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SUMMARY OF BINARY ADDERS

by
F. B, Hartman

The circuit technology used in the construction of a data processing system
forms an important factor in determining its operating characteristics,

The set of basic building blocks provided can be arranged in many forms to
realize the functional requirements of the system, In designing for high
speed operation, it is the duty of the circuit designer to provide fast circuits.
This will guarantee a generally fast system. On the other hand, it is the duty
of the logic designer to specify from among numerous alternatives those ar-
rangements of the circuits that will facilitate the realization of high system
speed consistent with reasonable cost.

System considerations often dictate the use of binary arithmetic, particularly
when the system has to solve scientific problems., Speed and accuracy con-
siderations dictate that the binary digits be handled in parallel as much as
possible and with a sufficiently long word length, Since all arithmetic opera-
tions reduce ultimately to addition, the design of a fast parallel binary adder
has a particularly important bearing on achieving high speed in the system
containing it,

Analyses of binary adders have appeared extensively in the literature,
Richard's book! contains a general survey, Campbell and Rosser? discuss
the carry transmission problem and means for speeding up adders by various
strategies, Gilchrist, Pomerene and Wong3 discuss details of an asynchron-
ous adder. Mercer4 discusses a form of ""carry save'' adder in conjunction
with a micro-program computer structure.

The purpose of this section consists in discussing the various forms of binary
adders from a general viewpoint, including a summary of the data from the
above sources,

Forms of Binary Full Adders - As a base, the design of any binary adder
begins with a consideration of the single-position binary full adder. The
actual form used will depend upon the circuit technology involved, but in
Figure 1, we have shown several representative forms,

The full adder of Figure la uses the exclusive OR block and can be considered
as two half adders in cascade, A single half adder (shown within the upper
rectangle) generates the sum and carry of the operand bits, A and B, The

sum line (P) from this circuit is added to the ""carry in'" signal Ci in the other
half adder., A carry out of either half adder or both will generate a "carry out"
signal (C,) for the full addition in the inclusive OR circuit, Attention is directed
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Figure 1 FORMS OF BINARY FULL ADDERS
r—_———--;ﬁl (a) Using two Halt Adders in Cascode
A
|
L6 |
| A B
| —» I
o — — 1
ity Mot |
:’ A — o o sc. c.=AB+C; (AVB)
L » s :
C;, —ot> L | o o |
L - - _l
—— = ——— — — —
‘ I
A " A -| A - o |ed >C
N L 0
B 1™ > T Co=AB+C{(A+B)

L »
P g
> 0 | | 0] —I l—" I A _[’
' ' $=Ci(AB)+Co'(Ci+(A+B))

(b) Using the Carry Out to form the Sum Signal

i ity 1
|
‘ ™ |" |C°'=(A+B)'+C;'(AB)'
G |
A A 9—9—» I 4—:» A
B > —L’
0 s
5 o A U $=C;(AB)+C;' (A+B)ABY
O F—eo—» 1
1
I l
. | AR, o —i—»co
. [ g S 1 | Co=(AB)+C;j(A+B)

(c) Using Complementary Carry Signals



Page 3

to the circuitry in the lower dotted rectangle which shows the method of
generating the "carry out'" signal. A 'carry out' of unity can occur in
two distinguishable ways, In the first case, if both operand bits A and

B are unity, the ''generate' line (G) is unity, which forces a '"carry out"
through the OR circuit, In this case, the full adder is said to '""generate'
a carry, In the second case, if A and B have opposite values, the lower
AND circuit will be conditioned by the ''propagate'’ line (P) to transfer
the value of the ""carry in'' line directly to the output, since at this time
the "generate' line (G) is down and the OR circuit looks like a direct
connection to the other input. In this case the adder is said to '"propagate"
the "carry in.' On the other hand, if both A and B have a zero value, the
stage neither generates nor propagates a carry.

Analysis will Sl'llOW that, ill?sofar as the generation of the ''carry out" is
concerned, the propagate signal can be taken as the inclusive OR rather
than the exclusive OR. This arrangement is shown in Figure lb, which
shows also the generation of the sum in terms of the ""carry out." This
form has been used in commercial equipment and has the advantage that
complementary input signals are not needed and but one inverter is used,

Figure lc shows a special form of full adder in which the complements

of the '"propagate' and ''generate' signals are generated internally, and
used in conjunction with complementary '"carry in' signals to generate the
sum and complementary '"carry out" signals, (If complementary ''carry
in'" signals are used, complementary '"carry out' signals will be needed
in some applications).

