

Programming
the OS/2 Kernel

Programming
the OS/2 Kernel

J. Terry Godfrey
President, JTG Associates

PRENTICE HALL
Englewood Cliffs, New Jersey 07632

Library of Congress Catalog1ng-1n-Pub11cat1on Data

Godfrey. J. Terry
Program•lng the OS/2 kernel I J. Terry Godfrey.

p. co.
ISBN 0-13-723776-6
1. OS/2 <Computer operating systen) I. Title.

CA76.76.063G63 1991
005.4"469--dc20

Editorial/production supervision and
interior design: Kathlee11 Schiaparelli

Cover design: Wa11da Lubelska
Manufacturing buyer: Lori B11lwin!Li11da Behre11s/Patrice Fraccio

© 1991 by Prentice-Hall, Inc.
A Division of Simon & Schuster

Englewood Cliffs, New Jersey 07632

90-7518
CIP

The author and publisher of this book have used their best efforts in preparing this book. These efforts
include the development, research, and testing of the theories and programs to determine their
effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard
to these programs or the documentation contained in this book. The author and publisher shall not be
liable in any event for incidental or consequential damages in connection with, or arising out of, the
furnishing, performance, or use of these programs.

UNIX is a registered trademark of AT&T (Bell Laboratories).
Apple and Macintosh are registered trademarks of Apple Computer, Inc.
Intel is a registered trademark of Compuview Products, Inc.
Microsoft Window is a trademark and Microsoft is a registered trademark of the Microsoft Corporation.
IBM and IBM PCfXT/AT are registered trademarks of International Business Machines Corporation.

All rights reserved. No part of this book may be reproduced, in any form or by any means, without
permission in writing from the publisher.

Printed in the United States of America

ID 9 8 7 6 5 4 3 2 1

ISBN 0-13-723776-6

Prentice-Hall International (UK) Limited, Lo11do11
Prentice-Hall of Australia Pty. Limited, Syd11ey
Prentice-Hall Canada Inc., Toro11to
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Si11gapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Ja11eiro

To Judy, Ray, Agnes, and Emma

Contents

PREFACE xi

Part I Introduction to OS/2 1

1 THE OS/2 ENVIRONMENT 1

1.1 Hardware Considerations 3

1.1.1 The 80286 and 80386 Architecture, 3
1.1.2 Hardware Operation for Protected Mode, 8
1.1.3 Software Operation for Protected Mode, 12

1.2 A Brief Look at Operating System/2 14

1.2.l Protected Mode, 17
1.2.2 AP/ Services, 19
1.2.3 Memory Management, 29
1.2.4 Multitasking, 29
1.2.5 Version 1.0 and 1.1 Differences, 30

1.3 The OS/2 Presentation Manager 31

1.4 Summary 35

References 36

Problems 37

vii

viii

Part II Programming OS/2 Using Assembler

2 INTRODUCTORY OS/2 ASSEMBLER
PROGRAMMING

2.1 OS/2 Services: Accessing the API 40

2.2 Introductory Assembler Programming 43

2.2.1 The IBM Macro Assembler/2, 43
2.2.2 An Example Program: Printer Control, 45

2.3 Accessing the Video Services 51

2.3.1 The Display Buffer, 51
2.3.2 Locking the Screen Context, 54
2.3.3 Printing the Graphics Screen under

OS/2, 62
2.3.4 Connecting Line Graphics with OS/2, 74

2.4 Software Design 87

2.5 Summary 88

References 89

Problems 89

3 MEMORY MANAGEMENT AND MULTITASKING
WITH ASSEMBLER

3.1 Memory Management and Multitasking 93

3.2 Memory Management Activities 96

3.2.1 Creating and Accessing Memory Segments, 96
3.2.2 Creating and Accessing a Shared Segment, 105
3.2.3 Changing Segment Size, 115
3.2.4 Creating and Accessing Huge Segments, 119
3.2.5 Suballocating Memory, 125

3.3 Multitasking 129

3.3.1 Semaphores, 129
3.3.2 Creating a Thread, 130
3.3.3 Creating Another Process, 140

3.4 Interprocess Communications 150

3.4.1 Pipes and Queues, 150
3.4.2 Shared Memory Segments, 163

3.5 Summary 163

References 164

Problems 164

Contents

40

40

93

Contents

Part Ill Advanced OS/2 Kernel Programming

4 OS/2 and C

4.1 Higher Levels of Abstraction 167

4.1.1 The C Include Files, 168
4.1.2 The Low-Level Nature of the AP/, 169
4.1.3 Comparison of C with Assembler, 170

4.2 Introductory C Programming with OS/2 171

4.2.1 C Program Architecture and Structure, 171
4.2.2 Accessing the AP/ from C, 173
4.2.3 Graphics Using C and OS/2, 178
4.2.4 Low-Level Access for Printer Graphics, 182

4.3 Memory Management and Multitasking
with C 188

4.3.1 Creating and Accessing Segments, 192
4.3.2 Creating a Thread or Process, 197

4.4 Other Programs 200

4.4.1 A Rotating Tetrahedron, 200
4.4.2 Plotting Dow Jones Activity, 204

4.5 Summary 217

References 217

Problems 217

5 ADDITIONAL OS/2 CONSIDERATIONS

5.1 Mixed-Language Programming and OS/2 222

5.2 Dynamic Linking and Resource Management 226

5.2.1 Using Dynamic Linked Libraries, 227
5.2.2 The Definition File, 227
5.2.3 Creating a DLL, 231
5.2.4 DLL Examples, 232

5.3 Optimizing the C Design Process 239

5.3.1 Top-Down Design, Structured Programming, and
Modular Code, 240

5.3.2 Templates, Style, and Form, 246
5.3.3 AP/ Return Values and Error Checking, 250

5.4 Reexamining the Core versus Presentation Manager
API Services 251

5.5 Advanced C Example: A Three-Dimensional Surface 251

Ix

167

167

221

x

5.6 Summary 267

References 267

Problems 268

APPENDICES

A IBM MACRO ASSEMBLER/2

B MICROSOFT C COMPILER VERSION 5.1

C FUNCTION DEFINITIONS AND MACROS
USED TO INTERFACE THE AP/

D PROGRAMS USED IN THIS BOOK

E KEYBOARD AND MOUSE KERNEL FUNCTIONS

ANSWERS TO PROBLEMS

INDEX

Contents

270

270

293

300

310

313

317

331

Preface

This book has been developed for teaching programming using the IBM Operating
System/2 (OS/2). It is suitable for a one-semester course in OS/2, as an adjunct to
a course in operating system design, or as a vehicle for self-study on OS/2 program­
ming. The emphasis in the book is on programming techniques for an advanced
multitasking microcomputer operating system. Both Macro Assembler/2 and the C
language are supported in the text. The OS/2 Application Programming Interface
(API) services can be understood in either context.

The text addresses the basic OS/2 kernel services: the video (Vio), Disk
Operating System (Dos), keyboard (Kbd), and mouse (Mou) API functions. The
latter service is most useful in a windowed display such as the Presentation Man­
ager, which is omitted from this text. The book concentrates on the OS/2 Full­
Screen Command Mode, which utilizes the entire display for presentation of a single
program, making no other programs visible. Similarly, input and output under pro­
gram control is implemented through the standard assembler or C syntax, such as
printf() or scanf(). These operate in Protected Mode as well as Real Mode. Conse­
quently, there is little need to incorporate specific keyboard API services into the
program examples. Keyboard and mouse functions are discussed briefly in Appen­
dix D. Some use is made of the keyboard services, for example, to pause the graph­
ics screen.

The Presentation Manager windowed interface is not developed in this book.
Although this is a rich and complex interface, it is not considered suitable for a one-

xi

xii Preface

semester course on OS/2 programming. The services at the level of IBM's OS/2
Standard Edition 1.0 are assumed as sufficient material for such an introductory
course. When object-oriented programming tools become available for the Presenta­
tion Manager and the burden for programming this interface is eased, it will be ap­
propriate in a beginning course in OS/2 programming.

During the late 1980s when OS/2 was developed, the principal major compet­
ing operating system for advanced microcomputer applications was UNIX. OS/2
follows IBM's earlier microcomputer operating system, Disk Operating System
(DOS), and runs DOS as a subset. UNIX has tended to be used more within the
scientific and engineering community and is generally optimized for larger machines
than the baseline microcomputers developed during this time frame.

What are the advantages afforded by OS/2? OS/2 is predominantly a multi­
tasking operating system capable of extensive memory management. It accomplishes
these activities through hardware intervention based on the Intel 80286 chip set.
(Hardware compatibility exists at the 80386 and 80486 levels.) There are four lev­
els of protection provided (unlike the Motorola 68020 and 68030, for example,
which have two); hence OS/2 can be tailored to handle the multitasking problem.
The protection mechanisms provide coarse-grained through fine-grained memory
management. This allows a detailed dynamic memory allocation at any given time.

If we examine OS/2 in the framework of the near-term evolution of microcom­
puter systems (1990s), it is apparent that changes in software development and
applications will dictate about an order-of-magnitude increase in software complex­
ity. It is clear that many efforts will give way to multi thread and multiprocessor pro­
gramming. The OS/2 multitasking features make it a good candidate for major
microcomputer applications during the 1990s time frame. Also, the hardware protec­
tion mechanisms mentioned above are suited for minimizing operational errors in
such multitasking situations. Hence OS/2 is positioned to become the operating
system of choice for high-end personal computer applications based on the Intel chip
sets.

OS/2 is particularly suited for user-friendly operation and programming. The
API services are readily programmed in a fashion similar to the now-more-familiar
Basic Input Output System (BIOS) interrupt calls. The Presentation Manager repre­
sents a large-scale object-oriented interface. It is programmed in an almost identical
manner to the Microsoft Windows Software Development kit (SDK) programming.
OS/2 is moving rapidly toward widespread acceptance as the IBM microcomputer
operating system for the early 1990s, just as DOS was for the 1980s.

This book is intended to teach techniques on how to program in an advanced
multitasking environment. The approaches required for software development reflect
the solutions and compromises that exist in the 80286 hardware and the OS/2 Pro­
tected Mode software. The power of OS/2 lies in its potential to run a number of
large-scale applications simultaneously, with asynchronous and synchronous sharing
of data. The use of pipes, queues, and semaphores (as well as shared memory
blocks) ensures that intertask communication minimizes errors and follows well­
established guidelines.

Preface xiii

OS/2 is large, but experience has demonstrated a rather elegant superstructure
that combines Microsoft Windows, DOS, multitasking, and memory management.
Even in the scaled-down 80286 environment, OS/2 presents a very user-friendly
interface to the hardware. Finally, all the programming skills developed for the
earlier DOS framework are applicable when writing software for OS/2. IBM and
Microsoft have maintained many philosophical features of DOS while incorporating
the Apple Macintosh-like graphical interface in PM. OS/2 is truly an order-of­
magnitude change in microcomputer operating systems. The potential for large-scale
object-oriented applications is intrinsic to the PM definition.

This, then, is the world of OS/2 as we move through the 1990s. The reader
can expect a programming arena in which multitasking is important. This is a pre­
cursor to the parallel processing systems coming toward the end of the decade. At
the same time, implementation of segmented large-scale applications becomes a
reality through interprocess communications and memory management. Thus effi­
cient use of microcomputer resources becomes feasible. Finally, graphical interface
techniques lead to very user-friendly application environments. OS/2 promises to be
at the forefront of microcomputer operating systems because of all these features.

One comment about the style used in this book. The IBM macro calls to the
Application Program Interface (API) are used throughout. This is in keeping with the
trend toward higher-level-language constructs and structured code when developing
assembler programs. It does have the effect of obscuring the stack loadipg during an
API call and assumes that the reader has access to the IBM API macros (i.e., the
IBM Toolkit include files). The trade-off, however, is that fewer lines of program
code need to be understood, and for someone familiar with the calls, the inferences
are clear. This has implications for maintenance as well as debugging.

This text is practically oriented. The examples are somewhat lengthy, by inten­
tion and as a real-world case would be. They are intended for the serious student
who is interested in programming under OS/2. The Color Graphics Adapter mode
(CGA) is illustrated because of its relative simplicity and ease of programming.
Also, it is a readily testable feature that can easily be programmed using C or as­
sembler. The book assumes that the student has a basic familarity with C and as­
sembler.

ACKNOWLEDGMENTS

As is to be expected, a great many people contributed to this book both knowingly
and unknowingly. It is impossible to give credit in all cases; however, a few notable
exceptions are my wife, Judy, who did all the typing and much of the editing;
Marcia Horton, Editor-in-Chief at Prentice Hall, who was always available to answer
questions and provide inputs; Ray and Agnes, my parents, who laid the groundwork
for this book years ago, and Emma, Judy's mother, who provided both of us with
a sense of stability. Thanks to Kathleen Schiaparelli and her staff for their excel­
lent job producing the book.

xiv

Finally, special mention should be made of the help I received on BIX, Byte
Magazine's bulletin board, for those unanswerable questions that plague every
programmer and can be answered only by someone else. Like many other forums,
BIX is an excellent place to go for answers because of the depth and breadth of ex­
perience displayed by its membership. Also, the thoughtful comments provided by
Margaret Mooney added a new perspective.

Programming
the OS/2 Kernel

PART I
Introduction to OS/2

l The OS/2 Environment

During the 1980s, IBM developed (in conjunction with Microsoft, Incorporated) the
Disk Operating System (DOS) [1] as a primary operating system for its family of
microcomputers: the IBM PC, XT, XT286, AT, PS/2 Models 25, 30, 50, 60, 70, and
80. These systems were developed using the Intel family of central processor unit
(CPU) chips, including the 8086, 8088, 80286, and 80386 [2-4]. DOS is a single­
thread single-user system and hence is capable of executing only one task at any
given time. Intel, however, provided the 80286 and 80386 with architectures that
ensure hardware protection for multiple applications. This prevents code segments
from being mixed during execution of multiple separate tasks. Such multitasking is
the framework required by the advanced applications in existence and slated to
arrive throughout the decade of the 1990s.

Toward the end of the 1980s a clear need developed for an operating system
that was capable of supporting and utilizing these advanced microcomputer hardware
architectures. In response to this need, IBM and Microsoft developed Operating
System/2 (OS/2) as their candidate to run on the Intel 80286-based (and 80386)
machines [5,6]. There are many facets to OS/2. Both IBM and Microsoft have
provided information needed to be able to program in the OS/2 environment through
their Toolkit (IBM) [7] and Software Development Kit (Microsoft) [8]. Initially,
following an early issue by Microsoft in 1987, IBM released OS/2 Standard Edition
Version 1.0 in December 1987. This early version employed the full-screen com­
mand prompt mode only, which initially displays a menu followed by a screen with

1

2 The OS/2 Environment Chap. 1

header. Basically, two modes were allowed: DOS compatibility mode, which runs
from a screen with a typical prompt such as

(C:\>)

and runs DOS programs, and OS/2 Protected Mode, which runs from a screen with
a typical prompt such as

[C:\>]

In the fall of 1988 IBM released Version 1.1 of the Standard Edition, which in­
cluded the Presentation Manager (PM) [9]. This provided a full Windows-like gra­
phical interface to the user. This graphical interface is very similar to that found
with the Apple Macintosh operating system [10].

In addition to the Standard Editions, IBM and Microsoft have developed an
Extended Edition, which has a local area network (LAN) interface and a database
manager with support for Structured Query Language (SQL). The later editions of
OS/2 (Extended Edition 1.0-10/88 and 1.1-11/88) function in essentially the same
fashion as the Standard Edition; hence we will focus on the Standard Edition and
not address the LAN and database features in this book. Basically, we are interested
in programming highlights rather than specialized application packages.

IBM recommends a minimum of 2 megabytes (MB) of random access mem­
ory (RAM) for running Standard Edition 1.0, 3 MB of RAM for Version 1.1, and
3 MB of RAM for the Extended Edition (EE). Also, the EE may completely con­
sume a 20-MB hard disk drive [11]. Most versions of OS/2 come complete with
the Code View debugger, which is capable of debugging both assembler and C code.
These are the two languages considered in this book. The language support for
OS/2 is extensive with assembler, FORTRAN, BASIC, C, Pascal, and COBOL
compilers existing. As indicated, we will focus on C [12] and assembler [13] for the
OS/2 environment. Although IBM provides a Protected Mode editor with Version
1.1, in the program development for this book, VEDIT PLUS [14] was used as a
full-screen editor run from the DOS compatibility box. This process was quite
smooth and allowed for early development when only Version 1.0 was available.
Context switching between Real (DOS compatibility box) and Protected Mode was
accomplished rather efficiently in the OS/2 implementation. Programming the Pres­
entation Manager graphical interface is very much a Windows-like exercise [15].

With these introductory remarks in mind, where are we going with this book?
The goal is to establish for the reader the capability to write programs in the OS/2
kernel environment. We address code development in assembler (IBM Macro As­
sembler/2) and C (Microsoft C Compiler Version 5.1).

What is so unusual about OS/2 in relation to conventional Real Mode (Intel
80286 Real Mode) programming? In OS/2 the major achievement is the definition
of API services for access of the Protected Mode multitasking and memory manage­
ment features. Typically, an entire new class of function calls is added to the usual
assembler or C code. These functions (the API) constitute the system interface and
have syntax (in ASM) like

Sec. 1.1 Hardware Considerations

@DosExit action, result

instead of the normal return instruction, ret, or

@VioScrLock waitf,iostat,viohdl
@VioGetPhysBuf PVBPtrl,viohdl

@VioScrUnLock viohdl

3

instead of int lOH. Hence it is apparent at a glance that OS/2 function calls tend to
require more parameters (versus register setup) than conventional assembler. They
have the added attribute, however, of being a symbolically elegant interface. By the
latter reference, we mean that the API services appear as a natural extension of
assembler or C code in modular and complete fashion.

OS/2 is a model operating system for illustrating advanced features in a sys­
tems software framework. As discussed, it is somewhat RAM intensive, although it
will run comfortably with 2 MB as an installed base. The principal accomplishment
is the segregation of services for operation in the multitasking environment. How
this segregation is accomplished is reflected in the programming techniques used to
write code for OS/2. OS/2 is a good example of how multitasking should be imple­
mented.

1.1 HARDWARE CONSIDERATIONS

OS/2 is written primarily for the architecture of the Intel 80286 (and is compatible
with the 80386) as it exists in Versions 1.0 and 1.1 of the Standard and Extended
Editions. The manner in which the hardware and software coexist depends largely
on the Intel concept of segmented memory and the notion of levels of protection.
We examine these aspects of OS/2 and attempt to correlate the register-level hard­
ware with OS/2 address allocation. It is important to recognize, however, that keep­
ing with the Intel philosophy of downward compatibility, subsequent microproces­
sors in the 8086 family run code intended for the earlier chip sets. Hence the 80386
architecture, although more advanced than the 80286, will support 80286 Protected
Mode software. This means that OS/2 runs on 80386 machines as well.

1.1.1 The 80286 and 80386 Architecture

It is worthwhile examining the Intel 80286 (and 80386) architecture at this point
because this implementation serves as the basis for development of programs such
as OS/2. Once we have touched on this hardware foundation, we can forever assume
that a starting point exists from which to explore the features of 80286 systems
software.

Intel started the 8086 family of microprocessors with initial entries that have
16-bit addressing. This includes the 8086, 8088, and 80286 chips. The 80386 has

4 The OS/2 Environment Chap. 1

32-bit addressing and represents a major step forward, in keeping with the increased
speed of these integrated circuits. What is the major limitation of the 16-bit archi­
tecture? In a physical sense (based on the actual wiring of circuits and memory) 16
bits provides only 216 or 65,536 possible individual references. This is the usual 64K
segment. Recognizing that this constituted a very limited memory capability, Intel
expanded the addressing concept to allow for multiple segments by providing a set
of segment registers used to hold segment addresses. (This was in addition to the
16-bit instruction pointer that held an offset into the code segment, for example.)
When IBM implemented the Real Mode operating system DOS, a 1-MB address
limit was built into the architecture which was based on a 20-bit address. Address­
ing was accomplished by shifting the segment address left 4 bits, appending a zero
(hexadecimal) to the segment address, and adding the offset to get the five-digit
hexadecimal physical address. For example, assuming a segment address lOAF and
an offset FOFF this physical address is

lOAFO

FOFF

lFBEF

(segment address)

(offset address)

(physical address)

where the usual notation would be lOAF:FOFF. What are the register structures used
to support this addressing scheme? In the 8086 and 8088 the following registers
exist:

Data

AX

BX

ex

DX

Segment

cs

DS

SS

ES

the Accumulator: This register can be used for general programming
storage.

the Base Register: This register is frequently used to hold address val­
ues when accessing memory.

the Count Register: During loop operations this register holds the
count index.

the Data Register: This register is used for general storage.

the Code Segment Register: This register points to the beginning of
the code segment block.

the Data Segment Register: This register points to the beginning of
the data segment block.

the Stack Segment Register: This register points to the beginning of
the stack segment block.

the Extra Segment Register: This register points to the beginning of
the extra segment block.

Sec. 1.1 Hardware Considerations 5

Pointer

SP the Stack Pointer: This register holds offset values for the stack.

BP the Base Pointer: This register holds offset values into the data seg­
ments.

Index

SI the Source Index: This register holds an index offset in memory and
frequently references the instruction source.

DI the Destination Index: This register holds an index offset in memory
and frequently references the instruction destination.

Added to these 12 registers are the instruction pointer (IP) and flags registers, yield­
ing a total of 14 16-bit registers for the 8088 and 8086.

The 80286 enhances this register set with the addition of five registers:

GDTR

IDTR

LDTR

TR

MSW

the Global Descriptor Table Register: This register points to system
resource segments.

the Interrupt Descriptor Table Register: This register points to inter­
rupt service routine segments.

the Local Descriptor Table Register: This register points to the
active local program code segment.

Task Register: This register holds the code segment address for the
current task.

the Machine Status Word Register: This register sets up the proc­
essing for real or Protected Mode.

These Protected Mode registers plus some others are used by the operating system
to provide proper address allocation during execution of an active Protected Mode
task.

Figure 1.1 illustrates a typical 80286 central processor unit (CPU) environment.
Here the parallel external bus structure is apparent. The 80286 control of both the
private and public system buses is via bus controllers (typically, an Intel 82288 and
82289 combination). In the IBM AT and PS/2 Model 50 and 60 such a bus struc­
ture exists with a representative architecture as depicted in Figure 1.2. Both these
figures are similar and illustrate the parallel bus structure typical of 80286 systems.
The private system bus contains localized private input/output (110) processing and
buffering such as RS-232C adapters and video adapters, which constitute external
physical entities. These are frequently accessed using direct memory access (DMA)
controllers. The 8259A programmable interrupt controller (PIC) interfaces external
hardware interrupts to the CPU. Both the private and public system buses have a
three-part architecture: a control, address, and data bus subset. Control bus interfaces
are handled by an 82288 bus controller with associated address decode logic (this is

6 The OS/2 Environment Chap. 1

typically implemented using LS138 decoder/demultiplexers) [16,17]. The address
IJO is handled using latches, which hold and strobe address data onto the system
buses in response to enable signals. Finally, data is placed on the data bus using
transceivers (typically, the LS245 transceiver).

PRIVATE
MEMORY

PRIVATEl/O
CONTROLLER

PRIVATE SYSTEM BUS

BUS
CONTROLLER

DIRECT
MEMORY

ACCESS (OMA)
CONTROLLER

80286

LOCAL BUS

PROCESSOR
EXTENSION

BUS
CONTROLLER

PUBLIC SYSTEM BUS

PROCESSING
MODULE

SYSTEM
MEMORY

SYSTEM l/O
CONTROLLER

PROCESSING
MODULE

Figure 1.1 Representative 80286 system environment illustrating local and system buses.

Figure 1.3 illustrates a representative memory and port allocation of address­
ing among public and private spaces. For low memory, a 1-MB partition is illus­
trated from OH to OFFFFFH (here H indicates hexadecimal). This corresponds to the
DOS partition in the IBM microcomputer address space. Local firmware is illustrated
at the top end of the 16-MB physical memory space (OFFFOOOH to OFFFFFFH).
This would be in the OS/2 extended memory area. In the IBM systems, erasable
programmable read-only memory (EPROM) exists between portions of the 640K and
1-MB address area, in what is designated as private system memory in Figure 1.3.
Finally, the bulk of the public system memory resides above 1 MB. In OS/2 imp~e­
mentations, this extended memory exists from 1 MB to 16 MB.

The 80386 uses double-word arithmetic. The eight general registers are 32-bit:
EAX, EBX, ECX, EDX, ESI, EDI, ESP, and EBP. The prefix E indicates that the
familiar 16-bit general registers (AX, BX, ...) have simply been extended to 32 bits.
In fact, the low-order word of each of these eight registers can be treated as the
equivalent 16-bit register with all the reserved name definitions applied to these 16-
bit quantities. (The data registers further subdivide into byte-length register halves
AH, AL, BH, BL,) Clearly, this implies a downward compatibility for running
16-bit microprocessor (8088, 8086, and 80288) code.

The instruction pointer (EIP) and flags register (EFLAGS) have similar down­
ward compatibility features. Finally, there are six segment registers: CS, DS, ES, SS,
FS, and GS. The last two are new and provide for additional independent data
segment access using overrides. These segment registers are each of word length. In
addition to the registers specified, we have the following new system register types
(plus the memory-management registers specified above):

PRIVATE SYSTEM BUS

. . .

......

8259A
INTR I PROGRAMMABLE

INTERRUPT
CONTROLLER

82288 BUS
CONTROLLER

8283183
LATCHES

8286/87
TRANSCEIVERS

82284
CLOCK

GENERATOR

80286
CPU

ADDRESS
DECODE

LOCAL BUS

INTERRUPT LINES (IRO-IRS)

82289 BUS
ARBITER

82288 BUS
CONTROLLER

8283183
LATCHES

8286187
TRANSCEIVERS

Figure 1.2 Expanded view of the 80286 bus environment .

PUBLIC SYSTEM BUS

8 The OS/2 Environment Chap. 1

1. Control registers (four): CRO, CRl, CR2, CR3
2. Debug and test registers (eight): DRO, DRl, DR2, DR3, DR4, DRS, DR6,

DR7

MEMORY ADDRESS
SPARE

LOCAL ERROR

PUBLIC
SYSTEM
MEMORY

PRIVATE
SYSTEM

FFFFFFH
FFFOOOH

100000H

MEMORY OH

PORT ADDRESS
SPARE

PUBLIC
110

FFFFH

t--------11 0 0 H

PRIVATE
1/0

.__ ____ _.o H

Figure 1.3 Representative memory and port allocation among private and public
address spaces.

What does all this mean in terms of OS/2? Basically, the hardware manipula­
tion of addressing under OS/2, and established by the link/locate operation in re­
sponse to programmed instruction sequences, must occur so that no segment viola­
tions take place in system memory. This is the topic of the next two subsections,
where operation is described for a Protected Mode installation. We will observe that
the 80286 registers are the primary vehicle for ensuring Protected Mode isolation of
tasks.

1.1.2 Hardware Operation for Protected Mode

The main system memory of an 80286 system is organized as a sequence of 8-bit
addressable quantities called bytes. The addressing spans the range 0 to 220 (1 MB)
in Real Address Mode and up to 224 (16 MB) in Protected Mode. In Protected Mode
no direct access to physical memory is allowed. The physical address space, for
example, is controlled by 24 address pins from the 80286 chip itself. This dictates
the 16-MB physical limit. Composition of the address space in Protected Mode,
however, indicates a virtual address capability that is much larger. Basically, the
80286 can access a collection of roughly 16,384 linear subspaces or segments each
with a maximum size of 64 KB. This translates to a virtual memory size of 230

bytes or 1 gigabyte (GB). The virtual memory allocation must map to physical
memory for actual operation, using extended storage where needed. The notion of
segmentation as described here allows programs to execute faster and requires less
space, than does nonsegmented bulk linear addressing.

Sec. 1.1 Hardware Considerations 9

How does this protected virtual address mode manage memory? The segment
selector is used. A particular segment is uniquely referenced by its selector, a 16-bit
address with the following form:

3 2 0

Index Tl RPL

Here TI is the table indicator, which references a global space when set or a local
space when zero. The global address space is used for systemwide data and code.
The local address space is for general code and data applications such as user tasks.
The first two selector bits are the requested privilege level (RPL) bits and relate to
protection. This leaves 13 bits, which when coupled with the TI bit allow a segment
address space of 214 segments, as discussed above. We will see the impact of pro­
tection shortly, but it will be useful, briefly, to explore these segment descriptors
further. Note that the descriptor table registers point to tables that provide a com­
plete description of the global address space (GDTR), one or more local address
spaces defined dynamically by the LDTR, and an interrupt address space (IDTR).

Within a descriptor table two main classes are recognized: segment descriptors
and special-purpose control descriptors. Figure 1.4 illustrates a descriptor. They pro­
vide the physical memory base address, segment size, transfer data, and access data.
The special-purpose control descriptor is very similar. There is a global and several
local descriptor tables as alluded to earlier. (It is these tables that are pointed to
using the GDTR and LDTR.)

7

ACCESS RIGHTS BYTE

07

7 INTEL RESERVED

5 Pl DPLJ 1l TPYE l Al BASE (23-16)

3 BASE (15-0)

SjE

15 87

ACCESS RIGHTS BYTE

P -Present
DPL = Descriptor Privilege Level
S • Segment Descriptor
TYPE - Segment Type
A -Accessed

0

6

4

2

0

0

Figure 1.4 80286 segment descriptor.

10 The OS/2 Environment Chap. 1

The 16-bit selector is mapped to a descriptor table entry with its subsequent
24-bit base address. The TI bit determines whether the GOT or a LDT is to be se­
lected. The INDEX field specifies the particular descriptor entry within the chosen
table. To get this descriptor entry the processor simply multiplies the index value by
8 in hardware and adds the result to the descriptor table base address.

63

The segment address translation registers can be depicted as follows:

Visible

16-bit
selector

48 47

Access
rights

40 39

48-Bit Hidden Descriptor Cache

Segment base
address

16 15

Segment size

0

Here the last 16 bits (bits 48-63) comprise the CS, OS, SS, or ES register values.
These bits are the visible portion of the translation register. By loading a segment
selector into one of these registers, the program makes the associated segment one
of its four currently addressable segments. Note that the definition of the segment
base address, the physical address associated with the 16-bit segment selector, must
be correlated with the selector by the system software. It is this correspondence
between the 16-bit selector and the segment base address that permits virtual ad­
dressing to function properly. Both of these addresses, along with the access rights
byte and segment size (the translation register contents), permit the correct mapping
of virtual memory to physical memory by OS/2, for example. It is here, then, that
the algorithms developed in the systems software effect the actual mapping of
memory, and the content of this segment address translation register serves as the
basis for this mapping.

Figure 1.5 illustrates the protection levels permitted by the 80286 RPL selec­
tion. The two bits provide for four levels of protection. In this figure level 0 is the
most trusted and level 3 the least. Privilege level is a protection attribute assigned
to all segments. Privilege checks are made automatically by the CPU hardware. Pro­
grams at level 0 may access data at all other levels, while programs at levels 1-3
may access data only at the same or a less trusted level.

How does OS/2 make use of these levels? Typically, software at level 0 in­
cludes services such as memory management, task isolation, intertask communica­
tions, and 1/0 resource control. Level 1 is designated system services and provides
functions such as file access scheduling, character 1/0, and data communications.
Level 2 corresponds to reserved space for customized applications such as database
managers, spreadsheets, and word processors, as well as background tasks. Finally,
level 3 contains general-purpose user application of the sort written about in the ex­
amples in this book. Privilege applies to tasks and affects three different categories
of descriptors:

Sec. 1.1 Hardware Considerations

1. Main memory segments
2. Gates (used to change code segments)
3. Task state segments

LVL-1

LVL=2

LVL-3

11

Figure 1.5 Protection-level software
allocation and priority, based on level
hierarchy, for the Intel 80286.

Descriptor privilege is assigned when the descriptor is created. We have seen, for
example, how segment descriptors are formed with their access rights byte and RPL
bits controlling protection.

Three kinds of control transfers can occur within a task:

1. Intrasegment transfers
2. Intersegment transfers at the same privilege level
3. Intersegment transfers to different privilege levels

The interlevel transfers must check for access permission and must ensure that a
correct entry address is used. To achieve these control transfers, the gates indicated
earlier must be used.

A gate is a four-word control descriptor used to redirect a control transfer to
a different code segment in the same or a more privileged level or to a different
task. There are four types of gates: call gates, task gates, interrupt gates, and trap
gates. All four gates define a new destination selector (16-bit), and offset (16-bit),
which specifies the physical address to which the transfer is to take place. Call gate
descriptors are established for call and jump instructions in the same manner as a
code segment descriptor. Task gates specify intertask transfers for the initialization

12 The OS/2 Environment Chap. 1

and establishment of child tasks, information exchange, and synchronization. Inter­
rupt gates permit system-level access of low-level hardware-driven interrupt services,
and trap gates transfer control to system exception-handling services.

Finally, task state segments are a special control segment defined uniquely for
each task. They include the definition of the task address space and execution state.
This segment has a special descriptor whose selector is contained in the Task
Register. Each task state segment contains 22 words, including the current general­
purpose register values and the SS and SP values for each current protection-level
stack (there are four such stacks). The descriptor contains the task descriptor privi­
lege level and the usual segment base and limit values. Hence protection mecha­
nisms are extended to intertask control transfers using task state segment descriptors.
Task switching is accomplished by loading the Task Register with the new task
selector, marking the new task's descriptor type as busy, and setting the Task
Switched bit in the Machine Status Word (MSW). This MSW bit signals that the
context of the processor extension (80287, for example) may not belong to the
current task.

So far we have looked at the 80286 hardware for Protected Mode operational
features. These hardware features allow system software such as OS/2 to develop
strong protection mechanisms in multitasking environments. Without this protection
implementation of the software would necessarily be much more difficult to develop
and software protection mechanisms would be required rather than a reliance on
register bit monitoring. The room for error in such systems software becomes sub­
stantially greater as application complexity increases.

1.1.3 Software Operation for Protected Mode

The flag word for the 80286 is

l 15 l 14 I 13 l 12 l 11 I 10 I 9 8 7 6

NT IOPL OF DF IF TF SF ZF

where

5 4 3

AF

CF Carry Flag (set on high-order bit carry or borrow)

2 0

PF CF

PF Parity Flag (set if low-order byte contains an even number of l's)

AF Auxiliary Flag (set on carry or borrow to low-order nibble)

ZF Zero Flag (set if result 0)

SF Sign Flag (0 if positive or 1 if negative: high-order bit of result)

TF Trap Flag (single-step mode)

IF Interrupt Flag (causes CPU to transfer control to a vector location)

Sec. 1.1 Hardware Considerations 13

DF Direction Flag (causes string instructions to auto-decrement when
set)

OF Overflow Flag (set if result is too large)

NT Nested Task Flag (when set causes a return to the calling task for
IRET)

IOPL IO Privilege Level (specifies current task privilege level)

The Machine Status World (MSW) has the following format:

3 2 0

Used by 80386 TS EM MP PE

where

PE Protected Enable (places 80286 into protected mode)
MP Monitor Processor (allows WAIT states to be introduced for the

80287)

EM Emulate Processor (allows the 80287 to be emulated)

TS Task Switched (allows test to determine if 80287 context belongs to
current task)

It is clear that modifications to the flag word (IOPL and NT) permit added
software checking for Protected Mode status based on hardware. The MSW provides
a software mechanism for checking coprocessor status with regard to the current
80286 program context. In addition to these changes, a number of instructions have
been added to the basic Real Address Mode set which reflect privileged and trusted
operation. Instructions such as the following fall in this category of enhanced soft­
ware instruction capability to support Protected Mode.

SMSW Store MSW

LIDT Load interrupt descriptor table register

LMSW Load MSW

CLTS Clear task switch flag

LGDT Load global descriptor table register

LLDT Load local descriptor table register

LTR Load task register

SGDT Store global descriptor table register

SLDT Store local descriptor table register

SIDT Store interrupt descriptor table register

14 The OS/2 Environment Chap. 1

These instructions are generally available only to system software. Once an operat­
ing system is established (such as OS/2) for the system, privilege-level access must
be regulated within the constraints of this system. The user, for example, cannot
arbitrarily insert code at privilege level 0. During software implementation under
OS/2, privilege-level access is regulated by the OS/2 system software and API serv­
ice calls for normal application development. This sort of application development
is the type treated in this book.

1.2 A BRIEF LOOK AT OPERATING SYSTEM/2

Figure 1.6 presents a simplified OS/2 architecture. This figure reflects the component
parts needed to define operating systems software completely [18-21] and illustrates
both the multitasking and memory management functions. As with most architec­
tures, Figure 1.6 is a mix between static entities, such as loaders, and dynamic
activities, such as intertask communications. The intent of the figure is to portray
hierarchical relationships [22-25] for OS/2.

Before we examine the major individual features of the IBM OS/2 implemen­
tation, it will be useful briefly to discuss Figure 1.6. This architecture attaches equal
importance to the 80286 (or 80386) hardware protection implementation and OS/2
itself. Without the hardware mechanisms OS/2 would be a much bulkier and more
sluggish operating system. Hence the Intel chip architecture deserves a substantial
amount of credit for yielding an optimized multitasking executive. The dominant
mechanism for installing multitask protection is the definition of privilege based on
hardware monitoring and checking. This mechanism is put in place in the software
during system initialization. The loader and kernel act at level 0 to define the
baseline operating system. Device service is handled through the device drivers,
which consist of three parts:

1. An initialization routine

2. A strategy routine
3. An interrupt routine

The initialization routine initializes the device by setting the device registers with
proper data to establish mode of operation, and this routine also establishes any data
structures (buffers and parameter data) needed by the device during operation. The
strategy routine receives 1/0 requests from the kernel and initiates I/0. The Interrupt
Service Routine (ISR) is the only OS/2 program privileged to accept and process
hardware interrupts (signals on IRO-IR7 of the two 8259A PICs in the IBM PC AT,
for example). The device service routines call DevH!p functions in order that the
ISR can access application buffers from the kernel. 1/0 Protection Level checking is
continuously monitored to validate what buffers may be accessed by the drivers.
Other API functions are used to ensure proper physical memory segmentation, for
example, as is the case with screen buffer access.

....
(II

l

OS/2
lnltallzatlon

_L
Protected
Loader

I
Kernel

(LevelO)

OS/2

Device
Service
And l/O

l

IOPL

I
Device
Drivers

IBM
System

80286
Hardware
Protection

Implementation

OS/2 User

Executive Interface

File
Data Task Resident System

Managemant Manager Process Managemant

I I I I
Permission Extended

And File Primary
Protection Scheduler

Management Thread
Validation

l l l l
Protected Segment Intertask Child
Address Sharing Communications Processes

Allocation

l
Task

Termination

I

[Current] Task

Figure 1.6 IBM OS/2 architecture .

VIO/ PM
Keyboard Executive

I l
Command Message

Parser Processing

l I
Standard

Mouse
Text Display Interface

Interface

l I
Application

Graphical
Display

Loader Functions

-[l
Mouse Application

Interface Loader

16 The 08/2 Environment Chap. 1

The OS/2 executive is the main processing element of the architecture. This
routine contains the core loop, which is the infinite loop sequence representing the
idle system state and which may only be affected by a hardware interrupt such as
the striking of a key on the keyboard. The executive has four components: file
system management, data management, task management, and data segment defini­
tion. All objects in the system represent named entities and are subject to file
management rules. File permission and protection validation is conducted at a rela­
tively high level in software. At a lower level, the protected address allocation
requires privilege-level authority.

Data management is an extension of file system management. This component
of the executive ensures that segmentation violations do not occur because proper
allocation is implemented. It manages extended files (disk and diskette files, for
example). It handles the movement of data in a virtual memory context where the
amount of virtual memory required for data, for example, can exceed the total
available physical memory in the system. (This is also true for other memory types,
such as program memory.) Segment sharing among tasks and other interprocess
communication activities involving the access of data segments are managed by this
component.

The task manager is the primary dynamic activity element during program
execution. We use the terms thread and process assuming some familiarity with
these abstract concepts. Briefly, a thread provides program instructions and data in
an execution environment that consists of registers, stacks, and CPU dynamics.
Threads do not have system resources allocated to them, but may call or access such
resources under the umbrella of a process. Here a process is a collection of threads
and system resources allocated to a program. OS/2 task management includes sched­
uling with a preemptive time-slicing dispatcher. This type of dispatcher is operated
on a polling model concept where each thread has a fixed period of time during
which it may execute (the time slice) before control is taken away (preempted) and
the next thread rolled in and allowed to execute. The process continues in wrap­
around fashion, and each time slice executes for an approximately equal length of
time (at a given privilege level), which is dynamically allocated based on the
number of threads active in the system. Task initialization is established by the task
manager at level 0 and involves service calls of the type DosCreateThread or
DosExecPgm.

