

h,:
!

GC20-1850-0

Improved Programming
Technologies -
An Overview

This document is intended to briefly describe to the reader six
recently formalized techniques designed to improve the program
development process: structured programming, top-down
program development, chief programmer teams, development
support libraries, HIPO (Hierarchy plus Input-Process-Output), and
structured walk-throughs. These techniques are still evolving;
initial use in a data processing activity should be subject to
management review, to determine the form in which the techniques
may best fit into each environment.

First Edition (October 1974)

Requests for copies of IBM publications should be made to your IBM representative or to
the IBM branch office serving your locality.

Address comments concerning the contents of this publication to IBM Corporation,
Technical Publications/Systems, Dept. 824, 1133 Westchester Avenue, White Plains, New
York 10604.

© Copyright International Business Machines Corporation 1974

Contents
Introduction . 1

Chapter 1: Structured Programming ... 2
Structured Programming Theory .. 3
Structured Programming Practice. 3

Chapter 2: Top-Down Program Development 6

Chapter 3: Chief Programmer Teams .. 9
The Team Members .. 9
Why Change to Teams? ... 9
Chief Programmer Teams in Large Projects 10

Chapter 4: Development Support Libraries .. II
Basic Elements and Method of Use II
Additional Library Facilities. .. 12

Chapter 5: Hierarchy plus Input-Process-Output . 13

Chapter 6: Structured Walk-Throughs ... 18
Basic Characteristics. .. 18
Procedure .. 19
Relationship With Other Techniques .. 19

Introduction

The last decade has been characterized by significant
improvements in hardware speed and capacity, con­
figuration flexibility, and programming system capa­
bility. There have also been many improvements in
the capabilities of programming languages, but, in
general, improvements in the techniques used in the
program development process have lagged behind
those in other areas. This period has also been char­
acterized by the increasing complexity of application
systems and by their importance to the organiza­
tion. And, in the same period, application develop­
ment, maintenance, and modification activities have
comprised an increasing portion of the data process­
ing budget. Data processing management, therefore,
has been searching for ways to improve the program
development process, with the objective of produc­
ing application systems that meet the needs of their
users, are more error-free, require less maintenance,
are easier to modify, and are developed on schedule
with improved productivity.

This document describes six evolving techniques
which have been implemented in various ways in

some program development efforts within IBM and
which may be of assistance in achieving management
objectives. These techniques, some of which have
elements that have been advocated or used in the
past, are structured programming, top-down pro­
gram development, chief programmer teams, devel­
opment support libraries, HIPO (Hierarchy plus
Input-Process-Output), and structured walk­
throughs. The first four have frequently been used
together in IBM's Federal Systems Division. HIPO

and structured walk-throughs were developed sepa­
rately and seem to logically complement structured
programming, top-down programming, chief pro­
grammer teams, and development support libraries.

These techniques can be used individually or to­
gether. Since they are still evolving, their initial use
in a data processing activity should be subject to
management review, to determine the form in which
they may best fit into its environment.

"\

Chapter 1: Structured Programming

Traditionally, each programmer has applied his own
set of rules to the construction of the logic of his
program. He starts with this logic structure and, as
he encounters additional combinations of conditions
to be met, he adds them as afterthoughts rather than
revising the logic of the program. The resultant
control code might look like that shown in the left
(Unstructured) column of Figure 1. This code con­
tains a large number of GO TO statements and labels
and its logic is not easy to follow. During subse­
quent unit and integration testing, disintegration of

UNSTRUCTURED

IF P GOTO label q
IF w GOTO label rn
L function
GOTO label k

label rn M function
GOTO label k

label q IF q GOTO label t
A function
B function
C function

label r IF NOT r GOTO label s
D function
GOTO labe 1 r

labe 1 s IF s GOTO label f
E function

label v IF NOT v GOTO label

label k

lable f

label t

J function
K function
END function
F function
GOTO label v
IF t GOTO label
A function
B function
GOTO label w

label a A function
B function
G function

a

k

label u IF NOT u GOTO label w
H function
GOTO label u

label w IF NOT t GOTO label y
I function

label y IF NOT v GOTO label k
J function
GOTO label k

Figure 1. A comparison of structured and unstructured code

2

the programmer's original structure occurs as new
constraints and conditions are imposed upon
it-leading to more GO TO statements, more labels,
and a final program whose original logic may be
completely obscured. Reading, understanding, and
testing such programs is difficult. The degree of
confidence in their quality or correctness tends to be
low. In addition, such programs tend to be difficult
to maintain an.d modify.