Many other forms can be imagined, but unless complementary inputs for
each of the three bits is provided, some form of inversion action will be
required internally, and this implies some form of amplifier,

Basic Forms of Binary Adders - If the binary words consist of single
digits, the problem reduces to the design of the binary full adder dis-
cussed above, For longer word lengths, several distinct types of adder
have appeared. Figure 2a shows a serial binary adder which can add
two binary words of any length one position at a time, Its distinguishing
feature consists of the carry flip-flop which serves to store the "carry
out" from one cycle of the addition in order to present it as the 'carry
in" of the next cycle. The operand bits must be presented serially, one
lined-up pair per cycle, starting with the lowest-weight position, The
sum bits are carried off in similar fashion to some storage device,
Letting n represent the length of the operand in bits, t; the delay of the
binary full adder in generating the sum or"carry out,” whichever appears
later, and t, the resolution time of the flip-flop (time required for enter-
ing the“carry out), then the shortest cycle possible equals t; + t3, and for
the time T to add any pair of words we have

T =n(t, + t3) (Serial Adder) (1)
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Figure 2b shows a parallel linear-propagate adder for adding four-bit words.
Its characteristic feature consists in the connection of the "carry out' of one
binary full adder to the ''carry in'' terminal of the next one in order. The
operand bits are presented simultaneously to each position and the sum bits
removed simultaneously. Because of the random nature of the bits of the
operands, the actual delay will be random and will depend upon the maxi-
mum length that carries have to propagate.

A carry sequence of length j will be said to be present, if a carry is gen-
erated in some stage 0 (by convention, "= 1 represents the highest-weight
position and ¢ = n the lowest-weight position), the next j-1 positions to the
left are set to propagate, and position 0 -j is not set to propagate. (Here
we take 'propagate' to mean the exclusive OR of the operand inputs rather
than the inclusive OR). For each stage that generates a carry, there will
be a corresponding carry sequence of length greater than zero. In linear-
propagate adders, enough time has to be allowed for the maximum possible
length of carry sequence, which is seen to involve the generation of a carry
in the lowest-order position, with all other positions set to propagate.

Thus the worst case involves a carry sequence of length n, the length of the
operands. Letting t| represent the time for the '""propagate' and '"generate'
signals to settle in all orders plus the time needed to generate the sum
(given the carry in); letting t; represent the time to propagate a carry
through a stage (given the ''generate' and '"'propagate'' signals), and letting
t3 represent the resolution time of the flip-flops which constitute the sum
register, the complete period needed to form the sum and place it in the sum
register under worst-case conditions is given by

T = t} +nty +t3 (Linear-Propagate Adder) (2)

The forms of the serial adder and the parallel linear-propagate adder are
such that additions proceed at a rate of 1/T, where T is given by equations
(1) and (2) respectively.

Two forms of variable-speed adders, called asynchronous adders, are

shown in Figure 3. In both cases, the adder must be in a reference condi-
tion prior to the beginning of the addition, such that the lines Cqy and Cc;

in each position are both zero. In the adder of Figure 3a, this is performed
by holding down the Start Add line for a time equal roughly to the time needed
to propagate a carry through one stage, say tp. With the adder in its refer-
ence condition, the addition is started by setting Start Add to unity., After a
certain time, depending upon the operand magnitudes, one or the other (but
not both) of the lines C, and C, will be at unity for each position of the adder.
The inclusive OR of these lines is formed for each position and connected to
an n-way AND circuit, the output of which will be unity when the add is com-~
plete. This line can be used to cause the transfer of the sum to the sum reg-
ister and after this is done, the adder can be reset to its reference condition
for the next add operation. Internal race conditions leading to transient
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hazards on the carry lines may exist at the start of the add operation,

but so long as a minimum time delay is enforced for the operation (as

for example by means of the delay line shown) these should not cause
error, After this initial delay, the appearance of a one on either the

C, line or the C,' line will indicate that the '""carry in'* for that position
has been recewed or else internally generated or inhibited (both operand
bits at zero), By the time the End of Add signal comes up, the sum lines
should be settled to their final value, Thus, letting t, represent the mini-
mum time allowed for the add operation (no carries propagated), assuming
the time needed to reset the adder equals t;, and letting t; represent the
resolution time of the flip-flops of the sum register, we find that the ex-
ecution time T of this adder is bounded as follows:

21:1 + tg £r1< Zt + nt, + tg, (Asynchronous Adder) (3)

where n is the length of the operands.

