMENT NUMBER 50 IS USED TO ALLOW ANY PROBLEM IDENTI-
FICATIONs DATEs ETCe TO BE ENTERED FROM TAPE AND LATER
OUTPUTTED BY STATEMENT NUMBER 60e THE IDENTIFICATION
NUMBER OF THIS STATEMENT IS eeel00ees

PART 11

HARDWARE DESCRIPTION - THE FOLLOWING TELETYPE EQUIPMENT WAS OBTAINED

FROM SURPLUS OUTLETS

MODEL 14 TRANSMITTER DISTRIBUTOR (TD)
MODEL 14 TYPING REPERFORATOR (PUNCH)
MODEL 15 PAGE PRINTER (MOD 15)
REC-30 LOCAL LOOP POWER SUPPLY

TO COMPLETE THE INTERFACE WITH THE 1710 COMPUTERs THE FOLLOWING
HARDWARE WAS DESIGNED AND CONSTRUCTED BY THE ELECTRICAL ENGIN=-

-9.

1ky
EERING DEPARTMENT

SET OF LATCHING RELAYS AND POWER SUPPLY FOR SAME
USER STATUS INDICATOR AND INTERRUPT GENERATOR
MODIFICATIONS OF THE TD

BRIEF DESCRIPTION OF OPERATING METHOD OF THE TELETYPE SYSTEM

THE TELETYPE MACHINES NORMALLY AVAILABLE FROM SURPLUS OQOUTLETS
ARE 5-LEVEL MACHINESe THIS MEANS THAT FIVE PULSES ARE REQUIRED
FOR EACH CHARACTERe SINCE THE MACHINE IS A 60 WORD PER MINUTE
MACHINEs 163 MILLISECONDS ARE REQUIRED PER CHARACTERs THUS A
MAXIMUM RATE OF ABOUT 6 CHARACTERS PER SECONDe THE COMPUTER

IS REQUIRED TO GENERATE OR RECOGNIZE FIVE PIECES OF INFORMATION
FOR EACH CHARACTER (ACTUALLY SEVEN SINCE THERE IS A START AND

A STOP PULSE FOR SYNCHRONIZING EACH CHARACTER)

METHOD OF GETTING DATA INTO THE COMPUTER (SEE FIGURE 1)

THE 1710 AVAILABLE IN THE COMPUTER CENTER HAS HIGH SPEED
CONTACT SENSE (HSCS) WHEREIN THE COMPUTER SCANS A BLOCK OF 20
CONTACTS AND PLACES A 7-DIGIT NUMBER IN CORE DEPENDING UPON THE
CLOSED AND OPEN CONFIGURATION OF THE 20 CONTACTSe (%) THE REMOTE
TELETYPE PUNCHES A PAPER TAPE IN THE COMPUTER CENTER AND THIS
TAPE IS FED TO THE READER PART OF THE TDe. THE READER CONTACTS
ARE WIRED TO FIVE OF THE HSCS TERMINALSs, THUS FOR EVERY
TELETYPE CHARACTER SCANNEDs A PARTICULAR NUMBER WILL BE STORED IN
CORE OF THE COMPUTERe IT IS THEN NECESSARY TO HAVE A DICTIONARY
(STORED IN CORE) TO TRANSLATE THESE NUMBERS INTO THE PROPER

- CHARACTER.

METHOD OF GETTING DATA FROM THE COMPUTER (SEE FIGURE 1)

FIVE CONTACT OPERATES (CO) IN THE COMPUTER ARE WIRED TO THE
FIVE OUTPUT SEGMENTS OF THE TDe ANOTHER DICTIONARY (STORED

IN CORE) IS REQUIRED TO DETERMINE THE PROPER CONTACT CONFIG-
URATION FOR EACH CHARACTER WHICH IS TO BE OUTPUTTEDe THESE
CONTACTS ARE OPERATED AND LATCHEDe THE TD THEN TRANSMITS THE
PROPER CODE TO THE REMOTE STATIONe SINCE THE MINIMUM TIME PER
CONTACT FOR THE CO FUNCTION IS 50 MILLISECONDSs THE MAXIMUM
OUTPUT RATE IS ABOUT THREE CHARACTERS PER SECONDe THE TELETYPE
MACHINE IS CAPABLE OF ABOUT TWICE THIS SPEED SO THE SYSTEM

1S NOT VERY EFFICIENT. HOWEVERs IF THE OUTPUT MESSAGES ARE
NOT TOO LONGs THE SYSTEM IS USABLE.

MISCELLANEOUS PROBLEMS AND SOLUTIONS
(1) TIMING

SEVERAL TIMING PROBLEMS EXIST IN THIS SYSTEMe PERHAPS THE
MORE CRITICAL ARE CONCERNED WITH INPUT AND QUTPUTe IN THE
READ ROUTINEs IT IS NECESSDRY FOR THE COMPUTER TO CAUSE THE
HSCS TERMINALS TO BE SET up BY THE TDe WHILE THIS IS BEING
DONE(163 MS) THE COMPUTER MUST WAITe. ONCE THE TERMINALS
ARE SET UP»s THE COMPUTER MUST SCAN THE TERMINALSs TRANSLATE
INTO A RECOGNIZABLE CHARACTERs INITIATE THE BEGINNING OF

-10-

(2)
(3)
(4)
(5)

. | 4 1l
ANOTHER SET-UP AND AGAIN WAIT. THIS IS ACCOMPLISHED IN TgE
FOLLOWING MANNERe A CO IS USED TO TELL THE TD TO ADVANCE
TO THE NEXT CHARACTERe WHEN THE SET-UP IS FINISHEDs THE
TD OPERATES A PROCESS BRANCH INDICATOR (PBI) WHICH TELLS
THE COMPUTER TO NOW SCAN THE HSCS TERMINALSe. ONCE THE CHAR=-
ACTER IS IN CORE AND TRANSLATEDs THE CO IS AGAIN OPERATED
FOR THE NEXT CHARACTER. (%) USING THIS PROCEDUREs THE SYSTEM
WILL OPERATE AT NEARLY MAXIMUM TELETYPE SPEED.

IN THE WRITE ROUTINE, THE COMPUTER MUST OPERATE
CONTACT OPERATES FOR EACH CHARACTERs WHICH ARE THEN EXTER=-
NALLY LATCHED. WHEN ALL SEGMENTS FOR THE CHARACTER ARE
SET UPs ONE MORE CO IS OPERATED TO TELL THE TD TO SEND
THIS CHARACTERe WHILE THE CHARACTER IS BEING SENT (163 MS)
THE COMPUTER MUST WAITe AT THE END OF THE CHARACTERs THE
SAME PBI IS USED TO TELL THE COMPUTER TO ASSEMBLE THE NEXT
CHARACTERe BECAUSE OF THE LONG CO TIMEs THE MAXIMUM RATE
IS ABOUT 3 CHARACTERS PER SECONDe

LATCHES

SINCE THE CONTACT OPERATES ON THE 1710 AVAILABLE WERE
NON-LATCHING TYPESs EXTERNAL RELAY LATCHES WERE REQUIRED.
SINCE THE SPEED OF OPERATION AND RELIABILITY OF THESE
RELAYS HAD TO BE HIGHs RATHER EXPENSIVE MINIATURE SEALED
CAN RELAYS WERE USEDe.

TELETYPE TD MODIFICATIONS

THE TD WAS MODIFIED IN ORDER TO SEPARATE THE READER FUNCT=-
IONS FROM THE OUTPUT FUNCTIONSs THIS REQUIRED THE CONNEC-
TION OF A SEVEN WIRE LEAD TO THE OUTPUT SEGMENTSs SLIGHT
MECHANICAL CHANGES IN THE RELEASE MECHANISM AND THE ADDITION
OF A MICRO-SWITCH TO SENSE THE END OF A CHARACTER TRANSMISS-
ION.

USER STATUS INDICATOR AND INTERRUPT GENERATOR

IT WAS NECESSARY TO CONSTRUCT A SERIES OF SIGNAL LIGHTS
TO LET THE REMOTE STATIONS KNOW WHEN THE SYSTEM WAS
AVAILABLE AND TO KNOW WHEN THE SYSTEM WAS BUSYe INCOR-
PORATED IN THIS FUNCTION IS THE INTERRUPT BUTTONe THIS
IS SIMPLY A RELAYs REMOTE OPERATEDs WHICH ACTIVATES THE
PROPER INTERRUPT TERMINALS IN THE COMPUTER.

TELETYPE MACHINE

LITTLE MODIFICATION IS NECESSARYe THE KEYBOARD CONTACTS

AND THE RECEIVING SELECTOR MAGNETS ARE CONNECTED IN SERIES.
ALL REMOTE STATIONS AS WELL AS A MONITOR PRINTER IN THE
COMPUTER CENTER AND THE PAPER TAPE PUNCH ARE CONNECTED THEN
IN SERIES WITH A LOCAL LOOP POWER SUPPLY(60 MAe OF CURRENT).
WHICH REMOTE STATION OPERATES DEPENDS UPON WHETHER THE MOTOR
ON THE REMOTE IS RUNNING OR NOTe THE MOTOR ON-OFF IS
CONTROLLED BY THE USER STATUS INDICATOR UNITe

n DESCRIPTION OF MEMORY DATA REGISTER METHOD OF OUTPUT

-11-

(6)
- .~ .. AS PREVIOUSLY STATEDs THE MAXIMUM OUTPUT SPEED Is ABOUT

146

SPEED OF . OUTPUT

 ‘ 13 CHARACTERS PER SECONDe THE TELETYPE IS CAPABLE OF
. OPERATING AT TWICE THIS SPEEDe THE SPEED PROBLEM THUS
' " BECOMES ONE OF SPEEDING UP THE CONTACT OPERATE FUNCTION.

ffSINCE THIS IS NOT VERY FEASIBLEs ANOTHER APPROACH HAS BEEN

UNDERTAKENs, OBSERVATION OF THE 1710 CONSOLE PANEL SHOWS
THAT ALL OUTPUT DATA FLOWS THROUGH THE MDR (MEMORY DATA

"REGISTER)e - THIS DATA CAN BE OUTPUTTED BY MAKING A HIGH

IMPEDANCE CONNECTION TO THE PANEL LAMPS. THE PROCESS

IS AS FOLLOWS eesseee (SEE FIGURE 2)

USE A TRANSMIT RECORD CODE see 31 XXXXX XXXXX

TO MOVE DATA FROM LOCATION XXXXX TO ITSELFe IN THE PROCESS

~ THIS DATA GOES THROUGH THE MDRe AMPLIFY THE INFORMATION

PULSES FROM THE PANEL LAMPS OF MDR AND USE TO SET ELECTRONIC

" LATCHES (RELAYS ARE TOO SLOW)e THESE LATCHESs AS BEFORE}

- SET UP THE CONTACT SEGMENTS OF THE TDe AS SOON AS A

RECORD MARK APPEARS IN MDRs INITIATE THE SPIN OF THE TD.‘
LET THE COMPUTER WAIT FOR A PBI AS BEFOREe WHEN THE PBI

" APPEARS»s SEARCH FOR THE NEXT RECORDs RESET ALL LATCHES»

FLUSH THIS NEW RECORD THROUGH MDRs ETCe USING THIS

"~ PROCESSs MAXIMUM TELETYPE SPEED CAN BE REACHEDe SINCE IT

"~ TAKES THE COMPUTER ONLY A FEW HUNDRED MICRO SECONDS TO
" SET UP ALL THE LATCHESs THE SPIN ARM ON THE TD NEVER

STOPSe. WE HAVE TESTED THIS METHOD AND FOUND IT WORKSs»

" AND ARE NOW IN THE PROCESS OF BUILDING THE ELECTRONIC
AMPLIFIERSs GATESs LATCHESs ETC.

% REF. IBM 1710 CONTROL SYSTEM MANUAL

FILE NOe 1710-01
FORM NOe. A26-5709-0

~-12-

147

INDICATOR
&

INTERRUPT

MODIFIED
TD

e}

HSCS
o cPU & |
1712

CO

RELAY

LATCHES

PWR.

FIG 1.

~1Lk8

MDR ¢ |

OjojolofQ}0

- o - Q
w FF
w FF
w FF
BT
@mmqj -
o A ~FF
P
S A__ MV
A) _

FiG. 2.

1620 APPLICATIONS

GENERAL CARD TO PRINTER PROGRAM

Mrs. Janet Allen
Pioneer Hi-Bred Corn Company
1206 Mulberry Street
Des Moines, Towa

288-3691

Monday, 3:30-5:00 P.M.
Session M-4.8

8 pages
3 exhibits

149

II.

IIT.

IV.

v.

INDEX

GENERAL CARD TO PRINTER PROGRAM

Introduction

Control Cards

Printer Tape

Operating Instructions

Error Messages

Exhibits:

A . General Card to Printer Control Cards
B - Test 1 - Control Cards

Test 2 - Control Cards
¢ - Cards to load program on Disk

150

#

II.

151

GENERAL CARD TO PRINTER PROGRAM

INTRODUCTION

The General Card to Printer Program is designed to handle
the transition from a 1620 with card reader/punch only to a
1620-1L43 System. Through control cards to the program, the
user specifies the input and output fields. If the input cards
are of different formats, the user may specify a card code field
with which to identify each card. Headings to be printed at
the top of the page may be specified. In addition, the user
may specify any input field(s) to be printed on one line at
the bottom or top, or both, of each page. Other options in-
clude merging two cards into one output line, and ability to
restore page or space a maximum of three lines on a specified
field, a non-blank, or a change in a field.

Switches control single or double spacing and allow a
straight card to printer, without formats.

This program requires a 20K Model 1 with 14U3 printer,
1h4 printer positions, indirect addressing, and numeric strip
and fill instructions.

CONTROL CARDS

See Exhibit A format. All numbers are to be right-justified
in the fields, unless otherwise specified. See Exhibit B for
examples of the control cards. All specified card codes must
be punched the same number of columns as specified in the control

‘card CDCODE. If more columns are punched in the card code field

(columns 8 - 17) the data cards with that card code will not he
recognized.

A. CARD CODE

This specifies the field with which to identify input cards.
Columns 20-21 contain the first column of the field, and columns
22-23 the number of columns (maximum 10). A maximum of ten dif-
ferent card codes may be specified.

If this card is omitted, the program assumes all cards to
be the same format. All card code fields in the other control
cards must then be blank.

B. RESTORE PAGE AND SPACE

The control cards for these are identical format, with one
additional field in the SPACE card.

To compute the maximum number of each control card, the
following must be noted: each table for RESTOR and SPACE allows
12 fields. Each control card, however, for a different card code
requires an extra field. Therefore, 6 RESTOR cards, all refer-
ring to different card codes, would fill the table.

152

The card code field (columns 8 - 17) specifies the card code
to which the control card refers, or is blank if all input cards q:h
J

* are the same format. There may be more than one for any card

code, but all RESTOR or SPACE cards for that card code must be
together. '

Columns 20-21, and 22-23 indicate the beginning and size
of the field. A maximum of ten columns may be specified. If
column 25 contains a "c", any change in the field will cause
lines to be spaced (for SPACE) or the page to be restored (for

RESTOR) .

An "f" in column 25 requires a field to be specified, be-
ginning in column 31. This field must contain any flags that
the data card has. When this field is found, the lines are
spaced or the page restored. The " @ " in column 31 indicates
that any non-blank in the specified field will cause spacing
or page restoring.

A blank in column 26 causes the line to be printed before
lines are spaced on the page restored. A non-blank causes the
spacing or page restoring to occur before printing.

Column 27, on the SPACE card, specifies the number of lines
to be spaced. If it is blank, one line will be spaced. A maxi-
mum of 3 lines may be specified.

C. MERGE f@

There may be a maximum of 10 of these control cards. This
causes the two input cards whose card codes are specified (col-
umns 8 - 17 and 25 - 34) to be printed on the same line. The
program expects the cards to be in the same order as on the con-
trol card. See Section V for possible error conditions.

D. HEADINGS

A maximum of eight heading lines may be specified. The
user need not specify all - a line will be skipped for each
line not specified until either the last specified header line
or the channel Q@ punch on the printer tape is reached. If the
specified header lines go beyond the channel 9 punch, one line
will be skipped before the first line of data.

The header field, beginning in column 31, may be continued
on the next HEADER card. Columns 22 - 24 on the first card con-
tain the total number of columns of the header field. If this
exceeds 50, the next HEADER card is assumed to contain the con-
tinuation, beginning in column. 31. Any header field may con-
tain a record mark to terminate printing of that line. The
character count in columns 22 - 24, however, still controls the
number of columns read in.

@

153

E. TOP

This control card allows the user to specify information to
be picked up from an input card or cards and printed on the first
line of a page. This appears before the headings. The I/O fields
on these control cards are the same as those of the FORMAT card
(Section II H.). There may be a maximum of three different card
codes, and a maximum total of seven I/O fields (see Section II G.)
All information specified by all TOP control cards will appear in
one line at the top of the page. All TOP cards specifying the
same card code must be together. In order for the top line on
the first page of printed data to contain the proper information,
this information must be in the first input card. The program
initially skips to the bottom of the page. It then reads a card,
stores any of its data to be printed, restores the page, prints
the top line and headings, then continues printing and reading
cards. Whatever data for the top line not contained in the first
card will thus not be printed on the first page.

F. BOTTOM

This control card is the same as TOP except that the speci-
fied'data will appear in the last line of the page.

G. FORMAT

This card defines the input to output (I/0) format of the
card whose card code is specified in columns 8 - 17. If there
are no card codes, this field must be a blank. All FORMAT cards
for the same card code must be together. ‘Iﬁ/;p 1s des1red to
shorten the output line, columns 25 - 27 may nta%n the oubput
positlon for a record mark If there is mové than one FORMAT
card for the §ame gard’ code the reéord mark pOSLtlon must be
specified on.the first card or it will be ignored.

Beginning in column 31, the I/O fields, described below,
specify the format. These fields must be separated by commas,
There may be any number of each FORMAT card, but each field must

. be complete - it may not be continued on the next card.