STRUCTURED

CDIF P THEN
A function
B function

@IF q THEN
@IF t THEN

G function
@DOWHILE u

H function
@ENDDO

I function
@CELSE)
@ENDIF

@ELSE
C function

@DOWHILE r
D function

@ENDDO
@IF s THEN

F function
@ELSE

E function
@ENDIF

@ENDIF
@IF v THEN

J function
®CELSE)
@ENDIF

G)ELSE
@IF w THEN

M function
@ELSE

L function
®ENDIF

CDENDIF
K function
END function

Research by computer scientists and mathemati­
cians indicates that an alternative method of pro­
gramming known as structured programming can
help solve these problems. This technique involves
coding programs using a limited number of control
logic structures to form highly structured units of
code that are more readable, and therefore more
easily tested, maintained and modified.

Structured Programming Theory
Structured programming is based on a mathematical­
ly proven structure theorem' which states that any
program can be written using only the three control
logic structures illustrated in Figure 2:

• Sequence of two or more operations
(MOVE,ADD, ...)

• Conditional branch to one of two operations and
return (the IF p THEN C ELSE D of Figure 2)

• Repetition of an operation while a condition is
true (the DO E WHILE q of Figure 2)

Sequence of two operations

IFTHENELSE: Conditional branch to one of
two operations and return

C

D

DOWH I LE: Operation repeated while a condition is true

E

Figure 2. The three elemental logic structures of structured

programming

Any program may be developed by the appropri­
ate iteration and nesting of these three basic struc­
tures. Each of the three structures has only one
entry and one exit. A program consisting solely of
these structures is a proper program, a program with
one entry and one exit. As illustrated in the struc­
tured code (right column) of Figure 1, it always pro­
ceeds from the beginning to the end without arbi­
trary branching. In PL/I, for instance, no GO TO

statements are necessary. Proving the logical cor­
rectness of structured code is more feasible. The
logic is easier to follow, permitting functions to be
isolated, understood, and tested.

The use of the three control logic structures in
structured programming is analogous to the hard­
ware design practice of forming complex logic cir­
cuits from AND, OR, and NOT gates. This practice is
based on a theorem in Boolean algebra which states
that arbitrarily complex logic functions can be ex­
pressed in terms of basic AND, OR, and NOT opera­
tions. The use of three control logic structures in
structured programming is similarly based on a solid
theoretical foundation.

Extensions to the three basic logic structures are
permitted as long as they retain the one-entry, one­
exit property. An example of such an extension is
the DOUNTIL structure (Figure 3), which provides
for the execution of the function F until a condition
is true.

DOUNTI L: Operation repeated until a condition is true

Figure 3. The DOUNTIL structure

Structured Programming Practices
Certain practices are followed to support the objec­
tive of producing readable, understandable struc­
tured programs-programs in which the writers can
have a high degree of confidence.

Indenting within control structure blocks to reflect
the logic of the program unit is one of these prac­
tices, as shown in the example of structured code in
Figure 1. As illustrated by the number to the left of
the statements, each logic structure nested within
another is indented within it. All parts of a logic
structure carry the same indentation level, and func­
tions performed within a logic structure are indented
within that structure. This practice highlights the

3

logic of the unit for the writer and the reader and
thus contributes to the goal of more readable pro­
grams.

Limiting a unit of source code to a specified
size--<>ften one listed page, or fifty lines, permits the
programmer to read and understand an entire logical
expression or function without referring to multiple

pages or relying on his memory. Should the com­
plete logical expression require more than 50 lines of
source code, the programmer can segment the code
through the use of such statements as %INCLUDE

(in PL/I) or COpy (in COBOL) to specify the inclu­
sion of another unit of code (see Figure 4).