Intertask communications typically involve semaphores, pipes, and queues.
Also, shared memory segments can be used to pass data among threads and pro­
cesses. A semaphore is a data structure that OS/2 passes to only one thread at a
time. This provides for a rudimentary serialization when two threads, for example,
need to access a common data area. OS/2 implements two kinds of semaphores: sys­
tem and RAM semaphores. System semaphores are used for communication between
processes and are implemented by DosCreateSem, for example. RAM semaphores,
on the other hand, are used between threads in a single process.

Pipes are buffer areas created by DosMakePipe and are accessed using pipe

Sec. 1.2 A Brief Look at Operating System/2 17

read and write handles in much the same fashion that conventional file handles are
used to access files. To use a pipe to communicate with another process, the pipe is
first created and then one of its two handles (read or write) is passed to the second
process using a common data structure. In accessing buffers via pipes the data is
treated as a continuous stream. An alternative interprocess communications tool is
the queue generated by the DosCreateQueue service. Here the data is viewed as an
individual collection of finite-length elements that may be separately addressed or
accessed. The major feature of the queue is the variability with which data elements
may be accessed.

Termination of a communication or task is typically initiated by API calls of
the type DosCloseQueue, DosCloseSem, or DosExit. Finally, the task manager is
responsible for maintaining all thread parameters on the local thread stack during
roll-out by the dispatcher. When a task has been preempted it must maintain point­
ers to entry points in the code and associated data segments that reflect its current
execution position. This is what the task state segment contains, and the task
manager is responsible for establishing and maintaining this segment. Data segments
must, of course, be defined at the proper privilege level and accessed only with the
proper privilege authority. This is also a function of the OS/2 executive.

The user interface represents OS/2s interaction with the outside world. Two
visual displays are possible: the VIO or full-screen command mode and the Pres~n­
tation Manager (PM), a windowed mode where visual data from multiple tasks can
be presented. The VIO has a familiar DOS-like screen. The PM is a dynamic dis­
play environment capable of simultaneously illustrating multiple program execution
through overlapping windows of the type found in the Microsoft Windows program
and similar to the Apple Macintosh display. The PM coordinates activity internally
by exchanging messages among tasks and the PM executive. A preferred interface
technique is the mouse, which moves a cursor around the screen. When the cursor
is placed on a system or menu operation and the mouse single- or double-clicked,
the command is executed. This requires an extensive command interpreter based on
messages returned to the PM executive.

1.2.1 Protected Mode

In the discussion so far we have alluded to the API service routines. These are the
topics of the next section, but it must be emphasized that they are a consequence of
the Protected Mode implementation. Before examining the API, however, it is useful
to look briefly at some of the Protected Mode operational considerations.

When Real Address Mode is initialized and executes, the boot record causes
the code segment register eventually to load with FOOO and the instruction pointer
to load with FFFO. This address points to a private memory segment that provides
64K bytes of code space for initialization code without changing CS. During initiali­
zation of Protected Mode, several registers must also be initialized: Both the GDT
and IDT base registers must point to a valid global descriptor table and interrupt

18 The OS/2 Environment Chap. 1

descriptor table, respectively. The 80286 next executes the LMSW instruction to set
the protected enable (PE) bit and must follow this with an intrasegment JMP
(unconditional jump) instruction to clear its CPU instruction queue of instructions
decoded in Real Address Mode. To initialize the 80286 registers for the initial
Protected Mode state the JMP instruction executes with a selector referring to the
initial task state segment address used in the system. This loads the task register,
LDTR, segment registers, and remaining general registers with the initial Protected
Mode parameter data. The TR should point at a valid task state segment.

We have seen a general description of Protected Mode features. The 80286
mechanisms to protect critical instructions (that affect CPU execution states such as
HLT, halt) have three attributes:

1. They involve restricted usage of segments, with the only segments available
for use by applications defined by the LDT and GDT.

2. They involve restricted access to segments via privilege.
3. They include privileged instructions or operations that may be executed only

at privilege levels determined by the current privilege level and 1/0 Privilege
Level (IOPL).

These mechanisms yield checks that are performed for all instructions and include
segment load checks, operand reference checks, and privileged instruction checks.
Operand reference errors would include writes to the code segment or segment limit
exceeded, for example. Finally, an example of a privileged instruction exception or
error would be the execution of an IN or OUT (port input or output instruction,
respectively) instruction when the current protection level for the executing task is
less trusted than the required IOPL.

Four types of control transfer can occur when a selector is loaded into CS:
intersegment with the same privilege level, intersegment to the same or higher-privi­
lege-level interrupt, intersegment to a lower privilege level, and a task switch. We
have already briefly considered these transfers, but what are the privilege rules
associated with these transfers? The rules are as follows:

1. JMP or CALL direct to a code segment can only be to a segment with de­
scriptor privilege level greater than or equal in privilege to the current privi­
lege level.

2. Interrupts within a task or calls that may change privilege levels can only
transfer control through a gate at the same or a less privileged level (than the
current privilege level) to a code segment at the same or more privileged level
(than the current privilege level).

3. Return instructions that do not switch tasks can only return to a code segment
with the same or less trust.

4. A task switch can be performed by a call, jump, or interrupt that references a
task gate or task state segment of the same or less trust.

Sec. 1.2 A Brief Look at Operating System/2 19

Any violation of these descriptor privilege-level rules will result in exception 13,
indicating a segmentation violation.

A task has a current privilege level (CPL) defined by the lower two bits of the
CS register (in the selector), as we have seen. CPL can change only when CS
changes, using a control transfer through gate descriptors to a new code segment.
Tasks begin executing at the CPL specified by the task switch's resulting code
segment. Tasks executing at level 0 can access all data segments defined in both the
GDT and the task's LDT. Any control transfer that changes CPL within a task
requires a change of stacks. Initial values of SS and SP for privilege levels 0, 1, and
2 are maintained in the task state segment. The values for level 3 are de­
fined by the application and affect such transfers as establishing a new thread using
DosCreateThread.

These brief remarks about the Protected Mode are intended to put the hard­
ware implementation in perspective. We have seen how privilege-level monitoring,
for example, serves as a basis for segment access during execution. The 80286
hardware features include rules and rule checking to maintain privilege integrity, and
this preserves proper task operation in a multitasking environment.

Generally speaking, data such as the GDT, initial task state segment, and
system services will be located in erasable programmable read-only memory as part
of the system build. These are all loaded during the bootstrap process and precede
the actual OS/2 executive load and initialization. The foregoing discussion presents
the salient 80286 features applicable to a consideration of how OS/2 avoids segment
violations. This is the cornerstone for multitasking and memory management. The
80286 Protected Mode attributes are summarized briefly in Table 1.1.

1.2.2 API Services

The Application Program Interface services have been mentioned a number of times
so far in the discussion, and Table 1.2 lists these functions (for Version 1.0), indi­
cating whether or not they are conventional API (all the OS/2 services comprise the
API, or a subset of the API, the DOS family API, which corresponds roughly to the
BIOS and DOS services and runs under the DOS compatibility box as well as the
Protected Mode).

The API services are based on the CALL instruction rather than the INT
instruction. These API functions act in similar fashion to conventional higher-level­
language (HLL) routines with their individual stacks and local parameter spaces. For
OS/2 programs written in assembly language, the API service request can be cum­
bersome. On the other hand, these OS/2 service implementations add an elegance to
the resulting code that with just a few exceptions enhances modular development. In
a higher-level-language context the API services improve modularity and structure.
We will see examples of the use of these services in an assembly language and C
context throughout the remainder of this book. Basically, however, the API is most
desirable in a HLL environment.

20 The 08/2 Environment Chap. 1

TABLE 1.1 80286 PROTECTED MODE FEATURES

Feature Discussion

1/0 protection To help manage 1/0 activities such as setting/clearing interrupts
and port read/writes, the 80286 implements an 1/0 Protection
Level (IOPL). This flag defines the minimum protection level
at which a program must execute to perform 1/0. This
provides operating system control of the hardware.

Privilege levels The 80286 provides for four levels of protection:
1. PLO (Privilege 0): Most trusted; can access data at levels

0, 1, 2, and 3.
2. PLl (Privilege 1): Can access data at levels 1, 2, and 3.
3. PL2 (Privilege 2): Can access data at levels 2 and 3.
4. PL3 (Privilege 3): Least trusted; can access data at 3.

Address protection Through use of LDTs each application program is allocated a
private memory space. No other tasks are allowed to enter or
use a given task's LDT area. Any common memory elements
must be shared using the GDT.

Memory attributes These attributes are specified in the descriptor table access byte.
They include such features as read/write access and descriptor
privilege level as well as a flag to indicate execution only
(versus addresses associated with variable allocation).

TABLE 1.2 APPLICATION PROGRAMMING INTERFACE ROUTINES

Name API FAPI Description

Tasking
DosCreateThread x Creates asynchronous thread
DosCWait x Places current thread in wait state
DosEnterCritSec x Disables thread switching
DosExecPgm x Allows another program to

execute a child
DosExit x Issued at completion of execution
DosExitCritSec x Reenables thread switching
DosExitList x Maintains an exit list for routines
DosGetlnfoSeg x Returns the address of a data

segment
DosGetPrty x Gets the priority of the current

thread
DosKilJProcess x Terminates a process
DosPtrace x Interfaces to kernel for debugging
DosSetPrty x Changes priority of child process

Asynchronous Notification

DosHoldSignal x Changes signal processing

Sec. 1.2 A Brief Look at Operating System/2 21

TABLE 1.2 (Continued)

Name API FAPI Description

DosSetSigHandler x Notifies OS/2 of a handler for a
signal

Interprocess Communication

DosCloseQueue x Closes a queue
DosCloseSem x Closes a semaphore
DosCreateQueue x Creates a queue
DosCreateSem x Creates a semaphore
DosF!agProcess x Allows a process to set an

"event" flag
DosMakePipe x Creates a pipe
DosMaxSem Wait x Blocks until semaphore clears
DosOpenQueue x Opens queue
DosOpenSem x Opens semaphore
DosPeekQueue x Examines element in queue
DosPurgeQueue x Purges a queue
DosQueryQueue x Finds the size of a queue
DosReadQueue x Reads an element from a queue
DosResumeThread x Restarts a thread
DosSemClear x Clears a semaphore
DosSemRequest x Obtains a semaphore
DosSemSet x Sets a semaphore
DosSemSetWait x Blocks a thread until a semaphore
DosSemWait x Waits for a semaphore to clear
DosSuspendThread x Temporarily suspends thread

execution
Dos WriteQueue x Adds an element to a queue

Timer

DosGetDateTime x Gets the current date/time
DosSetDateTime x Sets the date/time
DosSleep x Suspends the current thread

Memory Management

DosAllocSeg x Allocates a segment of memory
DosAllocShrSeg x Allocates a shared segment
DosAllocHuge x Allocates multiple memory

segments
DosCreateCSAlias x Creates a code segment descriptor
DosFreeSeg x Reallocates a memory segment
DosGetHugeShift x Returns a shift count for deriving

selectors

22 The OS/2 Environment Chap. 1

TABLE 1.2 (Continued)

Name API FAPI Description

DosGetShrSeg x Accesses shared memory
DosGetSeg x Accesses shared memory
DosGiveSeg x Yields shared access to another

process
DosLockSeg x Locks a discardable segment
DosMemAvail x Returns size of largest free block
DosReallocHuge x Changes huge memory size
DosReallocSeg x Changes segment size
DosSubAlloc x Allocates from a previous

allocated segment
DosSubFree x Frees from a previous allocated

memory
DosSubSet x Initializes a segment
DosUnlockSeg x Unlocks a discardable segment

Dynamic Linking

DosFreeModule x Frees a dynamic link module
DosGetModHandle x Returns handle for dynamic link

module
DosGetModName x Returns pathname for dynamic

link module
DosGetProcAddr x Returns FAR procedure address
DosLoadModule x Loads a dynamic link module
DosGetMachineMode x Returns current CPU mode
BadDynLink x Error on dynamic link

Device Monitors

DosMonClose x Terminates character device
monitoring

DosMonOpen x Accesses a character device
DosMonRead x Moves data
DosMonReg x Establishes I/0 buffer
DosMonWrite x Writes to the monitor's buffer

Session Management

DosStartSession x Starts a session
DosStopSession x Stops .a session
DosSelectSession x Allows a parent to switch to a

child
DosSetSession x Sets child session status

Sec. 1.2 A Brief Look at Operating System/2 23

TABLE 1.2 (Continued)

Name API FAPI Description

Device 1/0 Services

DosBeep x Beeps speaker
DosCLIAccess x Requests privilege for enabling/

disabling interrupts
DosDevConfig x Gets information about attached

devices
DosDevIOCtL x Sets up control functions for a

specified device
DosGetPID x Returns current process ID
DosPFSActivate x Specifies the code page and foot

to make active
DosPFSCloseUser x Indicates the spool file is closed
DosPFSinit x Allows initialization of the code

page and font
DosPFSQuery Act x Queries the active code page and

font
DosPFSVerify Font x Indicates validity for the

specified code page and font
DosPhysicalDisk x Obtains disk information
DosPortAccess x Requests or releases port 1/0

privilege
DosSendSignal x Sends a Ctl/c or Ctl-Break to

process
KbdDeRegister x Deregisters a keyboard
KbdCharln x Reads a character
KbdClose x Ends the existing logical keyboard
KbdFlushBuffer x Clears the keyboard buffer
KbdFreeFocus x Frees the logical to physical

keyboard bond
KbdGetCp x Allows access to the current

code page
KbdGetFocus x Binds the logical to physical

keyboard
KbdGetStatus x Gets the state of the keyboard
KbdOpen x Creates a new logical keyboard
KbdPeek x Returns the last character without

clearing the keyboard buffer
KbdRegister x Registers a keyboard
KbdSetCp x Sets the code page
KbdSetCustXt x Installs a code page and calling

handle

24 The OS/2 Environment Chap. 1

TABLE 1.2 (Continued)

Name API FAPI Description

KbdSetFgnd x Raises the priority of the
foreground keyboard's thread

KbdSetStatus x Sets the keyboard characteristics
KbdStringln x Reads a character string
KbdSynch x Synchronizes access for a

keyboard to device driver
KbdXlate x Translates scan codes to ASCII
Mou Close x Closes the mouse driver
MouDeRegister x Deregisters a mouse device
MouDrawPtr x Opens a mouse pointer image to

the mouse
MouFlushQue x Empties the mouse queue
MouGetDevStatus x Returns status flags for the mouse

driver
MouGetEventMask x Returns event mask for mouse
MouGetNumButtons x Returns number mouse buttons

supported
MouGetNumMickeys x Returns number of mouse

movement units per centimeter
MouGetNumQueEl x Returns status for mouse device

drive event queue
MouGetPtrPos x Gets row and column position of

mouse
MouGetPtrShape x Gets the pointer shape
MouGetScaleFact x Gets the scaling factors for the

mouse
MoulnitReal x Initializes the DOS mode mouse
Mou Open x Opens the mouse device
MouReadEventQue x Reads an event from the mouse

device event queue
MouRegister x Registers a mouse
MouRemoves Ptr x Clears a pointer area from mouse

use
MouSetDevStatus x Sets mouse status
MouSetEventMask x Assigns a new event mask
MouSetPtrPos x Resets the row and column

position for the mouse
MouSetPtrShape x Sets the mouse shape
MouSetScaleFact x Assigns the mouse a new pair of

scaling factors
MouSynch x Synchronizes the mouse
VioDeRegister x Deregisters a video subsystem
VioEndPopUp x Closes a temporary screen

Sec. 1.2 A Brief Look at Operating System/2 25

TABLE 1.2 (Continued)

Name API PAPI Description

VioGetAnsi x Returns the current ANSI
ON/OFF state

VioGetBuf x Returns the address of the logical
video buffer

VioGetCp x Allows a query of the code page
VioGetConfig x Returns the display configuration
VioGetCurPos x Returns the cursor position
VioGetCurType x Returns the cursor type
VioGetFont x Returns font
VioGetMode x Returns display mode
VioGetPhysBuf x Gets addressability to physical

display buffer
VioGetState x Gets display state
VioModeUndo x Changes mode
VioModeWait x Allows notification when display

must be restored
VioPopUp x Allocates a temporary screen
VioPrtSc x Copies the screen to printer
VioPrtScToggle x Called when Ctrd-PrtSc is entered
VioReadCellStr x Reads character-attribute pairs

(cells) from screen
VioReadCharStr x Reads a character string from the

display
VioRegister x Registers an Alternate Video

subsystem
VioSaveRedrawUndo x Cancels a VioSavRedrawWait
VioSavRedrawWait x Notifies a redraw must be

performed
VioScrLock x Locks the physical display
VioScrollDn x Scrolls down
VioScrollUp x Scrolls up
VioScrollLf x Scrolls left
VioScrollRt x Scrolls right
VioScrUnLock x Unlocks the physical display
VioSetAnsi x Activates or deactivates ANSI

support
VioSetCp x Sets the code page
VioSetCurPos x Sets the cursor position
VioSetCurType x Sets the cursor type
VioSetFont x Downloads a display font
VioSetMode x Sets display mode
VioSetState x Sets the display state

26 The OS/2 Environment Chap. 1

TABLE 1.2 (Continued)

Name API FAPI Description

VioShowBuf x Updates the physical display with
the logical

Vio WrtCellStr x Writes a string of character-
attribute cells to display

Vio WrtCharStr x Writes a character string to the
display

Vio WrtCharStrAtt x Writes a repeated attribute string
to the display

VioWrtNAtt x Writes an attribute M times to
the display

VioWrtNCell x Writes a cell M times to the
display

VioWrtNChar x Writes a character M times to
the display

VioWrtTTY x Writes a character string to the
display

File 110

DosBufReset x Flushes a requesting process
cache buffer

DosChDir x Defines the current directory
DosChgFilePtr x Moves the read/write pointer
Dos Close x Closes a file handle
DosDelete x Removes a directory entry
DosDupHandle x Returns a new file handle for an

open file
DosFileLocks x Locks and unlocks a range in an

open file
DosFindClose x Closes the association between

directory handles and search
functions

DosFindFirst x Finds the first set of names that
match a directory specification

DosFindNext x Locates the next set of matching
directory entries

DosMkDir x Creates specifies directory
DosMove x Moves a file
DosNewSize x Changes a file size
DosOpen x Opens a file
DosQCurDir x Gets full path name for current

directory
DosQCurDisk x Gets the current default drive
DosQFHandState x Queries the state of the specified

files

Sec. 1.2 A Brief Look at Operating System/2 27

TABLE 1.2 (Continued)

Name API FAPI Description

DosQFilelnfo x Returns information for a specific
file

DosQFslnfo x Queries information from a file
system device

DosQHandType x Determines whether a handle
references file/device

DosQVerify x Returns the value of the verify
flag

DosRead x Reads from a file to a buffer
DosReadAsync x Transfers from a file to a buffer,

asynchronously
DosRunDir x Removes a subdirectory
DosScanEnv x Searches an environment for a

value
DosSearchPath x Searches a path for a filename
DosSelectDisk x Specifies the default drive
DosSetFHandState x Sets the state of a file
DosSetFilelnfo x Specifies information for a file
DosSetFileMode x Changes the attributes of a file
DosSetFslnfo x Specifies information for a file

system device
DosSetMaxFH x Defines a maximum number of

file handles
DosSet Verify x Sets a verify switch
Dos Write x Transfers from a buffer to a file
DosWriteAsync x Transfers from a buffer to a file,

asynchronously

Errors and Exceptions

DosErrClass x Returns error code options
Dos Error x Allows the disabling or user

notification on errors
DosSetVac x Allows address registration for

machine exceptions

Messages

DosGetMessage x Retrieves a message from a
message file

DoslnsMessage x Inserts text into message body
DosPutMessage x Outputs a message

Trace/Program Startup

DosGetEnv x Returns a pointer to the
environment string

28

TABLE 1.2 (Concluded)

Name

DosGetVersion

Code Page Support

DosGetCp
DosSetCp
DosSetProcCp

Country Support

DosCaseMap

DosGetCollate
DosGetCtry Info
DosGetDBCSEv

API FAPI

x

x
x

x

x

x
x
x

The OS/2 Environment Chap. 1

Description

Returns the OS/2 version number

Gets the current code page
Sets the current code page
Sets the current code page

Case maps country codes to a
binary string

Obtains country information
Obtains country information
Obtains country environment

vector

Most microcomputer system software involves intersegment references between
segments contained in the program file obtained from the linker, the .EXE file in
DOS. This reference mechanism is referred to as static linking because it is imple­
mented prior to run-time loading. Loading merely brings the segments into mem­
ory and modifies fix-up points to reflect the correct intersegment references.

OS/2 allows the loader (not the linker) to reference segments included in spe­
cial dynamic-link libraries (DLL). The entire APT is based on DLL programming.
How does a dynamic-link reference function? Basically, any program can reference
DLL routines by indicating that they are externally defined (using the EXTRN
pseudo-op, for example, in an assembler program). At link time the system matches
external references with other object modules (.OBJ files) and libraries (.LIB files)
specified. Since the DLL routines are an .EXE file and suitable for run-time load­
ing, they do not fall in the .OBJ or .LIB category. A new type of library file is
required, the dynamic-link definition library file. This file simply satisfies the exter­
nal reference by indicating to the loader the location of the DLL routine involved.
At run time the loader then adds the DLL code from storage to the executable
module.

The API call interface employs dynamic linking. The major advantages to this
approach are that:

1. The API code can easily be modified at the system level
2. The API call can be satisfied with in-line code instead of the DLL code if

desired by proper loading
3. The API can include some services not essential to kernel-level privilege, and

these services can be implemented with less protection
4. The API call is direct, not via vector table routing

5. The API library can easily be expanded

Sec. 1.2 A Brief Look at Operating System/2 29

In Chapter 2 we begin to develop the programming techniques needed to access
properly the services outlined in Table 1.2.

1.2.3 Memory Management

OS/2 provides a significant memory management capability by using the hardware
features of the 80286, together with its system architecture. OS/2 provides the capa­
bility to move segments around and free memory in response to DLL requirements.
Also, using the P bit of the descriptor, OS/2 can determine when a referenced
segment is needed and dynamically roll these segments in or out of memory from
extended storage, in response to program execution. Such segment swapping is the
basis for allowing large-scale access to the virtual address space in a given physi­
cal memory implementation. Provision exists to:

1. Create or close new segments
2. Create or close huge segments (greater than 64 KB)
3. Suballocate segments

This corresponds to the demand loading philosophy, which OS/2 supports, and
allows dynamic reallocation and subdivision of memory in response to changing
requirements.

1.2.4 Multitasking

Just as memory management has been addressed earlier in the chapter, multitasking
has been covered in Sections 1.1 and 1.2.1. We have mentioned the notion of
threads (a dispatchable unit), processes (a collection of threads and system re­
sources), and a session is a collection of processes run in a virtual context. Under
OS/2, for example, a given element of program code comprises a thread's executable
context. This may run as multiple instances in which multiple copies of the thread
are executed as individual tasks, each task running the same code. Based on this
interpretation the meaning of an instance is clear: an executing entity dynamically
different from all others.

The reentrant nature of OS/2 threads requires that if multiple threads access the
same data block, the threads must synchronize access to this data. This synchroni­
zation can be accomplished using a number of OS/2 features already discussed
(semaphores, queues, pipes, flags, and shared memory). Interprocess communication
requires the use of these facilities, and threads desiring to access such common data
blocks must serialize their access. In general, when no common access between
processes is required, OS/2 will asynchronously execute the processes in a multi­
tasking situation.

A simple example of process synchronization is presented in Chapter 2, where
a common data area (shared segment) is established using DosAllocShrSeg and the
first few bytes are used to establish a handshake. The creating process sets the flag
byte to zero and turns on the child process, which also has access to the segment.
Once the child process completes its generation of data (to be used by the parent),
it sets the flag to 1. The parent, sensing a 1, then accesses the segment.

30 The OS/2 Environment Chap. 1

Semaphores, pipes, and queues have much the same functional behavior ex­
cept that they represent tools specifically designed for interprocess exchanges. These
OS/2 objects represent a formal extension of interprocess communications (compared
with the shared memory flag above, for example). DosSetSigHandler and
DosFlagProcess are examples of formal flag implementation services. We examine
those resources in later chapters.

Processes are created with the API service DosExecPgrm, as we shall see in
Chapter 2. They are hierarchical in that the creating process serves as the parent,
with the created process the child. The API DosKillProcess can be used to terminate
a child process. At creation a process can be established asynchronously, during
which the parent continues to execute in normal time-slice fashion, or synchro­
nously, where the parent is suspended until the child completes execution. When a
thread is created it assumes the priority level of its creator. Using DosSleep a thread
may stop execution for a fixed period. During this period the thread is not allowed
to access system resources.

We have considered dynamic linking, in which a DLL is created and an asso­
ciated definition file containing pointers to the DLL entries. At run time the defini­
tion file has already been linked with the main calling routine, so the loader simply
brings the DLL into memory and completes its entry-point fix up. A second type of
dynamic linking exists called run-time dynamic linking. In the latter procedure the
API DosLoadModule can actually be used to load a DLL after execution begins.
The difference between run-time dynamic linking and load-time dynamic linking is
that loading the DLLs and entry point fix-ups can occur after execution begins in
the former if needed, whereas they must occur during loading in the latter.

Finally, we look briefly at input and output (1/0) in the privileged multitask­
ing environment. 1/0 occurs from level 2, whereas applications execute from
level 3; hence OS/2 must build a call gate for access to segments that accomplish
1/0- 1/0-protected segments (IOPS). Such segments are created by the loader, and
typically, API calls such as DosOpen or DosClose establish generation of an IOPS
(see Table 1.2).

1.2.5 Version 1.0 and 1.1 Differences

Earlier we saw the API functions described (Table 1.2). In the IBM OS/2 Standard
Edition 1.0 these functions comprised the bulk of the services afforded by OS/2 and
were intended for use by programmers desiring to access these services. The Toolkit
routines (reference 7) provide a collection of include files (for both C and assem­
bler) that make use of the API services relatively easy.

With the development of Standard Edition 1.1 (aside from some relatively
minor enhancements) the addition of the Presentation Manager (PM) graphical inter­
face, and its associated 300 plus function library, is the major improvement over
Version 1.0. Essentially, OS/2 under Version 1.0 employs a DOS-like full-screen
command mode for the user interface. This display mode is capable of addressing
only one screen at a time. Under the PM a Windows-like interface is presented and
each executing context can be visualized simultaneously as part of a sequence of
windows occupying the screen.

Sec. 1.3 The OS/2 Presentation Manager 31

It is programming of the OS/2 PM that constitutes the major enhancement of
Version 1.1. This programming employs techniques similar to those outlined in the
Windows Software Development Kit (SDK) [26-28] for development of Windows
programs.

1.3 THE OS/2 PRESENTATION MANAGER

It is worthwhile to look briefly at the Presentation Manager (PM) to get a feeling for
how this type of interface is implemented. The PM runs as an executive subset
under OS/2. IBM has developed the Systems Application Architecture (SAA) and
the PM implements the Common Programming Interface (CPI) component of SAA,
which makes portability to other SAA-supported environments (such as VM and
MVS on the System/370and Operating System/400on the Application System/400)
relatively straightforward.

Communications and network-intensive applications are not generally amenable
to the SAA without additional software support. The Extended Edition Version 1.1,
for example, is intended for these more uniquely hardware-specific applications.
Examples include airline reservation systems, bank transaction processing, some
large-scale process control applications, real-time processing, and communications
front-end (physical layer) processing.

The PM interacts with the OS/2 user via a graphical user interface [30-35]. By
graphical user interface we mean the screen appearance when the PM is invoked.
This display is illustrated in Figure 1.7 with a typical pulldown menu. The maxi­
mize/minimize buttons can be used to reduce the contents of the client area to an
icon. This icon can be restored using the mouse. The client area contains the visible
portion of the display context, which presents the active window interface. It is here
that the executing program displays its particular graphical context. The PM allows

System Menu Icon

Action Bar

Pull Down

Title Bar

Window Title

Horizontal Scroll Bar

Figure 1.7 The Presentation Manager standard window.

Maximize/Minimize/
Restore Buttons

Vertical Scroll Bar

32 The OS/2 Environment Chap. 1

the client area to be subdivided into tiled (windows adjacent to each other) or
overlapped (windows lying on top of each other with varying offsets) windows. This
facilitates a partial display of the contents of several windows simultaneously.

In addition to the features illustrated in Figure 1.7, the programmer can call up
modal and modaless dialog boxes and message boxes. These can be used to achieve
I/0 in the PM context. A modal dialog box retains control of the execution until it
is destroyed (usually by clicking the mouse over a termination panel). A modaless
dialog box allows the PM to permit windows in other applications to be activated
after it has been created. A message box is a predefined dialog window available to
all applications for displaying text and receiving user 1/0.

The PM has a strong graphics capability (as differentiated from graphical
interface) with which computer-generated graphics may be displayed in the client
area. This Graphics Program Interface (GPI) employs API calls beginning with Gpi.
The PM also has a clipboard that can be used to hold intermediate data and re­
sources (such as metafiles and bitmaps). A metafile defines the contents of a win­
dowed picture so that it can be used by other applications. These metafiles are
created using GPI calls and conform to the Mixed Object Document Content Archi­
tecture (MODCA) interchange standard. A bitmap, on the other hand, is a represen­
tation in memory of data displayed on an all-points-addressable basis and requires
that the object in question be capable of being specified in this mode.

Finally, the programming for the interface itself employs a number of new
library elements. The PM executive is a dynamic program that is constantly access­
ing each application context for changes and conversing with the application via a
stream of messages. When an application executes various window functions, for
example, the function causes specific messages to be sent to the PM executive.
These are then interpreted and the executive generates a response.

The general PM program flow of activity is illustrated in Figure 1.8, where
termination of the window is accomplished by the executive in response to a
WM_QUIT message. This flowchart shows the setup code as distinct from the
message-processing loop, as it is. C is the language of choice for programming the
PM executive.

Conventional C programs have a basic template that appears as

Preprocessor
main()

{

functionl()
}

}

functionN ()
{

{

Sec. 1.3 The OS/2 Presentation Manager

BEGIN

INITIALIZE
WINDOW

NORMAL
SETUP

GET
MESSAGE

TRANSLATE
MESSAGE

SEND TO
WINDOW

PROCESS
WINDOW

y

TERMINATE
WINDOW

EXIT

33

Figure 1.8 Dynamic picture of a
Windows application, similar to the PM
implementation.

Each function is callable internal to either main ()or another (group of) function(s).
A simple PM program with one window might have a template of the following
form:

34

Preprocessor
void cdec 1 main (argc / argv)

{

-code to initialize window

The OS/2 Environment Chap. 1

-loop to continuously read messages sent from the executive
}

"window function
{

- this function directs execution to appropriate PM func­
tions based on "message" input from the PM executive

}

"initialization functions"
{

-functions needed to initialize the first, additional, and
every instance of a window
}

other needed user-defined functions

Figure 1.9 illustrates a Structure Chart for the upper hierarchical levels of a PM
application. This chart is generic in the sense that it only indicates entities that are
common to all PM programs. The reader familiar with the Microsoft Windows
executive will see a close parallel between programming for this executive and
programming the PM executive [29].

000

PM
APPLICATION

l
100 200 300

l
110

ESTABLISH
INSTANCE

INITIALIZE PROCESS
WINDOW MESSAGE

l .l
l .l l

120 210 220 230

CHECK FOR GET TRANSLATE DISPATCH
PREVIOUS MESSAGE MESSAGE MESSAGE
INSTANCE

J l
r l l l

221 222 231 232

RECEIVE CONVERT TO LOAD PASS

FORMATTED INTERNAL MESSAGE MESSAGE TO

MESSAGE CODE STRUCTURE WINDOW
PROCEDURE

Figure 1.9 Generic Structure Chart for the upper hierarchical levels of a
Presentation Manager application.

l

EXIT
WINDOW

Sec. 1.4 Summary 35

1.4 SUMMARY

In this chapter we have introduced the IBM Operating System/2 in the framework
of the Intel 80286 and 80386 CPUs. Initially, the CPU registers were described and
the Protected Mode address space examined. The Protected Mode provides a frame­
work from which to perform memory management and multitasking because of the
hardware interlocks into segment management. Basically, the access rights control
byte in the segment address translation register word determines what data and con­
trol segments will have access to a given memory location.

This segment control, then, is the mechanism by which the hardware delimits
Protected Mode access. This is applied to the software via the operating system (and
the local descriptor tables (LDTs) and the global descriptor table (GDT)). OS/2
provides system services similar to the BIOS and DOS interrupt services via the
family Applications Programming Interface (PAPI). The PAPI is a subset of the
more complete API functions, which represent a complete set of Protected Mode
services. Representative of these services are the following categories

1. Mouse (Mou)
2. Video (Vio)
3. DOS (Dos)
4. Graphical (Gpi)
5. Spool (Spl)
6. Device (Dev)
7. Keyboard (Kbd)
8. Window (Win)

The API calls, then, allow access to system hardware and file services under OS/2.
OS/2 has provision to add devices to the system by creation of additional device
drivers and input/output privilege level (IOPL) is assisted using the Dev and Dos
services.

The Presentation Manager (PM) represents the Version 1.1 user-friendly graph­
ical interface for OS/2. Under Version 1.1 the user also has a choice of the full­
screen command prompt interface mode which is that employed by Version 1.0. The
PM display is similar to that used by Microsoft Windows Version 2.0 and provides
for overlapped (or tiled) window presentation of active process information in a
multitasking environment. The PM executive interacts dynamically with the execut­
ing programs. Associated with the PM are a large class of functions (window func­
tions) used to regulate the interface under program control. The messages exchanged
between the PM executive and the program are continuous and dynamically varying.
Hence this executive provides a time-varying interactive display that can be updated
and controlled using the mouse. It is very similar to the interface provided by the
Apple Macintosh operating system.

36 The OS/2 Environment Chap. 1

REFERENCES

1. Disk Operating System Version 3.30 Reference, International Business Machines Cor­
poration, Boca Raton, FL, 1986.

2. iAPX 86/88, 186/188 User's Manual: Programmer's Reference, Intel Corporation,
Santa Clara, CA, 1986.

3. iAPX 286: Programmer's Reference Manual, Intel Corporation, Santa Clara, CA, 1985.
4. 80386 Programmer's Reference Manual, Intel Corporation, Santa Clara, CA, 1986.
5. IBM Operating System/2 Standard Edition: User's Reference, International Business

Machines Corporation, Boca Raton, FL, 1987.
6. IBM Operating System/2 Technical Reference, Vols. I and II, International Business

Machines Corporation, Boca Raton, FL, 1988.
7. IBM Operating System/2 Programmer's Toolkit, International Business Machines Cor­

poration, Boca Raton, FL, 1987.
8. Microsoft Operating System/2 Software Development Kit, Microsoft Corporation, Red­

mond, WA, 1987.
9. IBM Operating System/2 Technical Reference Version 1.1: Programming Reference,

Vols. 1, 2, and 3, International Business Machines Corporation, Boca Raton, FL, 1988.

10. Petzold, C., Presentation Manager Dialog Procedures, PC Magazine, September 1988,
p. 302.

11. Malloy, R., IBM's OS/2 Extended Edition, Byte Magazine, July 1988, p. 111.
12. Microsoft C 5.1 Optimizing Compiler Reference Manual, Microsoft Corporation, Red­

mond, WA, 1987.

13. IBM MacroAssembler/2 Reference Manual, International Business Machines Corpora­
tion, Boca Raton, FL, 1987.

14. VEDIT PLUS Reference Manual, CompuView Products, Inc., Ann Arbor, MI, 1986.
15. Petzold, C., Introducing the OS/2 Presentation Manager, PC Magazine, July 1988,

p. 379.

16. IBM Technical Reference Personal Computer AT, International Business Machines
Corporation, Boca Raton, FL, 1984.

17. IBM Personal System/2 Model 50 and 60 Technical Reference, International Business
Machines Corporation, Boca Raton, FL, 1987.

18. Tanenbaum, A. S., Operating Systems: Design and Implementation, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1987, p. 36.

19. Davis, W. S., Operating Systems: A Systematic View, Addison-Wesley Publishing
Company, Reading, MA, 1987, p. 73.

20. Beck, L. L., System Software: An Introduction to Systems Programming, Addison­
Wesley Publishing Company, Reading, MA, 1985, p. 302.

21. Katzau, H., Operating Systems: A Pragmatic Approach, Van Nostrand Reinhold Com­
pany, New York, 1986, p. 161.

22. Godfrey, J. T., IBM Microcomputer Assembly Language: Beginning to Advanced,
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1989, p. 423.

23. Letwin, G., Inside OS/2, Microsoft Corporation, Redmond, WA, 1988, p. 39.

Problems 37

24. Iacobucci, E., OS/2 Programmer's Guide, Osborne McGraw-Hill, Berkeley, CA, 1988,
p. 51.

25. Krantz, J.I., Mizell, A.M., and Williams, R.L., OS/2: Features, Functions, and Appli­
cations, John Wiley & Sons, Inc., New York, 1988, p. 12.

26. Microsoft Windows Software Development Kit: Quick Reference Programming Guide,
Microsoft Corporation, Redmond, WA, 1987.

27. Microsoft Windows Software Development Kit: Update/Programmer's Utility Guide,
Microsoft Corporation, Redmond, WA, 1987.

28. Microsoft Windows Software Development Kit: Programmer's Reference, Microsoft
Corporation, Redmond, WA, 1987.

29. Godfrey, J.T., Applied C: The IBM Microcomputers, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1990 p. 356.

30. IBM Operating System/2 Programmer's Toolkit Version 1.1: Programming Overview,
International Business Machines Corporation, Boca Raton, FL, 1988.

31. IBM Operating System/2 Programmer's Toolkit Version 1.1: Programming Guide, In­
ternational Business Machines Corporation, Boca Raton, FL, 1988.

32. IBM Operating System/2 Programmer's Toolkit Version 1.1: Building Programs, Inter­
national Business Machines Corporation, Boca Raton, FL, 1988.

33. IBM Operating System/2 Technical Reference Version 1.1: !JO Subsystems and Device
Drivers, Vols. 1 and 2, International Business Machines Corporation, Boca Raton, FL,
1988.

34. IBM Operating System/2 Technical Reference Version 1.1: Macro Assembler/2 Bind­
ings Reference, International Business Machines Corporation, Boca Raton, FL, 1988.

35. IBM Operating System/2 Technical Reference Version 1.1: C/2 Bindings Reference,
International Business Machines Corporation, Boca Raton, FL, 1988.

PROBLEMS

1.1 In Real Address Mode assume a CS register value of 07F8H and an IP register value
of 274AH. What is the 20-bit physical address?

1.2 Does the fact that OS/2 is a multitasking operating system imply that it is a multi­
processor operating system, as well?

1.3 What is the largest fixed-point value that the 80386 can accommodate? Largest signed
fixed-point value?

1.4 The exit processing for OS/2 is via a call to DOSEXIT rather than a RET instruction.
If the requisite processing for DOSEXIT is

EXTRN DosExit:FAR

PUSH WORD ActionCode ; Indicates end thread or process

PUSH WORD ResultCode ;Result Code

CALL DosExi t

38 The OS/2 Environment Chap. 1

define a macro

@DosExit action, result

that can be used to setup and execute the exit operation.
1.5 The video screen unlock processing for OS/2 is via a call to VIOSCRUNLOCK. As­

suming that the requisite processing for this call is

EXTRN VioScrUnLock: FAR

PUSH WORD VioHandle ;Video handle
CALL VioScrUnLock

define a macro

@VioScrUnLock viohdl

that can be used to setup and execute the unlock operation.
1.6 The video screen lock processing for OS/2 is via a call to VIOSCRLOCK. Assuming

that the requisite processing for this call is

EXTRN VioScrLock:FAR

PUSH WORD WaitFlag
PUSH BYTE Status
PUSH WORD VioHandle
CALL VioScrLock

; Block or not
; Lock status returned (address)
;Video handle

where PUSH@ means to push an address on the stack, define a macro

@VioScrLock wai tf, iostat, viohdl

that can be used to setup and execute the lock operation.
1.7 What are the three principal features that the OS/2 Standard Edition contributes over

conventional DOS operating system characteristics?
1.8 While 80286 code (source) will run on 80386 systems, why will 80386 applications

code generally not run on 80286 systems?
1.9 In the IBM PC AT, 16 levels of hardware interrupts are available to the system user.

