)

SYSTEMS MANUAL
FOR 704 FORTRAN

AND 709 FORTRAN

April, 1960

Applied Programming Department

International Business Machines Corporatior
590 Madison Avenue

New York 22, New York




CHAPTER 1

Iv

VI

vil

VII

X1

X1V

APPENDIX 1

TABLE OF CONTENTS

PREFATORY NOTE

INTRODUCTION

SECTION ONE

SECTION ONE-PRIME

SECTION ONE - DOUBLE - PRIME
SECTION TWO

SECTION THREE

SECTION FOUR

SECTION FIVE

SECTIONS FIVE-PRIME AND PRE-SIX.
SECTION SIX |
LIBRARIAN AND LIBRARY

MONITOR

GENERAL DIAGNOSTIC

EDITORS (FORTRAN AND DIAGNOSTIC) - |

'FORTRAN TAPE STATUS AT END OF SECTION




PREFATORY NOTE

This manual is an attempt to fulfill a long standing, much-pressed
request, That is, a request for an over=-all, comprehensive explan=
ation of the workings of the entire Fortran System. This includes,

in addition to the compiler proper, the monitor, the editor programs,
and other corollary routines. It should be noted at the outset, however,
that there are a number of difficulties involved in such a presentation.
We want to take note of them immediately so that you can better apprec-
iate the form and organization of the manual that follows.

First and foremost, Fortran is a vast, comprehensive system. This,
alone, provides its own difficulties. It means that any description of
its workings can not be subsumed under the directional efforts of a single
individual who understands it all. One individual could not know all the
details and subtleties comprising the insides of all the sections marked
off by the fourteen Roman numerals of this manuals We have chosen to
make the attempt to bring you many of the fine points of the system; this
is done by having the "expert' on each of the sections do the writing for
that section, The price that must be paid for this approach is obvious:
a single style of presentation and a singly oriented organization cannot
easily be obtained. '

A certain lack of uniformity of the level of generalization used in the
various descriptions results, We trust this will be understood. In some
cases this lack of uniformity results from the nature of the subject matter;
in others, it results from the difficulty described. We attempt to minimize
this difficulty by having an introduction which discusses the main points

of each of the sections on approximately the same level, and, in the case
of section two of the compiler, having a general level discussion then a de-
tailed description.

- Certain redundancies,; of course, must result, We do not apologize for

these redundancies; rather, we suspect you will find them of value. As a
matter of fact, in a manual of this kind, repetition will prove useful,
especially since each added treatment of a subject matter will present it
from a unique viewpoint, What we do apologize for here is not having more
full cross-referencing. .

The descriptions are kept on a general level. We deliberately have avoided
making references to machine and tape locations. This is in line with our
regarding this treatment as an explanation of the system from a logical
standpoint. In other words, we are presenting what is permanent -~ or
relatively permanent -~ ignoring those things which are subject to moment-
ary change, such as absolute core locations. Futhermore, reference can




be made to the listings, of course, for supplementation along this line.

A further advantage of this is that it means we can, in general, give
simultaneous treatment to the 704 and 709 Fortran systems. With re-
spect to this, however, it should be noted that we orientate our discussion
primarily to the 709 system, making reference to the manner in which
the 704 system differs.

We wish to remind you, at this point, that the Fortran reference and
operations manuals, particularly the latter, comprise useful supplements
to the present discussion. In addition, an excellent paper on the compiler
is included in the Proceedings of the Western Joint Computer Conference
in Los Angeles, California, of February 1957.




7

I

INTRODUCTION

l. The primitive elements of the Fortran system are the master tape
and appropriate editor deck. With these two a system tape is made. This
is then used in the operation of the system.

2. In both 704 Fortran and 709 Fortran the system tape consists of four
files, In 704 Fortran, the first two files are compiler files, In 709

Fortran, the first file is the monitor file and the second is the compiler
file. In both the systems the third file is the library subroutine file and
the fourth is the diagnostic file. When 709 Fortran is not being used in
the monitor mode (i. e.; a single compile only is occurring) the first re-
cord only of the first file is used. This is the Card-Tape Simulator,

3. The system tape, itself, is manipulated by the tape record caller
routine, 1-CS., This sits in lower core all during compilation and calls

in the succeeding record from the system tape, The compiler records

are always called in in sequence. Once a system record has been called
and execute d, it is not called again. / It should be noted that in 704 Fortran
some of the records of the first file, comprising the compiler, are not
executed until after the records of the second file. These are the records
comprising the second pass of the section 6 assembly program. Records
of the compiler may be called in singly or in a string, consisting of two or
three records. :

Each record has a control word telling whether control, after the record is
read in, is to go back to 1-CS or to the executive program record itself. If
control goes to 1-CS, it means that another record in the string is to be
read from the systemn tape and execution recommences. This control word,
incidentally, is contained in the information of the Master Record Card,
corresponding to it, in the Editor Deck (see XIV).

4. What follows is a brief over all survey of the Fortran compiler proper,
It will attempt to serve as the coordinating unit for the separate detailed
write-ups, covering eéach of the sections of Fortran, which follow. As
mentioned in the prefatory note, the material will necessarily cross=-cut
some of the material of the specific write-ups; it will, however, in most
cases, be at a different level of generality. -

a. The six sections. As is now fairly well known, Fortran falls
naturally into six main divisions, which we call sections. These
sections are always executed sequentially, There is never a return
to one section once it has been relinquished to go on to its successor.
In addition to the six primary sections, there are four secondary
sections. These should, however, be considered as nothing more
than appendages to the primary sections. These are sections 1', 1'',

I-1




5', and pre-6.

Fortran may conceptually be considered as falling into two
divisions: the first, comprised by sections 1, 2, and 3; and the
second, by sections 4, 5, and 6. This is because at the end of
section 3, the entire object program is essentially compiled. It
is, in fact, compiled except for the fact that it exists in the C, L. T.
format and that it has symbolic tags (reference to index registers)
instead of absolute tags. It is then the job of the remaining three
sections to remedy these two features. Sections 4 and 5 handle the
task of inserting the absolute tag references for the symbolic tag
references. This, of course, includes the obligation to insert the
necessary loading and saving index register instructions. Section
6, then, places the instructions in the C, I, T, format into the proper
relocatable binary format. '

As for the first three sections, it may be considered that the first
two of these do the entire task of source program analysis. This
task includes performing most of the instruction (C, I. T. ) compil-
ation. With reference to some of the instructions, however, sec=
tions 1 and 2 simply compile information, in tabular form, to pass

on to section 3, which uses these as the key to insert the proper in-
structions. Because the analyses of sections 1 and 2 are independent,
the C. L. T's compiled are kept in separate files, which must sub-
sequently be merged. Section 3, therefore, has the task of perform-
ing this merge as well as the second merge implied by the instruct-
ion file which it, itself, creates. Both section 3 and the last part

of section 5, because of their position at the end of necessary primary
analyses, perform certain optimizing tasks consisting mostly of re-
moving or inserting certain instructions.

It is well to note that the Fortran compiler makes extensive use of
tables. These may be considered as of two types: those which are
made up directly from the source program statements, and those
which result from further analysis. It is the former class of tables
which are mostly included in the reference manual list of tables and
their size limitations. The latter class do, in some cases, impose
further size limitations. Most tables are passed on from one section
to another; some, however, are created purely for use within a
section. The source program statements, once scanned, are placed
in tabular form and the source program statements are not referred
to again,

With one exception, Fortran may be considered as a one pass system.
That is, it looks at the source program only once, and it makes a scan
of each statement once only. From then on, references are to tables
only. The exception noted is in section 1 of the 709 systems. In this
case a preliminaryscan is made to separate the non-executable from

I-2




the executable statements.

Among all the information placed in tabular form, it would be well
for the reader to keep in mind the so-called C. L, T. table -- Com-
piled Instruction Table. This becomes central for it is, indeed,
the ultimate object of the compiler. Instructions, throughout the
system, until the section 6 assembly, are kept in the four-word per
entry table in buffers and records of 100 words (25 instructions).
This table is illustrated. We will merely note here that word one con-
tains the internal statement number, with an increment in the address
of the word, if necessary; word two contains the mnemonic instruct-
ion code, with the address having the decrement value if the code is
'TXI, TXL, or TIX; word three has the symbolic address (BCD); word
four has the relative address (binary) with the address having first,
the symbolic tag, then, the absolute tag.

b. Section One. Section one has the primary output of a file of in-
structions called the Compail file. In addition, it turns out a secondary
- file of instructions, resulting from any Arithmetic Statement Functions
in the problem. The Compalil file consists of the following: All the
instructions resulting from a translation of the Arithmetic Statements.
These arithmetic instructions, of course, refer to symbolic tags in the
word four address. Also included in this file are a partial translation
of the IF and GO TO Statements, the subprogram definition statements,
and the input/output statements.

With respect to the IF and GO TO Statements, section one compiles the
.necessary test instructions, but it cannot compile the transfer instruct-
ions. This is because section one does not know whether any given IF
and GO TO statement is in the range of a DO and involves a transfer out
of the DO. It is not until this is known that it can be determined whether
or not any given transfer should be directly to the statement indicated in
the source program or to a set of instructions providing necessary in-
dexing, then the transfer to the specified source program state ment.
The analysis pertaining to these indexing instructions is left to section
two, with the physical instructions being compiled by a second part of
section three. In some cases, a C,I. T. is created containing the trans-
fer instruction, but without the address. The address is filled in section
three.

With respect to subprogfam definition statements, information is gathered
which is used by section pre-6 in actually filling in the prologue and index-

saving instructions.

With respect to I/O statements, all instructions arc ompiled except
those involving DO's implied by I/O statement lists. After section one
has scanned and identified the source program statement, it handles it
by transferring to a routine corresponding to it. Then, of course, all in-
formation is tabulated and, when possible, compilation performed.




- A new internal formula number, incremented by one, is assigned

to each input statement, whether that statement is executable or
non-executable. Where external statement numbers -- i. e., state-
ment numbers assigned by the source programmer -- exist, the TEIFNO
table serves to correlate the external and internal statement numbers.

The greatest division in the handling of statements in section one is
between the arithmetic statements and all others. The arithmetic com-
piler proper constitutes the major portion of section one in number of
instructions. The arithmetic compiler in making its scan of the arith-
metic formula makes an enormous number of table entries in addition
to doing its statement analysis necessary for compilation. Among these
tables are the TAU tables, recording subscript combination inform-
ation, the FORVAL and FORVAR tables recording fixed point variables
occurring on the left and right hand sides of arithmetic statements,
FIXCON and FLOCON, recording the converted fixed and floating

point numbers. It should be noted that the IF and CALL statements
fall onto both sides of this division. They are treated as arithmetic
statements, with compilation occurring that is not due directly to

the arithmetic compiler as well.

The arithmetic compiler is divided into the Scan, Level Analysis,
various Optimizing routines, and the Compiler. The Level Analysis
sifts out into one group all those algebraic operations which form a unit.
A unit is a group that must be performed together and have the same
order of binding strength for its operators. 'Plus'and minus'are one
order of operators,' multiply'and'divide’ are another order. The

latter has greater binding strength than the former; consequently

when they occur in the same context the latter are assigned a higher level
number. Needless to say, the use of parenthesesin an arithmetic
statement is a prime factor in determining units and, hence, level
numbers. Optimization occurs to minimize storage accesses. This
means that every attempt is made to link one operation to its successor
via the machine registers rather than the storage cells. The com-
pilation then proceeds from highest level number to lowest.

c. Section One- ‘rime. Section One-Prime is the longest of all the
secondary sections. It has an enormous number of tasks to perform
involving sorting, combining, and moving of table information. Among
other things, using the TEIFNO table, it substitutes internal formula
numbers for external formula numbers wherever these have had to be
retained in tables. This means that from this point on, all Fortran

handling is in terms of its own assigned internal statement numbers.
An example of where the external statement number has had to be re-

tainedtill this point is in the TDOtable. Here, the number referring
to the statement number of the DO itself may be an internal formula
number because it is readily known due to the constant updating of the
current internal formula rumber. On the other hand, the number




designating the end of the DO range had to be recorded as an external
statement number at the time the TDO table entry was made. This
is because it could not then be known how many statements further
on in the program the end of the DO range occurred.

d. Section One Double-Prime. Section One Double-Prime is a diagnostic
section. It attempts to find as many as possible of the source program
errors that were not found by section one. Errors pertaining to the
syntax of any of the statements are detected by section one and noted in
section one's own diagnostic. Section One Double-Prime, then, finds

as many as possible of the source program errors arising from an
interrelationship of the statements. These, of course, pertain mainly

to flow. Such things as a part of the program that can't be reached or

a transfer to a non-executable statement are found here. In general,
then, it is true that by the end of one double-prime very nearly all

source program errors have been found. Such things as over-lapping

DO ranges and certain rare cases of faulty flow still may not be found
until sections two and four or five. In addition, it should be mentioned
that there are a variety of table overflow errors which may be found

after one double-prime. Most of the tables listed in the Reference
Manuals are, however, tested prior to this point and any overflow dis-
covered. Both one-prime and one double-prime use the general diagnostic
of the fourth file, while section one uses its own diagnostic.

e. Section Two. Section Two has for its primary output a file of com-
piled instructions called the Compdo file. In addition it, too, creates
a secondary file, closed subroutines for the computation of relative
constant subscript combination load values. An additional important
output are the TRALEV and TRASTO tables, which are essential for
section three in producing the third file of Fortran instructions, the
TIFGO file.

The Compdo file of instructions contains the computing and indexing
instructions for the various subscript combinations contained within

DO ranges and any necessary additional tags. These instructions are
associated with the beginnings and ends of DO's. At the beginning of
DO's they will contain the computing instructions necessary to determine
the load value for a tag (subscript combination index register) and the
load instructions. In addition, index saving instructions may occur.

At the end of DO's these instructions refer to the indexing required to
increment subscript combination values for the next D O loop execution,
to test whether or not control may pass out of the DO range and, in

the latter case, to reset the DO's subscript combinations to their lowest
values if control is still in a DO containing the first DO. The instruct-
ions performing these three functions are TXI, TXL, and TIX, respect-
ively.

All of these instructions result from the configuration of the combin-
ation of DO-nest structure on the one hand and subscript combinations

I-5




within the DO-nest, on the other. A DO-nest is defined as any set of
DO's all of which are bounded -~ contained within -~ a single DO, Fig-
uratively, this means that the outside single DO is on level one, the next
DO which it contains, on level two, and so forth. Of course, in a

single nest there may be more than one DO on any one level greater
than level 1. (Please see IV for illustrations.)

Because this discussion of section two will be on the most general level,
illustrations will not be provided. However, brief references to the
structures of DO-nest in IV may prove useful. What we wish to do here
is present in general outline the origin of the problems that section two
must solve, which are explained in greater detail in IV.

Section two is a long section and much of its analysis complicated. A
great deal of this complexity arises from the desire to provide an highly
optimized object program. In other words, some of the problems

could have been solved more simply, but at the cost of extra and in-
efficiently placed object instructions.

In any given DO-nest, section two attempts to place the subscript combina-
tion load value computation instructions as far toward the outer DO of

the nest as possible. Where these instructions cannot be placed with the
DO of level one, a search is carefully made for the point of definition

of all the parameters (n;, n,, n3) of the inner or higher level DO's.

These values are, of course, necessary for the DO computing instructions.
As soon as they are found the next DO serves as the base for the re-
quired instructions. This serves the purpose of avoiding the unnecessary
repetitions of the computing instructions if they were associated with the
inner DO's or the DO's containing the subscript combinations to which

they refer.

Another interesting way in which section two seeks maximum optim-

ization is in its attempt to take advantage of the 'carry' condition

wherever possible. The "carry'' condition may be described in this way.
There are cases where the configuration of DO's and subscript combina-~
tions for a two or three dimensional array makes it possible to consider

that a single one dimensional sweep over the array is being made. In

other words, the words are being referred to in core storage with the
sequential references that a one dimensional array would have. Wherever
conditions permit, section two treats such an array as if it were, indeed,
single dimensional. The practical affect is to save on indexing instructions.
Here, a considerable, sophisticated analysis is required and it is under-
taken on the belief that greater object program efficiency makes it worthwhile.

Section two always uses a single tag (index register) for every subscript
combination, no matter how complex the subscript combination is. By
complexity we refer here to number of subscript symbols and their associated

coefficients and addendas. In order to achieve this in all cases

1-6




it is sometimes necessary to compile instructions, associated with

the DO which provide proper reinitialization of the decrement value

for the TXL instruction ending the DO on each successive pass through
the DO range. The SXDTX table is used in this connection. It is made
up in section two and passed on to section three, part one. A config-
uration of indexing instructions is required for each possible config-
uration of subscript combinations -- resulting from a permutation of

the three possible subscript symbols. This means there are six possible
blocks of such indexing instructions.

When a DO, .X, is within another DO, Y, and the X DO has been ex-
ecuted its maximum number of times, there are two possible ways of
handling the resetting of the X DO's subscript combinations for the

next re-entry into the X DO. These, of course, must be reset to the
value indicated by the n, parameter of the X DO. They may be reset
at the point of re-entry into the DO or at the point of departure from
the DO. It is the latter course which Fortran has chosen to take. This
accounts for the resetting TIX instruction following the TXL instruction
terminating the DO. This, in general, produces more efficient object
programs, though it does create the problem of handling''resetting"
where exit from the X (inner) DO occurs via a transfer to a point in the
Y DO rather than through a normal termination of the X DO. To handle
this problem, among others, it is necessary to have a third file of in-
structions, the TIFGO file -

Whenever a transfer is made from a DO to a point completely outside
its DO-nest, the values of all the indices of all the DO's within whose
range the transfer instruction exists are saved. If, on the other hand,
the transfer goes to a point -- really, a level -- outside the immediate
DO but still within the DO-nest, section two makes a search to de-
termine if it is necessary to save the index of the immediate DO or
DO's from which the transfer occurred. This search is made by check-
ir . all FORVAR entries existing on the level of the transfer point. One
source of FORVAR table entries was mentioned above; others are
listed in II

With respect to transfers, legal and illegal, section two does catch
transfers from within a DO into another DO. It does not, however,
stop transfers from entirely outside a DO-nest into a DO." This is to
allow programmers to take advantage of the feature enabling them to
transfer out of a DO, execute a stretch of program, and return to the
point of origin within the DO.

There are certain cases where section two creates a tag; that is, a tag
does not correspond to a source program subscript combination. The
most obvious case where this is done is where a counter for a DO is
required. This is where a DO on I does not have I appearing as a
subscript in its range. In this case, an Itag is ~reated. Tags are

I-7




also created to handle the conditions described immediately above --
where FORVAR's are involved and the DO does not have its index
- symbol as a tag anywhere in its range.

But these instances are the simplest cases of added tags: they refer
only to a DO index. In other cases, more complicated tags, involv-
ing two or three dimensioned subscript combinations, are created.
Assume a DO on K within a DO on J within a DO on I, and the appear-
ance of the subscript combination (I, J, K, ) on level two; i. e., not in
the range of the DO on K, but in the range of the other two DO's.
Assume further that the value of K in this subscript combination 15 set
by a transfer from within the DO on K to a point in level two. In this
case, if the subscript combination (I, J, K, ) does not already exist
within the DO on K, one is created and placed there. This tag will
then have the value needed at the time of transfer. This situation
accounts for another of the six types of TRASTO table entries required
to inform section three of the TIFGO file instructions it must compile.

This last case also help to point up another important function of
section two: Tag Name Changes. Subscript combinations or tags are
given names which are nothing more than the table entry recording

the information of the subscript combination. When section one makes
up the relevant TAU table entries it does so while examining each state-
ment separately, independent of its position within DO's. Therefore,
subscript combinations which syntactically look alike receive the same
TAU table entry and,consequently, the same name. However, where
subscript combinations receive their definitions and derive their load
values independently of each other they are, for all practical purposes,
different even though their syntactic appearance is identical. Section
two, therefore, must see that the names are changed to assure independ-
ent treatment of their indexing. For this purpose, a table called Un-
edited Change Tag Table is made up. Section three then physically
inserts the name changes.

A considerable portion of the work of section two is devoted
to the proper handling of subscript combinations which are called re-
lative constants. A relative constant is a subscript symbol not under
control of a DO on that symbol. That is, it receives its defintion in
some fashion other than the indexing normally associated with a DO.

A subscript combination may, therefore, be a pure relative constant

(where none of its symbols is under control of a DO), a mixed re-
lative constant (where at least one is not under control of a DO while

the others are), or a normal DO-subscript combination (where all
subscript symbols are under control of a DO). Each of these three
types requires its own mode of treatment by section two. A basic
point concerning handling of relative constants is that the computation
of the relative constant subscript combination load value is done at the
point of definition of the relative constant rather than at the point of
use. This decision was made primarily on the supposition that uses
of relative constants would occur more often than definitions of re-
lative constants. Placing the required computation instructions at the

I-8




point of definition, then, covers a variety of uses.

For pure relative constants, there are two ways in which the com-
putation appears at the point of definition. One is simply by means

of the LXD instruction, loading from the relcon (relative constant)

cell. This way applies only where the relative constant subscript
combination is one dimensional and has no coefficient. The other is

by means of a transfer to a closed subroutine, mentioned earlier,

which computes the load value. This applies where therelevant sub-
script combination is greater than one dimension or has a coefficient.
Where relcons are of the mixed type, the closed subroutine form will

be used in some cases and, in others, the computation will be associ-
ated with the DO in the usual way. The deciding factor here is the level
of definition of the relcon symbol. If the definition occurs within the
same DO-as the mixed relcon itself, the closed subroutine must be

used. In this case, in order to assure that the closed subroutine has

all the subscript symbols available for computation, section two must
see to it that the DO subscript symbols of the mixed relcon are stored
before the transfer is made. Where the definition of the subscript symbol
is outside the DO, the computing instructions are associated with the
DO& of the next possible higher level DO.

The table FORVAL is the key in determining point of definition of re-
lative constants. Causes of entries in this table were indicated above;
others are described in II. Every point of definition is used as the base
for a relcon computation (of one of the two forms described above).
Section two cannot make the flow analysis necessary to eliminate super-
fluous points. For example, where lis a relcon and the problem con-
tains two arithmetic statements in which I appears on the left side and
only one of them gets executed on the path of flow leading to the I relcon,
section two makes the computation instruction entries at both points even
though only one of them is effectively valid.

Where possible, one of the subscript combinations appearing in a DO is
used to sérve as the test tag for the end of the DO; that is, it is referred
to by the terminating TXL. Where the DO index, itself, appears as a
separate tag (whether because it is a subscript in the source program or
section two created one for it), this tag is used to test the end of DO.

In all other cases, section two attempts to determine the best tag for use
in the end of DO test.

As a result of analyses like those mentioned above, and some others
that are indicated in the section two write-up, the COMPDO file is made
to contain instructions giving highly efficient handling of DO loops.

f. Section three, first, merges the two existent files of instruction, the
Compail and Compdo. It then creates the indexing instructions necessary
for each transfer branch originating from a transfer out of a DO. This
entire set of instructions is called the TIFGO file.This is then merged

I-9




with the FIRSTFILE.

g. The program up to this point assumes an object machine with as
many index registers as symbolic tags are used in the section two in-
structions. Since, however, the machine will have three index registers,
it is necessary to substitute assignments of these three for the indef-
initely high number of symbolic tags. The object here will be to min-
imize the number of LXD's and SXD's -- load and save instructions --
required by this fact. By "number" here, we mean not only the number
of separate physical instructions, but also the number of executions of
them. That.is, optimization with respect to time takes precedence over
optimization with respect to space. For example, if a tag is used in a
very high frequency part of the program (such as the inner DO of a DO-
nest three levels deep), and a branch transfer is made to four different
areas i, each of which requires saving of the tag before it is reused,

a single save instruction before transferring out of the high frequency
area is logically sufficient. However, our method is to place four
separate save instructions at the point of entry to each of the four branch
points, thus eliminating the instruction from the path which would re-
quire most frequent executions of it.

This case also serves to illustrate some of the problems confronting
sections four and five -- the two sections whose concern this task is.

It shows that there is a linkage, with respect to index registers, of
different parts of the program and that details of the linkage must be
known for efficient insertion of load and save instructions. For example,
in the above case, the SXD will not be used on any of the four paths where
it is not required. Furthermore, a comprehensive knowledge of areas
and their expected frequencies of object time flow is necessary. As a
corollary to these problems, there is the one of avoiding the SXD in-
struction for a tag which is no longer to be used. That is, the tag can
be efficiently _ killed by over-loading it in its index register. There is
‘also the problem of knowing when to save an index register when the next
use of the tag in it requires a load instruction. If the last reference to
this tag is one that changed its value, it must be saved; if the last re-
ferences did not change its value but merely used its earlier established
value, it is not necessary to save. Here, a distinction between active
and passive references to tags is necessary.

This entire complex of problems comprise the task of sections, four and
five. The work required of these sections falls naturally into two
divisions, allowing the division of labor between them. Section four in-
forms section five of the divisions of the object program for purposes of
flow analysis and the relative frequency of paths of flow over these
divisions. Its task is much the lesser of the two sections. Section five
then uses this information along with a knowledge of the specific tags
required by each of the ""divisions" to assign absolute index registers
and compile necessary indexing instructions. ‘

Before giving the general discussion of the work of these two sections,

I-10




it is well to note how this work was presupposed in the handling of
symbolic index registers by the earlier sections of Fortran. Essent-
ially, this can be stated very simply: the earlier sections simply ignored
the problem and acted as if as many index registers as were wanted
were available. That is, load instructions may appear in sequence up to
any number. The assumption is the ''saves'' necessary to make the
'"loads' effective will be added later. The important thing to note here is
‘that SXD's and LXD's are not always coupled as the previous discussion
might imply. There is an asymmetrybetween them; the earlier sections
have complete freedom with respect to LXD's, very rarely compiling

an SXD. On the object program level this difference is reflected in the
cells which the SXD's and LXD's address. Section two's instructions,
for example, mostly refer to the subscript symbol cells in the regular
data area of core storage. On the other hand, section five's instructions
always refer to the specially designated erasable area for storage of
index registers. These erasable storage cells are referred to as the

C) cells. The actual designation is C)i, where i is an increment result-
ing from the conversion of the symbolic tag name. By means of this
device there is co-ordination between section five references to such
tag storage cells and whatever section two references are necessary.

h. Section four has for its main task the assembling of four different
tables. These are the BBB table, the Predecessor, the Successor table,
and the Tag List table. The primary input to section four is the single
file of merged C. I T. 's; section four also uses other tables created
earlier. The BBB table is a list of the Basic Blocks of the object pro-
gram, plus indices referring to each Basic BlocKs Successors and
Predecessors. A Basic-Block is the primary unit that section four works
with -- it was referred to by the word ''division' in g. above. A Basic
Block is a stretch of program into which there is only one entrance and
from which there is only one exit. "Exit" must here be interpreted in
the logical sense; that is, it may consist of more than one transfer in-
struction, going to a variety of Basic Blocks. Each of these Basic
Blocks, then, is a Successor Basic Block. As implied by this, section
four must mark off the Basic Blocks of the program and determine the
Successor and Predecessor Basic Blocks for any one Basic Block. A
'BBB entry corresponds to each Basic Block; it has references to the
Predecessor and Successor tables denoting its Predecessor and Successor
Basic Blocks. But section four's work goes beyond this. It must pro-
vide the information to section five concerning frequency of paths of flow.
Therefore, the form of the Predecessor and Successor table entries
which section four passes on to section five will contain, in addition to

the Basic Block reference number, a number denoting relative fre-
quency of transition between the two Basic Blocks. Here, the two Basic

Blocks refer to the BBB Basic Block and the Basic Block or Blocks of the
Predecessor and Successor table that it designates. In order to achieve
these relative frequency numbers, section four performs a simulated
flow over the program going from Basic Block to Basic Block.

I-11




The major problem here is in determining which Successor Basic

Block to go to when, as a result of a conditional transfer, a possibility
of more than one Successor Basic Block exists. At this point a '"Monte
Carlo'" technique is used. A random number is generated and, in
accordance with the numeric possibilities of succession indicated by the
frequency statement entries for that conditional transfer, a particular
Successor Basic Block is chosen. The random number is meant to
assure that over the long run of the entire simulated flow, the possible
Successors will be chosen in the proportions indicated by the Frequency
entries. Where no Frequency entry is made by the source programmer,
the assumption is that of equal probability for all paths of succession.

Some of the special problems encountered during the performing of this
simulated flow are those given by conditional transfers where the con-
ditions are set directly in the source program (such as ASSIGN GO TO's
and Sense /Light Tests) and DO's involving variable parameters. For
both of these additional intermediate tables are necessary. In the.case
of DO-nests, three general circumstances, involving flow analysis
problems, may occur. One is a DO-nest whose DO's all have constant
parameters and contain no transfers, another is constant parameters
with transfers, and the third is a DO-nest at least one of whose DO's has
variable parameters. For the last mentioned circumstance, either the
frequency entry for the DO must be used or barring that, a frequency

of five is posited for the number of tirpes of repetition of the DO range.

For purposes of the simulated flow, a large number is chosen;, which is
a function of the number of: Basic Blocks and distinct transfer branches
occurring in the problem. For every transition between a Basic Block
and its Succ essor that is made during the simulation, this number is
ticked off by one. The flow ends when this number equals zero.

It should be pointed out, finally, that this simulated flow has nothing
whatever to do with the individual instructions of the problem. It is
concerned only with Basic Blocks as units and not with the contents of
a Basic Block. As far as section four is concerned a Basic Block may
actually contain one hundred instructions or two instructions, and these
instructions may contain many tags or no tags: section four's treat-
ment of it is the same. It may also be mentioned here that the division
into Basic Blocks is based on an examination of the compiled instruct-
ions. Of course, the recognition of transfers -- beginning with the

letter "T" -- is vital. For this reason, section one finds it necessary
to use pseudo-names in the C.I. T. 's of some of its instructions. It does

not wish section four to think that these end Basic Blocks when actually
they do not.

After the flow analysis is completed, section four assembles the BBB,
Predecessor, and Successor tables. These are a summary of the Basic
Block flow and relative frequency of this flow. The BBB entries also
contain a designation of the type of ending for each Basic Block: absolute
transfer, pre-set transfer, conditipnal transfer, and so forth etc. The

1-12




last significant item that each BBB entry contains is an index to the
Tag List entries belonging to it. The Tag List table is made up at the
end of section four; it is a list of all symbolic tags contained in the
C.L T.'s of the program togéther with a code designating the type of
instruction referring to the tag. The index to this table that is placed
in the BBB entry, then tells which tags occur in each Basic Block of
the program and how they are used.

i. Section Five must now substitute references to tags 1, 2, and 4 for
the symbolic tags which occupy the address portion of word 4 of the
C.L T.'s. As a corollary to this, the loading and saving instructions
would be inserted for the appropriate index registers. These will load
from and save in the group of cells designated as C)--cells. The in-
formation contained in the four tables created for it by section four are
sufficient to do this.

To perform this main task, section five operations fall logically into two
broad divisions. These are Region Generation and LXD and SXD Assign-

ment.

Region Generation is the method of setting aside a portion of the program,
consisting of one or more basic blocks, for independent treatment with
respect to index register assignment. After a set of basic blocks have
been set aside as a region and treated, it then, as a region, becomes a
separate unit liable to be incorporated in a new region along with other
basic blocks. The flow configuration of a problem determines when a
region itself becomes part of another region. When it does it loses its
identity for the new region is an independent and separate unit. Ultimate-
ly, of course, all regions and basic blocks become absorbed into a single
region which is the entire program. At this point the section five analysis
is complete. In referrmg to ''treatment'’ above, we mean the LXD and
SXD Assignment.

There is, then, an interweaving of the operations of the two main divisions
of section five, Region Generation and SXD and LXD- Assignment. (The
second of these divisions is often referred to as the LXing Pass.) The
regions grow recursively until the entire problem is one region. At any
given time during this recursive treatment, several regmns may exist
independently or one only may exist. :

Priority is given the high frequency path of flow in index register assign-
ment by the manner in which regions are generated. Basic blocks are
traced forward and backwards in flow, via the Predecessor and Successor
Tables, and those basic blocks are used first whose numeric linkages are
highest with other basic blocks, as indicated in the figure on comparative
frequency of paths of flow given by section four. When a region has been
treated, if all three index registers are assigned to the tags of that
region, it is considered to be an opaque region. The tracing of basic
blocks and regions, first backwards, then forwards, proceeds until

I-13




either a) there are no more untreated linkages, b) an opaque

region is encountered, c) a loop is formed. The c) case occurs
where the Predecessor or Successor basic block is one already in
the string. In this case, all basic blocks not within the scope of

the loop are cut off. Where a region encountered during this trace
is a transparent region, as distinct from an opaque region, the trace
continues by way of the highest frequency untreated link from it or
into it, depending upon which direction the trace is taking. Because,
by definition, all the index registers of a transparent region have not
been used, it is subject to further treatment and, consequently, may
be absorbed into the region as a basic block is.

The '"treatment' of a region is based on another type of simulated flow
through it. This simulated flow affects the symbolic index register

" usage occurring in the region. In cells representing the three index
‘registers, the symbolic tags are loaded, then comparisons made with

successive symbolic tags, as these are revealed in Tag list. When

it becomes necessary to save one of the three index registers, a look
ahead through Tag list is made to determine which it is preferable to
save; that is, which is last used further ahead in the program. It
should be noted that two fundamental problems are involved here. One
is simply the problem of assignment of index registers; this involves

‘the compilation of LXD's and the choice of an index register. The
- other is the problem determining when to save an index register when

the quantity is subsequently going to be over-written by a load into
that index register.

With respect to the second of these two problems, a tag must be
saved to initialize the appropriate C) cell for later loading, and to
handle '"'active' index registers. "Activity' is denoted by the type of
reference made to the tag in the tag instruction. The Tag List code
referring to the tagged instruction tells essentially whether that
instruction is active or passive. An active instruction is simply one
that changes.the'value of an index register (such as TXI or LLXD) and
a passive instruction is one that uses the tag only ( such as CLA).
Where '"activity' is present and a subsequent load will over-write the
index register, an SXD is inserted following the last use of the
symbolic tag. Adtivity has meaning applying beyond the context of the
immediate region in which it is discovered. It may subsequently be

found that a pass on the flow from this region requires the new tag
value. Activity for regions, then, must be carefully noted.

As a result of this simulation within a region, the index registers
upon entry into a region and upon exit from it are assigned certain
symbolic tags. These are noted in the BBB entry for the basic block

as its entrance and exit conditions. When a region -- which, of course,

has been previously treated -- is encountered a match must be made
of the exit conditions of the last basic block with the entrance con-
ditions of the basic block by which they region is entered. Where
necessary, permutation of the index registers within the already

I1-14




treated region takes place to force compliance. If a match cannot

be made, LXD's are called for at the head of the region. These
LXD's are called inter-block LXD's because they concern the link-
age between regions as distinct from basic blocks. There are also
inter-block SXD's. These result from activity within a region already
treated. The SXD is placed at the head of the region using the active
tag. In this way, incidentally, the deployment of save instructions
among different low frequencies paths raother than the single save
instruction within the high frequency path occurs. This was referred
to in g.above. ‘

Continuing to work in this way, from region to region, the high
frequency paths of flow naturally receive priority in the assignment
of index registers., . The SXD's and LXD's are inserted enforcing
conformity of the low frequency paths with the already assigned high
frequency paths.

During this entire analysis, Section 5 records within tables the in-
formation nceded to make the actual compilation and insertions of the
LXD and SXD instructions. The compilation itself occurs later.

A new table, the STAG table, is created for recording these instruct-
ions as needed within a region. The necessity for inter-block in-
structions is recorded in the Predecessor table.

The inter-block instructions, because they are at the head of a region,
must take their own location symbols so that transfers may occur to
the block. These location symbols are: D), when the instruction is an
LXD, and E), when it is an SXD. A TRA instruction may have to be
added to bypass these instructions when entry to the block occurs from
the part of the progr am immediately preceeding it.

Section Five, also because it makes a pass over the entire program,
performscertain small optimizing operations on the compiled program.

jo Section Five prime places the information, which represents
program constants, in the CIT format., Section Pre-six does some
compilation. This covers rnostly the prologue to Fortran sub-pro-
grams. Section Six does the final assembly for the program. The
Section Six write-up that follows is also presented on two levels of
generality.

5. This survey of the Fortran compiler is supplemented in detail by the

sections that follow. By means of this survey, some of the details may
more easily be inter-related.

I-15




II

FORTRAN II, Section One (704 Version)

This se ction is the initial processor of the FCRTRAN compiler, It
makes those entries in the Compiled Instruction Table which are possible
at a first level. All information which cannot be processed is recorded
in one or more tables,

Input: The input to Section One is the Source Program on a BCD tape.
It is a single file.

Output: Tables which may be classified into two groups:
1. Generated by Section One and required for reference. These
tables, retained in cores and on drums, are:
DiMl TAUl FIXCON END
DIM2 TAUZ2 FLOCON
DIM3 TAU3 FORSUB
2. Generated by Section One and not required for reference.
These tables, written on tape(s) in buffer-sized records, with
labels where needed are: : : :
CIT FORTAG CLOSUB NONEXC

TEIFNO FORVAR FORMAT TSTOPS
TDO FORVAL SUBDEF CALLFN
TIFGO FRET COMMON - FMTEFN
TRAD EQUIT HOLARG TSKIPS

3. Parameters describing above tables.
4. Residual contents of buffers,

Most tables are simple in format and their meaning‘é.nd usage fairly
obvious. The following discussions of processors will show specific
table entries. Briefly the tables are:

NAME DESCRIPTION

DIMl one-dimensional arrays

DIM2 two-dimensional arrays

DIM3 three-dimensional arrays

TAUl one-dimensional subscripts

TAU2 two-dimensional subscripts

TAU3 three-dimensional subscripts

FIXCON fixed-point constants

FLOCON floating-point constants

FORSUB arithmetic statement functions

END options specified in END statement

TEIFNO corresponding IFNs and E FNs

TDO DO statements

TIFGO IFs, GO TOs, ASSIGN statemeats

TRAD GO TO statements

FORTAG IFNs - I - TAU tags . B ,;
FORVAR fixed~-point variable usage R TR SO
FORVAL fixed-point variable definition

FRET FREQUENCY statements

II-1




EQUIT
CLOSUB
FORMAT
SUBDEF
COMMON
HOLARG
NONEXC
TSTOPS
CALLFN
FMTEFN
TSKIPS

EQUIVALENCE statements

names of closed subroutines referenced
FORMAT statements

SUBROUTINE or FUNCTION statements
COMMON statements ' _

Hollerith arguments in CALL statements
IFNs of non-executable statements

IFNs of STOP and RETURN statements

- first and last IFNs of CALL statements (./{ ,

1-O statement references to FORMAT numbers
IFNs of possible machine language skips

namndoed




FORTRAN II, Section One (704 Version)

ASSEMBLY routine reads records from the BCD input tape until a
statement and all its continuation cards are assembled in an erase-
able buffer termed the F- region. This region remains until replaced
by the following statement. In order to ascertain that all continuation
cards have been read the program reads one record ahead into an area
termed FT. Blank cards and comments cards are ignored.

A word of all-ones is written after the last non-blank word in the
F- region to serve as an end-of-statement marker.

An internal statement number &(IFN) is assigned.

If an external statement number (EFN) appears in the source state-
ment it is converted to binary and following table entry made:

TEIFNO table
wordl | X (IFN) X (EFN) |
Any special mode character in cc 1 are isolated and saved.

CLASSIFICATION After assembly each statement is classified accord-
ing to type. This classification is a two~phase procedure.
I. The statement is classified as arithmetic if:
1) There exists an = sign not within "(" )%,
2) This = sign is not followed by a ', ' not within "(** '),
Control goes to the ARITHMETIC processor,

II. If the statement is not classified as arithmetic by the above pro-
cedure it is assumed to be non-arithmetics The beginning of
statement is compared to entries in a dictionary of non-arithmetic
statement beginnings. When identified as to type control goes to
the appropriate processor. Failure to identify causes a Diagnostic
message.

ARITHMETIC Processor

The reader is advised that this preliminary paper does not include a
description of the ARITHME TIC Processor. A paper, describing this
processor from a theoretical standpoint, may be found in the commun-

ications of the Association for Computing Machmery. Vol. 2, No. 2
February, 1959.

’




FORTRAN II, Section One (704 Version)

DIMENSIONS V(I}, o o o » Ii)s V(I o o oy Iphs o o e

The statement is scanned collecting the variable name V and assoc=
iated specification (I, . « 4 Ix) where K £ 3, It is verified that V
has not been previously defined in a DIMENSION statement. Dimen=-
sionality is based on the number of specifications Igwhere 1 € K%£3,
There are thus three possible cases: '

le. K= 1, The following table entry is made:

DIMI table
word 1 Variable Name (BCD)
- word 2 0 . €}
2, K= 2, The following table entry is made:
DIM2 table
word.l Variable Name (BCD)
word 2 I In
3. K = 3, The following table entry is made:
DIM3 table
word 1 Variable Name (BCD)
word 2 I I
word 3 . 0 Ia
This procedure is repeated until all V(Il. o o o Ik) have been
processed.

EQUIVALENCE (Vi{I}), Va(Ig)s « o «)s (Vi(K))s o ¢ ods o o o

Each specification of equivalence is scanned. The variable name is
collected. The constant, if present, is collected and converted to binary,
If not present it is understood to be 1. The following table entry is made:
EQUIT table ,
word 1 Variable Name (BCD)
word 2 N
where N is the associated constant or 1, °
This is repeated for each variable of a specification until the last,
On the last such the following table entry is made:
EQUIT table
word 1 Variable Name (BCD)
word 2 - . N
where the = signifies the end of a specification,
The entire procedure is repeated for each specification,

1I-4




FORTRAN II, Section One (704 Version)

COMMON Vi, « .., Vg

Each variable name is collected and the following table entry made:
COMMON table
wordl | Variable Name (BCD) |
If the variable name is fixed-point the following table entry is made:
FORVAL table
word 1 1 0
word 2 Variable Name (BCD)
The above procedure is repeated for each argument name,

FREQUENCY Bl (Nl' NZ’ e o o)’ Bz (Nl: NZ: e o o )a» e o ®

The statement is scanned, collecting the statement number Bi., It is
converted to binary and the following table entry is made:
FRET table S
wordl |- 0 Bi(EFN)|
Each branch frequency Ni is collected and converted to binary.
The following table entry is made:
FRET table
word 1l | . 0 NitBEEs |
This is repeated for each branch frequency. '
The entire procedure is repeated for each specification.

END (Il; e o » In)

Each specification is collected and the following table entry made:
END table :
word 1l | 1]
This is repeated for each specification.

II-5




FORTRAN II, Section One (704 Version)

FORMAT (. + s )

The following table entry is made:
FORMAT table
wordl |1 _ S<(EFN) |

Each word of the FORMAT specification as found in the F = region is
made into the following table entry:
FORMAT table
wordl |[|Format Specification (BCD) |

The first word, if less than six characters, is prefaced by blanks.

When the entire Format specification has been entered the following
table entry is made:
FORMAT table
wordl |- - - - - all ones======d=n= ]

During the above processirig a scan is made of the Format specification
for legality of characters and balance of parenthesis (excluding hollerith
fields).

I1-6




FORTRAN 1II, Section One (704 Version)

The termination of the DO range N is collected and converted to binary.
The variable I is collected, The parameters N1, N2, N3 are collected.
Any constant parameter is converted to binary. N3 is understood to be
1 if not specified, The following table entry is made:

TDO table :
word 1 X (IFN) N(EFN)
word 2 Variable Name (BCD)
word 3 _ N1
word 4 N2
word 5 N3

where Nl, N2, N3 may each be constant or variable and where
for each which is variable a 1 is placed in bit 20, 19, 18 re~
spectively of word 1,

IF (. . o) Nl, N2, N3

Each branch address Nl, N2, N3 is collected and converted to binary.
The following table entry is-prepared:

TIFGO table :
wordl |= X (IFN) NI(EFN)
word 2 N2(EFN) N3(EFN)

This entry is held until treatment of the arithmetic expression
is completed, If the expression contained any references to
subprograms, resulting in the final O¢(IFN)i # OC(IFN) then
such O(IFN)i replaces C(IFN) in the pending entry. The entr
is then made.

The statement is modified by the following transformation.
Iis replaced by X ,
F is replaced by non-BCD character 12
( is replaced by = . ‘
) is replaced by non=-BCD character 77,
The statement is then treated by the ARITHMETIC processor,

y

II-7




FORTRAN II, Section One (704 Version)

IF ACCUMULATOR OVERFLOW N1, N2

The branch addresses N1, N2 are collected and converted to binary.
The following table entries are made:

CIT table
word 1 X (IFN) 0
word 2 T O V. 0
word 3 0
word 4 0 0
TIFGO table
word 1 X (IFN) 5
word 2 NL(EFN) N2(EFN)

IF QUOTIENT OVERFLOW N1, N2

The branch addresses N1, N2 are collected and converted to binary.
The following table entries are made:

CIT table
word 1 C{IFN) 0
word 2 - T Q O 0
word 3 . . 0
word 4 0 0
TIFGO table
word 1 O (IFN) 5
word 2 _ NI{EFN) N2(EFN)

IF DIVIDE CHECK N1, N2

The branch addresses N1, N2 are collected and converted to binary.
The following table entries are made:

" CIT table
word 1 : X (IF N) 0
word 2 D C T 0
word 3 0
word 4 0 0
TIFGO table
word 1 X(IFN) 4
word 2 N1(EFN) N2(EFN)

11-8




FORTRAN II, Section One (704 Version)

SENSE LIGHT I

The sense light designation I is collected. It is converted to binary and
added to 140g. The following table entry is made:

CIT table
word 1 X (IFN) 0
word 2 P S E 0
word 3 0
word 4 (140oT1) 0

IF (SENSE LIGHT I) N1, N2

The sense light designation I is collected. It is converted to binary and
added to 140g. The following table entry is made:

CIT table
word1l | X (IFN) 0
word 2 M S E 0
word 3 0
word 4 (14004 1) 0

The branch addresses NI, N2 are collected and converted to binary,
The following table entry is made:

TIFGO table |
word 1 & (IFN) 3
word 2 NI{EFN) N2(EFN)

IF(SENSE SWITCH I) N1, N2

The sense switch designation I is collected. It is converted to binary and
added to 160g. The following table entry is made:

CIT table
word 1 X (IF'N) 0
word 2 P S E 0
word 3 0
word 4 , (160q+1) 0

The branch addresses N1, N2 are collected and converted to binary.
" The following table entry is made:

TIFGO table
word 1 - X((IF'N) 3
word 2 NL(EFN) N2(EFN)

II-9




FORTRAN II, Section One (704 Version)
GO TO N

The branch address N is collected and converted to binary.
The following table entries are made:

CIT table
word 1 X (IFN) 0
word 2 T R A 0
word 3 0
word 4 0 0
TIFGO table -
word 1 X(IFN) 0
word 2 0 N(EFN)
GO TO (NI, N2, . . . , Ng,), I
Each branch address Ni is collected and converted to binary. The
following table entry is made:
TRAD table
word 1 | | 0 Ni(EFN) |
This is repeated for each Ni until i = m,
The following table entry is made:
TIFGO table
word 1 %(IFN) ' 2
word 2 TRAD(Ni) TRAD(Nm)

where TRAD(Ni) is the complement (table size) of position of
Ni in TRAD table.

The variable I is collected and treated by the subscript processor as a
one~dimensional subscript (I). The following table entry is made:

CIT table
word 1 X(IFN) 0
word 2 T R A 0
word 3 ; , : 0
. word 4 0 1-7

1I-10




FORTRAN II, Section One (704 Version)

GO TO N. (Ilp Iz. e o o ) Im)

The variable N is collected, The followihg table entry is made:

CIT table
word 1 X (IF'N) 0
word 2 T R A 0
word 3 Variable N'a m e (BCD)
word 4 0 0

Each permissible branch address Iy is collected and converted to binary.
The following table entry is made:
TRAD table
wordl [ 0 L(EFN)

This is repeated for each Iy until k * m., The following table entry is
made:
TIFGO table
word 1 o< (IFN) 1
word 2 TRAD(I,) TRAD(.
where TRAD(Ik) is the complement (table size) of position of
Ix in TRAD table.