The table in the program contains 106 I/0 fields. To compute
the number that may be specified, the following must be noted:

a). Each card code requires one more I/O field. Therefore,
if there are two different card codes specified by FOR-
~ MAT cards, 104 I/O fields are left.

Each 1/0 field must be the following format and in this order:

I-=-N-- 0 - - A S D -
(N ol
must be present optional

These must be present:

I - - defines the first column of data on the input card for this
field, May be 1 or 2 digits.

N - - is the number of columns of this data field. May be 1 or 2
digits.

0 - - is the last (rightmost) print position. May be 1, 2 or 3
digits.

If the number is negative, the minus sign will appear to
the right of this position.

These are optional specifications. If none is present, the pro-

gram assumes the field to be numeric with no decimal and will re-
move leading zeroes and check for negative. The options S and D

are meaningful only if A is not present.

A. TIndicates this field is alphanumeric. The field will
then be reproduced in the output line just as it appears
on the card.

S. Causes the output field to be blank if the input field
is blank or zero.

D. Indicates that a decimal point is to be printed. There
must be one digit, O - 9., Zero causes a decimal point
to be printed to the right of the number. This specifi-
cation must be last in the I/0 field.

"PRINTER TAPE

This is intended to be the same tape to be used with the
Monitor, with one additional punch in channel 9.

A. Channel 12 - end of page

B. Channel 1 - beginning of page. This will be the first
header line.

'C. Channel 9 - first line of data. This punch controls
the number of header lines. If a header line is speci-
fied past this punch (farther down the page), the speci-
fied line will be printed and one line skipped before
the data is printed.

OPERATING INSTRUCTIONS

A. SWITCHES

1. Switch 1 - ON - double space
OFF - single space

154

O

155

2. Switch 2 - ON - straight print (no format)
OFF - FORMAT control cards control printout

3. Switches 3 and 4 not used.
B. DISK

The program is in two parts, both stored on disk. Both use
the first 120 sectors of the work cylinders.

To load, see Exhibit C. PRT2 must be loaded with DIM num-
ber hOO, unless the first part PRINT is changed. PRINT links
with PRT2 through DIM number L400.

C. CARD DECK
1. Switch 2 OFF

The first cards must be the control cards, in any order,
followed by a 9's card (9's in columns 1 - 6)

The card deck is:

JOB 5

XEQ PRINT
control cards
9's card
data cards

End of Job Card (####)

2. Switch 2 on - the card deck is the JOB and XEQ cards and
the set of input cards followed by the End of Job card.

3. It may be desired to have a straight print, but also
have the option of any of the other control cards, ex-
cept FORMAT, and BOTTOM.

This may be done in the following way:

a) Turn off switch 2

b) Read control cards and 9's card
c) Turn on switch 2

d) Read data cards

Any FORMAT cards read in will be ignored. Note that,
if switch 2 is OFF, FORMAT cards must have been read in
to get any output.

D. Check printer tape (see Section III) and load cards. When
program reads END OF JOB card, it will return to Monitor.

156

V. ERROR MESSAGES

Error messages appear on the typewriter.

A. Control Card Errors

Unless otherwise specified, the control card is typed
after the error message and is ignored.

1.

The following are typed when the maximum of the
specified control cards have already been read.

a. MAX RESTORE CARDS
b. MAX SPACE CARDS

MAX CC

Maximum number of different card codes have been read.
I/0 FORMTS TABLE FULL

Maximum number of I/O formats has been reached for
TOP, BOTTOM, or FORMAT. The line typed after this
message is only those formats not processed.

HEADER LINE EXCEEDS MAX

A header line greater than 8 has been specified.

ERROR IN I/O ‘FORMAT

Although the entire card is typed, only the I/O field
in error is ignored.

ILLEGAL CONTROL CARD

Control card code is not recognized by the program.
COLUMN SIZE EXCEEDS MAX

Columns specified on CDCODE, RESTOR, SPACE, or HEADER
exceed the maximum, either number of columns or input
column number; output column number specified in a
HEADER card exceeds 1ili; or a header line as specified
would exceed 1uk.

MAX SPACING IS 3.

The number of lines specified in a SPACE card is more
than 3. Three lines will be spaced.

B.

ERRORS IN PROCESSING DATA CARDS

1.

This indicates that the second card specified on the
MERGE is missing. Two cards with the first specified

card code have been read. The first is typed and ig-
nored. '

157

EXHIBIT A

GENERAL CARD TO PRINTER CONTROL CARDS

CONTROL 1-6- 8 - 17 20 - 21 - 22 - 23 25 26 27 31
FIRST INPUT NUMBER OF
CARDS CODE CARD CODE COL. NUMBER COLUMNS
1. CARD CODE OF CDCOD®E - XX XX - - - —-—
INPUT (max - 10)
2. RESTORE PAGE RESTCR X....X XX XX "¢" or blank -- Field - (@
(Max = 10) "Fh print (non-blank)
first
3. SPACE SPACED XeooX XX XX "CY" of blank- Field -(@
(b=blank) (max = 10) npn print # (non-blank)
first spaces
4. MERGE MERGED X....X - - Col. 25 - 34 = Second Card Code
5. HEADINGS HEADER - Line # = XX XXX Output Col. # (col. 25 - 27) Field
(Col, 22-2L)
6. TOP OR TOPbbb X....X - - Output col. # Field
BOTTOM BOTTOM for record mark
7. 1I/0 FORMATS FORMAT) I ¢ - -- Field

8sT

CDCODE

ERGE
‘ﬁEToR
RESTOR
SPACE
SPACE
BOTTOM
BOTTOM
TOP
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
TOP

CDCODE
HEADER
HEADER
HEADER
FORMA™
FORMAN
FORMAT

RMAT

RMAT
FORMAT
FORMAT
FORMAT

XX
XX
XK
XX
AX
6P
XX
XX
AX
6P
6P
6P
6P
6P
6P
XX

XX
6P
6P
6P
6P
6P
6P
6P

EXHIBIT
0102

1803 C1
0303 F
0303 F22
0704 F

0102
01050001
03092001

B

6P

510

505

'

13N303

I3N3015A

I3N305A, I15N7010A

I3N303A, I7N8O11A, I15N9021A, 124N9032A

I30N2072,132N3075, I135N2079,137N3082

I163N20118 ’

I3N3035, 16N3039D1,I9N3043,112N3047, I15N2051

I17N3054,121N1058,122N3061D1,125N2065, I40N2086S
142N3089,145N3093D2, 148N3097D2

I51N30101D2, 154N30105D2,157N30109D2,160N30113D2

I3N305A,I15N7010A

CODE VARIETY MALE PED FEM PED

AVG HOS AGE AHH CM AHD CM CHD CM GM CM LM CM DP
L CM BDY BW LEL EW HU BS SG LOC

I3N303A, I7N80O11A, I15N9021A, I24N9032A
I3N303, I6N307D1l, I9N3012, I12N3016, I15N2019
I17N3023, 120N2026, I22N3030D1l, I25N2034S
I30N2037S, I32N3041, 135N2044, 137N3048
I40N2051, 145N3059D2, 148N3664D0O
I51N3069D2, I54N3074D2, I57TN3079D2, 160N3084D2
163N2088

142N305558D2

160

EXHIBIT C

1 (CARDS TO L.OAD PROGRAM ON DISK)
¥DLOADPRINT 0240202402 CM
*DLOADPRT2 0400 0240202402 CM

O

The General Format Conversion Program

by

Robert B. Balder

Presented orally at the joint Eastern-Western COMMON meeting
November 28-30, 1966, New Orleans, Louisiana.

161

The General Format Conversion Program .

The incompatibility of data between card oriented programming
systems has long been a bottleneck in incorporating external
data into existing systems. This is in a large part caused
by the necessity to reformat the card input into a standard
format acceptable to the operational system. Up until now,
this usually required a separate program to do the required
formating. To all but the most inexperienced trainee this
type of program is as best an inefficient use of programming
resources, a tedious coding task to the programmer, and an
uninspiring chore to the creative thinker. The task becomes
more overwhelming when large numbers of this type of program
have to be written. :

System Description

In an attempt to minimize the programming time and computer
debugging time required by a large number of reformating
programs, the "General Format Conversion'" (GFC) system of
programs has been developed. These programs aré written in
SPS II-D for a 40K IBM 1620 (mod I) with two disk drives
under the control of Monitor with the automatlc divide and
indirect address spec1a1 features.

The system works in the following manner: control cards are
completed and keypunched. These control cards are the
elements of a "conversion library" which is defined as all
control records necessary to completely transform the cards
of one format into another. The conversion library is stored
on a disk pack that has been pre-initialized for this system.
As many as ninty-nine conversion libraries may be stored on
any one disk pack.

Once a conversion library is stored, it can be called by
another program of the system which reads in the cards in
the original format, makes the transformations defined in
the conversion library, and punches the reformated cards.
The processing time varies with the number of conversions
but is not much slower then the Input/Output speeds.

162

163

” Statement of the Problem

In order to understand the operation of the system, it is
necessary to understand the various control cards and their
function. In order to accomplish this objective, the
problems encountered in doing any reformating of cards will
be stated and the general way by which GFC control cards
solve each particular problem will be explained. To begin
with, one definition is necessary. In defining a field on
a card, there are at least two elements necessary: 1) the
number of characters, and 2) the card column (cc) of the
"rightmost'" or "low order" character. This is the definition
of field used throughout the system.

Input Selection

All cards containing information concerning one particular
item under observation must be read in at one time. This is
probably more than one and possibly can be a variable number
of cards. Therefore, there must be some key used to recognize
all cards referring to a particular item. This may be a
sample number, a date, a location code, a person's name, and
so forth, or a combination of fields. In the GFC this is
referred to as the '"family identification" and can consist
of one, two, or three fields and cannot exceed a total of
‘:} twenty-five characters. The defining of the family
identification is done by the FAMILY ID control card which
completely defines each field by giving the number of
characters and the card column of the low order position of
the fields as they must appear on all cards in the family.

Iplav|zlnly| [1lp],|FlL|D|1 clua|alr|s|-|x|x]-

1123|4567 8|9 (10({11|12[13)14]15(16{17(18|19]20|21]|22 |23 24

c|C - | X|X|-|,|F|L|D|2 CIHIAIR)S|-|X{X|~-|]C|C]|~

25126 2728|2930 | 31|32 |33 |34 35 3637 38 39| 40|41 (42|43 |44 |45 46|47 |48

[

Ix!'x|-|,|F|L|D]|3 clH R|s|-Ixlxl-lclc|-|x|X]|-
49| 50(51(52] 53|54 55|56 | 57|58] 59| 60| 61| 62| 63] 84, 65! 66(67| 68| 69| 70| 71| 72

" 73174/75\76 77 78%79‘80

If a family consists of more than one card, it is probable
that these cards are themselves not of the same format

although they all contain data referencing the same event

and rightfully belong to the family.

must be some manner of distinguishing the different cards

within the family.

In the GFC there is provision for one field of up to five
characters in length to serve this purpose.

the length of the field (the card column of the rightmost

Therefore, there

This is called the "“card identification".

This is defined
in the system by the '"CARD ID" control card which contains

character), and the number of different card types possible
at input (maximum of 25).

cla[r[n] [x[o],[clu[alr]s[-[x]-]clc]-]x]x]-
112 (3[4[5 6|7 8]9[10]1112]13[14]15]16]17[18]19]20] 21]22
Nvlul v BlElR ofF| |pPlo|s|s|i|B|LlE

23|24)25 |26 | 27(28 2930 |31 32|33 34| 35]36 |37]38 39 40| 41
C|lO|D|E|S|-|X[X[-]- 5 0 lo

42[43]44] 45[46 |47 48 49 | 50| 51 7879 80

Following the CARD ID card comes one "CODE" control card
for each of the various card types.
card type code (up to five characters), and the minimum and
maximum family requirements as to the number of the card
type required within each family (if any).
there must be at least one of a particular type of card in
each family, the "MINIMUM" is coded '"01".
card type is not necessary, then the "MINIMUM" is coded '00".
Similarly, if there should not be more than five of a
particular type within a family, the "MAXIMUM" is coded '"05',
If there is a card where there must be one and only one of

a particular card type, then both the "MINIMUM" and "MAXIMUM"

are coded 01,

This card contains the

That is, if

If a particular

These requirements are checked during the
execution of the conversion library, and if they are not met
appropriate messages are typed on the console and the card

family is ignored.

C

0

D

E

X

X!

X1 X

X

M

N

M

UM

1

2

3

4

6

7

8.9

10

12

13

14

15

16

17 118

—
o
| SRS S

N

U

M

B

R

RIE

Q

I

E

XX

120

21

22

23

26

27,28

29

31

32

33

34

35

36|37

38

M

A

X

1

M

N

U

B

R

A

L|L

oW

o
!

39

40

45

4647

48

50

51

52

53

54

55|56

57|58

59

I X

X

Sl

~

|2]x]|x

62

63

64 65 66| 7

68

6970

n

72

73

74

75

76

77

78|79 80

164

G

165

If there is to be only one card per family and this card
will always be the same type, then the FAMILY ID and CARD
ID cards need not be present.

Blank Fields

Another problem encountered in reformating is what to do with
blank fields. In a particular system it may be necessary for
all columns of the cards to be coded. In these cases, there

is usually some special character substituted for 'not
applicable'" or "unknown''. We allow for this in the GFC by
using a '"padding" character. This can be any single character,
either numeric, alphameric, or special that will be substituted
in each column of the output field if the input field is blank.
If a padding character is not specified by a PADDING CHARACTER

~control card, then a blank character is used.

plalp|pli|nle] |clulalr|alc|T]E|R]-]x]|x]-

1234|567 |8|9(10/11{12|13/14(15/16|17[18{19]20| 21

7879 80

Types of Conversions

All fields are defined by the two parameters, length, and
card column of the low order character. By including the
card identification code (i.e., card type), the field is
completely defined within a family of cards. If there is
only one type of card per family, this third parameter is
not necessary. Since all fields are handled in alphameric
mode, one character '"fields'" are permissible.

The basic for the general reformating of cards is that all
conversions fall clearly into three broad categories and a
specific control card is provided for each category.

The simplest of these categories is the "field to field"
conversion. The field as it appears in the input is
transferred directly to the output. To this conversionm,
the code "'1" has been assigned. The number of characters
in the field is coded, the card type within the family
from which the data is to come, if any, is coded, the card
column of the input is coded, and the card column of the
output is also coded. In this case, we do mot need the

! Appendix 1 contains the coding Jnstructlons for all
control cards. :

length of field in the output because it is the same as
the input since we are transferring the entire field as

it appears. As in all conversions, we do not need the
card type of the output since only one card is constructed
and punched at a time.

The second basir category is used if the reporting codes
between the two systems differ. An example of this is if
one system uses the reporting code "M'" meaning "male" and

"E" meaning "“female", and the system for which the output is

intended uses "1" and "2" for the same purpose. This type
of conversion is accomplished by a table look up and is
called the '"field to table to field" conversion. This is

given the conversion code "2'", As a description of the input
field, we have the number of characters, the card type, and

the card column of the rightmost character. To describe
the output, there is the card column of the low order

character and the number of characters, which, in this case,

is required since it may differ from that of the input.
There is one additional item required by this conversion
category, and that is the number of "entries" in the table
(a2 maximum of 999).

Immediately following a conversion of this type comes the
table, one entry per card. These cards contain first the
code as it might appear in the input immediately followed
by a comma and the corresponding code as it appears in the
output. In the execution of this conversion, if a code is
not found in the table, a message is typed on the console
and the operator has the option of either padding the
output field with tne padding character previously defined
or correcting the card and reentering it through the card
reader.

The third and sort of a catch all type of conversion, is the

“field to subroutine to field". 1In this case, information
cannot be transferred directly or through a table look up,
but instead, must be processed through some mathematical
function or data manipulation subroutine. This type of
conversion is given the code "3". In the control card,
both input and output fields are defined by the number of
characters and the card column of the rightmost position.
Also, as in the other types of conversions, the input card
type is also specified if necessary. There is one other

bit of information on this card, the entry point which will

be discussed later.

166

N g

167

Repetition of Conversion Control Record

A conversion library is defined above as "all control records
necessary to completely transform the cards of one system to
another", Notice that "cards" is plural., The variability
of the input has been shown. The GFC can also produce
different card types at one pass of the data and also can
produce a variable number of each card type.

Although all cards of a family are read and stored prior

to the start of the actual conversion, only one output

card is produced at a time, However, any number of output
cards can be produced per family. All conversion control
cards necessary to produce one output card are together
called an "entry" in the conversion library and must contain
as the last record the "PUNCH" control card. Besides giving
the program the command to proceed with the punch routine,
this record contains two other bits of information:

1) whether or not the card type just punched is to be
repeated, and 2) whether or not the card type just punched
is the last of the different card types to be produced in
each family.

Card Selection Within Family

In repeating an entry in a conversion library there must be
some way of obtaining data from different cards within the
family on each pass through the entry or else the same output
card would be produced over and over again. There are two
ways one might want to consider a particular field for the
output: 1) taken from the same card of the family on each
pass through the entry in the conversion library, or 2) taken
from a different card although off the same card type on each
pass through the entry in the conversion library. For this
second case, an index counting the number of passes through
the entry is used. Each field is considered individually
since it may be desirable to produce certain fields on

output cards containing some information that is to be

the same on all cases (i.e., family identification, date,

and so forth), and other fields containing differing
information.

Another problem solved at the same time as the one above

is that of to '"pad" or not to "pad". 1If a blank field is
encountered somewhere in the input family, it may be of
minor importance, therefore, little is lost if the '"'padding"
character defined by the "PADDING CHARACTER" control card

is substituted in the output field.2 However, it may be

of such major importance that if it does not appear, it is
not desirable to punch the card at all. In this case, the
program proceeds either to the next conversion entry or
begins to read the next card family. It is the last feature
that is the mechanism for getting out of the loop. If there
are N cards of input card type X and N cards of output card
type Y are to be produced, where each pass through the
entry in the conversion library producing card type Y is

to get data from a different card type X, on the N+ 1 pass
through the entry card type X will not be found. Therefore,
the field is not found and the program does not punch the
N+ 1 type Y card and proceeds to the next entry. If there
is no next entry, the next input family is read in; all
indices are initialized and the process begins anew.