IF P THEN t-test
A function
B function
IF q THEN

INCLUDE
ELSE

t-test<:
"­

C function
DOWHILE r

....

"-
"

....

"-
" "-

_-IF t THEN
G function
DOWHILE u

H function
ENDDO
I function

D function
ENDDO

'- ELSE
'ENDIF

CALL
ENDIF
IF v THEN

J function
ELSE
ENDIF

ELSE
IF w THEN

M function
ELSE

L function
ENDIF

ENDIF
K function

Figure 4. Segmentation

A graphic example of a program constructed of such
units is shown in Figure 5. At the top are the job
control and linkage editor statements that define the
environment and major functions of the program.
Subordinate to them is the hierarchy, or calling se­
quence, of the supporting units of code. Each unit
specifies the invocation of the units immediately
subordinate to it. Thus unit A would invoke units B
and J, using COPY, CALL, PERFORM or %INCLUDE

4

statements; unit B would invoke C and F; unit C
would invoke D and E; etc. The next technique to
be described, top-down program development, as­
sumes such a hierarchical structure.

I Bohm, C., and Jacopini, G., "Flow Diagrams, Turing
Machines and Languages with Only Two Formation
Rules." Communications oj the ACM 9, No.3 (May
1966), 366-371.

Job
Control
Language

I
Linkage
Ed itor
Statements

I
CD

Main
Routine
(Unit AI

I

0 Unit B Unit J

I I
CD C F K N

I I
I I I I I I I

0 E G H L M 0 P

Figure 5. An hierarchical program structure

5

Chapter 2: Top-Down Program Development

Traditional software development has often been
approached as a bottom-up procedure where the
lowest level units are coded first, unit-tested, and
made ready for integration (see Figure 6). Data
definitions and interfaces between units tend to be
simultaneously defined by each of the programmers,
including those working on the lowest levels of code,
and are often inconsistent. During integration, defi­
nitions and interface problems are recognized.lnte­
gration is delayed while the data definitions and in­
terfaces are correctly defined and the units are re­
worked and unit-tested to accommodate the
changes. It is often difficult to isolate a problem

Driver
B

JCL

I

LEL

I
CD

Main
Routine
(UnitAl

0) Unit B

CD C F

I

D E G H

Figure 6. Traditional bottom-up development

Top-down program development is designed to
reduce these problems by reordering the sequence in
which units of code are written. A program unit is
coded only after the unit that invokes it has been
coded and tested. Therefore, top-down program

6

I

during the traditional integration cycle because of
the difficulty in identifying which of the many units
combined during integration is the source of the
problem. The resultant program, because of last
minute redesign, coding, and testing, is often lacking
in quality. Superfluous code in the form of driver
programs is needed to perform the unit testing and
lower levels of integration testing. Management
control is often ineffective during much of the tradi­
tional development cycle because there may be no
coherent, visible product until final integration.

Driver Driver Driver
J N P

Unit J

K N

L M 0 p

development both assumes and is patterned after a
program structure of hierarchical form as illustrated
in Figure 5.

Figure 7 illustrates how the top-down approach is
begun. Following program design, the job control

J

language (JeL), link-edit statements (LEL), and main­
line routine (first level unit) are written (Figure 7 A).
Top-down programming then proceeds by writing
the second level units (Figure 7B). While this is
taking place, the logic of the first level unit can be
tested by substituting dummy units (program stubs)
for the second level modules. The program stubs do
not normally perform any meaningful computations,
but often produce a message to indicate to the tester
that they have in fact been executed, thus testing the
logic of the next higher level unit. The lower level
units are built and integrated in the same manner,
substituting actual program units for the program
stubs until the entire program has been integrated
and tested. The program is continually being
integrated-with the higher level units, often the
most critical, being the most frequently tested.

Using this method to implement a program design
reduces the problem of hypothetical interfaces.
Each interface is defined in code. In programming
terms, this means not only that units of code are
written in calling sequence, but that data base defini­
tion statements are written and data records generat­
ed before the code requiring those records is written.

Top-down program development permits test data
to be generated in an incremental manner. For in­
stance, when the mainline routine is tested, only the
test data needed to test the system up to that point
need be in readiness. As each subsidiary unit is test­
ed and integrated, the test data needed to test those
functions can be added.

