
SYSTEMS MANUAL

FOR 704 FORTRAN

AND 709 FORTRAN

April, 1960

Applied Programming Department
International Business Machines Cor poratior
590 Madison Avenue
New York 22, New York

TABLE OF CONTENTS

CHAPTER I

I1

III

IV

v

APPENDIX I

PREFATORY NOTE

m INTRODUCTION

.I SECTION ONE

- SECTION ONE-PRIME

- $ECTION ONE - DOUBLE -PRIME

., SECTION TWO

.I SECTION THREE

- SECT,ION FOUR

.I SECTION FIVE

. SECTIONS FIVE-PRIME AND PRE-SIX

. SECTION SIX

a LIBRARIAN AND LIBRARY

L MONITOR

T GENERAL DIAGNOSTIC

- EDITORS (FORTRAN AND DIAGNOSTIC) .

rn FORTRAN TAPE STATUS AT END OF SECTION

PREFATORY NOTE

This manual is an attempt to fulfill a long standing, much-pressed
request. That is, a request for an over-all, comprehensive explan-
ation of the workings of the entire Fortran System. This includes,
in addition to the compiler proper, the monitor, the editor programs,
and other corollary routines. It should be noted at the outset, however,
that there a re a number of difficulties involved in such a presentation.
W e want to take note of them immediately $0 that you can better apprec-
iate the form and organization of the manual that follows.

F i rs t and foremost, Fortran is a vaat, comprehensive system. This,
alone, provides its own 4ifficulties. It means that any description of
its workings can not be subsumed under the directional efforts of a single
individual who understands it all. One individual could not know all the
details and subtleties comprising the insides of all the sections marked
off by the fourteen Roman numerals of this manual. We have chosen to
make the attempt to bring you many of the fine points of the system; this
is done by having the "expert" on each of the sections do the writing for
that section. The price that must be paid for this approach is obvious :
a single style of presentation and a aingly oriented organization cannot
easily be obtained.

A certain lack of uniformity of the level of generalization used in the
various descriptions results. We trust this will be understood. In some
cases this lack of uniformity results from the nature of the subject matter;
in others, i t results from the difficultv described. we attemot to minimize
this difficulty by having an introduction which discusses the main points
of each of the sections on approximately the same level, and, in the case
of section two of the compiler, having a general level discussion then a de-
tailed description.

Certain redundancies, of course, must result. We do not apologize for
these redundancies; rather, we suspect you will find them of value. As a
matter of fact, in a manual of this kind, repetition will prove useful,
especially since each added treatment of a subject matter will present it
from a unique viewpoint. What we do apologize for here is not having more
full cross-referencing.

The descriptions are kept on a general level. We deliberately have avoided
making references to machine and tape locations. This is in line with our
regarding this treatment as an explanation of the system from a logical
standpoint. In otherwords, we a re presenting what i s permanent -- or
relatively permanent -- ignoring those things which are subject to moment-
ary change, such as absolute core locations. Futhermore, reference can

be made to the listings, of course, for supplementation along this line.
A further advantage of this i s that it means we can, in general, give
simultaneous treatment to the 704 and 709 Fortran systems. With re-
spect to this, however, it should be noted that we orientate our discussion
primarily to the 709 system, making reference to the manner in which
the 704 crystem differs.

W e wish to remind you, at this point, that the Fortran reference and
operations manuals, particularly the latter, comprise useful supplements
to the present discussion. In addition, an excellent paper on the compiler
is included in the Proceedings of the Western Joint Computer Conference
in Los Angeles, California, of February 1957.

CTION

1. The primitive elements of the Fortran system are the master tape
and appropriate editor deck. With these two a system tape is made. This
i s then used in the operation of the system.

2. In both 704 Fortran and 709 Fortran the system tape consists of four
files. In 704 Fortran, the first two files are compiler files. In 709
Fortran, the first file is the monitor file and the second i s the compiler
file. In both the systems the third file i s the library subroutine file and
the fourth is the diagnostic file. When 709 Fortran is not being used in
the monitor mode (i. e., a single compile only is occurring) the first re-
cord only of the first file is used. This is the Card-Tape Simulator.

3. The system tape, itself, i s manipulated by the tape record caller
routine, 1-CS. This sits in lower core all during compilation and calls
in the succeeding record from the system tape. The compiler records
a re always called in in sequence. Once a system record has been called
and execute d, it i s not called again. ' It should be noted that in 704 Fortran
some of the records of the first file, comprising the compiler, a re not
executed until after the records of the second file, These a re the records
comprising the second pass of the section 6 assembly program. Records
of the compiler may be called in singly or in a string, consisting of two or
three records.

Each record has a control word telling whether control, after the record is
read in, is to go back to 1-CS or to the executive program record itself. If
control goes to 1-CS, i t means that another record in the string is to be
read from the system tape and execution recommences. This control word,
incidentally, is contained in the information of the Master Record Card,
corresponding to it, in the Editor Deck (see XN) .

4. What follows is a brief over all survey of the Fortran compiler proper.
It will attempt to serve as the coordinating unit for the separate detailed
write-ups, covering each of the sections of Fortran, which follow. As
mentioned in the prefatory note, the material will necessarily cross-cut
some of the material of the specific write-ups; it will, however, in most
cases, be at a different level of generality.

a. The six sections. As is now fairly well known, Fortran falls
naturally into six main divisions, which we call sections. These
sections are always executed sequentially. There is never a return
to one section once it has been relinquiehed to go on to its successor.
In addition to the six primary sections, there a r e four secondary
sections. These should, however, be considered as nothing more
than appendages to the primary sections. These are sections l', l",

5', and pre-6.

Fortran may conceptually be considered a s falling into two
divisions: the first, comprised by sections 1, 2 , and 3; and the
second, by sections 4, 5, and 6. This is because at the end of
section 3, the entire object program i s essentially compiled. It
is, in fact, compiled except for the fact that i t exists in the C. L T.
format and that i t has symbolic tags (reference to index registers)
instead of absolute tags. It is then the job of the remaining three
sections to remedy these two features. Sections 4 and 5 handle the
task of inserting the absolute tag references for the symbolic tag
references. This, of course, includes the obligation to insert the
necessary loading and saving index register instructions. Section
6, then, places the instructions in the C. L T. format into the proper
r elocatable binary format.

As for the f i r s t three sections, i t may be considered that the f i rs t
two of these do the entire task of source program analysis. This
task includes performing most of the instruction (C. I. T.) compil-
ation. With reference to some of the instructions, however, sec-
tions 1 and 2 simply compile information, in tabular form, to pass
on to section 3, which uses these a s the key to insert the proper in-
structions. Because the analyses of sections 1 and 2 a r e independent,
the C. I. T t s compiled a r e kept in separate files, which must sub-
sequently be merged. Section 3, therefore, has the task of perform-
ing this merge as well as the second merge implied by the instruct-
ion file which it, itself, creates. Both section 3 and the las t part
of section 5, because of their position at the end of necessary primary
analyses, perform certain optimizing tasks consisting mostly of re-
moving or inserting certain instructions.

It i s well to note that the Fortran compiler makes extensive use of
tables. These may be considered a s of two types: those which a r e
made up directly from the source program statements, and those
which result from further analysis. It is the former class of tables
which a r e mostly included in the reference manual l is t of tables and
their size limitations. The latter class do, in some cases, impose
further size limitations. Most tables a r e passed on from one section
to another; some, however, a r e created purely for use within a
section. The source program statements, once scanned, a r e placed
in tabular form and the source program rrtatementa a r e not referred
to again,

With one exception, Fortran may be considered a s a one pass system.
That is, it looks at the source program only once, and it makes a scan
of each statement once only. From then on, references a r e to tables
only. The exception noted is in section 1 of the 709 systems. In this
case a preliminary scan i s made to separate the non- executable from

the executable statements.

Among all the information placed in tabular form, i t would be well
for the reader to keep in mind the so-called C. I. T. table -- Com-
piled Instruction Table. This becomes central for i t is, indeed,
the ultimate object of the compiler. Instructions, throughout the
system, until the section 6 assembly, a r e kept in the four-word per
entry table in buffers and records of 100 words (25 instructions).
This table i s illustrated. W e will merely note here that word one con-
tains the internal statement number, with an increment in the address
of the word, i f necessary; word two contains the mnemonic instruct-
ion code, with the address having the decrement value i f the code is
TXIs TXL, or TIX; word three has the symbolic address (BCD) ; word
four has the relative address (binary) with the address having first,
the symbolic tag, then, the absolute tag.

b. Section One. Section one has the primary output of a file of in-
structions called the Compail file. In addition, it turns out a secondary
file of instructions, resulting from any Arithmetic Statement Functions
in the problem. The Compail file consists of the following: All the
instructions resulting from a translation of the Arithmetic Statements.
These arithmetic instructions, of course, refer to symbolic tags in the
word four address. Also included in this file a r e a partial translation
of the IF and GO TO Statements, the subprogram definition statements,
and the input/ output statements.

With respect to the 1,F and GO TO Statements, section one compiles the
necessary test instructions, but i t cannot compile the transfer instruct-
ions. This i s because section one does not know whether any given IF
and GO TO statement i s in the range of a DO and involves a transfer out
of the DO. It i s not until this is known that i t can be determined whether
or not any given transfer should be directly to the statement indicated in
the source program or to a set of instructions providing necessary in-
dexing, then the transfer to the specified source program state ment.
The analysis pertaining to these indexing instructions is left to section
two, with the physical instructions being compiled by a second part of
section three. In some cases, a C. I. T. i s created containing the trans-
fer instruction, but without the address. The address i s filled in section
three.

With respect to subprogram definition statements, information is gathered
which is used by section pre-6 in actually filling in the prologue and index-
saving inst-ructions.

With respect to 110 statements, all instructions a m ompiled except
those involving DO'; implied by 1/0 etatement l is ts , After section one
has scanned and identified the source program statement, i t handles it
by transferring to a routine corresponding to it. Then, of course, all in-
formation i s tabulated and, when possible, compilation performed.

- A new internal formula number, incremented by one, i s assigned
to each input statement, whether that statement is executable o r
non-executable. Where external statement numbers - - i. e. , state-
ment numbers assigned by the source programmer - - exist, the TEIFNO
table serves to correlate the external and internal statement numbers.

The greatest division in the handling of statements in section one is
between the arithmetic statements and all others. The arithmetic com-
piler proper constitutes the major portion of section one in number of
instructions. The arithmetic compiler in making i t s scan of the arith-
metic formula makes an enormous number of table entries in addition
to doing i ts statement analysis necessary for compilation. Among these
tables a r e the TAU tables, recording subscript combination inform-
ation, the FORVAL and FORVAR tables recording fixed point variables
occurring on the left and right hand sides of arithmetic statements,
FIXCON and FLOCON, recording the converted fixed and floating
point numbers. It should be noted that the IF and CALL statements
fall onto both sides of this division. They a r e treated as arithmetic
statements, with compilation occurring that is not due directly to
the arithmetic compiler a s well.

The arithmetic compiler is divided into the Scan, Level Analysis,
various Optimizing routines, and the Compiler. The Level Analysis
kifts out into one group al l those algebraic operations which form a unit.
A unit i s a group that must be performed together and have the same
order of binding strength for i t s operators. 'Plus'and h inus ' a r e one
order of operators, multiplylandldivide' a r e another order. The
latter has greater binding strength than the former; consequently
when they occur in the same context the latter a r e assigned a higher level
number. Needless to say, the use of parentheses in an arithmetic
statement is a prime factor in determining units and, hence, level
numbers. Optimization occurs to minimize storage accesses. This
means that every attempt is made to link one operation to i t s successor
via the machine registers rather than the storage cells. The com-
pilation then proceeds from highest level number to lowest.

c. Section One- r i m e . Section One-Prime is the longest of al l the
secondary sections. It has an enormous number of tasks to perform
involving sorting , combining, and moving of table information. Among
other things, using the TEIFNO table, i t substitutes internal formula
numbers for external formula numbers wherever these have had to be
retained in tables. This means that from this point on, al l For t ran
handling is in t e rms of i t s own assigned internal statement numbers.
An example of where the external statement number has had to be r e -
tained till this point is in the TDO table. Here, the number referr ing
to the statement number of the DO itself m a y be an internal formula
number because i t is readily known due to the constant updating of the
current internal formula number. On the other hand, the number

designating the end of the DO range had to be recorded a s an external
statement number at the time the TDO table entry was made. This
i s because i t could not then be known how many statements further
on in the program the end of the DO range occurred.

d. Section One Double-Prime. Section One Double- Pr ime is a diagnostic
section. It attempts to find as many a s possible of the source program
e r r o r s that were not found by section one. E r r o r s pertaining to the
syntax of any of the statements a r e detected by section one and noted in
section one's own diagnostic. Section One Double- Prime, then, finds
as many as possible of the source program er ror8 arieing from an
interrelationship of the statements. These, of course, pertain mainly
to flow. Such things as a part of the program that can't be reached or
a transfer to a non-executable statement a r e found here. In general,
then, i t is true that by the end of one double-prime very nearly al l
source program e r ro r s have been found. Such things as over-lapping
DO ranges and certain r a r e cases of faulty flow still may not be found
until sections two and four or five. In addition, it should be mentioned
that there a r e a variety of table overflow e r r o r s which m a y be found
after one double-prime. Most of the tables listed in the Reference
Manuals a re , however, tested prior to this point and any overflow dis-
covered. Both one-prime and one double-prime use the general diagnoutic
of the fourth file, while erection one uses i t s own diagnostic.

e. Section Two. Section Two has for i t s primary output a file of com-
piled instructions called the Compdo file. In addition it, t 00, creates
a secondary file, closed subroutines for the computation of relative
constant subscript combination load values. An additional important
output a r e the TRALEV and TRASTO tables, which a r e essential for
section three in producing the third file of Fortran instructions, the
TIFGO file.

The Compdo file of instructions contains the computing and indexing
instructions for the various subscript combinations contained within
DO ranges and any necessary additional tags. These instructions a r e
associated with the beginnings and ends of DO's. At the beginning of
DO's they will contain the computing instructions necessary to determine
the load value for a tag (subscript combination index register) and the
load instructions. In addition, index saving instructions may occur.
At the end of DO's these instructions refer to the indexing required to
increment subscript combination values for the next D 0 loop execution,
to test whether or not control may pass out of the DO range and, in
thc latter case, to reset the DO'S subscript combinations to their lowest
values if control is still in a DO containing the f i rs t DO. The instruct-
ions performing these three function8 a r e TXI, TXL, and TM, respect-
ively.

All of these instructions result from the configuration of the combin-
ation of DO-nest structure on the one hand and subscript combinations

within the DO-nest, on the other. A DO-nest i s defined as any set of
DO% all of which a re bounded -- contained within -- a single DO. Fig-
uratively, this means that the outside single DO is on level one, the next
DO which it contains, on level two, and so forth. Of course, in a
single nest there may be more than one DO on any one level greater
than level 1 . (Please see IV for illustrations .)
Because this discussion of section two will be on the most general level,
illustrations will not be provided. However, brief references to the
structures of DO-nest in IV may prove useful. What we wish to do here
i s present in general outline the origin of the problems that section two
must solve, which a re explained in greater detail in IV.

Section two is a long section and much of its analysis complicated. A
great deal of this complexity ari,ses from the desire to provide an highly
optimized object program. In other words, some of the problems
could have been solved more simply, but at the cost of extra and in-
efficiently placed object instructions.

In any given DO-nest, section two attempts to place the subscript combina-
tion load value computation instructions as far toward the outer DO of
the nest a s possible. Where these instructions cannot be placed with the
DO of level one, a search i s carefully made for the point of definition
of all the parameters (nl , n2, n3) of the inner or higher level DO's .
These values a re , of course, necessary for the DO computing instructions.
As soon a s they are found the next DO serves a s the base for the re-
quired instructions. This serves the purpose of avoiding the unnecessary
repetitions of the computing instructions if they were associated with the
inner DO's or the DOfls containing the subscript combinations to which
they refer.

Another interesting way in which section two seeks maximum optim-
ization is in i ts attempt to take advantage of the lkar ry" condition
wherever possible. The k a r r y " condition may be described in this way.
There a r e cases where the configuration of DO% and subscript combina-
tions for a two or three dimensional array makes it possible to consider
that a single one dimensional sweep over the array i s being made. In
other words, the words a r e being referred to in core storage with the
sequential references that a one dimensional a r ray would have. Wherever
conditions permit, section two treats such an array as if it were, indeed,
single dimensional. The practical affect is to save on indexing instructions.
Here, a considerable, sophisticated analysis is required and it is under-
taken on the belief that gt eater object program efficiency makes it worthwhile.

Section two always uses a single tag (index register) for every subscript
combination, no matter how complex the subscript combination is. By
complexity we refer here to number of subscript symbols and their associated
coefficients and addendas. In order to achieve thie in all cases

i t i s sometimes necessary to compile instructions, associated with
the DO/ which provide proper reinitialization of the decrement value
for the TXL instruction ending the DO on each successive pass through
the DO range. The SXDTX table i s used in this connection. It i s made
up in section two and passed on to section three, part one. A config-
uration of indexing instructions is required for each possible config-
uration of subscript combinations - - resulting from a permutation of
the three possible subscript symbols. This means there a re s ix possible
blocks of such indexing instructions.

When a DO, LrX, i s within another DO, Y, and the X DO has been ex-
ecuted i ts maximum number of times, there a r e two possible ways of
handling the resetting of the X DO'S subscript combinations for the
next re-entry into the X DO. These, of course, must be reset to the
value indicated by the n parameter of the X DO. They may be reset 4 at the point of re-entry into the DO or at the point of departure from
the DO. It is the latter course which Fortran has chosen to take, This
accounts for the resetting TIX instruction following the TXL instruction
terminating the DO. This, in general, produces more efficient object
programs, though it does create the problem of handling."resettingl'
where exit from the X (inner) DO occurs via a transfer to a point in the
Y DO rather than through a normal termination of the X DO. To handle
this problem, among others, i t i s necessary to have a third file of in-
structions, the TIFGO f i l e .

Whenever' a transfer is made from a DO to a point completely outside
its DO-nest, the values of all the indices of all the DO'S within whose
range the transfer instruction exists a r e saved. 'If, on- the other hand,
the transfer goes to a point - - really, a level - - outside the immediate
DO but still within the DO-nest, section two makes a search to de-
termine if it i s necessary to save the index of the immediate DO or
DO'S from which the transfer occurred. This search i s made by check-
i all FORVAR entries existing on the level of the transfer point. One
source of FORVAR table entries was.mentioned above; others a r e
listed in II.

With respect to transfers, legal and illegal, section two does catch
transfers from within a DO into another DO. It does not, however,
stop transfers from entirely outside a DO-nest into a DO. This is to
allow programmers to take advantage of the feature enabling them to
transfer out of a DO, execute a stretch of program, and return t o the
point of origin within the DO.

There a r e certain cases where section two creates a tag; that is, a tag
does not correspond to a source program subscript combination. The
most obvious case where this i s done is where a counter for a DO is
required. This i s where a DO on I does not have I appearing a s a
subscript in its range. In this case, an I tag i a .-mated. Tags a r e

also created to handle the conditions described immediately above - -
where FORVARts a r e involved and the DO does not have i ts index
symbol a s a tag anywhere in i t s range.

But these instances a r e the simplest cases of added tags: they refer
only to a DO index. In other cases, more complicated tags, involv-
ing two or three dimensioned subscript combinations, a r e created.
Assume a DO on K within a DO on J within a DO on I, and the appear-
ance of the subscript combination (I, J, K,) on level two; i. e. , not in
the range of the DO on K, but in the range of the other two DO's.
Assume further that the value of K in this subsctipt combination 1s se t
by a transfer from within the DO on K to a point in level two. In this
case, i f the subscript combination (I, J, K,) does not already exist
within the DO on K, one is created and placed there. This tag wi l l
then have the value needed at the time of transfer. This situation
accounts for another of the six types of TRASTO table entries required
to inform section three of the TIFGO file instructions it must cumpile.

This las t case also help to point up another important function of
section two: Tag Name Changes. Subscript combinations or tags are
given names which a r e nothing more than the table entry recording
the information of the subscript combination. When section one makes
up the ;elevant TAU table entries i t does s o while examining each state-
ment separately, independent of i t s position within DO's. Therefore,
subscript combinations which syntactically look alike receive the same
TAU table entry and,consequently, the same name. However, where
subscript combinations receive their definitions and derive their load
values independently of each other they are , for all pract ical purposes,
different even though their syntactic appearance is identical. Section
two, therefore, must see that *the names a r e changed to assure independ-
ent treatment of their indexing. For this purpose, a table called Un-
edited Change Tag Table is made up. Section three then physically
inserts the name changes.

A considerable portion of the work of section two ie devoted
to tho propcr handling of eubscript combinations which are called r e - - -

lative constants. A relative constant is a subscript symbol not under
control of a DO on that symbol. That is, i t receives i t s defintion in
some fashion other than the indexing normally associated with a DO.
A subscript combination may, therefore, be a pure relative constant
(where none of i t s symbols is under control of a DO), a mixed=-
lative constant (where at leas t one is not under control of a DO while
the others are), or a normal DO- subscript combination (where al l
subscript symbols a re under control of a DO). Each of these three
types requires i t s own mode of treatment by section two. A basic
point concerning handling of relative constants is that the computation
of the relative constant subscript combination load value i s done a t the
point of definition of the relative constant rather than at the point of
use. This decision was made primarily on the supposition that uses -
of relative constants'would occur more often than definitions of r e -
lative constants. Placing the required computation instructions at the

point of definition, then, covers a variety of uses.
f'

For pure relative constants, there a re two ways in which the com-
putation appears at the point of definition. One i s simply by means
of the LXD instruction, loading from the relcon (relative constant)
cell. This way applies only where the relative constant subscript

1 combination is one dimensional and has no coefficient. The other i s
I
1 by means nf a transfer to a closed subroutine, mentioned earlier,

which computes the load value. This applies where the relevant sub-
script combination i s greater than one dimension or has a coefficient.
Where relcons a r e of the mixed type, the closed subroutine form will
be used in some cases and, in others, the computation will be associ-
ated with the DWin the usual way. The deciding factor here i s the level
of definition of the relcon symbol. If the definition occurs within the
same DO-as the mixed relcon itself, the closed subroutine must be
used. In this case, in order to assure that the closed subroutine has
al l the subscript symbols available for computation, section two must
see to i t that the DO subscript symbols of the mixed relcon a r e stored
before the transfer i s made. Where the definition of the subscript symbol
is outside the DO, the computing instructions a r e associated with the
DOCof the next possible higher level DO.

* The table FORVAL is the key in determining point of definition of re-
lative coastants. Causes of entries in this table were indicated above;
others a r e described in 11. Every point of definition i s used a s the base
for a relcon computation (of one of the two forms described above).
Section two cannot make the flow analysis necessary to eliminate super-
fluous points. For example, where I i s a telcon and the problem con-
tains two arithmetic statements in which I appears on the left side and
only one of them gets executed on the path of flow leading to the I relcon,
section two makes the computation instruction entries at both points even
though only one of them i s effectively valid.

Where poosible, one of the subscript combinations appearing in a DO is
uaed to rervo ar the ter t tag for the end of the DO; that i., it i. referred
to by the terminating TXL. Where the DO index, itself, appears as o
separate tag (whether because it i s a subscript in the source program or
section two created one for it) , this tag is used to test the end of DO.
In all othcr cases, section two attempts to determine the best tag for use
in the end of DO test.

As a result of analyses like those mentioned above, and some others
that a r e indicated in the section two write-up, the COMPDO file i s made
to contain instructions giving highly efficient handling of DO loops.

f. Section three, first, merges the two existent files of instruction, the
Compail and Compdo. It then creates the indexing instructions necessary
for each transfer branch originating from a transfer out of a DO. This
entire set of instructions is called the TIFGO file .This i s then merged

with the .FIRSTESILE.

g. The program up to this point assumes an object machine with a s
many index registers as symbolic tags a r e used in the section two in-
structions. Since, however, the machine will have three index registers ,
i t is necessary to substitute assignments of these three for the indef-
initely high number of symbolic tags. The object here will be to min-
imize the number of LXD1s and SXD's - - load and save instructions --
required by this fact. By %umber1' here, we mean'not only the number
of separate physical instructions, but also the number of executions of
them. That. is, optimization with respect to time takes precedence over
optimization with respect to space. For example, if a tag is used in a
very high frequency part of the program (such a s the inner DO of a DO-
nest three levels deep), and a branch transfer is made to four different
areas i , each of which requires saving of the tag beforei t is reused,
a single save instruction before transferring out of the high frequency
a rea is logically sufficient. However, our method is to place four
separate save in~truct ions at the point of entry to each of the four branch
points, thus eliminating the instruction from the path which would r e -
quire most frequent executions of it.

This case also serves to illustrate some of the problems confronting
sections four and five - - the two sections whose concern this task is.
It shows that there is a linkage, with-respect to index registers, of
different parts of the program and that details of-the linkage must be
knowin for efficient insertion of load and save instructions. ~ d r example,
in the above case, the SXD will not be used on any of the four paths where
i t is not required. Furthermore, a comprehensive knowledge of areas
and their expected frequencies of object time flow is necessary. As a
corollary to these problems, there is the one of avoiding the SXD in-
struction for a tag which i s no longer to be used. That is, the tag can .
be efficiently - killed by over-loading i t in i t s index register. There is
also the problem of knowing when to save an index register when the next
use of the tag in i t requires a load instruction. If the last reference to
this tag is one that changed its value, it must be saved; i f the las t r e -
ferences did not change its value but merely used i t s earlier established
value, i t is not necessary to save. Here, a distinction between active
and passive references to tags is necessary.

This entire complex of problems comprise the task of sections,$our and
five. The work required of these sections falls naturally into two
divisions, allowing the division of labor between them. section four in-
forms section five of the divisions of the object program for purposes of
flow analysis and the relative frevquency of paths of flow over these
divisions. Its task i s much the lesser of the two sections. Section five
then uses this information along with a knowledge of the specific tags
required by each of the "divisions" to assign absolute index registers
and compile neces sary indexing instructions.

Before giving the general discussion of the work of these two sections,

it is well to note how this work was presupposed in the handling of
symbolic index registers by the e'arlier sections of Fortran. Essent-
ially, this can be stated very simply: the earlier sections simply ignored
the problem and acted as if as many index registers a s were wanted
were available. That is, load instructions may appear in sequence up to
any number. The assumption i s the "savestt necessary to make the
"loadsH effective will be added later. The important thing to note here is
that SXDts and LXDts a r e not always coupled as the previous discussion
might imply. There i s an asymmetrybetween them; the earlier sections
have complete freedom with respect to LXDts, very rarely compiling
an SXD. On the object program level this difference i s reflected in the
cells which the SXD's and LXDts address. Section two's instructions,
for example, mostly refer to the subscript symbol cells in the regular
data a rea of core storage. On the other hand, section five's ins-tructions
always refer to the specially designated erasable area for storage of
index registers. These erasable storage cells a r e referred to as the
C) cells. The actual designation i s C)i, where i i s an increment result-
ing from the conversion of the symbolic tag name. By means of this
device there i s co-ordination between section five references to such
tag storage cells and whatever section two references a r e necessary.

h. Section four has for i ts main task the assembling of four different
tables. These are the BBB table, the Predecessor, the Successor table,
and the Tag List table. The primary input to section four is the single
file of merged C. I. T. Is; section four also uses other tables created
earlier. The BBB table i s a l is t of the Basic Blocks of the object pro-
gram, plus indices referring to each Basic Bloc& Successors and
Predecessors. A Basic Block i s the primary unit that section four works
with -- i t was referred to by the word "divisiontt in g. above. A Basic
Block is a stretch of program into which there i s only one entrance and
from which there i s only one exit. wExit'' must here be interpreted in
the logical sense; that is , i t may consist of more than one transfer in-
struction, going to a variety of Basic Blocks. Each of these Basic
Blocks, then, i s a Successor Basic Block. As implied by this, section
four must mark off the Basic Blocks of the program and determine the
Successor and Predecessor Basic Blocks for any one Basic Block. A
BBB entry corresponds to each Basic Block; i t has references to the
Predecessor and Successor tables denoting i ts Predecessor and Successor
Basic Blocks. But section four's work goes beyond this. It must pro-
vide the information to section five concerning frequency of paths of flow.
Therefore, the form of the Predecessor and Successor table entries
which section four passes on to section five will contain, in addition to
the Basic Block reference number, a number denoting relative fre-
quency of transition between the two Basic Blocks. Here, the two Basic

Blocks refer to the BBB Basic Block and the Basic Block or Blocks of the
Predecessor and Successor table that it designates. In order to achieve
these relative frequency numbers, section four performs a simulated
flow over the program going from Basic Block to Basic Block.

The major problem here is in determining which Successor Basic
Block to go to when, as a result of a conditional transfer, a possibility
of more than one Successor Basic Block exists. At this point a "Monte
Carloll technique' i s used. A random number i s generated and, in
accordance with the numeric possibilities of succession indicated by the
frequency statement entries for that conditional transfer, a particular
Successor Basic Block i s chosen. The random puhber i s meant to
assure that over the long run of the entire simulated flow, the possible
Successors will be .chosen in the proportions indicated by the Frequency
entries. Where no Frequency entry i s made by the source programmer,
the assumption i s that of equal probability for all paths of succession.

Some of the special problems encountered during the performing of this
simulated flow a r e those given by conditional transfers where the con-
ditions a r e set directly in the source program (such a s ASSIGN GO To ' s
and Sense /Light Tests) and DO's involving variable parameters. For
both of these additional intermediate tables a r e necessary. In the .case
of DO-nests, three general cir curnstances, involving flow analysis
problems, may occur. One i s a DO-nest whose DO'S all have constant
parameters and contain no transfers, another i s constant parameters
with transfers, and the third i s a DO-nest at least one of whose DO's has
variable parameters. For the last mentioned circumstance, either the
frequency entry for the DO must be used or barring that, a frequency
of five i s posited for the number of times oferepetition of the DO range.

For purposes of the simulated flow, a large number i s chosen, which i s
a function of the number of; Basic Blocks and distinct transfer' branches
occurring in the problem. . For every transition between a Basic Block
and i t s Successor that i s made during the simulation, this number is
ticked off by one. The flow ends when this number equals zero.

It should be pointed out, finally, that this simulated flow has nothing
whatever to do with the individual instructions of the problem. It is
concerned only with Basic Blocks as units and not with the contents of
a Basic Block. As far as section four i s concerned a Basic Block may
actually contain one hundred instructions or two instructions, and these
instructions may contain many tags or no tags: section four's treat-
ment of i t i s the same. It may also be mentioned here that the division
into Basic Blocks is based on an examination of the compiled instruct-
ions. Of course, the recognition of transfers - - beginning with the
letter I1T" -- i s vital. For this reason, section one finds it necessary
to use pseudo-names in the C. I. T. ' s of some of i ts instructions. It does
not wish section four to think that these end Basic Blocks when actually
they do not.

After the flow analysis i s completed, section four assembles the BBB,
Predecessor, and Successor tables. These a re a summary of the Basic
Block flow and relative frequency of this flow. The BBB entries also
contain a designation.of the type of ending for each Basic Block: absolute
transfer, pre-set transfer, con'ditijmal transfer, and so forth etc. The

last significant item that each BBB entry contains i s an index to the
Tag List entries belonging to it. The Tag List table is made up at the
end of section four; i t is a list of ail symbolic tags contained in the
C. I. T. 's of the program togethei with a code designating the type of
instruction referring to the tag. The index to this table that is placed
in the BBB entry, then tells which tags occur in each Basic Block of
the program and how they a r e used.

i. Section Five must now substitute references to tags 1, 2 , and 4 for
the symbolic tags which occupy the address portion of word 4 of the
C. I. T. '8. A8 a corollary to this, the loading and aaving instruction.
would be inserted for the appropriate index registers. These will load
from and lrave in the group of cells designated as C)--cells. The in-
formation contained in the four tables created for i t by ~ e c t i o n four a r e
sufficient to do thicr.

To perform this main task, section five operations fall logically into two
broad divisions. These are Region Generation and LXD and SXD Assign-
ment.

Region Generation i s the method of setting aside a portion of the program.
consisting of one or more basic block^, for independent treatment with
respect to index register assignment. After a set of basic blocks have
been set aside a s a region and treated, it then, a s a region, becomes a
separate unit liable to be incorporated in a new region along with other
basic blocks. The flow configuration of a problem determines when a
region itself becomes part of another region. When it does i t losee i t s
identity for the new region is an independent and separate unit. Ultimate-
ly, of course, all regions and basic blocks become absorbed into a single
region which i s the entire program. At this point the section five analysis
i s complete. In referring to "treatment" above, we mean the LXD and
SXD Aesignment.

There is, then, an interweaving of the operations of the two main divisions
of section five, Region Generation and SXD and LXD- Assignment. (The
second of these divisions i s often referred to as the LXing Pass.) The
regions grow recursively until the entire problem i s one region. At any
given time during this recursive treatment, several regions may exist
independently or one only may exist.

Priority i s given the high frequency path of flow in index register assign-
ment by the manner in which regions a r e generated. Basic blocks a r e
traced forward and backwards in flow, via the Predecessor and Successor
Tables, and those basic blocks a r e used f i rs t whose numeric linkages are
highest with other basic blocks, a s indicated in the figure on comparative
frequency of paths of flow given by section four. When a region has been
treated, if al l three index registers a r e assigned to the tags of that
region, i t is considered to be an opaque region. The tracing of basic
blocks and regions, f ir et backwards, then forwards, proceeds until

either a) there a re no more untreated linkages, b) a n opaque
region i s encountered, c) a loop is formed. The c) case occurs
where the Predecessor or Successor basic block i s one already in
the string. In this case, all basic blocks not within the scope of
the loop a re cut off. Where a region encountered during this t race
is a transparent region, as distinct from an opaque region, the t race
continues by way of the highest frequency untreated link from i t or
into it, depending upon which direction the t race is taking. Because,
by definition, all the index registers of a transparent region have not
been used, i t i s subject to further treatment and, consequently, may
be absorbed into the region a s a basic block is.

The "treatment" of a region is based on another type of simulated flow
through it. This simulated flow affects the symbolic index register
usage occurring in the region. In cells representing the three index
registers , the symbolic tags a r e loaded, then comparisons made with
successive symbolic tags, as these a re revealed in Tag list. When
i t becomes necessary to save one of the three index registers, a look
ahead through Tag l is t is made to determine which i t is preferable to
save ; that is, which is last used further ahead in the program. It
should be noted that two fundamental problems a r e involved here. One
i s simply the problem of assignment of index registers; this involves
. the compilation of LXD1s and the choice of an index register. The
other is the problem determining when to save an index register when
the quantity is subsequently going to be over-written by a load into
that index register.

With respect to the second of these two problems, a tag must be
saved to initialize the appropriate C) cell for later loading, and to
handle "active" index registers. "Activity" is denoted by the type of
reference made to the tag in the tag instruction. The Tag List code
referring to the tagged instruction tells essentially whether that
instruction is active or passive. An active instruction i s simply one
that changes the value of an index register (such a s TXI or LXD) and
a passive instruction is one that uses the tag only (such as CLA).
Where 'tactivitylt is present and a subsequent load will over-write the
index register, an SXD is inserted following the last use of the
symbolic tag. Adtivity has meaning applying beyond the context of the
immediate region in which it is discovered. It may subsequently be
found that a pass on the flow from this region requires the new tag
value. Activity for regions, then, must be carefully noted.

As a result of this simulation within a region, the index registers
upon entry into a region and upon exit from i t a r e assigned certain
symbolic tags. These a r e noted in the BBB entry for the basic block
a s i t s entrance and exit conditions. When a region - - which, of course,
has been previously treated -- ia encountered a match must be made
of the exit conditions of the last basic block with the entrance con-
ditions of the basic block by which they region is entered. Where
necessary, permutation of the index registers within the already

treated region takes place to force compliance. If a match cannot
be made, LXD1s a r e called for at the head of the region. These
LXD's a r e called inter-block LXDts because they concern the link-
age between regions a s distinct from basic blocks. There a r e also
inter -block SXD1s. These result from activity within a region already
treated. The SXD is placed at the head of the region using the active
tag. In this way, incidentally, the deployment of save instructions
among different low frequencies paths raother than the single save
instruction within the high frequency path occurs. This was referred
to in g.above.

Continuing to work in this way, from region to region, the high
frequency paths of flow naturally receive priority in the assignment
of index registers. .The SXDts and LXD's a re inserted enforcing
conformity of the low frequency paths with the already assigned high
frequency paths.

During this entire analysis, Section 5 records within tables the in-
formation nceded to make the actual compilation and insertions of the
LXD and SXD instructions. The compilation itself occurs later.
A new table, the STAG table, i s created for recording these instruct-
ions a s needed within a region. The necessity for inter-block in-
structions is recorded in the Predecessor table.

The inter-block instructions, because they a re at the head of a region,
must take their own location symbols so that transfers may occur to
the block. These location symbols are: D), when the instruction i a a n
LXDj and E), when i t is an SXD. A TRA instruction m a y have to be
added to bypass these instructions when entry to the block occurs from
the part of the progr am immediately preceeding it.

Section Five, also because it makes a pass over the entire program,
per form certain small optimizing operations on the compiled program.

j. Section Five prime places the information, which represents
program constants, in the CIT format. Section Pre -s ix does some
compilation. This covers mostly the prologue to For t ran sub-pro-
grams. Section Six does the final assembly for the program. The
Section Six write-up that follows is also presented on two levels of
generality.

5. This survey of the Fortran compiler is supplemented in detail by the
sections that follow. By m'eans of this survey, some of the details may
more easily be inter - related.

FORTRAN 11, Section One (704 Version)

This se ction is the initial processor of the FORTRAN compiler. It
makes those entries in the Compiled Instruction Table which are possible
a t a first level. A l l i n f o r s t i o n w h i z cannot beprocessed is recorded
in one o r more tables,

*Input: The input to Section One is the Source Program on a BCD tape.
It is a single file.

Output: Tables which may be classified into two groups:
Generated by Section One and required for reference. Theee
tables, retained in cores and on drums, are:

DIM1 TAU1 FIXCON END
DIM2 TAU2 FLOCON
DIM3 TAU3 FORSUB

Generated by Section One and not required for reference.
These tables, written on tape(s) in buffer- sized reazords, with
labels where needed are:

CIT FORTAG CLOSUB NONEXC
TEIFNO FORVAR FORMAT TSTOPS
TDQ FORVAL SUBDEF CALLFN
TIFGO FRET COMMON FMTEFN
TRAD EQUIT HOLARG TSKIPS

Parameters describing above tables.
Residual contents of'buffers,

Most tables a re simple in format and their meaning and usage fairly
obvious. The following discussions of processors will show specific
table entries. Briefly the tables are:

NAME DESCRIPTION
DIM1 one-dimensional arrays
DIM2 two- dimensional arrays
DIM3 three-dimensional arrays
TA U1 one- dimensional subscripts
TA U2 two-dimensional subscripts
TA.U3 three-dimensional aubecripts
FIXCON fixed-point constants
FLOCON floating-point constants
FORSUB arithmetic statement functions
END . options specified in END statement
TEIFNO corresponding IFNs and EFNs
TDO DO statements
TIFGO IFs, GO TOs, ASSIGN statements
TRAD GO TO statements
FORTAG IFNs - I - TAU tags
FORVAR fixed-point variable u s age r r C. N I LJ ' J

FORVAL fixed-point variable definition
FRET FREQUENCY statements

II- 1

EQUIT
CLOSUB
FORMA T
SUBDEF
COMMON
HOLARC
NONEXC
TSTOPS
CALLFN
FMTEFN
TSKIPS

EQUIVA.LENCE statements
names of closed subroutines referenced
F0RMA.T statements
SUBROUTINE or FUNCTION statements
COMMON statements
Hollerith arguments in CALL statements
IFNs of non-executable statements
IFNs of STOP and RIETURN statements
first a ~ d last IF'Na of CALL statements ~u~wILL)
1-0 statement references to FORMAT numbers
IFNs of possible machine language rlcip.

FORTRAN 11, Section One (704 Version)

ASSEMBLY routine reads records from the BC;D input tape until a
statement and all its continuation cards are assembled in an erase-
able buffer termed the F- region. This region remains until replaced,
by the following statement. In order to ascertain that all continuation
cards have been read the program reads one record ahead into an a rea
termed FT. Blank cards and comments cards a re ignored.

A word of all-ones is written after the last non-blank word in the
F- region to serve as an end-of-statement marker.

An internal statement number O((1FN) is assigned.
If an external statement number (EFN) appears in the source state-

ment it is converted to binary and following table entry made:
TEIFNO table

word 1 1 (X(1FN) O((EFN) (
Any special mode character in cc 1 a re isolated and saved.

CLASSIFICATION After assembly each statement is classified accord-
ing to type. This classification is a two-phase procedure.

I. The sqatement is classified as arithmetic if:
1) There exists an = sign not within "(" ")".
2) This t sign is not followed by a t t , not within "('* ")".
Control goes to the ARITHMETIC processor.

11. If the statement is not classified as .arithmetic by the above pro-
cedure it is assumed to be non-arithmetic. The beginning of
statement is compared to entries in a dictionary of non-arithmetic
statement beginnings. When identified as to type control goes to
the appropriate processor. Failure to identify causes a Diagnostic
message.

ARITHMETIC Processor

The reader is advised that this preliminary paper does not include a
description of the ARITHMETIC Proc,essor. A paper, describing this
processor from a theoretical standpoint, may be found in the commun-
ications of the Association for Computing Machinery, Vol. 2, No. 2,
February, 1959.

FORTRAN 11, Section One (704 Version)

DIMENSIONS V(I ~ , . . . , 1 ~ 1 ~ V (I ~ , . . . , 1 ~ 1 ~ . . .
The statement is scanned collecting the variable name V and assoc-
iated specification (Il, . . , Ik) where K k 3. It is verified that V
has not been previously defined in a DIMENSION statement. Dimen-
sionality is based on the number of specifications Ikwhere 1 a. K 4 3.
There a re thus three possible cases:

K 1. The following table entry is made:
DIM table

word 1 V a r i a b l e N a m e (BCD) 1
word 2 1 0 I

K = 2. The following table entry is made:

DIM3 table
word1 I V a r i a b l e N a m e (BCD) 1

DIM2 table
L .#

word,l
word 2

processed.

V a r i a b l e N a m e (BCD)
I1 12

word 2
word 3

Each specification of .equivalence i s scanned. The variable name is
collected. The constant, i f present, is collected and converted to binary.
If not present it i s understood to be 1. The following table entry is made:

K It 3. The following table entry is made:

I1 I2
0 Iq A

This procedure is repeated until all V(Ip . , . Ik) have been

On the last such the following table entry is made:

EQUIT table -

EQUIT table 3

word 1 V a r i - a b l e N a m e (BCD)
word 2 - N

where the - signifies the end of a specification.
The entire procedure is repeated for each specification.

word 1
word 2

V a r i a b J e N a m e (BCD)
N

where N is the associated constant o r 1. '

This is repeated for each variable of a specification until the last.

FORTRAN 11, Section One (704 Version)

COMMON Vl* . a Vn

Each variable name is collected and the following table entry made:
COMMON table

word1 I V a r i a b l e N a m e (BCD) I
If the variable name is fixed-point the following table entry is made:

FORVAL table
word 1 I 1 0 1
word2 1 V a r i a b l e N a m e (BCD) 1

The above procedure is repeated for each argument name.

The statement is scanned, collecting the statement number Bi. It is
converted to binary and the followjng table entry is made:

FRET table 5
word 1 I - 0 Bi(EFN) I

Each branch frequency Ni i s collected and converted to binary.
The following table entry is made:
FRET table

word 1 I 0 id
This is repeated for each branch frequency.

The entire procedure

END (11, . 6 a In)

is repeated for each specification.

Each specification is
END table

word 1

collected and the following table entry made:

This is repeated for each specification.
)

FORTRAN 11, Section One (704 Version)

FORMAT (. . .)
The following table entry is made:

FORMA T table
word1 1 1 6C(EFN) 1

Each word of the FORMAT specification as found in the F - region is
made into the following table entry:

FORMAT table
word1 I ~ o r m a t S p e c i f i c a t i o n (BCD) 1,

The first word, if less than eix characters, is prefaced by blanks.

When the entire Format specification has been entered the following
table entry is made:

During the above procees&g a scan is made of the Format specification
for legality of charactere and balance of parenthesie (excluding hollerith
fields).

FORTRAN 11, Section One (704 Version)

The termination of the DO range N is collected and converted to binary.
The variable I is collected. The parameters M, N2, N3 a re collected.
Any constant parameter i s converted to binary. N3 is understood to be
1 if not specified. The following table entry is made:

TDO table

word 3 1 N1 1

word 1
word 2

H (IFN) N(EFN)
V a r i a b l e N a m e (BCD)

where N1, N2, N3 may each be constant o r variable and where

word 4
word 5

for each which is variable a 1 is placed in bit 20, 19, 18 re-

~2
N3

spectively of word 1.

Each branch address M, NZ, N3 is collected and converted to binary.
The following table entry is- prepared:

TIFGO table

This entry i s held until treatment of the arithmetic expressick

--- - - - -

is completed. If the expression contained any references to
subprograms, resulting in the final O((IFN)i # O((1FN) then
such MIFN)i replaces O((1FN) in the pending entry. The entry
is then made.

word 1
word 2

The statement is modified by the following transformation.
I is replaced by X
F is replaced by non-BCD character 12 ,

(is replaced by =
) i s replaced by non-BCD character 77.

The statement is then treated by the ARITHMETIC processor.

- O((1FN) Nl(EFN)
N2(EFN) N3(EFN)

FORTRAN 11, Section One (704 Version)

IF ACCUMULATOR OVERFLOW Nl, N2

The branch addresses Nl, NZ are collected and converted to binary.
The following table entries a re made:

CIT table

IF QUOTIENT OVERFLOW MI MZ

word 1
word 2
word 3
word 4

TIFGO table

The branch addresses N1, N2 a re collected and converted to binary.

word 1

The following table entries a re made:

q (I F N) 0
T 0 V 0

0
0 0

4

O((IFN) 5

CIT table
word 1
word 2
word 3
word 4

TIF'GO table
word 1
word 2

.I

word 2 L M(EFN) W (E F N)

IF DIVIDE CHECK M, N2

The branch addresses N1, N2 a re collected and converted to binary.
The following table entries a re made:

CIT table
word 1
word 2
word 3
word 4

TIFGO table
word 1
word 2

I D((IFN) 0

FORTRAN 11, Section One (704 Version)

SENSE LIGHT I

IF (SENSE LIGHT I) M, N2

The sense light designation I is collected. It is converted to binary and
added to 14O8e The following table entry is made:

CIT table

The sense light designation I is collected. It is converted to binary and
added to 1408. The following table entry is made:

b

word 1
word 2
word 3
word 4

CIT table
word 1 C% (IFN) 0

o< (IFN) 0
P S E 0

0
A (140,~ I) 0

word 2 1 M S E

The branch addresses N1, N2 are collected and converted to binary.
The following table entry is made:

word 3
word 4

TIFGO table
word 1 I 3 1

0
(140R+ I) 0

word 2

IF(SEMSE SWITCH I) N1, N2

The sense switch designation I is collected. It is converted to binary and
added to 1608. The following table entry is made:

CIT table T

word I

,

The branch addresses Nl, N2 are collected and converted to binary.
- The following table entry is made:

W (IFN) 0 '

word 3
word 4

word 2 P S E 0 \
0

(160R+1) 0

TIFGO table
word 1
word 2

W (IFN 3
Nl(EFN) N2(EFN) J

FORTRAN 11, Section One (704 Version)

The
The

branch address N is collected and converted to binary.
following table entries a r e made:

CIT table
word 1
word 2
word 3
word 4

TWGO table
word 1
word 2

tX (IFN) 0
T R A. 0

Each branch address Ni is collected and converted to binary. The
following table entry is made:

TRAD table
ward 1 I 0 Ni(EFN))'

This i s repeated for each Ni until i tr me

Ni in TRAD table.