Other Methods of Placing Data in the Output

Besides these three basic types of conversions, there are
two other ways of placing information into the output card
that cannot really be called "conversions" in the strictest
sense of the word. One of these solves the problem of
placing a constant field in the output that does not appear
anywhere in the input. This is done by the '"immediate to
field" conversion control card in the following manner:

the output field is defined in the same way as in the

other conversions. No input field description is necessary.
After the output field description comes the exact constant
as it is to appear in the output. There is a limit of 48
characters, which can be alphameric, numeric, or special,
per control card of this type.

2 If no "PADDING CHARACTER' control card is used, a
"blank" is substituted.

Appendix 2 contains the possible conversion control
codes.

168

169

Also, it is possible to store the status of particular
counters directly into the output. There are three
counters that can be used. Counter one contains the
number of cards in the family, counter two the number
of cards of a particular card type which is specified
in the control card, and counter three is the value of
the "index" which is being used for card selection.
This conversion is coded '"02",

The Usage of Subroutines

It is the ability of the user to easily incorporate
subroutines into the GFC system that has made this
system the versatile tool it has proven to be.

Basically, subroutines are written in SPS., They are entered
through an unconditional branch instruction rather than a
branch and transmit or a branch and transmit immediate.
Therefore, the address registers are free to be used by

the subroutine themself. Data enters the subroutine in
alphameric form by the use of an indirect address established
by the program. The results of the subroutine are stored
immediately prior to the first executable instruction in
alphameric form for a flag over the zone position of the
leftmost character. Exit from the subroutine is made by

an unconditional branch back to a specific instruction in

‘the main program.

It is possible to have any number of subroutines. Each
subroutine should be written and debugged independently
of the conversion program and other subroutines.

If subroutines are to be used, an additional input control
record is necessary and is inserted after the "CARD
IDENTIFICATION CODE" control cards and prior to the
"PADDING CHARACTER" control card. There are two elements
of information on this card: 1) the number of entry

points into the subroutine package (an entry point is the
address of the first executable instruction in a subroutine,
therefore, the number of entry points is the number of
individual subroutines in a subroutine package), and 2)

170

The Disk Identification Map (DIM) Entry number of where
the subroutines are to be loaded on the Monitor disk.

siuls|r|ojulT|I|N]|E Ein|TIR|Y| |PlOol1|N|T|S]|
1/2[3]4|5 6|7 8]9]|10{11]12]13/14]1516]17[18[19|20(21|22 |23
-|x|x|-/piT M| |E|N|T|R|Y| |N|U|M|B|E|R -]
2425 |26 | 27/28| 29|30 | 313233 | 34| 35|36 |37 38 39 | 40| 41[42 43 |44
XIX|X|X]|- [3]0]0
45(46 |47 48 |49 178|779 |80

When all subroutines are debugged, they are stacked together
and assembled as a package, and then stored in object form
on the Monitor disk using the DIM entry number specified

by the "SUBROUTINE' control card. During the final assembly
of the subroutine package, it is best to obtain a listing

of the package. This is necessary to ascertain the addresses
of the entry points which are required for execution of the
library. In the execution of the program that actually
makes the conversion of format, there is only one type of
control card necessary, and then only if subroutines are
used, This is the "SUBROUTINE 'ENIRY POINT" card. There is
one of these cards for every individual subroutine in the
package. There are two fields on this card, the entry

point number, which are sequential beginning with one, and
the address of the first executable instruction of the
subroutine, which is determined from the program listing.

Conclusion

This system has been used by the U.S. Public Health Service,
Division of Radiological Health, for only a short period of
time. However, it has proven itself to be a versatile and
useful tool in cutting programming resource requirements
necessary for incorporating external data into existing
programming systems. The flaw uncovered so far is that

the fields used to define the family identification and
card identification must.be uniform in all cards. But if
these fields are not in a consistant location in all cards,
then each card type has to be converted separately if
possible. This is not a major problem.

171

A person with a fair knowledge of the system can usually
code and debug an average conversion library in three to
six hours, depending upon the number of transformations
and the proficiency of the person doing the coding.
Compared to writing and debugging each conversion program
separately, this system saves both time and programming

~costs.

Appendix 1

GFC Control Card Coding Instructions

172

s m ~N

173

Family Identification Card

If there is a family identification which has only one
field, code A below, if two fields code A and B below,
if three fields code A, B, and C below. In any event,
code 100 in cc 78-80.

a. lFlaimlzlu]y] [1io[,|Flr|n]1]| |c|u|alr]s]|-

J1/2|3,4/56|78|9|10/11]12|13{14|15/16/17|1819]{20|21

-lclc| - -
222312425126 27 |28/29 |30

Code the number of characters in the first family
identification field in cc 22-23. Code the card

column of the units position of the first family

identification field in cc 28-29.

,|F|L|D|2 C{HIAIR|S]|-~- -|C|C|~- -
31/3233 /34135 136 |37 |38 |39|40|41 |42 |43 | 44| 45| 46| 47|48 49 | 50|51

B.

Code the number of characters in the second family
identification field in cc 43-44. Code the card
columns of the units position of the second family
identification field in cc 49-50.

c. »/F|LID|3 C|/|H|/A[R|S]| - -lclc|- -1 -]
52(53(54 (5556 | 5758 59| 60| 61| 62|63 | 64, 65| 66/ 67|68 69|70 71/72|73

1,00

7475|7677/ 78] 79

8

Code the number of characters in the third family
identification field in cc 64-65. Code the card column
of the units position of the third family identification
field in cc 70-71.

Card Identification Card

If the cards within a family carry an identification,
then this card should be coded. Only one field is
allowed for card identification and it may not be more
than 5 characters in length. If this card is coded,
then code cards must also be included (see code card).
The number of codes may not exceed 25. Format:

ClAIRI|D I|D|,|C|HIA|R|S] - -]1C|C)| -

|22

1]2(3[4(5]6]7,8)9[10[1112|13/14]15/16[17[18]19]20] 21

NU|M|B|E|R| |[O|F| |P |
23(24|25 |26 | 27/28 2930 |31 |32 33|34 35|36 |37 |38 39 | 40|41

o
wn
n
=
-]
=
=1

clolp|E|s |- - - 210

4243 |44) 45|46 |47 |48 |49 | 50| 51 78|79

80

Code the number of characters in the card identification
(a number from 1 to 5) in cc 15. Code the card column
of the units position of the card identification in

cc 20-21, Code the number of possible codes for the
card identification in cc 48-49. Code 200 in cc 78-80.

17h

Code Card

1f there is a card identification card, then there must
be code cards equal in number to the number coded in
cc 48-49 of the card identification card. Format:

clo|ple]- l -
1/12(3|4(5(6|7:8[910(N

M/t N 1|MulM |NjUu/M|B|E[R| |R|E|Q|U|I|R|E|D
12 (13014 [15]16[17 [18[19]20] 21|22 {23 | 24| 25|26 | 2728 29[30| 31] 32|33 34
P Ju[alx[z[u[u[u] [N]|u[u[B|E[R]|]
T35|36]37(38 (39 [40] 41| 42(43| 44| 45]| 46|47 |48 49 | 50| 51| 52|53
alu]i]olw|E|D]- -‘%-l 2
54| 55/56|57]58 |59 60| 61| 62/ 63 | 64 65] 7879 |80

Code the card type in cc 6-10, right justified. Code the
minimum number of cards required of this card type for
each family in cc 36-37. Code the maximum number of cards
of this type allowed for each family in cc 62-63. Code a

sequence number in cc 79 and 80, beginning with 01 for
the first card type code.

176

Subroutine Card

If subroutines are to be used in the conversion process,
they should all be written as one program; stored on the
disk under some dim entry number. The subroutines card
should be used only if there are subroutines. There will
be a number of entry points into the subroutine set.

The actual entry point address will be given when the
conversion library is effected (P17.03). Format:

I|N|E E|N|T|R|Y P OJI/N|T|S
8 9(10|11(12|13{14|15|16|17 |18 }9 2012122 |23

1
|

1S{U|B|R{O|U|T
1/12(3|4/5 6|7

- -|D|I|M| |E|N|T|R|Y| |N|U/M/B|E|R|-
124/25|26 | 2728 | 29|30 | 31| 32|33 |34 35|36 37|38 |39 |40 41| 42|43 44
B] [3.00
45(46(47 48 |49 |78,79 80

Code the number of entry points in cc 25-26. Code the
dim entry number of the subroutine set in cc 45-48.

&

Padding Character Card

When blank fields in the input cards are detected and
in some cases when cards are missing, the field in the
If this card is not included,

the padding character is assumed to be a blank.

output will be printed.

However, by including this card any legitimate

character may be used as a padding character. Format:

P A! D|D NG HIA/R|A|C|T|E|R |~ - -

11234 67 10/11]12 | 13[14|15/16{17{18{19 (20| 21
41010
78:79 80

Code the padding character to be used in cc 19.

177

Conversion Descriptions

178

Field to Field Conversion Card

This card is used when a field somewhere in the input
is to be transferred directly without change to some
location in the output card. Format:

C OIN|V|E|RIS|T{O|N| - 1| -|C/HIAIR|S

112(314/5(67,8/9/10/11]12]/13/14/15/16)17/18/19/20]|21

22

"FiR|O|M C/A/R|D T Y PIE

24125126 127(28|29(30 |3132|33|3435{36|37/38/39|40/41(42 43 |44

cic| - -ltlol lc|c]- -
45|46 474849 | 50|51 52| 53|54 |55(56 | 575859

Code a 2, 4, 6, or 8 in cc 12 according to the rules
described in the abstract. Code the number of characters
in the input field in cc 21-22, Code the card type
containing the input field, if applicable, in cc 39-43,
right justified., Code the card column of the units
position of the input field in cc 48-49. Code the card

column of the units position of the output field in
cc 57-58.

179

Field through Table to Field - FTTTIF

This card is used when a field somewhere in the input
is to be looked up in a table and the corresponding
table entry is to be transferred to some location in
the output. Format:

CiO|N|V|E O|N| - 2|-|C|H|A|R|S |~

10(11(12 13|14 (15{ 1617 |18 [19|20| 21

22

23

S
1/2(3(4|5(6|7
F|IR|{OM ClA

Wl |
.

24 25(26 |27 28| 2930| 31| 32|33 34 35|36/37/3839 40 41 42143 | 44

tC|C |- -|1T|O C|C|~- -
45|46|47 |48 |49 | 50| 51| 52| 53| 54| 55/ 56| 57|58 | 59

~CIHIA|{R|S |- - EIN|T/R|I|E|S]-~- -

4

60| 61| 62/63 164 65| 66|67/68|69\70|71,72/73|74/75|76\77|7879 |80

Code a 2, 4, 6, or 8 in cc 12 according to the rules
described in the abstract. Code the number of characters
in the input field in cc 21-22, Code the card type
containing the input field, if applicable, in cc 39-43,
right justified. Code the card column of the units
position of the input field in cc 48-49. Code the card
column of the units position of the output field in

cc 57-58. Code the number of characters in the output

field in cc 66-67. Code the number of table entries
there are in cc 77-79.

181

Table Entry Cards

If a "Field through table to field" conversion card is
used, it must be followed by table entry cards.

The number of table entry cards that must be coded is
equal to the number coded in cc 77-79 of the FITTF card.
Each table entry card contains the field to be looked

up and the corresponding field to be placed in the output
area.

Code the field being looked up beginning in cc 1.
The length of this field should correspond to the
number coded in cc 21-22 of the FITTIF card.

Code a comma (,) in the card column immediately
following the field being looked up.

Beginning in the card column after the comma, code
the corresponding field to be placed in the output
area. The length of this field should correspond
to the number coded in cc 66-67 of the FITIF card.

Field through Subroutine to Field Card

This card is used when a field somewhere in the input
is to be used by a user written subroutine to determine
a field to be transferred to some location in the

output. Format:

cloln|v!E

SII|O|N| =~ 3|-]C

112/3]4(5]6

7/8/9|10/11|12/13/14|15

16(17 181920 21|22

23|

I

"F|R|/O|M C

AR |D T/ Y P|E| -

24'25J26 27 (282930 |31/32|3334/3536 37|38

39140147 42|43 44

c|iC |- -

T|O C|C|-~- -

4546474849 | 50|51 52| 53|54 |55 56 | 57|58 |59

C HIAIR|[S|-]

-|E|N|T|R P

|- | .-

60| 61| 62| 63|64 65

66|67 68|89 70| 71\72/73| 74

757677/ 78)79'80

Code a 2, 4, 6, or 8 in cc 12 according to the rules

described in the abstract.

in the input field in cc 21-22. Code the
containing the input field, if applicabie, in cc 39-43,

right justified.

Code the card column of

position of the input field in cc 48-49.
column of the units position of the output field in
cc 57-58. Code the number of card columns in the output

Code the number of the subroutine
entry point to be used in entering the subroutine in

field in cc 66-67.

ce 77-78,

Code the number of characters

card type

the units
Code the card

182

183

Immediate Entry to Field

This card is used when a certain constant of information
is to be placed directly into the output card regardless
of the input. Format:

C/IO/NJVIEIR|{S|IT|O|N|-]|0]1|-|C|H|A|R|S |-
1123 [4[5[6(7 ,8|9|10{11{12|13/14|15{16]|17|18]19[20|2]}

-1Ti{0 ciC |- -
22123/24(25 27(28 2930 ;31|32

b
foal

Code the number of characters to be transmitted to the
output in cc 21-22, Code the card column of the units
position in the output area where the characters are

to be transferred in cc 30-31. Beginning in cc 33 code
the characters to be transmitted to the output.

The number of characters should correspond to the
number coded in cc 30-31.

184

Counters to Field Card

This card is used when: 1) the number of cards in the
family, or 2) the number of cards of a particular card
type, or 3) the sequency number of a card within a
particular card type is to be transferred to some
location in the output card. Format:

C|O|NjV|E|R

|
i
f

I/O|N|-]0|2|-|F|R|OM C|AIR|D
8 9110|11{1213{14{15{16{17{18({19/20}21{22 {23

S
1(2(3(4(516(7

T|Y| P E|-~- -{C|O|U|N|T E|R}|-

24125 126 12712812930 | 31/32 /33|34 |35 |36 |37 |38 39|40|41 |42 43|44

i

-{T|O C . C|- -

45|46 /47|48 |49 | 50|51 | 52| 53|54

Code the card type if 2 or 3 is coded in cc 44. Code 1,
2, or 3 in cc 44:

1 means count of cards in family

2 means count of cards of a particular type

3 means sequency within a particular type
Code the card column of the units position of the
counter field in the output in cc 52-53. All counters

are 2 characters in length. Although, the leading
character may be overlaid by another conversion.

Punch the Output Card

This conversion card is used when all fields in an output

card are developed and it is to be punched.

All output
developed by conversion entries from the beginning of the
conversion section or from the previous punch output card

If the development of a particular output card is

identical, except each time the next card in sequence
within each card type is to be used in all conversions
beginning with 6 or 8, then code 1 in cc 22 of this

card.

0 in cc 22.

If the development is not to be repeated, code

If there are no more conversions for this
family, code 1 in cc 35, if not the last code O.

is punched. Format:
CIO|/N|V|E|R|S|I|O|N|=~-|0|3|-|R|E[P|E|A|T|-~- -
112 /3/4(5[6|7 8|9|10{11]12/13{14/15{16{17{18/19)/20(21|2223
LIA|IS|T EINIT|R|Y]| - -

12425126 127/28(29/30 |3132(33|34[35/36

185

186

Subroutine Entry Point d:b

If surboutines are required for any of the conversions
to be performed by this library, Subroutine Entry
Point card(s) must be used. One of these cards must
be completed for each subroutine used. Format:

S|IUIB|R|O|U|T I|N|E E|N|TI|R|Y PlO|I|N|T|-
1/2|3(4(5|61[7:8|9/(10({11(12{13|14{15[16{17|18{19]20(21(2223

-/A|/D|D|R|E|S |S |~ - -

124(25/26|27(28| 29]30| 31| 32(33[34 35|36 37[38 39 |40 41

Description:

In cc 24-25 code the entry point number. ‘These numbers
are to be sequential beginning with 01. The address of
the entry point is coded in cc 35-39. This is the
address of the first executable instruction.

Appendix 2

GFC Codes for Various Conversion Types

187

CONVERSION CODES

Independent | Non-Indexing | Non-Indexing Indexing Indexing
No Padding Padding No Padding | Padding

FIELD TO FIELD 21 41 61 81
FIELD TO TABLE TO

FIELD 22 42 62 82
FIELD TO SUBR TO

FIELD 23 43 63 83
FIELD IMMEDIATE TO 01

FIELD

CARD COUNTER 02

IMMEDIATE TO FIELD

PUNCH OUTPUT CARD 03

88T

SYSTEM DIRZCTOR

Vernon T. Boyer
IBM Corporation
Dept. 237
Bldg. 062

189

190

11-22-66

C

SYSTEM DIRECTOR
The System Director forms the operating center of the TSX system.

It has the responsibility of directing interrupt servicing, loading user core
loads, directing time~sharing, servicing the interval timers and servicing
error conditions. The System Director is core resident and is storage
protected to ensure that it is not accidentally altered. When the computer
is operating under control of the System Director control is passed to it by
TSX calls, interrupts and errors. The System Director is that portion of
TSX (otner than I/0) that must be in core at all times in order to respond
to the real time world. Basically, the System Director is made up of five

+wo
control prograws andydata areas.

Control Programs

-Program Sequence Control (PSC) - controls the sequencing and initiates
the loading and execution of user-specified process core loads.