The single starting point of top-down program
development does not imply that the implementation
must proceed down the hierarchy in parallel. Some
branches intentionally will be developed earlier than
others. For example, branches directly affecting
user operations might be developed early in the cycle
to permit early user training.

A

JCL

•
LEL

+
Main
Routine

B

JCL ,
LEL

•
CD Main

Routine

I
• •

Unit B Unit J

Figure 7. Beginning top-down program development

7

With top-down program development, the parts of
a program and system are continually being integrat­
ed. A separate integration period does not exist (see
Figure 8). Although it does appear to be theoretical­
ly possible that a project whose hierarchy diagram is
narrow and long could experience an extended de­
velopment cycle, it is expected that the cycle for
other systems developed in a top-down manner
should be no longer than for those developed in the
traditional manner. In fact, projects using top-down
development, structured programming, chief pro­
grammer teams, and development support libraries
have described distinct productivity improvements
along with improved program quality.

8

Traditional:

Start

Design

Top-Down:

Start

Design

Integrate

Code and Integrate

Begin
Acceptance
Test

Begin
Acceptance
Test

Figure 8. Effect on the development cycle of the traditional
and top-down approaches

J

Chapter 3: Chief Programmer Teams

The increasing complexity of applications and major
advances in hardware and software demand many
advanced skills during the program development
process. With increasing frequency, development
managers find that applications and programs cannot
be properly developed without a team effort. The
chief programmer team is an organizational techni­
que that complements the structured programming
and top-down programming techniques, and is de­
signed to coordinate the efforts of programming
specialists while retaining the responsiveness and
integrity of design expected of a skilled individual.

A chief programmer team is a small group of per­
sonnel, under the leadership of a senior level profes­
sional programmer called the chief programmer. It
normally consists of three to five programmers, a
librarian, and other specialists as appropriate. A
chief programmer team represents an opportunity to
improve both the manageability and the productivity
of programming by moving the program develop­
ment process from private art to public practice
through an organizational technique that includes:
restructuring the work of program development into
specialized jobs that recognize the need for technical
expertise in the leadership of the team effort and in
the training and career development of its personnel;
defining relationships among specialists; and using
disciplines to help team members communicate ef­
fectively with one another and work effectively with
a developing, always visible, project.

The Team Members

Chief Programmer
The chief programmer is responsible for program
design of the system, and is vested with complete
technical responsibility for the project. He writes
the mainline routines, the critical code, and the oper­
ating system interfaces (job control language and
linkage editor statements). He defines modules to
be coded by other team members and is responsible
for specifying the interfaces between modules and
for the data definitions. He reviews code written by
other team members and oversees the testing and
integration of all code. He informs management of
project status and arranges for additional team mem­
bers, when necessary.

Since the chief programmer is the principal design­
er of the program, his duties begin early in the devel­
opment cycle-while the program functional specifi­
cations are being formalized.

Backup Programmer
The backup programmer is a senior level program­
mer who works closely enough with the chief pro­
grammer on the tasks described above to be able to
assume the chief's duties if necessary. He may be
called upon to explore alternative design approaches,
perform test and integration planning, or execute
other special tasks. He is an active participant in
technical design, internal supervision, and external
management functions.

Librarian
The librarian is a dedicated team member who has

the administrative skills necessary to handle the ma­
chine and office procedures involved in the coding
and testing effort, as described in Chapter 4,
"Development Support Libraries". The librarian is
responsible for maintenance of project management
statistics, and arranges for entry, compilation, and
tests of programs as requested by team members.
These responsibilities amount to a full-time job.

Other
Additional team members are scheduled into the

team as required, as the development cycle progress­
es. They bring to the team such abilities as specializ­
ed application, hardware, or software knowledge,
coding speed, or unique coding techniques.

Why Change to Teams?
The chief programmer team organization recognizes
that program design is especially important in
today's complex application environment and that it
is best performed by a senior level professional pro­
grammer who also has responsibility for execution of
that design.

