

--- ------ - ---- ---- - ---- - - ----------_.-

•

•

Introduction to IBM Direct-Access
Storage Devices and
Organization Methods

Student Text

All rights reserved. No portion of this text may be reproduced without express permission of
the author.

Reprinted (April 1978)

Requests for copies of IBM publications should be made to your IBM representative or to the IBM
branch office serving your locality. Address comments concerning the contents of this publication
to IBM Corporation, DPD Education Development - Publishing/Media Support, Education Center,
South Road, Poughkeepsie, New York 12602.

© Copyright International Business Machines Corporation 1966,1973,1974,1978

..

J

•

•

•

This text discusses the physical characteristics and capacities of
the following Direct Access Storage Devices:

2305 Fixed Head Storage
Available for a System/360 Model 195 or System/370
Model 145, 155, 158,165,168 or 195, or a 3031, 3032
or 3033 Processor. This device is supported by OS/VS.

2314 Disk Storage Facility
Available for a System/360 Model 30, 40, 50, 65, 67,
75, 195 and any System/370 model except 115 or 125,
This device is supported by OS/VS and DOS!VS.

3330-Series Disk Storage
Available for System/360 Model 195 or System/370
Processors except 115 and is supported by OS/VS and
DOS/VS.

3340 Disk Storage
Available for any virtual storage System/370 Processor.
It is supported by DOS/VS and OS/VS.

3344 Disk Storage
Available for any virtual storage System/370 Processor
except 115 or 125. It is supported by OS/VS and
DOS/VS.

3350 Disk Storage
Available for any virtual storage System/370 Proces­
sor except 115 or 125. It is supported by OS/VS and
DOS/VS.

3850 Mass Storage System (MSS)
Available for System/370 Models, 145, 148, 155-11,
158, 165-11, 168, 3031, 3032 and 3033. It is sup­
ported by OSjVS.

The file organization methods and access methods for these
devices are also discussed. The use of direct access storage, basic
terminology, and the establishment of controls for a direct access
system are other topics addressed by this text.

The intent of this text is to introduce the reader to the Direct
Access devices and their Control Units, and the data set organiza­
tions supported by OS/VS and DOS/VS. There is no discussion
pertaining to the various macro's used by the different access
methods. If more detail information is required refer to the refer­
ences listed in the bibliography of this text.

Preface

No attempt at completeness is made. Refer to the publications
listed in the Bibliography for additional details.

The following Direct Access Devices are not covered in this text:

2312 and 2318 Disk Storage - composed of a single (2312) or
dual (2318) disk storage module for attachment to a 2314 DASF
- A Series or to a 2319 A I, A2, or A3 in a System/370 configu­
ration with an Intergrated File Adapter (IF A).

2~ 13 Disk Storage - composed of four disk drive modules. May
be attached to a 2314-Al as a part of 2314 DASF-A Series or to a
2319 Disk Storage At in a System/370 configuration with an IFA.

2319 Disk Storage - composed of three disk storage modules for
attachment to System/370 models 135 and 145, or in a 2314
DASF-B Series configuration.

The above devices are similar in concept to the 2314. For addi­
tional information on a specific device refer to the reference
material listed in the Bibliography.

ii

..

•

•

Introduction
Terminology ••.•......
Uses of Direct Access Storage

Online Processing with Direct Access Storage.
Direct Access Storage Inquiry .•.......
Complex Activity Modification.
Direct Access Storage and Low-Activity Data Processing
High Activity
Program Residence• ..•......
Direct Access Storage and Online Systems
Direct Access Storage as Intermediate Storage
Direct Access Storage and the Responsive System

System/360 - System/370 Direct Access Storage Devices. .
Physical Description
Recording of Data
Access Mechanisms
Cylinder Concept and Capacities
Timing .•.•••.......
DASD Functions
Storage Controller Functions

File Commands
Status Information
Data Transfer ..
Checking

Track Format .. .
Index Point .•.
Home Address .
Gaps .••...•
Track Descriptor Record (RO).
Data Record Formats

Count-Data Format
Count-Key-Data Format .

Track Descriptor Record (RO)
Record Formats ..•..

Fixed, Unblocked ...
Fixed, Blocked
Variable, Unblocked .•
Variable, Blocked ..
Undefined
Reasons for Blocking

Track Capacity .••.
File Commands

Control Commands
Search Commands .
Read Commands
Write Commands •

Verification of Write Operations ..
Data Integrity

Control Unit Features
File Scan. . . ••
Record Overflow •.•...
2844 Auxiliary Control Unit

Concepts of DASD Switching .
Channel Switching
String Switching
Combinations of Switching .

Hardware Switching ...
Two Channel Switch.
Four Channel Switch.
String Switching

Operator Action

1-1
1-1
1-3
1-3
1-4
1-5
1-6
1-6
1-7
1-8
1-8
1-9
2-1
2-1
2-6
2-7

2-10
2-11

3-1
3-2
3-2
3-2
3-2
3-2
3-2
3-4
3-4
3-4
3-4
3-4
3-4
3-5
3-6
3-7
3-7
3-7
3-8
3-8
3-8
3-8
3-8

3-11
3-11
3-12
3-13
3-13
3-14
3-15
3-15
3-15
3-15
3-16
3-16
3-17
3-18
3-19
3-21
3-21
3-22
3-22
3-23

Contents

Optional Channel Path .•........
Reasons for Optional Channel Path

Shared DASD •.............
Shared DASD-General Operation
Reasons for Sharing
Rotational Position Sensing.
Without RPS
With RPS

The Mall Storage System
The Mass Storage System-an Overview .
The Mass Storage System-Hardware Functional

Description•..
3851 Mass Storage Facility (MSF)
Data Cartridge
Data Recording Device ..
Cartridge Access Station.
Accessors
The Mass Storage Control (MSC)

Model and Feature Options of the 3851 Mass Storage
Facility

Attachment•...............
3830 Model 3 Storage Control
The Mass Storage System-Theory of Operations .

Staging Units
Virtual Drive Concept

Tape Recording Organization
Access Method Services Uti I ities. . • . . • . • . . .

Manual Cartridge Entry
Other Utility Functions

User Programs
OS/VS Access Method Support of MSS

VSAM
ISAM •.•.........•....•.
Other Access Methods

System Availability and Data Integrity
System Perspective ..

Disk Pack Swapping
Serviceability

Data Integrity
Checking and Diagnostics
Extended Group Coded Recording
DASD Error Correction Code ...
Multiple Recording of Cartridge Labels
3830 Model 3 Tables

Backup
Data Security

Password Protection.
Conversion
Compatibility Considerations
VSAM/ISAM Relationships
VSAM and the Mass Storage System
VSAM Catalog and Catalog Management ..
Time Sharing Option
How Must the Application Programmer's Job Change .
Where Are the System Programmer Job Changes?
Introduction to File Organization.
Data File Characteristics
Processing Characteristics
Methods of Organization
IBM Operating Systems

3-24
3-24
3-25
3-25
3-26
3-26
3-27
3-28

4-1
4-4

4-7
4-8
4-9

4-10
4-10
4-10
4-10

4-12
4-13
4-14
4-16
4-16
4-17
4-18
4-20
4-20
4-21
4-21
4-22
4-22
4-23
4-23
4-24
4-26
4-28
4-28
4-30
4-30
4-30
4-30
4-31
4-31

4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-40
4-41
4-42

5-1
5-1
5-2
5-3
5-4

Sequential Organication
Description of Records
DASD Storage Requirements
Timing•.••....

Sequential Processing
Non-Sequential •.•.. ..

File Maintenance
Uses for Sequential Organization
Operating System Functions .

Queued Access Method
Basic Access Method
User Options ...•..

Partitioned Organization
Description of Records ..
DASD Storage Requirements
Operating System Functions
Indexed Sequential Organization
Prime Area
Indexes

Track Index .•
Cylinder Index
Master Index ..•....

Overflow Area ...•...
Cylinder Overflow Area ...
Independent Overflow Area.
Overflow Records ...•...

Additions Procedure
First Addition to a Prime Track
Subsequent Additions to a Track
Addition of High Keys ..

Variable Length Records ..
Operating System Functions

Queued Access Method .
Basic Access Method

Direct Organization
General Characteristics.
Addressing•.•..
Directly Addressed File

Using the Key as the Address
Using a Cross Reference List
Indirectly Addressed File

Address Conversion.
Division/Remainder Method
Digit Analysis
Folding
Radix Transformation
Evaluation of Results

Description of a Directly Organized File.
File Creation and Maintenance
Chaining Method

Creation of the File
Additions to the File.
Deletions from the File

Reorganization of the File ..

Progressive Overflow Method
Creation of the File ..
Additions to the File
Deletions from the File
Reorganization of the File
Progressive Overflow Compared to Chaining

6-1
6-1
6-1
6-1
6-1
6-1
6-2
6-2
6-2
6-2
6-2
6-2
7-1
7-1
7-1
7-1
8-1
8-1
8-1
8-1
8-3
8-3
8-3
8-4
8-4
8-4
8-4
8-4
8-7
8-8
8-8
8-9
8-9
8-9
9-1
9-1
9-1
9-2
9-2
9-2
9-2
9-3
9-3
9-4
9-5
9-5
9-5
9-6
9-7
9-7
9-8
9-9

9-10 -
9-10

9-10
9-10
9-11
9-11
9-11
9-11

Extended Search
Additions to the File
Deletions from the File
Reorganization of the File

9-11
9-12
9-12
9-12

Activity Loading ..•...........•.......... 9-12

Blocked Records 9-13
Directly Addressed File. 9-13
Indirectly Addressed File .. _ . _. 9-14

Operating System Functions 9-14
Introduction to Virtual Storage Access Method (VSAM). 10-1
What Are the Requirements for an Access Method? ... 10-1

10-2
10-3
10-3
10-3
10-4
10-4
10-4
10-4
10-5
10-5
10-5
10-5
10-6
10-6
10-6
10-7

What is VSAM
How Does VSAM Meet These Requirements .. .

High Performance
Applicability to Different Types of Processing
Simplicity of Use
Protection of Data
Recovery of Data.
Central Control
Portability of Data Between Systems
Device Independence.
Ease of Conversion
What Machines Can VSAM Be Used With? .

Getting to Know What VSAM Is and Does
What Are VSAM's Three Types of Data Sets?

The Use of Control Intervals
The Control Interval in Perspective
The Method of Storing a Record in a Control

Interval
Key-Sequenced Data Sets
Entry-Sequenced Data Sets .
Relative Record Data Sets

Alternate Indexes Used With Key-Sequenced and
Entry-Sequenced Data Sets

Base Clusters and Alternate-Index Clusters
Alternate-Index Paths
Alternate-Index Records
System Header Information.
Alternate Keys
Alternate-I ndex Pointers
Alternate-Index Maintenance

10-8
.10-10
.10-14
.10-15

.10-16

.10-16

.10-17

.10-18

.10-18

.10-18

.10-19

.10-19
A VSAM Catalog'S Use in Data and Space Management .. .10-20

Information Contained in the Records of a Catalog
Information in a Data Set Record
Information in a Volume Record

The Special Uses of User Catalogs ..
Improving Reliability
Moving Volumes from One Operating System to

Another
How the VS1 Master Catalog Differs from the MVS
Master Catalog

The VS1 VSAM Master Catalog
The MVS Master Catalog .. _
Utility Functions Carried Out By Access Method

Services
Moving Data Sets from One Operating System to

Another ..
EXPORT
IMPORT

Mass Storage System (MSS)

.10-21
· .. 10-21
· •. 10-22
· .. 10-22
· .• 10-22

.10-22

.10-23
_ .• 10-23

.10-24

.10-26

.10-29

.10-31
.. 10-31
.. 10-32

J

J

•

..

How Can the Time Sharing Options (TSO) Be Used With
VSAM? . 10-33

How Can System Management Facilities (SMF) Be Used
With VSAM?

How Can Existing Programs That Use ISAM Be Used
With VSAM7

Comparison of VSAM and ISAM
Comparison of VSAM and ISAM in Common Areas.

System Design Consideration .
Data Validation at Initial Input

Character Checking ...
Field Checking
Batch or Level Checking.
Control Field Checking .

Systems or Internal Controls ..
Output Controls
Program Testing•.
Direct Access Label Checking
The Audit Trail
Reconstruction Procedures.
Bypass Procedu res
Restart Procedures
Bibliography

.10-34

.10-34

.10-34

.10-35
11-1
11-1
11-2
11-3
11-9

.11-11

.11-12

.11-19

.11-20

.11-20

. 11-21

.11-23

.11-24

.11-26
B-1

..

•

Introduction

This chapter presents System/360, System/370, and direct access
terminology and concepts that are prerequisite to an under­
standing of the remainder of the text. It also discusses various
ways in which direct access devices can be used.

Direct Access Storage Device (DASD). A direct access storage
'device (DASD) is one on which each physical record has a discrete
location and a unique address. Thus records can be stored on a
DASD in such a way that the location of anyone record can be
determined without extensive searching. Records can be accessed
directly as well as serially.

File. The term "file" can mean a physical unit (a DASD, for
instance), or an organized collection of related information. In this
text, the latter definition usually applies. An inventory file, for
example, contains all the data concerning a particular inventory. It
may occupy several physical units or part of one physical unit.
The Operating System (OS), one of the programming systems
available for S/360 and S/370, uses the term "data set" instead of
"file" to describe an organized collection of related information.

Record. The term "record" can also mean a physical unit or a
logical unit. A logical record may be defined as a collection' of data
related to a common identifier. An inventory file, for example,
would contain a record (logical record) for each part number in
the inventory, A physical record consists of one or more logical
records. The term "block" is equivalent to the term "physical
record". On a DASD, certain "nondata" information required by
the control unit of the device is recorded in the same record area
as the physical record. This nondata information and the physical
record may be referred to as a whole with the term "data record".

Key. Each logical record contains a control field or key that
uniquely identifies it. The key of the inventory record, for
example, would probably be the part number.

Page 1-1

Terminology

DOS/VS and OS/VS data management programs also provide a
variety of methods for gaining access to a data set. The methods
are based on data set organization and data access techniques.

Data sets can be organized in several ways:

• SEQUENTIAL: Records are placed in physical rather than
logical sequence. Given one record, the location of the next
record is determined by its physical position in the data set.
Sequential organization is used for all magnetic-tape devices,
and may be selected for direct-access devices. Punched tape,
punched cards, and printed output are sequentially organ­
ized. In OS/VS access to records in a sequential file can be
made through the use of the Queued Sequential Access Meth­
of (QSAM) or the Basic Sequential Access Method (BSAM).
In DOS/VS access to records in a sequential file can be made
through the use of the Sequential Access Method (SAM)
which is functionally equivalent to QSAM and BSAM. (See
Chapter 6).

• INDEXED SEQUENTIAL: Records are arranged in se­
quence, according to a key that is a part of every record, on
the tracks of a direct-access volume. An index or a set of in­
dexes maintained by the system gives the location of certain
principal records. This permits direct as well as sequential
access to a record. Access Methods used to access an Indexed
Sequential file are called in OS and OS/VS the Basic Index
Sequential Access Method (BISAM) or the Queued Index
Sequential Access Method (QISAM) and in DOS and DOS/VS
the Indexed Sequential Access Method (lSAM). (See Chap­
ter 8)

• DIRECT: The records within the data set, which must be on
a direct-access volume, may be organized in any manner you
choose. All space allocated to the data set is available for
data records. No space is required for indexes. You specify
addresses by which records are stored and retrieved directly.
Direct data sets are created by using special Basic Sequential
Access Method (BSAM) macro's. Records can be accessed by
using the Basic Direct Access Method (BDAM). (See Chapter
9)

• PARTITIONED: Independent groups of sequentially organ­
ized records, called members, are on direct-access storage.
Each member has a simple name stored in a directory that is
part of the data set and contains the location of the mem­
ber's starting point. Partitioned data sets are generally used to
store programs. As a result, they are often referred to as
libraries. (DOS/VS does not support Partitioned organiza­
tion). (Chapter 7)

Page 1-2

J

•

•

..

•

•

KEY-SEQUENTIAL: This type of data organization is used
with Virtual Storage Access Method (VSAM). Records are
loaded in the data set in key sequence and controlled by an
index. Records are retrieved and stored by keyed access or by
addressed access, and new records are inserted in the data
set in key sequence by means of distributed free space. (See
Chapter 10)

ENTR Y-SEQUENCE: This is also a data set organization
used with Virtual Storage Access Method (VSAM). The re­
cords are loaded in the data set in physical sequence without
respect to their con tents. Records are retrieved and stored by
addressed access. New records are added at the end of the
data set. (See Chapter 10)

• RELATIVE RECORD: This is also a data set organization
used with Virtual Storage Access Method (VSAM). The re­
cords are loaded into fixed length slots. Each record occu­
pies a slot and is stored and retrieved by the slot number,
called the relative record number. (See Chapter 10).

Requests for input/output operations on data sets through macro
instructions employ two techniques: the technique for QUEUED
ACCESS and the technique for BASIC ACCESS. Each technique
is identified according to its treatment of buffering and synchro­
nization of input and output with processing. The combination of
an access technique and a given data set organization is called an
Access Method. In choosing an access method for a data set,
therefore, you must consider not only its organization, but also
what you need to specify through macro instructions. Also, you
may choose a data organization according to the access techniques
and processing capabilities available.

System/370 provides a variety of devices for collecting, storing,
and distributing data. Despite the variety, the devices have many
common characteristics. The generic term VOLUME is used to
refer to a standard unit of auxiliary storage. A volume may be a
reel of magnetic tape, a disk pack, or a drum.

This text will address the use of direct-access volumes .

Direct-access volumes are used to store executable programs, in­
cluding the operating system itself. Direct-access storage is also
used for data and for temporary working storage. One direct­
access volume may be used for many different data sets, and space
on it may be reallocated and reused.

Page 1-3

Uses of Direct Access
Storage

Online Processing with
Direct Access Storage

Direct Access
Storage Inquiry

One requirement for many applications is the ability to process
data as it becomes available. The term applied to this type of
processing is "online," meaning that input data does not have to be
subjected to preliminary editing or sorting before entering the
system, whether the input consists of transactions of a single appli­
cation or transactions of multiple applications.

High-capacity direct access storage devices make the online pro­
cessing approach feasible. While sorting may still be advantageous
before certain processing runs, in many cases the necessity for
presorting transactions before processing is eliminated. In addi­
tion, the ability to process data 'online provides solutions to
systems problems for which previous solutions were impractical.

As an example of an online systems solution, an automotive parts
distributor maintains records for a warehouse inventory of 25,000
items, each of these items identified by a ten-character part num­
ber. The distributor wanted to record each transaction affecting
each item as it occurred, so that if anyone item in inventory was
depleted he would immediately receive an out-of-stock noti­
fication, thus permitting the inventory to be replaced as soon as
possible. His existing data processing system provided these
notifications only once a day, because his orders were batched and
processed; all transactions affecting inventory were accumulated,
sorted into part-number sequence and processed against a master
inventory file at the end of each day. The problem was solved with
the installation of a direct access storage system. All inventory
transactions would be processed online, as they occurred, and the
required status notifications would be provided almost imme­
diately.

Although the example refers to multiple types of inventory input
transactions which were processed online, it should not be inferred
that inline processing is a unique requirement of inventory appli­
cations, or that the online concept should be limited to trans­
actions involving a single application. Direct access storage enables
the user to maintain up-to-date records for diversified applications
and to process nonsequential and intermixed input data for
multiple application areas.

Data processing installations have always found it desirable to
obtain specific information from files in the middle of an opera­
tion. Before the development of direct access storage, the ability
to request information directly from temporary or permanent
storage devices was limited. Procedures were developed but at best

Page 1-4

"

•

..

..

they resulted in time-consuming interruptions, and often the infor­
mation was not completely up to date when received. The special
ability of direct access storage systems to process input data of
various types for multiple applications inline, along with the
ability to immediately update all affected records, makes it
possible to request information directly from storage and have the
reply displayed in readable form. This is significant because it no
longer makes it necessary to disrupt normal processing, nor is
there need for a delay between a requirement for informaton and
a reply. To illustrate, a large airline operated a number of reser­
vations offices throughout the country and attempted to maintain
a record of all flights and passenger reservations on ledger-type
cards in a central location. The records were updated and inquiries
made by telephone. Replies were often inaccurate and delayed. An
analysis of the problem indicated that a direct access storage
system would be a solution. Flight-passenger records could be
maintained in direct access storage and given the proper communi­
cations link from reservation desks to a computer, thus permitting
all inquiries to be answered quickly and accurately.

Other examples emphasize the importance of immediate inquiry
"What is the balance of account number 133420?" An inventory
control question might be: "How n;tany of part number 55632 are
there on order?" Manufacturing: "How many subassemblies of
part number 16414 are on hand?" And in payroll: "What are the
year-to-date earnings of employee number 13862?" Granted that
each of these questions could eventually be answered in other data
processing approaches, the question is when and how. Normally, it
would be at the end of a completed run, which might be too late
to be of significant value.

It is necessary, therefore, to consider the impact of immediate
inquiry capability on any system, for inquiry may be needed
regardless of previous data processing experiences.

The ability to request information directly from a computer and
receive an immediate response without involved or complex oper­
ational procedures is in itself a justification for direct access
storage devices in many applications .

As the data processing requirements of a business increase, there Complex Activity Modification
also tends to be an increased interdependency between applica-
tions. Various applications require the same input records, or, for
processing, require reference to the same master file records used
in other applications. Modification of existing procedures to vary
the sequence of file referencing and/or to accommodate additional
references is more easily accomplished on direct access storage
systems.

Page 1-5

Direct Access Storage and
low-Activity Data Processing

In the case of a company with production control, inventory
maintenance and budgetary accounting, frequent procedure
changes were required when new products were manufactured and
when budget revisions were issued. Therefore, the referencing
sequence changed and additional references to master file records
became necessary. Regardless of the system selected to do the job,
the procedures had to be altered when changes occurred. However,
a direct access storage system was selected to make changes easier.
With it, master file records were always accessible regardless of
referencing requirements. In addition, direct access storage units
contained both inventory records and budgetary records and each
could be referenced as needed. Thus complex activity was handled
with a minimum of effort.

In the solution to this problem lies the solution to other data
processing problems where multiple, interdependent activities and
multiple reference to interrelated records are required.

Many of the applications installed today involve the processing of
a limited number of input transactions against very large master
files. Although very few master file records are altered or refer­
enced by the input data for a particular run, an entire master file,
which is necessarily maintained in sequence, must be searched. As
an example, in a representati~e billing system, 100,000 customer
master records are maintained, only 9000 of which are referenced
daily. The 9000 records could be collected and sorted into master
file customer-number sequence and processed against the file in a
single run daily. However, the billing operation requires that bills
be completed throughout the day. The data is therefore batch­
processed nine times during the day, with the result that 1000
input transactions are processed against the 100,000 master
records on each run. Since there is no practical way to skip
through a file, every record must be examined by the system in
each of the nine runs.

An answer to this billing problem, as well as to many other similar
processing problems, lies in the use of direct access devices, which
permit the retrieval of a single record. The storing of data records
so that the location of anyone can be determined without exten­
sive searching is the unique capability of data processing systems
using direct access storage efficiently.

High Activity The use of direct access storage should be considered as a solution
to the problems of high-activity applications, that is, those in
which a comparatively small number of records are referenced or
updated frequently. As an example, in the processing of piecework
payroll calculations for a company having 10,000 employees, each
employee working on ten or more different jobs each day, each at
a specific rate and under a specific guarantee, and each calculation

Page 1-6

J

•

•

II

based upon the employee's unique work history, there is a need
for continual reference to a comparatively small number of rate
tables. In a batch approach, as job completion tickets were
received they would be batched by employee, and a master rate
file would be searched for all the employee rate tables required to
process each employee's job tickets - or, as an alternate, a separ­
ate edit run could be made to determine which rate tables would
be required. In either case job ticket data would be tagged with a
rate table requirement sequence, and all reference to a particular
rate table would be completed. When all rate data was extracted,
another run would be required to complete the calculation. In a
direct access approach there would be access to all rate tables as
they were required, without having to batch or to search through
the file for each one and without having to go through an involved
procedure of repeated sorting and processing to complete the job.

Program steps required for processing can also be stored on direct
access storage so that they can be used when required. Doing this
offers several advantages:

1. The size of real storage can be reduced because only the
optimum number of program steps for processing data need
be in real storage at anyone time.

2. Time between runs is reduced significantly because tapes no
longer have to be rewound and set up. Instead, operational
setup time can be limited to those functions pertaining to
output, such as changing printer output forms.

3. Data can be processed inline, regardless of the type of record
referenced or updated. As an example, a company with an
inventory control data processing tape system required a
total of 35,000 individual computer program steps for the
processing of many types of input data. The system selected
for the job could contain about 750 program steps in main
real storage at one time. A tape program library was
considered but the maintenance and continual searching of
the library tape was inefficient because runs could not be
made in the same sequence as the library tape. A better
solution for this problem resulted with the attachment of a
direct access storage device to the computer. When an order
was entered, it triggered a seek of the order program and a
transfer of it to real storage. If there came a time in the
processing where the back-order program was required,
back-order program steps would overlay the order program in
core storage and the back order processed. If a receipt was
processed, it would trigger the transfer of the receipt program
to real storage and be processed - and so on through the
many transactions which affect inventory. All this was done
au tomatically.

Page 1-7

Program Residence

Direct Access Storage and
Online Systems

Direct Access Storage as
Intermediate Storage

Another difficulty that can be resolved by having direct access to
program steps is program compaction. (Compacting occurs when
the programmer attempts to get as many program steps as possible
within a limited number of storage locations.) Although direct
access storage· does not remove the need for efficiency, the
programmer's job is assisted. If his program is not limited by
space, he can better spend his time on writing a program that
operates efficiently. By setting up his programs as a series of
blocks, each with its own specified locations in direct access
storage, he also simplifies the task of modifying them. He can
organize his programs into sets of expandable subroutines and
proceed with the initial layout of the system, confident that all
processing planned can be achieved. Large programs can be broken
into primary and secondary subroutines with the access and
transfer of secondary subroutines when needed and in the
sequence required. Only when main storage is exceeded may
additional processing time be required for further transfers of
subroutines.

"Online" refers to the operation of input/output devices under
direct control of the CPU (central processing unit). When this can
be accomplished, it eliminates the need for human intervention
between input origination and output destination within computer
processing. "Online" can be applied to those units under direct
control of the CPU and physically located next to it - for
example, an online printer. It is also used for teleprocessing units
not located next to the CPU but requiring a communications link.

In the airline flight reservation problem the need for inquiry was
discussed. Since the reservations offices were remote from the
computer, a teleprocessing communications link was necessary.
Teleprocessing and direct access equipment therefore were
mutually supplemental. Without direct access storage the main­
tenance of and access to flight records on a computer system
would be extremely difficult. Without teleprocessing equipment
online, the ability to change records or to inquire regarding infor­
mation on those records would also be difficult. The lack of either
would make a computer system impractical. The reservations
office console I/O units were online to make in line processing
possible. Any computer system requiring remote I/O units online
must be carefully analyzed to determine whether the advantages
of direct access storage can also be applied.

When immediate processing of certain I/O types is not required,
direct access storage can be used to accumulate the infrequently
occurring transactions. For example, in an installation of a manu­
facturer with serveral salesmen, the sales credits for commission
calculation are saved until the end of the week, at which time
commission statements are printed. Credit is given to the salesmen

Page 1-8

•

•

J

•

at billing time, but credits are accumualted for a weekly run.
Rather than calculate the commission for each order at billing
time, the required information can be stored as it occurs on a
DASD. At the end of the week all of the credit data is processed
and statements are printed. This means that all processing, of
credits can be done at once and that the setup time for printing a
special commission statement from the online printer is required
only once a week.

In any application where selected input transactions can be
accumulated, control totals taken, and total counts of items main­
tained, it might be advisable to use direct access storage as inter­
mediate storage to gain a time-balanced system. When the
accumulated batch is of sufficient size to warrant processing, a
signal may be given to the system calling for initiation of pro­
cessing; or the system may be programmed to look at a count to
determine when the number is of sufficient size for processing.

Output records may be accumulated in the same way. During the
course of a day, random transactions may have been processed
calling for the generation of output documents which, if produced
at that time, involve multiple setups of equipment or the
continuous reservation of a magnetic tape drive. For convenience
in scheduling the printing operations, records may be retained in a
section of the DASD until the information file is large enough to
warrant printing, or until some other batch that produces a similar
document is run.

In an application that produces several outputs, the intermediate
results can be stored on a DASD. For example, when doing a
payroll on a system with one printer, all the calculations can be
done and the payroll register printed. At the same time, the infor­
mation required for the checks can be written on a DASD. When
all employee records have been processed, the check records can
be quickly read back and the checks printed.

The ability to process input data inline regardless of the diversity
of applications and to store both master records and programs
makes direct access storage systems uniquely responsive. They can
process data randomly, give an immediate response, or, even more
appropriately, give these responses on a priority basis.

When a system is called upon to process many applications and the
input data is received randomly, it often becomes necessary to
schedule processing and establish a priority for processing. The use
of direct access storage gives unlimited flexibility in doing this
without creating an overpowering burden upon the operators of
the system. For example, a general file maintenance run can be

Page 1-9

Direct Access Storage
and the Responsive System

interrupted to process an inquiry; upon completion of inquiry pro­
cessing, the machine can return to its file maintenance run. A
payroll job ticket calculation run can be interrupted to do an
assembly of a new program or even to test a new program. In
other words, a direct access storage system responds to changing
priorities and requirements. Rather than always processing data on
a first-come, first~served basis, a direct access storage system re­
sponds effectively on a controlled first-things-first priority basis.

When a direct access system is selected to fulfill the data pro­
cessing needs of an installation, it may not obviate the need for
sorting records into sequence. Direct access storage devices can be
used for very efficient sorting operations.

Page 1-10

..

J

•

•

System/360
System/370

Di rect Access
Storage Devices

Several DASD's are available for System/360 and System/370. The
devices differ in physical appearance, capacity, and speed. This
chapter discusses these characteristics for each of the devices.

Functionally and logically, however, they are similar in terms of
data recording, checking, formatting, and programming (see
Chapter 3).

Refer to the preface of this text for device type and Models of
S/360 or S/370 for which it is available.

2314 Direct Access Storage Facility (see Figure 2.1). The 2314
uses the 2316 removable disk packs. The packs, when removed
from the drive, are enclosed in a protective cover. Each pack con­
sists of 11 disks mounted on a vertical shaft. The disks are 14
inches in diameter and are made of metal with a magnetic oxide
coating on both sides. Since the top surface of the top disk and
the bottom surface of the bottom disk are not used for recording,
each pack contains 20 recording surfaces.

Page 2-1

Physical Description

Figure 2.1 2314 Direct Access Storage Facility

3330 Disk Storage. (see Figure 2.2). The 3330 closely follows the
design concepts introduced by the IBM 2314. This facility con­
sists of up to 4 IBM 3330 disk storage units or a IBM 3333 disk
storage unit with 0 to 3 IBM 3330 disk storage units. Each unit
(3330 or 3333) contains 2 drives. The 3336 disk pack is used with
these drives. The 3336 disk pack is removable and provides for
larger capacity than the 2314.

There are 2 models of the 3330 disk storage which differ in vol­
ume capacity. The IBM 3330-1 disk storage has a capacity of 100
million bytes per volume. The 3330-11 has a capacity of 200 mil­
lion bytes.

Figure?2 3330 Disk Storage Facility

Page 2-2

J

•

..

Removable logical address plugs permit changing the logical device
addresses of the drives within the facility. An additional service
address plug is provided with each facility for customer engineer
servicing from the CE panel.

The 3330 uses the IBM 3336 disk pack (see Figure 2.3).

Figure 2.3 3336 Disk Pack

2305 Fixed Head Storage Facility. (see Figure 2.4). The 2305
fixed head storage facility consists of a 2835 Control unit and one
or two 2305 fixed head storage modules.

The 2305 fixed head storage module uses six disks permanently
mounted in each storage module .

Page 2-3

Figure 2.4 2835 Storage Control and 2305 Fixed Head Storage Module

3340 Disk Storage Facility. The 3340, together with the 3348
Data Modules (see Figure 2.5), differs in design from previous
DASD devices in that the 3348 Data Module contains the disks,
the spindle, the read/write heads, and the access arms. The 3348
Data Module is a removable sealed cartridge, which reduces expo­
sure to outside contamination.

The data module concept offers the following advantages:

• Drive capacity can be changed by changing the data modules.
There are two module types available. The 3348-35 data
module has the capacity of approximately 35 million bytes.
The 3348-70 data module has the capacity of approximately
70 million bytes.

• Preventive maintenance of the heads, disks, and spindle is
eliminated by reducing the exposure to outside contamin­
ation.

• Reliability is improved by dedicated read/write heads. Each
head reads only the data it previously wrote.

Another feature of the data module is defect skipping. Defect

Page 2-4

•

f

•

skipping allows data to be written before and after a surface de­
fect. Thus, all of the track can be used except for that portion
that has the defect. This also eliminates the access time that was
formerly required to move the read/write heads to an alternate
track.

The 3340 configuration includes combinations of these disk stor­
age modules (see Figure 2.6).

3340-A2 (control unit and 2 drives)
3340-BI (1 drive)
3340-B2 (2 drives)

All 3340 subsystems must have one 3340-A2 module.

3344 Disk Storage Facility. The 3344 disk storage is a large capac­
ity nonremovable DASD device which attaches to the 3340 Model
A2. Logically, a single 3344 disk storage drive functions as four
3348-70 data modules of 3340 disk storage facility.

3340-A2

Figure 2.5 3340 Disk Storage Facility

As with the 3340 disk storage facility, the 3344 disk storage fa­
cility has an optional feature of fixed heads for a portion of the
data module.

3350 Direct Access Storage. The 3350 direct access storage is a
larger capacity, faster access DASD device than the 3330 or 3340

Page 2-5

Figure 2.6 3348 Data Module

or 3344. It uses a nonremovable sealed head disk assembly.

The 3350 offers 3 methods of operation:

Native mode.
In this manner the volume capacity is approximately
317,500,000 bytes.

3330-1 Compatibility mode.
In this mode the 3350 disk functions logically as two
3330-1 volumes. This provides a data capacity of ap­
proximately 200 million bytes per volume.

3330-11 Compatibility mode.
In this mode the 3350 functions logically as one 3330-
11 volume. This provides a data capacity of approx­
imately 200 million bytes per volume.

The 3350 also has the feature of defect skipping as in the
3340/3344 disk storage facility. Fixed heads for a portion of the
data module are available as an optional feature.

Recording of Data The recording surface of each device is divided into many tracks.
A track is defined as a circumference of the recording surface. The
tracks are concentric, not a spiral like a phonograph record.

Data is recorded serially bit by bit, eight bits per byte, along a
track. The parity bit associated with each byte in storage is not
recorded (for the way in which data transfer is checked, see
Chapter 3).

The number of tracks per recording surface and the capacity of a
track for each device are as shown in Figure 2.7. Each track has
some "nondata" information recorded on it (again see Chapter 3).
The capacity given is the maximum number of data bytes that can
be recorded on a track. Where alternate tracks are shown, these are
reserved for use in case of damage to the recording surfaces. For
the drum devices, "spare" tracks are provided for this purpose.

Page 2-6

.-

•

•

..

~
~ 2314 Sto"., F",n", 200 ""k, P'" ,,,f,re (p'"' 3 ,It",

2314 Storage Facility: 200 tracks per surface (plus 3 alternates);
7294 bytes per track

3330 Disk Drive:

20 tracks per cylinder

404 tracks per surface (plus 7 alternates);
13.030 bytes per track
19 tracks per cylinder

2305 Fixed Head Facility:
Mod. 1 384 addressable tracks;

Mod. 2

3340 Disk Drive:

14.576 bytes per track (RO no key);
14.136 bytes per track (R1 no key).

768 addressable tracks;
14.866 bytes per track (RO no key);
14,660 bytes per track (R1 no key).

with 3348-35 module
348 tracks per surface (plus 1 alternate);
8,368 bytes per track
12 tracks per cylinder

with 3348-70 module

3350 Disk Drive:

3344 Disk Drive:

Figure 2.7 DASD tracks

696 tracks per surface (plus 2 alternates);
8,368 per track
12 tracks per cylinder

555 tracks per surface (plus 5 alternates)
19,096 bytes per track
30 tracks per cylinder

functions as four 3348-70 data modules

Each device has some type of access mechanism whereby data is
transferred to and from the device. The mechanisms are different
for each device, but each mechanism contains a number of read/
write heads that transfer data as the recording surfaces rotate past
them_ Only one head can be transferring data (either reading or
writing) at a time.

2314 Disk Storage Facility (see Figure 2.8). The access mechanism
consists of a group of access arms that move together as a unit.
This comb type access mechanism can move horizontally to the
different positions on the disk, thus giving access to all the tracks.

Page 2-7

Access Mechanisms

Each arm has two read/write heads. There are ten arms giving a
total of twenty heads - one for each recording surface.