~-Master Interrupt Control (MIC) - automatically determines the type of
each interrupt as it is recognized and transfers control to the proper
interrupt servicing routine.

-Interval Timer Control (ITC) - provides a programmed real-time
clock, a timer for TSC, nine programmed interval timers, and control

of two machine-interval timers.

-Time-Sharing Control (TSC) - controls the tiine-sharing of variable

core between process and nonprocess core loads.

-Error Alert Control (EAC) - provides the foilowing functions whenever -

all error occurs:

1) optionally saves core for future reference

2) optionally branches to a user's program for further error
analysis

3) prints an error message

4) executes a specified recovery procedure

Core Layout of the System Director is as follows:

C

ICLT Address
Disk Save Area Addresses
Error Work Level

Queue Table

ICLT

Work Areas
MIC

PSC

TSC
ITC

191

192

ICLT Communication Table. The ICLT Communications Table contains

the address of tne ICLT entry for each interrupt level defined in tne
system. Since the MIC program does not reside in a fixed area of
core, these addresses are made available by means of this table to
various routines and subroutines winich are sent to tae user in object

forat.

Save Area Table. The Save Area Table contains the word counts and

sector addresses of the various save areas on disk. It also contains the
disk address of the Error Disk Program (EDP) called by EAC. These
disk addresses are obtained frouw. FLET by tne Skeleton Builder when @

the System Skeleton is built.

EAC Work Area. This work area is used by EAC when processing

errors.
QUEUE TABLE
Sector .Word Sector
Priority | Word Count Addr. Priority Count Addr

193

Queue Table. The Queue Table is a table of 3~word entries, one for
each unique call to the QUEUE subroutine. A unique entry is one in
which the sector address and/or the priority are different from any

other in the queue. Each entry appears as follows:

Word Contents
1 Priority
2 Word count of the core load

3 Disk address of the core load
The size of the Queue Table is defined by the user. Entries are removed

from tne Queue Table by the UNQ and VIAQ subroutines.

Interrupt Core Load Table (ICLT)

IN SKELETON

IN MAINLINE

RECORD

RECORDED
WORD COUNT OR
START ADDR

SECTOR ADDR

Interrupt Core Load Table (ICLT). The interrupt Core Load Table

contains an entry for each interrupt level assigned by the user. The
size of the entry for each level is determined by the user. The format

of an ICLT entry is as follows:

194

« 5
Word Contents

1 In-core-with~Skeleton indicator word. A bitis
set on in this word corrésponding to each PISW
bit which is serviced by an interrupt servicing
routine included in the Skeleton.

2 In-core-with~mainline indicator word. This word
is filled in by the PSC program as each core load
is loaded. Itis obtained from word 2 of the IST
entry for the same interrupt level.

3 Record indicator word. This word is filled in by
the PSC program as each core load is loaded. It @
is obtained from Word 3 of tne IST entry for the
same interrupt level.

4 Recorded indicator word. A bitis set on in this
word by MIC whenever an interrupt is recorded.

The bit set on corresponds to a bit in the Record
indicator word (word 3).

o-6 If the program is not in-core-with Skeleton, these
two words contain the word count and sector address
¢f the program servicing the interrupt associated
with the first PISW bit on this level. I the program

195

Word Contents

is in-core-with Skeleton, word 5 equals the starting
address of the program in cire. Word 6 is unused.
7-8 Same as above for the second PISW bit.

n=-n+1 Same as above for the last PISW bit on this level,

LEVEL WORK AREA

|-4 TO _ 40 l‘ll o7 l68 QQJ
MIC FAC REENTRANT
SUBROUTINE
QZSAV WORK AREA
TVSAV

FORTRAN ERROR

Work Areas. Each interrupt level specified by the user has a work area.

The area is 104 words in length (subject to adjustment by the user).
In addition to the areas for user-assigned interrupt levels, there is
a work area for a process core load. The space in the work area for

MIC is not subject to adjustment. The contents of a work area are as

follows:
Word Contents
=440 Save locations for Accumulator, Extension, index

registers, Status; constants, work area interrupt

processing before entry to MIC.

196

-7
Word Contents
41-57 Save locations for FORTRAN FAC, and error

indicators; save locations used by TVSAV and
QZSAV.
08-99 Available words for use by other reentrant coded

programs and subroutines.

MASTER INTERRUPT CONTROL PROGRAM

The master interrupt control (MIC) program controls the servicing
of interrupts. An interrupt may occur at any time but it will not be recognized
by MIC unless the interrupt is on a level that is not masked. and is of a higher
priority than the present level of mmachine operation. The user-specified
assignment for interrupt levels determines the priority of a particular
interrupt. The user-assigned interrupts can be delayed from belng recognized
by masking the level to which they are assigned. The servicing of process
and programmed subroutines can also be delayed by recording their occurrence.

Basically, there are two types of interrupts: internal and external.
Internal interrupts are those associated with any input/output device, interval
timer, trace, or error condition. Internal interrupts, except trace, are
serviced by IBM=provided subroutines as soon as they are recognized.

Programmed interrupts are treated the same as external interrupts.

197

Interrupt Servicing

In the servicing of interrupts the following applies:

1. Only one ILSW bit is serviced per entry to a level.

2. Programmed interrupts 'a.re serviced whenever a "no bit"
condition occurs in an ILSW or whenever an exit from either
an I/0 servicing routine or a process interrupt servicing routine
occurs.

3. All bits on in a PISW are serviced before exiting from a level and
before servicing of a programmed interrupt.

4, Interrupts on levels that are serviced by out-of-core interrupt
core loads are serviced in the masked mode so that they cannot
be interrupted by another interrupt serviced by an out-oi-core

routine. Only one level of exchange is malntained.

EXTERNAL INTERRUPTS

External interrupts are those associated with the process and programmed
interrupt features. They are serviced or recorded by one of four types
of user-written routines: (1) Skeleton interrupt routine, (2) Mainline

interrupt routine, (3) Interrupt core load, or (4) Mainline core load.

-9 198

The different types of routines are provided to permit flexibility in the @
use of core storage, and in the response time requirements of a specific
interrupt (i. e., the time required to enter an interrupt routine after the

interrupt is recognized).

Interrupt routines are assigned to the skeleton area by control cards
when the system skeleton is initially assembled. They are normally used to
service process interrupts that require immediate response, have high priority,
or that occur frequently.

Skeleton interrupt routines are required only if the user considers it
necessary for the routine to always be in core storage.

External interrupts not serviced by skeleton interrupt routines can be AN
serviced by routines included as part of a malinline core load. The response
time of a mainline interrupt routine approaches that of a skeleton interrupt
routine only if the mainline core load containing the interrupt routine is in
core when the interrupt occurs.

A mainline core load is required for the servicing of each external

interrupt that wmight be recorded and serviced at a later time.

Interrupt core loads are required for those interrupts that meet either

of the following conditions,

o

199
- e

| 1, User specifies the interrupt servicing routine to be out of core.

2. User specifies the interrupt servicing routine to be in core as

part of a mainline core load.

If a time-sharing operation in in progress when an interrupt occurs, the
interrupt (if not recorded) is serviced with the skeleton interrupt routine, if
it exists, or with the interrupt core load. Even if the mainline that called
for time-sharing has an interrupt routine for the interrupt that occurred, the
mberi'upt core load associated with that interrupt is brought in (to core)
for the servicing.

When recognized, external interrupts may either be recorded or serviced,
as specified by the user. If recognition is recorded, it cé,n be serviced later
or cleared.

If not recorded, external process interrupts are serviced as soon as
one of the following conditions becomes true.

1. The servicing routine is located within the system skeleton,

the interrupt level is not masked, and an interrupt of higher
priority is not being serviced.

2. No other external interrupt is being serviced, and the servicing
routine is in core as part of the core load.

3. No other external interrupt 1s being serviced, the servicing

routine is out of core, and no I/O operation is in progress unless

-11-

200

its associated interrupt routine and I/O area are in the skeleton.
This requires an exchange operation (an operation wherein a
specified portion of the variable area of core is saved and the
interrupt core load is read in for execution). Following execution
of the interrupt core load, the original operating program is
restored.
The option of recording or servicing any external interrupt may be different
from one mainline core load to the next. The designation is made by control

cards when tae core load is being formed.

Programmed Interrupt - CALL LEVEL

This statement causes an interrupt (by programming) on any assignable
interrupt level (0-23). The format is:
CALL LEVEL (1)
where
Iis an integer conctant (0-23) that specifies tae interrupt level desired.
This call, which can be used only in process (malnline or interrupt)
programs, causes a2 pseudo ILSW bit to be set on the level specified.
Programmed interrupts are treated the same as process interrupts in

that they can be recorded or serviceq, in-core or out-of-core, etc.

AT
L W%

201

The pro;grammed interrupt servicing routines must follow the rules of process
interrupt servicing routines. There can be only one programmed-interrupt
routine per assignable interrupt level.

The programmed interrupt is recognized immediately when called from
a lower level. When the servicing routine exits to MIC, program operation
at the calling level is resumed with the statement following the CALL LEVEL
statement.

A programmed interrupt called from a higher level is recognized after
the calling program is completed and after any intervening interrupts are
service. If a level is called and any ILSW bit is on when the level is recognized,
the programmed interrupt is recognized after the first ILSW bit that is on

is serviced.

Interrupt Exit-CALL INTEX

All interrupt routines serviced on an interrupt level must return control
to MIC. The CALL INTEX statement, which has no parameters, is normally
used for this purpose. It must be used as the last logical statement in skeleton
interrupt routines, mainline interrupt routines, and it can be used in interrupt

core loads.

| 202
13-
'

RECORDED INTERRUPT SERVICING

External interruptswhose occurrences are recorded are serviced with
mainline core loads. The mainline core load performing the servicing
is the same as any other mainline core load, except it is queued for execution
by a CALL QIFON statement. Since it is a queued core load, it should have a
CALL VIAQ as the last logical statement. (It could, of course, be the first
core load of a special series and, as such, would end with CALL CHAIN to
get the next core load of a sequence, but a CALL VIAQ eventually must be

executed.)

COMEINATION CORE LOAD

¢

In the descriptions given thus far there is only one major difference
between an interrupt core load and a mainline core load used for servicing
recorded interrupts. That difference is in the last logical statement, which
must be CALL INTEX for an interrupt core load and CALL VIAQ for the
mainline core load.

If an external interrupt is serviced immediately some times and recorded
other times, it requires two core loads that might be the same in all respects,
axcept for their last logical statement. To eliminate this situation, a

combination exit statement, CALL DPART, is provided.

o

C

203
wlbe

Departure~ CALL DPART
The CALL DPART statement causes the level of operation to be tested

and
1, If the present level is an interrupt level, a CALL INTEX is
executed.
a. Otherwise, a CALL VIAQ is executed.

Thus, CALL DPART eliminates duplication of core loads. An interrupt
that is sometimes recorded and sometimes serviced, When it occurs, can
be serviced under either condition with the same core load. The core load
operates from an interrupt level when servicing is specified, it is queued
and operates from the mainline level when the interrupt is specified as

recorded.

INTERRUPT ASSIGNMENT RESTRICTIONS

The following interrupt assignment restrictions must be observed for

proper operation of the TSX system.

1, All I/0 device interrupts must be assigned to a higher priority
interrupt level than external interrupts unless the external
interrupt is serviced by a skeleton interrupt routine.

2. If external interrupts and I/0 devices are both assigned to the
same level, the external interrupts must be serviced by skeleton

interrupt routines.

-15- 20k

3. A skeleton interrupt routine cannot use an I/Q device whose
interrupt is assigned to the same or a lower priority level,
except for disk, 1053 printer, and 1443 printer; however,
the 1053 test funétion cannot be used.
4, ILSW bits must be assigned continuously beginning with position O.
o. FORTRAN READ and WRITE statements (except for disk) can

be used only on interrupt levels lower than the 1816,

PISW ASSIGNMENT RESTRICTIONS

PISW (Process Interrupt Status Word) groups can be assigned to interrupt
levels either as a single group per level or in multiple groups per level.
The following rules and restrictions must be observed for proper operation (;

of the TSX system,

One Group Per Level

Normal usage of process interrupts requires that only one group of
process interrupts be assigned to each interrupt level. Process interrupts
assigned in this way can each be serviced with separate interrupt routines.
The servicing routines must reside in the skeleton area only if their
assoclated interrupt level is the same as or higher than any I/0 device

interrupt level,

205

When only one PISW is connected to a level, the correlation of the

interrupt level number to the PISW group nwmnber is as follows.

Interrupt Level PISW_Group
0 1
1 2
2 3
3 4 |
22 23
23 24

The MIC program does the ILSW and PISW sensing and transfers control

to the proper interrupt servicing routine,

Multiple Groups Per Level

In special cases it is desirable to have more than one PISW group assigned
to an interrupt level and tnis is possible with the TSX system; however, the
following restrictions must be observed. The interrupt servicing routine

must:

“]T=-

1, Reside in the skeleton area.

2. Sense all non standard PISWs assigned to the level.

3. Upon completion, exit to MIC via the I/0 exit (BSC I 80).
When assigned in this way tnere is no correlation restriction between

the interrupt level number and PISW group number.

Combination PISW Assignments

It is possible to combine the two assignment methods and have some
interrupt levels with only one PISW each and some levels with more than one
PISW. The same rules and restrictions for each type as outlined above still
apply. For example, to have to groups of four PISWs each assigned to

interrupt levels 4 and 5 one valid combination is:

Interrupt Level PISW _Group
0 1
1 - 2
2 3
3 4
4 one group of four PISWs
5 one group of four PISWs
8 7

7 8

(Continued)

206

B
V%

¢

o

Interrupt Level

-18- 207

PISW Group (Cont'd)

17
18
19

23

18

Not assignable; usage assumed
on levels 4 and 5.

Any combination can be used for the PISW assignments on levels 4 and 5.

The user written routines used to service the interrupts must be coded as

an I/0 RPQ subroutine.

PROGRAM SEQUENCE CONTROL PROGRAM

Program sequence control (PSC) is a control program tnat handles the

flow of control from one mainline core load to the next. PSC functions are

initiated by execution of PSC CALL statements in the user's program. The

specific functions of PSC are:

1. Execute the next sequential mainline core load. The new core

load overlays the one that contained the call.

2. Save the mainline core load in progress (on disk) and load a

special core load for execution,

3. Restore the core load that was saved in item 2 and continues

execution from where it left off (the statement following the

CALL SPECL).

208
~19~

4, Queue mainline/core loads associated with interrupts whose

occurrence has been recorded.

2 Execute the highest priority mainline core load listed in the

core load queue.

0. Insert mainline core load entries into or delete them from the

core load queue.

For PSC to perform the above functions, a CALL statement must be
executed for each one. The specific CALL statements and their parameters
are described below.

Functionally, the CALL statements are divided into two groups: those

for direct sequence, in which cne mainline core load calls another, and

those for queuing, in which eitaner the highest priority malnline core load
named in the queue is called or the core load queue is modified by inserting
or deleting an entry.
The CALL statements from both groups provide the user with the flexibility

or implementing his unique scheduling requirements. Unless otherwise

stated, the results are unpredictable if these CALL statements areused

in a nonprocess program or if they are used incorrectly in process core loads.

O

209

DIRECT SEQUENCE STATEMENTS

The direct sequence statements are used to

-CALL the next mainline core load to be executed.

-Save the present mainline core load (on disk) and CALL a special
malinline core load for execution.

-Restore and continue execution of the saved mainline core load.

Normal Call - CALL CHAIN (NAME)

This call terminates execution of the mainline core load and transfers
control to PSC, which loads the named mainline core load into core storage
for operation. This is the last logical statement in a mainline core load;
it calls the next mainline core load into operation.

NAME is the name of the mainline core load being called.

Special Call - CALL SPECL (NAME)

This call suspends execution of the current mainline core load and transfers
control to PSC, which
1. Saves the return address (i. e., the address of the instruction
following the CALL SPECL statement).
2. Stores the current mainline core load on disk.

3. Loads and transfers control to the new (special) mainline core load.

-21- 210

NOTE: Only one mainline core load can be saved, Thus, if CALL SPECL
is used in a core load that was called by a CALL SPECL, the mainline core
load saved originally is lost,

Return Saved Mainline -~ CALL BACK

This statement is normally used as the last logical statement in a special
mainline core load. When executed, it terminates the core load and transfers
control to PSC which restores the last previously saved core load. Execution
of the saved core load commences with the statement that follows the CALL
SPECL statement,

QUEUING STATEMENTS
The queuing statements are used to

~Insert entries into or delete entries from the core load queue table.
«Execute the highest priority mainline core load specified in the queue.
These functions are performed by subroutines, which can be located

with either the calling program or the system skeleton.

Insert Into Queue - CALL QUEUE

This statement is used to place a mainline core load name and priority
in the queue. If the same name and priority are already queued, they will
not be placed in the queue a second time; however, the same name with a

different priority can be inserted into the queue. The format of the statement is:

-2%- 211

CALL QUEUE (NAME, P, E)
where
NAME is the name of a mainline core load that is to be entered into the queue.
P is the integer expression that specifies the execution priority for the core
load. Ome (1) is the highest priority number. The allowable range of
P is from 1 to 32761.
E is an error parameter used to specify the action to be taken when the
queue is full.
E = 0. Ignore call after printing an error message.
E = 1 through 32766, Replace the lowest priority entry in ;.he queue with
the name and priority in this call, if the priority of the queue entry is
loser (numerically larger) than E. If there is no queue entry with a
lower priority, the restart core load specified for this core load is
executed.
E = 32767. Execute restart core load.
Different core loads can be assigned the same priority number, ;if
desired. When two or more queue entries have been assigned the same priority,

these entries have a priority among themselves on a first-in-first-out basis.

212

Delete From the Queue ~ CALL UNQ (NAME, P)

This statement is used to delete a mainline core load entry from the
queue. If the name and priority parameters do not match a queue entry,
the statment has no effect. The CALL UNQ statement® can be used in any

program.