The following table entry i s made:
TIFGO table

The variable I i s collected and treated by the subscript processor as a

word 1

one-dimensional subscript (I). The following table entry is made:

o((1FN) 2 '
word 2 TRAD(Ni) TRAD(N&

where TRAD(Ni) i s the complement (table size) of position of

CIT table
word 1
word 2
word 3
word 4

a (IFN) 0
T R A 0

0
0 1 - 7

I

FORTRAN 11, Section One (704 Version)

GO TO N, (Il8 Iz8 . . . , Im)

Each permissible branch address Ik i s collected and converted to binary.
The following table entry i s made:

TRA D table
word 1 I 0 I ~ (E F N #

Tha variable N i a collected. The following table entry is made:
CIT table

word 1
word 2
word 3
word 4

Ik in TRAD table.

o< (IFN) 0
T R A 0

V a r i a b l e N ' a m e (BCD)
, 0 0

This i s repeated for each Ik until k r m. The following table entry i s
made:

TIFGO table

ASSIGN I TO N

word 1
word 2

The E F N being assigned (I) i s collected and converted to binary. The
variable N i s collected. The following table entries a r e made:

M (IFN) 1
TRAD(Il) TRAD(

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

TIFGO table
word 1
word 2

where TRAD(1k) is the complement (table size) of

W (IFN) 0
C L A 0

A

V a r i a b l e N a m e (BCD)
0 0

FORTRAN 11, Section One (704 Version)

STOP N

binary. The
CIT

The identification N, if any, i s collected and converted from octal to
following table entries are made:

word 4 N 0
where N = 0 if not specified.

table

CIT table

word 1
word 2
word 3

O((1FN) 0
H P R 0

0

--

word 3 1 O((IFN)

word 1 [0 0

word 4 1 0
TSTOPS table

word 1 I M (I F N) O((EFN)]
where O((EFN) i s the last such encountered.

word 2

PAUSE N

T R A 0

The identification N, if any, is collected and converted from octal to
binary. The following table entry is made:

CIT table
word 1
word 2

CONTINUE

L

word 3 o 1

W(IFN) 0
H P R 0

word 4

7

N 0

The following table entry is made:
I

CIT table

where N = 0 if not specified.

word 1
word 2
word 3
word 4

o((1FN) 0
B S S 0

0
0 0

r

FORTRAN 11, Section One (704 Version)

SUBROUTINE NAME (ARGI, . . . , ARGN)
The statement is verified to be the first of the program. The
name is collected and the following table entry made:

SUBDEF table
word1 I S u b ~ r o ~ r a r n N a m e (BCD) I

Each argument name is collected and the following table entry made:
SUBDEF table

- --

word1 I A r g u m e n t N a m e (~ ~ 7 1
If the argument name is fixed-point the following table entry is made:

FORVA L table

The above procedure is repeated for each argument name. A count is
kept of the arguments for use in processing RETURN statements.

word 1
word2

FUNCTION NAME (ARGI, ARGN)

1 0
A r g u m e n t N a m e (BCD)

This statement is processed in the same manner as SUBROUTINE
NAME (ARGI, ... , ARGN). In addition, the subprogram name is
retained for use in processing RETURN statements.

FORTRAN 11, Section One (704 Version)

CALL NAME (Arg 1. . . . , Arg N)

There a re two possible cases:
1. No arguments. The subprogram name is collected.

The following table entries a re made:
CIT table

word 3 6 1

word 1
word 2

word 4 4 4
CIT table

q (1 F N) 0
S X D 0

word3 I S u b p r o g r a m N a m e (BCD)

-

word 1
word 2

0 0'
T S X 0

2. Some arguments. The statement is modified by the following
transformation.

C is replaced by Z
A is replaced by non-BCD character 12
L is replaced by r
L ie replaced by +

The statement is then treated by the ARITHMETXC processor.

word 4 1 0
CIT table

word 1
word 2
word 3

0 0'
L X D 0

6
word 4 [4 4

CALLFN table
word 1 I O((1FN) ~ ((I F . N) (

FORTRAN 11, Section One (704 Version)

RETURN
There a r e two possible cases:

1. The RETURN occurs in a program
The following table entry is made:

CIT table

defined by SUBROUTINE.

word 4 1 0 1 I
2. The RETURN occurs in a program defined by FUNCTION.

word 2
word 3

The following table entries a r e made:

- L X D 0
$

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

The following table entries a r e made:
CIT table

word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

where OC(IFN)~ is oc(1FN) iacremented by 1 and
where K is the number of arguments of the subprogram.
CIT table

word 1 I 0 0

word 4 1 0 O l

word 2
word 3

TS TOPS table
word 1 1 W(IFN) 1 o((EFN) I

T R A
W(IF N) 1 O 1

where o<(EFN) is the last such encountered.

. . II- 15

FORTRAN 11, Section One (704 Version)

SUBSCRIPT Processor

Subscripts may appear in 110 LISTS or in ARITHMETIC expressions.
There exists a closed subroutse to scan these subscripts and make
the following table entries:

Subscript is one-dimensional:
TAU 1 table

Subscript is two-dimensional:
TAU 2 table

word 1
word 2

word 1 1 C1 C2 1

- 2

C1 0
V a r i a b l e N a m e

---- -
word 2 V a r i a b l e N a m e 1 (BCD)
word 3 V a r i a b l e N a m e , 2 (BCD)

, (BCD) A

where C1 is coefficient,

word 4 1 dl 0 1
where C1 is first coefficient,

C2 is second coefficient, and
dl is first dimension from DIM2 table.

Subscript is three-dimensional:
TAU 3 table

word 1
word 2

C3 is third coefficient;

v G1 C2
C3 0

word 3
word 4
word 5
word 6

dl is first dimension and

V a r i a b l e N a m e 1 (BCD)
V a r i a b l e N a m e 2 (BCD)
V a r i a b l e N a m e 3 (BCD) -

dl d2

d2 is second dimension from

where C1 is first coefficient,
C2 is second coefficient,

DIM3 table,

For a subscript having one or more variables the following table entry
is made,

FORTAG table
word 1 I w (IFN) I -71

where I specifies the dimensionality and 'T' the position of the
entry in respective TAU table.

The I - r t a g is returned to the calling processor.

The addends a r e used to form a relative address which is returned to
the calling processor,

FORTRAN 11, Section One (704 Version)

ERROW FLOW TRACE -
This feature i s optional and normally suppressed. When activated it
causes the following table entries to be made at the point of return
from a called subprogram, arithmetic l ibrary subroutine, o r arith-
metic statement function.

CIT table

There a r e three possible cases for the second table entry.

word 1
word 2
word 3
word 4

1. Program being compiled i s a main program.
C1T table

word 1 1 0

0 o f
N T R ,W(EFN)

1 7
3

2 0

word 2 P Z E H(IFN)

where O((EFN) i s the last such encountered.

word 3 1 0 1
word 4 [0 0 1

2. Program being compiled is a subpr+ograrn.
CIT table

word 1
word 2

is an arithmetic statement function.

0 0
P Z E W (IFN)

word 3
word 4

$ 0
2 0

3. Portion of program being compiled, whether main o r subprogram,

CIT table
word 1
word 2
word 3
word 4

0 0 I
P Z E U (IFN)

0
7 7 7 7 7 ~ 0

FORTRAN 11, Section One (704 Version)

Input-Output Statements

There a r e thirteen statements pertaining to object program
input-output. These m a y be grouped a s follows:

Five statements for innput-output from-to external medium :
READ N, LIST
READ INPUT TAPE I, N, LIST
PRINT N, LIST
PUNCH N , LIST
WRITE OUTPUT TAPE I, N, LIST

One stateme nt specifying such external input-output:
FORMAT (, . .)

Four statements for input-output from-to intermediate
storage medium in binary form:

READ TAPE I, LIST
READ DRUM I, 5, LIST
WRITE TAPE I , LIST
WRITE DRUM I, J , LIST

Three statements for tape handling not involving data trans-
mis sion:

END FILE I
REWIND I
BACKSPACE I

where N i s format designation,
I i s unit 'de signation
J i s drum address,

and LIST is a string of variable names to be transmitted.

To avoid a high degree of redundancy the following descriptions
of individual proces sor s of data transmission statements will some-
times refer to each other. In general, any such reference will be to
a processor previously discussed.

All statements having a LIST cause the following table entries
to be made prior to those unique to the individual statement.

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

CLOSUB table
word 1

FORTRAN 11, Section One (704 Version)

READ N, LIST

The following table entries a r e made:
CIT table

word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

0 0
C A L 0
(D B C 1

b . 0 0
CLOSUB table

word 1
CIT table

word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4 I v V J

CLOSUB table - - - - -

word 1 I (C S H 1 1
The format designation i s collected. There a r e two possible cases : -

1. Constant designation which i s converted to binary.
The following table entr ies a r e made:

FMTEFN table
word 1 I 1 N]

CIT table

The LIST i s now scanned and table entr ies made in the following manner:

word 1 0 248
word 2 N T R 81

N
0 0

2. Variable designation which is verified to be a n a r ray .
The following table entry is made:

CIT table
word 1
word 2
word 3
word 4

2-

0 248 '
N T, R 81

V a r i a b l e N a m e (BCD)
0 0

The following table entry is made:
CIT table

word 1
word 2

Each variable i s collected. There a r e several possible cases:
1. Variable is not subscripted and is not the name of an array. The

following table entry i s made:
CIT table

'
o((IFN)* 0

E T M 0
word 3
word 4

word 1 I W(UFN)* 0 I'

- -

0
0 0

v , -

word 2 N T R 0
word 3 V a r i a b l e N a m e (BCD)
word 4 1 0 0 1

If the variable is fixed-point the following table entry is made:
FORVAL table

word 1 (X(IFN)i
word 2 V a r i a b l e N a m e (BCD)

2. Variable is subscripted. There a re two possible cases:

i s made:
CIT table

a) Subscript is constant. The following table entry i s made:
CIT table

word 1
word 2
word 3
word 4

found in the appropriate DIM table and multiplied to form the total

W(IFN)* 0
N T R 0

V ' a r i a b l e N a m e (BCD)
K 0

word 1
word 2
word 3
word 4

size K of the array. There a r e two possible cases:

where K i s the resultant relative address.
b) Subscript has some variable part. The following table entry

a) Kc 1. Treat a s a non-subscripted variable. See 1 above.

3. Variable i s an a r ray name. The dimension(s) of the a r r ay a s

t

%(IF N) '8 0
N T R 0

V a r i a b l e N a m e (BCD)
M I 1 -7

b) K)1. The following table entries a r e made:

J

FIXCON table (if not previously entered)
word 1 [(K-1) 1'

CIT table b

word 1
word 2
word 3
word 4

K(IFN)* 0
L X D 0

2
i 8 ,

where i is the position of (K-1) L.1 the FIXCON table.

word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

N T
V a r i a b l e N a m e BCD

Upon completion of the LIST the following table entries are made:

r

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

C

0 0
N T R o1

V a r i a b l e N a m e (BCD)
0 0

CLOSUB table

FORTRAN 11, Section One (704 Version)

READ INPUT TAPE I, N, LIST

The unit designation is collected. There a r e two possible cases :
Constant designation which is converted to binary. It is
placed in address of word 2 of pending CIT table entry whose
operation is NTR.

CIT table

Variable designation which is verified to be fixed-point.
The following table entr ies a r e made:

FORVAR table

word 2 1 C 'A L

word 1
word 2

w o r d 3 1 V a r i a b l e N a m e (BCD) I

W W N)
V a r i a b l e N a m e (BCD)

. - - -

word 4 0 0
CIT table

d

word 1 Q 0
word 2 , ,, S , , T . , , D , 0
word 3 o((IFN)l
Wwr u u u Y v

word 3 o((IFN)l
word 4 [0

where o<(IFN)l is o((1FN) incremented by 1.
The following table en t r ies a r e made:

CIT table
word 1
word i!
word 3
word 4

CLT table
word 1
word 2
word 3
word 4

CLQSUB table ' , , . .

D B c i I word 1
CXT table

word 2
word 2
word 3
word 4

GIT table
word 1
word 2
word 3
word 4

CLQSUB table
word 1 (T S H 1 1 . , 1. ' ' '

The format designation is collected. There a r e two posaible cases:
1. Constant designation which i s converted to binary.

The following table entries a r e made:
FMTEFN table - -

word 1 11 N
CIT table

word 1 I O((IFN)1 248 1
word 2 1 N T c R I I

variable .
word 3

2. Variable designation which is verified to be an array.
The following table entry is made:

1 N

CIT table
word 1 1 M (IFN)l 248

word 4 * 0 0
where I i s the unit designation or is 0 if unit designation i s

word 4 1 0 0 1
where I is the unit designation o r is 0 if unit designation is

word 2
word 3

variable .

N T R I
V a r i a b l e N a m e (BCD) +

The LIST is now scanned and table entries made in the same manner
a s for READ N, LIST.

FORTRANII, Section One (704 Version)

PRINT N, LIST

The following table entries are made:
CIT table

word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

CLOSUB table
word 1

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

C LOSUB table
word 1

The format designation is collected. There a r e two possible cases:
1. Constant designation which i s converted to binary.

The following table entries a r e made:
FMTEFN table

word 1 I 1 NI
CIT table

word 2 1 N T R

2. Variable designation which i s verified to be an array.
The following table entry i s made:

word 3
word 4

CIT table

1
0 0

word 1 1 0 248 1
word 2
word 3
word 4 ... -

N T R 0
V a r i a b l e N a m e (BCD)

0 0

The LIST is now scanned and table entries made in the same manner
as for READ N, LIST with one exception. Fixed-point non-subscripted
variables are entered in FORVAR rather than in F'ORVAL.

word 1 0 0
word 2 X I T 0

Upon completion of the LIST the following table entrie,~ are made:
CIT table

- - -

word 3 (F j L)

word 1 o< (IFN)* 0
word 2 C A L 0

7
. o 0 ,

word 4 1 0
CLOSUB table

>

CIT table

FORTRAN 11, Section One (704 Version)

PUNCH N, LIST

The following table entries a re made:
CIT table

word 1
word 2
word 3
word 4

CXT table
word 1
word 2
word 3
word 4

. C LOS UB table
word 1

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

CLOSUB table
word 3.

The format designation is collected. There a re two possible cases:
1. Constat designation which is converted to binary.

The following table entries a re made:
FMTEFN table I

word 1 I 1 NI
CPT table

word 1 I 0
word 2 1 N T R

2. Variable designation which is verified to be an array.
The folowing table entry is made:

CIT table
word 1 I 0 248 1

word 4 1 0 0 1

word 2

The LIST is now scanned and table entries made in the same manner as for
PRINT N, LIST.

N T R 0
word 3 V a r i a b l e N a m e (BCD) h

FORTRAN 11, Section One (704 Version)

WRITE OUTPUT TAPE I, N, LIST

The unit designation is collected. There a r e two possible cases:
1. Constant designation which is converted to binary. It i s

placed in address of word 2 of pending CIT table entry
whose operation is NTR.

2. Variable designation which i s verified to be fixed-point.
The following table entries a r e made:

FORVA R table
word 1
word 2

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

M (IFN)
2

V a r i a b l e N a m e (BCD)

b n L u
V a r i a b l e N a m e (BCD)

O((1FN)l

5 0 0
where O((1FN)l is O((1FN) incremented by 1.

The following table entries a r e made:
CIT table

word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

CLOSUB table
word 1

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

C LOSUB table
word 1 (S T H 1 1

The format designation is collected. There a re two possible cases:
1. Constant designation which is converted to binary.

The following table entries a re made:
FMTEFN table

word 1 I 1 N
CIT table

A 1

word 4 0 , 0
where I is the unit designation or i~ 0 if unit designation is
variable.

word 1
word 2
word 3

2. Variable designation which is verified to be an array. The follow-

(1FN)l 248 '
N T R 1

1 KT

ing table entry is made:
CIT table

word 4 1 0 q
where I is the unit designation o r is 0 if tinit designation is

word 1
word 2
word 3

-

variable.

a (1FN)l
b

248
N T R I

V a r i a b l e N a m e (BCD)

The LIST
PRINT N,

is now scanned and table entries
LLS Ta

made in the same manner a s for

FORTRAN 11, Section One (704 Version)

REA,D TAPE N, LIST

The unit designation is collected. There a r e two possible cases:
1. Constant designation which is converted to binary and added to

2208 to form the binary tape address.
 he-following table entry is made:

CIT table

word 4 (220,+ N) 0
where oC(1FN)l is O<(IFN) incremented by 1.

A

2. Variable designation which is verified to be fixed-point.
The following table entries a r e made:

FORVA R table

word 1
word 2
word 3

word 1
word 2

CIT table
word 1
word 2
word 3
word 4

FIXCON table
word 1

CIT table
word 1
word 2
word 3
word 4

where i i s the
CfT table

word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

O< (I F N) ~ 0
R T B 0

0

W (1FN)l
V a r i a b l e N a m e IBCD)

C A L 0
V a r i a b l e N a m e (BCD)

(%f not ~ rev ious lv entered)

I i
position of 2208 in the FIXCON table.

where o((1FN)Z is O((1FN)l incrernented by 1.

word 3 1 01

CIT table
word 1 oc(IFN)2 0'

word 4 1 0 0 1

word 2 R T B 0

The following table entries a re made:
CIT table

word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

The LIST is now scanned and table entries made in the following manner:

Each variable i s collected. There a re several possible cases:
1, Variable is not subscripted and is not the name of an array. The

following table entry is made.
CIT table

word 1 I 0((IFN)* 0 r

FORVA L table
word 1 I I

word 2
word 3
word 4

word 2 V a r i a b l e N a m . e (BCD) 1
2, Variable is subscripted. There are two possible cases:

. C P Y 0
V a r i a b 1 . e N a m e (BCD)

0 0

a) Subscript i o conetant. The following table entry is made:

If the variable is fixed-point the following table entry is made.

CIT table
word 1
word 2
word 3
word 4

where K is the

- - -

1 V a r i a b l e N a m e I
resultant relative address,

b) Subscript has some variable part. The following table entry
is made:
CIT table

- -
w o r d 3 V a r i a b l e N a m e (BCDI I

\

word 4 1 K I - I
3. Variable i s an a r r ay name. The dimension(s) of the a r r a y as found

word 1
word 2

in the appropriate DIM table a r e multiplied to form the total s ize K

~ < (I F N) ~ < 0
C P Y 0

of the array. There a r e two possible cases:
a) Kzl. Treat as a non-subscripted variable. See 1 above.
b) K>1. The following table entries a r e made:

FIXCON table
word 1 I (K-1)

CIT table
word 1 o((IFN)*

word 4 1 i 8 1
where i i s the position of (K-1) in the FIXCON table.

CIT table

word 2
word 3

word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

CIT table

L X D 0
2

word 1
word 2
word 3
word 4

V a r i a b l e N a m e (BCD) 1

V a r i a b l e N a m e (BCD)
0 0

Upon completion of the LIST the following table entries are made:
CIT table

word 1 r CcC(IFN* 0 l'
word 2
word 3
word 4

C A L 0
1 7

0 0

CIT table
word 1
word 2
word 3
word 4

0 0 '
1

L X I T 0
2

(, R T N)
0 0

CLOSUS tabl;
I

word 1 1 R T N 1 I

FORTRAN 11, Section One (704 Version)

WRITE TAPE N, LIST

The unit designation is collected. There a r e two possible cases:
1. Constant designation which is converted to binary and added to

2208 to form tho binary tape adclrasa.
The following table entry is made:

CIT table

word 1
word 2
word 3
word 4

FIXCON table
word 1

CIT table
word 1
word 2
word 3
word 4

word 1
word 2
word 3
word 4

where i is the
CIT table

word 1

@ (1FN)l 0
W T B 0

0
(220a+ N) 0

word 2
word 3
word 4

2. Variable designation which is vcrificd to be fixed-point.
The following table entries are made:

FORVAR table

V a r i a b l e N a m e (BCD)
0 0

if not previously entered)
220,

0 1

word 1
word 2

I i o 1
position of 2208 in the FIXCON table.

(1FN)l
V a r i a b l e N a m e (BCD) I

CIT table
word 1 1 0 0 1

CIT table

word 4 1 0 1

word 2
word 3

where D((1FN)Z is %(IFN)l incremented by 1.

S T A 0
CX (IFNI2

CIT table
word 1 1 a (IFN12 0 1
word 2
word 3

C .
W T B 0

0
word 4 , 0 0 ~

The LIST i s now scanned and table entries made in the same manner as for
READ TAPE N, LIST with one exception. Fixed-point non- subscripted var-

The following table entry is made:
CIT table

iables are entered in FORVAR rather than in FORVAL.

word 1
word 2
word 3
word 4

0 0
C P Y 0

6
2 0

FORTRAN 11, Section One (704 Version)

READ DRUM N , J, LIST

The unit designation is collected. There a r e two possible cases :
1. Constant designation which is converted to binary and added to

3008 to fo rm the binary drum address .
a he-following table entry is made:

CIT table

word 3 1 n I

word 1
word 2

- -
V

word 4 1 (300,+N) 0
whereO((1FN)l is o<(IFN) increhented bv 1.

CX (LFN)l 0
R D R 0

2. Variable designation which is verified to b e fixed-point.
The following table entr ies a r e made:

FORVAR table

-
FIXCON table (if not p r e ~ i o u s i y entered)

word 1 1 - 300, 1

word 1
word 2
- - - -

x

CIT table
1

: o((IFN)1
V a r i , a b l q N a m e (BCD)

word 1
word 2
word 3
word 4

word 1 ' 0 ' 0
. word 2 A D ' * D 0

word 3 2

CIT table
, D<(J.FN)l 0

C A L 0
V a r i a b l e N a m e (BCD)

" 0 o

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

word 4 1 i 0 1
where i ie the position of 3008 in the FIXCON table.

I 0 0 j
where O<(IFN)Z is o((1FN)l incremented by 1.
CIT table

word 1
word 2
word 3

O((IFN)2
I

0
R D R 0

0
word 4 1 0 0

.r-

The drum address is collected. There a r e two possible cases:
1. Constant address which is converted to binary.

The following table entries a r e made:
CIT table

word 1
word 2

o((IFN)3 370,
P X 1) 6,

word 3
word 4

The following table entries a r e made:
FORVAR table

0
J 0

CIT table

word 1
word 2

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

where &(IF'N)3 is %(IFN)Z incremented by 1.

word 1
word 2
word 3
word 4

I V a r i a b l e N a m e (BCD) 1

37OR -
L D A 0

(IFN)3
0 0

C A L 0
V a r i a b l e N a m e (BCD)

0 0

2. Variable address which is verified to be fixed-point.

where o(IIF'N)4 is O((IFN)3 incremented by 1.
CI%' table

word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

The LIST is now scanned and table entries made in the same manner a s
for READ TAPE N, LIST with one exception. Subscripted variables
where the subscript contains some variable par t a r e not permitted.

FORTRAN 11, Section One (704 Version)

WRITE DRUM Nj J j LIST

The unit designation is collected. There a r e two possible cases:
1. Conetant designation which is converted to binary and added to

3m8 to form the binary drum address.
The following table entry i s made:

CIT table

word 3 1 0 1

- - - - - - - -

word 4 1 (300,+ N) 0 1
where S (I F N) l is o((UFN) i n c r h e n t e d by 1.

word 1
word 2

2. Variable designation which is verified to be fixed-point.
The following table entries a r e made:

FORVAR table

b

w(IFN)l 0
W D R 0

word 1
word 2

word 1
CIT table

word 1
word 2
word 3
word 4

where i is the
CIT table

word 1
word 2
word 3
word 4

CIT tab1.e
word 1
word 2
word 3
word 4

CXW?N)l
V a r i a b l e N a m e (BCD)

word 1
word 2
word 3
word 4

I i o 1
position of 3008 in FIXCON table.

CjCT table
M (1FN)l 0

C A L 0
V a r i a b l e N a . m e (BCD

0 0

where O<(IFN)2 is Q((WN)l incremented by 1.

FIXCON table (if not previously cntcred)

CIT table ..
word 1
word 2
word 3
ward 4

W (IFN)2 0
W D R 0

0
0 0

The drum address i s collected. There a re two possible cases:
1. Constant address which is converted to binary.

The following table entries are made:
CIT table

word 1
word 2

-
where D ((I F N) ~ is O((IFN)Z incremented by 1.

CX m N) 3 370, -
P X D n

word 3
' word 4

L
- -

0
J 0

The following table entries a re made:

CIT table

FORVAR table
W (IFNI3 f

word 1
word 2
word 3
word 4

word 1
word 2

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

0 370,
U -

L D A 0
fX (IFN)3

0 0 ,

I V a r i a b l e N a m e (BCD) I

2. Variable address which is verified to be fixed-point.

I V a r i a b l e N a m e (BCD) I

b

where O(lIF'N)4 i s U(IF'N)3 incremented by 1.
CIT table

word 3 0

word 1
word 2

word 4 1 0
-

01
CIT table

word 1 0 370, 1

-- -

M(IFN)4 0
P X D 0

word 4 1 0 0 1

word 2
word 3

The LIST is now scanned and table entries made in the same manner as
for READ DRUM N, J, LIST with one exception. Fixed-point non- sub-
scripted variables are entered in FORVAR rather than in FORVAL.

C
- - -

L D A U &
0<(mN)4 t

FORTRAN 11, Section One (704 Version)

END FILE I

The unit designation is collected. There a r e two possible cases :
1. Constant designation which is converted to binary and added to

2208 t o fo rm the binary tape address .
The following table entry is made:

CIT table
word 1 x (E N)
word 2 1 W E F n 1 .-

word 3 1
- -

0

word 4 f
-

(z20f3., I) 0,
2. Variable designation which is verified to be fixed-point.

The following table entr ies are made:
FOR VAR tab1 e

word 1 I
word 2 1 V

CIT table
a r i a b l e N a m e I

r

word 1 . O ((E N) 0
word 2 C A L - -

word 3
word 4 1 0

FIXCON table (if not previously entered)
ward 1 220a - I

CIT table .

word 3 1 2 I
word 1
word 2

word 4 1 i 0 1
where i is the position of Z Z 0 8 in the FIXCON table.

-

0 0
A D D 0

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

whereD((1FN)l i sw(IFN) incremented by 1.
CIT table

word 1
word 2
w o r d 3
word 4

b

<5((WN)1 0
, ,W E F 0

, 0
, 0 0 ,

FORTRAN 11, Section One (704 ve r s ion)

REWIND 1

The unit designation is collected. There a r e two possible cases :
1. Constant designation which is converted to binary and added to

2208 to f o r m binary tape address .
The following table entry is made:

CIT table

The following table entr ies a r e made:

word 1
word 2
word 3
word 4

Cx(IFN) 0
R E W 0

0

. (2 2 0 ~ + 1) - 0
2. Variable designation which is verified to be fixed-point.

FORVAL table

word 3 0
word 4 $8 0

word 1
word 2

CLT table

CIT table
word1 1 0 0

OdIFN)
V a r i a b l e N a m e (BCD)

word 1
word 2

0 0
A R S 0

word 4 1 0 0 1
where o((IFN)l is *(EN) incremented by 1.

CIT table I

word 2
word 3

word 1
word 2
word 3
word 4

--

S T A 0
. O((IFN)l

\

O((E N) 0
C A L 0

V a r i a b l e N a m e (BCD)

, 0 0

CIT table a

II- 40

word 1
word 2
word 3

FIXCON table (if not previously entered)
word 1 [220,

Y I
CIT table

U (W N) ~ 0
R E W 0

, 0

word 1
word 2
word 3
word 4

w o r d 4 + 0 0

0 0
A D D 0

2

i 0 ,
where i is the position of 2208 in the FIXCON table.

FORTRAN 11, Section One (704 Version)

BACKSPACE I

The unit deeignation i s collected. There a r e two possible cases :
1. Constant designation which i s converted to binary and added to

2208 to fo rm binary tape address.
The following table entry i s made:

CIT table

-- - - -

FMCON table (if not entered)

word 1
word 2
word 3
word 4

The following table entries are made:
FORVAR table

word 1
CIT table

word 1
word 2
word 3
word 4

CX (IFN) 0
B S T 0

0
(22O,+I) 0

word 1
word 2

where i i s the position of 2208 in the FIXCON table.

21 Variable designation which i s verified to be fixed-point.

O((1FN)
V a r i a b l e N a m e (B c D) .

CIT table
r

word 1 0 0
word 2 A R S 0
word 3 0
word 4 18 0

CIT table
word 1
word 2
word 3
word 4

CIT table

O((1FN) 0
C A L 0

, V a r i a b l e N a m e (BCD)
.+ 0 0

word 1
word 2
word 3

word 2
word 3
word 4

I

0 0
S T A 0

o<(WN)l

B S T 0

, 0
0 0

word 4 1 0 0
where w(IFN)l is OC(LFN) incremented by 1.

1-0 LIST DO specification

The data transmission statements except READ DRUM and
WRITE DRUM may have a LIST DO specification. This is information
that specifies the range and initial, increment, and final values of the
controlling variable.

The appearance of It(", not a part of a subscript, is assumed
to be the beginning of a LIST DO specification. The variable and para-
meters a r e explicitily written and the termination of the LIST DO i s at
the point of their appearance:
Example: . . (V , . . . , Vi, I N2, N3), . .

The processing of LIST DOs is a simultaneous procedure
with the processing of LIST variables. Since LIST DOs reading from
left to right a r e nested and the f i rs t 'I(" and the last "1 = Nl, N2, N3)"
a re paired, the processing i s disjoint.

As each "(" is encountered it is assumed to be the beginning of
a LIST DO. The following table entry is made:

Temporary LIST DO table
word 1 1- o<(XFN)i 248

incremented.
As each "1 = Nl, NZ, N3)" is reached it is scanned and the in-

completed entry in the table associated with the matching "(" is com-

word 2
word 3
word 4
word 5

pleted a s follows:

0
0
0
0

Temporary LIST DO table l'

The O((1FN) is incremented. A counter associated with the table i s

word 1

N1, N2, N3 may each be variable o r constant,if variable bits
20, 19, 18 respectively of word 1 a r e set equal to 1.
The table counter is decremented.

- - OQIFN)i B(1FN)

word 3
word 4
word 5

The appearance of ")" not par t of a subscript nor of a LIST DO
specification causes the table counter to be decremented and effectively
nullifies the entry in the temporary LIST DO table associated with the
matching "(".

When the LIST is completed, all significant (completed) entries
in the temporary LIST DO table a r e transferred to the TDO table. Any
entries not completed a r e considered null and a re ignored.

word 2 V a r i a b l e N a m e (BCD) - --
N1
N2
N3

where B(1FN) is the current value of (IFN) counter.

Certain table entries result from the appearance of 'I(" and ")@I not
surrounding a subscript.

I t (" appearing at the beginning of a nest.
The following table entry is made:

CIT table
word 1
word 2
word 3
word 4

The following table entry is made:
CIT table

word 1 ' %(IFN)i 0

#(IFN)i 0
B S S 0

0
0 0

word 2
word 3
word 4

"(" appearing within a nest.

L T M 0
0

0 0
I!)'! same as 2 above

FORTRAN 11, Section One (7 0 4 Version)

DIA.GNOS TIC

A diagnostic program exists for source program e r r o r s found or
machine e r r o r s occuring during Section One processing. This pro-
gram consists of:

Program to prepare message
Pr int program
Table of comments

When an e r r o r is found o r occurs during Section One control goes to
the Diagnostic Program by means of TSX using IR4.
There a r e several possible cases:

I. IR4f 0 signifies an e r r o r call.
1) F i r s t e rror: P r i n t @lDIAGNOSTIC PROGRAM" heading and

procede a s in 2) below,
2) Not f i rs t er ror : Construct parameters for printing statement

being processed and comment describing error. Restore any
modified statements to their original form and print statement
and comment.
Return control to Section One for next statement.

11. IR45 0 signifies completion of Section One.
1) No e r r o r s had occurred. Go to Section One Prime,
2) Some e r r o r s had occurred. Print "END O F DIA.GNOSTIGu

measage.
a) If any e r ro r was source program go to Source Program

E r r o r supervisor program.
b) If a l l e r r o r s were machine e r r o r s go to Machine E r r o r

supervieor program.

FORTRAN 11, Section One (709 Version)

The 709 translator for FORTRAN I1 i s similar to the 704 version.
Those processors and features which are the same will not be re-
stated. The reader ie referred to the 704 version for the following:

Classification routines
Processors for

DIMENSION
EQUIVALENCE
COMMON
FREQUENCY

FORMAT
GOT0 () I
GOTON, (. . .)
DO N Is; N1, N2, N3
IF (. . .) N1, N2, N3
SENSE LIGHT I
IF (SENSE LIGHT I) M, N2
IF (SENSE SWITCH I) N1, N2
IF DIVIDE CHECK N1, N2
ASSIGN I TO N
CONTINUE
PAUSE N
STOP N
CALL NAME (. . .)
RETURN
ARITHMETIC (Scan, Level Analysis, Optimi zation)
SUBSCRIPTS
ERROR FLOW TRACE

Those processors which differ from the 704 version are described below:

SUBROUTINE NAME (ARG1, . , ARGN)
The assumed CIT and CLOSUB table entries for Floating-point Trap in-
itiatization in a main program are nullified. The statement is then pro-
cessed in the same manner as 704 version.

FUNCTION NAME (ARG1, A.RGN)
The assumed CIT and CLOSUB table entries for Floating-point Trap in-
itiatization in a main program a re nullified. The statement is than pro-
cessed in the same manner a s 704 version.

FORTRAN 11, Section One (709 Version)

The branch address N is collected and converted to binary. The

IF ACCUMULATOR OVERFLOW Ma N Z

following table entry is made:
TIFGO table

word 1 ' w(IF N)

The branch addresses N1, N2 a re collected and converted to binary.
The following table entries a re made:

word 2

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

0
0 N(EFN)

where O((1FN)l is WWN) incremented by 1.
TIFGO table

word 1 I O<(IFN)1 5
word 2 1 M(EFN) NZ(EFN) J

IF QUOTIENT OVERFLOW N1, N2

This statement is processed in same manner as IF ACCUMULATOR
OVERFLOW N1, N2.

FORTRAN 11, Section One (709 Version)

READ N , LIST

The format designation is collected. There a r e two possible cases :

The following table entr ies a r e made:
CIT table

1. Constant designation which i s converted to binary.
The following table entr ies a r e made :

FMTEFN table

word 1
word 2
word 3
word 4

word 1 1 1 N 1
CXT table

w (I F N) 0
S X D 0

6
4 4

word 1 1 0 0 1
word 2 1 P ' Z E 0 1

CIT table

word 3 1 1 NI

word 1
word 2
word 3
word 4

word 4 1 0 0 1
2. Variable designation which is verified t o be an array.

0 0
T S X 0 ,
(C S H)

0 4

The following table entry is made:

CLOSUB table

CIT table
word 1
word 2

CIT table

0 0
P Z E 0 -

w o r d 3
word 4

, V a r i a b 1 e N a m e (BCD)
0 0

The following table entry is made:

word 1
word 2

The LIST is now scanned and table entriee made in tho following manner:

0 0
L X D 0

w o r d 3
word 4

I

6
4 4

Each variable in the LIST is collected. There a re several possible
cases:

1. Variable is not subscripted and is not the name of an array.
The following table entries a re made:

CIT table

I
-

I
CIT table

word 1
word 2
word 3
word 4

word 1 1 0 0 1

C J

I W(IFN)* 0
S T R 0

0
0 0

a) Subscript is constant.
The following table entries a re made:
CIT table

word 2
word 3
word 4

word 1 ~((IFN) * o

S T Q 0
V a r i a b l e N a m e (BCD)

0 0

w o r d 3 1 V a r i a b l e N a m e (BCD) I

If the variabld is fixed-point the following table entry is made: '
FORVAL table

word 2
word 3
word 4

word 4 L 0 1
where L is thk resultant addend.

word 1
word 2

S T R 0
0

0 0

O((IF N) i 0
V a r i a b l e N a m e (BCD)

total s h e K of the array. There are two possible cases:

2. Variablo is subs)cripted. There are two possible casea:

b

CIT tablo

b) Subscript has some variable part.
The following table entriee are made:
CIT table

word 1
word 2

word 1
word 2
word 3
word 4

0 0
S T Q 0

D((IFN)* 0
S T R 0,

0

; 0 0
CIT table

word 1
word 2
word 3
word 4

0 0'
9 T Q 0

V a r i a b l e N a m e (BCD)
L I -

3. Variable is an a;
found in the appropriate DIM table a r e multiplied to form the

a) K r 1. Treat a s a non-subscripted variable. See 1 above.
b) K > 1. The following table entries a re made:

CIT table
word 1 r
word 2
word 3 1 6 1

word 3 1 (S L I 1 I

word 4 1 4 41
CIT table

t

word 4 1 0 4 1

word 1
word 2

CLOS UB table

0 0
T S X 0

word 1
CIT table

word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

- - --

0 0
P Z E . 0

V a r i a b l e N a m e (BCD)
1 0

Upon completion of the LIST the following table entries a re made:
CIT table

word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

CLOS UB table
word 1 (, R T N 1

) . I ' r'
I

CIT table b +

' word 1
word 2

0 0
L X D 0

word 3 6
word 4 , 4 4

FORTRAN 11, Section One (709 Version)

READ INPUT TAPE I, N , LIST

The unit designation is collected. There a r e two possible cases:
1. Constant designation which i s converted to binary.

The following table entries a r e made:

word 4 1 . i 0 1
where i is the position of I in the FIXCON table.

FIXCON table (if not previously entered)
word 1 I I I

CIT table

2. Variable designation which is verified to be fixed-point.

word 1
word 2

The following table entries a r e made:

O((WN) 0
C A L 0

FORVAR table
word 1
word2

word 4 1 0 0 1
The following table entries a r e made:

O((I F N)
V a r i a b 1 e N a m e (BCD) r J

CIT table A

word 1
word 2
word3

CIT table

W W N) 0
C A L 0

V a r i a b l e N a m e (BCD)

CIT table
word 1
word 2
word 3
word 4

CLOSUB table

0 0
S X D 0

6
4 4

word 1
word 2
word 3

word 1 I (T S N) I

0 0
, T S x ' 0

(T S H)

The format designation is collected. There a r e two possible cases:
1. Constant designation which is converted to binary.

The following table entries a r e made:
FMTEFN table .

11 NI' word 1
CIT table

word 1
word 2
word 3
word 4

2. Variable designation which i s verified to be an array.

CIT table t

The following table entry i s made:
CIT table

word 1
word 2
word3
word 4

0 0
P Z E 0

V a r i a b l e N a m e (BCD)
0 0

word 1
word 2

The LIST i s now scanned and table entries made in the same manner a s

The following table entry ie made:

0 0 '
L X D 0

word3
word 4

for READ N , LIST.

6
4. 4

FORTRAN 11, Section One (709 Version)

PRINT N , LIST

The following table entries a r e made:
CIT table

word 1
word 2

I

CIT table

(X (IFN) 0
S X D 0

word 3
word 4

word 2 T S X 0

- -
6

4 . 4

word 4 1
CLOSUB table

The format designation i s collected. There a r e two possible cases:
1. Constant designation which is converted to binary.

CIT table

The following table entries are made:

NI
CIT table

The LIST is now scanned and table entries made in the following manner :

word 1
word 2
word3
word 4

0 0
, * P Z E 0
1 N

0 0 -
2. Variable designation which is verified to be an array.

The following table entry is made:
CIT table b

word 1
word 2
word 3
word 4

0 0
P Z E 0

, V a r i a b l e N a m e (BCD)
0 0

The following table entry is made:

Each variable in the LIST is collected. There are several possible
cases:

Variable ie not subscripted and is not the name of an array.
The following table entriee are made:

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

If the variable

V a r i a b l e N a m e (BCD)
0 0

-

is fixed-point the following table entry is made:

a) Subscript i e constant.

FO RVA R table

The following table entries a re made:

word 1

CIT table
word 1
word 2
word 3
word 4

where L is
CIT table

word 1
word 2
word 3
word 4

o< (IFN)i o T

V a r i a b l e N a m e (BCD)
L 0

word 2 V a r i a b l e N a m e (BCD)
Variable is subscripted. There are two possible caaee.

the resultant addend,

b) Subecript has some variable part.
The following table entries a re made:
CIT table

word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

V a r i a b l e N a m e (BCD)
T .

Variable is an array name. The dimeneion(s) of the a r ray a s
found in the appropriate DIM table are multiplied to form the
total eize K of the array. There are two possible cases:

word
word
word
word

CLOSUB
word

CIT table
word
word
word
word

CIT table
word
word
word
word

CIT table
word
word
word
word

K = 1. Treat as a non-subscripted variable. See 1 above.
K> 1. The following table entries a r e made:
CIT table

table

word 1
word 2

V a r i a b l e N a m e (BCD)
1 0

Upon completion of the LIST the following table entries a r e made:

O((IFN)* 0
S X D 0

CIT table
word 1 I O((IF.N)* 0 [

+

word 3
word 4

6
4

v
4

CIT table

word 2
word 3
word 4

S X D 0
6

4 4

word 1
word 2

C

CLOSUB table

CIT table
0 0

T S X 0
word 3
word 4

word 1
CXT table

word 1
word 2
word 3
word 4

(F I L 1
0 0

FORTRAN 11, Section One (709 Version)

PUNCH N, LIST

The following table entries a r e made:
Gl'L table

word 1 I o((I F N) 0 [

CIT table
L

word 2
word 3
word 4

word 1 1 0 0 1

S X D 0
6

4 4

word 2 T S X 0
word 3 S C H
word 4 1 0

C LOSUB table
word 1 [(S C H 1 I

The format designation is collected. There a r e two possible cases:
1. Constant designation which i s converted to binary.

The following table entries a r e made:
FMTEFN table

word1 1 1 . N[
CIT table * J

The following table entry is made:

word 1
word 2
word 3

0 0
P Z E 0

1 N
word4 , 0 0

2. Variable designation which is verified to be an array.

CIT table

The LIST is now scanned and table entries made in the same manner a s
for PRINT N, LIST.

word 1
word 2
word3
word 4

CIT table

0, 0
P 2 , E 0

V a r i a b , l e N a m e (BCD)
0 0

word 1
word 2
word 3
word 4

The following table entry% made:

0 0
L , X D 0

- 6
4 4

FORTRAN IS, Section One (709 Version)

WRITE OUTPUT TA.PE I, N, LIST

The unit designation is collected. There a r e two possible cases:
1. Constant designation which is converted to binary.

The following table entries a r e made:
FIXCON table (i f not previously entered) - - P

word 1 1 1 I
CIT table

word 1
word 2

2. Variable designation which is verified to be fixed-point.

O<(IFN) 0 '
C A. L 0

The following table entries are made:

J

word 3
word 4

F0RVA.R table

where i i s the position of I in the FIXCON table.

k
2

i 0

word I
word 2

CIT table
word 1
word 2
word 3
word 4

r

o((1FN)
V a r i a b l e N a m e (BCD)

C A L 0
' V a r i a b l e N a m e (BCDI

The following table entries a r e made:
CIT table

word 1
word 2
word 3
word 4

word 1 I (S T H 1 I

0 0
S X D 0

6
4 4

b

The format designation is collected. There a r e two possible cases:
1. Constant designation which is converted to binary.

The following table entries a r e made:

word 3
word 4

FMTEFN table

CIT table

(S ' T H 1
0 4

word 1 1 1 Nj
CIT table

word 1
word 2

CLOSUB table

word 1 1 0 0 1

J

0 0
T S X 0

word 2 1 P Z E
word 3
word 4

1
0

2. Variable designations which i s verified to be an array.
The following table entry is made:

CIT table
word 1
word 2
word3
word 4

The LIST ie now scanned and table entries made in the same manner as
for PRINT N , LIST,

0 0
P Z E . 0

V a r i a b l e N a m e (BCD)
0 0

CIT table
The following table entry is made:

word 1
word 2
word 3
word 4

0 0
L X , D 0

, 6 ,
4 4

FORTRAN 11, Section One (709 Version)

READ TAPE I , LIST

The unit designation is collected. There a r e two possible cases :
1. Constant designation which is converted to binary.

The following table entries a r e made:
FIXCON table (if not previously entered)

word 1 I I r
b I

CIT table

word 3 1 2 I
w o r d 4 1 i 0 1

where i is the position of I, in the FIXCON table.
2. Variable designation which is verified to be fixed-point.

The following table entries a r e made:
FORVAR table

CIT table

word 1
word 2

word 3
word 4

% (IFN)
V a r i a b l e N a m e (BCD)

L

, V a r i a b 1 e N a m e (BCD)
0 0

word 4 1 4 41
CIT table

C IT tab1 e
word1 1 O((I F N) 0 1

The following table entries a r e made:

word 1
word 2
word 3

.
0 0'

S X D 0
6

word 4 1 0 4 1

word 1
word 2
word 3

CLOSUB tablk
word 1 I T S B I

0 0
T S X 0
(T S B 1

The LIST is now scanned and table entries made in the same manner as
for READ N, LIST. Upon completion of the LIST the following table
entries a r e made:

CIT table
word 1
word 2
word 3

0 0
L X D 0

6
word 4 , 4 4

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

 LOS SUB table

O((IF N) * 0
S X D , 0

6

word 1 I R L R 1 1
CIT tablo

1

-

-

word 1
word 2
word 3
word 4

FORTRAN XI, Section One (709 Version)

WRITE TAPE I , LIST

The unit designation is collected. There a r e two possible cases:
1. Constant designation which is converted to binary.

The following table entries a r e made:
FIXCON table (i f not previously entered)

word X I I f
B

CIT table
I

P

where i is the position of I in the FIXCON table.

word 1
word 2
word 3
word 4

2. Variable designation which is verified to be fixed-point.
The following table gntxies are made:

F0RVA.R table

' o< (IFN)

- - -

word 1
'

o((1FN)
r)

word 2
CIT table

0
C A L 0

2
i 0

1

word l. D((1FN) 0
word 2 C A L 0
word 3 V a r i a b l e N a m e (BCD)
word 4 0 0

The following table entries a r e made:
CIT table

word 1 1 (S T l3 1 I
CIT table

word 1
word 2
word 3
word 4

word 1,
word 2
word 3
word 4

word 1 I 0 o 1

0 0
S X D 0

6
4 4

0 0'
T S X 0
(S T B 1

I

0 4

word 4 t 4 4 1

CIT table

CLOSUB table

The LIST is now scanned and table entries made in the same manner as
for PRINT N, LIST. Upon completion of the LIST the following table
entries a r e made:

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

CLOSUB table
word 1 1 W L R 1 1

CIT table .
word 1 I 0 0 l

- - -

word 2 1 L X D 0 1
word 3 1 6 I
word 4 1,. 4 . 41

FORTRAN 11, Section One (709 Version)

READ DRUM I , J, LIST

The unit designation is collected. There a r e two possible cases:
1 Constant designation which i s converted to binary.

The following table entries a r e made:
FIXCON table

word1 I I f
I

CIT table
I

word 1
word 2

-
where i i s the position of I in the FIXCON table.