3330 Storage Facility. Each drive of the 3330 has a comb type
mechanism like the 2314. The 3330 having 19 tracks per cylinder
has 19 read/write heads - one for each recording surface.

Disks

Comb-type access assembly

~~:-~~
~==========~~~'~ .:: :: ~-~~iiiiiiiiiiiI-~ I::::;=======~~. :

.... · .. ::::·····~·~;iiiiiiiiiiii __ ---.. ~~~ ... -.

Read/write heads

...... \: Access arms

Cylinder
Track

Figure 2.B Comb type access mechanism

2305 Model 1. An addressable recording track occupies a 180-
degree arc on a disk surface (see Figure 2.9). It consists of two

Segment

Head for
Lower
Segment

Figure 2.9 2305 Modell

Page 2-8

>..-_- Head for
Upper
Segment

Head for
Lower
Segment

J

•

logical track segments, one on the top surface of a disk and the
other directly below it on the lower surface of the same disk. Two
recording elements (R/W heads) are paired to access each address­
able track in parallel. Data is recorded serially by bit but parallel
by byte. All odd bytes are recorded on the upper segment and all
even bytes are recorded on the lower segment. Half a rotation is
required to record a full logical track of data and the average
latency is one quarter of a revolution. There are 384 tracks each
with a capacity of 14,576 bytes, giving a module a capacity of
over 5M bytes.

2305 Model 2. Four non-removable access mechanisms are
positioned around the disks (see Figure 2.10). Each access
mechanism accesses one quarter of the tracks on each surface.
Data is recorded serially by bit on each track. There are 768

Figure 2.10 2305 Model 2

72 Tracks

Per Surface

768 Recording Tracks/Module

96 Spare Tracks/Module

Page 2-9

Cylinder Concept

and Capacities

addressable tracks. Only having one head per track allows twice as
many recording tracks to be used per surface compared with the
Modell. Each track has a normal capacity of 14,866 bytes, giving
a module capacity of over 11M bytes.

3340 Disk Drive. The 3340 uses the 3348 disk module which has
the access mechanism contained in the sealed cartridge. The 3348
having 12 tracks per cylinder has 12 read/write heads - one for
each recording surface. Because these data modules are removable,
they permit unlimited offline storage capacity.

3350 Disk Drive. The 3350 disk drive uses a nonremovable disk
pack with a sealed head disk assembly like the 3348 disk module.
However, with the 3350, there are 30 tracks per cylinder, that is,
30 tracks may be accessed with one positioning of the access
mechanism.

3344 Disk Drive. The 3344 disk drive also uses a nonremovable
disk pack with a sealed head disk assembly. Logically, the 3344 is
treated as four 3348 disk modules. However, physically, the 3344
has 30 tracks accessible with the positioning of the access mech­
anism. The mapping of the 3348 to the 3344 will be treated in
the next section.

A cylinder of data is the amount that is accessible with one posi­
tioning of the access mechanism. This is an important concept,
since movement of the access mechanism represents a significant

203 Cylinders

20 Tracks

Figure 2.11 2314 cylinders

Page 2-10

•

..

portion of the time required to access and transfer data. A large
amount of data can be stored in a single cylinder, thus minimizing
the movements of the access mechanism. Using the 2314 as an ex­
ample, physically the pack consists of twenty separate horizontal
recording surfaces, while from an access point of view it consists
of 203 separate vertical cylinders of twenty tr~cks each (see
Figure 2.11).

The capacities given below do not include the surfaces or tracks
reserved as alternates or spares and assume the use of part of each
track for information required by the IBM operating systems.

2314 Storage Facility. Each pack has 200 cylinders (plus three
alternates), which is equal to the number of positions to which the
access mechanism can move. Each cylinder has 20 tracks, which is
equal to the number of recording surfaces. A cylinder has a
maximum capacity of 145,880 data bytes (7294 bytes per track,
20 tracks per cylinder). A pack has a maximum capacity of 29.17
million bytes. A 2314 Model Al (eight drives) has a maximum of
233.4 million bytes available to the system at one time. A 2314
Model A2 (five drives) has an on-line capacity of 145.880 million
bytes.

3330 Storage Facility. There are two models of the 3330 avail­
able. The 3330-1 has 404 cylinders (plus 7 alternates), which is
equal to the number of positions to which the access mechanism
can be moved. Each cylinder has 19 tracks, which is equal to the
number of recording surfaces available at each positioning of the
access mechanism. A cylinder has a maximum capacity of
247,570 bytes. A volume has the capacity of 100 million bytes.

The 3330-11 is similiar to the 3330-1. The track capacity is the
same, 13,030 data bytes. The number of tracks in a cylinder is the
same. That is, there are 19 tracks per cylinder; that is, there are
19 recording surfaces available at each positioning of the record­
ing mechanism. The difference is the number of cylinders. The
3330-11 has 808 cylinders (plus 7 alternates), which is equal to
the number of positions to which the access mechanism can be
moved. By doubling the number of cylinders, we double the
capacity of the volume to 200 million bytes .

2305 Fixed Head Storage Module. The storage module is a fixed
head disk drive with each addressable track having it's own fixed
read/write element.

The 2305 Modell has 864 R/W elements, 768 are positioned to
address 384 recording tracks (two elements per data track handle
data in parallel (see Figure 2.9). 96 elements are positioned to
address the 48 spare tracks. These spare tracks can be physically

Page 2-11

connected by the customer engineer to replace a faulty original
track. The module has a capacity in bytes (full track records; no
key) of 5,428,224.

The 2305 Model 2, like the Model I, also has 864 R/W elements,
but since it records data serially by bytes, it has 768 elements
positioned to address 768 recording tracks, and 96 elements for
the spare tracks. Module capacity of the Model 2 is 11,258,880
bytes (full track records, no key).

3340 Disk Drives. Drives of the 3340 series use the 3348 sealed
data module. Drive capacities may be changed by selecting one of
the following options:

• 3348-35 has 348 cylinders with I alternate. There are 12
tracks per cylinder. The byte capacity of a track is 8,368
bytes giving the data module a capacity of 34,944,768 bytes.

• 3348-70 has 696 cylinders with 2 alternate tracks available.
As with the 3348-35, this data module also has 12 tracks per
cylinder but has a capacity of 69,889,536 bytes.

The 3340 has an optional feature of fixed heads for some portion
of the 3348 data module. With the fixed head feature some tracks
have read write heads fixed over them and thus require no time for
positioning. This portion of the data module will have very quick
access time since no physical movement of an access mechanism is
required. This feature is available for the first 5 cylinders of the
3348 data module. The other 343 cylinders (the 3348-35) or the
other 692 cylinders (the 3348-70) are still accessed by the comb
type mechanism.

3350 Disk Drives. The disk drive for the 3350 has 555 cylinders
(plus 5 alternates), which is equal to the number of positions to
which the access mechanism can move. Each cylinder had 30
tracks. The maximum data capacity of a volume is approximately
317,500,000 bytes. With the 3350, there is the optional feature
of fixed heads for some of the data tracks. Fixed heads are avail­
able for the first two cylinders when the 3350 is in 3350 mode.
Fixed heads for the 3350 in 3330 mode are available for the
first 3 cylinders of the primary logical device.

The 3350 can be treated in 3 different modes.

1. The 3350 as a 3350. In this case, the entire disk module
is used. There are 555 cylinders (numbered 0 to 554)
for user data. Each cylinder contains 30 tracks (num­
bered 0 to 29). The alternate tracks are used if a data

Page 2-12

•

J

•

"

2.

track should become too damaged to contain data. (See
Figure 2.12)

The 3350 as one 3330-11. In this case, the 3350 is
treated as one 3330-11 disk volume. This conversion of
a 3350 into a 3330-11 is logicql, not physical, and hand­
led by the hardware of the disk drive and its controllers.
This allows the user to convert to the 3350 from 3330-
11 without programming changes but still achieve the
speed of data transfer provided by the 3350.

Only the first 544 cylinders (numbered 0 to 543) of
the 3350 are used. Three cylinders of the 3330 are
mapped onto two cylinders of the 3350. For example
if the user requests from the disk drive the data from
cylinder 8 track 0 of the 3330-11, the hardware will
return the data from cylinder 5 track 0 of the 3350.
(See Figure 2.12)

3. The 3350 as two 3330-1 'so The 3350 in this mode is di­
vided logically into two 3330-1 drives, called the prima­
ry and the secondary drive. Cylinders 0 to 273 are
treated as the cylinders of a 3330-1 device called the

I Pri mary 3330-1 Logical Ot'vice

, A"~ .. " I
Secondary 3330·' Logical Device

3330-1 ~od. + + +

{ "'~. 20

I AlternatflS

012345

===::>

I
403 '-:06 409 1 4

402 40" 4051407 4081410 aT 2 315
(,

269·270271 272 273,274 275276277

,
T 403 406 409

4051407 408j41O
Unu$l!d CE

407 404
r
r 542 5435445455465471 560

Ac~e:>$ Positions (Physicol Cylinders)

3330-11 Logical DcoJicc

3330·; 1 Mode I
" .. ,",U,M.{ •

@ , @

+
Altl2rnates

r (

805 808 811 81' I 1 2. - -2O 1 4 7

8041805 8101812
Unused

807 809 813 , '"I 31 5 6/8
0'" 2

a
,

o I 2 3 4 5 536537538 539540541542 1

r--u
~

~ •
Access Positions

3350 Logical and Physical Device

3350 Mode I
""'~ "'~ { :1 r--r--r---1 .1 ' I ' I---r--r-Tl I'I-~':

012345 ~
r

===>
Access- Positions

Figure 2.12 3350 mapping

+ Each numbered rcct80gle represents a logical cylindP.r.
@ H~ad #19. and Head #29 (o"'y of thp odd-numbered physical cv!inder),

arc unused in the 3330 modes.

Page 2-13

Alternates

552 553 554 555 556 557 556 559 CE

Co 55205355415555565575585591560

primary device. Then cylinders 274 to 547 of the 3350
are treated as the cylinders of a 3330-1 device called
these secondary device. This allows programs that are
written to access a 3330-1 to access the 3350 without
programming changes and gain the speed of data trans­
fer of the 3350. Three cylinders of a 3330 are mapped
to 2 cylinders of a 3350. (See Figure 2.12)

3344 Disk Drives. The 3344 disk pack is a large capacity disk
pack that functions logically to the user as 4 3348-70 data mod­
ules. Physically, the 3344 disk pack has 560 cylinders (plus one
track for testing by the IBM customer engineer). Each physical
cylinder has 30 surfaces or physical heads (numbered 0 to 29).
With this device, each physical surface is logically treated as
two tracks of a 3348 data module. For example, physical track 0
of the 3344 will contain the data for tracks 0 and I of cylinder 0
of the first 3348 data module mapped on this device. Thus, each
physical cylinder of the 3344 disk pack contains 5 cylinders of a
3348 data module. In all cases the user is only concerned with the
four logical devices that are mapped on the device. The conver­
sion of the 3348 logical address to the actual physical location on
the device is handled entirely by the device and its controllers.
(See Figure 2.13)

The fixed head feature is available for ten cylinders of the first
logical device.

ICI Device A i Device 8 J DevIce C ! . De\'lce D I
1-<.-I----'-'--'-'-'----... o+r4"--:~~-- 14t1------1i------.~

2g~
P 241 I' I

I -' C. t.

-

1 694

~
4 I 9

l

--

I 694~
-

I
694

~
4 9

,

--
G99 4 , 9 I

h
Y
s

a
I

H
e
a
d

23

18
17

12
11

6
5

0

3 8 693 698

~
3 8

-
2 7' GCJ2 697 2 7

-
1 6 691 696 1 6

I

0 5 690 695 0 5

t t
0 , , 138 139 140 141

-==================> Acctss Positions (Physical Cylinders)

-

-

-

.1
I

I
693~ 3

Ncmbcrs in boxes are logical cy!inders for the corresponding log:cal device.
Fixed head feature app!ies to "Device AU, logical cylinders 1-10 only.
Logical cylinders 696 and 697 arc alternates.
Logical cylinders 698 and 699 are unused.

Figure 2.13 3344 mapping

Page 2-14

1693 lG08
I ---:~

69? G97
CE I

691 69G

693

~
3 I 8

-- i --
692 697\ 2 I 7

-
696! 1

--
691 6

8

6

-- - --
690 69[, I

L i , 558 559 560

690 695 0 5

~ 415 419 420 421
.1

I

5

281 ..

..

The time required to access and transfer data consists of four
parts: access motion, head selection, rotational delay, and data
transfer.

Access Motion Time. This is the time required to position the
access mechanism at the cylinder containing the specified record.
If the mechanism is already at the correct cylinder, there is no
need to move it, so access time is zero. In the following discussion
of each device, the figure given is the minimum access time if the
mechanism does move.

• 2314 Storage Facility: As shown in Figure 2.14 acceleration
of the mechanism is a factor, but the access motion time is
essentially a function of the number of cylinders moved. For
a movement of one cylinder, the minimum time is 25 ms, the
maximum is 130 with an average of 60 ms.

140

120

Timing

v
V V'"

./

V ~ L
~

100

en
-c
c:
0
u 80 Q)
en

'r

I r

E
c:
Q) 60

E
i=

40

20

o
o 20 40 60 80 100 120 140

Number of tracks traveled

Figure 2.14 2314 access time

• 3330 Disk: For a movement of one cylinder, the minimum
time is 10 milliseconds; the maximum is 55 ms; the average
over the entire pack is 30 ms.

Page 2-15

J

160 180 200

• 2305 Fixed Head: None, since the access mechanism does
not move.

• 3340 Storage Facility: For a movement of one cylinder, the
minimum time is 10 milliseconds; the maximum is 50 ms; the
average over the entire pack is 25 ms.

3350 Disk Storage. For a movement of 1 cylinder, the minimum
time is 10 milliseconds; the maximum is 50 milliseconds; the aver­
age over the entire pack is 25 milliseconds.

3344 Disk Storage. For a movement of 1 cylinder, the minimum
time is 10 milliseconds; the maximum is 50 milliseconds; the aver­
age is 25 milliseconds.

Head Selection. Electromc switching is required to select the
correct read/write head of the mechanism. The time is negligible in
all cases.

Rotational Delay. This is the time required for the correct data to
rotate to the read/write head so that the data transfer can begin. It
can range from zero to a full rotation (revolution). Half a rotation
(average rotational delay) is generally used for timing purposes.
The full rotation and average rotational delay for~each device are:-

Full Average

2314 storage facility 25 ms 12.5 ms
3330 16.7 ms 8.4 ms
2305-1 10 ms Rotation 2.5 ms

5.1 Access
2305-11 10 ms Rotation 5.0ms

10.25 Access
3340 disk drive 20.24 ms 10.12 ms
3350 disk drive 16.8 ms 8.4ms
3344 disk drive 20.24 ms 10.12 ms

Page 2-16

J

J

J

•

Data Transfer. The time required to transfer data between the
device and core storage is a function of rotation speed and the
density at which the data is recorded.

Milliseconds
KB* per byte

2314 storage facility
3330 disk drive
2305 Model I

Mode12
3340 disk drive
3350 disk drive
3344 disk drive

312 KB
806KB

3000 KB
1500 KB
885 KB

1198 KB
885 KB

* Thousands of bytes per second

0.0032051
0.0012407
0.0003333
0.0006666
0.0011300

0.0011300

Summary of Timing. In timing a job, the direct access portion
consists of access motion time plus rotational delay plus data
transfer. An average of half a rotation is generally used for rota­
tional delay. Complete timing for a job requires, of course, the
consideration of additional factors such as problem program pro­
cessing time, access method processing time, and control program
time. In this text, only direct access device timing is discussed .

Page 2-17

J

•

DASD Control Units

This chapter discusses the functions of the devices and the manner
in which data is stored on the disk volume. All the devices use
a similar method for storing data. Also, all the devices have
similar functions that must be performed, such as, positioning
the access mechanism and performing error detection and correc­
tion.

Devices are connected to the system through the channel. The
channel retrieves the channel commands from the main storage of
the system. The channel commands are the user's instructions for
the I/O devices, such as, read a record or move the access mecha­
nism to a particular position. The channel passes this instruction
or command onto the device. The channel also takes the data
from the device and places the data in the main storage of the
system.

Once the channel passes the command to the device, there are
many functions that must be performed. For example, assume
that the channel passed on the command to move the access mech­
anism to cylinder 12. The command must be interpreted. The
access mechanism must be moved to cylinder 12. If the move­
ment does not get the access mechanism to cylinder 12, the error
must be detected, and if possible, corrected. The channel must be
informed of the completion of the operation.

Thus the using of a disk drive involves quite a few functions. To
perform these functions, there are Storage Controllers, Control
Units, Integrated Storage Controllers, and Heads of Strings (some­
times called Controllers). In a particular configuration there will
be one or more of these units depending on the DASD used and
the features desired.

Let's look at an example. See Figure 3.1. In this figure, we have a
series of 3330 DASD devices. Also, there is an IBM 3830 Storage
Controller. The 3830 Storage controller controls or manages the
3330. The 3830 interprets the command from the channel. Then
the 3330 performs the required function. Error detection and cor­
rection is performed by the 3830 Storage Controller.

Page 3-1

DASD Functions

Channel

o I·:·~I·~· • Fetches channel address word.

1------1/0 Instruc tions ...
~~

• Fetches channel commands .
• Controls transfer of data between

3830 and CPU. ~~'" Data • ·-·-i5.lu. ... Status

~
CPU

• Issues 1/0 instructions.

• Stores data. >
'"

....
""0 CI> • Stores status.
C CI:

• Stores channel program. co

-
3330 3830

• Responds to commands from 3830-1. • Interprets and executes commands from

• Positions access mechanism.

• Selects head.
• Reads or writes data.

channel.

• Controls channel and disk storage interfaces.

• Serializes and deserializes data.
• Performs error detection and correction.

• Furnis~es status to system.
• Performs diagnostic evaluation of facility.

Figure 3.1 Functional Description

In another installation that has 3330 DASD, the 3330 DASD
might be connected to an IBM 3830 Model 2 Storage Controller.
See Figure 3.2. The 3830-2 does not perform error detection and
correction. Now the user must have a 3333 disk storage as the
first unit in the series of 3330 disk drives. The series of disk drives
is called a string of disk drives. The 3333 is called the head of

Page 3-2

J

•

•

string or controller. The difference between the 3330 and the
3333 can perform error detection and correction for the string of
3330's attached to it.

CPU

• Issues I/O instructions.
• Stores data.
• Stores status.
• Stores channel program.

I/O Instructions

Data

Status

Data

I/O Commands

Status

Disk Storage and Controller

• Responds to commands from 3830-2.
• Positions access mechanism.
• Selects head.
• Reads or writes data.
• Serializes and deserializes data.
• Performs error detection and correction.

Figure 3.2 Functional Description

Channel

• Fetches channel address word.
• Fetches channel commands.
• Controls transfer of data between 3830-2 and CPU.

I/O
Commands

3830-2

t
Data

l
r

Status

I
Command
Retry

• Interprets and executes commands from channel.
• Controls channel and disk storage interfaces.
• Furnishes status to system.
• Performs diagnostic evaluation of storage control

and drives.

The 2314 Storage Facility has a self contained control unit. Thus
the 2314 Storage Facility is attached to the channel.

Page 3-3

Storage Controller Functions

The 3830 Storage Controller manages up to four 3330 Disk Stor­
age units. Each 3330 Disk Storage unit consists of 2 3330 disk
drives.

The control unit for the 2305 Fixed Head Storage Facility is the
2835. The 2835 control unit will handle I or 2 fixed head stor­
age modules.

A string or series of 3340 Disk Storage devices must begin with a
3340 Model A2. The 3340 Model A2 consists of 2 drives and a
controller. This controller is then attached to a 3830 Storage
Controller or a Integrated Storage Controller. The 3344 Disk
Storage Facility must be attached to a 3340 Model A2.

The 3350 Disk Storage Facility contains a controller. This must
then be attached to a 3820 model 2 Storage Controller or a
Integrated Storage Controller.

In summary, in order to operate DASD many functions are re­
quired. To perform these functions we have several different
units. In some case the units are contained in the Direct Access
Storage Facility (e.g. the 2314). In some cases there is a separate
unit to manage the device (e.g. the 3330 and 3830). In some
cases the functions of managing the device are broken into 2 units
(e.g. the 3333 and the 3830-2).

File Commands The storage controller interprets and executes the file commands
obtained from the CPU via the channel. It is these commands
that control the operation of the devices. They are discussed in
more detail later in this chapter.

Status Information The storage controller furnishes status information to the CPU.
Examples are (1) transfer of data has been completed, (2) the
end of the data file has been sensed, and (3) an error has been de­
tected.

Data Transfer The storage controller provides a path for data between the CPU
and the devices, and translates the data between the CPU and the
devices.

Checking The storage controller or head of string checks the validity of data
transfer. As data is written (transferred from the CPU to a de­
Vice), the control unit removes the parity bit from each byte. It
then computes two Cyclic Check bytes, which are written at the
end of each area. The two Cyclic Check bytes are coded to repre­
sent the data in the associated area. As data is read (transferred

Page 3-4

J

..

from a device to the CPU), all areas read are inspected by the con­
trol unit. Cyclic Check bytes are recalculated for each area and
compared with those retrieved from storage. As the control unit
transmits data to the CPU, Cyclic Check bytes are removed and
parity bits are restored as needed to maintain odd parity.

There are two advantages to this method of checking. It detects
more errors than can be checked with a parity check. It also
saves storage space on the devices; checking requires 16 bits per
data area rather than one bit per byte.

The 3350 and the 3344 Disk Storage Facilities used with the
3830-2 Storage Controller offer additional facilities. If at the
factory a bad spot is detected on a track, the 3350 and 3344 disk
with the 3830-2 Storage Controller can skip over the spot and
still use the rest of the track for data. This facility of being able
to skip over a bad spot is called skip displacement. The 3344 can
tolerate one bad spot on a track. The 3350 can tolerate up to 3
bad spots on a track.

With the other DASD if a bad spot is detected on a track in the
factory, an alternate track is assigned as a replacement. With the
3344 if there is more than one bad spot on a track, then an alter­
nate track is assigned. With the 3350 if there are more than 3 bad
spots on a track then an alternate track is assigned.

Information is recorded on all devices in a format which is pre- Track Format
scribed by the control unit and which is identical for all devices.
Each track contains certain "nondata" information (such as the
address of the track, the address of each record, the length of each
record, and gaps between area) as well as data information (see
Figure 3.3).

For each device, there is one Index Point to indicate the physical Index Point
beginning of each track.

On each track, there is one Home Address to define the physical Home Address
location of the track (the track address) and the condition of the
track. As shown in Figure 3.1 B, it is a seven or nine byte area
consisting of :

• Physical Address - This is the physical address of the track
and is a 2 byte field. This field is used by the Storage Con­
troller to verify that the access mechanism is correctly
positioned. This field does not exist on the 2314 nor the
2305. The necessity of this field is understood when you
remember that some devices are treated as other type de­
vices. For example, the 3350 can be treated as two 3330-1 'so

Page 3-5

Index
Point

\
Track Descriptor
Record (RO)

...----- Index Point

....---Gap

Data Record (RI) Data Record (Rn)

A. Count-data format

r Home Address r Track Descriptor Record (RO)

t Dota Record (R I)

1 1
(,

V r;:l, I Count I [DCitCil G
G C-lG Area G ~

'" " '" " '" " '" "

'-------Cylihder Number

'-------- Flag

L..-________ Physical Address

Index
Marker

V Gl

Record 0

Figure 3.3 Trackformats

A G l Count!G ~G! Data !G [J. Area Area Area
\ -.. --\ . ---
\ ----II PA I F I C I H I R IKLI ~L I CIC I

l~

B. Count-key data format

Record 1

C. 2305 Record Format

Page 3-6

Cyelic Check

Data Length

Key Length

Record Number }

Head Number

Cylinder Number

F lag

Physical Address

Address .v.arker

r Data Record (Rn)

1

Identifier

Record 21 Record N
A

G5 V

t
Note: Lost record on track

followed by G5.

•

• Flag - one byte indicating the condition of the track
(operative or defective) and the use of the track (primary or
alternate).

• Cylinder Number - two bytes indicating the cylinder in
which the track is located.

• Head Number - two bytes indicating the read/write head
that services this track. The combination of cylinder and
head numbers indicates the address of the track.

• Cyclic Check - two bytes used for error detection, as already
described. Special Home Address commands are used to read
or write home addresses. Normally, this function is per­
formed only by utility programs.

Gaps separate the different areas on the track. Certain equipment Gaps
functions take place as the gap is rotating past the read/write head.
The length of the gap varies with the device, the location of the
gap, and the length of the preceding area. For instance, the gap
that follows the index point is a different length from the gap that
follows the home address, and the length of the gap that follows a
record depends on the length of that record.

This record, sometimes referred to as RO, is the first record after Track Descriptor Record (RO)
the Home Address and is also illustrated in Figure 3.1. IBM pro-
gramming systems use RO to store various information about the
track. Details about its contents and use are discussed later.

One or more user data records follow record RO on the track. The Data Record Formats
first part of each data record is an Address Marker, a two-byte area
which is supplied by the control unit as the record is written and
which enables the control unit when reading records to locate the
beginning of the record. As shown in Figure 3.3, there are two
possible data record formats (Count-Data and Count-Key-Data),
one of which may be chosen for a particular file.

Records of this format (see Figure 3.3a), consist of an Address Count-Data Format
Marker, a Count Area and a Data Area. Records formatted in
this way are said to be formatted without keys .

The count area is an eleven or thirteen byte field which identi­
fies the record (in terms of cylinder number, head number, and
record number) and indicates the record's format (Count-Key­
Data or Count-Data) and length. The fields within the Count
Area are as follows:

• Physical address - 2 bytes containing the physical address of
the track.

Page 3-7

• Flag - a byte containing the same information as the Home
Address flag byte and some additional information used by
the control unit.

• Identifier (lD) - a collective term used to refer to the
cylinder number, head number, and record number fields as a
whole.

Cylinder and Head numbers - four bytes normally contain­
ing the same information as the corresponding bytes in the
Home address.

Record Number - one byte containing a record number (in
binary notation) ranging from 1 to 255. The first user data
record is record 1 (R 1), the second is record 2 (R2), etc.

• Key Length - a one-byte field always containing 0 for a
record of the Count-Data format.

• Data Length - two bytes specifying the number of bytes in
the Data Area of the record excluding the Cyclic Check. It is
in binary notation, so it can range from 0 - toa theoretical
maximum of 65,535. A data length of 0 indicates the end of
a logical file.

• Cyclic Check - two bytes used for error detection, as already
described.

Count-Key-Oata Format Records of this format (see Figure 3.3b), consist of an Address
Marker, a Count Area, a Key Area, and a Data Area, Records
formatted in this way are said to be formatted with keys. The
Key Area, which can range from I to 255 bytes, contains the key
(part number, man number, account number, etc.) that identifies
the following Data Area. In most cases records will be formatted
with keys so that they can be quickly located.

The major difference between the two formats is that the Count­
Key-Data format contains a Key Area while the Count-Data
format does not. The existence of a Key Area causes one other
difference between the two formats. The Key Length field of the
Count Area in the Count-Data format is always zero, but in the
Count-Key-Data format it specifies (in binary notation) the length
of the Key Area and therefore contains a number from 1 to 255.

The 2305 does not record a home address area between the index
point and RO (see Figure 3.3c). However, for compatibility with
other similar devices, it does accept and emulate Write Home
Address, Read Home Address, and Search Home Address comm­
ands.

Page 3-8

J

J

..

•

The Track Descriptor Record, as mentioned earlier, follows the Track Descriptor Record (RO)
Home Address and is used by IBM programming systems to store
information about the track. For example, in the Direct Access
Method it may contain the number of bytes left at the end of the
track. The programming systems require that it contain a Count
Area and a Data Area and no Key Area. The Count Area is the
same as described for data records except that record number is
always 0 (hence its name RO), Key Length is always 0, and Data
Length is always 8. The Data Area is therefore eight bytes long
plus two bytes for the Cyclic Check.

Figure 3.4 shows that the track Descriptor Record serves another
purpose in addition to its use by programming systems. In case a
track on a non-drum device becomes defective, RO's Count Area
provides a cross reference between the original primary track and
the alternate track to which data has been moved by containing
the cylinder number and head number (track address) of the alter­
nate track, instead of (as is normal) the track address of the
original primary track. On drum devices, the address of an alter­
nate track is changed by the customer engineer to the address of
the original primary track.

If IBM programming systems are not used, the data area of RO
may contain user's data. If this choice is made, the restrictions
noted above that Key Length equal 0 and Data Length equal 8 do
not apply. This choice, however, is not recommended, since the
use of IBM programming systems greatly simplifies the user's pro­
gramming.

II Home Address RO Count Area
Track II F* C H F* C H

Primary 2 2 8 2 200 1

Alternate 1 200 1 1 2 8

* A 2 in the flag byte indicates that this is a defective
primary track; a 1 indicates that this is an operative
alternate track.

Figure 3.4 Cross-referencing between original track
and alternate track via RO

When using IBM programming systems, logical recQrds may be in. Record Formats
one of five formats, as shown in Figure 3.5. The same five formats
shown are permissible without Key Areas. In all cases, if the

Page 3-9

Fixed, Unblocked

records are formatted with keys, all records in the file must have
Key Areas and all of the Key Areas must be the same length.

I AAA I r---Re-c-o-rd-o-o-o~

Count Key Data

Fixed, Blocked

~ Ir.A~A~A~I~Re-c-o-rd~oo-o--~II~c~c~crl~~-c-o-rd~c-c-c~II-F-FF-rI-R-e-co-rd--ff-f~

Count Key Data

Variable, Unblocked

I AAA I I BL II RL I Record 000

Count Key Data

Variable, Blocked o ~ ~I B~L=:II~R:-L_I. ... IA=-A~A:I-=--=-~Re-=-c-o_-:rd~_o-o_o __ ~~IT"K""IIr::R~L -rIC~c~C~I-Re-c-ord-cc-c---nII-R-L ""'1 F-F-F ""'1 -R-e-co-rd-fff---'

Count Key Data

Undefined
!AAA I r---Re-c-o-rd-o-o-o---W

Count Key Data

Figure 3.5 Record formats

Fixed,Unblocked

Fixed,Blocked

Variable, Unblocked

All records in the file are the same length. Each Data Area con­
tains one logical record. If the records are formatted with keys as
shown, the key is usually not repeated in the Data Area. In some
cases, the key may appear in both areas, as discussed in Chapters
5-8.
All records in the file are the same length. Each Data Area con­
tains a block of more than one logical record. All blocks are the
same length except for a possible short block at the end of the file.
The Key Area usually contains the key of the highest record in the
block. The key is also a field in each logical record, so that records
can be identified during processing.

The records in the file are of varying lengths. Each Data Area
contains one logical record and the special fields shown. BL (block
length) indicates the number of bytes in the block including itself.
RL (record length) indicates the number of bytes in the record
including itself.

Page 3-10

The records in the file are of varying lengths. Each Data Area Variable, Blocked
contains a block of logical records. BL and RL have the same
significance as for Variable, Unblocked.

This format is provided to permit the handling of records that do Undefined
not conform to the other formats. An example is variable-length
records that do not contain the BL and RL fields.

The primary reason for blocking records is to pack direct access Reasons for Blocking Records
storage more efficiently. With blocked records, there is an Address
Marker, Count Area, Key Area, and gaps for each block of records
rather than for each logical record.

Another reason for blocking is that it may save time. If records are
processed consecutively, there is only one rotational delay before
reading or writing a block of records. If records are not processed
consecutively, however, blocking may be a disadvantage, since it
takes longer to transfer the entire block rather than the single
record to be processed.

In Chapter 2 the capacity of a track was expressed in terms of the Track Capacity
maximum number of data bytes. This maximum may be achieved
when there is one physical data record (block) per track formatted
without a key. As the track is divided into multiple data records,
the additional Address Markers, Count Areas and gaps reduce the
number of bytes available for data. This section discusses track
capacity from the more realistic standpoint of how many physical
data records of a given length will fit on a track.

In the tables and formulas presented in Figures 3.6 and 3.7, the
capacities are based on the Track Descriptor Record being used as
specified by IBM programming systems rather than for user's data.

In most cases, the table shown in Figure 3.6 can be used to look
up the number of given-length records per track. Note that the
table is divided into two parts, since the capacity varies depending
on whether records are formatted with or without keys. Examples
using the table:

•

•

Device is the 3330, records are unblocked and formatted
without keys, and data length is 200 bytes. There will be 39
records per track. In fact, 39 records fit on I track if the re­
cord size is as small as 195 and as large as 202.

Device is the 3330, records are unblocked and formatted
with keys, data length is 200 hytes, and key length is 8 bytes.

Page 3-11

Capacity Table

Byl" per Record

The number to look up is data length plus key length. There
will be 32 records per track.

In some cases, the table in Figure 3.6 cannot be used and the
number of records per track for a given record design must be
calculated using the formulas shown in Figure 3.7. The formulas
are different for each device because the gap lengths required by
each device are different. The formulas in Figure 3.7 indicate the

Capacity Table (Contd)

Byl. Por Record

Without Kevs With Kovs Rocords Per Without Keys With Keys Records Per

Min Max Min Max Trk Cylindor Pack Min Ma. Min Max Trk Cylindar Pack

6448 13030 6392 12974 1 19 7676 119 123 63 67 51 969 391476
4254 6447 4198 6391 2 38 15352 114 118 58 62 52 988 399152
3157 4253 3101 4197 3 57 23028 109 113 53 57 53 1007 406828
2499 3156 2443 3100 4 76 30704 105 108 49 52 54 1026 414504
2060 2498 2004 2442 5 95 38380 101 104 45 48 55 1045 422180

1746 2059 1690 2003 6 114 46056 96 100 40 44 56 1064 429856
1511 174b 1455 1689 7 133 53732 92 95 36 39 57 1083 437532
1328 1510 1272 1454 8 152 61408 89 91 33 35

1

58 1102 445208
1182 1327 1126 1271 9 171 69084 85 88 29 32 59 1121 452884
1062 1181 1006 1125 10 190 76760 81 84 25 28 60 1140 460560

963 1061 907 1005 11 209 84436 78 80 22 24 61 1159 468236
878 962 822 906 12 228 92112 74 77 18 21 62 1178 475912
806 877 750 821 13 247 99788 71 73 15 17 63 1197 483588
743 805 687 749 14 266 107464 68 70 12 14 64 1216 491264
688 742 632 686 15 285 115140 65 67 9 11 65 1235 498940

640 687 584 631 16 304 122816 62 64 6 8 66 1254 506616
597 639 541 583 17 323 130492 59 61 3 5 67 1273 514292
558 596 502 540 18 342 138168 56 58 2 2 68 1292 521968
524 557 468 501 19 361 145844 54 55 69 1311 529644
492 523 436 467 20 380 153520 51 53 70 1330 537320

464 491 408 435 21 399 161196 48 50 I 71 1349 544996
438 463 382 407 22 418 168872 46 47 72 1368 552672
414 437 358 381 23 437 176548 43 45 73 1387 560348
392 413 336 357 24 456 184224 41 42 74 1406 568024
372 391 316 335 25 475 191900 39 40 75 1425 575700

353 371 297 315 26 494 199576 36 38 76 1444 583376
336 352 280 296 27 513 207252 34 35 77 1463 591052
319 335 263 279 28 532 214928 32 33 78 1482 598728
304 318 248 262 29 551 222604 30 31 79 1501 606404
290 303 234 247 30 570 230280 28 29 80 1520 614080

277 289 221 233 31 589 237956 26 27 81 1539 621756
264 276 208 220 32 608 245632 24 25 82 1558 629432
253 263 197 207 33 627 253308 22 23 83 1577 637108
242 252 186 196 34 646 260984 20 21 84 1596 644784
231 241 175 185 35 665 268660 19 19 85 1615 652460

221 230 165 174 36 684 276336 17 18 86 1634 660136
212 220 1~6 164 37 703 284012 15 16 87 1653 667812
203 211 147 155 38 722 291688 13 14 88 1672 675488
195 202 139 146 39 741 299364 12 12 89 1691 683164
187 194 131 138 40 760 307040 10 11 90 1710 690840

179 186 123 130 41 779 314716 9 9 91 1729 698516
172 178 116 122 42 798 322392 7 8 92 1748 706192
165 171 109 115 43 817 330068 6 6 93 1767 713868
158 164 102 108 44 836 337744 4 5 94 1786 721544
152 157 96 101 45 855 345420 3 3 95 1805 729220

146 151 90 95 46 874 353096 1 2 96 1824 736896
140 145 84 89 47 893 360772
134 139 78 83 48 912 368448
129 133 73 77 49 931 376124
124 128 68 72 50 950 383800

Figure 3.6 Track capacity table for 3330 Series

Page 3-12

J

.'

number of bytes required for each data record other than the last
one on the track, as well as the number of bytes required for the
last data record on the track. These two categories are further
divided into data records formatted with keys and data records
formatted without keys. In the formulas, KL = Key Area Length
(not including the Cyclic Check), and DL = Data Area length (not
including the Cyclic Check).