The actual value of T will depend upon the distribution of bits in the
operands, hence the term '"self-timed" is used to refer to asynchronous
adders. The operands are random and some assumption as to the prob-
ability distributions has to be made in order to calculate the probability
distribution of the maximum length carry sequence. For this type of
adder, one must consider the propagation of zero carries in addition to

the propagation of one carries in determining the maximum length carry
.sequence, Assuming a uniform distribution of operand bits { a one or zero
in each position is equally probable), Gilchrist, Pomerene and Wong~ show
that the mean of the maximum-length carry sequence in adding 40-bit words
equals 5, 6,

In the Appendix of this section, we show that the expected maximum length
carry sequence has an upper bound of [logzn] + 2, where the brackets
mean to take the integral portion of the expression enclosed, and n is the
number of bits in the operands, Using this expression, the average add
time for the asynchronous adder is bounded as follows:

£
Tavg = 2t; + @ogzﬂ +>t2 +ty. (4)

(Asynchronous Adder)

Figure 3b shows an adder similar to the one in Figure 3a except for the
use of a pair of binary full adders in each position and the use of exclusive
OR circuits, The exclusive OR circuits are used not only for the sensing
of carry completion, but also for sensing of sum completion and error de-
tection, If any sum or "carry out' is in error, the "End of Add'" signal
cannot come up., The same relations govern the time of executions as hold
in the case already considered,
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Another form of variable delay adder is shown in Figure 4, The dis-
tinguishing features of this adder are (1) each stage involves only a half
adder, and (2) the "carry out' from each order is stored (or '"saved') in

a flip-flop and introduced as a '‘carry in'' to the next order in the next
cycle. To start, the two operands are added and the sum and carry words
both stored in registers. In the next cycle, the numbers in the sum and
carry registers are added and the revised sum and carry words formed,
This is continued until the carry register contains all zeros. The opera-
tion is essentially synchronous, but a variable number of cycles is needed
in order to propagate the carries. Letting t, repre sent the time needed to
gate in operands and to form the sum or carry, whichever appears later;
letting t3 represent the resolution time of the flip-flops of the sum and
carry reégisters, and allowing one cycle for the recognition of the '"End of
Add!' signal, the execution time is given by

2t + t) =TS (n + 2) (t) + tg) (Carry Save Adder)  (5)

The actual execution time will depend upon the distribution of one's and
zero's ih the operand words. In this case, only the propagation of one's
needs to be considered, The Appendix shows that the average of the maxi-
mum length of carry sequence is bounded by [logzn—_\ +1, Hence, the aver-
age execution time is bounded as follows:

Tavg éEogzn + ﬂ (t; + t3). (Carry Save Adder) (6)

Carry Transformations - The length of the random maximum-length carry
sequence forms a principal determinant of the speed of the adders consid-
ered above., Except for the serial and linear-propagate adders, each of
these could take advantage of the relatively low average of the maximum-
length carry sequence. In the linear-propagate adder, enough time has to
be allowed for the maximum possible length of carry sequence. This situa-
tion has led to numerous strategies for speeding up the carry propagation
by transforming those portions of the adder which have the specific function
of transmitting the carry to the next position. For the individual stage,
these are shown in dotted rectangles in Figure 1 for the various forms of
binary adder considered.

Consider a linear-propagate adder with n stages, numbered from 1l ton
from left to right (high order to low order). Letting Co" G. and P, repre-
sent the '""carry out', 'generate' and ""propagate' signa.lls, #espectwely,
of the j-th stage, letting C_ (n + 1) represent the carry into thea dder

Co (n+1)=C; ./} then the following set of equations represent the
carry propagatich circuitry:

Coj =Gy PjCo (j4apli=ls 2.00eym) @
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Figure 4 CARRY SAVE ADDER
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In words, the "carry out'" of the j-th stage will occur if a carry is
ngenerated' within the j-th stage or if a ''carry out" appears from the
(j + 1)-th stage and the j-th stage is set to ''propagate'’, Considering
only the first four stages, the first four of the above set of equations
can be combined to form

Circuitry to realize this equation in two levels of logic will be called a
Simultaneous Look Ahead Carry over stages 1 through 4, abbreviated
SLAC 1-4, Itis used in many of the adder forms to be discussed
presently.