How many 8259As are required to support this number of interrupt levels?
1.10 The DOS partition in the IBM microcomputer environment supports the first 1 MB of

addressable memory. Why do most early systems allow a maximum of only 640 KB
of program memory access? Where does OS/2 extended memory reside?

1.11 What is the difference between physical and virtual memory, and how is virtual
memory managed?

1.12 How does OS/2 differentiate system memory space from applications memory space?
How much virtual memory space is accessible by applications?

1.13 Why would data communications processing not reside at level 0 to ensure that no
data is lost during a communications session?

Problems 39

1.14 How does the 80286 CPU know that the system is to operate in Protected Mode?

1.15 When writing a device driver, mixed-language programming is probably an optimum
approach. Assuming that a driver is written using a combination of C and assembly
language, what parts are likely candidates for assembler code? What parts are likely
candidates for C code?

1.16 Explain the major difference between a pipe and a queue.

1.17 Would you say that the API implementation represents a favorable step for assembly
language programming of OS/2? For C programming of OS/2? Explain.

1.18 If two threads from the same process need to access a common data area, will they
run synchronously or asynchronously? If the threads are from different processes, will
they access in synchronous or asynchronous fashion?

1.19 What is the thread equivalent to DosKil!Process? How does it differ from the activity
for a process?

1.20 Can we use the Gpi services with full-screen command mode to generate screen
graphics under CGA, for example?

1.21 Which is preferred in a multitasking environment: modal or modaless dialog box
implementation?

PART II
Programming OS/2 Using Assembler

2 Introductory OS/2
Assembler Programming

OS/2 is a unique program environment devoid of the normal interrupt calls found in
conventional assembly language programs. In their place OS/2 implements Applica­
tion Program Interface (API) function calls, which provide the programmer with ac­
cess to system services. Specific services include the familiar DOS BIOS and
INT21H function calls, an enhanced set of video display handlers, mouse services,
and keyboard handlers. These are the most obvious extensions of OS/2, and they
permit the user a vastly increased capability to develop multitasking modules and
extend program usage beyond the normal 64K segment limit.

In this chapter we examine assembly language programming in the context of
OS/2 [1,2]. The goal of the exposition is to provide the reader with examples of the
usage of assembly language in the OS/2 framework. This is not a treatise on how to
program assembler; rather, we hope to achieve an understanding of the OS/2 inter­
face.

2.1 OS/2 SERVICES: ACCESSING THE.AP!

A great deal of the new programming emphasis using OS/2 is the API services
which are contained in the IBM (or Microsoft) supplied library, API.LIB. The serv­
ices contained in API.LIB can be accessed through uppercase specification of the
service name preceded by proper setup of parameter information appropriate to the

40

Sec. 2.1 OS/2 Services: Accessing the API 41

function in question. Unlike the DOS and BIOS interrupt routines, which pass
parameter information using the general-purpose registers, the OS/2 API procedures
receive parameters via the stack, which must be installed by the user. This is in
much the same fashion as the passing of parameters to functions or subroutines in
a higher-level language (HLL).

To understand how this works consider the video API call, which returns the
cursor position to two stack locations. This routine, VioGetCurPos, has the follow­
ing calling sequence for the service [3]:

1. Define VioGetCurPos as EXTRN and FAR
2. PUSH a 32-bit address for

row
column

(word)
(word)

on the stack, respectively
3. PUSH a device handle

VioHandle (word)

on the stack
4. CALL VioGetCurPos

In this example the routine VioGetCurPos is treated in mixed upper and lower case
for readability. The actual OS/2 library reference is upper case:

VIOGETCURPOS

To continue to use the more readable mixed-case references, which are in the style
of the IBM references, the programmer must consider what is available or can be
developed to facilitate the use of these mixed-case calls. Fortunately, IBM provides
several include files (with extension .inc) for use with the assembler that set up
macros for using the API library. This setup includes loading the stack with the
proper parameters needed by the API service routine. OS/2 has two include files,
doscalls.inc and subcalls.inc, that properly develop macros to be called for API
service. These two files are loaded using a third file, sysmac.inc, which simply
installs doscalls and subcalls as macro libraries:

IFl
include sysmac. inc

END IF

The file doscalls.inc contains macros for calling all the Dos ... calls. The file
subcalls.inc contains macros for calling all kbd .. ., Mou .. ., and Vio ... calls.

42 Introductory OS/2 Assembler Programming Chap. 2

Returning to VioGetCurPos, consider the subcalls macro used to set up and
call this service routine:

@VioGetCurPos macro
@define
@pushs
@pushs
@pushw
call
endm

row, column, handle
VIOGETCURPOS
row
column
handle
far ptr VIOGETCURPOS

We see immediately that this macro calls three other macros: @define, @pushs, and
@pushw. These macros are defined as follows:

@define macro callname
ifndef callname
extrn callname:far
endif
endm

@pushs macro parm
.errb <parm>
mov ax,SEG pa rm
push ax
lea ax,parm
push ax
endm

@pushw macro pa rm
mov ax,parm
push ax
endm

Clearly, @define is used to get VIOGETCURPOS as an externally defined
FAR procedure (it appears in APl.LIB). The macro @pushs pushes a 32-bit address
for the dummy parameter, parm, onto the stack and @pushw pushes parm itself onto
the stack. The calling sequence for @VioGetCurPos sets up row and column to
receive the cursor position values after the final FAR call to VIOGETCURPOS.

This is how the OS/2 API services are accessed using assembly language and
the doscalls.inc, subcalls.inc, and sysmac.inc files. In this chapter we use only a
small subset of the API calls. These services are indicated in Table 2.1. Generally,
the focus of interest in this chapter is on the printer, keyboard interrupt, and screen
buffer, as the API calls of Table 2.1 indicate.

OS/2 reserves the right to redefine memory dynamically during program exe­
cution. This is necessary to implement multitasking and memory management of
huge segments (greater than 64K segments). Since OS/2 can access 16 Megabytes
(MB) of actual memory because of the 24-bit physical address size, it must map the
full virtual program memory into this space, or smaller, during program execution.
The virtual memory access may contain up to a full gigabyte (230 bytes) of individu­
ally addressable byte locations.

Sec. 2.2 Introductory Assembler Programming 43

Clearly, physical address space is normally difficult to access and naturally
remains the province of OS/2. In some cases, however, the programmer has access
to this dimension. We will see a situation of actually writing to the OS/2 physical
memory when the screen buffer

TABLE 2.1 API SUBSET USED IN CHAPTER 2

API function

Dos Open
DosExit
Dos Write
DosClose
VioScrollUp
VioSetMode
VioScrLock
VioGetPhysBuf
VioScrUnLock
KbdStringln

Comment

Open specified device or file
Terminates active threads and processes
Transfers the specified bytes from a buffer to the specified file
Closes the specified device or file
Scrolls the screen upward
Sets the graphics or alphanumeric screen mode
Locks the physical display buffer context
Retrieves a segment selector for the physical display buffer
Unlocks the physical display buffer context
Loads a keyboard buffer with a character string

is accessed in a subsequent example. It is possible to gain access to the screen
buffer by locking the screen context and then using a segment selector returned by
OS/2 for writing directly to the physical buffer containing the screen addresses. This
differentiates the IBM physical screen buffer, with its fixed physical locations in
memory, from other RAM addresses, which can vary in dynamic but protected fash­
ions under OS/2.

2.2 INTRODUCTORY ASSEMBLER PROGRAMMING

As indicated earlier, we have assumed that the reader has a background in both
80286 assembler and the C language. This book does not teach either, but we do
provide a brief review of the syntax associated with the languages. In this section
we examine the macro assembler that is compatible with the Protected Mode.
Appendix A contains the Macro Assembler/2 instructions and pseudo-ops.

2.2.1 The IBM Macro Assembler/2

There are two reasons why programmers should be interested in assembly languages.
First, assembler provides an understanding about both the underlying software archi­
tecture for a given microprocessor and the needed chip interfaces for a given micro­
computer. Second, situations can arise where other languages are inadequate for
achieving optimized performances. The Macro Assembler/2 has basically the same
features as other Intel assemblers. The dominant active instruments in the assembler
are the instructions with the form

44 Introductory OS/2 Assembler Programming Chap. 2

[label] instruction-mneumonic [operand(s)] [;comment]

Here the brackets indicate that the quantities contained within are optional depend­
ing on instruction type. The instruction sequence

mov cx,1000 ;load loop limit
mov si,O ;initialize index

DOll: ;label for loop
mov ax,si ;load ax with index
sub ax,100 ;subtract 100 from index
cmp ax,O ;check to see if zero
je ELSEl ;jump if zero to ELSEl
inc si ;increment index
loop DOll ;loop back to DOll

ELSEl:

is an example of the use of the move(mov), subtraction(sub), jump-if-equal(je),
increment(inc), compare(cmp), and loop instructions. Note that the labels D011 and
ELSEl go with the next line of code. In this fragment the loop instruction decre­
ments ex each time. When ax becomes zero the jump takes place to the target label
ELSEl. This very brief illustration of the assembler instruction usage is intended as
an example of the IBM Macro Assembler/2, MASM. For a complete discussion of
the assembler instructions, consult the Language Reference Manual [4].

In addition to the instructions the assembler has a class of statements that
provide information about the program environment. These statements do not result
in machine code and are referred to as pseudo-ops. Typical of the pseudo-ops is the
SEGMENT directive, which is used to demarcate the various segment definitions
within the source code. The SEGMENT pseudo-op has the form

sequence SEGMENT align-type combine-type 'class'

where segname is the name of the segment. Align-type indicates how the segment
begins in memory [PARA: paragraph boundary [address divisible by 16]; BYTE;
WORD; or PAGE: last 8 bits of address are zero], and combine-type indicates how
the segment is to be linked [PUBLIC: all public segments with the same name are
linked; COMMON: all segments with the same name overlap; AT(exp): segment
located at nearest paragraph to "exp"; STACK: stack segment; and MEMORY:
higher addresses than other segments]. The designator 'class' refers to a collection
of segments with the same class name. Segments end with

segname ENDS

To define segment type the ASSUME pseudo-op is used to associate a name
with a segment register:

ASSUME CS: segname, SS: segname [, DS: segname [, ES: segment]]

Sec. 2.2 Introductory Assembler Programming 45

Here CS is required and SS is required when a stack segment is present. Both DS
and ES are optional. We could continue to enumerate the Macro Assembler features;
however, the best technique for elucidating the language is through illustration. In
the following section we consider such an example.

2.2.2 An Example Program: Printer Control

Figure 2.1 contains an assembler program that causes the printer to print in graph­
ics mode under OS/2. The program opens with two pseudo-ops: PAGE and TITLE.
PAGE has the form

PAGE operand!, operand2

The entry in operandl indicates the number of horizontal lines per page in the as­
sembler listing (here it is 55). Operand2 is the number of characters per line in the
listing. The TITLE pseudo-op specifies the title on the first line of each assembler
listing page. Spread throughout the program are semicolons. All text following a
semicolon on the same line is treated as a comment. The pseudo-op IFl (a condi­
tional pseudo-op) indicates that all instructions and pseudo-ops following it and prior
to the next END IF are to be implemented during pass 1 of the assembler. In Figure
2.1 the file sysmac.inc is to be included at this point.

Sysmac causes doscalls.inc and subcalls.inc to be included which set up
macros for all API calls that appear in the subsequent code segments. The pseudo­
op .sall causes macro listings to be suppressed. Next follows the GROUP pseudo-op.
This pseudo-op collects the data segment under the name dgroup:

dgroup GROUP data

The stack segment follows. Here 256 copies of the string

STACK •••

are used to form the stack segment. This should be more than adequate for the stack
size required by most small programs. The pseudo-op, db, stands for define byte and
the dup operator duplicates the 8-byte string within parentheses.

The data segment follows and requires some explanation in conjunction with
the API calls that are in the code segment. Consider first the variables defined in
this data segment that begin dev _ There are eight of these variables and they are
defined in reference to the @DosOpen API macro call. Consider the form of this
call in the code segment

@DosOpen dev_name,dev_hand,dev_act,dev_size,
dev_attr,dev_flag,dev_mode,dev_rsv

This API call opens a file with file path name dev _name. The path is the zero-ter­
minated string: 'LPTl',O. The file handle is returned with dev_hand. The action
taken is returned in dev _act, where

46 Introductory OS/2 Assembler Programming

PAGE 55,132
TITLE PRT2 - This is the initial printer routine (PRT2.ASM)

I Fl

ENDIF

DESCRIPTION: This program simply prints a •74• in
graphics mode (320 times) for two lines which are
meshed together.

include sysmac.inc

.sall
dgroup GROUP

;Suppresses macro lists
data

STACK SEGMENT PARA STACK 'STACK'
db 256 dup('STACK ')

STACK ENDS

DATA SEGMENT PARA PUBLIC 'DATA'
;
in buff er db 400 dup(O)
in:::leng dw $ - offset in_buff er
bytes in dw 320
bytesout dw 0
in buff erl db 1BH,4BH,640,01H ; 320 columns
bytesinl dw 4
in buff er2 db ODH,OAH
bytesin2 dw 2
in_buffer3 db 1BH,41H,08H
bytesin3 dw 3
in_buffer4 db 1BH,32H

dev name db 'LPTl I ,o
dev-hand dw 0
dev-act dw 0
dev-size dd 0
dev-attr dw 0
dev:::flag dw OOOOOOOlb ;Open File
dev mode dw OOOOOOOOllOOOOOlb ;Hdl private,deny none,w/o
dev=:rsv dd 0

DATA ENDS

CSEG SEGMENT PARA PUBLIC 'CODE'
ASSUME CS:CSEG,DS:DATA,ES:DATA,SS:STACK

PRTSCl PROC FAR
push ds
pop es

;Open LP'l'l as device

Chap. 2

@DosOpen dev name,dev hand,dev act,dev size,dev attr,dev flag,dev mode,dev rsv
cmp ix,o - - - - - - -

ELSEl:

LOOPl:

je ELSEl

@DosExit 1,0

mov cx,320
mov si,O

mov al,74
mov in buffer[si],al
inc si-

loop LOOPl

;Exit

; 320 columns
;initialize index

;pins 2,4,5, and 7
;load printer write buffer
;increment buffer index

;Set lptl vertical spacing

Figure 2.1 ASsembler program prt2.asm, which prints printer graphics under
OS/2 Protected Mode.

Sec. 2.2

OOOlH
0002H
0003H

Introductory Assembler Programming

@DosWrite dev_hand,in_buffer3,bytesin3,bytesout
;Activate spacing

@DosWrite dev_hand,in_buffer4,bytesin2,bytesout
;Initialize printer graphics

@DosWrite dev_hand,in_bufferl,bytesinl,bytesout
;Write print buffer

@DosWrite dev_hand,in_buffer,bytesin,bytesout
;CR & LF

@Doswrite dev_hand,in_buffer2,bytesin2,bytesout
;Reset graphics mode

@DosWrite dev_hand,in_buffer1,bytesinl,bytesout
;Write print buffer again

@DosWrite dev hand,in buffer,bytesin,bytesout
- - ;Close device

@DosClose dev_hand

@DosExit 1,0
PRTSCl endp
CSEG ends

end PRTSCl

;Exit

Figure 2.1 (Concluded)

file exists
file created
file replaced

47

Here the file's size in bytes is returned in dev _size. The file attribute bits are de­
fined as follows:

OOOlH
0002H
0004H
OOlOH
0020H

read only file
hidden file
system file
subdirectory
file archive

with other dev _attr combinations corresponding to reserved values. Dev _flag speci­
fies the action to be taken if the file exists, where

OOOOOOOlB

indicates that the file should be opened. The dev _mode parameter has the form

bit:

where

D

w
F

=
=
=

15 0

D W F R R R R R I S S S R A A A

0 means open in normal way

0 writes may be run through the DOS buffer cache

0 errors reported through system error handler

48 Introductory OS/2 Assembler Programming Chap. 2

R = 0 reserved and must = 0

I = 1 file handle is private to the current process

SSS = 100 deny neither Read nor Write access

AAA = 001 Write only access

Hence

dev_mode dw OOOOOOOOllOOOOOlB

corresponds to file handle private, deny none, and write only. The parameter dev _rsv
must be zero. We will return to the remaining data segment variables as the code
segment API calls that use these variables are considered.

Following the termination of the data segment, DATA, the code segment is
developed. This segment, CSEG, opens with an ASSUME pseudo-op that associates
each segment register with an appropriate segment name. Here both DS and ES are
associated with DATA. Next a FAR procedure PRTSCl is set up. Notice that the
normal DOS program segment prefix (PSP) area is not required. The return is FAR
and will be accomplished using

@DosExit 1, 0

which automatically returns execution to the proper OS/2 entry point at the close of
PRTSCl. In this API call the first parameter is set to 1 and causes all threads in the
process to end. The second parameter is the result code, and this is used by any
threads requiring input from the process prior to its termination.

Upon entry to PRTSCl, DS is pushed on the stack and popped into ES. Then
@DosOpen is called as discussed above. The return value from this call is in ax
and, if 0, means that a normal open occurred. If ax is not zero, @DosExit is called.
To understand the remaining instructions and macro calls, it is necessary to under­
stand how the printer works in graphics mode. The @DosOpen macro opens LPTl
(the line printer) as a file. This file can be written using the @Dos Write macro. The
line printer used in this example is an EPSON FX-85 [S]. The @DosWrite macro
can be used to pass characters for output to the printer as well as passing control
codes. We would like to use the printer in graphics mode.

The print head consists of a vertical array of eight pins. In graphics mode
these pins have an associated weight as follows:

PIN WEIGHT

0 128

• 64

0 32

0 16
e 8

Sec. 2.2 Introductory Assembler Programming 49

0 4
2

0 1

Here three pins have been darkened to indicate that they are active. The total sum
of the pin values for these darkened pins is 74; hence when in graphics mode, a 74
output to the printer will cause these pins to print. Similarly, 255 would cause all
pins to print. Also, 128 would cause only the top pin to print.

How is the printer placed in graphics mode? Most of the printer control char­
acters are of the form ESC To put the printer in single-density graphics mode the
sequence

ESC "K" (nl) (n2)

must be sent. Using ESC = lBH and "K" = 4BH, it follows that if

nl d MOD 256
n2 = INT (d/256)

where d = total number of columns to be printed, then

lBH, 4BH, 640, DlH

corresponds to setting the printer in the graphics mode with a total of 320 printer
columns active, out of a possible 480 for the FX-85.

Returning to the code appearing in Figure 2.1, we see that the buffer,
in_bufferQ, is loaded with 320 values of 74 (the character value corresponding to
the pins discussed earlier). Following the loading of this buffer the macro call

@DosWrite dev_hand,in_buffer3,bytesin3,bytesout

is made. Here

in_buffer3 = 1BH,41H,08H

where the first character is ESC. The second character sets the vertical spacing to
8/12-inch line spacing:

ESC A (8)

The third parameter in all the @DosWrite calls is the buffer length, and the
fourth parameter is the number of bytes written. The macro call

@DosWrite dev_hand,in_buffer4,bytesin2,bytesout

executes

ESC 2

50 Introductory OS/2 Assembler Programming Chap. 2

which implements the line spacing set above. The macro call

@DosWrite dev_hand,in_bufferl,bytesinl,bytesout

sets up the call

ESC K 64 1

to specify 320 columns. This command must be followed by 320 characters. The
command

@DosWrite dev_hand,in_buffer,bytesin,bytesout

outputs 320 columns, corresponding to the 74 graphics combination already illus­
trated.

Next

@DosWrite dev_hand,in_buffer2,bytesin2,bytesout

causes ODH and OAH to be output for the carriage return and line feed. This is fol­
lowed by a reset of the graphics mode and a second print of the 320 values of the
graphics mode 74. Figure 2.2a illustrates the output for this program. When the
buffer value is changed from 74 to 255, all pins print. This case is illustrated in
Figure 2.2b.

(a)

(b)

Figure 2.2 Printer output from prt2.asm (a) with fill character "74" and (b)
with fill character "255".

The program appearing in Figure 2.1 illustrates the main features of how to ac­
cess the API from assembler. Here the printer was accessed using API calls and
placed in graphics mode as well as used to output graphics characters. In the next
section we look at more complex programs that access the screen buffer. Since we
have information about the screen pixels, it will be possible to develop a screen
print program that uses the printer in graphics mode to print the screen.

Sec. 2.3 Accessing the Video Services 51

2.3 ACCESSING THE VIDEO SERVICES

To be able to access the screen context requires a knowledge of the physical
memory associated with the display. This memory has different partitioning depend­
ing on what display mode is being used. Typically, the graphics modes normally ac­
cessed by the IBM PS/2 computers (and the IBM AT) are Color Graphics Adapter
(CGA) mode, which is a 320-column by 200-row pixel screen, the Enhanced Graph­
ics Adapter (EGA) mode, which is a 640-column by 350-row pixel screen, and the
Video Graphics Adapter (VGA) mode, which is a 640-column by 480-row pixel
screen.

2.3.1 The Display Buffer

In this chapter we access the CGA screen context. This is mode Hex 5. The
memory is allocated into two buffer regions specified as follows:

1. Even Scans (rows 0, 2, 4, ... , 198) starts at address B8000H.
2. Odd Scans (rows 1, 3, 5, ... , 199) starts at address BAOOOH.
3. Each raster row occupies 80 bytes, where a byte has the following form:

Pixel: N N+l N+2 N+3

Cl co Cl co Cl co Cl co

with color section determined by

C1 co
0 0 black

0 1 light cyan

1 0 light magenta

1 1 intensified white

4. Address B8000H contains the pixel information for the first four pixels in the
upper left-hand corner.

There is a second CGA mode, which is 640 columns by 200 rows; however, we
will not consider this mode. We use the terms pe/ and pixel interchangeably herein.

How does the actual location of a pixel attribute get set based on row and
column data about the screen? To locate the correct (row, col) byte in screen buffer
physical memory, it must be remembered that the even-row value starts at location

80 * (row/2)

offset from B8000H. Similarly, recognizing that integer division truncates (3/2

52 Introductory OS/2 Assembler Programming Chap. 2

becomes 1, ...), the same expression serves to locate an odd-row relative to
BAOOOH. Since there are 80 bytes for 320 columns, we need to locate

col/4

Hence the offset location of a given byte in terms of (row,col) is given by

80 * (row/2) + (col/4)

This would correspond to the code

mov ax,row
shr ax,l
mov dx,O ; clear upper
mul eighty
mov bx,col
shr bx,l
shr bx,l
add ax,bx

To identify an individual pixel within a byte, we note that the least significant
bit (LSB) and LSB+ 1 correspond to the attribute positions for the fourth pixel,
(LSB+2, LSB+3) correspond to the attribute positions for the third pixel, and so on.
Hence

Bit: 7 6 5 4 3 2 1 0

Pixel: 1 1 2 2 3 3 4 4

We will simply turn the pixel on using a mask:

MASKl = OlH

This will produce a light cyan screen color. Dividing col by 4 generates a remain­
der (0,1,2,3), which is in reverse order to the pixel number (assuming that we start
numbering the pixels within a byte 0,1,2,3). Hence

3-col mod 4

indicates the actual pixel position within the (row,col) byte. Starting with

0 0 0 0 0 0 0 1

it is clear that a shift

2 * (3-col mod 4)

Sec. 2.3 Accessing the Video Services 53

will place 1 in bits 6, 4, 2, or 0 as needed to specify the pixel attribute. The follow­
ing code uses the coprocessor to load xxx with this pixel value based on row, col:

fild four
fild col
fprem ;modulo
fistp xx
fistp dummy
mov al,3
mov bl,byte ptr xx
sub al,bl
mov ah,O
mul two
mov cl,al
mov al,MASKl ;MASKl OlH
shl al,cl
mov xxx,cl

This, then, is a prescription for using a screen direct memory access (DMA) tech­
nique to the video physical buffer, once that buffer has been accessed.

The last code necessary to complete specification of a video buffer location is
to specify the precise offset location for address above. Here we assume that the
even-row or odd-row location must also be taken into consideration. Consider the
code

mov ax,row
and ax,MASKll ;MASKll=OOOlH
cmp ax,O
jle ELSEl

mov ax, address
add ax,OFFSETl ;OFFSETl 2000H
jmp IFll

ELSEl:
mov ax,address

IFll:
mov bp,ax
mov al,xxx
or es: [bp] ,al

This code checks to see if the row is even or odd. If odd, an offset of 2000H
is added to address. The full pixel byte offset is in address and the byte value in
xxx. Assuming that the extra segment register contains the video segment selector
value, then

54 Introductory OS/2 Assembler Programming

ov es:[bp],al

changes the bit values from 00 to 01 as needed for the pixel in question.

2.3.2 Locking the Screen Context

Chap. 2

Figure 2.3a presents a function flowchart for a program that plots two lines across
the screen. Figure 2.3b illustrates this program, which calls the video buffer and
plots two parallel lines across the screen. The program also calls a routine scr_ld
that loads an intermediate buffer, scr_buffer, with the screen context pixel values.
This buffer is then used to output the display context to the printer. We will not
focus on the routines that write the display context to the printer until Section 2.3.3.
In this section we examine the video API calls.

Consider the first executable instruction in the program the call to els to clear
the screen. The procedure els, in turn, has a single call (besides the return):

@VioScrollUp tr,lc,br,rc,no_line,blank,viohdl

The parameters appearing in this API call are among the first nine parameters
appearing in the data segment. Viohdl is a handle to the display. The parameters tr
and le are the top row and left column to be scrolled. The parameters br and vc are
the bottom row and right column to be subtended for the scroll operation. A pa­
rameter no line is the number of lines to be scrolled and blank the attribute to be
used to replace each character (in this case a blank) pair. This routine effectively
blanks the screen.

Next the main FAR procedure sets the screen in CGA graphics mode. To do
this the video API call is made referencing the video handle and a CGA structure
that contains parameter data:

@VioSetMode CGAm, viohdl

The video CGA structure is specified in the data segment by the required parame­
ter values between the statements

CGAm label FAR

vrCGA dw 200

where the last value is the number of rows (the vertical resolution) on the CGA
screen. Below this structure in the data segment is a second structure, STDm, which
is used later with the call to return to text 80 x 25 mode. This structure spans the
lines between

STDm label FAR

vr80 dw 400

Sec. 2.3 Accessing the Video Services

SETUP BUFFER &
DATA AREAS

CLEAR SCREEN

SETCGAMODE

RE-CLEAR SCREEN

LOCK DISPLAY
CONTEXT

GET PHYSICAL
BUFFER

DRAW LINES

SETUP TEMPORARY
PLOT BUFFER

UNLOCK SCREEN

HESITATE DISPLAY

RETURN TO
STANDARD MODE

PRINT DISPLAY
CONTEXT

EXIT

55

Figure 2.3a Functional flowchart for
boxprtl.asm, the program that calls the
video buffer and plots two lines.

56 Introductory OS/2 Assembler Programming

PAGE 55,132
TITLE BOXPRTl - This program checks print graphics(BOXPRTl.ASM)

DESCRIPTION: This program plots two lines in protected
mode and hesitates usinq a keyboard delay. Graphics
mode 05H is used to display the lines •

. 8087
PUBLIC xx,xxx
EXTRN prtscr:FAR,scr_ld:FAR
I Fl

include sysmac.inc
ENDIF

.sall
dgroup GROUP data

STACK SEGMENT PARA STACK 'STACK'
db 256 dup('STACK ')

STACK ENDS

DATA SEGMENT PARA PUBLIC 'DATA'

;CodeView symbol map

;suppresses macro lists

PUBLIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC

in_buffer,bytesin,bytesout,in_bufferl,bytesinl
in_buffer2,bytesin2,in_buffer3,bytesin3,in_buffer4
dev name,dev hand,dev act,dev size,dev attr,dev flag
dev-mode,dev-rsv,MM,c011,N - - -
s,eight,eighfy,four,shiftl,scr_buffer
sixforty,N4,ddd,w,bl

;
viohdl equ
result dw
action equ
tr dw
le dw
br dw
re dw
no line dw
blank dw

CGAm label
lmodeE dw
typeCGA db
colCGA db
txtcCGA dw
txtrCGA dw
hrCGA dw
vrCGA dw

STDm
lmode80
type80
col80
txtc80
txtr80
hr80
vr80

label
dw
db
db
dw
dw
dw
dw

kbd buf db
lkbd buf dw
iowait dw
kbdhdl equ

waitf
dstat

equ
db

0
0
0
0
0
23
79
25
0007H

FAR
12
OOOOOlllB
2
40
25
320
200

FAR
12
OOOOOOOlB
4
80
25
720
400

80
$-kbd buf
0 -
0

1

;Required video handle
;Completion code
;Terminates current thread
;Top row screen clear
;Left column screen clear
;Bottom row screen clear
;Right column screen clear
;Number lines scrolled
;Blank character pair

;Video mode structure-CGA
;Structure length
;Mode identifier
;Color option-Mode 5
;text characters/line-ignore
;text lines-ignore
;horizontal resolution
;vertical resolution

;Video mode structure-80x25
;Structure length
;Mode identifier-Mode 3+
;Color option
;text characters/line
;text lines
;horizontal resolution
;vertical resolution

;Keyboard buffer
;Length keyboard buffer
;Wait for CR
;Keyboard handle

;Screen waiting status
;Returned status

Figure 2.3b Program code for boxprtl.asm.

Chap. 2

Sec. 2.3 Accessing the Video Services

;
PVBPtrl label
buf stl dd
buflenl dd
physell dw

MAS Kl db
MASKll dw
OFFSETl dw
four dw
xx dw
dummy dw
two db
xxx db
eighty dw
row dw
col dw
address dw

x dw
y dw
xb dw
xe dw
yb dw
ye dw

eight dw

FAR
OB8000H
4000H
0

OlH
OOOlH
2000H
4
?
?
2
?
80
?
?
?

?
?
75
150
25
175

8

;Video buffer structure
;Start physical address
;Buffer length
;OS/2 screen buffer selector

;PEL byte mask
;Odd/even row mask
;Odd row buffer offset

;PEL modulo parameter
;80287 dummy "pop"

;Output value

;row
;column
;Address screen dot

;Box col parameter
;Box row parameter
;Start column
;End column
;Start row
;End row

Data area below is used for screen print routine.

;
in buff er db 320 dup(O) ;print buffer
bytesin dw 320 ;CGA line
bytes out dw 0 ;output count
in buf ferl db 1BH,4BH,64D,01H ;printer setup
bytesinl dw 4 ;count bytes In_bufferl
in buffer2 db ODH,OAH ;LF/CR
bytesin2 dw 2 ;in_buffer2 byte count
in buffer3 db lBH, 41H, 08H
bytesin3 dw 3 ;in_buffer3 byte count
in_buffer4 db 1BH,32H .
dev name db 1 LPT1 1 ,0 ;name of printer device
dev-hand dw 0 ;device handle
dev-act dw 0
dev=size dd 0
dev attr dw 0
dev=flag dw OOOOOOOlb ;Open File
dev mode dw OOOOOOOOllOOOOOlb ;hdl private,deny none,w/o
dev=rsv dd 0 ;reserved

N4 dw ?
MM db 40H,lOH,04H,OlH ;pel mask
w db 128,64,32,16,B,4,2,l ;pin weights
cell db 320 dup(?) ;column index-printer
bl db 4 dup(?)
N dw ? ;printer line
shiftl db 6,4,2,0
s db 4 dup(?) ;dup copies pel byte
ddd dw ?
sixf orty dw 640
scr_buffer db 16384 dup(O) ;temporary buffer--screen values

Figure 2.3b (Continued)

57

58 Introductory OS/2 Assembler Programming

DATA ENDS

CSEG SEGMENT PARA PUBLIC 'CODE'
assume cs:cseq,ds:dqroup

0621 PROC FAR

call els
@VioSetMode CGAm,viohdl
call clsCGA

@VioScrLock waitf ,dstat,viohdl
@VioGetPhysBuf PVBptrl,viohdl
push physell
pop es

mov ax,o
mov y,ax
call lineh
mov ax,100
mov y,ax
call lineh

call scr_ld

@VioscrUnLock viohdl

;Clear screen
;Set CGA Graphics mode
;Clear CGA screen

;Lock screen context
;Get physical buffer selector
;Save selector
;Load selector into extra seqment

;Draw line

;draw second line

;Unlock screen context

@!CbdStrinqin kbd_buf,lkbd_buf ,iowait,kbdhdl ;hesitate

@VioSetMode STDm,viohdl ;80 x 25 alpha mode

call prtscr

@DosExit action,result ;Terminate process

0621 ENDP

els PROC NEAR

@VioScrollUp tr,lc,br,rc,no_line,blank,viohdl
ret

els ENDP
;
clsCGA PROC NEAR

001:

002:

@VioScrLock waitf,dstat,viohdl
@VioGetPhysBuf PVBptrl,viohdl
push physell
pop es

mov bp,o
mov al,O

mov es: [bp) ,al
inc bp
cmp bp,1F3FH
jle 001

mov bp,2000H
mov al,O

;Lock screen context
;Get physical buffer
;Screen selector
;Load extra segment

;Start offset zero
;Zero attribute-clear

;Clear byte

;Check end 1st buffer

;Offset 2nd buffer-odd
;Zero attribute-clear

mov es: [bp] ,al ;Clear byte
inc bp
cmp bp,3F3FH ;Check end 2nd buffer

Figure 2.3b (Co11tinued)

Chap. 2

Sec. 2.3 Accessing the Video Services

jle 002

@VioScrUnLock viohdl

ret
clsCGA ENDP

wdot

ELSEl:

IFll:

PROC NEAR

(col,row) = (x,y)

fild four
fild col
fprem
fistp xx
fistp dummy
mov al,3
mov bl,byte ptr xx
sub al,bl
mov ah,O
mul two
mov cl,al
mov al,MASKl
shl al,cl
mov xxx,al

mov ax,row
shr ax,1
mov dx,o
mul eighty
mov bx,col
shr bx,1
shr bx,1
add ax,bx
mov address,ax
mov ax,row
and ax,MASKll
cmp ax,o
jle ELSEl

mov ax,address
add ax,OFFSETl
jmp IFll

mov ax,address

mov bp,ax
mov al,xxx

or es:(bp],al

ret
wdot ENDP

lineh PROC NEAR

y = row position, xb

mov ax,y
mov row,ax

mov ax,o
mov xb,ax
mov ax,319
mov xe,ax
mov ax,xb

;Unlock screen context

;Load stack with 4
;ST = col, ST(l) 4
;Modulo
;Store remainder in xx
;Pop stack

; (J - col % 4)
;Clear upper multiplicand

;Shift value for PEL
;PEL color mask
;Shift to correct PEL
;Store buffer value
;
;Begin address calculation
;Divide row by 2
;Clear upper multiplicand

;Convert column value to bytes

;offset in ax
;Save offset base
;Check even/odd row
;Look for bit o set

;add odd buffer offset

;screen buffer address
;Attribute value for dot

;Write dot

begin, xe = end

;Establish row for wdot

;x-begin position for line

;x-end position for line

;Establish start column

Figure 2.3b (Continued)

59

60

0010:

lineh
;
CSEG

Introductory OS/2 Assembler Programming

mov col,ax
push ax
call wdot
pop ax
inc ax
cmp ax,xe
jle 0010

ret
ENDP

ENDS
END 0821

;Save column value
;Write dot (col,row)
;Recall column
;Increment column
;Check end horizontal line

Figure 2.3b (Concluded)

Chap. 2

appearing in the data segment. Finally, a call to clsCGA is made, which reclears the
screen in CGA mode. This call is needed because the switch to CGA mode leaves
the screen in an unpredictable state. The call to clsCGA is somewhat different than
the prior els call because the screen is now in CGA mode and the screen context
must be locked prior to accessing it.

In the procedure clsCGA, the first executable statement is the macro call

@VioScrLock wai tf, dstat, viohdl

This call locks (or requests ownership) of the physical display buffer. The flag waitf
is 0 if the screen is not available; otherwise, it is 1. The status, dstat, is 0 if the lock
is successful; otherwise, it is 1, and viohdl is the video handle. Once this routine is
executed the physical buffer may be accessed. This is accomplished using the state­
ment

@VioGetPhysBuf PVBPtrl, viohdl

Here PVBPtrl is a structure with the form (see data segment)

PVBPtrl
bufstl
buflenl
physell

label
dd
dd
dw

FAR
0B8000H
4000H
0

The first parameter in this structure, bufstl, is the start address of the physical dis­
play buffer specified as a 32-bit physical address. We see that this is merely the
beginning of the CGA even-row buffer space, as described above for normal IBM
memory allocation (B8000H). The second parameter, buflenl, is the length of the
buffer, which is 4000H or 16384 bytes long. Finally, physell is the physical selec­
tor which is returned by the call. Upon completion of the call the physical selector
value is immediately loaded in the extra segment register es. Hence, es then points

Sec. 2.3 Accessing the Video Services 61

to the beginning of the physical buffer. This step is very important because it
confirms the translation of the segment registers and the segment arithmetic for
calculating a physical or virtual address. Following the loading of the selector
address, the two buffer regions are cleared: even rows (offset 0-1F3FH) and odd
rows (offset 2000H-3F3FH). Then the screen context is unlocked with the call

@VioScrUnlock viohdl

The actual screen write is accomplished using two calls to the procedure lineh, one
call at y value 0 and one call at y value 100 (halfway down the screen). The form
of lineh use in this program merely draws a straight horizontal line from column 0
to column 319 of the screen. The actual drawing of the dot is accomplished by a
procedure wdot, which implements the techniques of section 2.3.1 discussed earlier.

Following the plotting of the two horizontal lines on the display, the screen
context is loaded in the buffer, scr_buffer, based on a call to scr_ld. Eventually, the
screen is printed using prtscr, which employs this buffer as a template of the screen
context. The screen is next unlocked and the keyboard pause or hesitation is insti­
tuted with the call

[@kbdStringin kbd_buf,lkbd_buf,iowait,kbdhdl

Here kbd_buf is a buffer for a character string that is 80 bytes wide. The variable
lkbd_buf is the length of this buffer. A value of 0 for iowait indicates that the
system should wait or hesitate if a character is not available. The parameter kbdhdl
is the handle to the keyboard device context. This call, of course, pauses the action
and allows the user to view the screen.

The second call to @VioSetMode returns the video context to 80 x 25 text
mode. Calling prtscr prints the intermediate screen buffer on the printer as described
above,. Finally, @DosExit causes the program to exit back to OS/2. Figure 2.4 is the
actual print of the screen output.

Figure 2.4 Output print screen from boxprtl.asm (Figure 2.3b).

62 Introductory OS/2 Assembler Programming Chap. 2

2.3.3 Printing the Graphics Screen under OS/2

In Figure 2.3 a portion of the data segment was devoted to parameters and variables
used by scr_ld and prtscr for the printer dump of the screen context. These variables
appeared earlier in the program of Figure 2.1, where a simple graphics print output
was generated. In this section we address the topic of how to achieve a printout of
the graphics screen context. This is similar to employing GRAPHICS.COM under
DOS except that our screen print program does not run in the background but is
directly callable by the program executing. IBM and Microsoft did not provide the
equivalent of GRAPHICS.COM with their system software during the early releases
of OS/2. Hence this program is both useful for obtaining a hard copy of the graph­
ics screen and as information for illustrating the combined techniques of display
access and graphics printer output.

We have seen how to access the screen physical buffer using API calls. Also,
we saw a routine, scr_ld, used ostensibly to load a buffer scr_buffer. Figure 2.5
illustrates this routine and we see it is a very simple procedure with no API calls.
Only the byte array, scr_buffer, is external. The routine also interleaves the even and

PAGE 55,132
TITLE SCRLD -- This routine loads the screen print buffer (scrld.asm)

DESCRIPTION: This routine accompanies prtscr to load
and print the screen in 320 x 200 mode.
The prtscr buffers are assumed loaded. This is an OS/2
routine.

EXTRN scr_buffer:BYTE

.sall

CSEG SEGMENT PARA PUBLIC 'CODE'
PUBLIC scr_ld

scr_ld PROC FAR

0055:

D056:

ASSUME CS: CSEG

mov cx,100
mov di, o
mov si, O

push ex
mov cx,so

mov al, es: [di]
mov ah,es:[di+2000H]
lea bx,scr buffer[O]
mov ds:[bx+si],al
mov ds:[bx+si+SO],ah
inc si
inc di
loop D056

add si,ao
pop ex
loop 0055

ret
scr_ld ENDP
CSEG ENDS

END

;no. of raster pairs
;index to screen buffer
;index to dummy array

;raster row length

;load even row physical buffer
;odd row physical buffer
;dummy buffer
;load even rows
;odd rows

;skip to next double set

Figure 2.5 Routine to set up temporary screen print buffer.

Sec. 2.3 Accessing the Video Services 63

odd rows from the physical buffer regions into a single buffer area which represents
the full screen context in contiguous fashion.