BYTES REQUIRED BY PHYSICAL DATA RECORDS
Max R1
Capacity

Device (in bytes) Data Records (except for last) Last Data Record Key Overhead

2314 7,294 (534(KL +DL)/512* +C+101 KL+DL+C C= 0 when KL=O
C=45 when K L:;tO

2305-1 14,135 432+C+KL+DL *** C= o when KL=O
C=202 when KL~

2305-2 14,660 198+C+KL+DL *** C= 0 when KL=O
C=91 when KL~

3330 13,030 135+C+KL+DL *** C= 0 when KL=O
C=56 when KL:;tO

3340 8,368 167+C+KL+DL *** C= 0 when K L=O
C=75 when KL:;tO

3350 19,069 185+C+KL+DL *** C= 0 when KL=O
C=82 when KL:;tO

Track
Capacity

7,294

14,568

14,858

13,165

8,535

19.254

* Truncate any fraction
*** Last record calculated as any other record on the track

KL = Key Length
DL = Data Length

1

The formulas can be combined in the following way to determine the number of data records per track:
Data records per track =

1 +

Capacity per track - (bytes required
last data record)

bytes required for each data record
except the last

2314

Figure 3.7 Track capacity formulas

• The track capacity figure is the number of bytes left for data
records after subracting the bytes required for the Home
Address, the Track Descriptor Record (RO is used by pro­
gramming systems), and the Address Marker, Count Area,
Cyclic Check and gaps for one data record.

• The formula for the number of bytes required for the last
data record represents only Data Area length (and Key Area

Page 3-13

Track
Capacity

Overhead +C+KL+DL

..
3330, 3340, 3350

length if formatted with keys). The number of bytes required
for the fixed portion of the last record and the gaps has
already been subtracted from the track capacity figure.

• The formula for the number of bytes required for each data
record except the last includes the bytes required for the
Address Marker, Count Area, Cyclic Check, and fixed gaps
for a record of this type. The 2314, for instance, requires 146
bytes for this information. This formula sometimes includes a
fixed factor to account for the allowable deviation in the
position of the record. The 2314 formula is an example of
this.

• The formulas for data records with keys differ from those for
data records without keys in that they include the length of
the Key Area itself (represented by KL) and a fixed factor
which accounts for the Cyclic Check and gap that follow the
Key Area. The fixed factor for the 2314 is 45.

The formulas can be combined in the following way to determine
the number of data records per track:

data records per track =

1 +
(

capacity per track - bytes required)
for last data record

--
bytes required for each data record

except the last
l~ ________________ ~~~ _________________ J

2314

Track capacity

C + KL + DL + overhead
l~ ______ ~v~ ____ ~)

3330,3340,3350

where
KL = key length
DL = data length

C = key overhead (see Figure 3.5)

The formulas in Figure 3.7 maybe used rather than the table in
Figure 3.6. In an example where the records to be recorded are
unblocked and formatted with keys, the key length is 6, the data
length is 50, and the device to be used is the 2314, how many re­
cords can be placed on each track? The solution is as follows:

Page 3-14

J

"

on each track? The solution is as follows:

Bytes for each data record except the last =

534 (6+50) + 45 + 101 = 204
512

Bytes for the last data record = 45 + 6 + 50 = 101

Records per track = 1 + 7294-101 = 1 + 35 = 36
204

Note: The remainder is dropped in both division calculations.

Although the IBM programming systems relieve the user of the File Commands
need to program I/O operations at the command level, a famil-
iarity with the commands is helpful in understanding the various
access methods. The commands, which are interpreted and
executed by the storage controller, are the same for all direct
access devices and fall into the four groups discussed as follows.

The Seek command positions the access mechanism at the speci- Control Commands
fied cylinder and/or selects the specified read/write head. Once the
specified address has been transferred from main storage to the
control unit, the channel is not busy during a Seek. (There are
several other control commands not pertinent to this discussion.)

The search commands cause a comparison between data from Search Commands
main storage and the specified area (lD, Home Address, or Key)
on the device. The search may be restricted to one track or it may
continue on successively higher tracks. The search terminates
when the specified condition has been satisfied or when the end of
the search occurs. A single-track search is ended when the entire
track is searched. A multiple-track search may be extended to the
end of the cylinder. The search does not itself cause any transfer
of data; it is normally followed by a read or write command
which performs the data transfer. The channel is busy during a
search operation. The search commands are:

• Search Home Address Equal

• Search Identifier Equal. This causes a search of the five-byte
Identifier (cylinder-head-record number) portion of the
Count Areas. This and the other search identifier commands
start the search with the ID of the record following the next
Address Marker or Index Point.

Page 3-15

• Search Identifier High. The condition searched for is an
Identifier on the device higher than the search argument in
real storage.

• Search Identifier High or Equal

• Search Key Equal. This causes a search of the Key Areas.
This and the other search key commands start the search with
the Key Area of the record following the next Address
Marker.

• Search Key High

• Search Key High or Equal

• Search Key and Data Equal. This command, like the next
two, requires that the control unit has the File Scan feature.
It causes a search of all or part of the Key and Data Areas.
The search argument in core storage has all I-bits in the bytes
that are not to be compared.

• Search Key and Data High

• Search Key and Data High or Equal

When a search is restricted to one track and followed by a read or
write command to transfer the data, and the search condition is
satisfied, the search-read sequence or search-write sequence takes
place during one rotation. One can, in this case, think of the
search as taking place during rotational delay time. If the search
ends without the condition being satisfied (that is, if a Search Key
Equal for one track was programmed but no equal key was
found), I Y2 rotations should be estimated as the direct access time
for that search.

Read Commands The read commands cause the specified area to be transferred to
real storage and checked. The Cyclic Check bytes of the area are
not transferred to real storage. The channel is busy during a read
operation. The read commands are:

• Read Home Address. This transfers five bytes of the Home
Address (all except the Cyclic Check).

• Read Track Descriptor Record. Both the Count Area and the
Data Area of RO are transferred.

• Read Count. Eight bytes of the Count Area (all except the
flag byte and Cyclic Check) following the next Address
Marker encountered are transferred.

Page 3-16

.'

•

..

•

•

Read Count, Key and Data. The entire record (except gaps
and Cyclic Checks) following the next Address Marker
encountered is transferred.

Read Data. This command is normally chained from a search
command. The Data Area transferred is that of the record
which satisfied the search condition. Both the search and the
read take place on the same revolution. If not chained from a
search command, the Data Area following the next Address
Marker encountered is transferred.

• Read Key and Data. The same comments as for Read Data
apply, except that both the Key Area and Data Area are
transferred.

The write commands cause data to be transferred from main stor- Write Commands
age to the specified area on the device. During the transfer, the
control unit generates and adds the Cyclic Check bytes to each
area. The channel is busy during a write operation.

Three of the write commands are used to initialize tracks or
records. After a chain of these commands has been completed, the
remaining portion of the track is erased. These format write
commands are:

• Write Home Address.

• Write Track Descriptor Record. The first eight bytes trans­
ferred become the Count Area (the flag byte is generated by
the control unit). The remaining data becomes the Key Area
and Data Area as specified by the Key Length and Data
Length fields of the Count Area.

• Write Count, Key and Data. This is the same as Write Track
Descriptor Record, except that an Address Marker is gener­
ated by the control unit and written in front of the Count
Area.

The other two write commands are used to add records to a pre­
viously formatted track or to update records. They must be
chained from a search equal command. These data write
commands are:

• Write Data. This must be chained from a Search Identifier
Equal or a Search Key Equal. As with Read Data, both the
search and the data transfer take place on the same revolu­
tion.

Page 3-17

Verification of
Write Operations

Data Integrity

• Write Key and Data. This must be chained from a Search
Identifier Equal. Again, both the search and the write take
place on the same revolution.

As already discussed under "Checking", the parity check verifies
that data transfer between the CPU and the control unit is correct,
and the Cyclic Check verifies that data transfer from the device to
the storage controller on a read operation is correct. The Cyclic
Check does not verify that data transfer from the control unit to
the device is correct. It only establishes a check for subsequent
reads.

As data is transferred from the channel to disk storage (write
operation), the storage controller or head of string removes the
parity bit associated with each byte. It then computes the error
correction code bytes, which are written after each recorded area.
The correction code bytes, coded to represent the data in the re­
corded area, are used for both error detection and correction.

As data is transferred from disk storage to the channel (read opera­
tion), each area is inspected by the storage control and the error
correction code bytes are recalculated for each area.

If a correctable data error is detected in the home address, count,
or key areas, the storage control internally executes the error cor­
rection function through the use of command retry. if an uncor­
rectable data error, or a correctable data error in a data area, is
detected, the correction function is determined by the system
error recovery procedures.

The correction code bytes are removed and proper parity is gen­
erated by the storage controller or head of string before the data is
transferred to the channel.

Unless corrected immediately, soft write errors cause hard read
errors. Therefore, where data integrity is required, verification
can be incorporated within the program. Thus, in the event of
soft errors, the record can be rewritten and verified before the
original data is destroyed.

Either of two verification methods may be used: full readback
check or correction code check.

Full Readback Check: All of the data just written is read back
into real storage and compared, byte-for-byte, with the original
information.

Correction Code Check: A read operation is performed with the

Page 3-18

J

..

•

skip bit on. This method causes the storage control to check the
validity of the record using the error correction code bytes.

The features discussed below are standard for some control units Control Unit Features
and available as a special feature on others. The support of each
feature by programming systems and the estimated date at which
the support will be available should be verified with the local IBM
representative. To review, the control units are:

• 2314 - self-contained control unit of the disk storage
facility.

• 2835 - Controls the 2305 fixed head storage facility.

• 3340 - has a self contained controller as part of the 3340-
A2 module.

• 3333 - has a self contained controller.

• 3830 - Controls the 3330 series disk drives.

• 3830-2 - Controls the 3333/3330 series, the 3340/3344 se­
ries, and the 3350 series disk drives.

As already discussed, this feature permits the use of the Search File Scan
Key and Data Equal, High, and High and Equal commands, which
in turn permit a search of all or part of both the Key and Data
Areas of records. It is standard on the 2314 and available as a
special feature on the 2841. When installed on a 2841, this feature
is effective for any 2311 s, and 2321 s attached to that 2841.

This feature permits a record to overflow from one track to the Record Overflow
next. It is useful in achieving a greater data packing efficiency and
in formatting records that exceed the capacity of a track. The
cylinder boundary is the factor that limits the size of a record
(DOS/VS does not support track overflow).

Each segment of an overflow record (the portion written on one
track) has a Count Area. The Data Length field specifies the length
of that segment only. For all segments except the last, a bit in the
flag byte indicates that the record is an overflow record. If the
records are formatted with keys, there is normally just one Key
Area associated with the first segment. On read or write opera­
tions, all segments of the overflow records are transferred on
successive revolutions.

Page 3-19

Concepts of DASD Switching DASD subsystem configurations may include features to provide
switching capabilities to:

• Allow sharing of devices between systems

• Enhance subsystem availability

The standard I/O interface for S/360 and S/370 requires a device
to be attached to a CPU by means of a channel and control unit.

.. • Channel
,... .. Storage

~ Device CPU Controller

Figure 3.B Standard device attachment

Figure 3.8 shows a static, hardwired attachment. It allows the
CPU to access its attached device, always using the one and only
path by which the device can be reached. The device has only
one hardware address, to which it responds when selected by the
CPU program to perfonn an I/O operation. If any link in the
interface is inoperative, the device is inaccessible.

For many reasons, it is sometimes desirable to have a device
dynamically accessible by more than one path, either storage con­
troller and/or channel and/or CPU. The hardware mechanism to
provide this is a switch, set under either program control or man­
ually to complete an electronic path from CPU to channel to stor­
age controller to device. Depending on the DASD device to be
switched and the result to be achieved, this hardware switch may
be at the storage controller level and/or at the "string" level,
applying to a group of two to eight DASD drives. The switchable
device may be reached by more than one path and, therefore, will
have more than one hardware address.

Channel Switching When the switch is at the storage controller, channel switching is
the result. If the storage controller is a 3830 Model 2, it may be
switched between two or four channels, only two of which may be
on the same CPU. Thus, channel switching is generally tenned
two or four channel switching. If the storage controller is an In­
tegrated Storage Control, two channel switching is available to
channels on the same or different CPUs. Channel switching is not
available for the Integrated File Adapter.

In Figure 3.9, the switch can be set to complete a path from the
CPU through channel I or through channel 2 to one of the
devices, but not both at the same time. When the switch is
"open" or in a neutral status as shown in Figure 3.9, no path is
completed and no data is being transmitted. If the CPU program
selects the device by address '140' (channell, control unit 4,

Page 3-20

•

J

•

Switch

CPU

Figure 3. 9 Channel switching

Storage

Controller

o

device 0), the switch will be set to channel I, and normal I/O
operations can take place via that path as if it were hardwired.
The switch will return to its open position when the channel is
no longer needed for the I/O operation. It then becomes available
to be set to the first channel attempting to access one of the
attached devices. Note: Operations at the device level not re­
quiring channel or control unit (Seeks and Set Sectors), once
initiated, will continue regardless of the setting of the switch.

7

-B

On certain DASD, a switch may be installed at the string level, String Switching
applying to a group of two to eight DASD drives. Termed "string
switch", this allows the devices in the string to be switched
between two control units on the same or different CPUs.

Dlannel 1

Channel 2

4

Storage

Controller

4

Storage

Controller

Figure 3.10 String switch

SW~_B
\1.--__ --.. __ ----.oJ I

V
String

The string switch (Figure 3.10) is conceptually the same as the
two or four channel switch. The first path (channel and control
unit) to select one of the devices in the string will get the switch
set to its interface, completing the path necessary for I/O oper­
ations. The switch is at the head of the string, and allows for one
data path into the string of devices from one control unit at a
time.

With additional strings of DASD added to the configuration, each

Page 3-21

Olannel 1

Channel 2

4

Storage
Controller

4

Storage

Controller

with the feature of string sWltching, a path can be completed
from each control unit to a different string. This allows two data
transfer operations to occur simultaneously.

Figure 3.11 String switch-two strings

Combinations of Switching

In Figure 3.11 if device 140 is selected and is transferring data,
one of the devices in the range 8-F can be simultaneously selected
through the control unit on channel 2 to transmit data. However,
if a device in the range 0-7 is selected through channel 2 while
channel 1 has the switch to access that string, no connection can
be made and the I/O operation through channel 2 will be ter­
minated with a "device busy" interrupt.

The two types of dynamic switching, channel and string, may be
used in conjunction to provide additional flexibility in con­
figuring a system.

In Figure 3.12, two switches must be set to complete a path to
one of the devices: one at the control unit level, and one at the
head of the string. The first channel to select a device will have
the switches set to complete the required path for I/O oper­
ations. As an example, suppose channel 2 selects device '245'. No
other channel will be able to access a device in the range 0-7 until
the switches return to the neutral position. However, either
channel 3 or 4 could access a device in the second string (address
8-F) and get an I/O path completed. Channel 1 could not, as its
control unit path to get to a device is being used by channel 2.

With switching carried to the maximum on current hardware, one
direct access device may be accessible by eight different CPUs. A
device may be string-switched between two storage controllers;
each storage controller (3830 Model 2 only) may have a four
channel switch going to channels on four different CPUs. Figure
3.l3 shows this configuration.

If the channels and/or control units to which a device may be
switched are on the same CPU, the programming support is called

Page 3-22

J

J

..

1 0""",, 21 1 Ch,"",' 31 1 0""",, 41
Two channel switch
to 1 and 2

Storage
4 Controller

o

String I

LJ
8

String I

o

Two channel switch
to 3 and 4

Storage
4 Controller

String switch to
control units 4

Figure 3.12 Two-channel switch plus string switch

Optional Channel support. If the channels and/or control units
are on different CPUs, the support is called Shared DASD. Both
forms of support are applicable if the device is reachable via more
than one channel on one CPU, and also by more than one CPU.

Hardware Switching

The two channel switch allows a single control unit and its Two Channel Switch
attached devices to be accessed by two different channels on the
same or different CPUs. At any point in time, only one of the
channels can be transmitting data to or from a CPU and one of
the attached "switched" devices. However, Seeks and Set Sector
commands previously initiated by either or both of the channels
may be simultaneously active on any of the other devices.

Page 3-23

Four Channel Switch (Two Channel
Switch Additional)

Four channel
switch to 5, 6, 7,8

CPU 7 r
Storage

Controller

~ Fou, 'hann,' ",it,h to 1,2,3,4

Storage
Controller

String switch to two control units

Device

Figure 3.13 Maximum switching configuration

The switch has three settings, one for each of the two channels
involved in the switching and a neutral position. When the switch
is in the neutral position, no data path is completed, and no data
is being transmitted to or from either of the channels involved.
The switch will be set to the channel position which first selects a
device on the switched control unit (Le., starts an I/O operation
to a device).

Once the switch is set to the channel doing the I/O, no path can
be completed between the switched control unit and the other
channel until the switch returns to the neutral position.

In Figure 3.14, while channel B has the switch, channel A cannot
access any device on the control unit (either the same one
channel B is using or a different one).

The four channel switch functions identically to the two channel
switch except that the switch has five positions - four denoting
the channel interfaces by which it may be selected and a neutral

Page 3-24

•

~ ~\SWitCh
\

Storage
~ - Controller

Channel
B

Figure 3.14 Two channel switch

-{j

position. Any two (and only two) of the interfaces may connect
to channels on the same CPU. The four channel switch is avail­
able only on the 3830 Model 2 Storage Control Unit and cannot
be installed when 3340s with the Fixed Head feature are at­
tached.

The string switch provides switching capability at a lower level String Switching
than the two or four channel switch. The term "string" applies to
a group of two to eight drives headed by either a 3333 Disk
Storage and Control or 3340 Model A2 Direct Access Storage
Facility. With the feature of string switching added to the 3333
or 3340 Model A2, any of the attached drives may be accessed
by either of two control units on the same or different CPUs.
The control units may be any two of the following:

• 3830 Model 2

• Integrated Storage Control on S/370 Models 145, 158, 168

• Integrated File Adapter on S/370 Model 135

At any point in time, only one data path between one of the
control units and the string will be completed by means of the
programmable string switch. However, previously initiated Seeks
and Set Sector commands may be simultaneously active on the
devices in the string from either control unit.

The standard configuration allows two strings to be attached to a
control unit. Without the string switch feature, only one string at
a time may be transferring to or from the single control unit. If
the strings are attached to another control unit via the string
switch feature, devices in both strings may be simultaneously
transferring data to or from the different control units.

The string switch is functionally similar to the two channel
switch, having three positions: one for each control unit interface
and a neutral setting. The first control unit to select a device in

Page 3-25

the string gets the switch set to its interface. Should the other
control unit attempt to Start I/O to a device in the same string,
its request will be terminated with Device Busy. It will receive a
Device End for the appropriate device when the switch returns to
neutral.

Operator Action The operator panel on a control unit with the two or four
channel switch feature has one toggle switch for each channel
interface that can access the control unit (see Figure 3.15).

CHANNEL CHANNEL CHANNEL CHANNEL
A B C D I POWER I

ENABLE ENABLE ENABLE ENABLE MULTITAG
ON

01 0 10101 0 11 Cf}) ~.~ ~ @m II
v

DISABLE DISABLE DISABLE DISABLE OFF ~ OFF

Figure 3.15 Operator Panel- 3830 Model 2

The toggle switch must be set to the "enable" position before the
control unit is available to the designated channel represented by
the toggle switch. If the switch is in the "disable" position for a
channel, and the channel attempts to start I/O through the
control unit, the Start I/O will be rejected with a condition
"control unit not operative" to the CPU program, and makes all
drives attached to the control unit unavailable to the disabled
channel interface.

The multitag toggle switch on the operator panel is also used
with the two or four channel switch feature. It controls the
handling of device end status when a drive attached to the
control unit goes from the not ready to the ready state. This
occurs when a disk pack or data module is mounted on the drive.

When the toggle switch is set to multitag, all channel interfaces
not disabled will receive the device end status. If a device is
reserved to a channel and the switch is set to multitag, only the
reserving channel is given the device end status resulting from a
disk pack or data module mount. With the toggle switch set to
off, the device end status will be presented only once, to the first
channel that accepts it.

The switch should always be set to multi tag when multiple CPUs

Page 3-26

•

•

are sharing the control unit, so all CPUs are aware of volume
changes on the drive.

When string switching is utilized, an external switch on the 3333
or 3340 Model A2 may be set by the operator to dedicate the
string to one control unit or the other to which it may attach. If
a control unit attempts to access a drive in a string disabled by
the switch, its Start I/O will be rejected with a condition "path
not operative" .

There is no external multitag toggle switch for the 3333 or 3340
Model A2 for the string switch. In effect, it is built into the
device and always set to the multitag position.

Optional Channel Path is the term used to describe the capability Optional Channel Path
of accessing a direct access device through more than one channel
on the same CPU. This can occur when either:

1. A two channel switch attaches the device's control unit
(lSC) to two channels on the same CPU.

2. A four channel switch attaches a device's control unit to
two channels on the same CPU.

3. String switching is utilized in the 3333 or 3340 Model A2,
and the "control units" to which they are switched are on
two channels of the same CPU. The "control units" may be
any two of the following: 3830 Model 2, ISC, or IF A.

The number of optional paths a device may have depends on
hardware and software.

• Availability

Depending upon the type of switching used, the impact of a
channel or control unit outage is greatly reduced when the
device may still be accessed through an alternate path.

Reasons for Optional Channel Path

"Shared DASD" is the term used to describe the capability of Shared DASD
accessing direct access devices from two or more computing
systems. The accessing of a particular device is not concurrent
from the computing systems sharing it, but sequential, the se-
quence being determined by both hardware and software.

Sharing of DASD devices can occur when:

• A two channel switch attaches the device's control unit
(lSC) to two channels on different CPUs.

Page 3-27

• A four channel switch attaches the device's control unit to
channels which are on different CPUs.

• String switching is utilized in the 3333 or 3340 Model A2,
and the control units to which they are switched are on
channels of two different computing systems. The control
units may be any two of the following: 3830 Model 2, ISC,
orlFA.

The term "Shared DASD" is sometimes confused with the other
levels of sharing data available within a multiprogramming
environment:

• A data set may be shared between tasks of one job in one
computing system.

• A data set may be shared between two or more jobs in the
same computing system.

• A data set may be shared between jobs executing in dif­
ferent computing systems. This is the situation to which the
term "Shared DASD" is applied in this document and in all
other IBM literature. The sharing requires the use of some
kind of hardware switching, and two or more operating
systems are involved.

Shared OASO· General Operation With the Shared DASD option, an I/O operation may be started
to a shared device from any of the CPUs able to access the device
by means of the switch. Each sharing computer vies for the

programmable switch to gain access into the pool of devices
governed by the switch. The first requesting CPU gets the switch
set to its interface so it may perform I/O operations to one of the
shared devices. When the switch returns to the neutral position,
any other CPU, or the same one, may select a shared device and
have the switch set to its interface.

It is important to note that none of the sharing computers is
aware of what another is doing with the data on the shared
devices. Data integrity is the responsibility of the using program.
For this reason, the hardware command Device Reserve may be
issued by a program to retain exclusive use of one or more shared
devices while a critical update to data is being performed. Device
Release is issued to terminate the exclusive reservation.

If one of the shared devices has been reserved for exclusive use,
the CPU channel through which the Device Reserve was issued
will lock out any other channel, on the same or a different CPU,
from accessing the device. However, the reserving channel must

Page 3-28

..

•

•

still vie for use of the programmable switch to gain access to its
reserved device.

There are several reasons an installation would elect to share data
between computing systems:

• Scheduling of jobs is simplified and operator intervention
minimized. Instead of being moved from one system to
another as the volume remains mounted and available to
each system able to access the data by means of the two
(four) channel switch or string switch.

• Updating of data is minimized. One update to a shared data
set is needed, instead of the multiple updates that would be
required if each of several computing systems had its own
copy of the data set.

• . Backup and switchover in the event of hardware failure is
facilitated in a multi-computer installation if the needed
data is accessible to surviving computers without moving it.

• Direct access storage space may be saved, as one copy of the
data is required instead of multiple copies.

Sharing direct access devices does require extra consideration and
planning in the areas of operations, programming, performance,
and recovery.

Rotation position sensing (RPS) is an optional feature. Block
multiplexer channel support is a prerequisite for RPS. If present,
the RPS feature should be on every drive of the string. RPS is
transparent at the programmer level if OS/VS or DOS/VS access
methods, e.g. SAM, DAM, ISAM, or VSAM, are used. The RPS
feature is optional because the performance advantages cannot
be realized in all system configurations and environments. The
3330, 3340, 3344, 3350, and 2305 direct access storage devices
have the RPS feature as a standard part of the device configura­
tion.

Rotational position sensing reduces the time the channel is busy
searching for a record. This procedure permits a search command
to be initiated just before the desired record is positioned under
the read/write heads.

To accomplish this, a "sector" concept is employed. The tracks in
each cylinder of a disk storage drive are divided into equally
spaced sectors; each record on the track has a sector location as
well as a record address. Although the sector location is not phys­
ically indicated on the tracks, the sector number is stored at the

Page 3-29

Reasons for Sharing

Rotational Position Sensing

Without RPS

With RPS

beginning of all read, write, and search commands. When chained
to a read, write, or search CCW, the read sector command pro­
vides the sector number required to access the record processed
by the previous command. A subsequent set sector command can
be used to fetch the sector number from main storage to reposi­
tion the track at that record. This type of operation is particularly
useful in write verification (Figure 3.14) and sequential disk
processing operations.

The sector in which a record is recorded is a function of the
length of. all records that precede it and its sequential position on
the track.

The following example shows some of the advantages of using
rotational position sensing to locate and retrieve records.

Channel program 1.

Selector Channel and Storage
Command Control Status

Seek Available as soon as the storage
control accepts the seek address.

Channel program 2.

Selector Channel and Storage
Command Control Status

Search ID Equal Busy (average 250 p.s on the
3330).

TIC *-8
Read Data Busy.

When the sector address is known or can be calculated,
the following channel program can be used:

Command

Seek

Set Sector

Search ID
Equal

Page 3.30

Block Multiplexer Channel and
Storage Control Status

Available during access move­
ment.

Available until sector is located.

Busy (average 250 p. on the
3330).

•

J

•

•

•

TIC *-8

Read Data

Normally the first ID read is
that of the desired record and
the TIC is not executed.

Busy.

Note that with RPS only one channel program is required to lo­
cate the record and transfer the data. This eliminates a seek I/O
interrupt and the I/O processing required to schedule a data trans­
fer channel program.

Also, the channel and disk storage are available during access
motion and rotational positioning, allowing seek and set sector
operations to be overlapped with other I/O operations on the
storage control and channel.

RPS is used in conjunction with block mUltiplexing. This signifi­
cantly reduces the time required by the I/O channel and control
unit to search for a particular record location on a track (as
pointed out in the previous example). RPS permits multiple re­
quests to be active on the channel at the same time, thereby pro­
viding increased device utilization. Depending on the number of
devices and degree of multiprogramming within the system, the
increase device utilization improves the direct-access storage de­
vice throughput.

Page 3.31

II Set ~-.-~-------

IiIRead~O~~~"-----'-

Read/Write Head----t:======~~:2]

End of Record n

Start record n ---------.
Channel
Reselection Delay

If channel does not
respond, connection
is tried on subsequent
revolutions.

Figure 3.14 Rotational Position Sensing

Page 3.32

64

Channel program for write verification of record n.

Seek

m Search I D Rn
TIC *-8 iii Write data Rn

II Read Sector (82)

m Set Sector (82)
After channel reselection:
Search ID Rn
TIC *-8
Read data Rn

3330 - 128 Sectors (shown in this Figure)
2305 - Model 1 - 90 Sectors

Model 2 - 180 Sectors

..

32

J

Mass
Storage
System

Direct Access Storage Devices (DASD) have steadily grown in Introduction
capacity and speed, but only data with a relatively high value and
use can be maintained on DASD permanently, for two reasons.
First, when we calculate the cost per megabyte of DASD storage
(including the cost of drives, control units and packs), it is sub-
stantially higher than the corresponding cost for tape. Second,
for many users, the total volume of data collected and main-
tained cannot fit on even the maximum configuration of DASD.
For these reasons, the data processing community has come to
recognize the need for an economical mass storage device.

Tape systems also have grown in terms of capacity (recording
densities) and in speeds. However, three characteristics of tape
devices limit their usefulness. First, data stored on tape is inher­
ently sequential, so that random or direct accessing is imprac­
tical. Second, tape volumes are typically not mounted until they
are called for, whereas most DASD packs tend to remain more or
less permanently mounted. This causes human intervention,
which implies both a time delay in mounting the tape and a
larger possibility for human error than is typically encountered
with DASD. Third, usually only one data set is stored on each
reel of tape. An entire, un sharable device is required for each
mounted reel of tape, regardless of the activity rate. This can

result in low utilization of tape units and it adds to scheduling
complexity.

It would be beneficial, in most installations, to have another
alternative for data storage-a mass storage system. Such a system
should have:

• Capacity equivalent to a tape library.

• Availability and mounting of volumes under control of the
operating system.

Page 4-1

• Data organizable in the variety of methods available on
DASD.

• Data transfer rates approximately equal to DASD.

• Cost per megabyte of data storage closer to tape costs than
to disk costs.

The 3850 Mass Storage System (MSS) is IBM's response to these
requiremen ts.

Consider another trend in data processing: with the advent of
larger memories, the user can sustain a higher level of multi­
programming than before. That is, more tasks can be handled
concurrently.

Each task-whether a batch job step or initiated by a terminal
user-requires access to data sets. These data sets reside on
volumes, which must be mounted on I/O units. Increasing the
number of concurrent tasks increases the requirements for avail­
able units, volumes, and data sets. Thus, as the number of con­
current tasks supported by a system increases, the data re­
quirement of the system increases.

In the past, as a system's requirement for data has increased, the
only solution has been to attach more tape drives and disk drives
to the system. However, the additional drives-along with the
additional tape reels and disk packs required by these drives­
generate operational problems, such as:

• The library storage and retrieval procedures for tape reels
and disk packs grow larger and more cumbersome. The time
for a volume to be located in the library increases and the
time for a volume to cycle from demount to the library and
become available for re-use grows significantly longer.
(Already, in some installations, this time is as long as 24
hours.)

• Security of volumes in the computer room usually is sac­
rificed for speed of recycling through the library.

• Operators must mount/demount more volumes on more
devices, increasing the time between mount request and
mount complete, and increasing the probability of mount
errors and subsequent rerun/recovery costs.

• The costs of the I/O devices increase and the requirement
for floor space in the library and the computer room grows
larger.

Page 4-2

•

..

Once the additional I/O units are installed in a complex envi­
ronment to support more concurrent tasks, it is difficult to
maintain balanced systems utilization. There will be occasions
when even more devices are needed, while at other times not all
available units will be required. The MSS addresses these
problems-satisfying user requirements for an economical, large
capacity storage device with a sophisticated technology that
extends the concepts of virtual storage to the I/O components of
a computer system.

\

Page 4-3

The Mass Storage System­
an Overview

The IBM 3850 Mass Storage System consists of IBM 3330 Disk
Storage and one or two IBM 3851 Mass Storage Facilities.

The MSS provides very large data capacity, all under system
control. The capacity range of MSS is from 35 billion (35 x 109)

bytes to 472 billion (472 x 109) bytes (4,720 3336-1 volumes).

Data under control of the MSS is stored in DASD format images
on low cost media (magnetic tape in data cartridges) until it is
needed. The MSS transfers data f.rom the data cartridges to
DASD (3330 drives), when it has been requested, in a process
called staging. Once data has been staged, it behaves precisely like
any other data resident on a 3330 in terms of organization and
accessibility. When the data is no longer needed, and the space it
occupies on DASD is required for other data, any "cylinder"
containing new or up<Jated data is destaged back onto the data
cartridge (Figure 4.1).

CPU

I
Channel

-- -- --------,
ystem

r,-------
118M 3850 Mass Storage S

--~--
I
I
I
I
I
I
I
I
I
I
I
I

3330 Disk Storage

• Staging

I

I .
DestaglOg ,

3851 Mass Storage Facility

L _____________________ ~

Figure 4.1 Mass S forage System Data Flow

Page 4-4

..

J

..

•

•

All cartridges under control of the system are physically within
the 3851 Mass Storage Facility (MSF) of the MSS. Floor space
for storage media is greatly reduced. Many tape data sets may
now be stored as DASD data sets, reducing or even eliminating
tape drive and tape reel requirements.

Each data cartridge can hold up to 50 megabytes of data, so two
cartridges are required to store the data capacity of an entire
3336 Modell disk pack (Figure 4.2). Indeed, two cartridges are
always initialized together and the pair is referred to as a mass
storage volume (MSV) and the MSV is managed by the Mass
Storage System. 3336 Model 11 disk packs contain the equiv­
alent of two MSVs.

1 Mass Storage Volume=2 Cartridges=13336 Modell Disk Pack=100 Million Bytes

Figure 4.2 Mass Storage Volume Capacity

Because MSVs when staged appear as normal DASD volumes to
OS/VS, the operating system issues mounts for these volumes
onto DASD drives. However, only the portions of a volume that
are requested will be staged onto DASD. The MSS hardware has
been designed to present to OS/VS the image of having more
DASD devices available than are physically present (the virtual
device concept). OS/VS and user programs request data as
before, and the hardware translates these requests to obtain data
from its actual location on physical DASD or in the Mass Storage
Facility.

Page 4-5

J

F~re4.3

This eliminates the time to manually pick tape reels from a li­
brary and greatly reduces mount times. The cycle time of a
volume through a library system is dramatically shortened,
because all volumes are stored and retrieved under control of the
system.

To assist in managing up to 4,720 volumes, IBM provides new
operating system functions and utilities. These routines help
convert data sets to mass storage volumes, keep track of space
availability, group mass storage volumes for simplicity of manage­
ment, and create backup.

The MSS is a hierarchical storage mechanism that combines many
of the advantages of tape and disk systems with potential for
operational benefits in a complex environment (Figure 4.3).

CPU Main Storage Host Computer System

DASD Buffer

Mass Storage System

Mass Storage

Mass Storage System Hierarchical Store

Data is contained in the Mass Storage Facility, the DASD buffer,
or main storage as it is required, and migrates up and down in the
hierarchy as its use dictates.

Page 4-6

•

J

..

The major components of the Mass Storage System are (Figure
4.4):

• The 3851 Mass Storage Facility (MSF)

• The 3830 Model 3 Storage Control

• The 3333 Disk Storage and Control (Models I or II)

• 3330 Disk Storage Drives (Models I, 2, or II).

r­
I
I
I
I
I

I Ma

I
I
I
I
I
I
I
I
I
I
I
I

MaIO Storage

Centra I Processor

I
Byte MPX

I
Control Path

3851
M ass Storage

Data Path

ss Storage System

I
3333 Disk
Storage and Control

1 .- I
.....

3330
Disk
Storage

I
Block MPX

I

3830 Model 3
Storage
Control

I
3333 Disk
Storage and Control

~
......

3330
Disk
Storage

-

.......

./

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I ~ ~ L ___ _ --------------~

Figure 4.4 Mass Storage System Configuration

Optionally, the System/370 Integrated Storage Control feature
on the Models 158 and 168 can be equipped with a Staging
Adapter. The Staging Adapter provides identical function to two
3830 Model 3 Storage Controls except for the number of
channels that can transmit data to host processor(s). When a
Staging Adapter is installed on an Integrated Storage Control, the
entire ISC (both sides) is equipped to operate in the MSS. One
half of the ISC cannot be so equipped without the other. In this
chapter references to the 3830 Model 3 Storage Control also
apply to an Integrated Storage Control with the Staging Adapter.

Page 4-7

The Mass Storage System­
Hardware Functional
Description

3851 Mass Storage Facility (MSF) Each 3851 Mass Storage Facility contains up to 236 billion (236
x 109) bytes of data and moves data to and from DASD as
needed. Two 3851 MSFs can be included within the same 3850
Mass Storage System.

The 3851 Mass Storage Facility includes these major compo­
nents:

A. Data cartridges to store the data in the storage cells.

B. Data Recording Controls (DRCs) and Data Recording De­
vices (DRDs)-to transfer data between the MSF and the
3830 Storage Control.

C. Cartridge Access Station-to accept data cartridges into or
remove them from the MSF.

D. Accessors to retrieve and deliver data cartridges and accessor
controls to control the accessor movements.

E. Mass Storage Control-to provide overall control of MSS
functions.

Most of the 3851 Mass Storage Facility components are shown in
Figure 4.5. Data is stored on data cartridges that reside in the
cartridge storage cells. When data is requested, the accessor
moves to the appropriate storage cell, selects the cartridge from
the cell, and transports it to a data recording device. The car­
tridge is then loaded into the DRD, which reads data from the
tape and transmits it to a 3830 Storage Control through the data
recording control.