ASSIGNI TO N

The EFN being as sighed (I) is collected and converted to binary, The
variable N is collected., The following table entries are made:

CIT table
word 1 S (IFN) 0
word 2 C L A 0
word 3 0
word 4 0 0
CIT table
word 1 0 M 0
word 2 S T (@) 0
word 3 Variable Name (BCD) .
. word 4 0 0
TIFGO table
word 1 X (IFN) 6|
word 2 0 HEFN

I1-11




FORTRAN II, Section One (704 Version)

STOP N

The identification N, if any, is collected and converted from octal to
binary. The following table entries are made:

CIT table
word 1 X(IFN) 0
word 2 H P R 0
word 3 0
word 4 N 0
where N =0 if not specified.
CIT table
word 1 0 0
word 2 | T R A 0
word 3 X (IFN)
word 4 0 0
TSTOPS table ‘
wordl | < (IFN) X(EFN)|

where OC(EFN) is the last such encountered.

PAUSE N

The identification N, if any, is collected and converted from octal to
binary. The following table entry is made:

CIT table
word 1 X (IFN) 0
word 2 H P R 0
word 3 0
word 4 N 0
where N = 0 if not specified,
CONTINUE
The following table entry is made:
CIT table
word 1 (IFN) 0
word 2 B S S 0
word 3 0
word 4 0 0

I1-12




FORTRAN II, Section One (704 Version)

SUBROUTINE NAME (ARGI, ..., ARGN)

The statement is verified to be the first of the program. The
name is collected and the following table entry made:

SUBDEF table
wordl | Subprogram_ Name (BCD) |

Each argument name is collected and the following table entry made:
SUBDEF table
worderrgument Name (BCD) |

If the argument name is fixed=point the following table entry is made:
FORVAL table
word 1 1 0
word2 | Argument Name (BCD)

The above procedure is repeated for each argument name. A count is
kept of the arguments for use in processing RETURN statements.

FUNCTION NAME (ARGI, e, ARGN)

This statement is processed in the same manner as SUBROUTINE
NAME (ARGI, ..., ARGN). In addition, the subprogram name is
retained for use in processing RETURN statements,

11-13




FORTRAN II, Section One (704 Version)

CALL NAME (Argl, ..., ArgN)

There are two possible cases:

l. No arguments, The subprogram name is collected.
The following table entries are made:

CIT table
word 1 ‘ X (IFN) 0
word 2 S X D 0
word 3 | 6
word 4 4 4
CIT table
word 1 0 0
word 2 T S X 0
word 3 |[Subprogram Name. (BCD)
word 4 0 4
CIT table ‘
word 1 0 : 0
word 2 L X D 0
word 3 6
word 4 - 4 4
CALLFN table
word1l | ~CX(IFN) X (IFN) |

2, Some arguments. The statement is modified by the following
transformation,

C is replaced by Z
A is replaced by non=-BCD character 12
L is replaced by =
L is replaced by 4
The statement is then treated by the ARITHME TIC processor,

11-14




FORTRAN II, Section

RETURN

One (704 Version)

There are two possible cases:

le The RETURN occurs in a program defined by SUBROUTINE.
The following table entry is made:

CIT table
word 1 K(IF'N) 0
word 2 L X D 0
word 3 | $

: word 4 0 1
2, The RETURN occurs in a program defined by FUNCTION,
The following table entries are made:

CIT table
word 1 KX (IF'N) 0
word 2 C L A 0
word 3 Subprogram Name (BCD
word 4 0 0

CIT table
word 1 0 0
word 2 L X D 0
word 3 $
word 4 0 1

The following table entries are made:

CIT table '
word 1 0 0
word 2 L X D 0
word 3 | $
word 4 1 2

CIT table
word 1 0 0
word 2 Q X D 0
word 3 | $
word 4 2 4

CIT table
word 1 X (IF'N)1 0
word 2 Q P R 0
word 3 0
word 4 (K+1) 0

where OX(IFN)l is o¢(IFN) incremented by 1 and

where K is the number of arguments of the subprogram.,

CIT table
word 1 0 0
word 2 T R A 0
word 3 X(IFN)1
word 4 ' 0 0

TSTOPS table
wordl | X(IFN)1 X(EFN) |

where Q({EFN) is the last such encountered,

II-15




FORTRAN 1I, Section One (704 Version)

SUBSCRIPT Processor

Subscripts may appear in I/O LISTs or in ARITHMETIC expressions.
There exists a closed subrout.ne to scan these subscripts and make
the following table entries:

l. Subscript is one~dimensional:

TAU 1 table
word 1 Cl 0
word 2 Variable Name (BCD)

where Cl is coefficient,
2. Subscript is two~dimensional:

TAU 2 table
word 1 Cl G2
word 2 Variable Name 1 (BCD)
word 3 Variable Name 2 (BCD)
word 4 dl 0
where Cl is first coefficient, .
C2 is second coefficient, and
dl is first dimension from DIMZ2 table.
3. Subscript is three=dimensional:
TAU 3 table ,
word 1 o Cl C2
word 2 C3 0
word 3 Variable Name 1 (BCD)
word 4 Variable Name 2 (BCD)
word 5 Variable Name 3 (BCD)
word 6 dl d2

where Cl is first coefficient,
C2 is second coefficient,
C3 is third coefficient;
dl is first dimension and
d2 is second dimension from
DIMS3 table,

For a subscript having one or more variables the following table entry
is made, ‘
FORTAG table
wordl | X (IF'N) ' 1 =-7]
where I specifies the dimensionality and 7’ the position of the
entry in respective TAU table.
The I = 7 tag is returned to the calling processor,

The addends are used to form a relative address which is returned to
the calling processor,

11-16




FORTRAN II, Section One (704 Version)

ERROW FLOW TRACE

This feature is optional and normally suppressed.

When activated it

causes the following table entries to be made at the point of return
from a called subprogram, arithmetic library subroutine, or arith-

metic statement function.

CIT table
word 1 0 0
word 2 N T R X (EFN)
word 3 |1 7
word 4 2 0
where X(EFN) is the last such encountered.
There are three possible cases for the second table entry,
l. Program being compiled is a main program,
CIT table
word 1 0 0
word 2 P Z E CX(IFN)
word 3 0
word 4 0 0
2. Program being compiled is a subprogram.
CIT table )
word 1 0 0
word 2 P Z E X (IFN)
word 3 | $ -0
word 4 2 0

3. Portion of program being compiled, whether main or subprogram,

is an arithmetic statement function,

CIT table
word 1 ’ : 0 0
word 2 P Z E X (IF'N)
word 3 0
word 4 177717 8 0

II-17




FORTRAN II, Section One (704 Version)

Input-Output Statements

There are thirteen statements pertaining to object program
input-output. These may be grouped as follows:
l. Five statements for input-output from-to external medium:
READ N, LIST
READ INPUT TAPE I, N, LIST
PRINT N, LIST
PUNCH N, LIST
WRITE OUTPUT TAPE I, N, LIST
2. One statement specifying such external input-output:
FORMAT ( ... ) '
3. Four statements for input-output from=to intermediate
storage medium in binary form:
READ TAPE I, LIST
READ DRUM I, J, LIST
WRITE TAPE I, LIST
WRITE DRUM I, J, LIST
4, Three statements for tape handling not involving data trans-
mission:
END FILE I
REWIND I
BACKSPACE I
where N is format designation,
I is unit designation
J is8 drum address,
and LIST is a string of variable names to be transmitted.

To avoid a high degree of redundancy the following descriptions
of individual processors of data transmission statements will some-
. times refer to each other. In general, any such reference will be to
a processor previously discussed.

All statements having a LIST cause the following table entries
to be made prior to those unique to the individual statement.

CIT table
word 1 X (IFN)
word 2 A L
word 3 1 :
word 4
CIT table
word 1
word 2 X
word 3
word 4
CLOSUB table
word 1 ( L

ojo

O

o
o

o

[ ]

t
olmlrio
<

=
<

I1-18




FORTRAN II, Section One (704 Version)

READ N, LIST

The following table entries are made:

CIT table
word 1 0 0
word 2 E T M 0
word 3 0
word 4 0 0
CIT table
word 1 0 0
word 2 C A L 0
word 3 ( D B C )
word 4 0 0
CLOSUB table
word 1 ! ( D B C ) |
CIT table
word 1 0
word 2 S L W 0
word 3 0
word 4 1 0
CIT table
word 1 0 0
word 2 C A L 0
word 3 ( C S H )
word 4 0 0
CLOSUB table
wordl | _ { C S H ) ]
The format designation is collected. There are two possible cases:
l. Constant designation which is converted to binary.
The following table entries are made:
FMTEFN table f
wordl |1 N |
CIT table
word 1 ) 0 248
word 2 N T R 81
word 3 |1 : _ N
word 4 0 0
2. Variable designation which is verified to be an array.
The following table entry is made:
CIT table
word 1 0 248
word 2 N T R 81
word3 | Variable Name (BCD)
word 4 - 0 _ 0

The LIST is now scanned and table entries made in the following manner:

1I-19




The following table entry is made:

CIT table
word 1 X (IF N)* 0
word 2 E T M 0
word 3 0
word 4 0 0

Each variable is collected. There are several possible cases:

l. Variable is not subscripted and is not the name of an array. The

following table entry is made:

CIT table
word 1 O (IF N)* 0
word 2 N T R 0
word 3 Variable Name (BCD)
word 4 0 -0

If the variable is fixed=point the following table entry is made:
FORVAL table

word 1 X (IF' N)i

word 2 Variable Name (BCD)

2, Variable is subscripted. There are two possible cases:
a) Subscript is constant, The following table entry is made:

CIT table
word 1 KX (IF N)* 0
word 2 | N T R 0
word 3 Variable Name (BCD)
word 4 ‘ K 0

where K is the resultant relative address.

b) Subscript has some variable part. The following table entry

is made:

CIT table
word 1 O IF N)* 0
word 2 N T R _ 0
word 3 Variable Name (BCD) |
word 4 K , 1-7

3. Variable is an array name., The dimension(s) of the array as

found in the appropriate DIM table and multiplied to form the total

size K of the array. There are two possible cases:
a) K=1. Treat as a non-subscripted variable, See 1 above.
b) K»1l. The following table entries are made:

FIXCON table (if not previously entered)

word 1 | (K=1) ]
CIT table

word 1 O(IF N)* 0

word 2 L X D 0

word 3 2

word 4 i "8

where i is the position of (K~1) in the FIXCON table.

1I-20




CIT table (only if last trapping mode instruction was LTM)
word 1 o, (IF N)*
word 2 E T M
word 3
word 4 0
CIT table
word 1 0
word 2 N T R '
word 3 Variable Name (BCD)
word 4 0
CIT table
word 1
word 2 L T
word 3
word 4 v 0
CIT table
word 1 0
word 2 T 1 X 1
word 3 X (1F N)*
word 4 0 8
CIT table
word 1 0
word 2 E T M
word 3
word 4 0
CIT table
word 1 .
word 2 D E
word 3
word 4
CIT table
word 1 0
word 2 N T R
N
0

(o] [ {o] o)

o

go

(e} {=] {of o]

o

OlO10{0O

gje
XIOIOI0O

(=]

oj|o

word 3 Variable
word 4

ame (BCD)

Upon completion of the LLIST the following table entries are made:
CIT table
word 1 X (IF N)* 0
word 2 C A L
word 3 1 7
word 4
CIT table
word 1
word 2 X I
word 3 ( R
word 4
CLOSUB table
word1l | ( R

o

o
o

o

oiglloe
o

=
2

II-21




FORTRAN II, Section One (704 Version)

READ INPUT TAPE I, N, LIST

The unit designation is collected. There are two possible cases:

1. Constant designation which is converted to binary. It is
placed in address of word 2 of pending CIT table entry whose

operation is NTR.

2. Variable designation which is verified to be fixed-point.

The following tabl
FORVAR table

e entries are made:

word 1 & (IF'N)
word 2 Variable Name (BCD)
CIT table — f . a
word 1 . X(IFN) 0
word 2 C A L 0
word 3 Variable Name (BCD)
word 4 o ' 0 0
CIT table ,
wordl | = 0 0
word 2 S T ‘D 0
word 3 o ‘XV(IF'N)»I ' '
word 4 | _ 0 0
where X({IFN)l is ®(IFN) incremented by 1.
The following table entries are made: '
CIT table
word 1 0 0
word 2 E. T M 0
word 3 AR B 0
“word 4 | 0 0
CIT table
word 1 0 0
word 2 C A L 0
word 3 -~ D B C )
word 4 | = 0.t 0
CLOSUB table —
word1 | ( D __ B C ) il
CIT table i _
word 1 0 0
word 2 3 L W 0
word 3 o S 0
word 4 1 0
CIT table
word 1 ‘ 0 0
word 2 - C A L 0
word 3 ( T _ S H )
‘word4 | 0 0
CLOSUB table ‘ ‘
wordl | ( T _S H ) ]

II-22




The format designation is collected. There are two possible cases:
l. Constant designation which is converted to binary.
The following table entries are made:
FMTEFN table

wordl |1 N|
CIT table

word 1 X (IFN)L 248

word 2 N T - R I

word 3 1 _ N

word 4 0 ' 0
where I is the unit designation or is 0 if unit designation is
variable.

2. Variable designation which is verified to be an array.
The following table entry is made:

CIT table
word 1 X (IFN)L 248
word 2 | N T R 1
word 3 Variable Name (BCD)
word 4 ' 0 _ 0
where I is the unit designation or is 0 if unit designation is
variable. "

The LIST is now scanned and table entries made in the same manner
as for READ N, LIST.

I1-23




FORTRAN II, Section One (704 Version)

PRINT N, LIST

The following table entries are made:
‘ CIT table
word 1
word 2 E T
word 3
word 4
CIT table
word 1
word 2 C
word 3 (
word 4
CLOSUB table
word 1l | ( B
CIT table
word 1
word 2 S L
word 3
word 4
CIT table
word 1
word 2 C A
word 3 S
word 4
CLOSUB table
word 1 | ( S

gi°

o
ojojofjo

o

o

o] g

olulrl|o
9]

o
Q
]

SO

o
oOjojo|o

o

(=]

o

olglr|e
s

Y

H ) |

The format designation is collected. There are two possible cases:
1. Constant designation which is converted to binary.
The following table entries are made:
FMTEFN table
wordl |1 Nj
CIT table
word 1 0 248
word 2 N T R 0
word 3 |1 V N
word 4 0 0

2. Variable designation which is verified to be an array.
The following table entry is made:
CIT table
word 1 0 248
word 2 | N T R 0
word 3 Variable Name {(BCD)
word 4 0 ‘ 0

11-24




The LIST is now scanned and table entries made in the same manner
as for READ N, LIST with one exception, Fixed~point non=subscripted
variables are entered in FORVAR rather than in FORVAL.

Upon completion of the LIST the following table entries are made:

CIT table
‘word 1 . X (IFN)* 0
word 2 C A L 0
word 3 |1 7
word 4 0 0
CIT table
word 1 0 0
word 2 X 1 T 0
word 3 | F I L )
word 4 0 0
CLOSUB table '
wordl [ { F 1 L ) }

II- 25




FORTRAN II, Section One (704 Version)

PUNCH N, LIST

The following table entries are made:
CIT table
word 1
word2 |  E T
word 3 L T
word 4
CIT table
word 1
word 2 C
word 3 '
word 4
CLOSUB table
word1l |
CIT table
word 1 - . .
word2 | S8 L
word 3 e e
word 4
CIT table
word 1
word 2 C A
word 3 { S
word 4 N
CLOSUB table _
wordl {. = ( S

o ZO
OJOI01O

Lominy.

wi>
olglp|e
()

o
o
O
—

€O
Qlojio|Q

[

o

olojr|e
o

‘O’

H ) |

The format designation is collecteds There are two possible cases:
1. Constant designation which is converted to binary,
The following table entries are made:
FMTEFN table__ d
wordl |1 ' _ ‘ Nj
CIT table . — _
word 1 o 0 . 248
word 2 N __ T R ‘ 0
word3 1 =~ _ N|
word 4 | = ‘ ' 0 _ 0
2. Variable designation which is verified to be an array.
The following table entry is made:
CIT table ,
word 1 , 0 248
word 2 N T R _ . 0
word 3 Variable Name (BCD)
word 4 | ; v 0 0

The LIST is now scanned and table entries made in the same manner as for
PRINT N, LIST.

I1-26




FORTRAN II, Section One (704 Version)

WRITE OUTPUT TAPE I, N, LIST

The unit designation is collected. There are two possible cases:

l. Constant designation which is converted to binary, It is
placed in address of word 2 of pending CIT table entry
whose operation is NTR.

2, Variable designation which is verified to be fixed=point,
The following table entries are made:

FORVAR table
word 1 , o< (IFN)

‘ word 2 Variable Name (BCD)

CIT table ,
word 1 & (IFN)
word 2 C A L
word 3 Variable Name (BCD)
word 4 0 0

CIT table
word 1 0
word 2 S T D
word 3 o (IFN)1
word 4 0 0

where O((IFN)l is O&(IFN) incremented by 1,

The following table entries are made:

CIT table
word 1
word 2 - E T
word 3
word 4

CIT table
word 1
word 2 ]
word 3
word 4

CLOSUB table
wordl | ( B

CIT table
word 1
word 2 S L
word 3
word 4

CIT table

' word 1
word 2 C
word 3 (
word 4

CLOSUB table

word 1 ( S

o

o

o

o

O go
ojoj|ofjo

o

[=]

>
olulrle
Q

o]
O

iO

[
(o] ol o] { o]

. JOojo

0>

olx|rloe
a»

=
¥
||

1I-27




The format designation is collected. There are two possible cases:
1. Constant designation which is converted to binary.
The following table entries are made:
FMTEFN table

word 1 I—I N|

CIT table
word 1 X (IFN) 248
word 2 N T R I
word 3 |1 N
word 4 0 0
where I is the unit designation or is 0 if unit des1gna.t1on is
variable,

2, Variable designation which is verified to be an array. The follow-
ing table entry is made:

CIT table ,
word 1 O (IF N)1 248
word 2 N T R I
word 3 Variable Name (BCD)
word 4 0 0
where I is the unit designation or is 0 if unit designation is
variable,

The LIST is now scanned and table entries made in the same manner as for
PRINT N, LIST.

I1-28




FORTRAN II, Section One (704 Version)

READ TAPE N, LIST

The unit designation is collected. There are two possible cases:

1. Constant designation which is converted to binary and added to
220g to form the binary tape address.

The following table entry is made:

CIT table
word 1 CS(IFN)1 0
word 2 R T B 0
word 3 0]
word 4 (220-84», N) 0
where O(IFN)l is (IFN) incremented by 1.
2. Variable designation which is verified to be fixed=point.
The following table entries are made:
FORVAR table
word 1 O (IF N)1
word 2 Variable Name (BCD)
CIT table
~word 1 X (IFN)1 0
word 2 C A L 0
word 3 Variable Name (BCD)
word 4 0 0
FIXCON table (if not previously entered)
_ word 1 220, |
CIT table i
word 1 0 0
word 2 A D D 0
word 3 2
word 4 i 0
where i is the position of 2204 in the FIXCON table.
CIT table
word 1 , 0 0
word 2 A R S 0
word 3 0
word 4 18 0
~ CIT table
word 1 0 0
word 2 S T A 0
word 3 X (IFN)2
word 4 | 0 0
where OX(IFN)2 is (IFN)l incremented by 1,
CIT table
word 1 KXAIFN)2 0
word 2 R T B 0
word 3 0
word 4 0 0

11-29




The following table entries are made:

CIT table
word 1 0 0
word 2 C P Y 0
word 3 1
word 4 0 0
CIT table
word 1 0 0
word 2 X I T 0
word 3 1 7
word 4 3 0
CIT table )
word 1 0 0
word 2 H P R 0
word 3 0
word 4. ' 0 0
CIT table o
word 1 0 0
word 2 X 1 T 0
word 3 X(IFN)2 248
word 4 ’ ' 0

The LIST is now scanned and table entries made in the following manner:

Each variable is collected.

There are several possible cases:

l. Variable is not subscripted and is not the name of an array. The
following table entry is made.
CIT table
word 1 < (IFN)* 0
word 2 C P Y 0
word 3 Variable Name (BCD)
word 4 0 0

If the variable is fixed~point the following table entry is made.

FORVAL table

word 1

OYIFN) i

word 2

Variable

Name.e

(BCD)

2. Variable is subscripted. There are two possible cases:

a) Subscript is constant. The following table entry is made:

CIT table ,
word 1 X (IF N)* 0
word 2 C P Y 0
word 3 Variable Name (BCD)
word 4 K 0

where K is the resultant relative address.

II-30




b) Subscript has some variable part. The following table entry

is made:

CIT table
word 1 oK (IF N)* 0
word 2 C P Y 0
word 3 Variable Name (BCD)
word 4 K I =

3. Variable is an array name. The dimension(s) of the array as found
in the appropriate DIM table are multiplied to form the total size K
of the array., There are two possible cases:

a) K=1l. Treat as a non-subscripted variable., See 1 above.
b) K¥»1. The following table entries are made:
FIXCON table

word 1 | (K=~1) 1
CIT table
word 1 O (IF N)* 0
word 2 L X D 0
word 3 | 2
word 4 i 8
where i is the position of (K~1) in the FIXCON table.
CIT table , '
word 1 X (IFN)i 0
word 2 C P Y 0
word 3 Variable Name (BCD)
word 4 ) 0 8
CIT table -
word 1 \ 0 0
word 2 T I X ' 1
word 3. X (IF N)i
word 4 0 8
CIT table
word 1 0 0
word 2 D E D 0
word 3 0
word 4 0 8
CIT table
word 1 0 0
word 2 C P Y 0
word 3 Variable Name (BCD)
word 4 ' 0 0

Upon completion of the LIST the following table entries are made:

CIT table
word 1 O (IF N)* 0
word 2 C A L 0
word 3 1 7
word 4 0 0

II-31




CIT table

word 1 0 5

word 2 X 1 T 0

word 3 ( R T

word 4 0 al
CLOSUB table

word 1 l v ( R T ]

I1-32




FORTRAN II, Section One

WRITE TAPE N, LIST

The unit designation is collected,

(704 Version)

220g to form the binary tape address.
The following table entry is made:

There are two possible cases:
l. Constant designation which is converted to binary and added to

CIT table
word 1 & (IFN)1 0
word 2 w T . B 0
word 3 0
word 4 (220g+N) 0
2. Variable designation which is verificd to be fixed=point.
The following table entries are made:
FORVAR table
word 1 X (IFN)1
word 2 Variable Name (BCD)
CIT table
word 1 X (IFN)1 0
word 2 C A L 0
word 3 Variable Name (BCD)
word 4 0 0
FIXCON table (if not previously entered)
word 1l | ° 220
CIT table i
word 1 0 0
word 2 A D D 0
word 3 2
word 4 i 0
where i is the position of 220g in the FIXCON table.
CIT table .
word 1 0 0
word 2 A R S 0
word 3 0
word 4 18 0
CIT table
word 1 0 0
word 2 S T A 0
word 3 X (IFN)2
word 4 ’ 0
where X(IFN)2 is &<(IFN)l incremented by 1,
CIT table
word 1 « (IFN)2 0
word 2 w T B 0
word 3 0
word 4 0 0

I1-33




The following table entry is made:

CIT table
word 1 0 0
word 2 C P Y 0
word 3 | 6 _
word 4 2 0

The LIST is now scanned and table entries made in the same manner as for
READ TAPE N, LIST with one exception, Fixed-point non~subscripted var=
iables are entered in FORVAR rather than in FORVAL., ‘

11-34




FORTRAN II, Section One (704 Version)

READ DRUM N, J, LIST

The unit designation is collected. There are two possible cases:
1. Constant designation which is converted to binary and added to
300g to form the binary drum address.
The following table entry is made:

CIT table
word 1 o (IFN)1 0
word 2 R D R 0
word 3 0
word 4 , (3008+N)_ 0
where X (IFN)l is &(IFN) incremented by 1.
2. Variable designation which is verified to be fixed-point.
The following table entries are made:
FORVAR table
word 1 o (IFN)1
" word 2 Variable Name (BCD)
CIT table '
word 1 ' o< {IFN)1 0
word 2 - C A L 0
word 3 Variable Name (BCD)
word 4 | - "0 ' 0
FIXCON table (if not previously entered)
word1l | - ' 3005 ' 1
CIT table R o
word 1 o 0 0
word 2 A D D 0
word 3 |2 ‘ ‘
word 4 ' - i 0
where i is the position of 300g in the FIXCON table.
CIT table -
o ——————g" 5
word 2 ' A R S 0
word 3 ‘ o 0
word 4 o ' 18 0
CIT table o '
word 1 ' 0 0
word 2 S T A 0
word 3 ’ X (IFN)2
word 4 ' ' S0 0
where O((IFN)2 is OX(IFN)l incremented by 1.
CIT table
word 1 X (IFN)2 0
word 2 R D R 0
word 3 ‘ ' 0
word 4 ’ 0 0

II-35




The drum address is collected. There are two possible cases:
1. Constant address which is converted to binary.
The following table entries are made:

CIT table
word 1 X (IFN)3 370,
word 2 P X D 0
word 3 0
word 4 J 0
where (X(IFN)3 is & (IFN)2 incremented by 1.
CIT table
word 1 370
word 2 L D A 0
word 3 & (IF'N)3 ,
word 4 0 0
2. Variable address which is verified to be fixed-point.
The following table entries are made:
FORVAR table
word 1 X (IFN)3
word 2 Variable Name (BCD)
CIT table
word 1 | X (IFN)3 0
word 2 . C A L 0
word 3 Variable Name (BCD)
word 4 0 0
CIT table
" word 1 ) 0 0
'word 2 A R S 0
word 3 , . 0
, word 4 18 0
CIT table
word 1 0 0
word 2 S T A 0
word 3 X (IFN)4
word 4 0 0
where X(IFN)4 is %(IFN)3 incremented by 1.
CIT table
word 1 X(IFN)4 0
word 2 P X D 0
word 3 0
word 4 ' 0 0
'CIT table
word 1 ' 0 3704
‘word 2 L D A 0
word 3 o (IFN)4
word 4 0 0

The LIST is now scanned and table entries made in the same manner as
for READ TAPE N, LIST with one exception., Subscripted variables
where the subscript contains some variable part are not permitted.,

I1-36




FORTRAN II, Section One

WRITE DRUM N, J, LIST

The unit designation is collected.

(704 Version)

There are two possible cases:

l. Constant designation which is converted to binary and added to
300g to form the binary drum address.
The following table entry is made:

CIT table
word 1 o< (IFN) 0
word 2 w D R 0
word 3 0
word 4 (30034' N) 0
where O(IFN)l is &(IFN) incremented by 1.
2. Variable designation which is verified to be fixed~point.
The following table entries are made:
FORVAR table
word 1 X (IFN)L
word 2 Variable Name (BCD)
CIT table -
word 1 X (IFN)1 0
word 2 ~C A L 0
word 3 Variable Name (BCD)
word 4 , - 0 : 0
FIXCON table (if not previously entered)
word 1. | ' ' 300g |
CIT table ,
word 1 ; 0 0
word 2 A D D 0
word 3 2
word 4 . _ i 0
" where i is the position of 300g in FIXCON table.
CIT table A
: ‘word 1 ) 0
word 2 A R S 0
word 3 ' 0
word 4 18 0
CIT table ”
word 1 0 0
word 2 S T A 0
word 3 ‘ - & (IFN)2
word 4 ' » 0 0
where CX(IFN)2 is X (IFN)l incremented by 1.
CIT table L
~ word 1l o (IF'N)2 0
word 2 w D R 0
word 3 | 0
word 4 0 0

II-37




The drum address is collected.

There are two possible

l. Constant address which is converted to binary.
The following table entries are made:

cases.

CIT table
word 1 o (IFN)3 3705 |
word 2 P X D 0
word 3 0
word 4 J 0
where OX(IFN)3 is OX(IFN)2 incremented by 1.
CIT table
word 1 0 370,
word 2 L D A 0
word 3 o (IFN)3
word 4 ' 0 0
2, Variable address which is verified to be fixed-point.
The following table entries are made:
FORVAR table
word 1 - O (IFN)3
word 2 Variable N ame (BCD)
CIT table
word 1 X (IFN)3 0
word 2 C A L 0
word 3 Variable Name (BCD)
word 4 0 0
CIT table
word 1 0 0
word 2 A R S 0
word 3 0
word 4 18 0
CIT table
word 1 0 0
word 2 S T A 0
word 3 X(IFN)4 .
word 4 0 0
where O(IFN)4 is ©X(IFN)3 incremented by 1.
CIT table
word 1 X(IFN)4 0
word 2 P X D 0
word 3 0
word 4 0 0
CIT table
word 1 0 370,
word 2 L D A
word 3 X (IFN)4
word 4 0 0

The LIST is now scanned and table entries made in the same manner as

for READ DRUM N, J, LIST with one exception.

Fixed-point non-sub-

scripted variables are entered in FORVAR rather than in FORVAL.,

II-38




FORTRAN II, Section One

END FILE I

The unit designation is collected.

(704 Version)

There are two possible cases:

1. Constant designation which is converted to binary and added to
220g to form the binary tape address.

The following table entry is made:
CIT table
word 1 o¢ (IFN) 0
word 2 W E F 0
word 3 0
word 4 (220g% 1) 0
2. Variable designation which is verified to be fixed-point.
The following table entries are made:
- FORVAR table
word 1 O (IFN)
word 2 . Variable Name (BCD)
CIT table
"word 1 X (IFN) 0
word 2 C A L 0
word 3 Variable Name (BCD)
word 4 . 0 ' 0
FIXCON table (if not previously entered)
word 1 2208 J
CIT table
word 1 0 0
word 2 A D D 0
word 3 2
word 4 i 0
where i is the position of 220g in the FIXCON table.
CIT table
word 1 0 0
word 2 A R S 0
word 3 ' 0
word 4 18 0
CIT table
word 1 0 0
word 2 S T A 0
word 3 CX(IFN)
word 4 : 0 0
whereCX(IFN)l isO{(IFN) incremented by 1.
CIT table :
word 1 - ((IFN)1 0
word 2 w E F. 0
word 3 0
word 4 0 0

11-39




FORTRAN II, Section One

REWIND I

The unit designation is collected.

(704 Version)

There are two possible cases:

1. Constant designation which is converted to binary and added to
220g to form binary tape address.
The following table entry is made:

CIT table
word 1 K (IFN) 0
word 2 R E w 0
word 3 0
word 4 (22083-1) 0
2. Variable designation which is verified to be fixed-point.
The following table entries are made:
" FORVAL table
word 1 | X {IFN)
word 2 Variable Name (BCD)
CIT table
word 1 & (IFN) 0
word 2 C A L 0
word 3 Variable Name (BCD)
word 4 0 0
FIXCON table (if not previously entered)
wordl | 220, ]
CIT table N
word 1 0 0
word 2 A D D 0
word 3 2
word 4 i 0
where i is the position of 220g in the FIXCON table.
CIT table "
word 1 0 0
word 2 A R S 0
word 3 0
word 4 18 0
CIT table
word 1 0 0
word 2 S T A 0
word 3 X (IFN)1
word 4 0 _ 0
where &(IFN)l is K((IFN) incremented by 1.
CIT table
word 1 o (IFN)L 0
word 2 R E w 0
word 3 0
word 4 0 0

11-40




FORTRAN II, Section One (704 Version)

BACKSPACE I

The unit designation is collected. There are two possible cases:
1. Constant designation which is converted to binary and added to
220g to form binary tape address.
The following table entry is made:

CIT table
word 1 X (IFN) 0
word 2 B S T 0
word 3 0
word 4 (2204+1) 0
2, Variable designation which is verified to be fixed-point.
The following table entries are made:
FORVAR table
word 1 O (IFN)
word 2 Variable N ame (BCD)
CIT table
word 1 O(IFN) 0
word 2 C A L 0
word:3 Variable Name (BCD)
word 4 0 0
FIXCON table (if not previously entered)
word 1 } 220g |
CIT table
word 1 0 0
word 2 A D D 0
word 3 2
word 4 i 0
where i is the position of 220g in the FIXCON table.
CIT table
word 1 0 0
word 2 A R S 0
word 3 0
word 4 18 0
CIT table
word 1 "0 0
word 2 S T A 0
word 3 X (IFN)1
word 4 0 0
where X(IFN) is OX(IFN) incremented by 1,
CIT table
word 1 O{(IFN)1 0
word 2 B S T 0
word 3 0
word 4 0 0

II-41




I-O LIST DO specification

The data transmission statements except READ DRUM and
WRITE DRUM may have a LIST DO specification. This is information
that specifies the range and initial, increment, and final values of the
controlling variable. :

The appearance of '(", not a part of a subscript, is assumed
to be the beginning of a LIST DO specification. The variable and para-
meters are explicitily written and the termination of the LIST DO is at
the point of their appearance:

Example:
e eV, , Vi, I=Nl, N2, N3), w" &

The processing of LIST DOs is a simultaneous procedure
with the processing of LIST variables. Since LIST DOs reading from
left to right are nested and the first (" and the last "I ® Nl, N2, N3)"
are paired, the processing is disjoint.

' As each "(" is encountered it is assumed to be the beginning of
a LIST DO. The following table entry is made:
Temporary LIST DO table

word1l |[= o (IFN)i 248
word 2 ' 0
word 3 0
word 4 0
word 5 0

The &(IFN) is incremented. A counter associated with the table is
incremented. \

As each "I = N1, N2, N3)" is reached it is scanned and the in-
completed entry in the table associated with the matching "(* is com-~
pleted as follows:

Temporary LIST DO table

word1l [= | (IFN)i B(IFN)
word 2 Variable Name (BCD)

word 3 ' N1
word 4 ’ _ N2
word 5 N3

where B(IFN) is the current value of (IFN) counter.

N1, N2, N3 may each be variable or constant,if variable bits
20, 19, 18 respectively of word 1 are set equal to L,

The table counter is decremented. :

The appearance of ")" not part of a subscript nor of a LIST DO
specification causes the table counter to be decremented and effectively
nullifies the entry in the temporary LIST DO table associated with the
matching "\("'.

When the LIST is completed, all significant (completed) entries
in the temporary LIST DO table are transferred to the TDO table. Any
entries not completed are considered null and are ignored.

I1-42




Certain table entries result from the appearance of (" and ")" not
surrounding a subscript.
1. "(" appearing at the beginning of a nest.
The following table entry is made:

CIT table
word 1 O (IFN)i 0
word 2 B S S 0
word 3 . 0
word 4 ' 0 0

2. "(" appearing within a nest,
The following table entry is made:

CIT table
word 1 OK(IFN)i 0
word 2 L T M 0
word 3 0
word 4 0 0

3. ") same as 2 above

I1-43




FORTRAN II, Section One (704 Version)

DIAGNOSTIC

A diagnostic program exists for source program errors found or
machine errors occuring during Section One processing., This pro-
gram consists of:

Program to prepare message

Print program

Table of comments
When an error is found or occurs during Section One control goes to
the Diagnostic Program by means of TSX using IR4.
There are several possible cases:

I. IR4#0 signifies an error call.

1) First error: Print "DIAGNOSTIC PROGRAM" heading and
procede as in 2) below. .

2) Not first error: Construct parameters for printing statement
being processed and comment describing error. Restore any
modified statements to their original form and print statement
and comment,

Return control to Section One for next statement.
II. IR4% 0 signifies completion of Section One.

1) No errors had occurred. Go to Section One Prime,

2) Some errors had occurred. Print "END OF DIAGNOSTIC"
message. . '

a) If any error was source program go to Source Program
Error supervisor program.

b) If all errors were machine errors go to Machine Error
supervisor program,

II-44




FORTRAN II, Section One (709 Version)

The 709 translator for FORTRAN II is similar to the 704 version.

- Those processors and features which are the same will not be re-

stated. The reader is referred to the 704 version for the following:
Classification routines | |

Processors for

DIMENSION
EQUIVALENCE
COMMON

FREQUENCY

FORMAT

GOTO (...) I

GOTON, («..)

DO N I=Nl, N2, N3

IF(. .. )Nl N2, N3

SENSE LIGHT I

IF (SENSE LIGHT I) N1, N2

IF (SENSE SWITCH I) N1, N2

IF DIVIDE CHECK N1, N2

ASSIGN I TO N

CONTINUE

PAUSE N

STOP N

CALL NAME (. .. )

RETURN ,

ARITHMETIC (Scan, Level Analysis, Optimization)
SUBSCRIPTS '
ERROR FLOW TRACE

Those processors which differ from the 704 version are described below:
SUBROUTINE NAME (ARGIl, . . « , ARGN)

The assumed CIT and CLOSUB table entries for Floating-Point Trap in-
itiatization in a main program are nullified. The statement is then pro-
cessed in the same manner as 704 version.

FUNCTION NAME (ARGIl, . . . , ARGN)

The assumed CIT and CLLOSUB table entries for Floating-Point Trap in-
itiatization in a main program are nullified, The statement is than pro-
cessed in the same manner as 704 version,

II-45




FORTRAN II, Section One (709 Version)

GO TO N

The branch address N is collected and converted to binary. The
following table entry is made:
TIFGO table
wordl |- X(IFN) 0
word 2 _ 0 N(EFN)

IF ACCUMULATOR OVERFLOW N1, N2

The branch addresses N1, N2 are collected and converted to binary.,
The following table entries are made:

CIT table
word 1 X (IFN) 0
word 2 C A L 0
word 3 4
word 4 | = 315 0
CIT table
word 1 0 0
word 2 S T Z 0
word 3
word 4 |- - ‘ 315 0
CIT table
word 1 ‘ O (IFN)1 0
word 2 T "N Z 0
word 3 0
word 4 0 0
where ((IFN)L is X(IFN) incremented by 1.
TIFGO table
word 1 CX(IF'N)1 ‘ 5
word 2 . NH{EFN) N2(EFN)

IF QUOTIENT OVERFLOW N1, N2

This statement is processed in same manner as IF ACCUMULATOR
OVERFLOW N1, N2, '

I1-46




FORTRAN II, Section One (709 Version)

READ N, LIST

The following table entries are made:

CIT table
word 1 O (IFN) 0
word 2 S X D 0
word 3 | 6
: word 4 4 4
CIT table
word 1 0 0
word 2 T S X : 0
word 3 ( C S H )
word 4 0 4
CLOSUB table
word1 | ( C S - H ) |
The format designation is collected. There are two possible cases:
1. Constant designation which is converted to binary.
The following table entries are made:
FMTEEFN table
wordl |1 Nj
CIT table
word 1 ) ' 0 0
word 2 P Z E 0
word 3 |1 N
word 4 0 0
2. Variable designation which is verified to be an array.
The following table entry is made:
CIT table '
word 1 0 )
word 2 P Z E - 0
word 3 Variable Name (BCD)
word 4 0 0
The following table entry is made:
CIT table
word 1 0 C 0
word 2 L X D ~ 0
word 3 | 6
word 4 4 ' 4

The LIST is now scanned and table entries made in the following manner:

11-47




Each variable in the LIST is collected.
cases:

l, Variable is not subscripted and is not the name of an array.
The following table entries are made:

There are several possible

CIT table
word 1 OL(IF N)* 0
word 2 S T . R 0
word 3 0
word 4 0 0
CIT table
word 1 0 0
word 2 - S T Q o}
word 3 . Variable Name (BCD)
word 4 0 0
If the variable is fixed-point the following table entry is made:
FORVAL table
word 1 OIF N)i 0
word 2 Variable Name {BCD)
2, Variable is subscripted, There are two possible cases:
a) Subscript is constant,
The following table entries are made:
CIT table
word 1 X{IFN)* 0
word 2 S T R 0
word 3 0
word 4 0 0
CIT table
word 1 0 0
word 2 S T Q 0
word 3 Variable Name (BCD)
word 4 L 0
where L is the resultant addend.
b) Subscript has some variable part,
The following table entries are made:
CIT table
word 1 o (IF N)* 0
word 2 S T R 0
word 3 0
word 4 0 0
CIT table
word 1 0 0
word 2 S T Q 0
word 3 Variable Name (BCD)
word 4 L 1-7)
3. Variable is an array name, The dimension(s) of the array as

found in the appropriate DIM table are multiplied to form the

total size K of the array.

There are two possible cases:

11-48




a) K= 1.

: Treat as a non=subscripted variable,
b) K> 1. The following table entries are made:

See 1 above.

CIT table
word 1 O (IF N)* 0
word 2 S X D 0
word 3 | 6
word 4 4 4
CIT table )
word 1 0 0
word 2 T S X 0
word 3 ( ] L )
word 4 0 4
CLOSUB table
word 1 | ( S L ) |
CIT table
word 1 0 0
word 2 P Z E 0
word 3 Variable N (BCD)
word 4 1 0
CIT table
word 1 0 0
word 2 P Z E 0
word 3 0 0
word 4 K 0
‘CIT table
word 1 0 0
‘word 2 - L X D 0
word 3
word 4 4 4
Upon completion of the LIST the following table entries are made:
CIT table
word 1 O{(IFN)* 0
word 2 .S X D 0
word 3
word 4 4 4
CIT table
word 1 0 0
word 2 T S X 0
word 3 ( R T )
word 4 0 4
CLOSUB table
word 1l | ( . R T ) |
CIT table ' N
" wordl 0 0
word 2 L X D 0
word 3
word 4 4 4

I-49




FORTRAN 1I, Section One (709 Version)

READ INPUT TAPE I, N, LIST

The unit designation is collected. There are two possible cases:
1. Constant designation which is converted to binary.
The following table entries are made:
FIXCON table (if not previously entered)

word1l | I |

CIT table
word 1 X (IFN) 0
word 2 C A L 0
word 3 2
word 4 i 0

where i is the position of I in the FIXCON table.

2. Variable designation which is verified to be fixed-point.
The following table entries are made:

FORVAR table
word 1 X (IFN)
word 2 Variable Name (BCD)

CIT table
word 1 O (IFN) 0
word 2 C A L 0
word 3 Variable Name (BCD)
word 4 0 0

The following table entries are made:

CIT table ,
word 1 - 0 0
word 2 S X D 0
word 3 6
word 4 4 4

CIT table
word 1 0 0
word 2 T S X 0
word 3 ( T S H )
word 4 0 4

CLOSUB table ‘ :
word 1 | ( T S H ) |

The format designation is collected. There are two possible cases:
1. Constant designation which is converted to binary.
The following table entries are made:

FMTEFN table
wordl |1 N|

CIT table
word 1 ) 0 0
word 2 P Z E -0
word 3 |1 N
word 4 0 0

II-50




2. Variable designation which is verified to be an array.
The following table entry is made:

CIT table
word 1 0 0
word 2 P Z E : 0
word 3 Variable Name (BCD)
word 4 0 0

The following table entry is made: ’ '

CIT table
word 1 0 0
word 2 L X D 0
word 3 |6 : ‘
word 4 _ 4 ' 4

The LIST is now scanned and table entries made in the same manner as
for READ N, LIST. : o

II-51




FORTRAN II, Section One (709 Version)

PRINT N, LIST

The following table entries are made:

CIT table
word 1 & (IFN) 0
word 2 S X D 0
word 3 6
word 4 4. 4
CIT table
word 1 0 0
word 2 T S X 0
word 3 ( S P H )
o word 4 4
CLOSUB table
word 1l | ( S P H ) 1

The format designation is collected. There are two possible cases:
1. Constant designation which is converted to binary.
The following table entries are made:

FMTEFN table

wordl |1 Nj

CIT table
word 1 0 0
word 2 P Z E 0
word 3 1 ) N
word 4 0 . 0

2. Variable designation which is verified to be an array.
The following table entry is made:

CIT table
word 1 0 0
word 2 P Z E 0
word 3 Variable Name (BCD)
word 4 0 0

The following table entry is made:

CIT table
word 1 0 0
word 2 L X D 0
word 3 6
word 4 4 4

The LIST is now scanned and table entries made in the following manner:

I1-52




Each variable in the LIST is collected. There are several possible

cases:

le Variable is not subscripted and is not the name of an array.

The following table entries are made:

- CIT table
word 1 O (IF N)* 0
word 2 L D Q 0
word 3 Variable Name (BCD)
word 4 0 0
CIT table
word 1 0 0
word 2 S T R 0
word 3 0
word 4 0 0
If the variable is fixed-point the following table entry is made:
FORVAR table
word 1 XX (IF'N)i 0
word 2 Variable Name (BCD)
.2¢ Variable is subscripted. There are two possible cases.
a) Subscript is constant.
The following table entries are made:
CIT table
word 1 ¢ (IF N)* . 0
word 2 L D Q i 0
word 3 Variable Name (BCD)
word 4 ) L 0
where L is the resultant addend.
CIT table :
word 1 -0 -0
word 2 S T R 0
word 3 0
word 4 0 0
b) Subscript has some variable part.
The following table entries are made:
CIT table
word 1 O (IF N)* 0
word 2 L D Q 0
word 3 Variable Name (BCD)
word 4 L : 1 -ﬁ
CIT table
word 1 0 0
word 2 S T R 0
word 3 0
word 4 . 0 0

3., Variable is an array name, The dimension (s) of the array as

found in the appropriate DIM table are multiplied to form the

total size K of the array.

There are two possible cases:

II-53




a) K=1,

Treat as a non=subscripted variable,

See 1 above.

b) K2>»1l. The following table entries are made:
CIT table
word 1 O{(IF N)* 0
word 2 S X D 0
word 3 | 6
word 4 ' 4 4
CIT table
word 1 0 0
word 2 T S X 0
word 3 ( S L @) )
word 4 0 4
CLOSUB table
word1l | ( S L o ) |
CIT table
word 1 0 0
word 2 P Z E 0
word 3 Variable Name (BCD)
word 4 1 0
CIT table
word 1 0 0
word 2 P Z E 0
word 3 0 0
word 4 K 0
CIT table
word 1 0 0
word 2 L X D 0
word 3
word 4 4 4
Upon completion of the LIST the following table entries are made:
CIT table
“word 1 _ X (IF N)* 0
word 2 S X D 0
word 3
word 4 4 4
CIT table
word 1 0 0
word 2 T S X . 0
word 3 ( F I L )
word 4 0 0
CLOSUB table '
word 1l | ( F 1 L ) ]
CIT table
word 1 0 0
word 2 L X - D 0
word 3
word 4 4 4

1I-54




FORTRAN II, Section One (709 Version)

PUNCH N, LIST

The following table entries are made:

CIT table
word 1 X (IFN) 0
word 2 S X D 0
word 3 | 6
word 4 4 4

CIT table
word 1 0 0
word 2 T S X 0
word 3 | ( S C H )
word 4 | 0 4

CLOSUB table ;
wordl | S C H ) |

The format designation is collected. There are two possible cases:
1. Constant designation which is converted to binary.
The following table entries are made:

FMTEFN table
wordl |4 . | N

CIT table ’
word 1 0 0
word 2 P Z E 0
word 3 1 N
word 4 : 0 0

2. Variable designation which is verified to be an array.
The following table entry is made:

CIT table .
word 1 -0 0
word 2 P Z E N : 0
word 3 Variable Name (BCD)
word 4 : 0 _ e 0

The following table entry is made: ‘

CIT table
word 1 0 0
word 2 L X D 0
word 3 | 6 , .
word 4 ‘ 4 ' ' , 4

The LIST is now scanned and table entries made in the s8ame manner as
for PRINT N, LIS'_I‘.

II-55




FORTRAN II, Section One (709 Version)

WRITE OUTPUT TAPE I, N, LIST

The unit designation is collected.