Reintroducing senior people such as the chief and
backup programmers into detailed program coding
recognizes another set of circumstances in today's
operating system environment. The job control lan­
guage, data management access methods, utility fa­
cilities, and high level source languages are so pow­
erful that there is both a need and an opportunity for
using senior level personnel at this detailed, but crit­
ical coding level. The need is to make the best possi­
ble use of an extensive set of facilities. The func­
tions of the operating systems are extensive and they
are called into play by language forms that require a
good deal of study and experience to utilize in the
most effective manner.

The very definition of responsibilities in a chief
programmer team forces a high degree of public

9

practice. For example, the librarian is responsible
for picking up all computer output, good or bad, and
filing it in the notebooks of the development support
library, where it becomes part of the public record.
Identification of all program data and computer runs
as public assets, not private property, is a key princi­
ple of chief programmer team operations.

Chief programmer teams can provide the opportu­
nity for professional growth and technical excellence
in programming. Since functions involved in main­
taining program data are the responsibility of the
librarian, more time and energy can be devoted to
developing key technical skills and to building the
programs. Moreover, the close association with sen­
ior level programming personnel who review all
code, its testing and integration, provides good train­
ing for less experienced programmers and can help
prepare them for leadership in future teams.

Chief Programmer Teams in Large Pro­
jects
Large projects may require for their execution a
number of chief programmer teams, with each re­
porting to a higher level team, and the top level team
reporting to the project manager. The responsibility
of each chief programmer team is defined by the
structure of the program. Beginning at the top level,
each team designs and codes a functional capability

lO

down to a set of program stubs. These program
stubs become the assignments of the teams at the
next level. Each next level team continues the de­
sign and coding, possibly to a new set of program
stubs, until all the coding is completed. Each chief
programmer is directly responsible for the members
of his own team and for the chief programmers of
the teams under him.

Over the life of a project, the upper level chief
programmer teams go through definite phases of
responsibility, e.g., design, code, test, and certify.
These phases are nested between levels, in that the
program stubs produced by a design at one level
trigger the next level process, and the certify phases
include verification that the program stubs have
been carried out satisfactorily by that next level.
The top level team will complete its design, code,
and test phases early and will spend the remainder of
the project certifying the contributions of lower level
teams to the system. Each succeeding level starts a
little later and has less certifying to do, until the low­
est level teams simply design, code, and test their
own programs. Note that the team structure mirrors
the program structure. In this way, the integrity of
the program structure can be preserved during the
detailed coding process.

J

Chapter 4: Development Support Libraries

The development support library (DSL) function
supports the environment created by structured pro­
gramming, top-down programming and chief pro­
grammer team organization. It can also be used
apart from these techniques. The technique consists
of office and machine procedures used by a librarian
to maintain units of structured code being tested and
integrate~. It is designed to promote efficiency and
continuous product visibility during the program
development cycle.

Basic Elements and Method of Use
A development support library function (outlined in
Figure 9) consists of four elements: a machine­
readable internal library, a human-readable external
library, machine procedures, and office procedures.

The internal library contains all current project
programming data, including program modules,
linkage-editing statements, job control statements,
and test information. The status of the internalli­
brary is reflected in the human-readable external

Online
Updates

Machine
procedures

Programmer

Librarian

Control Cards &
Office Procedures

Computer

Figure 9. Flow of operations with a system development library

library binders which contain current listings of all
library members and archives consisting of recently
superseded listings. The machine procedures consist
of standardized JCL and utility control statements to
perform such basic procedures as the following:

• Creating and updating libraries
• Retrieving modules for compilations and storing

results
• Linkage editing jobs and initiating test runs
• Backing up and restoring libraries
• Producing library status listings
Office procedures are clerical rules used by librar­

ians to perform the following duties:
• Accepting directions marked by programmers in
the external library

• Using machine procedures
• Filing updated status listings in the externalli­

brary
• Filing and replacing pages in the archives.

Program
library

11

,

As shown in Figure 9, a programmer using a DSL

prepares coding sheets and run requests. He submits
them to the librarian, who arranges for the library
create or update run. This generates the current
version of the program in machine readable and
printed form. The librarian places the printed ver­
sion into the program's external library binder.Lat­
er, the programmer receives these updated binders,
which reflect the new status of the internal library.
If interactive program development is used, the ex­
ternallibrary update may be generated at log-off
time. Programmer-requested printouts plus copies of
all code changes are sent to the librarian, who files
them in the external library.