Mass Storage
Control

Figure 4.5 3851 Mass Storage Facility Components

Page 4-8

..

..

When the required data has been completely staged, the data
cartridge is returned to its home storage cell. The staging/
destaging operations are supervised and directed by the Mass
Storage Control.

The 3850 Mass Storage Facility uses data cartridges to store data. Data Cartridge
Each cartridge can contain up to 50.4 million bytes of data; the
cartridge is approximately 2 inches (5.08 cm) in diameter and 4
inches (l0.16 cm) long. The cartridge holds a spool of tape 770
inches (17.5 m) long (Figure 4.6).

50.4 million bytes per cartridge
770 total inches of tape
677 inches of usable tape

2 inches diameter
4 inches length

Figure 4.6 Data Cartridge

Data is recorded on the magnetic tape in the image of 3330 Disk
Storage cylinders. Each cylinder is recorded on a fixed location
on the tape, and specific cylinders can be located by unique
identifiers along the edge of the tape. Each cartridge is capable of
storing 202 cylinders in the 3330 format. Therefore, two car­
tridges are the equivalent of one 3336 Modell Disk Pack.

The mass storage volume is the storage reference for data sets
within the Mass Storage System, just as tape volume and disk
pack volume are the storage references for tape and disk data
sets.

Mass storage volumes within the 3851 Mass Storage Facility have
the following characteristics:

404 cylinders

19 tracks per cylinder

13,030 bytes per track maximum

100 megabytes

Page 4-9

Data Recording Device

Cartridge Access Station

Accessors

The Mass Storage Control (MSC)

The 3851 Mass Storage Facility includes one to four pairs of data
recording devices (DRDs) and one data recording control (DRC)
for each DRD pair for reading and recording data from and onto
cartridges. The DRD also has a high speed search capability that
makes storing multiple data sets on one cartridge practical.

The 3851 Mass Storage Facility has a cartridge access station
which allows manual entry and removal of cartridges. There are
separate ports for entry and exit of cartridges.

Two accessors and associated accessor controls and power sup­
plies are included in every model of the 3851 Mass Storage Facil­
ity. The accessors provide for the movement of data cartridges in
the Mass Storage Facility; that is, from a storage cell to a data re­
cording device and back.

The Mass Storage Control (MSC) in the 3851 Mass Storage Facil­
ity controls all staging and de staging operations. The MSC's
functions include:

1. Accenting requests for data from up to four System/370
CPU's Models 145, 1551, 158, 16511, 168, 158 multipro­
cessor, 168 multiprocessor, 3301,3302, and 3303.

2. Determining the location of data by referring to an inven­
tory list of cartridges and mass storage volumes.

3. Allocating space in eight-cylinder increments on staging
DASD for data to be staged.

4. Instructing the accessor controls to move a cartridge con­
taining the requested data from its storage cell to a data
recording device.

5. Initiating the staging of the data from the cartridge in the
DRD to the allocated space on disk storage.

6. Performing error recovery procedures, alternate path entry,
and device reallocation as needed during the staging/destag­
ing operation.

7. Monitoring the amount of allocable disk storage space.
When the amount of allocable space becomes less than a
specified threshold (or when the host system so instructs),
initiating deallocation and destaging of changed cylinders to
create additional allocable space available for other data set
requests. The criteria for selection of cylinders to be de­
staged is based on a least-recently-used (LRU) algorithm.

Page 4-10

J

•

8. Maintaining usage and error statistics by component and
cartridge.

9. Recording the physical configuration of the MSS:

• Data and control paths

• Status of components

• Automatic switching of components

10. Maintaining a record of the location, attributes, and status
of all mass storage volumes.

As OS/VS controls the movement of data between 3330 Disk
Storage and the CPU, the Mass Storage Control controls the
movement of data between Disk Storage and the Mass Storage
Facility.

Page 4-11

Model and Feature Options of There are eight models of the 3851 Mass Storage Facility; they
the 3851 Mass Storage F acil ity differ in (1) size and (2) the number of MSCs they have.

The following table shows the differences among models:

Models Models Models Models
A1.B1* A2.B2* AJ.BJ* A4.B4*

Billion bytes (109) of storage capacity 35 102 169 236

Maximum Number of Data Cartridges 706 2,044 3,382 4,720

Mass Storage Volumes 353 1,022 1,691 2,360

Data Recording Controls 1 2 J 4

Data Recording Devices 2 4 6 8

System 370 Channel Interfaces with Two Channel
4 4 4 4

Switch, Additional

MSC Ports with MSC Twin Port Feature** 2 2 2 2

* "A" Models have one MSC each; "8" Models have two (one is for backup).

** One MSC Port allows the MSC to attach to eight Mass Storage System elements.

Figure 4-7

An element is a 3851 Mass Storage Facility, a 3830 Model 3
Storage Control or an Integrated Storage Control with the Stag­
ing Adapter (each ISC counts as two elements). The maximum
configuration with one MSF consists of the MSF and seven 3830
Model 3 Storage Controls (eight if the Twin Port feature is in­
stalled). The maximum configuration with two MSFs consists of
the two MSFs· and fourteen 3830 Model 3 Storage Controls.
When the MSS configuration includes two MSFs, each staging
drive must have a path to each MSF. Paths to an MSF can be
provided by attaching the 3830 to each MSF or by attaching two
3830s (one to each MSF) addressing a common set of 3333s via
the String Switch. This effectively limits the number of staging
drives in a configuration with two MSFs to 128. A minimum
MSS configuration consists of an MSF Model A-I, one 3830
Model 3 Storage Control (or an Integrated Storage Control with
Staging Adapter), and two 3333 Disk Storage and Controls (must
have four disk drives).

Each model can be equipped with two special features:

1. Two Channel Switch, Additional, which expands the
number of System/370 channel interfaces on the MSC from
the standard two to four. With this feature, the MSC can
attach to a maximum of four central processors or a max­
imum of two multiprocessing systems.

2. MSC Twin Port, required to increase the allowable number
of Storage Controls to 8 in a single MSF configuration and
to 14 in a configuration that has two MSFs (an ISC counts
as 2 Storage Controls).

Page 4-12

•

•

One or two 3851 Mass Storage Facilities can be attached to IBM Attachment
System 370 Models 145, ISS-II, 158, 165-11 and 168, 158
multiprocessor or 168 multiprocessor. If two MSFs are included
in an MSS configuration, both must be "A" Models. Both Mass
Storage Facilities operate under the control of one Mass Storage
Control. The other MSC provides the backup function identical
to that in the "B" series. A maximum of two multiprocessor
systems may be attached to an MSS .

Page 4-13

3830 Model 3 Storage Control The 3830 Model 3 Storage Control or the Staging Adapter on an
Integrated Storage Control Feature performs the following
functions:

• Transfers data between disk drives and the CPU, via the
3333.

• Maps virtual device address and logical (cylinder, head and
record) address to physical device address and actual (cyl­
inder, head and record) address. For more information, see
"Theory of Operations."

• Detects a request for data that is not present on DASD
(cylinder fault).

• Requests the MSC to resolve a cylinder fault.

• Transfers data between data recording drives via a data
recording control and staging disk drives.

A buffer is provided within the 3830 Model 3 Storage Control to
overlap data transfers. Data staged from and destaged to the Mass
Storage Facility first goes to the buffer in the 3830 Model 3.
While this data is being written from or into the buffer, the 3830
Model 3 can simultaneously transfer data to or from a System/
370 CPU.

The 3830 Model 3 has two channel interfaces. One channel
interface is used by the Mass Storage Control. The other is used
for data transfer to the CPU. Two additional CPU channel inter­
faces are possible with the addition of the special feature
(#8171) Two Channel Switch, Additional. The Integrated Stor­
age Control on the System/370 Models 158 and 168 with the
Staging Adapter has two interfaces per path. One interface is.
used for communication with the Mass Storage Control and the
other is for data transfer to the CPU. One additional channel
interface is possible per path with the addition of special feature
(#7905) Two Channel Switch for ISC.

Page 4-14

,

•

..

•

Up to thirty-two 3330-type drives can be attached to one 3830
Model 3; however, only sixteen 3330 Model 1 or eight 3330
Model 11 drives can be used as staging drives. (The Mass Storage
Control considers a 3330 Model 11 Drive as two 3330 Model 1
drives when it is used as a staging drive.)

The 3830 Model 3 Storage Control can attach to a maximum of
four data recording controls in a Mass Storage Facility. Each path
of an ISC with the Staging Adapter can be similarly attached.

The 3830 Model 3 or ISC with the Staging Adapter has an
expanded addressing capability: up to 64 unique. addresses per
channel interface (maximum of 192 per 3830-3 or 128 per
Integrated Storage Control path) are possible. This expanded
addressing capability is necessary so that more virtual volumes
than physical drives can be simultaneously mounted. (See
"Theory of Operations.")

The 3333/3330 units function exactly as before .

Page 4-15

The Mass Storage System­
Theory of Operations

Staging Units

In order to better understand the operation of the Mass Storage
System, keep in mind that the space on all staging drives under
control of the MSS is used as buffer storage between the Mass
Storage Facility and the CPU. This space is managed by the Mass
Storage Control.

Some of the disk drives connected to a 3830-3 can be designated
for use as buffers (in which case they are called by any of the
names: staging units, staging devices, staging DASD or staging
drives), while others may be designated as standard disk drives
(thus, non-staging units, devices, DASD, or drives).

Although 3336-1s or 3336-11s can be used on a staging drive
(thus becoming staging packs), virtual volumes (data staged from
mass storage volumes) are always in the format of 3336-1 (100
megabyte) packs. Staging packs must be formatted in a special
manner:

• The volume serial numbers of all staging packs have the
same first four characters (user chosen). The last two
characters of the volume serial number must be the MSS
identification number.

• The VTOC must be on cylinder zero, track two.

• The VTOC indicates that the entire pack is filled by a single
data set (hence, OS/VS cannot allocate space on this pack,
which has the effect of reserving the pack for space alloca­
tion by the Mass Storage Control).

The format of a staging pack is such that-

• A non-staging pack cannot operate on a staging drive
without being reinitialized.

• A staging pack cannot operate on a non-staging drive
without being reinitialized.

Page 4-16

J

"

•

The implementation of virtual drives is one of the most signif- Virtual Drive Concept
icant concepts in the MSS. With the MSS creating the image of
many 3330 drives, the system is able to satisfy more concurrent
requests for devices and volumes and should enable more jobs to
run at the same time than with conventional tape/DASD.

Virtual drives are implemented at the 3830-3 level. The standard
unit addressing consists of three hexidecimal digits (12 bits), The
ftrst four bits designate the channel number, which remains
unchanged. However, the phYSical characteristics of the system
from the channel level down and assignment of the other eight
unit-address bits are:

• A maximum of four 3830-3s can be attached to a single
channel, so it takes two bits to select which 3830-3 is being
addressed on the channel.

• A maximum of four 3333s can be attached to a particular
3830-3, so it takes two more bits to designate which 3333 is
to be selected on the 3830-3.

• A maximum of eight direct access storage drives can be
connected to a particular 3333, so it takes 3 bits to specify
which drive is being selected.

Thus, to actually designate which drive is being addressed from a
channel takes 7 bits. But there are eight bits in the non-channel
portion of the device address. Mathematically, this provides a
Virtual addressing capability on each channel interface on a
3830-3 of 64 units-regardless of whether there are only 2 drives
or the maximum of 32 attached to the 3830-3 .

Page 4-17

Tape Recording Organization Understanding how the MSS stages and destages data requires
understanding how data is organized on data cartridges.

The first step to this is an awareness of how tape is threaded onto
the data recording devices (DRDs). The tape is wrapped around a
read/write mandrel in a helix-like position (Figure 4.8). The read
and write heads revolve within the mandrel. If one were to take
the tape out of its cartridge and lay it flat, he would see that the
resulting recording pattern is a diagonal stripe (Figure 4.9).

From
Cartridge

Figure 4.8

To
Takeup
Spool

~I--- Tape

~ ____ Rotating
Head

Tape Threaded in Recording Position

Cylinder Zero Cylinder One Cylinder .. N" , , ,

Figure 4.9 Stripe Format

Page 4-18

•

•

..

...

.,

The stripes on the tape are numbered starting with zero. The first
ten stripes contain the cartridge label area. There is room for
4096 data bytes per stripe There are 67 stripes allocated per
3336-1 cylinder image. Four of these stripes are alternates and
one is a separator. Each stripe carries its own identification or
stripe number.

Servo information along the outside edges of the tape assists in
positioning the tape properly in the DRD. Included in this
information is the stripe number, which assists in the high-speed
search for a cylinder on a volume .

Each group of 67 stripes corresponds to a particular cylinder
address on a virtual volume enabling a search of stripe addresses
to locate a selected cylinder. Since data is always staged and
destaged in cylinder increments, data is recorded sequentially
from the first track in the cylinder to the first stripe of the 67
stripes assigned to that cylinder. An end of track indication is
recorded by the hardware as this condition is encountered.
Count, key (if any), and data are recorded, but home address,
gaps, and DASD ECC information are not.

Page 4-19

Access Method Services Utilities The use of the Access Method Services utility functions is
mandatory to support the MSS. The new functions are im­
plemented via new and modified utility commands specified in
utility control statements. These commands are unique to the
MSS environment and can be classified as follows:

Manual Cartridge Entry

• Cartridge management commands

• Volume management commands

• Group management commands

• Report generation commands

• MSC control commands

• VSAM data set definition commands

The first four classifications are provided to assist those persons
designated as "space managers" to effectively use the data stor­
age capacity of the Mass Storage System.

Entry of data cartridges into the MSF is accomplished by simply
placing a cartridge into the cartridge access station. When this is
done, the MSF automatically selects the cartridge from the car­
tridge access station loads the cartridge into a DRD, and reads
the cartridge label. If this cartridge is not part of a mass storage
volume, it is considered to be a "scratch" cartridge and ~vailable
for subsequent use as part of a mass storage volume. All new data
cartridges are considered scratch cartridges. If the cartridge is a
scratch, it is then delivered to an empty MSF cell, and an MSC
table (Scratch Cartridge List) is updated to reflect the availability
and location of the scratch cartridge.

If the cartridge is part of a mass storage volume (not a scratch
cartridge), then the cartridge is delivered to an empty MSF cell
and an MSC table (Transient Volume List) is updated to reflect
the location and identity (mass storage volume serial number and
cartridge serial number) of the data cartridge. The MSC will also
send an unsolicited message to the MSSC - MASS STORAGE
SYSTEM COMMUNICATOR in the primary host CPU. This
message contains information that identifies the new cartridge as
part of a mass storage volume. The information is then used to
update the MSVI - MASS STORAGE VOLUME INVENTORY
data set by the MSSC, so that the Inventory data set will reflect
the physical presence of the new cartridge now located in the
MSF.

Page 4-20

..

Other utility functions include:

• DASD utilities

• Recovery utilities

• Service utilities

The primary DASD utility to support MSS in IEHDASDR. New
utility control statements allow the user to specify that the pack
being initialized is to be used on a staging drive as a staging pack.
This affects the allocation of alternate tracks and other char­
acteristics of the pack.

The major Recovery utilities in the MSS environment are used in
the recovery of the MSVI data set. A set of utilities assists the
user in the reconstruction of the MSVC data set, using the MSVI
Journal data set, if reconstruction is required.

The primary Service utilities for MSS are provided as diagnostic
aids to IBM Field Engineers and the MSS Space Manager. An
example is the System Data Analyzer, which is described in the
"Serviceability" section of this publication.

Other Utility Functions

The 3850 MSS was designed for ease of installation in the OS/VS User Programs
environment. Access to application data sets is via the existing
device support for 3330-1, 2, or 11 disk storage devices. Users of
tape applications can look at the introduction of MSS as a device
conversion to "virtual" 3330s. Tape applications that use device-
independent coding techniques can be moved to the MSS with
only minor JCL changes. Users of 3330 disk applications can
quickly take advantage of MSS by moving data sets to mass
storage volumes, and making minor JCL changes.

The primary considerations for executing user programs in the
MSS environment relate to JCL, and the access method support
needed by the application.

Page 4-21

OS/VS Access Method
Support of MSS

VSAM

Some options important in an MSS environment have been added
to VSAM. Staging options allow the user to choose among three
different staging procedures:

1. Staging a data set at OPEN time, which should be the
normal way of operation.

2. Staging and binding a data set at OPEN time. A bound data
set cannot be destaged by the MSC until the data set is
unbound or the volume on which it resides is demounted.
Data sets required by high performance applications should
be bound.

3. No staging of data at OPEN time. Data is staged one cyl­
inder at a time as required by the host CPU(s). This is called
"cylinder fault" mode and could be used for infrequent
accesses to very large data sets.

Destaging options permit the user to specify two procedures:

1. Synchronous de staging of a data set at CLOSE time. This
option causes the modified cylinders to be completely
destaged before control is returned to the user program. If
hard ware errors are encountered during the destaging
process their presence is communicated to OS/VS allowing
immediate recovery action.

2. No destaging of a data set at CLOSE time. Modified cyl­
inders are destaged by the least-recently-used (LRU) al­
gorithm of the MSC or when a volume is demounted.

These options are recorded in the VSAM catalog so that they can
be used without program or JCL change.

Page 4-22

No modification has been made to ISAM. This means that there
is no support for the staging of ISAM data sets by OPEN. All
data is accessed in "cylinder fault" mode. ISAM data sets should
be converted to VSAM data sets and processed using the
ISAM-VSAM compatibility function of VSAM, which eliminated
accessing data in cylinder fault mode.

BSAM, QSAM, BDAM, BPAM, EXCP are changed to support
staging at OPEN time. But the "BIND" and
"CYLINDERFAULT" options are not supported for these
non-VSAM data sets. These data sets are always staged at OPEN
time.

Figure 4.10 shows the operation of the common access methods

SAM. DAM.
Operation VSAM PAM. EXCP

Stage Yes
Yes

Data Set at OPEN Time (optional) S
T Stage and Bind Yes -
A Data Set at OPEN Time (optional)
G Cylinder Fault
E Yes

Access to Data Set (optional) -
(No Staging at OPEN)

D Synchronous Destage Yes
E of Modified/New Data Cylinders at (optional) -
S CLOSE Time -----
T Asynchronous Destage
A of modified/new data cylinders based on Yes
G Least Recently Used (LRU) or volume de- (optional) Yes

E mount

Figure 4.10 OS/VS Access Method Stage and Destage Options

Page 4-23

ISAM

Other Access Methods

ISAM

-

-

Yes

-

Yes

System Availability
and Data Integrity

Computer-based systems have become increasingly important to
businesses, governments and other organizations. For this reason,
increasing attention has been given to systems availability and
data integrity.

System availability is having the system when you want it.
Elements of system availability are:

• Reliability of the components.

• Continuity of system functions.

• Serviceability of the components.

Reliability means that the system stays up. When components
become unreliable, they may disrupt continuity of system
functions. When that happens, the serviceability of the
components becomes an important consideration.

Reliability is the measure of the probability-at best an
estimate-that the system will do what it is designed to do for a
given period of time.

Continuity involves answers to:

• How often will a malfunction occur?

• What effect will malfunctions have on system capability?

• How long will it take to fix?

• How often will preventive maintenance be performed?

• When will engineering improvements be installed?

Page 4-24

J

..

•

Serviceability questions are phrased as how easy and fast is a
system to fix and maintain and what effect does restoring one
element have on another.

Data Integrity means the ability of the system to store, maintain,
update, and move data without alteration due to a malfunction.
Important data integrity considerations are:

• Recovery of data after system failures .

• Da ta Security from unauthorized access, change, or
exposure.

Recovery is an automated function in the sense of returning to a
normal state after a temporary error in the system. Recovery is
also the process of manually restoring a system when it is unable
to recover automatically.

Data security refers to protecting data from unauthorized
disclosure, modification or destruction by accidental or
intentional means.

Page 4-25

System Perspective To look at these aspects of a specific computer-based system,
both IBM and the user must have the same understanding and
perception of the system. A system is not merely an
interconnection of computer hardware units, software, and
firmware. A system should be perceived-by everyone concerned
with it-as a dynamic combination of resources:

• Hardware

• Software

• Firmware

• Data

• Operators

• Application programs

• Normal operating procedures

• Contingency procedures

• Computer room environment

• Management

Page 4-26

•

•

IBM's 3850 Mass Storage System, properly employed with good
systems design, provides an opportunity for improved resource
management over conventional tape/DASD in these areas:

I. Tape handling is completely automated. This reduces prob­
lems caused by manual handling as dirty leaders, damaged
tape, bent reel flanges, etc.

2. Improvements in the recording quality of the tape, reduc­
tion in the recording head-to-tape separation, and advances
in error correction code provide not only improved data
density on the cartridge but more reliable reproduction of
the data compared to tape/DASD.

3. Because much more data can be under system(s) control
when compared to tape/DASD, normal operating occur­
rences such as misfiled, mislabeled or lost reels of tape and
mismounts are nearly eliminated.

4. Contention for a unique tape data set is also reduced
because the data, once staged, can be shared among two,
three or four operating systems from DASD, assuming that
the data set has been qualified as sharable.

5. Extensive hardware replication and sophisticated, automatic
error recovery procedures are integral to the design of the
Mass Storage System.

6. The Mass Storage System has been designed so that most
main tenance can be accomplished concurrently with
productive use of the system.

Page 4-27

Disk Pack Swapping

Serviceability

A disk pack can be removed from one staging drive and placed on
another of the same model, as is possible with current DASD, to
assist in preventive maintenance and help resolve intermittent
drive failures. To accomplish this, you must tum off the drive
containing the disk pack to be swapped and vary off another
staging drive or a designated spare drive on the same 3333 string.
The vary off command causes the data on a staging drive to be
destaged. Data in use will be restaged on another staging drive.
Move the address plug, the pack and VARY ON the new drive.

Serviceability is important because it is a positive influence on
availability. The better the design for serviceability of a system,
the smaller the impact on availability of failures within that
system. A key design objective for the 3850 Mass Storage System
has been to maximize concurrent maintenance. In fact, where a
Mass Storage System configuration provides replicate compo­
nents, almost all scheduled and unscheduled maintenance, includ­
ing problem diagnosis and checkout, can be done while the stor­
age system is in use. This overlap is-achieved by varying off only
those components required for service. The system continues to
operate in degraded performance mode. Another design objective
has been to provide better maintenance tools to reduce "long
calls". These objectives are served by:

1. Comprehensive Maintenance Library Manuals that are
effectively cross referenced and easy for Customer En­
gineers to use.

2. Improved error checking in the hardware, when compared
to previous IBM products, and a more extensive display of

,sense data.

3. New microdiagnostic programs which are entered in the
MSC and 3830 Model 3 by the Customer Engineer from a
diskette using a CE console. This is done while the MSS is
operating in a normal environment.

Page 4-28

i

4. Improvements to On Line Tests (OLTs) so that the diagnos­
tic intelligence is concentrated in microdiagnostic programs
below the host CPU. Some of the functions provided by the
improved diagnostic programs are to:

• Isolate different types of failures

• Report cartridge store addresses and conditions of access
.. errors

•
• Measure accessor motion

• Report addresses and the number of control checks

• Analyze paths

• Test interfaces

• Update microcode

5. A program called System Data Analyzer (SDA) designed to
help the Customer Engineer diagnose existing problems
more quickly and anticipate failures. Sense data, buffered­
usage-log data, and data logged in exceptional circumstances
are automatically entered into the SYSI.LOGREC data set
during MSS operation. Because (I) this data is voluminous,
and (2) the interrelationships of MSS components are
complex, the program is valuable in processing logged
information.

Page 4-29

Data I ntegrity The integrity of data stored in the 3850 Mass Storage System is
maintained by:

Checking and Diagnostics

• The extensive use of checking circuitry and diagnostics.

• Parity.

•

•

A new error correction method, Extended Group Coded
Recording, for recording data on cartridges.

DASD error correction coding.

• Multiple recording of cartridge serial numbers.

• Automatic reconstruction of 3830 Model 3 tables.

• Maintaining duplicate Mass Storage Control tables.

Data circuits in the data recording control, data recording device,
3830 Storage Controls, Integrated Storage Controls, 3333 Disk
Storage and Control, and the 3330 Disk Storage Drive are hard­
ware checked while in use. When they're not in use, a Loop Read
to Write diagnostic command checks the data recording control
circuits in the Mass Storage Facility. A similar diagnostic com­
mand checks data circuits in the DASD subsystem.

Physical travel of each accessor is monitored and the actual
physical location address is compared with the address in the
command sent to the accessor control that initiated accessor
movement. This ensures that the accessor is selecting from the
intended location. Each accessor is also equipped with a series of
physical interlocks to prevent damage in the event of a failure in
the accessor control system.

Extended Group Coded Recording Data is recorded on cartridges using the Extended Group Coded
Recording method. This error correcting code and associated
circuitry can correct up to 32 of 208 bytes on-the-fly.

DASD Error Correction Code As data is transferred from the host channel or from the MSF to
disk storage (write operation), the 3830 Model 3 storage control
removes the parity bit associated with each byte. It then com­
putes the error correction code bytes, which are written after
each recorded area. The correction code bytes, coded to rep­
resent the data in the recorded area, are used for both error
detection and correction.

Page 4-30

..

J

•

As data is transferred from disk storage to the channel or to the
MSF (read operation), each area is inspected by the 3830 Model
3 storage control and the error correction code bytes are re­
calculated for each area. The 3830 correction code corrects single
bursts of 11 bits or less.

If a correctable data error is detected in the home address, count,
or key areas, the 3830 Model 3 storage control internally ex­
ecutes the error correction function through the use of command
retry. If an error in the data area is detected, the host correction
function is determined by the system error recovery procedures .

The correction code bytes are removed and proper parity is
generated by the 3830 Model 3 storage control before the data is
transferred to the channel or to the MSF.

When tape is threaded on a data recording device, the cartridge Multiple Recording of Cartridge Labels
label is read and compared by the Mass Storage Control with the
required cartridge label contents. An unequal compare automat-
ically invokes microprogrammed error recovery procedures; an
equal compare allows the cartridge to be used. Because of the
importance of this label, it is recorded twice in the cartridge label
area. The cartridge serial number is also imprinted on the tape so
that it can be visually inspected through the transparent cartridge
shell.

The 3830 Model 3 contains tables in a control store area which 3830 Model 3 Tables
serve the following purposes:

• The Virtual Address table provides information about each
virtual address assigned to the 3830-3.

• The Virtual Volume Information table tells about each
Virtual Volume mounted such things as whether it is read
only, busy, shared and/or reserved.

• The Page Status table allows the conversion of virtual page
numbers to real page numbers and virtual unit addresses to
logical unit addresses.

• The Logical to Real Conversion table allows the conversion
of logical unit addresses to real unit addresses.

Although these tables reside in the 3830-3, they are maintained
by the Mass Storage Control. Should a malfunction occur in the
3830-3, the Mass Storage Control refreshes the tables without
manual intervention.

Page 4-31

Backup Good systems design requires backup data both for data integrity
and to provide a resource for recovery when the MSS is unable to
recover automatically or when media damage occurs.

The MSS and host operating systems provide:

• Mass Storage Volume backup

• Mass Storage Volume archiving

• Generation Data groups

• Data set copy

Page 4-32

J

•

..

•

Data security is a technical question to be resolved by the use of Data Security
management-approved and enforced system security procedures,
manual procedures, and attention to the physical environment.
Data security is an environmental consideration which involves
the system functions of:

Identification Provides the system with a unique, rec­
ognizable name for each person, device or
system resource attempting to access a sys­
tem resource.

Authorization Controls the access of each person, device or
system component to a system resource.

Audit

System
Integrity

Provides a record of all accesses and at­
tempted accesses to a system resource for
review, enforcement and evaluation of
approved security measures.

Is the ability of the system to protect itself
from unauthorized attempts to compromise
or bypass security controls or features.

The IBM 3850 Mass Storage System and OS/VS support these
systems functions through password authorization of utility
commands, by providing the mass storage volume attributes
DASDERASE and READONLY, by providing RPQs designed for
physical protection, and by placing more data under system
control.

Page 4-33

Password Protection All the utility commands are authorized, because the Mass Stor­
age System Communicator requires an APF Authorization. A
user should generally place the utilities in an APF authorized,
password-protected library.

The Access Method Services utility commands check data set and
VSAM catalog passwords when performing volume operations.
For each non-VSAM data set on a volume, the utility commands
require the read-level password when copying or converting the
volume and the write-level password when modifying the volume
serial number, making the volume inactive, or replacing the
volume with a backup copy. For each VSAM data set on a
volume, the utility commands require the master-level password
when copying or converting the volume, making the volume
inactive, or replacing the volume with a backup copy. In the
above cases, you can specify the master-level password of the
VSAM catalog that owns the volume and. the utility commands
will bypass data set password checking for the VSAM data sets.

Data set passwords are not checked when a copy of a volume is
scratched, because the copies cannot be mounted. The
SCRATCHY commands, however, can ensure that the volume
being scratched is a copy from the volume records maintained in
the Mass Storage Volume Inventory.

Page 4-34

•

•

J

•

•

The 3850 Mass Storage System is an extension of the virtual Conversion
storage concept to data storage. Potential users of the MSS are
installing central processors with virtual storage and VSI or VS2
now. They are also engaged in expanding their application bases.

Conversion of existing applications to the MSS can usually be
viewed as an I/O change, thereby conserving resources for contin­
ued application expansion. The initial conversion should appear
as a tape to DASD conversion, one that is generally familiar.

The design objectives for MSS to ease conversion are:

• Use current production source code without redesign or
reprogramming.

• Use current progra~s without re-compiling or re-linkediting.

• Limit effort to minimal Job Control Language (JCL)
changes.

MSS for most users will meet these objectives. This is especially
true for users who maintain and develop installation standards.

Page 4-35

Compatabi I ity Considerations The compatibility objective is to provide a means by which
current applications, using tape or 3330 media, can be stored by
the Mass Storage System with minimum effort and expense.
From a conversion viewpoint, this has been achieved by making
the MSS compatible with the 3330 Disk Storage. With the
exception of device-dependent code, the conversion has been
reduced to converting a tape data set to a disk data set.

The virtual volume concept is compatible with present 3330
DASD operation. The virtual volume concept is simply an
expanded addressing system that permits the host CPU(s) to
address and access mass storage volumes as if they were addi­
tional 3330 volumes, automatically mounted on demand. The
conversion to the Mass Storage System is essentially a conversion
to 3330 DASD. In conversion, the user does not have to concern
himself with managing the data below the 3330 (data flow
between the MSF and the 3330).

For the application programmer, the Mass Storage System is an
IBM 3330 with nearly unlimited space. For the systems pro­
grammer, the expanded addressing system does not change the
parameters he must review; it only increases the total number.

Because the Mass Storage System is compatible with the IBM
3330, the user can convert and test his tape media program/data
prior to installation.

Page 4-36

•

The access method and catalog recommended for use with Mass VSAM/ISAM Relationships
Storage System is the Virtual Storage Access Method (VSAM).
The current OS/VS access methods also function with the MSS.

Many users will install VSAM and convert at least their Indexed
Sequential Access Method (ISAM) data sets. With Access Method
Services Utilities, sequential and indexed sequential data sets can
be easily converted to the VSAM format. The compatibility
routines for existing customer programs, using ISAM, provide
access to the VSAM data sets.

ISAM can function with the MSS, but only in a cylinder fault
mode. The Mass Storage System will stage a cylinder of data on a
cylinder fault. This option can be used for low volume or in­
frequently accessed ISAM data sets.

Page 4-37

VSAM and the Mass
Storage System

Virtual Storage Access Method (V SAM) is a DASD access
method that operates on relocate versions of System/370 with
OS/VS. VSAM supports DASD drives in a device independent
manner and therefore the virtual volumes of the Mass Storage
System are automatically supported because of their DASD
characteristics. Mass Storage System features beyond those of
virtual volumes require additional support. These new features
include data staging and destaging and volume manipulation.

The VSAM interface for data set open/close/extension is un­
changed for Mass Storage System support. The effect of using
this interface is unique to the Mass Storage System and is
dependent on the VSAM data set options selected through
Access Method Services. The following description describes the
direct results of using these current interfaces in terms of the
Access Method Services external interfaces specified and the Job
Control Language parameters selected.

Page 4-38

..

..

•

On OS!VS I and OS!VS2 systems, any VSAM user catalog can
reside on a mass storage volume. The VSAM master catalog
cannot be accessed if it resides on a mass storage volume. No
change to VSAM catalog management is necessary to support
user catalog residence. No check is made during VSAM master
catalog or user catalog definition for mass storage volume res­
idence .

Page 4-39

VSAM Catalog and
Catalog Management

Time Sharing Option Your Time Sharing Option (TSO) programs can operate with the
Mass Storage System without any modification of your existing
Time Sharing Option data. Foreground jobs will still execute in
the same manner as they do in a system that does not contain the
Mass Storage System, provided that data sets are on real volumes.
However, when archived data sets are used, these data sets can be
on mass storage volumes.

Background jobs will be handled just as they are today. When the
background job is finished with the data, the data is archived in
the Mass Storage System. This means that you must have real
drives to be used by Time Sharing Option data and that in the
transfer of data to and from the Mass Storage System and Time
Sharing Option drives, the CPU channels are used.

Page 4-40

•

J

..

..

To the application programmer, Mass Storage Volume Control
functions mean having to know less about DASD volumes and
the Job Control Language than you would have to know in a
DASD environment. It means less Job Control Language impact
when preparing a job stream. It leaves space management of the
volumes, on which space is allocated to the space manager and
lets the application program concentrate on the application area .

The major change to the system programmer activity is the
introduction of two new device types: The Mass Storage Control
and the staging drives (3330Vs). Another consideration for the
system programmer is the Mass Storage Control tables. Any
hardware configuration change, either to the host CPU or CPUs
or to the arrangement of the internal I/O units associated with
the Mass Storage System, requires an update to the Mass Storage
Control's configuration tables.

Page 4-41

How Must the Application
Programmer's Job Change

Where Are the System
Programmer Job Changes?

..

•

•

•

Introduction
to File

Organ izati on

Records in a file must be logically organized so that they can be
retrieved efficiently for processing. This chapter discusses some
factors to be considered in selecting a method of organization. It
also presents an introduction to the methods of file organization
supported by the IBM operating systems for System/360 and
System/370.

The inherent characteristics of the file must be considered in
selecting an efficient method of organization:

Volatility. This term refers to the addition and deletion of records
from a file. A static file is one that has a low percentage of addi­
tions and deletions, while a volatile file is one that has a high rate
of additions and deletions. No matter how the file is organized,
additions and deletions are of significant concern, but they can be
handled more efficiently with some methods of organization than
with others.

Activity. The percentage of activity is one of the factors to be
considered. If a low percentage of the records are to be processed
on a run, the file should probably be organized in such a way that
any record can be quickly located without having to look at all the
records in the file.

The distribution of the activity is also a consideration. With some
methods of organization, some records can be located more
quickly than others. The records processed most frequently should
certainly be the ones that can be located most quickly.

The amount of activity also makes a difference. An active file
(that is, one which is frequently referred to) must be organized
very carefully, since the time involved in locating records may
amount to an appreciable period of time. At the other extreme, an
inactive file may be referred to so infrequently that the time re­
quired to locate records is immaterial.

Page 5-1

Data File Characteristics

Processing
Characteristics

Size. A file so large that it cannot all be online (available to the
system) at one time must be organized and processed in certain
ways. A file may be so small that the method of organization
makes little difference, since the time required to process it is very
short no matter how it is organized.

The growth potential of the file is also a consideration. Usually,
files are planned on the basis of their anticipated growth over a
period of time. Initial planning must also consider how growth
that exceeds this size will eventually be handled.

The distinction between the organization of a master file and the
order of the input detail records processed against that file is
important. In sequential processing, the input transactions are
grouped together, sorted into the same sequence as the master file,
and the resulting batch is then processed against the master file.
When tape and cards are used to store the master files, sequential
processing is the most efficient means of processing. Direct access
storage devices are also very efficient sequential processors, espe­
cially when the percentage of activity against the master file is
high.

Non-sequential processing is the processing of detail transactions
against a master file in whatever order they occur. With direct
access devices, non-sequential processing can be very efficient,
since a file can be organized in such a way that any record can be
quickly located.

It is possible, on a run, to process the input transactions against
more than one file. This saves setup and sorting time. It may also
minimize control problems, since the transactions are handled less
frequently.

It is feasible to handle unscheduled transactions. This is particu­
larly significant in a teleprocessing system or in a system where
there are many inquiries about the data in the files.

It is not necessary to wait until a batch of transactions has been
accumulated to make processing worthwhile. The transactions can
be processed inline - that is, as soon as they are available. If it is
not necessary to do inline processing of all transactions, most of
them can be batched for scheduled runs, and only high-priority or
exceptional transactions processed inline - that is, as soon as they
enter the system.