There are two possible cases:

l. Constant designation which is converted to binary,
The following table entries are made:
FIXCON table (if not previously entered)

wordl | I 1
CIT table
word 1 v X(IFN) 0
word 2 C A L 0
word 3 2
word 4 i , 0
where i is the position of I in the FIXCON table.
2. Variable designation which is verified to be fixed-point.
The following table entries are made:
FORVAR table
word 1 OX(IFN)
word 2 Variable Name (BCD)
CIT table '
word 1 O(IFN) 0
word 2 C A L 0
word 3 Variable Name (BCD)
word 4 0 0
The following table entries are made:
CIT table )
word 1 o 0 0
word 2 S X D 0
word 3 | 6
word 4 4 4
CIT table
word 1 0 0
word 2 T S X 0
word 3 ( S T H )
word 4 0 4
CLOSUB table
word 1 | ( S T H ) 1
The format designation is collected. There are two possible cases:
1. Constant designation which is converted to binary,
The following table entries are made:
FMTEFN table
word 1 1 N|
CIT table
word 1 -0 0
word 2 P Z E 0
word 3 |1 . N
word 4 0 0

II-56




2. Variable designations which is verified to be an array.
The following table entry is made:

CIT table
word 1l , 0 0
word 2 P Z E . 0
word 3 Variable Name (BCD)
word 4 0 0

The following table entry is made:

CIT table
word 1 , 0 0
word 2 L X D 0
word3 | 6 '

"word 4 | -4 4

The LIST is now scanned and table entries made in the same manner as

for PRINT N, LIST.

II-57




FORTRAN II, Section One (709 Version)

READ TAPE I, LIST

The unit designation is collected. There are two possible cases:
1. Constant designation which is converted to binary.
The following table entries are made:
~FIXCON table (if not previously entered)
wordl | ' 1 |
CIT table
word 1 X (IFN)
word 2 C A L
word 3 2
word 4 i 0
where i is the position of I in the FIXCON table.
2. Variable designation which is verified to be fixed-point.
The following table entries are made:
FORVAR table
word 1 O (IFN) ,
word 2 Variable Name (BCD)
CIT table '
word 1 X (IFN) 0
word 2 C A L -0
word 3 Variable N ame (BCD)
word 4 0 0
The following table entries are made:
CIT table
word 1
word 2 - S X
word 3 6
word 4
CIT table
word 1
word 2 T S
word 3
word 4
CLOSUB table
word 1 | { T
CIT table '
word 1 0
word 2 L X D
word 3 | 6 :
word 4 4 4

ojo

o

(o] {=
o

N
N

oo

H

olu|xlo

wn
w

0
0

The LIST is novw scanned and table entries made in the same manner as
for READ N, LIST. Upon completion of the LIST the following table
entries are made: '

I1-58




CIT table

wordl X (IFN)* 0

word 2 : S X D 0

word 3 | 6

word 4 4 4
CIT table

word 1 0 0

word 2 T S X 0

word 3 ( R L R )

word 4 0 4
CLOSUB table - -

word1l | ( R L R ) 1
CIT table :

word 1 0 0

word 2 S X D 0

word 3 | 6 _

word 4 : 4 : 4

1I-59




FORTRAN II, Section One (709 Version)

WRITE TAPE I, LIST

The unit designation is collected. There are two possible cases:
l. Constant designation which is converted to binary,

The following table entries are made: |

FIXCON table (if not previously entered)

word 1 | I . |
CIT table

word 1 OC(IFN) 0

word 2 C A L 0

word 3 2 ‘

word 4 i 0

where i is the position of I in the FIXCON table.
2. Variable designation which is verified to be fixed=point,
The following table entries are made:

FORVAR table
word 1 X (IFN)
word 2 Variable Name (BCD)

CIT table :
word 1 O(IF'N)
word 2 C A L 0
word 3 Variable Name (BCD)

~ word 4 | 0 0
The following table entries are made:

CIT table
word 1
word 2 S X
word 3 | 6
word 4

CIT table
word 1
word 2 T S
word 3 ( S
word 4

CLOSUB table
word 1l | ( S

CIT table
word 1
word 2 L X
word 3 | 6
word 4 4 4

o

gie
o

RN
N

ollx|e
ojo

!
o
-

0 I

oje

The LIST is now scanned and table entries made in the same manner as
for PRINT N, LIST. Upon completion of the LIST the following table
entries are made: -

11-60




CIT table

word 1 ‘ X (IF N)* 0
word 2 S X D 0
word 3 | 6 ‘
word 4 4 p
CIT table
word 1 0 0
word 2 T S X 0
word 3 ( W L R )
word 4 0 4
CLOSUB table
wordl | { w L R ) |
CIT table
: word 1 0 0
word 2 | L X D 0
word 3 | 6 ,
word 4 , 4 4

II- 61




FORTRAN II, Section One (709 Version)

READ DRUM I, J, LIST

The unit designation is collected. There are two possible cases:
1. Constant designation which is converted to binary.
The following table entries are made:
FIXCON table

word 1 | 1 |
CIT table
word 1 e (IFN) 0
word 2 C A L 0
word 3 2
word 4 i 0
where i is the position of 1 in the FIXCON table.
2. Variable designation which is verified to be fixed-point.
The following table entries are made:
FORVAR table
word1l | O (IFN)
word 2 Variable Name (BCD)
CIT table
word 1 X (IFN) 0
word 2 C A L 0
word 3 Variable Name (BCD)
word 4 ) 0 0
The following table entries are made:
CIT table
word 1 0 0
word 2 S X D 0
word 3 6
word 4 4 4
CIT table
word 1 0 0
word 2 T S X 0
word 3 | D R S )
word 4 0 4
CLOSUB table
wordl | ( D R S ) J

The drum address is collected. There are two possible cases:
1. Constant address which is converted to binary.
The following table entries are made:
FIXCON table (if not previously entered)

wordl | N

| 1I-62




CIT table

word 1 ‘ 0 0
word 2 C A L 0
word 3 2

_ word 4 i 0

where i is the position of N in the FIXCON table.

2, Variable address which is verified to be fixed=point,
The following table entries are made:

FORVAL table
word 1 o€ (IFN)
word 2 Variable Name (BCD)

CIT table
word 1 0 0
word 2 C A L 0
word 3 Variable Name (BCD)
word 4 0 0

The following table entry is made:

CIT table
word 1 ‘ 0 0
word 2 L D A 0
word 3 0
word 4 0 0

The LIST is now scanned and table entries made in the following mannex: .

Each variable in the LIST is collecteds There are several possible

cases:

1. Variable is not subscripted and is not the name of an array.

The following table entry is made:

CIT table
word 1 0 0
word 2 C P Y 0
word 3 Variable Name (BCD)
word 4 ' -0 ' 0
If the variable is fixed-point the following table entry is made:
FORVAL table
word 1 SX(IFN)1 0
word 2 Variable Name (BCD)
2. Variable is subscripted. There are two possible cases:
a) Subscript is constant ' '
The following table entry is made:
CIT table
word 1 0 0
word 2 [o] P Y L _ 0
word 3 Variable Name (BCD)
word 4 L 0

where L is the resultant addend,
b) Subscript has some variable part.
Not permitted.

11-63




3, Variable is an array name. The dimension(s) of the array as
found in the appropriate DIM table are multiplied to form the
total size K of the array. There are two possible cases:

a) K= 1, Treat as a non -subscripted variable., See 1 above,
b) K> 1. The following table entries are made:
FIXCON table '
word 1 | (K=-1) |
CIT table '
word 1 0
word 2 L X D
word 3 2
word 4 i 8
where i is the position of (K~1) in the FIXCON table,
CIT table
word 1 0
word 2 C P Y
word 3 Variable Name (BCD)
word 4 0 ‘

CIT table
word 1
word 2 T 1 X 1

7

o

o

olo

(=]
o

word 3 1 ’
word 4 - 1
CIT table '
word 1 :
word 2 D E
word 3
word 4
CIT table
word 1 v 0
word 2 C P Y
word 3 Variable Nam
word 4 0

@

oie

o
wjojojo

[

(BCD)

Upon completion of the LIST the following table entry is made:
CIT table
word 1 ' ‘ 0
word 2 L X D
word 3 | 6
word 4 | , 4 4

(=] [«

II- 64




FORTRAN II, Section One (709 Version)

WRITE DRUM 1, J, LIST

The unit designation is collected. There are two possible cases.
1. Constant designation which is converted to binary.
The following table entries are made:
FIXCON table (if not previously entered)

word1l | I |
CIT table

word 1 SX(IFN) 0

word 2 C A L 0

word 3 2 ,

word 4 i 0

where i is the position of I in the FIXCON table.
2. Variable designation which is verified to be fixed-point.

The following table entries are made:
FORVAR table

word 1 X (IFN)
word 2 Variable Name (BCD)
CIT table
word 1 X (IFN) 0
word 2 , C A L 0
word 3 Variable Name (BCD)
word 4 0 0
The following table entries are made:
CIT table )
word 1 0 0
word 2 S X D 0
word 3 6
word 4 4 4
CIT table
word 1 0 0
word 2 T S X el
word 3 ( S D R )
word 4 0 ' 4
CLOSUB table )
word1l | ( S D R ) B
The drum address is collected. There are two possible cases:
1. Constant address which is converted to binary.
The following table entries are made:
FIXCON table (if not previously entered)
wordl | ‘ N |
CIT table
word 1 0 0
word 2 C A L o)
word 3 2
word 4 i ' 0
where i is the position of N in the FIXCON table.
II-65




2. Variable address which is verified to be fixed-point.
The following table entries are made:
FORVAR table

word 1 v X (IFN)
word 2 Variable Name (BCD)

CIT table
word 1 0 0
word 2 C A - L
word 3 Variable Name (BCD)
word 4 0 0

The following table entry is made:

CIT table .
word 1 0 0
word 2 L D A 0
word 3 , - 0
word 4 . , 0 0

The LIST is now scénned,and table entries made in the same manner as
for READ DRUM N, J, LIST with one exception. Fixed-point non-sub-
scripted variables are entered in FORVAR rather than in FORVAL.

11-66




FORTRAN II, Section One (709 Version)

END FILE I

The unit designation is collected. There are two possible cases:

1. Constant designation which is converted to binary.
The following table entries are made:
FIXCON table (if not previously entered)

word1l | I |
CIT table
word 1 o¢ (IFN) 0
word 2 C A L 0
word 3 2
word 4 i 0
where i is the position of I in the FIXCON table.
2. Variable designation which is verified to be fixed-point.
The following table entries are made:
FORVAR table
word 1 O (IFN)
word 2 Variable Name (BCD)
CIT table
word 1 . X (IFN) 0
word 2 C A L 0
word 3 Variable Name (BCD)
word 4 . 0 0
The following table entries are made:
CIT table
word 1 0 0
word 2 S X D 0
word 3 | 6
word 4 4 4
CIT table
word 1 0 0
‘word 2 T S X ‘ 0
word 3 ( E F T )
word 4 0 4
CIT table
word 1 0 0
word 2 L X D 0
word 3 6
4 word 4 4 4
CLOSUB table
word 1 ( E F T ) |

I1-67

T



FORTRAN II, Section One (709 Version)

REWIND I

The unit designation is collected. There are two possible cases:

1. Constant designation which is converted to binary.
The following table entries are made:
FIXCON table (if not previously entered)

word 1 | I I
CIT table
word 1 X (IFN) 0
word 2 C A L 0
word 3 2 .
word 4 i 0
where i is the position of I in the FIXCON table.
2. Variable designation which is verified to be fixed-point.
The following table entries are made:
FOR VAR table
word 1 X (IFN)
word 2 Variable Name (BCD)
CIT table
word 1 O (IFN) 0
word 2 C A L 0
word 3 Variable Name (BCD)
word 4 ~ 0 0
The following table entries are made:
CIT table
word 1 0 0
word 2 S X D 0
word 3 6 0
word 4 4 4
CIT table
word 1 ' 0 0
word 2 T S X 0
word 3 ( R w T )
word 4 0 4
CIT table
word 1 : 0 0
word 2 L X D 0]
word 3 6
word 4 ' 4 4
CLOSUB table
wordl | ( R W T ) J

11-68




FORTRAN II, Section One (709 Version)

BACKSPACE I

The unit designation is collected. There are two possible cases:

1. Constant designation which is converted to binary.
The following table entries are made:
FIXCON table (if not previously entered)

word 1
CIT table

| 1

word 1l

o (IFN)

word 2

C A L

word 3

2

word 4

i

where i is the position of I in the FIXCON table.
2. Variable designation which is verified to be fixed-point.
The following table entries are made:

FORVAR table

CIT

The following table entr

CIT

CIT

CIT

word 1
word 2
table

word 1
word 2
word 3
word 4

table

word 1
word 2
word 3
word 4
table

word 1
word 2
word 3
word 4
table

- word 1

wordAZ
word 3
word 4

 (IFN)

Variable Name (BCD)

o (IFN)

o

C A L

"V ariable N ame (BCD)

ies are made:

S

!
wn
olnix|o

g
”
lw] [=]

CLOSUB table
wordl | ( B S T ) |

I1- 69




FORTRAN II, Section One (709 Version)

DIAGNOSTIC

A diagnostic program exists for source program errors found or machine

errors occurring during Section One. The program consists of:
Program to prepare message
Print program
Table of comments _

When an error is found or occurs during Section One control goes to

the Diagnostic Program by means of a TSX using IR4.

There are several possible cases:

I. IR4#£0 signifies an error call,

1) First error: Print "DIAGNOSTIC PROGRAM" heading and
procede as in 2) below.

2) Not first error: Construct parameters for printing statement
being processed and comment describing error. Restore any
modified statements to their original form and print statement
and comment. '

a) If error was source program)return control to Section One
for next statement.
b) If error was machine, print "YEND OF DIAGNOSTIC'" message
and go to Machine Error Supervisor program.
II. IR4=0 signifies completion of Section One.

1) No errors had occurred. Go to Section One Prime.

2) Some source program errors had occurred. Write all
diagnostic information which has been printed on tape B2
following source program. Go to Source Program Error
supervisor program.

1I-70




al

III

SECTION ONE-PRIME (704 Version)

This section is a terminal processor for Section One. It combines fragments
of those tables which Section One generated as labeled buffer sized records.
It makes certain modifications, primarily the replacement of EFNs with
corresponding IFNs, which can only be accomplished when the entire source
program has been reduced to tabular form.

The input to Section One-Prime consists of:

l. Various parameters describing tables (in cores)

2. Buffers containing terminal entries in tables (in cores)

3. Tables which Section One required for reference (FORSUB,END in cores.
DIMI, DIM2, DIM3, TAUl, TAU2, TAU3, FIXCON, FLOCON on drums.)

4. Tables which Section One did not require for reference. (COMPAIL on
tape 3; TEIFNO, TDO, TIFGO, TRAD, FORTAG, FORVAR, FORVAL,
FRET, EQUIT, CLOSUB, FORMAT, SUBDEF, COMMON, HOLARG,
NONEXC, TSTOPS, CALLFN, FMTEFN, TSKIPS on tape 4.)

The output of Section One-Prime consists of:

1. Tables on drums: TAUl, TAU2, TAU3, FIXCON, FLOCON, FORVAL
2. Tables on tape: '
Tape 2: 'File l is Source Program
: File 2 is COMPAIL table

File 3 is Compail Record Count - FORSUB

File 4, Record 1 is FLOCON table.
Record 2 is FORMAT table.
Record 3 is S1IZ table.

File 5, Record 1 is END table.
Record 2 is SUBDEF table.
Record 3 is COMMON table.
Record 4 is HOLARG table.
Record 5 is TEIFNO table.
Record 6 is TIFGO table.
Record 7 is TRAD table.
Record 8 is TDO table.
Record 9 is FORVAL table.
Record 10 is FORVAR table.
Record 11 is FORTAG table.
Record 12 is FRET table.
Record 13 is EQUIT Table.
-Record 14 is CLOSUB table.

Tape 3, File 1, Record 1 is FORMAT error list.
Record 2 is NONEXC table.
Record 3 is TSTOPS table.
Record 4 is TSKIPS table.

The tables are processed in the following order and manner:




COMMON - The table of common variables is assembled from tape 4 and
the Section One buffer. It is written as record 3 of file 5 on tape 2; preceded
by its identification (12) and word count.

HOLARG - The table of hollerith arguments is assembled from tape 4 and the

Section One buffer. It is written as record 4 of file 5 on tape 2; preceded
by its identification (13) and word count.

II1-2.1




FORTRAN II, Section One Prime, 704

FIXCON - The entry count of the table of fixed point constants is doubled to
form the word count and written with the table on drum 2. ’

COMPAIL - The last buffer of entries in the table of compiled instructions is
written on tape 3.followed by an EOF. This tape is then rewound and the
COMPALIL table transferred.to tape 2 as the second file. A record count for
COMPAIL is formed and written as record 1 of file 3 on tape 2.

FORSUB - The table of names and degrees of arithmetic statement functions,
if any, is written after the compail record count in record 1 of file 3.on tape 2.

FLOCON -~ The table of floating point constants is read from drum.2. The
block check sums used by Section One are deleted. The word count and the
table are written as record 1 of file 4 on tape 2.

FORMAT - The table of format statements is assembled from tape 4 and the
Section One buffer. It is written as record 2 of file 4 on tape 2; preceded by
its identification (10) and word count.

FMTEFN- The table of references to fixed format statements is assembled
from tape 4 and the Section One buffer. Each reference to a format is checked
against the FORMAT table. If any referenced statements are missing an error
list is developed for Section One Double Prime. This list, or a single flag
word if no errors, is written as record 1 of file 1 on tape 3.

DIM1 - The table of one dimensional arrays is read from drum 3. The check
sums for each entry are deleted. This table is now renamed SIZ.

DIM2 - The table of two dimensional arrays is read from drum 3. The check
sums for each entry are deleted. The two dimensions are multiplied to form
the size of the array. This table is added to SIZ.

DIMS3 - The table of three-dimensional arrays is read from drum 3. The check
sums for each entry are deleted. The three dimensions are multiplied to form
the size of the array. This table is added to SIZ.

SIZ - A check sum of the entire SIZ.table is computed. The table is written as
record 3 of file 4 on tape 2. It is preceded by EIFNQ and its word count and is
followed by the check sum.

END - The five word END table is written as record 1 of file 5 on tape 2.

SUBDEF- The table of subprogram definition is assembled from tape 4 and the
Section One buffer. It is written as record 2 of file 5 on tape 2; preceded by
its identification (11) and word count.

III-2




TEIFNO - The table of corresponding external and internal formula numbers

is assembled from tape 4 and the Section One buffer. It is searched for

duplicate external formula numbers. If such are found they are flagged as errors
for Section One Double Prime. Those cases where Section One assigned more
than one internal number are not considered as duplicates and the flag is deleted.
The table is written as record 5 of file 5 on tape 2 preceded by its identification
(0) and word count. It is retained in memory for use in processing tables
discussed below.

TIFGO - The table of IFs, GO TOs and ASSIGNs is assembled from tape 4 and
the Section One buffer. Each external formula number is searched for in
TEIFNO and its corresponding internal number replaces it in TIFGO. Any
external formula numbers not found are set equal to 0 as an error signal to
Section One Double Prime. When all entries have been modified the table is
written as record 6 of file 5 on tape 2 preceded by its identification (2) and word
count.

TRAD - The table of COMPUTED and ASSIGNED GO TO addresses is assembled
from tape 4 and the Section One buffer. Each entry, which is an external
formula number, is searched for in TEIFNO., When found it is replaced by the
corresponding internal formula number. If not found it is set equal to 0 as an
error signal to Section One Double Prime. When all entries have been treated
the table is written as record 7 of file 5 on tape 2 preceded by its identification
(3) and word count. '

TDO - The table of DOs is assembled from tape 4 and the Section One buffer.
Each entry is examined to determine if it originated from a DO or from an
Input-Output List. If it originated from an I/O List the flag that so indicated is
deleted. If it originated from a DO the EFN for the end of the DO is searched
for in TEIFNO. When it is found the corresponding IFN replaces it in TDO.

If not found it is set equal to 0 as an error signal to Section One Double Prime.
In those cases where Section One assigned more than one IFN to an external
number, the last such IFN is used so that the DO includes all instructions of
the terminal statement. When all entries have been treated the table is written
as record 8 of file 5 on tape 2 preceded by its identification (1) and word count.

FORVAL - The table of definitions of fixed point variables is assembled from
tape 4 and the Section One buffer.

CALLNM - The table of first and last internal formula numbers of statements

containing references to subprograms is assembled from tape 4 and the Section
One buffer.

Each IFN in FORVAL is searched for as a first IFN in CALLNM. If found it is
replaced by the corresponding last IFN. When all entries have been processed
the FORVAL table is written as record 9 of file 5 on tape 2; preceded by its
identification (6) and word count. The CALLNM table is dead. Check sums

are now formed for each FORVAL entry. Each entry, followed by its check sum,
is written on drum 2. :

III-3




FORVAR - The table of usages of fixed point variables is assembled from
tape 4 and the Section One buffer. It is written as record 10 of file 5 on tape 2
preceded by its identification (5) and word count.

FORTAG - The table of tag usages is assembled from tape 4 and the Section
One buffer. It is written as record 11 of file 5 on tape 2 preceded by its
identification (4) and word count.

FRET - The table of frequency statements is assembled from tape 4 and the
Section One buffer. Each EFN in FRET is searched for in TEIFNO. When
found it is replaced with the corresponding IFN. If not found, it is set equal
to 0 as an error signal for Section One Double Prime. The FRET table is now
sorted by IFN to form an ordered list.

The TIFGO table is now re-examined for any entries for COMPUTED GO TO
statements. The IFN of each such statement is searched for in FRET. I
found, the list of branch frequencies is reversed to correspond to the object
program transfer vector. When all TIFGO entries have been examined, the
FRET table is written as record 12 of file 5 on tape 2 preceded by its identif-
ication (7) and word count.

EQUIT - The table of equivalence statements is assembled from tape 4 and the
Section One buffer. The table is reformatized to make those variables which
are equated into strings of relativelized symbols. Any found to be inconsistant
are flagged as errors for Section One Double Prime. Any redundancies are
deleted. The table is then written as record 13 of file 5 on tape 2 preceded by
its identification (8) and word count.

CLOSUB - The table of names of closed (library) subroutines is assembled
from tape 4 and the Section One buffer» Duplicates are eliminated. Each name
in the CLLOSUB table is searched for in the SUBDEF table. If found it is
deleted from CLOSUB as being a dumimy name. The table is then written as
record 14 of file 5 on tape 2 preceded by its identification (9) and word count.

NONEXC - The table of statement numbers of non-executable statements is
assembled from tape 4 and the Section One buffer. It is written as record 2
on tape 3. '

TSTOPS - The table of statement numbers of STOP and RETURN statements
is assembled from tape 4 and the Section One buffer. It is written as record 3
on tape 3.

TSKIPS - The table of IFNs to which skip type machine language statements

may skip is assembled from tape 4 and the Section One buffer. It is written as
record 4 on tape 3 followed by an end of file mark.

III1-4




One is added to the last IFN used and it is left for Section One Double Prime.
The END card indication for sense switch 4 is examined and bit 16 of word 20

set accordingly.

This will be interrogated by Section 1V.

SUBROUTINES - There are three subroutines used by Section One Prime:

TAPOO- Table Assembly Program assemble tables written on tape 4 during
Section One. It uses the parameters left by Section One to determine for a

given table:

1.
2.
3.
4.

number of records on tape 4,

number of words in each record,

number of words remaining in the core buffer,
first location of core buffer.

The calling sequence in Section One Prime supplies the:

1. table identification (which also serves to locate the para-
meters left by Section One),
2. first location of buffer into which the table is to be

assembled.

The routine tests each table for overflow against a table of permissable

maximums.

Tables Assembled by TAPO0O

Name Identification Maximum word count
TEIFNO 0 750
- TDO 1 750
TIFGO 2 600
TRAD 3 250
FORTAG 4 1500
FORVAR 5 1500
FORVAL 6 1000
FRET 7 750
EQUIT 8 1500
CLOSUB 9 1500
FORMAT 10 1500
SUBDEF 11 180
COMMON 12 600
HOLARG 13 900
NONEXC 14 750
TSTOPS 15 300
CALLFN 16 . 400
FMTEFN 17 750
TSKIPS 18 425

II-5




WATO00 - Writes assembled table on tape 2 preceded by identification and
word count. Calling sequence supplies identification and first location of

buffer in which table has been assembled.

FORIDP - Writes assembled table on tape 3 for Section One Double Prime.

II1-6




SECTION ONE=PRIME (709 Version)

This section is a terminal processor for Section One. It combines frag-
ments of those tables which Section One generated as labeled buffer sized
records, It makes certain modifications, primarily the replacement of
EFNs with corresponding IFNs, which can only be accomplished when the
entire source program has been reduced to tabular form.

The input to Section One=-Prime consists of:

l Various parameters describing tables (in cores)

2. Buffers containing terminal entries in tables (in cores)

3. Tables which Section One required for reference (FORSUB, END,
DIMI, DIM2, DIM3, TAUl, TAU2, TAU3, FIXCON, FLOCON in
cores, ) ‘

4, Tables which Section One did not require for reference. (COMPAIL
on tape A4 in 8K version, on tape B2 in 32K version; TEIFNO, TDO,
TIFGO, TRAD, FORTAG, FORVAR, FORVAL, FRET, EQUIT, CLOSUB,
FORMAT, SUBDEF, COMMON, HOLARG, NONEXC, TSTOPS, CALLFN,
FMTEFN, TSKIPS on tape A4.)

The output of Section One=Prime consists of:

l. Tables in cores: TAUl, TAU2, TAU3, FIXCON, FLOCON, FORVAL,
TRAD, TIFGO, TEIFNO,
2. Tables on tape:
Tape Ba: File 1 is Source Program

File 2 is COMPAIL table

File 3 is Compail Record Count - FORSUB

File 4, Record l is FLOCON table.
Record 2 is FORMAT table,
Record 3 is SIZ table,

File 5, Recordl is END table,
Record 2 is SUBDEF table.
Record 3 is COMMON table,
Record 4 is HOLARG table,
Record 5 is TEIFNO table,
Record 6 is TIFGO table.
Record 7 is TRAD table,
Record 8 is TDO table.
Record 9 is FORVAL table.
Record 10 is FORVAR table,
Record 1l is FORTAG table,
Record 12 is FRET table.
Record 13 is EQUIT table.
Record 14 is CLOSUB table,

III=7




Tape B3: File 1, Recordl is NONEXC table.

Record 2 is TSTOPS table,
(8K version only, in cores for 32K version)

The tables are processed in the following order and manner:

COMPAIL - 8K Version, Each record of COMPAIL is read from tape A4,
Fach entry is examined for appearance of floating~point constants. Any

such found are entered in the FLLOCON table (if not previously entered) and
replaced in the COMPAIL entry with the position of the entry in FLOCON.

The COMPAIL record is then written in file 2 on tape B2. When all COMPAIL
records have been read from A4 the contents of the Section One buffer are
processed as the last record.

32 K Version. The contents of the Section One buffer are written as the
last record of file 2 on tape B2,

FORSUB = The table of names and degrees of arithmetic statement functions,
if any, is written after the compail record count in record 1 of file 3 on tape B2,

FLOCON =~ The table of floating=point constants and its word count are
written as record 1 of file 4 on tape B2,

FORMAT =~ The table of format statements is assembled from tape A4 and
the Section One buffer., It is written as record 2 of file 4 on tape B2; pre~
ceded by its identification (10) and word count.

FMTEFN ~ The table of references to fixed format statements is assembled
from tape A4 and the Section One buffer. Each reference to a format is check-
ed against the FORMAT table. If any referenced statements are missing n
error list is developed for Section One Double Prime.

DIM1~ The table of one dimensional arrays is renamed SIZ.

DIM2 ~ Each entry in the table of two dimensional arrays has its two dimen-
sions multiplied to form the size of the array. This table is added to SIZ,

DIM3 - Each entry in the table of three~dimensional arrays has its three

dimensions multiplied to form the size of the array. This table is added to
S1z.

SIZ - The table is written as record 3 of file 4 on tape B2, It is preceded
by EIFNO and its word count.

END - The END table is written as record 1 of file 5 on tape B2,

——

111-8




SUBDEF - The table of subprogram definition is assembled from tape
A4 and the Section One buffer. It is written as record 2 of file 5 on
tape B2; preceded by its identification (11) and word count,

COMMON - The table of common variables is assembled from tape A4
and the Section One buffer, It is written as record 3 of file 5 on tape
B2; preceded by its identification (12) and word count, °

HOLARG = The table of hollerith arguments is assembled from tape A4
and the Section One buffer, It is written as record 4 of file 5 on tape B2;
preceded by its identification (13) and word count,

TEIFNO ~ The table of corresponding external and internal formula
numbers is assembled from tape A4 and the Section One buffer. It is
searched for duplicate external formula numbers. If such are found
they are flagged as errors for Section One Double Prime. Those cases
where Section One assigned more than one internal number are not con-
sidered as duplicates and the flag is deleted, The table is written as
record 5 of file 5 on tape B2; preceded by its identification (0) and word
count. It is retained in memory for use in processing tables discussed
below, '

TIFGO - The tables of IFs, GO TOs and ASSIGNs is assembled from tape
4 and the Section One buffer. Each external formula number is searched
for in TEIFNO and its corresponding internal number replaces it in TIFGO.
Any external formula numbers not found are set equal to 0 as an error
signal to Section One Double Prime. When all entries have been modified
the table is written as record 6 of file 5 on tape 2 preceded by its identific=-
ation (2) and word count.

TRAD = The table of COMPUTED and ASSIGNED GO TO addresses is
assembled from tape 4 and the Section One buffer., Each entry, which

is an external formula number, is searched for in TEIFNO. When found
it is replaced by the corresponding internal formula number. If not
found it is set equal to 0 as an error signal to Section One Double Prime,
When all entries have been treated the table is written as record 7 of

file 5 on tape 2 preceded by its identification (3) and word count,

TDO - The table of DOs is assembled from tape 4 and the Section One
buffer, Each entry is examined to determine if it originated from a DO
or from an Input=-Output List., If it originated from an I/O List the flag
that so indicated is deleted. If it originated from a DO the EFN for the
end of the DO is searched for in TEIFNO. When it is found the corres=
ponding IFN replaces it in TDO,., If not found it is set equal to 0 as an
error signal to Section One Double Prime. In those cases where Section
One as signed more than one IFN to an external number, the last such
IFN is used so that the DO includes all instructions of the terminal
statement, When all entries have been treated the table is written as
record 8 of file 5 on tape 2 preceded by its identification (1) and word
count,

II1-9




FORVAL = The table of definitions of fixed=point variables is assembled
from tape A4 and the Section One buffer.

CALLNM = The table of first and last internal formula numbers of

statements containing references to subprograms is assembled from
tape A4 and the Section One buffer.

I11-9.1




Each IFN in FORVAL is searched for as a first IFN in CALLNM, If

found it is replaced by the corresponding last IFN. When all entries

have been processed the FORVAL table is written as record 9 of file 5

on tape B2; preceded by its identification (6) and word count. The CALLNM
table is dead.

FORVAR ~ The table of usages of fixed point variables is assembled from
tape A4 and the Section One buffer., It is written as record 10 of file 5 on
tape B2 preceded by its identification (5) and word count.

FORTAG ~ The table of tag usages is assembled from tape A4 and the
Section One buffer. It is written as record 11 of file 5 on tape B2 pre=~
ceded by its identification (4) and word count,

FRET - The table of frequency statements is assembled from tape A4 and
the Section One buffer. Each EFN in FRET is searched for in TEIFNO.,
When found it is replaced with the ¢corresponding IFN, If not found, it is
set equal to 0 as an error signal for Section One Double Prime., The FRET
table is now sorted by IFN to form an ordered list,

The TIFGO table is now re~examined for any entries for COMPUTED GO TO
statements. The IFN of each such statement is searched for in FRET, If
found, the list of branch frequencies is reversed to correspond to the object
program transfer vector. When all TIFGO entries have been examined,

the FRET table is written as record 12 of file 5 on tape B2 preceded by its
identification (7) and word count,

EQUIT - The table of equivalence statements is assembled from tape A4
and the Section One buffer., The table is reformatized to make those var=
iables which are equated into strings of relativelized symbols. Any found
to be inconsistant are flagged as errors for Section One Double Prime. Any
redundancies are deleted, The table is then written as record 13 of file 5
on tape B2 preceded by its identification (8) and word count.

CLOSUB = The table of names of closed (library) subroutines is assembled
from tape A4 and the Section One buffer, Duplicates are eliminated. Each
name in the CLOSUB table is searched for in the SUBDEF table. If found,

it is deleted from CLOSUB as being a dummy name, The table is then written
as record 14 of file 5 on tape B2 preceded by its identification (9) and word
count.

NONEXC =~ The table of statement numbers of non-executable statements is
assembled from tape A4 and the Section One buffer, It is written as recordl
on tape B3 in the 8K version, It is left in cores in the 32K version.

TSTOPS - The table of statement numbers of STOP and RETURN statements
is agsembled from tape A4 and the Section One buffer. It is written as record

2 on tape B3 in the 8K version, It is left in cores in the 32K version,

II1-10




MISC, = One is added to the last IFN used and it is left for Section One
Double Prime,

SUBROUTINES - There are two subroutines used by Section One Prime,

TAPOO « Table Assembly Program assemble tables written on tape A4

during Section One,

termine for a given table:

1.
2.
3.
4.

The calling sequence in Section One Prime supplies the:

1.

2,

number of records on tape A4,

number of words in each record,

number of words remaining in the core buffer,
first location of core buffer,

It uses the parameters left by Section One to de~-

table identification (which also serves to locate the
parameters left by Section One),

first location of buffer into which the table is to be

assembled,

The routine tests each table for overflow against a table of permissible

maximums,

Tables Assembled by TAPO0O:

Name

TEIFNO
TDO
TIFGO
TRAD
FORTAG
FORVAR
FORVAL
FRET
EQUIT
CLOSUB
FORMT
SUBDEF
COMMON
HOLARG
NONEXC
TSTOPS
CALFN
FMTEFN

END

Identification

Voo h WO

Pt et et et et it ped et bt et
Voo WO

Maximum word count

8K Version

750
750
600
250
1500
1500
1000
750
1500
1500
1500
180
600
900
300
300
600
500
0
15

32K Version

3000
3000
2400
1000
6000
6000
4000
3000
6000
6000
6000
180
2400
3600
1200
1200
2400
2000
0
15

II1=-11




WATOO0 - Writes assembled table on tape B2 preceded by identification
and word count, Calling sequence supplies identification and first locat=
ion of buffer in which table has been assembled,

II1-12




v

SECTION ONE DOUBLE PRIME

Section One Double Prime's purpose is to detect source program errors.
It does not add any further information to the tables created in preceding
Sections, nor does it create any new tables for the use of succeeding Sec-
tions. Although Section One makes a determined effort to eliminate the
errors in any one statement, no effort is made towards relating a partic-
ular statement to the rest of the program, nor would it be convenient for
Section One to do so.

The errors that Section One Double Prime is able to find are mainly errors
involving program flow, i.e., transfers to non-executable or even non-
existent statements, and conversely, no transfers to executable statements
which are not in the direct path of flow. These, and other errors, are
found through a scan of the various tables of information which comprise
the 5th file of tape B2 in the 709, and tape 2 in the 704. These tables are of
such rigid format that it is easy to examine them for correct ordering and
content. All errors found by Section One Double Prime are accumulated in
an error list by several different error routines which are described at the
end of this chapter. The table scan is only discontinued by table overflow
or a machine error,

Section One Double Prime first initializes the error list with the count of
missing format statements. The EFN's of missing format statements are
left in the error list by Section One Prime in the 709 and read from tape 3
in the 704. '

The following tables are then scanned.
TEIFNO

The TEIFNO table is scanned for duplicate statement numbers. Duplicate
statement numbers are flagged minus by Section One Prime when it assembles
the TEIFNO table. If any minus entries are found, they are entered in the
error list by the ERROR routine.

TIFGO

Each of the 2 word TIFGO entries is examined for references to non-existent
statement numbers, i.e., that there are not any zeroes except those peculiar
to the particular TIFGO format. Section One Prime gives a non-existent EFN
an IFN of zero. Further, each reference (5 must be to an executable state-
ment. Therefore, a (5 cannot be in the table of non-executable statements,
the NONEXC table. Each of the “mx different types of TIFGO entries is
checked by a specific subroutine within the TIFGO processor. This scan of
the TIFGO table will result in the checking of the TRAD table, if one exists.

Iv-1




If any errors are found, they are entered in the error list by either
the ERROR routine if (6 is non-executable or the NOBETA routine if
(5 is non-existent.

In order to do a quick flow analysis the IFNe& of a TIFGO statement is
entered in the ALPHA table, and the references (IFN (5 's) are entered

in the BETA table. The number of branches associated with a particular
TIFGO entry is also entered in the ALPHA table with the IFNX . All
TIFGO entries, except ASSIGNS, are entered into these tables. The posi-
tion of an ASSIGN in the source program does not effect the path of flow
in the program.

The ALPHA and BETA tables are internal to Section One Double Prime
and have the following format.

ALPHA
DECREMENT , TAG, ADDRESS
N 0 IFN« N:: Number of branches.
The table of STOP and RETURN statements, TSTOPS, is
a part of the ALPHA table.
BETA

DECREMENT, TAG, ADDRESS

0 or 1% 0 IFN (5
*Decrement will be 1 if @ is non-executable.

The BETA table consists of the @ 's from TIFGO, the
entire TRAD table, and the last IFNe< + 1 in the program:.
In the 704, the inclusion of machine language necessitated
the building of a second BETA table, the BETAZ table.
This second BETA table is an extension of the BETA table
and has the same format. BETAZ2 consists of the TSKIPS
table, table of skip type instructions such as CPY, CAS,
LBT, etc., and the X+ 1 of conditional transfers from
TIFGO. Conditional transfers are TXH, TIX, TMI, etc.

FLOW ANALYSIS

Example 1 < coTto @
<+ 1 DIMENSION X(5)

oA+ 2 FORMAT ({F8. 3)
. More non-executable state-

«K+M A=é + C ments,

Iv-2




A brief flow analysis is performed using the information in the ALPHA,
BETA, and NONEXC tables. Each o in the ALPHA table is the termin-
ation of a path of flow in the source program. Therefore, there must be

a transfer to the first executable statement following each o in the ALPHA
table. That is, that the IFNX+ M in Example 1 must be in the BETA

table, since (5'5 are statements transferred to. In reference to Example 1,
the flow analysis processor will first search the BETA table for «+ 1. Not
finding o+ 1 in the BETA table, it will then search for &+ 1 in the NONEXC
table, and a match will be found, Upon finding £+ 1 in the NONEXC table,
the processor will then follow the same procedure for A+ 2, &£+ 3,......,
o« + M. In searching for &£+ M, if the processor finds it in the BETA
table, the processor will then proceed to execute a flow analysis for the
next o in the ALPHA table. However, if &K+ M is not in the BETA table,
and since it is an executable statement, &+ M will not be in the NONEXC
table. Therefore, if A+ M is not in either the BETA or NONEXC tables,

it is a part of the program not reached, i.e., an executable statement with
no path of flow to it. If any errors are found, they are entered in the error
list by the NOBETA routine.

TDO

The TDO table is examined for DO statements that specify an illegal
The three legal references checked for by Section One Double Prime are:

1. That the IFN@ exists, i.e., that the reference (513 not zero.

2. That the IFN@ is executable, i.e., that the reference (5 is not in the
NONEXC table.

3. That the IFN@ is not a transfer, STOP, or RETURN statement, i.e.,
that the reference @ is not in the ALPHA table.

If any errors are found, they are entered in the error list by both NOBETA
and O(DO@ routines, in that order.

FRET

The number of branches for a TIFGO statement is saved in the ALPHA table
with the IFNel during the scan of TIFGO. Section One Double Prime ignores
statement numbers in the FRET table which are not in the ALPHA table, but
saves any statement number where the count of branches in FRET is greater
than the count of branches shown in the ALPHA table. Section Four ignores
extra frequencies given for statements other than TIFGO statements, but
would be confused by misinformation generated when there are more fre-
quencies given than there are branches. If any errors are found, they are
entered in the error list by the NOBETA routine.

Iv-3




EQUIT

If Section One Prime has found any inconsistent equivalences when
assembling the EQUIT table, it sets an error flag at the beginning of
the table and only enters those variable names which are erroneous,
and sets another flag at the end of the list. The errors are entered in
the error list by the ERROR routine.

If any errors have been found by Section One Double Prime, it spaces the
System Tape to the diagnostic and reads in D001. This is the only section
of FORTRAN that does not use the usual diagnostic caller. If no errors
have been found, tape B2 in the 709, tape 2 in the 704, is spaced over the
5th end of file mark and control is transferred to 1 to CS to continue
compilation.

ERROR ROUTINES

The three error routines in Section One Double Prime make entries in a
common error list which begins at location -1 and builds downwards. The
error routines are reached by means of a TSX , 4 and control is returned
to 1, 4.

ERROR

Makes a two word entry in the error list.

DECREMENT , TAG, ADDRESS

WORD 1 C(IR4) 0 hash or C(IR4')*
WORD 2 CONTENTS ‘
OF MQ

* The address of the first word may contain the location of a TSX to one of
the checking routines that has called the ERROR routine.

NOBETA
Makes a one word entry in the error list.

DECREMENT, TAG, ADDRESS

WORD 1 C(IR4) 0 IFN

A DO E

Makes a two word entry in the error list. A TSXto «DO( is
preceded by a TSX to the NOBETA routine.

DECREMENT , TAG, ADDRESS

WORD 1 IFN £ vV IFN(é
WORD 2 SYMBOL

Iv-4




The following is an example of a Section One Double Prime error list
resulting from a problem run on the 32K System in the 709, *

ENTRY

LOCATION DECREMENT , TAG, ADDRESS MADE BY REASON

-1 L(ETE) 0 hash ERROR
-2 IFN & 0 EFN &
-3 L(TMNO2) 0 IFN X NOBETA
-4 L(BNOTX) 0 L(TMX3) ERROR
-5 hash 0 IFN
-6 L{NOTRA) 0 IFNe< NOBETA
-7 L(CONBET)
or .

L(DOBX) 0 IFNeK NOBETA
-8 IFNeX ‘ \'A IFN «DO (3
-9 S Y M B L
-10 L(TOOFRQ) 0 IFNeX NOBETA
-11 L(BADEQU) 0 hash "ERROR

-12 BCD VARIABLE Name (Vn)

The EFN is dupli-
cated in the source
program

(3 is non-existent in
TIFGO statement &X .

Statement is in the
form of AIF (E)

@1’ @2’ (53
(33 is non-executable

for the preceding
TIFGO statement

Statement number &
is a part of the pro-
gram not reached

TDO statement o€
specifies a ( that

is either 1. CONBET
in the ALPHA table
2. DOBX in the
NONEXC table

More frequencies
have been given than
there are branches

for TIFGO statement
“ L]

An inconsistent
equivalence has been
made concerning the
variable Vn

*L( ) implies the location of the symbol within the parentheses.




\'4

SECTIbN TWO

Preliminary Description Of The Problem.
A. Tags Created By Section One.

Section Two compiles the instructions necessary to compute and index so that the
symbolic index regisiers, (tags), set up in Section One for tagged instructions
will contain their proper values. These tagged instructions compiled by Section
One refer to arrays, i. e, subscripted variables. For instance,

X = A(L1J)
will be handled by Section One as follows:

CLA A+1,%
STO X

Section One makes up a table of these symbolic tags (2°). The symbolic tag is,
in fact, a subscript combination [such as (1,7J), (K,J,I), or (M)| with given
dimensions and coefficients. The tags are divided into 3 classes, 1, 2, and 3
dimensional, and separate tables, Taul, Tau2, and Tau3 are composed for these
respective classes. The table entry for a particular tag [for instance,

(ClI+ a, C2J+a,, C3K+ a, will contain (1) its symbols I, J and K, (2) its
coefficients Cl, C2, and C3, and the dimensions D1 and D2 of the array
concerned. The tag is not affected by the addends al, a2, and a3. The effect of
the addends is handled in the address part of the tagged instructions.

B. DOs.
1. Basic Format

The biggest part of Section Two is compiling computing and indexing instructions
for DO loops and tags within them. A general format for a DO loop is as follows:

A LXD —_,7T } Section Two
B OPN '
OPN } Section One instructions
OPN' «
Bl - TXI ¥+{,T , (Decrement )
B2 TXL &,T , (Decrement )
B3 COTIX #*+1,T (Decrement )

This, of course is the simplest case. The TXI instruction at Bl increments the
tag, the TXL tests the DO loop, and the TIX resets the tag to its original load
value at A. Often, of course, the LXD address and the TXI, TXL, and TIX
decrements are variable and may require computing and initialization
instructions at location A. Further complications may résult from DO nesting,

V-1




from transfers out of DO's, and many other factors some of which will be
discussed herein. '

2. TXI Variations

The TXI decrement is a function of (a) the permutation of subscripts in the tag,
(b) the coefficients of the subscripts in the tag, and (c) the parameters N1, N2
and N3 of the DO. Sometimes the TXI must be expanded as follows:

TXI ¥%+!5 T 5 (Decrement)
SXD K , T
TIX ¥+1 , & , (Decrement)

where the SXD reinitializes the TXL decrement (test) of an inner DO within
the nest. A given TXI format with a set formula from which its decrement(s)
may be computed is called a TXI BLOCK NUMBER. There are 6 such block
numbers. This block number depends on the permutation of subscript order in
rclation to order of DO nesting (this permutation defines a group number, of
which there are also 6), the position of the subscript in the tag, whether or not
this tag will be used to test the loop, and whether there will be a carry in this
loop. '

3. TXL (test)

The TXL (test) of a DO loop will generally use one of the tags which occurs
within the loop. This tag will be chosen for its simplicity. If there are no tags
in the DO, a counter tag will be created for this purpose.

4. TIX (Reset)

In inner DO's controlling a tag, a TIX is used to reset a tag by the amount it
has been bumped upon satisfaction of the DO, This of course is not necessary
for the outermost DO controlling a tag, for it will be reinitialized upon reentry.

5. Special tags created by Section Two in DO's.

a. Stored Counter. If the symbol (I) of a DO is required to be updated in its
own cell within a DO (because of its appearance on the right side of an arith-
metic expression or because a transfer out of the DO) a counter is set up as
a tag, therefore :

PXD 0,7
STO (D)

is compiled at the beginning of the DO, and
SXD (D,

at the end of the DO.

l Sometimes an inner loop uses the test of a DO further ou;rthe nest for its test.
i.e., 1 TXL may be sufficient for 2 or 3 DO's within a nest. When this situation
occurs, the DO whose TXL is eliminated is considered to have CARRY.
' v-2




s

b. Normal Counter. A Normal Counter is created to record the incrementing
of DO's if there is no other tag on which to test.

c. Reset Tag. If there is a transfer out of one DO into another (outer) DO
in the nest, a Reset Tag is created to record how much another tag has been
incremented, and to reset it by that amount at the time of the transfer. The
resetting is done as follows: : '

SXD %, T’ Tf:Reset Tag
TIX *+1, T T =Tag to be reset
TRA (out of DO)

Section Two does not actually compile the SXD and TIX, but makes entries in a
table (TRASTO) to cause Section Three to compile these instructions when it
‘compiles the TRA instructions.

d. Added Tag. Consider .the neft

5

AE,T)

with a transfer from the J loop into the I loop. Since the subscript J is de-
pendent on the transfer from the J loop, an Added Tag (I, J) is created in
the J loop to record the increments to (I, J) by the J loop. 2'

e. Loading and Initialization. Index Register loading and decrement initial-
ization is always done as far out the nest as possible. For instance, consider

the nest | 41 , DOg I = L4
Ay| 008 T=Y,4
Azl | —008 H= XJZJW

# #)= B H)+ C (£, 7, K)

In this nest, all initialization and loading would be done at A1, If, however,

X were defined between12 and 0‘3, then the loading for (J, K) and (I, J, K) would
have to be done at ¥3. Similarly, the test initialization for the K loop would
have to be done after the definition of Z. The level of TXI and TIX initial-
ization depends on all three parameters, and so will be done after all these
parameters are defined, but still as early as possible.

In short all Loading and Initialization will be done at the very earliest point of
complete definition.

2 J in the tag (I, J) in the I loop is called a Relcon (relative constant) because it

is not under the control of a DO.
V-3




C. Relative Constants.

Relative Constants are subscripts of a tag that are not currently under control
of a DO. Pure Relcons are tags in which all of the subscripts are Relcons.
Section Two compiles subroutines to compute load values for pure Relcons.
 The subroutine will be called at points of definition of any of the subscripts.