Figure 2.6a illustrates the function flowchart for the print screen routine. Figure
2.6b contains the actual print screen routine. All the printer parameters referenced in
the earlier data segments appear as external variables and are defined as such at the
beginning of the program. Following the usual loading of sysmac.inc, the program
starts immediately with the code segment, CSEG. The routine prtscr is declared
PUBLIC. In general, our approach will be to treat prtscr and scr_ld as externally
callable modules whenever a printer screen dump is desired. Hence these two
modules will become workhorse functions for illustrating graphics displays and the
reader can expect to encounter them throughout the book. Shortly we will install
them in a general-purpose library GRAPHLIB.LIB where they will be universally
accessible. The only difficult part about programming in this fashion is the large
data segment areas that are needed to set up the calls to these printer procedures
(and the screen parameter areas).

Returning to Figure 2.6, we see immediately the usual call, @DosOpen, to
open the printer device context. This was discussed in reference to Figure 2.1. Since
this program returns to a calling procedure, the ret instruction is implemented rather
than @DosExit. The sequence of API calls to @DosWrite is generally in agreement
with the earlier programming of Figure 2.1 except that the double output is omitted.
A loop is set up to increment 25 times, once for each eight-line graphics print. This
yields a total of 200 rows displaced vertically. These rows correspond to the actual
screen buffer rows for the raster scan. Since each row of the screen buffer consists
of 80 bytes of pixel data, eight rows at a time correspond to blocks of 640 bytes of
data.

The call to ldarray sets up the output for the printer eight rows at a time.
Basically, a small 32-element buffer, coll[], is loaded with the four pixels' worth of
data contained in each byte of the physical display buffer. This is done for the same
byte from eight consecutive rows of the screen buffer. Hence ldarray sets up a group
of pixel data representing a block of the screen context. To do this an array of four
elements, s[O] to s[3], is loaded with a byte of the screen buffer data from
scr_buffer. Each pixel is then masked off from its position in this byte, shifted, and
weighted to generate the correct graphics printer character. The weights, for ex­
ample, contained in the array, w[], must be specified in the calling program's re­
served printer data area in the usual fashion. It is this technique that is used to load
the array coll[].

Returning to prtscr itself, we see that after each eight-line block by 320 col­
umns is loaded and in_buffer[] properly loaded the graphics print is implemented.
This is in the fashion of Figure 2.1 and is followed by a carriage return and line
feed. Once the complete screen dump to the printer has been accomplished, prtscr
closes the printer device handle with

@DosClose dev _hand

and returns to the calling routine.

64 Introductory OS/2 Assembler Programming Chap. 2

OPEN PRINTER
DEVICE

INCREMENT
LINE COUNT

LOAD
PRINTER ARRAY

INCREMENT
ROW POINTER

LOAD
PRINTER BUFFER

WRITE
PRINTER BUFFER

LF&CR

INCREMENT BUFFER
POSITION 640

y

y

CLOSE PRINTER
DEVICE

EXIT

Figure 2.6a Functional flowchart for
prtscr, the screen dump routine.

Sec. 2.3 Accessing the Video Services

PAGE
TITLE

EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN

!Fl

END IF

55,132
prtscr - print screen (prtscr.asm)

DESCRIPTION: This routine prints the screen in
320 x 200 CGA mode. This routine needs the
following data items in the calling routine
data segment:

in buffer db 320 dup(O)
byt'esin dw 320
bytes out dw 0
in bufferl db lBH, 4BH, 64D, OlH
bytesinl dw 4
in buffer2 db ODH, OAH
bytesin2 dw 2
in buff er3 db 1BH,41H,08H
bytesin3 dw 3
in_buf f er4 db 1BH,32H

dev name db 'LPT1 1 ,0
dev-hand dw 0
dev-act dw 0
dev-size dd 0
dev-attr dw 0
dev:=flag dw OOOOOOOlb
dev mode dw 000000001100000lb
dev=rsv dd 0

MM db 40H,lOH,04H,OlH
w db 128,64,32,16,8,4,2,1
coll db 320 dup(?)
N dw ?
N4 dw ?
s db dup(?)
shiftl db 6,4,2,0
eight dw 8
eighty dw 80
bl db 4 dup(?)
four dw 4
ddd dw
sci buff er db 16192 dup(O)
sixf orty dw 640

MM:BYTE,w:BYTE,coll:BYTE
in buffer:BYTE,in bufferl:BYTE,in buffer2:BYTE
in:=buffer3:BYTE,in_buffer4:BYTE -
bytesin:WORD,bytesinl:WORD,bytesin2:WORD,bytesin3:WORD
bytesout:WORD,dev name:BYTE,dev hand:WORD
dev act:WORD,dev size:DWORD,dev-attr:WORD
dev:=flag:WORD,dev_mode:WORD,dev:=rsv:DWORD
N:WORD,N4:WORD
eighty:WORD,eight:WORD,four:WORD,s:BYTE,shiftl:BYTE
scr_buffer:BYTE,ddd:WORD,bl:BYTE,sixforty:WORD

include sysmac.inc

.sall

CSEG SEGMENT PARA PUBLIC 'CODE'
PUBLIC prtscr

Figure 2.6b Routine to print the screen once the physical display buffer is
captured.

65

66 Introductory OS/2 Assembler Programming Chap. 2

prtscr PROC FAR
ASSUME CS:CSEG

;open device
@DosOpen dev name,dev hand,dev act,dev size,dev attr,dev flag,dev mode,dev rsv

cmp ix, o - - - - - - -

ELSEl:

LOOPl:

LOOP2:

Diil:

je ELSEl
;Exit

ret

;initialize device
@DosWrite dev_hand,in_buffer3,bytesin3,bytesout
@DosWrite dev_hand,in_buffer4,bytesin2,bytesout

mov dx,25
mov si,O

push dx
push si
mov ax,si
mul sixforty
mov N,ax

call ldarray

mov di,o
mov cx,80

mov al,coll[di]
mov in buffer(di],al
mov al~coll[di+l]
mov in_buffer[di+l],al
mov al,coll[di+2]
mov in_buffer[di+2],al
mov al,coll[di+3]
mov in buffer[di+3],al
add di~four
loop LOOP2

;number print lines(+l)
;index to 8 row block

;preserve dx
;preserve block count

;640 block size
;Save in N

;initialize 320 column counter
;count of column bytes

;column 1 from byte
;load print buffer
;column 2 from byte
;load print buffer
;column 3 from byte
;load print buffer
;column 4 from byte
;load print buffer
;increment column index

;write print row
@DosWrite dev hand,in bufferl,bytesinl,bytesout
@DosWrite dev-hand,in-buffer,bytesin,bytesout
@DosWrite dev=hand,in=buffer2,bytesin2,bytesout

pop si
pop dx
dee dx
inc si
cmp dx,O
jle DIIl

jmp LOOPl

@DosClose dev_hand
ret

;recall block count
;recall print line count
;decrement count
;increase block count
;check 25 lines printed

;close print device

prtscr endp

ldarray PROC NEAR

00110:

N is the printer row # - 640 byte intervals [0,24]
MM[OJ s 40H, ••• ,MM[3) = OlH (pel mask)
w[OJ = 128,w[l] = 64, ••• ,w(7] = 1

mov si,O
mov cx,320

mov al,O
mov coll[si],al
inc si

:column count initialization
; 320 columns

;clear print buffer

;increment column count

Figure 2.6b (Continued)

Sec. 2.3 Accessing the Video Services 67

loop 00110

mov si,o index into 80 bytes/row
mov N4,si N4 = row byte block count
mov dx,so counter - row bytes

00111:

mov di,O ;raster row counter (1 of 8)
mov ddd,di ;SO block counter
mov ex, a ;raster row counter

00112:
push ex ;preserve row count
mov bp,ddd ;bp = # 80 byte blocks
add bp,N ;add printer line count
push bx ;preserve bx
lea bx,scr_buffer(O] ;load address screen buffer
add bp,bx ;add to index
mov al,ds: [bp+si] ;4 pel bytes
pop bx
mov s[O],al ;1st copy
mov s[l],al ;2nd copy
mov s[2],al ;3rd copy
mov s[3] ,al ;4th copy

and al,MM[O] ;1st pel mask
mov cl,shiftl(OJ ;load 1st pel shift
shr al,cl ;shift right
mov ah,O ;clear upper
mul W(di) ;multiply by weight (row)
mov bl[O] ,al ;save 1st printer column

mov al,s(l] ;load 2nd pel
and al,MM(l] ;mask 2nd pel
mov cl,shiftl[l] ;load 2nd pel shift
shr al,cl ; shift right
mov ah,O ;clear upper
mul w(di] ;multiply by weight (row)
mov bl [l],al ;save 2nd printer column

mov al,s(2] ;load 3rd pel
and al,MM[2] ;mask 3rd pel
mov cl,shiftl[2] ;load 3rd pel shift
shr al,cl ;shift right
mov ah,O ;clear upper
mul w(di] ;multiply by weight (row)
mov bl[2],al ;save 3rd printer col\llDJl

mov al,s[3] ;load 4th pel
and al,MM[3] ;mask 4th pel
mov cl, shiftl (3] ;load 4th pel shift
shr al,cl ;shift right
mov ah,O ;clear upper
mul w[di] ;multiply by weight (row)
mov bl[J],al ;save 4th printer column

push bx ;preserve bx
mov bx,N4 ;counter into print buffer
mov al,bl(O] ;load column N4
add coll [bx]. al
mov al,bl[l] ;load column N4+1
add coll (bx+l], al
mov al,bl[2J ;load column N4+2
add coll(bx+2],al
mov al,bl[3] ;load column N4+3
add coll[bx+J],al
pop bx

Figure 2.6b (Colllinued)

68

00133:

DII2:

pop ex
inc di
add ddd,BO
dee ex
cmp cx,o
jle 00133

jmp 00112

add N4,4
dee dx
inc si
cmp dx,o
jle DII2

jmp 00111

ret
ldarray ENDP
;
CSEG ENDS

END

Introductory OS/2 Assembler Programming

;
;recall print block row index
;increase print block row counter
;increase byte count
;decrease row bound

;add 4 columns to index
;decrement row bytes
;increase screen buffer index

Figure 2.6b (Co11cludecf)

Chap. 2

Figure 2.7a presents a Structure Chart for the modularized boxprtl.asm pro­
gram. Figure 2.7b presents a modularized version of the earlier boxprtl.asm pro­
gram. Here all the graphics and print routines have been assembled as separate
modules. Only the large data segment areas are present with the small FAR proce­
dure that actually plots and prints the two lines.

000

PLOT/PRINT
TWO PARALLEL
LINES

l J
100 200 300

SETUP ACCESS PRINT
DATA SCREEN SCREEN
AREAS

l] l J
210 220 230 240

LOCK PLOT SAVE UNLOCK SCREEN,
SCREEN& HORIZONTAL SCREEN HESITATE, AND
SET MODE LINES BUFFER RETURN

Figure 2.7a Structure Chart for modularized boxprtl.asm program.

Figure 2.8 iUustrates a module that is used to build GRAPHLIB.LIB, a graph­
ics and print library. This module contains the routines needed by twoln.asm to
develop the two-line output in modular fashion. There is only one difference: In the
twoln.asm program the length of the lines must be specified in the routine lineh.

Sec. 2.3 Accessing the Video Services 69

This was implemented to be 320 columns with the earlier version of lineh. That
version was used with twolin.asm, and we have illustrated the more general lineh in
Figure 2.8 because it is characteristic of what appears in GRAPHLIB.LIB. Here, the
beginning and ending column values must be specified in xb and xe, respectively.

PAGE 55, 132
TITLE TWOLN - This program plots/prints 2 lines (twoln.asm)

• 8087

DESCRIPTION: This program plots two lines in protected
mode and hesitates using a keyboard delay. Graphics
mode 05H is used to display the lines •

EXTRN prtscr:FAR,scr_ld:FAR,cls:FAR,clsCGA:FAR,lineh:FAR
I Fl

include sysmac.inc
ENDIF

.sall
dgroup GROUP data

;Suppresses macro lists

STACK SEGMENT PARA STACK 'STACK'
db 256 dup('STACK ')

STACK ENDS

DATA SEGMENT PARA PUBLIC 'DATA'

PUBLIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC

Graphics (printer) variables public

in_buffer,bytesin,bytesout,in_bufferl,bytesinl
in_buffer2,bytesin2,in_buffer3,bytesin3,in_buffer4
dev_name,dev_hand,dev_act,dev_size,dev_attr,dev_flag
dev_mode,dev_rsv,MM,coll,N
s,eight,eighty,four,shiftl
sixforty,N4,ddd,w,bl,scr_buffer

Graphics (screen) variables public

PUBLIC xx,xxx,tr,lc,br,rc,no_line,blank,viohdl,PVBptrl,physell,waitf
PUBLIC dstat,four,two,col,dummy,MASKl,MASKll,row,eighty,address
PUBLIC OFFSETl,y,xb,xe

Screen display variables

;
viohdl equ 0 ;Required video handle
result dw 0 ;Completion code
action equ 0 ;Terminates current thread
tr dw 0 ;Top row screen clear
le dw 0 ;Left column screen clear
br dw 23 ;Bottom row screen clear
re dw 79 ;Right column screen clear
no line dw 25 ;Number lines scrolled
blank dw 0007H ;Blank character pair

CGAm label FAR ;Video mode structure-CGA
lmodeE dw 12 ;structure length
typeCGA db OOOOOlllB ;Mode identifier
colCGA db 2 ;Color option-Mode 5
txtcCGA dw 40 ;text characters/line-ignore
txtrCGA dw 25 ;text lines-ignore

Figure 2.7b Modularized program twoln.asm.

70 Introductory OS/2 Assembler Programming Chap. 2

hrCGA dw 320 ;horizontal resolution
vrCGA dw 200 ;vertical resolution

STDm label FAR ;Video mode structure-aOx25
lmode80 dw 12 ;Structure length
type80 db 000000018 ;Mode identifier-Mode 3+
col80 db 4 ;Color option
txtc80 dw 80 ;text characters/line
txtr80 dw 25 ;text lines
hr80 dw 720 ;horizontal resolution
vrao dw 400 ;vertical resolution

kbd buf db 80 ;Keyboard buffer
lkbd buf dw $-kbd_buf ;Length keyboard buff er
iowait dw 0 ;Wait for CR
kbdhdl equ 0 ;Keyboard handle

waitf equ 1 ;Screen waiting status
dstat db ;Returned status

PVBPtrl label FAR ;Video buffer structure
buf stl dd OB8000H ;Start physical address
buflenl dd 4000H ;Buffer length
physell dw 0 ;OS/2 screen buff er selector

MAS Kl db OlH ;PEL byte mask
MASKll dw OOOlH ;Odd/even row mask
OFFSETl dw 2000H ;Odd row buffer offset
four dw 4
xx dw 7 ;PEL modulo parameter
dummy dw 7 ;80287 dummy "pop"
two db 2
xxx db ;Output value
eighty dw 80
row dw ;row
col dw 7 ;column
address dw ;Address screen dot

x dw 7 ;Box col parameter
y dw ;Box row parameter
xb dw 75 ;Start column
xe dw 150 ;End column
yb dw 25 ;Start row
ye dw 175 ;End row

eight dw 8

Data area below is used for screen print routine.

in buff er db 320 dup(O) :print buffer
bytesin dw 320 :CGA line
bytesout dw 0 ;output count
in bufferl db 1BH,4BH,64D,01H ;printer setup
bytesinl dw 4 ;count bytes In_bufferl
in buff er2 db ODH,OAH ;LF/CR
bytesin2 dw 2 ;in_buffer2 byte count
in buff er3 db 1BH,41H,08H
bytesin3 dw 3 ;in_buffer3 byte count
in_buffer4 db 1BH,32H

dev name db 'LP'l'l' ,O ;name of printer device
dev-hand dw 0 ;device handle
dev=act dw 0

Figure 2.7b (Continued)

Sec. 2.3 Accessing the Video Services

dev size
dev-attr

dd
dw

0
0

dev:=flag dw OOOOOOOlb ;Open File
dev mode dw OOOOOOOOllOOOOOlb ;hdl private,deny none,w/o
dev:=rsv

N4
MM
w
coll
bl
N
shiftl
s
ddd

dd

dw
db
db
db
db
dw
db
db
dw

o ;reserved

?
40H,lOH,04H,OlH ;pel mask
128,64,32,16,8,4,2,1 ;pin weights
320 dup(?) ;column index-printer
4 dup(?)
? ;printer line
6,4,2,0
4 dup(?)
?

;dup copies pel byte

sixf orty dw 640
scr_buffer db 16384 dup(O)

DATA ENDS

CSEG SEGMENT PARA PUBLIC 'CODE'
assume cs:cseg,ds:dgroup

OS21 PROC FAR

call els

@VioSetMode CGAm,viohdl

call clsCGA

@VioScrLock waitf,dstat,viohdl

@VioGetPhysBuf PVBPtrl,viohdl
push physell
pop es

mov ax,o
mov y,ax
call lineh
mov ax,100
mov y,ax
call lineh

call scr_ld

@VioScrUnLock viohdl

;temporary buffer--screen values

;Clear screen

;set CGA Graphics mode

;Clear CGA screen

;Lock screen context

;Get physical buffer selector
;save selector
;Load selector into extra segment

;Draw line

;draw second line

;loads the temporary buffer

;Unlock screen context

@KbdStringin kbd_buf,lkbd_buf,iowait,kbdhdl ;hesitate

OS21
CSEG

@VioSetMode STDm.,viohdl

call prtscr

@DosExit action,result

ENDP
ENDS
END OS21

;BO x 25 alpha mode

;prints temporary buffer

;Terminate process

Figured 2.7b (Concluded)

71

72 Introductory OS/2 Assembler Programming

PAGE 55,132
TITLE GRAPHl - This program is part of graphlib.lib(graphl.ASM)

.8087
I Fl

END IF

EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN

CSEG

els

DESCRIPTION: cls,clsCGA,wdor,and lineh routines

include sysmac.inc

tr:WORD,lc:WORD,br:WORD,rc:WORD,no_line:WORD,blank:WORD
viohdl:WORD,PVBPtrl:FAR,physell:WORD,waitf:WORD
dstat:BYTE,four:WORD,col:WORD,xx:WORD,dummy:WORD
MASKl:BYTE,xxx:BYTE,row:WORD,eighty:WORD,address:WORD
MASKll:WORD,OFFSETl:WORD,y:WORD,xb:WORD,xe:WORD
two:WORD

SEGMENT PARA PUBLIC 'CODE'
assume cs:cseg
PUBLIC cls,clsCGA,wdot,lineh

PROC FAR

@VioScrollUp tr,lc,br,rc,no_line,blank,viohdl
ret

els ENDP

clsCGA PROC FAR

001:

002:

@VioscrLock waitf,dstat,viohdl

@VioGetPhysBuf PVBFtrl,viohdl
push physel1
pop es

mov bp,O
mov al,O

mov es: [bp) ,al
inc bp
cmp bp,lFJFH
jle 001

mov bp,2000H
mov al,O

mov es: [bp] ,al
inc bp
cmp bp,JFJFH
jle 002

@VioScrUnLcck viohdl

ret
clsCGA ENDP

wdot PROC FAR

(col,row) = (x,y)

fild four
fild col

;Lock screen context

;Get physical buffer
;Screen selector
;Load extra segment

;Start offset zero
;Zero attribute-clear

;Clear byte

;Check end 1st buffer

;Offset 2nd buffer-odd
;Zero attribute-clear

;Clear byte

;Check end 2nd buffer

;Unlock screen context

;Load stack with 4
;ST = col, ST(l)

Figm·e 2.8 Listing of partial content of GRAPHLIB.LIB.

Chap. 2

Sec. 2.3 Accessing the Video Services

ELSE1:

IF11:

fprem
fistp xx
fistp dummy
mov al,3
mov bl,byte ptr xx
sub al,bl
mov ah,O
mul two
mov cl,al
mov al,MASKl
shl al,cl
mov xxx,al

mov ax,row
shr ax,l
mov dx,o
mul eighty
mov bx,col
shr bx,1
shr bx,l
add ax,bx
mov address,ax
mov ax,row
and ax,MASKll
cmp ax,o
jle ELSEl

mov ax,address
add ax,OFFSET1
jmp IF11

mov ax,address

mov bp,ax
mov al,xxx

or es:[bp],al

ret
wdot ENDP

lineh

0010:

PROC FAR

y = row position, xb

mov ax,y
mov row,ax

mov ax,Xb

mov col,ax
push ax
call wdot
pop ax
inc ax
cmp ax,xe
jle 0010

ret
lineh ENDP

CSEG ENDS
END

Modulo
Store remainder in xx
Pop stack

;(J - col% 4)
;Clear upper multiplicand

;Shift value for PEL
;PEL color mask
;Shift to correct PEL
;Store buffer value

;Begin address calculation
;Divide row by 2
;Clear upper multiplicand

;Convert column value to bytes

;offset in ax
;Save offset base
;Check even/odd row
;Look for bit O set

;add odd buffer offset

;screen buffer address
;Attribute value for dot

;Write dot

begin, xe = end

;Establish row for wdot

;Establish start column

;Save column value
;Write dot (col,row)
;Recall column
;Increment column
;Check end horizontal line

Figure 2.8 (Concluded)

73

74 Introductory OS/2 Assembler Programming Chap. 2

2.3.4 Connecting Line Graphics with OS/2

Consider two disjoint points on the screen at coordinates (x0,y0) and (x1,y1), respec­
tively. (Assume that xi corresponds to a column value (1,320) and y corresponds to
a row value [1,200].) If we are plotting a dot at these points, it is desirable perhaps
to link two points with a line to show connectivity. Since there may exist pixels on
the screen between these two points, a program could fill in these pixels and the
screen would appear to have a line connecting the two points. To do this, we use
the equation for a straight line:

Yz =Yo+ m(xz-xo)

Here the slope is

m=---

We have used y2 and x 2 as dummy variables to represent the intermediate points in
question.

Unfortunately, the density of dots available on the IBM Color Graphics
Adapter screen is at most 320 x 200 or 640 x 200. Although this seems like a lot
of points, the screen is large and frequently the connecting lines appear jagged. This
is because the slope is effectively quantized. To understand this, consider two points
with slope 0.1 between them. Recognizing that y2, y0, and x0 are all integers in
Equation (2.1), it follows that

Y2 =y0 + (0.1) (x2 -x0)

Clearly, for y2 to increase by one pixel on the screen, x2 - x0 must change by 11
pixels in the horizontal direction. Thus the lines appear broken.

Equations (2.1) and (2.2) are the key to developing techniques for plotting
connecting line graphics in the IBM microcomputer context (or any other raster
scanning device, for that matter). Figure 2.9a contains the flowchart for the connect­
ing line program. Figure 2.9b illustrates the procedure CONNL2, which plots con­
necting lies between the points (XO,YO) and (Xl,Yl) using as dummy variables
(X2,Y2). The remaining variables (NCOUNT, SIGN, and M) are self-explanatory.
The only complex feature of this routine, as it implements Equations (2.1) and (2.2),
is the scaling mechanism. To prevent undue round-off the numerator of the slope is
scaled up by a factor of 100. This is subsequently removed. The sign of the slope
(SIGN) is calculated and used to demarcate the procedure based on positive versus
negative values. The routine wdot is used to plot the connecting line.

Figure 2.10 presents a program, slopeln.asm, that plots a connecting line be­
tween the points

and

(x2, y2) = (275,175)

Sec. 2.3 Accessing the Video Services

PRESERVE
REGISTERS

LOADCONNL2
DATA SEG. ADD.

XO.XSTART
X1 ·XEND

X2-XSTART
YO-YSTART

Y1 ·YEND
Y2-YSTART

GENERATE NUMBER
"CONNECTING" PTS.

CALCULATE
Y1 -YO

SCALE BY 100:
M = 100 (Y1 - YO)

NEGATIVE
SLOPE

CALCULATE
M (X2-XO)

DIVIDE BY NUMBER
"CONNECTING" PTS.

DIVIDE BY 100 TO
REMOVE SCALING

N

y

SCALE BY 100:
M=100(YO-Y1)

POSITIVE
SLOPE

DIVIDE BY 100 TO
REMOVE SCALING

CALCULATE
YO+ M (X2-XO)

WRITE DOT AT
X2ANDY2

INCREMENT X2

N

N

y

CALCULATE
YO - M (X2 - XO)

RETURN
REGISTERS

RETURN

Figure 2.9a Functional flowchart for connecting line routine, conn12.

75

76 Introductory OS/2 Assembler Programming

PAGE 40,132
TITLE CONNL2- CONNECT LINE AND PLOT (CONNL2.ASM)

DESCRIPTION:This routine reads DX
(YSTART,YEND), BX= XSTART, and ex= XEND.
It generates a connecting line between the
points (XSTART,YSTART) and (XEND,YEND) and
plots the points. The routine as part of the
S/2 graphlib.lib

EXTRN YO:WORD,Yl:WORD,Y2:WORD,XO:WORD,Xl:WORD,X2:WORD
EXTRN NCOUNT:WORD,SIGN:WORD,M:WORD,col:WORD,row:WORD

EXTRN wdot:FAR

Connl2 Variables

YO ow 0 ;Y start
Y2 OW 0 ;Y-value (dynamic)
Yl ow 0 ;Y end
XO ow 0 :x start
X2 ow 0 ;X-value (dynamic)
Xl ow 0 ;X end
NCOUNT ow 0 ;Number points in line
SIGN ow 0 ;Sign slope
M ow 0 :Scaled partial slope

CLINE SEGMENT PARA PUBLIC 'CODE'
PUBLIC CONNL2

CONNL2 PROC FAR
ASSUME CS: CLINE

PUSH OS
PUSH AX
PUSH BX
PUSH ex
PUSH DX
PUSH DI
PUSH SI

MOV AL,DH
MOV AH,0
MOV YO,AX
MOV Y2,AX
MOV AL,DL
MOV AH,O
MOV Yl,AX
MOV XO,BX
MOV X2,BX
MOV Xl,CX

MOV AX,Xl
SUB AX,XO
MOV NCOUNT,AX

MOV DX,O
MOV AX,Yl
SUB AX,YO

;Load screen coordinates
:DH contains YSTART
:Clear top half AX
:Start Y-point
:Also save YSTART in y
;DL contains YEND
:Clear top half AX
;End Y-point
:Start X-point
;Save XSTART in x also
:End X-point

;Generate count index

;Larger x-value in increment
;Calculate X-increment
;Number of X-points to connect
;Generate slope
;Clear upper numerator register

;Begin calculation Yl - YO for slope

Figure 2.9b Program code for conn12, the connecting line routine.

Chap. 2

Sec. 2.3 Accessing the Video Services

JB ELSEl

ELSEl:

IIFl:
001:

ELSE2:

IIF2:

ELSE3:

IIF3:

POP SI
POP DI
POP DX
POP ex
POP BX
POP AX
POP DS
RET

CONNL2 ENDP

CLINE ENDS
END

MOV CX,100
MOV DX,O
MUL ex
MOV M,AX
MOV AX,1
MOV SIGN,AX
JMP IIFl

MOV AX,YO
SUB AX,Yl
MOV CX,100
MOV DX,O
MUL ex
MOV M,AX
MOV AX,O
MOV SIGN,AX

MOV AX,X2
SUB AX,XO
MOV DX,O
MUL M
DIV NCOUNT
MOV CX,100
CMP AX,CX
JB ELSE2

MOV DX,O
DIV ex
JMP IIF2

MOV AX,O

MOV BX,SIGN
CMP BX,1
JB ELSE3

;Scale slope by 100
;Clear upper multiplicand register

;Slope in M
;Sign negative for slope
;Sign increment Y-axis points

;Positive slope
;Calculate (Yl - YO)
;Scale by 100
;Clear upper register

;Slope in M
;Positive slope
;Sign deecision Y-axis points

;(X - XO)
;Clear upper multiplicand register
;Multiply by slope numerator
;Begin completion slope calculation
;Value corresponding to slope 1
;Check for slope less 1

;Jump slope less/= 1
;Clear upper register
;Remove scaling

;O slope

;Jump positive slope

MOV BX,YO
ADD AX,BX
JMP IIF3

;Load Y-start value
;Add Mx(X-XO)

MOV BX,YO
SUB BX,AX
MOV AX,BX

;Positive slope
;Generate YO - M x (X - XO)
;save in AX

MOV CX,X2
MOV DX,AX

MOV col,CX
MOV row,DX
CALL wdot

INC X2
MOV BX,X2
CMP BX,Xl
JBE 001

CONNL2

;X-position
;Y-position

;write dot

;OS/2 dot routine

;Next point

;Ck X<= Xl

Figure 2.9b (Concludecf)

77

78 Introductory OS/2 Assembler Programming

PAGE 55,132
TITLE SLOPELN - This program plots/prints sloped line (slopeln.asm)

• 8087
EXTRN
I Fl

END IF

dgroup

STACK

STACK

DATA

PUBLIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC

PUBLIC
PUBLIC
PUBLIC

DESCRIPTION: This program plots a sloped line in protected
mode and hesitates using a keyboard delay. Graphics
mode 05H is used to display the lines •

prtscr:FAR,scr_ld:FAR,cls:FAR,clsCGA:FAR,lineh:FAR,connl2:FAR

include sysmac.inc

.sall ;Suppresses macro lists
GROUP data

SEGMENT PARA STACK 'STACK'
db 256 dup('STACK ')
ENDS

SEGMENT PARA PUBLIC 'DATA'

Graphics (printer) variables public

in_buffer,bytesin,bytesout,in_bufferl,bytesinl
in_buffer2,bytesin2,in_buffer3,bytesin3,in_buffer4
dev name,dev hand,dev act,dev size,dev attr,dev flag
dev-mode,dev-rsv,MM,0011,N - - -
s,eTght,eighty,four,shiftl,scr_buffer
sixforty,N4,ddd,w,bl

Graphics (screen) variables public

xx,xxx,tr,lc,br,rc,no_line,blank,viohdl,PVBPtrl,physell,waitf
dstat,four,two,col,dummy,MASKl,MASKll,row,eighty,address
OFFSETl,y,xb,xe

Sloped line public variables

PUBLIC XO,Xl,X2,YO,Yl,Y2,M,NCOUNT,SIGN

Sloped line declarations

XO dw 0 ;x start
Xl dw 0 ;x end
X2 dw 0 ;dummy x
YO dw 0 ;y start
Y1 dw 0 ;y end
Y2 dw 0 ;dummy y
NCOUNT dw 0 ;number points in line
SIGN dw 0 :sign slope
M dw 0 ;scaled partial slope

Figure 2.10 The program slopeln.asm, which plots on the screen a connecting
line from (row,col) = (25,25) to (175,275).

Chap. 2

Sec. 2.3 Accessing the Video Services

viohdl
result
action
tr
le
br
re

equ
dw
equ
dw
dw
dw
dw

no line dw
blank dw

CGAm
lmodeE
typeCGA
eolCGA
txteCGA
txtrCGA
hr CG A
vrCGA

STDm
lmode80
type80
col BO
txtc80
txtrao
hr Bo
vrso

label
dw
db
db
dw
dw
dw
dw

label
dw
db
db
dw
dw
dw
dw

kbd buf db
lkbd buf dw
iowait dw
kbdhdl equ

waitf
dstat

equ
db

PVBptrl
buf stl
buflenl
physell dw

label
dd
dd

MASKl db
MASKll dw
OFFSETl dw
four dw
xx dw
dummy dw
two db
xxx db
eighty dw
row dw
col dw
address dw

x dw
y dw
xb dw
xe dw
yb dw
ye dw

eight dw

Screen display variables

0
0
0
0
0
23
79
25
0007H

FAR
12
000001118
2
40
25
320
200

FAR
12
OOOOOOOlB
4
80
25
720
400

80
$-kbd buf
0 -

0

1
?

FAR
OBBOOOH
4000H
0

OlH
OOOlH
2000H
4
?
?
2
?
80
?
?
?

?
?
75
150
25
175

8

;Required video handle
;Completion code
;Terminates current thread
;Top row screen clear
;Left column screen clear
;Bottom row screen clear
;Right column screen clear
;Number lines scrolled
;Blank character pair

;Video mode structure-CGA
;Structure length
;Mode identifier
;Color option-Mode 5
;text characters/line-ignore
;text lines-ignore
;horizontal resolution
;vertical resolution

;Video mode structure-80x25
;Structure length
;Mode identifier-Mode 3+
;Color option
;text characters/line
;text lines
;horizontal resolution
;vertical resolution

;Keyboard buffer
;Length keyboard buffer
;Wait for CR
;Keyboard handle

;Screen waiting status
;Returned status

;Video buffer structure
;Start physical address
;Buffer length
;OS/2 screen buffer selector

;PEL byte mask
;Odd/even row mask
;Odd row buffer offset

;PEL modulo parameter
; 80287 dummy "pop"

;Output value

;row
;column
;Address screen dot

;Box col parameter
;Box row parameter
;Start column
;End column
;Start row
;End row

Figure 2.10 (Continued)

79

80 Introductory OS/2 Assembler Programming

Data area below is used for screen print routine.

in buffer db 320 dup(O) ;print buffer
by"tesin dw 320 ;CGA line
bytesout dw 0 ;output count
in bufferl db 1BH,4BH,64D,01H ;printer setup
bytesinl dw 4 ;count bytes In_bufferl
in buff er2 db ODH,OAH ;LF/CR
byt'esin2 dw 2 ;in_buffer2 byte count
in buff er3 db 1BH,41H,08H
bytesin3 dw 3 ;in_buffer3 byte count
in_buf fer4 db lBH, 32H

dev name db 'LPTl I, 0 ;name of printer device
dev-hand dw 0 ;device handle
dev-act dw 0
dev-size dd 0
dev-attr dw 0
dev:::nag dw OOOOOOOlb ;Open File
dev_mode dw 0000000011000001b ;hdl private,deny none,w/o
dev_rsv dd a ;reserved

N4 dw ?
MM db 40H, lOH, 04H, OlH ;pel mask
w db 128,64,32,16,S,4,2,l ;pin weights
coll db 320 dup(?)
bl db 4 dup(?)
N dw ?
shiftl db 6,4,2,0
s db 4 dup(?)
ddd dw ?
sixforty dw 640
scr_buffer db 16384 dup(O)

DATA ENDS

CSEG SEGMENT PARA PUBLIC 'CODE'
assume cs:cseg,ds:dgroup

OS21 PROC FAR

call els

@VioSetMode CGAm,viohdl

call clsCGA

@VioScrLock waitf,dstat,viohdl

@VioGetPhysBuf PVBptrl,viohdl
push physell
pop es

mov dh,25
mov dl,175
mov bx,25
mov cx,275
call connl2

;column index-printer

;printer line

;dup copies pel byte

;temporary buffer--screen values

;Clear screen

;Set CGA Graphics mode

;Clear CGA screen

;Lock screen context

;Get physical buffer selector
;Save selector
;Load selector into extra segment

;y-begin
;y-end
;x-begin
;x-end
;plot sloped line

call scr_ld ;loads the temporary buffer

Figure 2.10 (Continued)

Chap. 2

Sec. 2.3 Accessing the Video Services 81

@VioScrUnLock viohdl ;Unlock screen context

@KbdStringin kbd_buf,lkbd_buf,iowait,kbdhdl ;hesitate

@VioSetMode STDm,viohdl ;SO x 25 alpha mode

call prtscr ;prints temporary buffer

@DosExit action,result ;Terminate process

OS21 ENDP
CSEG ENDS

END OS21

Figure 2.10 (Concluded)

This program calls conn12 to plot the line on the screen in the usual fashion. Note
that the assembler is case insensitive. Next the print of the graphics screen is accom­
plished. The nine variables needed by the connecting line module, conn12, are
declared public and specified in the data segment of slopeln.asm. Figure 2.11 illus­
trates the sloped-line output.

·-·--·--·--·--·--·-·--·----...

--,
Figure 2.11 Screen dump of sloped connecting line from slopeln.asm.

Figure 2.12 illustrates a procedure bboxl.asm that plots a box based on gen­
eral parameter inputs: (xb,yb) and (xe,ye) being the opposite corners of the box,
with the first the upper left side and the second the lower right side. Figure 2.13 is
the procedure linev, which is the corollary to lineh, and this procedure plots aver­
tical line. Figure 2.14 contains the contents of the library module GRAPHLIB.LIB.
This module has all the graphics primitives and graphics printer screen dump
modules.

82 Introductory OS/2 Assembler Programming

PAGE 55,132
TITLE BBOXl - This is the boxx module (bboxl.asm)

DESCRIPTION: This module generates a box in protected
mode. It contains a procedures: boxx

.8087

EXTRN y:WORD,yb:WORD,ye:WORD,x:WORO,xb:WORD,xe:WORD,lineh:FAR
EXTRN row:WORD,col:WORO,wdot:FAR,linev:FAR

CSEG SEGMENT PARA PUBLIC 'CODE'
assume cs:cseg
PUBLIC boxx

boxx PROC FAR

xb = x-begin,xe = x-end,yb = y-begin,ye = y-end

mov ax,yb
mov y,ax
call lineh
mov ax,ye
mov y,ax
call lineh
mov ax,xb
mov x,ax
call linev
mov ax,xe
mov x,ax
call linev

ret
boxx ENDP

CSEG ENDS
END boxx

;Top box line

;Draw top horizontal line
;Bottom box line

;Draw bottom horizontal line
;Left box line

;Draw left vertical line
;Right box line

;Draw right vertical line

Figure 2.12 Routine bboxl.asm, which plots box and contains procedure boxx.

Chap. 2

Finally, Figure 2.15 illustrates a program that exercises boxx, the procedure for
plotting a box based on the module bboxl.asm. This program is called bbox.asm
and links as follows:

[c:\)] link bbox

IBM Linker/2
Copyright(c)
Copyright(c)

Version 1. 00
IBM Corporation 1987
Microsoft Corp 1983-1987. All rights reserved.

Run File [BBOX.EXE]:
List Files (NOL.MAP):
Libraries [.LIB]: doscalls + graphlib
Definitions File [NOL.DEF]:

Sec. 2.3 Accessing the Video SeNices

PAGE 55,132
TITLE LLINEV - This is the linev module (llinev.asm)

DESCRIPTION: This module generates a vertical line in protected
mode. It contains a procedure: linev

.8087

EXTRN y:WORD,yb:WORD,ye:WORD,x:WORD,xb:WORD,xe:WORD
EXTRN row:WORD,col:WORD,wdot:FAR

CSEG SEGMENT PARA PUBLIC 'CODE'
assume cs:cseg
PUBLIC linev

linev PROC FAR

x = col position, yb begin, ye = end

0020:

mov ax,x
mov col,ax

mov ax,yb

mov row,ax
push ax
call wdot
pop ax
inc ax
cmp ax,ye
jle 0020

ret
linev ENDP

CSEG ENDS
END linev

;Establish column for wdot

;Establish start row

;Save row value
;Write dot (col,row)
;Recall row
;Increment row
;Check end vertical line

Figure 2.13 Vertical line procedure, linev.

BOXX •.••••.••••••• bboxl
CLSCGA •••.••••.••• graphl
LINEV 11 inev
SCR_LD ••••.•••.••• scrld

scrld Offset:
SCR_LD

prtscr Offset:
PRTSCR

bboxl Offset:
BOXX

llinev Offset:
LIN EV

graphl Offset:
CLS CLSCGA

OOOOOOlOH

OOOOOOaOH

000006bOH

000007b0H

00000870H

CLS •••••••.••••••• graphl
LINEH ••.•••••.•••• graphl
PRTSCR •••••••••••• prtscr
WOOT •••••••••••••• graphl

Code and data size: 29H

Code and data size: 233H

Code and data size: 2dH

Code and data size: lbH

Code and data size: l04H
LINEH WOOT

Figure 2.14 Listing of GRAPHLIB.LIB, illustrating the screen graphics and
screen print routines.