The use of a DASD to store a master file makes it possible to
choose the processing method to suit the application. Thus some
applications can be processed sequentially, while those in which
the time required to sort or the delay associated with batching is

Page 5-2

•

J

..

•

undesirable can be processed non-sequentially. Real savings in
overall job time can only be made by combining runs in which
each input affects several master files; the details can be processed
sequentially against a primary file and non-sequentially against the
secondary files, all in a single run. This is the basis of inline pro­
cessing.

Five methods of organization for direct access devices are sup­
ported by IBM programming systems. They are described briefly
in this section.

Sequential Organization. In a sequential file, records are organized
solely on the basis of their successive physical locations in the file.
The records are generally, but not necessarily, in sequence accord­
ing to their keys (control numbers) as well as in physical sequence.
The records are usually read or updated in the same order in which
they appear. For example, the hundredth record is usually read
only after the first 99 have been read.

Individual records cannot be located quickly. Records usually
cannot be deleted or added unless the entire file is rewritten. This
organization is generally used when most records are processed
each time the file is used.

Partitioned Organization. A partitioned file is one that is divided
into several members. Each member has a unique name. Members
may be called by name for processing. Members may be added or
deleted as required. The records within the members are organized
sequentially and are retrieved or stored successively according to
physical sequence.

Partitioned organization is used mainly for the storage of sequen­
tial data, such as programs, subroutines, and tables. For example, a
library of subroutines may be a partitioned file whose members
are the subroutines.

Indexed Sequential Organization. An indexed sequential file is
similar to a sequential file in that rapid sequential processing is
possible. Indexed sequential organization, however, by reference
to indexes associated with the file, makes it also possible to
quickly locate individual records for non-sequential processing.
Moreover, a separate area of the file is set aside for additions; this
obviates a rewrite of the entire file, a process that would usually
be necessary when adding records to a sequential file. Although
the added records are not physically in key sequence, the indexes
are referred to in order to retrieve the added records in key
sequence, thus making rapid sequential processing possible.

Page 5-3

Methods of Organization

In this method of organization, the programming system has
control over the location of the individual records. The user, there­
fore, need do very little I/O programming; the programming
system does almost all of it, since the characteristics of the file are
known.

Direct Organization. A file organized in a direct manner is charac­
terized by some predictable relationship between the key of a
record and the address of that record on a DASD. This relation­
ship is established by the user. This organization method is
generally used for files whose characterisitcs do not permit the use
of sequential or indexed sequential organizations, or for files
where the time required to locate individual records must be kept
to an absolute minimum.

This method has considerable flexibility. The accompanying disad­
vantage is that although the programming system provides the
routines to read or write a file of this type, the user is largely
responsible for the logic and programming req uired to locate
records, since he establishes the relationship between the key of
the record and its address on the DASD.

Virtual Storage Access Method (VSAM) Data Organization. The
data organization for VSAM differs from the preceding organiza­
tions so as to establish a data organization that will be, from a
user's point of view, device independent. The data organization
should be suitable for all kinds of accessing (keyed, addressed,
direct and sequential) and should be extendable to anticipated
requirements. Once a user adopts the VSAM organization, his data
will be portable from system to system. This will facilitate migra­
tion from smaller systems to larger systems.

Data records of fixed or variable length are stored in the same
format in both key-sequenced and entry-sequenced data sets. The
records of a key-sequenced data set are in collating sequence,
defined by a key field in the records; the records of an entry­
sequenced data set are in the same sequence as the order in. which
they are entered in the data set. An index is used to physically
locate and sequentially order the records of a key sequenced data
set.

IBM Operating Systems Operating systems are part of the programming systems support
supplied by IBM. The operating systems include access methods
which schedule and control the transfer of data between real
storage and I/O devices.

Operating systems that support direct access devices are discussed
in this text. They differ from one another in the operating system
functions provided and in the machine configuration supported.

Page 5-4

J

..

J

•

..

Since this text must deal with the operating systems in rather
general terms, refer to the texts cited in the Bibliography for
specific information on a particular operating system.

Sequential, indexed sequential, and direct methods or organization
are supported by all the operating systems. OS and OS/VS also
support partitioned organization. The operating systems allow
users to concentrate their programming efforts on processing the
records read and written by the access method routines. The
responsibility of the assembler language programmer in the area of
input/output is essentially to describe the files to be processed and
then issue instructions to cause records to be transferred to real
storage, and instructions to cause records to be transferred to I/O
devices.

The access methods are divided into two catagories: queued access
methods and basic access methods.

The queued access methods are used in situations where the
sequence in which records are to be processed is known to the
system and the programmer wishes the operating system to per­
form anticipatory buffering and scheduling of I/O operations using
the buffers (I/O areas) requested by the user. (More than one I/O
area and/or a work area can be specified for a file.) As soon as a
channel and device are free, the system can read the next record(s)
into the buffers or write the preceding record(s) from the buffers
at the same time that the current record is being processed. There­
fore, more than one record is normally in real storage at the same
time, so that processing and I/O operations can be overlapped. A
queued access method, if the records are blocked, performs auto­
matic blocking and deblocking and makes the next logical record
available to the user when he issues the next input statement.
Queued access methods are provided for sequential organization
and indexed sequential organization.

The basic access methods are used when the operating system
cannot predict the sequence in which records are to be processed
or when the programmer does not want some or all of the auto­
matic functions that are performed by the queued access method.
Since the system does not provide anticipatory buffering and
scheduling, these can be performed through user programming.
Basic access methods read and write physical, not logical, records.
Thus, blocking and deblocking of records is (in most basic access
methods) the user's responsibility.

As previously implied, access methods are identified primarily by
the file organization to which they apply. For instance, we speak
of a basic access method for direct organization. Although an
access method is identified with a particular organization, there

Page 5-5

are times when an access method identified with one organization
can be used to deal with a file usually thought of as organized in a
different manner. Thus, a file that is considered to be a directly
organized file is formatted and must be created with the basic
access method for sequential organization. It is processed non­
sequentially with the basic access method for direct organization.

Virtual Storage Access Method (VSAM) is designed to meet most
of the common data organization needs of both batch and inquiry
processing. Batch processing requires the efficiency of a sequential
organization; inquiry processing requires efficient direct access for
random requests. The two types of processing are intermixed in
the processing of a common data base.

Both of VSAM's two organizations permit both direct and sequen­
tial access. The key-sequenced organization provides quick
sequential retrieval in collating sequence; the entry-sequenced
organization is suitable for quick record entry and for sequential
processing where sequence is not important. A key-sequenced data
set can be processed by key as well as by record address; it pro­
vides a convenient method of identifying data records. The records
of an entry-sequenced data set are identified only by their
addresses within the data set.

The two data organizations and VSAM's range of access options
permit the user to select the combination that best suits his appli­
cation.

Page 5-6

J

...

J

..

"

Sequential
Organization

In a sequential file, records are written one after the other - track
by track, cylinder by cylinder - at successively higher addresses.
The records are usually in key sequence.

Records may be fixed- or variable-length, blocked or unblocked,
or undefined.

The records may be formatted with or without keys. If the file is
always processed sequentially, as is normally the case with this
method of organization, there is no point in formatting with keys.
If for some reason there is an appreciable amount of non-se­
quential processing, records should be formatted with keys so that
they can be located more quickly.

The amount of DASD storage required is simply enough to hold
all the records in the file. The area should be large enough for the
maximum number of records, although it is permissible to have
the file extend over several noncontiguous areas.

Description of Records

DASD Storage

Requirements

Timing

The time required is one seek per cylinder and one read per record Sequential Processing
(or block of records). Remember that in this text we are using a
simplified timing approach of allotting a full rotation for each read
(or write) to include both rotational delay and data transfer.

Non-sequential processing of a sequential file is, at best, very Non-Sequential
inefficient. If it is done infrequently, the time required to locate
the records may not matter. There are several ways to program
non-sequential processing, with significant differences in the time
required. The slowest way is to read the records sequentially until
the desired one is located. On the average, half of the file would
have to be read. A sequential search takes less time if the records
are formatted with keys. The search is done on Search Key High
or Equal at the speed of one revolution per track. When the search
condition is satisfied, the corresponding record is read.

Another way of processing a sequential file in a non-sequential
fashion is first to perform a binary search of the file in order to
determine in which small section of the file the desired record is
located. Then only that small section need be searched in full. A
binary search of an eight-cylinder file formatted with keys is illus­
trated in Figure 6.1. The last record in cylinder 4 is read and

Page 6-1

File Maintenance

Uses for Sequential

Organization

Operating System

Functions

Queued Access Method

Basic Access Method

compared with the search argument. Then the last record in either
cylinder 2 or 6 is read and a comparison performed again. Then,
depending on the result of that comparison, the last record in
either cylinder I, 3, 5, or 7 is read and compared against the
search argument. This last comparison indicates in which one of
the eight cylinders the desired record is to be found. That cylinder
can then be searched in full.

HI

Figure 6.1 A binary search of an eight-cylinder file

Additions and deletions require a complete rewrite of a sequential
file. This is desirable from a timing standpoint only if additions
and deletions can be combined with another job that also requires
reading and updating all the records.

Sequential organization is used on direct access storage devices
primarily for tables and intermediate storage rather than for
master files. Its use is recommended for master files if they have a
high percentage of activity and if virtually all processing is sequen­
tial.

The queued access method is used for creating a sequential file and
for reading or updating all of the records in physical sequence. The
operating system takes care of any required blocking or deblock­
ing of records. It provides anticipatory buffering, overlap of
input/ output with processing and error checking.

The basic access method does not provide anticipatory buffering
and blocking/deblocking routines. The basic access method can be
used to read or write records formatted with keys (OS, OS/VS
only)or without keys (OS,OS/VS and DOS). It can be used, to a
limited extent, to store and retrieve records non-sequentially. Note
that the DOS basic access method for sequentially organized files
does not permit the processing of files formatted with keys. A
basic access methcd for directly organized files may be used in
DOS to create and process (sequentially or non-sequentially) such
files. A corresponding access method exists in OS that can be used
to process sequential files formatted with keys non-sequentially.

User Options The operating system performs a Write Verify after write opera­
tions if the user so requests. Only OS supports the Record Over­
flow feature.

Page 6-2

Partitioned
Organization

A partitioned data set consists of several sequential units or
members. The data set also includes a directory containing the
name and beginning address of each member. This method of
organization is supported only by OS.

The records in the members may be fixed-or variable-length,
blocked, unblocked, or undefined, and may be formatted with or
without keys. The records in all the members must have identical
formats. Members are stored one after another in the order in
which they are written.

The directory contains one record for each existing or projected
member of the data set. The directory records are grouped into
256-byte blocks, each containing as many records as will fit into
the block. The directory records, which are in alphabetic seq­
uence by member name, vary from 12 to 74 bytes in length, de­
pending on how much user data is included in addition to the
member's name and starting address. Each directory block has an
eight-byte Key Area containing the name of the last member in
the block. See Figure 7.1.

Directory
Records

I Entry for Entry for Entry for
I Member A Member B Member C

Figure 7-1 A partitioned Data Set

Entry for
Member K

Page 7-1

Description of Records

Space
Deleted
Member

Available
Area

DASD Storage
Requirements

Operating System
Functions

The main advantage of using a partitioned data set is that you can
retrieve any individual member once the data set is opened with­
out searching the entire data set. For example, a program library
can be stored as a partitioned data set, each member of which is a
separate program or subroutine. The individual members can be
added or deleted as required. When a member is deleted, the
member name is removed from the directory.

Enough DASD storage is required to hold the sequentially organ­
ized members and the directory. As new members are added, OS
allocates additional area if the original area is full. If the directory
is full, however, no new members can be added until the file is
reorganized. A deleted directory entry can be reused. Deleted
member Data Areas cannot be reused.

The basic or queued access method is used for partitioned organ­
ization. However, you cannot alter the directory (add or delete a
member) when using the queued access technique. The members
are created or processed through use of the basic access method
for sequentially organized files after the name has been entered
into the directory or the starting address has been determined.

Page 7.2

•

Indexed Sequential
Organization

An indexed sequential file is a sequential file with indexes that
permit rapid access to individual records as well as rapid sequential
processing. An indexed sequential file has three distinct areas: a
prime area, indexes, and an overflow area. Each area is described
in detail below.

• •

The prime area is the area in which records are written when the Prime Area
me is first created or subsequently reorganized. Additions to the
me may also be written in the prime area. The prime area may
span multiple volumes and (in OS and OS/VS) consist of several
noncontiguous areas. The records in the prime area are in key
sequence.

Prime records must be formatted with keys. They may be blocked
or unblocked. If blocked, each logical record contains its key and
the key area contains the key of the highest record in the block.

There are two or more indexes of different levels. They are created
and written by the operating system when the file is created or
reorganized.

This is the lowest level of index and is always present. Its entries
point to data records. There is one track index for each cylinder in
the prime area. It is always written on the first track (s) of the
cylinder that it indexes.

Each track index may contain a special first record called a "ey tin­
der Overflow Control Record" (see "Overflow Area"). The rest of
each track index consists of alternating normal and overflow
entries. There is a pair of entries for each prime data track in the
cylinder. The normal entry contain:; the home address of the
prime track and the key of the highest record on the track. The
key of the overflow entry is originally the same as the normal
entry. The data area contains 255 to indicate "end of chain." It is
changed when records are added to the file (see "Additions Pro­
cedure").

Page 8-1

Indexes

Track Index (See Figure 8.1)

CYLINDER INDEX

11'. I .,," I I 01"" I osoo I 103975 10600 I
.t Data: Home address of track index ~

for cyl inder 04
Key: Highest key on cylinder 04

TRACK INDEX

I 05432 I 0700 1
One such entry for
each cyl inder of
the prime data area

Normal Overflow Normal Overflow

Dummy

[E[l ICOCRI 000 14 ,04 0 1 I 000 14 I 0255 I I 000271 0402 I I 000211 0255 I
.LData: Home address of)

Home
Addr.

prime data trock 0401 (
'-----Key: Highest key on l

prime data trock 0401 ,

Normal Overflow
166610 164 U 1 I 00610 I 02551 I Dummy

PRIME DATA AREA

Home
Addr.

I ill 1 1000031 100004 1 1000061
Data Record: Count t Key and Data for

record with key '00001

One normal and one
ove rflow entry for
each pri me data trock
on cylinder 04

Figure 8.1 An indexed sequential file with no additions

The last entry of each track index is a dummy entry indicating the
end of the index. The rest of the index track contains prime
records if there is room for them. In this case, the first pair of
entries in the index refers to this track.

Each index entry (normal,overflow, or dummy) has the same
format. It is an unblocked, fixed-length record consisting of a
Count Area, a Key Area and a Data Area. The length of the Key
Area is as specified by the user. It contains the key of the data
record to which the entry points, except for the dummy entry
whose key is all I-bits (highest in collating sequence). The Data
Area is always ten bytes long. It contains the full address of the

)rack or record to which the index points and other information
such as the level of index and type of entry. The Data Area of the
dummy entry is null (all O-bits). For simplicity, in Figure 8.1 only
the cylinder and head portion of the address in the Data Areas is
shown.

Page 8-2

•

This is a 4igher level of index and is always present. Its entries
point to track indexes. There is one cylinder index for the file. It
may be on a different type of DASD than the rest of the file. In
OS and OS/VS it may be placed in an independent index area, an
independent overflow area, or in the prime area.

The cylinder index consists of one entry for each cylinder in the
prime area, followed by a dummy entry. The entries are formatted
in the same fashion as the track index entries. The Key Area
contains the key of the highest record in the cylinder to which the
entry points. The Data Area contains the Home Address of the
track index for that cylinder.

If the prime area is not filled when the file is created, the last
cylinder index entries are inactive. These inactive entries have all
I-bits in the Key Area and a null Data Area, just like the dummy
entry. The track indexes for prime cylinders that do not yet con­
tain data records also have inactive entries. The inactive entries
provide for adding higher records to the end of the file or for
expanding the file when it is reorganized.

This is the highest level of index and is optional. It is used when
the cylinder index is so long that a search through it is too time­
consuming. It is suggested that a master index be requested when
the cylinder index occupies more than four tracks.

A master index of one level consists of one entry for each track of
the cylinder index and is formatted in the same way as the cylin­
der index. The Data Area of each entry contains the Home
Address of the track of the cylinder index to which the entry
points. The Key Area contains the highest key in the cylinders
indexed by that track of the cylinder index.

OS and OS/VS permits three levels of master indexes and allows
them to be written in an independent index area, an independent
overflow area, or in the prime area. Each bears the same relation­
ship to the next lower one as the lowest one bears to the cylinder
index. That is, if the user specifies a master index if the cylinder
index exceeds four tracks, there will be a second master index if
the first one exceeds four tracks and a third master index if the
second one exceeds four tracks.

There are two types of overflow areas: a cylinder overflow area
and an independent overflow area. Either one or both may be
specified for an indexed sequential file. Records are written in the
overflow area(s) as additions are made to the file.

Page 8-3

Cylinder index (See Figure 8.1)

Master Index

Overflow Area

Cylinder Overflow
Area (See Figure 8.2)

Independent Overflow
Area (See Figure8.3)

A certain number of whole tracks, as specified by the user, are
reserved in each cylinder for overflows from the prime tracks in
that cylinder. When a cylinder overflow area is specified, record 0
(the track descriptor record) of each track index is used as a
Cylinder Overflow Control Record (COCR, Figure 8.2). The Oper­
ating Systems use the COCR to keep track of the address of the
last overflow record in the cylinder and the number of bytes left
in the cylinder overflow area. OS and OS/VS also uses this record
for additional information needed when the file has variable-length
records.

An advantage of having a cylinder overflow area is that additional
seeks are not required to locate overflow records. A disadvantage
is that there will be unused space if additions are unevenly distri­
buted throughout the file.

CYLO CYL1 CYL21 CYL31 CYL4 CYL5 CYL6

Track Indexes
•

I I
Prime Area

I
. I

Cylmder Overflow Area
• I

Figure 8.2 Cylinder overflow area

Overflows from anywhere in the prime area are placed in a certain
number of cylinders reserved solely for overflows. The size and
unit location of the independent overflow area are as specified by
the user. The area must, however, be on the same type of DASD as
the prime area.

CYLO I CYL 1 I CYL2 I CYL3
Track Indexes

I p,;mr'"

Figure 8.3 Independent overflow area

Page 8-4

CYLX CYLY

Independent
Overflow

Area

I

•

•

•

An advantage of having an independent overflow area is that less
space need be reserved for overflows. A disadvantage is that
accessing overflow records takes additional seeks.

A suggested approach is to have cylinder overflow areas large
enough to contain the average number of overflows caused by
additions and an independent overflow area to be used as the
cylinder overflow areas are filled.

Overflow records must be unblocked. They must be formatted
with keys. They may be fixed-length or, in OS and OS/VS, vari­
able-length. If prime records are blocked, the key of an overflow
record is contained in both the Key Area and the Data Area so
that all logical records have the same format.

The first field in the Data Area of an overflow record is a link
field. It is used to chain together in key sequence the records that
have overflowed from a prime track. The link field is ten bytes
long and contains the same type of information as the Data Area
of index entries. If an overflow record is not the last link in a
chain, its link field so indicates and contains the address of the
next overflow record in the chain. If an overflow record is the last
link in a chain, its link field so indicates and points back to the
track index.

The fact that an overflow record has a link field while a prime
record does not is of significance to the user only in that the link
field requires space on the DASD and in core storage. The opera­
ting system presents logical records to the user in such a way that
he is not aware of the difference in formats.

As records are added to the file, they are no longer physically in
key sequence. They are still logically in key sequence, however,
through use of the track indexes and link fields. Three different
situations may occur when a record is added to the file, and
following is a discussion of each situation .

The new record (key 00010) is written in its proper sequential
location on the prime track. The rest of the prime records are
moved up one location. The bumped record (00014) is written in
the first available location in the overflow area. The record is
placed in the cylinder overflow area for that cylinder if it exists
and if there is space in it; otherwise, it is placed in the independent
overflow area. The Key Area of the normal index entry is changed,
since record 00011 is now the highest record on the track. The
Data Area of the overflow index entry is changed; it now contains
the address of the overflow record. The first addition to a track is
always handled in this way. Any record that is higher than the
original highest record on the preceding track but lower than the

Page 8-5

Overflow Records

Add itions Procedure

First Addition to a Prime Track
(See Figure8.4)

original highest record on this track is written on this track.
Record 00015, for example, would be written as the first record
on track 0002, and record 00027 would be bumped into the over­
flow area. Note that no change to higher-level indexes is required.
Record 00611 would be written as the first record in the second
cylinder. Record 00610 is still and will remain the highest record
in the first cylinder.

CYLINDER INDEX (No change)

1 00610 10400 I 101500 I 0500 I I 03975 1 0600 I 105432 I 0700 I

TRACK INDEX

104001 ICOCRI

H.A.

PRIME DATA AREA

Normal Overflow Normal

I 00011 1 0401 I 100014 104121 I 1000271 0402 I
[Key of normal ! Overflow entry changed .. now points

entry changed to record 1 on track 12 of cylinder 4

Dummy

I 0401 I 100001 I 1000031 1000041 1000061 1000091 ~ ~ " . .. ~

H.A. New record

Original record moved up

I 04'~21 1000161 10001 7 1 1000191 1000201 " " " oJ I 000251

OVERFLOW AREA

104121 104,121 1040141 xxx0255xxx Rest of data "

H.A. Count Key Link field: This is the last link of a chain, so it contains
the original value of the track index entry· that is,
255 to indicate "end of chain".

Figure 8.4 An indexed sequential file after the first addition
to a prime track

Page 8-6

10002 71

J

•

J

•

•

Subsequent additions are written either on the prime track where
they belong or as part of the overflow chain from that track. If the
addition belongs between the last prime record on a track and a
previous overflow from that track (as is the case with record
000 13), it is written in the first available location in the overflow
area, with its link field containing the address of the next record in
the chain, The link field of a previous overflow may need to be

Subsequent Additions to a Track

(See Figure 8.5t

CYLINDER INDEX (No change)

100610 I 0400 I 101500 10500 I 103975 10600 I 105432 10700 I Dummy

TRACK INDEX
Normal Overflow Normal

[()400! ICOCRI

H.A.

I 00011 I 0401 I I 00014 104121 I 1000271 0402' ••••••••

[Key of normal ! Overflow entry changed -- now points
entry changed to record 2 on track 0043

PRIME DATA AREA

I 04011 100001 I 1000031 1000041 1000061

H.A.

1 04'221 1000161 1000171 1000191 100020 I

OVERFLOW AREA

10412 1 104121 100014 I xxx0255xxx Rest of data

H.A. Count Key

........
100009 1 ~ lOT!)

New Record
Original record moved u~

" " • " •• iii " ••••• " • " IOOO2-i] 100027 1

1104122100013 I xx04121 rest of data

Count Key Link Field: Points
to next higher record
on chain.

Figure 8.5 An indexed sequential file after subsequent addi­
tions to a track

Page 8-7

------------- -----

changed; it is not necessary in this example. Because the Data Area
of the overflow index entry always refers to the address of the
lowest key in a chain, it is changed if necessary (as in this
example).

If the addition belongs on a prime track (as would be the case with
record 00005), it is written in its proper sequential location on the
prime track. The bumped record (000 11) is written in the first
available location in the overflow area. The Key Area of the
normal index entry is changed (to 00010). The link field of a
previous overflow and the Data Area of the overflow index entry
are changed if necessary.

Note the logical similarity between the normal and overflow index
entries. The normal entry indicates that a sequence of records
starts at the beginning of track 000 1, the last record having a key
of 000 11. The overflow entry indicates that a sequence of records
(chained together by the link fields), starts with the second record
on track 12, the last record having a key of 000 14.

Although the cylinder overflow area may eventually contain over­
flows from all prime tracks in the cylinder, and the independent
overflow area may eventually contain overflows from anywhere in
the file, each prime track has its own chain.

Addition of High Keys A record with a key higher than the current highest key in the file
is placed on the last prime track containing data records if that
track is not full. If that track is full, the record is placed in the
overflow area. The sequence link for these records is chained to
the last prime track containing data records. The Key Area of
higher level indexes is changed to reflect the addition.

Variable-Length Records One approach to variable-length records is to use trailer records. A
trailer record is an extension of a master record. It is separate from
the master and written as required. Using an open-item accounts
receivable file as an example, the master records contain infor­
mation common to all accounts, and the number of invoices
sufficient for most of the accounts, while the trailer record con­
tains more invoices. A master may have as many trailer records
associated with it as are required.

The trailer records may be written immediately after the assQ­
ciated master record. Since duplicate keys are not allowed, it is
necessary to add a digit or character to the true key. Thus 123A
would be the master record for account number 123; 123B would
be the first trailer, 123C the second trailer, and so forth.

Page 8-8

•

..

The trailer records may be written as a separate file. This approach
would be advantageous if many jobs referenced only the master
records. Reference between a master record and its trailer record
can be effected by having a link field in each record. The master
record would contain the address of the first trailer record, the
first trailer record would contain the address of the second, and so
forth. The trailer file would probably be written and processed
using the basic access method for directly organized files. The
logic of handling the trailer records as a separate file is more
complex and requires more programming by the user than the first
approach described above.

The queued access method for indexed sequential files is used
when reading or updating the records in key sequence. The entire
file may be processed, or processing may begin at a specified key
or record number. The operating system takes care of all searching
of the indexes and link fields and any required deblocking and
presents the next sequential logical record to the user. The access
method provides anticipatory buffering and overlap of input/out­
put with processing.

The basic access method for indexed sequential files is used when
adding records to the file. The operating system writes the new
record, rewrites existing records as required, rewrites index entries
and link fields as required, and takes care of blocking if required.

This access method is also used when reading or updating records
directly. The user supplies the key of the desired record. The
operating system takes care of all searching of the indexes and link
fields, along with any required deblocking, and either presents the
specified logical record to the user or indicates that it could not be
found.

Page 8-9

Operating System
Functions

Queued Access Method

Basic Access Method

J

,.

•

Direct
Organization

This chapter discusses some commonly used methods of direct
organization, as well as the access methods provided for files so
organized. The user is not restricted to the methods of organiza­
tion discussed here; they are presented as suggestions only.

With direct organization, there is a definite relationship between General Characteristics
the control field of a record and its address. This relationship per-
mits rapid access to any record if the file is carefully organized.
The records will probably be distributed nonsequentially through-
out the file. If so, processing the records in control field sequence
requires a preliminary sort or the use of a finder file.

With direct organization, the user generally develops a record Addressing
address that ranges from zero to some maximum. Track addresses
on most DASD's, however, are noncontiguous. For example, the
address of the last track on the first cylinder of a 2314 is 0019,
while the first track on the next cylinder is 0100. Furthermore,
the file may start at other than the first track of a device and it
may occupy several nonadjacent areas.

Most operating systems allow the user to refer to a record in
several ways:

(1) Relative Track Address - here the user presents to the system
a 3 byte binary number in the form TTR where:

TT is the position of the track relative to the first track on
which the data set resides. The first track of the data
set always has a relative position of O.

R is the number of the block relative to the first block of
data on the track specified TT. The first block of data
on a track has a relative value of 1.

(2) Relative Track and Key - here the user specifies a key and a
2 byte binary number which the system converts to an actual
track address. The track is then searched for the record which has
the key specified by the user.

Page 9-1

(3) Relative Block Address - here the user presents the system
with a 3 byte binary number that indicates the position of a
block in relation to the first block of a data set. The first block of
a data set always has a relative block address of O.

(4) Actual Address - here the user presents a pattern of charac­
ters that, without further modification, identifies a unique direct
storage location. The format is an 8 byte address (MBBCCHHR).

Directly Addressed File With direct addressing, every possible key in the file converts to a
unique address. This makes it possible to locate any record in the
file with one seek and one read.

Using the Control Field
as the Add ress

In order to be able to use the control field of a record directly as
its address, the records must be fixed-length and the control
fields must be numeric. One computation is required. Divide the
control field by the number of records per track; the quotient
equals the relative track address, and the remainder plus one (re­
cord 0 is used as a capacity record) equals the record number.

This method of direct addressing not only allows minimum disk
time when processing directly, but is also ideal for sequential
processing since the records are written in control field sequence.
A possible disadvantage is that there may be a large amount of
unused direct access sto'rage. A location must be reserved for
every control field in the file's range even though many of them
are not used.

Using a Cross-Reference List With this method, each record in the file is assigned an address and
a cross-reference list of keys and assigned addresses is maintained.
The list may be a printed one. Some clerical and keypunch time is
required for each transaction, since the address must be looked up
and included in the input to the job. Controls must be tight, since
the list, as well as the file, must be kept up to date. The list may
itself be a file recorded on a DASD. Although any record can be
located directly when its address is known, time is required to
look up the address in the list. Indexed sequential organization is a
variation of this method.

Indirectly Addressed File Indirect addressing is generally used when the range of control
fields for a file includes such a high percentage of unused ones
that direct addressing is not feasible. For example, employee
numbers range from 0001 to 9999 but only 3000 of the possible
9999 numbers are assigned. Indirect addressing is also used for
nonnumeric keys.

With indirect addressing, the range of keys for a file is compressed
to the smaller desired range of addresses by some sort of address

Page 9-2

•

J

..

..

conversion. Address conversion techniques inevitably cause
"synonyms" - two or more records whose control field convert
to the same address. Two objectives must be considered in sel­
ecting a technique: (1) every possible control field in the file
must convert to an address in the allotted range, and (2) the
addresses should be distributed evenly across the range so that
there are few synonyms.

A record that is written at the address to which its control field
converts is called a "prime record." Any other records whose con­
trol fields convert to this address are "synonyms." What to do
about synonym records is discussed later in this chapter, but the
point to be made now is that synonyms should be kept to a min­
imum because of the additional time required to locate these re­
cords.

A way to minimize synonyms is to allot more space for the file
than is actually required to hold all the records. The term
"packing factor" means the percentage of allotted locations that
are actually used. For an indirectly addressed file, an initial pack­
ing factor of 80-85% is suggested. For example, a 1O,000-record
file packed 83% would be allotted space for 12,000 records.

There are many address conversion techniques. Selecting a good Address Conversion
one for a particular file may require some trial and error. A sug-
gested goal is no more than 20% synonyms. If converting to track
address, count only the synonyms in excess of the number of
records per track.

It is suggested that this technique be tried first, because it is a Division/Remainder Method
simple one that often gives good results. The control field is di-
vided by a prime number (a number evenly divisible only by it-
self and by one) that is close to the number of addresses allotted
to the file. The remainder is used as the address.

Example I: Load 8000 200-byte records on a 2314, converting to
track address .

a. With 80% packing, 10,000 locations are required.

b. Can load 20 records per track, so 500 tracks are re­
quired.

c. A prime number close to 500 is 499.

d. Divide the key by 499.

e. The remainder (000 to 498) equals the relative track
address.

Page 9-3

Example 2: Same as above, but converting to record address.

a. A prime number close to 10,000 is 9973.

b. Divide the key by 9973.

c. Divide the remainder by the number of records per
track (20).

d. The quotient equals the relative track address; the
remainder plus one equals the record number.

This method can also be used with nonnumeric keys. Using binary
arithmetic will probably give better results than using decimal
arithmetic, since the uniqueness of the letters and special charac­
ters in the key is retained.

The division/remainder method automatically achieves the first
objective mentioned earlier - that is, to have all keys convert to
addresses within the allotted range. Whether it achieves the second
objective for a particular file - that is, to have few synonyms -
can be determined only by trying it.

Digit Analysis Since the primary objective of an address conversion technique is to
develop addresses spread evenly across a range, it may be possible
to make use of any existing evenness in the distribution of the
control field.

Figure 9.1 shows the output of a digit analysis program that
counted the number of times each digit appeared in each position
of the keys of a particular file.

If allotting 20,000 locations for the 16,045 records, the keys must
convert to addresses that range from 00000 to 19999. Since posi­
tions 7, 8,9 and 10 of the key are evenly distributed, they may be
used as the four low-order digits of the address. Select another
evenly distributed position, position 6, use this position as the
basis of forming the high-order digit of the address; if that posi­
tion is odd, use 1 as the high-order digit of the address; if even,
use zero.

If converting to track address, divide the record address developed
above by the number of tracks required for the 20,000 records.
The remainder equals the relative track address.

Page 9-4

J

J

.-

J

TOTAL NUMBER OF RECORDS 16,045

DIGIT KEY POSITION

1 2 3 4 5 6 7 8 9 10 11

0 16045 1852 5168 1807 1738 1574 1597 1579 87

4408 3147 5638 2120 1748 1652 1651 1599 235

2 2198 3792 1174 4958 1745 1743 1587 1569 1604 334

3 576 2231 2724 281 1684 1610 1620 1576 1603 9371

4 1195 2459 1194 1378 1617 1647 1652 1619 3164

5 12076 3155 1267 1647 1688 1580 1605 1645 1939

6 1243 1560 1606 1538 1611 1625 565

7 1228 1329 1450 1560 1598 1557 253

8 1227 1415 1411 1630 1618 1622 76

9 989 1360 1434 1657 1568 1592 21

<""1 Figure 9.1 Digit analysis table

The key is split into two or more parts, which are added together. Folding
The sum, or part of it, is used as a relative address.

Examples of folding a key of 7 4 6 2 9 8:

746+ 298 = 1044 (split in half)
74+ 62+ 98 = 234 (split in thirds)

769+ 428 = 1197 (alternate digits)

The key is transformed to a different radix or base. Excess digits Radix Transformation
are discarded, leaving an address of the required length.

Example of converting a key of 4 2 3 5 6 to radix II to pro-
duce a four-digit address:

(4x 11 4)+(2x 11 3)+(3x 11 2)+(5x IJl)+(6x 11°)=
58564 + 2662 + 363 + 55 + 6 = 61650
Use 1650 as the relative address.

The selected address conversion technique should be applied to Evaluation of Results
the entire file and carefully evaluated before deciding to use it.
When evaluating a conversion technique, it is not sufficient to

Page 9-5

Description of a Directly

Organized File

calculate the percentage of synonyms. The expected average
number of reads (revolutions) per record should also be develop­
ed. For example, if ten control fields convert to addresses I, 2,
3, 4, 5, 6, 7, 8, 1, 2, then 20% are synonyms. Assuming that one
read (revolution) is required for each of the first eight, and two
reads for each of the last two, the average number of reads per
record is 1.2. If the control fields convert to addresses I, 2, 3,
4, 5, 6, 7, 8, 1, 1, however, 20% are synonyms, but if one read
is required for each of the first eight, two for the ninth, and three
for the tenth, the average number of reads per record is 1.3.

The evaluation, then, should be based on the average number of
reads (revolutions) per record. An average of 1.2 is considered to
be good. The final question may be: "Does this rather rapid access
time justify the additional preinstallation planning and program­
ming required for a directly organized file?" Another question
may be whether it justifies the effort involved in the development
of a new conversion technique and the subsequent reprogramming
that might be necessary if the directly organized file were later
relocated on another type of DASD. A directly organized file is
relatively device-dependent, since it implies a specific relationship
between the control field of a record and its address on a DASD.

With direct organization, records may be fixed-length, variable­
length, or undefined.

Records may be formatted with or without keys. If the file is
indirectly addressed and conversion is to track address, the records
should be formatted with keys for efficiency. If not, each record
on the track must be read to determine whether it is the desired
one.

The records may be blocked or unblocked. If they are blocked,
the user is responsible for all blocking and deblocking, because in
the access method for directly organized files the operating system
handles physical records rather than logical records. If the file is
indirectly addressed, the records are probably unblocked. The
problems that may occur with blocked records are discussed later
in this chapter.

With most ·directly organized files, RO of each track is used as a
capacity record. It contains the address of the last record written
on the track and is used by the operating system to determine
whether a new record will fit on the track. The capacity records
are updated by the operating system as records are added to the
file. They do not account for deletions. Once a track is full, it
remains full as far as the operating system is concerned (until the
file is reorganized), even though the user deletes records

Page 9-6

J

•

J

..

An indirectly addressed file generally consists of just one logical
area, which may actually be several nonadjacent physical areas.
The location of synonym records is up to the user, but they are
generally put in unused locations in the main (and only) area.
Synonym records can be put in a separate area if the user desires.
The disadvantage of doing this is that each synonym record will
require an additional seek. If there is just one area, and if a good
conversion technique has been selected and the file is not packed
too tight, synonym records are likely to be in the same cylinder as
the prime record, thus eliminating the need for an additional seek.

With indirect addressing, the logic of creating and maintaining the
file depends mainly on the synonym records. The area in which to
place the synonym records has already been discussed. Now the
problem of how to locate them quickly must be considered.

Approaches to the handling of synonym records are discussed in
the following sections: chaining and progressive overflow, two
approaches used by the DOS programmers, and the extended
search option of the BSAM and BDAM access method creation
and retrieval routines for OSjVS. They are discussed in order to
point out how the maintenance of a file depends on the way in
which it was created and the interaction between operating system
functions and the user's programming. They are presented as sug­
gestions only; other more complex and possibly more efficient ap­
proaches are possible. All three approaches assume that:

• The records are unblocked.