W W N)
f

0
C A L n

word3
word 4

2. Variable designation which is verified to be fixed-point.

- "

2
i fl

The following table entries a r e made:
FORVAR table

CIT table

word 1

word 1
word 2
word 3
word 4

-
word 2 S X D 0

w (I F N)
7 ~ '

o ((I F N) 0
C A L 0

V a r i a b 1 e N a rn e (BCD)
0 0

word 3 16 I

word2 * V a r i a b l e N a m e (BCD)
CIT table

The following table entries are made:

word4 1 4
CIT table

word 1
word 2

word 1 I (D R s 1 I

0 0
T S X 0

word 3
word 4

The drum address i s collected. There a r e two possible cases:
1. Constant address which is converted to binary.

The following table entries a r e made:

I
-

(D R S 1
0 4

FIXCON table (if not previously entered)

CLOSUB table

word 1 I N I

CIT table

where i is the position of N in the FIXCON table.

-

word 1
word 2
word 3
word 4

2. Variable address which is verified to be fixed-point.

0 0
C A L 0

2
i 0

The following table entries a re made:
FORVAL table

CIT table
word 1 I 0 0 1

word 1 o< (IFN)

The LIST is now acanned and table entries made in the following manner: .

w o r d 2 V a r i a b l e N a m e (BCD)

w o ~ d 2
word 3
word 4

Each variable in the LIST is collected. There a re several possible
cases:

1. Variable is not subscripted and is not the name of an array.
The following table cntry is mado:

C A L 0
V a r i a b l e N a m e (BCD)

0 0

CIT table
word 1 [0 0 f

The following table entry is made:
CIT table

word 4 1 0 0 1
If the variable i s fixed-point the following table entry is made:

word 1
word 2
word 3
word 4

word 2
word 3

FORVAL table

0 0
L D A 0

0

0 0 I

C P Y 0
V a r i a b l e N a m e (BCDI

word 1 0
word 2 V a r i a b l e N a m e (BCD)

xiable is subscripted. There are two possible cases:
Subscript is constant
The following table entry is made:
CIT table

P

ward 1 0 0 1

word 4 1 L 0 1
where L is the resultant addend,

b) Subscript ha8 rome variable part,
Not permitted.

.- -- - -
word 2 .
word3

C P " Y 0
V a r i a b l e N a m e (BCD) I

3. Variable ie an array name. Tho dimonsion(s) of the array a s
found in the appropriate DIM table are multiplied to form the
total size K of the array. There a re two possible cases:
a) K 1. Treat as a non -subscripted variable. See 1 above,
b) K > 1. ~ h e ' f o l l o w i n ~ table entries a re made:

FIXCON table
word 1 I (K--l) 1'

CST table
word 1 r o o l

I I

where i is the position of (K-1) in the FIXCON table,

word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

4

L X D 0
2

i 8

V a r i a b l e N a m e (BCD)
0 8

Upon completion of the LIST the following table entry is made:

, C P Y
V a r i a b l e N a m e , (BCD)

0 0

CIT table
word 1
word 2
word 3
word 4

0 0
L X D 0

6
4 4

FORTRAN 11, Section One (709 Version)

WRITE I , J, LIST

The unit designation i s collected. There a r e two possible cases .
1. Constant designation which i s converted to binary.

The following table entries a r e made:
FIXCON table (if not previously entered)

word1 I I I
CIT table

w o r d 4 1 i 0 1
where i i r the position of I in the FIXCON table.

word 1
word 2

2. Variable designation which i s verified to be fixed-point.

O((I F N 0
C A L 0

The following table entries a r e made:
FORVAR table

4 4
CIT table

word 1
word 2

OC (I F N)
V a r i a b l e N a m e (BCD)

word 1
word 2

The drum address i s collected. There a r e two possible cases :

CIT table

0 0
T S X n -

I

word 3
word 4

1. Constant address which is converted to binary.
The following table entries a r e made:

FIXCON table (if not previously entered)
word 1 I N I

word 1
word 2
word 3
word 4

w

(S D R)
0 4

t

O((IFN) 0
C A L 0

- V a r i a b l e N a m e (BCD)
0, 0 %

CLOSUB table
word 1 I (S D R 1 I

word 4 1 i 0 1

CIT table

where i is the po-~ition of N the FDECON table.

The following table entries a r e made:
CIT table

word 1
word 2

word 1
word 2

0 0
C A L C)

0 0
S X D 0

word 3 , 2

2. Variable address which i s veriiied to be fixed-point.
The following table entries are made:

FORVAR table
word 1 O((IFN)
word 2 V a r i a b l e N a m e (BCD) 4

CIT table -L

The LIST ia now scanned and table entries made in the same manner as
for READ DRUM N, J, LIST with one exception. Fixed-point non-aub-
scripted variables ire entered in F0RVA.R rather than in FORVAL.

word 1
word 2
word 3
word 4

CIT table

0 0
C A L

V a r i a b l e N a m e (BCD)
0 0

word 1
word2
word 3
word 4

The following table entry is made:

0 0
- L D A 0

0
. 0 0

FORTRAN 11, Section One (709 Version)

END FILE I

The unit deeignation i s collected. There are two possible cases:
1. Constant designation which i s converted to binary.

The following table entries a r e made:
FXXCON table (if not previously entered)

word 1 I I'
CIT table

word 1 I w (I F N) 0 I

The following table entries a r e made:

word 2
word3
word 4

C A L 0
2

i 0

CIT table

where i i s the position of 1 in the FIXCON table.
2 . Variable designation which i s verified to be fixed-point.

FORVAR table

word 2 C A L
word 3 V a r i a b l e N a m e (BCD)

word 1
word 2

word 4 1 . 0
The following table entries a r e made:

W(IFN)
V a r i a b l e N a m e (BCD) -

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

C LOSUB table
word 1 1 (E F T 1 1

FORTRAN 11, Section One (709 Version)

REWIND I

The unit designation is collected. There a r e two possible cases :
1. Constant designation which is converted to binary.

The following table entr ies a r e made:

2. Variable designation which is verified to be fixed-point.

FIXCON table (if not previously entered)
word1 1 I I'

CIT table

The following table entr ies a r e made:

word 1
word 2
w o r d 3
word 4

FORVAR table

CK (IFN) 0
C A L 0

2
i 0

where i is the position of I in the FIXCON table.

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

CIT table
word 1
word 2
word 3
word 4

word 1 O((IFN)

I 4 4 j
CLOSUB table

w o r d 1) (R W T) I

word 2 V a r i a b l e N a , m e (BCD)
CIT table

word 1
word 2
word 3
word 4

W I F N) 0
C A L 0

, V a r i a b l e N a m e (BCD)
0 0

The following table entr ies a r e made:

FORTRAN 11, Section One (709 Version)

BACKSPACE I

The unit designation is collected. There are two possible cases:
1. Constant designation which i s converted to binary.

ward 4 I i 0 1
where i i s the position of I in the FIXCON table.

The following table entries a r e made:
FIXCON table (if not previously entered)

word 1 I I i
CITtable .

word 1
word 2

(I F N) 0
C A L 0

2. Variable deeignation which i s verified to be fixed-point.
The following table entries are made:

FORVAR table s

C IT tab1 e
word 1
word 2
word 3
word 4

CXT table
word 1
word 2
word 3
word 4

CIT table
word1
word 2
word 3
word 4

word 1
word 2

CIT table
word1 I 4

oc(WN) 0

CLOSUB tablc
word1 1 (, B S T 1 1

Oi (I F N)
, V a r i a b l e N a . m e (BCD)

word 2
w o r d 3

C A L 0
' V a r i a b 1 e N a m e (BCD)

w o r d 4 1 0
The following table entr ies a r e made:

FORTRAN 11, Section One (709 Version)

DIAGNOSTIC

A diagnostic program exists for source program e r ro r s found o r machine
e r ro r s occurring during Section One. The program consists of:

Program to prepare meesage
Pr int program
Table of comments

When an e r r o r i s found or occurs du& Section One control goes to
the Diagnostic Program by means of a TSX using IR4.
There a r e several possible cases:

I. I R ~ # 0 signifies an e r ro r call.
F i r s t error: Print "DIAGNOSTIC PROGRA M" heading and
procede as in 2) below.
Not f i rs t error: Construct parameters for printing statement
being processed and comment describing error. Restore any
modified statements to their original form and print statement
and comment.
a) If e r r o r was source program return control to Section One I

for next statement.
b) If e r ro r was machine, print "END OF DIAGNOSTIC" message

and go to Machine E r r o r Supervisor program.
11. I R 4 s 0 signifies cbmpletion of Section One.

1) No e r r o r s had occurred. Go to Section One Prime.
2) Some source program e r r o r s had occurred. Write all

diagnostic information which has been printed on tape B2
following source program. Go to Source Program E r r o r
supervisor program.

SECTION ONE-PRIME (704 Version)

This section i s a terminal processor for Section One. It combines fragments
of those tables which Section One generated a s labeled buffer sized records.
It makes certain modifications, primarily the replacement of EFNs with
corresponding IFNs, which can only be accomplished when the entire source
program has been reduced to tabular form.

The input to Section One-Prime consists of:

Various parameters describing tables (i nco re s)
Buffers containing terminal entries in tables (in cores)
Tables which Section One required for reference (FORSUB,END in cores.
DIMI, DIM2, DIM3, TAU1, TAU2, TAU3, FIXCON, FLOCON on drums.)
Tables which Section One did not require for reference. (COMPAIL on
tape 3; TEIFNO, TDO, TLFGO, TRAD, FORTAG, FORVAR, FORVAL,
FRET, EQUIT, CLOSUB, FORMAT, SUBDEF, COMMON, HOLARG,
NONEXC , TSTOPS, CALLFN , FMTEFN, TSKXPS on tape 4.)

The output of Section One-Prime consists of:

1, Tables on drums: TAU1 , TAUZ, TAUS, FIXCON, FLOCON, FORVAL
2. Tables on tape:

Tape 2: 'F i le 11s Source Program
File 2 i s COMPAIL table
File 3 i s Compail Record Count - FORSUB
File 4, Record 1 is

Record 2 is
Record 3 is

File 5, Record 1 is
Record 2 is
Record 3 is
Record 4 is
Record 5 i s
Record 6 is
Record 7 i s
Record 8 is
Record 9 is

FLOCON table.
FORMAT table,
SLZ table.
END table.
SUBDEF table,
COMMON table,
HOLARG table.
TEUFNO table,
T WGO table.
TRAD table,
TDO table.
FORVAL table.

Record 10 is FORVAR table,
Record 11 i s FORTAG table.
Record 12 i s FRET table,
Record 13 i s EQUIT Table.
Record 14 is CLOSUB table.

Tape 3, File 1, Record 1 i s FORMAT e r ro r list.
Record 2 is NONEXC table.
Record 3 is TSTOPS table,
Record 4 is TSKIPS table,

The tables are processed in the following order and manner:

COMMON - The table of common variables i s assembled from tape 4 and
the Section One buffer, It i s written a s record 3 of file 5 on tape 2; preceded
by its identification (12) and word count. ,

HOLARG - The table of hollerith argument8 is assembled from tape 4 and the
Section One buffer. It i s written a s record 4 of file 5 on tape 2; preceded
by its identification (13) and word count.

FORTRAN 11, Section One Prime, 704

FIXCON - The entry count of the table of fixed point constants is doubled to
form the word count and written with the table on drum 2 ,

COMPAIL - The last buffer of entries in the table of compiled instructions is
written on tape 3 . followed by an EOF. This tape i s then rewound and the
COMPAIL table transferred, to tape 2 as the second file. A record count for
COMPAIL is formed and written as record 1 of file 3 on tape 2.

FORSUB - The table of names and degrees of arithmetic statement functions,
if any, is written after the compail record count in record 1 of file 3.011 tape 2.

FLOCON - The table of floating point constants is read from drum.2. The
block check sums used by Section One are deleted. The word count and the
table a re written a s record 1 of file 4 on tape 2.

FORMAT - The table of format statements is assembled from tape 4 and the
Section One buffer. It i s written as record 2 of file 4 on tape 21 preceded by
its identification (10) and word count.

FMTEFN- The table of references to fixed format statements is assembled
from tape 4 and the Section One buffer. Each reference to a format is checked
against the FORMAT table. If any referenced statements a r e missing an error
list is developed for Section One Double Prime. This list, or a single flag
word'if no er rors , is written as record 1 of file 1 on tape 3.

DIM1 - The table of one dimensional arrays is read from drum 3. The check -
sums for each entry are deleted. This table is now renamed SIZ.

DIM2 - The table of two dimensional arrays is read from drum 3. The check -
sums for each entry are deleted. The two dimensions a r e multiplied to form
the size of the array. This table is added to 512.

DIM3 - The table of three-dimensional arrays is read from drum 3. The check -
sums for each entry are deleted. The three dimensions a re multiplied to form
the size of the array. This table is added to SIZ.

SIZ - A check sum of the entire SIZ. table is computed. The table is written as -
record 3 of file 4 on tape 2. It is preceded by E I F N ~ and its word count and is
followed by the check sum.

END - The five word END table is written as record 1 of file 5 on tape 2. -
SUBDEF- The table of subprogram definition is assembled from tape 4 and the
Section One buffer. It i s written as record 2 of file 5 on tape 2; preceded by
its identification (11) and word count.

III- 2

-

TEIFNO - The table of corresponding external and internal formula numbers
is assembled from tape 4 and the Section One buffer. It is searched for
duplicate external formula numbers. If such a r e found they a r e flagged as e r r o r s
for Section One Double Prime. Those cases where Section One assigned more
than one internal number a r e not considered a s duplicates and the flag i s deleted.
The table is written a s record 5 of file 5 on tape 2 preceded by its identification
(0) and word count. It is retained in memory for use in processing tables
discussed below,

TIFGO - The table of IFs , GO TOs and ASSIGN8 is assembled from tape 4 and
the Section One buffer. Each external formula number i s searched for in
TEIFNO and its corresponding internal number replaces it in TIFGO. Any
external formula numbers not found a r e set equal to 0 as an e r ro r signal to
Section One Double Prime, When all entries have been modified the table i s
written a s record 6 of file 5 on tape 2 preceded by its identification (2) and word
count.

TRAD - The table of COMPUTED and ASSIGNED GO TO addresses is assembled
from tape 4 and the Section One buffer. Each entry, which is an external
formula number, is searched for in TEIFNO. When found it i s replaced by the
corresponding internal formula number. If not found it i s set equal to 0 as an
e r r o r signal to Section One Double Prime. ' When all entries have been treated
the table i s written a s record 7 of file 5 on tape 2 preceded by its identification
(3) and word count.

TDO - The table of DOs is assembled from tape 4 and the Section One buffer.
Each entry i s examined to dktermine if i t originated from a DO o r from an
Input-Output List. If it originated from an 1 1 0 List the flag that so indicated is
deleted. If i t originated frorn a DO the EFN for the end of the DO is searched
for in TEIFNO. When i t is found the corresponding I F N replaces it in TDO.
If not found it i s set equal to 0 as an e r ro r signal to Section One Double Prime.
In those cases where Section One assigned more than one I F N to an external
number, the last such LFN is used so that the DO includes all instructions of
the terminal statement. When all entries have been treated the table is written
a s record 8 of file 5 on tape 2 preceded by its identification (1) and word count.

FORVAL - The table of definitions of fixed point variables i s assembled from
tape 4 and the Section One buffer.

CALLNM - The table of f i rs t and last internal formula numbers of statements
containing references to subprograms is assembled from tape 4 and the Section
One buffer .
Each IFN in FORVAL is searched for a s a f i rs t IF'N in CALLNM. If found it is
replaced by the corresponding last IFN. When all entries have been processed
the FORVAL table i s written as record 9 of file 5 on tape 2; preceded by i ts
identification (6) and word count. The CALLNM table i s dead. Check sums
a r e now formed for each FORVAL entry. Each entry, followed by i t s check sum,
i s written on drum 2.

FORVAR - The table of usages of fixed point variables i s assembled from
tape 4 and the Section One buffer. It i s written a s record 10 of file 5 on tape 2
preceded by its identification (5) and word count.

FOHTAG - The table of tag usages is assembled from tape 4 and the Section
One buffer. It i s written a s record 11 of file 5 on tape 2 preceded by its
identrfication (4) and word count.

FRET - The table of frequency statements i s assembled from tape 4 and the -
Section One buffer. Each EFN in FRET i s searched for in TEIFNO. When
found it i s replaced with the corresponding IFN. If not found, it i s set equal
to 0 as an e r ro r signal for Section One Double Prime. The FRET table is now
sorted by IFN to form an ordered list .

The TWGO table i s now re-examined for any entries for COMPUTED GO TO
statements. The IFN of each such statement i s searched for in FRET. If
found, the l is t of branch frequencies is reversed to correspond to the object
program transfer vector. When all TIFGO entries have been examined, the
FRET table i s written a s record 12 of file 5 on tape 2 preceded by its identif-
ication (7) and word count.

EQUIT - The table of equivalence statements i s assembled from tape 4 and the
Section One buffer. The table i s reformatized to make those variables which
a r e equated into strings of relativelized symbols. Any found to be inconsistant
a r e flagged a s e r ro r s for Section One Double Prime. Any redundancies a r e
deleted. The table is then written a s record 13 of file 5 on tape 2 preceded by
its identification (8) and word count.

CLOSUB - The table of names of closed (library) subroutines i s assembled
from tape 4 and the Section One buffer Duplicates a r e eliminated. Each name
in the CLOSUB table i s searched for in the SUBDEF table. If found it is
deleted from CLOSUB a s being a dummy name. The table i s then written a s
record 14 of file 5 on tape 2 preceded by its identification (9) and word count.

NONEXC - The table of statement numbers of non-executable statements is

assembled f rom tape 4 and the Section One buffer. It i s written a s record 2
on tape 3.

TSTOPS - The table of statement numbers of STOP and RETURN statements
is assembled from tape 4 and the Section One bdfer . It i s written a s record 3
on tape 3.

TSKIPS - The table of IFNs to which ski,p type machine language statements
may skip is assembled from tape 4 and the Section One buffer. It is written a s
record 4 on tape 3 followed by an end of file mark.

Onc i s added to the last IFN used and it is left for Section One Double Prime.
Thc END card indication for sense switch 4 is examined and bit 16 of word 20
s c t accordingly. This will be interrogated by Section IV. 8

SUBROUTINES - There a r e three subroutines used by Section One Prime:

TAPOO- Table Assembly Program assemble tables written on tape 4 during -
Section One. It usce the parameter^ left by Section One to determine for a

1. number of records on tape 4,
2. number of words in each record,
3. number of words remaining in the core buffer,
4. f i r s t location of core buffer.

The calling sequence in Section One Prime supplies the:
H

1. table identification (which also eerves to locate the para-
meters left by Section One),

2. f i r s t location of buffer into which the table is to be
assembled.

The routine tests each table for overflow against a table of permissable
maximuma.

Tables Assembled by TAPOO

Name Identification

TEIFNO
Tno
T LFGO
TKAD
FOKTAG
FORVAR
FORVAL
FRET
EQU IT
CLOSUB
FOR M'AT
SUBDEF
COMMON
HOLAKG
NONEXC
TSTOPS
CALLFN
FMTEFN
TSKIPS

Maximum word count

750
750
600
250

1500
1500
1000
750

1500
1500
1500

180
600
9 00
750
300
400
750
425

WATOO - Writes assembled table on tape 2 preceded by identification and
word count. Calling sequence supplies identification and first location of
buffer in which table has been assembled.

FORlDP - Writes assembled table on tape 3 for Section One Double Prime.

SECTION ONE-PRIME (709 Version)

This section is a terminal processor for Section One. It combines frag-
ments of those tables which Section One gene rated a s labeled buffer sized
records. It makes certain modifications, primarily the replacement of
EFNs with corresponding IFNs, which can only be accomplished when the
entire source program has been reduced to tabular form.

The input to Section One-Prime consists of:

1. Various parameters describing tables (in cores)
2. Buffers containing terminal entries in tables (in cores)
3. Tables which Section One required for reference (FORSUB, ENDI

DIMI, DIMZ, DIM3, TAU1, TAU2, TAU3, FIXCON, FLOCON in
Cores,)

4, Tables which Section One did not require for reference. (COMPAIL
on tape A4 in 8K version, on tape B2 in 32K version; TEIFNO, TDO,
TIFGO, TRAD, FORTAG, FORVAR, FORVAL, FRET, EQUIT, CLOSUB.
FORMAT, SUBDEF, COMMON* HOLARG, NONEXC, TSTOPS, CALLFN.
FMTEFN, T S W S on tape A4.)

The output of Section One-Prime consists of:

Tables in cores: TAU1, TAU2, TAU3, FIXCON, FLOCON, FORVAL,
TRAD, TIFGO, TEIFNO,

Tables on tape:
Tape B2: File 1 is Source Program

File 2 is COMPAIL table
File 3 is Compail Record Count - FORSUB
File 4, Record 1 is FLOCON table.

Record 2 i s FORMAT table,
Record 3 i s SIZ table,

File 5, Record 1 i s END table.
Record 2 is SUBDEF table,
Record 3 is COMMON table.
Record 4 i s HOLARG table,
Record 5 is TEUFNO table,
Record 6 is TIFGO table,
Record 7 i s TRAD table.
Record 8 i s TDO table.
Record 9 i s FORVAL table,
Record 10 is FORVAR table.
Record 11 is FORTAG table,
Record 12 is FRET table.
Record 13 is EQUIT table,
Record 14 is CLOSUB table,

Tape B3: File 1, Record 1 is NONEXC table.
Record 2 i s TSTOPS table,

(8K version only, in cores for 32K version)

The tables a r e processed in the following order and manner:

COMPAIL - 8K Version. Each record of COMPAIL is read from tape A4. -
Each entry is examined for appearance of floating-point constants. Any
such found a r e entered in the FLOCON table (if not previously entered) and
replaced in the COMPAIL entry with the position of the entry in FLOCON.
The COMPAIL record is then written in file 2 on tape B2. When al l COMPAIL
records have been read from A4 the contents of the Section One buffer a r e
processed a s the last record,

32 K Version. The contents of the Section One buffer a r e written a s the -
las t record of file 2 on tape B2,

FORSUB - The table of names and degrees of arithmetic statement functions,
if any, is written after the compail record count in record 1 of file 3 on tape B2.

FLOCON - The table of floating-point constants and its word count a r e
written as record 1 of file 4 ori tape B2.

FORMAT - The table of format statements is asscmblcd from tapc: A4 and
the Section One buffer. It is written a s record 2 of file 4 on tape B2; pre-
ceded by its identification (10) and word count.

FMTEFN - The table of references to fixed format statements is assembled
from tape A4 and the Section One buffer. Each reference to a format i s check-
ed against the FORMAT table. If any referenced statements a r e missing . . t r
e r r o r l is t is developed for Section One Double Prime,

DIM 1 - The table of one dimensional a r rays is renamed SIZ. -
DIM2 - Each entry in the table of two dimensional a r rays has its two dimen-
sions multiplied to form the size of the array. This table i s added to SIZ.

DIM3 - Each entry in the table of three-dimensional a r rays has its three
dimensions multiplied to form the size of the array. This table is added to
s1z.

SIZ - The table is written a s record 3 of file 4 on tape B2. It i s preceded -
by E I F N 0 and its word count.

END - The END table is written as record 1 of file 5 on tape B2. -

SUBDEF - The table of subprogram definition is assembled from tape
A4 and the Section One buffer. It is written a s record 2 of file 5 on
tape B2; preceded by its identification (11) and word count.

COMMON - The table of common variables is assembled from tape A4
and the Section One buffer. It is written a s record 3 of file 5 on tape
B2; preceded by its identification (12) and word count. *

HOLARG - The table of hollerith arguments is assembled from tape A4
and the Section One buffer. It is written a s record 4 of file 5 on tape B2;
preceded by its identification (13) and word count.

TEIFNO - The table of corresponding external and internal formula
numbers i s assembled from tape A4 and the Section One buffer. It i s
searched for duplicate external formula numbers. If such a r e found
they a r e flagged a s e r r o r s for Section One Double Prime. Those cases
where Section One assigned more than one internal number a r e not con-
sidered a s duplicates and the flag is deleted. The table is written a s
record 5 of file 5 on tape B2; preceded by its identification (0) and word
count. It, i s retained in memory for use in processing tables discussed
below.

TIFGO - The tables of IFs, GO TOs and ASSIGNS is assembled f rom tape
4 and the Section One buffer. Each external formula number i s searched
for in TEIFNO and its corresponding internal number replaces it in TIFGO,
Any external formula numbers not found a r e set equal to 0 a s an e r r o r
signal to Section One Double Prime, When al l entries have been modified
the table i s written a s record 6 of file 5 on tape 2 preceded by its identific-
ation (2) and word count.

TRAD - The table of COMPUTED and ASSIGNED GO TO addresses i s
assembled from tape 4 and the Section One buffer. Each entry, which
is an external formula number, i s searched for in TEIFNO. When found
it is replaced by the corresponding internal formula number. If not
found it is set equal to 0 a s an e r r o r signal to Section One Double Prime.
When all entries have been treated the table i s written a s record 7 of
file 5 on tape 2 preceded by its identification (3) and word count.

TDO - The table of DOs is assembled from tape 4 and the Section One -
buffer. Each entry is examined to determine if i t originated f rom a DO
or from an Input-Output List. If i t originated from an I/O List the flag
that so indicated is deleted. If i t originated f rom a DO the EFN for the
end of the DO i s searched for in TEIFNO. When i t is found the corres-
ponding I F N replaces it in TDO. If not found it is set equal to 0 a s a n
e r r o r signal to Section One Do~b la Prime. In those cases where Section
One assigned more than one' W N to an external number, the las t such
IFN is used so that the DO includes al l instructions of the terminal
statement. When al l entries have been treated the table is written a s
record 8 of file 5 on tape 2 preceded by i t s identification (1) and word
count,

FORVAL - The table of definitions of fixed-point variables is assembled
from tape A4 and the Section One buffer.

CALLNM - The table of first and last internal formula numbers of
statements containing references to subprograms i a assembled from
tape A.4 and the Section One buffer.

Each I F N in FORYAL is searched for a,s a f i rs t I F N in CALLNM. If
found it i s replaced by the corresponding last IFN. When all entries
have been processed the FORVAL table is written a s record 9 of file 5
on tape B2; preceded by its identification (6) and word count. The CALLNM
table i s dead.

FORVAR - The table of usages of fixed point variables is assembled from
tape A 4 and the Section One buffer. It is written as record 1.0 of file 5 on
tape B2 preceded by its identification (5) and word count.

FORTAG - The table of tag usages is assembled from tape A4 and the
Section One buffer. It i s written a s record 11 of file 5 on tape B2 pre-
ceded by its identification (4) and word count.

FRET - The table of frequency statements i s assembled from tape A4 and
the Section One buffer. Each E F N in FRET is searched for in TEIFNO.
When found it i s replaced with the corresponding IFN. If not found, it i s
set equal to 0 a s an e r r o r signal for Section One Double Prime. The FRET
table i s now sorted by I F N to form an ordered list.

The TIFGO table i s now re-examined for any entries for COMPUTED GO TO
statements. The I F N of each such. statement i s searched for in FRET. If
found, the l i s t of branch frequencies is reversed to correspond to the object
program transfer vector. When a l l TIFGO entries have been examined,
the FRET table is written as-reaoxd 12 of file 5 on tape B2 preceded by its
identification (7) and word count.

EQUIT - The table of equivalence statements i s assembled from tape A4
and the Section One buffer, The table is reformatized to make those var-
iables which a r c equated into strings of relativelized symbols. Any f o u ~ d
to be inconsistant a r e flagged a s e r r o r s for Section One Double Prime. Any
redundancies a r e deleted, The table is then written a s record 13 of file 5
on tape B2 preceded by its identification (8) and word count.

CLOSUB - The table of names of closed (l ibrary) subroutines is assembled
from tape A4 and the Section One buffer. Duplicates a r e eliminated. Each
name in the CLOSUB table i s searched for in the SUBDEF table. If found,
it i s deleted from CLOSUB as being a dummy name. The table i s then written
as record 14 of file 5 on tape 332 preceded by its identification (9) and word
count.

NONEXC - The table of statement numbers of non-executable statements i s
assembled f rom tape A4 and the Section One buffer, It is written a s record 1
on tape B3 in the 8K version. I is left in cores in the 32K version.

TSTOPS - The table of statement numbers of STOP and RETURN statements
i s assembled from tape A.4 and the Section One buffer. It i s written a s record

2 on tape B3 in the 8Kvereion. It ie left in cores in the 32K version.

MISC. - One is added to the last IFN used and i t is left for Section One -
Double Prime,

SUBROUTINES - There a r e two subroutines used by Section One Prime.

T A P 0 0 - Table Assembly Program assemble tables written on tape A4
during Section One. It uses the parameters left by Section One to de-
termine for a given table:

1. number of records on tape A4,
2. number of words in each record,
3. number of words remaining in the core buffer,
4, f i rs t location of coro buffer,

The calling sequence in Section One Pr ime supplies the:

1. table identification (which also serves to locate the
parameters left by Section One),

2, f i rs t location of buffer into which the table i s to be
assembled,

The routine tests each table for overflow against a table of permissible
maximums.

Tables A s s e m b l e d by TA.POO:

Name Identification

TEIFNO
TDO
TIFGO
T R A D
F O R T A G
F O R V A R
F O R V A L
FRET
EQUIT
CLOSUB
F O R M T
SUBDEF
COMMON
HOLARG
NONEXC
TSTOPS
C A L F N
F M T E F N

END

Maximum word count ,

8K Version 32K Version

WATOO - Writes assembled table on tape B2 preceded by identification
and word count. Calling sequence supplies identification and first locat-
ion of buffer in which table has been assembled.

IV

SECTION ONE DOUBLE PR.IME

Section One Double P r ime ' s purpose i s to detect source program e r r o r s .
It does not add any further information to the tables created in preceding
Sections, nor does i t create any new tables for the use of succeeding Sec-
tions. Although Section One makes a determined effort to eliminate the
e r r o r s in any one statement, no effort i s made towards relating a part ic-
ular statement to the r e s t of the program, nor would i t be convenient fo r
Section One t o do so.

The e r r o r s that Section One Double P r i m e i s able to find a r e mainly e r r o r s
involving program flow, i. e. , t ransfers to non-executable or even non-
existent statements, and conversely, no t ransfers to executable s tatements
which a r e not in the direct path of flow. These, and other e r r o r s , a r e
found through a scan of the various tables of information which comprise
the 5th f i le of tape B2 in the 709, and tape 2 in the 704. These tables a r e of
such rigid format that i t is easy to examine them for correc t ordering and
content. All e r r o r s found by Section One Double P r i m e a r e accumulated in
a n e r r o r l i s t by several different e r r o r routines which a r e described a t the
end of this chapter. The table scan is only discontinued by table overflow
or a machine e r r o r .

Section One Double P r ime f i r s t initializes the e r r o r l i s t with the count of
missing format statements. The EFN's of missing format s tatements a r e
left in the e r r o r l i s t by Section One P r i m e in the 709 and read f rom tape 3
in the 704.

The following tables a r e then scanned.

TEIFNO

The TEIFNO table i s scanned for duplicate statement numbers. Duplicate
statement numbers a r e flagged minus by Section One P r i m e when i t assembles
the TEIFNO table. If any minus entr ies a r e found, they a r e entered in the
e r r o r l i s t by the ERROR routine.

TIFGO

Each of the 2 word TIFGO entr ies i s examined for references to non-existent
statement numbers, i. e. , that there a r e not any zeroes except those peculiar
to the particular TIFGO format. Section One P r i m e gives a non-existent EFN
an IFN of zero. Further , each reference must be to an executable s tate-
ment. Therefore, a cannot b in the table of non-executable s tatements ,
the NONEXC table. Each of the i%li different types of TIFGO ent r ies is
checked by a specific subroutine within the TIFGO processor. This scan of
the TIFGO table will result i n the checking of the TRAD table, if one exists.

IV- 1

If any e r rors a r e found, they a re entered in the e r ror list by either
the ER.ROR routine if i s non-executable or the NOBETA routine i f

i s non-existent.

In order to do a quick flow analysis the I F N d of a TIFGO statement is
entered in the ALPHA table, and the references (IFN 's) a r e entered
in the BETA table. The number of branches associated with a particular
TIFGO entry is also entered in the ALPHA table with the I F N d . All
TIFGO entries, except ASSIGNS, a r e entered into these tables. The posi-
tion of an ASSIGN in the source program does not effect the path of flow
in the program.

The ALPHA and BETA tables a r e internal to Section One Double Pr ime
and have the following format.

ALPHA

DECREMENT , TAG, ADDRESS

0 IFN 4 N:: Number of branches.

The table of STOP and RETURN statements, TSTOPS, is
a part of the ALPHA table.

BETA

DECREMENT , - TAG, ADDRESS

0 or 1* 0 IFN (?

*Decrementwil lbe 1 if i s non-executable. e
The BETA table consists of the @ ' s from TIFGO, the
entire TRAD table, and the last IFNd + 1 in the program.
In the 704, the inclusion of machine language necessitated
the building of a second BETA table, the BETA2 table.
This second BETA table is an extension of the BETA table
and has the same format. BETA2 consists of the TSKIPS
table, table of skip type instructions such a s CPY, CAS,
LBT, etc. , and the o(+ 1 of conditional transfers' from
TIFGO. Conditional t ransfers a r e TXH, TIX, TMI, etc.

F L O W ANALYSIS

Example 1

0

o(GO'TO CJ
4-1- 1 DIMENSION X(5)
4 + 2 FORMAT (F8.3)

More non- executable state-
ments.

IV- 2

A brief flow analysis i s performed using the information in the ALPHA,
BETA, and NONEXC tables. Each 4 in the ALPHA table i s the termin-
ation of a path of flow in the source program. Therefore, there must be
a transfer to the f irst executable statement following each d i n the ALPHA
table. That i s , that the IFN& M in Example 1 must be in the BETA
table, since O t s a re statements transferred to. In reference to Example 1,
the flow analysis processor will f i rs t search the BETA table for 4 t 1. Not
finding dt 1 in the BETA table, i t will then search for o(+ 1 in the NONEXC
table, and a match will be found, Upon finding &+ 1 in the NONEXC table,
the processor will then follow the same procedure for At 2, dt 3, ,
o< + M. In searching for d+ M, i f the processor finds it in the BETA

table, the processor will then proceed to execute a flow analysis for the
next d in the ALPHA table. However, i f A t M is not in the BETA table,
and since it is an executable statement, d t M will not be in the NONEXC
table. Therefore, if lp(f M i s not in either the BETA or NONEXC tables,
i t is a part of the program not reached, i. e . , an executable statement with
no path of flow to it. If any e r r o r s a r e found, they a r e entered in the e r ro r
list by the NOBETA routine.

The TDO table i s examined for DO statements that specify an illegal .
The three legal references checked for by Section One Double Pr ime are:

1. That the IFN .. exists, i, e. , that the reference is not zero. r (3
2 . That the I F N ~ is executable, i. e . , that the reference i s not in the

NONEXC table.

3. That the IFNQ i s not a transfer, STOP, or RETURN statement, i. e. ,
that the reference i s not in the ALPHA table.

If any e r r o r s a r e found, they a r e entered in the e r ro r list by both NOBETA
and d DO routines, in that order.

The number of branches for a TIFGO statement i s saved in the ALPHA table
with the IFNd during the scan of TIFGO. Section One Double Pr ime ignores
statement numbers in the FRET table which a r e not in the ALPHA table, but
saves any statement number where the count of branches in FRET i s greater
than the count of branches shown in the ALPHA table. Section Four ignores
extra frequencies given for statements other than TIFGO statements, but
would be confused by misinformation generated when there a r e more fre-
quencies given than there a r e branches. If any e r r o r s a r e found, they a r e
entered in the e r ro r list by the NOBETA routine.

IV- 3

EQUIT

If Section One Pr ime has found any inconsistent equivalences when
assembling the EQUIT table, i t sets an e r ror flag at the beginning of
the table and only enters those variable names which a r e erroneous,
and sets another flag at the end of the list. The e r ro r s a r e entered in
the e r ror l is t by the ERROR routine.

If any e r ro r s have been found by Section One Double Prime, i t spaces the
System Tape to the diagnostic and reads in DO0 1. This is the only section
of FORTRAN that does not use the usual diagnostic caller. If no e r ro r s
have been found, tape B2 in the 709, tape 2 in the 704, i s spaced over the
5th end of file mark and control is transferred to 1 to CS to continue
compilation.

ERROR ROUTINES

The three e r ro r routines in Section One Double Pr ime make entries in a
common er ror l is t which begins at location - 1 and builds downwards, The
e r r o r routines a r e reached by means of a TSX , 4 and control is returned
to 1, 4.

ERROR

Makes a two word entry in the e r ro r list.

DECREMENT , TAG, ADDRESS -
WORD 1 c (I ' 4) 0 hash or C(IR4')*
WORD 2 CONTENTS

O F MQ

* The address of the f irst word m a y contain the location of a TSX to one of
the checking routines that has called the ERROR routine.

NOBETA
Makes a one word entry in the e r ror list.

DECREMENT , TAG , ADDRESS -
WORD 1 C(IR4) 0 IFN d

 DO^
Makes a two word entry in the e r ro r list. A TSX to -(DO is
preceded by a TSX to the NOBETA routine.

DECREMENT , TAG , ADDRESS -
WORD 1 IFN o(V
WORD 2 S Y M B O L

w~ t

The following i s an example of a Section One Double Prime e r ro r l is t
resulting from a problem run on the 32K System in the 709. *

ENTRY
LOCATION DECREMENT , TAG , ADDRESS MADE BY REASON -

- 1 L(ETE) 0 hash ERROR The EFN i s dupli-
-2 IFN oC 0 EFN 4 cated in the source

program

-3 L(TMNO2) 0 IFNO(NOBETA (32isnon-existentin

TIFGO statement .
Statement i s in the
form of o(IF (E)

els 02, P3
-4 L(BN0TX) 0 L(TMX3) ERROR (3 i s non- executable
- 5 hash 0 I F N d for the preceding

TIFGO statement

-6 LjNOTRA) 0 I F N ~ NOBETA Statement number 4
i s a part of the pro-
gram not reached

-7 L(C0NBET)
or

L(D0BX) 0 I F N ~ NOBETA TDO statement o(
-8 IFN 4 V IFN &DO specifies a that
-9 S Y M B O L i s either 1. CONBET

in the ALPHA table
2. DOBX in the
NONEXC table

- 10 L(TO0FRQ) 0 I F N d NOBETA M o r e frequencies
have been given than
there a r e branches
for TIF'GO statement
d .

- 1 1 L(BADEQU) 0 hash ' ~ R R O R An inconsistent
- 12 BCD VARIABLE Name (Vn) equivalence has been

made concerning the
variable Vn

*L() implies the location of the symbol within the parentheses.

SECTION TWO

Preliminary Description Of The Problem .
A. Tags Created By Section One.

Section Two compiles the instructions necessary to compute and index so that the
symbolic index registers, (tags), set up in Section One for tagged inatructions
will contain their proper values. These tagged instructions compiled by Section
One refer to a r rays , i. e. subscripted variables 6 For instance,

will be handled by Section on& as follows:

CLA Atl,'??
S T 0 X

Section One makes up a table of these symbolic tags (2). The s mbolic tag i s ,
in fact, a subscript combination [such a s (I, J), (K, J, I), or (M)] with given
dimensions and coefficients. The tags a r e divided into 3 classes, 1, 2, and 3
dimensional, and separate tables, Taul , Tau2, and Tau3 a r e composed for these
respective classes. The table ntry for a particular tag for instance, E (C I I 3, CZJ+ a. , C3K+ a3)7 will contain (I) i ts sym 01s I, J and K, (2) its
coefficients C 1, CZ, and C3, and the dimensions D l and D2 of the ar ray
concerned. The tag is not affected by the addends a l , a2, and a3. The effect of
the addends is handled in the address part of the tagged instructions.

1. Basic For.mat

The biggest part of Section Two i s compiling computing and indexing instructions
for DO loops and tags within them. A general format for a DO loop is a s follows:

A LXD . , , p 1 Section Two
B

Section one instructions
OPN

B1 TXI %+lJT , (Decrement)
B2 TXL @,r (Decrement)
B3 TIX *+b > (Decrement)

This, of course i s the simplest case. The TXI instruction at B1 increments the
tag, the TXL tests the DO loop, and the TIX resets the t ag to its original load
value a t A. Often, of course, the LXD address and the TXIj TXL, and TIX
decrements a r e variable and may require computing and initialization
instructions a t location A. Further complications may result from DO nesting,

from transfers out of DO1 s , and many other factors some of which will be
discussed herein.

2. TXI Variations

The TXI decrement i s a function of (a) the permutation of subscripts in the tag,
(b) the coefficients of the subscripts in the tag, and (c) the parameters N1, N 2
and N3 of the DO, Sometimes the TXI must be expanded as follows:

(Decrement)

(Decrement)

I where the SXD reinitializes the TXL decrement (test) of an inner DO within
the nest. A given TXI format with a set formula from which it8 decrement(@)
may be computed is called a TXI BLOCK NUMBER. There are 6 such block
numbers. This block number depends on the permutation of subscript order in
relation to order of DO nesting (this permutation defines a group number, of
which there a r e also 6) , the position of the subscript jn the tag, whether o r not
this tag will be used to test the loop, and whether there will be a ca r ry in this
loop.' '

3 . TXL (test)

The TXL (test) of a DO loop will generally use one of the tags which occurs
within the loop. This tag will be chosen for it8 simplicity. If there a r e no tags
in the DO, a counter tag will be created for this purpose.

4. T I X (Hceet)

In inner Do's controlling a tag, a TIX is used to reset a tag by the amount it
has been bumped upon satisfaction of the DO. This of course i s not necessary
for the outermost DO controlling a tag, for it will be reinitialized upon reentry.

5. Special tags created by Section Two in DO'S.

a. Stored counter. If the symbol (1)'of a DO is required to be updated in i ts
own cell within a DO (because of its appearance on the right side of an arith-
metic expression or bccaus'e a transfer out of the DO) a counter icr set up as
a tag, therefore

P X D 0, 'c '
S T 0 (I)

i s compiled at the beginning of thc DO, and

SXD (I),?

at the end of the DO.

Sometimes an inner loop usea the test of a DO further out r the nest for i t s test.
i. e. , 1 TXL m a y be sufficient for 2 or 3 DO'S within a nest. When this crituation
occurs, the DO whose TXL is eliminated is considered to have CARRY.

v-2

b. Normal Counter. A Normal Counter is created to record the incrementing
of DO'S i f there is no other tag on which to test.

c. Reset Tag. If there i s a transfer out of one DO into another (outer) DO
in the nest, a Reset Tag i s created to record how much another tag has been
incremented, and to reset i t by that amount at the time of the transfer. The
reeetting is done a s follows:

SXD 4 , r T = R e s e t Tag
TUC *+l,e4 2 ' s ~ a ~ to be reset
TRA (out of DO)

Section Two does not actually compile the SXD and TIX, but makes entries in a
table (TRASTO) to cause Section Three to compile these instructions when i t
compiles the TRA inetructions.

d. Added Taq. Consider the n ,--eat

with a transfer from the J loop into the I loop. Since the subscript J is de-
pendent on the transfer from the J loop, an Added Tag (I, J) is created in
the J loop to record the increments to (I, J) by the J loop. 2

e. Loading and Initialization. Index R.egister loading and decrement initial-
ization is always done a s fa r out the nest a s possible. For instance, consider
the nest DO? ~ = 5 4

In this nest, all initialization and loading would be done at 4 1. If, however,
X were defined betweenkj2 and 4 3 , then the loading for (J, K) and (I, J, K) would
have to be done at 4 3. Similarly, the test initialization for the K loop would
have to be done after the definition of 2. The level of TXI and TIX initial-
ization depends on all three parameters, and so will be done after al l these
parameters a r e defined, but stil l as early a s possible.

In short all Loading and Initialization will be done at the very earl iest point of
complete definition.

J in the tag (I, J) in the I loop is called a Relcon (relative constant) because i t
is not under the control of a DO.

v-3

C. Relative Constants.

Relative Constants a r e subscripts of a tag that a r e not currently under control
of a DO. Pu re Relcons a r e tags in which all'of the subscripts a r e Relcons.
Section Two compiles subroutines to compute load values for pure Relcons.
The subroutine will be called a t points of definition of any of the subscripts.
An exception is the 1-dimensional pure Relcon. In this case the TSX to the
subroutine is not needed, and a n LXD I,v (where I is the Relcon) is com-
piled at the point of definition. Examples.

1. Dimension greater than one.

Source Program

2. 1 Dimensional..

Source Program

Object Program

TSX A)lG,4

.
LXD C)lG,

#? CLA A t l , 7
S T 0 X

Computes load
value for (I, J)
and s to res in
C) 1G

Object Program

4 CLA [L(s~
S T 0 I
LXD 1,r
SXD c) l G , Y

a

LXD C) I G , ~
k? CLA ~+l , r

S T 0 X

Closed subroutines a r e also used sometimes in Do's; namely when a relat ive
constant of a tag in a DO i~ defined within that DO. An example is:

Object Program

Source Program

4 LXD
8t CLA

ADD
S T 0
SXD
TSX
LXD
CLA
S T 0

/PATXI
TXI
TXL

If, however, M 1 in the above problem had not been defined within the DO,
the closed subroutine technique would not have been used, but rather the
normal open subroutine would have been compiled a t d .

Logic of Section Two.

To ca r ry out the analysis and to deal with the various complexities involved,
there a r e six logical blocks in Section Two.

Block 1. Nest analysis, flow analysis.
Block 2. Subscript combination analysis.
Block 3. Relative constant subscript analysis.
Block 4. Compilation of subroutines for computing relative constant

index values.
Block 5. Compilation of loop initialization, incrementing, and testing

instructions.
Block 6. Reordering the DO file for input to Section Three.

The writc-up i s divided into two parts. One part is a detailed description of
the work done by each block, and the other gives general information about
t h e s cction which either is essential to more than one block, or does not fit
in conveniently with a block description.

BLOCK 1. Thc task of this block is to examine the DO nesting structure and the
flow of the program as regards possible t ransfers out of DO'S and a lso to
build up such gcncral information as will be required by later blocks. Thc
difficulty in following the coding of these f i rat blocks l ies in visualizing the
particular DO configuration a routine is searching for, s o examples will be
when possible.

The information which Section One extracted f rom DO statements and Input-
Output l i s t s is contained in the tape table TDO, which, on being read in, is
further expanded into the 9 word table DOTAG to accommodate the resul ts of
analysis.

F i r c t of all , a complete pass is made over DOTAG, determining for each DO
the following:

i.) If none of the N ' s of the DO are variable, the quantity X where

x=[N2-~:tN3]. N N3, [] signifying integral part. This ia required for
computing end test decrements in Block 5.

ii.) The level number associated with the DO. This i a 1 i f the DO is
the outcrmoet of a ncst, 2 if the second outermost, and so on. E. G. ,

f

iii.) Whether any of the rules for DO nesting have been violated by
the source program.

iv.) The possibility of ca r ry between the current DO and the next lower
level DO of the nest, i f any. No ca r ry is possible i f the N3 of the lower
level DO is variable. If the DO'S in question a r e

4, D O / %

and A2=%*' and 8, +fa then ca r ry type 1 is indicated a s possible for
the higher level DO. Otherwise ca r ry type 2 i s indicated for that DO.