An exception is the l1-dimensional pure Relcon. In this case the TSX to the
subroutine is not needed, and an LXD I,¥ (where I is the Relcon) is com-
piled at the point of definition. Examples.

1. Dimension greater than one.

Source Program . ' ‘Object Program
A Iz5 o A cra [L(s)
' : ' STO 1

B : TSX A)I1G, 4
£ X=A(LJ) '

-

LXD CQ)IG, T
F CLA A+l, T
STO X

A)lIG Computes load
value for (I, J)
and stores in

C)1G
2. 1 Dimensional.
Source Program Object Program
A Iz5 | 4 cra [L(s)
. : STO I
. - ¥ Lxp 1T
A X=A(l) SXD C)I1G,T

LXD C)IG,T
£ CLA A+1,T
STO X

Closed subroutines are also used sometimes in DO's; namely when a relative
constant of a tag in a DO is defined within that DO. An example is:




Object Program
< Lxp L],
Ml

- A CLA
Source Program ADD [L(l_]
STO M1
A DO F2 1=1;2 SXD 6) +1i,4
4 Ml=Ml4+1 TSX A)1G, 4
4,  A(LMI1)= A(D LXD  ¢)iG,c”’

CLA A +1,T
STO A+1,7T
A2 TXI *+1, T, 1
TXI *+1,27, D

TXL ﬂ,,’C’,ﬁa

/

If, however, Ml in the above problem had not been defined within the DO,
the closed subroutine technique would not have been used, but rather the
normal open subroutine would have been compiled atef.

Logic of Section Two.

To carry out the analysis and to deal with the various complexities involved,
there are six logical blocks in Section Two.

Block 1. Nest analysis, flow analysis.

Block 2. Subscript combination analysis.

Block 3. Relative constant subscript analysis.

Block 4. Compilation of subroutines for computing relative constant
index values.

Block 5. Compilation of loop initialization, incrementing, and testing
instructions. )

Block 6. Reordering the DO file for input to Section Three.

The write-up is divided into two parts. One part is a detailed description of
the work done by each block, and the other gives general information about
the S ection which either is essential to more than one block, or does not fit
in conveniently with a block description.

BLOCK 1. The task of this block is to examine the DO nesting structure and the
flow of the program as regards possible transfers out of DO's and also to

build up such gencral information as will be required by later blocks. The
difficulty in following the coding of these first blocks lies in visualizing the
particular DO configuration a routine is searching for, so examples will be
when possible.

The information which Section One extracted from DO statements and Input-
Output lists is contained in the tape table TDO, which, on being read in, is
further expanded into the 9 word table DOTAG to accommodate the results of
analysis.

First of all, a complete pass is made over DOTAG, determining for each DO
~ the following: ‘
i.) If none of the N's of the DO are variable, the quantity X where

V-5




X=[&L1%%i‘m]x N3, []signifying integral part. This is required for
computing end test decrements in Block 5.

ii.) The level number associated with the DO. This is 1 if the DO is
the outermost of a nest, 2 if the second outermost, and so on. E.G.,

—4
N

~

———

iii. ) Whether any of the rules for DO nesting have been violated by
the source program.

iv.) The possibility of carry between the current DO and the next lower
level DO of the nest, if any. No carry is possible if the N3 of the lower
level DO is variable. If the DO's in question are

A, DO g
vid J\‘l L0 ﬂ.:.

and A,=“4,*/ and &, =6, then carry type l is indicated as possible for
the higher level DO. Otherwise carry type 2 is indicated for that DO.

Subroutine FLOW,

A thorough analysis is now made of the structure of transfers within DO's. This
analysis is carried out ncst by nest, i.e., the DOTAG table is stepped through,
forwards, looking for DO's of level 1, since each such DO signifies the beginning
of a new nest. Having thus found the outer DO of a nest, the TIFGO table is
searched for a TIFGO (i. e., location of a transfer exit) which lies within the nest.
If there are no such TIFGOS, the program proceeds with the next DO nest, and so
on until the DOTAG table is exhausted. However, if transfers are found within a
nest, the following analysis is made:

First, the highest level DO which contains the Tifgo ofis found, and bit 1 of word
7 in DOTAG is set to indicate that this DO has a transfer within its range. This
DO will now be referred to as the TIFGO4 DO. At this point, an entry is made
for this Tifgo« in the TRALEV table, which is used by Section Three. Then a
flow analysis is carried out on each separate. possible address A of the Tifgo, in
the Subroutine FA.

Subroutine FA. The highest level Dotag containing A.is obtained, and will be re-
ferred to as the Tifgo A Dotag, with level Lp. The bit corresponding to L, in
word 8 of the Tifgo of Dotag is set, to indicate that this DO has a transfer within

its range to level L,. A somewhat complex example of the above might be:
CUTER OO K ans =
l y:

— TLbeE £ i : In this case, L _is 4, and
T TEFeO A D07 LAis 2. The second bit in
E word 8 of the Tifgo« Dotag
' would be set, indicating the
ﬁ’;] transfer level.
! V-6




The entry already made in Tralev for the Tifgos is implemented by a word
giving the advdress A and its associated level. Also, the sign bit of word 6 is
set in all Dotags for which the Tifgo transfers out of range. In the above ex-

ample, this would be the TifgodDotag, together with the DO with level 3 surround-
ing it.

Next, carry bits are erased for DO's satisfying both the following conditions:

i.) The DO is one level higher than the Tifgo A Dotag.
ii.) The gof the DO lies between the Tifgo A and the Tifgo A,

For example, the carry bits are erased for DO's marked "X' in the following
configurations, but not the DO's marked "Y'

~;;—;7-'[F(~,«.) /90(/}’ . _——)(y
i pl
B ‘ "
A
A <

The final part of the FA routine - RNC, reset no carry condition - obtains in-
formation for possible no-carry situations. For all DO's out of which this Tifgo
transfers, the DO of the next higher level is examined, and if its # is smaller

than the Tifgoa{ , then LA’ is entered in word 7 of this Dotag, unless some previous
L, , inserted for some other address of a Tifgo , was larger, in which case it is
left unchanged. This largest LA is referred to as the No Carry Transfer Level.

An exgmple is given: . : Consider this DO configuration., The RNC
; TLFc A OO routine works in this way. It starts with

L 00 X : the Tifgo{ DO and looks for the next inner

P DO whose/g< TifgoA. The DO of level 4

—— IIFCL K OO clearly satisfies the conditions, and so L

E cxt Ziper 0o (i. e., 1) would be entered as its No Carry

LA Transfer Level. RNC next takes the next

THa— lower DO in the nest to the Tifgod DO, i.e.,

the one with level 2, and the DO X now satisfies the condition for the next inner DO
whose;y < Tifgo A, so La (1) would be entered as its No Carry Transfer Level,

- too. The Tifgo.4 transfers out of no more DO's of the nest, so the analysis ends

at this point. (If, subséquently, another address A1 were found for this Tifgo,
just above the Tifgod DO, in level 2, then the No Carry Transfer Level of the

DO of level 4 would be changed to 2, but that for the DO X would be unchanged. The
results of RNC are used in the carry subroutine in Block 2.

The FA analysis is now complete for this Tifgo A, and is repeated for any other
addresses of the particular Tifgo under analysis.

The next part of Block 1 deals with DO's, one or more of whose N's are variable.
The following routines examine the ways in which such N's may be defined.

Routine SV. The first of these routines, SV, looks for possible definition by
another DO in the same nest, whose symbol is the variable N in question. The

v-7




two DO's (the variable N DO and the equivalent symbol DO) may take either of
the following configurations: ‘

i.) One of them may contain the other:
I o0 M= .., (S}‘mh'/ 0(7)

i 00 _E.SA/_, S (V(L('l("-b'e—- N DO)
l r

[ S—

The value N is fixed anew every time the loop DO for N is entered. It
can therefore be said that the level of definition of the variable N in the
DO for 1is the level of the symbol DO, i.e., 2, and this is entered as
the highest level of definition so far in the DO for I Dotag, for that
particular variable N. A bit is set in the symbol Dotag to indicate that
each new value of the symbol must be stored.

The symbol DO can not be within the variable N DO, as this would change
the value of N while e xecuting the variable N DO, and would therefore be

a4 source program €error.

ii.) The two DO's are in different subnests:

2
fe. OO Lz p,. .,

[3‘00 N e (Symbal O0)

’,"'_ Varwble ¥ OO0

If there are transfers out of the symbol DO, these would define N. The
level of definition of N is then the highest such transfer level, if it is
not greater than that of the connecting DO (2 in this case). Otherwise,
it is the level of that connecting DO. This level of definition for the
particular N is entered in Dotag, provided that no higher level has pre-
v1ously been entered for this N.

Routine TS4VA L. The second routine dealing with variable N's is TS4VAL, which
searches for their definition by arithmetic statements, and Read statements. The
FORVAL table contains the names of variables so defined, together with the internal
formula number attached to their point of definition. Only those occurring within

a DO-nest are dealt with further. If such a forval entry is the same symbol as

the variable N of a DO within the same nest, its level.- i. e., the highest level

DO containing both the forval and the variable N DO - is then the level of definition
of that N, e. g.,

T The level of definition of N is 2

2]?/_\/:: .. Forvae - (Not 3 even though the forval lies

within a DO of level 3)
Evvﬂfi(!b,( A o0




Routine RH. Within a DO for a Symbol I say, there may be a use of I, not as
a subscript, but as an ordinary fixed point variable on the right hand side of an
arithmetic statement, or in some IF expression. A table Forvar of such right
hand side variables is searched in conjunction with the DO's, and for such DO's
containing a Forvar for their symbol, a bit is set in Dotag to indicate that the
current value of the DO symbol must be stored.

Routine LB. The nests of DO formulas are scanned and the bits signifying 'This
DO contains a transfer in its immmediate range' are used to set to one, if necessary,
a bit meaning: ' This DO contains a transfer in its extended range'. This bit is
used only in section 4.

Routine EB finally writes Dotag on tape, one nest per record, for processing in
Block 2.

(These last 3 paragraphs were taken from P. 43 of 'the Tome. '

BLOCK 2. (Throughout this write-up, the symbold refers to the beginning of
a DO loop, andﬁ to the end, unless otherwise noted. )

The Block 2 analysis is carried out for each subscript combination occurrence,

at least one of whose subscripts is under the control of a DO. Only the areas
within DO-nests need therefore be examined, and so the search for tags is carried
out nest by nest, and, within that nest, DO by DO. The order in which the sub-
scripted variable occurrences (i. e., Fortag table entries) are dealt with is as
follows: The last DO of the nest is selected (this is either the highest level DO

in the nest or the highest in the last subnest), and any Fortag entry lying within
and controlled by this DO is analyzed. Then the next back DO is taken, and
Fortags controlled by this DO are dcalt with, and so on until the end of the nest.
Thus inner nested Fortags are always analyzed first.

On completion of the analysis of a tag, ii is marked as having been dealt with,
together with identical tags within the current DO.

Subroutine IDENT. Having selected a Fortag which has not been previously dealt
with, certain basic information is established by IDENT. The DO's and their
levels, controlling each subscript symbol are located. If such a controlling

DO is not found for a subscript, it is called a relative constant or relcon. (If

all the subscripts are relcons, the Fortag is ignored, as it will be dealt with by
Block 3.) The subscripts controlled by DO's are now further divided into true
'dosubs, ' and DO-relcons or DORC's. The distribution between the two is made
in the following manner:

The highest level of definition of variable N's of the controlling DO's is obtained.
Then, all subscripts whose contralling DO's are of a lower level are termed
Dorcs. The reason for this is that the index initialization values for the tag can
not be computed until the highest N definition level, by which time the Dorcs have
been assigned values by their DO loops, and are fixed point quantities (much the
same status as a relcon defined by an arithmetic statement). An example is given:

V-9




D0 4>~ K - In this example, if level 3 is

G 00 k- v the highest level of definition
e Hishest love of dalindion for N's of DO's for i, j, k, then
1 N Kiriable M3 by the rules already given, k
& for e ’ and j will be Dorcs, and i will
be a true Dosub. The index
(d,1) loading will be done before the

beginning of the i loop, and bits
are set in the j and k Dotags to
indicate that counters j and k
must be stored, and updated as
fixed point variables within those
loops.

Now, all subscript symbols of the combination fall intoone of the three categories:
Relcons, Dosubs, and Dorcs.

Subroutine NAME. Section One gives every subscript combination a tag name, i.e.,
a Tau table reference number which is a key to the entry containing the subscript
symbols, coefficients, and dimensions. Thus, all identical subscript combinations
wherever they occur, have becn given the same tag name, and if this is left un-
changed, will result in the same tag storage cell, which is updated as the tag is
updated.

The NAME routine searches for situations where it would be incorrect to have
the same tag, and it changes the name, where necessary. A search for an
identical Fortag to the current one, but which has already been dealt with, is
made throughout the nest. If such a one is found, the current tag is given a new
tag name (i. e., the next new tag number free). The way in which tags are select-
ed for processing in this block (selecting innermost tags first, and marking off
identical ones within the same DO) ensures identical tags found under this ro.tine
being in different DO's, with their subscripts having different status. Two differ-
ing situations might be:

: 10 K p——lO A

(‘»\u"),"""" oy (Cuor) Few ity

e | 1T ||
1 €,5.4) O 7 —
vo it ) . Ly = .
’ a/r‘c.;'ud'/ ,/;f;‘(' assed (LJJJ K) i /a

b a/re“d/} /m:(»e:.:.ed

In example II, the new tag strictly need not be renamed, since no ambiguity could
arise, however, this is an unimportant detail. If the search described results

in the current tag name being changed, this change will also apply to identical tags
within the same DO region. Thus in example I, all (i, j, k) tags in regions o -«
and £’ A/ must be given the new name also, and in II, (i, j, k) tags in the upper DO
for i must be changed, This is not done by block 2 (which only marks off tags as
having been analyzed, and has no access to the compiled instructions), but the
regions over which the new name applies, together with the new and old names,
are passed on to Section 3 in the Changetag table, and that section makes all the

V-10




necessary alterations in the Compiled Instruction tags. The routine which makes
the Changetag entries and obtains regions is called SPC.

Finally, routine NAME makes an entry in the table Name or Namkey for the new

tag. This table is merely a catalogue of new names together with their original
names or Tau references.

STATE B.

Only those Fortags which are 'mixed relcons,'i.e., tags at least one of whose
subscripts is a Relcon, are processed through State B and this will be dealt
with next.

A relcon subscript can be defined in two distinct ways:
i.) Bya tr‘ans“fer out of a DO for that symbol.
ii.) By appearing on the left hand side of an arithmetic statement or in
a read statement, both of which result in entries in the Forval table, giving
internal formula number and symbol. .

Definition by the first method is examined by the DSDR routine.

Routine DSDR.

A DO of higher level than the Fortag-containing DO is looked for which has as its
symbol the relcon (or one of the relcons) of the subscript combination. Having
found such a DO, subroutine Trawrd searches for definitions of this relcon R, ,
say, by transfers from the DO for Rl' which terminate above the lowest Dosub
level. * For example.

——D0 ¢
00 R,

The different types of mixed relcon are dealt with separately.

i.) 1 relcon with 1 dosub. (There may or may not be a 3rd subscript which
is a dorc.) o

Having found an R dotag with a transfer out of its range, a search is made
within the R) dotag for an equivalent subscript combination. If such a tag is
found, the required value would be in the index register at the time of trans-
fer. The current mixed relcon will, however, have been given a new tag

name by the Name routine described earlier, so a TRASTO table entry is
made to indicate to Section 3 that instructions should be compiled at the point
of transfer to save the old tag (within the RlDO in the new tag name cell for
the mixed relcon.)

If no identical tag is found in the R,DO, an added tag is created, and given the
next available new name. A Trasto entry is made as before so that Section 3
will provide the necessary index saving instructions.

* Transfers which define two relcons at once are not dealt with at this point. Voll




ii.) 1 relcon with 2 dosubs.
In this case, if transfers out of the R 1DO are found, they are

divided into two categories: ____gg Jb
: 00 £,
a.) Those which terminate above the DO E—-—-—
containing this tag. , “p—Type a)
b.) Those which terminate above the lowest G R)
dosub DO level, but below the containing DO. | é__‘—ﬁ},u s.)

If type a.) transfers occur, the same procedure is carried out as for case
i.) 1 relcon, 1 dosub. If type b.) transfers occur, a sense light ig set to
indicate their existence, but all possible type a.) relcon definitions are
found and dealt with before considering type b. ).

If type b. ) transfers exist, the method used above would become too awkward
because of the transfer out of the j range. The difficulty is therefore avoided
by making i a dorc and arranging for it to be a stored counter.

DSD115. There is yet a third possibilty given in this configuration. The R
‘ 00 ¢ is defined between the dosub
— 00 R, DO's i and j. This is essent-

- ' ially the same situation as when
type b. ) transfers, described
above, occur. The same method
is used in this situation, namely
(c20, R,) the i dosub becomes a dorc and

: indication made in the i dotag to
make i a stored counter.

messnine

—D00 J

iii.) 2 relcons with 1 dosub.

Suppose for convenience the subscript combination is (i, R 1; R,). Having
found an inner DO for, say, R,, only those transfers which define the R
relcon are dealt with. Given such transfers, identical tags are searcheé for
in those regions of transfer. ,

e. g., in this situation, the

Do .‘. : regions a(Rf"(R and £, >4,
— 00 R, are searched for an (i, Ry, R_)
00 Ry tag. If such a tag is not floundz,

an added tag is created (as des-
cribed for the earlier cases).
Trasto entries are made for both

:I regions to save the (i, R_, R )
tag within the R DO on thh 2
(i WA, ,Q2> point of transfer, in the mixed

relcon tag cell.

The routine 2R is now used to search within the R DO for an R,DO, looking
for transfers which define both relcons. This can occur in two ways:

v-12




— D0 ¢ —

DO /?/ ____DD R/

[00 Ra l—;_-,oo Rz,

| S RHAL) (LR R.)

o
N
PD
e
\-’.

An identical tag, or added tag is looked for within the R_DO and if there

is none, an added tag is created. Trasto entries are made for either or

both of the above two types of transfer situations that occur.

If there are no .more R_DO's within the RIDO, control is returned to the
single definition search routine DSDR.

Routine DS4VAL. The Forval table is now searched for the occurence of a relcon

symbol within the Fortag-containing DO. If there is one, bits are set in Dotag

so that all the dosubs are stored counters. A TSXCOM table entry is made so

that after the relcon definition there will be a TSX to a subroutine which uses

the latest values of relcons and dosubs to compute the index value. This is the

- method used by Block 3 for pure relcons.

For the 2 dosubs and 1 relcon case, as well as the above search within the fortag-
containing DO, a search is made in the areas between the two dosub DO's ol = Ay
andléj 5 in the example: If the R definition i is made a dorc, and the counter
= : i is stored. The situation is re-
l':oo J duced to 1 relcon and ‘1 dosub.
(

‘; JQJ A l)

——

This is the end of State B. All types of subscript combination are then processed
through State A, which is controlled by subroutine Branch. This is in three
parts: INS, 2NS, 3NS, dealing with one dosub, two dosubs or three dosubs as
the individual case requires. Duplicates are counted only once.

INS routine for 1 dosub. Apart from allotting a group number of 6 to the subscript:
combination (which indicates to Block 5 the ordering of subscript levels within a
combination), this routine is mainly concerned with whether the tag can be used

as a counter and as a test for the DO loop. Such is the case if the tag is a simple
dosub with a coefficient of one., If this is an unstored counter, a Trasto entry

is made to store it where there is a transfer out of the DO.

2NS routine for 2 dosubs. After assigning to the tag group number 1, if the first
dosub level is higher than the second, and group number 6 otherwise, this routine
‘calls upon the RESET routine, which is concerned with resetting the tag if there
are transfers out of the DO's, which terminate between two dosub levels.

For example. 00 ¢
-———Tw J
(¢, J)

=

— v-13




See write-up on Reset tag in general information part. The Reset routine is des-
cribed in detail under the description of the 3NS routine for three dosubs. Of
course, if there are no transfers out of the inner dosub, terminating between the
two dosub levels the Reset routine is bypassed.

(If this case is really a 3 dosubs tag, reduced by duplicates to the 2 dosub case,
the carry routine is executed as described later. ) '

3NS routine for 3 dosubs. First of all, a group number is assigned to the sub-
‘script combination according to the order of the dosub levels:

Level of subscript 1> level of s. 2> level of 8. 3 = group no.
Level of subscript 2> level of s. 3> level of s. 12 group no.
Level of subscript 2> level of s. 1 7level of s. 3= group no.
Level of subscript 3 > level of s. 1> level of s. 2= group no.
Level of subscript 1> level of 5. 3 » level of s. 2 = group no.
Level of subscript 3) level of s. 2 level of 8. 1= group no.

ON U o W N =~

Next the possibility of carry is investigated between the left and center subscripts.
If the left subscript is one level higher than the center, then the Carry routine is
called upon.

CARRY routine. This routine rules that carry is possible for the left and center
positions if the following conditions are satisfied:

i.) Carry of either type is indicated for the DO of the left subscript.

ii.) The "no cérry transfer level'" of the inner DO is lower than the lowest
dosub index register initialization level (see RNC routine, Block 1).

iii. ) The total range through which the left subscript increases within its
DO equals one increment of the center subscript. That is,

[X] for left DO x coefficient of left subscript# EV;] for center an

A bit is entered in CARWRD, (which is passed on to Block 5 in tagtag table) via
bit 11 if type 1 carry, and bit 13 if type 2 carry.

A similar investigation is carried out for the center and right subscripts. If the
center subscript level is one higher than the right then the Carry routine is again
called upon for these two positions, changing left and center for center and right
respectively. If carry is possible, bit 12 is set for type 1, in CARWRD and bit
14 for type 2.

It is now determined which subscripts will have to be reset because of transfers
out of inner DO's. If there are transfers out of the extended range of any of the
inner dosubs, which terminate above the index initialization level, then those
particular dosubs will have to be reset (see description of Reset tag in general
information sectiorg.o ‘For example:

—O0 L If j and k are true dosubs, then

E‘X ) , whether i is a dosub or a dorc,
ﬁ k will have to be reset because

V-14




the index initializing will have been done outside the j loop.

First, subscripts to be reset because of transfers outside the innerm ost dosub DO
are dealt with by the RESET routine, then those because of transfers out of the
next innermost. Reset may therefore be called twice.

RESET routine. The resetting is done by creating another tag which measures the
amount by which the subscript combination must be reset at the point of transfer.
The tag created depends .of course on the subscripts being reset, their coefficients
and the dimensions involved. Details about each tag created are entered in the
Retab table so that tags will not be duplicated if the required one already exists.
The new tag details are entered in Drumtag table for Block 5 to compile the
necessary indexing. (This table has the same format as the Tagtag table and is
called Adtag in Block 5.) Then an entry is made in Trasto so that on each transfer,
the instructions |

SXD  *+l, Reset added tag
TIX *4+1, Tag to be reset

will be compiled by Section 3.

The above process is modified if the subscript to be reset is the left-most and

has a coefficient of one, and if the N of the DO being transferred out of is not vari-
able. A normal counter, if there already is one, will suffice for a reset tag.

Since such a counter would start at N,, and a reset tag must always start at zero,
a Trasto entry is made which causes gection 3 to compile a TXI *+1, counter,
-N_, to correct this. The routine then proceeds to make the SXD, TIX Trasto
entry described earlier. Both of these entries are made by the RSR subroutine.

If however, no counter has been found so far, details of the tag required are
entered in the Adtag table * so that RSR can be called upon later, when a counter
has been established (when the nest has been completely dealt with).

Routine TAG continued. When all reset possibilities have been dealt with, the
results of the whole analysis of the subscript combination are output as a Tagtag
tape table entry. This provides Block 5 with information so that it can compile
the appropriate initializing and indexing instructions at the appropriate points.

The only further information derived from the subscript combination is for de-
ciding on end tests for the DO's controlling its subscripts. A bit is setina
controlling DO if the corresponding subscript does not carry over into the next
left, to indicate that there must be a test on this DO.:

If the subscript.combination consists solely of dosubs (no relcons or Dorcs) then
the tag is eligible for the end test of any of the corresponding DO's, unless there
are known to be counters which would clearly be better tests. A test table number
is formed from subscript position, carry bits, and group number. If the number
thus derived is greater than that already held for the DO, then this is the best

test found so far, and its name is stored in the dotag.

* This table is not to be confused with the Adtag table of Block 5. V.15




- The tag has now been fully processed, and all identical tags within the same
DO are also marked as having been analyzed. Control then selects the nest
tag within this DO for processing until all tags within and controlled by the DO
have been exhausted.

Routine DOFEND. At this point, if a counter for the DO (that within which the

tags have just been analyzed) is required, and one has not been found in fortag
such a counter is created (in subroutine Makesc). Also if there is a possibility
that no end test is needed for this DO, it is noted. (Bit 20 of word 9).

This completes the analysis for the DO, and the next back DO in the nest is
selected, and those tags under its control are analyzed, as already described.

Routine Nest continued. At the end of the nest, all those tags added because of
mixed relcons and counters are processed through the analysis routines like any
other tag, and the results, in the same format as the Tagtag table are entered in
Drumtag, (referred to as Adtag in Block 5), behind reset tag entries. The names
of these added tags are catalogued in table Name. Also, those Adtag entries made
in the Reset routine because a counter was required for the reset, and such a
counter had not been found, can now be dealt with by the RSR routine as described
under Reset routine,

Finally, if an end test for any DO in the nest is found to be unnecessary, the end
test tag name is erased from the dotag.

When all the DO-nests have been processed, control passes to Block 3.

BLOCK 3. This block completes the subscript analysis by dealing with those sub-
script combinations not already analyzed in Block 2, namely, pure relative con -
stants. A pure relcon is a subscript combination none of whose subscripts is
under control of a DO. A relcon symbol can be defined in two different ways:

i.) By appearing on the left hand side of an arithmetic statement or in a
read statement, both of which result in entries in the Forval table, giving
internal formula number and symbol.

ii.) By a transfer out of a DO for the symbol.

(Both these situations have been examined by Block 2, State B for 'Mixed Relcons',
‘but that case was considerably more complicated by the existence of DO-controlled
subscripts. However certain resemblances may be noted. )

VAL routine. This routine deals with method i. ) above. A fortag entry is selected
‘which has neither been analyzed in Block 2 (sign bit set), nor in this routine (bit

one set).

Subroutine TABSER. The entire Forval table is now searched for ocurrences of
any of the symbols of the fortag, and for each such forval, a TSXCOM table entry
is made. This table enables Section 3 to compile a TSX to a subroutine which will
compute the current index value for the tag. (The subroutine itself is compiled

V-16




by Block 4 of this section.) If the fortag has but one symbol with a coefficient
of one, the TSXCOM entry is a special one, indicating that an LXD of the symbol
into the tag suffices.

Subroutine INDO. There is however, one exception to the above rules in Tabser

for dealing with forval entries. The forval is ignored if it occurs within a DO

for one of the other fortag symbols. For example, in the diagram, i has strictly
no value after the completion of the DO (not

DO ¢ even the terminating value), and therefore
s it must be redefined before flow reaches
7" the fortag. Thus it would be pointless to
calculate the index value for (i, j, k) within
— the DO for i, when it must be recalculated
ﬁ(‘/f I'\)

later.

When all relevant Forvals in the TABSER search have been dealt with, equivalent
fortags to the current one are marked with a bit 1. The next pure relcon is
selected in the VAL routine, and the whole process is repeated until the fortag
table has been exhausted.

TAGP routine. This next part of Block 3 deals with the second method of defining
relcons, A new pass is made over the fortag table. A fortag is selected which
has neither been analyzed in Block 2, nor in this part of Block 3, (minus sign set).

SYMONE routine. There are three levels of search for transfers out of DO's de-
fining the fortag symbols. The routine from SYMONE to SYM70 deals with the
first level search. A pass is made through Dotag looking for a DO for one of the
fortag symbols. Having found such a DO (referred to hereafter as the SYMONE
DO), the TRAWRD subroutine is called upon to search for transfers out of this

DO which define only this symbolk B
' DO

lici] x Symene  TRAWRD SEALCH
Ew' \Srm 70 TRAWRD SEARCH
1~

l——-[)s. \S'Y”;oh'&_ FRALV D S‘Eﬂﬁf('h’

ﬂ ( t , N “)
For mstance in the above du’tgram, only the shaded areas of the i DO (i.e., those

not contained within DO's for the other fortag symbols) are searched for trans-

fers. If such transfers are found, subroutine PROCES is called upon to deal with
them. This will be described later.

SYM70 - SYM170. If there are more symbols in the fortag, a second level search is
commenced. A DO for one of the other fortag symbols is looked for within the

'~ Symone DO. Transfers out of areas of SYM70 DO defining only this symbol and

perhaps the previous one are searched for by the TRAWRD routine. In the example,

the areas marked in the DO for k would be searched. If such transfers exist,

subroutine PROCES is called on_as before.

 SYM170-onwards. If there are three symbols in the fortag, there may be one or
" more DO's for the third symbol within the SYM70 DO. (In the example, the first

V-17




DO for j.) The routine looks for these, and if TRAWRD finds transfers defining
the symbol, subroutine PROCES is called. After all SYM170 DO's have been dealt
with, control is returned to the SYM70 routine. In the example, the other j loop
would be found. After all SYM70 DO's have been processed, (calling on the
SYMI170 routine each time, to see if there is an inner DQO), control is returned to
the SYMONE routine, to find the next relevant DO.

Subroutine PROCES. This may be entered from any of the three search routines,

SYMONE, SYM70, SYMI170.: ‘

It is first established wheéther the fortag consists only of a left subscript symbol

with a coefficient of one as this case is conside»:d separately later.

The next task is to determine whether or not there exists an identical tag within .

the current DO, in the region of transfer, or an equivalent region. This would

mean that the index quantity is already available on transfer. For instance in

00 ¢ l this diagram, where PROCES was called

on after SYM70 had found a transfer shown,

an identical (i, j, k) tag in the marked

1 regions would satisfy the conditions, but an

(‘w) ok 5 1

(i, j, k) tag in the k loop would have the wrong
k value.

9(1— J;r)

The first step 1s to scan the Name table*, to see if the tag occurs within the
current DO. If so, the fact that its name was changed insures its occurring
within the relevant areas. A Trasto entry is made to direct Section 3 to compile
the storing of the new tag name contents in the old name cell, and control is then
returned to the calling routine.

If the tag is not found in the Name table, it is searched for using either of two
routines: TINFOR, which searches from beginning to end of a DO, or SPC, which
spaces over inner DO's for other fortag symbols, the latter routine being used
where such inner DO's could possibly exist. e.g. if PROCES is entered from the
SYM70 search and the fortag has three subscripts (as in the previous example).
If an identical tag is found, then it is in the proper index cell at the time of trans-
fer, so control is returned to the calling routine. If not, a Trasto type 6 entry

is made so that Section 3 will compile instructions to TSX to a subroutine which
will compute the load value, and on return, to load the index cell with this value.
Then an entry is made in table IRV, which is a list of all subroutines to be com-
piled by Block 4.

Case of one symbol with coefficient 1.

As with the case already discussed, the identical tag may occur within the DO.
However, if it occurs as a test for the DO, in the form of a reset tag (bit 18 of
word 7 in dotag indicates this), a Trasto entry type 5 must be made so that
Section 3 will compile a TXI instruction for the tag with a decrement of N. This
is because a reset tag is always initialized to zero instead of N at the beginning of
- a DO loop. If it does not occur specifically within the DO, it must equal the
counter added by Block 2 (since a DO with a transfer out of range must have a
counter). A Trasto entry is made so that the counter will be stored in the tag
name cell.

* See write-up on Block 2, where Name table is compiled. v-18




This completes the description of the PROCES routine.

When the end of dotag is reached in the SYM search routines, the current fortag
and all identical ones are marked with a minus sign as having been processed,
and the next fortag not already analyzed is selected. At the end of this pass over
fortag, all subscript analysis is complete. '

In the remaining part of Block 3, the tables IRV and TSXCOM are manipulated.
The TSXCOM table is sorted into intérnal formula number order, as it is, in
effect, a list of TSX instructions which must be merged into the CIT file by

Section 3. Then the tag names from the TSXCOM entries are added onto table

IRV (which may or may not already have entries made in the PROCES routine)
and this is sorted into tag name order, duplicate. entries being removed. Table
IRV now consists of a list of all subroutines required for computing index values.

Block 3 is now complete.

- BLOCK 4. Table IRV (sometimes known as BOB) provides a list of tag names whose
index contents must be calculated from current symbol values in closed subroutines.
This block compiles the instructions required to compute, for a subscript com-
bination (c,i, c.j, csk) with leading dimensions d; and d; , the quantity:

(cpi-1)+ (c,j- 1)+ (cgk- 1)d; dj+1

COMPIL routine. This routine controls the compiling, beginning with the in-
structions

A) tagname CLA 6)+ 3
STO 1)+3

which initialize erasable storage to 1. The symbolic location is the name given
to the subroutine, and the number following the A) is the same as that following
the C) in the name of the tag cell as it appears in the final listing. (It is the Tau
reference number converted in a certain way by Section 6.)

The rest of the computation falls into three parts: one to compute (ci-1) corres-
ponding to the leftmost symbol, the next to compute ¢, jd;-d;corresponding to the
center symbol, and the last to compute cjkd,; d;-d d; corresponding to the rightmost
symbol. If any symbols are missing, the corresponding parts are omitted. All
the different coding skeletons for the different situations are stored within the
LXC subroutine, for instance if a coefficient is one, there is no need to compile
a multiply instruction for it. Given the first instruction of a block, and the number
required, the subroutine LXC outputs the appropriate coding for the part being
considered. ' '

Finally, Compil outputs the instruction

STO C) tag name

to store the result in the tag cell. Any constants required by the compilation are
entered in the table of fixed point constants (Fixcon) as they are needed.

When all entries of Table IRV have been dealt with, Block 4 is complete.

BLOCK 5. This block cdmpiles the necessary indexing instructions for the tags,
using the results of subscript and flow analysis provided by Blocks 1 and 2, main-
ly in the Tagtag and Dotag tables. ‘

vV-19




There are two main cycles: the & cycle, which provides the loading and initial,
izing instructions at the beginning of a DO, and the # cycle which compiles the
incrementing, testing, and resetting instructions at the end of a DO.

MANIPULATOR routine. This routine controls the & and g cycles in the following
way. It reads a nest of dotags, and then calls on subroutine Dogs to select the
next of or g of a DO. The order in whichs and 4 are selected is the backward
order of internal formula numbers, and if DO's have equal fs then the y-4

with the highest corresponding o takes precedence. For example, the process-

Ay ing order of this nest would be:
—Ay
—pf; ﬂf} By)Bas 2 42 0 B3, 43 oLy
2
/
2. 28
By

For any DO, clearly, the £ cycle will be called upon first, thus any initializing
instructions required for the instructions, because of variable parameters, will
have been completely specified by the time theg{ cycle for the DO is reached.

RTX routine or Fcycle. A special CIT entry of all one's is made to indicate the
beginning of a new block of output CIT's, unless this # equals the previous one
(e. g. IH, and /@b in the Manipulator routine examples), in which case both blocks
are output as one. The location-counter VCTR is initialized to the /£ internal
formula number + 8 ready for use when a location symbol is required. (8 and
subsequent multiples of 8 will be converted later into subsidiary parts of internal
formula numbers 1, 2, 3,...etc. Resulting location symbols might be 10A2,
3A1 and so on.)

After narrowing down the search for tags in subroutine Scan, by arranging to
ignore those out of range, a Tagtag entry is looked for which is modified by the
current DO. Subroutine Tetg then establishes whether the tag is a test for any

of the DO's controlling the tag subscripts. The ﬂ cycle compiling is divided into
three parts: the TXI pass for incrementing the tag and updating end test de- ‘
crements where necessary, the TXL pass, and the TIX pass for resetting the tag
to its initial yalue ready for re-entering the DO.

TXI Pass RTX. There are six different situations which may occur, resulting
in six different coding blocks - A through F. The appropriate block for the

selected tag within the current DO is chosen in the following manner.
Subroutine Pres forms a code word from the Tagtag information, consisting of

group no. posind T Ge Tt Gr
XXX XX X X X X
where the Group (1-6) is a code referring to the relative ordering of subscripts
within the tag. (See Block 2 write up for full details) Posind is 3 if the current
subscript is the leftmost; 2 if the current subscript is the center; 1 if the current

subscript is the right.
V-20




T, means that the tag is a test for the DO controlling the left subscript and

To for the center subscript.

CLc means that there is left to center carry, and Ctl\ means that there is center
to right carry.

Comparison of this code number with a table of codes and associated block
numbers establishes the TXI block for this tag in the current DO.

Block F: This means that no TXI instructions are needed, and the ,6’ state
proceeds with the next tag. The reason is that there is carry for the tag, i.e.,
this DO is incorporated within the DO for the next inner subscript, whose TXI
block will provide all the incrementing that is required.

" Block A: This is the next simplest TXI block, consisting only of
TXI * + 1, tag name,, decrement—N3g

where g=c 1 for leftmost subscript
ézd for center subscript
c:,'dld2 for rightmost subscript

¢ and d being the coefficients and dimensions obtained from the Tau table. If
there are duplicates, the N3g is calculated for those symbols too and added to
the decrement.

If, however, the decrement cannot be calculated because N3 is variable, the TXI
instruction is compiled with a zero decrement, together with a location symbol
(using VCTR described earlier). An entry is then made in the Appended Tagtag
table, a subsidiary of Tagtag itself, giving this location so that the of state can
compile the necessary initializing instrustions.

Finally, for both variable and constant situations, if the tag is a simple counter,
and the Dotag table indicates that the DO symbol occurs on the right hand side
of an arithmetic statement or in én output statement, then the instruction

SXD Symbol, Tag name
is compiled to update the symbolv itself.

Block B: This occurs when the DO for the leftmost subscript lies within that
for the center (currentDO) subscript, and the tag is a test for the left subscript
DO.. Each time the current center subscript is incremented, the test for the inner
DO must be updated. A sunple 2-dimensional example will perhaps help to |

00 =143 explain the position. In this DO configur--
¥ ation, the order in which members of the
e OO (=02 array A are to be selected is A1 ) A2 ]
] ’

Al, 2 AZ, 3 Al, 3 AZ, 3 The first time the

Al i) " DO for i is satisfied, the TXL test must
have 2 in its decrement, so as to drop out
of the loop after A is selected. However,

TaL ey 2,1
on the next DO for i cycle, when j has been
Surrent S incremented, the decrement must be 4 so

as to drop out after A, , has been selected Clearly then, the TXI block in the
DO for j must contam instructions to step up the i loop TXL decrement.
v-21




-‘
The Block B instructions are:

TXI ‘*+1,'t U-_X]N g} left + {N3g} center - 1
SXD
TIX *+1,T) {[X] N3g\ left - 1

(Note: the tag has already been reset by the amount through which it has been
incremented in the inner loop) where } N 38 left is the total amount through
which the inner DO subscript increases, N g}center is the usual increment for

a tag, as given for Block A. The SXD instruction is given the next abailable
location number, and this location is saved in the Dotag of the left subscript, so
that the address of the modified TXL may be inserted later. (Section3 does this.)

If the N's of the left subscript (inner) DO or N, of the current DO are variable,
the above decrements cannot be computed. The instructions are compiled without
the decrements, and the TXI instruction is given a location symbol, which is
entered in the Appended Tagtag table so that the & state can compile initializing
instructions. :

Blocks C and D are very similar to Block B. In Block C, the current symbol
is the rightmost, and the TXI block must modify the leftmost subscript test. In
Block D, the current subscript may be either the leftmost or the rightmost, and
in both cases the block must modify the center subscript test. Duplicate symbols
in these two blocks may cause an adjustment to the decrements.

Block E: This is the rhost complicated and occurs when the current DO is
for the right hand subscript and the relative configuration is as shown in the

Lo L - diagram, and the tag is a test for both
—— DO J ’ : the inner DO's. Both these TXL's must
00 ¢ be updated by the current TXI block.

ﬂ(‘.)él‘()

TxL~y Tl 0)

TXL om,f; ((‘,J,K)
- lurrem‘p

The Block E instructions are of the form:

TXI *+1, T, El X] N3g} center + {ng} right - 1
XD Resall ) L . Lo .

TIX *+1, T, {{X] N3g} center - 1

TXI *+1, T {[X] N3g} left -

SXD rae, b

TIX *+1, {[x] N }1eft -

As before, the SXD instructions are given symbolic locations, which are saved
in the corresponding Dotags. If the N's for the DO's are variable, the instruct-
ions are compiled without decrements, and entries are made in Appended Tagtag
so that the decrements can be initialized.

* [X] is the integral part of N, - N} + Ny
. N;

v-22




RTX160 For all block numbers, if the tag is the best test for the current DO,
its index is saved for the TXL pass later, Control now returns to select the
next tag modified by the current DO and the process is repeated.

RTX180 After the Tagtags have been processed, the Adtag table of tags added by
Block 2 is searched for those modified by the current DO. Instructions are com-
puted as for ordinary Tagtags, except that block numbers can only be either A

or F, since added tags are never used as tests for DO's. Corresponding to the
Appended Tagtag table, there is an Appended Adtag table, for the variable N
situations where decrements cannot be compiled. When all relevant Adtags have
been dealt with, the TXI pass is complete.

TXL Pass RTX 200 If the current DO does not require a test, then neither the
TXL nor the TIX pass is necessary. If a test is needed, the best tag is selected,
and a TXL instruction for the tag is compiled as follows, whith the next free
location symbol attached. If the N's of the DO are variable, a zero decrement is
compiled, and a variable indicator bit is set in Dotag to inform the A state that
initialization ig required. If the N's are constant, then the decrement Nzg +S' +X2
is computed, where g=c for left symbol , °2d1 for center symbol, and
c3d1d2 for right symbol, and
6’, :icledl - dl} center if the center subscript lies
to the right of the current

subscript
=0 otherwise
and X)f' IC3N1d1d - dldzlj right if the right subscript lies
- 2 to the right of the current
\ one

= O otherwise

TIX Pass RTX 222 A pass is now made over the Tagtag table, looking for tags
modified by the current DO, in the same way as the TXI pass. Each of these tags
must be reset by the amount through which they were incremented in the loop,
ready for the next entry of the loop, unless i. ) there is carry, which is not pre-
vented by the tag's being a test for the DO, and ii. ) this DO is the outermost of
the controlling DO's - in which case the index will be reloaded before the next
entry. In case ii.), the instruction DED with this tag, is compiled to inform
Section 5 that the index is no longer needed. If the N's of the DO are constant, the
instruction

TIX * + 1, tag, (X] N,g

is compiled, where [X] =the integral part of N2 - Ny + N3‘ and g is ¢, or c2d1 ,
N3
or C3d1d2 as explained earlier. If there are duplicate symbols, the decrement is

adjusted accordingly. If this is the first TIX instruction after the TXL, then the
instruction is given the next symbolic location available.

If the N's of the DO are variable, the instruction is compiled with a zero decrement
and a location symbol, the latter being entered in the Appended Tagtag table.

v-23




When all relevant tagtags have bee'n dealt with the same is done for the Adtag
table, entries being made in Appended Adtag when required.

At the end of the TIX pass the /?state or RTX pass is complete. Control is now re-
turned to the Manipulator routine to select the next 4 orﬂ of a DO for processing.

A cycle - AC routine. The VCTR location symbol is initialized to the internal
formula number of the A of the DO, ready for the 4 cycle compiled instructions,
and an all ones entry is made in CIT to signify the beginning of a new block of
output entries. Also, an entry is made in the SXDTX table for this DO, giving
the A and g internal formula numbers and the relative location of the correspond-
ing TXL instruction. Section 3 uses this table to fill in the addresses of the SXD
instructions, compiled in the TXI pass of the/cycle, as the TXL locations were
not known at the time these were compiled.

ACO010 The routine looks for a tagtag entry for which the current DO is the outermost
controlling DO. The next task is to compile instructions to compute and load

the index for the given tag, as when this DO is reached, at object program time,

all variables concerned have been defined.

If the tag is a reset added tag, all that need be compiled is
LXD 6) + 2, T

which loads the index with zero. (Actually, this situation does not arise until the
added tag pass is made, after all tagtags have been dealt with.) If the tag is a
simple case of only DO-controlled subscripts, and a constant N, then the
quantity: \ ) . j .

. _ A - ’ .
) {clNl 1l left  + {cledld,Jbenter + Lc3Nldld d d} right
is computed and entered in the Fixcon table. (The N's in the expression apply to
the DO controlling the subscript indicated.) The instruction LXD 2)+n,T is com-
piled, where n is the relative location of the constant in Fixcon. A location
symbol derived from VCTR is given to the first instruction of the block.

If, however, the load value cannot be computed at Fortran execution time, the
instructions must be compiled to complete expression (i) at object time. If any
subscnpt symbol is a relcon, then the corresponding N is replaced by the symbol
itself. L)' c 2! c 3’ ‘ 15 center _,( |\§ right are all one, then the expression re-

duces t° N { left (or S if the left symbol is a relcon), so a simple LXD of this
symbol is ali that is necessary. The instructions for computing the three parts

of the expression are compiled in three separate routines AC049B, AC064, AC080.
If any of the parts are constant, or if any coefficients are one, advantage is taken
of the situation. Any constants, such as d|, d,d, that are found to be required
are entered in Fixcon and their symbolic addresses are of the form 2) + a.

AC 100+2 The next part of the 4 cycle is concerned with the initialization of end
test decrements. In front of the outermost DO loop, initializing instructions for
inner DO tests may be necessary for either or both of two reasons; firstly the

N's may be variable, and secondly, while the associated DO's are being carried

V-24




out, the decrement may be updated by SXD instructions (see TXI pass for
Blocks B, C, D, E). If only for the latter reason, then the initial value can be
computed in this routine. The quantity is Nzg + 3, +32

where }',', = {c N d1 - d,}center ‘ » if the center subscript lies
21 to the right TXL subscript

-—
-—

0 otherwise
. if the right subscript lies to
=c¢,Ndd -d,d ht - g
% “371%1% 192 T8 the right of the TXL subscript
= 0 otherwise ' :

(see the TXL pass in the B state. )
The constant is entered in Fixcon, and the instructions

CLA 2) + n
STD (TXL location)

are all that are required. If the TXL decrement is genuinely variable, then in-
structions to compute the above quantity must be compiled. These are made as
simple as possible, and if for instance, N_ is constant, then N_g is computed in
this routine. Use is made of routines for'%alculating the indexaoad value, in .

the earlier part of the. state.

Having dealt with test decrements corresponding to all 3 symbols, then if the
tag is a stored counter, the symbol must be initialized to the value Nl’ 80 the
instructions ’ :
PXD 0,

STO Symbol

are compiled.

AC 165 The appended tagtag table is now searched for an entry for the current

tag indicating that there are variable TXI or TIX decrements. If not the A state
is complete for this particular tag. Otherwise, each symbol of the tag is taken

in turn, as.in the AC100+2 routine. If the TXI block decrements associated with
the corresponding DO for a symbol, are variable, then, according to the TXI block
number, a routine is called upon to compile initializing instructions. It is not
possible in this discussion to give full details of the compilations in the different
‘circumstances, since they are so many and varied. :

AC 200 In the same way, each symbol of the tag is taken in turn once again, this
time to see whether the associated TIX instructions have variable decrements.

If so, instructions are compiled using some of the routines already used in the
TXI part, optimizing of course, wherever possible.

Compiling is now complete for this tag, and control is returned to the beginning
of the o state, to find the next relevant tag.

When thé tagtag has been exhausted, the Adtag table is processed in the same way.
If no instructions have been compiled in these routines for this particular of , then

vV-25




the instruction
o BSS 0

. is compiled so that the internal formula number will be given a location. Control
is now returned to the Manipulator routine, to obtain the next A or § for pro-
cessing. :

MANIPULATOR continued When instructions have been compiled for all As
and /3. of a DO-nest, a zero CIT entry is made to indicate this to Block 6. After
all the nests have been processed, control passes to Block 6.