Another form of carry transformation consists in keeping the carry
propagation circuitry shown in Figure 1 for the individual stages, but
adding circuitry to speed up the propagation over a group of stages.,
Considering again stages 1-4, the equation corresponding to the added
circuitry has the form

Cor=C51 ¥+ 7P P2p3p4c (9
where C#, represents the ''carry out' generated by the stage itself,
In applying this transformation, the actual carry out for the group is
taken from the added circuit., This form of circuit will be called an
ordinary carry look ahead over stages 1 through 4, abbreviated as LAC
1-4, It is assumed to be formed in two levels of logic.

The forms of circuitry represented by equations (8) and (9) can be formed
for any group of adjacent stages within the adder., Upon choosing the
groups and the tupe of lookahead to be used for each group, one establishes
a carry transformation, by which a carry sequence of length j originating
at some position of the adder is executed in a time less than or equal to
that required for the same carry sequence in the linear-propagate adder.
In order to correlate the present discussion with the analysis of Campbell
and Rosserz, we shall assume that the delay through a lookahead circuit

is equal to the time required to propagate a carry through one stage of the
linear-propagate adder, regardless of the number of stages involved in the
lookahead, In some technologies, the actual delays will be somewhat
longer because the lookahead circuit has more inputs, so that the assump-
tion may not strictly hold, With this assumption, the delay through a
lookahead circuit equals the previously-defined t,.

A simple form of carry transformation, resulting in what we shall call

the "linear-grouped! adder is shown in Figure 5, In this transformation,
the entire adder is divided into groups, at least one of which contains more
than one stage. We have shown a four-bit adder divided into two groups of
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two stages each. Carries are propagated linearly within a group, but
are transferred by carry lookahead around the group, should the need
arise. An analysis of the time delay involved is facilitated if the adder
retains an iterative structure, as for example by specifying equal-sized
groups. Because of the assumption on the delay of the lookahead cir-
cuitry, a carry will propagate across a group in the time it takes to
propagate over one stage within a group. Letting j represent the number
of units of time for propagating a carry sequence of length j in the linear-
propagate adder, letting R represent the number of units of time for
propagating the same carry sequence through the linear-grouped adder,
letting m denote the number of stages in one group, and letting 0 repre-
sent the position within a group at which the carry originates (7= 1, 2,
veess., m; counting from left to right in a group), we see that R depends
upon the length of the carry sequence involved and the position within a
group at which the carry sequence originates. Thus, we write

R = f(j,0). (10)

The function f can be determined by inspection of the circuitry in each

case. In doing this for the example of Figure 5, assume that the "carry
out' of the adder is connected to the '"carry in' of the adder, which is the
actual situation which arises in subtraction. With this symmetry, it is
easy to verify that the function f for this case is as given in Table I, (p.16).
The maximum number of units of time required is seen to be 3, This is an
improvement over the linear-propagate adder which requires 4 units in the
worst case,

Campbell and‘RosserZ contains an analysis of the general case which shows
that with m>> 2, the number of units of time needed in the worst case is given

by

Rpax = n/m+2m ~3; (m>2), (11)
which arises when j=n-1and 0 = m (n/m equals the number of groups in
the n-bit adder), Thus the linear-grouped adder has a worst-case execution
time of

R = tj+(n/m +2m - 3) t; +1t3 (Linear-Grouped‘Adder)
‘ (12)

Simultaneous Adder -« A different sort of carry transformation is used in
the adder as shown in Figure 6, Once the '"generate'" and "'propagate' sig-
nals have settled for all stages, the ''carry in'" to each stage and the '"carry
out'" of the adder as a whole is formed in the time required for the linear-
propagate adder to transmit the carry over one stage. The full adders
(denoted by FA) do not need the internal carry generating circuit, and this
is indicated by the asterisk. Thus, the simultaneous adder has an execution
time given by ‘