Subroutine FLOW.

A thorough analysis is now m a d e of the structure of t ransfers within Do's. This
ani~lysis is carr ied out nost by ncst, i. e. , the DOTAG table is stepped through,
I o r w ~ r d u , looking for DO'S of level 1, since each such DO signifies the beginning
of a new nest. Having thus found the outer DO of a nest, the TIFGO table is
searched for a TIFGO (i. e. , location of a transfer exit) which l ies within the nest.
If there a r e no such TIFGOS, the program prockeds with the next DO nest, and s o
on until the DOTAG table is exhausted. However, i f t ransfers a r e found within a
nest, the following analysis is made:

First, thc highest level DO which contains the Tifgo o(is found, and bit 1 of word
7 in DOTAG is se t to indicate that this DO has a transfer within i ts range. This
DO will now be refer red to as the T ~ F G O ~ D O . At this point, an entry is made
for this Tifgoo(in the TRALEV table, which is used by Section Three. Then a
flow analysis is carr ied out on each separate.posaiblc address A of the Tifgo, in
the Subroutine FA.

f. Subroutine FA. The highest level Dotag containing AAs obtained, and will be r e -
fer red to a s the Tifgo A Dotag, with level LA. The bit corresponding to LA in
word 8 of the Tifgo 4 Dotag is set, to indicate that this DO has a t r ans fe r within
its range to level LA. A somewhat complex example of the above might be:

€'UTk,it UDc' 6°F A/ .= ,) " ' .-
2 In this case, L4is 4, and

j x - ~ t - . , 7 4 a-* ~#j(+ LAis 2. The second bit in
word 8 of the Tifgo4 Dotag
would be set , indicating the
t ransfer level.

The entry already made in Tralev for the Tifgod ia implemented by a word
giving the address A and i ts ass0ciate.d level. Also, the sign bit of word 6 is
se t in all Dotags for which the Tifgo transfcrr out of range. In the abovecx-
ample, this would be the Tifgoqotag, together with the DO with level 3 surround-
ing it.

Next, ca r ry bits a r e erased for DO'S satisfying both the following conditions:

i.) The DO i s one level higher than the Tifgo A Dotag.
ii.) The P o f the DO l ies between the Tifgo 4(and the Tifgo A.

Fo r example, the c a r ry bits a r e erased for DO'S marked "X" in the following
configurations, but not the DO'S marked "Y". F~ (' #DO / y Fi t) <

The final part of the F A routine - RNC, rese t no ca r ry condition - obtains in-
formation for possible no-carry situations. For al l DO'S out of which this Tifgo
transfers , the DO of the next higher level is examined, and i f i t s i s smaller
than the T i f g o d , then LA, i s entered in word 7 of this Dotag, unless some previous
L A , inserted for some other address of a Tifgo , was la rger , in which case i t is
le?t unchanged. This largest L is referred to as the No carry Transfer Level.

A

An exqmple is given: Consider this DO configuration. The RNC
T ~ c c . ~ /3 I;K' routine works in this way. It s t a r t s with

the Tifgao(DO and looks for the next inner
DO whosef < Tifgo4 . The DO of level 4
clearly satisfies the conditions, and s o LA
(i. e . , 1) would be entered a s i ts No Car ry
Transfer Level. RNC next takes the next
lower DO in the nest to the Tifgoq DO, i. e. ,

the one with level 2, and the DO X now satisfies the condition for the next inner DO
whose j) (Tifgo -4 , s o LA (1) would be entered as - i t s N o Car ry Transfer Level,
too. The Tifgod transfers out of no more DO'S of the nest, s o the analysis ends
at this point. (If, subsequently, another address A1 were found for this Tifgo,
just above the ~ i f ~ o d DO, in level 2, then the No Car ry Transfer Level of the
DO of level 4 would be changed to 2, but that for the 00 X would be unchanged. The
resul ts of RNC a r e used in the ca r ry subroutine in Block 2.

The FA analysis i s now complete for this Tifgo A, and is repeated for any other
addresses of the particular Tifgo under analysis.

The next part of Block 1 deals with DO'S, one or more of whose N's a r e variable.
The following routines examine the ways in which such N's may be defined.

Routine SV. The f i r s t of these routines, SV, looks for possible definition by
another DO i n the same nest, whose symbol ia the variable N i n question. The

--
Ill

two DO'S (the variable N DO and the equivalent symbol DO) may take either of
the following configurations:

i.) One of them rnav contain the other:

I '-

The value N i s fixed anew every time the loop DO for N is entered. It
can therefore be said that the level of definition of the variable N in the
DO for I i s the level of the symbol DO, i. e. . 2, and this is entered as
the highest level of definition so far in the DO for I Dotag, for that
particular variable N. A bit is set in the symbol Dotag to indicate that
each new value of the symbol must be stored.

The symbol DO can not be within the variable N DO, a s this would change
the value of N while executing the variable N DO, and would therefore be
a source program error.

ii.) The two

If there a re

DO'S a re in different subnests: , - -- -. .

I

transfers out of the symbol DO, these would define N. The
level of definition of N i s then the highest such transfer level, if it is
not greater than that of the connecting DO (2 in this case). Otherwise,
i t i s the level of that connecting DO. This level of definition for the
particular N i s entered in Dotag, provided that no higher level has pre-

*

viously been entered for this N.

Routine TS4VA L. The second routine dealing with variable N's i s TS4VAL, which
searches for their definition by arithmetic statements, and Read statements. The
FORVAL table contains the names of variables so defined, together with the internal
formula number attached to their point of definition. Only those occurring within
a DO-nest a r e dealt with further. If such a forval entry is the same symbol a s
the variable N of a DO within the same nest, its 1eveL.- i. e. , the highest level
DO containing both the forval and the variable N DO - is then the level of definition
of that N, e. g. ,

The level of definition of N is 2
(Not 3 even though the forval lies
within a DO of level 3)

Routine RH. Within a DO for a Symbol I say, there may be a use of I, not a s
a subscript, but a s an ordinary fixed point variable on the right hand side of an
arithmetic statement, or in some IF expression. A table Forva r of such right
hand side variables i s searched in conjunction with the DO'S, and for such DO's
containing a Forva r for their symbol, a bit i s se t in Dotag to indicate that the
currentvalue of the DO symbol must be stored.

Routine LB. The nes ts of DO formulas a r e scanned and the bits signifying 'This
DO contains a t ransfer in i t s immediate range' a r e used to set to one, if necessary,
a bit meaning: ' This DO contains a t ransfer in i t s extended range'. This bit is
used only in section 4.

Routine EB finally wri tes Dotag on tape, one nest per record, for processing i n
Block 2.

(These l a s t 3 paragraphs were taken from P. 43 of 'the Tome. '

BLOCK 2 . (Throughout this write-up, the syrnbolu(refers to the beginning of
a DO loop, a n d p to the end, unless otherwise noted.)

The Block 2 analysis is car r ied out for each subscript combination occurrence,
a t least one of whose subscripts is under the control of a DO. Only the a r e a s
within DO-nests need thereforebe examined, and s o the search for tags is ca r r i ed
out nest by nest, and, within that nest, DO by DO. The order in which the sub-
scripted variable occurrences (i. e . , Fortag table entr ies) a r e dealt with is a s
follows: The l a s t DO of the nest i s selected (this is either the highest level DO
in the nest or the highest in the las t subnest), and any Fortag entry lying within
and controlled by this DO is analyzed. Then the next back DO is taken, and
For tags controlled by this DO a r e dcalt with, and s o on until the end of the nest.
Thus inner nested Fortags a r e always analyzed f i rs t .

On completion of the analysis of a tag, i t is marked as having been dealt with,
together with identical tags within the current DO.

Subroutine IDENT. Having selected a Fortag which has not bcen previously dealt
with, cer tain basic information is established by IDENT. The DO's and their
levels, controlling each subscript symbol a r e located. If such a controlling
DO i s not found for a subscript, i t is called a relative constant or relcon. (If
a l l the subscripts a r e relcons, the For tag i s ignored, a s i t will be dealt with by
Block 3.) The subscripts controlled by DO's a r e now further divided into t rue
'dosubs, ' and DO-relcons or DORC's. The distribution between the two is made
i n the following manner:

The highest level of definition of variable N's of the controlling DO's is obtained.
Then, a l l subscripts whose controlling DO's a r e of a lower level a r e te rmed
Dorcs. The reason for this is that the index initialization values for the tag can
not be computed until the.highest N definition level, by which t ime the Dorcs have
been assigned values by their DO loops, and a r e fixed point quantities (much the
s a m e status as a relcon defined by an ar i thmetic statement). An example is given:

Now, all subscript symbols of the combination fall intoone of the three categories:
Relcons, Dosubs, and Dorcs,

I
a3 JGr K. In this example, i f level 3 is

Subroutine NAME. Section One gives every subscript combination a tag name, i. e. ,
a Tau table reference number which i s a key to the entry containing the subscript
symbols, coefficients, and dimensions. Thus, all identical subscript combination8
wherever they occur, have becn given the s a m e tag name, and if this i s left un-
changed, will result in the same tag storage cell, which i s updated as the tag i s

4

updated.

2
00 4 ~ - i the highest level of definition

~,$h*.\t. +vP/ ddio,dlnn for N'S of DO'S for i, j, k, then
4 b t i r r ~ b l ~ N& by the rules already given, k

and j will be Dorcs, and i will
be a true Dosub. The index
loading will be done before the
beginning of the i loop, and bits
a r e set in the j and k Dotags to
indicate that counters j and k
must be stored, and updated a s

The NAME routine searches for situations where i t would be incorrect to have
the same tag, and it changes the name, where necessary. A search for an
identical Fortag to the current one, but which has already been dealt with, is
made throughout the nest. 'If such a one i s found, the current tag is given a new
tag name (i. e. , the next new tag number free). The way in which tags a r e select-
ed for processing in this block (selecting innermost tags first, and marking off
identical ones within the same DO) ensures identical tags found under this r o d m e
being in different DO's, with their subscripts having different status. Two differ-

fixed point variables within those
loops.

ing situations might be:

In example 11, the new tag strictly need not be renamed, since no ambiguity could
ar ise , however, this is an unimportant detail. If the search described results
in the current tag name being changed, this change will also apply to identical tags
within the same DO region. Thus in example I, all (i, j, k) tags in regions% -4l
and /;$,' must be given the new name also, and in 11, (i, j, k) tags in the upper DO
for i must be changed. This i s not done by block 2 (which only marks off tags a s
having been analyzed, and has no access to the compiled instructions), but the
regions over which the new name applies, together with the new and old names,
a r e passed on to Section 3 in the Changetag table, and that section make8 aU. the

necessary alterations in the Compiled Instruction tags. The routine which makes
the Changetag entries and obtains regions is called SPC.

Finally, routine NAME makes an entry in the table Name or Namkey for the new
tag. This table is merely a catalogue of new names together with their original
names or Tau references.

STATE

I Only those Fortags which a re 'mixed relcons, ' i. e. , tags at least one of whose
subscripts i s a Relcon, a r e processed through State B and this will be dealt
with next,

A relcon aubscript can be defined in two distinct ways:

i .) By a transfer out of a DO for that symbol.
ii.) By appearing on the left hand side of an arithmetic statement or in
a read statement, both of which result in entries in the Forval table, giving
internal formula number and symbol..

Definition by the first method is examined by the DSDR routine.

Routine DSDR.

A DO of higher level than the Fortag-containing DO is looked for which has a s i t s
symbol the relcon (or one of the relcons) of the subscript combination. Having
found such a DO, subroutine Trawrd searches for definitions of this relcon R, ,
say, by transfers from the DO for R ,, which terminate above the lowest Dosub
lcvcl , * For examplc.

The different types of mixed relcon a re dealt with separately.

i.) 1 relcon with 1 dosub. (There may or may not be a 3rd subscript which
is a dorc.)
Having found an R1 dotag with a transfer out of i ts range, a search is made
within the R1 dotag for an quivaient subscript combination. If such a tag is
found, the required value would be in the index register at the time of trans-
fer. The current mixed relcon will, however, have been given a new tag
name by the Name routine described earlier, so a TRASTO table entry is
made to indicate to Section 3 that instructions should be compiled a t the point
of transfer to save the old tag (within the RIDO in the new tag name cell for
the mixed r elcon.)

If no identical tag is found in the RIDO, an added tag is created, and given the
next available new name. A Trasto entry is made as before so that Section 3
will provide the necessary index saving instructions.

* Transfers which define two relcons once a r e not dealt with this point.

ii.) 1 relcon with 2 dosubs.
In this case, if transfers out of the RIDO are found, they +re

divided into two categories:

a.) Those which terminate above the DO
containing this tag.
b.) Those which terminate above the lowest
dosub DO level, but below the containing DO.

If type a.) transfers occur, the same procedure is carried out a s for case
i.) 1 relcon, 1 dosub. If type be) transfers occur, a sense light 14 set to
indicate their existence, but all possible type a.) relcon definitions a re
found and dealt with before considering type b.).

If type b.) transfers exist, the method used above would become too awkw*rd
because of the transfer out of the j range. The difficulty is therefore avoided
by making i a dorc and arranging for it to be a stored counter.

DSDll5. There is yet a third possibilty given in this configuration. The R
is defined between the dosub
DO'S i and j. This is essent-
ially the same situation a s when
type b.) transfers, described
above, occur. The same method
is used in this situation, namely
the i dosub becomes a dorc and
indication made in the i dotag to
make i a stored counter. .

iii.) 2 relcons with 1 dosub.
Suppose for convenience the subscript combination is (i, R1, R2). Having

found an inner DO for, say, Rl, only those transfers which define the R
relcon are dealt with. Given such transfers, identical tags a re searchea for
in those regions of transfer.

,-.DO i
em g., in this situation, the
regions 44,+~4 a n d , 6 $ ~ ~ ~ & +
are searched f%r an (is R R)
tag. ~f such a tag i s not t'otnb;
an added tag is created (as des-
cribed for the earlier cases).
Trasto entries a re made for both
regions to save the (i, R1, R2)
tag within the R DO on the
point of transfer, in the mixed
relcon tag cell.

The routine 2R is now used to search within the R DO for an RZDO, looking 1
for transfers which define both relcons. This can occur in two ways:

An identical tag, or added tag i s looked for within the R DO and if'there
2 i s none, an added tag is created. Trasto entries are made for either or

both of the above two types of transfer situations that occur.

If there a re no .more R Dots within the RIDO, control is returned to the
2

single definition search routine DSDR.

Routine DS4VAL. The Forval table i s now searched for the occurence of a relcon
symbol within the Fortag-containing DO. It there is one, bits are set in Dotag
so that all the dosubs are stored counters. A TSXCOM table entry is made so
that after the relcon definition there will be a TgX to a subroutine which uses
the latest values of relcons and dosubs to compute the index value. This i s the
.method used by Block 3 for pure relcons.

For the 2 dosubs and 1 relcon case, as well as the above search within the fortag-
containing DO, a search i s made in the areas between the two dosub DO'S
and f i If the R definition i i s made a dor c, and the counter

i is stored. The situation i s re-
duced to 1 relcon and 1 dosub.

This is the end of State B. All types of subscript combination are then processed
through State A, which is controlled by subroutine Branch. This is in three
parts: INS, 2NS, 3NS, dealing with one dosub, two dosubs - ,--- - or three dosubs as
the individual case requires. Duplicates are counted only once.

INS routine for 1 dosub. Apart from allotting a group number of 6 to the subscript*
combination (which indicates to Block 5 the ordering of subscript levels within a
combination), this routine is mainly concerned with whether the tag can be used
as a counter and as a test for the DO loop. Such is the case if the tag i s a simple
dosub with a coefficient of one. If this is an unstored counter, a Trasto entry
is made to store it where there is a transfer out of the DO.

ZNS routine for 2 dosubs. After assigning to the tag group number 1, i f the first
dosub level i s higher than the second, and group number 6 otherwise, this routine u -
calls upon the RESET routine, which is concerned with resetting the tag if there
a r e transfers out of the Dots, which terminate between two dosub levels.
For example.

See write-up on Reset tag in general information part. The Reset routine is des-
cribed in detail under the description of the 3NS routine for three dosubs. Of
course, if there a r e no transfers out of the inner dosub, terminating between the
two dosub levels the Reset routine is bypassed.

(If this case is really a 3 dosubs tag, reduced by duplicates t o the 2 dosub case,
the carry routine is executed a s described later.)

3NS routine for 3 dosubs. F i r s t of all, a group number is assigned to the sub-
script combination according to the order of the dosub levels:

Level of subscript 1 > level of s. 2 > level of s. 3 s group no. 1
Level of subscript 2 > level of s. 3 > level of s. 1 1 group no. 2
Level of subscript 2 > level of s. 1 7 level of 8 . 3 = group no. 3
Level of subscript 3) level of s. 1) level of s. 2 group no. 4
Level of subscript 1 > level of s. 3 > level of s. 2 = group no. 5
Level of subscript 3) level of. s. 2 r level of 43. 1s group no. 6

Next the possibility of carry is investigated between the left and center subscripts.
If the left subscript is one level higher than the center, then the Carry routine is
called upon.

CARRY routine. This routine rules that ca r ry is
positions i f the following conditions a r e satisfied:

i.) Carry of either type i s indicated for the

possible for the left and center

DO of the left subscript.

ii.) The "no car ry transfer level" of the inner DO i s lower than the lowest
dosub index register initialization level (see RNG routine, Block 1).

iii.) The total range through which the left subscript increases within i t s
DO equals one increment of the center subscript. That is,

CX] for left DO x coefficient of left subscript = p2] for center d l -

A bit is entered in CARWRD, (which is passed on to Block 5 in tagtag table) via
bit 11 if type 1 carry, and bit 13 if type 2 carry.

A similar investigation i s carried out for the center and right subscripts. It the
center subscript level i s one higher than the right then the Carry routine is again
called upon for these two positions, changing left and center for center and right
respectively. If carry is possible, bit 12 is set for type 1, in CARWRD and bit
14 for type 2.

It is now determined which subscripts will have to be reset because of transfers
out of inner Dots . If there are transfers out of the extended range of any of the
inner dosubs, which terminate above the index initialization level, then those
particular dosubs will have to be reset (see description of Reset tag in general
information section For example: bb' If j and k a r e true dosube, then

whether i is a dosub o r a dorc,
k will have to be rese t because

V- 14

the index initializing will have been done outside the j loop.

Fi rs t , subscripts to be reset because of transfers outside the innermost dosub DO
are dealt with by the RESET routine, then those because of transfers out of the
ncxt innermost. Reset m a y therefore be called twice.

RESET routine. The resetting i s done by creating another tag which measures the
amount by which the subscript combination must be reset at the point of transfer.
The tag created depends of course on the subscripts being reset, their coefficients
and the dimensions involved. Details about each tag created a r e entered in the
Retab table so that tags will not be duplicated i f the required one already exists.
The new tag details a r e entered in Drumtag table for Block 5 to compile the
necessary indexing. (This table has the same format as the Tagtag table and is
called Adtag in Block 5 .) Then an entry is made in Trasto so that on each transfer,
the instructions

SXD *+ l ,Rese t added tag
TIX *+I, Tag to be reset

will be compiled by Section 3.

The above process i s modified i f the subscript to be reset i s the left-most and
has a coefficient of one, and if the N of the DO being transferred out of is not vari-
able. A normal counter, if there already is one, will suffice for a reset tag. .
Since such a counter would s tar t at N and a reset tag must always s tar t at zero,
a Trasto entry is made which causes b' ection 3 to compile a TXI *+I, counter,
-N to correct this. The routine then proceeds to make the SXD, TIX Trasto

1'
entry described earlier. Both of these entries a r e made by the RSR subroutine.
If however, no counter has been found so far, details of the tag required a r e
entered in the Adtag table * so that RSR can be called upon later, when a counter
has been established (when the nest has been completely dealt with).

Routine TAG continued. When all rese t possibilities have been dealt with, the
results of the whole analysis of the subscript combination a re output as a Tagtag
tape table entry. This provides Block 5 with information so that i t can compile
the appropriate initializing and indexing instructions at the appropriate points.

The only further information derived from the subscript combination is for de-
ciding on end tests for the DO'S controlling i ts subscripts. A bit is set in a
controlling DO i f the corresponding subscript does not carry over into the next
left, to indicate that there must be a test on this DO.

If the subscript.combination consists solely of dosubs (no relcons or Dorcs) then
the tag i s eligible for the end test of any of the corresponding Do's , unless there
a r e known to be counters which would clearly be better tests. A test table number
is formed from subscript position, ca r ry bits, and group number. If the number
thus derived is greater than that already held for the DO, then this ia the best
test found so far, and i ts name i s stored iri the dotag.

* This table is not to be confused with the Adtag table of Block 5.

h he tag has now been fully processed, and all identical tags within the same
DO are also marked as having been analyzed. ~ o r k r o l then selects the nest
tag within this DO for processing until all tags within and controlled by the DO
have been exhausted.

Routine DOFEND. At this point, if a counter for the DO (that within which the
tags have just been analyzed) is required, and one has not been found in fortag
such a counter i s created (in subroutine Makesc). Also i f there is a possibility
that no end test is needed for this DO, it i s noted. (Bit 20 of word 9).

This completes the analysis for the DO, and the next back DO in the neat is
selected, and those tags under its control a re analyzed, as already described.

Routine Nest continued. At the end of the nest, all those tags added because of
mixed relcons and counters a re processed through the analysis routines like any
other tag, and the results, in the same format as the Tagtag table a re entered in ,
Drumtag, (referred to as Adtag in Block 5), behind reset tag entries. T5e names
of these added tags a re catalogued in table Name. Also, those Adtag entries made
in the Reset routine because a counter was required for the reset, and such a
counter had not been found, can now be dealt with by the RSR routine as described
under Reset routine.

Finally, if an end test for any DO in the nest is found to be unnecessary, the end
test tag name is erased from the dotag.

When all the DO-nests have been processed, control passes to Block, 3.

BLOCK 3. This block complktes the subscript analysis by dealing with those sub-
script combinations not already analyzed in Block 2, namely, pure relative con -
stants. A pure relcon is a subscript combination - none of whose subscripts is
under control of a DO. A relcon symbol can be defined in two different ways:

i.) By appearing on the left hand side of an arithmetic statement or in a
read statement, both of which result in entries in the Forval table, giving
internal formula number and symbol.

ii.) By a transfer out of a DO for the symbol.

(Both these situations have been examined by Block 2, State B for 'Mixed Relconsl,
but that case was considerably more complicated by the existence of DO- controlled
subscripts. However certain resemblances may be noted.)

VAL routine. This routine deals with method i. 1 above. A fortag entry is selected
which has neither been analyzed in Block 2 (sign bit set), nor in this routine (bit
one set).

Subroutine TABSER. The entire Forval table is now searched for ocurrences of
any of the symbols of the fortag, and for each such forval, a TSXCOM table entry
is made. This table enables Section 3 to compile a TSX to a subroutine which will
compute the current index value for the tag. (The subroutine itself is compiled

by Block 4 of this section.) If the fortag has but one symbol with a coefficient
of one, the TSXCOM entry is a special one, indicating that an LXD of the symbol
into the tag suffices.

Subroutine INDO. There is however, one exception to the above rules in Tabser
for dealing with forval entries. The forval i s ignored if i t occurs within a DO
for one of the other fortag symbols. For example, in the diagram, i has strictly

no value after the completion of the DO (not
even the terminating value), and therefore
i t must be redefined before flow reaches
the fortag. Thus i t would be pointless to
calculate the index value for (i, j, k) within
the DO for i, when i t must be recalculated
later.

When all relevant Forvals in the TABSER search have been dea1.t with, equivalent
fortags to the current one a r e marked with a bit 1. The next pure relcon i s
selected in the VAL routine, and the whole process is repeated until the fortag
table has been exhausted.

TAGP routine. This next part of Block 3 deals with the second method of defining
relcons, A new pass i s made over the fortag table. A fortag is selected which -

has neither been analyzed in Block 2, nor in this part of Block 3, (minus sign set).

SYMONE routine. There a r e three levels of search for transfers out of DO's de-
fining the fortag symbols. The routine from SYMONE to SYM70 deals with the
fir s t l eve l search. A pass i s made through Dotag looking for a DO for one of the
fortag symbols. Having found such a DO [referred to hereafter a s the SYMON E
DO), the TRAWRD subroutine is called upon to search for transfers out of this

f i ', j , %)
For instance in the above diagram, only the shaded areas of the i DO (i. e . , those
not contained within DO's for the other fortag symbols) a r e searched for trans-
fers. If such transfers are found, subroutine PROCES is called upon to deal with
them. This will be described later.

SYM70 - SYM170. If there a re more symbols in the fortag, a second level search is
commenced. A DO for one of the other fortag symbols i s looked for within the
Symone DO. Transfers out of areas of SYM7O DO defining only this symbol and
perhaps the previous one are searched for by the TRAWRD routine. In the example,
the areas marked in the DO for k would be searched. If such transfers exist,
subroutine PROCES i s called on a s before.

SYM170-onwards. If there a r e three symbols in the fortag, there may be one or
more D o ' s for the third symbol within the SYM70 DO. (In the example, the f i r s t

DO for j.) The routine looks for these, and i f TRAWRD finds t ransfers defining
the symbol, subroutine PROCES i s called. After all S Y Ml7O DO's have been dealt
with, control i s returned to the SYM7O routine. In the example, the other j loop
would be found. After a l l SYM7O DO's have been processed, (calling on the
SYM170 routine each time, to see i f there i s an inner DO), control is returned to
the SYMONE routine, to find the next relevant DO.

Subroutine PROCES. This may be entered from any of the three sea rch routines,
SYMONE, SYM70, SYM170.
It is f i r s t established whether the fortag consists only of a left subscript symbol
with a coefficient of one a s this case i s cons idevd separately later.
The next task is to determine whether or not there exists an identical tag within
the current DO, in the region of t ransfer , or an equivalent region. This would
mean that the is already available on transfer. For instance in

this diagram, where PROCES was called
on after SYM7O had found a t ransfer shown,
an identical (i, j, k) tag in the marked
regions would satisfy the conditions, but a n
(i, j, k) tag in the k loop would have the wrong
k value. - I

8 (L& f-)
The f i r s t s tep is to scan the Name table*, to see i f the tag occurs within the
current DO. If so, the fact that i t s name was changed insures i t s occurring
within the relevant areas. A Tras to entry is made to direct Section 3 to compile
the storing of the new tag name contents in the old name cell, and control is then
returned to the calling routine.

If the tag is not found in the ~ a m e table, i t i s searched for using either of two
routines: TINFOR, which searches from beginning to end of a DO, or SPC, which
spaces over inner DO's for other fortag symbols, the la t ter routine being used
where such inner DO's could possibly exist. e. g. i f PROCES is entered f rom the
SYM7O sea rch and the fortag has three subscripts (as in the previous example).
If a n identical tag i s found, then i t is in the proper index cell a t the t ime of t r ans -
fe r , s o control is returned to the calling routine. If not, a Tras to type 6 entry
is made s o that Section 3 will compile instructions to TSX to a subroutine which
will compute the load value, and on return, t o load the index cell with this value.
Then an entry is made in table IRV, which is a l i s t of a l l subroutines to be com-
piled by Block 4.

Case of one symbol with coefficient 1.

As with the case already discussed, the identical tag may occur within the DO.
However, if i t occurs a s a tes t for the DO, in the form of a rese t tag (bit 18 of
word 7 in dotag indicates this), a Tras to entry type 5 must be made so that
Section 3 will compile a TXI instruction for the tag with a decrement of N. This
i s because a r e se t tag i s always initialized to ze ro instead of N a t the beginning of
a DO loop. If i t does not occur specifically within the DO, i t must equal the
counter added by Block 2 (since a DO with a t ransfer out of range must have a
counter). A Tras to entry is made so that the counter will be s tored i n the tag
name cell.

* See write-up on Block 2, where Name table is compiled.
V- 18

This completes the description of the PROCES routine.

When the end of dotag i s reached in the SYM search routineas, the current fortag
and all identical ones a r e marked with a minus sign a s having been processed,
and the next fortag not already analyzed is selected. At the end of this pass over
fortag, all subscript analysis i s complete.

In the remaining part of Block 3, the tables IRV and TSXCOM a r e manipulated.
The TSXCOM table is sorted into internal formula number order, a s it is, in
effect, a list of TSX instructions which must be merged into the CIT file by
Section 3. Then the tag names f rom the TSXCOM entries a r e added onto table

LRV (which may or may not already have entries made in the PROCES routine)
and this i s sorted into tag name order , duplicate.entries being removed. Table
I R V now consists of a list of all subroutines required for computing index values.

Block 3 i s now complete.

BLOCK 4. Table IRV (sometimes known as BOB) provides a l is t of tag names whose
index contents must be calculated from current symbol values in closed subroutines.
This block compiles the instructions required to compute, for a subscript com-
bination (c, i, cJ, c&) with leading dimensions d' and di , the quantity:

(c, i- 1)+ (c2j- l)d;+ (c3k- l)dL d$+ 1

COMPIL routine. This routine controls the compiling, beginning with the in-
structions

A) tagname CLA 6)+ 3
ST0 1)+3

which initialize erasable storage to 1. The symbolic
to the subroutine, and the number following the A) is
the C) in the name of the tag cell as it appears in the

location is the name given
the same as that following
final listing. flt is the Tau

reference number converted in a certain way b y Section 6.)

The res t of the computation falls into three parts: one to compute (c,i-1) corres-
ponding to the leftmost symbol, the next to compute 5 jd;-d~corresponding to the
center symbol, and the last to compute c,k4 d;-q4 corresponding to the rightmost
symbol. If any symbols a re missing, the corresponding parts a r e omitted. All
the different coding skeletons for the different situations a r e stored within the
LXC subroutine, for instance i f a coefficient is one, there i s no need to compile
a multiply instruction for it. Given the f i rs t instruction of a block, and the number
required, the subroutine LXC outputs the appropriate coding for the part being
considered.

Finally, Compil outputs the instruction
ST0 C) tag name

to store the result in the tag cell. Any constants required by the compilation a r e
entered in the table of fixed point constants (Fixcon) a s they a r e needed.

When all entries of Table XRV have been dealt with, Block 4 is complete.

BLOCK 5. This block compiles the necessary indexing instructions for the tags,
using the results of subscript and flow analysis provided by Blocks 1 and 2, main-
ly in the Tagtag and Dotag tables.

V- 19

There a r e two main cycles: the 4 cycle, which provides the loading and initial,
izing instructions at the beginning of a DO, and the ,& cycle which compiles the
incrementing, testing, and resetting instructions at the end of a DO.

MANIPULATOR routine. This routine controls the c(and / cycles in the following
way. It reads a nest of dotags, and then calls on subroutine Dogs to select the
next 4 or f l of a DO. The order in which42 and @ a r e selected i s the backward
order of internal formula numbers, and i f DO'S have equal ,& then the /?
with the highest corresponding 4 takes precedence. For example, the process-

ing order of this nest would be:

a;., a,,~~, A, ,4, ,A,,+ J dv

For any DO, clearly, the f l cycle will be called upon first, thus any initializing
instructions required for the instruct ions, because of variable parameters, will
have been completely specified by the time t h e 4 cycle for the DO is reached.

RTX routine or pcycle. A special CIT entry of all one's i s made to indicate the
b-eginning of a new block of output CIT' s, unless this a equals the previous one
(e. g. /, and fL in the Manipulator routine examples), in which case both blocks
a r e output as one. The 1ocation.counter VCTR i s initialized to the f l internal
formula number + 8 ready for use when a location symbol i s required. (8 and
subs kquent multiples of 8 will be converted later into subsidiary parts of internal
formula numbers 1, 2 , 3, . . . etc. Resulting location symbols might be lOA2,
3A1 and so on.)

After narrowing down the search for tags in subroutine Scan, by arranging to
ignore those out of range, a Tagtag entry i s looked for which i s modified by the
current DO. Subroutine Tetg then establishes whether the tag is a test for any
of the DO'S controlling the tag subscripts. The! cycle compiling i s divided into
three parts: the TXI pass for incrernenting the tag and updating end test de-
crements where necessary, the TXL pass, and the TIX pass for resetting the tag
to i t s initial value ready for re-entering the DO.

TXI Pass RTX. There a r e s ix different situations which may occur, resulting
in s ix different coding blocks - A through F. The appropriate block for the
selected tag within the current DO i s chosen in the following manner.
Subroutine P r e s forms a code word from the Tagtag information, consisting of

group no. posind TL CLO % %%
X X X X X X X X X

where the Group (1-6) i s a code referring to the relative ordering
within the tag. (See Block 2 write up for full details) Posind i s 3
subscript i s the leftmostj 2 i f the current subscript i s the center;
subscript i s the right.

of subscripts
if the current
I if the current

/' TL means that the tag i s a test for the DO controlling the left subscript and
Tc for the center subscript.
CLC means that there is left to center carry, and G4 means that there is center
to right carry.
Comparison of this code number with a table of codes and associated block
numbers establishes the TXI block for this tag in the current DO.

Block F: This means that no TXI instructions a r e needed, and the j? state
proceeds with the next tag. The reason is that there is carry for the tag, i. e . ,
this DO is incorporated within the DO for the next inner subscript, whose TXI
block will provide all the incrementing that is required.

Block A: This is the next simplest TXI block, consisting only of
TXI * t 1, tag name, decrement =N,g

2 where g s c for leftmost subscript
1

c,d, for center subscript
1

c d d for rightmost subscript
3 1 2

c and d being the coefficients and dimensions obtained from the Tau table. I£
there a r e duplicates, the N,g i s calculated for those symbols too and added to

J
the decrement.

If, however, the decrement cannot be calculated because N3 is variable, the TXI
instruction is compiled with a zero decrement, together with a location symbol
(using VCTR described earlier). An entry is then made in the Appended Tagtag
table, a subsidiary of Tagtag itself, giving this location so that the 4/ state can
compile the necessary initializing instrustions.

Finally, for both variable and constant situations, i f the tag i s a simple counter,
and the Dotag table indicates that the DO symbol occurs on the right hand side
of an arithmetic statement or in an output statement, then the instruction

SXD Symbol, Tag name

is compiled to update the symbol itself.

Block B: This occurs when the DO for the leftmost subscript lies within that
for the center (currentD0) subscript, and the tag is a test for the left subscript
DO. Each time the current center subscript is incremented, the test for the inner
DO must be updated. A simple 2-dimensional example will perhaps help to

l-'--- j = ' ~ ~
explain the position. In this DO configur--
ation, the order i n which members of the

fib) O Z ~ L array A a re to be selected is A A 1, 1 2 , 1
A A

A 1 , 2 2, 3 1, 3 A2, 3*
The f i rs t t ime the

A CL; J) r DO for i is satisfied, the TXL tes t must
have 2 in i ts decrement, so as to drop out

'bJ of the loop after A i s selected. However,
2 , l

on the next DO for i cycle, when j has been
incremented, the decrement must be 4 8 0

a s to drop out after A has been selected. Clearly then, the TXI block in the
2,2

DO for j must contain instructions to s tep up the i loop TXL decrement.
v-21

4t
The Block B instructions are:

left + / N , ~ \ center - 1

(Note: the tag has already been rese t y he amount through which i t has been P incremented in the inner loop) where [x] N g left is the total amount through
which the inner DO subscript i n r r e a s h , iN$\center is the u m d increment for
a tag, a s given for Block A. The SXD instruction is given the next abailable
location number, and this location is saved in the Dotag of the left subscript, 80

that the address of the modified TXL may be inserted later. (Section3 does this.)

If the N ' s of the left subscript (inner) DO or N3 of the current DO a r e variable,
the above decrements cannot be computed. The instructions a r e compiled without
the decrements, and the TXI instruction is given a location symbol, which is
entered in the Appended Tagtag table s o that the 4 state can compile initializing
instructions.

Blocks C and D a r e very similar to Block B. In Block C, the current symbol
is the rightmost, and the TXI block must modify the leftmost subscript test. In
Block D, the current subscript may be either the leftmost or the rightmost, and
in both cases the block must modify the center subscript test. Duplicate symbols
in these two blocks may cause an adjustment to the decrements.

Block E: This i s the most complicated and occurs when the current DO is
for the right hand subscript and the relative configuration is a s shown in the

I < diagram, and the tag is a test for both
the inner DO'S. Both these T X L b must
be updated by the current TXI block.

- durrw t p
The Block E instructions a r e of the form:

TXI *+l , 'i?, 11 XJ N+) center +
Au SXD .-, L

TIX *+I, {[XI N+] center - 1

TXI W-1, T' N g left - 1
SXD k c ,

3)

TIX *+I, 'CJ {[XI left - 1

As before, the SXD instructions are given symbolic locations, which a r e saved
in the corresponding Dotags. If the N's for the DO'S a r e variable, the instruct-
ions a r e compiled without decrements, and entries a r e made in Appended Tagtag
s o that the decrements can he initialized.

* X is the integral part of N2 - N1 + N3 r 1
N3

RTX160 For all block numbers, if the tag is the best test for the current DO,
i t s index is saved for the TXL pass later. Control now returns to select the
next tag modified by the current DO and the process i s repeated.

RTX180 After the Tagtags have been processed, the Adtag table of tags added by
Block 2 i s searched for those modified by the current DO. Instructions a r e com-
puted a s for ordinary Tagtags, except that block numbers can only be either A
or F, since added tags a re never used as tests for DO'S. Corresponding to the
Appended Tagtag table, there i s an Appended Adtag table, for the variable N
situations where decrements cannot be compiled. When all relevant Adtags have
been dealt with, the TXI pass is complete.

TXL Pass RTX 200 If the current DO does not require a test, then neither the
TXL nor the TIX pass i s necessary. If a test i s needed, the best tag i s selected,
and a TXL instruction for the tag i s compiled as follows, whith the next f ree
location symbol attached. If the N's of the DO a re variable, a zero decrement is
compiled, and a variable indicator bit is set in Dotag to inform t h e 4 state that
initialization i s required. If the Nts a r e constant, then the decrement N2g +q +&
i s computed, where g=c for left symbol. , cZdl for center symbol, and
c3dldZ for right symbol, and .

5 I { c ~ N ~ ~ ~ - dl center if the center subscript lies 3
to the r ight of the current
subscript

otherwise

and right i f the right subscript lies
to the right of the current
one

otherwise

T M Pass RTX 222 A pass i s now made over the Tagtag table, looking for tags
modified by the current DO, in the same way as the TXI pass. Each of these tags
must be reset by the amount through which they were incremented in the loop,
ready for the next entry of the loop, unless i.) there is carry, which is not pre-
vented by the tag's being a test for the DO, and ii.) this DO is the outermost of
the controlling DO'S - in which case the index will be reloaded before the next
entry. In case ii.), the instruction DED with this tag, i s compiled to inform
Section 5 that the index i s no longer needed. If the Nts of the DO are constant, the
instruction

TIX * + 1, tag, [XI N3g

i s compiled, where the integral part of N2 - N1 + N and g ia c, or c d
3 2 1 '

N3
or c d d as explained earlier. If there a r e duplicate symbols, the decrement i s

3 1 2
adjusted accordingly. If this is the f irst TIX instruction after the TXL, then the
instruction i s given the next symbolic location available.

If the N's of the DO are variable, the instruction is compiled with a zero decrement
and a location symbol, the latter being entered in the Appended Tagtag table.

V-23

When all relevant tagtags have been dealt with the same i s done for the Adtag
table, entr ies being made in Appended Adtag when required.

At the end of the TIX pass thefis tate or RTX pass is complete. Control i s now r e -
turned to the Manipulator routine to select the next 4 o r p of a DO for processing.

4 cycle - AC routine. he VCTR location symbol i s initialized to the internal
formula number of the d; of the DO, ready for the 4 cycle compiled instructions,
and an al l ones entry is made in CIT'to signify the beginning of a new block of
output entries. Also, an entry i s made in the SXDTX table for this DO, giving
the 4 and /J internal formula numbers and the relative location of the correspond-
ing TXL instruction. Section 3 uses this table to fill in the addresses of the SXD
instructions, compiled in the TXI pass of the/cycle, a s the TXL locations were
not known a t the t ime these were compiled.

AC010 The routine looks for a tagtag entry for which the current DO is the outermost
controlling DO. The next task i s to compile instructions to compute and load
the index for the given tag, a s when this DO is reached, a t object program time,
a l l variables concerned have been defined.

If the tag is a r e s e t added tag, all that need be compiled i s

LXD 6) + 2 , T

which loads the index with zero. (Actually, this situation does not a r i s e until the
added tag pass is made, after all tagtags have been dealt with.) If the tag is a
simple case of only DO-controlled subscripts, and a constant N . then the

is computed and entered in the Fixcon table. (The N ' s in the expression apply t o
the DO controlling the subscript indicated.) The instruction LXD 2) t n , r is com-
piled, where n is the relative location of the constant in Fixcon. A location
symbol derived f rom VCTR is given to the f i r s t instruction of the block.

If, however, the load value cannot be computed a t For t r an execution time, the
instructions must be compiled to complete expression (i) at object time. If any
subscript symbol is a ~ e l c o n , then the corresponding N is replaced by the symbol

;N '1 center [~ h right a r e a l l one, then the expression r e - itself. If c c2, c3, , I \
duces to \N> lef t (or S i f the left symbol is a relcon), s o a simple LXD of this
symbol i s alf that is necessary. The instructions for computing the three pa r t s
of the expression a r e compiled in three separate routines AC049B, AC064, AC080.
If any of the pa r t s a r e constant, o r if any coefficients a r e one, advantage is taken
of the situation. Any constants, such a s d l , dldZ that a r e found to be required
a r e entered in Fixcon and their symbolic addresses a r e of the fo rm 2) + a.

AC 100+2 The next part of the 4 cycle is concerned with the initialization of end
tes t decrements. In front of the outermost DO loop, initializing instructions for
inner DO t e s t s may be necessary for either o r both of two reasons; f i r s t ly the
N ' s may be variable, and secondly, while the associated DO'S are being ca r r i ed

out, the decrement may be updated by SXD instructions (see TXI pass for
Blocks B, C, D, E). If only for the latter reason, then the initial value can be
computed in this routine. The quantity i s N g + &+& 2

where if the center subscript lies
to the right TXL subscript

= 0 otherwise

N d d - dld2 right % = " c 1 1 2
if the right subscript lies to

the right of the TXL subscript
= 0 otherwise

(see the TXL pass in the B state.)
The constant i s entered in Fixcon, and the instructions

CLA 2) + n
STD (TXL location)

a r e all that a r e required. If the TXL decrement i s genuinely variable, then in-
structions to compute the above quantity must be compiled. These a r e made as
simple as possible, and i f for instance, N is constant, then N g is computed in
this routine. Use i s made of routines for %alculating the index3oad value, in
the earlier part of the.4 state.

Having dealt with test decrements corresponding to all 3 symbols, then if the
tag i s a stored counter, the symbol must be initialized to the value N so the
instructions

1 '
P X D 0,
ST0 Symbol

a r e compiled.

AC 165 The appended tagtag table i s now searched for an entry for the current
tag indicating that there are variable TXI or TIX decrements. Lf not the d state
is complete. for this particular tag. Otherwise, each symbol of the tag is taken
in turn, a s in the AC100t2 routine. If the TXI block decrements associated with
the corresponding DO for a symbol, a r e variable, then, according to the TXI block
number, a routine i s called upon to compile initializing instructions. It is not
possible in this discussion to give full details of the compilations in the different
circumstances, since they are so many and varied.

AC 200 In the same way, each syrrlbol of the tag i s taken in turn once again, this
time to see whether the associated TM instructions have variable decrements.
If so, instructions a r e compiled using some of the routines already used in the
TXI part, optimizing of course, wherever possible.

Compiling i s now complete for this tag, and control is returned to the beginning
of the 4 state, to find the next relevant tag.

When the tagtag has been exhausted, the Adtag table is processed in the same way.
If no instructions have been compiled in these routines for this particular 4 , then

the instruction

O(BSS 0

i s compiled so that the internal formula number will be given a location. Control
i s now returned to the Manipulator routine, to obtain the next JI or ,d for pro-
cessing.

MANIPULATOR continued When instructions have been compiled for al l 4s
and/A of a DO-nest, a zero CIT entry i s made to indicate this to Block 6. After
all the nests have been processed, control passes to Block 6.

BLOCK 6. The order in which Block 5 compiles DO instructions for a nest is the
backward sequence-.of 4 andfi of the nest, although within each p(and P block, the
instructions a r e in the natural order. The c(andP blocks of CIT's must therefore
be inverted, so that Section 3 can merge the DO file with the COMPAIL file,
output by Section 1. The beginning of each block is marked by an all one's CIT
entry, and, after reading a nest of CIT's (the end of a nest being marked by eeror),
Block 6 searches from the end of the nest until an all one's fence is found. The
instructions just scanned a r e output a s the DO file, and would correspond to the
f irst o(of the nest. Block 6 then looks for another fence, and so on, until the
whole nest is output. When the DO file is complete, control passer to Section 3.

TABLES CREATED BY SECTION TWO (Alphabetical List)

ADTAG (Block 2) - Memory table.

There a r e two different types of entries:

--

This entry is made by Subr. RESET, and contains information about the
possible use of a counter as a RESET tag.

i.) 'Normal' Relevant DOTAG index

ii.) 'Not Normal' p ~ e l e v a n t DOTAG Index I FORTAG TAU reference

1 New tag name for Added tag-

Current tag name (TS)

These a r e details of a tag created by Block 2, in State B.

ADTAG (Block 5) - Memory table.

C

This i s called DRMTAG by Block 2, and has the same format as TAGTAG. (see
TAGTAG)

.- (called ~ 1)
TL1 (level number)

APPENDED ADTAG (Block 5) - Memory table.

I TL2 (level number)

This bears the same relation to ADTAG that APPENDED TAGTAG does to TAGTAG.
(see APPENDED TAGTAG) I

APPENDED TAGTAG (Block 5) - Memory table.

There is an APPENDED TAGTAG entry corresponding to each TAGTAG entry.
While processing the TAGTAG in the B state of Block 5, locations of variable TXI
and TIX decrements a r e entered in the table.

BOB - see , fRV

17 35

[Forl~tT~"~r subscript subscript subscript ght subscript subscript subscript

' CHANGETAG (Block 2) - Memory table.

For center Fo r right

I (original tag name) I I

-- . - - - -- a

---I i, .-- ---- --.. -I ---- -...-.- ---- -d

Locations of variable TXI' s Locations of variable TIX's

Beginning of Region ---. ---
FORTAG TAU reference

The table i s used by Section Three to change the tag names of a l l identical FORTAG2

End of Region

within the given region.
V-27 ~

r --a

New tag name -

DOTAG Tape 2 Table -
This table is derived from table TDO. Information concerning each DO is added
throughout Blocks 1 and 2.

word 1)
word 2)
word 3)
word 4)
word 5)
word 6)

word 7)

word 8)

word 9)

4 (Internal)

rightmost of which de- (able N1

N1

- - N2

.I - - - N3- C

termines the highest
level of transfer from

--- (Internal)
T

111111

Level # of this DO

I

X z N 2 - N l t ~ 3 ~ N3
-. N3 -

Level of definition of vari-
able Nl

The I, 11, and 111 in the tag of word 1) indicate whether N1, N2, or N 3 a r e vari-
able respectively.

contains bits, the I Level of definition of vari-

Words 2), 3), 4) and 5) a r e Left-adjusted BCD,if variable. Otherwise they a r e
binary and in the address.

Level of definition of vari-
able N3

this DO.