BLOCK 6. The order in which Block 5 compiles DO instructions for a nest is the
backward sequence.of & and/. of the nest, although within each A and /£ block, the
instructions are in the natural order. The { and/# blocks of CIT's must therefore
be inverted, so that Section 3 can merge the DO file with the COMPAIL file,

output by Section 1. The beginning of each block is marked by an all one's CIT
entry, and, after reading a niest of CIT's (the end of a nest being marked by zeros),
Block 6 searches from the end of the nest until an all one's fence is found. The
instructions just scanned are output as the DO file, and would correspond to the
first o{ of the nest. - Block 6 then looks for another fence, and so on, until the
whole nest is output. When the DO file is complete, control passes to Section 3.

V-26




TABLES CREATED BY SECTION TWO (Alphabetical List)

ADTAG (Block 2) - Memory table.

There are two different types of entries:

i.) 'Normal' - Relevant DOTAG index Current tag name (TS)
(called Xl)
"TL1 (level number) TL2 (level number)

This entry is made by Subr. RESET, and contains information about the
possible use of a counter as a RESET tag.

ii.} 'Not Normal'|Relevant DOTAG Index | . FORTAG TAU reference
New tag name for Added tag

These are details of a tag created by Block 2, in State B.

ADTAG (Block 5) - Memory table.

This is called DRMTAG by Block 2, and has the same format as TAGTAG. (see
TAGTAG)

APPENDED ADTAG (Block 5) - Memory table.

This bears the same felatioh to ADTAG that APPENDED TAGTAG does to TAGTAG. ‘
(see APPENDED TAGTAGQG) ‘

APPENDED TAGTAG (Block 5) - Memory table.

There is ' an APPENDED TAGTAG entry corresponding to each TAGTAG entry.
While processing the TAGTAG in the B state of Block 5, locations of variable TXI
and TIX decrements are entered in the table.

S : Y ‘ 35
For left For center Fdr right or left For center | For right
subscript | subscript subscript [subscript | subscript subscript

- f — \___ S e ——
Locations of variable TXI's ' Locatmns of vanable TIX's

BOB see IRV

- CHANGETAG (Block 2) - Memory table.

Beginning of Region End of Region
FORTAG TAU reference New tag name
(ongmal tag name) ’

The table is used by Section Three to change the tag names of all identical FORTAGS

within the given region. 1
- v-27 i




DOTAG Tape 2 Table

This table is derived from table TDO. Information concerning each DO is added
throughout Blocks 1 and 2. ‘

word 1) A (Internal) [I|II ﬂ(Internal)
word 2) ' i .
word 3) | N1
word 4) N2
word 5) ' N3 R
word 6) |[|[Level # of this DO X=[Nz - N1+ N3]
, L N3 ]
word 7) N : ' ' Level of definition of vari-
- able N1
word 8) Contains bits, the " | Level of definition of vari-
rightmost of which de- able N1
termines the highest
level of transfer from
this DO.
word 9) S - 5 Name of tag || || Level of definition of vari-
' Erasable | which will be ; able N3
used for test.||

The I, II, and III in the tag of word 1) indiqate whether N1, N2, or N3 are vari-
able respectively.

Words 2), 3), 4) and 5) are left-adjusted BCD,if variable. Otherwise they are
binary and in the address.

Word 6) Sign Bit: This DO requires an unstored counter.
- Bit 1: This DO requires a stored counter.
Bit 2: X is not computable.
Bit 18: I is associated with a Relcon and this DO does not have Type
I carry.
Bit 19: Type II carry.
Bit 20: Type I carty.

Word 7) Sign Bit: Transfer in extended range of this DO,
Bit 1: Transfer in immediate range of this DO.
Bit 2: Iis formed above as a subscript in this DO.
If N € level of ¥ (I), then there is no carry.
Bit 18: There is a countér to be used as a reset.
Bit 19: Nullifies effect of Bit 18,

Word 9) Bit 19: There are no tags except mixed RELCONS in this DO.
Bit 20: This DO's TXL has a variable decrement.

DRMTAG (Block 2) - Memory table.

DRMTAG entries are the results of analysis of added tags in Block 2. (This table
| | v-28




is called ADTAG in Block 5.) The format is the same as TAGTAG format.

IRV (or BOB) (Block 3) - Memory table.

This table consists-of the second words of TSXCOM Type 2 entries, (see TSXCOM),
in numerical order, with duplicates omitted. In effect, it is a list of all sub-
script combinations whose index values must be computed in subroutines.

NAME (Block 2) -

Memory table.

DOTAG X

FORTAG TAU reference
(old tégf name)

New tag name

This table is a list of all tags whose names have been changéd from the TAU

reference number to a new name.

RETAB (Block 2) - Memory table.

Entries are made in Subroutine Reset, ngmg details of each reset tag created
to avoid duplicate reset tags.

The first word is

prefix

Rebits

Current DOTAG
Index

Current FORTAG TAU
reference

The second and third words depend on the subscript (s) to be reset.

Left
R U
0 0
.
0 c;_
d) o}
- R
0 - C3
d1 _ dzn

TAGTAG (Block 2) Tape 4

(L c
“1 “A
d) 0
L,R
Cl C3
d 1 4%
. c, R
2 €3
a a.
1 2 |

This table contains the results of analyzing the tags in Block 2. (counters created
by Block 2 are alsq included) :

The format for both DRMTAG and TAGTAG is as follows:

vV-29




Innermost controlling DO First subscript DOTAG index

Second subscript DOTAG index Third subscript DOTAG index

FORTAG TAU reference (original Current tag name (if reset, 'Rebits'
tag name) are in 22 - 24)
or 0, if reset or added tag

Bits in this fourth word are as follows:

S bit from CARWRD, if tag is left subscript only with coefficient
8 if left subscript test :

9 if center subscript test } Test indicators set in Block 5.
10 if right subscript test '

11 if pos™8 1 & 2, Type 1 carry .

12 if posns 1 & 2, Type 2 carry carry bits from CARWRD
13 if pos™ 2 & 3, Type 1 carry '

14 if pos™® 2 & 3, Type 2 carry

15 - 17 Group Number

21 - 23 Indicates which coefficient > 1

24 - 26 Duplicates

30 - 32 Relcons and DO-relcons (Dorcs)

33 - 35 Dupes and Dorcs

TRALEYV (Block 1) Tape 4

Entries are of variable word léngth.

First word - TIFGO @A
For ea_ch address TIFGO a‘ddi'ess Lievel of address
of the TIFGO

TRASTO (Blocks 2 and 3) - Memory table,

There are 6 types of entries, all of which specify internal formula number inter-
vals A to /9 level number intervals and other information. Section Three uses
these entries to compile 6 types of indexing instructions in conjunction with transfer
control statements, whose internal formula numbers fall within the specified
formula number interval and whose transfer addresses lie within the specified

levels.

The different types of entries and the resulting compilations are given:

V-30




A g
L | L, L Where level L, > L, > 0
T TL , - T,and T_ are tag names (contents of Bits
18 - 20 gf word 1 may be non-zero)
Compilation:
SXD C) Tz ’ T1 »
. ' = . where CI)TZ is the tag cell of T,
LXP C) T, T,
Type 1I :
A | S "LYO0

BCD fixed point variable 2

L, T1 , o Compilation: PXD 0, T
STO (symgol)

Type III
-A |/ ;
L1 L2 : n is a binary intefer
T n_ | : : C.ompilation:. TXI *+1, T, - n
Type IV
A | A
L, L L,> L17 0
-T, | T, - Compilation:  SXD *+1, T,

TIX *+1, TZ' 0

T1 refers to a reset tag.','I‘z to the tag to be reset.

Type V
- A £ » n is a binary integer
Ll L . ' o
2 Compilation: = TXI*+l, T,n

V-31




y>4
-0 L 1 ' Compilation:
T

Where A)T is the name of the subroutine computing the index value of T, and

C)T is the tag cell.
TSXCOM

There are 2 types of entries.

SXD
TSX
LXP
LXD

Type I _FORVAL 4 Tag name

FORVAL symbol

6)+5, 4
A)T, 4
C)T, T
6)+5, 4

This indicates to Section Three that LXD symbol, T must be compiled following

the FORVAL.

Type 1I

FORVAL A

Tag name

This indicates that a TSX to a subroutine, which will compute the index value,

must be inserted after the FORVAL.

V-32



VI

' SECTION THREE

The MERGE has the primary function that its name implies. That is, it must
merge or collate the different files of compiled instructions (CIT's) that are
available to it. There is, however, an important additional function which the
MERGE serves. This is the creation of an additional file of instructions. This
additional file is-based on information gathered by Section Two and passed on
to the MERGE ‘in the form of tables.

- The MERGE, therefore, falls naturally into three main Divisions: Merge I -
merges the two files passed on to it by Sections One and Two respectively;

- MERGE II creates the additional file of instructions; MERGE III merges the two
files of instructions now existent. The two files of instructions compiled by
Sections One and Two are the Compail and the Compdo files. The file created
in MERGE II is called the Tifgo file. The results of the MERGE I file is called
simply the Firstfile. MERGE III, of course, merges the Firstfile with the
Tifgo file.

At the end of MERGE III, then, a single file of CIT's exists and is passed on to
Section Four. This single file is essentially the completed compiled program.
That is, it contains all the instructions necessary for the translation of the
source program, on the assumption that the object machine contains as many
index registers as there are symbolic tags in the single file of instructions.
Therefore, the remainder of the FORTRAN Executive Program is devoted to
two main tasks: "

a.) Substituting absolute index registers for the symbolic index registers
assumed up to this point. -

b.) Inserting the load and save index instructions required by the limited
number of absolute tags.

It is important, further, to point out that the additional file of instructions

created in MERGE II does not result from any further analysis of the FORTRAN

Source Program as such. Rather, it is compiled from tables which are

themselves the result of such analyses. The MERGE, therefore, does no

analytical work of its own; it simply stands at the crucial crossing point between

the first part of the compiler which does the basic analysis and the latter part
which handles the index register problem and the assembling problems.

Partially as a result of this critical position of the MERGE in the over-all flow
of the FORTRAN Compiler, the MERGE is given certain additional subsidiary
tasks to perform as it do-« its primary merging tasks. In this description,
these subsidiary tasks will be listed and described in their appropriate place.
It is only worth noting here that many of these tasks could theoretically have
been done earlier; that they were not done earlier and were, instead, left to

Vi -1




the MERGE is, to a great extent, a matter of convenience for the earlier
analyses. The fact that the MERGE must make several complete passes over
all the CIT's makes it simple for the MERGE to make the insertions required
by these subsidiary tasks.

MERGE I.

A. The merge of the Compail and the Compdo files occurs by simple numerical
collation. The two files are on two separate tapes, and, of course, exist in
100 word records, that is, 25 instructions per record. The first word of each
instruction contains the internal formula number. As was pointed out earlier,
the internal formula number is physically present only for the first instruction
of the translation belonging to any unique source statement except where a
source program statement gives rise to more than one intérnal formula number.
Stated another way, the first instruction of such a block will have the internal
formula number in the first word whereas all the other succeeding instructions
of that block will have zero in the first word. Therefore, the instructions

* exist in blocks, each of which is headed by an instruction with an explicitly
stated internal formula number.

Furthermore, this internal formula number may have an increment part; that
is, a number in the address field as well as the decrement field. Keeping this
in mind, it is easy to visualize the manner in which MERGE I.goes about inter-
relating the instructions from the separate Compail and Compdo files. The
internal formula numbers are compared and the block headed by the smaller
number is compiled first. Whenever the numbers are the same, the Compail
block is compiled ahead of the Compdo block.

B. Additional MERGE I functions.

1. CHTAG table. As a result of the Section Two analysis, it may be found that
certain tag (subscript combination) names must be changed. To indicate the
name change, an unedited change, this table (see illustration) specifies, in
addition to the name of the tag and the new name to which it is to be changed,
the range of the problem over which this tag is to take the new name. This
range is indicated by two internal formula numbers. An example of the
significance of the range is illustrated here:

P
¢ 1

AL

-

ACE,0

M

J(‘

VI -2




'This problem will give rise to three unedited change tag table entries, for the
subscript combination (I, J). These three entries will cover the ranges
respectively of pand q, r and s, and t and u.

If the table were unedited, it would be necessary for the MERGE to scan and
test every tag field of every CIT appearing within the given ranges. In order to
avoid this extended testing, the table is edited; the editing enables the exact
location of the tags requiring changed names to be localized from a range of
several statements to a single statement.

Therefore, the first task that MERGE I performs is the editing of the change
tag table. This editing occurs with the aid of the FORTAG table which contains
an association of tag names with specific internal formula numbers. The
edited change tag tables, therefore, are the same as the unedited table with the
exception that a range of statement has been reduced down to a single statement
number. While scanning the CIT's during the merging process a test is made
on statement numbers to see if they match the number in the edited change tag
table. If they do, the new names are inserted in the tag field.

2. The SXDTX table. Section Two may find as a result of subscript
combinations within DO nests that it is necessary to change a decrement value
of a TXL instruction ending a DO, This will usually be in inner DO's where

the index is the same as the leftmost subscript symbol in the subscript
combination. Of course, it assumes that this subscript combination is used for
testing the end of the inner DO, At the time that Section Two is compiling the
SXD instruction which inserts the new test value in the TXL instruction it does
not know what the internal formula number designation for the TXL instruction
will be. Therefore, it makes a table indicating this internal formula number
allowing the MERGE to complete, by filling in the address, the SXD instruction.

3. Open Subroutines. Whenever an open subroutine reference is encountered,
during the compilation of the arithmetic instructions, a CIT is compiled which
is merely a signal to the MERGE. This signal tells the MERGE not merely
that an open subroutine is necessary at this point, but it also designates which
open subroutine is giving information about where the argument is to be found
and whether the output of the subroutine is to be left in the accumulator or MQ.
Encountering this signal CIT or CIT's, the MERGE inserts the appropriate
open subroutine. The designations referring to input arguments and output
results, of course, pertain to the problem of arithmetic instruction linkage.
With the completion of these functions the MERGE has produced a single file
of instructions called the Firstfile.

]
w

VI




MERGE II.

MERGE II of Section Three does not do any merging; it produces a new file
of instructions. The tables used in producing this Tifgo file of instructions
are the TIFGO and TRAD tables from Section One and TRALEV and TRASTO
tables from Section Two.

The need for the Tifgo file of instructions arises in the following way.

The main body of computing and indexing instructions, included in the Compdo
file, are associated with the beginning and end of DO's. That is, the internal
formula numbers of their CIT's have the internal formula numbers belonging
to the DO statements themselves and the final statement in the range of these
DO statements. However, indexing instructions belonging to DO nests may be
associated with statements within the range of DO statements. The entire
Section Two mechanism is set up to do compiling of the beginning and end of
DO indexing instructions. It does the analysis necessary for the indexing
instructions required within the range of DO's but does not compile the
instructions. Instead it prepares the two tables TRALEV and TRASTO, which
are a summary of this information.

All of these types of indexing instructions arise from the fact that transfers
occur within DO's, specifically transfers going out of the range of a DO. In
considering this problem, an entire DO nest, involving possibly many levels

of DO's as well as many DO's on any given level, must be considered.
Consequently, a transfer out of a DO within any DO nest may be a transfer
entirely outside the nest (that is, to level zero) or to another DO within the
nest (that is from level 1 to'level n). Specific Tifgo instructions are caused by
the fact that some indexing must occur before a transfer out of the DO is made,
provided that the configuration of DO nest within the nest, subscript combinations
within the nest, and the uses of DO indices are such that indexing instructions
are required.

There are, in fact, six different sets of indexing instructions which may
precede any individual transfer. These six sets account for six different
types of TRASTO entries, as illustrated in V. Either one or a combination
of these sets may be required before any transfer. The TRASTO tables are
numbered: this means that the instructions corresponding to each type of
TRASTO entry must occur in the sequence indicated by the number. In
setting up the TRASTO table entries, Section Two determines the relevant
facts with respect to both the location of the transfer instruction itself and
the transfer addresses of any single source program instruction.

No detailed explanation will be given here of the specific reason for each of
the six types of TRASTO entries. Briefly, however, we can note that three
of them arise from the class of problems described in Section Two as
"reset'" problems. It has already been noted that a reset must occur before
starting the recycling of an inner DO. By a simple extension of this, the
same kind of resetting must occur when a transfer is made from an inner DO

VI -4




to a point within the DO nest. This is, simply, so that the inner DO index
will have been reset on the next repetition of the inner DO. Another TRASTO
entry is required when the area of the transfer address has an arithmetic
statement with the inner DO index symbol on the righthand side or,
correspondingly, has that symbol in an output list. Another is required to
effect a transfer, within DO's, to one of the A) subroutines. The final one is
required to effect the proper saving of an index value or subscript combination
tag when a transfer defines the tag value. This covers the following case:

Let a DO on I be within a DO on J. Let the subscript combination (I, J) appear
in the inner DO and the outer DO. Further, let there be a transfer from the
inner DO to the arithmetic statement containing the subscript combination

in the outer DO. Since these two subscript combinations receive different
names by the method of the Section Two analysis, provision must be made to
shift the index value from one name to the other.

In setting up TRASTO tables, Section Two, much as in the unedited change tag
table , designates a range within which the relevant Tifgo (IF or GO TO)
instruction occurs. Furthermore, a range is left for the level of the
particular transfer address in five of the six TRASTO cases. It is these facts,
along with the necessary ordering of TRASTO instruction sets, which create
whatever compensating complexity exists in the MERGE Il compiling section.

The MERGE II analysis proceeds in this general manner. It uses the TIFGO
table as its guide. In this connection, it must be remembered that the TRAD
table is simply an extension of the TIFGO table. It simply supplements those
TIFGO entries arising from computed GO TO and ASSIGN GO TO statements.
When it comes across a TIFGO entry it checks to see if it is also in the TRALEV
 table. If it is not, there is no further concern for possible TRASTO instructions
and the direct transfer addresses are compiled into the relevant transfer
instruction. By direct, we mean here the number given in the source program,
translated into its internal formula number. When the transfer or TIFGO

entry is in TRALEYV, there arises the further possibility of TRASTO entries

for any of its addresses. The TRALEYV table, it must be remembered, lists

the levels of each of the transfer addresses. Consequently, a search is made
through the TRASTO tables, first, for those entries indicating the

appropriate range of the TIFGO internal formula numbers, then, if that is
found, a search to see if the TRASTO entry designates the level range
corresponding to the level indicated by the TRALEYV entry. If these

conditions are met, then MERGE II compiles the indexing instructions
corresponding to this type of TRASTO.

V1 -5

m



The only complexity that arises here is with the handling of the internal
formula numbers. The following illustrations cover both the ''no TRALEYV
entry' and the "TRALEYV entry found" cases.

IF (...) ﬂ/ Jﬂzl /83

No Tralev entry Tralev entry with Trasto entries
agreeing to formula numbers /gaoa/,ea,
(first two branches only)
oA — : .
. Instructions corresponding »
- to IF statement A
- Instructions corresponding
TZE /5 - to IF statement
TPL A3
TRA
/8/ TZE Jd*+/4
TPL Ay
TRA A +AG
A+ 10,
- Trasto-type Tifgo instruction
TRA /92
At 3Gy e

Trasto-type Tifgo instruction

TRA /5;

The most important subsidiary task performed by this part of the MERGE is
the putting together of the ASSIGN CONSTANT table. This comes about as a
byproduct of the scan of the TIFGO table, which contains the ASSIGN GO TO
entries. The ASSIGN CONSTANT table appears subsequently as the 5) block,
containing the transfer instructions to each of the possible ASSIGN GO TO.
addresses.

With the completion of MERGE II, a new file of instructions exists,. containing
the computing and indexing instructions arising from transfers within DO's.

VL -6




MERGE III.

The task of MERGE III is comparatively simple. It simply does a direct
merge on the Firstfile and the Tifgo file. Here too, the principles of the
numerical collation apply. It might be noted that in some cases, MERGE II
will simply have supplied transfer addresses for instructions which were
partially compiled in Section One. That is, the Section One instructions
will be complete except for addresses. In this case, the two instructions
are brought together by ''oring'" one over the other.

The primary subsidiary task here is the insertion of the instructions arising

- from the TSXCOM table. This too, provides the instruction resulting from
the definition of a relative constant and there are two types of TSXCOM
entries: One providing the transfer to the A) subroutine, the other, providing
for a direct load into anindex register from the relative constant cell.

All that remains for the MERGE to do is follow the main file of instructions
with the two secondary files of instructions compiled by Section One and
Section Two. These are the arithmetic statement function instructions and
the A) subroutines, respectively.

At the end of the MERGE all instructions resulting from an analysis of
touring the source program are complete, except for the existence of
symbolic tags, rather than at the absolute tags. This provides the main task
of Sections Four and Five.

v1-7

I



e

VII

SECTION FOUR

PART 1

The first task of this part is to divide the object program into basic blocks, a
basic block being a stretch of program with but one entry point, and one exit
point. In order to do this, a pass is made over CIT looking for transfers,

tests and skip type instructions. Transfer and conditional transfer addresses,
and the locations of instructions following skip type instructions or TXLs (end
tests of Dos), are all entered in the BBLIST table once only, in algebraic order,
by means of a binary search technique. The assigned Go To instructions are
ignored for the moment. '

During this pass, when a TXL is encountered, both its location and address are
entered in the DOLIST table, thus providing a list of the beginning and end

locations of all Dos, in end location order.

Routine As sign

A new table, TIFRD, is now formed from the Assign and Assigned Go To entries
in the TIFGO table, together with the associated entries in TRAD. (Tifgo
entries are of a fixed word length, and the Trad table was therefore created to
accomodate all possible Assign Go To transfer addresses) At the same time,
all the transfer addresses are entered in BBLIST. ‘

BBLIST now constitutes a list of the beginnings of all basic blocks in the
program, in the order in which they occur. The basic block number which is
referred to later, is the relative address of the partmular basic block within the
BBLIST table.

Subroutine F'req

There are two types of Frequency Statements in the Fortran language:

1) A type referring to conditional transfers, est1ma.tmg the frequencies of the
various branches taken.

2) A type estimating the loop counts of Dos with variable parameters.

The first type gives rise to a frequency table entry containing the internal

formula number of the corresponding coding, followed by as many frequency

estimates as branches. Given frequencies (4,,<,,4s,¢cc.cc..c.. 4, ) tl}
)

routine modifies them to form quantities (;_ ) Lt Ly P Apthgth
‘g—“ -‘—x‘—l g,——".

The significance of this will be explained later.

VIii-1




The second type gives rise to a 2 word entry containing the internal formula
number corresponding to the Do followed by the estimated loop count. (The
length of this type of frequency entry - 2 words - distinguishes it from the
first type, which is always longer.) These Do entries are transferred to the
Dofret table, and the remaining frequencies are moved up to occupy the
vacated positions,

Routine SORTDO

The table Dolist, created in the first pass and ordered on the ends of the Dos,
by nature of the way it was built up, is now sorted into the order of beginnings
of Dos. When these are equal, the Do with the largest terminating location
takes precedence. The table is now compared with BBLIST, and the internal
formula numbers in Dolist are replaced by basic block numbers.

Routine LOADDO

Dos are further processed in this routine, Each Dolist entry is matched with
the corresponding Dotag table entry, and if the latter indicates a transfer out
of the Do range, a tag of 7 indicator is set in Dolist. Such a Do is referred
to in this Section as a 'Do with an if'. Also the loopcount Ny-N, +Nj is

N A
calculated and entered in Dolist, unless the parameters are vaf-iable; in the
latter case, if a Dofret entry exists for the Do, the loopcount given there is
used, otherwise the arbitrary loopcount 5 is used. If the current Do is a
carry case, i. e. in the Docare table written by Section 2, the loopcount is
multiplied by that of the previous Do. ‘

PART 2

A second pass is now made over Cit, producing the three principal tables with
which simulation is accomplished, namely BBTABL, SET and TRATABLE.
There is one 1-word entry in BBTAL for each basic block in the program, but
there may be several SET and TRATABLE entries corresponding to this one
BBTABL entry. At the beginning of each basic block, the next available
locations in SET and TRATABLE are entered in the BBTABLE, thus providing
a key to information which will be accumulated during the pass, for the basic
block.

The SET table is made up of information which may influence future flowpaths
taken in the object program, and is formed in the following way. On reaching
a sense light instruction, this entry is made:

Address of dummy 0 or 1
light(s) affected.

VIiI-2




A zero address would indicate that the light should be turned off, a 1 that it
should be turned on. (Dummy lights only are maintained during the program
simulation pass, in Part 3, not the actual machine lights.)

An entry is made if the current instruction is derived from an Assign
statement, (i.e. if there is an assign' type TIFRD entry correspouding to the
current location symbol.) The appropriate transfer location is obtained from
the Tifrd entry, and thence, by examining BBLIST, the basic block. nnm’oer is
derived.

Also, the symbol of the Assign, "N'" for example,is entered in a new table
NLIST. The SET entry takes the following form:

[NLIST address _ " |Successor BB numbed

There is a further type of Set entry whmh will be discussed later.

The remainder of the analysis during th:.s pass is concerned with obtammg
information about basic block endings. If the instruction following the current
one begins a new basic block, (i.e. its location is in BBLIST). then the current
instruction clearly ends one. Also, if the following instruction does not begin
a basic block, then it may be that the current one is a skip type instruction or
a conditional transfer, both of which ¢onstitute basic block endings.

The ending code of the basic block is now placed in the BBTABLE, which
already contains the TRATABLE and SET addresses for this basic block. The
different codes are given in this list.
-0 The TXL of a Do with an if.
1 Sense light ending
; Probability ending. This is‘ entered for such
‘BB endings the successor of which cannot be

predicted. These might be sense switches,
conditional transfers, Go to vectors.

3. Certaiﬁty ending. This is entered when the block
ends with a transfer, or control always passes
to the following basic block. -

4. The TXL of a Do without an if.

5. Assigned Go To ending.

6. Stop ending.

VII-3




The transfer addresses at the basic block ending give all possible successor
basic blocks, and the associated block numbers are found by looking up these
addresses in BBLIST. Subroutine ENTER places each one of these in the 2nd
word of a 2-word TRATABLE entry, (there being one entry for each successor
basic block), together with other relevant information pertaining to the current
basic block ending, e. g. location symbol of current ending, number of
branches etc. See appendix for Tratable details.

-There is a further type of Set entry which was not discussed earlier. During
the simulation pass in Part 3, 'Dos with ifs' must be simulated so as to obtain
statistical counts of the flow paths taken. In order to do this, a loop count for
the Do is maintained, which must be reset to its initial value each time the Do
is re-entered. To this end Subroutine Enter, mentioned in the foregoing
paragraph makes the following analysis. If the successor BB which has just
been entered in Tratable, begins a Do with an if, and if the Do is being entered
from outside its range, then arrangements are made to reset the loopcount.
However, the table entries corresponding to the Do are not available, as the
Do itself may not have been reached yet in this pass. Therefore, a new table
FIXDO is built up and entries made as follows:

SET entry: B FIXDO entry:

| BB No. of end of Do*|  loopcount | Set entry address |
*This is in effect, a table reference to
the Do entry in the BBtable.

At the end of the pass, the information pertaining to the Dos has been entered

in the tables. Each Fixdo entry is now taken in turn, and, from the
corresponding Set table entry, the Do's BBtable entry is obtained. This as
described earlier, contains a reference to the Dos TRATABLE entry (containing
loopcounts etc.) and this last is now stored in the above Set entry to form:

: tAddress of loopcount o
Tratable entry for Do Do

Table Fixdo is now redundant.

Routine FIXTST

One more preliminary must be dealt with before the simulation takes place,

and that concerns the frequencies and probability BB endings. For each
probability BB ending found in the BBtable, the corresponding Tratable entries
arc obtained. Relative frequencies for the different successor BBs must be
cither found in the frequency table (by matching formula numbers given for

the frequency and for the Tratable entry), or formed now by assuming each
branch equi-probable. As mentioned in Part 1 of this discussion, the
frequency table entries, originally of the form (4, , 2 ,¢3+----.. £3 ), are now
(Lo, Satow Zeriategy, L., if—-'::) and the equiprobable situations must

g“ ié ’ ?4 %’fﬁ' ‘ !

[} ’

ViI-4




must be in a similar form. g‘or instance three equiprobable branches would
produce probabilities of (;;- 15 1). The probability for each successor BB
is placed in its Tratable entry.

PART 3

The object program is now simulated many times in order to obtain statistical
information concerning relative frequencies of flow paths taken. The number
of simulations is equal to the total number of transfers in the program
multiplied by 128, which means that the more complex the program, the
greater the number of simulations, The program is stepped through basic
block, using the BBTABLE, starting with the first basic block. No reference
is made to the complied instructions.

A BBTABLE entry is selected, and gorresponding SET table entries are
obtained. Settings are made according to these entries, that is, the SET
address, or setting, is stored in the location given in the decrement. For
instance, a Set entry turning a sense light on would cause a 1 to be stored in
the dummy sense light address. A Set entry to reset the loopcount of a Do
with an if would cause the maximum loopcount to be stored in the Tratable of
the Do. (This is where the iterations are counted during the simulation.)

Routine DECODE

The basic block ending code in BBtable is now examined. All possible
successor basic blocks to the current one are given in its Tratable entries, and
the way in which the successor is chosen is described below under the different
endings.

Probability. A random number less than 1, is formed by multiplying a constant

~ 'random' number by a second number. This new random number now replaces
the second number mentioned above to ensure a different random number next

time. The method now used to select the successor basic block is best

illustrated by an example. Suppose a 3-branch probability ending had a

frequency statement (1,2,3), which was converted in Part 1 to (—"r ) —:— 1)

These quantities are expressible as coordinates of points of a unit line:

o P Y I

] i . | A »

The part of the line from 0 to_l corresponds to the first successor BB, from
, Z (

1 to 3 corresponds to the second, and from 3 to 1 to the third. If the random

6 6 6

number generated as described earlier lies within the first interval, then the

second successor is chosen, and so on.

VII-5




The flow count of the successful successor BB is now increased by 1, and
control is returned to deal with this new block.

Certainty. In this case there is only one successor, so its flow count is
stepped up, and simulation continues with this block.

Sense light, The successor in this case is determined by the status of the
appropriate dummy sense light. If it is set at 1, then it is reset to zero and
the 'light on' successor is chosen, otherwise, the 'light off' successor is
chosen. The flow count is stepped up, as for other endings.

Assigned Go To. The successor of this type of ending depends on the setting
made for the particular 'N', earlier in the simulation. The BB number
given for N in the NLIST table (entered there by an earlier BB in the
simulation) is matched with the current Tratable entries. If a match is not
found, the first Tratable entry is taken. The successor flow count is stepped
up as before.

Do with an if. The simulated loopcount, held in its Tratable entry, is stepped
up, and if the Do is complete, then the successor BB following the Do is
selected. Otherwise, that beginning the Do is chosen.

Do without an if. At this point, such an ending is treated as if it were a
certainty ending. Such Dos are dealt with after the simulation pass.

Stop. The current simulation is now complete, and it is recommended at the
first basic block of the program, unless the required number of simulations
has been carried out.

Routine DODO

After the simulation has been dealt with, this routine adjusts the flow counts
of basic blocks which lie within Dos without ifs. If may be recalled that
during the simulation, these Dos were not simulated as were the Dos with ifs
and therefore the flow counts of the basic blocks within them have not taken
account of the loopcounts of the Dos. This is now remedied.

If a basic block lies within several nested Dos, then clearly not one loopcount,
but all loopcounts multiplied together will be involved. Dos without ifs are
obtained from the DOLIST table, and a new table LCTR is devised to keep
track of the loopcount nesting of the Dos as they occur. The first LCTR entry
is a dummy, 1. The next always corresponds to the outer Do of a nest, and
contains its loopcount. The following entry is for any second level Do and
contains its loopcount the outer Do loopcount. For example, in this

VII-6




configuration quantities in LCTR words are indicated
-Do A | cTR-1 contains loopct A

Do B

LCTR-2 contains loopct B * loopct A
Do C

LCTR-3 contains loopct C * loopct B * loopct A
Do D

LCTR-2 contains loopct D * loopct A

The successor flow c§unt of each basic block between the beginning of D§4 and the

beginning of Dogis multiplied by the contents of LCTR - 1 i. e. loopct 4.

The successor flow count of each basic block between Dog and Do¢ is multiplied

by the contents of LCTR - 2 i. e. loopctyxloopcty , and the successor flow count

of each BB except the end.ing BB, witilin Do, is multiplied by loopct, X loopcts X
loopctg . The successor of the ending BB in Do, will be the beginning of Ddc

for loopct 4 Xloopctyg (loopct\c'\_ -1) times, and Will be that following the Do, for

' loopéta x loopct, times, so these successor flow counts are adjusted accord-

ingly. Remaining basic blocks in this nest and in other nesting configurations
are dealt with similarly.

Routine DOSUCC

As described earlier, a TRATABLE entry consists of 2 words, the second word
containing a successor BB number, with associated flow count, and the first
word containing various information used by this section but now no longer
required. The order of entries corresponds to the BBTABLE order, though
there may be several successor BBs and therefore TRATABLE entries to a
given BBTABLE entry. In this routine, the 2nd Tratable word is rearranged
slightly and placed in a new table called SUCC. This means that for every
basic block in BBTABLE, there is one or more SUCC entry contammg
associated flow counts.

V-7

e



There is another way of looking at it, namely, given a basic block, which are
the preceding, or 'predecessor' basic blocks? This information is complied
in the following manner. - A pass is made over Tratable, together with
BBTABLE, to enter in word 1 of each successor BB Tratable entry, the
current BBtable number , which is of course, their predecessor. This new
form of Tratable is now sorted in order of Successor BB number, and the
result is that for each basic block in turn, all predecessors are grouped
together. Now, word 1 of Tratable becomes the PRED table, and relative
addresses of PRED BBS corresponding to the Basic Blocks are entered in
BBtable. We now have three basic tables to be passed on for the Section 5
- analysis:

BBTABLE .
"Address of first relevant Address of first relevant
SUCC entry v PRED entry
1 14 21 35 1 14 21 35
SUCC: Flow count | Successor Flow count Predecessor
' BB Number| PRED: BB Number

Routine TAGPAS

The third and final pass is now made over CIT to collect tag information for
Section 5, and during this pass two new tables are built up: TAG and BBTAG.
For each occurrence of a tagged instruction, an entry is made in TAG,
consisting of the symbolic tag name, together with a code according to the
following list. )

//W - .
LXA, LXD, PAX, PDX 1 N
LXP . s s 2 SEL e fed VI
D,ED ',_// o 3 d’%" 113
h /’I/’Ix’ TXI //// }lx"; ’ 5 f)
’ 6

Other (pass$ive)
b .
When the instruction begins a basic block, the sign of the entry is set negative.

Each time the beginning of a basic block is encountered, a 'BBTAG entry

is made, containing the number of entries so far in TAG, together with octal
33, the latter being for the convenience of Section 5. The last BBTAG entry
is a dummy and contains the total number of TAG entries.

Finally, details concerning table lengths are left in locations called Keys, for
Section 5, and the BBtable and BBtag tables are combined to form one table -
BBBTABLE, each entry of which consists of 6 words, the last four being zero.

VII-8




il

APPENDIX TABLES CREATED DURING SECTION 4

BBLIST This is written in Part 1 and is an ordered list of the beginning
locations of all basic blocks within the object program.

BBTABLE This is written during the second pass over CIT, in Part 2.

Prefix Decrement address
BB ending Starting location of  {Starting location of
code corresponding corresponding Set
Tratable entries entries

BBTAG This is written during the final pass over CIT in Part 3. An entry is
made every time a new basic block is reached, and it contains the number of TAG
entries made so far. The final entry contains the total number of TAG entries
made. '

DOFRET See FRET.

DOLIST This is written in the first pass, during Part 1, and one entry is made for
each Do in the object program. The entry consists of 2 words:

Location of beginning of Do and is replaced by: BB No. of beginning
Location of end of Do BB No. of end

FIXDO This is a minor table, used only in the 2nd part. When it is found
necessary to reset the loopcount of a Do with an if, an entry is made here which
contains the address of the Set entry described under SET in this appendix.

FRET This table originates in section 1, and is modified in Part 1. The first
word always contains the internal formula number to which the frequency applies,
together with a minus sign. Frequencies follows, one word per frequency. This
also applies to Do frequencies. Do type frequencies are then erased from FRET
and transferred to a new table DOFRET. Meanwhile, the rerri_ainigg' frequencies

. . . _ : . X . .
arechangedfromtheform(;,l)‘2,‘”.... v‘h)to(‘:') e, —— veee o )
#~ ~ “

LCTR This is an internal table. The flow counts of basic blocks 'lying within Dos
without ifs are multiplied by its contents after the simulation.

1st entry Dummy 1

2nd entry Loopcount of outer Do of a nest.

3rd entry Loopcount of any next inner Do X 2nd entry
4th entry Loopcount of any next inner Do X 3rd entry

« « o« and so on.

VII-9




NLIST This is a list of symbols of Assign statements.

SET This is written in Part 2, consists of settings made during the object
program, and is used in the simulation.

Sense light Address(es) of dummy 0 if turned off
light(s) 1 if turned on
Assign Reference to NLIST - Successor BB
where Assign symbol No.
is stored.
Entry to reset BB No. of end of Do Maximum loopcount
a Do with an if ~ of Do '

This is replaced later by:

Address of 1st Tra- Maximum loopcount
table entry of end
of Do.

TAG This is written during the final pass over CIT, in Part 3, and an entry is
made for every tagged instruction. The code dépends on the type of instruction,
and a full list is given in the main text.

Prefix Address
Code| Symbolic
tag

TIFRD This table consists of the Assign entries f rom TIFGO, which has code
6 in the first word with the internal formula number, and the Assigned Go To
entries of Tifgo and Trad. The latter Tifgo entry has code 1 with the internal
formula number, in the first word., and has the number of transfers (i.e.
number of Trad entries) in the second word.

TRATABLE This is built up during Part 2. Each basic block ending, except
a stop, has a group of one or more Tratable entries, giving the successor basic

blocks. Different types of entry are shown.

VII-10




TRATABLE (cont.)
Assigned Go to:
Wd. 1

Wd. 2

| Relative address

_of NLIST entry

Successor BB No,

flow count during
simulation

followed by an entry for each other successor basic block, with only word 2

used.

Do with if: wd. 1

Wwd. 2

wd. 1

Wd. 2 -

Loop count

Successor BB No.,

- L (that beginning Do)

flow count during
simulation

Used for simulating
loop count

Successor BB No.
(that ending Do)

flow count during
simulation

Do without if: Exactly the same as Do with if, except that word 1 of the second
entry is not needed for nmulatmg iterations.

Conditioned transfer
and Go to Vector: Wd.l

Wd. 2
wd. 1

Wd. 2

[Loca'tion

Successor BB of
|__1st Branch

flow count during

No. of Branches

Successor BD of

{_ 2nd Branch

flow count during
simulation |

Remaining branches each have one entry, and only the 2nd word is used.

All probability cases: The second word is the same as the preceding cases. The

first word contains the probability quantity that that particular branch should be
taken, and there are as many entries as branches.

PRED: This is derived in Part 3 from TRATABLE and BB TABLE.

Flow count Predecessor BB No_.

SUCC: Identical with Pred, except that the successor BB number is in the
address portion.

Vii-11




VI

SECTION FIVE

The following discussion of Section Five is divided into 4 parts correspond-
ing to the division into records on the Fortran system tape. In addition,
following the description of parts 1 and 4 is a summary of the frequently used
subroutines for that part, Following part 4 there is also a description of the
tables used in Section Five. Since some of the concepts used are also explain-
ed under the headings of the subroutines and tables, the reader may find it
useful to refer to them while reading the main text. Also, see illustration
page VIII - 12.

PART I

Section Five uses the information about basic blocks (which has been passed
on from Section Four) to combine these basic blocks into larger groups called
regions. The flow within a region is simulated in order to determine which
symbolic tags are required and which index registers should be assigned to
them. During the course of simulation, flags are set to indicate where an
SXD or LXD is required. When a region has been treated it may be combined
with other regions. Eventually all basic blocks will have been combined into
a single region, and the complete object program will have been treated.

The most frequent paths of flow between basic blocks are handled first. Since
an SXD or LXD is not inserted until necessary, this results in the most frequent

paths having the least of them, and therefore a faster object program.

Region Formation

The first step of this treatment is the formation of a looplist showing the path
of flow through a new region. The starting point in looplist formation is the
most frequent link between basic blocks which has not yet been considered. (The
PRED and SUCC tables have frequency counts which are examined to find most
frequent predecessor or successor basic blocks. When a link has been treated,
the entry which refers to it is marked with a minus sign so it will not be con-
sidered again.) Looplist is expanded by including as many of the most frequent
unconsidered predecessors as possible and then as many of the most frequent
successors as possible. If the most frequent link is to a basic block which is

in a region previously treated, this whole region is included in the looplist. Thus
a looplist may consist of a combination of untreated basic block and regions (or

basic blocks which have already been treated).

Regions are classified as either opaque or transparent. An opaque region is one
in which all three index registers are used. A transparent region has one or
more index registers still available. Wheén an opaque region is encountered
while forming looplist, no more links are added to it. However, a transparent
region may still be added to, since there are index registers available within it
to which tags can be assigned.

VIII-1




The looplist table consists of cne word entries for each basic block or region.

A code in the prefix of the word indicates whether it refers to a basic block, a
transparent region, or an opaque region. If the entry is a basic block it con-
tains the BB number, and if the entry is a region it contains the numbers of the
basic blocks at the entry and exit points of the region. The end of looplist is in-
dicated by a word of all sevens.

From the starting point in looplist, the most frequent predecessors are added
one at a time until one of the following conditions have been encountered. If a2n
entry is already in the current looplist, this makes looplist a loop and prohibits
further building. If an entry is an opaque region or if there are no unconsidered
predecessors, then additions are made at the other end, and the most frequent
successors are looked for. Again the same conditions apply. Basic blocks or
regions are added until a loop or an opaque region is encountered, or there are
no unconsidered successors to the last entry. When a looplist has been com-
pleted, it will reflect the flow in a section of the object program. It may have
a loop, reflecting a loop in the object program. In such a case, if there is an
end of looplist not included in the loop, that section is eliminated from looplist.
Only the loop itself will remain in looplist for further treatment in this loop-
list. On the other hand, the looplist may be a string with no loops, having been
stopped in both directions by encountering an opaque region or by finding no un-
considered links to it.

After the looplist has been formed, the path of flow indicated is ready for treat-
ment. The next step is to prepare for simulation which is done in the 2nd LXing
pass. If the looplist is a string, then the only preparation necessary is to mark
the initial conditions of the IRs. If the looplist is a loop, however, the lst LXing
pass is entered.

lst LXing Pass

The index registers used by the object program are simulated in Section Five by
three storage locations which are continually updated. These cells are referred
to as IRs. During simulation they will contain the symbolic tags needed by the
corresponding part of the object program.

The 1st LXing pass simulates the loop in order to find out the condition of the

IRs when the 2nd LXing pass is begun. Each basic block in the looplist is
examined to see which tags are necessary. This is done by referring to TAGLIST
(which is a table containing a list of all tagged instructions in the object program. )
Tags are placed in the IR cells as required. When a region is met in looplist,

the previously determined exit conditions from the region are placed in the IRs.
After the whole looplist has been done the IR cells contain the initial conditions
for the 2nd LXing pass.

2nd LXing Pass

Simulation in the 2nd LXing pass is much more complex then the cursory treat-
ment of the lst LXing pass. Entries are made in tables when a tag must be loaded

VIII-2




into or displaced from an IR, STAG is used to record LXs and SXs within

a basic block, and PRED is used for those between BBs. When a tag is dis-
Placed, its value is saved if necessary in a cell set aside for that purpose.
These tag cells are thus kept up to date so that the next time a tag not already
in an IR is required, an LX from the corresponding cell will be correct.

In order to determine when an SX is necessary, the concept of activity is used.
When the initial value of a symbolic tag is set, or when that value is changed by
an indexing instruction such as TXI, the IR becomes active. This means that
the value in the storage cell corresponding to that tag is outdated. This fact is
recorded in cells referred to as AC 1, 2, and 3, one for each IR. If this tag
must be displaced while treating the same looplist, an SX will be introduced
immediately after the active instruction, thus updating the tag cell and ending
the activity, But if the tag has not been displaced from the IR after treat-

ment of the looplist, the section of looplist is marked active from the point of
the active instruction. This is done by placing activity bits in the BBB entry
for each BB in that section of looplist. When flow goes through such a BB in a
subsequent looplist, the activity will be noted, and if a future SX is necessary it
will be placed in the link from the region containing the BB.

A tagged instruction that does not change the value of the tag, does not require
this treatment. Such an instruction is called passive. A passive instruction,
such as CLA or TXL, only makes it necessary to have the appropriate tag in an
IR. When a tag is required that is not already in an IR, an LX from the appro-
priate tag cell is called for. Because of the way activity is handled, the tag cells
may always be considered up to date. All that is necessary is a determination of
the most desireable IR to use. If they all contain tags, this is done by search-
ing ahead to find out which of the tags presently in the IRs will be needed last,

Treatment in the 2nd LXing pass begins with the first entry in LPLST and pro-
ceeds in sequence to the last. The three types of entries, 1) BBs, 2) trans-
parent regions, and 3) opaque regions, are distinguished by a code number and
each is treated differently.

1. Treatment of a BB

If the LPLST entry is a BB, simulation of the object program is accomplished by
examining all the tagged instructions in the BB and making the necessary pro-
visions for the tags used. The instructions in TAGLIST for this BB are taken

in sequence, and the IRs are updated as necessary. ;

Each IR is examined to see if the symbolic tag required by the instruction already
is present. If the tag is not in an IR, it is put into the most replaceable one, and
the STAG entry corresponding to this instruction is marked to show that an LX
from the tag cell is necessary. The LX is also recorded in the region table

entry. If the instruction is an active instruction, an active indicator is also stored.
If a tag had to be displaced from an IR, and that IR was active from a previous
instruction, then an SX is necessary. This is recorded in STAG if the activity

was caused by an instruction in a BB in this LPLST, or in PRED if the active in-
struction was in an already treated region. A PRED entry is necessary because

VIII-3




once a region has been treated, nothing is changed within it. Thus the SX will
appear in the link from that region to the current LPLST. The STAG entry, on
.the other hand, calls for compilation of an SX immediately following the active
instruction.

The appearance of an active instruction using a tag already present in an active
IR will cause the section of LPLST to be marked active.

When a DED pseudo instruction, compiled to tell Section Five that a tag is now
valueless, is encountered and the tag is not in an IR, nothing need be done. An
IR containingthat tag will be loaded with a "hash" symbol, indicating its con-
tents are no longer of any value, and if the IR was active, the section of LPLST
will be marked active. '

For each taglist instruction an entry is made in STAG to record which IR to use.
After all the tagged instructions within a BB have been examined and proper
table entries made, the entrance requirements (tags needed) and exit conditions
for the three IRs are stored in the BBB table. BBB also will have bits indicating
which IRs are active within the BB, and has information passed on from Section
Four about how the basic block ends and the numbers of the SUCC and PRED
entries referring to this BB. Thus BBB is a summary of the basic block, and
the individual instructions need not be looked at again.

If the LPLST entry just trcated ended with an Assigned GO TO, some extra trcat-
ment is required. If there are any active IRs an SX is recorded as necessary.

2. Treatment of a Transpareht Region

Entries in LPLST which are regions have had all the BBs in that region simulated
at the time that region was formed. Therefore, it is not necessary to go through
its tagged instructions again. However, it is necessary to take care of the links
to and from the region. The best match possible is made between the current

IRs and the entrance requirements of the entry BB in the region. This may re-
quire permuting index register assignment in the region. For example, if a

tag T1 is in IR1, when a region's entrance requirement is 'I‘1 in IR2, then the
region's index register assignment may profitably be changed to have T, in IR1.
The STAG, PRED, and BBB tables become obsolete by this change and must be
updated. The tables are not actually changed, however, since the tables are read
through permutation numbers in BBB, thus only these permutations are changed.
The numbers were originally set to 1, 2, 3, (octal 33) by Section Four, meaning
entry 1 is IR1, etc. If they were changed to 2, 1, 3, they would mean entry 1 is
now IR2, entry 2 is now IR1l, and entry 3 is IR3. LX and SX bits in PRED will
take care of problems not solved by permutations.