T = t] +t3 + t3; (Simultaneous Adder) (13)
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A design strategy related to the use of a simultaneous adder consists in
dividing an n-bit adder into groups of simultaneous adders (m stages in
each group) linearly connected. This scheme is illustrated in Figure 7,
An analysis in Campbell and Rosser 2 for equal size sub-adders shows
that N, the number of units of time needed to propagate a carry sequence
depends upon jand /~. For m<&j £ n, Nis given by

N=3-50\_’1+ [(j—/‘- l)lmj. (14)

where S\(f\ol represents the Kronecker delta (o(‘ =1if /"= 1, other-
wise zero), and the brackets mean to take the intéger part only, Taking
again the case of m >> 2, we see that Nmax is given by (n/m) + 2., Thus,
for execution time, we have for the worst case

T = t, + { (n/m) + 2) t, + ts (Linear Simultaneous Adder) (15)
More General Forms of Carry Transformation - By considering each of

the above forms of adder as simply a single group in a larger adder, we
arrive at more general carry transformations. Thus, in Figure 8 we show

a so-called "grouped-grouped' adder; in Figure 9, a ngrouped-simultaneous"
adder; in Figure 10, a '"simultaneous-grouped! adder; and in Figure 11, a
"gimultaneous-simultaneous' adder. In each case, the first part of the

name designates the manner of carry propagation involved in connecting

the main groups. The second part designates the type of adder which forms
one group,

A means for saving equipment in the Simultaneous-Grouped Adder is shown
in Figure 10, Rather than have the ''generate' and '"propagate' signals feed
from each stage to the SLAC circuits, a ''generate" and a ''propagate'" signal
is first formed for each of the linear-grouped adders as a whole, in the cir-
cuits labelled "G and P'. Considering stages one through four, we have the
equations

G4 = Gl + Ple +P1P2G3 + P1P2P3G4, (16)

Py.4 =P P,P.P , (17)

which show the structure of the circuit. This strategy keeps the number of
inputs to the largest SLAC circuit low at the expense of some additional time
delay in the "G and P" circuits,

The number of levels of grouping can be extended to any desirable number of
levels, A 100-bit adder involving three levels of grouping is shown in Figure
12, This could be called a "Simultaneous-Simultaneous-Simultaneous' Adder,
but at these levels of complexity, the names become cumbersome. This form
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Figure 8 GROUPED GROUPED ADDER
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Figure 9 GROUPED SIMULTANEOUS ADDER
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Figure 11 SIMULTANEOUS SIMULTANEOUS ADDER
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of adder is used in the Sigma Computing System.

Evidently many possible carry transformations exist. In any specific case,
the method of analysis set forther in Campbell and Ros ser2 should enable
the logic designer to derive the carry transformation involved, and thus the

worst case delay.

Other Possibilities = Each of the carry transformations considered above
can be considered as variations on the linear-propagate adder., As such,

the rate of operation of any of these adders can be no higher than that
determined by the worst case carry situation. This contrasts sharply with
the variable-speed adders such as the asynchronous and carry save adder
schemes discussed previously, inthat those of the latter group have an
average speed which depends upon the average carry situation., We wish'to
point out, however, that the various basic methods of parallel addition can
be combined in numerous ways. One could, for example, form a '"carry-
save grouped' adder in which the carries are propagated by some form of
carry propagation within a group, but the ‘carries out‘of a group are savec

in a carry register for presentation as’carries in’ during the next cycle.

One could on the other hand have a ''‘grouped-carry-save' adder in which
each individual group forms a carry-save adder, but in which a look ahead
carry circuit passes the carry around the group should the need arise, In
this case, once a carry has been propagated across a group, means must

be provided to prevent the ‘carry out'of the highest order stage from develop~
ing a group carry later on when the carry being propagated reaches it through
the carry save feature.

As another possibility, any of several of the carry transformations discussed
above can be combined with either form of asynchronous adder, by providing
similar carry transformations on the zero carry lines. One could have a
"linear-grouped asynchronous' adder, ''linear-simultaneous asynchronous"
adder, etc. Note, however, that it would be fruitless to specify a '"simultane-
ous-asychronous'' adder, since by equation (13) the speed of the adder will be
as given if any carry is generated, and will be less by the amount t; only if
no carries are generated., Thus, the delay introduced by the asynchronous
connections would probably exceed t,, which is the only time interval that
could possibly be reduced.