83

84 Introductory OS/2 Assembler Programming

PAGE 55,132
TITLE BBOX - This program plots/prints a box using modules (bbox.asm)

DESCRIPTION: This program plots a box in protected
mode and hesitates using a keyboard delay. Graphics
mode 05H is used to display the lines •

• 8087
EXTRN prtscr:FAR,scr_ld:FAR,cls:FAR,clsCGA:FAR,boxx:FAR
I Fl

ENDIF

dgroup

STACK

STACK

DATA

PUBLIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC

include sysmac.inc

.sall ;Suppresses macro lists
GROUP data

SEGMENT PARA STACK 'STACK'
db 256 dup('STACK ')
ENDS

SEGMENT PARA PUBLIC 'DATA'

Graphics (printer) variables public

in_buffer,bytesin,bytesout,in_bufferl,bytesinl
in_buffer2,bytesin2,in_buffer3,bytesin3,in_buffer4
dev name,dev hand,dev act,dev size,dev attr,dev flag
dev-mode,dev-rsv,MM,c011,N - - -
s,eTght,eighty,four,shiftl,scr_buffer
sixforty,N4,ddd,w,bl

Graphics (screen) variables public

PUBLIC xx,xxx,tr,lc,br,rc,no_line,blank,viohdl,PVBFtrl,physell,waitf
PUBLIC dstat,four,two,col,dummy,MASKl,MASKll,row,eighty,address
PUBLIC OFFSETl,y,xb,xe,x,yb,ye

screen display variables

viohdl equ 0 ;Required video handle
result dw 0 ;Completion code
action equ 0 ;Terminates current thread
tr dw 0 ;Top row screen clear
le dw 0 ;Left column screen clear
br dw 23 ;Bottom row screen clear
re dw 79 ;Right column screen clear
no line dw 25 ;Number lines scrolled
blank dw 0007H ;Blank character pair

CGAm label FAR ;Video mode structure-CGA
lmodeE dw 12 ;Structure length
typeCGA db OOOOOlllB ;Mode identifier
colCGA db 2 ;Color option-Mode 5
txtcCGA dw 40 ;text characters/line-ignore
txtrCGA dw 25 ;text lines-ignore
hrCGA dw 320 ;horizontal resolution
vrCGA dw 200 ;vertical resolution

Chap. 2

Figure 2.15 Program that graphs box on screen and then dumps output to printer.

Sec. 2.3 Accessing the Video Services 85

STDm label FAR ;Video mode structure-80x25
lmode80 dw 12 ;structure lenqth
type80 db 000000018 ;Mode identifier-Mode 3+
col80 db 4 ;Color option
txtc80 dw 80 ;text characters/line
txtr80 dw 25 ;text lines
hr80 dw 720 ;horizontal resolution
vr80 dw 400 ;vertical resolution

kbd buf db 80 ;Keyboard buffer
lkbd buf dw $-kbd_buf ;Length keyboard buff er
iowait dw 0 ;Wait for CR
kbdhdl equ 0 ;Keyboard handle
;
waitf equ 1 ;Screen waiting status
dstat db ;Returned status

PVBPtrl label FAR ;Video buffer structure
buf stl dd OB8000H ;Start physical address
buflenl dd 4000H ;Buffer length
physell dw 0 ;OS/2 screen buff er selector

MAS Kl db OlH ;PEL byte mask
MASKll dw OOOlH ;Odd/even row mask
OFFSETl dw 2000H ;Odd row buffer offset
four dw 4
xx dw 7 ;PEL modulo parameter
dummy dw 7 ; 80287 dummy 11pop 11

two db 2
xxx db 7 ;output value
eighty dw 80
row dw 7 ;row
col dw 7 ;column
address dw 7 ;Address screen dot

x dw ? ;Box col parameter
y dw 7 ;Box row parameter
xb dw 75 ;Start column
xe dw 150 ;End column
yb dw 25 ;Start row
ye dw 175 ;End row

eight dw 8

Data area below is used for screen print routine.

in buffer db 320 dup(O) ;print buffer
bytesin dw 320 ;CGA line
bytesout dw 0 ;output count
in buff erl db 1BH,4BH,64D,01H ;printer setup
bytesinl dw 4 ;count bytes In_bufferl
in buff er2 db ODH,OAH ;LF/CR
bytesin2 dw 2 ;in_buffer2 byte count
in buffer3 db 1BH,41H,08H
bytesinJ dw 3 ; in_buffer3 byte count
in_buffer4 db lBH, 32H

dev name db 1 LPT1 1 , 0 ;name of printer device
dev-hand dw 0 ;device handle
dev-act dw 0
dev-size dd 0
dev:::attr dw 0

Figure 2.15 (Continued)

86

dev_flag dw
dev mode dw
dev=:rsv dd

N4 dw
MM db
w db
coll db
bl db
N dw
shiftl db
s db
ddd dw
sixforty dw

Introductory OS/2 Assembler Programming

OOOOOOOlb ;Open File
OOOOOOOOllOOOOOlb ;hdl private,deny none,w/o
o ;reserved

?
40H,lOH,04H,OlH ;pel mask
128,64,32,16,8,4,2,1 ;pin weights
320 dup(?) ;column index-printer
4 dup(?)
? ;printer line
6,4,2,0
4 dup(?)
?
640

;dup copies pel byte

scr_buffer db 16384 dup(O) ;temporary buffer--screen values

DATA ENDS

CSEG SEGMENT PARA PUBLIC 'CODE'
assume cs:cseg,ds:dqroup

OS21 PROC FAR

call els

@ViosetMode CGAm,viohdl

call clsCGA

@VioscrLock waitf ,dstat,viohdl

@VioGetPhysBuf PVBPtrl,viohdl
push physell
pop es

call boxx

call scr_ld

@VioScrUnLock viohdl

;Clear screen

;Set CGA Graphics mode

;Clear CGA screen

;Lock screen context

;Get physical buffer selector
;Save selector
;Load selector into extra segment

;generate box

;loads the temporary buffer

;Unlock screen context

@KbdStrinqin kbd_buf,lkbd_buf,iowait,kbdhdl ;hesitate

OS21
CSEG

@VioSetMode STDm,viohdl

call prtscr

@DosExit action,result

ENDP
ENDS
END OS21

;80 x 25 alpha mode

;prints temporary buffer

;Terminate process

Figure 2.15 (Concluded)

Chap. 2

Figure 2.16 presents the output for the box. It assumes the following corner values
based on the data segment specification:

(xb, yb) = (75,25)

and

(xe, ye) = (150,175)

It is important to recognize that the method for accessing the OS/2 physical

Sec. 2.4 Software Design 87

display buffer is initially cumbersome since the display context must first be locked.
Good programming practice, however, would implement this step only once during
execution of a given process or thread. Then full-screen DMA is permitted. Al­
though the advantage of using multitasked display contexts under OS/2, for example,
is lost, the programmer still has access to the very large address space provided by
OS/2.

I

l Figure 2.16 Box screen print from
bbox.asm (Figure 2.15).

It is the benefits of multitasking and memory access that highlight OS/2's
attributes. If animation or rapid update of the screen context is needed, the applica­
tion must be structured to maximize its screen access while continuing to take
advantage of other task-sharing arrangements and memory requirements in a multi­
tasking environment.

2.4 SOFTWARE DESIGN

No introductory programming discussion would be complete without mentioning
software design techniques. Three principals come to mind:

1. Modular code
2. Top-down design
3. Structured programming

These form the foundation for developing optimized computer programs [6,7].
We have seen examples of the use of modular code in the examples presented

so far. Basically, programs have been developed on existing independent smaller
modules (such as prtscr, bbox, lineh, linev, ...).These modules may be linked as
separately assembled (in this case) routines or appear in libraries. The entire notion
of the API embodies a modular approach to handling system services.

Top-down design is somewhat straightforward and starts with a high-level
statement of the problem to be solved. From this approach a flowchart can be

88 Introductory OS/2 Assembler Programming Chap. 2

developed or, alternatively, a written language rendition of what the program will
accomplish. These two approaches lead naturally into program development. It is not
the intention of this book to teach design fundamentals; hence we will usually
confine ourselves to the actual code implemented in each instance. It is assumed that
the reader can generate design artifacts in either flowchart format or pseudo-code.
General guidelines tend to suggest flowcharts when program dynamics are particu­
larly important. As size becomes a factor, the interfaces tend to dominate program­
ming considerations and pseudo-code becomes desirable.

Finally, we mentioned structured programming. Assembler is intrinsically
unstructured because of the conditional and unconditional jump instructions. Guide­
lines exist, however, that permit structured techniques with assembly language and
very understandable code results [8,9). As Martin points out (reference 6), an excel­
lent starting point for top-down design is the development of a structure chart that
links each module in static fashion. Structured code accomplishes similar design
tasks by forcing the designer to limit access to each module. Parameter passing be­
comes very orderly and the variables used within a module are maintained locally
except for those passed externally. The flow of execution is orderly and downward
avoiding unrestrained jumps within the code. In BASIC and C, for example, the
goto instruction is avoided. Entry points are accessed in traceable fashion. We will
discuss C programming in a subsequent chapter, and the syntax of the language
naturally lends itself to structured code. In assembly language the use of syntax of
the form

cmp ax,parm
jle ELSEl

jmp IIFl
ELSEl:

IIFl:

implements the familiar IF ... THEN ... ELSE ... structure. Note the use of uncondi­
tional jumps to do this. The reader must, of course, recognize that any decision logic
in a higher-level language results in conditional or unconditional jumps at the assem­
bler or machine code level. The fact that we can structure such an assembler, how­
ever, yields significant improvement in clarity and understanding.

2.5 SUMMARY

The goal of this chapter was to introduce assembler programming for OS/2 with a
particular emphasis on the techniques needed to access the Application Program
Interface. It was the use API services, as demonstrated through specific examples,
that we intended to emphasize. We developed examples of printer and display ac­
cess within the API context. A set of program modules was written that allow the

Problems 89

user to obtain a screen dump for the CGA graphics screen. This is similar to the fa­
miliar DOS GRAPHICS.COM routine except that they are not terminate and stay
resident (TSR) programs but must be called as active program modules. Similarly,
they must be linked to the user program either as stand-alone modules or from the
library GRAPHLIB.LIB established in the chapter.

It is clear from the chapter that the API must be accessed in more structured
fashion than the normal interrupt call, where free access to the general-purpose
registers is permitted. The advantages of accessing memory above 1 MB are pro­
vided by OS/2, and the API architecture is a consequence of this process. Also, the
features of multitasking require a Protected Mode structure. Hence these two aspects
of programming with Intel hardware such as the 80286 cause programming struc­
tures such as the API to become essential. This, then, is the justification for learn­
ing the API and using OS/2. Eventually, when the programming applications reach
a size where only OS/2 can offer the memory allocation or severe multitasking
constraints are placed on the user, DOS will inevitably be replaced by OS/2. Thus
the programming techniques of this chapter are the beginning approaches to learn­
ing how to manage IBM's next-generation microcomputer operating system.

REFERENCES

1. Iacobucci, E., OS/2 Programmer's Guide, Osborne McGraw-Hill, Berkeley, CA, 1988.
2. Letwin, G., Inside OS/2, Microsoft Corporation, Redmond, WA, 1988.
3. Operating System/2 Programmer's Toolkit, Programmer's Guide, International Business

Machines Corporation, Boca Raton, FL, 1987.
4. IBM Macro Assembler/2, Language Reference and Fundamentals, International Business

Machines Corporation, Boca Raton, FL, 1987.
5. EPSON FX-85 and FX-185 Printers User's Manual, Seiko Epson Corporation, Nagano,

Japan, 1985.
6. Martin, J., and McClure, C., Structured Techniques for Computing, Prentice-Hall, Inc.,

Englewood Cliffs, NJ, 1985.
7. Alagic', S., and Arbib, M. A., The Design of Well-Structured and Correct Programs,

Springer-Verlag, New York, 1978.
8. Scanlon, L., IBM PC and XT Assembly Language, Brady Communications Company,

Inc., New York, Chap. 11, 1985.
9. Godfrey, J. T., IBM Microcomputer Assembly Language: Beginning to

Advanced, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1989.

PROBLEMS

2.1 Output of a character in the printer graphics mode causes the pins in the print head to
fire, depending on the value of the character (0-255). Which pins fire for the Epson

90 Introductory OS/2 Assembler Programming Chap. 2

FX-85 for the following values: (a) 174; (b) 203; (c) 85? Assume that the top pin
is number 8.

2.2 The macro call

@VioGetPhysBuf PVBPrtl,rsv

is an example of the OS/2 access to the physical buffer selector (contained in the
structure PVBPrtl). If the calling sequence for VIOGETPHYSBUF, the API routine, is
given by

EXTRN VioGetPhysBuf:FAR

PUSH@ Label Data structure (PVBPrtl)
PUSH word reserved
CALL VIOGETPHYSBUF

write a macro to achieve the call indicated above. Use the macros defined in the chap­
ter: @define, @pushw, and @pushs.

2.3 As in Problem 2.2, if the macro @VioScrLock has the calling sequence

EXTRN

PUSH
PUSH@
PUSH
CALL

VioScrLock:FAR

word waitflag
BYTE status
word handle
VIOSCRLOCK

define a macro to achieve the call using the macros defined in the chapter: @define,
@pushw, and @pushs.

2.4 The EGA graphics on the IBM Monochrome Display is a 640 x 350 graphics mode
(ModeHexF). The first eight pixels on the screen are defined by the contents of
memory in location AOOOOH. The screen buffer is mapped into two planes (MapO and
Map2). Assume that only MapO is specified (a default value of white on the normal
background) and this subtends the first 28,000 bytes at AOOOOH. If each bit corre­
sponds to 0 (black) or l(white), what changes would be needed to the programs in
this chapter to allow the code to properly access the EGA screen buffer?

2.5 Write a code fragment that generates the note C (5000 Hz) for 1 second.
2.6 Write a code fragment that plots a straight line from (row, col) = (25,75) to (165,235).

Use conn12.
2.7 Write a code fragment that beeps the speaker for 5 seconds (1000 Hz) following the

striking of a key on the keyboard.
2.8 Is it possible to program OS/2 using simply the OS/2 supplied by IBM? Explain.
2.9 When accessing the physical screen buffer, a segment selector was obtained using

VioGetPhysBuf. This selector was pushed and popped into es, the extra segment regis­
ter. Screen buffer address locations were then accessed using, for example, a segment
override:

es: [bp]

Problems 91

where bp was the offset in the screen buffer. What key assumption permits this ad­
dressing scheme, and how is it implemented?

2.10 Structure labels used by the API Toolkit services represent FAR or NEAR loca­
tions? Why?

2.11 A structure chart lays out the hierarchy of control for a program. Consider a struc­
ture chart that calculates a Gaussian random array and plots it on the screen. What
deficiency exists in this presentation assuming that the functional characteristics of
each block are accurate and complete?

000

PLOT RANDOM
ARRAY

l
l 1 l

100 200 300

INPUT GENERATE PLOT
SEED ARRAY ARRAY

1 l l l 1
210 220 230 310

SET GENERATE PRODUCE SCREEN
NUMBER RANDOM GAUSSIAN PRESENTATION
SCALING

2.12 In ordinary printing the line spacing is 1/6 inch. The command

ESC A (n)

produces a line spacing of n/72 of an inch. What command is needed in prtscr to
return the printer to normal spacing?

2.13 A key aspect of OS/2 programming is that the device driver Interrupt Service Rou­
tine (JSR) is the only type of program authorized to receive hardware interrupts.
Each device driver can have an JSR to process the device interrupts. When the in­
terrupt routine is given control, it has access to the GDT but not any specific LDT.
The routines must rely on the DevHlp services to access application buffers. These
routines run at the highest level of the kernel mode. Are they preemptable by OS/2
task switches? Explain.

2.14 Explain why scr_ld must be called with the screen locked and why prtscr should not
be called with the screen locked.

2.15 When drawing a line segment from

(row,column) = (10,10)

to

(row,column) = (20,110)

92 Introductory OS/2 Assembler Programming Chap. 2

how many small straight-line raster segments will be visible in the actual plotted
line?

2.16 DosExitCritSec executes after DosEnterCritSec and reenables thread switching for
the current process. A count of the number of outstanding DosEnterCritSec requests
is maintained. When are these functions likely to be used?

2.17 Observe that DosExit is used only at the conclusion of the main calling module.
What are the criteria for this exit, and how should other modules be terminated?

3 Memory Management
and Multitasking
with Assembler

OS/2 is first and foremost a multitasking and memory management operating sys­
tem. It was developed around the Intel 80286 Protected Mode hardware implemen­
tation and employs the features of this hardware, such as segment selector protection
mechanisms, to achieve multitasking operation. The goal of this chapter is to ac­
quaint the reader with these features of OS/2 in an assembler programming environ­
ment.

3.1 MEMORY MANAGEMENT AND MULTITASKING

Memory management and multitasking represent static and dynamic aspects of
programming and are intimately tied to the protection mechanisms of the 80286 for
the OS/2 environment. The 80286 has three basic protection aspects:

1. Isolation of system software from end-user applications
2. Isolation of users from each other
3. Data-type checking

In terms of a ringed picture, the 80286 provides a four-level increasingly privileged
protection mechanism that isolates applications from the various layers of system

93

115

94 Memory Management and Multitasking with Assembler Chap. 3

software. To understand protection on the 80286, we must begin with its basic parts:
segments and tasks. It is interesting that this division leads naturally into memory
management and multitasking. Both are interrelated as pointed out above and yield
a full Protected Mode picture.

The following illustrates a complete 80286, descriptor cache register (as we
have seen in Chapter 1):

Selectors

0147 40139 16115 ol

Segment Register Access Segment Base Segment Size
Rights Address

Program Visible I Program Invisible

(loaded by program) (loaded by CPU)

The important features of this register that should be recognized are that in the
invisible portion of the register both the access rights byte (with segment type and
privilege level) and size are used to determine protection priority and the segment
base address confirms that the selected segment is valid. Hence a hardware imple­
mentation is used to restrict segment access.

By way of review, dynamically each task consists of up to four active seg­
ments (with segment registers CS, SS, DS, and ES), as we have seen. The method­
ology above is used to control segment protection, and since the hardware can
dynamically check protection data, this extends into the task realm. The protection
data are used at two different times dynamically: upon loading a segment register
and upon each reference to the selected segment. Each task can address up to a gi­
gabyte (214-2 segments of up to 65,536 bytes) of virtual memory defined by the
task's LDT and the system GDT. The task's private address space (LDT) can oc­
cupy up to one-half this memory. The rest is defined by the GDT. The CPU has a
set of base and limit registers that point to the GDT and the LDT of the currently
running task. These registers exist for CS, SS, DS, and ES as defined for the task.
An active task can only load selectors that reference segments defined by its LDT
descriptors or the GDT. Since a task cannot reference descriptors in other LDTs,
protection violations cannot occur.

All descriptor tables have a limit used by the protection hardware to ensure
that correct address space size allocation occurs. This ensures that separation of tasks
takes place. The third ingredient in this protection mechanism is the implementation
of privilege-level checks based on the access rights byte assigned privilege level.
The 80286 privilege-levels are:

1. Level 0: The kernel (most trusted) includes memory management, task isola­
tion, multitasking, intertask communication, and 1/0 resource control.

2. Level 1: System Services (next most trusted level) provides high-level func-

Sec. 3.1 Memory Management and Multitasking 95

tions such as file access scheduling, character 1/0, data communications, and
resource allocation.

3. Level 2: Custom Extensions (third most trusted level) allows standard sys
tern software to be customized: database managers, logical file access services,
and so on.

4. Level 3: Applications (least trusted) include normal programming environ­
ment.

It is important to recognize the protection intrinsic to this hierarchy. Functions
catastrophic to system failure are more tightly protected. This ensures that tasking
can continue to execute in the event of single-task failures. Descriptor privilege,
including code segment privilege, is assigned when the descriptor is created. The
system designer assigns privilege directly when the system is constructed or indi­
rectly using a loader. This is how OS/2 functions. OS/2 was designed with appro­
priate access byte values associated with the kernel and each system service seg­
ment. The linker (and loader) assign privilege at a higher level (less trusted) to all
applications software subsequently developed. The programmer does not normally
have access to this privilege specification, and we will not tamper with this mecha­
nism. These are, however, the techniques used by OS/2 to provide memory manage­
ment and multitasking protection (segment base checking, limit checks, and access
rights byte validation).

Task privilege is dynamic and can change only when control transfers from
one code segment to another. Descriptor privilege, including code segment privilege,
is assigned when the descriptor is created. Clearly, as a task executes, the privilege
level of the task must correspond to that of the code segment currently executing.
Hence such privilege is dynamic. Several general rules apply:

1. Data access is restricted to those segments whose privilege level is the same
or less privileged (numerically greater) than the current privilege level (CPL).

2. Direct code access is restricted to code segments of equal privilege.
3. A gate is required for access to code at more privileged levels.

A gate is a control descriptor consisting of four words. It is used to redirect execu­
tion to a different segment at a more privileged level. These call gate descriptors are
used by control instructions (call and jump instructions) in much the same fashion
as segment descriptors are used during normal transfer of code segments at the same
level.

Above, we have briefly examined the background for memory management
and multitasking. Here the emphasis has been on hardware features and privileged
access (and summarizes the discussion of protection in Chapter 1). It is important
to recognize that these are hardware features in the Intel chips. Multitasking and
dynamic memory allocation are particularly well suited to the Intel segmented
memory [1]. CPUs with less protection, such as simple system and user privilege,
are less ideally suited for protection during multitasking [2].

96 Memory Management and Multitasking with Assembler Chap. 3

3.2 MEMORY MANAGEMENT ACTIVITIES

This section is intended to illustrate simple programming concepts related to
memory management. Under OS/2 the management of memory is accomplished
dynamically using the API calls. These calls all execute primarily at level 0 and
permit memory management of higher-level code, such as applications developed by
the user.

3.2.1 Creating and Accessing Memory Segments

The simplest activity associated with memory management is the creation, access,
and destruction of a memory segment. The code associated with accomplishing this
action is represented as follows:

msize dw (size in bytes of segment)
msell dw ?

mflag dw OOOOOOOOOOOOOlllB ~sharable, discardable

@DosAllocSeg msize, msell, mflag

@DosFreeSeg msell

Figure 3.1 illustrates the program twolnm.asm, a modified version of the
module twoln.asm. This program creates a temporary buffer in place of scr_buffer
(the buffer used earlier) and uses the representative code shown above to accom­
plish this action. The parameter msize has been specified to be 16,384 bytes, the
buffer size for the screen buffer. A selector, msell, is obtained from the call to
@DosAllocSeg, and the specified flag indicates that the selector's segment is shar­
able among code segments other than the one creating the segment, and may be dis­
carded. Finally, once the print screen function is performed, the segment is discarded
using the @DosFreeSeg call.

Figure 3.2 contains the code for scr_ldm, a modified version of scr_ld. Since
the physical screen buffer segment must be accessed using ES (based on selector
physell) and the newly created temporary buffer (using the selector msell), the extra
segment must share its usage between these two selected segments. To accomplish
this, es is pushed after each reference to the physical screen buffer, loaded with
msell, and then used to access the temporary buffer. Following this action, the
physical screen buffer is popped back into es and another access of this buffer
accomplished. Intermediate buffer values are passed using AX. (Note: We use upper
and lowercase references to the 80286 registers in interchangeable fashion.)

Figure 3.3 provides the program for the module prtscrm, a modified version of
prtscr. The only change in this routine is the earlier access to scr_buffer:

Sec. 3.2 Memory Management Activities

PAGE 55,132
TITLE TWOLllM - This program plots/prints 2 lines (twolnm.asm)

• 8087

DESCRIPTION: This program plots two lines in protected
mode and hesitates using a keyboard delay. Graphics
mode 05H is used to display the lines.
The routine uses DYNAMIC MEMORY ALLOCATION •

EXTRN prtscrm:FAR,scr_ldm:FAR,cls:FAR,clsCGA:FAR,lineh:FAR
I Fl

include sysmac.inc
END IF

.sall
dgroup GROUP data

;Suppresses macro lists

STACK SEGMENT PARA STACK 'STACK'
db 256 dup('STACK ')

STACK ENDS

DATA SEGMENT PARA PUBLIC 'DATA'

PUBLIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC
.PUBLIC

Graphics (printer) variables public

in_buffer,bytesin,bytesout,in_bufferl,bytesinl
in_buffer2,bytesin2,in_buffer3,bytesin3,in_buffer4
dev_name,dev_hand,dev_act,dev_size,dev_attr,dev_flaq
dev_mode,dev_rsv,MM,coll,N
s,eight,eighty,four,shiftl
sixforty,N4,ddd,w,bl

Graphics (screen) variables public

PUBLIC x:x,xxx,tr;lc,br,rc,no_line,blank,viohdl,PVBptrl,physell,waitf
PUBLIC dstat,four,two,col,dummy,MASKl,MASKll,row,eiqhty,address
PUBLIC OFFSETl,y,xb,xe

Dynamic Memory Allocation

PUBLIC msell

Screen display variables

;
viohdl equ 0 ;Required video handle
result dw 0 ;Completion code
action equ 0 ;Terminates current thread
tr dw 0 ;Top row screen clear
le dw 0 ;Left column screen clear
br dw 23 ;Bottom. row screen clear
re dw 79 ;Right column screen clear
no line dw 25 ;Number lines scrolled
blank dw 0007H ;Blank character pair

CGAm label FAR ;Video mode structure-CGA
lmodeE dw 12 ;Structure length
typeCGA db 000001118 ;Mode identifier

Figure 3.1 The program twolnm.asm (a modified version of twoln.asm), which
creates a buffer for the screen memory.

97

98 Memory Management and Multitasking with Assembler Chap. 3

colCGA db 2 ;Color option-Mode 5
txtcCGA dw 40 ;text characters/line-ignore
txtrCGA dw 25 ;text lines-ignore
hrCGA dw 320 ;horizontal resolution
vrCGA dw 200 ;vertical resolution

STDm label FAR ;Video mode structure-80x25
lmode80 dw 12 ;Structure length
type80 db 000000018 ;Mode identifier-Mode 3+
col80 db 4 ;Color option
txtc80 dw 80 ;text characters/line
txtr80 dw 25 ;text lines
hr80 dw 720 ;horizontal resolution
vr80 dw 400 ;vertical resolution

kbd_buf db 80 ;Keyboard buffer
lkbd buf dw $-kbd_buf ;Length keyboard buff er
iowait dw 0 ;Wait for CR
kbdhdl equ 0 ;Keyboard handle
;
waitf equ 1 ;Screen waiting status
dstat db ? ;Returned status

PVBPtrl label FAR ;Video buffer structure
bufstl dd OB8000H ;Start physical address
buflenl dd 4000H ;Buffer length
physell dw 0 ;OS/2 screen buffer selector

MAS Kl db OlH ;PEL byte mask
MASKll dw OOOlH ;Odd/even row mask
OFFSETl dw 2000H ;Odd row buffer offset
four dw 4
xx dw ? ;PEL modulo parameter
dummy dw ? ; 80287 dummy "pop"
two db 2
xxx db ? ;Output value
eighty dw 80
row dw ? ;row
col dw ? ;column
address dw ? ;Address screen dot

x dw ? ;Box col parameter
y dw ? ;Box row parameter
xb dw 0 ;Start column
xe dw 319 ;End column
yb dw 25 ;Start row
ye dw 175 ;End row

eight dw 8

Data area below is used for screen print routine.

;
in buffer db 320 dup(O) ;print buffer
bytesin dw 320 ;CGA line
bytes out dw 0 ;output count
in bufferl db 1BH,4BH,64D,01H ;printer setup
bytesinl dw 4 ;count bytes In_bufferl
in buffer2 db ODH,OAH ;LF/CR
bytesin2 dw 2 ;in_buffer2 byte count
in buffer3 db 1BH,41H,08H
bytesin3 dw 3 ; in_buffer3 byte count
in_buffer4 db 1BH,32H

Figure 3.1 (Continued)

Sec. 3.2 Memory Management Activities

dev name
dev:hand
dev act
dev-size
dev-attr
dev:::flaq
dev mode
dev:rsv

N4
MM
w
coll
bl
N
shiftl
s
ddd
sixforty

msize
msell
mflaq

db
dw
dw
dd
dw
dw
dw
dd

dw
db
db
db
db
dw
db
db
dw
dw

'LPTl',O ;name of printer device
o ;device handle
0
0
0
OOOOOOOlb ;Open File
OOOOOOOOllOOOOOlb ;hdl private,deny none,w/o
O ;reserved

?
40H,lOH,04H,OlH ;pel mask
128,64,32,16,B,4,2,1 ;pin weights
320 dup(?) ;column index-printer
4 dup(?)
? ;printer line
6,4,2,0
4 dup(?)
?
640

;dup copies pel byte

Data area below used for dynamic memory allocation

dw
dw
dw

16384 ;temporary buffer-screen values
? ;allocated selector
OOOOOOOOOOOOOlllB ;segment sharable, discardable

DATA ENDS

CSEG SEGMENT PARA PUBLIC 'CODE'
assume cs:cseg,ds:dgroup

OS21 PROC FAR

call els

@VioSetMode CGAm,viohdl

call clsCGA

@VioScrLock waitf,dstat,viohdl

@VioGetPhysBuf PVBptrl,viohdl
push physell
pop es

mov ax,o
mov y,ax
call lineh
mov ax,100
mov y,ax

;Clear screen

;Set CGA Graphics mode

;Clear CGA screen

;Lock screen context

;Get physical buffer selector
;Save selector
;Load selector into extra segment

;Draw line

call lineh ;draw second line

@DosAllocSeg msize,msell,mflaq ;allocate temporary buffer

call scr_ldm ;loads the temporary buffer

@VioScrUnLock viohdl ;Unlock screen context

@KbdStrinqin kbd_buf,lkbd_buf,iowait,kbdhdl ;hesitate

@VioSetMode STDm,viohdl ;SO x 25 alpha mode

call prtscrm ;prints temporary buffer

Figure 3.1 (Continued)

99

100 Memory Management and Multitasking with Assembler

OS2l
CSEG

PAGE 55,132

@DosFreeSeg msell

@DosExit action,result

ENDP
ENDS
END OS21

;free allocated space

;Terminate process

Figure 3.1 (Conclude<!)

TITLE SCRLDM -- This routine loads the screen print buffer (scrldm.asm)

DESCRIPTION: This routine accompanies prtscr to load
and print the screen in 320 x 200 mode.
The prtscr buffers are assumed loaded. This is an OS/2

Chap. 3

routine. This routine uses DYNAMIC MEMORY ALLOCATION through msell.

EXTRN msell:WORD

.sall

CSEG SEGMENT PARA PUBLIC
scr_ldm PUBLIC

scr_ldm PROC
ASSUME

FAR
CS:CSEG

0055:

0056:

mov cx,100
mov di,o
mov si,o

push ex
mov cx,so

mov al,es: [di]
mov ah,es:[di+2000HJ

push es
mov es,msell
mov es: (si] ,al
mov es:[si+SO],ah
pop es

inc si
inc di
loop 0056

add si,so
pop ex
loop 0055

ret
scr ldm ENDP
CSEG ENDS

END

'CODE'

;no. of raster pairs
;index to screen buffer
;index to dummy array

;raster row length

;load even row physical buffer
;odd row physical buffer

;load even rows
;odd rows

;skip to next double set

Figure 3.2 The modified scrld.asm (scrldm.asm) used with the program
wolnm.asm.

Sec. 3.2 Memory Management Activities

PAGE
TITLE

I
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN

I Fl

ENDIF

55,132
prtacrm - print acraan (prtscrm.asm)

DESCRIPTION: This routine prints ths screen in
320 x 200 CGA mode. Thia routins uaes DYNAMIC
MEMORY ALLOCATION. This routine needs the
followinq data items in the callinq routine
data seqment:

in buffer db 320 dup(O)
byteain dw 320
bytes out dw 0
in bufferl db lBH,4BH,64D,OlH
bytesinl dw 4
in buff er2 db ODH,OAH
byteain2 dw 2
in buf fer3 db 1BH,41H,08H
bytesin3 dw 3
in_buf f er4 db 1BH,32H

;
dev name db 1 LPT1' ,O
dev-hand dw 0
dev-act dw 0
dev-size dd 0
dev-attr dw 0
dev:flaq dw OOOOOOOlb
dev_mode dw OOOOOOOOllOOOOOlb
dev_rsv dd 0

MM db 40H,lOH,04H,OlH
w db 128,64,32,16,8,4,2,1
coll db 320 dup(?)
N dw ?
N4 dw ?
S db 4 dup(?)
shiftl db 6,4,2,0
eiqht dw 8
eiqhty dw 80
bl db 4 dup(?)
four dw 4
ddd dw ?
aixf orty dw 640

MM:BYTE,w:BYTE,coll:BYTE
in_buffer:BYTE,in_bufferl:BYTE,in_buffer2:BYTE
in bufferJ:BYTE,in buffer4:BYTE
bytesin:WORD,bytesinl:WORD,bytesin2:WORD,bytesinJ:WORD
bytesout:WORD,dev name:BYTE,dev hand:WORD
dev act:WORD,dev size:DWORD,dev-attr:WORD
dev:flaq:WORD,dev_mode:WORD,dev:rsv:DWORD
N:WORD,N4:WORD
eiqhty:WORD,eiqht:WORD,four:WORD,s:BYTE,shiftl:BYTE
ddd:WORD,bl:BYTE,sixforty:WORD,msell:WORD

include sysmac.inc

.sall

CSEG SEGMENT PARA PUBLIC 'CODE'
PUBLIC prtscrm

Figure 3.3 The modified prtscr.asm (prtscm.asm) used with the program
twolnm.asm.

101

102 Memory Management and Multitasking with Assembler Chap. 3

prtscrm PROC FAR
ASSUME CS:CSEG

;open device
@DosOpen dev_name,dev_hand,dev_act,dev_size,dev_attr,dev_flaq,dev_mode,dev_rsv

cmp ax,O

ELSEl:

I.OOPl:

I.OOP2:

DIIl:

je ELSEl
;Exit

ret

;initialize device
@DosWrite dev hand,in buffer3,bytesin3,bytesout
@DosWrite dev:hand,in:buffer4,bytesin2,bytesout

mov dx,25
mov si,o

push dx
push si
mov ax,si
mul sixforty
mov N,ax

call ldarray

mov di,O
mov cx,80

mov al,coll[di]
mov in_buffer[di],al
mov al,coll[di+l]
mov in_buffer[di+l],al
mov al,coll[di+2]
mov in_buffer[di+2],al
mov al,coll[di+3]
mov in_buffer[di+3],al
add di,four
loop I.OOP2

;
;number print lines(+l)
;index to 8 row block

;preserve dx
;preserve block count

;640 block size
;Save in N

;
;initialize 320 column counter
;count of column bytes

;column 1 from byte
;load print buffer
;column 2 from byte
;load print buffer
;column 3 from byte
;load print buffer
;column 4 from byte
;load print buffer
;increment column index

;write print row
@DosWrite dev_hand,in_bufferl,bytesinl,bytesout
@Doswrite dev hand,in buffer,bytesin,bytesout
@DosWrite dev:hand,in:buffer2,bytesin2,bytesout

pop si
pop dx
dee dx
inc si
cmp dx,O
jle DIIl

jmp LOOPl

@Dosclose dev_hand
ret

;
;recall block count
;recall print line count
;decrement count
;increase block count
;check 25 lines printed

;close print device

prtscrm endp
I
ldarray PROC NEAR

00110:

N is the printer row # - 640 byte intervals [0,24]
MM[O] = 40H, ••• ,MM[3] = OlH (pel mask)
w[OJ = 128,w[l] = 64, ••• ,w[7] = 1

mov si,o
mov cx,320

;column count initialization
;320 columns

mov al,O ;clear print buffer
mov coll[si],al
inc si ; increment column count
loop 00110

Figure 3.3 (Continued)

Sec. 3.2 Memory Management Activities

00111:

00112:

mov si,o
mov N4,si
mov dx,80

mov di,o
mov ddd,di
mov cx,e

push ex
mov bp,ddd
add bp,N

push es
push msell
pop es
mov sl,es:(bp+si]
pop es

mov s(O],al
mov s(l],al
mov s(2],al
mov s(3] ,al

and al,MM[O]
mov cl,shiftl[O]
shr al,cl
mov ah,O
mul w[di]
mov bl[O],al

mov al,s(l]
and al,MM[l]
mov cl,shiftl[l]
shr al,cl
mov ah,O
mul w[di]
mov bl[l] ,al

mov al,s(2)
and al,MM[2)
mov cl,shiftl[2)
shr al,cl
mov ah,O
mul w[di]
mov bl[2) ,al

mov al,s(3]
and al,MM[3)
mov cl,shiftl[3)
shr al,cl
mov ah,O
mul w[di]
mov bl[3],al

push bx
mov bx,N4
mov al,bl[O]
add coll[bx],al
mov al,bl[l]
add coll[bx+l],al
mov al,bl[2]
add coll[bx+2],al
mov al,bl[3]
add coll[bx+3],al

;

index into 80 bytes/row
N4 - row byte block count
counter - row bytes

;raster row counter (l of 8)
;80 block counter
;raster row counter

;preserve row count
;bp = t 80 byte blocks
;add printer line count

;load address screen buffer
;4 pel bytes

;lst copy
;2nd copy
;3rd copy
;4th copy
;
;lst pel mask
;load lst pel shift
;shift right
;clear upper
;multiply by weight (row)
;save lst printer column

;load 2nd pel
;mask 2nd pel
;load 2nd pel shift
;shift right
;clear upper
;multiply by weight (row)
;save 2nd printer column
;
;load 3rd pel
;mask 3rd pel
;load 3rd pel shift
;shift right
;clear upper
;multiply by weight (row)
;save 3rd printer column

;load 4th pel
;mask 4th pel
;load 4th pel shift
;shift right
;clear upper
;multiply by weight (row)
;save 4th printer column
;
;preserve bx
;counter into print buffer
;load column N4

;load column N4+1

;load column N4+2

;load column N4+3

Figure 3.3 (Co11ti11ued)

103

104 Memory Management and Multitasking with Assembler

00133:

DII2:

pop bx

pop ex
inc di
add ddd,80
dee ex
cmp cx,o
jle 00133

jmp 00112

add N4,4
dee dx
inc si
cmp dx,O
jle DII2

jmp 00111

ret
ldarray ENDP
;
CSEG ENDS

END

push bx
lea bx,scr_buffer[OJ
add bp,bx
mov al,ds: [bp+si]
pop bx

This now reads

push es
push msell
pop es
mov al,es:[bp+si)
pop es

;recall print block row index
;increase print block row counter
;increase byte count
;decrease row bound

;add 4 columns to index
;decrement row bytes
;increase screen buffer index

Figure 3.3 (Co11cluded)

where the same buffer now appears starting at es:OOOO.

Chap. 3

Figures 3.1 through 3.3 represent simple examples of how to create and use a
memory segment under OS/2. In this case the temporary screen buffer is created,
accessed, and destroyed. Clearly, this technique can be used to manage memory
within a given task. In the next section we consider the creation, access, and de­
struction of a segment shared between two tasks.

Sec. 3.2 Memory Management Activities 105

3.2.2 Creating and Accessing a Shared Segment

The program discussed in this section involves both a memory management function
and multitasking. Although we do not formally address multitasking until Section
3.3, it is useful to include it in this discussion because at least two processes are
needed to demonstrate segment sharing.

The program illustrated in Figure 3.4 opens with the following API call (which
creates the shared segment):

@DosAllocShrSeg shared_length,shrname,shrsel

Here shared _length has been set at 404 bytes. These will correspond to 400 bytes (4
extra bytes used to contain parameter data) that contain the corner values for boxes
(xb, xe, yb, and ye). Further, these corner values will consist of numbers between 0
and 200; hence the full height of the display screen will be used but only the first
200 columns.

The parameter shrname is a symbolic name to be associated with the shared
memory segment to be allocated. The name string must include the prefix

\SHAREMEM\ •••

We choose

'\SHAREMEM\SDAT.DAT',o

which is a zero-terminated string. Finally, shrsel is the shared segment selector. The
name string for· the shared segment must be common to all modules that use this
segment and hence provides the link for ensuring that the same protected segment
is accessed.

In Figure 3.4, once the shared segment is allocated, the buffer contained in this
segment is set to zero. Next a child process is executed using the statement

@DosExecPgm obj_name_buf, lobj_name_buf, async, argptr, envptr,
pid, prgm_nm

where obj_name_buf is a buffer containing error pointers, lobj_name_buf is the
length of this buffer, async = 1 indicates the two processes execute asynchronously,
argptr = 0, envptr = 0, pid contains return codes, and prgm_num is the name of the
file to be executed (in this case NOS261.EXE, which is zero terminated). This
causes the process in Figure 3.5 to execute, NOS261.ASM.