Word 6)

Word 7)

7

S - 5
Erasable

Word 9)

,
;

N&e of tag
which will be

Sign Bit: This DO requires an unstored counter.
Bit 1: This DO requires a stored counter.
Bit 2: X is not computable.
Bit 18: I is associated with a Relcomand this DO does not have Type

.

used for test.(

I carry.
Bit 19: Type 11 carry.
Bit 20: Type I carry.

J

Sign Bit: Transfer in extended range of this DO.
Bit 1: Transfer in immediate range of this DO.
Bit 2: I i s formed above a s a subscript in this DO.
If N + level of (I), then there is no carry.
Bit 18: There i s a counter to be used a s a reset.
Bit 19: Nullifies effect of Bit 18.

Bit 19: There a r e no tags except mixed RELCONS in this DO.
Bit 20: This DO'S TXL has a variable decrement.

DRMTAG (Block 2) - Memory table.

DRMTAG entries a r e the results of analysi's of added tags in Block 2. (This table

V-28

is called ADTAG in Block 5.) The format is the same as TAGTAG format.

IRV (or BOB) (Block 3) - Memory table.
,

This table consists--of the second words of TSXCOM Type 2 entries, (see TSXCOM).
in numerical order, with duplicates omitted. In effect, i t is a list of all sub-
script combinations whose index values must be computed in subroutines.

NAME (Block 2) - Memory table. , -* -6L---G 1

I FORTAG TAU reference I
(old tag name)
New tag name

.b

This table ia a list of all tags whose names have been changed from the TAU
reference number to a new name.

RETAB (Block 2) - Memory table.

Entries a r e made in Subroutine Reset, giving details of each reset tag created
to avoid duplicate reset tags.

The first word is

The second and third words depend on the subscript (s) to be reset.
Left L. c

orefix . 9

TAGTAG (Block 2) Tape 4

This table contains thc rcsultrr of analyzing tho tags i n Block 2. (counterr created
by Block 2 are alao included)

Current FORTAG TAU Rebits

The format for both DRMTAG and TAGTAG is as follows:

t -L--

reference
Current DOTAG
Index

Innermost controlling DO I Firs t subscript DOTAG index I

FORTAG TAU reference (original Current tag name (if reset. 'Rebits'
tag name) 1 a re in 22 - 24) I

- - -- - -

Second subscript DOTAG index

or 0, if reset or added tag I I

Third subscript DOTAG index

Bits in this fourth word are as follows:

S bit from CARWRD, if tag is left subscript 'only with coefficient I
8 i f left subscript test
9 if center subscript test Test indicators set in Block 5.
10 i f right subscript test
11 if posns 1 & 2. Type 1 carry
12 if posnS 1 & 2, Type 2 carry I carry bits from CARWRD
13 if posns 2 & 3, Type 1 carry
14 i f posns 2 & 3, Type 2 carry
15 - 17 Group Number
2 1 - 23 Indicates which coefficient > 1
24 - 26 Duplicates
30 - 32 Relcons and DO-relcons (Dorcs)
33 - 35 Dupes and Dorcs

TRALEV (Block 1) Tape 4

Entries a re of variable word length.

Firs t word I - TIFGO I

TRASTO (Blocks 2 and 3) - Memory table,

There are 6 types of entries, all of which specify internal formula number inter-
vals Q(to level number intervals and other inf6rrn9tion. Section Three uses
these entries to compile 6 types of indexing instructions in conjunction with transfer
control statements, whose internal formula numbers f d l within the specified
formula number interval and whose transfer addresses lie within the specified
levels.

For each address

The different types of entries and the resulting compilations a re given:

of the TIFGO
I

TIFGO address Level of address

Where level L 7 L 7 0
1 2

T and T are tag names (contents of Bits
2 18 - 20 of word 1 may be non- zero)

Compilation:
SXD C) T2 , T1

where C)T2 is the tag cell of T2
LXP C) T2, T2

Type I1

BCD fixed point variable

b L2 lT1
compilation: PXD 0, T

STO (sym&ol)

n is a binary intefer

Type I11

Compilation: TXI *+I, T, - n

Type IV

t 7 - t T - I Compilation: SXD * + 1, T

T refers to a reset tag, .T to the tag to be reset.
1 2

n i s a binary integer

Compilation: TXI * + 1, T, n
-- T

Type VI

Where
C)T is

Compilation: SXD 6)+5,4
TSX A)T, 4

A)T i s the name of the subroutine computing the index value of T, and
the

TSXCOM

tag cell.

There a r e

Type I

2 types of entries.

FORVAL Tag name F- FOR?A!L symbol

This indicates to Section Three that LXD symbol, T must be compiled following
the FORVAL.

Type I1

This indicates that a TSX to a subroutine, wlich will compute the index value,
must be inserted after the FORVAL.

I,.,

SECTION THREE

The MERGE has the primary function that its name implies. That i s , i t must
merge or collate the different files of compiled instructions (CITfs) that a r e
available to it. There i s , however, an important additional function which the
MERGE serves. This i s the creation of an additional file of instructions. This
additional file i s based on information gathered by Section Two and passed on
to the MERGE i n the form of tables.

The MERGE, therefore, falls naturally into three main Divisions: Merge I
merges the two files passed on to it by Sections One and Two respectively;
MERGE I1 creates the additional file of instructions; MERGE 111 merges the two
files of instructions now existent. The two files of instructions compiled by
Sections One and Two a r e the Compail and the Compdo files. The file created
in MERGE II is called the Tifgo file. The results of the MERGE I file is called
simply the Firstfile. MERGE 111, of course, merges the Firstfile with the
Tifgo file.

At the end of MERGE 111, then, a single file of CIT's exists and i s passed on to
Section Four. This single file i s essentially the completed compiled program.
That i s , it contains all the instructions necessary for the translation of the
source program, on the assumption that the object machine contains as many
index registers a s there a r e symbolic tags in the single file of instructions.
Therefore, the remainder of the F O R T U N Executive Program i s devoted to
two main tasks :

a.) Substituting absolute index registers for the symbolic index registers
assumed up to this point.

b.) Inserting the load and save index instructions required by the limited
number of absolute tags.

It i s important, further, to point out that the additional file of instructions
created in MERGE I1 does not result from any further analysis of the FORTRAN
Source Program a s such. Rather, i t i s compiled from tables which a r e
themselves the result of such analyses. The MERGE, therefore, does no
analytical work of its own; it simply stands a t the crucial crossing point between
the f i r s t part of the compiler which does the basic analysis and the latter part
which handles the index register problem and the assembling problems.

Partially a s a result of this critical position of the MERGE in the over-all flow
of the FORTRAN Corn pi1 T r , the MERGE is given certain additional subsidiary
tasks to perform a s i t dr.4 <! its primary merging tasks. In this description,
these subsidiary tasks will be listed and described in their appropriate place.
It is only worth noting here that many of these tasks could theoretically have
been done ear l ier ; that they were not done earl ier and were, instead, left to

the MERGE i s , to a great extent, a matter of convenience for the earl ier
analyses. The fact that the MERGE must make several complete passes over
all the CIT's makes i t simple for the MERGE to make the insertions required
by these subsidiary tasks. /

MERGE I ,

A. The merge of the Compail and the Compdo files occurs by simple numerical
collation. The two files a r e on two separate tapes, and, of course, exist in
100 word records,, that i s , 25 instructions per record. The f i rs t word of each
instruction contains the internal formula number. As was pointed out ear l ier ,
the internal formula number i s physically present only for the f i r s t instruction
of the translation belonging to any unique source statement except where a
source program statement gives r ise to more than one internal formula number.
Stated another way, the f i rs t instruction of such a block will have the internal
formula number in the f i r s t word whereas all the other succeeding instructions
of that block will have zero in the f i rs t word.. Therefore, the instructions

' exist in blocks, each of which is headed by an instruction with an explicitly
stated internal formula number ..
Furthermore, this internal formula number may have an increment part; that
i s , a number in the address field as well as the decrement field. Keeping this
in mind, it i s easy to visualize the manner in which MERGE I. goes about inter-
relating the instructions from the separate Compail and Compdo files. The
internal formula number s a r e compared and the block headed by the smaller
number i s compiled f i rs t , Whenever the numbers a r e the same, the Compail
block is compiled ahead of the Compdo block.

Be Additional MERGE I functions.

1. CHTAG table. As a result of the Section Two analysis, i t may be found that
certain tag (subscript combination) names must be changed. To indicate the
name change, an unedited change, this table (see illustration) specifies, in
addition to the name of the tag and the new name to which it i s to be changed,
the range of the problem over which this tag is to take the new name. Thio
range i a indicated by two internal formula numbers. An example of the
significance of the range is illustrated here:

This problem will give r ise to three unedited change tag table entries, for the
subscript combination (I , J). These three entries will cover the ranges
respectively of p and q, r and s , and t and u.

If the table were unedited, it would be necessary for the MERGE to scan and
test every tag field of every GIT appearing within the given ranges. In order to
avoid this extended testing, the table i s edited; the editing enables the exact
location of the tags requiring changed names to be localized from a range of
several statements to a single statement.

Therefore, the f i r s t task that MERGE I performs i s the editing of the change
tag table. This editing occurs with the aid of the FORTAG table which contains
an association of tag names with specific internal formula numbers. The
edited change tag tables, therefore, a r e the same as the unedited table with the
exception that a range of statement has been reduced down to a single statement
number. While scanning the CIT's during the merging process a test is made
on statement numbers to see if they match the number in the edited change tag
table. If they do, the new names a r e inserted in the tag field.

2 . The SXDTX table. Section Two may find a s a result of subscript
combinations within DO nests that it is necessary to change a decrement value
of a TXL instruction ending a DO. This will usually be in inner DO'S where
the index is the same as the leftmost subscript symbol in the subscript
combination. Of course, i t assumes that this subscript combination is used for
testing the end of the inner DO. At the time that Section Two i s compiling the
SXD instruction which inserts the new test value in the TXL instruction it does
not know what the internal formula number designation for the T X L instruction
will be. Therefore, it makes a table indicating this internal formula number
allowing the MERGE to complete, by filling in the address, the SXD instruction.

3. Open Subroutines. Whenever an open subroutine reference i s encountered,
during the compilation of the arithmetic instructions, a CIT is compiled which
i s merely a signal to the MERGE. This signal tells the MERGE not merely
that an open subroutine is necessary a t this point, but it also designates which
open subroutine i s giving information about where the argument is to be found
and whether the output of the subroutine is to be left in the accumulator o r MQ.
Encountering this signal CIT or CIT's, the MERGE inserts the appropriate
open subroutine. The designations refer ring to input arguments and output
results , of course, pertain to the problem of arithmetic instruction linkage.
With the completion of these functions the MERGE has produced a single file
of instructions called the Fir stfile.

MERGE 11.

MERGE I1 of Section Three does not do any merging; it produces a new f i le
of instructions. The tables used in producing this Tifgo fi le of ins t ruct ions
a r e the TWGO and TRAD tables f r o m Section One and TRALEV and TRASTO
tables f r o m Section Two.

The need for t he Tifgo f i le of instructions a r i s e s in the following way.
The main body of computing and indexing ins t ruct ions , included in the Compdo
file, a r e assoc ia ted with the beginning and end df D o ' s . That is, the in ternal
fo rmula numbers of t he i r CIT's have the internal fo rmula numbers belonging
t o the DO s ta tements themselves and the f inal s ta tement in the range of these
DO sta tements . However, indexing ins t ruct ions belonging t o DO nes t s may be
associated with s ta tements within the range of DO sta tements . The en t i r e
Section Two mechanism is s e t up to do compiling of t he beginning and end of
DO indexing ins t ruct ions . It does the ana lys i s neces sa ry f o r the indexing
instructions requi red within the range of DO's but does not compile the
instructions. Instead it p repares the two tab les TRALEV and TRASTO, which
a r e a summary of th i s information.

All of these types of indexing instructions a r i s e f r o m the f ac t tha t t r a n s f e r s
occur within DO's, specifically t r a n s f e r s going out of the range of a DO. In
considering th i s problem, an en t i re DO nest , involving possibly many leve ls
of DO'S a s well as many DO's on any given leve l , m u s t be considered.
Consequently, a t r a n s f e r out of a DO within any DO nes t may be a t r ans fe r
ent i re ly outside the nes t (that is, t o level ze ro) o r to another DO within the
nest (that is f r o m level 1 to ' level n). Specific Tifgo ins t ruct ions a r e caused by
the f ac t that s o m e indexing mus t occur before a t r ans fe r out of t he DO is made ,
provided tha t t he configuration of DO nest within the nes t , subsc r ip t combinations
within the nes t , and the u se s of DO indices a r e such that indexing ins t ruct ions
a r e required.

The re a r e , in f a c t , s i x different s e t s of indexing instructions which m a y
precede any individual t r ans fe r . These s i x s e t s account f o r s i x di f ferent
types of TRASTO en t r i e s , as i l lus t ra ted in V. Ei ther one o r a combination
of t he se s e t s m a y be required before any t r ans fe r . The TRASTO tab les a r e
numbered: th i s means that the ins t ruct ions corresponding t o e a c h type of
TRASTO ent ry m u s t occur in the sequence indicated by the number . In
setting up the TRASTO table en t r i e s , Section Two de te rmines t he re levant
f ac t s with r e spec t t o both the location of t he t r ans fe r ins t ruct ion i tself and
the t r ans fe r a d d r e s s e s of any single sou rce program instruction.

No detailed explanation will be given h e r e of the specific r ea son f o r each of
the six types of TRASTO entr ies . Brief ly , however, we c a n note tha t t h r e e
of them a r i s e f r o m the c l a s s of p rob lems descr ibed in Section Two as
"reset" problems. I t has a l ready been noted that a r e s e t m u s t occu r before
s ta r t ing the recycl ing of an inner DO. By a s imple extension of t h i s , t he
s a m e kind of r e se t t i ng m u s t occur when a t r ans fe r is made from an inner DO

to a point within the DO nest. This is , simply, so that the inner DO index
will have been reset on the next repetition of the inner DO. Another TRASTO
entry is required when the area of the transfer address has an arithmetic
statement with the inner DO index symbol on the righthand side o r ,
correspondingly, has that symbol in an output list. Another is required to
effect a transfer, within DO'S, to one of the A) subroutines. The final one is
required to effect the proper saving of an index value or subscript combination
tag when a transfer defines the tag value. This covers the following case:

Let a DO on I be within a DO on J. Let the subscript combination (I, J) appear
in the inner DO and the outer DO. Further, let there be a transfer from the
inner DO to the arithmetic statement containing the subscript combination
in the outer DO. Since these two subscript combinations receive different '

names by the method of the Section Two analysis, provision must be made to
shift the index value from one name to the other.

In setting up TRASTO tables, Section Two, much a s in the unedited change tag
table , designates a range within which the relevant Tifgo (IF or GO TO)
instruction occurs. Furthermore, a range i s left for the level of the
particular transfer address in five of the six TRASTO cases. It is these facts,
along with the necessary ordering of TRASTO instruction sets , which create
whatever com pens ating com plexity exists in the MERGE 11 compiling section.

The MERGE I1 analysis proceeds in this. general manner . It uses the TIFGO
table a s its guide. In this connection, it must be remembered that the TRAD
table i s simply an extension.of the TIFGO table. It simply supplements those
TIFGO entries arising from computed GO TO and ASSIGN GO TO statements.
When it comes across a TIFGO entry i t checks to see if it i s also in the TRALEV
table. If it i s not, there is no further concern for possible TRASTO instructions
and the direct transfer addresses a r e compiled into the relevant transfer
instruction. By direct, we mean here the number given in the source program,
translated into its internal formula number. When the transfer or TIFGO
entry is in TRALEV, there ar ises the further possibility of TRASTO entries
for any of its addresses. The TRALEV table, it must be remembered, lists
the levels of each of the transfer addresses. Consequently, a search is made
through the TRASTO tables, f i r s t , for those entries indicating the
appropriate range of the TIFGO internal formula numbers, then, if that is
found, a search to see if the TRASTO entry designates the level range
corresponding to the level indicated by the TRALEV entry. If these
conditions a r e met, then MERGE I1 compiles the indexing instructions
corresponding to this type of TRASTO.

The only complexity that ar ises here is with the handling of the internal
formula numbers. The following illustrations cover both the "no TRALEV
entry" and the "TRALEV entry found" cases.

No Tralev entry Tralev entry with Trasto entries
agreeing to formula numbers /and&

4 (first two branches only)
. Instructions corresponding

to IF' statement

TPL /3

TRA B,

4 Instructions corresponding
to IF statement

TZE
TPL
TRA ~ (t " $

Trasto-type Tifgo instruction

d+%%
Trasto-type Tifgo instruction

0

The most important subsidiary task performed by this part of the MERGE i s
the putting together of the ASSIGN CONSTANT table. This comes about as a
byproduct of the scan of the TIFGO table, which contains the ASSIGN GO TO
entries. The ASSIGN CONSTANT table appears subsequently ae the 5) block,
containing the transfer instructions to each of the pos sible ASSIGN GO TO
addresses.

With the completion of MERGE 11, a new file of instructions exis ts , containing
the computing and indexing instructions arising from transfer e within DO1 s .

MERGE 111.

The task of MERGE III i s comparatively simple. It simply does a direct
merge on the Firstfile and the Tifgo file. Here too, the principles of the
numerical collation apply. It might be noted that in some cases, MERGE I1
will simply have supplied transfer addresses for instructions which were
partially compiled in Section One. That is, the Section One instructions
will be complete except for addresses. In this case, the two instructions
a re brought together by "oring" one over the other.

The primary subsidiary task here is the insertion of the instructions arising
from the TSXCOM table. This too, provides the instruction resulting from
the definition of a relative constant and there a re two types of TSXCOM
entries: One providing the transfer to the A) subroutine, the other, providing
for a direct load into anindex register from the relative constant cell.

All that remains for the MERGE to do . is follow the main file of instructions
with the two secondary files of instructions compiled by Section One and
Section Two. These a re the arithmetic statement function instructions and
the A) subroutines, respectively.

At the end of the MERGE all instructions resulting from an analysis of
touring the source program are complete, except for the existence of
symbolic tags, rather than at the absolute tags. This provides the main task
of Sections Four and Five.

v I1

SECTION FOUR

PART 1

The f i rs t task of this part is to divide the object program into basic blocke, a
basic block being a stretch of program with but one entry point, and one exit
point. In order to do this, a pass is made over CIT looking for t r a n d e re a

tests and skip type instructions. Transfer and conditional transfer addresses
and the locations of instructions following skip type instructions or TXLs (end
tests of Dos), a r e all entered in the BBLIST table once only, in algebraic order,
by means of a binary search technique. The assigned Go To instructions a r e
ignored for the moment.

During this pass, when a TXL is encountered, both its location and addrescl are
entered in the DOLIST table, thus providing a l is t of the beginning and end
locations of all Doe, in end location order;

Routine As sign

A new table, TLFRD, i s now formed from the Assign and Assigned GO To entries
in the TWGO table, together with the associated entries in TRAD. (Tifgo
entries a r e of a fixed word length, and the Trad table was therefore created to
accomodate al l possible Assign Go To transfer addresses.) At the same time,
all the transfer addresses a r e entered in BBLIST..

BBLIST now constitutes a l i s t of the beginnings of all basic blocks in the
program, in the order in which they occur. The baeic block number which i s
referred to l a te r , is the relative address of the particular basic block within the
BBLIST table.

Subroutine F r eq

There a r e two types of Frequency Statements in the Fortran language:

1) A type referring to conditional transfers, estimating the frequencies of the
various branches taken.

2) A type estimating the loop counts of Dos with variable parameters.

The f i r s t type gives rise to a frequency table entry containing the internal
formula number of the corresponding coding, followed by as many frequency
estimates a s branches. Given frequencies (i t , La ,is, ., , i,) this
routine modifies them to form quantities

The significance of this will be explained

The second type gives r i se to a 2 word entry containing the internal formula
number corresponding to the Do followed by the estimated loop count. (The
length of this type of frequency entry - 2 words - distinguishes i t from the
f i r s t type, which is always longer.) These Do entries a r e transferred to the
Dofret table, and the remaining frequencies a r e moved up to occupy the
vacated positions.

Routine SORTDO

The table Dolist, created in the f i r s t pass and ordered on the ends of the Dos,
by nature of the way i t was built up, is now sorted into the order of beginnings
of DOS. When these a r e equal, the Do with the largest terminating location
takes precedence. The table i s now compared with BBLIST, and the internal
formula numbers in Dolist a r e replaced by basic block numbers.

Routine LOADDO

Dos a r e further processed in this routine, Each Dolist entry is matched with
the corresponding Dotag table entry, and if the latter indicates a transfer out
of the Do range, a tag of 7 indicator i s set in Dolist. Such a Do is referred
to in this Section a s a 'Do with an if'. Also the loopcount I&- N, +N3 is

*

N3
calculated and entered in Dolist, unless the parameters a r e variable; in the
lat ter case , if a Dofret entry exists for the Do, the loopcount given there is
used, otherwise the arbitrary loopcount 5 i s used. If the'current Do i s a
ca r ry case , i. e. in the Docare table written by Section 2, the loopcount is
multiplied by that of the previous Do.

PART 2

A second pass is now made over Cit, producing the three principal tables with
which simulation is accomplished, namely BBTABL, SET and TRATABLE.
There i s one 1-word entry in BBTAL for each basic block in the program, but
there may be several SET and TRATABLE entries corresponding to this one
BBTABL entry. At the beginning of each basic block, the next available
locations in SET and TRATABLE a r e entered in the BBTABLE, thus providing
a key to information which will be accumulated during the pass, for the basic
block.

The SET table is made up of information which m a y influence future flowpaths
taken in the object program, and is formed in the following way. On reaching
a sense light instruction, this entry is made:

Address of dummy 0 or 1

A zero address would indicate that the light should be turned off, a 1 that it
should be turned on. (Dummy lights only a r e maintained during the program
simulation pass, in Par t 3, not the actual machine lights .)
An entry is made if the current instruction i s derived from an Assign
statement, (i.e. if there is an 'assign' type TlFRD entry correspoz&q to the
current location symbol.) The appropriate transfer location is obtained from
the Tifrd entry, and thence, by examining BBLXST, the b a s i c , b l o c k 3 ~ ~ m b e r is
derived.

Also, the symbol
NLIST. The SET

of the Assign, "N" for example, is entered in a new tahle
entry takes the following form: v

There i s a further type of Set entry which will be discussed later.

LNLIST address lljuccessor ' ~ ~ n u r n b e d

The remainder of the analysis during this pass ie concerned with obtaining
information about basic block endings. If the irm truction following the current
one begins a new basic block, (i .e . i ts location is in BBLIST), then the current
instruction clearly ends one. 4 1 ~ 0 , if the following instruction dods not begin
a basic block, then it may be t+t the cur'rent one is a skip type instruction or
a conditional transfer , both of which Qonstitute basic block endings.

The ending code of the basic block i s now placed in tbe BBTABLE, which
already contains the TRATABLE and SET addresses for this basic block. The
different codes a r e given in this list.

The TXL of a Do with an if.

Sense light ending

Probability ending. This i s entered for such
BB endings the successor of which cannot be
predicted. These might be sense switches,
conditional transfers, Go to vectore.

Certainty ending. This is entered when the block
en& with a tranefer , crr control, alwaye psses
to the following basic block.

The TXL of a Do without an if.

Assigned Go To ending.

Stop ending.

VII- 3

Thc t ransfer addresses at the basic block ending give all possible successor
basic blocks, and the associated block numbers a r e found by looking up these
addresses in BBLIST. Subroutine ENTER placcs each one of these in the 2nd
word of a 2-word TKATAULE cntry , (there being one entry for each successor
basic block), together with other relevant information pertaining to the current
basic block ending, e. g. location symbol of current ending, number of
branches ctc. See appendix for Tratable details.

There i s a further type of Set entry which was not discussed earl ier . During
the simulation pass in Par t 3 , 'Dos with jfs' must be simulated so a s to obtain
statistical counts of the flow paths taken. In order t o do this, a loop count fo r
the Do i s maintained, which must be rese t to i ts initial value each time the DO
is re-entered. To this end Subroutine Enter , mentioned in the foregoing
paragraph makes the following analysis. If the successor BB which has just
been entered in Tratable, begins a Do with an i f , and if the Do is being entered
from outside i ts range, then arrangements a r e made to rese t the loopcount.
However, the table entries corresponding to the Do are not available, a8 the
Do itself may not have been reached yet in this pass. Therefore, a new table
FIXDO i s built up and entries made a s followa:

SET entry: FIXDO entry:

)BB No. of end of DO*] 1 oopc ound
*This is i n effect, a table reference to

-- -- 1 Set encryBddreas I

the Do entry in the BBtable.

At the end of the pass, the information pertaining to the Dos has been entered
in the tables. Each Fixdo entry i s now taken in turn, and, from the
corresponding Set table entry, the Do's BBtable entry is obtained. This a s
described ea r l i e r , contains a reference to the Dos TRATABLE entry (containing
loopcounts etc.) and this l a s t is now stored in the above Set entry t o form:

Table Fixdo is now redundant.

Address of

Routine FIXTST

loopcount o

One more preliminary must be dealt with before the simulation takes place,
and that concerns the frequencies and probability BB endings. For each
probability BB ending found in the BBtable, the corresponding Tratable entries
arc obtained. Relative frequencies for the different successor BBs must be
cither found in the frequency table (by matching formula numbers given fo r
the frequency and for the Tratable entry), o r formed now by assuming each
branch equi-probable. As mentioned in P a r t 1 of this discussion, the
frequency table entr ies , originally qf the form (A , J i a , . - .) are now

(-A, + 4 d , r d . t 3
.(

' !l J * * - * * - ' -) and the equiprobable situations must
f.^ + I

I

*Tratable entry for Do Do 1

must be in a s imi l a r form. For inetance three equiprobable branches would
J 2 produce probabilities of (z I I). The probability for each successor BB

is placed in its Tratable entry.

PART 3

The object program i s now simulated many t imes in o rde r to obtain statistical
information concerning relative frequencies of flow paths taken. The number
of simulations is equal to the total number of t r ans fe r s in the program
multiplied -by 128, which means that the m o r e complex the program, the
grea ter the number of simulations. The program i s stepped through baeic
block, using the BBTABLE, starting with the f i r s t basic block. No reference
is made to the complied in&ructions,

A BBTABLE entry i s selected, and orr responding SET table en t r ies are
obtained. Settings are made according to these en t r iee , that is, the SET
address , o r sett ing, is stored in the location given in the decrement. F o r
instance, a Set ent ry turning a sense light on would cause a 1 to be stored i n
the dummy sense light address . A Set entry to reset the loopcount of a DO
with an if would cause the maximum loopcount to be s tored in the Tratable of
the Do. (This is where the i terat ions are counted during the simulation.)

Routine DECODE

The basic block ending code in si table is now examined. All possible
successor basic blocks to the cu r ren t One a r e given in i t s Tratable en t r ies , and
the way in which the successor is chosen is descr ibed below under the different
endings.

Probability. A random number l e s s than 1, is formed by multiplying a constant
' random' number by a second number. This new random number now replaces
the second number mentioned above to ensure a different random number next
t ime. The method now used to select the successor basic block is best
i l lustrated by an example. Suppose a 3-branch probability ending had a

3
frequency s tatement (l , 2 , 3) , which was converted in Part 1 to (j t 7 1 1.
These quantities are expressible a8 coordinates of points of a unit line:

The par t of the l ine f rom 0 t o ~ c o r r e s ~ o n d s to the f i r e t successo r BB, from
6

1 t o 3 c o r r e s p o n d s to the second, a n d f r o m 3 t o 1 to the third. Ifthe random -
6 6 6
number generated as desc rlbed e a r l i e r l i e s within the f i r s t interval , then the
second successor is chosen, and s o on.

VII- 5 -

The flow count of the successful successor BB is now increased by I , and
control is returned to deal with this new block.

Certainty. In this case there i s only one successor, so its flow count is
stepped up, and simulation continues with this block.

Sense light. The euccessor i n this case i s determined by the status of the
appropria te d u m m y scnee light. If it ie e.et at 1, then it i s rese t to zero and
the 'light on' successor is chosen, otherwise, the 'light off' successor ie
chosen. The flow count i s stepped up, as for other endings.

Assigned Go To. The successor of this type of ending depends on the setting
made for the particular 'N' , earl ier in the simulation. The BB number
given for N in the NLIST table (entered there by an earl ier BB in the
simulation) is matched with the current Tratable entries. If a match is not
found, the f i r s t Tratable entry is taken. The successor flow count is stepped
up a s before.

Do with an if. The simulated loopcount, held in i ts Tratable entry, is stepped
up, and if the Do is complete, then the successor BB following the Do is
selected. Otherwise, that beginning the Do is chosen.

Do without an if. At this point, such an ending is treated a s if i t were a
certainty ending. Such Dos a r e dealt with af ter the simulation pass.

Stop. The current simulation is now complete, and it i s recommended at the
first basic block of the program, unless the required number of simulations
has been carr ied out.

Routine DODO

After the simulation has been dealt with, this routine adjusts the flow counts
of basic blocks which l ie within Dos without if s . If may be recalled that
during the simulation, these Dos were not simulated a s were the Dos with ifs
and therefore the flow counts of the basic blocks within them have not taken
account of the loopcounts of the Dos. This i s now kemedied.

If a basic block l ies within several nested Dos, then clearly not one loopcount,
but all loopcounts multiplied together will be involved. Dos without ifs a r e
obtained f rom the DOLIST table, and a new table LCTR i s devised to keep
t rack of the loopcount nesting of the Dos as they occur. The f i r s t LCTR entry
is a dummy, 1. The next always corresponds to the outer Do of a nest, and
contains its loopcount. The following entry is for any second level Do and
contains its loopcount the outer Do loopcount. Fo r example# in this

configuration quantities in LCTR words are indicated

1-- Ez $ LCTR-1 contains loopct A
LCTR-2 contains loopct B * loopct A 1 rDo C

I l l LCTR-3 contains loopct C * loopct B * loopct A

LCTR-2 contains loopct D * loopct A

i---

The successor flow count of each basic block between the beginning of Do4 and the

beginning of Do# is multiplied by the contents of LCTR - 1 i. e. l o o p c t ~ .

The successor flow count of each basic block between Don and Doc is multiplied

by the contents of LCTR - 2 i. r . loopctdxloopctA , and the successor flow count

of each BB except the ending BB. within DoC is multiplied by loopctC 1(loopctg x

loopctq . The successor of the ending BB in Docwill be the beginning of Doc

for loopct ,,, loopctg (loopct - 1) t imes, and will be that following the Do, for

loopct fi loopct,, t imes, so these successor flow counts a r e adjusted accord-

ingly. Remaining basic blocks in this nest and in other nesting configurations
a r e dealt with similarly.

Routine DOSUCC

As described ear l ier , a TRATABLE entry consists of 2 words, the second word
containing a successor BB number, with associated flow count, and the f i r s t -

word containing various information used by this section but now no longer
required. The order of entries corresponds to the BQTABLE order, though
there may be several successor BBs and therefore TRATABLE entries to a
given BBTABLE entry. In this routine, the 2nd Tratable word i s rearranged
slightly and placed in a new table called SUCC. This me ans 'that for every
basic block in BBTABLE, there is one or more SUCC entry containing
associated flow counts.

There is another way of looking at it, namely, given a basic block, which a r e
the preceding, o r 'predecessor1 basic blocks? This information is complied
in the following manner. A pass i s made over Taratable, together with
BBTABLE, to enter in word 1 of each successor BB Tratable i n t ry , the

I current BBtable number , which is of course, their predecessor. This new
fo rm of Tratable i s now sorted in order of Successor BB number, and the
resul t is that for each basic block in turn, all predecessors a r e grouped
together. Now, word 1 of Tratable becomes the PRED table, and relative
addresses of PRED BBS corresponding to the Basic Blocks e r e entered in
BBtable. We now have three basic tables to be passed on for the Section 5
analysis :

Routine TAGPAS

BBTABLE
Address of f i r s t relevant t

, SUCC entry PRED entry -
1 14 21 35 1 14 21 3%

The third and final pass i s now made over CIT to collect tag information for
Section 5, and during this pass two new tables a r e built up: TAG and BBTAG.
F o r each occurrence of a tagged instruction, an entry is made in TAG,
consisting of the symbolic tag name, together with a code according to the
following list.

When the instruction begins a basic block, the sign of the entry i s se t negative.

SUCC:

Each time the beginning of a basic block i s encountered, a 'BBTAG entry
i s made, containing the number of entr ies so far in TAG, together with octal
33 , the latter being for t h ~ convenience of Section 5. The l a s t BBTAG entry
is a dummy and contains the total number of TAG entries.

Finally, details concerning table lengths a r e left in locations called Keys, for
Section 5, and the BBtable and BBtag tables a r e combined to fo rm one table -
BBBTABLE, each entry of which consists of 6 word6 the l a s t four being zero.

Flow count Predecessor
BB Number PRED:

Flow count
BB Number

Successor

APPENDIX TABLES CREATED DURING SECTION 4

BBLIST This is wri t ten in P a r t 1 and is a n o rde red l i s t of the beginning
locations of all basic blocks within the object p rogram.

BBTABLE This is writ ten during the second pass over CIT, in P a r t 2.

BBTAG This i s wri t ten during the f inal pass ove r CIT in P a r t 3. An en t ry is
made eve ry t ime a new basic block is reached, and i t contains the number of TAG
en t r i e s made s o f a r . The final en t ry contains the total number of TAG en t r i e s
made.

Pr ef ix Decrement a d d r e s s

DOFHET See FRET.

DOLIST This is wri t ten in the f i r s t pass , during P a r t 1 , and one en t ry is made f o r
each Do in the object program. The entry cons i s t s of 2 words:

*

Start ing location of
corresponding Set

en t r ies

BB ending
code

i

FIXDO Th i s is a minor table, used only in the 2nd part . When i t i s found
n e c e s s a r y to r e s e t the loopcount of a Do with a n i f , a n en t ry is made h e r e which
contains the a d d r e s s of the Set en t ry descr ibed under SET in this appendix.

Start ing location of
corresponding
Tra tab le en t r ies

Location of beginning of D and is replaced by:
Location of end of Do

FRET This tab1.e or iginates in section 1, and is modified in P a r t 1. The f i r s t
word always contains the internal fo rmula number to which the f requency appl ies ,

BB No. of beginning
BB No. of end

b

together with a minus sign. Frequenc ies follows, one word per frequency. This
a l s o appl ies to Do frequencies . Do type f requenc ies a r e then e r a s e d f r o m FRET
and t r a n s f e r r e d to a new table DOFRET. Meanwhile ,
a r e changed f r o m the f o r m (, ' , . . + t o (

LCTR Th i s is a n internal table. The flow counts of basic blocks iying within Dos -
without if a a r e multiplied by i t s contents a f te r the simulation.

1st en t ry Dummy 1
2nd en t ry Loopcount of ou te r Do of a nest .
3 r d en t ry Loopcount of any next inner Do X 2nd en t ry
4th en t ry Loopcount of any next inner Do X 3 r d e n t r y

. . . and s o on.

NLIST This i s a l i s t of symbols of Assign statements.

SET This is written in Par t 2 , consists of settings made during the object -
progra.m, and i s used in the simulation.

Sense light

Assign

Entry to reset
a Do with an if

Address(es) of dummy 0 if turned off
light(s) 1 if turned on

I BB No. of end of Do I Maximum 1oo.pcount
of Do I

Reference to NLIST
where As sign symbol
is stored.

This i s replaced later by:

Successor BB
No

TAG - This i s written during the final pass over CLT, in Par t 3, and an entry is
made for every tagged instruction. The code depends on the type of instruction,

?

and a full l is t i s given in the main. text.

Address of 1st Tra-
table entry of end
of Do.

Maximum 100,pcount

I I tag 1

Prefix Address

TWRD This table consists of the Assign entries f r o m TLFGO, which has code
6 in the f i r s t word with the internal formula number, and the Assigned Go To
entries of Tifgo and Trad. The latter Tifgo entry has code 1 with the internal
formula number, in the f i rs t word., and has the number of transfers (Le .
number of Trad entries) in the second word.

Code

TRATABLE This i s built up during Pa r t 2. Each basic blockending, except
a stop, has a group of one or more Tratable entries, giving the successor basic

r

Symbolic

blocks. Different types of entry a re s h ~ w n .

TRATABLE (cont.)

followed by an ent ry for each other successor basic block, with only word 2
used.

Assigned Go to:

Do with if: Wd. 1 Loop count 4

- -.-
- Successor BB No. flow c o u z during a

Relative address
of NLIST. e n t r y - ----- -... - --- ---. -
Succeseor BB No.

Wd. 2

Wd. 2 I,Lthathegnmmg-h! I I
(Used for simulating I

flow count during
simulation

Wd. 1

Wd. 2

Do without if: Exactly the same as Do with i f , except that word 1 of the second
entry is not needed f o r simulating iterations.

loop count I
Successor BB No.

Remaining brancheo each have one entry, and only the 2nd word is used.

flow count during

Conditioned t ransfer t _ _ ..,+__-

All probability cases : The second word is the s a m e a s the preceding cases . The
f i rv t word contains the probability quantity that that par t icular branch should be
taken, and there are a s many ent r ies a s braachee.

(that ending Do) simulation I

PRED: This i e der ived in P a r t 3 f r o m TRATABLE and BB TABLE.

..

I low count P redece rmorBBNo. 1

-flow count during - '

flow count during-
. a i r n u l a t i - -

and Go to Vector: Wd. 1

Wd. 2
Wd. 1

Wd. 2

SUCC: Identical with P r e d , except that the successor BB number i a , in the
a d d r e s s portion.

Location
L w ~ - m - ~ r

Lst.&anch
No. of Branches

3 u c c e a s o r BB of
, 2nd B r u

VIII

SECTION FIVE

Thc following discussion of Section Five i s divided into 4 parts correspond-
ing to the division into records on the For t ran system tape. In addition,
following the description of parts 1 and 4 i s a summary of the frequently used
subroutines for that part. Following part 4 there i s also a description of the
tables used in Section Five. Since some of the concepts used a r e also explain-
ed under the headings of the subroutines and tables, the reader may find i t
useful to refer to them while reading the main text. Also, see illustration
page VIII - 12.

PART I

Section Five uses the information about basic blocks (which has been passed
on from Section Four) to combine these basic blocks into larger groups called
regions. The flow within a region i s simulated in order to determine which
symbolic tags a r e required and which index regis ters should be assigned to
them. During the course of simulation, flags a r e set to indicate where an
SXD or LXD is required. When a region has been treated i t m a y be combined
with other regions. Eventually all basic blocks will have been combined into
a single region, and the complete object program will have been treated.

Thc most frequent paths of flow between basic blocks a r e handled first . Since
an SXD or LXD i s not inserted until necessary, this results in the most frequent
paths having the least of them, and therefore a faster object program.

Region Formation

The f i rs t step of this treatment i s the formation of a looplist showing the path
of flow through a new region. The starting point in looplist formation i s the
most frequent link between basic blocks which has not yet been considered. (The
PRED and SUCC tables have frequency counts which a r e examined to find most
frequent predecessor or successor basic blocks. When a link has been treated,
the entry which re fe r s to i t i s marked with a minus sign so i t will not be con-
sidered again.) Looplist i s expanded by including a s many of the most frequent
unconsidered predecessors a s possible and then a s many of the most frequent
successors a s possible. If the most frequent link i s ta a basic block which is
in a region previously treated, this whole region i s included in the looplist. Thus
a looplist may consist of a combination of untreated basic block and regions (or
basic blocks which have already been treated).

Regions a r e classified a s either opaque or transparent. An opaque region is one
in which all three index registers a r e used. A transparent region has one or
more index regis ters sti l l available. When an opaque region is encountered
while forming looplist, no more links a r e added to it. However, a t ransparent
region may stil l be added to, since there a r e index regis ters available within it
to which tags can be assigned.

VIII- 1

- I -7------
7

The looplist table consists of cne word entries for each basic block or region.
A code in the prefix of the word indicates whether i t refers to a basic b lock a
transparent region, or an opaque region. If the entry is a basic block i t con-
tains the BB number, and if the entry is a region i t contains the numbers of the
basic blocks at the entry and exit points of the region. The end of looplist i s in-
dicated by a word of all sevens.

From the starting point in looplist, the most frequent predecessors a r e added
one at a t ime until one of the following conditions have been encountered. If an
entry i s already in the current looplist, this makes looplist a loop and prohibits
further building. If an entry is an opaque region or i f there a r e no unconsidered
predecessors, then additions a r e made at the other end, and the most frequent
successors a r e looked for. Again the same conditions apply. Basic blocks or
regions a r e added until a loop or an opaque region is encountered, or there a r e
no unconsidered successors to the last entry. When a looplist has been corn-
plcted, it will reflect the flow in a section of the object program. It m a y havc
a loop, reflecting a loop in the object program. In such a case, i f there is an
end of looplist not included in the loop, that section is eliminated from looplist.
Only the loop itself will remain in looplist for further treatment in this loop-
list. On the other hand, the looplist may be a string with no loops, having been
stopped in both directions by encountering an opaque region or by finding no un-
considered links to it.

After the looplist has been formed, the path of flow indicated i s ready for t reat-
ment. The next step i s to prepare for simulation which is done in the 2nd LXing
pass. If the looplist i s a string, then the only preparation necessary i s to ma rk
the initial conditions of the IRs. If the looplist is a loop, however, the 1st LXing
pass i s entered.

1st LXing Pa s s

The index regis ters used by the object program a r e simulated in Section Five by
three storage locations which a r e continually updated. These cells a r e refer red
to a s IRs. During simulation they will contain the symbolic tags needed by the
corresponding par t of the object program.

The 1st LXing pass simulates the loop in order to find out the condition of the
IRs when the 2nd LXing pass is begun. Each basic block in the looplist is
cxamined to see which tags a r e necessary. This is done by referr ing to TAGLIST
(which is a table containing a l is t of all tagged instructions in the object program.)
Tags a r e placed in the IR cells a s required. When a region is met in looplist,
the previously determined exit conditions from the region a r e placed in the IRs.
After the whole looplist has been done the IR cells contain the initial conditions
for the 2nd LXing pass.

2nd LXing P a s s

Simulation in the 2nd LXing pass is much more complex then the cursory t rea t -
ment of the 1st LXing pass. Entr ies are made in tables when a tag must be loaded

into or displaced from an IR. STAG i s used to record LXs and SXs within
a basic block, and PRED i s used for those between BBs. When a tag is dis-
placed, i t s value is saved if necessary in a cell se t aside for that purpose.
These tag cells a r e thus kept up to date s o that the next t ime a tag not already
in an IR is required, an LX from the corresponding cell will be correct .

In order to determine when an SX i s necessary, the concept of activity is used.
W h e n the initial value of a symbolic tag is set, or when that value is changed by
an indexing instruction such a s TXI, the IR becomes active. This means that
the value in the storage cell corresponding to that tag is outdated. This fact is
recorded in cells r e fe r red to a s AC l , 2 , and 3, one for each IR. If this tag
must be displaced while treating the same looplist, an SX will be introduced
immediately after the active instruction, thus updating the tag cel l and ending
the activity. But if the tag has not been displaced from the IR after t r ea t -
ment of the looplist, the section of looplist is marked active f rom the point of
the active instruction. This is done by placing activity bits in the BBB entry
for each BB in that section of looplist. When flow goes through such a BB in a
subsequent looplist, the activity will be noted, and i f a future SX is necessary it
will be placed in theslink from the region containing the BB.

A tagged instruction that does not change the value of the tag, does not requi re
this treatment. Such an instruction is called passive. A passive instruction,
such a s CLA or TXL, only makes i t necessary t o have the appropriate tag in an
IR. When a tag i s required that is not already in an IR, an LX f rom the appro-
pr iate tag cell is called for. Because of the way activity is handled, the tag ce l l s
may always be considered up to date. All that is necessary i s a determination of
the most desireable IR to use. If they all contain tags, this is done by search-
ing ahead to find out which of the tags presently in the IRs will be needed last .

Treatment in the 2nd LXing pass begins with the f i r s t entry in LPLST and pro-
ceeds in sequence to the last. The three types of entr ies , 1) BBs, 2) t r ans -
parent regions, and 3) opaque regions, a r e distinguished by a code number and
each is treated differently.

1. Treatment of a BB

If the LPLST entry is a BB, simulation of the object program i s accomplished
examining a l l the tagged instructions in the BB and making the necessary pro-
visions for the tags used. The instructions i n TAGLIST for this BB a r e taken
in sequence, and the IRs a r e updated a s necessary.

Each IR i s examined to see if the symbolic tag required by the instruction a l ready
i s present. If the tag i s not in an IR, i t i s put into the most replaceable one, and
the STAG entry corresponding to this instruction i s marked to show that an LX
from the tag cell i s necessary. The LX i s a l so recorded in the region table
entry. If the instruction is an active instruction, an active indicator is a l so stored.
If a tag had to be displaced from an IR, and that IR was active f rom a previ-ous
instruction, then an SX is necessary. This is recorded i n STAG i f the activity
was caused by a n instruction in a BB in this LPLST, or in PRED if the active in-
struction was in an already treated region. A PRED entry is necessary because

VIII- 3

once a region has been t r e ~ t e d , nothing i s changed within it. Thus the SX will
appear in the link f rom that region to the current LPLST. The STAG entry, on
the other hand, calls for compilation of an SX immediately following the active
instruction.

T'he appearance of an active instruction using a tag already present in an active
IR will cause the section of LPLST to be marked active.

When a DED pseudo instruction, compiled to tell Section Five that a tag is now
valueless, i s encountered and the tag i s not in an IR, nothing need be done. An
IR containing that tag will be loaded with a "hash" symbol, indicating i t s con-
tents a r e no longer of any value, and if the IR was active, the section of LPLST
will be marked active.

For each taglist instruction an entry i s made in STAG to record which IR to use.
After al l the tagged instructions within a BB have been examined and proper
table entries made, the entrance requirements (tags needed) and exit conditions s
for the three IRs a r e stored in the BBB table. BBB also will have bits indicating
which IRs a r e active within the BB, and has information passed on from Section
Four about how the basic block ends and the numbers of the SUCC and PRED
entries referr ing to this BB. Thus BBB is a summary of the basic block, and
the individual instructions need not be looked at again.

If the LPLST entry just trcatcd cndcd with an Assigncd GO TO, aomo extra t rcat-
ment i s required. If there a r e any active IRs an SX i s recorded a s necessary.

2 . Treatment of a Transparent Region

Entries in LPLST which a r e regions have had al l the BBs in that region simulated
at the time that region was formed. Therefore, i t is not necessary to go through
i ts tagged instructions again. However, i t i s necessary to take ca r e of the links
to and from the region. The best match possible is made between the current
IRs and the entrance requirements of the entry BB in the region. This may re-
quire permuting index register assignment in the region. For example, if a
tag T1 i s in IR1, when a region's entrance requirement is TI in IR2, then the
region's index regis ter assignment may profitably be changed to have T1 in IRl.
~ h c STAG, PRED, and BBB tables become obsolete by this change and must be
updated. The tables a r e not actually changed, however, since the tables a r e read
through permutation numbers in BBB, thus only these permutations a r e changed.
The numbers were originally se t to 1, 2, 3, (octal 33) by Section Four, meaning
entry 1 is IRl, etc. If they were changed to 2, 1, 3, they would mean entry 1 is
now IR2, entry 2 is now IR1, and entry 3 i s IR3. LX and SX bits in PRED will
take ca re of problems not solved by permutations.