Execute Highest Priority Core ILoad - CALL VIAQ@

This statement is used as the last logical statement in a mainline core
load. It terminates the present core load and causes execution of the highest
priority core load named in the queue.

When the CALL VIAQ statement is executed and there are entries in
the queue, the highest priority entry is removed, and used to call the core
load it references.

If there are no entries in the queue, the process is considered to be in
an idle condition (i. e., the process does not require any actlon at this time).
Since variable core is not being utilized by process core loads, control is
transferred to time~-sharing control (TSC) for execution of nonprocess core
loads. The time-sharing operation will continue for the period of time
specified at assembly time or until terminated by an interrupt (see CALL ENDTS

statement in the Time-Sharing Control Program section). A CALL VIAQ

operation is automatically performed when the time-sharing time is terminated.

213

Therefore, if an interrupt program has placed a name in the queue, the
named core load will then be automatically éxecuted. (This is not true if
time-sharing was initiated by a CALL SHARE statement.)

The CALL VIAQ statement can be used only in mainline core loads.

Queue Core Load If Indicator is ON - CALL QIFON

This statement is used to place a mainline core load name and priority
in the queue table if its associated recorded interrupt indicator is on.
Recorded interrupts are those that do not require service when they occur
and can be recorded for servicing at a later time,

When an interrupt that is to be recorded is recognized by MIC, the interrupt
is reset and a programmed indicator is set. It is the programmed ‘indicators
(set by MIC) that the QIFON subroutine interrogates. The QIFON subroutine
than automatically clears the interrogated indicator. The statement format is:

CALL QIFON (NAME, P, L,, I, E)
where
NAME is the name of a mainline core load.

P is the execution priority to be assigned to the mainline core load named.

L is the interrupt priority level or indicatr (see L and I Combinations).

I is the PISW bit position indicator or CALL COUNT indicators (see L and I

Combinations).

21k
* 3D

E is an error parameter used to specify the action to be taken when the queue
is full.
E = 0. Ignore call after printing an error message.
E = 1 through 32766, Replace the lowest priority entry in the queue
with this call if the priority of the queue entry is lower than E.
Restart if there is no entry lower than E.
E = 32767. Execute restart core load.

L and I Combinations. The combination of L and I are

L I Reference
0-23 0-15 Process interrupts
0-23 =-n Programmed interrupts {(see CALL LEVEL) o

-n 0-31 Subprogram nuraber of CALL COUNT statement (see

Programmed Timers).

(=n means any minus number)

The CALL QIFON statement can be used in any process program.

Clear Recorded Interrupts - CALL CLEAR

The CALL CLEAR statement is used to clear the recorded interrupt
indicators. In thisway, specific interrupts or all external interrupts can
be removed from their recorded status. The format of the statement is

CALL CLEAR (M, L,I,L,L...)

where

M is an integer constant that specifies the number of parameters to follow.
If M equals 0, all indicators specifying recorded status are.
cleared.

L and I are the same as for the Call QIFON statement.

215

~47- 216

TIME~-SHARING CONTROL PROGRAM
The time-sharing control (TSC) program controls the amount of time

allowed for nonprocess program operations.
Time~sharing can be initiated in two ways:

1, Executionof a CALL SHARE statement in a process mainline

program.
2. Execution of a CALL VIAQ statement when the core load queue

table is empty. This causes the VIAQ subroutine to execute'
a CALL SHARE statement.

The first method can be utilized when time~-sharing 1s desired at specific
times and for different durations. When time~-sharing is initiated in this way,
the process core load is saved and the non-process monitor (or an unfinished
program is read into core and executed. When the speciﬂed amount of time
has elapsed, the nonprocess program is saved (if not completed) and the
process core load is restored. The maximum time for a time-sharing
operation initiated in this manner is set by each CALL SHARE statement.
Operation of the process core load is resumed with the statement following
CALL SHARE. |

The second method permits time=-sharing when the computer is not being
utilized for the process. The maximum time for a time-sharing operation

initiated in this manner is specified in a control card by the user when the

@

217
-28-

system is loaded, and remains constant. At the completioh of the specified
time, another CALL VIAG is automatically executed by the system. If, in
the interim 2 core load has been queued, it is then executed; however,
another time-sharing operation will be initiated if nothing has been entered
into the queue.

Normally the CALL VIAQ method is used, but.in special cases, the
CALL SHARE method is also desirable.

All interrupts that occur during the time-sharing operatidn are handled
by MIC the same as if a process mainline program were in operation. After
the interrupt is serviced (or recorded) control is returned to the nonprocess
program unless a CALL ENDTS sfatéme»n@ is exécﬁtéd in the interrupt routine.

If the nonprocess program is nét completed befoi'e time runs out, it
is saved and continued when the next time-sharing operaﬁon is executed.

The following statement is used to initiate ti‘mev- sharing bpei'ations
for a specified time interval. | |

CALL SHARE (D
where
I is an integer expreséiori_ ‘t}h‘at specﬁieé thé number of time intervals allowed

for nonproc':evs:s} pi‘ogra.ni c.)peralti’on‘.” - R

CALIL ENDTS

218
-29~- '

This call can be used only in ah_interrupt routine, and it sets the tiine-
sharing clock to indicate zero time. The first timerv C mterrubt that occurs
that checks the programmed timers after control is returned to the nonprocess
program causes the time-sharing operation to be terminated and control is
then returhed to the process mainline program.

If time-sharing is not in effect, the CALL ENDTS statement has
no effect. | | |

Two additional functions performed by TSX are CALL LINK and CALL

EXIT when called from nonprocess programs.

INTERVAL TIMER CONTROL PROGRAM

The interval timer coatrol (ITC) program provides for FORTRAN

language control of four types of timers:

1. Two machine interval timers (A and B).

2. Nine programmed interval timers.
3. A programmed real-tiine clock.
4, A timer for time-sharing control.

The ITC also performs three additional functions.

1. Resets the operation monitor during time-sharing.
2. Tésts for no response from 1053 printers.

3. Performs end of ime-sharing. | |

=)

O

30 219

The third machine interval timer (C) is used foritems 2,3, and 4.

Machine Interval Timers

The two machine interval timers should be used to measure relatively short
time intervals. They are controlled by the following statement.

CALL TIMER (NAME, I, INT)
where
NAME is the name of the user's subprogram to be executed when the specified

time elapses (NAME must also appear in an EXTERNAL statement;
Iis an integer expression, whose value must be:

1-for machine interval timer A. (word 4)

2-for machine interval timer B. (word 5)

INT is a positive integer expression that specifies the number of intervals
counted before tie user's subprogram is executed.

The subprogram specified in a CALL TIMER statement must be in core
storage when the interrupt generated by the timer is recognized. The
interrupt occurs when the time specified has elapsed, but is is recognized
only when the level of operation is lower than the timer interrupt level and
the timer level is unnmiasked. The timers are stopped and reset to zero
when the specified time has elapsed and the interrupt is recognized {(zero

is a not-busy condition).

~31e 220

It i{s the user's reSp;)nsibﬂity to ensure that the su’bprograim NAME is
in core when the timer interrupt is recognized. This can be accomplished
in two ways:

1. NAME skeleton subroutine,

2. NAME is a mainline only routine, all interrupt levels with out-of
core interrupts must be masked, and the core load exit is not
allowed while the timer is buay.

The subprogram name is automatically loaded with the calling core load
(unless previously loaded with the system skeleton), Also, the subprogram
must return control to the ITC program (RETURN statement or assembler
language equivalent). The program is executed at the interrupt level to
which the interval timers are assigned and cannot be recorded.

It is not recommended that periodic programs (programs initiated by
internal timers) be executed on the timer level. If this is allowed to happen,
some timer interrupts may be missed during execution of lengthy programs.

The CALL LEVEL statement (see Programmed Interrupt) is designed to

handle this situation, and in this case, should be used to create an interrupt’
“at a lower level of machine operation, The periodic program is then executed

at the programmed interrupt level,

7™
Wy

o

39 221

Example; Assume machine interval timer A is wired for the . 125 ms time
base.

CALL TIMER (SCANL, 1, 35)
When this statement is executed, ITC initializes timer A (sets it to -39)
to count 35 intervals and return control to the statement following the CALL
TIMER statement. When 30 intervals (i.e., 35x.120 ms, or 4.375 ms)
have elapsed, an interrupt occurs and control is transferred to the subprogram

named SCANI1.

Clock and Programmed Timers

The programmed real-time clock and the nine programmed interval
timers are updated by the third interval timer (C).

The time interval used for updating the clock (termed the interrupt time
base) is the product of the wired-in time base interval and a number chosen
by the user at system generation time., For example, assume interval timer
C is wired for an 8-ms time base, and the clock is to be updated every second.
The number necessary to accomplish this is 125 (8 ms x 125 = 1000 ms, or
1 second), and when the ITC program is assembled, the number -125 |
would be specified by the user. The third timer would then cause an interrupt
every second. A minus number musf be specified because the interval timer

is incremented and causes an interrupt when it reaches a zero.

-33« 222

Summary. Interrupt time base = wired~in tiine base x assigned number.
The interrupt time base is used specifically for the programmed real-

time clock and as a primary base for tne programmed timers and time-

éharing clock. It is also used as the’ reset Interval for the operation

monitor during time-sharing operations.

Clock
The programmed real-tiine clock maintained by the interval time
control prograu records time to tie nearest thousandtns of an hours. Clock
accuracy depends on the assigned interrupt time base previously described.
The clock is reset on a 24-hour basis (i. e., it is incremented from 00:000
to 23:999 and then goes to 00:000). o
To set tne clock at a desired time, the following statement is used.
CALL SETCL (D
where
I is an integer expression that specifies the desired time setting. The time
setting must be expressed in hours and thousandths of hours (i.e.,
00000 tnrough 23999).
To read the programmed real-time clock, tne following statement

is used.

CALL CLOCK (D

22
“34- 3

where

I is an integer variable where the time is to be stored.

Programmed Timers

The nine programmed timers should be used to specify long time periods.
In particular, they can be used for periodic program execution or to initiate
execution of a program at some later time.

If the cailed program is in the skeleton when the specified time elapses,
the program is executed. The called program must return control to the
ITC program (RETURN statement or assembler language).

The program is executed on the same level that the interval timers are on.

If the called program is not in the skeleton when the specified time
elapses, it must be in the same form as a mainline core load. Qut-of-core
programs are handled as recorded interrupts, i.e., the program will not
be placed in the queue until requested by a CALL QIFON statement, and will
not be executed until a CALL VIAQ finds that the queued program is the
highest priority in the queue.

To provide the user with large time intervals, a larger time base
can be specified for the programmed timers. The programmed timer base
for the programmed timers is a user-~assigned multiple of the interrupt time

base used for the programmed real-time clock. For example, if the interrupt

e3 5

time base is one second, and the user wants the programmed timeré to 0
operate at 15 second intervals, then 15 is specified when the ITC program
is assembled.
Summary. Programmed timer base=interrupt time base (previously assigned)
X assigned number.
The programmed timer base is used specifically for the programmed
timers and the time-sharing clock. This base is the smallest interval of

time that can be specified for the programmed timers or for nonprocess

. program operation (i.e., time-sharing, see Time-Sharing Control Program).

The programmed interval timers are controlled by the following
statement.
CALL COUNT (IN, I, INB) S
where
IN is an integer constant or integer variable that specifies the number (0
through 31) of the program to be executed or recorded when the
specified time elapses. These numbers are assigned by the user when
the skeleton execullve is prepared. |
Iis an integer expression that specifies the number (1 through 9) of the

programmed interval timer.

-36- 225

INB is an integer expression that specifies the number of intervals to be
counted before the called program can be executed (multiple of programmed
timer base). Program numbers are used in place of names to provide

the recorded interrupt option.

ERROR ALERT CONTROL PROGRAM

When an internal error occurs, or when an I/O subroutine detects an
I/0 error or invalid interrupt ‘condition, or when a system subroutine detects
an invalid call or system failure, the EAC program is called {o process the
error and select a recovery procedurc.
The EAC program is comprised of four logical segments:
-EAC In~-core |
-Error Disk Progra.rh (EDP)
-Error Decision Subroutines
-EAC Exit |
The Error Alert Control (EAC) program receives control from
1. Any input/output subroutine when the subroutine cannot correct
an error or interrupt condition
2. The queue subroutine when the core load queue table would over-

flow

-37-

3. The master interrupt con*rol program when an 'mtefnal machine
error occurs (i. e., invalid operation code, parity, or storage
protect violation)

4, Other control programs

Upon entry (EAC is entered at word 120), EAC receives the error

identification and other pertinent data. From this information, the core and
disk portions of EAC will perform the following operations:

1. Optionally, dump core storage to disk (not performed for internal
machine errors).

2. a. If in a nonprocess program terminate the program if the

error cannot be operator corrected.

b. If in a process program branch to the user-written error
subroutine tnat is with the core load (this step is bypassed
for internal machine errors or if an error sﬁbroutine is
not included). |

3. Update error counters maintained on disk.

4, Execute a subroutine (IBM written) for the device or error
condition, print an error message on taec EAC printers, and
set up possible recovery action,

a. If in a nonprocess program returns control to the monitor

supervisor programwm if recovery is not possible.

226

g :

227
-38-

b. If in an interrupt routine terminate the program, service any
other interrupts, and perform the action specified by the user
or the device error subroutine.

c. If in a mainline core load perform the action specified by the
user or the device error subroutine.

When the EAC program is initially assembled, the option of the core
dump in item 1 can be selected.

Also, when assembling the skeleton programs, a back-up unit of the
same type can be specified for 1053, 1816, and 1443 printers. Backup
for the EAC printer is achieved by defining multiple EAC printers at TASK
assembly time (if the EAC printer is defined as a 10563). When an output
error occurs, or if the unit is not ready (interrupt response not received),
EAC will logically disconnect the unit in error and substitute the back-up
unit. When backup is initiated because of a hardware malfunction, the message
in progress on the failing unit is not continued on the backup device. When
the error condition is corrected, the unit can be restored to its original

status by using the C. E. interrupt routine.

Error Subroutine

A user-written error subroutine can be optionally included with each
process core load. The purpose of this subroutine is to allow the user to

have control before EAC overlays the variable area with the disk portion of EAC.

-39- 228

For example, there may be special data or othér information that the user
wants to save. Output, such as special core dumps, messages, or contact
operate functions, can also be executed. The error subroutine cannot be

written in FORTRAN language.

SYSTEM DIRECTOR ERROR ALERT CONTROL

The Error Alert Control (EAC) section is entered when an error occurs

or when a condition arises that requires an operator's intervention. A message

is printed on the EAC printer and EAC then takes one of four exits. Each
error is analyzed in order to decide which exits may be taken for that error.
Where more than one exit exists for a given error, the user can specify

the desired exit in the user's error subroutine.

Error Exits
1. Continue at the point of interrupt - When an I/O device finishes
its operation an interrupt is generated. This interrupt causes
control to be transferred to the I/0 interrupt rsuﬁne when
then determines the error condition and branches to EAC.
This exit option then returns control to the point in the program
at which the interrupt occurred (1. e., EAC does not return to

the I/0 interrupt routine).

w

229
-40-

2. Return to the routine which detected the error.

3. Restart - EAC or the user's error subroutine has decided that
the present core load cannot be continued. The core load specified
as the restart core load when the present core load was loaded
to disk is glven control when the mainline level is reached.

4, Reload - When an error occurs which indicates that a part of the
skeleton may have been destroyed. EAC reloads the skeleton
into core and transfers control to the core load specified on
the cold startcard.

o, Cold start. User must reload the skeleton using cold start cards.

Not - Ready

A not-ready condition is processed by EAC in one of three w=ys. The

method is dependent upon the type of device.

The first method Qf processing the not-ready consists of printing the

message and returning to the I/O routine which again senses the device.
If the device is still not-ready, another entry to EAC is made to print the
message and return, EAC keeps count of the consecutive not-ready for a
device and, on the fourth attempt, terminates the core load by causing a
restart.

230

The second method concerns the 1053 and 1443 printers. When the . 0
fourth not-ready check has been made, EAC attempts to logically replace
the not-ready unit with its backup unit and return to the I/0 roufine. Ir
there is no backup unit specified, an indicator is set so that all future calls
to that printer will be ignored. If the printer is a 1443, EAC exits through
restart (return to the I/0 routine user exit option).
The third method concerns the card read punch unit. After the message
is printed and control is returned to the I/O routine, the I/O routine waits
in an unmasked mode until the unit is made ready.
SYSTEM DIRECTOR ASSEMBLY REQUIREMENTS -
The System Director must be assembled and stored before the TSX system
skeleton can be built, The user must fill out the supplied EQU cards for ;’I ‘

‘-q
system director in order for it to be tailored to his specifications.

System Director EQUATE Cards
NilOQ to Nil23
Meaning
Labels NILOO thru NIL23 define PISW 1 thru 24, respectively. XX equals
1 plus the highest numbered PISW bit assigned to a process interru;gt. XX

equals O if no process interrupts are assigned to a level.

-42- 231

For example, level 02 has process interrupts wired so that when sensed,

using IOCC for PISWs, the following bit configuration would appear in tae

A-register if all bits were on.
01234567 891011 12 13 14 15
00001110000 0 0 0 0 O

In this example NILO2 would be equated to 7 (rightinost but assigned plus

one). Note that although pfocess interrupts are assigned in groups of 4, the

highest bit position actually used (+1) determines XX,

Use00 to Use23

Labels USEQO tirough USE23 define the level work areas. If a label is equated
to zero, no work area is included for that level. If it is equated to one, a
work area is included on that level. For example, if NULEV is equate'd to
five, USEQ0, USEO1, USEOZ, USEO3, and USEO4 must be equated to one and
USEOb through USE23 are equated to zero.

Use 014 is used to org out the XIO's for level 14-23 if it is set to zero.

NBOO to NB23
Labels NBOO through NB23 are equated to the rightmost bit _pli;s one that is
assigned to an ILSW for a level. For example, if level 02 has a process interrupt

group 1 and two input/output devices assigned the following bits would appear

in the A-register if all bits were on (when sensed by the IOCC for ILSW).