• The records are formatted with keys.

• Address Conversion is to track address.

• Synonym records are placed in unused locations.

File Creation and

Maintenance

One record on each track is used, and maintained by the DOS pro- Chaining Method
grammer, as a chaining record to provide a link between the prime
track and the track on which the synonym record was placed.
Synonym records are written on the next higher available track .

Page 9-7

Creation of the File

Track Chaining Data Records
Record

A 8 Al A2 A3

B D Bl A4 B2

C Cl C2 C3

D Dl 83 AS

Figure 9.2 ClUlining

Figure 9.2 shows a chained file. The sequence in which the records
were loaded was AI, BI, A2, DI, CI, A3, C2, A4(synonym), B2,
C3, B3 (synonym), AS (synonym). The following questions and
answers explain how records in a chained file are located:

Q. If looking for a "A" record, where does the search begin?

A. On track A. Searches always begin with the prime track.

Q. If an "A" record is not found on track A, what is the next
track searched?

A. Track B. Searches always continue at the track specified in
the chaining record.

Q. If the "A" record is not found on track B, what is the next
track searched?

A. Track D.

Q. If a "C" record is not found on track C, what is the next
track searched?

A. None. The blank chaining record shows that there are no
more "C" records.

The way in which the records are loaded may have a significant
effect on the average number of reads that it will take to locate
them.

The file may be completely loaded in one pass. The results of this
one-pass load and the number of reads required to subsequently
locate each record are shown in Figure 9.3 This example and

Page 9-8

J

,

..

J

!I'

•

those following show one record per track for simplicity. The
logical results will be the same with multiple records per track.
With the one-pass load, the record is written on its prime track, if
there is room. If the track is full, the record is written on the next
available track, and the chaining record of the home track is up­
dated. Assume that prime records require one read, first synonym
requires two reads (prime track and placement track), second over­
flows require three reads (home track, first placement track,
second placement track), etc. Notice that record C should have
been a prime record, but a synonym from track I took its place
first.

Key Home Where Chaining Number
Track loaded Address of Reads

A 1 1 2 1
B 1 2 3 2
C 2 3 4 2
D 7 7 9 1
E 5 5 - 1
F 6 6 - 1
G 8 8 - 1
H 7 9 10 2
I 2 4 - 3
J 7 10 - 3

Average reads per record = 1.7

Figure 9.3 One-pass load

The file may be loaded in two passes. The results of this are shown
in Figure 9.4 On the first pass, only prime records are loaded. On
the second pass, the synonym records are loaded and the chaining
records updated. Because all prime records are written on their
prime track, less chaining is required, and the average number of
reads per record has decreased.

Key Home Whe re Loaded Chaining Number
Track Pass 1 Pass 2 Address of Reads

A 1 1 3 1
B 1 - 3 - 2
C 2 2 4 1
D 7 7 9 1
E 5 5 - 1
F 6 6 - 1
G 8 8 - 1
H 7 - 9 10 2
I 2 - 4 - 2
J 7 - 10 - 3

Average reads per record = 1.5

Figure 9.4 Two-pass load

The logic of making additions to a chained file is a combination of
pass 1 and pass 2 of the load routines. The same problem that was
illustrated with a one-pass load will eventually occur: there should
be room for the new record on its prime track, but it is already

Page 9-9

Additions to the File

fIlled with synonyms from other tracks. There is no really effec­
tive, simple solution to this problem. Placing the new record where
it belongs involves a dump and reload of all affected records,
which can be very complicated and time- consuming. For example,
try to add record D2 to the sample fIle shown in Figure 9.2
(assume that this is only part of the file and that a location is
available somewhere). The complexity is due to the fact that when
converting to track address, a track may contain snyonyms from
more than one prime track. A suggested solution is to ignore the
problem for the time being and write the record on the next
higher track on which there is available space. The situation will be
corrected when the fIle is reorganized.

Deletions from the File Records to be deleted may be tagged in some way and omitted
when the fIle is reorganized. If the operating system is responsible
for finding locations for new records, there is no point in literally
deleting records since the capacity record is not updated to reflect
this.

Reorganization of the File Particularly with a volatile file, a change in the distribution of the
control fields may adversely affect the results of the converting
technique and the speed with which the file can be referenced.
Directly organized files may therefore require frequent reorgan­
izations. The operating system maintains no statistics as it does
with indexed sequential organization. Therefore the user should,
at least periodically, ca1cula te the average number of reads per
record to ensure that the existing organization continues to pro­
vide the desired degree of efficiency. Reorganization will be
needed less frequently if the user develops more complicated ad­
dition and deletion routines than those that have been discussed.

Progressive Overflow

Method

Creation of the File

As with indexed sequential, there are two ways to handle reorgani­
zation. The file can be written elsewhere and then, on a separate
run, re-created in the original area, or it can be reorganized
directly into a different area of direct access storage.

As with chaining, synonym records are written on the next higher
available track. The difference is that there is no chain from the
prime track to the next available track. The links in the chain are
simply consecutive tracks.

With progressive overflow, a one-pass load produces the same
results as a two-pass load. Some of the records may be written in
different locations, but the average number of reads per record is
the same. Figure 9.5 shows the results of a one-pass load of the
same file used to illustrate the loading of a chained file. Note that
the average number of reads (revolutions) per record is higher than
those shown in Figure 9.3 and 9.4 because all tracks between the

Page 9-10

J

..

J

..

prime track and the one where a synonym record is located must
be searched. Note that a search without a read takes place for all
tracks except the one on which the desired record is located.

Key Home Where Number
Track Loaded of Reads

A 1 1 1
B 1 2 2
C 2 3 2
D 7 7 1
E 5 5 1
F 6 6 1
G 8 8 1
H 7 9 3
I 2 4 3
J 7 10 4

Average reads per record = 1.9

Figure 9.5 Progressive overflow

The logic is the same as the load routine.

The comments made for the chaining method apply here also.

The comments made for the chaining method apply here also.

The chaining method of handling synonyms requires somewhat
more complicated load and addition programs but in some circum­
stances it may result in a shorter search for snyonym records. If a
fairly low packing factor is used, however, synonyms will usually
be located on the track that follows the prime track, and pro­
gressive overflow with a track-by-track search will result in tim­
ing equivalent to that provided by the chaining method described.
Progressive overflow with extended search provides the fastest
timing. Only when the packing factor approaches 100% will the
time required for progressive overflow increase significantly.

Additions to the File

Deletions from the File

Reorganization of the File

Progressive Overflow
Compared to Chaining

Extended search is a technique by which you may request that the Extended Search
system search for a specified key over multiple tracks starting with
a specified track and continuing for a certain number of records or
tracks.

In using the extended search option, you must indicate to the
access method the number of tracks (including the starting track)
or the number of records (including the starting record) that are
to be searched. If you indicate a number of records, the system
may actually examine more than this number. In searching a

Page 9-11

track, the system searches the entire track (starting with the first
record); it therefore may examine records that precede the starting
record or follow the ending record. If you specify a number
equal to or greater than the number of records or tracks within
the data set, the entire data set is searched in an attempt to satis­
fy your request.

The file is created by pre-formatting the entire file area on disk
with fixed data and key lengths or for files with variable length
data, with track descriptor records. These dummy records are
then rewritten with the keys and data of actual records, or re­
cords are inserted in the space indicated by the track descriptor
records.

In OS/VS, records having the first byte of the key set to hex
'FF' and the first byte of the data portion containing the
block reference count, are treated as dummy records by the
access method. DOS/VS users often simulate the OS/VS
method, through programming, for upward compatibility.
Since dummy records contain a value of hex 'FF' in the first
byte of the key, you cannot use keys that otherwise have hex
'FF' in the first byte and utilize this technique.

Conversion of the keys can be to relative track or relative block.

Synonym records will be placed in the next higher available space.
That is, a space containing a dummy record.

A request for a search for unused space may be made by request­
ing an extended search for a record having a key equal to or higher
than hex 'FFOO - - 00'.

Additions to the File This is in effect the same as the file creation; the replacement of
dummy records with the actual record and its key.

Deletions from the File Deletions may be made by changing the first byte of the key to
hex 'FF'. This record is then logically a dummy and its space may
be used for future additions.

Reorganization of the File The comments made for the chaining method apply here also.

Activity Loading With an indirectly addressed file, the sequence in which the
records are loaded may have a significant effect on the time to
locate records, regardless of how overflows are handled. The
average number of reads per record depends on the frequency with
which each record is processed as well as on the num ber of reads
required to locate it. Figure 9.6 shows what a drastic difference
the method of loading makes when 20% of the records (I and J)

Page 9-12

..

"

..

account for 80% of the activity. The example uses progressive
overflow.

If uneven distribution of activity is a characteristic of the file, the
most active records should be loaded first, so that they have the
greatest probability of being home records. If activity statistics are
not available before installation of the system, they can be accum­
ulated once the system is installed. Activity statistics should
continue to be accumulated, since the distribution of activity may
change seasonally or over another time period. The file can then
be sorted into the current activity sequence as part of each reor­
ganization.

Loading in key sequence:

Key Home Where Number Frequency of Reads Times
Track Loaded of Reads Reference Frequency

A 1 1 1 2.SOA> .025
B 1 2 2 2.SO/o .050
C 2 3 2 2.5% .050
0 7 7 1 2.5% .025
E 5 5 1 2.5% .025
F 6 6 1 2.5% .025
G 8 8 1 2.SO/o .025
H 7 9 3 2.5% .075
I 2 4 3 40*, 1.200
J 7 10 4 40*, 1.600

Average reads per record = 3.1

Loading in activity sequence:

Key Home Where Number Frequency of Reads Times
Track Loaded of Reads Reference Frequency

I 2 2 1 40% .400
J 7 7 1 40% .400
A 1 1 1 2.SOA> .025
B 1 3 3 2.SO/o .075
C 2 4 3 2.5% .075
0 7 8 2 2.SOA> .050
E 5 5 1 2.SO/o .025
F 6 6 1 2.5% .025
G 8 9 2 2.5% .050
H 7 10 4 2.5% .100

Average reads per recon:l = 1 .225

Figure 9.6 Effect of loading sequence on . timing

Although blocking records is advantageous as far as direct access
storage utilization is concerned, it may have an adverse effect on
timing when direct organization is used. Moreover, as already
noted, the user is responsible for all blocking and deblocking
routines.

Page 9-13

Blocked Records

Directly Addressed File Blocking presents no problems if direct addressing is used. It
simply requires a different computation of the address of a record:

1. Divide the key by the number of logical records per track.
The quotient equals the relative track address.

2. Divide the remainder from step I by the number of records
per block. The quotient plus one equals the identifier (record
number of the block). The remainder equals the position of
the logical record within the block which can be used in the
blocking and deblocking routines.

A point to remember is that when adding a record to the file, an
entire block must be written.

Indirectly Addressed File The problem here is that there is no logical key to a block of
indirectly addressed records. Therefore, the points already dis­
cussed will have to be modified as follows.

Operating System
Functions

Records are formatted without keys. Address conversion is to
record address (actually block address) as shown in the second
example under "Division/Remainder Method" in this chapter. The
prime number to be used is one close to the number of blocks
allotted for the file. In step c divide by the number of blocks per
track.

When loading the file or making additions to it, the user has to
read and search an entire block. If it is full, the next sequential
block (progressive overflow) or the next block in the chain (chain­
ing) is read and the search continued until a location is found.
Note that if the chaining method is used, the linkage is between
blocks, not between tracks.

If the primary reason for using direct organization is to minimize
the time required to locate records, the effect of blocking on
timing should be carefully evaluated.

For direct organization only a basic access method is provided.
The operating system does not provide automatic buffering and
overlap of input/output with scheduling. Macros are provided,
however, so that the user can program these functions if the user
knows in advance which record will be wanted next. This access
method is used for writing new records and for reading and up­
dating existing records as already discussed.

Page 9-14

..

I ntroduction to
Virtual Storage
Access Method

(VSAM)

In data processing today, it is common for a computer installa­
tion to do a number of different types of processing. An installa­
tion must provide for one combination or another of data-base
processing, online processing, batch processing, inquiry and
transaction processing, communications, and multiple CPUs
under the control of different operating systems. This variety
requires an access method that provides:

• High performance of retrieval and storage - independent of
previous insertions of records into data sets and uninterrupt­
ed by requirements to reorganize data sets or copy them for
backup.

• Applicability to different types of processing that require
different kinds of access and different levels of performance
(such as online and batch processing).

• Simplicity of use by means of a common set of instructions
for different types of access, simplified JCL Gob control
language), and optimization of the use of space in auxiliary
storage.

• Protection of data: security against unauthorized access and
integrity through prevention of intentional or accidental
loss of data.

• Recovery of data: the ability to recover catalogs and data
sets in the event of failure or damage.

• Central control over the creation, access, and deletion of
data sets and over the management of space by keeping
data-set and storage information in one place and making it
independent of JCL and processing programs.

• Ability to move data from one operating system to another
in a format that is common to both systems.

Page 10-1

What Are the

Requirements for an

Access Method?

What is VSAM

• Independence from type of storage device: freedom from
physical record size, control information, and record de­
blocking.

• Ease of conversion of data and programs from other access
methods to the new access method.

VSAM is a set of programs (an access method) for use with
DOS!VS and OS!VS. VSAM is used with direct-access storage
devices to provide fast storage and retrieval. Figure 10.1 shows
how VSAM relates a processing program and stored data.

Virtual Storage

VSAM

Logical
Data

PROCESSING PROGRAM

OS/VS or

DOS/VS

Physical Data

Figure 10.1 VSAM's relative position. VSAM relays data between the
processing program and direct-access storag(!.

Page 10-2

..-

..

..

V SAM provides an approach to meeting these requirements
through:

• A format for storing data independently of type of storage
device.

• Routines for sequential or. direct access and for access by
key, by relative address, or by relative record number.

• Options for optimizing performance.

• A comprehensive catalog for defining data sets and
auxiliary-storage space.

• A multifunction service program (Access Method Services)
for setting up catalog records and maintaining data sets.

How Does VSAM Meet
These Requirements?

VSAM's high performance is due to an efficiently organized High Performance
index, performance options for reducing disk-arm movement and
rotational delay, and distributed free space for fast insertion of
records and minimal reorganization. The size of the index is
reduced by compressing keys to eliminate redundant informa-
tion. The type of index used for a data set is also used for VSAM
catalogs.

VSAM's method of inserting records into a data set provides
access whose speed following a large number of insertions is
equivalent to the speed of access without previous insertions.
Free space is used for efficient automatic reorganization of data
sets: inserted records are stored and addressed in the same way as
original records, and space given up by deletions is reclaimed as
free space within the control interval.

VSAM is designed to meet most of the common data- Applicability to Different
organization needs of both batch and online processing. Batch Types of Processing
processing requires the efficiency of sequential and indexed data;
online processing requires efficient direct access for random
requests. VSAM permits both direct and sequential access. Access
can be by key, by relative address, or by relative record number.
Different types of processing can be intermixed in the processing
of a common data base. You can select the type of access or the
combination of types that best suits your application.

TSO (Time Sharing Option), a subsystem of OS/VS, can in MVS
execute Access Method Services commands as TSO commands,
can dynamically allocate a VSAM data set, and can execute a pro­
gram that uses VSAM macros to process the data set.

Page 10-3

Simplicity of Use

Protection of Data

VSAM also provides options and macros for sharing a pool of
I/O-related control blocks, channel programs, and buffers among
several VSAM data sets open at the same time.

There is a common way of requesting the different types of
access (sequential or direct, by key, by relative address, or rel­
ative record number), so that the same instructions are learned
and used for achieving different results.

All VSAM data sets are cataloged, so JCL is simplified. Minimal
JCL parameters are required for describing data sets.

VSAM uses default values to establish the size of control intervals
and control areas in which data is stored and to manage virtual
storage space for I/O (input/output) buffers. Programmers can
think in terms of the application, not in terms of the internal
workings of VSAM.

Individual data records are passed to a processing program, ap­
plication data alone is processed by the program. Application
programmers do not need to know the format of control blocks.
They need not be concerned either with storage devices and
device addresses or with different formats for fixed-length or
variable-length records.

VSAM protects data by means of its design and its integrity and
security options. Integrity means the safety of data from inadver­
tent destruction or alteration; security means the protection of
data from unauthorized use or purposeful destruction or altera­
tion. VSAM writes records in a way that does not expose data to
loss, even if an I/O error occurs. You can specify optional pass­
words for levels of protection (read-only, update, control in­
terval, and full access) and include your own routine to check a
requester's authority to gain access to data. You can select op­
tions for formatting data sets before data is stored in them and
for verifying write operations for data integrity. VSAM also
provides various levels of exclusive control for data to be shared
between sub tasks, regions, partitions and operating systems.

Recovery of Data VSAM catalogs that are defined with the optional recovery at­
tribute allow data to be recovered. Recovery is based on informa­
tion recorded on the volumes controlled by the catalog as well as
in the catalog itself.

Central Control The VSAM catalog brings together extensive information about
data sets and storage space. Access Method Services controls the
definition and deletion of data sets and the alteration of informa­
tion about them in the catalog. Its use is authorized by passwords
assigned to the data sets or to the catalog itself. Consequently,

Page 10-4

•

the management of your inventory of data sets is centralized and
made independent of the use of JCL or the actions of processing
programs. Space for data sets can be allocated or deallocated
without mounting volumes, because the information describing
the contents of VSAM spaces on those volumes is contained in
the catalog. You can assign a data set to volumes by ranges of
keys that are controlled by the catalog.

VSAM's technique for storing records uses a format that is Portability of Data Between Systems
common to OS/VS and DOS/VS (disk operating system/virtual
storage). Communication with VSAM is very similar for both
operating systems, except for JCL. Access Method Services in-
cludes functions that facilitate moving data sets and volumes
from one operating system to another.

VSAM is independent of particular types of storage devices, Device Independence
because it addresses a record in a data set without respect to the
physical attributes of auxiliary storage, but with respect to the
displacement of the record from the beginning of the data set.
The unit in which data is transmitted between virtual and auxil-
iary storage does not depend on the size of the physical records
in which data is stored physically on a volume.

VSAMprovides for easy conversion of indexed sequential data Ease of Conversion
sets to VSAM format and the continued use of your existing
ISAM (indexed sequential access method) programs to process
converted data sets and new VSAM data sets. Access Method
Services converts a sequential or an indexed sequential data set to
VSAM format. To process the converted data set with the ISAM
program, a set of interface routines within VSAM interpret each
ISAM request and issue the appropriate VSAM request.

In VS2 systems, the OS catalog has been replaced by a VS2
master catalog. Access Method Services is used to convert entries
in an OS catalog in entries in an existing VS2 master catalog or a
VSAM user catalog.

You can use VSAM on all IBM System/370 Virtual Storage CPUs. What Machines Can VSAM
Each of these CPUs must have the dynamic address translator that Be Used With?
is required by OS/VS I and OS/VS2 and either the advanced con-
trol program support feature or the conditional swapping feature.
VSAM is designed to take full advantage of the benefits of virtual
storage.

The IBM direct-access storage devices that you can use are the
IBM 2305 (Models 1 and 2) Fixed Head Storage, the 2314 Direct
Access Storage Facility, the 2319 Disk Storage, the 3330 Disk
Storage, the 3330 (Model 11) Disk Storage, the 3340/3344 Disk
Storage, the 3350 Disk Storage and the 3850 Mass Storage Sys­
tem.

Page 10-5

Getting to Know What
VSAM I s and Does

What Are VSAM's
Three Types of

Data Sets?

VSAM has key-sequenced, entry-sequenced, and relative record
data sets. The primary difference among the three is the order in
which data records are loaded into them.

Records are loaded into a key-sequenced data set in key se­
quence: that is, in the order defined by the collating sequence of
the contents of the key field in each of the records. Each record
has a unique value in the key field, such as employee number or
invoice number. VSAM uses an index and optional free space to
insert a new record into the data set in key sequence.

Records are loaded into an entry-sequenced data set without
respect to the contents of the records. Their sequence is deter­
mined by the order in which they are physically arranged in the
data set: their entry sequence. New records are stored at the end
of the data set.

Records are loaded into a relative record data set in relative
record number sequence. The data set is a string of fixed-length
slots, each of which is identified by a relative record number.
When a record is inserted, you can assign the relative record
number or allow VSAM to assign the record the next available
number in sequence. No index is used.

When you create a data set, you define it, together with its index,
if any, in a cluster. A cluster may be a key-sequenced data set,
which consists of a data component and an index component, or
an entry-sequenced or relative record data set, which consists of
only a data component.

VSAM stores the records of each type of data set in the same
way in a fixed-length area of auxiliary storage called a control
interval. We can better discuss the three types of data sets if we
first look at the control interval in perspective with the other
logical divisions of a data set and see how and why VSAM uses it
for storing records.

The Use of Control Intervals A control interval is a continuous area of auxiliary storage that
VSAM uses for storing data records and control information
describing them. It is the unit of information that VSAM trans­
fers between virtual and auxiliary storage. Its size may vary from
one data set to another, but for a given data set the size of each
control interval in it is fixed, either by VSAM or by you, within
limits acceptable to VSAM. VSAM chooses the size based on the

Page 10-6

J

J

•

type of direct-access storage device used to store the data set, the
size of your data records, and the smallest amount of virtual­
storage space your processing program will provide for VSAM's
I/O buffers.

A control interval is independent of particular types of storage
devices. For instance, a control interval that fits on a track of one
type of device might span several tracks if the data set were
moved to another type of device, as Figure 10.2 illustrates.

Physic

Record

al

~
I' I

I

Control Interval

I
Track 1

Control Interval

I
Track 1

Control Intarval

I I I T
Track 2

Control Interval

I I
Track 2 Track 3

Figure 1 Q.2 Control Intervals Are Independent of Physical Record Size

Control Interval

1 I I
Track 3

Control Interval

I I
Track 4

How does a data set relate to the physical attributes of auxiliary The Control Interval in Perspective
storage? And how does a control interval relate to a data set?

A volume can contain areas for VSAM's use and areas for the use
of other access methods of the operating system. A storage area
defined in the volume table of contents for VSAM's exclusive use
is called a data space. It can be extended beyond its original size
to include up to 16 areas (extents) that need not be adjacent to
one another on the volume.

A data set is stored in a data space or data spaces on one or more
volumes on direct-access devices of the same type. When you
define a data set, you can allocate enough space to have some left
at the end of the data set for additions. Otherwise, when addi­
tional space is needed, VSAM automatically extends the data set
by the amount of space indicated in the definition of the data set
in the catalog. It can be extended beyond its original size to
include up to 123 extents, or to a maximum size of 2 32 (approx­
imately 4,290,000,000) bytes. Figure 10.3 illustrates the rela­
tionships among volumes, data spaces, and data sets. The figure
shows portions of data sets A and C stored in different data
spaces on different volumes.

Page 10-7

Data Set A3
Data
Space 3 Data Set D

Data Set Al
Data Set CI Data Set C3

Data Data
Space I

Data Set B Space 2

\
NonVSAM NonVSAM

Data Set A2

Data Set C2 Data
Space 4

Available Available

Available

Figure 10.3 Relationship Anwng Storage Volumes, Data Spaces, and Data Sets

The Method of Storing a Record
in a Control Interval

A data set is made up of control intervals. A group of control
intervals makes up a control area. It is the unit of a data set that
VSAM pre formats for data integrity as records are added to the
data set. In a key-sequenced data set, control areas are also used
for distributing free space throughout the data set as a percent of
control intervals per control area and for placing portions of the
index adjacent to the data set.

VSAM fixes the number of control intervals for each control area
in the data set. For a key-sequenced data set, the size of a control
area is determined on the basis of the space-allocation request,
user-specified or default index and data control-interval size, and
available buffer space.

The records of a key-sequenced or entry-sequenced data set may
be either fixed or variable in length; the records of a relative
record data set are always fixed in length. VSAM treats them all
the same. It puts control information at the end of a control
interval to describe the data records stored in the control in­
terval: the combination of a data record and its control informa­
tion, though they are not physically adjacent, is called a stored
record. When adjacent records are the same length, they share
control information. Figure 10.4 shows how data records and
control information are stored in a control interval. The data
records are stored at the beginning of a control interval, and
control information at the end.

Page 10-8

•

J

•

"

Control Interval

Data Data Data Data Data Data Control
Record Record Record Record Record Record Information

Figure 10.4 Placement of Data Records and Control Information in a
Control Interval

When you define a data set, you can specify enough buffer space
for the control intervals in the data set to be large enough for
your largest stored record. The maximum control interval size is
32,768 bytes.

Key-sequenced and entry-sequenced data set records whose
lengths exceed control interval size may cross, or span, one or
more control interval boundaries. Such records are called
spanned records. A spanned record always begins on a control
interval boundary and fills one or more control intervals within a
single control area. As shown in Figure 10.5 the control interval
that contains the last segment of a spanned record can contain
unused space. This free space can be used only to extend the
spanned record; it cannot contain all or part of any other record.
You must specify your intent to use spanned records when you
define the data set.

"'~I----------- Control Area --------------IJ

Control
Interval (CI)

Unused
Space

Unused
Space

Figure 10.5 Control Intervals That Contain Spanned Records

A data record is addressed not by its location in terms of the
physical attributes of the storage device (SUch as the number of
tracks per cylinder), but by its displacement, in bytes, from the
beginning of the data set, called its RBA {relative byte address}.
The RBA does not depend on how many extents belong to the
data set or on whether they are in different data spaces or on
different volumes or different device types. For relative byte ad­
dressing, VSAM considers the control intervals in the data set to
be contiguous, as though the data set were stored in virtual storage
beginning at address O.

Page 10-9

Index

Key-Sequenced Data Sets A key-sequenced data set is always defined with an index that re­
lates key values to the relative locations of the data records in a
data set. (This index is the prime index, in contrast to alternate
indexes, which are discussed later.) The prime index and dis­
tributed free space used to insert a new record in key sequence
are discussed in the paragraphs that follow.

An index relates key values to the relative locations of the data
records. A key in the index is taken from a record's key field,
whose size and position are the same for every record in the data
set, and whose value cannot be altered. VSAM uses an index to
locate a record for retrieval and to locate the collating position
for insertion.

An index has one or more levels, each of which is a set of records
that contains entries giving the location of the records in the next
lower level. The index records in the lowest level are collectively
called the sequence set; they give the location of control intervals
containing the data records. The records in all the higher levels
are collectively called the index set; they give the location of
index records. The highest level always has only a single record.
The index of a data set with few enough control intervals for a
single sequence-set record has only one level: the sequence set
itself.

Figure 10.6 illustrates the levels of a prime index and shows the
relationship between a sequence-set index record and a control
area. The figure shows that the highest-level index record (A)
con troIs the entire next level (records B through Z); each
sequence-set index record controls a control area.

A } '"~.~
) ~~"~~

...
Control Intervals of First Control Area Control Intervals of Second Control Area

Figure 10.6 Relationship Among the Levels of a Prime Index and a Data Set

Page 10-10

J

•

An entry in an index-set record consists of the highest key that
an index record in the next lower level contains, paired with a
pointer to the beginning of that index record. An entry in a
sequence-set record consists of the highest key in a control
interval of the data component, paired with a pointer to the
beginning of that control interval. Not all data records have
sequence-set entries, for there is only one entry for each control
interval in the data set.

For direct access by key, VSAM follows vertical pointers from
the highest level down to the sequence set to find a vertical
pointer to data; for sequential access by key, VSAM refers only
to the sequence set. It uses a horizontal pointer in a sequence-set
record to get from that sequence-set record to the one containing
the next key in collating sequence so it can find a vertical pointer
to data. Figure 10.6 shows both vertical pointers and horizontal
pointers.

VSAM increases the number of entries that an index record of a
given size can hold by a method of key compression: it elim­
inates from the front and the back of a key those characters that
aren't necessary to distinguish it from the adjacent keys.
Compression helps achieve a physically smaller index by reducing
the size of keys in index entries. Key compression, in an index of
a particular physical size, allows you to gain access to many more
records than you could otherwise. Key compression is entirely
transparen t to the user.

The number of control intervals in a control area equals the
number of entries in a sequence-set index record. This equality
has important uses in:

• Placing the sequence-set index record adjacent to the
control area on a single cylinder.

• Distributing free space throughout a data set as a percent of
free control intervals in each control area.

When you define a key-sequenced data set, you can specify that
free space is to be distributed throughout it in two ways: by
leaving some space at the end of all the used control intervals and
by leaving some control intervals completely empty. The amount
of free space in a used control interval and the number of free
control intervals in a control area are independent of each other.
Figure 10.7 shows how free space might be set aside in each
control area of a data set. The sequence-set record for a control
area contains an entry for each free control interval, as well as for
each of those that contain data.

Page 10-11

Data Free Data Free
Records Space Records Space

Control Information

Sequence - Set I ndex Record

• • •

Highest-Key
Entries

Free­

Space

Entries

Data Free
Records Space

Control Intervals of a Control Area

Free Space Free Space

Figure 10.7 Distribution of Free Space in a Key-8equenced Data Set

Besides the space that you distribute when you create a key­
sequenced data set, space that becomes available within a control
interval when a record is shortened or deleted from the data set is
automatically reclaimed by VSAM and can be used when a
record is lengthened in place or directly inserted into the control
interval.

Reclaiming space and using distributed free space may cause
RBAs of some records to change. As Figure 10.7 illustrates, free
space within a used control interval is between the data in the
front and the control information in the back. If a record is
deleted or shortened, any succeeding records in the control
interval are moved to the left and their RBAs are changed so that
the space vacated can be combined with the free space already in
the control interval.

Conversely, an insertion or a lengthening causes any succeeding
records in the control interval to be moved to the right into free
space and their RBAs to be changed.

The discussion this far has assumed that there is enough free
space in the control interval for a new or lengthened record. The
following paragraphs describe what VSAM does when there is not
enough free space in the control interval to contain the record.
For simplicity, only insertion is referred to explicitly.

If the record to be inserted will not fit in the control interval,
there is a control interval split: VSAM moves stored records in
the control interval to an empty control interval in the same

Page 10-12

•

control area, and inserts the new record in its proper key se­
quence. The number of records moved depends on the position
of insertion of the new record and on the type of insertion.

For sequential insertion, records are inserted in the control
interval leaving any specified free space; when the next record to
be inserted will not fit in the control interval, the records with
keys greater than the key of the record to be inserted are moved
to a new control interval. The new record is inserted in the old
control interval. If there are no records in the control interval
with a key greater than the new record, the new record is placed
in a new control interval .

For direct insertion, approximately half of the records in a
control interval are moved when a control-interval split is re­
quired.

Figure 10.8 illustrates a control-interval split and shows the
resulting free space available in the two affected control intervals.
Some of the records in the control interval that is too full for
insertion are moved to a free control interval, and the new record
is inserted into the control interval according to key sequence.
Because the number of records in the first control interval is
reduced, subsequent insertions revert to the simpler case, instead
of becoming more complex.

Control Informltion

01 04 07 I FrM
Spece IY 01

•
• Free SPice ·

Iff' I 55 56 I 57 59 I 55

I
Insertion of

60 61 I FrM Spece II Record 58 I 60
Splits a

Control Interval

Free Spice II I 58

I 04 I 07 I FrM
: S~ce

•
•

56 57
Free
Spice

61 Free S~ce

59 Free Spece

ContrOl Intervals in Control Area Control Intervals in Control Area

Before Insertion After Insertion

Figure 10.8 Splitting a Control Interval for Record I nserlion

Page 10-13

II
II
II
II

If the control intervals involved in a split are not adjacent, the
physical sequence of data records is no longer the same as their
key sequence. In Figure 10.8, the entry sequence of the records
in the last three control intervals on the right is: 55,56,57,60,
61, 58, 59. But the sequence-set index record reflects the key
sequence, so that, for keyed sequential requests, the data records
are retrieved in the order: 55,56,57,58,59,60,61.

Should there not be a free control interval in the control area, an
insertion requiring a free control interval causes a control area
split: VSAM establishes a new control area, either by using space
already allocated or by extending the data set, if the initially
allocated space is full and you provided for extensions when you
defined the data set. VSAM moves the contents of approximately
half of the control intervals in the full control area to free
control intervals in the new control area and inserts the new
record into one of the two control areas, as its key dictates. Since
about half of the control intervals of each of these control areas
are now free, subsequent insertions won't require control-area
splitting. Splitting should be an infrequent occurrence for data
sets with sufficient distributed free space; splitting a control area
does make it possible, however, to insert records into a key­
sequenced data set without previously distributed free space.

Key-sequenced data sets are appropriate for most applications.
You can use the full range of VSAM's processing options to gain
access to your data by a key field rather than some location­
dependent manner. A simplified approach to planning is to
assume that you will store your records in key-sequenced data
sets and handle as exceptions those applications that are more
suited to entry-sequenced or relative record data sets.

Entry-Sequenced Data Sets No prime index is associated with an entry-sequenced data set.
When a record is loaded or subsequently added, VSAM indicates
its RBA to you. You must keep track of the RBAs of the records
yourself to gain access to them by direct processing. One way to
keep track is to build your own index, or cross reference table.

Sequential access with an entry-sequenced data set is similar to
that of QSAM (queued sequential access method).

You can use direct access with an entry-sequenced data set in a
way similar to BDAM (basic direct access method) by pre­
formatting the data set with records of your choice (filled with
blanks, for instance) and providing a routine that randomly
associates an RBA with the key field of a record in the data set
and thus distributes records throughout the data set. To store a
record initially, you convert its key field to an RBA, retrieve the
preformatted record at that RBA, and store the new record back

Page 10-14

J

J

•

•

..

at that RBA. The routine must have a procedure for determining
an alternate RBA when two or more keys are converted to the
same RBA. To retrieve a record subsequently, you convert its
key field to its RBA and determine the alternate RBA, if one is
required.

An entry-sequenced data set is appropriate for applications that
require no particular ordering of data by the contents of a
record. Thus, it is well-suited for a log or a journal in which the
order corresponds to a sequence of events.

A relative record data set has no index. It has a string of fixed­
length slots, each of which has a relative record number from 1
to n, the maximum number of records that can be stored in the
data set. Each record occupies a slot and is stored and retrieved
by the relative record number of the slot. Relative record number
9 in Figure 10.9, for example, occupies the ninth slot; whether
slots 1 through 8 are filled makes no difference.

Records in a relative record data set are grouped together in
control intervals, just as they are in a key-sequenced or an entry­
sequenced data set. Each control interval contains the same
number of slots, the size of which is the record length you spec­
ified when you defined the data set. The number of slots in a
control interval is determined by the control interval size and the
record length.

Relative record data sets can be processed by key or by control
interval. With keyed access, a relative record number is treated
like a key. You can update records in place, delete records, and
insert new records into empty slots. You can use a relative record
data set in much the same you would use a BDAM (basic direct
access method) data set in which the data records are not ordered
by their contents or their entry sequence.

Relative Record Data Sets

Control Interval ----------------~.~

Relative Relative Relative Relative
Record 1 Record 3 Record 5 Record 6

Slot I Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7

Figure 10.9 The First Control Interval Within a Relative Record Data Set

Figure 10.10 shows the comparison between a Key-Sequenced
(KSDS), and Entry-Sequenced (ESDS), and a Relative Record
Data Set (RRDS).

Page 10-15

Relative Contra)

Record 9 Informa-
tion

Slot 8 Slot 9

FIGURE 10.10 CONTRASTS THE THREE TYPES BY LISTING THE ATTRIBUTES OF EACH.

Key-Bequenced Data Set Entry-8equenced Data Set Relative Record Data Set

Records are in collating sequence Records are in the order in which Records are in relative record number
by key field. they are entered. order.

Access is by key through an Access is by RBA. Access is by relative record number,
index or by RBA. which is treated like a key.

May have one May have one May not have alternate indexes.
or more alternate indexes. or more alternate indexes.

A record's RBA can change. A record's RBA cannot change. A record's relative record number
cannot change.

Distributed free space is used Space at the end of the data Empty slots in the data set
for inserting records and set is used for adding records. are used for adding records.
changing their length in place.

Space given up by a deleted or A record cannot be deleted, but Space given up by a deleted record
shortened record is automatically you can reuse its space for a can be reused.
reclaimed within a control interval. record of the same length.

Can have spanned records. Can have spanned records. Cannot have spanned records.

Can be reused as a work me Can be reused as a work me Can be reused as a work me.
unless it has an unless it has an
alternate index. alternate index.

Figure 10.10 Comparison of Key-Sequenced, Entry-Sequenced, and Relative Record Data Sets

Alternate I ndexes Used
with Key-Sequenced

and Entry-Sequenced

Data Sets

Base Clusters and Alternate-Index
Clusters

An alternate index provides a unique way to gain access to a
related base data set, so that you need not keep multiple copies
of the same information organized in different ways for different
applications. For example, a payroll data set indexed by employ­
ee number can also be indexed by other fields such as employee
name or department number.