As a final example of other possibilities, consider the following design
strategy. First, determine from probability considerations that maximum
length of carry sequence which will be exceeded in a small fraction of the
additions, say 10%. Design a linear~simultaneous adder with this size
grouping, and let its execution time equal t; at most for the majority (90%)

of the cases. Provide additional carry transformations (say by transforming
to a synchronous-synchronous adder) such that the worst of all possible carry
sequencesgives an execution time not exceeding 2t;. Finally, provide circuits
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to recognize whether or not the carry sequence exceeds the size of the
basic group, and design it fast enough to operate in a time t;. Then the
resulting adder can be made variable speed. Inthe majority of cases
(90%) the execution time will equalt,. In the other 10% of the cases,
the execution time will equal 2t;. Wllmether to take one or two cycles
will be decided by the recognition circuitry, which will operate fast
enough, The average time will equal .9 (t;) + .1 (2t)) or 1.1t,. The
main feature of this arrangement consists of the recognition circuitry
which is apt to involve considerable equipment, but with it one may
almost double the speed attainable,

Summary - We have shown several basic forms of binary adders,
several variations of the linear-propagate adder obtained by carry
transformations, and mentioned a number of mixed forms. The logic
designer has here a catalog of many possible forms. In deciding which
to use in a particular application, his choice may be determined in part
by considerations of the circuit technology involved. For example, in
some technologies the delay through an AND-OR stage of logic may in-
crease with the number of inputs, so that the LAC, SLAC and "P and G"
circuits may not have the speeds assumed in this paper. Under such
conditions, the increase in speed obtainable by carry transformations
may not be as large as the theoretical figures show. Detailed considera-
tions of this kind as applied to adders are beyond the scope of the present
section. However, the reader should remember that important circuit
factors enter into the consideration of each case, and so there is more to
designing an adder than just picking one of the arrangements illustrated
here,
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APPENDIX

Upper Bounds to the Average of the Longest Carry Sequence

Starting from simple assumptions upon the probability distributions of
the two n-bit binary numbers that are to be added, we derive a recur-
sive expression for the probability distribution function of the longest
carry sequence, Neglecting certain terms in this expression that tend
to reduce the values of the probabilities and manipulating the expression,
we convert it to an inequality. Using this inequality in the formula for
the '""mean of the longest carry sequence, ' we derive an upper bound,
Two cases are considered. In the first case, which applies to asynchron-
ous adders, the propagation of '"ones' and '"zeros' is considered, and a
value of [log.n + 2 | is derived as an upper bound to the average of the
longest carry sequerice., In the second case, which applies to carry save
adders, the propagation of '"ones' only is considered, and an upper bound
of l;logzn + l‘i is derived for the average. (Note that:the brackets
indicate to takethe integer portion only of these expressions),

We assume that each bit in each word has a value independent of the
values of all other bits and for each bit, a '"one'" or a "zero' value is
equally likely and occurs with a probability of 1/2,

Considering a pair of operand bits in any position, we find four possible
pairs of values: 00, 01, 10, and 11, each occurring with a probability of
1/4,

We distinguish two types of carry propagation: (1) Both ""ones'" and ''zeros"
are propagated and (2) only '"ones' are propagated. In the first case, which
applies to asynchronous adders, a 'one' carry will be '"generated" if the
combination 11 occurs, and a ''zero" carry will be ""generated! if the com-
bination 00 occurs, Thus the probability of "generating'' a carry of either
kind equals 1/2, In the second case, which applies to "carry save'" adders,
a "carry'' will be generated if and only if the combination 11 appears, and
this occurs with a probability of 1/4, In either case, if the two operand
bits have opposite values (combinations 10 or 01), then any carry will be
"propagated'' through that stage and the probability of '"propagation'. equals
1/2.

Let C1 and C2 represent the event that a type (1) or type (2) carry

re speclively, 1% generated in some stage of the addition, is propagated
through the next (j-1) positions, and enters the next stage thereafter (which
may or may not be set to propagate). We shall call such an event a carry
sequence of length j (of types (1) and (2), respectively).