Processing a transparent region entry in LPLST begins after matching the region's
entrance requirements. A pass i s made over the BBB entr ies for the basic blocks
in the region. If the region's entrance requirement for a particular IR is empty
(there must be a t leas t one of these, since by definition a transparent region has
one or more empty Ifis), the current tag for that IR ma y be carr ied through the

region. The new entrance and exit conditions of the IR a r e stored for each BB.
O n the other hand, if the entrance requirement i s not empty and does not match
the current tag in the corresponding IR, and if the IR i s active, i t becomes
necessary to examine the exit conditions of the BB. When the BB exit condition
does not match the corresponding IR but does match a different IR, an SX i s r e -
corded necessary. If the BB exit does match and the IR i s either active or does
not match at the region exit, the IR i s marked active i n this BB. After each
BB has been treated in this fashion, the new permutation numbers and active
indicators a r e s tored in BBB.

When al l the BBs in the region have been examined the region is considered a s
a whole. If the entrance condition for an IR i s empty but the IR matches a
different region exit, a "hasht1 symbol is put in the IR since the same tag should
not appear in m o r e than one IR simultaneously. When the region entrance con-
dition i s "hash" and the IR is active, an SX i s called for. If the region entrance
requirement matches the IR but the region exit i s "hash", empty, or active,
then the section of LPLST i s recorded active by marking the necessary BBB
entr ies active for the corresponding IR. When the region entrance requirement
is a symbolic tag which i s not already in a n IR, an LX is called for i n the link
to the region, and if the IR was active, an SX is also indicated. At the conclusion
of this processing the region's exit conditions a r e i n the IRs, the active indicators
a r e set , the region is permuted for the best possible match to the preceding
section of LPLST, and any remaining empty IKs a r e noted.

3 . Treatment of an Opaque Region

The processing of a n opaque region in LPLST is simpler than that of a t ransparent
region. This is t rue because there i s no possibility of carrying a tag through
the region, since there a r e no empty IRs. A match of the region 's entrance r e -
quirement is made if possible, and the permutation numbers updated. When the
entrance matches the IR but the IR is not active, nothing further need be done.
But when under the same conditions, the IR is active, either bkcause of a n LX
within the region or , if the region is the same one that s tar ted LPLST (a loop
condition), the IR was not active a t the s t a r t of LPLST, then an SX is necessary.
If there was no L X for the IR i n the region, and the region is not the same one that
s tar ted LPLST o r the IR was not active at the s t a r t of LPLST, then a n SX is not
yet necessary, but the BBs in the region and the section of LPLST to this point
a r e marked active.

When the contents of an IR do not match the tag required at the entrance of a n
opaque region an LX i s recorded a s necessary, and if the IR was active, a n SX
i s of course a lso indicated.

After the 2nd LXing pass has been finished and al l the LPLST ent r ies dealt with,
any remaining activity must be taken c a r e of. If the LPLST was a s tr ing this is
done very simply. It is only necessary to m a r k a section of LPLST active f o r any
remaining active IRs. In the case of a loop, however, the problem is m o r e
complex. The entrance requirements a t the beginning of the loop a r e examined.
Lf a requirement is not a real tag (it is either "hash" o r empty) and the IR is

active, then an SX
than the contents o
have taken care of
is solved.

is recorded. If the entrance requirement i s a tag different
f the IR, an SX and LX a re recorded. At this point if the SXs
the activity and there a r e no more active IRs, the problem

Active Pass

If there a r e still active IRs remaining, just a s the 1st LXing pass was required,
another pass, the active pass, is executed. LPLST entries a r e examined and
treated again in a manner similar to that of the 2nd LXing pass, with SXs called
for where necessary. After each LPLST entry has been dealt with, a test is made
to seeif there is still an active IR. Eventually they will have all been taken care
of and the active pass finished.

Table U ~ d a t i n ~

It only remains to bring the appropriate tables up to date. The PRED and SUCC
entries that have been treated a r e flagged negative. BBB has the new region
references entered. And finally the region table is updated by wiping out obsolete
entries (regions absorbed into the new one) and making the entry for the new
region.

Pa r t 1 repeats the cycle of looplist formation and treatment, with new, large
regions absorbing old ones, until all links between basic blocks have been treated
and the object program consists of a single, all encompassing region.

SUBROUTINES USED IN PART I

SE GROUP

These routines compute the correct references to the STAG, SUCC, PRED, and
BBB tables for a desired entry. They a r e entered with the item number in the AC
and return with index register 1 loaded appropriately.

This routine selects the most replaceable IR by scanning ahead through LPLST
and noting how long i t will be before the present tags will be required again. That
LR whose contents will be needed last i s the most replaceable. If this routine
is entered at S l l l i t does the reverse, that is search for the least replaceable IR,
the one whose tag will be needed first. This routine also uses S2 as a subroutine.

This routine can exist in two states, "Feed LPLST" or "Feed Tag". In the
"Feed LPLST" state i t will feed the next item in LPLST and take the LPLST Feed
exit. It switches to the "Feed Tag" state when the last LPLST item i t fed was a
BB and not a region. It then will feed the next item in TAGLIST and take the tag
feed exit until i t has fed the last TAGLIST item for that BB, when it returns to

the "Feed LPLST" state. When the end LPLST sentinel is fed i t re-initializes
itself to the beginning of LPLST and to the "Feed LPLST" state. The routine
uses the S4 subroutine for handling the taglist tape.

This routine will specify the permutation of index registers which will provide
the best match between the IRs and the entrance requirements of a region.

During treatment of a LPLST, the object program index registers a r e simulated
by the IR cells, which contain a symbolic tag, the empty symbol (octal 777777),
or the hash symbol (777776). Entrance requirements for a region will be placed
by S5 into the En 1,2, 3, cells which S5 will t ry to match against the IRs. The
optimal match for the IRs will be in the IN cells, and similarly, the best match
for E N 1,2, 3, will be in EN 4,5,6. For example, IN 1 i s se t to 3,2, or 1 de-
pending upon whether the correspondent of IR1 is EN 1,2, or 3. Also EN 4 will
be set to 3,2, or 1, depending upon whether the correspondent of EN 1 is IR1,
2, or 3. Thus if IR1 matches EN 1, IN 1 will contain 3 and EN 4 will contain 3.

S5 uses S1, S6, S7 and S9 as subroutines.

This routine is used by S5 to load EN 1,2, and 3 with the tags needed by the f i rs t
BB in a region a s entrance conditions for the index registers.

This routine loads the E X 1 ,2 ,3 and ACT 1,2, 3 cells from the exit conditions
and activity bits in the BBB table of the exit BB in a region.

This routine enters the PRED or STAG bits to record that an SX i s to be compiled.
The appropriate activity cell, AC1,2 , or 3, is examined. These cells describe
the status of IR 1,2,3. They may contain plus 0, indicating that the IR is not
active; plus activity, meaning that the active instruction occurred in a BB which
has not been treated until this LPLS'I'; or minus activity, meaning that the active
instruction was in a BB which is in an already treated region. If SB finds plus
activity, the SX bit i s placed in the STAG entry for the active instruction. If i t
finds minus activity, the SX bit is entered in PRED in the link from the region.

This routine is used to mark a section of LPLST active.

An index register becomes active when, in the simulation of a new BB in the
2nd LXing pass, an active instruction (LX, TXI, or TM) is encountered. The
activity produced is plus activity. If while treating the same LPLST the contents

of the IR must be displaced, SB i s entered and will record an SX necessary in
STAG. This SX completely takes care of the activity problem, and the activity
i s ended.

But if at the end of LPLST an IR is still active and the need for an SX has not
yet arisen, the compiling of the SX may be postponed. However, i t is not safe
to destroy all record of the activity, for an SX may be needed in treating a later
LPLST. In such a case SC i s entered and will transfer the activity from AC 1,2,3
to the BBB table for all BBs during which the IR i s active. When entered, SC
examines the designated AC cell. If i t i s not active, nothing is done. If i t is
active, an entry i s made in the prefix of word 2 of BBB for every BB between
the origin of the activity and the present point of LPLST, and the AC is turned
off.

The activity has now become minus activity, and can never be ended. The appear-
ance of such a BB is a subsequent LPLST will cause the appropriate AC to contain
minus activity, and whenever the contents of the corresponding IR must be dis-
placed, the SB routine will put an SX bit into the PRED link.

This scheme of postponing the compilation of an SX whenever possible, has the
gcneral property of producing a larger number of SXs than strictly necessary.
However, sincd the high frequency paths a r e treated first, the SXs will appear in
the lower frequency paths. Thus to save object program time, Section Five will
trade object program space.

The SC routine uses SD as a subroutine.

This routine is used to mark the BBs in any one region active.

This routine forms the appropriate AC 1 ,2 ,3 entry when an active instruction
i s encountered.

This routine does the permutation of a REG entry a s indicated by E N 4,5,6.

This routine finds the highest frequency unconsidered PRED entry for a given BB.

This routine finds the highest frequency unconsidered SUCC entry for a given BB.

PART 2

In part 1, tags were continually reassigned to index regis ters on the basis of
the optimal match that could be achieved. This reassignment was done by
changing the permutation numbers in the 2nd word of the BBB table. Pa r t 2
makes the actual changes in the appropriate tables on the basis of the final per-
mutation numbers. It also combines BBLIST (and some information about
Assigned GO TO statements), with BBB for convenience later on.

Each basic block is examined in sequence. The location word of CIT for the f i r s t
instruction in each BB (which has been put in BBLIST by Section Four) is placed
in word 6 of BBB. Then the LX and SX bits in the PRED entries a r e changed
according to the permutation numbers. Next, the STAG entries a r e similarly up-
dated. Then, for each BB which ends with an Assigned GO TO, the BB number of
the last assigned GO TO i s stored in word 2 of BBR. This is done in order that pa r t
3 may find a l l GO TO N BBs easily. Finally, the entrance and exit conditions
in words 3 , 4 and 5 of BBB a r e reentered in accordance with the permutation
numbers.

PART 3

Section Five may inser t SXDs and LXDs at points in the object program which
a r e transferred to by an Assigned GO TO. It may therefore happen that the trans-
fer should no longer go to i t s original address, but to one of the SXs or LXs.
P a r t 3 handles this by making the necessary changes in the assign constants.

For each BB which ends with an Assigned GO TO, part 3 finds the successor BBs
and their appropriate PRED entries. F rom the SX and LX bits in PRED, the
correct transfer address i s prepared. The Assign Constants a r e then compared
to the f i rs t instruction of each successor BB, and when a match is found the assign
i s replaced by the hew symbol. The SX bits a r e also stored in the prefix of word
2 in BBB for use by part 4.

When all the Assigned GO TO BBs have been treated, the altered assign constants
a r e written back on tape for Section Six, and part 3 is finished.

PART 4

Part 4 does the actual compilation of instructions on the basis of the information
passed on by the previous parts of Section Five. The bits in PRED indicate when
inter-block SX and LX instructions a re required. STAG has the necessary in-
formation about when to compile an LX or SX immediately preceding or following
a tagged instruction in CIT. The rea l index register assignment for each tag is
also indicated by bits in STAG. P a r t 4 follows these directions while compiling.
In addition, some minor optimizing i s done.

A pass over CIT is made, and the method used to bring in blocks of instructions
and scan them for tagged instructions and endings of BBs is similar to that used
by Section Four. This is the only time that Section Five looks a t the CIT. The

instructions are brought in from tape and examined in groups, and when the
necessary modifications have been made, they a r e rewritten on tape for
Section Six.

First , part 4 considers a basic block a s a whole. By referring to the BBB and
PRED entries for the I)& a lidt of the ncccsrrary LXs in thc links to the BB is
formed. Then a l is t of the necessary SXs in the link i s formed. When the SX l i s t s
a re compiled for the various PREDs, i t may happen that two or more of these are
the same. The symbolic locations of these SX l is ts will be different, however,
because the number of the PRED entry is contained in the location symbol. A
SYN pseudo instruction i s compiled in this case.

A "sequential transfer", which i s one from the last instruction in the previous
BB to the f i rs t instruction in this BB, i s compiled i f necessary. The transfer
m a y be around one or more l is ts of LXs and SXs associated with other PREDs
for this BB. On the other hand, the transfer may be dropped if no instructions
had to be inserted between the BBs.

After the inter-block SXs and LXs have been taken ca re of for each BB, al l the
instructions within the BB a r e handled. All CIT entries without tags a re , of
course, kept. A CIT entry which already has a rea l tag of 4 i s checked to see i f
it i s an SXD or LXD which has been placed around a subroutine calling sequence.
If such is the case and i f IR4 is not necessary for Section Five assignment of a
symbolic tag at this point, the SXD or LXD will be deleted. The SXD location
will be compiled a s a BSS 0 since i t may'be referred to elsewhere in the program.
When an LXD after a subroutine calling sequence cannot be deleted because IR4
is necessary, i f the following instruction i s a similar SXD, both a r e deleted. As
a result , a se r i es of TSX instructions will have the unnecessary SXDs and LXDs
removed.

When an instruction with a symbolic tag is encountered in CIT, the STAG entry
referring to i t is examined. If STAG requests it, an LX from the tag cell will now
be compiled. Then the instruction itself is compiled and next an SX to the tag
ccll i f s o indicated. Each of these instructions will have had the r ea l tag assigned
also on the basis of the STAG entry. The LXP pseudo instruction is deleted
when i t occurs, a s is a DED. These instructions were put in a s signals to par t 1
and a r e no longer required.

After an instruction has gone through the foregoing treatment, i t i s checked to
see if this i s the end of the BB. If i t is not, the next CPT entry is examined and
treated. When the ending i s found, any transfer addresses a r e examined to s ee
i f the transfer 1s to a BB with SXs or LXs in the PRED link. If it is, the address
is changed to the location of the proper SX or LX. Any Itsequential t ransfers"
a r e not compiled a t this time, however. An indicator is stored i f there is one,
and the deletion or insertion of this t ransfer is left up to the analysis of the PRED
link when the next BB i s treated. The case of an Assigned GO TO ending is
treated differently. The SX bits placed in word 2 of BBB by part 3 are examined
and SXs compiled where necessary. Then the t ransfer to N is compiled.

When al l the instructions in the BB have been treated and the ending taken care
of, the next BB is dealt with a s before. The process continues until the end of
CIT is reached. Finally the relative constant routines a r e copied at the end of
CIT and control passes to the Section Five Pr ime of Fortran.

SUBROUTINES USED IN PART 4

This routine determines the correct address of a transfer instruction. It is
entered with the BB number in the AC and the successor BB number in ARG1.
It returns with the address in the AC. The PRED entry for this link is found.
and the LX and SX bits used to determine the SX or LX case and form the
symbolic address.

SCMI

This routine compiles an instruction i f CPIND indicates i t should be compiled.
CPIND is a cell which is negative when the instruction should be compiled, but
i s made positive when an instruction has been compiled while treating a tag. This
i s done so that a tagged instruction at the end of a BB, when SCMI is entered, will
not be compiled again.

This routine determines an SXD case. It uses the SX bits in PRED and the exit
conditions of the predecessor-BB from BBB to determine which tags have to be
saved in this PRED link.

This routine compiles an SXD case, and if i t is not associated with an LXD list ,
compiles the appropriate transfer to an LXD case.

This routine determines i f the SXD case is associated with an LXD list.

This routines makes the actual entries in CIT when an instruction is compiled.

This routine compiles a transfer to an LXD case.

This routine compiles a hanging transfer if necessary.

This routine compiles an LXD list. VIII-11

As an example of SXD and LXD placement by part 1, consider the following
illustration.

In this diagram BB 1 has two possible successors,
that is a conditional transfer may go either to BB2
or BB3. The tagged instructions in each BB a r e
shown with tags T T etc. The asterisk next to 2

1' 2
tags in BB 1 indicates an active instruction. Let us
say that the link between BB1 and BB2 is the most
frequent. It will therefore be in the f irst LPLST and
incorporated into a region. Let us also say that the
IRs a re all empty when BB 1 is treated. Then LXs

:';- will be indicatgd in STAG as T
- -e , ---, -- -+ .- \ .., --. 1 '

T2, and T a r e en-
3

countered. An LX will also be necessary for T but 4'
this invloves displacing a tag in one of the IRs. Since
T2 and T3 will be needed again f irst , T is chosen

1
to be displaced, and because i t i s active an SX will be
indicated in STAG. When BB2 is treated and T2, T3,
and T a r e encountered, nothing need be done,as they

4
a re already in the IRs. For T , an LX is necessary
arid will be called for in STAG.^ The LX will be correct
since the tag cell was updated by the SX in BB1 after
the active instruction. Later, when the link from the

region(containing BB l) to BB3 i s treated in another LPLST, the exit conditions will
be T2, T3, T4. Then in BB3 when T is needed i t is available, but T will cause 2 1
an LX bit in STAG. Since T2 and T will be required next, T3 will be displaced.

4
The IR containing Tq is active, and since the activity was present from an already
treated region, an S% bit will be placed in PRED for the L X to be compiled in the
link between BB1 and BB3. Then when T is again required anLX will load the
proper value. 3

From this example i t may be seen that in one case an active instruction was handled
by an SX immediately following it. In the other case, however, there was no need
for an SX in the most frequent path of flow, and the compilation of the SX was post-
poned until a l e s s frequent path was treated.

VIII- 12

, I.---

SECTION FIVE TABLES

LPLST (looplist). This table i s used only in section 5, part 1. A LPLST
is formed defining each new region to be treated. The table has one word
entries which may be either a BB o r an already treated region. An entry
for a BB has the BB number in the decrement. An entry for a region has
the entry BB in the decrement, and exit BB in the address. If the region
i s a t the beginning of LPLST i t will have al l sevens (octal) in that portion
of the word normally occupied by the entry BB (decrement), and i f a t the
end of LPLST will have all sevens in place of the exit BB (address). An
example of a LPLST i s shown below.

Wd. 1
Wd. 2
Wd. 3
Wd. 4
Wd. 5

P Dec.
Code in Prefix:
0 - Basic block
1 - Transparent regior
2 - Opaque region

Thc f i rs t word shows that LPLST begins a t the exit of a transparent region
with BB 14. Then BB 23 (word 2) , and then a transparent region (word 3),
with entry BB 26 and exit BB 32. Next BB 3 (word 4) entering an opaque
region which ends LPLST. The word of al l sevens i s the flag marking the end
of LPLST.

REG (region). This table i s used only in section 5, part 1. The table contains -
a one word entry for each already treated region. When an old region i s
incorporated into a new one the old entry i s wiped out. Bits in the prefix in-
dicate the presence of an L X for that IR within the region. Tag bits indicate
that the IR is empty in the region. The las t bit in the address i s present to
distinguish a possible real entry (BB 0 with no LXs and no empty IRs) from
the absence of an entry.

Pre. Decrement Tag Address
kxx wo. of 1st. BB in reg. lxxx I 1 I

CMTAG (taglist). This table i s read from tape 3, file 3, in 15 word records.
There is a one word entry for each tagged instruction in CIT. The sign is
negative if the instruction begins a basic block.

Pre. Decrement
1 -Tag Address a

j code I I Symbolic tag I
Codes in deccement:
1 -LXD, LXA, PAX, PDX 5 -TIX o r TXI not used
2 -LXP fer
3 -DED 6 -Passive instruction
4 -TNX 7 -TIX used to t ransfer

8 -TXI used to transfer

to trans.

STAG. This table i s formed in section 5, part 1, and used by section
5, parts 2-4. Each STAG word refers to 9 taglist instructions. The f i r s t
nine bits call for an SX following the corresponding tagged instruction, and
the next nine bits for an LX preceding the instruction. Bits 18-35 in pai rs
specify the index register each tagged instruction i s to use. In the following
illustration, the numbers refer to the entry within the STAG word.

BBB. This table i s passed on from section 4 in i t s initial form with words -
3-6 se t to zero. There i s a 6 word entry for each BB. During section 5,
par t 1, the permutation numbers in bits 12- 17 of word 2 m a y be changed, the
IR activity in this BB i s indicated in the prefix of word 2, and words 3-6 are
filled in, Word 2 i s changed in parts 2 and 3 to contain information about
Assigned GO TOs.

Pre .
t-------

Wd. 4 I=--

Decrement Tag Address
Number of 1st SUCC Number of 1 s t PRED
referring to this BB referring to this BB

'No. of 1s t taglist entry
belonging to this BB

Entry Requirement $hit condition IR4
IR4 I

BB is in (bhe region 1

IAL.

I 1 1 1 IR1
index of region this

Code in word 1 prefix

I J S ~

I I I I IR1 I
po. of the next BB in

describing ending of BB:

0 - Do with an i f
1 - MSE
2 - Probability branch
3 - Certainty
4 - Do without an i f
5 - Go to N
6 - Stop

Word 6 i s changed in section 5, part 2, to the location of the first CIT instruc-
tion in the BB from BBLIST .
PRED. This table i s passed on from section 4. There is a one word entry
for each predecessor BB. Thus each BB has a s many entries in PRED as i t
has predecessor BBs. Section 5, part 1, uses bits 15-17 to call for SXs and
bits 18-20 to call for LXs for the 3 IRs in this link. Section 5, pa r t s 2-4 use
this information. The sign is made negative after the link i s t rea ted in par t 1.

S 15 18 21
Ix Frequency ot l ink 1 xxx 1 xxx (No. of predecessor

SUCC. Similar to PREDj except entries refer to successor BB

S 14 21
Frequency of link((No:of successor BB 1

BLIST (BBLIST). This table i s read from tape 3, 4thfile, record 1 by
section 5, part 2. There is a one word entry for each BB. The entry
contains the f i r s t word (location) from the CIT instruction which begins
the BB.

Decrement Address 32
I (~n te rna l formula no4 Ihs t ruct ion no. I

ASCON (assign constants). This table is read from tape 3, 8th file a s
one record by section 5, part 3. There i s a one word entry for each
assign constant consisting of the location word of the CIT (see format of
BLIST above) which is assigned a s the transfer address. If section 5 has
inserted SXs o r LXs in the link to this BB, it will change the ASCON entry
to the new transfer address . An example of an L X location is shown below.
The octal 15 in the f i rs t 6 bits is translated by section 6 a s D). After
making any necessary changes, ASCON is written back on tape 2 a s the 10th
file. 23-25

I 1 Combined (1
115 0 0 0 0 0] LXD case IBB no. of successor

VIII- 15

SECTION FNE-PRIME

The purpose of section 5 prime is to add to the CIT file all constants
and source program, data appearing in the symbolic listing, except for
the B) and 9) constants, for use of section six.

At the end of section 5 the CIT file contains the entire working program,
the arithmetic statement function definition subroutines, and the relcon
computation subroutines A). Available to 5 prime are tables of the values
of assign constants 5) , fixed point constants 2), floating point constants
3), format BCD words 8).

Assign constants are in the ASSIGN table, one record of file 10, tape 2.
The table format is

word 1 number of assign constants N
word 2 constant1
word 3 constant 2
word N+1 constant N

Each assign constant is a one word binary number in the decrement
field OIIIIIOO0000, where 11111 is some internal formula number used in
the program.

Fixed point constants are in the FIXCON table, one record of file 9, tape 2.
The table format is

word 1 numberoffixedpointconstantsN
word 2 constant 1
word 3 constant2
word N+1 constant N

Each fixed point constant i s a one word signed binary integer in the dec-
rement field OY Y Y Y Y 000000.

Floating point constants are in the FLOCON table, record 1 of file 4, tape 2.
The table format i s

word 1 number of floating point constants N
word 2 constar29 1
word 3 constant2
word Ni-1 constant N

Each floating point constant is a one word signed binary number of 8-bit
exponent and 27-bit mantissa PPPMMMMMMMMM.

Format BCD words are in the FORMAT table, record 2 of file 4, tape 2.
The table format i s

word 1 identification number 10
word 2 number of words in table N
word 3 syrnbol8)K

word 4 BCD word
word 5 BCD word
word P flag 777777777777
word Pt1 symbol8)L
word N+2 flag 777777777777

A format statement gives r i se to one internal symbol, an indeterminate
number of BCD words, dl followed by an end of statement flag.

To initialize 5 prime, the last CIT record previously compiled i a read
from tape 3, To this record, and to additional records as required as
each record i s filled and written off on tape 3,
for each word in each of the tables,

The f i rs t assign constant yields a CIT entry oi

word 1 050000000000
word 2 636121000000
word 3 OIIIIIOOOOOO
word 4 000000000000

which appears in the symbolic listing as
5) TRA LA

is. added a four-word CIT

the form

Subsequent assign constants axe compiled with word 1 zero.

The f i r s t fixed point constant yields a CIT entry of the form
word 1 020000000000
word 2 462363000000
word 3 OYYYYYOOOOOO
word 4 000000000000

which appears in the symbolic listing as

2) OCT OYYYYYOOOOOO

Subsequent fixed point constants

The f i r s t floating point constant
word 1
word 2
word 3
word 4

a re compiled with word 1 zero.

yields a CIT entry of the form
030000000000
462363000000
PPPMMMMMMMMM
000000000000

which appears in the symbolic listing as
3) OCT PPPMMMMMMMMM

Subsequent floating point constants a r e compiled with word 1 zero.

Universal constants a r e compiled for all programs, as certain subroutines
assume that they be present. The f irst compiled CIT is

word 1 O6OOOOOOOOOO
word 2 462363000000
word 3 233000000000
word 4 000000000000

which appears in the symbolic listing as

Subsequent compiled CIT1s include word 1 zero and word 3.

These will appear in the symbolic listing as

6) OCT 233000000000
OCT 000000077777
OCT 000000000000
OCT 00000 1000000
OCT 000000000000

The last cell is used to store the contents of index register 4 whenever
a transfer is to be made to a closed function or subroutine subprogram
or to a library subroutine.

The first word of a format specification yields a CIT entry of the form

word 1 lOOOOOOKKKKK
word 2 222324000000
word 3 BBBBBBBBBBBB
word 4 000000000000

Subsequent format specification words a re compiled with word 1 zero.
When a 777777777777 flag is encountered, marking the end of a specifica-
tion, the next word in the table, the symbol, is inserted in word 1. Format
specifications a re stored backwards in memory, i. e. , a specification w i l l
give r ise to a block of CIT's in which the symbol appears in the last com-
piled instruction.
These will appear in the symbolic listing as

BCD UJIEMT)
BCD 1 S'IIATE
BCD UFY)RMAT

8) ~ BCD 1 (12~

When all constants have been compiled, the partially filled final CIT record.
if any, is written off on tape 3, an end file is written to mark the end of
the CIT file, tape 3 i s rewound, and control passes to lTOCS to bring in
the next record of the compiler.

SECTION PRE-SIX

The purpose of section pre-six is to complete the CIT file by compiling
certain preparatory instructions inserted at the beginning of the program,
adding to the CIT file Hollerith data B), and computing hnd adding to the
CIT file initialization addend constants 9). These instructions a re re-
quired for the use of the FUNCTION, SUBROUTINE, and CALL state-
ments, and by the BSS loader.

Pre-six reads into memory all tables required by section 6, including
FORSUB, SIZ, END, SUBDEF, COMMON, HOLARG (for pre-six), EIFN,
EQUIV, and CLOSUB tables.

Each word in CLOSUB table yields a CIT entry of the form
word 1
word 2 222324000000
word 3
word 4 000000000000

which appear in the symbolic listing as

NAME BCD 1NAME

where NAME is a symbolic entry point to a subprogram mentioned in a
CALL or arithmetic statement, This is 'the transfer vector.
~ u r i n g the Section 6 assembly, any TSX NAME, 4 will be assembled as a
TSX to the BCD name in the Transfer Vector, but during the loading pro-
cess, the BSS loader will replace this BCD word by a trap transfer to
wherever the required subprogram has been loaded.

The length of the transfer vector i s inserted in 8L decrement of the pro-
gram card. The relocatable entry point i s tentatively assigned the location
immediately following the transfer vector, and is inserted in 7R address.

Three cells a re reserved to store the contents of index registers so that
later they may be restored to their original states before control is re-
turned tq the calling program.

The f i rs t cell yields a CIT entry of the form

word 1 ~ ~ ~ O O O O O O O O O
word 2 306351000000
word 3 000000000000
word 4 000000000000

Subsequent storage cell instructions are compiled with word 1 zero. These
will appear in the symbolic listing as $ HTR
The name of the subprogram yields a CII' entry of the form

word 1 000000000000
word 2 E22324000000
word 3 NNNNNNNNNNNN
word 4 000000000000

This will appear in the symbolic listing as

BCD lNAME

Three index saving instructions are compiled to store the contents of the
index registers upon entry into the subroutine. The first of these is the
entry point into the subroutine. These yield CIT entries of the form

word 1 000000000000
word 2 626724000000
word 3 536000000000
word 4 OOOOOROOOOOT

These will appear in the third file as

SXD $tR, T

If the subprogram being compiled has an argument list, the CIT file is
searched for instructions referring to any of these arguments. The argu-
ments referred to throughout the subprogram are merely dummies for the
actual variables to be used at object time, the latter being listed in each
calling sequence to this program. Instructions must therefore be com-
piled to initialize the addresses of all argument occurrences according to
the requirements of any such calling sequence.

CIT records are brought into memory one at a time from tape 3 and when
completely scanned, a re replaced by the next subsequent record. A count
of the memory location of each CIT relative to the first program instruct-
ion ($$ i f an IFN is not assigned) is maintained.

A CIT'is scanned first for its op-code, (18 leading bits word 2). If the op-
code i s SYN, the CIT is ignored. If the op-code i e BSS, the relative counter
is increased by the length of the block reserved. Otherwise the relative
counter is increased by 1. If the op-code i s BCD, BCI, OCT or QPR the
address field is not examined. If the op-code is anything else, the symbolic
address is compared with each of the entries in the SUBDEF table. If the
symbolic address is an argument, a two word entry is made in an initial-
ization table. The table format is

word 1 ONNNNNOMMMMM
word 2 n v . (CIT word 4)

Where N is the argument number, M is the corresponding relative count.

After the entire CIT tape has been scanned, it is rewound in preparation for
its second pass..

Initialization CITts are compiled using the information in the table just
prepared.

Each argument yields a CIT of the form
word 1 000000000000
word 2 ' 234321000000
word 3 000000000000
word 4 ONNNNN000004

where N i s the argument number (the relative order of the dummy variable
name in the SUBDEF table). This w i l l appear in the symbolic listing as

CLA N , 4

The initialization table is searched for any entry containing a correspond-
ing argument number N. I£ such an entry is found, the relative address i s
compared with the prior relative address. If the relative address differs
from the prior relative address, an addend is required. The 9) table is
searched for such an addend, and i f not redundant this addend is inserted in
the 9) table. The table format is

OOOOOOOAAAAA

where A is the required addend.

The addend yields a CI?L of the form
, -+

word 1 000000000000
word 2 212424000000
word 3 110000000000
word 4 OBBBBBOOOOOO

where B is the relative position of this addend in the 9) table. This will
appear in the symbolic listing as

ADD 9)tB

The initialization yields a CIT of the form
word 1 ~00000000000
word 2 626321000000
word 3 535360000000
word 4 OMMMMMOOOOOO

where M is the relative count of the instruction to be initialized. This
will appear in the symbolic listing as

STA $$+M

The initial symbolic location i s $$ only if no internal formula number is
assig ned to the first CIT following the prologue. Each entry in the initial-
ization table of which the argument number is the same N will yield one or
both of the last two CIT'S. Each argument number N will yield a string
of CIT1s consisting of a CLA N, 4 followed by as many ADD 9) +B and
STA $&M as i s required.

For example, instructions for initializing an argument occuring as, say,
MPY M G + 5 might be:

CLA 2 , 4
ADD 9)+2
STA 3At201

given that the argument is 2nd in the argument list, that 9) t2 contains the
constant 5, that 3A i s the location attached to the f i rs t instruction of the
program, and that MPY ARGt-5 is the 2Olst instruction of the program.

The prologue CIT's a re written on tape 4 as records become filled. The
final partialprologue record, i f any, is written on tape 4.

For the second pass, CIT records a r e brought into memory, one at a t ime
from tape 3, and when completely scanned, a r e replaced by the next sub-
sequent record. A count of the memory location of each CIT relative to
the f i r s t program instruction ($$ if an I F N is not assigned) is maintained.
If no IFN is assigned to the f irst program instruction, the word 53536000000
is inserted in word 1 of the f i rs t CIT following the prologue.

A CIT is scanned f irst for i ts op-code. If the op-code is SXQ, i t has been
compiled by section 1 immediately prior to a TSX to double precision
routine, to prevent deletion by section 5. The op-code is replaced by
626?24OOOOOO i n word 2 (SXD). If the op-code is QXD, i t has been com-
piled by section 1 immediately prior to a return from a subroutine, to pre-
vent deletion by section 5. The op-code is replaced by 436724000000 in
word 2 (LXD). If the op-code is QPR, i t has been compiled by section 1
as the re turn instruction in a subroutine. It, followed by TRA NA, acts
as an end of path of flow signal for section 4. The op-code is replaced by
635121000000 in word 2 (TRA). The symbolic locationNA of this CIT is
required only by the following instruction, which will be deleted. This in-
ternal formula number is deleted in word 1. A flag is set to delete the
following instruction (TRA NA), which will not be copied into the tape 4
buffer. All other CIT1s are written on tape 4 a s records become filled.

After the end of tape 3 CIT file i s encountered, the 9) constants are added
to the CIT file. The first 9) constant yields a CIT of the form

word 1 110000000000
word 2 432363000000
word 3 OOOOOOOAAAAA
word 4 000000000000

where A is the value of the addend. This will appear in the symbolic
listing a s

9) OCT A
Subsequent addend constants are compiled with word 1 zero.

The first word in the HOLARG table yields a CIT entry of the form
word 1 130000000000
word 2 222324000000
word 3 HHHHHHHHHHHH
word 4 000000000000

which will appear in the symbolic listing as
B) BCD lHHHHHH

Subsequent MOLARG table words a r c compiled with word 1 zero.

An end of argument flag yields a CIT entry of the form

word 1 000000000000
word 2 432363000000
word 3 777777777777
word 4 000000000000

which will appear in the symbolic listing as

OCT 777777777777
The complete B) area will include but one symbolic location, but as many
sets of one or more BCD words followed by the OCT flag as there a re
Hollerith arguments.

The final partial CIT record, if any, i s written on tape 4, and the end
of the CfT file is marked,

The compiled instructions now correspond exactly to the symbolic list-
ing. Tape 3 is rewound to prepare for binary output.

If a CLOSUB table exists, it is saved as second file on tape 4 for later use
by section 6 record P. If an EWN table exists, it is saved as first record
on tape 3 for later use by section 6 record N. Control is paased to lTOCS
to bring in the next record of the campilet.

I SECTION SIX

Since the object program is symbolically complete, a l l that remains is to
assemble the compiled instructions, producing a relocatable binary pro-
gram ready for loading and running, and a listing of certain information
concerning the program being compiled. Section 6 is primarily an as-
sembler, differing little from any standard assembler. It builds a table of
symbol names and (relocatable) locations, translates BCD operation codes
to binary instructions, replaces symbolic locations with (relocatable) loca-
tions, and assembles the binary operation code, decrement, tag, and ad-
d ress into one word which shall occupy one location in memory during ob-
ject time. In addition, options a r e available to include in the binary deck
library subroutines for use a t object time; to punch on line a row-binary
deck, preceded by the BSS loader i f a main program; to punch on-line a
column-binary deck (709 only); to produce a third file of SAP-like symbolic
listing of the compiled program; to print on line a listing of the source deck,
the storage map, and, if produced, the SAP-like symbolic listing of the com-
piled program; to produce a binary symbol table (32K 709 only).

The discussion which follows is a general introduction to the logic of the
assembler, followed by a detailed discussion of each of its processors.

GENERAL DISCUSSION

5 Prime - adds to the CIT file, which on tape 3 now includes a l l executable
instructions in the source program, certain constants and program data ap-
pearing in the symbolic listing: assign constants, fixed point constants,
floating point constants, universal constants, and FORMAT BCD statements,
using information in the ASSIGN, FIXCON, FLOCON, and FORMAT tables.

6A - completes the CIT file. It uses information in the CLOSUB, SUBDEF, and HOT.-
ARG tables, and scans during prefirst pass the entire CIT file on tape 3 for those
instructions referring to arguments which require initialization. It writes the
transfer vector, and if a subprogram, prolog, and initialization on tape 4;
copies during presecond pass the CIT file from tape 3 to tape 4, changing
certain pseudo op codes used internally in FORTRAN to machine opcodes;
and adds to the end of the CIT file Hollerith arguments, and initilization ad-
dend constants. It also reads into memory tables required by section 6.

6B - is a common binary search routine which remains in memory for use of
subsequent processing.

6C-E - builds that portion of the dictionary which is defined by COMMON,
EQUIVALENCE, DIMENSION, CALL, SUBROUTINE, and FUNCTION state-
men t s , and any statement referring to a library subprogram, It uses in-
formation in the COMMON, EQUIV, SIZ, SUBDEFY and CLOSUB tables.
Variables appearing in COMMON, EQUIVALENCE and DIMENSION statements
a r e mapped. The map appears following the source program on tape 2. The
order of processing differs between the 704 and the 709; the latter having a
more thorough diagnostic procedure. The variable names are entered into the
DEV table, while the locations in upper memory (which may be relocated
later) a r e entered into the DEA table.

6F - adds to the dictionary those names which a r i se from arithmetic state-
ment function definitions from the FORSUB table. Locations a r e tentatively

, set to zero, to be inserted into DEA later.

6G - is the first compiler pass over the CIT file. During this pass external
variables not appearing in COMMON, DIMENSION or EQUIVALENCE statements
a r e inserted in the TEV table, the location being determined by the order of
their appearance in TEV, internal formula numbers, and internal symbols
appearing in the symbolic listing are defined by the then current contents of
a program counter and inserted in IFN and TIV tablea, respectively. SYNs
to names in the transfer vector, format statement symbols, subsidiary in-
ternal formula numbers, location symbols for subroutines to compute relcons,
for section 5 LXD and SXD instructions * (program counter), and the special
symbols $ and $$, i f they have been defined prior to the appearance of the
SYN, a r e defined. Blocks of required length of storage are reserved for non
subscripted variables in TEV, and for internal symbols not appearing in the
symbolic listing, Reference is made to the COMPILED INSTRUCTION file,
and the DEV table prepared ear l ier in section 6.

At this point, every symbol appearing in the CIT file has been entered into
one of the tables DEV, IFN, TEV o r TIV.

6H - assigns locations for names of arithmetic statement function subroutines,
and maps them. It uses information in the FORSUB table and the IFN table
prepared ear l ier in section 6. The location assigned to the internal formula number
corresponding to the subroutine name is inserted into FORSUB. The name, in-
ternal formula number, and location of each subroutine is mapped.

61 - maps external formula numbers and corresponding internal formula num-
bers, with the relative locations assigned to the internal formula numbers.
It uses information in the EIFN table, and the IFN table prepared earl ier in
section. 6.

GJ - relocates storage not in common downwards adjacent to program con-
stants. The limits of storage not used in the program a r e mapped. It oper-
a tes upon the DEA, TEV and TIV tables prepared earl ier in section 6.

6K - maps the transfer vector, program variables not in common, and in-
ternal symbols. It uses information in the DEV, DEA, TEV, and TIV tables.

6L - writes the program card on the binary output tape.

6M - i s a table of operation codes which remains in memory during the pro-
cessing of the second pass over the CIT file.

6N - is the second compiler pass over the CIT file, now on tape 4. During
this pass each CIT is converted to a binary machine instruction. The loca-
tion for each symbol is found in one of the tables DEA, IFN, TEV or TIV;
this is combined with the relative address and relocation bits computed. The
relocation bits a r e inserted in 8 row, - while the address, tag, decrement, and
the binary op code a r e combined to form an instruction which is inserted in the
next available 7-12 row of a card image. Column binary bits, word count and
load address (relative to zero) a r e inserted in 9L, the checksum computed
and inserted in 9R. The card images a r e written on tape 3. During this pass,
SYNs a r e defined, and the locations assigned to ifiternal formula numbers
and internal symbols appearing in the location field are checked against the
current program counter for inconsistent definition. If the symbol *, an ex-
ternal symbol in DEV (name in transfer vector), o r the special symbol $ o r
$$, appears in the location field, it is ignored. At this point the entire binary
output for the source program is complete.

6P - begins processing the options which the programmer has instructed the
FORTRAN compiler to provide. If a Ubrary search is required (sense switch
5 down] and a transfer vector exists, every program card in the library file
on tape 1 is scanned for a primary entry point the name of which i s in the
transfer vector. If at least one such entry point exists, the names of all entry
points on the program card a r e added to the LIBF table, and any matching
names are deleted from the transfer vector.

The Library subroutine transfer vector is then examined to determine i f any
entry points exist which a r e not yet in the LIBF table o r in the object Program
transfer vector. Such names a r e added to the object program transfer vec-
tor, and the subroutine program card and the entire binary subroutine a r e
added to the binary output tape 3. The library search is discontinued when
the entire transfer vector is exhausted, o r no subroutines a r e found in one
complete pass over the library file. The names of entry points in the LIBF
table and the names of entry points remaining in the transfer vector are
written in the storage map, tape 2, and the storage map is complete. If the
object program is not a subprogram, a transfer card is written on the binary
output tape 3, and the binary output is complete. At this point the compiled
output of FORTRAN is complete.

6Q - provides binary cards on line i f sense switch 1 is down. If sense switch
4 is up, and the object program is not a subprogram, the BSS loader is punched
on line. Each card image is read from tape 3, the column binary bits deleted,
and the row binary card punched on line. If sense switch 4 is down, each card
image is read from tape 3, rotated to column binary image, and punched on
line.

6R - provides a machine language listing i f sense switch 2 is down. An ad-
ditional pass over the CIT tape 4 is made, each CIT being converted into the
standard form, SYMBOL OPC ADDRESS + RA, TAG, DECFtEMENT and
written in three columns on tape 2 following the storage map.

6s - provides on line listings if sense switch 3 is down. The entire contents of
the BCD output tape 2, source program, storage map, and machine language
listing, i f any, areconverted to card images, one record a t a time, and printed
on line one line at a time.

At the end of section 6 the FORTRAN compiler has completed processing of the
source program. The result8 of the FORTRAN compilation a r e on two tapes:
BCD tape 2, the source program, storage map, and, i f requested, the machine
language listing; and binary tape 3, the program card, object program, if re-
quested, the library program cards and subroutines, and, i f a main program,
the transfer card. If on line output has been requested, the row- o r column-
binary cards can be found in the on line punch, and the listing in the on line
printer.

The job is returned to the FORTRAN monitor.

DETAILED DISCUSSION

In the discussion that follow#, portions of the assembler a r e labeled as to Parts*
704 FORTRAN I1 has one record for each part. 700 FORTRAN II has one or
more parts in a record.

Part A
Part A is Presix coding and has been discussed in Chapter M.

Part B
Par t B is a common binary search routine which remains in memory for use
of subsequent parts. The maximum table length which can be searched by
this routine is 16383 words, which is the effective limit to the length of any table
which must be searched.

Part C
Par t C builds that portion of the dictionary which is defined by COMMON,
DIMENSION, EQUIVALENCE, CALL, SUBROUTINE, and FUNCTION state-
ments, and any statement referring to a library subprogram, such as PRINT
or X = SQRTF(B). The names of variables, dummy variables (arguments),
o r subroutine o r subprogram entry points a r e entered into the DEV table,
while the relocatable address assigned to each is entered into the associated
DEA table.

First processed a r e variable names appearing both in COMMON and EQUI-
VALENCE statements. A variable name is selected from the EQUIV table.
It is compared with the names appearing in the COMMON table. If it appears
in both, the entire sentence in the EQUIV table in which this variable appears
is assigned to upper memory.

An equivalence sentence, assembled by Section I prime (see chapter 111) con-
tains a l l variable names, the relative locations of which to each other have
been fixed by EQUIVALENCE statements. The sentence contains no redun-
dancies o r inconsistancies. The sentence is made up of two-word entries,
the BCD variable name, and-the relative location (subscript) to each other.
The end of each sentence is marked by a flag (negative sign) in the final sub-
script.

The equivalence sentence is scanned for the greatest subscript. The current
value of the location counter, initially at -206 in the 704, -207 in the 709, is
reduced by the greatest subscript. This is the base from which the Location
assigned to each of the variable names is computed. The equivalence sentence
is scanned again for any variables which a r e names of arrays. If a variable
appears in the SIZ table, the overhang of the a r ray length over the base loca-
tion(array length-subscript) is computed, and the maximum of these is found.
The equivalence sentence is scanned again. Each subscript is added to the
base address, in effect creating an a r r ay stored backwards in memory, and the
variable o r a r r ay name is entered into DEV with i t s corresponding location in
DEA. The a r r a y name with the greatest subscript will be assigned the value
of the location counter before it was reduced, in effect locating the most pre-
cedent a r r ay name in the first available memory location. The value of the
location counter is reduced by the maximum overhang, which is not l e s s than
1, reserving memory for the overlapping a r r ay extending farthest into mem-
ory, and reserving for the next variable name the next lower cell.

Suppose there a r e common symbols E, D, X, which a r e related by EQUIVA-
LENCE (E (5), D(2), X) and that E and D occur in dimension statements giving
their total size as ~ (6 1 and ~ (5) , X being a nonsubscripted variable. The
first variable to be defined is the one with the largest element number in the
equivalence group, E in this case, and the 1st element of E is given the high-
es t free location, ie. LCTR. D and X a re immediately defined by their equi-
valencerelationshipwithE: E (5) Z D(2)S X

or D =E-3
=LCTR-3

and X=E-4
r LCTR-4

It must also be determined how much space these variables occupy. Since the
array E has 6 elements, the last of these would be in LCTR-5, and similarly
D has 5 elements, the last of which would be in LCTR-7. Clearly then, the
first free location is the one following array D, namely LCTR-8, which then
becomes the new LCTR for the next set of assignments.

After al l equivalence sentences in common have been assigned, storage is as-
signed for a l l other variables appearing in COMMON statements. The COM-
MON table, assembled by section 1 (see chapter II) , is made up of one-word
entries, the BCD name of a variable appearing in a COMMON statement. Each
variable name is checked against DEV to determine if it had appeared in an
equivalence sentence. If it is not so redundant, it is entered into DEV with the
contents of the location counter a s the corresponding location in DEA. The
SIZ table is checked to determine i f this is an array name, and the value of
the location counter is reduced by the length of this array; or i f not an array,
by 16 This, in effect, creates an array stored backwards in memory, reser-
ving for the next variable name the next lower cell.

When all of common has been assigned, the current value of the location coun-
ter , the cell next below the last cell in common, is entered into the program
card 8H address break.

Next to be processed a re equivalence sentences not assigned to upper storage.
The first symbol of each equivalence sentence is checked against DEV to de-
termine if any symbol in this sentence had appeared in a COMMON statement.
If it is not so redundant, the entire sentence is assigned storage locations,
identically as described above. The array name with the greateet stibscript
in the first equivalence sentence will be assigned the location stored in the
common break, the cell next below the last cell in common. This, and all sub-
sequent storage assignments later wi l l be relocated downwards in memory.

At this point processing in the 704 and 709 differ in order of tables processed.
709 processing will be described, as this results in more accurate diagnostic
analysis ,of the source deck.