Processing a transparent region entry in LPLST begins after matching the region's
entrance requirements. A pass is made over the BBB entries for the basic blocks
in the region. If the region's entrance requirement for a particular IR is empty
(there must be at least one of these, since by definition a transparent region has
one or more empty IRs), the current tag for that IR may be carried through the

VII-4




region. The new entrance and exit conditions of the IR are stored for each BB.
On the other hand, if the entrance requirement is not empty and does not match
the current tag in the corresponding IR, and if the IR is active, it becomes
necessary to examine the exit conditions of the BB, When the BB exit condition
does not match the corresponding IR but does match a different IR, an SX is re-
corded necessary. If the BB exit does match and the IR is either active or does
not match at the region exit, the IR is marked active in this BB. After each
BB has been treated in this fashion, the new permutation numbers and active
indicators are stored in BBB.

When all the BBs in the region have been examined the region is considered as

a whole. If the entrance condition for an IR is empty but the IR matches a
different region exit, a ""hash'' symbol is put in the IR since the same tag should
not appear in more than one IR simultaneously. When the region entrance con-
dition is "hash'' and the IR is active, an SX is called for. If the region entrance
requirement matches the IR but the region exit is ""hash'', empty, or active,

then the section of LPLST is recorded active by marking the necessary BBB
entries active for the corresponding IR. When the region entrance requirement
is a symbolic tag which is not already in an IR, an LX is called for in the link

to the region, and if the IR was active, an SX is also indicated. At the conclusion
of this processing the region's exit conditions are in the IRs, the active indicators
are set, the region is permuted for the best possible match to the preceding
section of LPLST, and any remaining empty IRs are noted.

3. Treatment of an Opaque Region

The processing of an opaque region in LPLST is simpler than that of a transparent
region. This is true because there is no possibility of carrying a tag through

the region, since there are no empty IRs. A match of the region's entrance re-
quirement is made if possible, and the permutation numbers updated. When the
entrance matches the IR but the IR is not active, nothing further need be done.

But when under the same conditions, the IR is active, either because of an LX
within the region or, if the region is the same one that started LPLST (a loop
condition), the IR was not active at the start of LPLST, then an SX is necessary.
If there was no LX for the IR in the region, and the region is not the same one that
started LPLST or the IR was not active at the start of LPLST, then an SX is not
yet necessary, but the BBs in the region and the section of LPLST to this point
are marked active,

When the contents of an IR do not match the tag required at the entrance of an
opaque region an LX is recorded as necessary, and if the IR was active, an SX
is of course also indicated.

After the 2nd LXing pass has been finished and all the LPLST entries dealt with,
any remaining activity must be taken care of. If the LPLST was a string this is
done very simply. It is only necessary to mark a section of LPLST active for any
remaining active IRs. In the case of a loop, however, the problem is more
complex. The entrance requirements at the beginning of the loop are examined.

If a requirement is not a real tag (it is either "hash'' or empty) and the IR is

VII-5




active, then an SX is recorded. If the entrance requirement is a tag different
than the contents of the IR, an SX and LX are recorded. At this point if the $Xs

have taken care of the activity and there are no more active IRs, the problem
is solved.

Active Pass

If there are still active IRs remaining, just as the lst LXing pass was required,
another pass, the active pass, is executed. LPLST entries are examined and
treated again in a manner similar to that of the 2nd LXing pass, with SXs called
for where necessary. After each LPLST entry has been dealt with, a test is made
to seeif there is still an active IR. Eventually they will have all been taken care
of and the active pass finished.

Table Updating

It only remains to bring the appropriate tables up to date. The PRED and SUCC
entries that have been treated are flagged negative. BBB has the new region
references entered. And finally the region table is updated by wiping out obsolete
entries (regions absorbed into the new one) and making the entry for the new
region.

Part 1 repeats the cycle of looplist formation and treatment, with new, large
regions absorbing old ones, until all links between basic blocks have been treated

and the object program consists of a single, all encompassing region.

SUBROUTINES USED IN PART I

SE GROUP

These routines compute the correct references to the STAG, SUCC, PRED, and
BBB tables for a desired entry. They are entered with the itemm number in the AC
and return with index register 1 loaded appropriately.

sL

This routine selects the most replaceable IR by scanning ahead through LPLST
and noting how long it will be before the present tags will be required again. That
IR whose contents will be needed last is the most replaceable. If this routine

is entered at S111 it does the reverse, that is search for the least replaceable IR,
the one whose tag will be needed first. This routine also uses S2 as a subroutine.

S3

This routine can exist in two states, '"Feed LPLST" or '"Feed Tag''. In the

"Feed LPLST" state it will feed the next item in LPLST and take the LPLST Feed
exit. It switches to the '"Feed Tag'' state when the last LPLST item it fed was a
BB and not a region. It then will feed the next item in TAGLIST and take the tag
feed exit until it has fed the last TAGLIST item for that BB, when it returns to

VIII- 6




?he "Feed LPLST'" state. When the end LPLST sentinel is fed it re-initializes
itself to the beginning of LPLST and to the "Feed LPLST" state. The routine
uses the S4 subroutine for handling the taglist tape.

S5

vn—

This routine will specify the permutation of index registers which will provide
the best match between the IRs and the entrance requirements of a region.

During treatment of a LPLST, the object program index registers are simulated
by the IR cells, which contain a symbolic tag, the empty symbol (octal 777777),
or the hash symbol (777776). Entrance requirements for a region will be placed
by S5 into the En 1, 2, 3, cells which S5 will try to match against the IRs. The
optimal match for the IRs will be in the IN cells, and similarly, the best match
for EN 1, 2, 3, will be in EN 4,5,6. For example, IN 1 is set to 3,2, or 1 de-
pending upon whether the correspondent of IR1 is EN 1,2, or 3. Also EN 4 will
be set to 3,2, or 1, depending upon whether the correspondent of EN 1 is IR1,

2, or 3. Thus if IR1 matches EN 1, IN 1 will contain 3 and EN 4 will contain 3.

S5 uses S1, S6, S7 and S9 as subroutines.

59
This routine is used by S5 to load EN 1, 2, and 3 with the tags needed by the first
BB in a region as entrance conditions for the index registers.

sA

This routine loads the EX 1,2,3 and ACT 1, 2, 3 cells from the exit conditions
and activity bits in the BBB table of the exit BB in a region.

SB

This routine enters the PRED or STAG bits to record that an SX is to be compiled.
The appropriate activity cell, AC1,2, or 3, is examined. These cells describe
the status of IR 1,2,3. They may contain plus 0, indicating that the IR is not
active; plus activity, meaning that the active instruction occurred in a BB which
has not been treated until this LPLST; or minus activity, meaning that the active
instruction was in a BB which is in an already treated region. If SB finds plus
activity, the SX bit is placed in the STAG entry for the active instruction. If it
finds minus activity, the SX bit is entered in PRED in the link from the region.

s¢
This routine is used to mark a section of LPLST active.
An index register becomes active when, in the simulation of a new BB in the

2nd LXing pass, an active instruction (LX, TXI, or TIX) is encountered. The
activity produced is plus activity. 'If while treating the same LPLST the contents

VIII-7




of the IR must be displaced, SB is entered and will record an SX necessary in

STAG. This SX completely takes care of the activity problem, and the activity
is ended.

But if at the end of LPLST an IR is still active and the need for an SX has not

yet arisen, the compiling of the SX may be postponed. However, it is not safe

to destroy all record of the activity, for an SX may be needed in treating a later
LPLST. In such a case SC is entered and will transfer the activity from AC 1,2,3
to the BBB table for all BBs during which the IR is active. When entered, SC
examines the designated AC cell. If it is not active, nothing is done. If it is
active, an entry is made in the prefix of word 2 of BBB for every BB between

the origin of the activity and the present point of LPLST, and the AC is turned

off.

The activity has now become minus activity, and can never be ended. The appear-
ance of such a BB is a subsequent LPLST will cause the appropriate AC to contain
minus activity, and whenever the contents of the corresponding IR must be dis-
placed, the SB routine will put an SX bit into the PRED link.

This scheme of postponing the compilation of an SX whenever possible, has the
general property of producing a larger number of SXs than strictly necessary.
However, sincd the high frequency paths are treated first, the SXs will appear in

the lower frequency paths. Thus to save object program time, Section Five will
trade object program space.

The SC routine uses SD as a subroutine.
sD
This routine is used to mark the BBs in any one region active.

SF

This routine forms the appropriate AC 1,2, 3 entry when an active instruction
is encountered. ‘

SG

This routine does the permutation of a REG entry as indicated by EN 4, 5, 6.

Fl

This routine finds the highest frequency unconsidered PRED entry for a given BB.
F30

This routine finds the highest frequency unconsidered SUCC entry for a given BB.

VIII-8




PART 2

In part 1, tags were continually reassigned to index registers on the basis of
the optimal match that could be achieved. This reassignment was done by
changing the permutation numbers in the 2nd word of the BBB table. Part 2
makes the actual changes in the appropriate tables on the basis of the final per-
mutation numbers. It also combines BBLIST (and some information about
Assigned GO TO statements), with BBB for convenience later on.

Each basic block is examined in sequence. The location word of CIT for the first
instruction in each BB (which has been put in BBLIST by Section Four) is placed

in word 6 of BBB. Then the LX and SX bits in the PRED entries are changed
according to the permutation numbers. Next, the STAG entries are similarly up-
dated. Then, for each BB which ends with an Assigned GO TO, the BB number of
the last assigned GO TO is stored in word 2 of BBB. This is done in order that part
3 may find all GO TO N BBs easily. Finally, the entrance and exit conditions

in words 3,4 and 5 of BBB are reentered in accordance with the permutation
numbers.

PART 3

Section Five may insert SXDs and LXDs at points in the object program which

are transferred to by an Assigned GO TO. It may therefore happen that the trans-
fer should no longer go to its original address, but to one of the SXs or LXs.

Part 3 handles this by making the necessary changes in the assign constants.

For each BB which ends with an Assigned GO TO, part 3 findsthe successor BBs
and their appropriate PRED entries. From the SX and LX bits in PRED, the
correct transfer address is prepared. The Assign Constants are then compared
to the first instruction of each successor BB, and when a match is found the assign
is replaced by the hew symbol. The SX bits are also stored in the prefix of word
2 in BBB for use by part 4.

When all the Assigned GO TO BBs have been treated, the altered assign constants
are written back on tape for Section Six, and part 3 is finished.

PART 4

Part 4 does the actual compilation of instructions on the basis of the information
passed on by the previous parts of Section Five. The bits in PRED indicate when
inter-block SX and LX instructions are required. STAG has the necessary in-
formation about when to compile an LX or SX immediately preceding or following
a tagged instruction in CIT. The real index register assignment for each tag is
also indicated by bits in STAG. Part 4 follows these directions while compiling.
In addition, some minor optimizing is done.

A pass over CIT is made, and the method used to bring in blocks of instructions

and scan them for tagged instructions and endings of BBs is similar to that used
by Section Four. This is the only time that Section Five looks at the CIT. The

VIII-9




instructions are brought in from tape and examined in groups, and when the

necessary modifications have been made, they are rewritten on tape for
Section Six.

First, part 4 considers a basic block as a whole. By referring to the BBB and
PRED entrics for the BB, a list of the nccessary LXs in the links to the BB is
formed. Then a list of the necessary SXs in the link is formed. When the SX lists
are compiled for the various PREDs, it may happen that two or more of these are
the same. The symbolic locations of these SX lists will be different, however,
because the number of the PRED entry is contained in the location symbol. A

SYN pseudo instruction is compiled in this case.

A ''sequential transfer'', which is one from the last instruction in the previous
BB to the first instruction in this BB, is compiled if necessary. The transfer
may be around one or more lists of LLXs and SXs associated with other PREDs
for this BB. On the other hand, the transfer may be dropped if no instructions
had to be inserted between the BBs.

After the inter-block SXs and LXs have been taken care of for each BB, all the
instructions within the BB are handled. All CIT entries without tags are, of
course, kept. A CIT entry which already has a real tag of 4 is checked to see if
it is an SXD or LXD which has been placed around a subroutine calling sequence.
If such is the case and if IR4 is not necessary for Section Five assignment of a
symbolic tag at this point, the SXD or LXD will be deleted. The SXD location
will be compiled as a BSS 0 since it may be referred to elsewhere in the program.
When an LXD after a subroutine calling sequence cannot be deleted because IR4
is necessary, if the following instruction is a similar SXD, both are deleted. As
a result, a series of TSX instructions will have the unnecessary SXDs and LXDs
removed.

When an instruction with a symbolic tag is encountered in CIT, the STAG entry
referring to it is examined. If STAG requests it, an LX from the tag cell will now
be compiled. Then the instruction itself is compiled and next an SX to the tag
cell if so indicated. Each of these instructions will have had the real tag assigned
also on the basis of the STAG entry. The LXP pseudo instruction is deleted

when it occurs, as is a DED. These instructions were put in as signals to part 1
and are no longer required.

After an instruction has gone through the foregoing treatment, it is checked to
see if this is the end of the BB. If it is not, the next CIT entry is examined and
treated. When the ending is found, any transfer addresses are examined to see
if the transfer 1s to a BB with SXs or LXs in the PRED link, If it is, the address

is changed to the location of the proper SX or LX. Any ''sequential transfers'
are not compiled at this time, however. An indicator is stored if there is one,
and the deletion or insertion of this transfer is left up to the analysis of the PRED
link when the next BB is treated. The case of an Assigned GO TO ending is
treated differently. The SX bits placed in word 2 of BBB by part 3 are examined
and SXs compiled where necessary. Then the transfer to N is compiled.

VIII- 10




When all the instructions in the BB have been treated and the ending taken care
of, the next BB is dealt with as before. The process continues until the end of
CIT is reached. Finally the relative constant routines are copied at the end of
CIT and control passes to the Section Five Prime of Fortran.

SUBROUTINES USED IN PART 4

SAD

This routine determines the correct address of a transfer instruction. It is
entered with the BB number in the AC and the successor BB number in ARGI.
It returns with the address in the AC. The PRED entry for this link is found,
and the LX and SX bits used to determine the SX or LX case and form the
symbolic address.

SCMI

This routine compiles an instruction if CPIND indicates it should be compiled.
CPIND is a cell which is negative when the instruction should be compiled, but

is made positive when an instruction has been compiled while treating a tag. This
is done so that a tagged instruction at the end of a BB, when SCMI is entered, will
not be compiled again.

SH

This routine determines an SXD case. It uses the SX bits in PRED and the exit
conditions of the predecessor BB from BBB to determine which tags have to be
saved in this PRED link.

SI

This routine compiles an SXD case, and if it is not associated with an LXD list,
compiles the appropriate transfer to an LXD case.

SJ

This routine determines if the SXD case is associated with an LXD list.

SK

This routines makes the actual entries in CIT when an instruction is compiled.
SL

This routine compiles a transfer to an LXD case.

SL1

This routine compiles a hanging transfer if necessary.
SM

This routine compiles an LXD list. VIII-11




As an example of SXD and LXD placement by part 1, consider the following
illustration.

Bs/

In this diagram BB1 has two possible successors,
that is a conditional transfer may go either to BB2
or BB3. The tagged instructions in each BB are
shown with tags Tl’ T_ etc. The asterisk next to 2

tags in BBl indicates an active instruction. Let us
say that the link between BBl and BB2 is the most
frequent. It will therefore be in the first LPLST and
incorporated into a region. Let us also say that the
IRs are all empty when BB1 is treated. Then LXs
~itvif- will be indicated in STAG as Tl, TZ' and T3 are en-

RN
X X

R

e

B2

countered. An LX will also be necessary for T ,, but
this invloves displacing a tag in one of the IRs. Since
T, and T3 will be needed again first, T is chosen

Y
t
K

to be displaced, and because it is active an SX will be

indicated in STAG. When BB2 is treated and T,, T3,

and T, 6 are encountered, nothing need be done,as they

are already in the IRs. For Tl an LX is necessary

&4 and will be called for in STAG.” The LX will be correct

v 7 since the tag cell was updated by the SX in BB1 after
the active instruction. Later, when the link from the

region(conta-ining BBl)to BB3 is treated in another LPLST, the exit conditions will

be T2’ T3, T4. Then in BB3 when T2 is needed it is available, but Tl will cause

an LX bit in STAG. Since'Tzﬁand T  will be required next, T3 will be displaced.

The IR containing T, is active, and since the activity was present from an already

treated region, an SX bit will be placed in PRED for the LLX to be compiled in the

link between BB1 and BB3. Then when T3 is again required an LLX will load the

proper value.

" 1
-A\" 0«\’i
VI

t

N
L
]

From this example it may be seen that in one case an active instruction was handled
by an SX immediately following it. In the other case, however, there was no need
for an SX in the most frequent path of flow, and the compilation of the SX was post-
poned until a less frequent path was treated.

VIII-12




SECTION FIVE TABLES

LPLST (looplist). This table is used only in section 5, part 1. A LPLST
is formed defining each new region to be treated. The table has one word
entries which may be either a BB or an already treated region. An entry
for a BB has the BB number in the decrement. An entry for a region has
the entry BB in the decrement, and exit BB in the address. If the region
is at the beginning of LPLST it will have all sevens (octal) in that portion -
of the word normally occupied by the entry BB (decrement), and if at the
end of LPLST will have all sevens in place of the exit BB (address). An
example of a LPLST is shown below.

P Dec. T Add.
Wda., 141 7 7 7 7 7{0]0 0 0 1 4 Code in Prefix:
wd. 2]0 0 0 0 2 3joJo 0 0 0 O 0 - Basic block
Wd. 3]1 0 0 0 2 6fj0]JO0 0 0 3 2 1 - Transparent regiot
Wd. 412 0 0 0 0 3|07 7 7 7 7 2 - Opaque region
wd. 57 7 7 7 7 74717 7 7 7 7

The first word shows that LPLST begins at the exit of a transparent region
with BB 14, Then BB 23 (word 2), and then a transparent region (word 3),
with entry BB 26 and exit BB 32. Next BB 3 (word 4) entering an opaque
region which ends LPLST. The word of all sevens is the flag marking the end
of LPLST.

REG (region). This table is used only in section 5, part 1. The table contains
a one word entry for each already treated region. When an old region is
incorporated into a new one the old entry is wiped out. Bits in the prefix in=
dicate the presence of an LX for that IR within the region, Tag bits indicate
that the IR is empty in the region. The last bit in the address is present to
distin guish a possible real entry (BB 0 with no LXs and no empty IRs) from
the absence of an entry.

Pre. Decrement Tag Address
bkxx [No, of 1st, BB in reg. [xxx | 1]

CMTAG (taglist). This table is read from tape 3, file 3, in 15 word records.
There is a one word entry for each tagged instruction in CIT. The sign is
negative if the instruction begins a basic block.

Pre. Decrement Tag Address

ko code | | Symbolic tag |

Codes in decrement:

1 -LXD, LXA, PAX, PDX 5 «TIX or TXI not used to trans.

2 -LXP fer
3 -DED 6 -Passive instruction
4 -TNX 7 -=TIX used to transfer

8 -TXI used to transfer

VII-13




STAG. This table is formed in section 5, part 1, and used by section

5, parts 2-4. Each STAG word refers to 9 taglist instructions. The first
nine bits call for an SX following the corresponding tagged instruction, and
the next nine bits for an LX preceding the instruction. Bits 18-35 in pairs
specify the index register each tagged instruction is to use. In the following
illustration, the numbers refer to the entry within the STAG word.

S 9 18 35
1234567891 123456789 [11 22 33 44 55 66 77 88 99 |

BBB. This table is passed on from section 4 in its initial form with words
3-6 set to zero. There is a 6 word entry for each BB. During section 5,
part 1, the permutation numbers in bits 12-17 of word 2 may be changed, the
IR activity in this BB is indicated in the prefix of word 2, and words 3-6 are
filled in. Word 2is changedinparts 2 and 3 tocontaininformation about
Assigned GO TOs.

Pre, Decrement Tag Address

Number of 1st SUCC Number of 1st PRED
Wd.1 |Code |referring to this BB ‘referring to this BB
IR ‘perm. E:o. of 1st taglist entry
wd.2 factive noSs. belonging to this BB
wd. 3 Entry Requirement IExit condition IR4
IR4
wd. 4 weoon IR2 " " IR2
wd. 5 weoon IR1 " " IR1
wd. 6 index of region this no. of the next BB in
BB is in the region

Code in word 1 prefix
describing ending of BB:

Do with an if

- MSE

Probability branch
Certainty

Do without an if
5-GotoN

6 - Stop

w W ih—~ O
L

Word 6 is changed in section 5, part 2, to the location of the first CIT instruc-
tion in the BB from BBLIST.

PRED. This table is passed on from section 4. There is a one word entry

for each predecessor BB. Thus each BB has as many entries in PRED as it

has predecessor BBs. Section 5, part 1, uses bits 15-17 to call for SXs and
bits 18-20 to call for LLXs for the 3 IRs in this link. Section 5, parts 2-4 use
this information. The sign is made negative after the link is treated in part 1.

S | 15 18 2l 35_
|x Frequency ot link |[xxx |xxx |[No, oi predecessor Bb l

VIII- 14




SUCC. Similar to PRED, except entries refer to successor BB

S 14 21
k_Frequency of link] | No. of successor BB |

BLIST (BBLIST). This table is read from tape 3, 4th file, record 1 by
section 5, part 2. There is a one word entry for each BB. The entry

contains the first word (location) from the CIT instruction which begins
the BB.

Decrement Address 32 )
| |Internal formula no] JiInstructionno. [ |

ASCON (assign constants). This table is read from tape 3, 8th file as
~ one record by section 5, part 3. There is a one word entry for each
assign constant consisting of the location word of the CIT (see format of
BLIST above) which is assigned as the transfer address. If section 5 has
inserted SXs or LXs in the link to this BB, it will change the ASCON entry
to the new transfer address. An example of an LX location is shown below.
The octal 15 in the first 6 bits is translated by section 6 as D). After
making any necessary changes, ASCON is written back on tape 2 as the 10th
file. 23-25
‘ Combined
150 0 0 0 0 | LXD case | BB no. of successor

VIII-15




IX .

SECTION FIVE-PRIME

The purpose of section 5 p-rirhe is to add to the CIT f{ile all constants
and source program data appearing in the symbolic listing, except for
the B) and 9) constants, for use of section six.

At the end of section 5 the CIT file contains the entire working program,
the arithmetic statement function definition subroutines, and the relcon
computation subroutines A). Available to 5 prime are tables of the values
of assign constants 5), fixed point constants 2), floating point constants
3), format BCD words 8).

Assign constants are in the ASSIGN table, one record of file 10, tape 2.
The table format is

word 1 number of assign constants N
word 2 constant 1
word 3 constant 2

-word N+1 constant N

Each assign constant is a one word binary number in the decrement
field OIIIII000000, where IIIII is some internal formula number used in
the program.

Fixed point constants are in the FIXCON table, one record of file 9, tape 2.
The table format is ‘ . '
word 1 number of fixed point constants N

word 2 constant 1
word 3 constant 2

word N+1 constant N

Each fixed point constant is a one word signed binary integerriri the dec-
rement field 0YYYYY000000.

Floating point constants are in the FLOCON table, record 1 of file 4, tape 2.
The table format is

word 1 number of floating point constants N
. word 2 constan: 1
word 3 constant 2

word N+l constant N

Each floating point constant is a one word signed binary number of 8-bit
exponent and 27-bit mantissa PPPMMMMMMMMM,

Format BCD words are in the FORMAT table, record 2 of file 4, tape 2.
The table format is

word 1 identification number 10

word 2 number of words in table N

word 3 symbol 8)K




word 4 BCD word

word 5 BCD word

word P flag 777777777777

word P+l symbol 8)L

word N+2 flag 777777177777
A format statement gives rise to one internal symbol, an indeterminate
number of BCD words, all followed by an end of statement flag.

To initialize 5 prime, the last CIT record previously compiled is read
from tape 3. To this record, and to additional records as required as
each record is filled and written off on tape 3, is added a four-word CIT
for each word in each of the tables.

The first assign constant yields a CIT entry of the form
“word 1 050000000000
word 2 636121000000
word 3 OIIIII000000
word 4 000000000000
which appears in the symbolic listing as
5) TRA IA
Subsequent assign constants are compiled with word 1 zero.

The first fixed point constant yields a CIT entry of the form

word 1 020000000000
word 2 462363000000
word 3 0YYYYYO000000
word 4 000000000000

which appears in the symbolic listing as
2) OCT 0YYYYY000000

Subsequent fixed point constants are compiled with word 1 zero,"

The first floating point constant yields a CIT entry of the form
: word 1 030000000000
word 2 462363000000
word 3 PPPMMMMMMMMM
word 4 000000000000

whlch appears in the symbolic listing as
3) oCcT PPPMMMMMMMMM
Subsequent floating point constants are compiled with word 1 zero.

Universal constants are compiled for all programs, as certain subroutines
assume that they be present. The first compiled CIT is

word 1 060000000000

word 2 462363000000
word 3 233000000000
‘word 4 000000000000




which appears in the symbolic listing as
6) OCT 233000000000
Subsequent compiled CIT's include word 1 zero and word 3.

000000077777
000000000000
000001000000
000000000000

These will appear in the symbolic listing as

6) OCT 233000000000
OCT 000000077777
OCT 000000000000
OCT 000001000000
OCT 000000000000

The last cell is used to store the contents of index register 4 whenever
a transfer is to be made to a closed function or subroutine subprogram
or to a library subroutine. '

The first word of a format specification yields a CIT entry of the form

word 1 1000000KKKKK
word 2 222324000000
word 3 BBBBBBBBBBBB
word 4 000000000000

Subsequent format specification words are compiled with word 1 zero.
When a 777777777777 flag is encountered, marking the end of a specifica~
.tion, the next word in the table, the symbol, is inserted in word 1. Format
specifications are stored backwards in memory, i.e., a specification will
give rise to a block of CIT's in which the symbol appears in the last com-
piled instruction. .

These will appear in the symbolic listing as

BCD 1MENT)

BCD 1 STATE

BCD 1FORMAT
8)x BCD 1 (12H

When all constants have been compiled, the partially filled final CIT record,
if any, is written off on tape 3, an end file is written to mark the end of

the CIT file, tape 3 is rewound, and control passes to 1TOCS to bring in
the next record of the compiler.




SECTION PRE-SIX

The purpose of section pre-six is to complete the CIT file by compiling
-certain preparatory instructions inserted at the beginning of the program,
adding to the CIT file Hollerith data B), and computing and adding to the
CIT file initialization addend constants 9). These instructions are re-
quired for the use of the FUNCTION, SUBROUTINE, and CALL state-
ments, and by the BSS loader.

Pre-six reads into memory all tables required by section 6, including
FORSUB, SIZ, END, SUBDEF, COMMON, HOLARG (for pre-six), EIFN,
EQUIV, and CLOSUB tables.

Each word in CLIOSUB table yields a CIT entry of the form
word 1 AAAAAAAAAAAA
word 2 222324000000
word 3 AAAAAAAAAAAA.
word 4 000000000000

which appear in the symbolic listing as

NAME BCD INAME
where NAME is a symbolic entry point to a subprogram mentioned in a
CALL or arithmetic statement, This is the transfer vector.
During the Section 6 assembly, any TSX NAME, 4 will be assembled as a
- TSX to the BCD name in the Transfer Vector, but during the loading pro-
cess, the BSS loader will replace this BCD word by a trap transfer to
wherever the required subprogram has been loaded.

The length of the transfer vector is inserted in 8L decrement of the pro~
gram card. The relocatable entry point is tentatively assigned the location
immediately following the transfer vector, and is inserted in 7R address.

Three cells are reserved to store the contents of index registers so that
later they may be restored to their original states before control is re-
turned to the calling program. :

‘The first cell yields a CIT entry of the form
word 1 536000000000
word 2 306351000000
word 3 000000000000
word 4 000000000000

Subsequent storage cell instructions are compiled with word 1 zero. These '

will appear in the symbolic listing as $ HTR
The name of the subprogram yields a CIT entry of the form

word 1 000000000000

word 2 222324000000
word 3 NNNNNNNNNNNN
word 4 000000000000




This will appear in the symbolic listing as
BCD INAME

Three index saving instructions are compiled to store the contents of the
index registers upon entry into the subroutine. The first of these is the
entry point into the subroutine. These yield CIT entries of the form

word 1 000000000000
word 2 626724000000
word 3 536000000000
word 4  00000R00000T

These will appear in the third file as
' SXD $+R,T

If the subprogram being compiled has an argument list, the CIT file is
searched for instructions referring to any of these arguments., The argu-
ments referred to throughout the subprogram are merely dummies for the
actual variables to be used at object time, the latter being listed in each
calling sequence to this program. Instructions must therefore be com-
piled to initialize the addresses of all argument occurrences according to
the requirements of any such calling sequence.

CIT records are brought into memory one at a time from tape 3 and when
completely scanned, are replaced by the next subsequent record. A count
of the memory location of each CIT relative to the first program instruct-
ion ($$ if an IFN is not assigned) is maintained.

A CIT'is scanned first for its op-code (18 leading bits word 2). If the op-
.code is SYN, the CIT is ignored. If the op-code is BSS, the relative counter
is increased by the length of the block reserved. Otherwise the relative
counter is increased by 1. If the op-code is BCD, BCI, OCT or QPR the
address field is not examined. If the op-code is anything else, the symbolic
address is compared with each of the entries in the SUBDEF table. If the
symbolic address is an argument, a two word entry is made in an initial-
ization table. The table format is

word 1 ONNNNNOMMMMM
word 2 n T ' .~ (CIT word 4)

Where N is the argument number, M is the corresponding relative count,

After the entire CIT tape has been scanned, it is rewound in preparation for
its second pass. -

Initialization CIT's are compiled using the information in the table just
prepared. ‘ : ‘

‘Each argument yields a CIT of the form

word 1 000000000000
word 2 = 234321000000
word 3 000000000000
word 4 ONNNNNO000004




where N is the argument number (the relative order of the dumtmy variable
name in the SUBDEF table). This will appear in the symbolic listing as

CLA N,4

The initialization table is searched for any entry containing a correspond-
ing argument number N. If such an entry is found, the relative address is
compared with the prior relative address. If the relative address differs
from the prior relative address, an addend is required. The 9) table is
searched for such an addend, and if not redundant this addend is inserted in
the 9) table. The table format is

0000000AAAAA
where A is the required addend.

- The addend yields a CI'I};:,of the form
word = 1 000000000000
word 2. 212424000000
word -3 110000000000
word 4 OBBBBB000000

where B is the relative position of this addend in the 9) table. This will
appear in the symbolic listing as :
ADD 9)+B

The initialization yields a CIT of the form
word -1 000000000000
word 2 626321000000
word 3 535360000000
word 4 OMMMMMO00000

where M is the relative count of the instruction to be initialized. This
will appear in the symbolic listing as
STA $$+M

The initial symbolic location is $$ only if no internal formula number is

. assig ned to the first CIT following the prologue. Each entry in the initial-
ization table of which the argument number is the same N will yield one or
both of the last two CIT's. Each argument number N will yield a string

of CIT's consisting of a CLA N, 4 followed by as many ADD 9)+B and

STA $$+tM as is required.

For example, instructions for initializing an argument occuring as, say,
MPY ARG + 5 might be: -

CLA 2,4

ADD 9)+2

o STA 3A+201

given that the argument is 2nd in the argument list, that 9) +2 contains the
constant 5, that 3A is the location attached to the first instruction of the
program, and that MPY ARG#5 is the 201st instruction of the program.

IX-6




The prologue CIT's are written on tape 4 as records become filled. The
final partialprologue record, if any, is written on tape 4.

For the second pass, CIT records are brought into memory, one at a time
from tape 3, and when completely scanned, are replaced by the next sub-
sequent record., A count of the memory location of each CIT relative to

the first program instruction ($$ if an IFN is not assigned) is maintained.

If no IFN is assigned to the first program instruction, the word 53536000000
is inserted in word 1 of the first CIT following the prologue.

A CIT is scanned first for its op-code, If the op-code is SXQ, it has been
compiled by section 1 immediately prior to a TSX to double precision
routine, to prevent deletion by section 5, The op-code is replaced by
626724000000 in word 2 (SXD). If the op-code is QXD, it has been com-~-
piled by section 1 immediately prior to a return from a subroutine, to pre-
vent deletion by section 5, The op-code is replaced by 436724000000 in
word 2 (LXD), If the op-code is QPR, it has been compiled by section 1
as the return instruction in a subroutine. It, followed by TRA NA, acts
as an end of path of flow signal for section 4. The op-code is replaced by
635121000000 in word 2 (TRA). The symbolic location NA of this CIT is
required only by the following instruction, which will be deleted. This in-
ternal formula number is deleted in word 1. A flag is set to delete the
following instruction (TRA NA), which will not be copied into the tape 4
buffer. All other CIT's are written on tape 4 as records become filled.

 After fhe end of tape 3 CIT file is encountered, the 9) constants are added
to the CIT file. The first 9) constant yields a CIT of the form

word 1 110000000000
word 2 432363000000
word 3 0000000AAAAA

word 4 000000000000
where A is the value of the addend. This will appear in the symbolic
listing as
_ 9) OCT A
Subsequent addend constants are compiled with word 1 zero.

The first word in the HOLARG table yields a CIT entry of the form

word 1 130000000000

word 2 222324000000
word 3 HHHHHHHHHHHH
word 4 000000000000

which will appear in the symbolic listing as
B) BCD 1HHHHHH

Subsequent HOLARG table words arc compiled with word 1 zero,

An end of argument flag yields a CIT entry of the form
o word 1 000000000000

word 2 432363000000
word 3 777777717777
word ~ 4 000000000000




which will appear in the symbolic listing as
OCT 777777771777

The complete B) area will include but one symbolic location, but as many
sets of one or more BCD words followed by the OCT flag as there are
Hollerith arguments.

The final partial CIT record, if any, is written on tape 4, and the end
of the CIT f{ile is marked.

The compiled instructions now correspond exactly to the symbolic list-
ing, Tape 3 is rewound to prepare for binary output.

If a CLOSUB table exists, it is saved as second file on tape 4 for later use
by section 6 record P. If an EIFN table exists, it is saved as first record
on tape 3 for later use by section 6 record N, Control is passed to 1TOCS
to bring in the next record of the compiler, '




X

+ SECTION SIX

Since the object program is symbolically complete, all that remains is to
assemble the compiled instructions, producing a relocatable binary pro-
gram ready for loading and running, and a listing of certain information
concerning the program being compiled. Section 6 is primarily an as-
sembler, differing little from any standard assembler. It builds a table of
symbol names and (relocatable) locations, translates BCD operation codes
to binary instructions, replaces symbolic locations with (relocatable) loca-
- tions, and assembles the binary operation code, decrement, tag, and ad-
dress into one word which shall occupy one location in memory during ob-
ject time. In addition, options are available to include in the binary deck
library subroutines for use at object time; to punch on line a row-binary
deck, preceded by the BSS loader if a main program; to punch on-line a
column-binary deck (709 only); to produce a third file of SAP-like symbolic

listing of the compiled program; to print on line a listing of the source deck,

" the storage map, and, if produced, the SAP-like symbolic listing of the com-

piled program; to produce a binary symbol table (32K 709 only).

The discussion which follows is a general introduction to the logic of the
assembler, followed by a detailed discussion of each of its processors.




GENERAL DISCUSSION

5 Prime - adds to the CIT file, which on tape 3 now includes all executable
instructions in the source program, certain constants and program data ap-
pearing in the symbolic listing: assign constants, fixed point constants,
floating point constants, universal constants, and FORMAT BCD statements,
using information in the ASSIGN, FIXCON, FLOCON, and FORMAT tables,

6A - completes the CIT file, It uses information in the CLOSUB, SUBDEF, and HOI.-
ARG tables, and scans during prefirst pass the entire CIT file on tape 3 for those
instructions referring to arguments which require initialization., It writes the
transfer vector, and if a subprogram, prolog, and initialization on tape 4;

copies during presecond pass the CIT file from tape 3 to tape 4, changing

certain pseudo op codes used internally in FORTRAN to machine op-codes;

and adds to the end of the CIT file Hollerith arguments, and initilization ad-

dend constants. It also reads into memory tables required by section 6,

6B - is a common binary search routine which remains in memory for use of
subsequent processing,

6C-E - builds that portion of the dictionary which is defined by COMMON,
EQUIVALENCE, DIMENSION, CALL, SUBROUTINE, and FUNCTION state-
ments, and any statement referring to a library subprogram, It uses in-
formation in the COMMON, EQUIV, SIZ, SUBDEF, and CLOSUB tables.
Variables appearing in COMMON, EQUIVALENCE and DIMENSION statements
are mapped. The map appears following the source program on tape 2, The
order of processing differs between the 704 and the 709; the latter having a
more thorough diagnostic procedure. The variable names are entered into the
DEV table, while the locations in upper memory (which may be relocated
later) are entered into the DEA table.

6F - adds to the dictionary those names which arise from arithmetic state-
ment function definitions from the FORSUB table. Locations are tentatively
set to zero, to be inserted into DEA later,

6G - is the first compiler pass over the CIT file, During this pass external
variables not appearing in COMMON, DIMENSION or EQUIVALENCE statements
are inserted in the TEV table, the location being determined by the order of
their appearance in TEV, internal formula numbers, and internal symbols
appearing in the symbolic listing are defined by the then current contents of

a program counter and inserted in IFN and TIV tables, respectively, SYNs

to names in the transfer vector, format statement symbols, subsidiary in-
ternal formula numbers, location symbols for subroutines to compute relcons,
for section 5 LXD and SXD instructions,* (program counter), and the special
symbols $ and $3$, if they have been defined prior to the appearance of the
SYN, are defined, Blocks of required length of storage are reserved for non
subscripted variables in TEV, and for internal symbols not appearing in the
symbolic listing, Reference is made to the COMPILED INSTRUCTION f{ile,
and the DEV table prepared earlier in section 6.




At this point, every symbol appearing in the CIT file has been entered into
one of the tables DEV, IFN, TEV or TIV,

6H - assigns locations for names of arithmetic statement function subroutines,

and maps them. It uses information in the FORSUB table and the IFN table
prepared earlier in section 6. The location assigned to the internal formula number
corresponding to the subroutine name is inserted into FORSUB. The name, in-
ternal formula number, and location of each subroutine is mapped.

6I - maps external formula numbers and corresponding internal formula num-
bers, with the relative locations assigned to the internal formula numbers,

It uses information in the EIFN table, and the IFN table prepared earlier in
section 6,

6J - relocates storage not in common downwards adjacent to program con-
stants, The limits of storage not used in the program are mapped. It oper-
ates upon the DEA, TEV and TIV tables prepared earlier in section 6,

6K - maps the transfer vector, program variables not in commbn, and in-
" ternal symbols. ‘It uses information in the DEV, DEA, TEV, and TIV tables,

6L - writes the program card on the binary output tape.

6M - is a table of operation codes which remains in memory during the pro-
cessing of the second pass over the CIT file,

6N - is the second compiler pass over the CIT file, now on tape 4. During
this pass each CIT is converted to a binary machine instruction., The loca-
tion for each symbol is found in one of the tables DEA, IFN, TEV or TIV;

this is combined with the relative address and relocation bits computed. The
relocation bits are inserted in 8 row, while the address, tag, decrement, and
the binary op code are combined to form an instruction which is inserted in the
next available 7-12 row of a card image, Column binary bits, word count and"
load address (relative to zero) are inserted in 9L, the checksum computed
and inserted in 9R, The card images are writfen on tape 3. During this pass,
SYNs are defined, and the locations assigned to internal formula numbers

- and internal symbols appearing in the location field are checked against the
current program counter for inconsistent definition, If the symbol *, an ex-
ternal symbol in DEV (name in transfer vector), or the special symbol § or
$$, appears in the location field, it is ignored, At this point the entire binary
output for the source program is complete.

6P - begins processing the options which the programmer has instructed the
FORTRAN compiler to provide, If a library search is required (sense switch
5 down) and a transfer vector emsts, every program card in the 11brary file
on tape 1 is scanned for a primary entry point the name of which is in the
transfer vector, If at least one such entry point exists, the names of all entry
points on the program card are added to the LIBF table, and any matching
names are deleted from the transfer vector,




The library subroutine transfer vector is then examined to determine if any
entry points exist which are not yet in the LIBF table or in the object program
transfer vector, Such names are added to the object program transfer vec-
tor, and the subroutine program card and the entire binary subroutine are
added to the binary output tape 3. The library search is discontinued when
the entire transfer vector is exhausted, or no subroutines are found in one
complete pass over the library file, The names of entry points in the LIBF
table and the names of entry points remaining in the transfer vector are
written in the storage map, tape 2, and the storage map is complete, If the
object program is not a subprogram, a transfer card is written on the binary
output tape 3, and the binary output is complete. At this point the compiled
output of FORTRAN is complete.

6Q - provides binary cards on line if sense switch 1 is down. If sense switch

4 is up, and the object program is not a subprogram, the BSS loader is punched
on line., Each card image is read from tape 3, the column binary bits deleted,
and the row binary card punched on line. If sense switch 4 is down, each card
image is read from tape 3, rotated to column binary image, and punched on
ine,

6R - provides a machine language listing if sense switch 2 is down., An ad-
ditional pass over the CIT tape 4 is made, each CIT being converted into the
standard form, SYMBOL OPC ADDRESS + RA, TAG, DECREMENT and
written in three columns on tape 2 following the storage map.

6S - - provides on line listings if sense switch 3 is down, The entire contents of
the BCD output tape 2, source program, storage map, and machine language
listing, if any, are converted to card 1mages, one record at a time, and printed
on line one line at a time.

At the end of section 6 the FORTRAN compiler has completed processing of the
source program, The results of the FORTRAN compilation are on two tapes:
BCD tape 2, the source program, storage map, and, if requested, the machine
language hstmg, and binary tape 3, the program card object program, if re-
quested, the library program cards and subroutines, and if a main program,
the transfer card. If on line output has been requested, the row- or column-
binary cards can be found in the on line punch, and the listing in the on line’
printer,

The job is returned to the FORTRAN monitor.

DETAILED DISCUSSION

In the discussion that follows, portions of the assembler are labeled as to parts.
704 FORTRAN II has one record for each part. 709 FORTRAN II has one or
more parts in a record, '




Part A
Part A is Presix coding and has been discussed in Chapter IX.

Part B

Part B is a common binary search routine which remains in memory for use

of subsequent parts, The maximum table length which can be searched by

this routine is 16383 words, which is the effective limit to the length of any table
which must be searched.

Part C
Part C builds that portion of the dictionary which is defined by COMMON,

- DIMENSION, EQUIVALENCE, CALL, SUBROUTINE, and FUNCTION sta.te-
ments, and any statement referrmg to a library subprogram, such as PRINT
or X = SQRTF(B) The names of variables, dummy variables (arguments),
or subroutine or subprogram entry points are entered into the DEV table,
while the relocatable address assigned to each is entered into the associated
DEA table,

First processed are variable names appearing both in COMMON and EQUI-
VALENCE statements. A variable name is selected from the EQUIV table,
It is compared with the names appearing in the COMMON table, If it appears
in both, the entire sentence in the EQUIV table in which this variable appears
is assigned to upper memory,

An equivalence sentence assembled by Section I prime (see chapter II) con-
tains all variable names, the relative locations of which to each other have
been fixed by EQUIVALENCE statements. The sentence contains no redun-
dancies or inconsistancies. The sentence is made up of two-word entries,
the BCD variable name, and-the relative location (subscript) to each other,
The end of each sentence is marked by a flag (negative sign) in the final sub-
script.

"The equivalence sentence is scanned for the greatest subscript. The current
value of the location counter, initially at -206 in the 704, -207 in the 709, is
reduced by the greatest subscript. This is the base from which the location
assigned to each of the variable names is computed. The equivalence sentence
is scanned again for any variables which are names of arrays. If a variable
appears in the SIZ table, the overhang of the array length over the base loca-
tion(array length-subscript) is computed, and the maximum of these is found,
The equivalence sentence is scanned again, Each subscript is added to the
base address, in effect creating an array stored backwards in memory, and the
variable or array name is entered into DEV with its corresponding location in
DEA. The array name with the greatest subscript will be assigned the value
of the location counter before it was reduced, in effect locating the most pre-
cedent array name in the first available memory location. The value of the
location counter is reduced by the maximum overhang, which is not less than
1, reserving memory for the overlapping array extending farthest into mem-
ory, and reserving for the next variable name the next lower cell.,




Suppose there are common symbols E,D, X, which are related by EQUIVA-
LENCE (E(5), D(2), X), and that E and D occur in dimension statements giving
their total size as E(GS and D(5), X being a nonsubscripted variable, The
first variable to be defined is the one with the largest element number in the
equivalence group, E in this case, and the 1st element of E is given the high-
est free location, ie. LCTR. D and X are immediately defined by their equi-
valence relationship with E: E(5)= D(2)= X _

or D=E-3
=LCTR-3

and X:E-4
=sLCTR-4

It must also be determined how much space these variables occupy., Since the

array E has 6 elements, the last of these would be in LCTR-5, and similarly
D has 5 elements, the last of which would be in LCTR-~7, Clearly then, the
first free location is the one following array D, namely LCTR-8, which then
becomes the new LCTR for the next set of assignments,

After all equivalence sentences in common have been assigned, storage is as-
signed for all other variables appearing in COMMON statements. The COM-
MON table, assembled by section 1 (see chapter II) , is made up of one-word
entries, the BCD name of a variable appearing in a COMMON statement. Each
variable name is checked against DEV to determine if it had appeared in an
equivalence sentence, If it is not so redundant, it is entered into DEV with the
contents of the location counter as the corresponding location in DEA, The
SIZ table is checked to determine if this is an array name, and the value of
the location counter is reduced by the length of this array; or if not an array,
by 1, This, in effect, creates an array stored backwards in memory, reser-
ving for the next variable name the next lower cell,

When all of common has been assigned, the current value of the location coun-

ter, the cell next below the last cell in common, is entered into the program
card 8R address break.

Next to be processed are equivalence sentences not assigned to upper storage.
The first symbol of each equivalence sentence is checked against DEV to de-
termine if any symbol in this sentence had appeared in a COMMON statement.

If it is not so redundant, the entire sentence is assigned storage locations,
"identically as described above. The array name with the greatest subscript

in the first equivalence sentence will be assigned the location stored in the
common break, the cell next below the last cell in common. This, and all sub-
sequent storage assignments later will be relocated downwards in memory, ‘

At this point processing in the 704 and 709 differ in order of tables processed.
709 processing will be described, as this results in more accurate diagnostic

analysis ‘of the source deck.