This section describes the components of an alternate index and
explains how they are related to the base data set. It defines new
terms associated with alternate indexes, describes alternate-index
records, keys, and pointers and describes how alternate indexes
are maintained.

In terms of access, an alternate index performs the same function
as the prime index of a key-sequenced data set. The data set over
which the alternate index is built is the base cluster. It can be a
key-sequenced or an entry-sequenced data set, but not a relative
record or a reusable data set.

In structure, the alternate index is similar to a cluster. It consists
of an index component and a data component. The index
component is identical in structure, format, and function to the
prime index of a key-sequenced cluster. Likewise, the format of

Page 10-16

J

.,

J

•

•

the alternate-index data component is identical to the fonnat of
the data portion of a key-sequenced data set. Therefore, each
entry in the sequence set of an alternate-index index component
points to a control interval in the alternate-index data compo­
nent.

When building an alternate index, you can use as the alternate
key any field in the base data set's records having a fixed length
and a fixed position within each record. The alternate key must
be in the first segment of a spanned record. The data component
of an alternate index contains the alternate key itself, followed
by the pointer which is the prime key (for KSDS) or RBA (for
ESDS) of the base cluster data record. If more than one base
data record contains the alternate key then the alternate index
record contains a pointer to each base data record. These dup­
licate, or nonunique keys are discussed in the section" Alternate
Keys" in this chapter.

A path logically relates a base cluster and each of its alternate Alternate-Index Paths
indexes. It provides a way to gain access to the base data through
a specific alternate index. You define a path through Access
Method Services. You must name it and you can give it a pass-
word, if you choose. The path name subsequently refers to the
base cluster/alternate-index pair. This means that when you refer
to a path, both the base cluster and the alternate index are affect-
ed. Figure 1 0.11 shows how two paths can relate two alternate
indexes to a single base cluster.

Record in {
Alternate
Index 1

Data Record {
In

Base Cluster

Record in
Alternate
Index 2 {

Altcrna te Key I

Owner's Policy
Name Number

Path I

Policy Owner's

Address

Number Name

Path 2

Policy
Number

Alternate Key 2

Address
Billing
Date

Risk
Code

Figure 10.11 Two Alternate Indexes Over a Single Key-Sequenced Data Set

Page 10-17

Alternate-Index Records Each record in the data component of an alternate-index is
variable-length and contains system header information, the
alternate key, and at least one pointer to a base data record.

System Header Information System header information is fixed length and indicates:

• Whether the alternate index record contains (1) prime keys
or RBA pointers and (2) unique or nonunique keys.

• The length of each pointer.

• The length of the alternate key.

• The number of pointers.

Alternate Keys Unless the base data records span control intervals, any field in
the base data records that has a fixed length and a fixed position
within the record can be an alternate key. The alternate key must
be in the first control interval of a spanned record. When an
alternate index is created, the alternate keys are extracted from
the base data records and ordered in collating sequence. If you
build several alternate indexes over a base cluster, the alternate
key fields of the different alternate indexes may overlap each
other in the base data records. They can also overlap the prime
key.

Keys in the index component of an alternate index or of a key­
sequenced base cluster are compressed. Keys in the data compo­
nent of an alternate index are not compressed. That is, the entire
key is represented in the alternate-index data record.

An alternate key may refer to more than one record in the base
cluster. For example, if an alternate index is established by
department number over a payroll data set organized by employ­
ee number, there will be several employees with the same depart­
ment number, as shown in Figure 10.12. In other words, there
will be several prime-key pointers (employee numbers) in the
alternate-index record: one for each occurrence of the alternate
key (department number) in the base data set. When multiple
pointers are associated with a given alternate key value, the
alternate key is said to be nonunique; if only one pointer is
associated with the alternate key, it is unique.

Page 10-18

J

•

Employee Department Other
Number Name Number Information

463871 Martin, AS 4618
Base Data 488797 Downs, CD 1201
Records Where 514329 Michaels, EF 4618
Prime Key=
Employee Number

Alternate-Index {
Records Where
Alternate Key=
Department
Number

561777
568597
674182

4618

Price, GH
Sonders, IJ
West, KL

463871

Figure 10_12 Nonunique Alternate Keys

4618
2436
4618

514329 561777

Prime-Key Pointers
to Base Data Records

674182

An alternate index uses prime keys if the base cluster is a key- Alternate-Index Pointers
-sequenced data set and RBAs if the base cluster is an entry-
sequenced data set.

For a nonunique key, like department number in Figure 10.12,
multiple pointers are associated with it. The pointers are ordered
by their arrival times. That is, if a base data record is updated
with a key change (for example, an employee number in Figure
10.12 is changed), or if a new record is inserted with the same
alternate key value (department number in Figure 10.12), the
new prime-key pointer is added to the end of the alternate-index
record. In the case of a key change, the old pointer is deleted.

A prime-key pointer has the same length as the prime key field of
the base data record it points to. The maximum number of
pointers that can be associated with a given alternate key is
32,767, provided the maximum possible record length for
spanned records is not exceeded.

VSAM assumes alternate indexes are synchronized with the base Alternate-Index Maintenance
cluster at all times and makes no synchronization checks during
open processing; therefore, all structural changes made to a base
cluster must be reflected in its alternate index or indexes. This
maintenance is called index upgrade. You can maintain your own
alternate indexes or you can have VSAM maintain them. When
the alternate index is defined with the UPGRADE attribute,

Page 10-19

A VSAM Catalog's Use

in Data and Space
. Management

VSAM updates the alternate index immediately when there is a
change to the associated base data cluster. VSAM opens all the
UPGRADE alternate indexes for a base cluster whenever the base
cluster is opened for output (but not control interval processing).

All the alternate indexes of a given base cluster that have the
UPGRADE attribute belong to the upgrade set. The upgrade set
is updated whenever a base data record is inserted, erased, or
updated. The upgrading is part of a request and VSAM completes
it before returning control to your program. If the upgrade fails
because of a logical error, VSAM attempts to nullify any mod­
ifications made to the base data or to other alternate indexes,
and the request that caused the upgrade is rejected.

If you specify NOUPG RADE when the alternate index is de­
fined, you must provide a way to reflect insertions, deletions,
and changes made to the base cluster in the associated alternate
index.

When a path is opened for update, JCL allocates the base cluster
and all the alternate indexes in the upgrade set. If allocating the
alternate indexes is unnecessary, you can specify NOUPDA TE
and cause JCL to allocate only the base cluster. VSAM, in that
case, does no automatic upgrading.

A master catalog is required with VSAM, and any number of user
catalogs are optional. Almost everything that is true of the mas­
ter catalog is true of user catalogs, but user catalogs have special
uses and there are significant differences between the VS I and
MVS catalogs that we will discuss after we consider the general
functions of a VSAM catalog.

VSAM catalogs are a central information point for all VSAM data
sets and the direct-access storage volumes containing them. The
information describing a volume and the data sets on it is exten­
sive enough to enable VSAM to allocate and deallocate data sets
on the volumes without the volumes being mounted on a device
of the system. The catalogs also provide VSAM with information
needed to authorize access to data sets, compile usage statistics
on them, and relate RBAs to physical locations. Defining a
VSAM data set automatically builds the appropriate catalog
entry containing all the necessary information.

All VSAM data sets on a volume must be cataloged in the same
VSAM catalog, and that catalog must be the one that owns the
volume. This may be either the master catalog or a user catalog.
A VSAM data set has an entry in only one catalog.

Page 10-20

J

•

J

•

..

Besides data set records, a VSAM catalog has records describing
direct-access volumes in terms of the allocation of data spaces
and the location of available space. VSAM can allocate and
deallocate space on cataloged volumes that are not mounted.
However, when allocating space to a data set, if there is not
sufficient space available in the data space or data spaces on a
volume, you must use the Access Method Services DEFINE space
command to get the additional space the data set needs.

Information Contained in the
Records of a Catalog

Data set records provide the information required to make the Information in a Data Set Record
connection between a data record's RBA and its physicalloca-
tion in terms of a storage volume's physical attributes. Besides
the type of storage device and a list of volume serial numbers, a
VSAM catalog keeps other data set information, including:

• A pointer to the location of each extent of the data set.

• Statistics on the results of operations performed on the data
set and its records, such as the number of insertions and
deletions and the amount of free space remaining.

• Attributes of the data set determined when it was defined,
such as control-interval size, physical record size, number of
control intervals in a control area, and, for a key-sequenced
data set, location of the key field.

• Password protection information.

• An indication of the connection between: the index and the
data components of a key-sequenced data set; the index and
data components of an alternate-index cluster; the alternate
index and the base cluster of a path; and an alternate-index
upgrade set and its base cluster.

• Information used to determine whether a key-sequenced
data or index component has been processed without the
other.

• Information about the volume(s) on which the data set is
stored.

Page 10-21

Information in a Volume Record Volume information in a VSAM catalog provides the information
required to keep track of data spaces and free storage areas. A
VSAM catalog contains this sort of volume information:

The Special Uses
of User Catalogs

• The volume serial number and device characteristics.

• The location of data spaces on a volume.

• The location and size of free areas available for allocation to
data sets.

From this information, you can derive:

• The count of data spaces and data sets on a volume.

• The location of data sets within data spaces on a volume.

• An indication of the data spaces associated with a data set.

User catalogs can improve VSAM reliability and facilitate volume
portability.

Improving Reliability User catalogs are useful for improving reliability. By putting the
catalog information of some of your data sets and storage vol­
umes into user catalogs, you decentralize control, allow for the
partitioning of applications, and at the same time achieve in­
creased reliability.

Moving Volumes from One
Operating System to Another

Because all VSAM data sets must be cataloged, moving a volume
from one operating system to another requires that catalog
information describing the volume and the data sets on it be
moved along with the volume.

If you want to be able to move a volume or volumes from one
OSjVS system to another, or from an OSjVS system to a
DOSjVS system, define a user catalog on one of the volumes and
define the volumes and the VSAM data sets on them in the user
catalog. You can then transport the volumes by demounting
them and removing them from the first system, taking them to
the second system, and remounting them. You use Access
Method Services to disconnect the user catalog from the master
catalog of the first system and to connect a pointer to it in the
master catalog of the second system. Any number of user cat­
alogs can be used in this way.

You can also move individual data sets from one system to
another by using Access Method Services, but the use of user
catalogs for single volume portability is the most convenient way
to achieve data set portability.

Page 10-22

In OS/VSI, and OS/VS2.1 (SVS) the system contains a VSAM
master catalog as well as a system catalog. In MVS, the system
catalog is a VSAM catalog that also serves as the VSAM master
catalog. The differences are important, particularly in the areas
of naming conventions and search strategies.

The VS 1 or SVS system catalog points to the VSAM master cata­
log, which can contain catalog entries for VSAM and non VSAM
data sets (except for those belonging to generation data groups)
and pointer entries for any number of optional user catalogs.
Figure 10.13 illustrates how data sets can be catalogued among
the system catalog, the master catalog, and user catalogs.

VSI

How the VS1 Master
Catalog Differs from the
MVS Master Catalog

The VSl VSAM
Master Catalog

Generation ---------System Catalog

VSAM
Master Catalog

--­Data-Sct and Volume Entries -- ./' ------- ./'

VSAM
and Other
Data Sets

VSAM
Data Sets

/

VSAM
and Other
Data Sets

/
/

/
/

/

Optional
User
Catalog

Data Groups

Optional
User
Catalog

Data-Set and Volume Entries

I I

VSAM
Data Sets

VSAM
Data Sets

Figure 10.13 Cataloging VSAM and Non VSAM Data Sets in a VSAM Catalog

Page 10-23

The MVS Master Catalog

V SAM catalogs are searched before the system catalog, for
VSAM data sets and data sets of other access methods. When you
execute a program to process a data set, the order in which the
catalogs are searched is:

1. Any user catalog or catalogs specified for the job step.

2. Any user catalog or catalogs specified for the job when none
is specified for the job step.

3. The master catalog.

4. The system catalog.

Use caution in naming your data sets. Because the VSAM catalog
is always searched first, it is possible to lose access to a data set
cataloged in the system catalog if it has the same name as a data
set in the VSAM catalog.

In MVS, the system catalog is the VSAM master catalog. It can
handle both as and VSAM data sets. As in as, you can gain
access to only one catalog per system at system initialization, and·
that catalog, called the master catalog, must contain entries for
all the system data sets. Figure 10.14 compares the as system
catalog and the MVS master catalog.

OS System Catalog

Contains only OS data set entries.

One catalog during initialization.

Must be on IPL volume.

System controls the search strategy.

All catalogs named SYSCTLG.

MVS Master Catalog

Contains entries for OS data sets,
VSAM data sets, VSAM user catalogs,
and OS CVOLS.

One catalog during initialization.

Need not be on IPL volume.

You control the search strategy.

All catalogs can be named by the user.

Figure 10-14 Comparison of the OS System Catalog and the MVS Master
Catalog

The master catalog is established at system generation time, and
without it, you can't define user catalogs, data spaces, or data
sets. The volume on which the master catalog is defined must be
permanently mounted.

Page 10-24

,

The master catalog can contain pointers to OS catalogs (CVOLs),
VSAM and other data sets, optional VSAM user catalogs, and
generation data groups in non VSAM data sets. Figure 10.15
illustrates how data sets and catalogs might be arranged within a
basic MVS catalog structure.

os
Data Set
Information

OS
CVOL
Information

MVS
Master Catalog

VSAM
and
Other
Data Sets

VSAM

VSAM
and
Other
Data Sets

Figure 10.15 Cataloging VSAM and Non VSAM Data Sets in the MVS Master Catalog

In MVS, alias names can be assigned to anon VSAM data set
entry, a catalog connector entry (CVOL), and a user catalog.
Such an entry contains a pointer to the beginning of a chain of
alias entries. Each alias entry contains three pointers: one to
the nonVSAM or CVOL entry, one to the next alias entry, and
one to the previous alias entry.

Page 10-25

Optional
VSAM
User
Cata)og(s)

VSAM
Data Sets

Utility Functions

Carried Out By Access
Method Services

When you execute a program to process a data set, the order in
which the catalogs are searched is:

1. Any user catalog or catalogs specified for the job step.

2. Any user catalog or catalogs specified for the job when none
is specified for the job step.

3. The master catalog, unless the data set is qualified (contains
periods) and the qualifier (the characters up to the first
period) is the name or the alias name of a catalog. In that
case, that catalog is searched rather than the master catalog.

Because of this order of search, a qualified data set name and an
unqualified data set name cannot exist in the same catalog, if the
unqualified name is the same as the first qualifier of the qualified
data set name. For example, the master catalog could not contain
the data set 'ABC.123' and an alias 'ABC' for a CVOL or user
catalog.

Access Method Services is a multifunction service program that
you use to define a VSAM data set and load records into it, build
an alternate index, convert OS catalogs to VSAM master or user
catalogs, convert a sequential or an indexed sequential data set to
the VSAM format, list VSAM catalog records or records of a data
set, copy a data set for reorganization, create a backup version of
a data set, recover from certain types of damage to a data set,
and make a data set portable from one operating system to
another.

You tell Access Method Services what to do by giving a com­
mand and descriptive parameters through an input job stream or
by calling it in a processing program and passing it a command
statement. In OS/VS you can also execute Access Method Ser­
vices from a TSO (Time Sharing Option) terminal, either by
executing a program that calls it, by executing it directly and
giving commands and parameters through an input data set,
which can come from a TSO terminal, or in MVS by entering one
of the TSO commands that is identical to Access Method Services
commands.

A set of conditional statements (IF, ELSE, DO, END, SET)
allows you to alter the sequence of execution of a series of
commands by testing or resetting codes that Access Method
Services sets to indicate the completion status of each command.

Page 10-26

J

J

There are commands and groups of commands in Access Method
Services for:

• Defining and deleting data sets and listing catalog records.

• Building alternate indexes.

• Copying and listing data sets.

• Moving catalogs and data sets from one operating system to
another.

• Aiding in recovery from damage to data.

• Converting OS catalogs to VSAM catalogs.

• Listing tape volumes that were mounted at the time of a
check point.

• Con trolling command execution by testing or setting
condition codes.

• Establishing diagnostic-aids and printed-output options.

Figure 10.16 shows a list of tasks that Access Method Services
commands can be used to perform. The left-hand column shows
tasks that you might want to perform. The middle column more
specifically defines the tasks. The right-hand column shows the
commands that can be used to perform each task.

Operation Command

Attach a user catalog to the master catalog DEFINE, IMPORT

Catalog a VSAM data set DEFINE

anon VSAM data set DEFINE

Change a data set's description in the catalog ALTER

the device type of the volume on which REPRO
the catalog resides

Connect a user catalog to a master catalog IMPORT

an OS/VS CVOL catalog to a master catalog * DEFINE

Figure 10.16 (Part 1 of 3). Tasks and Commands

Page 10-27

"

Operation Command

Load records into a data set REPRO

Modify a data set's description in the catalog ALTER

Move a catalog to another system EXPORT, IMPORT

a VSAM data set to another system EXPORT, IMPORT

a nonVSAM data set to another system REPRO

Password give or change VSAM data set or catalog DEFINE
Protect

add a password to an existing VSAM data ALTER
set or catalog

delete a password ALTER

list passwords LlSTCAT

replace a password ALTER

Print a data set PRINT

Recover from possible loss of data VERIFY

Release a user catalog from the master catalog EXPORT

Rename a data set ALTER

Uncatalog a data set DELETE

Unload a data set REPRO

Verify end-of-flIe VERIFY

* MVS only

Figure 10.16 (Part 3 of 3). Tasks and Commands

The EXPORT and IMPORT commands allow you to transport
individual data sets between OS/VS systems or between OS!VS
and DOS/VS systems. Figure 10.17 compares volume and data­
set portability. Data portability is achieved by moving volumes or
by moving individual data sets.

Page 10-29

Moving Data Sets from

One Operating System
to Another

Volume Portability with a User Catalog Data-Set Portability with AI:I:css Method Servkes

(====1 I I First System

I I
I I
l) -- -------

I
...

DisI:onned User Catalog Demount Extrad Catalog Information Copy in Sequential Format

Export Export

Import Second System Import

Conned User Catalog: Mount Define the Data Set Copy in Original Format -_._-
F----1
I I
I I
I I
l) ---_

Figure 10.17 Comparison of Volume Portability and Data-Set Portability

Page 10-30

..

The EXPORT command instructs Access Method Services to
copy an entry-sequenced data set, a relative record data set, or a
key-sequenced data set and its index (other than a VSAM cat­
alog) in the format of a sequential data set onto a storage volume
to be transported to another operating system. The transporting
volume may be magnetic tape or disk. Access Method Services
also extracts information from the catalog entry that defines the
object to be transported and copies it onto the transporting
volume. The information is used to define the object au­
tomatically in a VSAM catalog in the other operating system.

EXPORT can be used to make a backup copy of a data set.
Should that data set become inaccessible, you can use the
IMPORT command to introduce the exported copy back into the
system.

Exportation is either permanent or temporary. In pernlanent
exportation, Access Method Services deletes the catalog record
and frees the storage space; in temporary exportation of an
object, both the sending and the receiving operating systems have
a copy of it, and you may specify that one or both of the copies
are not to be modified. A copy so protected can only be read.
You may free the copy for full access with the ALTER
command.

You use EXPORT to disconnect a user catalog from a master
catalog when you are moving the user catalog to another system.
The user catalog is not copied, but remains on its original volume
in its original form.

Paths are not exportable by themselves but are included in
exports of alternate indexes or clusters; alternate indexes are
exported as key-sequenced data sets. To permanently export a
cluster and the alternate indexes associated with it, first export
the alternate indexes and then the cluster.

The IMPORT command instructs Access Method Services to
define the entry-sequenced data set, the relative record data set,
or the key-sequenced data set and its index on the transporting
volume in the catalog that you specify, using the catalog
information extracted in exportation. The object itself is stored
in its VSAM format in a data space that is defined in the
specified catalog.

You use IMPORT to define a pointer to a user catalog in the
master catalog. The user catalog is not copied, but remains on its
original volume in its original form.

Page 10-31

EXPORT: Extracting Catalog
Information and Making
a Data Set Portable

IMPORT: Loading a Portable
Data Set and Its Catalog Information

Mass Storage System
(MSS)

You can use the EXPORT and IMPORT commands to prepare a
backup version of an entry-sequenced data set and its catalog
record, a key-sequenced data set, its index, and their catalog
records, or a relative record data set and to load the backup copy
if it is needed. When you import a backup copy, the catalog
records are regenerated.

To import a cluster and the alternate indexes associated with it,
ftrst import the cluster and then the alternate indexes. IMPORT
will automatically reestablish all the paths that existed when the
data sets were exported.

Use the IMPORT command to introduce back into the system
the backup data sets produced by the EXPORT command.

When exporting data sets from one device type and importing
them to another device type, you can delete and redeftne your
data set with space parameters that are appropriate to the new
device. The new data set must be empty. Also, it must be the
same type of data set, and if indexed, it must have the same key
length and position as the old data set. IMPORT uses this empty
data set rather than deftning a new one based on exported
catalog information.

The 3850 Mass Storage System can be used with OS/VS to store
a massive amount of data online to the operating system. It is
described in the Introduction to the IBM 3850 Mass Storage
System (MSS) and the OS/VS Mass Storage System (MSS)
Planning Guide.

When you have the Mass Storage System, you can deftne VSAM
data spaces, user catalogs, and data sets and non VSAM data sets
on mass storage volumes. The master catalog and VS2 page
spaces cannot be stored on mass storage volumes.

A VSAM catalog may have deftned in it both objects stored on
direct-access storage volumes and objects stored on mass storage
volumes. In particular, the data component of a key-sequenced
cluster may be stored on a mass storage volume and the index
component on a direct-access storage volume, or vice versa.
However, if the sequence set is imbedded in the data, both
components must be stored on a mass storage volume or on a
direct-access storage volume.

Page 10-32

J

Space for an object larger than one cylinder that is stored on a
mass storage volume should be allocated in cylinders to optimize
data transferral between mass storage and direct-access storage.

Access Method Services for the Mass Storage System provides a
set of commands for the management of mass storage volumes.

Access Method Services for managing VSAM catalogs provides
parameters for options of the Mass Storage System.

A user catalog that is stored on a mass storage volume is always
staged and bound when it is opened - that is, it is retained in
direct-access storage until it is closed. Not binding a user catalog
might degrade performance.

TSO is a subsystem of OS/VS that provides conversational time
sharing form remote terminals. You can use TSO with VSAM
and Access Method Services to:

• Execute Access Method Services commands directly as TSO
commands. (MVS only)

• Execute a program to process a VSAM data set.

• Execute a program to call Access Method Services.

• Dynamically allocate a VSAM data set and execute a
program that uses VSAM macros to process the data set.

• Allocate a VSAM data set by way of a LOGON procedure
and execute a program that uses either VSAM or ISAM
macros to process the data set.

VSAM data sets must be cataloged in the master catalog or in a
user catalog. The VSAM master catalog is allocated when the
system is initialized; you can allocate and gain access to a user
catalog by making it the STEPCA T of a LOGON procedure or in
MVS by using the naming conventions.

For details about writing and executing programs and allocating
data sets with TSO, see OS/VS2 TSO Terminal User's Guide
(GC28-0645) and OS/VS2 TSO Command Language Reference
(GC28-0646).

Page 10-33

How Can the Time
Sharing Options (TSO)

Be Used with VSAM?

How Can System
Management Facilities

(SMF) Be Used
with VSAM?

How Can Existing
Programs That Use

ISAM Be Used
with VSAM?

Comparison of VSAM and ISAM

SMF is an optional program of OS/VS that provides the means
for gathering and recording information that can be used to
evaluate system usage. VSAM supplies volume and data-set
information to SMF.

For further details about the facilities of SMF and how to use it,
see OS/VS System Management Facilities (SMF).

This section is intended for users of ISAM who are converting to
VSAM. VSAM's ISAM interface minimizes your conversion costs
and scheduling problems by permitting programs coded to use
ISAM to process VSAM data sets. To use the interface, you must
convert indexed sequential data sets to VSAM data sets (for
which you can use Access Method Services), convert ISAM JCL
to VSAM JCL, and ensure that your existing ISAM programs
meet the restrictions for using the interface.

In most cases, you can get better performance with VSAM while
achieving essentially the same results that you can achieve with
ISAM; you can also achieve results that you can't achieve with
ISAM. The use of your existing ISAM processing programs to
process key-sequenced data sets depends upon the extent to
which VSAM and ISAM are similar in what they do, as well as
upon the limitations of the ISAM interface itself. This subsection
describes the similarities and differences between VSAM and
ISAM in the areas that you are familiar with from using ISAM
and indicates the functions of VSAM that have no counterpart in
ISAM.

Page 10-34

J

J

A number of things that ISAM does are done differently or not at all by
VSAM, even though the same practical results are achieved. The areas in
which VSAM and ISAM differ:

• Index structure

• Relation of index to data

• Deleting records

• Defining and loading a data set

These differences are described in the paragraphs that follow.

Index structure. Both a VSAM key·sequenced data set and an indexed
sequential data set have an index that consists of levels, with a higher level
controlling a lower level. In ISAM, either all or none of the index records of
a higher level are kept in virtual storage. VSAM keeps individual index
records in virtual storage, the number depending on the amount of buffer
space you provide. It optimizes the use of the space by keeping those
records it judges to be most useful at a particular time.

Relation of index to data. The relation of a VSAM index to the
auxiliary-storage space whose records it controls is quite different from the
corresponding relation for ISAM, with regard to overflow areas for record
insertion. ISAM keeps a two-part index entry for each primary track that a
data set is stored on. The first part of the entry indicates the highest-keyed
record on the primary track. The second part indicates the highest-keyed
record from that primary track that is in the overflow area for all the
primary tracks on the cylinder and gives the physical location in the
oyerflow area of the lowest-keyed record from that primary track. All the
records in the overflow area from a primary track are chained together,
from the lowest-keyed to the highest-keyed, by pointers that ISAM follows
to locate an overflow subsequently. Overflow records are unblocked, even if
primary records are blocked. VSAM does not distinguish between primary
and overflow areas. A control interval, whether used or free, has an entry in
the sequence set, and after records are stored in a free control interval, it is
processed exactly the same as other used control intervals. Data records are
blocked in all control intervals and addressed, without chaining, by way of
ani'" d e x entry that conta i ns the key (i n co mpressed form) of the
highest-keyed record in a control interval.

Deleting records. With ISAM, you mark records you want to delete, either
for you to erase subsequently or in OS or OS/VS for ISAM to drop, should
they be moved into the overflow area; VSAM automatically reclaims the
space in a key-sequenced data set and combines it with any existing free
space in the affected control interval. Because of its use of distributed free
space for insertions and deletions, VSAM requires less data-set reorganiza­
tion than ISAM does. The ISAM interface allows you the option of marking
records for deletion or erasing records.

Defining and loading a data set. You define all VSAM data sets in a catalog
and allocate space for them by way of Access Method Services, rather than
by way of JCL. You can load records into a data set with your own pro­
cessing program or with Access Method Services, in one execution or in
stages. Access Method Services does not merge input data sets, but merges
an input data set with an output data set.

Page 10-35

Comparison of VSAM and
ISAM in Common Areas

J.

J

System Design
Consideration

This chapter discusses some factors to be considered when design­
ing a system using direct access storage devices.

Controls are established and used to ensure accuracy throughout
data processing operations.

The controls established for direct access storage operations are
basically the same as for any system; the difference lies in the
manner in which they are applied. With direct processing, new
data is entered to update an old master record; the old record is
destroyed or erased when the new record replaces it in the file.
This updating process may occur once or several thousand differ­
ent times a day. Because the master record is continually updated,
it is more difficult to establish the status of a record at a given
time in the past, select the transactions that affected it (which are
in random sequence), provide the correct output (which may have
related transactions), and maintain control so that all records are
still in balance and can be checked. For these reasons, the controls
that will keep any type of error from going through the system
will certainly increase productive time.

The largest single checking problem exists in the validation of
input data at the time it initially enters the system. At this time,
the data is on cards, or in the form of card images on magnetic
tape, or on paper tape. The entire record should be checked, and
any record which cannot be processed by all subsequent programs
should be rejected.

Programmed validation checks fall into four catagories: character
checking, field checking, batch or level checking, and control field
checking. Since all this validation represents an extensive amount
of programming, it probably will be desirable to have a separate
program for input editing. In such a case, the input data is not
actually processed to update the file records until editing is com­
pleted.
Several techniques are discussed in this section.

Page 11-1

Data Validation
at Initial Input

Character Checking The checking of each character is usually done by examining the
characters as a group or field.

Test for Blanks. An indication must be made as to which fields
must be blank. If the field requires blanks, a constant of the
proper number of blanks is compared against the fielcl, and a test
made for an equal condition. An unequal comparison indicates an
error condition.

There is a case where, even though certain positions do not in
themselves need to be checked for blanks, it may be necessary to
perform the check to show up a keypunch error in an adjacent
position. For instance, if column 25 is not used, but column 26
can be a blank or contain a I, then a I in column 25 would
indicate a keypunch error and, therefore, column 25 should be
checked for a blank.

In some cases, because of a keypunch procedure, a field can con­
tain either blanks or zeros. In this case a test for blanks or zeros is
made. Usually it is desirable to replace blanks with zeros. When
possible, fields should be punched with zeros rather than left
blank.

Test for Sign. This type of check is made to ensure that the proper
algebraic sign is present for the type of transaction involved.

Test for Numeric. A numeric field is tested to ensure against
having interspersed blanks and/or extraneous zone bits. Blanks are
replaced by zeros. If the numeric field may not contain zone bits,
zones are stripped from the field by the appropriate instructions.

Zone bits over characters that are supposed to be strictly numeric
generally indicate that the numeric portion is also a probable
error. For instance, if zone bits that are the equivalent of an II or
X punch are present over a digit I, it cannot be assumed that I is
the correct numeric digit, since both a J and a 4 are on the same
key of the card punch. Therefore, the intended digit may very well
be a 4 and not a I. If this is the case, the incorrect numeric digit
might be caught on the hash or control total check.

Test for Alphabetic. Normally, it is not serious if alphabetic infor­
mation is omitted, since the phrase "No Description" can be
inserted in the record and a message put out to correct the record
later. If however, this information is vital to the application, such
as the name on a payroll check, an error should be signaled.

Page 11-2

J.

•

•

These checks are concerned with the contents of fields within Field Checking
records.

Sequence Check. A sequence check is performed if incoming data
records must be sequenced for further processing. If applicable,
this type of check can be expanded to include a check on multiple
records making up one transaction. For example, if three records
are necessary to complete a transaction, the program should check
to determine whether they are all there, in order. Further dis­
cussion of this check is included under "Completeness Check". A
check for duplicate records may be inlcuded if it is necessary .

Reasonableness Check. A reasonableness check is a programmed
judgment on data to determine whether it is normal. An example
is scanning sales for unusual quantities or amounts such as a sale of
50 mink coats, or a $1000 charge from a cosmetics department.
Another possible check would be testing a discount percentage to
see that it does not exceed 15%. Then again, the check may be
more complex and require first that an extrapolation of previous
data be made, and then that a test be made to ensure that the new
data does not vary by more than a given percentage from the
computed expectation.

These examples are obvious, but in practice it may be difficult to
determine correct limits on reasonableness; the best solution is to
experiment. A constant can be set up for each limit; then as
experience is gained or as the situation changes, the appropriate
constant can be changed to reflect the new test.

Sometimes data will be entered which is known to be exceptional.
In order to process this type of data, the program must include
provisions for omitting certain tests or negating their results.

Consistency Check. A check for consistency means that two or
more pieces of data are considered in relation to each other. For
example, the classification and credit rating of a customer may
indicate that he is eligible for discounts on merchandise up to a
certain percentage, that his total order may not exceed a specified
dollar value, and that he must pay for merchandise on a COD
basis. An order from this customer must be checked against these
three requirements to ensure that it is consistent with specified
credit terms.

Range Check. A range check is usually applied to a code in order
to verify that it falls within a given set of characters or numbers.

Special care must be taken if alphabetic, signed and unsigned
numeric, and special characters fall within the standard collating
sequence of this range. In this case the collating sequence of all
possible good and error combinations must be considered. Tables
can be used effectively in many range checks.

Page 11-3

Limit Check. A limit check places either upper or lower quantita­
tive limits on a field. For example, net pay on a payroll check may
be limited to $250; or a total order to be delivered must amount
to a minimum of $10 to avoid a delivery charge.

Limits may also be set according to a percentage of a previously
used figure. For instance, in updating a master product file on
prices, a check can be made that the new price is 10% plus or
minus the old price.

Checking That a Code Exists. It is often necessary to verify that a
code is valid for a program and does exist. Tables are used for this
purpose. The size of the table depends upon the number of valid
codes against which a check is made. Various programming tech­
niques are used to search the table for the code and thus deter­
mine its existence or nonexistence.

It is possible that a code shown to be nonexistent is a new addi­
tion to the valid list, and one that will be included in the figure.
When tables are originally set up, therefore, some memory space
should be reserved for expansion.

Completeness Check. A completeness check verifies that no fields
are missing and that no part of the record has been skipped in
sequence. In discussion of checks thus far, a one-card record has
been assumed. Since each field was checked, a completeness check
was implied. The new consideration here is for multiplecard
records that constitute a single transaction.

If all cards in the record are present and in sequence, the program
continues making the remaining checks. If an error in number is
found in the group of cards making up the transaction, the entire
group is rejected.

The group sequence check depends upon how many of the
sequenced records appear in memory at one time. If one record at
a time comes in, and there is an out-of-sequence condition, the
entire batch is rejected. However, if several cards, say three or
four, are in memory at the same time, and they are out of
sequence within the group, this condition can be program­
corrected by selecting the coded records in sequence.

Page 11-4

•

J

Date Check. A date check on incoming records is done primarily
to ensure that the record date is acceptable.

Date is carried on records in various formats. The usual ones are
two digits for month, day and year, as in 12 31 66, or a three­
character representation of month, as in OCT 12 66. A one­
position code for month can be used, such as 1-9 for January to
September, and 0, -, + for October, November and December.
Day can be compressed from the two digits required for 01-31 to
one position by using alphabetic characters A-Z plus 0-4. Year can
be carried as either one or two positions - that is, 66, 67, or 6,7.

Another more concise method of carrying date is to number the
working days. This number can start with the first working day
the system is operative and continue indefinitely, or it can restart
each year, in which case it would contain a digit designating year.

The checks made on date verify that month falls between Oland
12, day between 01 and 31, and year according to actual year.

In addition, limits are checked for dates in the future or in the
past. In order to do this, a decision is made as to how far in the
future a record may be dated, or how late the record may be on
entering the system. An arbitrary length of time may be used, such
as five days, or six months, in either direction. If these limits are
exceeded, a message is put out to signal an investigation.

Records with old dates can be reentries to the program and should
be distinguished from records that might be rejected as too late.

Self-Checking Number. A self-checking number is one that has a
precalculated digit appended to the basic number for the purpose
of catching keypunch or transmission errors. Any size number can
be checked. For instance, a five-digit code with the self-checking
digit would be carried as a six-position code. Normally, the self­
checking digit is used with identification codes, such as part
number, customer number, or employee number.

There are two techniques for calculating a self-checking digit: the
modulus 10 and modulus 11 methods. In both methods the digit is
originated by a special device on the IBM 24 Card Punch, 26
Printing Card Punch, or 29 Card Punch, or by an initial calculation
operation.

Page 11-5

• Modulus 10 Method

The modulus 10 method, which is completely described in
Self-Checking Number Feature (G24-1057), is as follows:

I. The units position and every alternate position of the
basic code number are multiplied by 2.

2. The digits in the product and the digits in the basic code
number not multiplied by 2 are crossfooted.

3. The crossfooted total is subtracted from the next-higher
number ending in zero.

4. The difference is the check digit.

Example:
Basic code number:
Units and every alternate position
of basic code number:
Multiply by 2:

Product:
Digits not multiplied by 2:

Cross-add:
Next-higher number ending in zero:
Subtract crossfooted total:

Check digit:
Self-checking number:

Other examples:
Basic code number

45626
30759
73074

6 1 2 4 8

6 2

2 5
1 4

8
x2

6

1+ 2+ 1+ 5+ 4+ 6=19
20

-19
1

6 124 8 1

Self-<:hecking number
456269
307595
730747

• Modulus II Method

The modulus II method, which is covered in Self-Checking
Number Feature, Modulus 11, and Its Associated Self­
Checking-Number Generator, Modulus 11 (G24-1022), is as
follows: Each digit position of any basic number is assigned a
"weight" (checking factor). These factors are 2, 3,4,5,6, 7,
2, 3, 4, 5, ... ,starting with the units position of the number
and progressing toward the high-order digit. Any size field
may be converted into a self-checking number.

Page 11-6

..