Next to be processed, in 709 FORTRAN 11, is the SUBDEF table. If this pro-
gram is a FORTRAN subprogram, defined by a SUBROUTME or FUNCTION
statement, the name of the subprogram and the argument list are assembled

into the SUBDEF table by section 1 (see chapter 11); Each entry is a one-
word BCD name of a dummy variable used a s an argument. Each argument
name is compared with the subprogram name. If i t is multiply defined, a
diagnostic message results. Entry is made into DEV to prevent assignment
of a storage location for this dummy variable i f it appears in a DIMENSION
statement not in common, o r a s the symbolic address (word 3) of a CIT. The
corresponding address in DEA is the flag 77777. If this dummy name is al-
ready in DEV, it has appeared in a COMMON o r EQUIVALENCE statement,
and a diagnostic message results. The name of the subprogram is not en-
tered into DEV, as it may properly appear in the source program in a COM-
MON, DIMENSION, o r EQUIVALENCE statement, and as a subscripted o r
nonsubscripted variable.

The SIZ table, assembled by section I prime (see chapter m), is made UP
of two word entries, the BCD name of the array, and the length of the a r r ay
(the product of its dimensions as stated in a DIMENSION statement). Each
a r r a y name in the SIZ table is checked against the DEV table to determine i f
i t has appeared in a COMMON o r EQUIVALENCE sentence or is a dummy
variable name of an argument. If i t is not so redundant, i t is entered into
DEV with the current contents of the location counter a s the corresponding
location in DEA. The value of the location counter is reduced by the length
of this array. This, in effect, creates an a r ray stored backwards in memory,
reserving for the next variable name the next lower cell. A dummy variable
name of an argument may appear in a DIMENSION statement in order that a
proper relative address may be computed for reference to a specific element
in an a r ray , but no storage w i l l be allocated to this dummy variable.

The storage for variables appearing in common statements is now mapped. The
variable name, right adjusted, is inserted in the second word of a tetrad; the
decimal location, right adjusted with leading zeros suppressed, inserted in the
third word; and the octal location, right adjusted with leading zeros included,
inserted in the fourth word. The f irst word of every tetrad is blank. The title,
column headings, each line a s completed, and the final partial line i f any,
a r e written on tape 2 immediately following the internal end of file marking
the end of the source program listing.

Next to be processed is the transfer vector. If the source program r e f e r s to other
subprograms through a CALL statement o r an arithmetic statement in which
a function name appears, o r i f a library subroutine is called, section 1 (see
chapter 11) assembles the BCD name of the entry point to each such sub-
program as one- word entries in the CLOSUB table. The transfer vector,
made up of N such names, occupies (relocatable) storage locations 0 thru
N-1 of the object program. Each subprogram name is entered into DEV with
the corresponding lower storage locations entered into DEA. If the name is
already in DEV, it' has appeared in a COMMON, EG)UIVALENCE, or DIMEN-
SION statement, and a diagnostic message results.

Finally, the names of arithmetic statement functions are processed. If such
a statement appears in the source program, section 1 (see chapter 11)-as-
sembles the BCD name of the function s o defined, and the internal formula

number assigned to the subroutine, in a two word FORSUB entry. Each name
is entered into the DEV table with location zero (to be entered later) entered
into DEA. If the name is already in DEV, i t has appeared in a COMMON,
EQUIVALENCE, o r DIMENSION statement, o r has been referred to in a CALL
statement or an arithmetic statement including an argument list with the ter-
minal F omitted from the name, or a s a dummy variable name, and a diag-
nostic message results. The improper use of the name with the terminal F
omitted and with no argument list will compile; however improperly.

On the 704, the processing is similar, but in a different order. Hence the
diagnostic proceedure is not as comprehensive. After common storage has
been assigned, part D includes lower storage equivalence assignment of vari-
ables in EQUIVALENCE statements, of a r rays not in EQUIVALENCE state-
ments, and of names in the transfer vector. Part E maps common storage.
Par t F enters subroutine arguments and arithmetic statement function defi-
nitions into DEV. There is no diagnostic procedure for multiply defined names
of dummy variables (arguments). Each of these is a separate record.

The DEV and DEA tables a r e now complete. All other variable names in the
source program a r e nonsubscripted, requiring one storage location e a c h

Control is passed to 1 - CS, to bring in the next record.

Part G
Part G includes the f irst pass over the complete CIT file, to define all internal
formula numbers, source program symbols not in DEV, and internal symbols.

The DEA table is moved up in memory and packed against the end of DEV. The
IFN table will share memory with the DEA table, the former occupying the de-

'

crement portion of each word, while the latter occupies the address. The TEV
table wi l l follow the longer of the two. ,

CIT records a r e brought into memory from tape 4, and are replaced with the
next subsequent record when completely scanned.

Each CIT is scanned first for i t s op code. If it is OCT o r BCD the address por-
tion is ignored.

For other codes the symbolic address is scanned next. If the address is an in-
ternal formula number, the address is ignored. A SYN to an IFN is undefined.
If the address is a subsidiary internal formula number (nAm), the symbol is
assembled into TIV form (see chapter X). and TIV is searched to define a pos-
sible SYN t o this symbol. If i t is not in TIV, it is entered, undefined. If the
address is *, the contents of the program counter are used to define a possible
SYN to this symbol.

If the address is
Fixed point constant
Floating point constant
Assign constant

Universal constant
Format specification word

9) Initilization addend constant
B) Holler it h subroutine argument

,it is in the symbolic listing, and the address is ignored. A SYN to one of these
symbols is undefined.

If the address is

q,. Arithmetic eraseable
Arithmetic statement function argument storage

7 N Arithmetic statement function index register eraseable
C)N Index register eraseable

it is not in the symbolic Listing, and is entered into TIV with greatest level of
storage (decrement of word 4 CIT) as the address. A SYN to one of these eym-
bols is undefined.

If the address is

A)N Location symbol for subroutine to compute relative
constants
Location s p b o i .for a section 5 LXD instruction
Location symbol for a section 5 SXD instruction

it is in the symbolic listing, but TIV is searched to define a possible SYN to
one of these symbols.

If the address is $ o r $$, the location assigned to each of these is used to de-
fine a possible SYN. If the .address is an external variable, DEV and TEV
are searched to define a possible SYN to one of these symbols. If this vari-
able name is not in DEV o r TEV, it is entered into TEV, the location to be de-
fined later.

The opcode again is scanned for SYN. The symbol D)N o r E)N in the symbolic
location can be synonymous with another symbol D)N o r E)N, compiled by
section 5. If the SYN is undefined, a diagnostic message results. For all
op-codes other than BSS or SYN, the location counter is bumped by I. If it is
BSS, the length of block reserved is assumed to be zero. If it is SYN, no
location is reserved.

Next to be scanned is the symbolic location. If the location symbol is an
internal formula number, the contents of the program counter a r e entered
into the IFN table (decrement portion of the joint IFN-DEA table), ordered
as to internal formula numbers. The test for an internal formula number
is such that i t may not extend over more than 12 bits in the decrement field,
a maximum of 4095. If any internal number is greater, it will appear to be
an internal symbol, and will miscompile. NO diagnostic message results.
If the location symbol is a subsidiary internal formula number (nAm), TIV is
searched to determine if there had been a prior reference to the symbol. If
such a reference had been made, the contents of the program counter a r e
entered into TIV to define this symbol. If no prior reference had been made,
the symbol remains undefined. This is to optimize entries into the TIV table.
If the reference to the subsidiary internal formula number is prior to the ap-
pearance of the number in the location field, i t will have been entered into
TIV, and defined in pass 1. If such reference is subsequent to such appear-
ance, the TIV entry will be made, but the symbol will remain undefined until ,

pass 2. During pass 2, this symbol will be defined prior to such subsequent
reference. Hence, any subsidiary internal formula number to which a ref-
erence is made will eventually appear defined in TIV, while such a symbol to
which no reference is made will not be entered into TIV. If the location sym-
bol is *, it is ignored. For a l l other internal symbols appearing in the sym-
bolic listing, a TIV entry is made, the contents of the program c o p t e r de-
fining this symbol. If the location symbol is $ o r $$, each of these is de-
fined by the contents of the program counter. If the location symbol is an ex-
ternal symbol (transfer vector name), it is ignored.

At the end of the f irst pass over the complete CIT tape, a l l symbols appearing
in compiled instructions have been entered into one of the tables, DEV, IFN,
TE V o r TIV. The upper location counter is one cell below the lowest cell re-
served for a DEV entry. The location counter is reduced by the length of the
TEV table, and each variable in TEV is implicitly defined as the current con-
tents of the location counter plus i t s ordered location in the TE V table. Later,
these locations will be relocated downwards in memory.

Assignment of storage locations for eraseable cells in TIV is made next.
Each TIV entry is examined to determine i f it is an eraseable cell (QN, 4)N, 7)N,
C)N). If it is, the location counter is reduced by the largest value of the
block required, the address portion of the TIV entry, and this location de-
fines the symbol. This, in effect,creates an a r r ay stored forwards in me-
mory. The location counter is reduced by one moreto reserve the next lower
cell for the next symbol. The symbol 4), eraseable for library subroutines, is
defined as the location of top of memory, 77777.

The storage assignments at this point are as in the following diagram.

Control is pesed to 1 - CS, to bring in the next record,

Location
Svmbol

Table
entries relocatable zero

NAME I TRANSFER VECTOR DEV

' (PROLOG
[subprograms only I

INITIALIZATION

I OBJECT PROGRAM
IFN
TIV
TIV
TIV
-(Ramel'
DEV)

IFN

-

ARITHMETIC. SUBROUTINES

TIV

5)

3 2l
6) PROGRAM CONSTANTS TIV

end of symbolic listing
contents of program countel

1

[NOT ASSIGNED
contents of location counter

I ERASEABLE STORAGE TIV

NAME 1 DIMENSION VARIABLES DEV

DEV NAME DIMENSION EQUIV VARIABLES

COMMON DIMENSION VAR,

COMMON DIM. EQUIV. VAR

common break
DEV

DEV "

I LIBRARY SUBROUTINE
ERASEABLE

4) 1 1 TIV I I top of memory

Note: argument dummy names (in subprograms) are entered into DEV,
f lagged 77777 in DEA

Part I1
Part H assigns locations for arithmetic statement function subroutines and
maps them, The DEV table is scanned for the name of each subroutine
(word 1 of each FORSUB table entry). If it is not found, a machine e r ro r has
occurred, and a diagnostic message results. The location of the internal for-
mula number assigned to this subroutine name (decrement of word 2 of FOR-
SUB table entry) is found in the IFN table, and inserted in the address of word
2 of the FORSUB table entry, and, to define this symbolic location, in the DEA
table.

The lohation of each subroutine is now mapped. The subroutine name, right
adjusted, is inserted in the second word of a tetrad; the decimal internal for-
mula number, right adjusted, inserted in. the third word; and the octal loca-
tion of this internal formula number, right adjusted with leading zeroes in-
cluded, inserted in the fourth word. The f i rs t word of every tetrad is blank.
The title, column headings, each line as completed, and the final partial line
i f any a r e written on tape 2, following the mapping of common storage assign-
ment (if any).

Control is passed to 1 to CS, to bring in the next record.

Par t I
Par t I maps external formula numbers with corresponding internal formula
numbers and relative locations.

Each decimal external formula number (address portion of one-word entry)
in EIFN table, right adjusted, is inserted in the second word of a tetrad; the
decimal internal formula number (decrement portion of entry), right adjusted,
is inserted in the third word; and the octal location of this internal formula
number, found in the IFN table, right adjusted with leading zeroes included,
inserted in the fourth word. The f i rs t word of every tetrad is blank. The
title, column headings, each line as completed, and the final partial line i f
any a r e written on tape 2, following the mapping of arithmetic statement func-
tion subroutines (if any).

Control is passed to 1 - CS, to bring in the next record.

Par t J
Part J relocates storage not in common downwards packed against program
constants.

The length of unassigned memory is computed (contents of location counter
less contents of program counter, plus one), and is4'the extent of relocation.
The position of the program break is computed (location of common break
less contents of the location counter, number of variables to be relocated
added to contents of program counter), and inserted in the program card &L
address.
Each location in DEA is compared against the common break b g h e s t cell in
storage to be relocated) and against the program break (lowest cell in storage
to be relocated). If it is not @ common, a transfer vector name, a subprogram

argument dummy variable (flagged 77777), o r an arithmetic subroutine, the
location is reduced by the extent of relocation. The base location for TEV
is s o relocated; in effect,relocating each variable in TEV. Each location in
TIV is compared against the common break and the program break. If it is
not 4) (location 77777), program data in the symbolic listing, or an instruction
location symbol, it is an eraseable cell and is so relocated.

The final storage assignments a r e as in the following diagram.

entry point subprogram

entry point (main program

, relocatable zero
TRANSFER VECTOR

INITIALIZATION II
PROLOG

OBJECT PROGRAM

] subprograms only

ARITHMETI C SUBROUTINES I
RELCON SUBROUTINES I
PROGRAM CONSTANTS I
ERASEABLE STORAGE I

DIMENSION VARIABLES 1
DIMENSION EQUIV. VAR I

p rogram break

NOT
ASSIGNED

c ommon break

COMMON DIMENSION VAR.. 1
COM. DIMEN. EQUIV. VAR.

LIBRARY SUB. ERASEABLE

The limits of storage not used by program (program break and common break),
converted to decimal, right adjusted with leading zeroes suppressed,are in-
serted in the third word of a tetrad; converted to octal, right adjusted with
leading zeroes included, inserted in the.fourth word. The first and second
word of this tetrad a r e blank. The title, column headings, and this line are
written on tape 2, following the mapping of external-internal formula numbers
(if any).

Part K
On the 704, part K is a separate record.
Part K maps the transfer vector, program variables not in comnicm, and
internal symbols. The number of entries in the transfer vector is one loca-
tion greater than that of the last name in the transfer vector. Each location
in DEA is compared against the location of the f i rs t instruction following the
transfer vector, and i f in the transfer vector, the corresponding transfer vec-
tor name in DEV, right adjusted, is inserted in the second word of a tetrad;
the decimal location, right adjusted with leading zeroes suppressed, inserted
in the third word; and the octal location, right adjusted with leading zeroes in-
cluded, inserted in the fourth word. The f irst word of every tetrad is blank.
The title, column headings, each line as completed, and the final partial line
i f any, a r e written on tape 2 following the mapping of the storage limits.

If any arithmetic subroutines exist, the location following them is the f irst lo-
cation in which a variable may appear. If not, the location following the trans-
fer vector is this location. Each location in DEA is compared against the first
location following either the transfer vector o r arithmetic subroutines, and
against the common break. If it has not been listed previously a s a transfer
vector o r arithmetic subroutine name, a s a variable in common, o r is not a
subprogram argument dummy variable name, it is a subscripted variable not
in common, and the corresponding name in DEV, right adjusted, is inserted
in the second word of a tetrad; the decimal location, right adjusted with lead-
ing zeroes suppressed, inserted in the third word; and the octal location,
right adjusted with leading zeroes included, inserted in the fourth word. The
f i rs t word of every tetrad is blank. The title, column headings, each line as
completed, and the final partial line, i f any, are written on tape 2 following the
mapping of the transfer vector (if any).

Each entry in TEV (nonsubscripted variable not in common), right adjusted, is
inserted in the second word of a tetrad; the decimal location, the sum of base
location for TEV and the relative location of this variable in TEV, right adjusted
with leading zeroes suppressed, inserted in the third word; and the octal loca-
tion, right adjusted with leading zeroes included, inserted in the fourth word.
The first word of every tetrad is blank. The title, column headings, each line
as completed, and the final partial line, i f any, are written on tape 2 following
the mapping of the subscripted variables not in common (if any).

Each entry in TIV is then mapped. A TIV entry consists of a symbol in bits
S, 1,2,3; bits 4 and 5 zero; sub symbol, i f any, in bits 6-20; and the location
in bits 21-35. A subsidiary internal formula number consists of bits S, 1,2,3,20
zero, the internal formula number in bits 4-14 (maximum size 2047); the sub-
sidiary number in bits 15-19; and the location in bits 11-35.

If the TIV entry is a sub internal formula number, it is ignored. If it is an
internal symbol for a storage cell, an alpha numeric character from the se t
1 through 9, A through E is assigned to the 4-bit pseudo symbol, followed
by a right parenthesis. The 15 bit subsymbol, i f any, is converted five bits
a t a time to 3 alpha numeric characters from the se t 1 through 9, A through
W. The pseudo symbol, left adjusted, is inserted in the second word of a
tetrad; the decimal location, right adjusted with leading zeroes suppressed,
inserted in the third word; and the octal location, right adjusted with leading
zeroes included, inserted in the fourth word. The first word of every tetrad
is blank. The title, column headings, each line as completed, and the final
partial line, i f any, a r e written on tape 2 following the mapping of nonsub-
scripted variables not in common (if any).

Par t L
On the 704, Part L is a separate record.

- Part L writes the program card on binary output tape 3.
Program card 9L includes a 4 punch in the prefix and a word count of 4 in
the decrement,
8L contains the length of transfer vector in the decrement and program break
in the address.
8R contains the common break in the address.
7L contains the BCD subprogram name, i f any.
7R contains the entry point, relative to zero in the address.
The computed checksum of the card is inserted in 9R

Column binary bits, 7-9 punch in column 1, not included in the checksum, are
inserted in 9L, and the program card is written as the first record on binary
output tape B3.
Part M
On the 704, Par t M is a table of operation codes which is brought into memory
a s a separate record for the use of Part N which will follow.

Control is passed to 1 - CS to bring in the next record.

Part N
Part N is the second pass over the CIT tape to define each of the symbols used
in each CIT, construct a binary instruction for each CIT, and write the compiled
program on binary output tape 3.

CIT records a r e brought into memory from tape 4, and a r e replaced with the
next subsequent record when completely scanned.

Relocation bit patterns a r e of three types. Type 00 indicates that address por-
tion of the instruction is not relocatable. Type 010 indicates that the address
portion is relocatable as data on the proper side of the program break. Type
01 1 indicates that the instruction is complement relocatable: the address r e f e r s
to a cell in an a r r ay the base symbol of which is on the opposite side of the pro-
gram break, and should be relocated as its base symbol would be, The decre-
ment of an instruction is not relocatable in a FORTRAN object program.

The relocation bits a r e initially reset to not relocatable. Fi rs t to be scanned
is the opcode. If i t is OCT o r BCD, the address portion is not relocatable.
For al l other opcodes, the symbolic address is scanned next. If the symbolic
address is zero, i t is not relocatable. If the symbolic address is an internal
formula number, the location is obtained from the IFN table. If the symbolic
address is a subsidiary internal formula number or an internal symbol, the
location is obtained from the TIV table. If the symbolic address is *, the lo-
cation is the current contents of the program counter. If the symbolic address
is $ or $$, the location is a s assigned to either of these. If the symbolic ad-
d ress is an external symbol, the Location is obtained from TEV o r DEA. If
any symbol has a s yet not been defined, a diagnostic message results. For
each of these, the address is tentatively se t directly relocatable.

The opcode is again scanned. If i t is SYN, the definition is saved to be checked.
No binary output results. If it is BSS, the length of the block reserved is as-
sumed to be zero. No binary output results. For a l l op-codes other than BCD,
OCT, BSS o r SYN, the binary machine code is found in the SOPR table. If the
op-code is not found in the table, a diagnostic message results.

The relative address is added to the location for the symbolic address to de-
termine the absolute address for the symbol. If negative, it is complemented.
The base symbol (symbolic address) is examined to determine if both the base
symbol and the absolute address a r e on the same side of the program break.
If they a r e not, the address is se t complement relocatable. The binary decre-
ment, absolute tag, and absolute address a r e combined with the operation code.
For BCD o r OCT, the binary word (symbolic address) is used. The program
counter is bumped one location.

The relocation bits a r e packed left adjusted against any prior relocation bits
already in the 8 row of the card image. The binary instruction is inserted in
the next available half row of the card image. When the card image is full,
the word count is inserted in 9L decrement, the load address is inserted in 9L
address, the checksum is computed and inserted in 9R, column binary bits ad-
ded to 9L, the card is written on tape 3, and the load address is updated to the
program counter for the next instruction.

For a l l CITt s the symbolic location is scanned. If it is a subsidiary internal
formula number and is not in TIV, i t has been omitted a s no reference to it
was made in the symbolic address, and it is ignored. If it is in TIV and is
not yet defined, the reference to it was later in the CIT file than its appearance
in the location field. It is here defined. If it is defined, the location assigned
to this symbol is checked against the program counter. If i t is inconsistent, a
diagnostic message results. If the symbolic location is an internal formula
number, it is checked for inconsistent definition. If the symbolic location is
an internal symbol, it is the symbol for program data appearing in the sym-
bolic listing, o r the symbol assigned to a section 5 LXD or SXD instruction
o r a relcon subroutine. If the symbol appears in TIV, it is checked for in-
consistent definition. If it does not appear in TIV, it is a machine e r ror , but
no diagnostic message will result. If it is $, $$, *, o r an external symbol

in DEV (transfer vector name) it is ignored. No other external symbol in
DEV or any in TEV should appear in a location field.

After the entire CIT file has been scanned, the final partial card image, if
any, is written on tape 3. Processing is now complete, except for the tran-
sfer card, and for options.

Control is passed to 1 - CS to bring in the next record.

Part P
Part P processes the options which the programmer has instructed the FOR-
TRAN compiler to provide. Available are the following options:

End Card Setting Physical sense switch 704 709

punch cards on line
add symbolic listing

list on line
N. A. punch columt

binary
add library subroutines to binary - output
N. 4, add symbol table

binar- output
The transfer vector, which has been stored as one record following the d f ~
file on tape 4, is brought back into memory. End card setting and/or physical
sense switch 5 is tested to determine i f a library search is required. If the
transfer vector is not empty, and i f a library search is required, a flag for
subroutines found in each pass over the library file on the FORTRAN system
tape is reset.

The next record in the library file is read into memory. If 9L prefix has a
4 punch, it is a program card; i f not the next record is read in.

After a program card has been found, the next record is brought into memory
with rows 8 through 12 packed against the earlier card image. Row 9L prefix
is again tested to determine i f the program card continues over more than one
card. When a card other than a program card is encountered, the tape is back-
spaced over the card image, and a consolidated program card exists in memory.
The word count of the consolidated program card is found in the decrement of
9L, while the length of the subroutine transfer vector is found in the decrement
of 8L. Each right row (entry point relative to zero corresponding to entry point
name) is scanned to determine if it is flagged by a sign bit punch as a secondary
entry point. If it is not so flagged, the left row (name of primary entry point)
is compared against the transfer vector to determine i f this subroutine is re-
quired to complete the object program. If no -hch 'nameis found, the remainder
of the subroutine in the library file is passed over to find the fir8t program card
of the following subroutine.

If a primary entry point to a subroutine is found in the transfer vector, the
name is transferred from the transfer vector to a list of entry points to sub-
routines output from the library. A flag is set that a t least one subroutine has
been found on this pass over the library file.

The names of a l l entry points to subroutines output are added to the found list,
and if any of these a r e in the transfer vector, they are deleted from the trans-
fer vector.

The consolidated program card is converted back into card images, and written
on tape 3 following the object program, o r the last library subroutine output,
and the next record read from the library file. If the Library subroutine in-
cludes a transfer vector, each name in the subroutine transfer vector is com-
pared against the found list and the object program transfer vector. If it is in
neither, it is added to the object program transfer vector. The card image is
written on tape 3 following the library program card, o r last subroutine card.
If the subroutine transfer vector extends over more than one card, this is re -
peated until the subroutine transfer vector is exhausted. If a program card is
encountered before the subroutine transfer vector is exhausted, a diagnostic
message results.

After the subroutine transfer vector is exhausted, the remaining cards in the
l ibrary subroutine a r e copied from the library file to tape 3, until the next pro-
gram card is encountered. If the object program transfer vector is exhausted,
the search is completed. If not, the search continues until the end of the library
file is sensed.

After the end of the library file, the flag for subroutines found is examined. If
any subroutines have been found on this pass, the subroutine transfer vector
may require another pass Over the library file. If not, the search is completed.
If the object program transfer vector is exhausted, the search is completed. If
not, the system tape is backspaced to the beginning of the library file, the flag
reset, and another pass over the Library file is made.

After the library search is completed, the system tape is repositioned at the
end of this record, and i f any names of entry points to library subroutines are
on the found list, these names a r e written on the storage map. Each BCD name
is right adjusted and inserted in the second word of a pair.. The first word is
blank. The title, each line as completed, and the final partial line, if any, are
written on tape 2 following the mapping of internal symbols.

After this mapping, o r if the library search was not required, the t ransfer vec-
to r is examined to determine i f any subprograme exist which are not library
subroutines. Each BCD name remaining in the transfer vector is right adjusted
and inserted in the second word of a pair. The first word is blank. The title,
each line as completed, and the final partial line, i f any, are written on tape 2
following the mapping of names of entry points to Library subroutines (if any).

The storage map is now complete and marked with an end of file.

If the object program is not a subprogram, a transfer card is written on tape
3. The end of binary output is marked with an end of file, and the tape is re-
wound.

Par t Q
On the 704, Par t Q is a separate record.
End card setting and/or physical sense switch 1 is tested to determine i f cards
a r e required on line. If cards a r e required on line on the 709 end card setting
and/or physical sense switch 4 is tested to determine i f cards should be row
binary o r column binary.

If switch 4 is up, cards a r e to be row binary, and i f the object program is not
a subprogram, the BSS loader is punched on line. The column binary bits are
deleted from 9L of each card image, and the card punched on line.

If switch 4 is down, cards a r e to be column binary, the column binary bits are
added into the checksum, 9R, of each card image, the row binary image rotated
to a column binary image, and the card punched on line.

If no column binary cards have been punched on line, sense light 1 is turned
on to s o flag the monitor.

Par t R
On the 704, Part R i s a separate record.
End card setting and/or physical sense switch 2 is tested to determine i f a mach-
ine language listing is required. If it is s o requested, sense light 2 is turned on
to flag monitor that a third file exists on the BCD output tape. An additional pass
is made over the CIT tape to accomplish this.

CIT records a r e brought into memory from tape 4, and a r e replaced with the
next subsequent record when completely scanned.

Firs t the symbolic location is processed. If the symbolic location is an in-
ternal formula number o r a subsidiary internal formula number, the main num-
ber is converted to decimal, the character A appended, and the subsidiary num-
ber converted to decimal. The largest internal formula number which can be
stored in TIV is 2047, and a subsidiary number can be one character only. Hence
this symbol cannot exceed six characters. If the symbolic location is *, it is
deleted. If the symbolic location is an internal symbol, a pseudo symbol is con-
structed (see chapter X) which can not exceed five characters. If the eymbol
is $, $$, or a transfer vector name, these charactefs are used. The BCD symbol,
so constructed, right adjusted, is inserted in the third woxd of a hexad.

The BCD opcode, preceded and followed by a blank, is inserted in the first five
characters of the fourth word,

If the opcode i s BCD, and the symbolic address is a 777777777777 fla F- the code is replaced by OCT, and processing continues as an octal symbol c address.

If the symbolic address is not a flag, the numeral 1 is inserted in the sixth
character of the fourth word, and the s ix character BCD word in the fifth.
The sixth word is blank.

If the opcode is OCT, the f i rs t bit is interpreted as a sign, inserted in the sixth
character of the fourth word, and the 35 bit binary number, converted to 12
BCD octal digits, is inserted in fifth and sixth words.

For a l l opcodes other than BCD or OCT, the symbolic address is processed
as follows. If the symbolic address is an internal formula number o r a sub-
sidiary internal formula number, the main number is converted to decimal,
the character A appended, and the subsidiary number converted to decimal.
The first BCD character of the internal formula number is inserted in the sixth
character of the fourth word. The remaining BCD characters (five o r fewer)
of the symbol, followed by blanks, are saved. If the symbol address is an in-
ternal symbol, a pseudo symbol is constructed (see chapter X). The first
BCD character of the pseudo symbol is inserted in the sixth character of the
fourth word. The remaining BCD characters (four or fewer) of the pseudo
symbol, followed by blanks a r e saved. If the symbolic address is an *, $,
$$, o r any external symbol, the first BCD character of the symbol is inserted
in the sixth character of the fourth word. The remaining BCD characters (five
or fewer) of the symbol followed by blanks are saved.

The remaining characters in the symbol (five o r fewer) followed by blanks are
examined one at a time for the f i rs t blank character. The non blank characters
a r e packed left adjusted into the fifth word of the hexad, extending no further than
the fifth character of the fifth word. The relative addressqis isolated from the
decrement of the CIT word 4. If it exists, it is converted to five or fewer BCD
decimal digits. The BCD sign is inserted packed against the symbol, no farther
than the sixth character of the fifth word. The BCD relative address is packed
against the sign, extending no farther than the fifth character of the sixth word.
The tag, is isolated from the address of the CIT word 4. If the tag is greater
than four, the flag T is inserted in following the tag. No diagnostic message
results. A comma is inserted packed against the symbol o r relative address,
no farther than the sixth character of the sixth word, followed by the tag, no
farther than the f i rs t character of the seventh word. The CIT decrement is
isolated from the address portion of CIT word 1, If it exists, it is converted
to 5 o r fewer BCD decimal digits. A comma is inserted packed against the sym-
bol o r relative address, no farther than the second character of the seventh
word, foilowed by the decrement, packed against the comma, no farther than
the s e c ~ n d character of the eighth word.

If following the symbolic address (and, i f it exists, the relative address) no
tag exists, the CIT decrement is isolated from the address portion of CIT word
1. If it exists, a zero is selected as the tag field, and processing continues
as before, '

If no symbolic address exists, the CIT fourth word is tested for a relative ad-
d ress and/or tag. If either or both exist, the relative address is isolated.
It it existe, it is converted to 5 or fewer BCD decimal digits. If i t is negative,

the sign is inserted in the sixth character of the fourth word. If positive, the
f i r s t BCD numeral is inserted in the sixth character of the fourth word. The
remaining characters a r e inserted left adjusted in the fifth word, and the tag
and decrement a r e processed as before. If no symbolic address o r relative
address exist, a zero is inserted in the sixth character of the fourth word, and
the tag and decrement are processed as before,

If no symbolic address, relative address o r tag exist, the CIT decrement is
isolated from the address portion of CIT word I. If i t exists, a zero is inserted
in the sixth character of the fourth word, and the tag and'decrement processed
as before. Processing of the null tag is necessary to insert the nonredundant
comma and zero tag field.

After the variable field has been processed, the final word is filled with blanks.
If no variable field exists, a blank is inserted in the sixth character of the fourth
word.

All processing converges at this point. If the op-code is not SYN o r BSS, the
relative counter is converted to 5 BCD octal digits, left adjusted, followed by
a blank, and inserted in the second word of the hexad. The relative counter is
bumped by one. If the op-code is BSS, the block length is assumed to be zero,
hence for either BSS o r SYN word two is blank, and the relative counter is un-
changed. Word one of every hexad is blank. The CIT is now in the standard
form

SYMBOL OPC ADDRESWRA , TAG, DECREMENT

The s ix words of every hexad a r e transferred to a page image buffer. In this
process, overflow of the machine language image to the seventh and first two
characters of the eighth word a r e truncated. As the FORTRAN processor com-
piles TIX, TXI and TXL only in a DO loop, the only machine Language i n ~ t r u c -
tions which may contain decrement fields are TM *+1, 4,32767 TM *cl,4,
32767 and TXL 4095A, 4,32767. None of these will overflow.

A count is kept of the hexad entries made in the page image buffer. The f irst
58 entries a r e made in column one, the next 58 entries in column 2, and the
next 58 entries in column 3. When 174 entries have been made, the page image
is written on tape 2 following the end of second fite mark. The page image is
followed by a page restore.

When the end of the CIT file is sensed, the buffer is checked for a partial page
image. If a partial image exists, it is written on tape 2. An end of file mark is
written following the machine language listing, and tapes 2 and 4 a r e rewound.
The information on tape 4 is no longer of significance,

Part S
On the 704, Part S is a separate record.
End card setting and/or physical sense switch 3 is tested to determine if on-line
output of the source program, storage map, and- machine language listing (If any)
is required. If it is so requested, the page ie restored so that each file begins .

on a new page.

One record (one printed line) is read from tape 2, is converted to a card image,
and the line is printed.

When the end of the source program file is sensed, the page is restored, and the
map is printed line by line.

When the end of the storage map file is sensed, sense light 2 is tested to de-
termine i f a third file, the machine language listing, exists on tape 2. If it does,
this flag is restored for monitor, the page is restored and the listing is printed
Line by line.

When the end of the Usting file is sensed, tape 2 is rewound. The FORTRAN
compiler has completed processing of the source program. The results of the
FORTRAN compilation are on two tapes: tape 2, the BCD source program,
storage map, and symbolic listing if requested; and tape 3, the binary program
card, the object program, library subroutines including their program cards
i f requested, and transfer card if a main program. If on line outpit has been
requested, cards have been punched and listings have been printed.
Control is passed to 1 - CS to return this job to the monitor.

XI LIBRARY AND LIBRARXAN

INPUT-OUTPUT LIBRARY

Control Routines

IOS / Input-Output Supervisor
IOU/ Input -Output Channel-Unit Table
SLO/ Short -List Output
SLI/ Short-List Input
WERl Tape Write E r r o r
RER / Tape Read E r r o r

Hollerith Input -Output

IOH/ Input -Output Hollerith
STH/ Storage to Tape Hollerith
TSH/ Tape to Storage Hollerith
CSH/ Card to Storage Hollerith
SCH/ Storage to Card Hollerith
SPH/ Storage to Pr in ter Hollerith

Binary Input -Output

IOB / Input -Output Binary
STB/ Storage to Tape Binary
TSB/ Tape t o Storage Binary
DRM/ Write Drum and Read Drum

Tape Non-Transmission

BST/ Backspace Tape
EFT/ Endfile Tape
RWT/ Rewind Tape

MATH LIBRARY

X P l / Exponential - FXPT Base - FXPT Exp.
XP2/ Exponential - F L P T Base - FXPT Exp.
X P 3 / Exponential - F L P T Base - FLPT Exp.
ATN/ Floating Point Arctangent
X PF / Floating Point Exponential Function
LOG/ Floating Point Natural Logarithm
SCN/ Floating Point Sine and Cosine
SQR/ Floating Point Square Root
TNH/ Floating Point Hyperbolic Tangent

MONITOR LIBRARY

CHN / Chain
DMP / Dump
XIT / Exit

OTHER LIBRARY ROUTINES

FPT / Floating Point Trap
TES / Test Last Write
XLO / Relocated Location Function

THE LIBRARY EDITOR

LIB / Librarian

XI- 2

INPUT /OUTPUT LIBRARY

The 709 FORTRAN 1 / 0 LIBRARY was designed as a simple, generalized
and flexible method tor handling the input- output and conversion of data required
by Fortran - compiled programs at object-time under Monitor or non-monitor
operation. The 110 Library (IOL) consists of hand-coded, FAP-assembled, re-
locatable subroutines, which communicate with Fortran p rogram~~ by means of
linkage compiled by the 1/0 Translator (IOT) in Section One.

Most of the analysis done by the IOT concerns the items in the List. When
indexing instructions a re necessary for the List, entries a re made in TDO table,
which cause Section Two to compile the necessary instructions for the treatment
of arrays conforming to standard Fortran usage, e.g: the first element i s as-
signed the highest location of the array. The remainder of IOTts task i s simple:
the communication of the minimum amount of information necessary to the IOL.
This could be: The unit designation, type designation, location of Format speci-
fication, and the termination of the List.

The simplicity of this scheme will become apparent during the following
description. Its flexibility and generality provide the obvious advantages of easy
modification , and a continuing opportunity for improvement . This partly explains
the reason for the fragmentation of the IOL into about twenty different routines.
Generally, in systems design, the linkage cost of keeping functions separate and
distinct, i s repaid both in memory space qnd in the ease with which additions and
improvements may be made.

The, IOL contains four types of routines :

1) for initialization and contr 01:
' IOS,IOU,SLO,SLI,WER,RER;

2) for the transmission of information to and from each TYPE of
1 / 0 unit:
STH, TSHj CSH, SCHj SPW, STB, TSB, DRM;

3) for the conversion of data, and/or its transmission to and from
the data area, according to MODE:
IOH j IOB;

4) and for non-transmission TYPE tape handling:
BST, EFT, RWT.

In the following writeup, the mode routines (IOH, IOB) will be described in con-
junction with the unit routines .

The general overall flow can be outlined as follows:

1) The logical unit designation, i f necessary, is picked up, and con-
trol exits from the calling sequence to the indicated TYPE routine.

.
XI- 3

2) i f this is a non-transmission TYPE routine, control passes directly
to the control routine, IOS, for initialization. If a transmission type, except
DRM, the TYPE routine furnishes the correct switch setting for input or output
to the appropriate MODE routine. Then the MODE routine conveys the logical
unit designation, along with the correct mode indication, to 10s.

3) IOS turns to the IOU table for the logical-actual unit correspondence,
after having checked for the correct completion of a previous write statement.
When all 110 commands have been initialized, control returns to the MODE rou-
tine (or to the non-transmission caller).

4) the MODE routine now controls transmission, and/or conversion,
of data according to the Format specification and the List of items indicated by
the calling sequence. A return is made to the TYPE unit routine for each record
of input or output.

5) When the List is satisfied a final return is made to the MODE rou-
tine to make sure the last record is read or written, and t o restore conditions.

XI- 4

TABLE OF USAGE

SHOR T- TAPE
LIST ERROR

CONTROL CONTROL
TYPE
UNIT MODE

TSH

STH

CSH

SCH

SPH

STB

TSB

IOH

IOH

IOH

IOH

IOH

IOB

IOB

SLI RER

SLO

SLI

SLO

WER

..

SLO

SLO

SLI

WER

RER

BST

EFT

RWT

DRM

XI- 5

CONTROL ROUTINES

IOS /INPUT - OUTPUT SUPER VISOR

Purpose:
To initialize all input-output instructions for a given logical unit designation ac-

cording to logical- actual correspondences in IOU. These instructions may then be
executed through a transfer vector.

Calling Sequences: usedby all I/Oroutines except DRM.

CAE C(AC) C(AC) ' MODE , ,UNIT
TSX $(10s) J 4 where: MODE = 0 for BCD, 20 for BIN
return UNIT = logical designation (-8) - - -

or XEC* $(xxx) C(XR4) m a y = - ADDR.
where XXX m a y be: RDS, WRSj BSR, W E F , REW, ETT, RCH, TEF, TCO, TRC

Transfer Vector

IOU)

Stop -
HPR 0,6

Reason

Actual unit designation not found in IOU.

Storage Requirement (for 6 channels)

124 locations.
(8)

Description
h

IOS first makes sure any previous tape write is correct. Then, the current
unit i s compared with the last; i f they are the same, then IOS exits to caller. If
different, then i f the current unit designation i s either zero,or greater than the num-
ber of entries in IOU, IOS stops. Otherwise, IOS examines the indicated entry in
IOU, and stops i f the entry i s zero. Otherwise, all unit instructions are initialized.
Then, the current channel designation is checked against the last. If the same, then
IOS exits to caller. If different, the channel instructions a re initialized before IUS
returns .

The instructions (RCH) , (TEF), (TCO) , (TRC) have an address and tag = 0,4.
The two's complement of their effective address is contained in XR4.

IOU /Input - Output CHANNEL-UNIT TABLE

Purpose
To establish logical-actual channel-unit cor respondencee at object time.

Calling Sequence
Table referenced by 10%

No Transfer Vector

No Stops

Storage Requirement
M1 A, locations (as distributed). The number of locations required equals the

nunbe;-& units, plus one which contains the total number of tape unit addresses.

Description (Only the address field of locations in IOU is presently used.)
(IOU) - 3 contains the channel-unit address of the Printer.
(IOU) -2 contains the channel-unit address of the Punch.
(IOU)- 1 contains the channel-unit address of the Reader.
(IOU) contains the number of tape unit addres aes in the table.

The following N actual tape unit addresses correspond to the logical tape unit
addresses from 1 to N. It there is no actual tape unit available for a logical unit
address from 1 to N, that particular entry should be zero, to cause the stop HPR
0 , b in 10s.

XI- 7

SLO/SHORT LIST OUTPUT

Purpose
To provide list indexing for the output of non- subscripted arrays .

Calling Sequence

TSX $(sLo), 4 - used in List
PZE SYMBOL + 1
PZE N
return

where: SYMBOL = Location of the array, and
N = Number of elements.

No Transfer Vector

Storage Requirement
15(8) locations .

Description
SLO will initialize the instructions:

AXT 184
LDQ SYMBOL + 1,4
STR
TXI * +]i,4,1
TXL * - 3 , 4 , N

and t rap back and forth on the STR between IOH or IOB, until each element of the
array has been output in the normal Fortran order. To handle arrays in reverse
of the normal order, it is possible to change the above instructions to:

XI- 8

SLIISHORT LIST INPUT

Purpose
To provide l is t indexing for the input of non-subscripted arrays.

Calling Sequence
TSX $(SLI) $ 4
P Z E SYMBOL +
PZE N
return

where: SYMBOL =
N - -

No Transfer Vector

No Stops

Storage Requirement
15(8) locations.

Description
SLI will

AXT
STR
STQ
TXI
T X L

- used in List
1

Location of the array, and
Number of elements.

initialize the instructions :

SYMBOL + ls4 '
*+1*4,1
* - 3,4,N

and t r ap back and forth on the STR between IOH or IOB, until each element of the
array has been input in the normal Fortran order. To handle arrays in reverse of
the normal order, it is possible to change the above instructions to:

AXT W 4
STR
STQ SYMBOL + 1,4
TIX * - 2,4,1

WER /TAPE WRITE ERROR

Purpose
To check tape output.

Calling Sequence
TSX $(WER) ,4 - used by STH and STB
return

or: STA* $(WTC) - to save the last command address.

Transfer Vector
(TCO) , (ETT), (TRC), (TES), (BSR), (WRS), (RCH), (W E F) , (REW) .

Stops
HPR 0,5
HPR 1,5
HPR 2,5
HPR 3,5

Reason
1/0 check light i s on.
Fif?th redundancy while writing.
First redundancy while erasing.
End of tape indicator i s on.

Storage Requirement
6O(g) locations.

Description
WER delays i f the channel i s in operation. Then tests a re made for end of

tape, I/O check, and redundancy check. If no tests fail, TES is reset to NOP, and
control returns t o caller. On'end-of-tape, WER backspaces a record, writes end
file mark, rewinds, loads the unit address into the MQ, and stops. If the start key
is depressed, WER then rewrites the last record on the new tape and repeats the
tests. On an 1 / 0 check, WER simply stops. On a redundancy check after writing,
WER tests the e r ro r count and stops it i f it is exhausted. If it is not exhausted, or
i f the start key i s pressed, WER then backspaces, erases the previous record and
checks the erase. If the erase failed, WER stops. If not, WER then rewrites the
previous record and repeats all tests.

R E R /TAPE R E A D ERROR

Purpose
To check tape input.

Calling Sequence
TSX $(RER), 4 - used by TSH and TSB

- to save the last command address.

'i'ran~ifer Vector
(TCO) , (TRC) (TEF) , (BSR) , (RDS) , (RCH) 0

stops
HPR 0,3
HPR 1,3
HPR 2,3

Reason
1rcheck light is on.
Tenth redundancy while reading.
End of file indicator i s on,

Storage Requirement
36(8) locations.

Description
RER delays i f the channel i s in operation. Then tests are made for 1/0 check,

redundancy, and end-of-file. If no tests fail, control returns to caller. On an 1/0
check, RER simply stops, On a redundancy check after reading, RER tests the
e r r o r count and stops i t it i s exhausted. If it is not exhausted, or i f the start key i s
pressed, RER then backspaces, rereads the previous record, and repeats all tests .
on end- of- file RER stops, and i f the s tar t key i r pressed, reads the first record be-
yond the file mark, and repeats all tests .

HOLLERITH INPUT-OUTPUT

IOH/INPUT-OUTPUT HOLLERITH

Purpose
To handle the transmission and conversion of BCD data according to List

and Format specifications.

Calling Sequences
LDQ C(MQ) - used by TSH,STH, CSH,SCH, and SPH.
TRA* $(IOH) 1,4 = L(F0RMAT) and 2,4 = L (LIST)

where: C(MQ) = NOP XXX for input,
and C(MQ) = TRA XXX for output,
where XXX = the re-entry address to the TYPE unit routine,
when IOH i s entered for initialization. Control returns to List.

then: STR - used by the List
STQ Symbol, TAG for input

or: LDQ Symbol, TAG - used by the List
STR for output.

when location 2 has been set to re-enter IOH for data conversion.

then: TSX (RTN) , 4 - used by the List
return when input is terminated

or : TSX (FIL) , 4 - used by the List
return when output i s terminated.

Transfer Vector

Stops
HPR 0 , l
HPR 1 , l
HPR 2 , l
HPR 3 , l
HPR 4 , l
HPR 5 , l

Reason
Illegal format statement.
Illegal data.
Illegal data.
Illegal data.
Illegal data.
Illegal data.

Storage Requirement
1553(*) locations + 242 erasable.

(8)

Description
When IOH is entered initially from one of the TYPE unit routines, switches

a re set for either input or output. The exit is set to return to the List . Various con-
ditions a re saved. Location 2 is set so that an STR will cause a return to the conver-
sion part of IOH. Various indicators a re reset. And IOS is called to initialize the
1 1 0 instructions for the indicated logical unit. It input, a record is read by the TYPE
routine .

Description (contld)

Then the Format specifications, in their original BCD form, a r e scanned.
If Hollerith, Blank, or Skip specifications a r e encountered, control remains in IOH
and the specified number of BCD characters a r e taken from, skipped, o r placed in-
to the REC buffer. Then the Format Scan resumes. If data field specifications a r e
encountered, the appropriate switches and counters are set for the indicated type of
conversion fixed, floating o r integer. If input, the specified number of characters
are obtained from the BCD REG buffer, converted to binary, placed in the MQ-, and
control returns to the List . If output, control returns to the List immediately, to
obtain a List item in the MQ, When the STR is executed, the List item is converted
from binary t o BCD and packed into the R E C buffer. This continues until the count
for repetition of this particular Format field specification is exhausted, or until the
List is aatirfied. When the field count i q e&;h8prrtedr the Format Scan remames .

When a Slash is encountered by the F'ormat Scan, a new record i s either
input or output by the current TYPE unit routine. This will also occur on the final
right parelfthesis of the Format, if , the list has not been exhausted. However, i f the

s t has been satisfied, a final return of control to IOH causes the output of the
cord, and/or the restoration of the various saved conditions, before the final
the caller of the TYPE unit routine.

last
exit

STH/STORAGE TO TAPE HOLLERITH

Purpose
To write one BCD tape record.

Calling Sequence for: WRITE OUTPUT TAPE N, FMT8List.
CAL N -
TSX $(STHI 8 4 -.
PZE FMT -

unit designation.
or (STHM) under Monitor.
location of Format specification.
indexing
output list.
t rap to IOH.
indexing
f i l l out record.

Transfer Vector

No Stops

Storage Requirement
72@) locations + 25 erasable.

(8)

Description
STH loads the MQ with the output switch setting and re-entry address, and

exits to IOH for initialization. Then, whenever IOH i s ready to output a record, it
re-enters STH. If (STH) has been changed to (STHM) by the Monitor, then the line
count i s increased by 1. STH then exits to WER to check any previous write. On
return from WER, the word count for the write command is obtained from 1.4, and
the contents of the REC buffer in IOH are moved into the output buffer. TES is set
to check the current write. The command address i s saved in (WTC) for use by WER .
STH then executes the (WRS) and (RCH) commands in IOS, to initiate the writing of
the contents of the output buffer onto tape, and returns to IOH at 2,4.