The programmers are freed from such tasks as
handling decks and interacting directly with opera­
tions, and thus can make more effective use of their
time. In addition, a development support library
function contributes to manageability, productivity,
and program quality by making possible a project
whose developing components are visible and availa­
ble to all, including management. It permits pro­
grammers to be certain of the data definition and
interface requirements, as well as the operational
details of other program units by reading the actual
code in the external library rather than by having to
refer to a separate set of documents that may lag
behind actual status.

12

Additional Library Facilities
Other facilities that users might consider for inclu­
sion in their development support library function
are:

• Indentation listing. Indents structured program­
ming source statements to improve program unit
readability.

• Standards checking. Checks source statements
for adherence to installation standards.

• Stub handling. Provides the ability to support
top-down programming by generating program
stubs with a debug or trace capability and, if de­
sired, routines to simulate time and/or storage to
be used by the unit that will replace the stub.

• Multiple project libraries. Permits the existence
of separate versions of a program. For instance,
one set of libraries can contain program units un­
der development while a separate set can contain
an operable developing system with which tested
program units will be integrated. Still other li­
braries may be used for operational systems.

• Program hierarchy listing. Shows the module
calling sequence.

• Management control listings. Provides for the
collections of statistics on program size, number
of changes, compilations, tests, etc.

J

Chapter 5: Hierarchy plus Input-Process-Output (HIPO)

Application function documentation is often ad­
dressed towards the end of a project, and then de­
scribed with prose, creating a twofold problem: (1)
description of function is often imcomplete because
of the difficulty in extracting the function of a sys­
tem from the bit manipulation performed by the
programs, and (2) prose descriptions of function are
often voluminous while remaining ambiguous and
without a systematic means of relating them to the
program modules performing the function. HIPO

helps solve these problems by providing the designer
with a graphic technique designed for documenting
function from the beginning, before programming
starts and while it is clear in the designers' minds. It
is also designed to reduce the ambiguity and the
amount of prose required to document function, and
to provide a systematic means of identifying all the
functions to be performed and the modules that per­
form them.

In describing the functions to be performed, HIPO

diagrams progress from a generalized functional

Input Process

Figure 10. Input-Process-Output graphic relationships

description to greater levels of detail. The functions
themselves are described in terms of the process that
occurs, with its necessary inputs and resultant out­
puts. A HI PO package consists of a set of function­
ally oriented diagrams from generalized to more
detailed descriptions of function. Specifically, a
typical HIPO package consists of one or more over­
view diagrams, detail diagrams, and a visual table of
contents.

The overview and detail diagrams describe func­
tion graphically, with each diagram consisting of
three parts: (1) input - the inputs to the function
(files, records, fields, control blocks, etc.), (2) proc­
ess - the process steps that support the function be­
ing described, and (3) output - the outputs of the
process (files, records, control blocks, etc.) (see Fig­
ure 10).

Output

13

An overview diagram describes, in general, one or
more functions expanded by detail diagrams.Fig­
ures 11 and 12 illustrate an overview diagram and a
detailed diagram, respectively.

In addition to the input, process, and output sec­
tions, each detail diagram includes an extended de­
scription section, keyed by numbers to the process
section. In this section each numbered process may

be described in more detail and can point to the pro­
gram module or modules in which the process is
implemented and to the module(s) calling the proc­
ess. For an overview diagram, the extended descrip­
tion section can further describe each process and
may also point to detail diagrams where the num­
bered processes are further expanded.