The probability of each of these events consists of the product of the sub-
events which by conjunction make up the event, since the bit values for
the individual stages are independent,
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Hence we have
Prob (Clj) = Prob (E1 and F, and * * *and Fj-l) = Prob (El)'
Prob (Fl) ++ s+« Prob (Fj-l) (1)

where E; represents the event of generating a type 1 carry in some position,
and where Fy, F,+ - +, F, , represent the events of propagating a carry
through the first, second .”. ., and (j-1)-th positions, respectively, to the
left of the one in which the carry is generated, Substituting the known values
for the probabilifies of these events, we find

Prob (Cy5) = /5 (2)
In a similar manner we find
Prob (Cy) = 1723+ 1 | (3)

These probabilities enter into the formulas for expressing the probability
distributions of the longest carry sequence for the two types of propagation,

Let P_(v) represent (for either type 1 or type 2 propagation) the probability
that the longest carry sequence (l.c.8,) which occurs during the addition of
two n-bit numbers, will equal or exceed the given amount, v. This event
will be represented by (1. c. 5. = v) or by E . We can show that this event
can occur in two mutually exclusive ways. In the first case, the lowest
order (n-1) positions will already contain a longest carry sequence that
equals or exceeds v, This event is symbolized by (l.c. s. (n-1) :_‘é: v) or

by En- . In the alternative case, the highest-order position is set to
propagate,the adjacent v-1 positions to the right contain a carry sequence
of exactly (v-1), and the lowest-order (n-v) positions do not contain a long-
est carry sequence which exceeds or equals v. The alternative case is thus
the conjunction of three events, symbolized by Fl' C(V_IL, and E!

where F; is the event '"first stage propagates., C(v-l) the event
""carry sequence of length (v-1) occurs,' and the prime indicates the absence

of the event E .
R-v,V

(n-v), v,

With this analysis we see that

Prob (E, ,) = Prob [(En-l, ¥ °F <(F1) and (Cv_l) and ’E(n-v) ’9](4)

where the "or'' is to be taken in the exclusive sense. From probability
theory, we know that the probability of an exclusive '"sum'' of events is
equal to the sum of the probabilities of the events., For a conjunction of
independent events, the probability equals the products of the probabilities
of the individual events. Finally, the probability of the negation of the event
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is equal to (the probability of that event) subtracted fro.m (unity). Applying
these values to equation (4), we obtain
Prob (En. v) = Prob (En-l,v) + Prob (Fl) * Prob (E,,_1) E-Prob (En-v, v):l

(5)
For type 1 carry propagation, Cy.] reduces to C1 vel whose probability

is given by equation (2) with j = v-1, Since F, has a probability of 1/2 and
the other symbols have been defined, for this type of propagation we find

P (v) = Pn-l,v +(—%> . (Zl-v-:r) (1 - Pn - v (V) > (6)

For type 2 carry propagation C reduces to CZ -1 whose probability is
v-1
given by equation (3) with j = v-1. Thus we obtain for this type of propaga-

tion,
P, ) (7)

1 1
Pn(v) =P __(v) + (E) <2v
The se are recursive relations for the probability distributions sought.

Considering now type 1 propagation we can transform equation (6) into an
inequality by writing

£
PLM-P 1= <y (8)

Suppose we form

i [Pi (V) - Pi_l (V) ] (9)

i=v

Since all probabilities except P, (v) and P (v) will cancel out of the
sum and since P, _; (v) equals zero (a ca.rr;r sequence greater than the
length of the adder cannot occur), we see that the entire sum equals P (v).
By changing the index n of equation (8) to index i and performing the sum
over i from v to n we obtain expression (9) on the left (equal to P (v)) and
on the right a total of (n-v + 1) terms each equal to 1/2V. Hence

Ln-v+1
Pn(v)“" 2V
(10)

Recognizing that P (v) must be a probab1l1ty and is bounded by ng (v) £
we can write

pn(v)—f:_min [1, —T-‘LEZ’-V*—I-:I (11)
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where the right member indicates to take either 1 or (n-v + 1)/2V,
whichever is less. This inequality will be used in determining the
bound on the mean of the longest carry sequence,

If P, (v) is the probability that the longest carry sequence equals or
exceeds v, then the probability that the longest carry sequence is
exactly equal to v is the probability that the longest carry sequence
equals br exceeds v but does not equal or exceed v + 1. Thus we write