TSH/TAPE TO STORAGE HOLLERITH

Purpose
To read one BCD tape record.

Calling Sequence for: READ INPUT TAPE N, FMT,List.
GAL .N - unit designation.
TSX $(TSH) 4 - or (TSHM) under Monitor.
PZE FMT - location of orm mat specification. - indexing.
STR - trap to IOH.
STQ SYMBOL , TAG - input List.
* . .
TSX

- indexing.
$(RTN), 4 - return to restore conditions.

Transfer Vector
(IOH), (RDS), (RDC), (RCH) , (RER), EXIT

No Stops

Storage Requirement
30 locations -b 25 erasable.

(8) (8)

Description
TSH loads the MQ with the input switch setting and re-entry address, and

exits to IOH for initialization. ' Then, whenever IOH requires an input record, it re -
enters TSH. TSH then executes the (RDS) and (R CH) commands in 10s , causing a
20-word record t o be read into the IOH input buffer. The command address is saved
in (RDC) for use by RER. If (TSH) has be,en chwged to (TSHM) by the M d t o r , then
an end of file on channel A causes an exit to the Monitor. Otherwise, TSH exits to
RER to check the read, and returns to IOH directly from RER.

CSH/CARD TO STORAGE HOLLERITH

Purpose
To read one Hollerith card and convert to BCD.

Calling Sequence
TSX $(CSH) 8

PZE FMT
0 . . .
STR
STQ SYMBOL, TAG

Transfer Vector

for: READ FMT, List.

- location of Format specification.
- indexing
- trap to IOH
- input List.
- indexing
- return to restore conditions.

(IOH),~(TCO), (TEF), (RDS), (RCH)

stops
HPR 0,2
HPR 1,2

Reason
- Illegal card character.
- End of file.

Storage Requirements
173(8) locations 4- 141 erasable.

(8)

Description
CSH sets the AC to - 1, for the IOU table reference, loads the MQ with the

input switch setting and re- entry address, and exits to IOH for initialization. Then,
whenever IOH requires an input record, it re-enters CSH. CSH then executes the
(TCO) , (RDS) , (RCH) , and (TEF) commands in 10s. On an end-ot- file, CSH stops
until the card can be readied. When a card has been read, CSH then converts it from
Hollerith and places the BCD in the IOH input buffer. If an illegal character i s en-
countered, CSH stops until the corrected card can be readied. When the card has
been converted, control returns to IOH.

SCH/STORAGE TO CARD HOLLERITH

Purpose
To convert BCD to Hollerith and punch one card.

Calling Sequence for: PUNCH FMT, List.
TSX $(SCH) 8

P Z E FMT - location of Format specification.
. . . . - indexing
LDQ SYMBOL , TAG - output list.
STR - trap to IOH. - indexing
TSX $(FIL), 4 - fill out card.

Transfer Vector
(IOH). (TCO), (WRS) , (RCH) .

No Stops

Storage Requirements
140 locations + 148 erasable.

(8) (8)

Description
SCH sets the AC to -2 , for the IOU table reference, loads the MQ with the

output switch setting and re- entry address , and exits t o IOH for initialization. Then,
whenever IOH is ready to output a record, it re-enters SCH. SCH then obtains the
output word count from 1 ,4 , and converts the contents of the REC buffer in IOH from
BCD to Hollerith and places it in the output buffer . When the image conversion is
complete, SCH executes the (TCO) , (WRS) , (RCH) commands in IOS, causing the
Hollerith card to be punched. When punching is complete, SCH returns to IOH at
2 ,4 ,

SPHISTORAGE TO PRINTER HOLLERITH

Purpose
To convert BCD to line image and print a line.

Calling Sequence for: PRINT FMT, List.
TSX $(SPH) 8 4
PZE . FMT - location of Format specification.
. - indexing
LDQ SYMBOL , TAG - output List.
STR - trap to IOH.
. . . . - indexing . ,
TSX $(FIL) 8 4 - f i l l out line .

Transfer Vector
(I O H) , ~ W R S) , (TCO), (RCH) .

Storage Requirements
2?0(8) locations + 163 erasable.

(8)

Description
SPH sets the AC to -3, for the IOU table reference, loads the MQ with the

output switch setting and re-entry address, and exits to IOH for initialization. Then,
whenever IOH is ready to output a record, it re-enters SPH. SPH then obtains the
output word count from 1,4, and converts the contents of the REC buffer in IOH from
BCD to line image and places it in the output buffer. Then according to program con-
trol characters, SPH senses the hubs, and executes the (TCO) , (WRS) , (RCH) com-
mands in IOS , to print left and right halves of the line respectively . When printing is
complete, SPH returns to IOH at 2,4.

BINARY INPUT-OUTPUT

IOB/ INPUT-OUTPUT BINARY

Purpose
To handle the, transmission of binary between storage and tape buffers

according to List specifications.

Calling Sequences
LDQ C(MQ) -used by STB and TSB.
TRAXc $(IOB) 1.4: L(L1ST)

where C (M Q) = STQ XXX,4 fo r output,
and C(MQ)= LDQ XXX,4for input,
where XXX the re-entry address to the TYPE unit routine,
when IOB i s entered for initialization. Control returns to List.

then: LDQ Symbol, TAG -used by the List
STR for output.

or: STR -used by the List
STQ Symbol, TAG for input.

when location 2 has been set to re-enter IOB for transmission.

then: TRA* $(EXB) -used by STB and TSB
when the last physical record has been written or read.

Transfer Vector
(10s)

No Sto,ps

Storage Requirement
463(8) locations t 3 erasable.

Description
When IOB is entered initially from one of the TYPE unit routines,

switches a r e set for either input o r output. The binary indicator i s added to
the AC, and IOS i s called to initialize the I /O instructions for the indicated
logical unit. If input, a record is read by the TYPE routine. Various
indicators are reset , and the contents of locations 0 and 2 arc saved,
Location 2 is set so that an STR will cause a return to the transmission part
of IOB, And control returns to the List.

When an STR i s executed, one word i s put into, o r taken from, one
of two 127-word buffers, and the count i s decreased by 1. Meanwhile,
whenever there i s more than one physical record in a logical record, the
other buffer i s either being written out, o r being read into. This is
accomplished by switching the address of the working buffer and the
address of the I /O command whenever the count i s exhausted. To
initiate the tape read or write, the indicated TYPE routine is called.

STB~STOIIAGE TO TAPE BINARY -

Purpose

To write one physical record and its appropriate label onto tape.

Calling Srqui.nce for: WRITE TAPE N, List
G A L N -unit designation
r: 5X $(STB), 4
. . * . . -indexing.
L U Q Symbol, TAG -output List
ST it - trhp to IOB.
. -indexing,
T S X $(W L R) , 4 -write last physical record.

T r a ~ d c r Vector
U o B) , (W E R) , (WRS), (W T C) , (RCH). (TES), (EXB)

ho St ,)ps

Storage R e q ~ i :e:nent
63(a) l o c a t i ~ n s + 1 erasable.

Descriptlor,
ST A, i(.,itls the MQ with one output switch se t t ing and re-entry address,

and exlts to LOB for initialization. Then, whenever IOB is ready to output a
record, it re-enters STB. STB f i rs t exits to W E R to check any previous write.
On r e tu rn i r ~ r r : WER, the physical record count i s increased by 1, the current
command address is saved in (WTC) for use by WER, and the commands
(W R S) and (R C H) in IOS a r e executed to initiate the writing of the contents of
the ind ica t ed buffer, preceded by a zero label, onto tape. STB then returns
to i O B 'it 2,4.

When the list has been satisfied, STB is entered at (WLR). Any
p r e v i o u s w r i t e LS checked by calling WER. The write command is set with
the c h r r e n t buffer address and the current word count obtained from IOB.
The physical reccrd count is increased by 1, and placed in the address
pbrtlon s f the lrt.>cl. The PRC counter is reset to zero. The writing of
the p r t i a l buffer -load and the non-zero label a r e initiated, The command
address 1s saved in (WTC). TES is set to check the current write. And

STU exlts to IOB at (EXB).

XI- 21

TSUI I'APE '1'0 STORAGE BINARY

P u r p s e
To read one physical record and its appropriate label from ta,pe.

Calling Sequence

CAL
'I'SX
...
STR
STQ
e * .

I 'SX

Symbol, TAG

for: READ TAPE N, List.
-unit designation

-indexing.
-trap to IOBo
-input list .
-indexing.
-read last physical record.

Transfer V:.,: rcr
bob), (R E R) , (RDS), (RDC), (RCH), (EXB)

h., S t o u s

-:; orage Requirement
42(8) locations

r s t ' r ~ p t i o n
TSB loads the MQ with the input switch setting and re-entry address.

u r .. exits to LOB for initialization. Then, whenever IOB requires a n input record,
i t re-enter s 'I'SB. TSB f i rs t exits to RER to check any previous read. On return
f :om R E R , the las t label read is examined. Lf non-zero, control returns to IOB
at L, 4. If zero, the commands (RDS) and (RCH) in IOS a r e executed to initiate
rcdding the next physical record into the indicated buffer. The address of the
rc,,c; command is saved in (RDC) for use by RER. And control returns to IOB
ac 2,q.

When the l i s t has been satisfied, TSB is entered a t (RLR). Any previous
read is checked by calling RER. Lf the label is zero, TSB then continues to read
physlcal records until a non-zero label is encountered, which signifies the las t
ptyslcal record of this logical record. Then TSB exits to IOB a t (EXB).

DRM/WRITE AND READ DRUM

Purpose
To transfer arrays to and from a Drum.

Calling Sequence
GAL N
TSX $(xxX), 4
CAL J
L D A . .
LXD 2)K, TAG
C P Y Symbol, TAG
T IX *-I, TAG, 1
C P Y Symbol

for: WRITE (or READ) DRUM, N, J, List
-Drum designation.
(XXX. SDR for output, DRS for input)
-Drum address.
-set by DRM.
- indexing.
-array Symbol
-indexing.
-last element.

No Transier Vector

No Stops

Storage Requirement
17 (8) locations.

Description
The drum designation i s used to initialize the write or read select.

The drum is selected. The drum address i s moved into DRM, and its
location i s stored in the address of the LDA instruction. Then DRM exits
to the LDA at 2,4.

1'APE NON - TRANSMISSION

BSI'/ BACKSPACE TAPE

Purpose
To backspace the indicated tape one logical record.

Calling Sequence for: BACKSPACE N
GAL N -unit designation
1' SX $(BST)# 4
return

Transfer Vector
(10% (BSR) . (RDS), (RCH), (TCO), (TRC), (TEF)

KO Stops

Storage Requi rement
34@) locations+ 1 erasable.

Description
The binary indicator is added to the AC, and IOS i s called to

in i t ia l ize the I/O instructions for the indicated logical unit. Then
UST attempts to read the previous physical record in the binary mode,
by executing the instructions : (BSR), (RDS), (RCH), and (TCO).
I'hen, if a (TRC) or a (TEF) cause a transfer when executed, only
one backspace is required. Otherwise, BSR backspaces the number
of physical records specified by the las t binary record label. Control

then returns to the caller at 1.4.

EFT/ENDFILE TAPE

Purpose
To write end-of-file on the indicated tape.

Calling Sequence
GAL N
TSX $(EFT), 4
return

Transfer Vector

No Stops

Storage Requirement
7(8) locations.

for: ENDFILE N,
-unit designation

Description
IOS is called to initialize the I/O instructions for the indicated

logical unit. Then EFT simply executes (WEE'), causing an end-of-file
to be written, Control returns to the caller at 1,4,

RWTIREWIND TAPE.

Purpose
To rewind the indicated tape.

Calling Sequence
GAL N
TSX $ (R W T) , 4

for: REWIND N
-unit designation

return

Transfer Vector
(10s). (R E W

No Stops

Storage Requirement
7(8) locations.

Description
IOS is called to initialize the I/O instructions for the indicated

logical unit. Then, RWT si.mply executes (REW), causing the tape to
be rewound. Control returns to the caller at 1,4.

MATH LIBRARY

The 709 FORTRAN MATH LIBRARY consists of modified SHARE
Library routines, which have been FAP-assembled, and which communicate
with Fortran programs by means of linkage compiled by the Arithmetic
Translator in Section One.

X P 1 / EXPONE,NTIAL - FXPT BASE - FXPT EXPO
i' , . 2.: + . < r . - . " x , . .*

Purpose
To compute , IJ, , where I and J are fixed point variables.

\ " - . '.. . * 1

return

N o Transfer Vector

' Stor"age Requirement
., . . ". , , 43(8) kyations + 2 erasable.

Description
(If 1'0, then 2 ' 0 ; if J'O, t h e n h)

XPZIEXPONENTIAL - FLPT BASE - FXPT EXPO

Purpose
To compute A K, where A is a floating point variable and K is a

fixed point variable.

Calling Sequence
C LA A

No Transfer Vector "

Storage Requirement
46(8) locations+ 2 erasable

for: A**K in an arithmetic statement
-floating point base
-fixed point exponent

Description
(If A.0, then A ~ - 0; if K.0, then A& 1.0)

XP~/EXPONENTLAL - FLPT BASE - FLPT EXP.

Purpose
To compute B', where B and C are floating point variables.

Calling Sequence
CLA B
LDQ C
TSX $EXP(3,4,

for: B**C in an arithmetic statement
-floating point base
-floating point exponent

return

No Transfer Vector

No Stops

Storage Requirement
160(8) locations + lO(8) erasable

Description
(If B=O, than B'=O; if C=O, then B'= 1.0)

ATN/ FLOATING POINT ARCTANGENT

Purpose
T o compute the principal value of arctan (X) where X is a floating

point, single precision, argument in radians

Calling Sequence
CLA X
TSX $ATAN, 4
return

No Transfer Vector

No Stops

Storage Reauirement

for: ATAN F(X) in an arithmetic statement
-floating point argument

115(8) locations+ 3 erasable

Timing
n, 1.98 milliseconds

Accuracv

Description
(If x 1) Z2?, then arctan 1 X I = m/2; if I x I < 227, then arctan\Y\ =)
Adapted from SHARE Routine IBATM, Distribution Number 507.

XPF/FLOATING POINT EXPONENTIAL FUNCTION

Purpose
To compute ex for a floating point, single precision, argument.

Calling Sequence
C LA
TSX
return

for: EXPF(X) in an arithmetic statement
-floating point argument .

No Transfer Vector .:

No Stops

Storage Requirement
56(8) locations f 4 erasable

Timing
h) 1.7 milliseconds

Description
(If X) 88.028, then ex = x; if ~(-88; 028, then ex=
Adapted from SHARE Routine IB FXP, Distribution

0)
Number 507.

LOG/FLOATING POINT NATURAL LOGARITHM

Purpose
To compute log, x, natural logarithm, for a floating point

single precision, argum;nt in normalized form.

Calling Sequence
CLA X
TSX $LOG4
return

for: LOGF (X) in an arithmetic statement
-floating point argument

No Transfer Vector

No Stops

Storage Requirement
56(8) locations+ 3 erasable

Timing
1.'848 milliseconds

Description
(If x = 0, then log x = 0; if x<O, then LOG computes log (xl)
Adapted from SHARE Routine IB LOG 3, Distribution Number 665.

SCN~FLOATING WINT SINE AND COSINE

Purpose
To compute the sine or cosine of a floating point, single precision,

normalized argument, in radians.

Calling Sequence
CLA X
TSX $ S W 4
return

C LA Y
TSX $ COS,4

for: SINF (X) in an arithmetic statement
-floating point argument

for: COSF (Y) in an arithmetic statement
-floating point argument

return

No Transfer Vector

No Stops

Storage Requirement
151@) locations + 4 erasable

Timing in Milliseconds
SIN: 1.38 to 2.03; COS: 1.45 to 2.11 -

Accuracy
Error f 1 x 10 '8

Description
(Cos x ii Sin x + v / 2)
Adapted from SHARE Routine IB SIN 1, Distribution Number 507.

SQR/ FLOATING POINT POINT SQUARE ROOT

Purpose
To compute the square root of a floating point, single precision#

argument.

Calling Sequence
CXA X
TSX $ sQRT,4
return

No Transfer Vector

No Stops

Storage Requirement
54(g) locations + 4 eraaable

Timing
11.062 milliseconds

for: SQRTF (X) in an arithmetic statement
-floating point argument

Description
(If x = 0 , then Fj;\= 0 ; if x<o, then == x)
Adapted from SHARE Routine U3 SQ1, Distribution Number 721.

TNH/FLOATING POINT HYPERBOLIC TANGENT

Purpose
To compute tanh (x) for a floating point, single precision, argument,

in radians.

Calling Sequence for: TANHF (X) in an arithmetic statement
CLA X
TSX $ TANH, 4
return

No Transfer Vector

N o Stops

Storage Requirement
126(8) locations + 4 erasable

Timing
2.09 to 2.64 milliseconds

AccuracyError
C 3 x l(r8 for X-C. 00034 or ~ 4 . 1 7 , and (1 x loe8 elsewhere. - 3

Description
(If 1 X\ < .00034, then tanh ()o . X ; if 1 X/) 12, then tanh U() % 1)
Adapted from SHARE Routine IB TANH, Distribution Number 507.

MONITOR LIBRARY

The 709 FORTRAN MONITOR LIBRARY consists of hand-coded,
FAP as sembled, relocatable subroutines , which use linkage compiled
by Section One to communicate with Fortran programs that are executed
under Monitor control.

Purpose
To load the indicated chain link from tape into cores, and pas e

control to it.

Calling Sequence
TSX $CHAIN, 4

for: CALL CHAIN (R , T)

TSX L(R) -record identification
TSX L(T) -actual channel B tape designation (1,2,or3)

Transfer Vector
(TES), EXIT

No Stops

Storage Requirement
236(8) locations

Description \

After checking any previous write through TES, CHN s e a r c h the
channel B tape specified by the argument: T , for the record beginning with
the control word: EZE O,'T, R. If an EOF is encountered before the record
is found, the tape is rewound and the search continues. A second EOF causes
an error message, and the job is deleted by calling EXIT. The same will oc-
cur, if five attempts to read the ta.pe fail. If the search is successful, CHN then
moves the ~xecut ion Loader on top of The Diagnostic Caller, and transfers con-
trol to it.

Purpose -
To control the dumping of cores and panel according to Argument epeci-

fications, during execution.

Calling Scquenc e s
T SX $DUMP, 4

for: CALL DUMP (A, B, F . . .)
TSX A - f i rs t limit
TSX B - second limit
TSX L(F) o r F - dump format

Control returns to the Monitor through EXIT.

or:
TSX

for: CALL PDUMP (A, B, F . . .)
$PDUMP, 4

(arguments as above)

Control returns into execution, after restoring memory.

Transfer Vector
(TES), EXIT

Storage Requirement
245 locations.

(8)

Description
After checking any previous write through TES, D M P saves 3500 words

(8) on tape BZ. Then a table i s prepared of no more than 20 sets of arguments, and
is written onto tape B2. The Monitor Dump Record i s called into memory, and
control remains with i t until the argument table is exhausted. Then memory i s
restored and control re-enters DMP. If any arguments remain to be processed,
another table i s formed, and the Dump Record is called again. This continues
until no arguments remain. Then, i f D M P was entered a t DUMP, contzol returns
to the Monitor through EXIT. Otherwise, execution is resumed, if memory was
correctly restored. Redundancy while reading memory from tape BZ will cause
an e r r o r message, and execution will be terminated. Control then returns to the
Monitor through EXIT.

Purpose
To terminate execution, and transfer control to the Sign-on

record of the Monitor.

Calling Sequcnce
TSX $EXIT, 4

Transfer Vector
(TES)

Stop
HTR

Storage Requirement
23(g) locations

Description

for: CALL EXIT

Reason
5 failures while reading System Tape

, EXIT f i rs t checks the completion of any previous write by executing
(TES). Then the system Tape is'rewound, 1 TOGS i s restored without
destroying the current line count, and the System Tape is positioned to the
Sign-on Record of the Monitor. I£ a redundancy stop occurs, pressing the
start key will cauee 5 new attempts. If there was no redundancy, control
passes to 1 TOGS and the Monitor Sign-on i s entered.

TES/ TEST LAST WRITE

Pur,pos e
To test the correct completion of any previously initiated tape write.

Calling Sequence
XEC* $(TW

for: F'AP-coded programs

return

No Transfer Vector

No Stops

Storage Requirement
1 location

Description
TES consists of one NOP instruction, which is set to TSX (WER) ,4

by STH and ST? at execution time, and reset to N O P by WER after the writing
of any pge*v$ous t a ~ e r e c o r d has been checked. Thie instruction, XEC* $(TES),
should be used. in ' ~ ~ ~ , & o d e d programs that contqin input-output instructions
to make "sure the exticution of FORTRAN 110 statements i s complete.

XLO/RELOCATED LOCATION FUNCTION

Purpose
To return the relocated location of its argument to the AC as a

FORTRAN fixed point constant.

Calling Sequence
TSX $XLOC ,4

I
for: XLOCF (N) in an arithmetic etatement

re turn
The instruction,CLA N, precedes the calling sequence at some* point.

No Transfer Vector

No Stops

Storage Requirement
14(8) locations.

Description
XLO searchs for the last CLA N preceding the calling sequence, and

obtains the location of the argument N. This ie placed in the decrement of the
AC, and control returns at 1,4.

MONITOR ROUTINES FOR 709 /7090 FORTRAN

The Monitor exists in separate records on the system tape. No
monitor record remains in core after another record has been called
in. In fact, the only core communication between monitor programs
is 1-CS, which contains four erasable cells used by the monitor.
The monitor reco;da, and their system tape numbers are as follow.:

Record No.
1
2

Name -
Card-Tape Simulator
Dump
Sign on
FAP Pass 1
FAP Pass 2
Mohitor Scan
BSS 1
Machine Error
Source Error
Tape Mover
BSS 2

Records 10-41 a re the FORTRAN compiler. There is an EOF mark
after record 9 , and another after record 43. The 1-CS record is
self loading and precedes record 1. 1-CS remains inmemory ex-
cept when an object program has control during execution.

I. START -- card and record 1 (card-tape-simulator)

System operaticn for a series of jobs followed by an end
tape card begins by the START card, which installs 1 - CS
in memory and transfers control to record 1. This is the
one and only time record 1 is called. Record 1 tests a
flag left by the START card signalling that operation is
with the monitor (rather than single compile), and then
tests the card reader. If the card reader is empty, the
assumption i s made that input is off-line, and so record 2
is skipped and control is passed to record 3. If the card
reader i s not empty, a card to tape operation is simulated
from the card reader to tape A2. The following specifications
a re observed. Cards with a 7-9 punch in column 1 a re treated
as column binary. Card witb aq 8-9 punch ia column 3 are '
not transcribed onto tape, but cause an EOF to be written.

An EOF in the card reader causes an EOF on tape AZ,
and termination of the operation. The program is double
buffered, card reader speed. Illegal Hollerith punches
cause a stop with a res ta t t procedure analagous to that
for off -line equipment. At the termination of operation,
record 2 is skipped and control is passed to record 3
(sign on). (Note: Since this program is also used in the
single compile mode, if the monitor flag is off, card-tape
simulation i s done onto B2 and control passed directly
to FORTRAN at record 10.)

Record 3 (Sign on)

Record 3 is called when and only when a job i s begun (or
ended). A test is made to determine if the input tape (A2)
is positioned at the beginning of a file (job). If it is not,
the tape is skipped to the next file. The number of lines
output from the last job (kept in a cell in 1-CS), if greater
than zero, i s cpnverted to decimal and reported on-line
and off-line. Then the first card of the file is read and
scanned to see if i t is an End Tape card. If it i s , an EOF
is written on the BCD output tape, 2 EOFL a re written on
the peripheral punch tape, the End Tape card i s printed
on and off line, and a load card button sequence is simulated
to end monitor operation. If the 1st card is not an End
Tape card, it i s assumed to be an I.D. card. It i s in this
area that a sizable space has been reeerved for an installa-
tion to insert coding for accounting or other purposes.
The distributed treatment merely writes an EOF on the
peripheral punch tape and prints the I.D. card on line and
off line. After treating the I.D. card, control is passed
to record 6 (monitor scan). (Note: - Record 3 has its own
diagnostic messages and prints then on & off line).

111 Record 6 (monitor scan)

Record 6 is the primary monitor record in that i t interprets
the control cards which specify different system programs
to be called. It also scans FORTRAN programs and pre-

. ' pares a single -compile input tape for the compiler. Control .

is passed to this record in the following circumstances:
, I .

', . , , , (.' + - , ,,>* .". , .,i;,q,> ,'., , I + ' .. ,,,, / , , ! ,
\ * * I

a) From record 3 (sign on) after processing an
I.D. card a t the beginning of a job.

XII- 2

b) From record 5 (FAP) after completing an assembly
not for execution.

c) From record 7 or 43 (BSS) after relocating a ser ies
of binary programs when there a r e more symbolic
programs remaining in the job.

d) From record 8 (machine e r ror) or record 9 (source
e r ro r) or record 2 (dump) when i t has been determined
that the job should be continued after an e r ro r .

e) From the res tar t card "CONTINUE",

Operation i s as follows: All input i s from A2. Records a r e read double
buffered and scanned f i rs t for an asterisk in column 1, If this i s found,
the rnnemonics on the card a r e scanned and compared with a dictionary
of control card mnemonics. If no asterisk i s found, the card i s assum-
ed to be part of a FORTRAN program and a routine called SP i s used.

If the card is column binary, and an XEQ control card has been encoun-
tered earl ier in the job, contrbl i s passed to record 7 (BSS 1). If the
XEQ flag is off, column binary cards a r e ignored. Asterisk cards not
in the dictionary a r e printed on and off line as remarks and then ignored.
FORTRAN source program cards a r e scanned and then transcribed onto
tape B2 (FORTRAN input). A FORTRAN source card with a CALL
CHAIN (N , Bn) will be changed to CALL CHAIN (N, n) . Upon encounter -
ing an END card, another END card is simulated onto B2 containing
output options as indicated by control cards. Programmer's END
card options will be preserved if not in conflict with control cards, which
have precedence. Asterisk (control cards) found in the dictionary,
a r e treated as follows:

a) XEQ - a flag in 1-CS i s se t indicating execution is
desired. A word of zeros i s written on the beginning
of tape B1 to indicate that there is no snapshot (See
record 7).

b) CHAIN () - If the execution flag is off, this is
treated a s a remark card. If on, the parameters
a r e examined and a unique control word is written
on B 1 (in front of the zero word) and stored in a
cell (curchn) in 1-CS, If this is the l e t link, it
i s stored in a different cell (1st chn). A chain £lag
i e set in l-CS (FLGBX)

c) F A P - An END card i s simulated onto B2 containing
control card output options and control i s passed
to F A P Pass 1 (record 4).

d) DATA - This should be encountered only if there
was no execution flag (or if execution has been
deleted). Control is passed to Sign-on unless the
execution flag i s on, in which case an e r ro r message
(incorrect deck set up) is printed and control is
passed to record 9 (source e r ror) .

e) CARDS ROW, LIBE, etc . - A flag is se t for the
end card routine to set the appropriate END card
options.

In summary, control i s then passed as follows:

Upon Recognizing: Go to:

a) Fortran END card - Record 10
b) Column binary card - Record 7
c) FAP control card - Record 4
d) Deck e r ror - Record 9
e) Machine e r ro r - Record 8

NOTE (Record 6 has i ts awn diagnostic messages and prints
them on and off line).

IV. Record7or43(BSSCont ro l)

Records 7 and 43 a r e identical except for tape positioning.
In fact, they a r e identical except for the f i rs t word. This
record i s duplicated in order to be quickly accessible either
from the second file (after a FORTRAN compilation) o r f rom
the f i rs t file (for binary input from record 6 or for a just-
completed F A P assembly). BSS accepts card image input
from A2, B3, or A1 using a generalized double buffered
read routine. The BSS program itself i s located in the
top of memory, occupying the standard Common region.
It relocates binary card images into locations 1448 to 730008.
730008 to 744568 is used for a tabla of ~ ~ D p r o ~ r a r n names,
a missing subroutine table, and a Transfer Vector table.
These tables, together with several loading counts a r e
referred to as the SNAPSHOT.

XII- 4

Upon entry, the SNAPSHOT (from previous relocations in the
same job) is read from B1. (If this is the first pass through
BSS for the job a zero wgrd will have been written on B1
indicating this). A number leit by the calling record in the
indicators specifies which tape BSS should first take a s input.
If an assembly or compilation has just been completed, this
is B3, otherwise A2. This input tape is then read in binary.
Transfer Vectors a re peeled off and stored in the transfer
vector table, and the binary cards a re relocated into 1448 -
730008. When 7 new s e t or Transfer Vectore is met, the
relocated block is saved as a record on B1, the first word
being a control word specifying i ts length and memory assign- - .
ment and whether i t has a transfer vector, If it has a transfer
vector, there is a second control word written specifying how
many TTRf s exist for $his block. When an EOF i s encountered
on B3 (if that i s the 1st input tape) the input tape is changed
to A2. If overlap with ?SS occurs (i. e. program relpcation.
over 73000) the non-overlapping block is saved as before on
Bland relocation continues as before, but the relocation buffer
i s shifted back to 1448e Overlap with Common i s of course
not allowed and results is a n error message. If a BCD Record is
enconntered, i t is scanned and compared with a dictionary,
of control words. CE$AI3S and DATA are accepted. XEQ i s
ignored (as is obvio.n.s$y extraneous). other BCD cards
result in the SNAPSHOT being writk n on B1 and control returned
to record 6.

If DATA or CHAIN is recognized, the table of Transfer Vectors
is searched against the table of BCD names to form a table of
missing subroutines, (, w U B) . The input tape is then changed

' to A1 , which becsmes p~sit ioned at the library, and the read and
relocation routines are modified to search for and relocate
missing subroutines from the library. MISUB is updated with
lower level missing subroutines and the search continues until
the MfSUB count is zero a r until two passes have been made
over the library. If subroutines are atill missing, they a re
listed with an er ror message on and off line and the Job is
deleted. When all subroutines have been relocated, the Transfer
Vector table is changed to TTR's with their proper relocated
addresses and the blocks a re read in from B1 and written onto
A4 preceded by their appropriate TTRts.

XII- 5

-

At this point a test i s made to see if this i s a Chain Job,
If not, a small execution loader is moved over 1 - CS, the
word "executiont1 i s printed, and control is passed to the
execution loader, which reads the absolute programs from
A4 into memory. The last record on A4 i s a transfer
word to the program.

If i t i s a Chain Job, and the data card has not been encountered,
B1 isbackspaced to the chain I.D. word and the link is
stacked on B1. BSS i s refreshed, and the process begins a new,
reading A2 . If i t is a Chain job and the Data card has been
encountered, the chain links a r e edited from B 1 onto their
specified tapes and the 1st link i s located. Then the small
execution loader i s placed over 1-CSand the link is read
in a s in a single job, except that i t i s from B1, 2, or 3 in-
stead of A4. This program carr ies a sizable se t of diagnostic
messages that i t prints on and off link and then returns control
to the machine e r r r o r record or soucce e r ro r record a s
appropriate .

V. Monitor Control During Execution, via Libray Routines.

This is effected by two Monitor Routines, (EXIT and CHAIN),
and by the modification of two 1/0 routines, ((TSH) and
(STH)). EXIT restores 1-CS and calls in record 3 (Sign on).
CHAIN searches for a specified chain link and, upon finding
i t , s tores a tape reading program over 1-CS exactly as i s done
in BSS. The chain tape i s searched from whatever point
i t i s positioned, and if an EOF i s obtained, it is rewound
and the entire link file is searched once. Failure to find
the link results in an e r r o r message and the job is deleted.
Transfer Vectors to (STH) and (TSH) a r e modified a t loading
time (in BSS) to (STHM) and (TSHM) which are alternate
entry points forcing theae routines to do Monitor functions,
namely 1) Call the EXIT routine if an EOF is encountered
with a READ INPUT TAPE statement, 2) Check for EOT on
the Monitor output tape, and 3) Update the Monitor output
tape line count.

XII- 6

VI Unused Locations

In the 32K system, unused locations are (in decimal)
3 through 7 , 9 through 18, and 50 through 9 9 , In the
8K system, unused locations are 3 through 7 , 38, and 39.
Location 8 ie used only at object time for floating point
traps. Locations 0 , 1 , and 2 are used a s erasable only
for load tape and load card sequences and at object time
for I/ 0 routine linkage. In otber worde , an installation
may feel f b e to write routine# that destroy locations 0 ,
1 and 2 as:lmg as these routinas do not interrupt an
object time 110 sequence.

XII- 7

GENERAL DLAGMOSTIC

The general diagnostic for: the FORTRAN system covers machine and
source program dirors revealed by Sections 1 Prime through 6. When a
machine or source program er ror i s encountered in any one of these executive
system records, a TSX D ~ G , 4 transfers control to the diagnostic caller. In
the 709, the diagnostic caller remains in lower memory with 1 to CS. In the
704, the TSX DUG, 4 is actually a transfer to 1 to CS which then reads in
the diagnostic caller record positioned after that particular system record
on the system tape. The caller then dumps a buffer of 25 06 words onto
tape A3 on the 7 0 9 , or onto drum 4 on the 704. The diagnostic caller then
spaces the system tape to the 4th file and proceeds to read in the main
diagnostic record.

The main diagnostic record of the 4th file (record 1 in the 709, record 2 in
the 704) contains all of the subroutines needed for 'converting and printing
e r ro r comments, and for returning to the proper record in the FORTRAN
Monitor. The main record converts the contents of index register 4 back to
the location number of the TSX, and uses this constant as the e r ror number.
It is also in the main record that the title - FORTRAN record number and
location of the TSX - i s printed. The 709 diagnostic also prints the section of
FORTRAN involved.

The main record performs a table search in order to determine which of the
fourth file records contains information pertinent to the stop. The error
number (2 ' s complement of IR4) i a compared to a l is t of e r rors . This l ist
has 2-word entries. The f i r s t word i s a n e r r o r number corresponding to the
location of a TSX in the executive system. The second word i s the record
number in the fourth file which contains the pertinent BCD and coding to
print out information about the e r ror . Lf the second word i s minus, it will
also contain the FORTRAN record number of the TSX. The minus indicates
that the e r ro r number may be duplicated in the e r ro r l is t and if the FORTRAN
record number does not match the one picked up by the diagnostic from 1 to
CS, the comparison with the e r ror l is t continues.

When the match has been found, the diagnostic record number i s used to
space the system tape to the correct record in the 4th file. If a match i s not
found in the e r r o r l is t , the main record will then read in D6@2 which concerns
unlisted stops. The pertinent diagnostic record is then read in over the
e r r o r l is t and the main record transfers control to it.

Each of these records is set up to hbndle information about one e r r o r , o r one
specific type of e r r o r , only. Usually, this i s done by straight forward coding
which makes use of the subroutines in the main record. The program
instructions executed may obtain further information to be inserted into the
e r r o r comment from tapes, cores, o r the core dump. The e r r o r comment,
which is contained in that particular diagnoetic record in BCD, is then printed.

After all e r r o r comments have been printed, control is always returned to
one of two points in the main diagnostic record. Thie will depend upon
whether the e r r o r encountered was a machine e r ror o r a source program
er ror .

The main diagnostic record spaces the System tape to either the machine
e r ro r or the source program er ror record in the FORTRAN Monitor,
depending upon the aforementioned e r ror return. The diagnostic then prints
the end comment and transfers control to 1 to CS to read in the proper
Monitor e r ro r record.

Operator options, if any, a r e printed by the Monitor error record on the
709. and by the diagnostic on the 704. The options will vary depending upon
whether the system is operating in the Monitor mode or single compile mode.

THE DIAGNOSTIC RECORD FOR SECTION 1 DOUBLE PRIME

A few diagnostic records obtain information from an error l is t left in upper
memory by the system record that has called the diagnostic. The diagnostic
record for Section 1 Double Prime (D663 in the 709, ~ 8 6 4 in the 704)is such
a record. D6@3 isfunique in that i t contains all of the e r ror comments for
Section 1 Double Pr ime, rather than just one comment. In the case of Db&
the information for a particular e r ro r is preceded by a flag. The format of
the e r ro r l i s t is described in the write-up for Section 1 Double Prime.

DO63 performs a table search in order to determine which subroutine within
itself i s to process the e r ror currently being treated in the e r r o r list . This
table search i s done by comparing the flag in the e r ror l is t with the f i rs t
word of a two word entry in an e r ro r table. The f i rs t word in the e r ror
table entry is the location of a TSX to the e r r o r routine in Section 1 Double
Prime. The second word is the location of the subroutine in ~ 0 6 3 for
processing that type of e r ror . When a match has been found, the table search
routine transfers control to the proper subroutine. The subroutine extracts
whatever information it m a y need from th.e e r ro r l is t and, like other diagnostics.
uses the subroutines in the main diagnostic record for produ.cing an e r ro r

' comment. When the subroutine has finished i ts task, control is returned to
the table search routine. At this point the subroutine will have correctly
incrcmented the index register that references the e r ror l is t 80 that the table
search routine will examine the next flag in the e r ro r list.

~ 6 0 3 i s also given a word count of the number of words in the e r ro r l i s t by
Section 1 Double Prime. The table search routine tests against this word
count for an exhausted e r ror list. If the e r r o r l is t has not been fully treated,
the process of table searching, transferring to a subroutine, and returning to
the table search routine continues. When all accumulated e r ro r a have been
treated, ~ 6 0 3 then returns control to the main diagnostic record.

XIV

THE FORTRAN EDITORS

There is a considerable difference in the method of editing the system proper ,
the library and the diagnostic records. Therefore, there a r e three editors in
the FORTRAN Editor deck, the system editor, the librarian, and the diagnostic
editor. This section deals with the system editor and the diagnostic editor.

THE SYSTEM EDITOR

The system editor is a self loading program that edits the f i r s t and second files
of the FORTRAN system. These two files comprise the Monitor and the
Compiler. Both the Monitor and the Compiler records have the same format
and a r e treated in the same manner by the editor. The syetem editor reads into,
and writes from a buffer with a common origin. For this reason all editing is
done according to a computed effective address rather than the locations
specified on the absolute binary cards and on the Master tape.

The system editor must have a control card corresponding to each record and
end of file mark on the Master tape. The only exception i s the f i r s t record in
the 709 which contains 1 to CS and the diagnostic caller. These two routines
a r e contained i n the 709 editor and a r e written a s the f i r s t record on the
System tape from the editor. The f i r s t record on the Master tape i8 spaced
over and the editor proceeds to the card reading routine.

Because of the manner of execution, the remainder of this write up will be
concerned with the detail6 of the 709 system editor. However, the logic still
applies to the 704 system editor.

Card Reading Routine

This routine reads only the 9 left and 9 right rows of the card and interrogates
the 9 left prefix to determine what type of card is being read. A transfer to
one of the other routines in the editor will occur depending upon the type of
card being read. The routine transferred to will execute a load channel
instruction to read the remainder of the card.

The routines that may be transferred to a r e the following.

Master Record Card Routine-

The 8 left and 8 right rows a r e read in order to obtain the transfer address,
the f i rs t address of the record, and the last address of the record, From
this information the editor computes the length of the record and teste for
deletion of the record. If the record i s to be deleted, the editor spaces over
that record on the Master tape and proceeds to read the next card. If the
record is not to be deleted and a pievious record ir in cores , that record is

/

written on the system tape before proceeding. The control words f o r the
next record a r e then set up from the master record card just read and that
record is read f rom the Master tape. Control i s then returned to the card
reading routine.

There a r e two words preceding each record on the System tape and the Master
tape in the f i re t and second files. These two words are written by the editor
from the master record cards. They a re the following:

IORT Load Address,, Word Count of Record

TXI Transfer Address,, Record Number

The IORT command i s used by the editor and 1 to C S to read the &cord f rom
the Master o r System tape. The TXI i s used by 1 to CS to commence execution
of the record. The record numbers read from the Master tape are in multiples
of ten in order to allow for the insertion of new records. Therefore., record
numbers on the System tape a r e 1OL0, 2OI0, 3010, 4OI0, 41olO,

42
10, 4310

. A new record inserted after record 2 or after record 41 would

appear a s 21 and 41 1 and should be interpreted a8 record numbers 2.1
10 10, 10

and 41.1 , respectively.
10

New Record Routine -
I n the case of a new record, the procedure is the same a s for a Master record
with the following exceptions.

1) A record is not read from the Master tape.
2) The las t record number read from the Master tape is incremented by 1
and as signed a s the new record number.

Program (Absolute) Card Routine-

The effective address in the buffer is computed on&used to read the remainder
of the card into its proper location in the buffer. Control is then r e t u n e d to
the card reading routine.

End of File Card Routine-

The end of file mark on the Master tape i s spaced over and an end of file mark
is written on the System tape. Control is then returned to the card reading
routine.

End of Editing Card Routine -
Sense light 1 i s turned on to signal the librarian that the first two files of the
system have been edited. If the librarian finds sense light 1 off, it will copy
the f irst two f i les from the Master tape onto the System tape. The system
editor then simulates a load cards sequence to load the librarian. U an end of
file i s read from the card reader the editor will come to a final halt.

DIAGNOSTIC EDITOR

The diagnostic editor edits the 4th file which contains records pertaining to e r ro r
conditions occurring in Sections 1 prime and on through the res t of the system.
This editor i s loaded by the load-button sequence programmed a t the end of the
librarian which, in the 709 only, turns on sense light 1 to signal that the f i r s t 3
files have been written on the System tape. It i s self loading if used alone, and,
finding sense light 1 off, will rewind and copy the f i rs t 3 files and read the f i r s t
record of the diagnostic from the Master tape before reading the next card.
The 3-f ile copy device is not a part of the 704 diagnostic editor.

Ideally, the 4th file requires no cards in the Editor deck except the diagnostic editor
and the card which signals the end of editing from the card reader. In this case,
the editor will copy all of .the 4th file from the Master tape onto the System tape.
However, records a r e changed, deleted, added, and any of these operations requires
a diagnostic master record card. This card i s distinguished from the absolute
correction cards by the column 1 punch in the 9 left row. The 9 left address contains
the number of the record the editor i s to read into memory before proceeding. Any
records preceding this specific record on the Master tape, a r e automatically copied
onto the System tape. The editor reads the 8 left row of the master record card
and resets the pardmeters of the record according to the decrement field, address
of the f i r s t word; and the address field, address of the last word.

Absolute correction cards a r e read until another master record card is encountered.
The contents of absolute cards a r e read into the actual locations specjfied by the
load address, and a checksum i s computed. The current bd fe r is written on the
System tape unless the previous master record card has caused the record to be
deleted by setting i t s length zero o r minus. .
A new record can be substituted for a deleted recordt o r added to the file, by
using master record cards and absolute cards. No attempt i s made to read
another record from the Master tape once the end of file has been read from this
tape. However, new records may be added to the System tape from cards after
the end of file has been read from the Master tape.

On the other hand, if the end-of-editing card has been read before the end of file
mark on the Master tape, the editor automatically copies onto the System tape
any records remaining on the Master tape.

APPENDIX I
FORTRAN TAPE STATUS AT END OF SECTION

(This configuration holds only at the end of the given Section)
Tape 2 (704) - Tape BZ (709)

Overwritten

I Written by
Contents Section I File

SOURCE PROGRAM (BCD) - 1 FORTRAN I PRE-1 - 1
Statement card/ record I (Card to tape) . I
COMPAIL - 100 words/record

COMPAIL RECORD COUN T and
FORSUB (if it exists)

Table
Label

TablcW
Name

Maximum Numl
704% 709/8K

FLOCON
FOR MAT
SIZ
END
SUBDEF
COMMON
HOLARG
TEIFNO
TIFGO
TRAD
TDO
FOKVAL
FORVAR
FORTAG
FRET
EQUIT
CLOSUB

DOTAG B - variable number of records-war-
iable number of entries/ record--') words/entry

DOTAG B RECORD COUNT

DOFILE C - CIT's for A) subroutines

DOFILE C RECORD COUNT

FIXCON

ASSIGN CONSTANT

STORAGE MAP (BGD) FOR PROGRAM

SYMBOLIC' LISTING FOR PROGRAM

*704/4K, 8K and 32K systems.
**In order as on tape,

***Any overwriting of file@) obsoletes all information previously following it on the tapt
-

APPENDIX 1
FORTRAN TAPE STATUS AT END O F SECTION

(This configuration holds only a t the end of the given Section)
Tape 3 (704) - Tape B3 (709)

Overwritten
by

Section***
Written by
Section

I-

--

--

-

--

-.

L.

File -

m

Contents

-"

-.

-,

I I

I 4Ks 8Ks .32K Syst,ems.
***A& overwrltlng of file(s) obsoletes all information previously

COMPAIL - 100 worda/record . One- Pr ime

DOTAG A - Variable number of records;
variable number of entr ies/record; 9 word/
entry; maximum of 1350 words

-- 704* - Max. no of w o r d s - 7 0 A E n l y

Three-
Block 1

FORMAT 750
NONEXC 750
TST OPS 300
TSKIPS 425 '

Two-Block 1

TWO-Block S

NONEXC 300
TSTOPS 300

DOFILE - INTERMEDIATE C3[Tts for DO
STATEMENTS

704*-709/8K-- 100 words/record
7 0 9 1 3 2 ~ -- 400 w o r d s / r e c ~ r d

MERGED CIT's O F COMPAIL AND COMPDO-
100 words/recokd Three-Block 1

A I Five-B1ock

CITts FOR FORTRAN FUNCTIONS - 100 words/
Three-Block 1 Four- Block

3
record

Four-Block 3

TAGLIST - 15 words/record Four-Block 3 I
- -

Four-Block 3 1 BBLIST - 6 words/entry

CITt s including: DO FILEC, FORTRAN
FUNCTIONS Five- Block A Five- Prime

Five- Pr ime I Pre-Six

Pre-Six I Six EIFNO (709 only)
-

Six B1;'IARY OUTPUT (card image for*)
a. Program Card
b. Binary Object Program
c. Library Routines (if requested)
d. Transfer Card
e , EOF

following it on the

APPENDIX 1
FORTRAN TAPE STATUS AT END OF SECTION

(This configuration holds only at the end of the given Section)
? Tape 4 (704) - Tape A4 1709)

1 I TRALEV - maximum number of worda: (Two-Block 1

Written by
Section File

1
1

Contents

Various table buffers written in the order in One
which filled. ~ a c h table is preceded by an
identification label. (See tape 2 /B2, files
4 and 5) . An EOF is written only on the 709/

, 32K system.
I

TAGTAG - 1 record/nest of DO% with tagr;
4 wordsltag entry

Two-Block 2

1

*704/4K, 8K and 32K systems.

2

Overwritten
by

Section***

COMPDO 100 words/record 1 Two-Block 6

MERGED CITts OF COMPAI&, COMPDO, 1

Two- Block
1

TIFGO

I

Three- Bloc1 3

Three-Block 3

CIT ' a for CLOSED SUBROUTINES FOR
DOFILEC and FORTRAN FUNCTIONS

Three- Bloc1 3

Three-Block 3
,

Six

1

Six

***Any overwriting of file(.) obsolete. all information previously following it on the tape.

	Table of Contents
	I Introduction
	II Section One
	III Section One-Prime
	IV Section One-Double Prime
	V Section Two
	VI Section Three
	VII Section Four
	VIII Section Five
	IX Section Five-Prime
	X Section Six
	XI Library and Librarian
	XII Monitor Routines for 709/7090 FORTRAN
	XIII General Diagnostic
	XIV The FORTRAN Editors
	Appendix 1 FORTRAN Tape Status at End of Section