43

232

0123456789101112131415

11100000000 0O 0 0 0 0

In this example, NBO2 would be equated to 3 If there are no bltS ona level

the label must be equated to zero.

NULEV

NUQUE

NITP1
NITP2

NLWS1

NLWS2

VCORE

CBASE

EQU

EQU

EQU
EQU

EQU

EQU
EQU

EQU

1 through 24

1to 18
1to 16

lto 14

1to 10

Number of interrupt levels to be compiled
in the system director. This value is

1+ the highest numbered interrupt level
used. If levels 0-9 are used the NULEV

. is equated to 10.

“This label deﬁnes the number of entries

to be allowed in the QUEUE table. This
number should be large enouga so that
the QUEUE table will not overflow under
normal conditions. Three words are
required for each entry point.

Number of CALL COUNT subroutines 0-15.

Number of CALL COUNT subroutines 16~31.

Number of levels for the programmed
interrupts 0-13.

Number of levels for the programmed
interrupts 14-23. '

The starting address of variable core: |
This address must be even., o

The number of times the time clock is
updated before the progra.mmed timers -
are updated. .

il

TBASE

OPMO1

TIMES

TIME1

ITCUS

EQU -XXXXX

EQU Oor1l
EQU Oor1l
EQU /XXX
EQU /XXXX
EQU Qorl
EQU XXXXX

233
wdd- ,

The negative number put in timer C (word
8) to be counted down for the time clock
base. For example, if the clock is to be
updated each second when the hardware
pase is 8 milliseconds, TBASE would

be equated to ~125.

This label is equated to zero if the user
is to reset the operations monitor, or
equated to one if the operations monitor
{s to be reset by ITC when time-sharing
is in progress.

This label is equated to zero if time-
sharing is not to be used or to one if it
is to be used.

Labels TIMEL and TIMEZ2 are a hexadecimal
equivalent of a double precision number
which specifies the ime in milliseconds
that is calculated by the equation TBASE
*HARDWARE BASE for timer C.

TIMEL is /0000 except when the calculated
time exceeds 65, 535 milliseconds, in which
case two words are required.

For example, if TBASE is -125 and the
hardware base is 8 milliseconds, label
TIME1 would be equated to /0000 and
TIME2 would be equated to /03ES.

If this label is equated to zero, the ITC
program will not be included in the system
director. If it is equated to one, the

ITC program will be included in the
system director.

This label is equated to the number of
times the programmed clock is to be
updated before time~sharing is terminated.

DUMP1

ICLL1

ICLL2

23k
~45~

EQU Qorl If a zero is specified, the routine which
dumps core to disk will not be included.
If a one is specified, the routine will
be included.

EQU /XXXX These labels are used to define out of
core interrupt levels. For example,
- if the number of levels is 12, and the
user has out of core interrupts on levels
9,10, and 11, then ICLLL is equated to
EQU /XXXX /00FF and ICLLZ is equated to /FFFF.

Core size of the System Director

The core size of the system director may be computed using the

following formula:

System director = 1116 for MIC, PSC, EAC constants,

and work areas

+ 276 (ITC is included)

+ 95 (EAC dump is required)

+ 111 X number of interrupt

+ 3X number of queue entries

+ 2X numbei of process interrupts ‘(NILOO through NIL23)

+ 2X number of program interrupts on levels O through 13
(NLWS1) |

+ 2X number of program interrupts oﬂ 1évels 14-23 (NLWS2)

~46- 235

+ 2X number of 'courii routines 0-15 (NIPT1)

+ 9X number of count routines 16-31 (NIPT2)

+ 271 (TSC is included)

+ 64 (if more than 14 levels are used)

+ 7 (if more than 14 levels are used and ITC is included)

+ 6 (if more than 14 levels are used and TSC is included)
Users Responsibilities

The user is responsible for defining his configuration correctly via the

EQU cards supplied and using his tailored system to do the particular job

required by him.

236

1800 PAPERS

Hybrid Computer Simulates Steel Processes

by
E. L. Keener

Applied Research Laboratory
United States Steel Corporation

W
Address

Applied Research Laboratory MS44
United States Steel Corporation

Monroeville, Pennsylvania

Phone: 372-1212
Tuesday 8:30 - 10:00am
Session T-1.3

Text Pages 6

Graphics Pages 10

237
Hybrid Computer Simulates Steel Processes

by
E. L. Keener
Applied Research Laboratory
United States Steel Corporation
Abstract
The Applied Research Laboratory of the U. S. Steel Corporation

has used a hybrid computer to simulate and to model Qarious processes
involved in iron- and steelmaking. The hybrid computer can be an
important tool for engineers, operators, and mathematicians to examine
ways to improve production and redute operating costs of existing
industrial processes, and to evaluate new processes. This paper demon-
strates and illustrates sevéral hybrid computer simulations of steel

processes.

Introduction

What is a hybrid computer and how can it be used? These
two questions have been asked many times. A hybrid computer can be
considered as a universal pilot plant or as a tool to solve problems.

A hybrid computer conéists of a general-purpose analog
computer linked to a general-purpose digital computer. Figure 1 is a
line drawing of the hybrid computer system used by U. S. Steel.

Component Operation

Without a detailed discussion of either the digital or
the analog computer, it will suffice to say that the forte of the
digital computer is the solution of algebraic equations and the forte
of the analog computer is the solution of differential equation.

With the hybrid computer, it is possible to partition the problem

238

and fit parts onto either the analog or the digital computer. Thus the best features
of each machine may be used.

The complement of computer equipment is listed in Figure 2. The analog-to-
digital converter (ADC) may read and convert up to ten analog voltages into four
digital decimal numbers. The ADC is a 10-volt solid-state converter capable of 6000
conversions per second. A solid state multiplexer selects the desired analog voltage
channel. Upon command all ten channels are read sequentially in less than 500 micro-
seconds. It was felt that time skew in the 500 microseconds could be neglected for
the‘first problems, and therefore track and store amplifiers were not provided in
the interface equipment. Hoﬁever, this time skew can be a source of error in hybrid
computing, and therefore considerable care must be exercised in programming hybrid
problems. Because the converted number is normalized and has a maximum value of
0.9999, normalized scaling should be used on the analog computer. The normalized
scaling makes it easier to scale between computers and eliminates a source of confusion
when transferring data back and forth.

The digita;-to-analog converter (DAC) converts and transfers digital data
from the digital computér back to the analog computer. The DAC selects the proper
connection on a voltage divider to give the desired transformation ratio across the
divider. The DAC is a potentiometer and correction for the potentiometer loading
is made in the digital program. The value is corrected for a 1l megohm load on the
potentiometer. This restriction has not caused any problems to date. The execution
of a DAC operation, including the loading calculation correction, requires 30 milli-
seconds. This link places some restrictions on operating speed and for some problems
it is necessary to slow the analog computer.

The contact sense (CS) gives the digital computer the ability to determine
the status of on/off conditions of as many as 25 switches. A CS provides a means of
changing the digital computer program when an outside event occurs to change the
on/off condition of one of its 25 switches.

-2

239

The contact operate (ILCO) enables the digital computer to control on/off
‘conditions in the analog computer. The computer opens and closes the switches on
cqummnd. Currently ICO O, 1, 2, and 3 are used for mode control of the analog
§dqputen. This provides digital operation of the four mode-control buttons on the
 gha1ogvccmputer so that the analog mode control is automated by the digital computer.
The CS and LCO provide logic elements for use in simulation studies.

The ihterrupt-process branch indicators (PBI) are for program interrogation
of conditions in the analog computer or process area if the computer is connected
to a process. Each process branch indicator reflects the on/off condition of a
contact in the process area——if the contacf is closed, its associated indicator is
on; when the contact opens, the indicator is turned off. Thus as the contacts -in
the analog computer or process open and close, their respective indicators in core
storage are turned off and on.

Process branch indicators can be assigned to signals in the proucess ‘thdat
are not as critical as those requiring the interrupt feature but which must be
frequently interrogated by the computer program. These indicators can be indivi-
dually scheduled for interrogation by the program at timed intervals.

The interrupt (INT) is a hardware interrupt (in contrast to a PBI, which
is a program or software interrupt) that is immediately recognized and serviced by
the computer when the associated contact closes. The clock (RTC) is also a hardware
interrupt with minimum interrupt time of 0.00L hour. The PBI and INT are usable for
alarms and program jumps, and the clock interrupt is useful for timing so that logging
may be done at regular intervals. The INT has the highest priority of the interrupts.

The main hybrid subroutines and their execution times are listed in

Figure 3.

2ko

Simulations

Ammonia Reactor

Figure 4 lists some typical hybrid computer problems that U. S. Steel has
considered. The example of an N-Stage ammonia reactor, referred to earlier, is an
excellent problem of'a general type that may be time-divided between analog compute,
transfer data, digital compute,’transfer data, and return to analog compute. See
Figure 5.

Figure 6 shows the general layout and flow sheet for an N-stage ammonia
reacﬁbr. Reaction rate equations may be written for each reactor. The rate of

reaction is a function of bed temperature, gas flow, ammonia concentration, and

catalyst condition. This nonlinear differential equation is programmed on the analog -

computer. The mixing of the gas between each reacﬁor bed is defined by linear alge-
braic equations. These equations are programmed for the digital computer. Division
of the problem between computers is clear cut.

By using time sharing, only one reactor bed needs to be programmed on the
analog computer. The initial conditions and paraemeters of the model are changed for
each bed.

The digital computer in effect "leap frogs" the analog program from reactor
to reactor. Upon starting, the digital computer sets the DAC corresponding to Tl’

Qi, Z and L for bed one. This operation initiates the analog circuit to simulate

‘the first reactor bed. The digital computer then puts the analog computer into the

IC mode, delays 1.5 seconds, and then puts the analog computer into the operate mode.

The analog comphter monitors time, which is equivalent to distance along the reactor,

and when the given particle reaches the end of the bed, the analog is switched into
the hold mode. At this time the digital computer reads and stores the analog volt-
ages. The digital takes the output gas conditions from bed one and mixes them with
the by-pass gas to get inlet conditions for bed two: The analog computer is re-

initiated corresponding to these inlet conditions at bed two or, is prepared to solve

e

2k1

for bed two. The above cycle is repeated for each bed. Final conversion vélues'
are stored and compared with previous runs. Parameters are varied and the cycle

repeated. Best operating may be determined froﬁ all the runs. However, with opti-

mizing techniques, such as steepest descend or dynamic programming, the best operating

conditions may be found directly.

Fluidized Bed Reactor

A 2-stage reactor is used to reduce finely divided iron ore. The ore is
partially reduced with a hydrogen-rich fluidizing gas. Residence time and tempera-
ture are controlling factors in the operation and must be maintained within close
limits. Both the incoming ore and the reducing gas are preheated to a temperature
in excess of bed operating temperature. The sensible heat of the solid and gas
streams supplies the endothermic heat required for reduction in each stage of the
fluid-bed and the radiation losses from the reactor.

The mathematical model of the fluid-bed reducer is characterized by a set
of simultaneous algebraic and differential equations. These equations are based on
analysis of heat transfer, maess transfer, end kinetic relationships. In deriving
these equations, special effort is directed toward the utilization of physical
parameters that are readily measured and controlled. The simulation is accomplished
by programming the equations on the hybrid computer.

Evaluation of the mathematical model, condueted by c§mparing computer simu-
lation data with experiméntal pilot-plant data, was based on available #teady-state
information; the simulation results provide good correlation with the pilot-plant
data. Ultimately the modei will be used to predict the dynamic and steady-state
response characteristics of a commercial, fluidized bed reasctor. It is anticipated
that it will provide a means for specifying process parameters, hafduare-design
parameters, operating guide lines, and instrumentation requirements for future

commercial fluidized bed facilities.

2k2

Rolling Model) ;
A mathematical model of the cold-rolling process was developed and programmed ‘:E
for the analog computer. See Figure 7. Later, when the elastic entry and elastic
exit zones were added to:the model, the up-dated model was reprogfammed for the hybrid
computer. With the rolling model, studies of prdblems éssociated withvthe cold-reducpion
of steel strip can be conducted using the hybrid computer. |
The rolling pfocess is defined by nonlinear, differential equations with
split boundaries. The differential equations are solved by the analog computer.
Boundary conditions are checked, compared and reset by the digital computer; thus rapid
iterations to the convergent solution are possible with the hybrid computer. After
the correct solution is found, the time scale of the problem is changed and graphical
records of the solution are méde on an X-Y recorder. The digital computer then steps
to the next set of parameters and proceeds to the next solution. Approximately four
hours of hybrid computer time are equivalent to 200 hours of analog time. @]ﬁ

Magnetic Taconite Processing

Taconite processing consists of four main steps: l) mining, 2) crushing,
3) concentrating, and 4) agglomerating. See Figure 8. The simulation on the hybrid
computer is for the crushing and concentrating. Figures 9 and 10 are the crusher
and concentrator flow sheets. The simulation is divided.so that the crusher is
simulated by the digital computer and the concentrator is programmed on the analog
computer, the combination operating together to form a hybrid simulation. The digital
simulation of the crusher determines the ore characteristics leaving the crushing for
various train schedules. Effects on the concentrator of any changes in ore characteris-
tics are readily determined from the simulation. Sensitivity and control study are
possible with the simulation. Eventually the digital computer may be programmed to

check out control algorithms for the actual plant.

243

I
o _
| r !
:4 ADC : >
| | |
ANALOG | | DIGITAL
COMPUTER |}l — »| COMPUTER
PACE < '_ GONTROL <r%—————- IBM
231R | 1620
| I
< | DAG —+—>
| |
| LINKAGE |
b e e e — J
IBM 1710
L e e e e e e e e

U.S. STEEL HYBRID COMPUTER SYSTEM

FIGURE |

L e e e]

B C“u

ANALOG ~ DIGITAL
200 AMPLIFIERS | 1620 MODE 2
300 POTENTIOMETERS 60 K
40 SERVO MULTIPLIERS DISK
9 QUARTER-SQUARE CARD READER
MULTIPLIERS ~ GARD PUNGH
'8 LIMITERS TYPEWRITER

20 COMPARATORS

10 DIGITAL DIODE |
FUNCTION GENERATORS

| 170 DESK (ADIOS)

LINKAGE

100 ADC (ANALOG-DIGITAL CONVERTERS)
10 DAC (DIGITAL-ANALOG CONVERTERS)
25 €S (CONTACT SENSE)
28 LCO (LATCHING CONTACT OPERATE)

4 PBI (PROCESS BRANCH INDICATORS)

4 INT (HARDWARE INTERRUPTS)

| CLOCK (TIMED INTERRUPT)

COMPLEMENT OF EQUIPMENT Q

FIGURE 2

ROUTINES OPERATING TIME
CALL HYRA! IS MILLISECONDS

IF HYICS IS MILLISECONDS
CALL HYNRPT | I5 MILLISECONDS
CALL HYSTPT 30 MILLISECONDS/CHANNEL
CALL HYSLCO 15 MILLISECONDS 7/ CHANNEL

CALL HYSRTC

CALL HYRTC

CALL HYPTST
CALL HYIC
CALL HYHOLD

CALL HYOPRT

HYBRID FORTRAN CALLS

FIGURE 3

L AMMONIA REACTOR
2. HEAT FLOW
A. BLAST FURNACE STOVE
B. INGOT COOLING & SOLIDIFICATION
3, MODEL - ROLLING MILL
4. FLUIDIZED BED REACTOR
5. PROCESS OR SIGNAL IDENTIFICATION
(FOURIER TRANSFORM)
6. TANK TRUCK SIMULATION
(ROAD PROFILE GENERATOR)
7 CRUSHING PLANT SIMULATION
8. TRANSPORT DELAY SIMULATION

9. FUNCTION GENERATION

HYBRID PROBLEMS

FIGURE 4

246

READ
INPUT
DATA

SET
DAC

!

ANALOG
COMPUTE

/

READ
ADC

i

DIGITAL
COMPUTE

FIGURE 5

247

AMMONIA REACTOR

T L T
| ————1?——9— N-1 |
Ly Tin-nr
Q Qy_, Z(N-l)F

W- POUNDS GAS FLOW / HR
T- TEMPERATURE
Q- % GAS FLOW

Z- % AMMONIA

FIND OPERATING CONDITIONS FOR MAXIMUM Z _

FIGURE 6

‘Z

NF

2k9

ROLLING MILL

—(J

7'—’ T2

PRESSURE

O
AL

EXIT ENTRY

FIGURE 7

250

— e e e e o e e e e e e e e e e e e e e e e -
.
|
—>—| CRUSHER :
----- ‘o"n;:-}‘.-:.l\ '
HAUL AGE :
|
|
|
|
' |
CONCENTRATOR FEED STORAGE l
f i = S\
ORE BLENDING YARD :
|
1
DASHED LINE INDICATES f'm
THE SYSTEM INCLUDED =+
'®) ®) IN THE SIMULATION =
e e I e e e e e e e e e e s e e e |
]
CONCENTRATOR , 4}
AGGLOMERATOR
. STORAGE

AGGLOMERATOR

PRODUCT —g

FIG.8 TACONITE PROCESSING

251

GQI ney. 387

{11} CAR DUMP

tst-STAGE
CRUSHER

2 nd-STAGE
CRUSHERS
(2)

SURGE BIN ¢

3rd-STAGE (6)
CRUSHERS

UNDERSIZE
A
SURGE BIN 2
ORE BLENDING
4 th-STAGE
“cRUSHERS ‘¢! Y YARD
> o
OVERSIZE UNDERSIZE

| ROD - MILL FEED -

FIG.9 CRUSHER

CYCLONES

/ ROD MILL
ORE CONVEYOR | ™
. A

v

SCREEN

BALL MILL

CLEANERS

L—~—~—~——-J

DESLIMING
uvoaosennuon
l
FILTER I
THICKENER | P
Y | FivisHERS UT T
p ! Log-d
b ——
CONCENTRATE by et
4y -
TAILS —&——

TYPICAL CONCENTRATOR FLOW SHEET

FIGURE 10

254

The present 1130 Commercial Subroutine Package had its origins in

the FORCOM package which was created for the 1620 system at an IBM
branch office in Detroit, Michigan, in the summer of 1961. The

original 1620 FORCOM package consisted of subroutines which provided
a basic character handling capability for use with 1620 FORTRAN. In
subsequent years the package was expanded to operate with later versions
of the FORTRAN compiler and to operate under control of the 1620 Disk
Monitor system.