Next to be processed, in 709 FORTRAN II, is the SUBDEF table, If this pro-
gram is a FORTRAN subprogram, defined by a SUBROUTINE or FUNCTION
statement, the name of the subprogram and the argument list are assembled

X-6




into the SUBDEF table by section 1 (see chapter II), Each entry is a one-
word BCD name of a dummy variable used as an argument, Each argument
‘name is compared with the subprogram name. If it is multiply defined, a
diagnostic message results. Entry is made into DEV to prevent assignment
of a storage location for this dummy variable if it appears in a DIMENSION
statement not in common, or as the symbolic address (word 3) of a CIT. The
corresponding address in DEA is the flag 77777, If this dummy name is al-
ready in DEV, it has appeared in a COMMON or EQUIVALENCE statement,
and a diagnostic message results, - The name of the subprogram is not en-
tered into DEV, as it may properly appear in the source program in a COM-
MON, DIMENSION, or EQUIVALENCE statement, and as a subscripted or
nonsubscripted variable, '

The SIZ table, assembled by section I prime (see chapter IIl), is made up
of two word entries, the BCD name of the array, and the length of the array
(the product of its dimensions as stated in a DIMENSION statement). Each
array name in the SIZ table is checked against the DEV table to determine if
it has appeared in a COMMON or EQUIVALENCE sentence or is a dummy
variable name of an argument. If it is not so redundant, it is entered into
DEV with the current contents of the location counter as the corresponding
location in DEA, The value of the location counter is reduced by the length
of this array. This, in effect, creates an array stored backwards in memory,
reserving for the next variable name the next lower cell, A dummy variable
name of an argument may appear in a DIMENSION statement in order that a
proper relative address may be computed for reference to a specific element
in an array, but no storage will be allocated to this dummy variable,

The storage for variables appearing in common statements is now mapped. The
variable name, right adjusted, is inserted in the second word of a tetrad; the
decimal location, right adjusted with leading zeros suppressed, inserted in the
third word; and the octal location, right adjusted with leading zeros included,
inserted in the fourth word. The first word of every tetrad is blank, The title,
column headings, each line as completed, and the final partial line if any,

are written on tape 2 immediately following the internal end of file marking

the end of the source program listing,

Next to be processed is the transfer vector. If the source program refers to other
subprograms through a CALL statement or an arithmetic statement in which

a function name appears, or if a library subroutine is called, section 1 (see
chapter II) assembles the BCD name of the entry point to each such sub-
program as one- word entries in the CLOSUB table. The transfer vector,

made up of N such names, occupies (relocatable) storage locations 0 thru

N-1 of the object program, Each subprogram name is entered into DEV with

the corresponding lower storage locations entered into DEA. If the name is
already in DEV, it has appeared in a COMMON, EQUIVALENCE, or DIMEN-
SION statement, and a diagnostic message results,

Finally, the names of arithmetic statement functions are processed. If such
a statement appears in the source program, section 1 (see chapter II) as-
sembles the BCD name of the function so defined, and the internal formula




number assigned to the subroutine, in a two word FORSUB entry. Each name
is entered into the DEV table with location zero (to be entered later) entered
into DEA. If the name is already in DEV, it has appeared in a COMMON,
EQUIVALENCE, or DIMENSION statement, or has been referred to in a CALL
- statement or an arithmetic statement including an argument list with the ter-
minal F omitted from the name, or as a dummy variable name, and a diag-
nostic message results. The improper use of the name with the terminal F
omitted and with no argument list will compile; however improperly.

On the 704, the proc’es‘sing is similar, but in a different order. Hence the
diagnostic proceedure is not as comprehensive., After common storage has
been ass1gned part D includes lower storage equivalence assignment of vari-
ables in EQUIVALENCE statements, of arrays not in EQUIVALENCE state-
ments, and of names in the transfer vector. Part E maps common storage.
Part F enters subroutine arguments and arithmetic statement function defi-
nitions into DEV, There is no diagnostic procedure for multiply defined names
of dummy variables (arguments). Each of these is a separate record.

The DEV and DEA tables are now complete. All other variable names in the
source program are nonsubscripted, requiring one storage location each,

Control is passed to 1 - CS, to bring in the next record,

Part G
Part G includes the first pass over the complete CIT file, to define all internal
formula numbers, source program symbols not in DEV, and internal symbols,

The DEA table is moved up in memory and packed against the end of DEV, The
IFN table will share memory with the DEA table, the former occupying the de-
crement portion of each word, while the latter occupies the address, The TEV
table will follow the longer of the two.

CIT records are brought into memory from tape 4, and are replaced with the
next subsequent record when completely scanned.

Each CIT is scanned first for its op code. If it is OCT or BCD the address por-
tion is ignored. .

For other codes the symbolic address is scanned next. If the address is an in-
ternal formula number, the address is ignored. A SYN to an IFN is undefined.
If the address is a subs1d1ary internal formula number (nAm), the symbol is
assembled into TIV form (see chapter X) and TIV is searched to define a pos-
sible SYN to this symbol. If it is not in TIV, it is entered, undefined, If the

address is *, the contents of the program counter are used to defme a possible
SYN to this symbol

If the address is

2 Fixed poiot constant
3 Floating point constant
5 Assign constant




6{ Universal constant
N

8 Format specification word
9) Initilization addend constant
B) Hollerith subroutine argument

it is in the symbolic listing, and the address is ignored. A SYN to one of these
symbols is undefined. . . '

If the address is

1)N Arithmetic eraseable

4)N Arithmetic statement function argument storage

T)N Arithmetic statement function index register eraseable
C)N Index register eraseable

" it is not in the symbolic listing, and is entered into TIV with greatest level of
storage (decrement of word 4 CIT) as the address. A SYN to one of these sym-
bols is undefined,

If the address is

A)N Location symbol for subroutine to compute relative
: constants :

-D%N Location symbol for a section 5 LXD instruction

E)N Location symbol for a section 5 SXD instruction

it is in the symbolic listing, but TIV is searched to define a possible SYN to
one of these symbols. ‘

If the address is $ or $$, the location assigned to each of these is used to de-
fine a possible SYN, If the address is an external variable, DEV and TEV

are searched to define a possible SYN to one of these symbols. If this vari-
able name is not in DEV or TEYV, it is entered into TEV, the location to be de-
fined later, o

The opcode again is scanned for SYN. The symbol D)N or E)N in the symbolic
location can be synonymous with another symbol D)N or E)N, compiled by
section 5. If the SYN is undefined, a diagnostic message results. For all
op-codes other than BSS or SYN, the location counter is bumped by 1. If it is

BSS, the length of block reserved is assumed to be zero. If it is SYN, no
location is reserved. ‘ : '




Next to be scanned is the symbolic location. If the location symbol is an
internal formula number, the contents of the program counter are entered
into the IFN table (decrement portion of the joint IFN-DEA table), ordered

as to internal formula numbers, The test for an internal formula number

is such that it may not extend over more than 12 bits in the decrement field,
a maximum of 4095. If any internal number is greater, it will appear to be
an internal symbol, and will miscompile. No diagnostic message results.

If the location symbol is a subsidiary internal formula number (nAm), TIV is
searched to determine if there had been a prior reference to the symbol, I
such a reference had been made, the contents of the program counter are
entered into TIV to define this symbol. If no prior reference had been made,
the symbol remains undefined. This is to optimize entries into the TIV table.
If the reference to the subsidiary internal formula number is prior to the ap-
pearance of the number in the location field, it will have been entered into
TIV, and defined in pass 1. If such reference is subsequent to such appear-
ance, the TIV entry will be made, but the symbol will remain undefined until
pass 2. During pass 2, this symbol will be defined prior to such subsequent
reference. Hence, any subsidiary internal formula number to which a ref-
erence is made will eventually appear defined in TIV, while such a symbol to
which no reference is made will not be entered into TIV, If the location sym-
bol is *, it is ignored. For all other internal symbols appearing in the sym-
bolic listing, a TIV entry is made, the contents of the program counter de-
fining this symbol, If the location symbol is $ or $$, each of these is de-
fined by the contents of the program counter. If the location symbol is an ex-
ternal symbol (transfer vector name), it is ignored.

At the end of the first pass over the complete CIT tape, all symbols appearing
in compiled instructions have been entered into one of the tables, DEV, IFN,
TEV or TIV. The upper location counter is one cell below the lowest cell re-
served for a DEV entry. The location counter is reduced by the length of the
TEV table, and each variable in TEV is implicitly defined as the current con-
tents of the location counter plus its ordered location in the TEV table. Later,
these locations will be relocated downwards in memory.

Assignment of storage locations for eraseable cells in TIV is made next,

Each TIV entry is examined to determine if it is an eraseable cell ( )N, 4)N, 7)N,
C)N ). If it is, the location counter is reduced by the largest value of the

block required, the address portion of the TIV entry, and this location de-

fines the symbol, This, in effect,creates an array stored forwards in me-
mory. The location counter is reduced by one moreto reserve the next lower
cell for the next symbol. The symbol 4), eraseable for library subroutines, is
defined as the location of top of memory, 77777,

The storagé assignments at this point are as in the following diagram,

Control is passed to 1 - CS, to bring in the next record,

X-10




Location Table
Symbol — entries  relocatable zero
NAME TRANSFER VECTOR DEV
: PROLOG
- subprograms only
IN'ITIALIZATION
g -
nA IFN
nAm OBJECT PROGRAM TIV -
D%N : TIV
E)N TIV
] . (Name 1n
nA ARITHMETIC SUBROUTINES DEV)
' - IFN
A)N RELCON SUBROUTINES TIV
o)
A
3 .
6) PROGRAM CONSTANTS TIV
8)N
B)
end of symbolic listing
contents of program countel
NOT ASSIGNED
: contents of location counter
7 ' : '
4;N ERASEABLE STORAGE TIV -
1)
C)N
NAME NON SUBSCRIPTED VARIABLES|TEV
NAME DIMENSION VARIABLES DEV
AME DIMENSION EQUIV VARIABLES DFZV common break
NAME COMMON DIMENSION VAR, DEV
NAME COMMON DIM, EQUIV. VAR, DEV - =207 5709
-206 (704
LIBRARY SUBROUTINE
ERASEABLE
4) | TIV top of memory

Note: arghment dummy names (in subprograms) are entered into DEV,
f lagged 77777 in DEA '

X-11




Part H

Part H assigns locations for arithmetic statement function subroutines and
maps them, The DEYV table is scanned for the name of each subroutine

(word 1 of each FORSUB table entry). If it is not found, a machine error has
occurred, and a diagnostic message results, The location of the internal for-
- mula number assigned to this subroutine name (decrement of word 2 of FOR-
SUB table entry) is found in the IFN table, and inserted in the address of word
t2 g{ the FORSUB table entry, and, to define this symbolic location, in the DEA
able,

The lotation of each subroutme is now mapped. The subroutine name, right
adjusted, is inserted in the second word of a tetrad; the decimal mternal for-
mula number, right adjusted, inserted in the third word and the octal loca-
tion of this internal formula number, right adjusted w1th leading zeroes in-
cluded, inserted in the fourth word. The first word of every tetrad is blank,
The tltle column headings, each line as completed, and the final partial line
if any are written on tape 2, following the mapping of common storage assign-
ment (if any).

- Control is passed to 1 to CS, to bring in the next record,

Part I
Part I maps external formula numbers W1th corresponding internal formula
numbers and relative locations,

Each decimal external formula number (address portion of one-word entry)

in EIFN table, right adjusted, is inserted in the second word of a tetrad; the
decimal internal formula number (decrement portion of entry), right adlusted
is inserted in the third word; and the octal location of this internal formula
number, found in the IFN table, right adjusted with leading zeroes included,
inserted in the fourth word, The first word of every tetrad is blank, The
title, column headings, each line as completed, and the final partial line if
any are written on tape 2, following the mapping of arithmetic statement func-
tion subroutines (if any).

Control is passed to 1 - CS, to bring in the next record,

Part J ’
Part J relocates storage not in common downwards packed against program
constants,

‘The length of unassigned memory is computed (contents of location counter

less contents of program counter, plus one), and is the extent of relocation,

The position of the program break is computed (location of common break

less contents of the location counter, number of variables to be relocated

a?icclieg stg contents of program counter), and inserted in the program card 8L

a .

Each location in DEA is compared against the common break (highest cell in
storage to be relocated) and against the program break (lowest cell in storage
to be relocated)., If it is not in common, a transfer vector name, a subprogram

X-12




argument dummy variable (flagged 77777), or an arithmetic subroutine, the
location is reduced by the extent of relocation. The base location for TEV

is so relocated; in effect,relocating each variable in TEV, Each location in
TIV is compared against the common break and the program break, If it is

not 4) (location 77777), program data in the symbolic listing, or an instruction
location symbol, it is an eraseable cell and is so relocated.

The final storage assignments are. as in the following diagram,

X-13




TRANSFER VECTOR

relocatable zero

entry point subprogram

- PROLOG

)

INITIALIZATION

entry point (main program

OBJECT PROGRAM

ARITHMETIC SUBROUTINES

RELCON SUBROUTINES

PROGRAM CONSTANTS

ERASEABLE STORAGE

NONSUBSCRIPTED VAR,

DIMENSION VARIABLES

DIMENSION EQUIV, VAR,

NOT
ASSIGNED

p rogram break

¢ ommon break

COMMON DIMENSION VAR,

COM. DIMEN, EQUIV, VAR.

LIBRARY SUB. ERASEABLE

=207 (709
-206 (704

} subprograms only -

X-14




The limits of storage not used by program (program break and common break),
converted to decimal, right adjusted with leading zeroes suppressed,are in-
serted in the third word of a tetrad; converted to octal, right adjusted with
leading zeroes included, inserted in the fourth word. The first and second
word of this tetrad are blank. The title, column headings, and this line are
zy;'itter)x on tape 2, following the mapping of external-internal formula numbers
if any),

Part K

On the 704, part K is a separate record.

Part K maps the transfer vector, program variables not in common, and
internal symbols. The number of entries in the transfer vector is one loca-
tion greater than that of the last name in the transfer vector. Each location
in DEA is compared against the location of the first instruction following the
transfer vector, and if in the transfer vector, the corresponding transfer vec-
tor name in DEV, right adjusted, is inserted in the second word of a tetrad;
the decimal location, right adjusted with leading zeroes suppressed, inserted
in the third word; and the octal location, right adjusted with leading zeroes in-
cluded, inserted in the fourth word, The first word of every tetrad is blank,
The title, column headings, each line as completed, and the final partial line
if any, are written on tape 2 following the mapping of the storage limits.

If any arithmetic subroutines exist, the location following them is the first lo-
cation in which a variable may appear. If not, the location following the trans-
fer vector is this location, Each location in DEA is compared against the first
location following either the transfer vector or arithmetic subroutines, and
against the common break., If it has not been listed previously as a transfer
vector or arithmetic subroutine name, as a variable in common, or is not a
subprogram argument dummy variable name, it is a subscripted variable not
in common, and the corresponding name in DEV, right adjusted, is inserted

in the second word of a tetrad; the decimal location, right adjusted with lead-
ing zeroes suppressed, inserted in the third word; and the octal location,

right adjusted with leading zeroes included, inserted in the fourth word. The
"first word of every tetrad is blank, The title, column headings, each line as
completed, and the final partial line, if any, are written on tape 2 following the
mapping of the transfer vector (if any).

Each entry in TEV (nonsubscripted variable not in common), right adjusted, is
inserted in the second word of a tetrad; the decimal location, the sum of base
location for TEV and the relative location of this variable in TEV, right adjusted
with leading zeroes suppressed, inserted in the third word; and the octal loca-
tion, right adjusted with leading zeroes included, inserted in the fourth word.
The first word of every tetrad is blank, The title, column headings, each line
as completed, and the final partial line, if any, are written on tape 2 following
the mapping of the subsé¢ripted variables not in common (if any). |

Each entry in TIV is then mapped. A TIV entry consists of a symbol in bits

S, 1,2, 3, bits 4 and 5 zero;sub symbol, if any, in bits 6-20; and the location

in bits 21-35. A subsidiary internal formula number consists of bits §, 1, 2, 3, 20
zero, the internal formula number in bits 4-14 (maximum size 2047), the sub-
sidiary number in bits 15-19; and the location in bits 21-35.

X-15




If the TIV entry is a sub internal formula number, it is ignored, If it is an
internal symbol for a storage cell, an alpha numeric character from the set
1 through 9, A through E is assigned to the 4-bit pseudo symbol, followed
by a right parenthesis, The 15 bit subsymbol, if any, is converted five bits
at a time to 3 alpha numeric characters from the set 1 through 9, A through
W. The pseudo symbol, left adjusted, is inserted in the second word of a
tetrad; the decimal location, right adjusted with leading zeroes suppressed,
inserted in the third word; and the octal location, right adjusted with leading
zeroes included, inserted in the fourth word. The first word of every tetrad
is blank, The title, column headings, each line as completed, and the final
partial line, if any, are written on tape 2 following the mapping of nonsub-
scripted variables not in common (if any).

Part L _

On the 704, Part L is a separate record. ,

Part L writes the program card on binary output tape 3. :
Program card 9L includes a 4 punch in the prefix and a word count of 4 in
. the decrement,

8L contains the length of transfer vector in the decrement and program break
in the address, ) S

8R contains the common break in the address,

TL contains the BCD subprogram name, if any,

TR contains the entry point, relative to zero in the address.

The computed checksum of the card is inserted in 9R.

Column binary bits, 7-9 punch in column 1, not included in the checksum, are
inserted in 9L, and the program card is written as the first record on binary
output tape B3. :

Part M ) '
On the 704, Part M is a table of operation codes which is brought into memory
as a separate record for the use of Part N which will follow.

Control is passed to 1 - CS to bring in the next record,

Part N ,

Part N is the second pass over the CIT tape to define each of the symbols used
in each CIT, construct a binary instruction for each CIT, and write the compiled
program on binary output tape 3.

CIT records are brought into memory from tape 4, and are replaced with the
next subsequent record when completely scanned,

Relocation bit patterns are of three types. Type 00 indicates that address por-
tion of the instruction is not relocatable, Type 010 indicates that the address
portion is relocatable as data on the proper side of the program break., Type
011 indicates that the instruction is complement relocatable: the address refers
to a cell in an array the base symbol of which is on the opposite side of the pro-
‘gram break, and should be relocated as its base symbol would be, The decre-
ment of an instruction is not relocatable in a FORTRAN object program.,

X-16




The relocation bits are initially reset to not relocatable, First to be scanned
is the opcode, If it is OCT or BCD, the address portion is not relocatable.
For all other opcodes, the symbolic address is scanned next. If the symbolic
address is zero, it is not relocatable. If the symbolic address ia an internal
formula number, the location is obtained from the IFN table, If the symbolic
address is a subsidiary internal formula number or an internal symbol, the
location is obtained from the TIV table. If the symbolic address is *, the lo-
cation is the current contents of the program counter, If the symbolic address
is § or $$, the location is as assigned to either of these., If the symbolic ad-
dress is an external symbol, the location is obtained from TEV or DEA, If
any symbol has as yet not been defined, a diagnostic message results, For
each of these, the address is tentatively set directly relocatable.

The opcode is again scanned, If it is SYN, the definition is saved to be checked.,
No binary output results, If it is BSS, the length of the block reserved is as-
sumed to be zero. No binary output results. For all op-codes other than BCD,
OCT, BSS or SYN, the binary machine code is found in the SOPR table. If the
op-code is not found in the table, a diagnostic message results,

The relative address is added to the location for the symbolic address to de-
termine the absolute address for the symbol. If negative, it is complemented,
The base symbol (symbolic address) is examined to determine if both the base
symbol and the absolute address are on the same side of the program break.

If they are not, the address is set complement relocatable, The binary decre-
ment, absolute tag, and absolute address are combined with the operation code.
For BCD or OCT, the binary word (symbolic address) is used. The program
counter is bumped one location,

The relocation bits are packed left adjusted against any prior relocation bits
already in the 8 row of the card image. The binary instruction is inserted in
the next available half row of the card image. When the card image is full,

the word count is inserted in 9L decrement, the load address is inserted in 9L
address, the checksum is computed and inserted in 9R, column binary bits ad-
ded to 9L, the card is written on tape 3, and the load address is updated to the
program counter for the next instruction,

For all CIT' s the symbolic location is scanned., If it is a subsidiary internal
formula number and is not in TIV, it has been omitted as no reference to it
was made in the symbolic address, and it is ignored, If it is in TIV and is

not yet defined, the reference to it was later in the CIT file than its appearance
in the location field, It is here defined, If it is defined, the location assigned
to this symbol is checked against the program counter, If it is inconsistent, a
diagnostic message results, If the symbolic location is an internal formula
number, it is checked for inconsistent definition, If the symbolic location is
an internal symbol, it is the symbol for program data appearing in the sym-
bolic listing, or the symbol assigned to a section 5 LXD or SXD instruction

or arelcon subroutine. If the symbol appears in TIV, it is checked for in-
consistent definition, I it does not appear in TIV, it is a machine error, but
no diagnostic message will result, If it is $, $$, *, or an external symbol

X-17




in DEV (transfer vector name) it is ignored. No other external symbol in
DEV or any in TEV should appear in a location field.

After the entire CIT file has been scanned, the final partial card image, if

any, is written on tape 3, Processing is now complete, except for the tran-
sfer card, and for options.

Control is passed to 1 - CS to bring in the.next record,

Part P '
Part P processes the options which the programmer has instructed the FOR-
TRAN compiler to provide., Available are the following options:

End Card Setting Physical sense switch 704 709
1 1 (up) punch cards on line
2 2 (down add symbolic listing
3 3 (down list on line
4 4 (down N. A, punch column
6 add library subroutines to binary
= - output
| N.A, add symbol table
binary output
The transfer vector, which has been stored as one record following the (ﬁ

file on tape 4, is brought back into memory., End card settmg and/or physical
sense switch 5 is tested to determine if a library search is required. If the
transfer vector is not empty, and if a library search is required, a flag for
subroutines found in each pass over the library file on the FORTRAN system
tape is reset.

The next record in the library file is read into memory. If 9L prefix has a
4 punch, it is a program card; if not the next record is read in.

After a program card has been found, the next record is brought into memory
with rows 8 through 12 packed against the earlier card image. Row 9L prefix

is again tested to determine if the program card continues over more than one
card, When a card other than a program card is encountered, the tape is back-
spaced over the card image, and a consolidated program card exists in memory.
The word count of the consolidated program card is found in the decrement of
9L, while the length of the subroutine transfer vector is found in the decrement
of 8L. Each right row (entry point relative to zero corresponding to entry point
name) is scanned to determine if it is flagged by a sign bit punch as a secondary
entry point, If it is not so flagged, the left row (name of primary entry point)

is compared against the transfer vector to determine if this subroutine is re-
quired to complete the object program. I no ‘such nameis found, the remainder
of the subroutine in the library file is passed over to find the first program card
of the fOllOWing subroutine. v

X-18




If a primary entry point to a subroutine is found in the transfer vector, the
name is transferred from the transfer vector to a list of entry points to sub-
routines output from the library, A flag is set that at least one subroutine has
been found on this pass over the library file,

The names of all entry points to subroutines output are added to the found list,
and if any of these are in the transfer vector, they are deleted from the trans-
fer vector, |

The consolidated program card is converted back into card images, and written
on tape 3 following the object program, or the last library subroutine output,
and the next record read from the library file, If the library subroutine in-
cludes a transfer vector, each name in the subroutine transfer vector is com-
pared against the found list and the object program transfer vector, If it is in
neither, it is added to the object program transfer vector, The card image is
written on tape 3 following the library program card, or last subroutine card,
If the subroutine transfer vector extends over more than one card, this is re-
peated until the subroutine transfer vector is exhausted. If a program card is
encountered before the subroutine transfer vector is exhausted, a diagnostic
message results.

After the subroutine transfer vector is exhausted, the remaining cards in the
library subroutine are copied from the library file to tape 3, until the next pro-
gram card is encountered, If the object program transfer vector is exhausted,
the search is completed. If not, the search continues until the end of the library
file is sensed.

After the end of the library file, the flag for subroutines found is examined. If
any subroutines have been found on this pass, the subroutine transfer vector
may require another pass over the library file. If not, the search is completed.
If the object program transfer vector is exhausted, the search is completed. If
not, the system tape is backspaced to the beginning of the library file, the flag
reset, and another pass over the library file is made.

After the library search is completed, the system tape is repositioned at the
end of this record, and if any names of entry points to library subroutines are
on the found list, these names are written on the storage map. Each BCD name
is right adjusted and inserted in the second word of a pair.. The first word is
blank, The title, each line as completed, and the final partial line, if any, are
written on tape 2 following the mapping of internal symbols,

After this mapping, or if the library search was not -required, the transfer vec-
tor is examined to determine if any subprograms exist which are not library
subroutines, Each BCD name remaining in the transfer vector is right adjusted
and inserted in the second word of a pair, The first word is blank, The title,
each line as completed, and the final partial line, if any, are written on tape 2
following the mapping of names of entry points to library subroutines (if any).

X-19




The storage map is now complete and marked with an end of file,

If the object program is not a subprogram, a transfer card is written on tape
3. The end of binary output is marked with an end of file, and the tape is re-
wound,

Part Q

On the 704, Part Q is a separate record.

End card setting and/or physical sense switch 1 is tested to determine if cards
are required on line, If cards are required on line on the 709 end card setting
and/or physical sense switch 4 is tested to determine if cards should be row
binary or column binary.

If switch 4 is up, cards are to be row binary, and if the object program is not
a subprogram, the BSS loader is punched on line, The column binary bits are
deleted from 9L of each card image, and the card punched on line.

If switch 4 is down, cards are to be column binary, the column binary bits are
added into the checksum, 9R, of each card image, the row binary image rotated
to a column binary image, and the card punched on line.

If no column binary cards have been punched on line, sense light 1 is turned
on to so flag the monitor.

Part R

- On the 704, Part R is a separate record, .

End card setting and/or physical sense switch 2 is tested to determine if a mach-
ine language listing is required, If it is so requested, sense light 2 is turned on
to flag monitor that a third file exists on the BCD output tape. An additional pass
is made over the CIT tape to accomplish this,

CIT records are brought into memory from tape 4, and are replaced with the
next subsequent record when completely scanned,

First the symbolic location is processed. If the symbolic location is an in-

ternal formula number or a subsidiary internal formula number, the main num-
ber is converted to decimal, the character A appended, and the subsidiary num-
ber converted to decimal. The largest internal formula number which can be
stored in TIV is 2047, and a subsidiary number can be one character only. Hence
this symbol cannot exceed six characters, ' If the symbolic location is *, it is
deleted, If the symbolic location is an internal symbol, a pseudo symbol is con-
structed (see chapter X) which can not exceed five characters. If the symbol

is $,$$, or a transfer vector name, these characters are used. The BCD symbol,
so constructed, right adjusted, is inserted in the third word of a hexad,

The BCD opcode, preceded and followed by a blank, is inserted in the first five
characters of the fourth ‘word. S - .

If the opcode is BCD, and the symbolic address is a 777777777777 flag,. the
code is replaced by OCT, and processing continues as an octal symbolic address.

X-20




If the symbolic address is not a flag, the numeral 1 is inserted in the sixth
character of the fourth word, and the six character BCD word in the fifth,
The sixth word is blank.

If the opcode is OCT, the first bit is interpreted as a sign, inserted in the sixth
character of the fourth word, and the 35 bit binary number, converted to 12
BCD octal digits, is inserted in fifth and sixth words.

For all opcodes other than BCD or OCT, the symbolic address is processed

as follows, If the symbolic address is an internal formula number or a sub-
sidiary internal formula number, the main number is converted to decimal,

the character A appended, and the subsidiary number converted to decimal,
The first BCD character of the internal formula number is inserted in the sixth
character of the fourth word, The remaining BCD characters (five or fewer)
~of the symbol, followed by blanks, are saved, If the symbol address is an in-
ternal symbol, a pseudo symbol is constructed (see chapter X). The first
BCD character of the pseudo symbol is inserted in the sixth character of the
fourth word, The remaining BCD characters (four or fewer) of the pseudo
symbol, followed by blanks are saved. H the symbolic address is an *, §,

$$, or any external symbol, the first BCD. character of the symbol is inserted
in the sixth character of the fourth word, The remaining BCD characters (five
or fewer) of the symbol followed by blanks are saved, :

The remaining characters in the symbol (five or fewer) followed by blanks are
examined one at a time for the first blank character. The non blank characters
are packed left adjusted into the fifth word of the hexad, extending no further than
the fifth character of the fifth word. The relative address-is isolated from the
decrement of the CIT word 4, If it exists, it is converted to five or fewer BCD
decimal digits. The BCD sign is inserted packed against the symbol, no farther
than the sixth character of the fifth word, The BCD relative address is packed
against the sign, extending no farther than the fifth character of the sixth word.
The tag, is isolated from the address of the CIT word 4. If the tag is greater
than four, the flag T is inserted in following the tag. No diagnostic message
results, A comma is inserted packed against the symbol or relative address,

no farther than the sixth character of the sixth word, followed by the tag, no
farther than the first character of the seventh word., The CIT decrement is
isolated from the address portion of CIT word 1. If it exists, it is converted

to 5 or fewer BCD decimal digits. A comma is inserted packed against the sym-
bol or relative address, no farther than the second character of the seventh
word, foilowed by the decrement, packed against the comma, no farther than

the second character of the eighth word,

If following the symbolic address (and, if it exists, the relative address) no
tag exists, the CIT decrement is isolated from the address portion of CIT word
1. If it exists, a zero is selected as the tag field, and processing continues

as before,’ ' ‘

If no symbolic address exists, the CIT fourth word is tested for a relative ad-
dress and/or tag . If either or both exist, the relative address is isolated.
If it exists, it is converted to 5 or fewer BCD decimal digits, If it is negative,

X-21




the sign is inserted in the sixth character of the fourth word. If positive, the
first BCD numeral is inserted in the sixth character of the fourth word. The
remaining characters are inserted left adjusted in the fifth word, and the tag
and decrement are processed as before. If no symbolic address or relative
address exist, a zero is inserted in the sixth character of the fourth word, and
the tag and decrement are processed as before..

If no symbolic address, relative address or tag exist, the CIT decrement is
isolated from the address portion of CIT word 1. If it exists, a zero is inserted
in the sixth character of the fourth word, and the tag and decrement processed
as before. Processing of the null tag is necessary to insert the nonredundant
comma and zero tag field, :

After the variable field has been processed, the final word is filled with blanks,

If no variable field exists, a blank is inserted in the sixth character of the fourth
word, '

All processing converges at this point. If the op-code is not SYN or BSS, the
relative counter is converted to 5 BCD octal digits, left adjusted, followed by
a blank, and inserted in the second word of the hexad. The relative counter is
bumped by one. If the op-code is BSS, the block length is assumed to be zero,
hence for either BSS or SYN word two is blank, and the relative counter is un-
;:hanged. Word one of every hexad is blank, The CIT is now in the standard

orm ' o

SYMBOL OPC ADDRESStRA, TAG, DECREMENT

The six words of every hexad are transferred to a page image buffer. In this
process, overflow of the machine language image to the seventh and first two
characters of the eighth word are truncated. As the FORTRAN processor com-
piles TIX, TXI and TXL only in a DO loop, the only machine language instruc-
tions which may contain decrement fields are TXI *+1, 4, 32767 TIX *1, 4,
32767 and TXL 4095A, 4, 32767, None of these will overflow,

A count is kept of the hexad entries made in the page image buffer. The first
58 entries are made in column one, the next 58 entries in column 2, and the
next 58 entries in column 3, When 174 entries have been made, the page image
is written on tape 2 following the end of second file mark. The page image is
followed by a page restore,

When the end of the CIT file is sensed, the buffer is checked for a partial page
image. If a partial image exists, it is written on tape 2. An end of file mark is
written following the machine language listing, and tapes 2 and 4 are rewound.
The information on tape 4 is no longer of significance,

Part S

On the 704, Part S is a separate record,

End card setting and/or physical sense switch 3 is tested to determine if on-line
output of the source program, storage map, and machine language listing (if any)
is required. If it is so requested, the page is restored so that each file begins
on a new page. .

X-22




One record (one prmted line) is read from tape 2, is converted to a card image,
and the line is printed.,

When the end of the source progrem file is sensed,v the page is restored, and the
map is printed line by line,

When the end of the storage map file is sensed, sense light 2 is tested to de-
termine if a third file, the machine language listing, exists on tape 2. If it does,

this flag is restored for momtor, the page is restored and the hstmg is printed
line by line. :

When the end of the listing file is sensed, tape 2 is rewound. The FORTRAN
compiler has completed processing of the source program, The results of the
FORTRAN compilation are on two tapes: tape 2, the BCD source program,
storage map, and symbolic listing if requested and tape 3, the binary program
card, the object program, library subroutines including their program cards
if requested and transfer card if a main program, If on line output has been
requested, cards have been punched and listings have been printed,

Control is passed to 1 - CS to return this job to the monitor.

X-23




XI LIBRARY AND LIBRARIAN

INPUT-OUTPUT LIBRARY

Control Routines

10S / Input-Output Supervisor

I0U/ Input-Output Channel-Unit Table
SLO/ Short-List Output

SLI/ Short-List Input

WER/ Tape Write Error

RER / Tape Read Error

Hollerith Input-Output

IOH/ Input-Output Hollerith

STH/ Storage to Tape Hollerith
TSH/ Tape to Storage Hollerith
CSH/ Card to Storage Hollerith
SCH/ Storage to Card Hollerith
SPH/ Storage to Printer Hollerith

Binary Input-Output

IOB/ Input-Output Binary

STB/ Storage to Tape Binary
TSB/ Tape to Storage Binary
DRM/ Write Drum and Read Drum

Tape Non-Transmission

BST/ Backspace Tape
EFT/ Endfile Tape
RWT/ Rewind Tape

MATH LIBRARY

XP1/ Exponential - FXPT Base - FXPT Exp.
X P2/ Exponential ~ FLPT Base - FXPT Exp.
XP3/ Exponential - FLPT Base - FLPT Exp,
ATN/ Floating Point Arctangent

XPF/ Floating Point Exponential Function
LOG/ Floating Point Natural Logarithm
SCN/ Floating Point Sine and Cosine

SQR/ Floating Point Square Root

TNH/ Floating Point Hyperbolic Tangent -

XI -1




- MONITOR LIBRARY

CHN / Chain
DMP / Dump
XIT / Exit

OTHER LIBRARY ROUTINES

FPT / Floating Point Trap
TES / Test Last Write
XLO / Relocated Location Function

THE LIBRARY EDITOR

LIB / Librarian

XI-2



INPUT/OUTPUT LIBRARY

The 709 FORTRAN I/O LIBRARY was designed as a simple, generalized
and flexible method for handling the input-output and conversion of data required
by Fortran - compiled programs at object-time under Monitor or non-monitor
operation. The I/O Library (IOL) consists of hand-coded, FAP-assembled, re-
locatable subroutines, which communicate with Fortran programs by means of
linkage compiled by the I/O Translator (IOT) in Section One.

Most of the analysis done by the IOT concerns the items in the List. When
indexing instructions are necessary for the List, entries are made in TDO table,
which cause Section Two to compile the necessary instructions for the treatment
of arrays conforming to standard Fortran usage, e.g: the first element is as-
signed the highest location of the array. The remainder of IOT's task is simple:
the communication of the minimum amount of information necessary to the IOL.
This could be: The unit designation, type designation, location of Format speci-
fication, and the termination of the List.

The simplicity of this scheme will become apparent during the following
description. Its flexibility and generality provide the obvious advantages of easy
modification, and a continuing opportunity for improvement. This partly explains
the reason for the fragmentation of the IOL into about twenty different routines.
Generally, in systems design, the linkage cost of keeping functions separate and
distinct, is repaid both in memory space and in the ease with which additions and
. improvements may be made.

The IOL contains four types of routines:

1) for initialization and control:
‘ I0S, IOU, SLO, SLI, WER, RER;

2) for the transmission of information to and from each TYPE of
I/0O unit:
STH, TSH, CSH, SCH, SPH, STB, TSB, DRM;

3) for the conversion of data, and/or its transmission to and from
the data area, according to MODE:
IOH, 10B;

4) and for non-transmission TYPE tape handling:
BST, EFT, RWT,

In the following writeup, the mode routines (IOH,IOB) will be described in con-
junction with the unit routines.

The general overall flow can be outlined as follows:

1) The logical unit designation, if necessary, is picked up, and con-
trol exits from the calling sequence to the indicated TYPE routine.

XI-3




2) if this is a non-transmission TYPE routine, control passes directly
to the control routine, I0S, for initialization., If a transmission type, except
DRM, the TYPE routine furnishes the correct switch setting for input or output
to the appropriate MODE routine. Then the MODE routine conveys the logical
unit designation, along with the correct mode indication, to IOS.

3) IOS turns to the IOU table for the logical-actual unit correspondence,
after having checked for the correct completion of a previous write statement.
When all I/O commands have been initialized, control returns to the MODE rou-
tine (or to the non-transmission caller).

4) the MODE routine now controls transmission, and/or conversion,
of data according to the Format specification and the List of items indicated by
the calling sequence. A return is made to the TYPE unit routine for each record
of input or output. '

5) When the List is satisfied a final return is made to the MODE rou-
tine to make sure the last record is read or written, and to restore conditions.

XI-4



TABLE OF USAGE

SHORT- TAPE CHANNEL-~
TYPE LIST ERROR UNIT
UNIT MODE CONTROL CONTROL CONTROL
TSH IOH SLI RER 1I0S
STH IOH SLO WER 10S
CSH IOH SLI - 10S
SCH IOH SLO - 108
SPH IOH SLO - 108
STB I0OB SLO WER 10S
TSB IOB SLI RER I0S
BST - - - 10s
EFT - - - 108

RWT - - - IO0S

DRM - - - -

XI-5



CONTROL ROUTINES

I0S/INPUT-OUTPUT SUPER VISOR

Purpose:

To initialize all input-output instructions for a given logical unit designation ac-
cording to logical-actual correspondences in IOU. These instructions may then be
executed through a transfer vector. -

Calling Sequences: used by all I/O routines except DRM.

CAL C(AC) C(AC) = MODE, ,UNIT
TSX $(10S),4 where: MODE = 0 for BCD, 20 8) for BIN
return UNIT = logical designation

or XEC* $(XXX) C(XR4) may = - ADDR.

where XXX may be: RDS, WRS, BSR, WEF, REW, ETT, RCH, TEF, TCO, TRC

Transfer Vector
(TES), (IOU)

Stop Reason
HPR 0,6 Actual unit designation not found in IOU.

Storage Requirement (for 6 channels)

124 locations.

(8)

Description

IOS first makes sure any previous tape write is correct. Then, the current
unit is compared with the last; if they are the same, then IOS exits to caller. If
different, then if the current unit designation is either zero,or greater than the num-
ber of entries in IOU, IOS stops. Otherwise, IOS examines the indicated entry in
IOU, and stops if the entry is zero. Otherwise, all unit instructions are initialized.
Then, the current channel designation is checked against the last. If the same, then
IOS exits to caller. If different, the channel instructions are initialized before IOS

returns.

The instructions (RCH), (TEF), (TCO), (TRC) have an address and tag = 0,4.
The two's complement of their effective address is contained in XR4.

XI-6




I0U /Input-Output CHANNEL-UNIT TABLE

Purpose
To establish logical-actual channel-unit correspondences at object time.

Calling Sequence
Table referenced by IOS.

No Transfer Vector

No Stops

Storage Requirement
14(8 locations (as distributed). The number of locations required equals the

number of units, plus one which contains the total number of tape unit addresses.

Description (Only the address field of locations in IOU is presently used.)
(IOU)-3 contains the channel-unit address of the Printer.
(IOU)-2 contains the channel-unit address of the Punch.
(IOU)-1 contains the channel-unit address of the Reader.
(IOU) contains the number of tape unit addresses in the table.

The following N actual tape unit addresses correspond to the logical tape unit
addresses from 1 to N. If there is no actual tape unit available for a logical unit
address from 1 to N, that particular entry should be zero, to cause the stop HPR
0,6 in IOS.

XI-7




SLO/SHORT LIST OUTPUT

Purpose
To provide list indexing for the output of non-subscripted arrays.

Calling Sequence

TSX $(S1L.O),4 - used in List
PZE SYMBOL +1
PZE N
return
where: '~ SYMBOL = Location of the array, and

N Number of elements.

No Transfer Vector

No Stops

Storage Requirement
15(8) locations.

Description
SLO will initialize the instructions:

AXT 1,4

LDQ SYMBOL + 1,4
STR ‘
TXI *+1,4,1

TXL * -3,4,N

and trap back and forth on the STR between IOH or IOB, until each element of the
array has been output in the normal Fortran order. To handle arrays in reverse
of the normal order, it is possible to change the above instructions to:

AXT N,4

LDQ SYMBOL +1,4
STR

TIX * -2,4,1

XI1-8




SLI/SHORT LIST INPUT

Purpose
To provide list indexing for the input of non-subscripted arrays.

Calling Sequence

TSX $(SLI),4 - used in List
PZE SYMBOL +1
PZE N
return
where: SYMBOL = Location of the array, and

N Number of elements.

No Transfer Vector

No Stops

Storage Requirement
15(8) locations.

Description
SLI will initialize the instructions:
AXT 1,4
STR
STQ - SYMBOL +1,4"
TXI *+1,4,1
TXL ¥ -3,4,N

and trap back and forth on the STR between IOH or IOB, until each element of the
array has been input in the normal Fortran order. To handle arrays in reverse of
the normal order, it is possible to change the above instructions to:

AXT N,4

STR

STQ SYMBOL + 1,4
TIX *-2,4,1

XI-9




WER/TAPE WRITE ERROR

Purgose
To check tape output.

Calling Sequence

TSX $(WER),4 - used by STH and STB
return
or: STA¥* $(WTC) - to save the last command address.

Transfer Vector
(TCO), (ETT), (TRC), (TES), (BSR), (WRS), (RCH), (WEF), (REW).

Stops Reason
HPR 0 I/O check light is on.

- -

5

HPR 1,5 Fifth redundancy while writing.

HPR 2,5 First redundancy while erasing.
5 End of tape indicator is on.

Storage Requirement
60(8) locations .

Description

WER delays if the channel is in operation. Then tests are made for end of
tape, I/O check, and redundancy check. If no tests fail, TES is reset to NOP,and
control returns to caller. On'end-of-tape, WER backspaces a record, writes end
file mark, rewinds, loads the unit address into the MQ, and stops. If the start key
is depressed, WER then rewrites the last record on the new tape and repeats the
tests. On an I/O check, WER simply stops. On a redundancy check after writing,
WER tests the error count and stops it if it is exhausted. If it is not exhausted, or
if the start key is pressed, WER then backspaces, erases the previous record and
checks the erase. If the erase failed, WER stops. If not, WER then rewrites the
previous record and repeats all tests. »

XI-10




RER/TAPE READ ERROR

Purpose
To check tape input.

Calling Sequence

TSX $(RER),4 - used by TSH and TSB
return
or: STA¥* $(RDC) - to save the last command address.

Transfer Vector
(TCoO), (TRC), (TEF), (BSR), (RDS), (RCH).

Stogs Reason
HPR 0,3 I}O check light is on.
HPR 1,3 Tenth redundancy while reading.
HPR 2,3 End of file indicator is on.

Storage Requirement
36(8) locations.,

Description

RER delays if the channel is in operation. Then tests are made for I/O check,
redundancy, and end-of-file. If no tests fail, control returns to caller. On an I/O
check, RER simply stops. On a redundancy check after reading, RER tests the
error count and stops if it is exhausted. If it is not exhausted, or if the start key is
pressed, RER then backspaces, rereads the previous record, and repeats all tests.
on end-of-file RER stops, and if the start key is pressed, reads the first record be-
yond the file mark, and repeats all tests.

XI-11



HOLLERITH INPUT-OUTPUT

IOH/INPUT-OUTPUT HOLLERITH

Purpose

To handle the transmission and conversion of BCD data according to LJ.st
and Format specifications.

Calling Sequences
LDQ C(MQ) - used by TSH,STH,CSH,SCH, and SPH.
TRA* $(I0OH) 1,4 = L(FORMAT) and 2,4 = L (LIST)
where: C(MQ) = NOP XXX for input,
and C(MQ) = TRA XXX for output,
where XXX the re-entry address to the TYPE unit routine,
when IOH is entered for initialization. Control returns to List.

then: STR - used by the List

STQ Symbol, TAG for input
or: LDQ Symbol, TAG - used by the List

STR for output.
when location 2 has been set to re-enter IOH for data conversion.
then: TSX (RTN), 4 - used by the List

return when input is terminated
or: TSX (FIL), 4 -~ used by the List

return when output is terminated.

Transfer Vector

(I1I0S)
Stops Reason
HPR 0,1 Illegal format statement.
HPR 1,1 Illegal data.
HPR 2,1 Illegal data.
HPR 3,1 Illegal data.
HPR 4,1 Illegal data.
HPR 5,1 Nlegal data.

Storage Requirement
1553(8) locations + 242(’8) erasable.

Description

When IOH is entered initially from one of the TYPE unit routines, switches
are set for either input or output. The exit is set to return to the List. Various con-
ditions are saved. Location 2 is set so that an STR will cause a return to the conver-
sion part of IOH. Various indicators are reset. And IOS is called to initialize the
I1/0 instructions for the indicated logical unit. If input, a record is read by the TYPE
routine.

XI-12




Description (cont'd)"

. Then the Format specifications, in their original BCD form, are scanned.
If Hollerlth Blank, or Skip specifications are encountered, control remains in IOH
and the specified number of BCD characters are taken from, skipped, or placed in-
to the REC buffer. Then the Format Scan resumes. If data field specifications are
encountered the appropriate SW1tches and counters are set for the indicated type of
conversion fixed, floating or integer. If input, the specified number of characters
are obtained from the BCD REC buffer, converted to binary, placed in the MQ, and
control returns to the List. If output, control returns to the List immediately, to
obtain a List item in the MQ. When the STR is executed, the List item is converted
from binary to BCD and packed into the REC buffer. This continues until the count
for repetition of this particular Format field specification is exhausted, or until the
List is satisfied. When the field count is exhauated. the Format Scan resumes.

When a Slash is encountered by the Format Scan, a new record is either

input or output by the current TYPE unit routine. This will also occur on the final
‘right parenthesis of the Format, if the list has not been exhausted. However, if the
List has been satisfied, a final return of control to IOH causes the output of the last
record, and/or the restoration of the various saved conditions, before the final exit
to the caller of the TYPE unit routine.

XI1-13




STH/STORAGE TO TAPE HOLLERITH

Purpose
To write one BCD tape record.
Calling Scquence for: WRITE OUTPUT TAPE N,FMT, List.
CAL N - unit designation.
TSX $(STH), 4 - or (STHM) under Monitor.
PZE FMT - location of Format specification.,
o v . - indexing
LDQ SYMBOL, TAG -~ output list.
STR - trap to IOH.
.« . . . - indexing
TSX $(FIL), 4 - fill out record.

Transfer Vector

(IOH), (WER), (TES), (WRS), (WTC), (RCH)

No Stops

Storage Requirement
72(8) locations + 25(8) erasable.

Description

STH loads the MQ with the output switch setting and re-entry address, and
exits to IOH for initialization. Then, whenever IOH is ready to output a record, it
re-enters STH. If (STH) has been changed to (STHM) by the Monitor, then the line
count is increased by 1. STH then exits to WER to check any previous write. On
return from WER, the word count for the write command is obtained from 1,4, and
the contents of the REC buffer in IOH are moved into the output buffer. TES is set
to check the current write. The command address is saved in (WTC) for use by WER.
STH then executes the (WRS) and (RCH) commands in IOS, to initiate the writing of
the contents of the output buffer onto tape, and returns to IOH at 2,4.

- XI-14.




TSH/ TAPE TO STORAGE HOLLERITH

Purpose
" To read one BCD tape record.

Calhng Sequence for: READ INPUT TAPE N,FMT, List.
CAL N - unit designation.
TSX $(TSH), 4 - or (TSHM) under Monitor, _
PZE FMT - location of Format specification.
N . . - 1ndex1ng.
STR ~ . - trap to IOH.
STQ SYMBOL,TAG - input List. ‘
o« o ot - indexing. |
TSX $(RTN), 4 - return to restore conditions. |

Transfer Vector
(IOH), (RDS) (RDC) (RCH), (RER),EXIT

No 'StoBs

Storage Requirement
‘30(8)1o_ca§10ns + 25(8) erasable.

Description

TSH loads the MQ with the input switch setting and re-entry address, and
exits to IOH for initialization.” Then, whenever IOH requires an input record, it re-
enters TSH. TSH then executes the (RDS) and (RCH) commands in IOS, causing a
20- .word record to be read into the IOH input buffer. The command address is saved
in (RDC) for use by RER. If (TSH) has been changed to (TSHM) by the Momtor. then
an end of file on channel A causes an exit to the Monitor, Otherwise, TSH exxts to
RER to check the read, and returns to IOH dlrectly from RER.

XI-15



CSH/CARD TO STORAGE HOLLERITH

Purpose
To read one Hollerith card and convert to BCD.
Calling Sequence for: READ FMT, List.
TSX $(CSH), 4
PZE FMT - location of Format specification.
. e .o - indexing
STR - trap to IOH
STQ SYMBOL,TAG - input List.
« o o e - indexing
TSX $(RTN), 4 - return to restore conditions.