The process NOS261.ASM gets the shared segment using

@DosGetShrSeg shrname, shrsel

where the shared name, shrname, is the same but a new selector is assigned. Next,
a sequence of random numbers are loaded into the shared segment locations based
on the following formula [3]:

xn+l = (2053 xn + 13,849) mod 216 (3.1)

106 Memory Management and Multitasking with Assembler

PAGE 55,132
TITLE OS2512 - This is the calling OS/2 program (NOS2512.ASM)

• 8087

DESCRIPTION: This program plots boxes in protected
mods and hesitates using a keyboard delay. Graphics
mode 05H is used to display the boxes. It is the same
as OS24 except it uses external modules. This routine
employs multitasking to access the input box parameters,
which are generated randomly (100 boxes in square 200 x 200).
The program prints graphics under program control •

EXTRN boxx:FAR,cls:FAR,clsCGA:FAR,scr_ld:FAR,prtscr:FAR

PUBLIC viohdl,tr,lc,br,rc,no_line,blank,CGAm,lmodeE,typeCGA,colCGA
PUBLIC txtcCGA,txtrCGA,hrcGA,vrCGA,STDm,lmodeBO,typeSO,colSO
PUBLIC txtcso,txtrso,hrso,vrso,waitf,dstat,PVBptrl,bufstl,buflenl,physell
PUBLIC MASKl,MASKll,OFFSETl,four,xx:,dummy,two,xxx,eighty,row,col
PUBLIC address,x,y,xb,xe,ye,yb

Printscreen variables

PUBLIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC

in buffer,in bufferl,in buffer2,in buffer3,in buffer4
bytesin,bytesinl,bytesin2,bytesin3~bytesout -
dev_name,dev_hand,dev_act,dev_aize,dev_attr,dev_flaq
dev mode,dev rsv,MM,coll,N
s,eight,eighty,four,shiftl,scr_buffer
sixforty,N4,ddd,w,bl

I Fl
include sysmac.inc

END IF

.sall
dgroup GROUP data

STACK SEGMENT PARA STACK 'STACK'
db 256 dup('STACK ')

STACK ENDS

DATA SEGMENT PARA PUBLIC 'DATA'

viohdl equ 0
result dw 0
action equ 0
tr dw 0
le dw 0
br dw 23
re dw 79
no line dw 25
blank dw 0007H

CGAm label FAR
lmodeE dw 12
typeCGA db OOOOOlllB
colCGA db 2
txtcCGA dw 40
txtrCGA dw 25

:suppresses macro lists

:Required video handle
:completion code
;Terminates current thread
;Top row screen clear
;Left column screen clear
;Bottom row screen clear
:Right column screen clear
:Number lines scrolled
;Blank character pair

:Video mode structure-CGA
:structure length
:Mode identifier
:Color option-Mode 5
:text characters/line-ignore
;text lineS-i~nore

Figure 3.4 The program nos2512.asm, which creates a shared segment, creates
a child process, and prints the screen.

Chap. 3

Sec. 3.2 Memory Management Activities

hrCGA dw
vrCGA dw

STDm label
lmode80 dw
type80 db
col80 db
txtc80 dw
txtr80 dw
hr80 dw
vr80 dw

kbd buf db
lkbd buf dw
iowait dw
kbdhdl equ

waitf equ
dstat db

PVBFtrl label
bufstl dd
buflenl dd
physell dw

MAS Kl db
MASKll dw
OFFSET! dw
four dw
xx dw
dummy dw
two db
xxx db
eiqhty dw
zero dw
one dw
row dw
col dw
address dw

x dw
y dw
xb dw
xe dw
yb dw
ye dw
;
obj_name_buf
lobj_name_buf
a sync dw
arqptr dw
envptr dw
pid dw

dw
prqm_nm db
;
shared_lenqth
shrname db
shrsel dw

ESDI db
count dw

320
200

FAR
12
QOOOOOOlB
4
80
25
720
400

80
$-kbd_buf
0
0

1
?

FAR
OBSOOOH
8000H
0

OlH
OOOlH
2000H
4
?
?
2
?
80
0
1
?
?
?

?
?
?
?
?
?

dd
dw
1
0
0
?
?

10 dup(O)
$-obj_name_buf

;horizontal resolution
;vertical resolution

;Video mode structure-80x25
;Structure lenqth
;Mode identifier-Mode 3+
;Color option
;text characters/line
;text lines
;horizontal resolution
;vertical resolution

;Keyboard buffer
;Lenqth keyboard buffer
;Wait for CR
;Keyboard handle

;Screen waitinq status
;Returned status

;Video buffer structure
;Start physical address
;Buffer lenqth
;OS/2 screen buffer selector

;PEL byte mask
;Odd/even row mask
;Odd row buffer offset

;PEL modulo parameter
;80287 dummy "pop"

;output value

;row
;column
;Address screen dot

;Box col parameter
;Box row parameter
;Start column
;End column
;Start row
;End row

;object name buffer
;buffer lenqth
;Flaq indicates async
;O for arqument ptr
;o for environment ptr
;Process ID result code

'NOS261.EXE',O ;proqram name & parameter

dw 404 ;Lenqth shared buffer
1 \SHAREMEM\SDAT.DAT',O
? ;selector

400 dup(?) ;Buffer for shared data
? ;Buffer size in bytes

Printscreen Variables

Figure 3.4 (Continued)

107

108 Memory Management and Multitasking with Assembler

eiqht dw
in buffer
in-bufferl
in-buffer2
in-buffer3
in-buffer4
bytes in
bytesinl
bytesin2
bytesin3
bytesout

B
db
db
db
db
db
dw
dw
dw
dw
dw

320 dup(O)
1Bh,4BH,64D,OlH
ODH,OAH
1BH,41H,OBH
1BH,32H
320
4
2
3
0

'LPTl' ,O
0
0
0
0

;print buffer
;printer setup
;LF/CR

;print buffer count
;count bytes in_bufferl
;count bytes in_buffer2
;count bytes in_buffer3

;name of printer device
;device handle

dev name
dev-hand
dev:act
dev size
dev-attr
dev-flaq
dev-mode
dev:rsv dd

db
dw
dw
dd
dw
dw
dw
0

OOOOOOOlb ;open file
OOOOOOOOllOOOOOlb ;hdl private,deny none,w/o

N4 dw ?
MM db 40H,lOH,04H,OlH
w db 128,64,32,16,8,4,2,1
coll db 320 dup(?)
bl db 4 dup(?)
N dw ?
shiftl db 6,4,2,0
• db 4 dup(?)
ddd dw ?
sixforty dw 640
acr_buffer db 16384 dup(O)
I

DATA ENDS
I
CSEG SEGMENT PARA PUBLIC 1 CODE 1

aeeume ce:cseq,ds:dqroup
OS21 PROC FAR

;pel mask
;pin weiqhts
;columns

;temporary buffer

@DosAlloCShrSeq
cmp ax,o

shared_lenqth,shrname,shrsel

jz NO ERRORl
jmp ERRORl

NO_ERRORl:

lloop:

push shrsel
pop es

mov ax, one
mov es: (2] ,ax

mov ax,shared_lenqth
mov es: [OJ ,ax

mov di, four
mov cx,shared_lenqth
sub ex, four
mov ax, zero

mov es: [di] ,al
inc di
loop lloop

;Check on successful
;Successful
;Error

;Save selector

creation

;Selector in extra seqment

;Flaq indicatinq creation
;
;Lenqth shared buffer
;Lenqth parameter passed-multitask
I
;Data record offset in buffer
;Data buffer lenqth + 4
;Data buffer lenqth
;Clear character

;Clear buffer
;Next buffer point

Figure 3.4 (Co11tinued)

Chap. 3

Sec. 3.2 Memory Management Activities

@DosExecPgm obj_name_buf,lobj_name_buf,async,argptr,envptr,pid,prgm_nm
cmp ax,O ;Check error condition
jz NO_ERROR2 ;Jump no error
jmp ERROR2 :Jump error

NO_ERROR2:

mov ax,zero

NO_ERROR22:

MEM_CL:

loop22:

loop2:

EELSEl:

ELSEl:

IIFl:

cmp es: (2) ,ax
jz MEM_CL
jmp NO_ERROR22

mov si,zero
mov di,four
mov cx,shared length
sub ex, four -
mov count,cx

mov al,es: [di]
mov ESDI[si],al
inc di
inc si
loop loop22

call els
@VioSetMode CGAm,viohdl
call clsCGA
@VioScrLock waitf ,dstat,viohdl
@VioGetPhysBuf PVBptrl,viohdl
push physell
pop es

mov di,O
mov dx,o
mov ax, count
div four
mov cx,ax

push ex
mov al,ESDI[di]
mov ah,ESDI[di+l]
cmp ah,al
jne EELSEl

mov al,170
mov ah,180
call xload
jmp IIFl

cmp ah,al
jle ELSEl

call xload
jmp IIFl

mov bl,al
mov al,ah
mov ah,bl
call xload

mov al,ESDI[di+2]
mov ah,ESDI[di+3]
cmp ah,al
jne EELSE2

;Indicates buffer write complete

;Check buffer write
;Jump if buffer write complete
;Otherwise wait

;Offset in intermediate buffer
;Offset in shared buffer
;Length data buffer + 4
:Length data buffer
;Data buffer size in bytes

;Obtain shared buffer value
;Load shared memory buffer
;Increment shared buffer ptr
;Increment intermediate buffer ptr

;Clear screen
;Set CGA graphics mode
;Clear CGA screen
;Lock screen context
;Get physical buffer selector
;save selector
;Load selector into extra segment

;Intermediate buffer offset
;Clear upper dividand
;Data buffer byte count
;Reduce to sets of four
;Loop count

;Save loop count
;Obtain 1st buffer value-set
;Obtain 2nd buffer value-set
;Check values equal

;Arbitrarily set 1st equal value
;Arbitrarily set 2nd equal value
;Load xb and xe

;Check ah g.t. al

;Load xb and xe

;swap ah and al

;Load xb and xe

;Obtain Jrd buffer value-set
;Obtain 4th buffer value-set
;Check values equal

Figure 3.4 (Co11ti11ued)

109

110 Memory Management and Multitasking with Assembler

EELSE2:

ELSE2:

IIF2:

ERROR2:

ERRORl:

0521

xload

xload

yload

yload

CSEG

mov al,170 ;Arbitrarily set lst equal value
mov ah,180 ;Arbitrarily set 2nd equal value
call yload ;Load yb and ye
jmp IIF2

cmp ah,al ;Check ah g.t. al
jle ELSE2

call yload ;Load yb and ye
jmp IIF2

mov bl,al ;Swap ah and al
mov al,ah
mov ah,bl
call yload ;Load yb and ye

push di ;save buff er offset
call boxx ;Draw box
pop di ;Recall buffer offset
add di,four ;Increment data ptr 4 bytes

pop ex ;Recall loop count
loop loop2

call scr_ld ;load screen print buffers

@VioscrUnLock viohdl ;Unlock screen context
@KbdStringin kbd_buf,lkbd_buf,iowait,kbdhdl ;hesitate
@VioSetMode STDm,viohdl ;80 x 25 alpha mode

@DosKillProcess l,pid

@DosFreeSeg shrsel

call prtscr
@DosClose dev hand
@DosExit actiOn,result

ENDP

PROC NEAR
mov bh,O
mov bl,al
mov xb,bx
mov bh,O
mov bl,ah
mov xe,bx
ret
ENDP

PROC NEAR
mov bh,O
mov bl,al
mov yb,bx
mov bh,O
mov bl,ah
mov ye,bx
ret
ENDP

ENDS
END 0521

;Terminate child process

;Free shared memory

;Terminate process

;Clear upper register half
;al = start
;Load xb less than 199
;Clear upper register half
;ah = end
;Load xe less than 199

;Clear upper register half
;al = start
;Load yb less than 199
;Clear upper register half
;ah = end
;Load ye less than 199

Figure 3.4 (Concluded)

Chap. 3

Sec. 3.2 Memory Management Activities

PAGE 55,132
TITLE OS261 - Generates multitask r.n. (OS261.ASM)

• 8087

I Fl

ENDIF

dgroup

STACKl

STACKl
;
DATAl

rndl

one
action
result
ssize
shrsel
shrname
zero

DATAl

CSEGl

08261

loopl:

loop2:

DESCRIPTION: This process generates the multitasked
random numbers. It is called by the plot process •

include sysmac.inc

.sall
GROUP datal

SEGMENT PARA STACK 'STACK'
db 256 dup('STACKl ')
ENDS

SEGMENT PARA PUBLIC 'DATA'

dw ?

dw 1
equ 0
dw 0
dw ?
dw ?
db '\SHAREMEM\SDAT.DAT',O
dw 0

ENDS

SEGMENT PARA PUBLIC 'CODE'
assume cs:csegl,ds:dgroup
PROC FAR

mov ax,one
mov rndl,ax
@DosGetShrSeg shrname,shrsel
push shrsel
pop es

mov ax, es: [OJ
mov ssize,ax

mov di,4
mov cx,ssize
sub cx,4

mov al,O
mov es: [di] ,al
inc di
loop loopl

mov di,4
mov cx,ssize
sub cx,4

call ldmem
mov es: [di] ,al
inc di
loop loop2

;Suppresses macro lists

;seed value

;Buffer size + 4
;Selector
;Shared memory name

;Load initial seed value

;Get shared segment
;Save selector
;Selector to extra segment

;Establish shared buffer size
;Define buffer size + 4

;Pointer to data buffer
;Loop byte count + 4
;Loop byte count

;Clear buffer
;Buffer write
;Increment offset

;Pointer to data buffer
;Loop byte count + 4
;Loop byte count

;Generate random value
;Load shared buffer (byte)
;Increment byte offset

Figure 3.5 The child process nos261.asm, used to generate random numbers in
a Protected Mode multitasked environment.

111

112 Memory Management and Multitasking with Assembler

mov ax, zero
mov es:[2],ax

@DosFreeSeg shrsel
@DosExit action,result

08261 ENDP

ldmem PROC NEAR

mov dx,o
mov ax,rndl
mov bx,2053
mul bx
mov bx,13849
clc
add ax,bx
adc dx,O
mov bx,OFFFFH
div bx
mov ax,dx
mov rndl,ax
mov bx,350
mov dx,o
div bx
mov ah,O
ret

ldmem ENDP

CSEGl ENDS
END 08261

;Flaq indicating write complete
;Flag loaded
;

;Generate r.n.
;Load upper multiplicand zero
;Load previous r.n.
;Multiplier

;Load additative constant

;Add low order result
;Add carry if needed
1Load 2 (16) - l
;Calculate modulo
;Move remainder into ax
;Save r.n.
;Scale r.n. to less than 200
;Clear upper dividand
;Scale
;Save al

Figure 3.5 (Concluded)

Chap. 3

Here xn+i is the (n + l)th number and xn the nth number(s). The procedure ldmem
contains the code that calculates this random sequence. Once the sequence is calcu­
lated, the size of the buffer is checked. This size was loaded as a word at es:[O] in
the creating routine. In NOS261.ASM the value is used to set the number of random
values to be calculated (here this is 400).

Next, NOS261.ASM frees the shared segment using

@DosFreeSeg shrsel

and exits back to OS/2. Prior to freeing the segment, however, NOS261.ASM loads
a zero at es:[2] to indicate that the buffer write is complete. (This value was previ­
ously set to 1.) The main calling program, NOS2512.ASM, sits in a loop checking
es:[2] for a value of zero. (This is a somewhat wasteful operation and could be used
asynchronously to accomplish other tasks if needed.) Once the random values have
been completely loaded and NOS2512.ASM becomes aware of this, it terminates the
loop and reloads these shared values into a buffer, ESDI. The processing then
continues in the usual fashion to clear the screen, set the CGA mode, and capture
the physical screen buffer. Using two routines, xload and yload, the box corners are
loaded, ensuring that (xb, yb) are always less than (xe, ye), respectively. The rou­
tine boxx is called and the random boxes generated on the display. Figure 3.6 illus­
trates the variant of boxx used for this call. Note that it includes a check on the
corners to ensure that xb < xe and yb < ye.

Sec. 3.2 Memory Management Activities

PAGE 55,132
TITLE OS252 - Supplemental routines for box plotting (OS252.ASM)

• 8087
I Fl

ENDIF

EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN

CSEG
PUBLIC

boxx

ELSElO:

ELSEll:

DESCRIPTION: These routines set up box plots in CGA
mode and hesitate using a keyboard delay. Graphics
mode 05H is used to display the box. This set of routines
is callsd by box plotting main routine .

include sysmac.inc

.sall ;Suppresses macro lists

viohdl:WORD,tr:WORD,lc:WORD,br:WORD,rc:WORD
no_line:WORD,blank:WORD,CGAm:FAR,lmodeE:WORD,typeCGA:BYTE
colCGA:BYTE,txtcCGA:WORD,txtrCGA:WORD,hrCGA:WORD,vrCGA:WORD
STDm:FAR,lmode80:WORD,typeSO:BYTE,colSO:BYTE,txtc80:WORD,txtrSO:WORD
hrSO:WORD,vrSO:WORD
waitf:WORD,dstat:BYTE,PVBPtrl:FAR,bufstl:DWORD
buflen1:DWORD,physel1:WORD,MASK1:BYTE,MASK1l:WORD,OFFSET1:WORD
four:WORD,xx:WORD,dummy:WORD,two:BYTE,xxx:BYTE,eighty:WORD
row:WORD,col:WORO,address:WORD,x:WORD,y:WORD,xb:WORD,xe:WORD
yb:WORD,ye:WORD

SEGMENT PARA PUBLIC 'CODE'
cls,boxx,clsCGA
assume cs:cseg
PROC FAR

xb = x-begin,xe

mov ax,xb
cmp ax,xe
jl ELSE10

xchg ax,xe
mov xb,ax

mov ax,yb
cmp ax,ye
jl ELSEll

xchg ax,ye
mov yb,ax

mov ax,yb
mov y,ax
call lineh
mov ax,ye
mov y,ax
call lineh
mov ax,xb
mov x,ax
call linev
mov ax,xe
mov x,ax
call linev

ret

x-end,yb y-begin,ye = y-end

;Check xb l.t. xe

; swap xb and xe

;Check yb l.t. ye

;Swap yb and ye

;Top box line

;Draw top horizontal line
;Bottom box line

;Draw bottom horizontal line
;Left box line

;Draw left vertical line
;Right box line

;Draw right vertical line

boxx ENDP

els PROC FAR

@VioScrollUp tr,lc,br,rc,no_line,blank,viohdl

Figure 3.6 Supplemental routines needed by the random box generating
routine, nos2512.asm.

113

114 Memory Management and Multitasking with Assembler

ret

els ENDP

clsCGA PROC FAR

001:

002:

@VioscrLock waitf,dstat,viohdl
@VioGetPhysBuf PVBptrl,viohdl
push physell
pop es

mov bp,O
mov al,O

moves: [bp],al
inc bp
cmp bp,lFJFH
jle DOl

mov bp,2000H
mov al,O

mov es: [bp) ,al
inc bp
cmp bp,3F3FH
jle 002

@VioScrUnLock viohdl

ret
clsCGA ENDP

wdot PROC NEAR

(col,row) = (x,y)

fild four
fild col
fprem
fistp xx
fistp dummy
mov al,3
mov bl,byte ptr
sub al,bl
mov ah,O
mul two
mov cl,al
mov al,MASKl
shl al,cl
mov xxx,al

mov ax,row
shr ax,1
mov dx,o
mul eighty
mov bx,col
shr bx,l
shr bx,1
add ax,bx
mov address,ax
mov ax,row
and ax,MASKll
cmp ax,o
jle ELSEl

xx

mov ax,address
add ax,OFFSETl
jmp IFll

;Lock screen context
;Get physical buffer
;Screen selector
;Load extra segment

;Start offset zero
;Zero attribute-clear

;Clear byte

;Check end 1st buffer

;Offset 2nd buffer-odd
;Zero attribute-clear

;Clear byte

;Check end 2nd buffer

;Unlock screen context

;Load stack with 4
;ST = col, ST(l) = 4
;Modulo
;Store remainder in xx
;Pop stack

;(3 -col% 4)
;Clear upper multiplicand

;Shift value for PEL
;PEL color mask
;Shift to correct PEL
;Store buffer value

;Begin address calculation
;Divide row by 2
;Clear upper multiplicand

;Convert column value to bytes

;offset in ax
;Save offset base
;Check even/odd row
;Look for bit O set

;add odd buffer offset

Figure 3.6 (Continued)

Chap. 3

Sec. 3.2 Memory Management Activities

ELSEl:

IFll:
mov ax,address

mov bp,ax
mov al,xxx

or es: [bp] ,al

ret
wdot ENDP

lineh PROC NEAR

;screen buffer address
;Attribute value for dot

;Write dot

y = row position, xb = begin, xe = end

0010:

mov ax,y
mov row,ax

mov ax,xb

mov col,ax
push ax
call wdot
pop ax
inc ax
cmp ax,xe
jle 0010

ret
lineh ENDP

linev PROC NEAR

;Establish row for wdot

;
;Establish start column

;save column value
;Write dot (col,row)
;Recall column
;Increment column
;Check end horizontal line

x = col position, yb = begin, ye = end

0020:

mov ax,x
mov col,ax

mov ax,yb

mov row,ax
push ax
call wdot
pop ax
inc ax
cmp ax,ye
jle 0020

ret
linev ENDP

CSEG ENDS
END

;Establish column for wdot

;Establish start row

;Save row value
;Write dot (col,row)
;Recall row
;Increment row
;Check end vertical line

Figure 3.6 (Concluded)

115

Once the boxes are plotted the keyboard hesitate takes place, followed by a
call to prtscr that prints the screen content. A similar version of this program appears
in reference 4, without the screen print logic. Figure 3.7 illustrates the plotted boxes.

3.2.3 Changing Segment Size

Among the API memory management services are functions for changing the size of
an allocated segment. It is a prerequisite, however, that the segment be allocated
during the existing session. Figure 3.8 presents a program that allocates and then

116 Memory Management and Multitasking with Assembler Chap. 3

Figure 3. 7 Screen print of the 100
random boxes output by nos2512.asm.

modifies the size of a segment. This program is somewhat artificial in that it serves
no useful purpose other than to demonstrate this memory management technique.

The program opens with the call

@DosAllocSeg msize, msell, mflag

Here msize is the desired size of the segment (in this case 4000H), in msell the
returned selector, and mflag determines the type of segment access. Specifically, bits
0 and 1, when set, permit sharing of the segment using DosGiveSeg and DosGetSeg,
respectively. Bit 3 allows the segment to be discarded in low-memory situations. If
the segments are shared, they can only be increased in size. We have set all three
of these bits to 0.

The next block of code pushes the allocated segment selector on the stack and
pops it into es. Hence, es now points to the created segment. This segment is loaded
with 2048 copies of the string "MEMORY ", where two blank spaces have been
added to the end of the string. Once completed, the call

@DosReallocSeg msizel, msell

is made and the segment size reduced to one byte beyond a paragraph boundary. At
this point some mechanism must exist to check the segment definition. Subsequent
code writes a 1 into the first location of the segment, followed by a write to the
eighteenth position. The latter position should yield a protection violation.

Figure 3.9 illustrates Code View results for the program following creation of
the memory segment. Note that beginning at address es:OxOOOO (here OxOOOO speci­
fies a hexadecimal address, 0000, in C notation), the string "MEMORY "is loaded.
A check at Ox4000 shows that the preceding 4000H locations are filled with this
string also (Figure 3.9b).

Sec. 3.2 Memory Management Activities

PAGE 55,132
TITLE MEMSEG -- Reallocate memory segment (memseg.asm)

DESCRIPTION: This simple routine creates and reallocates
a memory segment. The final memory instruction is
designed to create a protection violation. The program
should be run with CodeView.

I Fl
include sysmac.inc

ENDIF

.sall
dgroup GROUP data

STACK SEGMENT PARA STACK 'STACK'
db 256 dup ('STACK ')

STACK ENDS

DATA SEGMENT PARA PUBLIC 'DATA'
;
maize dw
msell dw
mflag dw
blk ct dw
mem-wd db
msiie1 dw

16385 ;buffer size
? ;selector
OOOOOOOOOOOOOOOOB ;not sharable
16384 ;block count
'M', 'E', 'M', 1 0 1 , 'R', 'Y', • •,' ' ;string
17 ;new buffer size

DATA ENDS

CSEG SEGMENT PARA PUBLIC 'CODE'
assume cs:cseg,ds:dgroup

OS21 PROC FAR

@DosAllocSeg msize,msell,mflag ;allocate segment

LOOPl:

LOOP2:

push msell
pop es

mov dx,blk ct
mov di,o -
lea bp,mem_wd

mov cx,8
mov si,o

mov al,ds:[bp+si]
mov es: [di] ,al
inc si
inc di
loop LOOP2

cmp di,dx
jl LOOPl

@DosReallocSeg msizel,msell

push msell
pop es
mov bp,O
mov al,1
mov es: [bp] ,al
mov es:[bp+l7],al

;block counter limit
;buffer block count
;string address

;count limit for strinq
;index for string/buffer

;load from string
;load buffer
;increment string
;increment block byte

;check block limit

;reallocate segment

;preserve selector
;create extra segment
;segment index
;load dummy value
:single load in buffer
;PROTECTION VIOLATION

Figure 3.8 Simple routine for creating and reallocating memory.

117

118 Memory Management and Multitasking with Assembler Chap. 3

@DosExit l,O

OS21 ENDP
CSEG ENDS

END 0521

Figure 3.8 (Concluded)

: File Search View Run Watch Options Calls Trace! Go! MEMSEG.EXE

003F:002F 268805 MOV Byte Ptr ES: [DI] ,AL
003F:0032 46 INC SI
003F:0033 47 INC DI
003F:0034 E2F6 LOOP 002C
003F:0036 3BFA CMP DI,DX
003F:0038 7CEC JL 0026
003F:003A AllOOO MOV AX, Word 'E'tr [ooIOJ

IBM CodeView (R) Version 1.00
Copyright (C) IBM Corporation 1987
Copyright (C) Microsoft (R) Corporation 1986, 1987
>d es:OxOOOO
OOSF:OOOO 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
006F:0010 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
006F:0020 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
006F 0030 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
OOSF 0040 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
006F 0050 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
006F 0060 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
006F 0070 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
>

(a)

Figure 3.9 Facsimile CodeView output, illustrating (a) low end of initialized memory
segment and (b) high end of initialized memory segment. (Courtesy of the Microsoft
Corporation.)

I

Sec. 3.2 Memory Management Activities 119

= File Search View Run Watch Options Calls Trace! Go! MEMSEG.EXE
---------··---j

0=-'0~3~F~:~00~2~C:'--':3~E78A~0~2,-------~MO~V~--~A~L~,~B-yt-e~P~t-r-D~S~:~[~B~P+-S-I-]--------~I··, 003F:002F 268805 MOV Byte Ptr ES:[DI],AL
003F: 0032 46 INC SI
003F: 0033 4 7 INC DI
003F:0034 E2F6 LOOP 002C
003F:0036 3BFA CMP DI,DX
003F:0038 7CEC JL 0026
003F:003A AllOOO MOV AX, Word Ptr [0010]

006F:0060 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
006F:0070 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
>d es:Ox3ff0
006F: 3FFO 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
006F:4000 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ??????? ???????
006F:4010 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ??????? ???????
006F:4020 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ??????? ???????
006F
006F
006F
006F
>

4030 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ??????? ???????
4040 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ??????? ???????
4050 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ??????? ???????
4060 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ??????? ???????

(b)

Figure 3.9 (Concluded)

Figure 3.lOa corresponds to execution up to 003F:0055, in which the resized
segment now has its first location loaded with 1. Figure 3.lOb corresponds to exe­
cution of 003F:0055 and the subsequent violation is noted.

Figure 3.11 illustrates Code View output for the case when a segment violation
might occur except that the segment is defined as sharable with bits 0 and 1 of
mflag set. In this case the attempt to reallocate the size of the segment downward
to 17 bytes fails and the initial segment size remains implemented. The instruction
003F:0055 executes as the segment data indicate.

3.2.4 Creating and Accessing Huge Segments

The OS/2 kernel (level 0) allocates and maintains segment descriptors. This provides
a mapping of the virtual address space onto the physical memory space. OS/2 does,
in fact, allow the user the capability to request and use more memory than exists in
his or her system. This is accomplished using extended file management techniques.
A very key boundary under DOS and within the confines of the Intel 8086 family
of architectures is the 64K boundary or segment size. OS/2 has API services that
allow the user to extend a huge memory block because the underlying segments are
still in place. The system simply provides additional selectors, as needed, to access
the subsequent high-memory spaces.

120 Memory Management and Multitasking with Assembler Chap. 3

s File Search View Run Watch Options Calls Trace! Go! MEMSEG.EXE

003F:0042 9AOOOOB345 CALL 45B3:0000

I
003F:0047 FF360200 PUSH Word Ptr [0002)
003F:004B 07 POP ES
003F:004C BDOOOO MOV BP,0000
003F:004F BOOl MOV AL,01
003F:0051 26884600 MOV Byte Ptr ES:[BP+OO),AL
003F:0055 26884611 MOV Bzte Ptr ES:[BP+11],AL
003F:0059 B80100 MOV AX,0001

Copyright (C) IBM Corporation 1987
Copyright (C) Microsoft (R) Corporation 1986, 1987
>d es:OxOOOO
006F:OOOO 01 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 .EMORY MEMORY
006F:0010 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ????????????????
006F:0020 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ???????i????????
006F:0030 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ????????????????
006F:0040 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ????????????????
006F:0050 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ????????????????
006F:0060 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ????????????????
006F:0070 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ????????????????
>

(a)

= File Search View Run Watch Options Calls Trace! Go! MEMSEG.EXE
------------j I-
003F:0042 9AOOOOB345 CALL 45B3:0000 I
003F:0047 FF360200 PUSH Word Ptr [0002)
003F:004B 07 POP ES

~00~3~F~:0~0~4~C;--;:B~D~070~00;;.:..:::._--~M~OT.V---~B~P~,~0~0~070::....;==..'-"-'::::_-=.="'-'-=:.----------·· 003F:004F BOOl MOV AL,01
003F:0051 26884600 MOV Byte Ptr ES:[BP+OO],AL
003F:0055 26884611 MOV Byte Ptr ES:[BP+11],AL
003F:0059 B80100 MOV AX,0001

Copyright (C) Microsoft (R) Corporation 1986, 1987
>d es:OxOOOO
006F:OOOO 01 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 .EMORY MEMORY
006F:0010 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ????????????????
006F:0020 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ????????????????
006F:0030 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ????????????????
006F:0040 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ????????????????
006F:0050 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ????????????????
006F:0060 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ????????????????
006F:0070 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ????????????????
>Segmentation violation

(b)

Figure 3.10 Facilimile CodeView output, illustrating (a) reallocated memory and (b)
reallocated memory with protection violation. (Courtesy of the Microsoft Corporation.)

Sec. 3.2 Memory Management Activities 121

= File Search View Run Watch Options Calls Trace! Go! MEMSEG.EXE
--j r

003F:0042 9AOOOOB345 CALL 45B3:0000
003F:0047 FF360200 PUSH Word Ptr [0002]
003F:004B 07 POP ES
003F:004C BDOOOO MOV BP,0000
003F:004F BOOl MOV AL,01
003F:0051 26884600 MOV Byte Ptr ES:[BP+OO],AL
003F:0055 26884611 MOV BLte Ptr ES:l_BP+ll],AL
QQ3F:Q059 B80100 MOV AX,0001

07E7:0060 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
07E7:0070 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
>d es:OxOOOO
07E7:0000 01 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 .EMORY MEMORY
07E7:0010 4D 01 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 M.MORY MEMORY
07E7:0020 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
07E7:0030 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
07E7:0040 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
07E7:0050 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
07E7:0060 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
07E7:0070 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
>

Figure 3.11 Facsimile CodeView output, illustrating reallocated memory for the conditions
of Figure 3.lOb with sharable memory. Note: There is no protection violation. (Courtesy
of the Microsoft Corporation.)

l

l

Figure 3.12 illustrates a program hugeseg.asm, which is used for allocating
such a huge segment. In this case 81,920 bytes are allocated. The initial call is

@DosAllocHuge mnumseg, msize, msell, msegmax, mflag

where

mnumseg

msize

msell

msegmax

mflag

number of 64K whole blocks in segment

number of bytes in last non-whole block

selector

maximum number of 64K whole segments occupied

(set = 0 means the segment can only be decreased)

bit 0=1 (shareable through DosGiveSeg)

bit 1=1 (shareable through DosGetSeg)

bit 2=1 (discardable in low-memory cases)

In the program we use one 64K whole segment and a partial memory block of
16,384 bytes. The initial selector value returned by @DosAllocHuge points to the
first block in the huge segment. Subsequent blocks must be accessed using

122 Memory Management and Multitasking with Assembler

PAGE 55,132
TITLE HUGESEG -- Allocate a huge segment (hugeseg.asm)

DESCRIPTION: This program allocates a huge segment:
2 (65536) and 1 (16384) byte 64k blocks. It is checked
using CodeView.

I Fl

ENDIF

dgroup

STACK

STACK

DATA

include sysmac.inc

.sall
GROUP

SEGMENT
db
ENDS

SEGMENT

data

PARA STACK 'STACK'
256 dup ('STACK

PARA PUBLIC 'DATA'

1
16384
?
0
OOOOOOOOOOOOOlllB
8192,2048
dw ?

')

;suppresses listing

;number 64k whole blocks
;bytes in last block (partial)
;selector
;maximum realloc 64k blocks
;segment characteristics
;bytes in each block
;shift count

mnumseg dw
msize dw
msell dw
msegmax dw
mflag dw
blk ct dw
shift ct
mem wd db
mseg_ct dw
two dw

1 M1 , 1 E 1 , 1 M1 ,'0','R','Y',' ',' I

1 ;block counter (O, l)
2

DATA ENDS

CSEG SEGMENT PARA PUBLIC 'CODE'
assume cs:CSEG,ds:dgroup

OS21 PROC FAR

@DosAllocHuge mnumseg,msize,msell,msegmax,mflag

LOOP3:

ELSEl:

mov si,o
push si

pop si
mov ax,msell
cmp si,1
jl ELSEl

@DosGetHugeShift shift_ct
mov bx,1
mov cl,byte ptr shift_ct
shl bx,cl
mov ax,msell
add ax,bx

mov msell,ax

push si
mov ax,si
mul two
mov si,ax
mov dx,blk_ct[si]
pop si

;block index
;preserve index

;recall block index
;load selector
;check if 1st block
;jump if 1st block

;get shift count
;bx to be shifted
;load shift as byte
;amount shifted
;reload selector
;create new selector

;reload selector

;block byte sount

Figure 3.12 The program hugescg.asm, used for allocating a huge segment
(81,920 bytes).

Chap. 3

Sec. 3.2 Memory Management Activities

LOOPl:

LOOP2:

mov di,O
lea bp,mem_wd
inc si
push si
push msell
pop es
mov cx,dx

mov si,O

mov al,ds:(bp+si]
mov es: [di] ,al
inc si
inc di
cmp si,7
jle LOOP2

loop LOOPl

pop si
cmp si,mseg_ct
push si
jle LOOP3

@DosFreeSeg msell

@DosExit l,O

OS2l ENDP
CSEG ENDS

END 0621

block internal index
address "MEMORY 11

increment block count
preserve block count
selector
selector in es
load block string count

;string index

;load strin9 member
;insert in huge segment
;increase string index
;increase huge segment index
;check string count

;recall block count
;last block?
;preserve block count

Figure 3.12 (Co11cluded)

123

@DosGetHugeShift. This provides a shift count that can be used to calculate an off­
set. Note that the call

@DosGetHugeShift shift_ct

returns a shift count in shift_ ct. The selector offset increment is obtained by shift­
ing the value 1 to the left by the amount specified as the shift count, shift_ ct. This
is then added to the selector value to get the new selector. For example, suppose
that the selector is 6F7H. If the shift count returned is 4, an increment of 16 must
be added to 6F7H to get the new selector: 707H. If several blocks have been allo­
cated, the selector for each must be obtained by adding the increment to each suc­
cessive selector to obtain the following value.

In Figure 3.12 a check is made on whether the first block is being processed
(si less than 1) and the shift count processing implemented as needed. The word
"MEMORY "is then written into the memory block. Finally, the block is released
using @DosFreeSeg. Figure 3.13 illustrates the Code View memory dump starting at
07F7:FFFO, the end of the segment. Since the listing wraps around at 07F7:FFFF, it
is clear that the 64K block is filled with "MEMORY ".Figure 3.14a illustrates the
beginning of the last partial segment and Figure 3.14b the end of this partial seg­
ment (16,384 bytes long). The partial segment is, of course, also loaded with
"MEMORY ",indicating that the allocation and use of the huge segment (81,920
bytes) was successful.

Figure 3.13 Facsimile CodeVicw output, illustrating loading through first 64K block limits
(07F7:0000 through 07F7:FFFF) of huge segment. (Courtesy of the Microsoft Corporation.)

= File Search View Run Watch Options Calls Trace! Go! HUGESEG.EXE
i r

003F:006E 268805 MOV Byte Ptr ES:[DI],AL
003F: 0071 46 INC SI
003F:0072 47 INC DI
003F:0073 83FE07 CMP SI,+07
003F:0076 7EF3 JLE 006B
003F:0078 E2EE LOOP 0068
00 3F :][O:'[A ~- _fQ!'._ SI
003F:007B 3B361800 CMP SI, Word Ptr [0018)

Copyright (C) IBM Corporation 1987
Copyright (C) Microsoft (R) Corporation 1986, 1987
>d es:OxOOOO
0807:0000 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
0807:0010 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
0807:0020 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
0807:0030 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
0807 0040 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
0807 0050 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
0807 0060 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
0807 0070 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
>

Figure 3.14a Facsimile CodeView output, illustrating (a) loading of second block start
(0807:0000) and (b) loading through second block end (0807:3FFF) of huge segment.
(Courtesy of the Microsoft Corporation.)

-1

I

Sec. 3.2 Memory Management Activities

= File Search View Run Watch Options Calls Trace! Go!
l r---

003F:007B 3B361800
003F:007F 56
003F:0080 7EAO
003F:0082 A10400
003F:0085 50
003F:0086 9AOOOOBB45
003F:008B B80100
003F:008E 50
003F:008F B80000

CMP
PUSH
JLE
MOV
PUSH
CALL
MOV
PUSH
MOV

SI,Word Ptr [0018)
SI
0022
AX,Word Ptr [0004)
AX
45BB:OOOO
AX,0001
AX
AX,0000

125

HUGESEG.EXE
l

OS/2 could have been structured to provide automatic memory management
features, but this would have removed some of the flexibility of the operating sys­
tem. The ability to clean up memory and segregate usage expands the programmer's
access to more difficult problem-solving techniques. This is somewhat philosophi­
cal and the actual implementation of memory allocation is left up to the individual
user. It is, of course, essential for programs that push the limits of the physical
system resources.

3.2.5 Suballocating Memory

The final memory management activity considered in this section is suballocation.
This is the blocking of memory within an allocated segment and is best used if an
application requests and frees small portions of memory at a frequent rate. It has the
advantage that an allocation at the physical level is not needed. When a normal
allocation occurs an LDT entry must be defined, a descriptor defined, physical
memory located, and then the reverse when memory is released. The memory sub­
allocation package (MSP) contains the calls

@DosSubAlloc
@Dos Subset
@DosSubFree

which allow the allocation and freeing of portions of a segment without incurring
the system overhead. The services in the MSP simply keep track of which portions
of the memory segment are in use.

126 Memory Management and Multitasking with Assembler Chap. 3

Figure 3.15 presents a program that implements a memory suballocation
operation. Basically, a segment with 16,385 bytes is allocated using @DosAllocSeg.

PAGE 55,132
TITLE SUBALLO -- Reallocate memory segment (suballo.asm)

DESCRIPTION: This simple routine creates and suballocates
a memory segment. The program should be run with CodeView.

I Fl
include sysmac.inc

ENDIF

.sall
dgroup GROUP data

STACK SEGMENT PARA STACK 'STACK'
db 256 dup ('STACK ')

STACK ENDS

DATA SEGMENT PARA PUBLIC 'DATA'

msize dw 16385
msell dw ?
mflag dw OOOOOOOOOOOOOOOOB
blk ct dw 16384,8192

;buffer size
;selector
;not sharable
;block count

mem-wd db
msiZe1

'M', 'E', 'M', 1 0 1 , 'R', 'Y', • •, • •, •s•, •u•, •a•, 'A', 'L', 'L', 1 0 1 , 1 c 1

dw 8192 ;suballocated size
moffset dw O ;offset to suballocated block
two dw 2

DATA ENDS

CSEG SEGMENT PARA PUBLIC 'CODE'
assume cs:cseg,ds:dgroup

OS21 PROC FAR

@DosAllocseg msize,msell,mflag ;allocate segment

LOOP4:

LOOPl:

LOOP2:

push msell
pop es

mov di,O
mov si,O
push si
push di

pop di
pop si

mov dx,blk ct[si]
lea bp,mem=wd[di]
mov di,moffset
push si
push di

mov cx,s
mov si,O

mov al,ds:[bp+si]
mov es: [di] ,al
inc si
inc di
loop LOOP2

push di
sub di,moffset

;load allocated selector
;pop to es register

;initialize string offset
;initialize block count variable
;preserve block count
;preserve string offset

;recall string offset
;recall block count

;block counter limit
;string address
;block offset in segment
;preserve block count
;preserve block offset

;count limit for string
;index for string/buffer

;load from string
;load buffer
;increment string
;increment block byte

;block offset + block count
;block count

Figure 3.15 The program suballo.asm, which suballocates a 16,384-byte segment
into an 8192-byte block.