In the fall of 1965, it was decided to adopt as many as possible of the
1620 routines for use on the 1130 to provide a basic commercial data
processing capability. This work resulted in the announcement of
FORCOM-1130, a type III program which became part of the 1130 pro-
gram library in March of 1966. This program was subsequently up-
graded to a type II programming announcement and re-named ''The

1130 Commercial Subroutine Package' in August of 1966. The type III
1130 FORCOM package was subsequently withdrawn on October 18, at
which time 390 users had requested this package. The 1130 Commercial
Subroutine Package had already accumulated 198 registered users by the
first week in October.

The present 1130 Commercial Subroutine Package includes eight sub- P
routines to provide alphabetic compare, editing, zone punch manipula- o
tion, stacker select and related operations useful in commercial applica-

tions. The present package is independent of input/output considerations,

and all of the subroutines except the stacker select subroutine are written

in FORTRAN to permit easy modification. The eight subroutines

currently in the package are:

MOVE To move a variable length, alphameric
data field

EDIT To edit a data field for subsequent printing

GET To extract and float a data field from an
input area

PUT To unfloat and place a data field in an output
area

NCOMP To compare two variable length, alpha-
meric data fields and branch on high, low
or equal

NZONE To test or to modify a zone punch on a
single card column

FILL To fill a variable length data field with a
single specified character

STACK To cause the next card to be selected to the
alternate stacker on the 1442 card read “

punch,

1130 PROGRAMS

1130 Commercial Subroutine Package

R. K. Louden
IBM
Monterey and Cottle Roads
San Jose, California

Telephone: 227-7100, Ext, 2075

November 29, 1966

253

255

The 1130 Commercial Subroutine Package is designed to run upon
an IBM 1130 system with 8192 words of core storage, with card
input and output and with or without disk storage.

All of the character manipulation performed in this package is
based upon the concept that the bit pattern used to represent a
single character in Al format is the same bit pattern used to
represent some specific binary integer. This binary integer,
written as a decimal number, can be considered to be the decimal
equivalent of the character code in Al format. For example, the
decimal equivalent of the letter A is - 16064, the decimal equivalent
of the digit 0 is -4032, and the decimal equivalent of a dollar sign is
23360. The concept of a decimal equivalent for each character makes
it possible to manipulate characters as though they were integer
variables within FORTRAN programs.

One facility which is required in commercial applications is the ability
to read unformatted records. FORTRAN does not provide this ability;
in FORTRAN it is necessary to specify a format statement which
requires a knowledge of the format of the record to be read. In the
commercial subroutine package, this problem is avoided by reading

all input records in Al format., For example, an 80 column card would
ordinarily be read by a format of 80Al. Each character from each card
column occupies a separate core storage word, and FORTRAN subroutires
using the decimal equivalents of the characters can be used to extract
data fields from the card and convert the data fields to floating point
numbers as required for floating point calculations. This technique
makes it possible to read a card, test one or more card columns to
determine the format of the card, and only then proceed to pick up
those data fields from the card which are required for subsequent
processing., The GET subroutine is used to pick up and float data fields
from character strings in Al format; the PUT subroutine is used to
unfloat and place calculated results inside character strings.

The concept of a decimal equivalent for any character in Al format makes
it easy to write a subroutine to compare character strings and branch on
some predetermined collating sequence. As it turns out, the decimal
equivalent for the letter A is the lowest number (-16064) of any decimal
equivalent in the 1130 character set. Since the decimal equivalent codes
are in a sequence, a subroutine containing a FORTRAN IF statement can
be used to compare one character string against another, one character
at a time, and branch if a high or low condition occurs. This is the
function of the NCOMP subroutine.

‘256

Another facility needed for commercial applications is the ability to
both sense and rmanipulate zone punches. It has long been a common.
~practice in commercial applications to identify negative data fields

by an 11 overpunch on the low order digit; this convention is followed

in the commercial subroutine package. The manipulation of zone '
punches is based upon the fact that the zone of a character may be
altered without affecting the other punches which constitute the
character by simply adding a multiple of 4096 to the decimal equivalent
code of the character, For example, the addition of 4096 to the decimal
equivalent code for the letter A produces the decimal equivalent code for
the letter J. The letter A, of course, is represented on a punched card
by a 12 zoned 1 punch, and the letter J is represented by an 11 zoned

1 punch. Through similar manipulations the NZONE subroutine is able
to identify which of five classes of zone punches appear on any character
and to change the zone of any character to any specified zoning.

Certain editing functions are also required to present commercial
results in an acceptable format upon the printed page. For example,

it may be desirable to suppress leading zeros in calculated results., If
checks are to be written, it is frequently desirable to replace any lead-
ing zeros with asterisks to prevent additional high order digits from
being written upon the check after the check is printed, This technique
is known as asterisk check protection. A similar effect may be obtained
through the use of a floating dollar sign which is positioned immediately
to the left of the high order non-zero digit in the result field. It may
also be desirable to merge strings of calculated numbers with arbitrary
strings of characters, perhaps to produce social security numbers,
alphameric inventory part numbers and similar results. All of these
capabilities are provided by the EDIT subroutine.

The EDIT subroutine uses a mask field which contains special characters
to be merged in with the field to be edited. The special characters are
used to indicate the suppression of leading zeros, asterisk check protec-
tion, floating dollar sign and other special characters to be merged with
the data field. The EDIT subroutine also makes it possible to indicate

a negative field by a minus sign to the right of the low order digit, or

to indicate a credit field by the letters CR to the right of the low crder
digit. Although the logic of the EDIT subroutine is complex, the sub-
routine operates quite simply by identifying the decimal equivalents of the
characters involved and manipulating the characters accordingly.

Two minor subroutines, MOVE and FILL, are also provided to permit the
easy transmission of character strings from one array to another.
Finally, a stacker select subroutine, STACK, is provided to select a
card into the alternate stacker on the 1442 card read punch. The STACK
subroutine is written in assembly language because it refers to a hard-
ware function which cannot be described in FORTRAN.,

257

Character strings to be manipulated by these subroutines are always stored in
memory as singly dimensioned arrays in Al format. Control statements specifying
one word intege's and extended precision should be used with these programs to
minimize the amount of memory devoted to the character arrays, while at the
same time maximizing the precision to be obtained from the floating point
calculations.

A further convention in zone punch manipulation is required to conform to the
[130 character set. Since a 12 zoned 0 is not a valid character in the 1130
character set, this combination is converted to a zero by the NZONE subroutine.
Similarly, an Il zoned 0 is replace by this subroutine with the character code

for a minus sign.

It seems surprising to many people that subroutines can be written in FORTRAN to
create floating point numbers from character strings and vice versa, as is done by
the GET and PUT subroutines in the commercial subroutine package. These sub-
routines are made possible by the fact that there exists a simple equation relating
each binary digit to its decimal equivalent code in Al format. The equation is:

Binary digit = (decimal equivalent code + 4032)/256

The GET subroutine uses the above equation to convert decimal equivalent codes
for integers into binary integers, and then collects these binary integers times
suitable powers of ten into floating point variables. The PUT subroutine essentially
performs the same operation in reverse.

The 1130 commercial subroutine package does not pretend to provide a complete
commercial programming. language for the 1130. Many requests have been received
to expand the capabilities of this package to provide additional functions. These
requests have fallen primarily into the categories of extended precision arithmetic,
overlapped input/output and the ability to manipulate packed A2 format as well as
the unpacked Al format currently utilized by the package. The feasibility of pro-
viding these additional capabilities to the package is currently being evaluated,
but there is no commitment at this time to provide these extensions.

In the area of extended precision arithmetic, a study is currently underwuay to deter —
mine the practicality of providing variable length add, subtract, multiply and divide
subroutines to operate directly upon strings of decimal integers in Al format. These
subroutines would theoretically possess the ability to perform arithmetic computations
on fields of any specified lengths while being completely free from floating point
round-off errors which remain a significant problem in commercial operations
involving large dollar amounts which must be accurate to the penny. An obvious
problem with this approach lies in the long execution

258

times which may result from multiply and divide operations upon long @
character strings. '

To provide overlapped input/output operation, we are currently
investigating the feasibility of calling the overlapped input/output sub-
routines available for 1130 assembly language programs directly from
FORTRAN programs. If feasible, this capability would make available
overlapped input and output operations at the FORTRAN level.

The ability to manipulate packed characters in A2 format could con-
ceivably be provided by subroutines to convert between Al and A2
format at high speed. The ability to store data in A2 format is
desirable since it reduces considerably the amount of disk storage
required to maintain data files in, for example, inventory control

- applications, :

Although work to determine the feasibility of extending the power of the
1130 commercial subroutine package is proceeding along the lines
described above, it must be emphasized that this work represents a
feasibility study on the part of the author and does not, at this time,
represent any commitment whatsoever upon the part of the IBM Corpora-
tion to provide these extended capabilities.

A detailed description of the calling sequences and functions of the @
present 1130 commercial subroutine package may be obtained from the

1130 Commercial Subroutine Package Program Reference Manual

(IBM Publication No. 1130-SE-25X).

R. K. Louden

University Education Papers
Computer Requirements for the Undergraduate College
Robert C. Bushnell
Oberlin College
Oberlin, Ohio 44074
Tuesday, Nov. 29, 1966 - 8:30 A.M.

Five Pages
Session T-1.6

Phone: (216) 774-1221, ext.3160

259

260

COMiUTER REQUIREMENTS FOR THE UNDERGRADUATE COLLEGE
Robert C. Bushnell, Oberlin College : ‘:}

There is little doubt that practice and experience in the use of

digital computers and a knowledge of digital computer applications and
methods in his field of major interest is a necessity for the under-
graduate studentim engineering or technology and physical or social
science. Given the trend of present research it will not be many years
before the same statement can be made of students in languages, history,
art and music. Therefore the educational institution which would furnish
adequate preparation to its students must necessarily include computation
in its program. Most educators recognize this but not being computer men,
do not understand that all computers are not equal, and that having one
is not synonymous with using one.

In particular I believe there is insufficient awareness among educators,
and perhaps even among some computer people, of the advantages, in an
actual use sense, of more-than-minimum core, line printers, disk storage
and monitor or operating systems. This paper will report the experience
of Oberlin College in two academic years, one in which we possessed only
a 20K 1620 and a 1622, and the second in which this equipment was aug-
mented by a 1311, a 1443 and a 1623 with additional 20 K storage.

On December 1, 1965 Oberlin began use of the basic 1620 computer with

card read-punch. Series of lectures on both SPS and Fortran had been

presented and a considerable number of library programs obtained. Use '[E
built quickly: five hours the first week, 7 the next, 1l the third, 14 /
the next (skipping Christmas vacation), 17 the fifth, then 25, 29 hours

per week. Then the build~up stopped, hours per week for subsequent

weeks are 17, 23, 11, 19, 25, 15, 17, etc.; a plateau clearly had been

reached. An-average over the 21 weeks of the academic year for which

time use was recorded shows that the computer was used 19 hours per week.

The cost of the computer for that five month period was, (@ $1,868)

$9,340, or the cost per hour $23.35.

On September 7, 1965, the college added the additional equipment men-
tioned: additional core storage, 1443 and 1311, During that academic
year, from September 7 through June 2, 3,623 hours were logged. If we de-
duet immediately the 785 hours logged against the computer center it~

sel , which includes all the hands-on experience for the lecture cnurses
offered by the center itself, and if we deduct the 167 hours logged for
non~-academic purposes, we still are left with 2,671 hours run on academic
application oriented work, or approximately 297 hours per month of academ-
ically oriented work. 1620 machine rental for this period was $4,560 per
month, yielding a cost of $15.35 per productive hour. I emphasize that
this conservative calculation has charged no burden to any non-academic
purpose or administrative purpose. In other words, adding equipment had

261
-2

the effect of reducing the per hour charge. In marginal, or incremental
terms, the change was even more striking. For an additional outlay of
$2,225 per month, Oberlin College obtained an academic user increase of
215.3 hours per month at a marginal or incremental cost of only $10.35
per hour.

This citing of incremental cost is not pedantry but the kernel of the
problem in computing in the private undergraduate college and a cause of
deep concern to some of us who believe that the private undergraduate
college has a unique and necessary place in the total pattern of educa-
tion in the United States. For low average computer costs per hour of
time used can only be attained for a high total cost, a cost which is
beyond the capability of most such institutions. Oberlin is probably

in the best financial position of any of these institutions and yet it

is only with difficulty that we have been able to finance such a program.
In such circumstances it is both natural and proper that we turn to gov-
ermmental sources on the grounds that investment in higher education has

a demonstrable effect on the level of future national output. Unfortunate-
ly, there are few programs applicable to such institutions. In 1965,
Oberlin applied to the National Science Foundation for funds under the
Undergraduate Instructional Scientific Equipment program and was fortunate
enough to receive $40,000, nevertheless a fraction of what we requested.
When we reapplied in 1966 for further funds, our request was disallowed.
Privately, we were informed that $40,000 was much larger than any similar
grants, and that total funds were limited. However, we somehow gained

the impression that many members of the panel felt that our proposal was
too ambitious and not necessary for an institution involved primarily én
undergraduate instruction., It is one of the purposes of this paper to try
to correct that attitude.

Before doing so, however, I would like to point out the differences in
situation between the universities and the colleges and try to maintain
that it would be proper and economically effective for NSF to allocate
more of its total computer funds to undérgraduate use. Presently, NSF
will allocate millions of dollars to major institutions for computing,
but as we have found, only $40,000 to an undergraduate college. As a
case in point, Princeton University has an accelerator and a plasma physics
lab and a graduate school of engineering. Research is intensive and
heavily supported by NASA, AEA, DOD and other governmental agencies. Com-
puting is a requirement of such work; total usage is high; hourly cost of
computing is consequently low, and the burden on the unversity for the
support of undergraduate computing on the 7094, 7044 and soon, the 360/67
is nominal and bearable. Princeton undergraduates emerge from their
undergraduate education with good experience in computing. Oberlin, on
the other hand, has almost no such contracts, the college must bear the
entire cost of providing computing in the academic program except, as it

262

is directly aided by NSF or other grants. The undergraduate population
of the two institutions are approximately equal, yet Oberlin annually
produces more entrants to graduate schools than does Princeton, and in
historical terms only 10 institutions of any nature ur size whatsoever
have in absolute total terms produced more graduates who later have at-
tained the Ph.D. degree in science than has Oberlin. '

Oberlin trustees do not wish this situation to change. We believe that
should we not invest heavily in computing facilities this situation will
change. In point of fact, the awareness that the lack of sufficient
computing facilities was impairing our ability to attract faculty and
students alike in the physical sciences was the greatest single incen-
tive in our present program of computing. In five years, the same will
definitely be true for the social sciences and I don't think I am going
too far out on a limb to say that five years after that the same also
will be true of philological and historical studies. (The Chairman of
the Theory Department in the Oberlin Conservatory of Music believes the
same will be true in his department in two years.) Oberlin fortunately
will have sufficient computing facilities, but what about other not so’
fortunate institutions of equal intellectual merit? It certainly seems
to me that the case must be made for govermmental support for adequate
as distinct from minimal computing facilities for undergraduate colleges.
Probably most institutions can scrape up $100,000 or so. Another $100,000
to these institutions from NSF or similar sources could work toward an
adequate facility. For only a million dollars 10 of these institutions
each with at least an enrollment of 2,500 students could be given proper
computational training and support in their undergraduate curricula.
Surely this is as important a use of seed money as a grant of a million
to a major institution.

What then do we mean by an adequate facility for a computing center?
The answer can only be given in terms of user service. If the library
had only omne chained copy of each book and students had to wait in line
to use that copy, though that book be the most wvaluable in the world
students would find other ways to accomplish their purpose. Too many
computing centers are in fact like that library which would never be.

I would define "adequate user service" as service that would allow each
user to obtain the output of his compilation or debugging run in under
10 minutes. I would define "an adequate computing facility" as one
which provided such user with work space and technical advice such that,
under normal circumstances, he is able to work persistently and con-
tinuously on his program. For as we in computing know, programming is
20% inspiration and 807 debugging. You and I probably have our per=-
centages down to about 50-50; that's what makes us expert, but to the
tyro, the most alarming thing is that the automatic electronic computer
seems to do maddeningly little automatically. Thus, if we are to in-
itiate the casual user, we must make the experience as pleasant as pos-
sible, lest we do him the disservice of making him reject computing.

263
-

After all, most students should not be interested in the computer per
se but in the computer as a tool, and a tool to be useful must be
usable. If this seems utopian, and I hope it does not, let me point
out that this is the way things will be in research and industry in-
side of five years to the extent that it is not already, and that as
educators we must be a great deal more interested in the future with
which our students will function than in the present in which we exist.
Second, more practically, it is not utopian because we have done it at
Oberlin.