Prob (L.c.s. =¥)=P_ (v) - P (v+1) (12)

The mean or average of a discrete random variable X that can take any
values from 1 through n, is defined as

X = i’ i Prob (X = i) (13)

avg i=1

Using this definition and letting M, represent the mean of the longest
carry sequence we find from equation (12) that

3 n
M =§ , v . Prob(l.c.s, =v) = E : v o E:'n(v) - P (v+1]
1 i=l vl
(14)

By writing a few terms of the sum as follows:

1 P (1) -1" P (2)

> N
+ 2 Pn(Z)-z.pn(3)
+ 3P, (3) -3+ P (4 (15)

+ [n.P.‘n(n)-nPn(nq-lEl

the reader will note that terms partially cancel, Using this fact and the
fact that P (n + 1) =0, we can write

n

M, = }::' P v (16)

v=l
Now substituting inequality (11) into equation (16) we find

n
. -vatl
M, £ 21 Min <1, n-oviy zvv+ > (17)
v o=
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The rest of the derivation consists in finding an upper bound for this series
which can be taken as an upper bound for the longest carry sequence.

In forming this sum we see that the minimum of the pair of magnitudes will
equal unity for values up to some value of v, say v,. For vZv,, the mini-
mum will be less than unity. . To find v;, find bounds on v such that

n-v+ 1
T - 18
2V < 1 (18)
v >
Thus 2 = n-v+1 ' (19)

This will be assured if
2) = n=2 ( 20)
or if v & log,n = 1 (21)

Letting lo on=a +_e, where a is an integer and 0 = e” £ 1, we see that
with v = ﬁogzn + 1] (brackets mean to take the integer part only), we have

- 1T . @ te, 1) + 1
E_XV_*__ . 2 affl* Y+ 1 fe-1-a (5
2 2 22

Restricting the discussion to n 22 and aZ1, we see that the expression
must be less than unity, although it may be almost unity for some large
values of n, On the other hand, letting v =[logzn_] = a, we see that

noval | 2V -q@el | 2-fa-l) g
2v 2* 22 n
and for nZ 2, a £ 1, this expression can exceed unity, g
Hence we may choose v, = l:logzn + —]:I v = [ilog2 n + IJ

Then we have

M -é- 1 n-v+l
T + noviyse (24)
- Zv -

Consider the summation as proceeding to infinity, (This only enlarges

the right-hand member). Since the first term is less than unity but may

be very close to unity for some values of n; and since the ratio of successive
terms is less than 1/2; we see that the entire sum is less than the infinite
series

1+ +%+...

ol —
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which has a sum equal to 2, Thus we see

Z.
M - lo + 2 25
: [ gzn] (25)

Considering now type 2 carry propagation, similar arguments apply to
derive the mean of the longest carry sequence, but wherever one had the
factor 2V, one replaces it with 2v + , this being the only operation needed
to convert equation (6) into equation (7), which is the foundation of the
analysis. Thus one can show that M, defined as the mean of the longest
carry sequence, is bounded as follows:

lIN

n n-v + 1
M, E min [1, 2V +1 (26)

vl
For this case we seek bounds on v for which

n-v+1 Z
zv-rl -

1 (27)

But this requires

2t Za v (28)

This will be assured if

2Vl 2,24 | (29)

. > > ‘
or if v —= (logzn) -1=1 (30)

Thus with v = ,:logzrﬂ = [a-i-e] =a,

we have

a+ e e -1
n-v+y1 = 2 -(a)+1 - 2 -(a-l) __L_l (31)

2‘§'+1 2a,-!-l 2a+1
but with v =a - 1,
a+e e
n-v+1l _ 2 -fa-1)+1,2 - (a-2) N
Hence we can write
n

M2= Eogn -1 + E, n-v+1
2 i - (33)
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Again comparing the summation with the infinite geometric series we
find that it is no greater than 2. Thus, we can write

P
M2 = [Iogzn-l- 1:] . (34)



PR |
. -5 I '
ket B AL VA T PR

e

International Business Machines Corporation, Poughkeepsie, New York

Laboratory Publications, Product Development Laboratory, Data 'S‘)"rstems Division EM



	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	xBack