I. Write the number, as illustrated below, leaving space
between the digits.

2. Below each digit, starting at the right and working left,
place the corresponding checking ("weighting") factor.

3. Multiple each digit by its checking factor and add the
products.

4. Since this is a modulus I I system, divide the sum of the
products by I I, and subtract the remainder from 11.

5. The result is the check digit.

Example:
Basic number: 9 4 3 4 5 7 8 4 2
From right to
left, the check-
ing factors: 4 3 2 7 6 5 4 3 2 ----------------Multiply and
add the
products: 36+12+ 6+28+30+35+32+12+ 4 =195
Divide total by 11: 195 -;- 11 = 17, remainder 8
Subtract: 11-8 = 3 (the check digit)
Self-checking number: 9434578423

The self-checking digit is used to verify the correctness of a
code by recalculating the check digit and comparing the
result with the digit in the record. An equal condition signals
that the code is correct.

This type of check catches about 97% of transposition and
substitution errors, which are the most common type of
keypunch and clerical errors.

The fact that the check digit is the same on recalculation
does not mean that the code does in fact exist as a valid code,
but only that the combination of digits in the code field is
correct. For instance, it is possible for an employee number
to check out correctly, but for that employee to be no longer
on the payroll.

Page 11-7

Borderline Tests. There will be cases when the data in a record just
passes the acceptance test - that is, when a particular field is
borderline but does not invalidate the record. If, however, several
fields in the record are borderline cases, their cumulative effect
may cause the record to be unacceptable. This situation should be
considered and such records put out for investigation.

Methods for Processing Records Containing Field Errors. In some
types of applications it is possible to process records even though
they contain erroneous data. Some techniques for dealing with
such conditions are:

• Use of Approximations. It is often possible, when data is
either omitted, unavailable or unreasonable, to use an
approximate figure and process the record. A common
example of this technique is the use of a minimum charge on
utility bills. If a meter cannot be read for a certain billing
date, either a standard minimum billing figure is used, or a
figure is computed on the basis of average past usage. The
record can then be completely processed.

In some circumstances a special listing must be kept of
records that use approximations, and the necessary follow-up
must be maintained to replace the approximations with
actual figures when they become available. In other situations
no special record is necessary since the condition will be
self-correcting. Such is the case for utility minimum charges.

Another use of approximations occurs when certain informa­
tion is not presently available and a dummy number is used
to process the record. For instance, an order received from a
new customer who has not yet been assigned a customer
number could be processed by using a constant customer
number and by putting out a message for follow-up. In cases
such as this, a fixed constant is used which is recognizable as
an unreal code, quantity, or amount.

• Invalidating Part of a Record. In order to continue processing
automatically under all conditions, the technique of invalid­
ating or disabling part of a record may be employed. This
means that a significant code is inserted in the record to
prevent processing of a portion of the input data. Follow-up
would, of course, be necessary.

Another use of this technique is in the updating of a master
file. It is possible to include new data in the master which is
not valid until a certain date. Before the conversion date it is
coded as invalid, and at the proper date it is made available to
the program.

Page 11-8

•

..

• Unscrambling. Programs to unscramble data are used in many
instances. Unscrambling means rearranging the data by
character or digit. This technique can be used in relation to a
multicharacter code or an entire record including the quanti­
tative data.

The unscrambling technique is generally used on data that
has originated from paper tape or some other data trans­
mission medium. In the case of paper tape, it is possible that
an operator may have put the tape on backwards when
converting to magnetic tape, so that all records are reversed .

The procedure for unscrambling is to read the record in the
usual manner and check it. If it is in error, the fields are then
checked backwards - that is, from right to left; if still in
error, the record is offset one position to the left and
checked; if still in error, it is offset one position to the right
and checked; and so on. This type of check has innumerable
combinations that can be tried. The most successful rear­
rangements result from experiment.

A batch or level is a subgroup of a logical file of information.
Input data is batched for the purpose of balancing small groups of
data to control totals. If an error is discovered, the erroneous
batch can be rejected without the loss of the entire run. Also, the
error can be located more quickly and easily in a small section of a
file.

A batch may be made up of groups of records having a common
identity, such as department or branch, or it may be made up of a
specified number of records, say 500.

The type of batch is generally based on the manner in which the
data arrives at the data processing department. if it arrives by
department, or location, these would seem to be logical groups
despite volume. If, however, data is to be batched in size group­
ings, the only consideration is convenience in error trackdown.
The smaller the batch, the easier it is to find the errors, but since
more totals are required, additional clerical and machine time is
necessary .

Each batch of input data includes as a first or last record a batch
control card, which is created either in the originating department
or by a control group within the data processing department. The
batch control record contains batch number, date, originating
source, record count, hash totals of identifying information, and
control totals of quantities and amounts.

Page 11-9

Batch or Level Checking

As the batch is processed through the edit program, totals of the
detail records are accumulated for both accepted and rejected
records. If all control totals balance, the batch is accepted; if any
do not balance, it is rejected. Complete lists of rejected batches are
maintained for follow-up purposes.

The detail records mayor may not contain all the information in
the batch control card. If the information is present in the detail
record, it is checked; otherwise, only record count and control
totals checks are made.

If the batch balances, but certain records in it are rejected on
other tests, such as reasonableness, the batch may be (1) rejected
until the error record is corrected, or (2) reentered with new batch
control totals from which the error records have been deleted.

Batch Number Check. A check is made that the batch number in
the control card matches the batch number in all the detail
records. If any record in the group does not contain the same
batch number, it is investigated. If the batch is rejected for this
reason, and if the totals for the batch balance, the error is prob­
ably a keypunch error in batch number and can be easily
corrected.

Batch Record Count. A count is made of all detail records in each
batch. This count must balance to the record count in the batch
card. An out-of-balance condition indicates missing, additional, or
duplicate records that must be checked.

A simultaneous error in record count and in batch number would
indicate that an additional record has been picked up in the batch
and is probably a record that is missing from another batch.

Batch Control Totals. All quantitative fields in the detail records
are accumulated and checked against the batch totals. Any error
causes the batch to be rejected. This is the classic check that has
always been made on data as it is processed through any data
processing system. Except for compensating errors, a balance here
is proof that the batch is complete and correct on quantity and
amount fields.

Batch Hash Totals. A hash total is an accumulation of digits
generally taken from an identification or control field. This type
of total is taken solely for checking purposes, since the actual total
has no quantitative significance.

Hash totals enable the user to positively identify an added or
missing record. For instance, if a record in the amount of $25
were missing from one batch and appeared in another batch where

Page 11-10

.. '

..

J

•

..

•

there was also one for $ 25, it would be difficult to determine on
the basis of the amount field which of the two was out of place.
However, if the control fields were different, the out-of-place
record could be easily identified.

The control field check is not normally made during the edit
program. Rather, it is included in the first processing run against
the master file. At that time, each detail record is compared with
the master on the appropriate control field. Nonmatches must be
investigated further - either in the program or manually. The
program can, for example, interrogate a code to determine
whether the non match is a new product that has not yet been
added to the master file. If the nonmatch cannot be resolved by
the program, it is put out as an error for follow-up.

Sometimes the job is such that the check must be made during the
edit run. If this is the case, it can be done in several ways. A short
master record containing only the code numbers can be used for
comparison. Or, if the number of codes is small enough, a table
can be created in memory and a table lookup done on the code.

Once an error has been found during the edit program, its cause
must be determined and the error corrected. The usual procedure
for correction is to route the listing of error records and related
messages to someone who investigates each record and makes the
proper correction. If the errors have resulted from a new appli­
cation just put on the computer, or if the data has originated at a
remote location, the process of tracking down the error is more
involved. With a new application, it may be necessary for several
experienced people to review the error records.

After the cause of each error has been found and the correction
made, the record is reentered into the edit program. The rules for
reentries may be different from those for original data. For
example, reentered records may be 10 to 30 days late, whereas
current records may be a maximum of 5 days late.

In handling errors:

1. Overall control of good data plus error data must be main­
tained .

2. Reconstruction of the error record from the source data must
be possible.

3. The rules on resubmission of corrected records must be
clearly defined.

4. Overall controls must be reestablished after correction runs.

Page 11-11

Control Field Checking

Often, input data is edited at more frequent intervals than it is
processed. For instance, in a weekly processing run, the input data
might be edited daily, while in a daily run of, say, invoices, the
input order data might be edited in several batches throughout the
day. Thus peak loads on corrections are avoided.

System s or I nternal An external control on all records is established as close to the

Controls originating source as possible. This means that as soon as the data
is keypunched or received over transmission media, control totals
are established which balance back to accompanying group totals.

A record is also kept as to exactly what data has been received.
This may be a manually filled-in form referencing the source
department and the number of records, or it may be as elaborate
as a machine listing of all incoming records. The point is that the
records must be controlled from the moment they come in the
door of the data processing department until processing is com­
pleted.

The internal controls to be discussed here are directly related to
the external controls and must tie back to them.

Systems or internal controls include the checks incorporated into
a programmed system, exclusive of the validation checks on input
data, for controlling the number of records being processed and
the correctness of the machine calculations. Even though input
data is acceptable on range and limit checks, calculated results
using these factors may be outside an accepted limit and should
also be checked. For instance, factors A and B may satisfy the
validation tests made, but A times B, or A divided by B, may be
out ofrange.

Control Totals. Control totals can be taken on amount fields, or
quantity fields of like sizes, such as units, dozens, or cases. These
totals are added algebraically.

Batch control totals on input data have already been discussed. In
addition, overall control totals are used which include totals by
various groupings, such as department, branch, or total file. These
totals generally are of interest in themselves, since they represent
specific control groups.

A balance on all control totals can usually be interpreted as proof
that a file is complete and has been processed correctly.

A programming consideration worth noting in regard to control
totals concerns the memory space reserved for these totals. It is
wise to reserve enough memory positions to accommodate totals
for two to four times the normal volume of records going through

Page 11-12

...

•

each program. This is because two days' work may be put through
the machine at one time, or volume may suddenly spurt as a result
of a current advertising compaign.

Hash Totals. Hash totals have also been mentioned under batch
hash totals. A hash total is the sum of the digits of an identifying
field. On some machines, hash totals may be taken of the numeric
part of alphabetic fields. A hash total is unlike a control total in
that the sign is ignored and carries are dropped .

Quantity totals may also be hash totals if all quantity sizes are
added together - for instance, units, dozens, and packages.

Hash totals are used for checking purposes only, and are of no
interest in themselves.

Crossfooting Checks. Crossfooting, in the checking sense, means
cross-adding or subtracting two or more fields and zero-balancing
the result against the original result. This is an effective control
when total debits, total credits, and a balance-forward amount are
maintained in each account; total debits and total credits can be
crossfooted to prove that the difference equals the balance
forward.

For discussion purposes, assume an accounts receivable applica­
tion. In posting to accounts in disk storage, the stored program
must select for each transaction the proper account record, read it
into a working storage area, update it there, and, if posting is
correct, write it back in the same disk storage location. In the final
phase of posting, the old account record is replaced by the up­
dated one.

The accuracy of posting should be proved between the last two
steps; this is the last point at which the old account record is still
available. For proof, total debits and total credits are crossfooted
and the net result compared with the new balance-forward
amount; they should be equal. If they are not, the last step is
skipped and the updated record is not returned to disk storage
until the error is corrected.

Crossfoot checking can also be used on a recalculate basis by
reversing the additions and subtractions. For example, the original
calculation would be:

+A+B+C+D+E = F

and the recalculate:

-A-B-C-D-E+F = 0

Page 11-13

Balancing Partially Processed Data Files. When random trans­
actions or batches are processed against records in disk storage,
only the active records are consulted. Since the inactive records
are not read, the balancing procedure must depend upon the
assumption that they are correct. This assumption is proved by
trial-balancing all accounts on some cyclic basis that is frequent
enough to enable corrective action.

The remaining control problem rests upon assurance that the
active records are processed correctly and that a record which is in
error can be detected within the system.

The means for detecting errors with this technique is provided by
establishing balance fields in addition to detailed item fields. For
accounts receivable records, a total-amount-due field is established
which is the crossfoot total of the gross amounts of the individual
(invoice) items.

All processing of those records includes crossfooting the record
before and after processing to ensure that the record was and
remains in a balanced condition. A total of all balances of the
affected records "before" is reconciled with the changes and the
total of the balances "after". When this is done, the total of the
changes may be posted to the total control records, which will
then reflect the correct total of all record balances. An example is
shown below.

Accounts before processing:
Item Item Balance

Account A 50.00 00.00 50.00
Account D 75.00 75.00 150.00
Total old balance of all accounts 10,000.00

Two cash receipts to be processed:
Transaction A for 40.00
Transaction D for 75.00

Accounts after processing:
Item Item Balance

Account A 10.00 00.00 10.00
Account D 00.00 75.00 75.00
Total balance of affected accounts "before" 200.00
Total transactions 115.00
Total balance of affected accounts "after" 85.00

Since 200.00-115.00=85.00, the procedure checks, and the new
control balance of all accounts is reduced from $10,000.00 to
$9,885.00.

Such a balancing procedure is no different from that used in
manual bookkeeping systems where the total main file is split into
daily cycles and a total control covers all cycles.

Page 11-14

J

If subledger controls are used for controlling smaller groups of
records, they should be reconciled to the grand total before and
after processing nms or at periodic intervals during processing.
Provision must be made for restoring changed subledger totals to
the last previous reconciled figures, but otherwise changes are
made as posting is accomplished. The general philosophy is that if
the changes balance in detail, they may be used in the total sub­
ledger. If the subledger totals balance similarly, the change may be
posted to the grand total.

If they do not balance, the detail records are trial-balanced to the
subledger and the subledger to the grand total.

It is noted that if an account which is inactive is out of balance, it
will go undetected. However, the procedure outlined guarantees
that the last time it was legitimately processed, the record was
correct, and that the next time it is processed or trial-balanced, the
error will be detected.

Multiplication Checking. Multiplication checking can be done in a
variety of ways, depending upon the format of the record.

One of the simplest methods of multiplication verification is to
reextend with the multiplier and multiplicand reversed, and zero­
balance the products. Another method is to obtain one of the
factors from a different source, such as a table lookup based upon
an identification code, and zero-balance the recalculation with the
original product. Still another method is to total the quantities to
be multiplied by the same multiplicand and then do one multipli­
cation per multiplicand instead of several. The product would then
be zero-balanced with the total of the individual products.

If the machine time required for multiplication checking is
excessive, a check on every hundredth or five-hundredth record
may be considered. This check, however, will catch only a con­
sistent machine failure.

Rounding Considerations. Error conditions can be incorrectly
signaled as a result of attempting to balance the multiplication of a
total against the sum of its parts which have been individually
extended and half-adjusted.

In order to avoid error signals on such conditions, it is possible to
use a group half-adjustment in the individual extensions. This
method requires that an artificial five be introduced only once per
group calculation (vs. each calculation) and that the adjustment
position be cumulative until the end of the group. The following
example illustrates this case:

Page 11-15

J Decimal
I{Time,) Individually Achtal Accumulated Accumulated

Hours Rate Adjusted Calculation Decimals Adjustment
half adj. /0:5

2.5 1.25 3.13
,,-" I

3.125~=_1:0 3.13
I

2.5 1.25 3.13 3.125 0:5 3.12
I

2.5 1.25 3.13 3.125 1:0 3.13
I

0.5 1.25 .63 0.625 :5 0.62
I

Total 8.0 10.02 10.000 15 10.00
Daily 8.0 1.25 10.00 10.000

In this example, the individually adjusted extensions of hours
times rate add up to .02 more than the group total extension. It
can be readily seen that this type of discrepancy could grow sub­
stantially if perpetuated through an entire program.

Another method of dealing with the rounding situations is to use a
limit on the amount of tolerable error and consider the amount as
correct if under the limit. If this method is used, it is preferable
that the limit be tested on as small a group of calculations as
possible, since it is very difficult to determine whether an error of
a fairly large amount is due to thousands of rounding errors or is
in fact one large error.

Division Checking. Division is usually checked by multiplication.
This is done by multiplying the quotient by the divisor, adding the
remainder, and zero-balancing the result against the original
dividend. For example, if the original calculation is:

A+B=Q+R

the verification is:

(Q x B) + R - A = 0

The remainder situation may be handled by the use of formulas
that test for successive plus or minus conditions. Examples of such
formulas are available in the 602 and 604 reference manuals.

Another possibility for division checking is a multiplication of the
dividend by the reciprocal of the divisor and a comparison of this
result with the original quotient.

Negative Amount Considerations. Control totals have been defined
as being algebraic additions. This recognizes the fact the credit
items occur and also that reversing entries are possible for every
plus entry.

Page 11-16

J

Because of these negative entries, it is possible to develop totals
that bear a strange relationship to each other. For example,
consider the case of two sales transactions, one of which paid a
commission to a salesman while the other, a credit item, did not:

Net Sales

+100.00
-500.00

-400.00

Commission

+6.00

+6.00

If these two transactions were the only two processed for this
salesman on this day, it would appear that a commission was paid
for credit business. Also, if a reasonableness check were applied to
the totals, for instance to determine that the commission per­
centage ranged from 4% to 10%, an error condition would be
signaled.

Unexpected results like the above do occur when negative
numbers are being processed. Consideration should be given to
such possibilities, and procedures should be developed to handle
them properly.

Processing Nonstandard Input and Output. Processing programs
that are run after the edit program do not include editing as such.
However, they do incorporate a similar principle, in that they
must provide a programming path for nonstandard conditions. For
instance, a program may be set up to expect three types of input
per transaction. If one type is missing, it may be desirable to have
the program skip that transaction, continue processing other trans­
actions, and send out a message about the transaction and the
missing data.

The point is that programs should be written to continue to run
under as many conditions as possible. Error messages would, of
course, be put out on every error or nonstandard operation. In
programming, one should never decide that a condition will not
occur. Experience shows that if it can happen, it will happen.

Record Coding. File data destruction, when it does occur, is often
the result of programming error. Some of the causes have been (1)
attempting to run a program before thorough testing, (2) entering
incorrect beginning or ending addresses for sequential file changes,
and (3) blanking records. To avoid having such incidents occur

Page 11-17

unnecessarily, a code can be placed in each data record and
matched against a constant associated with the proper program.
This establishes the fact that the program has the right to work
with the given record. Although not foolproof, it will prevent a
large percentage of accidental program errors. It requires few
instructions and little storage space.

Messages. Messages are usually associated with error conditions,
but they are also used with control totals. The principal rule in
regard to messages is that they should be clear, complete, and
concise.

An error message should identify the error record, specify what is
wrong with it, and use as few memory positions as possible. For
example, a message such as:

INVOICE 12345 AMOUNT OVER LIMIT

is not sufficient to describe the actual case. A better message
would be:

INVOICE 12345 PROD 6789 AMT OVER $500.

QUANTITY 25 PRICE $100.00 AMT $2500.00

This message enables the control clerk to determine that if a
quantity of 25 is reasonable, the error condition is in the price. In
this example, it is probable that the price is incorrect in the master
record and should be $10 rather than $100.

Message standards can be set up that will aid in proper format and
content.

If a sufficient amount of memory is not available for the necessary
error messages, a coding system can be used. The original program
detecting the error would then put out an error code and the
identifying information. When the error message tape is printed,
the codes can be translated into English and the identifying infor­
mation inserted into the message format.

Undetectable Errors. In input data, errors can occur which defy
detection. They result from human mistakes and can be in detail
transactions, or, worse yet, in data used to update a master file.

An example of an undetectable error in a detail transaction is the
case where a customer phones an order for twelve pieces of an
item and the order clerk writes down 11. The quantity is punched
as 11, and since 11 is as valid to the program as 12, it is processed
as 11. Not until the customer receives only 11 pieces is the error
found.

Page 11-18

J

While it should be realized that human errors undetected by the
program can occur, this should in no way detract from the use of a
comprehensive set of checks. The vast majority of error conditions
are detectable and can be discovered by a complete checking
operation.

Controls on output are more difficult to establish because the Output Controls
resulting output may not coincide with input. For example, if an
input control total were taken on quantity, it might not balance
with the invoice because of back orders or items deleted from
inventory. Had the total been on a part number or hash total, a
substitute item would have caused an out-of-balance condition.
One solution to a problem such as this is to obtain totals of the
quantities that were invoiced or back-ordered, as well as sales that
were lost or adjusted. A tally of these totals should balance with
the input control total.

Since the volumes processed by a system are normally so great
that the taking of external totals on the output documents them­
selves would be too unwieldy and costly, a more practical
approach would be to control by batch. The number of docu­
ments processed would be totaled and compared with input
controls to prove the inclusion of all. As an output control, forms
can be prenumbered so that the total number of documents
invoiced (output) could be balanced.

For example:

Input documents
Invoices
Lost sales

2200

(incomplete orders) 31
Back orders
(complete orders) 131

2362

-2362
0000

There are other output controls, such as systematic manual
checks, statistical sampling, physical inventories, and analysis of
reports. The last of these may well fit into the category of system­
atic checks if they are reports that are created weekly or monthly.

Many means can be devised for output controls, but the degree of
control should depend to some extent on the type and number of
input as well as process controls and the nature of the job. Payroll
checks, for instance, should have the ultimate in controls, whereas
an invoice for chain stores may have few output controls from the
data processing department.

Page 11-19

Program Testing

Direct Access
Label Checking

Intermediate controls are generally included in output controls
because they are the result of a given run. In addition, however,
they may be carried forward to another system or run before they
have any meaning for balancing purposes. This injection of the
time element requires other considerations. The time difference in
taking the control totals may vary from a few minutes to days.
The specific situation must govern this; however, two guides are:

1. Keep the time period between control totals as reasonably
short as possible.

2. Provide for convenient systems and physical handling of the
controls.

Built-in Checks. Advantage should be taken of all automatic and
built-in checks, all transfers to output devices are parity-checked
and the devices themselves have automatic checks. For instance,
printers have setup checks, and tapes have dual-gap heads to
ensure accurate recording. Direct access files have a very positive
checking method in their Cyclic Check.

Accounting controls that are too tight can hamper processing;
inadequate controls can make the processed data worthless.
Controls should therefore be used wisely. Only those that satisfy a
need should be included, and they should be simple and easy to
maintain.

Programs must be thoroughly checked out before they are put
into production. An attempt should be made to anticipate and
allow for all possible errors, exceptions and unusual com binations
of circumstances. Routines or separate programs must be written
for correcting errors when they do occur. For example, updating
files while printing a report with the wrong form inserted can be
disastrous if there is no program written to print the report with­
out updating. Up-to-date copies of all programs should be main­
tained, and any changes authorized and fully documented.

The operating systems require that each direct access volume (a
disk pack, data cell, drum, or part of a 230 I served by one access
mechanism) must have one 80-position standard volume label. The
operating system will check that the volume serial number in the
volume label (each volume is assigned a unique volume serial
number) matches the volume serial number stated by the user at
job initiation time, thus ensuring that the correct volume has been
mounted. The volume label also contains the address of the area
on the volume that contains the standard file labels of the files
that reside on the volume. This area is called the volume table of
contents (VTOC). The standard file label or set of standard file
labels for a file identifies that file, gives its location or locations on

Page 11-20

the volume, and contains information to prevent premature
destruction of the file. The number and format of the labels
required for anyone file depend on the file organization structure
and the number of separate areas (extents) used by the file. The
operating system writes file labels for new files. It also checks the
file labels for existing files to ensure that the correct file is online
and that a new file being created will not destroy an unexpired
file.

The audit trail must provide the detailed business information for The Audit Trail
the period of time that will satisfy legal, accounting, and practical
requirements. It must also provide a method of extracting the
information that is most economically consistent with the require-
ments.

In some computer runs, there are no audit trails; such is the case
with engineering problems having variables that are entered for
trial fits. There will also be runs where added procedures are
unnecessary as well as uneconomical because the amount of source
data is small and readily available for checking and rerun purposes.
Most commercial applications, however, require audit trails - for
several reasons:

1. The audit trail is the means for checking any discrepancies
that occur.

2. Business has legal requirements to provide this information.

3. The audit trail is necessary for the accountant to perform a
valid audit.

4. It is a means of updating master records in a file reconstruc­
tion procedure.

Before establishing an audit trail, the length of time that the detail
documents are to be retained must be determined. This will be
based upon:

1. Legal requirements.

2. The auditor's needs for annual or semiannual audits.

3. The operational requirements of the business.

4. The operational requirements of the data processing depart­
ment.

Page 11-21

The degree of detail required for anyone of these may vary over a
long period of time, and the source document, depending on the
length of time it is required, may remain intact or be microfilmed
for condensed storage. Because of storage expense, cost of tapes,
maintenance, etc., management should try to condense or
summarize the necessary data as much as possible.

There are various ways to establish a good audit trail for data
processing systems having direct access storage. In the disucssion
that follows, the availability of tape is a basic assumption. It does
not preclude the use of cards or other files to accomplish the same
results.

The one basic method of creating an audit trail is through a file
dump. By reading the file and writing it on tape, a correct master
file is always available as of a given point in time. To make it
current, all transactions since the dump must be passed against it
for updating. The dump to tape may be the entire file, only the
portions used, or only the groups of records affected by a day's
runs. In many cases, the speed of files and tapes makes it feasible
to perform a file dump on a daily basis.

Where many master records are involved and the transaction
volume is low, another method should be investigated. This
approach requires a complete file dump less frequently. For
example, if an inventory record is used today, a tag is placed in the
record and its address is written out on tape. Each successive item
going to that same record will find the tag present and not write
the address. At the end of the day the address tape is used to read
the corresponding file records. Each is dated and written on tape.
When needed, these tape records are sorted and merged; the
merged records, along with those on the master tape file, are read
into the processor, where the record with the latest date is used in
reconstructing the disk file. This approach has the advantage of
taking less daily time than a full dump, and requires further pro­
cessing only when it is necessary to reconstruct the file. File
reconstruction will take longer when it occurs. The user should be
cautioned against letting too much time elapse between complete
file dumps; sorting and merging them can become quite time­
consuming.

A way to create an audit trail when processing at random is by
having a program "sign" each record that it updates. An example
of this is shown in Figure 11.1 Each record contains a field for
the date and source of the last update. As the field is changed, the
previous reference can be printed. In the example shown, the

Page 11-22

•

(

)

reference field will be updated to 0731 CASH. If every update
does not result in printed output, an additional field can be in­
cluded which contains the number of times the record has been
updated since the last printout. This information can be useful in
tracing errors or unusual conditions.

In most applications there are transactions that require special
handling and therefore cannot be processed with the others. A
record of these must be kept to avoid creating gaps in control and
audit procedures. Processing can be monitored by the stored pro­
gram and these transactions handled as exceptions. The system can
be programmed to notify the operator of them and expedite their
handling. Such transactions are held in a pending file and
accounted for until completed. Thus they are readily available
when an out-of-balance condition occurs or when infonnation
about them is needed.

Additional discussion of controls as they are related to data pro­
cessing systems is found in Management Control of Electronic
Data Processing (F20-0006).

DASD RECORD

Acct. No. Name Last Reference

123476 SJ WILSON \ ',-_0_6_25_J_RN_L __ \..,

CASH JOURNAL JULY 31,1973

Account Last Reference Amount Balance
Number Name Date Run Paid Due

123476 S. J. Wilson 06-25 JRNL 250.00 182.94

~-----
Figure 11.1 Audit Trail

It is necessary to fully plan the type of action to be taken under
all conditions that might arise which would prevent nonnal execu­
tion of data processing procedures. Each type of unit making up
the system should be considered as nonoperational, and an alter­
nate plan should be devised for each specific unit (as well as
combinations of units) in order to continue processing in some
manner. These plans should be devised and adhered to in all cases.

The need for reconstruction arises when information in the file is
destroyed. Reconstruction methods used will vary depending on
job priority, time considerations, processing time necessary to
provide reconstruction data, etc.

Page 11-23

-

Reconstruction

Procedures

The first requirement for a file reconstruction procedure is that
the data in the file be dumped periodically. The dump can be
made either to cards or tape (the latter is the basis for this
discussion). The time required for the dump and the frequency
with which it is done will vary. In cases where reports are prepared
periodically, the file dump can probably be obtained as a by­
product.

The feasibility of a daily file dump should be investigated as a
starting point. With a daily dump, file reconstruction is greatly
simplified in that the file as of yesterday can be loaded into the
direct access storage device and today's transactions reprocessed.
This approach can, of course, be used even though the file is not
dumped every day. The deciding factor is whether another method
might cost less or perhaps be more timely.

As the number of direct access storage modules increases, a daily
dump of all modules will probably become less desirable unless an
auxiliary processor is available.

If it is not feasible to reprocess all transactions that occur in the
interval between file dumps, the approach outlined under "The
Audit Trail" might be applicable. With it, as each record is up­
dated in the file, the updated record was written on tape. When it
becomes necessary to reconstruct a file, the latest status of each
active record affected can be selected from this tape and merged
with the previous dump tape to provide a current file status as of
the last processing cycle. Current date should be included in the
record to facilitate selection of the most current record. An advan­
tage of this over-reprocessing is that program changes will have no
effect, whereas they could cause different action to be taken if
reprocessing were attempted.

It should be recognized that program storage is considered in the
same manner as data storage. Each time a program change is made,
it must be reflected on a tape record or some other medium to
ensure retrieval capability, should reconstruction become
necessary.

The method used for reconstruction should be well planned, well
documented, thoroughly checked out, and then followed when
reconstruction is necessary.

Bypass Procedures In the event of machine nonavailability during critical time
periods, a method of alternate processing must be designed to
allow the major portion or most critical portion of the job to
continue.

Page 11-24

,c.

•

If the computer produces output that governs the immediate
action of another part of the operation (stockpicking, for
example), the decision may be made to institute the prescribed
bypass procedure immediately upon encountering an unusual con­
dition in order to keep this function operational. On the other
hand, applications that have a critical period once a month might
be able to wait a considerable longer period of time before a
bypass operation is begun.

Probably one of the most difficult decisions to make in a multifile
application is when to go into a bypass mode of operation. One
way to determine the amount of time that can elapse is shown
below:

Critical time period:

Reconstruction time:

Process time:

Total wait time possible:

Possible
wait time

2 hrs.

1 hr.

6 hrs.

-3 hrs.

3 hrs.

~ IReconstruc-1 Process
tion time time

I Critical time period

o 1 2 3 4 5 6

The critical time period consists of that time which can elapse
without disrupting another operation.

The possibility that each unit in the machine configuration, as well
as combinations of units, may be unavailable must be considered
in order to establish adequate bypass procedures. One DASD may
contain an index to the files on other DASD's, making nonnal
processing impossible when it is inoperative. In such a case, partial
processing may be accomplished by dumping the contents of
another direct access storage unit and loading the index in its
place .

Another approach that might be considered is to have duplicate
critical content files, or to dump only these files daily to minimize
reconstruction time.

Every application should be designed to maintain at least a partial
processing capability as long as possible before initiating a bypass
operation.

Page 11-25

'\ Some applications demand assurance that downtime be virtually ..."
impossible, and go so far as to require duplexed processors.

For applications requiring fast response, one approach to main­
taining operational status when the system is down is to utilize the
previous dump tapes and daily action tapes to create a printout
which could then be used in a manual operation. Such is the case
when there are priority transactions that must be handled imme­
diately. The file contents are printed by using the last dump tape,
merging in the action tapes and providing a printout which can
then be utilized by clerks to process the priority transactions
manually. The results of the clerical processing are fed back to the
computer when operational status is restored and post-posting
updates the file to reflect the manual action taken.

If once-a-day processing is adequate, the tapes created above could
be used to perform tape processing of the application. In consider­
ing a tape bypass operation, tape unit availability must be ensured.

In cases where an alternate processor is available, its use for bypass
should be considered.

The major factor for satisfactory bypass operation is to have a
definite procedure.

Restart Procedures The theory behind restart is that if for any reason operation is
interrupted, there is a time advantage in being able to resume
processing without having to start at the beginning of the run.

To accomplish this, a system of checkpoints must be developed
whereby the contents of memory are dumped at specified inter­
vals. In many cases a checkpoint occurs at the end of an input or
output tape.

The checkpoint routine will dump not only the contents of
memory, but also the contents of accumulators and registers, in­
dicators, and input and output records in process.

When a restart is initiated in a tape system, the tapes are reposi­
tioned, the contents of memory, registers, etc., are reestablished,
and processing then continues.

When direct access media are employed, a new consideration
arises, since each updated record has destroyed the prior status of
the records. In order to restart, the file must be reestablished as of
the last checkpoint. This can be done by dumping an image of the
direct access record on tape as soon as it has been read. When a
restart is initiated, these records can be used to rewrite the file and

Page 11-26

)

establish the status that existed when the corresponding check­
point was taken. When this is completed, normal restart proce­
dures can be accomplished and reprocessing begun.

Page 11-27

Bibliography

IBM 3830 Storage Control - 3330 Disk Storage Reference Manual
(GA26-1592)

IBM 2820 Storage Control - 2301 Drum Storage Component
Description (GA22-6895)

IBM 2841 Storage Control - 2311 Disk Storage Drive - 2321
Data Cell Drive - 2303 Drum Storage Component Description
(GA26-5988)

IBM 2835 Storage Control - 2305 Fixed Head Storage Facility
Component Summary (GA26-l589)

IBM 2314 Direct Access Storage Facility - 2844 Auxiliary
Storage Control (GA26-3599)

IBM 2319 Disk Storage Component Description (GA26-l606) and
is also described in (GA26-3599)

Introduction to IBM 3850 Mass Storage System (GA32-0028)

OS/VS Mass Storage System Planning Guide (GC35-00ll)

Reference Manual for IBM 3350 Direct Access Storage GA26-
1638

Reference Manual for IBM 3340/3344 Disk Storage GA26-l6l9

3350/3344 Installation and Conversion Guide GC20-1780

Reference Manual for IBM 3830 Storage Control Model 2 GA26-
1617

Reference Manual for IBM Integrated Storage Control GA26-1620

REFERENCE CARDS

IBM 2311 Disk Storage (GX20-l705)
IBM 2314 Disk Storage (GX20-l710)
IBM 3330 Series Disk Storage (GX20-l920)

These reference cards contain the capacity formulas, a table of
bytes per record depending on records per track (down to a data
length of five bytes), and a table of transmission time depending
on record length.

Additional information can be found in the following manuals

GA22-7000
GA22-700l
GC20-l738
GC20-l785
GC20-l734
GC20-l784
GC20-l729
GC20-l754
GC20-l730
GC20-l755

GC26-3841
GC26-3873
GC26-3875
SY26-3828
SY26-3831
SY26-3832
SY26-3833

GC26-3837
GC26-3872
GC26-3840
SY26-3836
SY26-3838
SY26-3840
SY26-3841

GC33-5372
GC33-5373
GC33-5375
SY33-8559
SY33-8560
SY33-856l
SY33-8562

System/370 Principles of Operation
System/370 System Summary
Guide to the System/370 Model 135
Guide to the System/370 Model 138
Guide to the System/370 Model 145
Guide to the System/370 Modle 148
Guide to the System/370 Model 155
Guide to the System/370 Model 158
Guide to the System/370 Model 165
Guide to the System/370 Model 168

OS/VS2 Access Method Services
OS/VS2 MVS Data Management Macro Instructions
OS/VS2 MVS Management Services Guide
OS/VS2 DADSM Logic
OS/VS2 BDAM Logic
OS/VS2 SAM Logic
OS/VS2 ISAM Logic

OS/VS 1 Data Management
OS/VSI Data Management Macro Instructions
OS/VS I Access Method Services
OS/VS I BDAM Logic
OS/VSI ISAM Logic
OS/VSI SAM Logic
OS/VS I VSAM Logic

DOS/VS Data Management Services
DOS/VS Supervisor and I/O Macros
DOS/VS DASD Labels
DOS/VS General Info and Imperative Macros Logic
DOS/VS SAM Logic
DOS/VS DAM and ISAM Logic
DOS/VS VSAM Logic

•

J

1

t

a;
o
z

I ntroduction to IBM Direct-Access Storage
Devices and Organization Methods
Student Text

Order No. GC20-1649-10

READER'S
COMMENT
FORM

This form may be used to communicate your views about this publication. They will be sent to the
author's department for whatever review and action, if any, is deemed appropriate. Comments may be
written in your own language; use of English is not required.

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted information, in
any form, for any and all purposes, without obligation of any kind to the submitter. Your interest is
appreciated.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to your
IBM representative or to the IBM branch office serving your locality.

Name __ __

Address __ __

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an
IBM office or representative will be happy to forward your comments.)

GC20-1649-10

Reader's Comment Form

Fold and tape Please Do Not Staple Fold and tape

n
c::
~

g
'TI
o
ii:
»
0'
:l

'" r
:; ..

•• 0

BUSINESS REPLY MAIL
No postage stamp necessary if mailed in the U.S.A.

POSTAGE WILL BE PAID BY:

Fold and tape

I nternational Business Machines Corporation
Publishing/Media Support - Department 78L
I BM Education Center, Building 005
South Road
Poughkeepsie, New York 12602

Please Do Not Stapla

FIRST CLASS
PERMIT NO. 40

ARMONK, NEW YORK

Fold and tape

J

•

J

i

'-

J