What does it take to make an adequate computer center -- I would identify
three ingredients: (1) adequate hardware, (2) fast turn-around software,
and (3) user interest. For hardware, we defined adequate as a 40K 1620
with 1622, 1311, and 1443. The 1311 is required for the operation of
Monitor I, a good job-stream processor. The 1443 is required to provide
unbound machine-man communications. Finally, if Fortran is to be the
principal user language because of its ease of use, then one must allow
for its sloppy use of storage by providing storage sufficient that the
user does not have to concern himself continuously with running out of
core.,

For software, three needs were seen. First we determined that the
Fortran II compiler was too slow to provide the required turn-around.
Therefore, we implemented the Forgo compiler for 1620 disk as developed
by the University of Wisconsin (1620.2.0.043) and modified by us for

use with the 1443 printer. This compiler allows us to process the
typical learner's job in about 20 seconds. Our second major software
implementation was the provision for an interrupt system. Our goal

here was simultaneously to provide service both to users with long jobs
and to tyro users (or experienced user writing a new program) who needed
repeated submissions of a compilation or short test. What we developed
was a sense switch 2 test in the monitor printer output routine. Every
user whose program may run over 10 minutes is required to use a 200 core
position subprogram in his program which furnishes the proper linkages
so that when switch two is turned up, his program, all core, all work
cylinders on disk, etc. is stored away elsewhere on the disk and the
next, supposedly short job, is read in. At the conclusion of the short
jobs, execution of a standard job called RESTORE resumes operation of
the interrupted program. By such means, we retain our ability to service
short jobs on call while still devoting all otherwise unused time to the
processing of long jobs,

Our third major software project was to provide a printer plotting routine
with the same parameters as the UMPLOT routine for the 7094, This is a
self scaling set of programs which makes user plotting in Fortran foolishly
simple.

Last and most important, the third ingredient, users, were dumped at our
door by the Mathematics Department, which made Fortran programming a two-
week item in the Introductory Calculus menu.

-5

I would be lying and belying hard work if I asserted that from that
point on the computer ran itself, but I can say that with these
facilities we had all we could do just to keep up with the users =--
there was no need to sell computing, just to service the demand.
Twenty students working a total of 170 hours per week and the director
were the total staff in that first year of Monitor operation. In that
space these students found time to operate, answer user questions, and
still provide over 100 canned programs and disk stored subprograms
complete with published user instructions,

To those educat#ows who assert that a computer is a computer and that
their institution has one, the moral of the foregoing should be obvious.
All computers are not alike; a machine capable of receiving the software
support necessary to insure easy user access and quick turn-around is
the sine qua non of a successful computer center and the justification
of a computer as a tool, not as a toy.

26k

COMMON

New Orleans, Louilsiana

University Education Papers

Library Circulation

Guy George Jr.
University of Southwestern Louisiana

Box 382 U.S.L.
Lafayette, Louisiana 70501
CE47321 Ext 274

T1.6
Tuesday
November 29, 1966
8:30-10:00 A.M,

Text U4
Graphics 2

265

266

%:m

LIBCIR

A Library Circulation Program

The University of Southwestern Louisiana's library installed an
IBM 357 to accelerate the process of circulation. In this process,
each borrower has a plastic ID card with a borrower number punched on
it. Each book has a master card with information such as call number
etc. A borrower selects his book from open shelves and presents the
book with his ID card to the circulation desk. The ID card and the
master card are placed in the IBM 357 which causes a charge card and a
return card to be punched on an IBM 026. The library retains the charge
card while the return card and master card are placed in the book. When
a book is returned, the return card is removed and the book is
placed on the shelves.

The processing of these charge cards and return cards can solve
three basic problems of library circulation:
1. Update the outstanding file
2. Purge the outstanding file
3. Check file for overdue books
In solving these problems, the library can be supplied with an accurate @:D
list of books which are outstanding on a daily basis or more frequently ‘
if necessary. Also, overdue notices can be given to the library manage-
ment to be handled as they desire.

LIBCIR is an interpretive system written for the IBM 1620 to
solve the three basic problems of library circulation. The hardware
must include the following: 40K memory, automatic divide, indirect
addressing, card read, card punch, disc drive, and a on-line printer.
One disc pack is necessary for maintaining the file and for storing
the programs which make up the interpretive system.

Before discussing the programs which make up the interpretive system,

it is necessary to explain the method of storage for charge card images.

The charge card and return card are identical, and contain a combination

of the date, the information from the ID card, and the information

from the master card. These cards have the following format:
col 1-6 Due Date
col 7 Blank
col 8-13 Item
col 14-25 Class
col 26-33 Cutter
col 34-35 Year
col 36-38 Volume
col 39-40 Copy
col 41-43 Purchase Number .
col 44-53 Borrower Number : ‘:w

1

267

The files for listing purposes are to be in collating sequence for
columns 14 to 33 which makes up the call number for the book. These
columns contain a mixture of alpha, numeric, and special characters.

Each image is assigned one disc sector which includes the information
from the charge card in a packed form along with a counter for the number
of times the book has been overdue. This requires a total of 85 digits
per sector. The other positions are left vaccant for possible

additional information.

The disc is divided into two distinct portions. Cylinders 0 to
97 are reserved for the charge card file. Cylinders 98 and 99 are
used for storing the programs, and a table of reference information about
the contents of cylinders 0 to 97. The system is designed with expansion
in mind. There is ample room on cylinders 98 and 99 to include many
more routines.

The book images are maintained in the desired order at all times.
A cylinder will be utilized at a minimum 25% of its storage capacity.
The total number of books is divided by 50 and if this does not require
more than 98 cylinders, this minimum capacity is utilized. If, however,
more than 98 cylinders are required, the efficiency of storage is
increased and the number of images per cylinder is redetermined. There
is a maximum storage allowed of 190 images per cylinder. With the idea
of non maximum utilization of storage, the file can be maintained in
order at all times. As long as there are vaccant sectors within a
cylinder, another charge card can simply be inserted in the file in the
correct location. This method was chosen to avoid having to preform
a sort other than for the first day of operation.

With the file open for ready insertion of additional books or
easy purging, certain amounts of directional information must be supplied.
The first sector of each cylinder 0 to 97 (if being utilized at all)
contains the following information:

1. The last sector in the cylinder being used

2. The double digit alpha code fot the first 20
locations of the call number for the first image
stored on the cylinder

3. The double digit alpha code for the first 20
locations of the call number for the last image
stored on the cylinder

To further index the images stored in cylinders 0 to 97, a
reference table is maintained by each program and stored in the first
8 sectors of cylinder 98. This table consists of 100 entries. Entries
0 to 97 will be composed of two fields. The first is a six digit
field which can have one of three values:

1. 999999 if the cylinder was not required for the
storage of the images

2. 000000 if the cylinder was used but all of its
images have been deleted through processing

3. XXXXXX where the X's represent the first 6 digits
of the double digit coding for the call number
of the first image on a cylinder

2

268

The second field is two digits and ranges from 00 to 97 and indicates
the cylinder number Ffor the six digit field mentioned above. With
this table the programs can quickly locate the cylinder for an entry.
Entry 98 is a field of 8 nines and acts as a buffer to initial
searches. Entry 99 is a five digit field which is the current number
of images being stored.

With the method of storing images in mind, the interpretive system
will be discussed briefly. The heart of any interpretive system will
be a supervisory program to direct the calling of the correct stored
programs. LIBCIR's supervisor accepts the following control cards:

SEDIT CHARGE (must include the date)
SEDIT DISCHARGE
SLOAD INITIAL

$CHARGE

$DISCHARGE (must include the date)
SLIST ' (must include the date)
$DISTRIBUTE

SOVERDUE (must include the date)
$END OF JOB

If the date is necessary, it is punched in columns 17 to 24 as £X-XX-XX
(month, day, and year). The supervisory program has a list of acceptable
control cards and the disc¢.control fields which indicate where the
desired routine can be found.
EDIT CHARGE This routine will check all data which is about to be ’GE;
added to the file to see if it contains the correct date and the correct
types of information.

EDIT DISCHARGE All discharge cards are verified for the correct
types of information. The dates are not checked.

LOAD INITIAL This program is designed to set up the original
layout of the file storage. The charge cards for the first day are read
and written onto disc. A tag is built from the first 20 digits of the
call number and a sector address for the stoved image. This tag is
sorted into order before the next card is processed. A binary search
and insertion sort is employed to conserve time, With the sorted tag
file, 50 images are written per cylinder; the first sector of each
cylinder is created; and the table entry is made for each cylinder.

This prepares the file for all future processing.

CHARGE The charge cards are processed for a regular day. Once
a card is read, the table is scanned to determine which cylinder the image
might be placed on. The first sector of this cylinder is checked to see
if it can in fact be placed on this cylinder. If not it checks the
previous cylinders until the image can be stored. Once the correct
cylinder is located, it is read and a scan is made for the correct
location:for inserting an image. An opening is made by writing the entries
before the insertion on disc, then the new entry is written, and then
the entries following the insertion are written onto disc. The first 7
sector of the cylinder is updated, and the table entry is updated. “:w

3

DISCHARGE This works in the same fashion as the CHARGE, only the
cards read are return cards. When the entry is located, the entry is
deleted through one transmitt record. The first sector is updated as
well as the table entry for the cylinder involved. This routine will

~automatically call for the LIST routine to produce the list of books

left after the purge. It will also automatically cause the books to
be redistributed evenly for all cylinders. This is done by a call
placed for the DISTRIBUTE routine.

LIST If a copy of the file is desired, this program will produce
a listing of the outstabding file. This is the routine which is called
by DISCHARGE to give a list for the day. Since it exists as an option,
it is possible to obtain a list at any time.

DISTRIBUTE This routine is used to distribute the books evenly to
the cylinders needed, to prepare all first sectors, and to produce a
revised table. Once the CHARGE and DISCHARGE options have been
completed, there will not be a evenly distributed set of images.

Since the routines will function faster with an even distribution, the
DISTRIBUTE can be used to produce the rearrangement of the images.

In operation, it writes all images as far back on the disc as
possible. Once this has been done, the number of books per cylinder is
determined by using the last entry in the table. The images are then
placed in the cylinders as desired. The first sectors are adjusted,
and a revised table is produced.

_ This program is automatically called after DISCHARGE's list.

If CHARGE should not be able to add an image to a cylinder that should
contain the image, a message is given to distribute and begin with

a new CHARGE.

OVERDUE A 1list is produced of all books which are past due
according to the date given on the control card. Any books with more
than two overdue notices will be indicated by an asterisk. As the
list is made, a card is also punched for each overdue book. This card
is used on the collator to select the borrower's address card. This
matching can be used to produce the overdue notice.

END OF JOB This will simply type out a message which indicates
the end of the job.

As each option is processed, the control card is typed on the
console typewriter. For any options which have data cards (charge or

return), the last card should have 80 nines punched in it. This signals
to the program that there are no more cards to process. The supervisory

program can be easily modified to include more optionms.

Although this by no means solves all problems involved with library

circulation, it does solve the three basic problems with a small

computing system. It also suggests a very useful method of file storage

and processing which might be applied to other types of imventories.

|

269

CIRCULATION CONTROL 270

Each book @

as master
in poclet

lerk inserts
ID & master
card & date.

< . | Charge Card

Date

A UG
creates 2 cards

Processing
Pull Return
(Return Card
Card Pas
' Book (VS
Book Card to

4 Stacks

Book
to
Borrower

L

1) Update Outstanding File
2) Purge Outstanding File
3) Check file for overdues.

Daily list ot
outstanding
charges - call

Overdue

Notices

2210079 US L LIBRARY

Printed in U.S.A.
5

271

CLASS ‘!ﬂ

1
CUTTER YR| VOL | CY rsuh

L4
[

dammaged

=

voL cY

UNIVERSITY LIBRARIES ¥
UNIVER@EY F SOUTHWESTERN LOWJSIANA }

rge will be made

missing or
tem is returned,

cho

MASTER CARD
A

Do not remove this card from

pocRt.
if card is

®vhgg

[AFAYETTE, LOUISIANA |

LEWIS 21093

‘pauinial s wWay usym

pabowpp 1o Bujssiw si papd> i

eppw aq ||Im 8bBipys v ‘jedpod
woJy pipd siyi sAowal jou o(

Q¥dVvO dILSYW

U236 EZ00530AAP6a mmmamar: T7T 3m oo e dm 1o~ JDREBE00 SO0
DUE DATE ITEM ¥ class - CUTTER |YR |VOL|CY|{PSN| BORROWERNO |
MO. DA, YR (B A A R RN T EEIRIRRYETTS W

A T D _ L

MM {5 5 { (] Boaw

< v

. f L . &

& e EEW < A

< %= 4

R, 4 - “ <

o1 e = ul <

- T e [+ s

vl I < b i - !:r .

o, B 5 O & i

zl . E @ 5 o4 3

o - o 3 °

- L3¢
| o) . e = > o ﬁ @
e 23 2 F 3 Eouwp oz
» 5 2 L, = v o2 un L
; - 2 - =9 .
x| W2 K vy w238 Lt
: o] . ~ & 5 > 2D > «© . %
: o : - - X -4
1 2 = % R = (=g |
15 e 5 S
’ i P oy p
L |F ML K- [i
* [
> O
L 7,
\A o 2
POSEITRINPA L Tr13 N\

GEORGE GUY HAVAPD JR

52035 &S 10 42

STUDENT YEAR

DATE F
NUMBER o BIRTH

NAME
{f
T

THE UNIVERSITY OF

SOUTHWESTERN LOUISIANA
STUDENT IDENTIFICATION T
tNOT VALID UNG ’LSS SIGNEDY,, | \ \\

',T}"';"'<\»/ ﬁ//t{—

SPR

UNIVERSITY VALIDATION

SIGNATURE /

.

UNIVERSITY EDUCATION PAPERS
"W, S. L. STUDENT SCHEDULING"

Jack Da Testeman - UO-S. Lo
Earl K. Turner, Jr. - Shell 0il Co.

Box 133 U. S. L.
Lafayette, ILa. TO501

Phone: 318 CE-4-7349

Speech: Tuesday, November 29, 1966

Segsion Number: T-1.6

Pages of Text: 3

272

273

U. S. L. STUDENT SCHEDULING
BY THE IBM 1620 COMPUTER

Earl K. Turner, Jr.
Jack D. Testerman

There is & tremendous amount of clerical work involved with
the scheduling of students, most of which is on the shoulders of the
registrar's office. The accompanying headaches tend to increase as the
enrollment of the school increases, making it increasingly difficult to
-run an orderly and accurate registration. The old method of scheduling -
by hand while the students are en masse - often needs to be revised or
replaced.

In general, any reglstration process must include three kinds
of activity, namely:

1. Creating a semester class schedule
2. Advising students about their academic progreams
3. Assigning students to sections of courses.

The phase of scheduling that calls for the most work - much of it
clerical - is student assigmment. So this is obvious candidate for
machineprocessing. :

There have been several experiments in the area of student
scheduling systems in the past few years, but on the whole, very few of
these could be termed an ideal system. Nearly all of these systems in-
volve the student requesting particular course sections and the computer
.program elither accepting his choices, thereby acting as a tallyer, or
rejecting his schedule requests because of the unavailability of one or
more of his requested sectlons. There has &lso been the problem of
controlling the number of drop-and-adds that will occur in any computerized
system.

Of course an ideal system depends on the needs of the school -
Just how much of the system is desired to be automated, and the quantity
of machines and personnel at hand.

Any registration system should have two main goals. First, to
register students accurately, and secondly, to make registration for the
student as simple and speedy as possible, In keeping with these aims,
an IBM 1620 computer program was written at the University of Southwestern
Louisiana (U, S. L.) which would accomplish these goals.

274

The U. S. L. procedure consists of the following:

1.

An early registration period requiring the student to
turn in a schedule request card at least one month in
advance of the semester in which he wishes to enroll.

2. Requires an advising system for the student

3. Schedules the student's classes by computer

4, Meils the schedule to the student

5. Distributes schedules to the deans and department heads

6. Takes care of any absolutely necessary changes at the
end of the registration period

T. Sends preliminary class rolls out to the professors before
classes begin, and sends corrected ones after drop and
add changes are completed.

The IBM 1620 Program
In order for any system to work efficiently, one must have the

proper tools

on hand. For this system, including the programs there

are, of course, certain necessary pileces of equipment.

Equipment necessary:

1.

O3 o0\A Fw

IBM 1620, 4OK digits of memeory, with disk and indirect
addressing

IEM 1622 card read/punch unit

A keypunch

An off-line printer, i.e. IBM LO7

A card collator

A card sorter

A card interpreter

A schedule decollator and burster

Features include:

1.

* ® e & @

O3 O\ FWw

10.
11.

12.

A student check, so as not to allow duplication of
scheduling

Student time exclusions

A section request option

A lunch hour bullt into the system

Scheduling done on the basls of 30 minute time intervals
Scheduable time extending from T7:30 a.m. to 9:30 p.m.

A maximum of 15 classes allowed per student

An average scheduling time of 10 seconds per student
Ability to handle up to 6900 class sections

Maximum of 99 sections per course

Ability to set maximum number of students per section as
high as needed

Maximum of 99 different curricula codes (department numbers)
for university use

eT5

13. Section balancing feature

14. Notifies the student &f it is unable to schedule a
particular class :

15. A one-pass program -~ it registers the student and produces
the class cards directly (these are listed as the student's
schedule).

Differences of the U. S. L. System from Other Systems

Uniqueness - We have a big problem for smell computers. Most
computerized scheduling systems Jjust use the computer as & tallying
device; that is, the computer program either accepts or rejects tle
students'! sectioned request. This program is built to assign sections
of the requested classes when they are avallable; hence, it is a section-
ing program. It will also schedule classes with pre-assigned section
numbers as other scheduling programs do.

Some Disadvantages

1. The procedure demands precision of all aspects of the
scheduling of students. At times, this is a difficult
rule to follow.

2. There is no instant communication with the student. If
the student has some difficulty with his schedule, cor-
rection time is limited. After receiving his schedule
by mail, the student must see his advisor, make some
provision for a change, then bring the requested change to
the Office of the Regilstrar.

Advantages of the System

Some of the advantages of the U. S. L. computerized scheduling
system are the following:

1. The symplicity of registration afforded the student

2. Allowing the administration to know the number of students
enrolling very early so that any extre faculty required
could be obtained in plenty of time. Also, estimates can
be given other facilities such as the University Bookstore
for purposes of predicting the number of books they will
need in any courses

3. Not tieing up all of the faculty and offices in a great
whirlwind session of one week; rather,