Transfer Vector ‘
(IOH), (TCO), (TEF), (RDS), (RCH) ‘w

Stégs ’ Reason
HPR 0,2 - Illegal card character.
HPR 1,2 - End of file.

Storage Requirements

173 locations + 141 erasable.
(8) (8)

Description

CSH sets the AC to -1, for the IOU table reference, loads the MQ with the
input switch setting and re-entry address, and exits to IOH for initialization. Then,
whenever IOH requires an input record, it re-enters CSH. CSH then executes the
(TCO), (RDS), (RCH), and (TEF) commands in IOS. On an end-of-file, CSH stops
until the card can be readied. When a card has been read, CSH then converts it from
Hollerith and places the BCD in the IOH input buffer. If anillegal character is en-
countered, CSH stops until the corrected card can be readied. When the card has
been converted, control returns to IOH.

XI-16




SCH/STORAGE TO CARD HOLLERITH

Purpose
To convert BCD to Hollerith and punch one card.
Calling Sequence for: PUNCH FMT, List.
TSX $(SCH), 4
PZE FMT - location of Format specification.
A .. - indexing
LDQ SYMBOL,TAG - output list.
STR - trap to IOH.
o v e - - indexing
TSX $(FIL),4 - fill out card.

Transfer Vector
(IOH), (TCO), (WRS), (RCH).

No StoEs

Storage Requirements

140 locations + 148 erasable.
(8) (8)

Description

SCH sets the AC to -2, for the IOU table reference, loads the MQ with the
output switch setting and re-entry address, and exits to IOH for initialization. Then,
whenever IOH is ready to output a record, it re-enters SCH. SCH then obtains the
output word count from 1,4, and converts the contents of the REC buffer in IOH from
BCD to Hollerith and places it in the output buffer. When the image conversion is
complete, SCH executes the (TCO), (WRS), (RCH) commands in IOS, causing the

Hollerith card to be punched. When punching is complete, SCH returns to IOH at
2 ’ 4 .

XI1-17



SPH/STORAGE TO PRINTER HOLLERITH

Purpose
To convert BCD to line image and print a line,

Calling Sequence for: PRINT FMT, List.
TSX $(SPH), 4 ‘ :
PZE . FMT - location of Format specification.

indexing

LDQ SYMBOL,TAG - output List.
STR - trap to IOH.
o« o e . . - indexing

TSX $(FIL), 4 - fill out line.

Transfer Vector
(IOH), (WRS), (TCO), (RCH).

No Stops

Storage Requirements

270(8) locations + 163(8) erasable.

Description

SPH sets the AC to -3, for the IOU table reference, loads the MQ with the
output switch setting and re-entry address, and exits to IOH for initialization. Then,
whenever IOH is ready to output a record, it re-enters SPH. SPH then obtains the
output word count from 1,4, and converts the contents of the REC buffer in IOH from
BCD to line image and places it in the output buffer. Then according to program con-
trol characters, SPH senses the hubs, and executes the (TCO), (WRS), (RCH) com-
mands in IOS, to print left and right halves of the line respectively. When printing is
complete, SPH returns to IOH at 2,4.

XI-18




BINARY INPUT-OUTPUT

IOB/INPUT-OUTPUT BINARY

PurEose

To handle the transmission of binary between storage and tape buffers
according to List specifications.

Calling Sequences
LDQ C(MQ) -~used by STB and TSB.
TRA* $(10B) 1,4z L(LIST)

where C(MQ)= STQ XXX,4 for output,

and C(MQ)= LDQ XXX,4 for input,

where XXX = the re-entry address to the TYPE unit routine,
when IOB is entered for initialization. Control returns to List,

then: LDQ Symbol, TAG -used by the List
STR for output.

or: STR -used by the List
STQ Symbol, TAG for input.

when location 2 has been set to re-enter IOB for transmission.

then: TRA* $(EXB) -used by STB and TSB
when the last physical record has been written or read.

Transfer Vector
(1I0S)

No StoEs

Storage Requirement
463(3) locations + 3 erasable.

Description

When IOB is entered initially from one of the TYPE unit routines,
switches are set for either input or output. The binary indicator is added to
the AC, and IOS is called to initialize the I/O instructions for the indicated
logical unit. If input, a record is read by the TYPE routine. Various
indicators are reset, and the contents of locations 0 and 2 are saved.
Location 2 is set so that an STR will cause a return to the transmission part
of IOB. And control returns to the List.

When an STR is executed, one word is put into, or taken from, one
of two 127-word buffers, and the count is decreased by 1. Meanwhile,
whenever there is more than one physical record in a logical record, the
other buffer is either being written out, or being read into. This is
accomplished by switching the address of the working buffer and the
address of the I/ O command whenever the count is exhausted. To
initiate the tape read or write, the indicated TYPE routine is called.

XI-19




Description (continued)

When the List has been satisfied, and the last physical record has
been written or read, control returns finally to IOB to restore the contents
of locations 0 and 2, before the exit to the caller.

XI-20




STB/STORAGE TO TAPE BINARY

Purpose

To write one physical record and its appropriate label onto tape.
Calling Sequence for: WRITE TAPE N, List

CAL N ~-unit designation

15X $(STB),4

.o .o -indexing.

LDQ Symbol, TAG -output List

STR -trap to 1I0B,

.o oo -indexing.

TSX $(WLR), 4 -write last physical record.

Transfer Vector
(10B), (WER), (WRS), (WTC), (RCH), (TES), (EXB)
I\.O Stues

Storage Regai-ement
63(5) locations ¥ 1 erasable.

Description

STi. leads the MQ with one output switch sctting and re-entry address,
and exits to IOB for initialization. Then, whenever IOB is ready to output a
record, it re-enters STB. STB first exits to WER to check any previous write.
On return irom WER, the physical record count is increased by 1, the current
command address is saved in (WTC) for use by WER, and the commands
(WRS) and (RCH) in IOS are executed to initiate the writing of the contents of
the indicated buffer, preceded by a zero label, onto tape. STB then returns
to I0OB at 2,4.

When the list has been satisfied, STB is entered at (WLR). Any
previous write is cnecked by calling WER. The write command is set with
the current buifer address and the current word count obtained from I1OB.
The physical reccrd count is increased by 1, and placed in the address
partion of the laocl. The PRC counter is reset to zero. The writing of
the parual buffer-load and the non-zero label are initiated. The command
address 1s saved in (WTC). TES is set to check the current write. And
STB exits to IOB at (EXB).

XI-21



TSB/ TAPE TO STORAGE BINARY

Pure ose

To read one physical record and its appropriate label from tape.
Calling Sequence for: READ TAPE N, List.

CAL N -unit designation

TSX $(TSB), 4

.. .o ~indexing.

STR -trap to IOB.

STQ Symbol, TAG -input list.

PN .o -indexing.

TSX (RLR),4 ~-read last physical record.

Transfer V.cior
(iOb), (RER), (RDS), (RDC), (RCH), (EXB)
No Stops

“iorage Requirement
42(g) locations

« sCription

TSB loads the MQ with the input switch setting and re-entry address,
ar.i exits to 10OB for initialization. Then, whenever I0OB requires an input record,
11 re-enters TSB., TSB first exits to RER to check any previous read. On return
from RER, the last label read is examined. If non-zero, control returns to IOB
at 2,4. If zero, the commands (RDS) and (RCH) in IOS are executed to initiate
reading the next physical record into the indicated buffer. The address of the
reac command is saved in (RDC) for use by RER. And control returns to IOB
a. 2,4.

When the list has been satisfied, TSB is entered at (RLR). Any previous
read is checked by calling RER. If the label is zero, TSB then continues to read
physical records until a non-zero label is encountered, which signifies the last
physical record of this logical record. Then TSB exits to IOB at (EXB).

XI-22




DRM/WRITE AND READ DRUM

Purgose

To transfer arrays to and from a Drum.

Calling Secuence

CAL
TSX
CAL
LDA
LXD
CPY
TIX

CPY

No Transier Vector

No Stogs

N

$(XXX), 4

J

2)K, TAG
Symbol, TAG
*-1, TAG, 1
Symbol

Storage Requirement

17 (8) locations.

Description

for: WRITE (or READ) DRUM, N, J, List
~-Drum designation.

(XXX=SDR for output, DRS for input)
~-Drum address.

-set by DRM.,

~-indexing.

-array Symbol

-indexing.

-last element.

The drum designation is used to initialize the write or read select.

The drum is selected.

The drum address is moved into DRM, and its

location is stored in the address of the LDA instruction. Then DRM exits

to the LDA at 2, 4.

XI-23



TAPE NON-TRANSMISSION

BS1/BACKSPACE TAPE

Purpose
To backspace the indicated tape one logical record.
Calling Sequence for: BACKSPACE N
CAL N -unit designation
TSX $(BST), 4
return

Transfer Vector
(I0S), (BSR), (RDS), (RCH), (TCO), (TRC), (TEF)

No StoEs

Storage Requirement
34(g) locations+ 1 erasable.

Description
The binary indicator is added to the AC, and IOS is called to

initialize the I/O instructions for the indicated logical unit. Then

BST attempts to read the previous physical record in the binary mode,
by executing the instructions: (BSR), (RDS), (RCH), and (TCO).

Then, if a (TRC) or a (TEF) cause a transfer when executed, only

one backspace is required. Otherwise, BSR backspaces the number
of physical records specified by the last binary record label. Control
then returns to the caller at 1,4.

XI-24




EFT/ENDFILE TAPE

Purpose
To write end-of-file on the indicated tape.
Calling Sequence for: ENDFILE N.
' CAL N -unit designation
TSX $(EFT), 4
return

Transfer Vector
(IOS), (WEF)

No Stogs

Storage Requirement
7(8) locations.

Description

IOS is called to initialize the 1/O instructions for the indicated
logical unit. Then EFT simply executes (WEF), causing an end-of-file
to be written. Control returns to the caller at 1, 4.

XI-25



RWT/REWIND TAPE’

Purpose
To rewind the indicated tape.

Callihg Sequence

CAL N
TSX $(RWT),4
return

Transfer Vectoxf
(I0S), (REW)

No Stops

Storage Requirement
7(8) locations.

Description

for: REWIND N
~-unit designation

IOS is called to initialize the I/O instructions for the indicated
logical unit. Then, RWT simply executes (REW), causing the tape to
be rewound. Control returns to the caller atl,4.




MATH LIBRARY

The 709 FORTRAN MATH LIBRARY consists of modified SHARE
Library routines, which have been FAP-assembled, and which communicate
with Fortran programs by means of linkage compiled by the Arithmetic
Translator in Section One.

XI-27



XPl/ EXP._ONENT,IAL -_FXPT BASE - FXP,T EXP,
Pu;gose

,_ - To compute _IfT. where I and J are fixed point va.r_iables. »

'Calling Sequeénce for: I**J in an arithmetic statement
oo CLAL I - ~fixed point base.. .. . s
T LDQ o J ~~fixed point exponent R
TSX - $EXP(1, 4 R
-return S

No Transfer Vector

- VSt‘:ér':a;ée Requirement
. . 43(g) locations +2 erasable.

Descriptioun
{If I=0, theniII= 0; if J=0, thengf- 1)

el

" X1-28



XP2/EXPONENTIAL - FLPT BASE - FXPT EXP,

PurEose

fixed point variable.

Calling Sequence

CLA A

LDQ K

TSX $EXP(2,4
return

No Transfer Vector

No Stops

Storage Requirement
46(g) locations+ 2 erasable

Description

To compute AK, where A is a floating point variable and K is a

for: A*¥*K in an arithmetic statement
-floating point base
-fixed point exponent

(If A= 0, then AK= 0; if K=0, then AK1,0)



XP3/EXPONENTIAL - FLPT BASE - FLPT EXP.

Purpose .
To compute BC. where B and C are floating point variables.
Calling Sequence for: B**C in an arithmetic statement
CLA B -floating point base
LDQ C -floating point exponent
TSX $EXP(3,4,
return

No Transfer Vector

No Stops

Storage Requirement

160(g) locations+10(g) erasable

Description

(If B= 0, then BC=0; if C=0, then B= 1.0)

XI1-30




ATN/ FLOATING POINT ARCTANGENT

Purpose

To compute the principal value of arctan (X) where X is a floating
point, single precision, argument in radians.

Calling Sequence for: ATAN F(X) in an arithmetic statement
CLA X ~-floating point argument
TSX $ATAN, 4
return

No Transfer Vector

No Stops

Storage Requirement
115(g) locations+ 3 erasable

Timin _
~ 1,98 milliseconds

Accuracz :
Error<1l x 10 -8

Description 27
(f 1xX1> 2/, then arctan | x| =7/2; i | X'( 227, then a.rctan\Y‘:Wl)

Adapted from SHARE Routine IBATNI, Distribution Number 507.

XI-31




XPF/FLOATING POINT EXPONENTIAL FUNCTION

Purgosev

To compute e* for a floating point, single precision, argument.

Calling Sequence

CLA X
TSX $EXP,4
return

No Transfer Vector -

No StoEs

Storage Requirement
56(g) locations <+ 4 erasable

Timin
o 1,7 milliseconds

Accuracy
~ Error _(_ 1x10-8

Descrigtion

for: EXPF(X) in an arithmetic statement
~floating point argument.

(If X 88.028, then eX = x; if X¢-88.028, then eX= 0)
Adapted from SHARE Routine IB FXP, Distribution Number 507.

XI-32




LOG/FLOATIN_G POINT NATURAL LOGARITHM

PurEose

To compute log, x, natural logarithm, for a floating point,
single precision, argument in normalized form.

Calling Sequence

CLA X
TSX $LOG, 4
return

No Transfer Vector

No StoEs

Storage Requirement
56(g) locations+3 erasable

Timing
1.848 milliseconds

Accuracy
Error i 3 x10-8

Description

for: LOGF (X) in an arithmetic statement
-floating point argument

(If x = 0, then log x = 0; if x¢0, then LOG computes log | x| )
Adapted from SHARE Routine IB LOG 3, Distribution Number 665.

XI-33




SCN/FLOATING POINT SINE AND COSINE

PurEose

To compute the sine or cosine of a floating point, single precision,
normalized argument, in radians.

Calling Sequence for: SINF (X) in an arithmetic statement
CLA X -floating point argument
TSX $ SIN, 4
return

or: - for: COSF (Y) in an arithmetic statement
CLA Y -floating point argument
TSX $ COS,4
return

No Transfer Vector

No Stops

Storage Requirement
151(8) locations + 4 erasable

Timing in Milliseconds
SIN: 1.38 to 2.03; COS: 1.45 to 2.11 -

Accuracy _
Error €1x10 -8

Description
(Cos x = Sin x+71/2)
Adapted from SHARE Routine IB SIN 1, Distribution Number 507.

XI-34




SQR/FLOATING POINT POINT SQUARE ROOT

PurEose

To compute the square root of a floating point, single precision,
argument.

Calling Sequence for: SQRTF (X) in an arithmetic statement
CLA X -floating point argument
TSX $ SQRT,4
return

No Transfer Vector

No Stops

Storage Requirement :
54(8) locations + 4 erasable

Timing
1. 062 milliseconds

Accuracy
Error {1lx 10-8

Descrigtion
(If x = 0, then §x= 0; if x<o, then VX = x)

Adapted from SHARE Routine IB SQ1, Distribution Number 72l.

XI-35




Al

Accuracy

TNH/FLOATING POINT HYPERBOLIC TANGENT

PurEose

To compute tanh (x) fOr a ﬂoatxng point, single precxsiou. argument.
in radians.

Calling Sequence . for: TANHF (X) in an arithmetic statement
CLA X ‘ - . ' '
TSX $ TANH, 4
return -

No Transfer Vector

No StoESI‘

Storage Requirement
o 126(3) locations + 4 erasable '

Timing | , S
. 2.09 to 2,64 milliseconds

Error ¢ 3 x10°8 for X-».00034 or x—».17, and 1x 10°8 elsewhere.
Descnptlon »

(f 1 x1 € . 00034, then tanh (X) = X ; if }X/> 12, then tanh (X) ==
Adapted from SHARE Routine IB TANH, Distribution Number 507.

XI-36




e SRR T e e e

MONITOR LIBRARY

The 709 FORTRAN MONITOR LIBRARY consists of hand-coded,
FAP assembled, relocatable subroutines, which use linkage compiled
by Section One to communicate with Fortran programs that are executed
under Monitor control. ' '

XI-37



CHN/ CHAIN

Purpose
To load the indicated chain link from tape into cores, and pass

contr ol to it.

Calling Sequence

for: CALL CHAIN (R,T)

TSX -~ $CHAIN, 4
TSX ’ L(R) -record identification:
TSX L(T) ; -actual channel B tape designation (1,2,0r3)

Transfer Véctor »
(TES), EXIT

No Stogs

Storage Reqﬁirement
23 6(8) locations

Description : ; ‘ ‘ \

' After checking any previous write through TES, CHN searchs the
channel B tape specified by the argument: T, for the record beginning with
the control word: PZE 0, T, R. If an EOF is encountered before the record
is found, the tape is rewound and the search continues. A second EOF causes
an error message, and the job is deleted by calling EXIT. The same will oc-
cur, if five attempts to read the tape fail. I the search is successful, CHN then

‘moves the Execution Loader on top of The Diagnostic Caller, and transfers con-

trol to it.

XI-38




DMP/DUMP

Purpose
To control the dumping of cores and panel according to Argument speci-
fications, during execution,

Calling Sequences - for: CALL DUMP (A,B,F. . .)
~ TSX $DUMP, 4
TSX A - first limit
TSX B - second limit .
TSX L(F) or F - dump format

. . . L .

Control returns to the Monitor through EXIT. -

or: for: CALL PDUMP (A,B,F ., . .,)
TSX $PDUMP, 4
(arguments as above)

Control returns into execution, after restoring memory.,

Transfer Vector
(TES), EXIT

No Stopé

Storage Requirement
245 _ locations,

(3)

Description ‘

After checking any previous write through TES, DMP saves 3500 3 words
on tape B2, Then a table is prepared of no more than 20 sets of arguments, and
is written onto tape B2, The Monitor Dump Record is called into memory, and
control remains with it until the argument table is exhausted, Then memory is
restored and control re-enters DMP, If any arguments remain to be processed,
another table is formed, and the Dump Record is called again, This continues
until no arguments remain, Then, if DMP was entered at DUMP, control returns
to the Monitor through EXIT., Otherwise, execution is resumed, if memory was
correctly restored., Redundancy while reading memory from tape B2 will cause
an error message, and execution will be terminated, Control then returns to the
Monitor through EXIT,

XI-39




®

XIT/ EXIT

Purgose

To terminate execution, and transfer control to the Sign-on
record of the Momtor. '

Calling Sequence for: CALL EXIT
' TSX $EXIT, 4 :
' Transfer Vector
(TES)
Stop k o - Reason
' HTR *-l2 ‘5 failures while reading System Tape

Storage Requirement
‘ 23(8) locations

Description ‘ '

'EXIT fxrst checks the completion of any previous write by executmg
(TES) Then the System Tape is ‘rewound, 1 TOCS is restored without
destroying the current line count, and the System Tape is positioned to the
Sign-on Record of the Monitor. If a redundancy stop occurs, pressing the

start key will cause 5 new attempts. If there was no redunda.ncy. control

passes to 1l TOCS and the Monitor ngn-on is entered.

X1-40




OTHER LIBRARY ROUTINES

FPT/FLOATING POINT TRAP

Purpose , )

To handle the floating point trap feature during execution.
Calling Sequence , for: any FORTRAN Main Programs
$$ CLA $(FPT) : '

STO 8 ’ ‘ -trap cell

STZ 4)-205 -overflow data cell

The trap cell, location 8, is set to: TTR (FPT). Control returns indirectly '
through location 0.

No Transfer Vector

No StoEs

Storage Requirement '
22(8) locations + 2 erasable.

Description . :
When control traps into FPT, overflow and underflow data is saved
in 4)-205. The AC and MQ are set according to overflow and underflow

conditions. Then control exits to the address in location 0.

XI-41




TES/ TEST LAST WRITE

Purgoée' :
‘ To test the correct completion of any previously initiated tape write.
Calling Sequence for: FAP-coded programs
XEC* $(TES)
return

No Transfer Vector

No Stops

Stofage Requiremen‘;
1 location’

Descnpjmn '

~ TES cons1sts of one NOP instruction, which is set to TSX (WER) 4.
by STH and STB at execution time, and reset to NOP by WER after the writing
of any previous: tape record has been checked. This mstructmn. XEC* $(TES),

should be used in FAP-coded programs that contain input-output mstructions

to make sure the execution of FORTRAN I/ O statements is complete.

XI-42




XLO/RELOCATED LOCATION FUNCTION

Purpose ‘
To return the relocated location of its argument to the AC as a
FORTRAN fixed point constant.

Calling Sequence for: XLOCF (N) in an arithmetic statement
TSX $XLOC, 4 -
return : A

The instruction, CLA N, precedes the calling sequence at some point.

No Transfer Vector

No Stops

Storage Reciui:’ement
14(8) locations.

Description , , -

- XLO searchs for the last CLA N preceding the calling sequence, and
obtains the location of the argument N. This is placed in the decrement of the
AC, and control returns at 1,4. : ‘




'HE LIBRARY EDITOR

; "1"3 /| LIBRARIAN

\ Purgose
To wr:te the 709 FORTRAN LIBRARY onto tape in card record form.,

- Bmary Deck : .
LIB consists of 15 row binary cards: the first of which is a one-ca.rd

loader, the following 11 cards are the FAP-assembled Librarian in absolute,

the 13th card is the one to be removed to cause the Library to be written i

" on B5, the 14th is the TRA card, and the 15th card is blank to denote the

. END of the Library.

- Stops ' Reason
- HPR 777 8) Checksum error.
HPR CTTT77(g) Final stop.
HPR 2221(g) RTT while reading Bl.
HPR 1221 8) RTT while writing Al.
HPR 2225(g) RTT while writing B5.
Description

LIB w111 copy two files from Bl to Al, unless sense 11ght 1 has been
turned on by the Fortran Editor Program. It will then write the Library as
a third file onto Al, either from cards (row=-binary or column=binary), or
from Bl, if the first card is blank (the LIB END card). Then, if the card
labeled LIB B5 has been removed. LIB will also write the Library onto B5.
If no cards follow the LIB END card in the card reader, LIB will copy the
fourth file from Bl onto Al, and halt. Other\mse. it will load the self-loading
program which follows the LIB END card. LIB will buffer its input-output
if run on a 32K 709, and will run non-buffered on a 8K 709. _

XI-44




XII

MONITOR ROUTINES FOR 709/7090 FORTRAN

The Monitor exists in separate records on the system tape. No
monitor record remains in core after another record has been called
in. In fact, the only core communication between monitor programs
is 1-CS, which contains four erasable cells used by the monitor.
The monitor records, and their system tape numbers are as follows:

Record No. Name
1 -Card-Tape Simulator
2 Dump '
3 Sign on
4 FAP Pass 1
5 FAP Pass 2
6 Monitor Scan
7 BSS 1
8 Machine Error
9 Source Error
42 Tape Mover
43 BSS 2

Records 10-41 are the FORTRAN compiler. There is an EOF mark
after record 9, and another after record 43. The 1-CS record is
self loading and precedes record 1. 1-CS remains in memory ex-
cept when an object program has control during execution.

I. START card and record 1 (card-tape-simuiator)

System operatian for a series of jobs followed by an end
tape card begins by the START card, which installs 1-CS
in memory and transfers control to record 1. This is the
one and only time record 1 is called. Record 1l tests a
flag left by the START card signalling that operation is
with the monitor (rather than single compile),and then
tests the card reader. If the card reader is empty, the
assumption is made that input is off-line, and so record 2
is skipped and control is passed to record 3. If the card
reader is not empty, a card to tape operation is simulated
from the card reader to tape A2. The following specifications

are observed. Cards with a 7-9 punch in column 1 are treated
~as column binary. . Card with an.8-9. punch in column 1 are’
not transcribed onto tape, but cause an EOF to be written.

«ree 1




An EOF in the card reader causes an EOF on tape A2,
and termination of the operation. The program is double
buffered, card reader speed. Illegal Hollerith punches
cause a stop with a restart procedure analagous to that
for off-line equipment. At the termination of operation,
record 2 is skipped and control is passed to record 3
(sign on). (Note: Since this program is also used in the
single compile mode, if the monitor flag is off, card-tape
simulation is done onto B2 and control passed directly

to FORTRAN at record 10.) :

iI. Record 3 (Sign on)

Record 3 is called when and only when a job is begun (or
ended). A test is made to determine if the input tape (A2)
is positioned at the beginning of a file (job). If it is not,
the tape is skipped to the next file. The number of lines
output from the last job (kept in a cell in 1-CS), if greater
than zero, is converted to decimal and reported on-line
and off-line. Then the first card of the file is read and
scanned to see if it is an End Tape card. If it is, an EOF
is written on the BCD output tape, 2 EOF's are written on
the peripheral punch tape, the End Tape card is printed
on and off line, and a load card button sequence is simulated
to end monitor operation. If the lst card is not an End
Tape card, it is assumed to be an I.D. card. It is in this
area that a sizable space has been reserved for an installa-
tion to insert coding for accounting or other purposes.
The distributed treatment merely writes an EOF on the
peripheral punch tape and prints the I.D. card on line and
off line. After treating the I.D. card, control is passed

- to record 6 (monitor scan). (Note: Record 3 has its own
diagnostic messages and prints then on & off line).

I Record 6 (monitor scan)

Record 6 is the primary monitor record in that it interprets
the control cards which specify different system programs

' to be called. It also scans FORTRAN programs and pre~

" pares a single-compile input tape for the compiler. Control
is passed to this record in the following circumstances:

a) From record 3 (sign on) after prb(:eséin‘g an
I.D. card at the beginning of a job.

XII-2



b) From record 5 (FAP) after completing an assembly
not for execution.

c) From record 7 or 43 (BSS) after relocating a series
of binary programs when there are more symbolic
programs remaining in the job.

d) From record 8 (machine error) or record 9 (source
error) or record 2 (dump) when it has been determined
that the job should be continued after an error.

e) From the restart card "CONTINUE",

Operation is as follows: All input is from A2. Records are read double
buffered and scanned first for an asterisk in column 1. If this is found,
the mnemonics on the card are scanned and compared with a dictionary
of control card mnemonics. If no asterisk is found, the card is assum-
ed to be part of a FORTRAN program and a routine called SP is used.

If the card is column binary, and an XEQ control card has been encoun-
tered earlier in the job, contrdl is passed to record 7 (BSS 1). If the
XEQ flag is off, column binary cards are ignored. Asterisk cards not
in the dictionary are printed on and off line as remarks and then ignored.
FORTRAN source program cards are scanned and then transcribed onto
tape B2 (FORTRAN input). A FORTRAN source card with a CALL
CHAIN (N, Bn) will be changed to CALL CHAIN (N,n). Upon encounter-
ing an END card, another END card is simulated onto B2 containing
output options as indicated by control cards. Programmer's END
card options will be preserved if not in conflict with control cards, which
have precedence. Asterisk (control cards) found in the dictionary,
are treated as follows: ' -

a) XEQ - a flag in 1-CS is set indicating execution is
desired. A word of zeros is written on the beginning
of tape Bl to indicate that there is no snapshot (See
record 7). '

b) CHAIN ( ) - If the execution flag is off, this is
treated as a remark card. If on, the parameters
are examined and a unique control word is written
on Bl (in front of the zero word) and stored in a
cell (curchn) in 1-CS, If this is the lst link, it

~ is stored in a different cell (1st chn). A chain flag
is set in 1-CS (FLGBX) ‘

XII1-3




In summary, control is then passed as follows:

c) FAP - An END card is simulated onto B2 containing
control card output options and control is passed
to FAP Pass 1 (record 4).

d) DATA - This should be encountered only if there
was no execution flag (or if execution has been
deleted). Control is passed to Sign-on unless the
execution flag is on, in which case an error message
(incorrect deck set up) is printed and control is
passed to record 9 (source error).

e) CARDS ROW, LIBE, etc. - A flag is set for the
end card routine to set the appropna.te END card
options.

Upon Recognizing: Go to:
a) Fortran END card - Record 10
b) Column binary card - Record 7
c) FAP control card - Record 4
d) Deck error - Record 9
e) Machine error - Record 8

NOTE (Record 6 has its own diagnostic messages and prints

IV,

them on and off line).

Record 7 or 43 (BSS Control)

Records 7 and 43 are identical except for tape positioning.
In fact, they are identical except for the first word. This
record is duplicated in order to be quickly accessible either
from the second file (after a FORTRAN compilation) or from
the first file (for binary input from record 6 or for a just-
completed FAP assembly). BSS accepts card image input
from A2, B3, or Al using a generalized double buffered
read routine. The BSS program itself is located in the

top of memory, occupying the standard Common region.

It relocates binary card images into locations 144g to 73000g4.
730008 to 74456 is used for a table of BCD program names,
a missing subroutme table, and a Transfer Vector table.
These tables, together with several loading counts are
referred to as the SNAPSHOT.

XII-4




Upon entry, the SNAPSHOT (from previous relocations in the
same job) is read from Bl. (If this is the first pass"th'r-ough
BSS for the job a zero word will have been written on Bl
.indicating this). A number leit by the calling record in the
~indicators specifies which tape BSS should first take as input.
If an assembly or compilation has just been completed, this
is B3, otherwise A2. This input tape is then read in binary.
Transfer Vectors are peeled off and stored in the transfer
vector table, and the binary cards are relocated into 1445 -
73000g. When a new set or Transfer Vectors is met, the
relocated block is saved as a record on Bl, the first word
being a control word: specifying its’ length and memory assign- -
ment and whether it has a transfer vector, If it has a transfer
vector, there is a second control word written specify_in'g how
many TTR's exist for this block. When an EOF is encountered
on B3 (if that is the lst input tape) the input tape is changed
to A2, If overlap with. BSS occurs (i.e. program relocation.
over 73000) the non-overlapping block is saved as before on
Bland relocation continues as before, but the relocation buffer
is shifted back to 1447 ~ Overlap with Common is of course
not allowed and results is an error message. If a BCD Record is
enconntered, it is scanned and compared with a dictionarya,
of control words. CHAIN and DATA are accepted. XEQ is
ignored (as is obviously extraneous). Any other BCD cards
result in the SNAPSHOT being writen on Bl and control returned
to record 6. v

If DATA or CHAIN is recognized, the table of Transfer Vectors
is searched against the table of BCD names to form a table of
missing subroutines, (M,LSUB) _The input tape is then changed
"to Al, which becomes positioned at the library, and the read and
relocation routines are.modified to search for and relocate
missing subroutines from the library. MISUB is updated with
lower level missing subroutines and the search continues until
the MISUB count is zero or until two passes have been made
over the library. If subroutines are still missing,they are
listed with an error message on and off line and the Job is
deleted. When all subroutines have been relocated, the Transfer
Vector table is changed to TTR's with their proper relocated
addresses and the blocks are read in from Bl and written onto
A4 preceded by their appropriate TTR's.

XII-5




At this point a test is made to see if this is a Chain Job,

If not, a small execution loader is moved over 1-CS, the
word "execution" is printed, and control is passed to the
execution loader, which reads the absolute programs from
A4 into memory. The last record on A4 is a transfer
word to the program.

If it is a Chain Job, and the data card has not been encountered,
Bl is backspaced to the chain I.D. word and the link is

stacked on Bl. BSS is refreshed, and the process begins a new,
reading A2 . If it is a Chain job and the Data card has been
encountered,; the chain links are edited from Bl onto their
apecified tapes and the lst link is located. Then the small
execution loader is placed over 1-CSand the link is read

in as in a single job, except that it is from Bl, 2, or 3 in-
stead of A4. This program carries a sizable set of diagnostic
messages that it prints on and off link and then returns control
to the machine errror record Oor soucce error record as
appropriate.

V. Monitor Control During Execution, via Libray Routines.

This is effected by two Monitor Routines, (EXIT and CHAIN),
and by the modification of two I/O routines, ((TSH) and
(STH)). EXIT restores 1-CS and calls in record 3 (Sign on).
CHAIN searches for a specified chain link and, upon finding
it, stores a tape reading program over 1-CS exactly as is done
in BSS. The chain tape is searched from whatever point

it is positioned, and if an EOF is obtained, it is rewound
and the entire link file is searched once. Failure to find

the link results in an error message and the job is deleted.
Transfer Vectors to (STH) and (TSH) are modified at loading
time (in BSS) to (STHM) and (TSHM) which are alternate
entry points forcing these routines to do Monitor functions,
namely 1) Call the EXIT routine if an EOF is encountered
with a READ INPUT TAPE statement, 2) Check for EOT on
the Monitor output tape, and 3) Update the Monitor output
tape line count.

XII-6




Vi. Unused Locations

In the 32K system, unused locations are (in decimal)

3 through 7, 9 through 18, and 50 through 99. In the

8K system, unused locations are 3 through 7, 38, and 39,
Location 8 is used only at object time for floating point
traps. Locations 0, 1, and 2 are used as erasable only
for load tape and load card sequences and at object time
for I/O routine linkage. In other words, an installation
may feel ftee to write routines that destroy locations 0,

1 and 2 as long as these routines do not interrupt an
object time time I/ O sequence. :

XII-7




XIII

GENERAL DIAGNOSTIC

The general diagnostic for the FORTRAN system covers machine and

source program errors revealed by Sections 1 Prime through 6. When a
machine or source program error is encountered in any one of these executive
system records, a TSX DIAG, 4 transfers control to the diagnostic caller. In
the 709, the diagnostic caller remains in lower memory with 1 to CS. In the
704, the TSX DIAG, 4 is actually a transfer to 1 to CS which then reads in
the diagnostic caller record positioned after that particular system record
on the system tape. The caller then dumps a buffer of 25 #f words onto
tape A3 on the 709, or onto drum 4 on the 704. The diagnostic caller then

- spaces the system tape to the 4th file and proceeds to read in the main
diagnostic record.

The main diagnostic record of the 4th file (record 1 in the 709, record 2 in
the 704) contains all of the subroutines needed for converting and printing
~error comments, and for returning to the proper record in the FORTRAN
Monitor. The main record converts the contents of index register 4 back to
the location number of the TSX, and uses this constant as the error number.
It is also in the main record that the title - FORTRAN record number and
location of the TSX - is printed. The 709 diagnostic also prints the section of
FORTRAN involved.

The main record performs a table search in order to determine which of the
fourth file records contains information pertinent to the stop. The error
number (2's complement of IR4) is compared to a list of errors. This list
has 2-word entries. The first word is an error number corresponding to the
location of a TSX in the executive system. The second word is the record
number in the fourth file which contains the pertinent BCD and coding to
print out information about the error. If the second word is minus, it will
also contain the FORTRAN record number of the TSX. The minus indicates
that the error number may be duplicated in the error list and if the FORTRAN
record number does not match the one picked up by the diagnostic from 1 to
CS, the comparison with the error list continues.

When the match has been found, the diagnostic record number is used to
space the system ta"é'e to the correct record in the 4th file. If a match is not
found in the error list, the main record will then read in D#@2 which concerns
unlisted stops. The pertinent diagnostic record is then read in over the
error list and the main record transfers control to it.

Each of these records is set up to handle information about one error, or one
specific type of error, only. Usually, this is done by straight forward coding
which makes use of the subroutines in the main record. The program
instructions executed may obtain further information to be inserted into the
error comment from tapes, cores, or the core dump. The error comment,
which is contained in that particular diagnostic record in BCD, is then printed.

XIII-1




After all error comments have been printed, control is always returned to
one of two points in the main diagnostic record. This will depend upon

whether the error encountered was a machine error or a source program
error.

The main diagnostic record spaces the System tape to either the machine
error or the source program error record in the FORTRAN Monitor,
depending upon the aforementioned error return. The diagnostic then prints
the end comment and transfers control to 1 to CS to read in the proper
Monitor error record. '

Operator options, if any, are printed by the Monitor error record on the
709, and by the diagnostic on the 704. The options will vary depending upon
whether the system is operating in the Monitor mode or single compile mode.

THE DIAGNOSTIC RECORD FOR SECTION 1 DOUBLE PRIME

A few diagnostic records obtain information from an error list left in upper
memory by the system record that has called the diagnostic. The diagnostic
record for Section 1 Double Prime (DPf3 in the 709, D#P4 in the 704)is such
a record. DPP3 is unique in that it contains all of the error comments for
Section 1 Double Prime, rather than just one comment. In the case of Dff3,
the information for a particular error is preceded by a flag. The format of
the error list is described in the write-up for Section 1 Double Prime.

DPP3 performs a table search in order to determine which subroutine within
itself is to process the error currently being treated in the error list. This
table search is done by comparing the flag in the error list with the first

word of a two word entry in an error table. The first word in the error

table entry is the location of a TSX to the error routine in Section 1 Double
Prime. The second word is the location of the subroutine in DP$3 for
processing that type of error. When a match has been found, the table search
routine transfers control to the proper subroutine. The subroutine extracts
whatever information it may need from the error list and, like other diagnostics,
uses the subroutines in the main diagnostic record for producing an error
comment. When the subroutine has finished its task, control is returned to
the table search routine. At this point the subroutine will have correctly
incremented the index register that references the error list so that the table
search routine will examine the next flag in the error list.

DPP3 is also given a word count of the number of words in the error list by
Section 1 Double Prime. The table search routine tests against this word
count for an exhausted error list. If the error list has not been fully treated,
the process of table searching, transferring to a subroutine, and returning to
the table search routine continues. When all accumulated errors have been
treated, DPP3 then returns control to the main diagnostic record.

XIII-2




X1V

THE FORTRAN EDITORS

There is a considerable difference in the method of editing the system proper,
the library and the diagnostic records. Therefore, there are three editors in
the FORTRAN Editor deck, the system editor, the librarian, and the diagnostic
editor. This section deals with the system editor and the diagnostic editor.

THE SYSTEM EDITOR

The system editor is a self loading program that edits the first and second files
of the FORTRAN system. These two files comprise the Monitor and the
Compiler. Both the Monitor and the Compiler records have the same format
and are treated in the same manner by the editor. The system editor reads into,
and writes from a buffer with a common origin. For this reason all editing is
done according to a computed effective address rather than the locations
specified on the absolute binary cards and on the Master tape.

The system editor must have a control card corresponding to each record and
end of file mark on the Master tape. The only exception is the first record in
- the 709 which contains 1 to CS and the diagnostic caller. These two routines
are contained in the 709 editor and are written as the first record on the
System tape from the editor. The first record on the Master tape is spaced
over and the editor proceeds to the card reading routine.

Because of the manner of execution, the remainder of this write up will be
concerned with the details of the 709 system editor. However, the logic still

applies to the 704 system editor.

Card Reading Routine

This routine reads only the 9 left and 9 right rows of the card and interrogates
the 9 left prefix to determine what type of card is being read. A transfer to
one of the other routines in the editor will occur depending upon the type of
card being read. The routine transferred to will execute a load channel
instruction to read the remainder of the card.

The routines that may be transferred to are the following.

Master Record Card Routine-

The 8 left and 8 right rows are read in order to obtain the transfer address,
the first address of the record, and the last address of the record. From
this information the editor computes the length of the record and tests for
deletion of the record. If the record is to be deleted, the editor spaces over
that record on the Master tape and proceeds to read the next card. If the
record is not to be deleted and a previous record is in cores, that record is

XIV-1




written on the system tape l;efore proceeding. The control words for the
next record are then set up from the master record card just read and that
record is read from the Master tape. Control is then returned to the card
reading routine.

There are two words preceding each record on the System tape and the Master
tape in the first and second files. These two words are written by the editor
from the master record cards. They are the following:

IORT Load Address,, Word Count of Record
TXI Transfer Address,, Record Number

The IORT command is used by the editor and 1 to CS to read the record from
the Master or System tape. The TXI is used by 1 to CS to commence execution
of the record. The record numbers read from the Master tape are in multiples
of ten in order to allow for the insertion of new records. Therefore, record
numbers on the System tape are 1010, 20, o 3010, 40701 conrees 41049,

42010. 430 0, and should be mterpreted as 110’ 210, 310, 410, eveeny 4110,

1

4210, 4310 . A new record mserted after record 2 or after record 41 would

appear as 2110 and 41110 and ahoul,d be mterpreted as record numbers 2. 110
; , |

and 41. 110, respectively.

New Record Routine -

In the case of a new record, the procedure is the same as for a Master record
with the following exceptions.

1) A record is not read from the Master tape.
2) The last record number read from the Master tape is incremented by 1

and assigned as the new record number.

Program (Absolute) Card Routine-

The effective address in the buffer is computed and used to read the remainder
of the card into its proper location in the buffer. Control is then returned to
the card reading routine.

End of File Card Routine-

The end of file mark on the Master tape is spaced over and an end of file mark
is written on the System tape. Control is then returned to the card reading

‘routine.




End of Editing Card Routine -

Sense light 1 is turned on to signal the librarian that the first two files of the
system have been edited. If the librarian finds sense light 1 off, it will copy
the first two files from the Master tape onto the System tape. The system
editor then simulates a load cards sequence to load the librarian. If an end of
file is read from the card reader the editor will come to a final halt,

XIv-3




DIAGNOSTIC EDITOR

The diagnostic editor edits the 4th file which contains records pertaining to error
conditions occurring in Sections 1 prime and on through the rest of the system.,
This editor is loaded by the load-button sequence programmed at the end of the
librarian which, in the 709 only, turns on sense light 1 to signal that the first 3
files have been written on the System tape. It is self loading if used alone, and,
finding sense light 1 off, will rewind and copy the first 3 files and read the first
record of the diagnostic from the Master tape before reading the next card.

The 3-file copy device is not a part of the 704 diagnostic editor.

Ideally, the 4th file requires no cards in the Editor deck except the diagnostic editor
and the card which signals the end of editing from the card reader. In this case,

the editor will copy all of the 4th file from the Master tape onto the System tape.
However, records are changed, deleted, added, and any of these operations requires
a diagnostic master record card. This card is distinguished from the absolute
correction cards by the column 1 punch in the 9 left row. The 9 left address contains
the number of the record the editor is to read into memory before proceeding. Any
records preceding this specific record on the Master tape, are automatically copied
onto the System tape. The editor reads the 8 left row of the master record card

and resets the parameters of the record according to the decrement field, address
of the first word; and the address field, address of the last word.

Absolute correction cards are read until another master record card is encountered.
The contents of absolute cards are read into the actual locations specified by the
load address, and a checksum is computed. The current buffer is written on the
System tape unless the previous master record card has caused the record to be
deleted by setting its length zero or minus.

A new record can be substituted for a deleted record, or added to the file, by

using master record cards and absolute cards. No attempt is made to read

another record from the Master tape once the end of file has been read from this
tape. However, new records may be added to the System tape from cards after

the end of file has been read from the Master tape.

On the other hand, if the end-of-editing card has been read before the end of file

mark on the Master tape, the editor automatically copies onto the System tape
any records remaining on the Master tape.

XIv-4



APPENDIX I

FORTRAN TAPE STATUS AT END OF SECTION

(This configuration holds only at the end of the given Section)

Tape 2(704) - Tape B2(709)

‘ Overwritten
Written by by
File Contents Section Section¥¥*
1 SOURCE PROGRAM (BCD) - 1 FORTRAN PRE-1
Statement card/record (Card to tape)
2 COMPAIL - 100 words/record I1'-704,% 709/8K ,
I-Pass 1I-709/32K A2
3 COMPAIL RECORD COUN T and I ’ \'at
FORSUB (if it exists)
4 Table| Tablek* Maximum Number of words
' Label| Name 704% 709/8K | 709/32K
FLOCON 450 1800
10 FORMAT 1500 6000
: S1z 580 2320
END 5 15
11 SUBDEF 180 - 180
12 COMMON 600 2400
13 HOLARG 900 3600
0 TEIFNO 750 3000
2 TIFGO 600 2400
5 3 TRAD 250 1000 '
1 | TDO - 750 3000 | !
6 FORVAL 1000 4000 :
5 FORVAR 1500 6000
4 FORTAG 1500 6000
7 FRET 750 3000
8 EQUIT 1500 6000
9 CLOSUB 1500 6000
6 DOTAG B - variable number of records-=var-
iable number of entries/record--9 words/entry| II
7 DOTAG B RECORD COUNT ‘ I
8 DOFILE C - CIT's for A) subroutines o 11
9 DOFILE C RECORD COUNT ' II 111
8 ASSIGN CONSTANT 111
9 FIXCON | | ' m
10 ASSIGN CONSTANT | \'
2 STORAGE MAP (BCD) FOR PROGRAM \'81
3 SYMBOLIC LISTING FOR PROGRAM VI

*704/4K, 8K and 32K systems.
*%In order as on tape. '
#*%%Any overwriting of file(s) obsoletes all information previously following it on the tape¢




APPENDIX 1
FORTRAN TAPE STATUS AT END OF SECTION
(This configuration holds only at the end of the given Section)
Tape 3 (704) -« Tape B3 (709)

Overwritten
. |Written by by
File Contents Section Section¥#*
1 COMPAIL - 100 words/record . |One One-Prime
1 _ 704% - Max. no of words 709 8K only
FORMAT 750
NONEXC 750 NONEXC 300 One-Prime Two
TST OPS 300 TSTOPS 300
TSKIPS 425
1 DOTAG A - Variable number of records; ‘
variable number of entries/record; 9 word/ Two-Block 1 Three-
entry; maximum of 1350 words . ’ Block 1
DOFILE - INTERMEDIATE CIT's for DO Two-Block 5
STATEMENTS '
704%-709/8K-- 100 words/record
709/32K ~-- 400 words/record
1 - MERGED CIT's OF COMPAIL AND COMPDO-
100 words/record Three-Block 1 Five-Block
’ A
2 . CIT's FOR FORTRAN FUNCTIONS - 100 words/
record ‘ Three~Block 1 Four-Block
: | , 3
2 DOUBLE END OF FILE MARK ' Four-Block 3
3 TAGLIST - 15 words/record :  |Four-Block 3
4 BBLIST - 6 words /entry Four-Block 3
1 CIT's including: DO FILEC, FORTRAN
FUNCTIONS ‘ Five-Block A Five-Prime
1 CIT's Five-Prime Pre-Six
1 EIFNO (709 only) Pre-Six Six
1 BINARY OUTPUT (card image form) Six
a. Program Card ’
b. Binary Object Program
c. Library Routines (if requested)
d. Transfer Card
e. EOF

704/4K, 8 32K Syste . N
:;**Any %Qerlfnfrltull{g %f ﬁllén(s) obsoletes all information previously following it on the tape




APPENDIX 1

FORTRAN TAPE STATUS AT END OF SECTION
(This configuration holds only at the end of the given Section)

Tape 4 (704) - Tape A4 (709)

Overwritten
Written by by
File Contents Section Section¥¥*
1 Various table buffers written in the order in One Two-Block
which filled. Each table is preceded by an 1
identification label. (See tape 2/B2, files
4 and 5). An EOF is written only on the 709/
32K system,

1 TRALEV - maximum number of words: Two-Block 1 Three=-Bloc]
704*%-709/8K 600 words/record 3
709/32K 2400 words/record

2 TAGTAG - 1 record/nest of DO's with tagl. { Two~-Block 2

4 words/tag entry ' Three-Blocl
. 3
COMPDO 100 words/record Two-Block 6

1 MERGED CIT's OF COMPAII.;. COMPDO,

' TIFGO Three-Block 3 Six

2 CIT's for CLOSED SUBROUTINES FOR Three-Block 3 Six

DOFILEC and FORTRAN F UNCTIONS
1 CIT's (complete) Six
2 CLOSUB ( 1 record)

Six

*704/4K, 8K and 32K systems.

***Any overwriting of file(s) obsoletes all information previously following it on the tape.




	Table of Contents
	I Introduction
	II Section One
	III Section One-Prime
	IV Section One-Double Prime
	V Section Two
	VI Section Three
	VII Section Four
	VIII Section Five
	IX Section Five-Prime
	X Section Six
	XI Library and Librarian
	XII Monitor Routines for 709/7090 FORTRAN
	XIII General Diagnostic
	XIV The FORTRAN Editors
	Appendix 1 FORTRAN Tape Status at End of Section