Diagram 2. Calculate Gross Pay

INPUT PROCESS OUTPUT

Payroll 1. Accumulate Payroll
job record hours master

worked
(Diagram :1=3)

... 2. Find correct ...
Payroll > pay rate for > Gross
master - type of work pay file

(Diagram #4)

3. Calculate
Pay rate gross pay Error
table (Diagram #5) message

Figure II. Overview diagram

14

J

\

Diagram 4. Determine Pay Rate

INPUT Start PROCESS OUTPUT

L Payroll
G) For invalid employee Employee no.

number:) error
master - issue error message messages

~ - bypass job records ") ..
@ For invalid worktype:

Payroll ~ Work type
- Issue error message ") error

job records - bypass job records messages

@ Check for special payroll
Updated
payroll

conditions master
Pay rate ":> 8) Find correct pay rate ')
table ..

® Update master and put
Payroll job
records

rate in job records with rate

~

Diagram 5
--.

Extended Description Routine Label

1. The program checks for valid employee number. IODNA DETR
I f val id, job records for that number are bypassed
and an error message is printed.

2. A check is made for correct type of work. If invalid,
bypass job records & print error message.

3. Special conditions such as overtime, shift pay,
vacation pay, or holiday pay are checked to
help determine correct rate.

4. The master record, job records, & pay rate table
are all referenced to determine correct pay rate.

5. When all conditions are checked, payroll job records
are rewritten with proper rate, payroll master updated.

Figure 12. Detail diagram

15

The visual table of contents (see Figure 13) identi­
fies all the overview and detail diagrams in the pack­
age, shows their hierarchical relationships, and per-

Calculate
gross pay

2

I

Accumulate Determine Calculate
hours worked pay rate gross pay

3 4

Figure 13. Visual table of contents

As shown in Figure 14, HIPO diagrams can be used
throughout the development cycle and after its com­
pletion. HIPO documentation evolves throughout the
development cycle from an initial design package, to
a detail design package, and finally to a maintenance
package. The initial design package, prepared by a
design group at the start of a project, describes the
overall functional design of the project and is used as
a design aid. The detail design package is prepared
by a development group. Using the initial design
package as a base, analysts and programmers design
in detail, add more levels of HIPO diagrams, and use
the resulting package for implementation. The
maintenance package, frequently identical to the
detail design package, serves as the final documenta­
tion for the system.

16

mits the reader to quickly locate a particular level of
information or a specific diagram.

Calculate
pay

5

•

•

•

1

I
Calculate
net pay

I
Calculate
deductions

7

Initial Design Package

High Level
Functional
Design J

Detail Design Package

Detail
Functional
Design

Maintenance Package

Product
Support
Docu mentation

I

Figure 14. Types of HI PO packages

6

I
Write checks
for net pay

8

HIPO can help answer the requirements of the
many types of people who rely on the documenta­
tion of a system. A development manager, for ex­
ample, may want a system overview that is under-

standable to a user. An application programmer can
use the documentation to determine the detailed
programming requirements. A maintenance pro­
grammer requires documentation that quickly identi­
fies functions to which changes must be made, and
the modules that execute them.

HI PO may be used apart from or in conjunction
with the other techniques described in this text.Be-

cause of its hierarchical depiction of function, it very
effectively supports the hierarchical structures as­
sumed in top-down program development and struc­
tured programming.

17

Chapter 6: Structured Walk-Throughs

Sometimes program errors result from the lack of
experience of the designer or programmer
(developer). Probably more often they result from
the lack of perspective of the developer. He has
been too close to this program for too long and finds
it difficult to see any errors in it. And typically, pro­
grammers hesitate to ask either for guidance or for a
check of their program's logic or completeness be­
cause they feel it to be an implied admission of in­
competence, even though most programs, some­
where, contain a new challenge to their originators.
Yet it is important to detect and remove errors as
early in the cycle as possible when the cost of cor­
recting them is lowest and their impact is smallest.
The structured walk-through is designed to detect
and remove errors as early as possible in the cycle in
a problem-solving and non-fault-finding atmosphere
in which everyone, and especially the developer, is
eager to find any errors in the work product being
reviewed.

A structured walk-through is a review of a
developer's work (program design, code, documen­
tation, etc.) by fellow project members invited by
the developer. It is conducted by the developer and,
in most instances, is not attended by his manager.
These reviews help the developer find errors in his
work earlier in the development cycle. In addition,
they give reviewers an opportunity to learn new ap­
proaches and techniques. Structured walk-throughs
also help the participants communicate the charac­
teristics of their developing work to each other.