Sec. 3.2 Memory Management Activities

cmp di,dx
pop di
jl LOOPl

mov ax,l
mov mflaq,ax

@DosSubSet msell,mflag,msize

;check block limit
;block offset + block count

;set suballocation flag
;load

@DosSubAlloc msell,moffset,msizel

pop di
pop si
add di,s
add si,2
cmp si,two
push si
push di
jle LOOP4

;recall string offset
;recall block count
;go to "SUBALLOC"
:increment word index
;compare second loop
;preserve block count
;preserve string offset

@DosFreeSeg msell

@DosExit 1,0

OS21 ENDP
CSEG ENDS

END OS21

Figure 3.15 (Concluded)

127

Then 16,384 bytes are written in blocks of 8 bytes with "MEMORY ".The serv­
ice call

@DosSubSet msell, mflag, msize

initializes the segment for suballocation. Here msell is the allocated segment selec­
tor; mflag is set to 1, indicating that a segment is being initialized; and msize is the
original segment size.

The call

@DosSubAlloc msell, moffset, msizel

returns an offset in the segment pointing to the start of the suballocated block whose
size is msizel (in this case 8192 bytes). The parameter msell is, of course, the
segment selector.

Figure 3.16 illustrates the operation of this program based on Code View out­
put. In Figure 3.16a the initial load of the segment 006F:OOOO to 006F:3FFF is
indicated. Here the end of the segment is demonstrated to contain "MEMORY "
Next the suballocation is performed and in Figure 3.16b this is illustrated with
"SUBALLOC" loaded up to address OOOF:2007. Note that there is a slight offset
within the segment for the start of the suballocated block. This offset is 8 bytes and
results in an overall shift by this number of bytes from the start of the segment.

128 Memory Management and Multitasking with Assembler Chap. 3

" File Search View Run Watch Options Calls Trace! Go! SUBALLO.EXE
-j r---

003F:0053 A10200 MOV AX,Word Ptr [0002)
003F:0056 50 PUSH AX
003F:0057 A10400 MOV AX, Word Ptr [0004)
003F:005A 50 PUSH AX
003F:005B AlOOOO MOV AX,Word Ptr [0000)
003F:005E 50 PUSH AX
003F:005F 9AOOOOA700 CALL OOA7:0000
003F:0064 A10200 MOV AX,Word Ptr [0002)
003F:0067 50 PUSH AX
003F:0068 B82FOO MOV AX,002F

>d es:Ox3ff0
006F:3FFO 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
006F:4000 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ????????????????
006F:4010 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ????????????????
006F:4020 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ????????????????
006F:4030 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ????????????????
006F:4040 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ????????????????
006F:4050 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ????????????????
006F:4060 ?? ?? ?? ?? ?? ?? ?? ??-?? ?? ?? ?? ?? ?? ?? ?? ????????????????

(a)

= File Search View Run Watch Options Calls Trace! Go! SUBALLO.EXE
·---------------·-·i r-----·-·--------------------------i
003F:0050 A30400 MOV Word Ptr [0004],AX
003F:0053 A10200 MOV AX,Word Ptr [0002]
003F:0056 50 PUSH AX
003F:0057 A10400 MOV AX,Word Ptr [0004]
003F:005A 50 PUSH AX
003F:005B AlOOOO MOV AX,Word Ptr [0000]
003F:005E 50 PUSH AX
003F:005F 9AOOOOA700 CALL OOA7:0000
003F:0064 A10200 MOV AX,Word Ptr [0002]

·-----··----j

006F:0070 53 55 42 41 4C 4C 4F 43-53 55 42 41 4C 4C 4F 43 SUBALLOCSUBALLOC
>d es:OxlffO
006F: lFFO 53 55 42 41 4C 4C 4F 43-53 55 42 41 4C 4C 4F 43 SUBALLOCSUBALLOC
006F:2000 53 55 42 41 4C 4C 4F 43-00 00 FC lF 52 59 20 20 SUBALLOC RY
006F:2010 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
006F:2020 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
006F 2030 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
006F 2040 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
006F 2050 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
006F 2060 4D 45 4D 4F 52 59 20 20-4D 45 4D 4F 52 59 20 20 MEMORY MEMORY
>

(b)

Figure 3.16 Facsimile CodeView output, illustrating (a) end of memory block for original
allocation and (b) end of suballocated block with offset of 8 bytes. Cursor located in
hidden portion of screen. (Courtesy of the Microsoft Corporation.)

Sec. 3.3 Multitasking 129

3.3 MULTITASKING

A major OS/2 enhancement (over DOS) is the ability to execute multiple tasks and
segregate each task's parameter space so that no mixing occurs. The OS/2 imple­
mentation relies heavily on 80286 (and 80386) Protected Mode hardware features.
Two threads, which exist as single entities with shared system resources, exist as
stand-alone modules with their own system resources and can execute as separate
tasks in Protected Mode. In this section we examine briefly the creation of threads
and processes.

3.3.1 Semaphores

Before beginning our examination of task generation, however, it is necessary to
consider synchronization. Assume, for example, that a given task depends on the
outcome of a second task at some point in the first task's execution. Clearly, when
the first task is started it must be synchronized with the second task to ensure that
the proper data become available when needed. If no requirement for synchroniza­
tion exists, the two tasks can execute independently and are said to be asynchronous
with respect to each other.

A very important mechanism for achieving synchronization is the semaphore:
RAM semaphores and system semaphores are considered in this book. A typical
prescription for creating and accessing a RAM semaphore within a process (two
threads) is as follows:

Thread 1

@DosSemSet sem_handle

call to 2nd thread

@DosSemWait sem_handle,-1

Thread 2

activity to be synchronized

@DosSemClear sem_handle

Here the semaphore is set and the second thread called. Meanwhile the first thread
waits for the semaphore to clear. When the second thread clears the semaphore, the
first thread resumes execution. Only a handle, sem_handle, is used to pass informa­
tion about the semaphore. This can be passed to a second independently compiled
(or assembled) process via a shared memory area; however, in the illustration above
it has been assumed that both threads are common to the same process and
sem_handle appears in the process data area (as a double word).

130 Memory Management and Multitasking with Assembler Chap. 3

System semaphores are used commonly between diverse processes and have
the following general form:

and

Data area 1

no_excl dw
aseml db
sem_hdll dd

1
'\SEM\SDAT.DAT,0
0

no_to dd -1

Process 1

:no exclusive
: semaphore name
:handle
:no time out

@DosCreateSem
@DosSemSet

no_ excl, sem _ hdl 1, aseml
sem hdll

call to execute 2nd process

@DosSemWait sem_hdll,no_to

Data area 2

Process 2

aseml db
sem_hdll dd

'\SEM\SDAT.DAT',0
0

no_to dd -1

@DosOpenSem sem_hdll,aseml

activity to be synchronized

@DosSemClear sem_hdll

: semaphore common name
:handle
:no time out

We see that the contrast between the two types is that system semaphores require a
name and hence can be accessed from disjoint segments. RAM semaphores simply
require a common handle. Fast-safe RAM semaphores are used by dynalink librar­
ies.

3.3.2 Creating a Thread

Figure 3.17a is the flowchart for a program that generates two threads using RAM
semaphores for synchronization. Figure 3.17b shows the actual code used in this
process. The first thread clears the screen, writes message msg_pO to the display,

Sec. 3.3 Multitasking

SETUP
DATA

CLEAR
SCREEN

WRITE TTY
MESSAGE#1

BEEP#1

SET
SEMAPHORE

CREATE
THREAD#2

WAIT CLEAR
SEMAPHORE

EXIT

BEEP#2

WRITE TTY
MESSAGE#2

CLEAR
SEMAPHORE

131

Figure 3.17a Flowchart for a program
that generates two threads using RAM
semaphores for synchronization.

132 Memory Management and Multitasking with Assembler

PAGE 55,132
TITLE CKTHl -- Check thread generation (ckthl.asm)

DESCRIPTION: This routine verifies that a thread is
generated •

• sall

.xlist

.list

INCL_BASE equ l
include os2def.inc
include bse.inc

errorl macro
local ERROR12
or ax,ax
jz ERROR12

jmp ERRORll
ERROR12:

endm

dgroup GROUP data

STACKl SEGMENT WORD STACK
dw 1024 dup(?)

stklend equ $
STACKl ENDS

STACK SEGMENT WORD STACK
dw 1024 dup(?)

STACK ENDS

'STACKl'

'STACK'

DATA SEGMENT WORD PUBLIC 'DATA'

result dw
action equ

0
l

msg_po db
db

'This is the main OS/2 thread'
ODH

db
lmsg_po equ

msg_pl db
db
db

lmsg_pl equ

OAH
$-msg_pO

'This is a separate OS/2
ODH
OAH
$-msg_pl

thread'

;Stack for threadl

;Stack for main program

;Exit code from main
;Action code from main

;Carriage return
;Line feed
;Length message zero

;Carriage return
;Line feed
;Length message one

msg_p2 db 'An error
ODH

occurred on thread open'
db
db

lmsg_p2 equ
I
viohdl equ

freq
duration

prgmadd

OAH
$-msg_p2

0

dw
dw

dd

5000
500

Thread 1 parameters

threadl

;Carriage return
;Line feed
;Length message two

:Video handle

15000 Hz
;500 msec

;Address threadl

Figure 3.17b Program illustrating two threads that use RAM semaphores for
synchronization. The speaker is beeped and a message written.

Chap. 3

Sec. 3.3 Multitasking

atk adrl dd atklend
thread ID dw 0
thdl_exit_code dw 0

thd seml dd 0
sem-hdll dd thd_seml
no_to dd -1
;
tr dw 0
le dw 0
br dw 23
re dw 79
no line dw 25
blank dw 0007H

DATA ENDS

CSEG SEGMENT WORD PUBLIC 1 CODE 1

assume cs:CSEG,ds:dqroup,ss:STACK
OS21 PROC FAR

call els

@VioWrtTTY
errorl

@DosBeep
errorl

@Dossemset
errorl

msq_pO,lmsq_pO,viohdl

freq,duration

aem_hdll

End STACKl
threadl I.D.
Thread l exit code

;Semaphore threadl
;Address thd_seml
;No time out

;Top row screen
;Left corner
;Bottom row
;Riqht corner
;Number blanked lines
;Blank attribute

;Write message one

;Beep speaker

;Set RAM semaphore

@DoscreateThread
errorl

prqmadd,threadID,atk_adrl

jmp CONT
ERRORll:

@VioWrtTTY
jmp ENDD

CONT:

@Dossemwait

ENDO:

maq_p2,lmsq_p2,viohdl ;Write error message

sem_hdll,no_to ;Wait for semaphore clear

@DosExit action,reault ;Exit

OS21 ENDP
;
threadl PROC FAR

@DosBeep

@VioWrtTTY

@DosSemClear

freq, duration

msq_pl,lmsq_pl,viohdl

sem_hdll

;Beep speaker

;Write message two

;Clear semaphore

@DosExit action,thdl_exit_code ;Exit threadl .
threadl ENDP

els PROC NEAR

@VioScrollUp tr,lc,br,rc,no_line,blank,viohdl

Figure 3.17b (Continued)

133

134 Memory Management and Multitasking with Assembler Chap. 3

ret
els ENDP

CSEG ENDS
END 0621

Figure 3.17b (Concluded)

beeps the speaker, sets a semaphore, turns on threadl, waits for the semaphore to
clear, and exits the process. The second thread, threadl, beeps the speaker, writes
msg_pl to the display, clears the semaphore, and exits threadl. Synchronization is
needed because both threads access the display and collisions will result if they run
asynchronously.

Figure 3.18a is the flowchart for a program that generates random boxes to the
screen, one at a time. The program creates a box of random size (again, in our
constraint of 200 x 200 pixels for CGA mode), erases the box, and continues (cre­
ating and erasing boxes). The box creation occurs as a separate thread running
asynchronously from the main thread. The main thread, once having turned on the
box generator thread, simply waits for a keyboard input to terminate the process.
Both threads run as part of the same process.

The program code is presented in Figure 3.18b, where the main thread clears
the screen, sets CGA mode and clears the screen again, locks the display and gets
a selector to the physical screen buffer, beeps the speakers, turns on threadl, and
waits for a keyboard input. Following a keyboard input, the screen is unlocked,
standard mode resumed (80 x 25), the screen cleared again, and the process exited.

Meanwhile the second thread, once started, first beeps the speaker and then
enters an infinite loop. Within this loop a set of random box corners are generated
and the box drawn on the display, as indicated above, with a call to boxx. The pixel
(pel) attribute is set to unity for this call. Next, the box is erased by repeating the
call with the pixel attribute set to zero.
In general, the instruction

@DosExit action, result

will stop both threads from executing when called from the parent. This happens
only in response to the keyboard input, which is sensed using @KbdStringln.

Figure 3.19 contains the support routines used by the box generating program:
boxx, clsCGA, wdot, lineh, and linev. Note that some of the routines are slightly
different from their counterparts given in GRAPHLIB.LIB (boxx is FAR, for ex­
ample). Also, note that the second thread procedure is of distance attribute FAR
even though it is defined within the same segment as the main thread. This allows
the second thread to pass a full 32-bit address for its entry point. Multiple threads
within the same process should be used when the task in question is reasonably
simple and can be modularized within the same segment.

Sec. 3.3 Multitasking

SETUP
DATA

CLEAR
SCREEN

SET CGA MODE AND
CLEAR SCREEN

LOCK SCREEN
CONTEXT

GET SELECTOR
PHYSICAL BUFFER

BEEP#1

CREATE
THREAD

KEYBOARD
HESITATE

UNLOCK
SCREEN

SET STD
MODE

CLEAR
SCREEN

EXIT

BEEP#2

WRITE TTY
MESSAGE#2

CLEAR
SEMAPHORE

135

Figure 3.18a Flowchart for a program
that generates single random boxes
using multiple threads.

136 Memory Management and Multitasking with Assembler

PAGE 55,132
TITLE UNOS251 - This is the calling OS/2 proqram (UNOS251.ASM)

DESCRIPTION: Thia program "single" random plots boxes in protected
mode. Graphics mode 05H is used to display the boxes. This routine
employs multithreadinq to generate the boxs which are
generated randomly (100 boxes in square 200 x 200) •

• 8087

EXTRN boxx:FAR,clsCGA:FAR

PUBLIC viohdl,CGAa,lmodeE,typeCGA,colCGA
PUBLIC txtcCGA,txtrCGA,hrCGA,vrCGA,STDlll,lmode80,type80,col80
PUBLIC txtc80,txtr80,hr80,vr8o,waitf,dstat,PVBptrl,bufstl,buflenl,physell
PUBLIC MASKl,MASKll,OFFSETl,four,xx,dummy,two,xxx,eighty,row,col
PUBLIC addressl,x,y,xb,xe,ya,yb,xxxx

.sall

.xlist

.list
;

INCL_BASE equ 1
include os2def.inc
include bse.inc

dgroup GROUP data

STACKl SEGMENT WORD STACK 'STACKl'
dw 1024 dup(?)

stklend equ $
STACKl ENDS

STACK SEGMENT WORD STACK 'STACK 1

dw 1024 dup(?)
STACK ENDS

DATA SEGMENT WORD PUBLIC 'DATA'
;
viohdl equ
result dw
action equ
actionl equ
tr dw
le dw
br dw
re dw
no line dw
blank dw

CGAa label
lmodeE dw
typeCGA db
colCGA db
txtcCGA dw
txtrcGA dw
hrCGA dw
vrcGA dw
I
STDlll
lmode80
type80
col80
txtc80
txtr80

label
dw
db
db
dw
dw

0
0
1
0
0
0
23
79
25
0007H

FAR
12
OOOOOlllB
2
40
25
320
200

FAR
12
OOOOOOOlB
4
80
25

;Stack for thread

;Required video handle
;Completion code
;Terminates current thread
;Thread termination action
1Top row screen clear
;Left column screen clear
;Bottom row screen clear
;Right column screen clear
;Number lines scrolled
;Blank character pair

;Video mode structure-CGA
;Structure length
;Mode identifier
;Color option-Mode 5
;text characters/line-ignore
;text lines-ignore
;horizontal resolution
;vertical resolution

;Video mode structure-80x25
;Structure lenqth
;Mode identifier-Mode 3+
;color option
;text characters/line
;text lines

Figure 3.18b Main program for the "single" random box routine.

Chap. 3

Sec. 3.3 Multitasking

hr80
vr80

dw
dw

kbd buf db
lkbd buf dw
iowait dw
kbdhdl equ

waitf
dstat

PVBl'trl
buf stl
buflenl
physell

equ
db

label
dd
dd
dw

MASKl db
MASK2 db
MASK22 db
MASKll dw
OFFSETl dw
four dw
xx dw
dummy dw
two db
xxx db
eighty dw
zero dw
one dw
row dw
col dw
addressl
rndret db

x
y
Xb
xe
yb
ye

dw
dw
dw
dw
dw
dw

720
400

80
$-kbd_buf
0
0

1
?

FAR
OB8000H
4000H
0

?
OlH
OOH
OOOlH
2000H
4
?
?
2
?
80
0
1
?
?
dw
?

?
?
?
?
?
?

?

;horizontal resolution
;vertical resolution

;Keyboard buffer
;Length keyboard buffer
;Wait for CR
;Keyboard handle

;Screen waiting status
;Returned status

;Video buffer structure
;Start physical address
;Buffer length
;OS/2 screen buffer selector

;PEL byte mask
;PEL byte mask--do
;PEL byte mask--undo
;Odd/even row mask
;Odd row buffer offset

;PEL attribute parameter
;80287 dummy "pop"

;Output value

;row
;column
;Address screen dot
;random no. returned

;Box col parameter
;Box row parameter
;Start column
;End column
;Start row
;End row

Second Thread Variables
;
rndl
prq:madd
stk adrl
threadID
xxxx
thdl_exit_code

thd seml
sem-hdll
no to
freq
duration

DATA ENDS

dw
dd
dd
dw
db
dw

dd
dd
dd
dw
dw

l
threadl
stklend
0
?,?,?,?
0

0
thd_seml
-1
5000
500

CSEG SEGMENT WORD PUBLIC 'CODE'

;random seed
;address thread
;end of thread stack
;thread ID
;box corner buffer
;threadl exit code

;Semaphore threadl
;Address thd_seml
;No time out
;frequency beep in Hz
;duration beep in millisec

assume cs:CSEG,ds:dgroup,ss:STACK
OS21 PROC FAR

call els ;clear screen

Figure 3.18b (Continued)

137

138 Memory Management and Multitasking with Assembler Chap. 3

@VioSetMode CGAm,viohdl ;set CGA graphics mode

call clsCGA

@VioScrLock waitf,dstat,viohdl

@VioGetPhysBuf PVBPtrl,viohdl
push physell
pop es

@DosBeep freq,duration

;Clear CGA screen

;Lock screen context

;Get physical buff sel
;Save selector
;Load selector into es

;Beep speaker

@DosCreateThread prgmadd,threadID,stk_adrl

@KbdStringin kbd_buf,lkbd_buf ,iowait,kbdhdl

@VioScrUnlock viohdl

;hesitate

;Unlock screen

@VioSetMode STDm,viohdl

call els

@DosExit action,result

0521 ENDP
;
els PROC NEAR

;SO x 25 alpha mode

;Terminate process

@VioScrollUp tr,lc,br,rc,no_line,blank,viohdl ;STD screen clear

ret
els ENDP

xload PROC NEAR
mov bh,O
mov bl,al
mov xb,bx
mov bh,O
mov bl,ah
mov xe,bx
ret

xload ENDP

yload PROC NEAR
mov bh,O
mov bl,al
mov yb,bx
mov bh,O
mov bl,ah
mov ye,bx
ret

yload ENDP

threadl PROC FAR

@DosBeep

mov ax,one
mov rndl,ax

lea bp,xxxx

LOOPO:
mov cx,4
mov di,O

LOOPOO:

freq, duration

;Clear upper register half
;al = start
;Load xb less than 199
;Clear upper register half
;ah = end
;Load xe less than 199

;Clear upper register half
;al = start
;Load yb less than 199
;Clear upper register half
;ah = end
;Load ye less than 199

;Beep speaker

;random seed
;load r.n. parameter

;4 byte buffer

;unterminated loop
;box corner count
;r.n. memory index

Figure 3.18b (Continued)

Sec. 3.3 Multitasking

EELSEl:

ELSEl:

IIFl:

EELSE2:

ELSE2:

IIF2:

call ldmem
mov al,rndret
mov ds:(bp+di],al
inc di
loop LOOPOO

mov al,ds: (bp)
mov ah,ds: [bp+l]
cmp ah, al
jne EELSEl

mov al,170
mov ah, 180
call xload
jmp IIFl

cmp ah,al
jle ELSEl

call xload
jmp IIFl

mov bl,al
mov al,ah
mov ah,bl
call xload

mov al,ds: (bp+2]
mov ah,ds:[bp+3]
cmp ah,al
jne EELSE2

mov al,170
mov ah,180
call yload
jmp IIF2

cmp ah,al
jle ELSE2

call yload
jmp IIF2

mov bl,al
mov al,ah
mov ah,bl
call yload

push xb
push xe
push yb
push ye
mov al,MASK2
mov MASKl,al

call boxx

pop ye
pop yb
pop xe
pop xb
mov al,MASK22
mov MASKl,al

call boxx

jmp LOOPO

load random memory values
move r.n. into register
save r.n. in memory
increment r.n. memory index

;1st r.n. value
;2nd r.n. value
;check 2nd different than
;jump if not equal
;move in arbitrary value
;move in different value
;load xe and xb

;check 2nd less than 1st
;jump if less or equal

1st

l.t.

;if g.t. calculate xb and xe

;2nd g.t. 1st -- swap
;swap
;reload
;calculate xe and xb

;3rd r.n. value
;4th r.n. value
;check 3rd different than 4th
;jump if not equal

200

;move in arbitrary value l.t. 200
;move in different value
;load ye and yb

;check 4th less than 3rd
;jump if less or equal
;if g.t. calculate yb and ye

;3rd g.t. 4th -- swap
;swap
;reload
;calculate yb and ye

;preserve box parameters

;PEL value set
;load dummy

;write box

;recall box parameters

;PEL value black
;load dummy

;undo box

;jump unterminated loop

@DosExit actionl,thdl_exit_code

Figure 3.18b (Continued)

139

140 Memory Management and Multitasking with Assembler

threadl ENDP
;
ldmem

ldmem
;
CSEG

PROC NEAR

push ax
push bx
push dx

mov dx,o
mov ax,rndl
mov bx,2053
mul bx
mov bx,13849
clc
add ax,bx
adc dx,o
mov bx,OFFFFH
div bx
mov ax,dx
mov rndl,ax
mov bx,350
mov dx,o
div bx
mov ah,O

mov rndret,al

pop dx
pop bx
pop ax
ret
ENDP

ENDS
END OS21

;load upper multiplicand
;load previous r.n.
;multiplier

;load additative constant

;add lower order result
;add carry if needed
;load 2(16)-l
;calculate modulo
;mov remainder into ax
;save r.n.
:scale r.n. less than 200
;clear upper dividend

;save al

;returned value byte

Figure 3.18b (Concluded)

3.3.3 Creating Another Process

Chap. 3

When multiple processes are to be synchronized the system semaphores are appro­
priate. System semaphores provide a common link between the two processes
through the semaphore name. If RAM semaphores are used, the semaphore handle
must be shared with a common data element. Figure 3.20a illustrates a program that
generates two processes using system semaphores for synchronization. The sema­
phore name must be zero terminated and preceded by

'\SEM\ ••• '

In Figure 3.20b we illustrate this naming with a semaphore called

'\SEM\SDAT.DAT', 0

and given the variable name aseml.
The second process called by the program in Figure 3.20b is OS2P2.EXE, as

Sec. 3.3 Multitasking

PAGE 55,132
TITLE NNOS252 - Supplemental routines for box plotting (NNOS252.ASM)

• 8087

EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN

CSEG
PUBLIC

boxx

ELSElO:

ELSEll:

DESCRIPTION: These routines set up box plots in CGA mode. Graphics
mode 05H is used to display the box. This set of routines
is called by box plottinq main routinea The boxes are created or
destroyed depending on MASKl value •

.sall

.xlist

.list

INCL_BASE equ l
include os2def.inc
include bse.inc

viohdl:WORD
CGAm:FAR,lmodeE:WORD,typeCGA:BYTE
colCGA:BYTE,txtcCGA:WORD,txtrCGA:WORD,hrCGA:WORD,vrCGA:WORD
STDm:FAR,lmode80:WORD,type80:BYTE,col80:BYTE,txtc80:WORD,txtr80:WORD
hr80:WORD,vr80:WORD
waitf:WORD,dstat:BYTE,PVBPtrl:FAR,bufstl:DWORD
buflenl:DWORD,physell:WORD,MASKl:BYTE,MASKll:WORD,OFFSETl:WORD
four:WORD,xx:WORD,dummy:WORD,two:BYTE,xxx:BYTE,eighty:WORD
row:WORD,col:WORD,addressl:WORD,x:WORD,y:WORD,xb:WORD,xe:WORD
yb:WORD,ye:WORD

SEGMENT WORD PUBLIC 'CODE'
boxx,clsCGA
assume cs:CSEG
PROC FAR

xb = x-begin,xe = x-end,yb

push ax
push bx
push ex
push dx

mov ax,xb
cmp ax,xe
jl ELSElO

xchg ax,xe
mov xb,ax

mov ax,yb
cmp ax,ye
jl ELSEll

xchg ax,ye
mov yb,ax

mov ax,yb
mov y,ax
call lineh
mov ax,ye
mov y,ax
call lineh
mov ax,xb
mov x,ax
call linev
mov ax,xe
mov x,ax
call linev

y-begin,ye y-end

;Check xb l.t. xe

;Swap xb and xe

;Check yb l.t. ye

; swap yb and ye

;Top box line

;Draw top horizontal line
;Bottom box line

;Draw bottom horizontal line
;Left box line

;Draw left vertical line
;Right box line

;Draw right vertical line

Figure 3.19 Associated support routines for the "single" random box program.

141

142 Memory Management and Multitasking with Assembler

boxx
I
claCGA

001:

002:

pop dx
pop ex
pop bx
pop ax

ret
ENDP

PROC FAR

@ViOScrLock waitf,dstat,viohdl
@VioGetPhyaBuf PVBptrl,viohdl
push phyaell
pop ea

mov bp,o
mov al,O

mov ea: [bp] ,al
inc bp
cmp bp,lF3FH
jle 001

mov bp,2000H
mov al,o

mov ea: [bp] ,al
inc bp
cmp bp,3F3FH
jle 002

@VioscrUnLock viohdl

ret
claCGA ENDP
;
wdot PROC NEAR

(col,row) • (x,y)

push ax
push bx
push ex
push dx
push bp

fild four
fild col
fprem
fistp xx
fistp dummy
mov al,3
mov bl,byte
sub al,bl
mov ah,O
mul two
mov cl,al
mov al,HASKl
ahl al,cl
mov xxx,al

mov ax, row
shr ax,l
mov dx,o
mul eiqhty

ptr xx

Lock screen context
Get physical buffer
Screen selector
Load extra segment

;Start offset zero
;Zero attribute-clear

;Clear byte

;Check end 1st buffer

;Offset 2nd buffer-odd
;Zero attribute-clear

;Clear byte

;Check snd 2nd buffer

;Unlock screen context

;Load stack with 4
;ST - col, ST(l) 4
;Modulo
;Store remainder in xx
;Pop stack

;(3 - coli 4)
;Clear upper multiplicand

;Shift value for PEL
;PEL color mask
;Shift to correct PEL
;Ster~ buffer value
I
;Beqin address calculation
;Divide row by 2
;Clear upper multiplicand

Figure 3.19 (Continued)

Chap. 3

Sec. 3.3 Multitasking

ELSEl:

IFll:

CCC:

DOD:

mov bx,col
shr bx,l
shr bx,l
add ax,bx
mov addressl,ax
mov ax,row
and ax,MASKll
cmp ax,O
jle ELSEl

mov ax,addressl
add ax,OFFSETl
jmp IFll

mov ax,addressl

mov bp,ax
mov al,xxx

cmp al,O
je CCC

or es: [bp] ,al
jmp DOD

mov es: [bp) ,al

pop bp
pop dx
pop ex
pop bx
pop ax

ret
wdot ENDP

lineh PROC NEAR

;Convert column value to bytes

;offset in ax
;Save offset base
;Check even/odd row
;Look for bit o set

;add odd buffer offset

;screen buffer address
;Attribute value for dot

;check PEL black (O)

;Write dot

;Clear PEL

y • row position, xb • beqin, xe • end

LINEl:

LINE2:

DOlO:

LINE3:

push ax
push bx
push ex
push dx

m.ov ax,y
cmp ax,199
jg LINEl

mov row,ax
jmp LINE2

mov ax,180
m~v row,ax

mov ax,xb

mov col,ax
push ax
cap ax,319
jle LINE3

mov ax,319
mov col,ax

call wdot
pop ax
inc ax
cmp ax,xe
jle DOlO

Establish row for wdot
check row l.t. 199
jump if greater
load "row•

;load arbitrary value l.t. 199
;load "row"

;Establish start column

;Save column value
;check col less than 319
;jump if 1. t.e. 319
;if greater load arbitrary value
;load "col"

;Write dot (col,row)
;Recall column
;Increment column
;Check end horizontal line

Figure 3.19 (Continued)

143

144 Memory Management and Multitasking with Assembler Chap. 3

pop dx
pop ex
pop bx
pop ax

ret
lineh ENDP

linev PROC NEAR

x = col position, yb = begin, ye = end

LLINEl:

LLINE2:

0020:

LLINE3:

linev

CSEG

push ax
push bx
push ex
push dx

mov ax,x
cmp ax,319
jg LLINEl

mov col,ax
jmp LLINE2

mov ax,319
mov col,ax

mov ax,yb

mov row,ax
push ax
cmp ax,199
jle LLINEJ

mov ax,199
mov row,ax

call wdot
pop ax
inc ax
cmp ax,ye
jle 0020

pop dx
pop ex
pop bx
pop ax

ret
ENDP

ENDS
END

Establish column for wdot
check col l.t. 319
jump if greater
load "col"

;greater therefore arbitrary value
;load "col"

;Establish start row

;Save row value
;check row value q.t. 199
; jump if less
;greater therefore arbitrary value
;load "row"

;Write dot (col,row)
;Recall row
;Increment row
;Check end vertical line

Figure 3.19 (Concluded)

specified under prgrm_nm in the parameter list for @DosExecPgm. The process
indicated in Figure 3.20b clears the screen, writes msg_pO to the display, creates a
system semaphore with handle sem_hdll and name SDAT.DAT, beeps the speaker,
sets the semaphore, and turns on the second process. Following this, the process
waits for the system semaphore to clear and then terminates both the second proc-

Sec. 3.3 Multitasking

SETUP
DATA

CLEAR
SCREEN

WRITE TTY
MESSAGE

CREATE
SEMAPHORE

BEEP#1

SET
SEMAPHORE

CREATE
PROCESS#2

WAIT CLEAR
SEMAPHORE

KILL
PROCESS#2

EXIT

PROCESS#2

145

Figure 3.20a F1owchart for program
that generates two processes using
system semaphores.

ess and itself. Note that this main process accesses the screen at several points (els
and @VioWrtTTY).

Figure 3.21a illustrates the flowchart for the child process,
OS2P2.ASM, turned on by the program in Figure 3.20b. The supporting code is
shown in Figure 3.21b. The common semaphore name, '\SEM\SDAT.DAT', 0, is
again defined by a variable aseml (not related by symbol to the aseml appearing in

146 Memory Management and Multitasking with Assembler

PAGE 55,132
TITLE CRPRl -- Check thread generation (ckprl.aem)

DESCRIPTION: This routine verifies that a process is
generated •

• sall

.xlist

.list
errorl macro

INCL_BASE equ l
include os2def.inc
include bse.inc

local ERROR12
or ax,ax
jz ERROR12

jmp ERRORll
ERROR12:

endm

dgroup GROUP data

STACK SEGMENT WORD STACK 'STACK'
dw 1024 dup(?)

STACK ENDS

DATA SEGMENT WORD PUBLIC 'DATA'
I
result dw
action equ

msg__pO db
db
db

lmsg__po equ

viohdl equ
I
freq
duration

no excl
as8m1
sem hdll
no_to
I
I
tr
le
br
re
no line
blank

0
l

'This is the main OS/2 thread'
ODH
OAH
$-msg__pO

0

dw
dw

dw
db
dd
dd

dw
dw
dw
dw
dw
dw

4000
500

Semaphore l parameters

1
1 \SEM\SDAT.DAT',O
0
-1

0
0
23
79
25
00078

;Stack for main program

;Exit code from main
;Action code from main

;Carriaqe return
;Line feed
;Length message zero

;Video handle

14000 Hz
;500 msec

;no exclusive
;Name system semaphore
;Address thd seml
;No time out-

;Top row screen
;Left corner
;Bottom row
;Right comer
;Number blanked lines
;Blank attribute

Process Created Parameters

Figure 3.20b Program that generates two processes using system semaphores.

Chap. 3

Sec. 3.3 Multitasking

obj_name_buf dd 10 dup(?) Process name buffer
lobj_name_buf dw $-obj_name_buf length buffer
a sync dw 1 asynchronous operation
argptr dw 0 pointer arguments
envptr dw 0 environment pointer
pid dw ? process ID

dw ?
prgm_nm db 1 0S2P2 .EXE I I 0 ;process name

DATA ENDS

CSEG SEGMENT WORD PUBLIC 'CODE'
assume cs:CSEG,ds:dgroup,ss:STACK

OS21 PROC FAR

ERROR11:

call els

@VioWrtTTY
errorl

;Clear screen

msg_pO,lmsg_pO,viohdl ;Write message

@Doscreatesem
errorl

no_excl,sem_hdll,aseml ;Create system semaphore

@Dos Beep

@OosSemSet
errorl

freq, duration ;Beep speaker

sem_hdll ;Set semaphore

;Create child process
@DosExecPgm obj_name_buf,lobj_name_buf,async,argptr,envptr,pid,prgm_nm
errorl

@DosSemWait sem_hdll,no_to ;Wait for semaphore clear

@DosKillProcess 1,pid ;Terminate child process

@DosExit action,result ;Exit

OS21 ENDP

els PROC NEAR

@VioScrollUp

ret
els ENDP

CSEG ENDS
END OS21

;Clear screen
tr,lc,br,rc,no_line,blank,viohdl

Figure 3.20b (Concluded)

147

148 Memory Management and Multitasking with Assembler Chap. 3

SETUP
DATA

OPEN
SEMAPHORE

BEEP

WRITE TTY
MESSAGE

CLEAR
SEMAPHORE

EXIT

Figure 3.21a Flowchart for a child
process, illustrating synchronization
using system semaphores.

the parent). This child process opens the semaphore, beeps the speaker, writes a
message msg_pl to the display, and clears the semaphore. The process then termi­
nates itself. Synchronization is needed because both processes access the display.

This very brief example presents the use of multiple processes that must be
synchronized. Earlier we used flags in a common data area to accomplish this with
the program that displayed 100 random boxes at once. The use of semaphores is a
more formal and elegant way to achieve synchronization and does not require
a constant polling of the flag to check for process completion. The system does this
for us.

Sec. 3.3 Multitasking

PAGE 55,132
TITLE OS2P2 -- Check thread generation (os2p2.asm)

DESCRIPTION: This routine verifies that a 2nd process is
qenerated. It uses semaphores for synchronization .

• sall

.xlist

.list

INCL_BASE equ l
include os2def.inc
include bse.inc

errorl macro

ERROR12:

local ERROR12
or ax,ax
jz ERROR12

jmp ERR0Rl1

endm

dgroup GROUP datal

STACKl SEGMENT WORD STACK
dw 1024 dup(?)

STACKl ENDS

'STACKl'

DATAl SEGMENT WORD PUBLIC 'DATAl'

result dw 0
action equ l

;Stack for 2nd process

;Exit code from process
;Action code from process

msg_pl db 'This is a separate OS/2 process•
db ODH
db OAH

lmsg_pl equ $-msg_pl
;
viohdl equ

freq
duration

aseml
sem hdll
no_to

DATAl ENDS

0

dw
dw

db
dd
dd

5000
500

Semaphore parameters

'\SEM\SDAT.DAT',O
0
-1

CSEG SEGMENT WORD PUBLIC 'CODE'

OS2l
assume cs:CSEG,ds:dgroup,ss:STACKl
PROC FAR

@DosOpenSem
errorl

@DosBeep
errorl

sem_hdll,aseml

freq,duration

;carriage return
;Line feed
;Lenqth message one

;Video handle

;5000 Hz
;500 msec

;Semaphore name
;Address thd seml
;No time out-

;Open system semaphore

;Beep speaker

Figure 3.2lb Child process, illustrating synchronization using system semaphores.

149

150 Memory Management and Multitasking with Assembler

@VioWrtTTY
errorl

msg_pl,lmsg_pl,viohdl ;Write message

@DosSemClear sem_hdll

ERRORll:
@DosExit action,result

OS21 ENDP
CSEG ENDS

END OS21

Figure 3.2lb (Concluded)

;Clear semaphore

;Exit process

3.4 INTERPROCESS COMMUNICATIONS

Chap. 3

We have seen examples of interprocess communication (IPC) using shared memory
and semaphores. OS/2 has three additional mechanisms for achieving such commu­
nication: pipes, queues, and signals. Signals basically act like a hardware interrupt
and tend to reflect rather specialized interprocess communications [5]. We only
mention them. The dominant mechanisms we focus on in this book are the remain­
ing four. Synchronization is a major requirement for processes competing for serial
mechanisms [6]. OS/2 solves this problem in a number of ways.

3.4.1 Pipes and Queues

A flowchart for a parent program that passes messages via pipes is illustrated in
Figure 3.22a. The code associated with the parent is presented in Figure 3.22b. This
program employs several IPC mechanisms in addition to pipes: semaphores, for
achieving synchronization, and shared memory, for passing the pipe handle and
message length. First the screen is cleared with a call to els. Next, the shared seg­
ment is created and this segment is arbitrarily large (512 words). The call to
@DosMakePipe creates the pipe with a read handle, read_hdl, and a write handle,
write_hdl. The parameter pflag specifies the pipe length in bytes.

Note that a pipe is anonymous in this context and serves simply as a high­
speed buffer area with no name. A system semaphore is created, the speaker beeped,
the message msg_pO written to the pipe buffer using write_hdl, the semaphore set,
and a child process executed. The parent then waits for the child to execute and
clear the semaphore before it terminates the child and exits.

Figure 3.23a presents the flowchart for the child process. Figure 3.23b contains
the code for this process. Initially, the child opens the semaphore, beeps the speaker,
and gets a selector to the shared segment. This shared segment is used to obtain a

Sec. 3.4 Interprocess Communications

SETUP
DATA

CREATE SHARED
SEGMENT

CREAT
PIPE

PIPE READ HANDLE IN
SHARED SEGMENT

CREATE
SEMAPHORE

BEEP

WRITE MESSAGE
TO PIPE

SET
SEMAPHORE

CREATE
CHILD

WAIT CLEAR
SEMAPHORE

KILL
PROCESS

EXIT

CHILD
PROCESS

151

Figure 3.22a Flowchart for a main
program that examines pipes for
interprocess communication.

152 Memory Management and Multitasking with Assembler

PAGE 55,132
TITLE PIPEST -- Check pipe generation (pipest.asm)

DESCRIPTION: This routine verifies that a pipe is
generated •

• sall

.xlist

.list
errorl macro

INCL_BASE equ 1
include os2def.inc
include bse.inc

local ERROR12
or ax,ax
jz ERROR12

jmp ERRORll
ERROR12:

endm
I
dgroup GROUP data

STACK SEGMENT WORD STACK 'STACK'
dw 1024 dup(?)

STACK ENDS
I
DATA SEGMENT WORD PUBLIC 'DATA'
;
result dw
action equ

msg_pO db
db
db

lmsg_pO equ
;
viohdl equ
I
freq
duration

no_excl
aseml
se11 hdll
no_to

I
tr
le
br
re
no line
blank

0
1

'This is the OS/2 pipe message•
ODH
OAH
$-msg_pO

0

dw
dw

dw
db
dd
dd

dw
dw
dw
dw
dw
dw

4000
500

Semaphore 1 parameters

1
'\SEM\SDAT.DAT',0
0
-1

0
0
23
79
25
0007H

;Stack for main program

;Exit code from main
;Action code from main

;carriage return
;Line feed
;Lenqth messaqe zero

;Video handle

;4000 Hz
;500 msec

;no exclusive
;Name system semaphore
;Address
;No time out

;Top row screen
;Left corner
;Bottom row
;Right corner
;Number blanked lines
;Blank attribute

Process Created Parameters

Figure 3.22b Pipe main program.