Structured walk-throughs can be used at various
checkpoints in the development cycle to review each
part of the system as it is developed in more and
more detail. For instance, they can be used to re­
view:

18

Project plans and schedules
System specifications
Program functional specifications
Program design (control structure)
Detailed program design

Data specifications
Module interfaces
Documentation

Coding (uncompiled source listings)
Final documentation

User guides
Program maintenance manuals

Finished product

Basic Characteristics
Structured walk-throughs, in various forms, are be­
ing used by some program development groups with­
in IBM. The basic characteristics of one form are:

1. It is arranged and scheduled by the developer of
the work product being reviewed.

2. Management does not ordinarily attend the
walk-through and it is not used as a basis for
employee evaluation.

3. The developer selects the list of reviewers but,
in most cases, management reviews the list to
ensure that developers of related work products
will be invited. The walk-through is usually
attended by four to six reviewers. Participants
can include:
• Developers of other parts of the system
• Developers of other systems that interface

with the one being reviewed
• Testers responsible for component and system

testing
• Designers of the system to ensure compatibili­

ty and continuity of design
• Individuals responsible for documenting the

function being reviewed
4. Every walk-through should have a defined set

of attainable objectives.
5. The reviewers are given the review materials

four to six days prior to the walk-through and
are expected to review them and come to the
session with a list of questions.

6. The walk-through is structured, in the sense that
all attendees know what is to be accomplished
and what role they are to play.

7. A moderator, frequently a project team leader,
is appointed or elected to chair the session.
This individual insures that the walk-through
stays on course. He compiles an action list con­
sisting of all errors, discrepancies, exposures,
and inconsistencies uncovered during the walk­
through.

8. All issues are resolved offline. The walk­
through provides problem detection, not prob­
lem resolution.

A typical walk-through is scheduled to last for a
specified period of time, not longer than two hours.
If the session's objectives have not been met at the
end of the time period, or if a significantly large list
of issues has been created, another walk-through is
scheduled for the next convenient time.

•

Procedure
First, the reviewers are requested to comment on the
completeness, accuracy, and general quality of the
work product. Major concerns are expressed and
identified as areas for potential follow-up. The de­
veloper then gives a brief tutorial overview of the
work product. He next "walks" the reviewers
through the work product in a step-by-step fashion,
attempting to satisfy the major concerns expressed
earlier in the meeting. Usually this includes examin­
ing the work product with test cases prepared by the
developer. Thus the test cases as well as the work
product are "walked through". New concerns may
arise during this "manual execution" of the function.

Immediately after the meeting, the moderator dis­
tributes copies of the handwritten action list to all
the attendees. It is the responsibility of the develop­
ers to ensure that the points of concern on the action
list are successfully resolved, and that the reviewers
are notified of the actions that have been taken
and/ or the corrections that have been made.

An essential ingredient for a successful walk­
through is the proper attitude on the part of all par­
ticipants. The reviewers should be concerned with
error detection rather than error correction. The
developer must have an open and nondefensive atti­
tude to make it easier for the reviewers to find er­
rors. He should welcome their feedback and encour­
age their frankness. It is difficult to have such an

attitude if the developer feels that he is being evalu­
ated by his manager on what occurs during the walk­
through, and on the size of the action list. In this
situation, he may tend to suppress criticism and be­
come defensive and unreceptive to questions about
his work product.

Relationship with Other Techniques
Structured walk-throughs can be used independently
of the other techniques described in this text, or in
an environment in which one or more of them are
used. Structured walk-throughs seem to fit quite
naturally with them. The visibility, the idea that
code is meant to be read by others, the conventions,
and the simplified program logic of structured pro­
gramming make it easier for the reviewer to be
"walked-through" code segments. Because in a
top-down program development and chief program­
mer team environment, the chief and backup pro­
grammers design and code the top of the system
first, their initial walk-throughs can, for the other
team members, serve as an introduction to the sys­
tem and a means of learning their senior
programmers' design and coding techniques. Finally,
HIPO's graphic representation of application function
lends itself to walk-throughs both of function and of
the code that fulfills the function.

19

\

p

•