Chap. 3

Sec. 3.4 Interprocess Communications

obj_nama_buf
lobj_name_buf
aaync
argptr
envptr
pid

prgm_nm ,

;
read hdl
write_hdl
pflag
bytas_writtan

dd
dw
dw
dw
dw
dw
dw
db

dw
dw
dw
dw

10 dup(?)
$-obj_name_buf
1
0
0
?
?
'PIPECL.EXE' ,O

Pipe Parameters

?
?
256
?

Process name buffer
length buffer
asynchronous operation
pointer arCJlllllents
environment pointer
process ID

;process name

rPipe read handle
;Pipe write handle
;Pipe length in bytes
;bytes written to pipe

Shared Memory Parameters

;
maize dw
maall dw
ahrnama db

512
?
'\SHAREMEM\SDATl.DAT',O

zero
one

dw
dw

0
1

DATA ENDS

CSEG SEGMENT WORD PUBLIC 1 CODE 1

assume cs:CSEG,de:dgroup,ss:STACK
OS21 PROC FAR

call els

@DoaAllocShrSag msiza,shrname,msell
errorl
push msall
pop as
mov bp, zero

@DoaMakaPipe raad_hdl,writa_hdl,pflag
errorl
mov ax,raad hdl
mov es:[bp+2],ax

;Shared buffer size
;Shared selector
;Shared buffer name

;Clear screen

;preserve selsctor
;selector in extra segment
;index equal O

;Create pipe

;transfer read handle
;handle in extra segment

@DosCraatasem no_excl,sem_hdll,aseml rcraata system semaphore
errorl

@DosBeap fraq,duration rBeep speaker

@DosWrite write_hdl,msg__pO,lmsg__pO,bytas_writtan
errorl
mov ax,bytas_writtan
mov as:[bp+4],ax

@DosSemSat
errorl

sem_hdll

rtransfer massage length
;length in buffer

;Set semaphore

Figure 3.22b (Continued)

153

154

ERRORll:

;

Memory Management and Multitasking with Assembler Chap. 3

;Create child process
@DosExecPgm obj_name_buf,lobj_name_buf,async,arqptr,envptr,pid,prqm_nm
error1

@Dos5emWait sem_hdll,no_to ;Wait for-semaphore clear

@DosKillProcess 1,pid ;Terminate child process

@DosExit action,result ;Exit

0521 ENDP

els PROC NEAR

@Vio5crol1Up

ret
els ENDP

CSEG ENDS
END 0521

;Clear screen
tr,lc,br,rc,no_line,blank,viohdl

Figure 3.22b (Concluded)

SETUP
DATA

OPEN
SEMAPHORE

BEEP

ADDRESS SHARED
SEG. FOR PIPE HANDLE

READ MESSAGE #1
FROM PIPE

WRITETIY
MESSAGE#1

CLEAR
SEMAPHORE

EXIT

Figure 3.23a Flowchart for a child
process that illustrates pipes used for
interprocess communications.

Sec. 3.4 Interprocess Communications

PAGE 55,132
TITLE PIPECL -- Check pipe generation (pipecl.asm)

DESCRIPTION: This routine verifies that a pipe is
qenerated. It uses semaphores for synchronization .

• sall

.xlist

.list

errorl macro

INCL_BASE equ 1
include os2def.inc
include bse.inc

local ERROR12
or ax,ax
jz ERROR12

jmp ERRORll
ERROR12:

endm

dgroup GROUP datal

STACKl SEGMENT WORD STACK 'STACK1 1

dw 1024 dup(?)
STACKl ENDS

DATAl SEGMENT WORD PUBLIC 'DATAl'

result dw
action equ
viohdl equ

freq
duration

aseml
sem_hdll
no_to

zero dw

shrsel dw
shrname db

read hdl
lmsg­
buffer

0
1
0

dw
dw

db
dd
dd

0

5000
500

Semaphore parameters

'\SEM\SDAT.DAT',O
0
-1

Shared Buff er Parameters

'\SHAREMEM\SDATl.DAT',O

dw
dw
db

Pipe Parameters

?
?
256 dup(?)

;Stack for 2nd process

;Exit code from process
;Action code from process
;Video handle

;5000 Hz
;500 msec

;Semaphore name
;Address
;No time out

;selector
;buffer name

;read handle
;length message
;buffer length

Figure 3.23b Routine for a child process, illustrating pipes for interprocess
communications.

155

156 Memory Management and Multitasking with Assembler

bytes_read dw ?

DATAl ENDS

CSEG SEGMENT WORD PUBLIC 'CODE'
assume cs:CSEG,ds:dqroup,ss:STACKl

OS21 PROC FAR

ERRORll:

OS21
CSEG

@DosopenSem sem_hdll,aseml
errorl

@DosBeep freq, duration
errorl

@OosGetShrSeg shrname,shrsel
errorl
push shrsel
pop es
mov bp,zero
mov ax,es:[bp+2]
mov read hdl,ax
mov ax,es:[bp+4J
mov lmsg,ax

@DosRead read_hdl,buffer,lmsg,bytes_read
errorl

@VioWrtTTY
errorl

@DosSemClear

buffer,lmsg,viohdl

sem_hdll

@DosExit action,result

ENDP
ENDS
END OS21

Figure 3.23b (Concluded)

;actual bytes read

;Open system semaphore

;Beep speaker

;shared segment

;preserve selector
;load extra segment
;initialize index
;read handle
;specified
;message length
;specified

;Write message

;Clear semaphore

;Exit process

Chap. 3

read handle and the message length for the pipe. The pipe is then read using
@DosRead and the message loaded into buffer. The display is then updated with the
message content using

@VioWrtTTY buffer, lmsg, yiohdl

where lmsg is the message length in bytes and viohdl the display handle. It is this
access of the display that requires synchronization with the parent.

Following the message write to the screen, the semaphore is cleared and
the child process terminates execution. The key step in this code was to
ensure that common pipe link exists between the routines. Unlike the sema­
phore link, which uses a commonly named area ('\SEM\SDAT.DAT',O) across both
the child and parent, the pipe handle was passed via a common memory area
('\SHAREMEM\SDAT1.DAT' ,0).

Sec. 3.4 Interprocess Communications 157

Figure 3.24a illustrates the main process for a set of programs that demonstrate
queue operation. Figure 3.24b presents the associated code for this parent process.
The process opens with a call to @DosCreateQueue. The common link between the
child and parent is the queue name, '\QUEUES\QDAT.DAT',O. This call returns a
queue handle, q_hdl. The speaker is beeped and a child process (named
'QUEUECL.EXE') turned on. The queue is used to pass a 32-bit buffer address
from the child process to the parent. The selector value of this address is loaded into
es and the offset into bx. This buffer address is contained in the double word
bufferl.

SETUP
DATA

CREATE
QUEUE

BEEP

CREATE
PROCESS

READ QUEUE
BUFFER ADDRESS

TRANSFER QUEUE
BUFFER DATA TO
PARENT BUFFER

FREE QUEUE
BUFFER AREA

CLOSE
QUEUE

WRITETIY
MESSAGE

KILL
PROCESS

EXIT

PROCESS

Figure 3.24a Flowchart for a main
program, illustrating queues for
interprocess communications.

158 Memory Management and Multitasking with Assembler

PAGE 55,132
TITLE QUEUEST -- Check queue generation (queuest.asm)

DESCRIPTION: This routine verifies that a queue is
generated.

.sall

.xlist

.list

errorl macro

INCL_BASE equ l
include os2def.inc
include bse.inc

local ERROR12
or ax,ax

;suppresses macro lists

;suppresses source list
;sets IBM macro flag
;os2 definitions
;Dos,Vio,Mou, & Kbd
;turns list on

;exit macro
;local macro label
;set ax bits

Chap. 3

jz ERROR12
jmp ERRORll

;jump if zero next instruction
;otherwise exit process

ERROR12:
endm

dgroup GROUP data

STACK SEGMENT WORD STACK 1 STACK 1

dw 1024 dup(?)
STACK ENDS

DATA SEGMENT WORD PUBLIC 'DATA'

result dw
action equ

viohdl equ

freq
duration
selector

0
l

0

dw 4000
dw 500
dw ?

;end macro

;data and extra group

;Stack for main program

;Exit code from main
;Action code from main

;Video handle

;4000 Hz
;500 msec
;allocated segment selector

Process Created Parameters

obj_name_buf
lobj_name_buf
a sync
argptr
envptr
pid
prgm_nm

q__hdl
q__prty
q_name
request
el_prty
a semi
el_code

dd
dw
dw
dw
dw
dw
db

dw
dw
db
dd
dw
dd
dw

10 dup(?)
$-obj_name_buf
l
0
0
?,?
'QUEUECL.EXE',O

Queue Parameters

?
0
'\QUEUES\QDAT.DAT',O
0
0
0
0

;Process name buffer
;length buffer
;asynchronous operation
;pointer arguments
;environment pointer
;process ID
;process name

;Queue handle
;Queue ordering priority
;name
;Read request parameter
;Element read priority
;semaphore
;element code

Figure 3.24b Main program illustrating queues.

Sec. 3.4 Interprocess Communications

no wait
lmsg
buff erl
buff er

dw
dw
dd
db

0
?
0
256 dup(?)

wait processing
message length--read
queue buffer address
read buffer

DATA ENDS

CSEG SEGMENT WORD PUBLIC 'CODE'
assume cs:CSEG,ds:dgroup,ss:STACK

OS21 PROC FAR

LOOPl:

ERRORll:

OS21
CSEG

@DosCreateQueue q_hdl,q_prty,q_name
errorl

@DosBeep freq,duration

;Create queue

;Beep speaker

;Create child process
@DosExecPgm obj_name_buf,lobj_name_buf,async,argptr,envptr,pid,prgm_nm
errorl

;read queue buffer area
@DosReadQueue q__hdl,request,lmsg,bufferl,el_code,no_wait,el_prty,asemi
errorl

mov bx,word ptr bufferl
mov ax,word ptr bufferl+2
mov selector,ax
push selector
pop es
lea bp,buffer
mov cx,lmsg
mov di,O

mov al,es:[bx+di]
mov ds:(bp+di],al
inc di
loop LOOPl

@DosFreeSeg selector
errorl

@DosCloseQueue q_hdl

@VioWrtTTY buffer,lmsg,viohdl
errorl

@DosKillProcess l,pid

@DosExit action,result

ENDP
ENDS
END OS21

;child buffer 32-bit address
;selector

;extra segment register
;load data buffer address
;count limit
;count index

;transfer from queue area
;transfer to ds buffer
;increment index

;free allocated segment

;close queue

;write message to screen

;Terminate child process

;Exit

Figure 3.24b (Concluded)

159

Next, the length of the buffer is loaded into a loop counter. This value, lmsg,
was retrieved from the child process along with bufferl using an @DosReadQueue
call. The contents of the buffer pointed to by bufferl are loaded into the buffer, and
the segment area pointed at by selector, the segment address associated with the
pointer, bufferl, is released. This segment was allocated previously, during execu­
tion of the child process, as we shall see shortly. The queue is closed and the mes­
sage in buffer written to the screen. Finally, the child is terminated and the parent
exits back to OS/2.

160 Memory Management and Multitasking with Assembler Chap. 3

Figure 3.25a shows the flowchart for the associated child process and Figure
3.25b the corresponding code. The child opens with a beep to the speaker alerting
the user that the child has started. Next, the queue is opened (note that the queue
name represents the common link between the two processes. At this point the
child allocates a segment using @DosAllocSeg. The size of the segment equals the
message length and it is a giveable segment (aseg_give=l). The segment allocated
has a selector returned (q_ w) which is loaded into es and the contents of the mes­
sage written to this buffer. The speaker is beeped with a slightly different tone,
@DosGiveSeg executed (which returns a selector that can be given back to the
parent, q_rr), and the 16-bit read selector loaded into the segment portion of a 32-
bit pointer to the giveable segment (q_r).

A macro @DosWriteQueuel has been defined at the beginning of the program
and this macro has the fifth statement as pushing a 32-bit value (not address) onto
the stack prior to the call to DOSWRITEQUEUE. This macro is called to transfer

SETUP
DATA

BEEP #1

OPEN
QUEUE

ALLOCATE QUEUE
BUFFER AREA

LOAD
MESSAGE

BEEP #2

PERMIT ACCESS TO
QUEUE BUFFER

CLOSE
QUEUE

EXIT

Figure 3.25a Flowchart for a child
process, illustrating queues for
interprocess communications.

Sec. 3.4 Interprocess Communications

PAGE 55,132
TITLE QUEUECL -- Check queue generation (queuecl.asm)

DESCRIPTION: This routine verifies that a queue is
generated. It uses semaphores for synchronization.

.sall ;suppress macro listing

.xlist
INCL_BASE equ 1
include os2def.inc
include bse.inc

;suppress source list
;set IBM macro flag
;include os2 macros
;Dos,Vio,Mou, & Kbd
;turn list on .list

errorl macro

ERROR12:

local ERROR12
or ax,ax
jz ERROR12

jmp ERRORll

endm

@DosWriteQueuel macro
@define
@pushw
@pushw
@pushw
@pushd
@pushw
call
endm

dgroup GROUP datal

STACKl SEGMENT WORD

;exit macro
;local macro label
;set ax
;jump to next instruction
:exit

;end macro

;Corrected macro
handle,request,length,data,prty
DOSWRITEQUEUE ::define API call
handle ; ;push word handle
request ;;push word request
length ; ;push buffer length
data ;;push 32-bit address
prty ;;push priority
far ptr DOSWRITEQUEUE ;;call API function

;load ds and es

STACK 1 STACK1 1 ;Stack for 2nd process
dw 1024 dup(?)

STACKl

DATAl
:
result
action

freq
freql
duration

q_hdl
q_pid
q_name
request
prtyo

ENDS

SEGMENT

dw
equ

msg_po db
lmsg_pO dw

WORD

0
l

dw
dw
dw

dw
dw
db
dw
dw

PUBLIC I DATAl I

5000
2000
500

Queue Parameters

?
?
'\QUEUES\QDAT.DAT 1 ,0
0
0

;Exit code from process
:Action code from process

;5000 Hz
:2000 Hz
;500 msec

;queue handle
;process ID--queue creator
;name
:write request parameter
:priority message 1

'This is a priority 1 message',ODH,OAH
$-msg_pO ;length

Figure 3.2Sb The child process, illustrating queues for interprocess
communications.

161

162 Memory Management and Multitasking with Assembler Chap. 3

Allocated Segment/Queue Parameters

q_w
aseg_give
q_r

dw
dw
dd
dw

0
1
0
?

;queue write selector
;allocated segment giveable
;queue read 32-bit pointer
;queue read selector q_rr

DATAl

CSEG

OS21

LOOPl:

ERRORll:

OS21
CSEG

ENDS

SEGMENT WORD PUBLIC 'CODE'
assume cs:CSEG,ds:dgroup,ss:STACKl
PROC FAR

@Dos Beep
errorl

freq, duration

@DosOpenQueue q_pid,q_hdl,q_name
errorl

@DosAllocSeg
errorl

push q_w
pop es
lea bx,msg_pO
mov cx,lmsg_pO
mov di,o

lmsg_pO,q_w,aseg~give

mov al,ds:(bx+di]
mov es:(di],al
inc di
loop LOOPl

push ds
pop es

@Dos Beep
errorl

@DosGiveseg
errorl

freql,duration

q_w,q_pid,q_rr

;Beep speaker

;open queue

;allocate segment

;allocated segment selector
;pop to extra segment register
;offset of message
;loop count=message length
;zero index

;transfer message
;message to extra segment
;increment index

;reload ds to stack
;es=ds

;2nd beep

;get selector

;32-bit read address lea bx,q_r
mov ax,q_rr
mov ds:(bx+2],ax

;16-bit read selector
;load read address

;write address to queue
q_hdl,request,lmsg_pO,q_r,prtyO @DosWriteQueuel

errorl

@DosFreeseg q_w
errorl

@DosCloseQueue q_hdl
errorl

@DosExit action,result

ENDP
ENDS
END OS21

;free allocated segment

;close queue

;Exit process

Figure 3.2Sb (Concluded)

Sec. 3.5 Summary 163

the 32-bit pointer to the allocated segment, back to the parent process via the queue.
Also transferred with this call is the message length. Finally, the segment is set free
for selector q_w. The queue is closed next and the child exits back to the OS/2.

3.4.2 Shared Memory Segments

In several cases among the preceding examples the processes involved employed
shared memory segments. There were generally two types of mechanisms employed:
giveable segments created using @DosAllocSeg or true shared segments created
using @DosAllocShrSeg. Both of these approaches lead to a common sharing of a
memory segment. These segments were used to transfer commonly needed informa­
tion so that two independent (although possibly synchronized) processes could estab­
lish a link. It is this need for some sort of common memory reference that charac­
terizes all IPC, and shared memory is a very effective way to achieve this.

3.5 SUMMARY

In this chapter we have looked at memory management, multitasking, and inter­
process communications. The goal has been to establish for the reader an introduc­
tion to these techniques, with representative examples used to illustrate the mecha­
nisms involved. A major attribute of OS/2 is the ability to access huge segments
(greater than 64K). This was demonstrated in Section 3.2.4.

Multitasking is a cornerstone of the operating system. As programming strate­
gies change from the single-threaded way of doing business common throughout the
1980s to more parallel approaches, OS/2 can be expected to move to the forefront
of microcomputer operating systems. It must be recognized that multitasking requires
a rethinking of how programs are structured in order to be able to take advantage of
this feature. Programmers must begin to think in terms of how a given application
can be subdivided so that the application can be run efficiently in a multitasked
environment. This is a very nontrivial change in programming concept. Without the
common availability of well-supported multitasking operating systems, it is, of
course, impossible to begin the process of rethinking program structure to fit the
multitasking mold. Hence OS/2 truly represents a transition in programming philoso­
phy for the applications programmer. Fortunately, it has a great deal of commonal­
ity with earlier systems such as DOS and the Windows executive, and consequently,
represents a relatively fluid vehicle for many programmers to enter the world of
multitasking.

In Section 3.3 we discussed semaphores, multiple threads, and multiple proc­
esses, all essential to a comprehensive multitasking environment. The semaphores
treated consisted of two types: RAM and system (with a third being fast-RAM). In
Section 3.4 we described the basic vehicles for interprocess communications, which
had been alluded to earlier, and illustrated the use of pipes and queues. Shared
memory segments were discussed throughout the chapter and signals were men­
tioned briefly.

164 Memory Management and Multitasking with Assembler Chap. 3

REFERENCES

1. Intel iAPX 286 Programmer's Reference Manual, Intel Corporation, Santa Oara, CA,
1985.

2. Motorola Corporation, MC68000/MC68008/MC68010/MC68HCOOO 8-/16-/32-Bit Micro­
processors User's Manual, 6th ed., Prentice-Hall, Inc., Englewood Qiffs, NJ, 1989.

3. McCracken, D. D., A Guide to PLM Programming for Microcomputer Applications,
Addison-Wesley Publishing Company, Reading, MA, 1978, p. 43.

4. Godfrey, J. T., Applied C: The IBM Microcomputers, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1990.

5. Duncan, R.,Advanced OS/2 Programming, Microsoft Corporation, Redmond, WA, 1989,
p. 271.

6. Tanenbaum, A S., Operating Systems: Design and Implementation, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1987, p. 51.

PROBLEMS

3.1 IBM supplies a number of device drivers with the OS/2 libraries. They have extension
.SYS. The floppy and fixed disk driver for the IBM PC/AT is called DISKOl.SYS,
and the driver for the inport Microsoft Mouse is MOUSEA04.SYS, for example (see
reference 5, p. 14). What level of protection would you expect these drivers to have?
Why?

3.2 Throughout this book the IBM (and Microsoft) macros have been used to access the
API services. Typical of these is the call

@DosExit action, result

which executes the macro code

@DosExit macro
@define
@pushw
@pushw
call
endm

action, result
DOSEXIT
action
result
far ptr DOSEXIT

where @define and @pushw are defined as

@define

and

macro
ifndef
extrn
endif
endm

callname
callname
callnamezfar

Problems 165

@pushw macro parm
mov ax,parm
push ax
endm

What are the advantages and disadvantages of this approach. Consider, for example,
maintenance and clarity of code.

3.3 When using @DosAllocSeg, what must occur for the segment to be created to be
giveable? To be discardable?

3.4 When accessing a huge segment, what is essential to achieving operation that ensures
no violation of protection?

3.5 What is the dominant feature of interprocess communications that must hold in any
multitasking implementation?

3.6 When would you be likely to use RAM semaphores for interprocess communications?
To use system semaphores?

3.7 In @DosWriteQueue why must the fourth macro parameter be pushed with @pushd
not @pushs? Here

@pushs

while

@pushd

macro pa rm
mov ax,SEG parm
push ax
lea ax,parm
push ax
endm

macro parm
push ds
push bx
mov ax, SEG parm
mov bx, OFFSET parm
push word ptr [bx]
mov ax, [bx+2]
push bp
push sp
pop bp
xchg [bp+6] , ax
pop bp
mov ds,ax
pop ax
pop bx
push ax
endm

3.8 When a child process, that is, using semaphores for interprocess communications,
completes the execution of a critical area of code, how does it signal the parent?

166 Memory Management and Multitasking with Assembler Chap. 3

3.9 Suppose that two processes involve no IPC and contain such code fragments as:

Process 1

@DosExecPgm •••
@errorl

@DosBeep freql,duration

and

Process 2

OS21 PROC FAR

@DosBeep freq2, duration
@DosExit action,result

OS21 ENDP

What are the potential consequences of such code?
3.10 What is the major difference between a pipe and a queue as used in this chapter?
3.11 Compare the various IPC mechanisms.
3.12 When would you use a shared segment as opposed to a giveable segment?
3.13 Outline the API calls for pipe operation using a child process.
3.14 Outline the API calls for queue operation using a child process.
3.15 How is an intraprocess thread differentiated from an interprocess thread? What is

preferred for a second task?
3.16 Discuss the usage of DosAllocSeg and DosReAllocSeg in comparison to the use of

DosSubAlloc.

PART Ill
Advanced OS/2 Kernal Programming

4 OS/2 and C

There are a number of C compilers available; however, two that run under OS/2
Protected Mode are the Microsoft C 5.1 Optimizing Compiler [1] and IBM's C/2
Version 1.1 [2]. In this book we use the former compiler. Together with the include
files for the assembler (the .inc files), the IBM Toolkit [3] provides a set of C
include files (.h files) that contain macros for accessing the Applications Program
Interface (API) and Presentation Manager (PM) services. There are some significant
difference's between the Version 1.0 and 1.1 Toolkit files, particularly in the defi­
nition of the structures used by API service calls. We will adhere to the Version 1.1
definitions; the interested reader is referred elsewhere for the Version 1.0 definitions
[4]. The purpose of this chapter is to introduce C programming in the Protected
Mode context.

4.1 HIGHER LEVELS OF ABSTRACTION

C, by its very nature as a high-level language (HLL), is more abstract than assem­
bler. This has distinct advantages when developing modular programs because the
resulting code is more compact and easier to follow, assuming that the programmer
has the language background. It does not necessarily facilitate optimum access to
system hardware because the programmer must rely on the C compiler developer to
provide these underlying service routines. In many cases, of course, these services
are very optimized, but they must have some general-purpose features that could be

167

168 OS/2 and C Chap. 4

avoided if tailored assembler code were provided. This book assumes that the reader
has a basic familiarity with the C language, as it did for assembler, and Appendix
B reviews the C syntax in the Kernighan and Ritchie mold [S].

What do we mean by more abstract? Multiplication is an example. To square
the variable x in C, one merely writes

x = x * x;

To square the same variable in assembler (assuming that xis of word length), one
has

mov ax, x
mov dx, 0
mul x
mov x, ax

; load accumulator
; clear upper multiplicand
; multiply
; reload x variable

which is a bit more cumbersome. An even more exaggerated example is the line of
C code

y = (float)(sin(2.*PI*f*t));

The conversion from double precision to floating point, alone, is a major system
call, as is the reference to the sine mathematical function. These calls would encom­
pass many lines of assembler code to accomplish the same algorithm.

Hence abstraction can be a desirable feature as the programmer moves away
from low-level system services and the hardware. Assuming that a programmer's
span of attention is limited to some rough measure of lines of code, the HLL allows
a more efficient usage of this feature.

4.1.1 The C Include Files

The Toolkit has a number of include files used to set up the API calls and associ­
ated variables, types, and structures used by these calls. The Toolkit is highly rec­
ommended for users who quickly wish to begin programming OS/2 Protected Mode
C, with its function-like interface. The major Toolkit include file is

OS2.h

which calls

#include <OS2def .h>
#include <bse.h>

and requires a beginning program statement

#define INCL_BASE

Hence the first line of code prior to any API call would be

Sec. 4.1 Higher Levels of Abstraction

#define INCL_BASE
#include <OS2. h>

169

Note that OS2.h also has provisions to call pm.h, which loads the PM include
routines.

The file bse.h checks to see if INCL_BASE is set and then sets three symbols;

INCL_DOS
INCL_SUB
INCL_DOSERRORS

and (loads)

#include <bsedos. h>
#include <bsesub. h>
#include <bseerr.h>

/*Dos calls*/
/*Vio,Kbd,Mon calls*/
/*Error calls*/

where the first of these sets up the Dos prefix API calls. The second loads the Vio,
Kbd, and Mon prefix API calls and bseerr.h loads the error calls.

It is worthwhile pointing out a typical difference between the Version 1.0
Toolkit and the Version 1.1. Consider the structure definition for getting the physi­
cal buffer:

Version 1.0
struct PhysBufData {
unsigned long buf_start1
unsigned long buf_length1
unsigned selectors(2]1
}1

Version 1.1
_VIOPHYSBUF{

/*start byte* I
/*buffer length*/
/*selector*/

typedef struct
PBYTE pBuf1
ULONG cb1
SEL asel(1]1
}VIOPHYSBUFJ

/*pointer to start byte* I
/*buffer length*/
/•selector•/

Clearly, to access these two structures, which serve the same purpose, requires
radically different calling schemes. The programmer can expect to encounter this
type of problem when converting Version 1.0 Protected Mode code to Version 1.1;
however, it is generally desirable to use the Toolkit routines because of the abstrac­
tion features intrinsic to these calls.

4.1.2 The Low-Level Nature of the API

We know that standard C code can be used for output to the display with calls of
the type:

170 OS/2and C Chap. 4

printf ("This is a display message. \n");

This can be accomplished with the standard I/O include file stdio.h and works in
Protected Mode as well as Real Mode. To use the API call in equivalent fashion, we
would need the more structured statements

unsigned vio_hdl = O; /*video handle*/
char *msg_p = "This is a display message./n";
unsigned lmsg_p = 0;

lmsg_p = strlen(msg_p);
VioWrtTTy((char far*)msg_p,lmsg_p,vio_hdl);

Thus the reader can see that the API calls tend to be more cumbersome than stan­
dard C code and more low level in nature. Clearly, as the example above high­
lights, the programmer would want to use the standard I/O routines in this case. Fre­
quently, however, services will be required in Protected Mode that cannot be accom­
plished using the standard C functions. It is these activities that must access the API
directly in low-level fashion. A very good example of this is the screen graphics
modes, which require locking the screen and accessing the physical buffer all in
conjunction with the mode set. These activities fit well with the notion of low-level
calls in C. They correspond to low-level services: accessing the system resources
directly.

Generally, many of the API services are of this low-level nature. The reader is
cautioned to use the standard C syntax where possible but recognize that the API
services are designed to work in a multitasking environment and that some low-level
interfacing will therefore always be necessary.

4.1.3 Comparison of C with Assembler

We have already seen several examples of the differences between C syntax and
assembly language syntax when used to accomplish the same task. Typically, the
assembler is much more detailed and incremental (each instruction accomplishes a
much smaller piece of the overall task). As a further simplified example, consider
addition in C:

y = xl + x2;

To accomplish this same syntax in assembler the following code is required:

mov ax, x2
add ax, xl
mov y, ax

Again, this assumes word integer arithmetic. If floating-point operations, for ex­
ample, are to be implemented,' the overhead increases dramatically.

Sec. 4.2 Introductory C Programming with OS/2 171

Why, then, have we spent time learning the assembler interface in OS/2? A
major reason is to understand the low-level nature of the API interface. In order to
program the API from any language, the programmer must have a feeling for the
syntax at a very basic level. Frequently, access is byte oriented and in order to get
C code to function properly, the programmer must have this very basic understand­
ing. The structures and parameter definitions for C calls to the API rely on a low­
level interpretation, as found in the assembler calls. When problems arise in the C
debugging process, assembler-level understanding of the API services provides
invaluable insight into the C function calls.

4.2 INTRODUCTORY C PROGRAMMING WITH OS/2

Many application programs require a reasonable level of mathematical sophistication
to achieve their intended computational goals. Generally speaking, assembly lan­
guage is not the desired vehicle to achieve such sophistication. Modern languages
have evolved such that a great deal can be accomplished within a single language
to span the requirement of sophistication yet retain the ability to implement low­
level services. The C language is such an implementation, and from this point on we
shall concentrate on programming for OS/2 in the C context. Of course, we will
make an occasional sojourn back to assembly language when the need arises.

4.2.1 C Program Architecture and Structure

Perhaps the easiest way to present the structure of a C program is with a simple
example. Figure 4.1 contains a C program that prints the message

Input word integer less than 32, 768

reads the input word integer value, and calls a function times_2(). The function
times_2() has a single formal parameter that it doubles and converts from integer
to floating point. Then the function prints the floating-point value of twice the ini­
tial integer to the display with the message

2 times the integer value =

with the equal sign followed by the value.
What is typical about this code? First, a comment line has been offset with the

following form:

/* • • • *I

Next, the C files needed by the program have been specified. In this program there
is only one, stdio.h, and it is included with the statement

#include <stdio. h>

172 OS/2and C

/* A simple c proqram to illustrate Protected Hoda I/O -- ioprgm.c */

finclude <atdio.h>

main()
{
int x; /* input variable */

printf("Input word inteqer less than 32,768 \n");
scanf("td•,&x);

times 2(x);
} - I* function */

timas_2(y)
int y;
{
float z;

z - (float)(2.•y);

/* formal parameter */

/* floatinq point */

/* double */

printf("2 times the inteqer value• tf\n",z};
}

Figure 4.1 The program ioprgm.c, illustrating typical program formatting for
C code.

Chap. 4

Following this preprocessor area, the main function (called main()) appears and the
code contained in this function is subtended within the curly brackets: { ... }.The first
line of code is a type declaration for x to be of type integer: int. Next the C stan­
dard routine, printfQ, is called, asking for the word integer input. The string con­
tained in quotations is written to the display and terminated by the escape charac­
ter, \n, which generates a carriage return and line feed. The scanfO routine is called
to read an integer value (%d) into the location (using the address operator,&) speci­
fied by x. Finally, the function times_2() is called with x passed as a parameter and
mainO is then ended.

In the function times_20 the formal parameter, y, is declared to be of type
integer and this is declared outside the body of the function. Within the body of the
function all variables are locally defined. Here, for example, xis local to times_20
and is of type fl.oat (floating point). The value of y is doubled and converted to
floating point with the cast: (float). This is used to define z. Next the value of z is
output following the message. Note that the parameter specification (%t) corresponds
to a floating-point output, while earlier we had (%d) to correspond to an integer
format.

Figure 4.2 illustrates the MAKE utility file used to compile and link the C
code. In general the reader is referred to his or her compiler manual to understand
the nature of this, but briefly the command

cl -c -Zi -Os -FPc /Fcioprgm.cod ioprgm.c

compiles the program (-c indicates do not link yet) and sets it up for the Code View
debugger (-Zi). The -Os parameter tends to reduce code size during optimization and

Sec. 4.2 Introductory C Programming with OS/2 173

ioprqm.obj: ioprgm.c
cl -c -zi -Os -FPc /Fcioprqm.cod ioprgm.c

ioprqm.exe: ioprqm.obj
link /CO ioprqm.obj,ioprqm,ioprgm,slibce.lib/NOE os2.lib/NOE,,

Figure 4.2 MAKE file for ioprgm.c.

-FPc generates floating-point calls and selects the emulator math package. The state­
ment

/Fcioprgm.cod

generates a mixed assembler and C code output file, and ioprgm.c indicates the C
source file.

The next set of lines in the MAKE file corresponds to the link operation. The
/CO sets up CodeView. The first field contains the object modules(s); the second
field contains ioprgm, where the default extension is .exe the run filename; and the
third field contains ioprgm, the map filename with default .map. Next, the libraries
are indicated, with the /NOE option that prevents multiple definitions of the same
name.

Figure 4.3 contains the list file for the mixed assembler and C source code
(the .COD file). It is important to examine this file because it establishes the com­
plexity of the C code in relation to the required assembly language instructions
needed to represent each line of this C code. Note the large number of external
routines called to implement the program appearing in Figure 4.1: _acrtused,
_printf, _scanf, _chkstk, _fldw, _fmnld, _fstsp, _flds, _fstdp, and _fltused.
The text segment is _TEXT and the data segment _DAT. The data segment contains
the strings of text and the integer formal specifier, %d. Aside from the initial setup
for the routine _main, the print output asking for the integer less than 32,768 is
accomplished with the assembly code following the designation for line 9. Next the
integer is read in and a call made to times_2Q. Finally, the main procedure ends.
The times_2() code follows as a NEAR procedure with a number of calls to float­
ing-point routines that emulate the coprocessor. These routines all begin with "f ".

The code in Figure 4.3 is instructive in that it illustrates the general techniques
for generating assembly language instructions from C syntax. Note that no obvious
Protected Mode calls were evident. These are all buried in the routines _printf and
_scanf. The basic C compiler template, however, is evident using _TEXT, _DATA,
and DGROUP.

4.2.2 Accessing the API from C

The API is accessed in much the same fashion from C as it is from assembly lan­
guage. Using the Toolkit definitions it is possible to set up the C function calls in
a comfortable style for usage. Consider, for example, the prototyping for DosExit:

174

Static Name Aliases

TITLE
NAME

.8087

ioprgm.c
ioprgm

_TEXT SEGMENT WORD PUBLIC 'CODE'
_TEXT ENDS
_DATA SEGMENT WORD PUBLIC 'DATA'
_DATA ENDS
CONST SEGMENT WORD PUBLIC 'CONST'
CONST ENDS
_BSS SEGMENT WORD PUBLIC 'BSS'
_BSS ENDS
$$SYMBOLS
$$SYMBOLS
$$TYPES SEGMENT
$$TYPES ENDS

SEGMENT BYTE PUBLIC 'DEBSYM'
ENDS

BYTE PUBLIC 'DEBTYP'

DGROUP GROUP CONST, _BSS, _DATA

EXT RN
EXT RN
EXTRN
EXT RN
EXT RN
EXTRN
EXTRN
EXTRN
EXTRN
EXT RN
_DATA
$SG159
$SG160
$SG165
_DATA
_TEXT

ASSUME CS: _TEXT, DS: DGROUP,
acrtused:ABS

_printf:NEAR
scanf:NEAR

__ chkstk: NEAR
_fldw:NEAR

fmuld:NEAR
_fstsp:NEAR
_flds:NEAR
__ fstdp:NEAR
_fltused:NEAR

SEGMENT

SS: DGROUP

DB
DB
DB

'Input word integer less than 32,768 ',
'%d', OOH
'2 times the integer value = %£', OaH,

ENDS
SEGMENT

ASSUME CS: TEXT

OS/2and C Chap. 4

OaH, OOH

OOH

; : *** I* A simple C program to illustrate Protected Mode I/0 -- ioprgm.c */
; : ***
; : *** ; : ***
; : ***
; : ***
; Line

_main

; : ***
j: ***
; : ***
; Line

; l***
; Line

;x

#include <stdio.h>

main()
{

6
PUBLIC main
PROC NEAR
*** 000000
*** 000001
*** 000003
*** 000006
x = -2
int x;

55
Sb ec
b8 02
e8 00

push bp
rnov bp, sp

00 mov ax,2
00 call chkstk -

I* input variable *I

printf("Input word integer less than 32,768 \n");
9

*** 000009 b8 00 00 mov ax,OFFSET DGROUP:$SG159
*** OOOOOc 50 push ax
*** OOOOOd e8 00 00 call _printf
*** 000010 83 c4 02 add sp,2
scanf("%d" ,&x);

10
*** 000013 8d 46 fe lea ax, WORD PTR [bp-2]

*** 000016 50 push ax
*** 000017 bB 26 00 mov ax,OFFSET DGROUP:$SG160

Figure 4.3 The >COD file for ioprgm.c.

Sec. 4.2 Introductory C Programming with OS/2

; :***

*** OOOOla
*** OOOOlb
*** OOOOle

; t*** times_2(x);
; Line 12

*** 000021
*** 000024
*** 000027

; l *** }
; Line 13

*** 00002a
*** 00002c
*** 00002d

_main ENDP

; 1 *** ; *** times_2(y)
; l *** int y;

ENDS

50
e8 00 00
83 c4 04

ff 76 fe
e8 00 00
83 c4 02

8b e5
5d
c3

Line 16
_TEXT
CONST
$T20002 DQ

SEGMENT
04000000000000000r

CONST ENDS
TEXT SEGMENT

ASSUME CS: _TEXT
PUBLIC _times_2

_times_2 PROC NEAR
*** 00002e 55
*** 00002£ 8b
*** 000031 b8
*** 000034 e8
*** 000037 56

ec
04 00
00 00

i: *** {
; Line 17

; : ***
i: *** ; : ***
; Line

;y

;z

i: *** ; l***
; Line

;z

; : ***

y = 4
z = -4
float z;

z = (float)(2.*y);
20

*** 000038

*** 00003b
*** 00003e
*** 000042
*** 000045

*** 000048

print£ ("2 times
22

*** 00004b

*** 00004e
*** 000051
*** 000054
*** 000056
*** 000059
*** 00005c
*** 00005d
*** 000060
} ; Line 23
*** 000063
*** 000064
*** 000066

8d 5e 04

e8 00 00
8d le 00 00
e8 00 00
Bd 5e fc

e8 00 00

the integer

8d 5e fc

e8 00 00
83 ec 08
8b de
e8 00 00
b8 29 00
50
e8 00 00
83 c4 Oa

5e
8b e5
5d

push
call
add

ax
scanf

sp, 4

I* function */

push
call
add

mov
pop
ret

WORD PTR [bp-2] ;x
_times_2
sp,2

sp,bp
bp

I* formal parameter *I

2.000000000000000

value

push
mov
mov
call
push

bp
bp,sp
ax,4
_chkstk
si

I* floating point */

I* double */

lea bx, WORD PTR [bp+4]

call fldw
lea k,WORD PTR $T20002
call :fmuld
lea k,WORD PTR (bp-4]

call _fstsp

%f\n", z);

lea bx, WORD PTR (bp-4]

call flds
sub 5:P, s
mov bx,sp
call _fstdp
mov ax,OFFSET DGROUP:$SG165
push ax
call _printf
add sp, 10

pop si
mov sp,bp
pop bp

Figure 4.3 (Continued)

175

176

*** 00006'1 c3

_times_2 ENDP
_TEXT ENDS
END

Figure 4.3 (Concluded)

VOID APIENTRY DosExi t (US HORT, US HORT)

Here the Toolkit definitions are

#define
#define
Typedef

VOID void
APIENTRY pascal far
unsigned int USHORT;

OS/2and C Chap. 4

ret

The definitions have their usual meaning in C, and the only one needing an expla­
nation is the type pascal. Pascal refers to the calling convention used in accessing
the function DosExit. When a C function is called the formal parameters are loaded
on the stack, starting with the last parameter first. In the pascal convention the last
parameter is loaded last. In the assembler instruction set, the PUSH instruction puts
its operand on the stack and decrements the stack pointer. Hence, the initiating
assembly language code sequence (at the beginning of each function)

push bp
mov bp,sp
sub sp,N

causes the previous module's (or calling module's) base pointer, bp, to be saved on
the stack and the current stack pointer value, sp, placed in bp. Prior to execution of
this code, the calling program caused the called function (procedure) parameters to
be placed on the stack along with a return address (invoked at the CALL) for the C
convention. The called program places the parameters on the stack along with a
return address for the pascal convention. The "sub sp,N" instruction above simply
reserves N bytes of stack for local usage (N should be even).

The API definitions include a large class of type definitions, such as PCHAR,
for a pointer to a character where

typedef CHAR FAR *PCHAR;

Similarly,

typedef ULONG FAR *PULONG

defines a pointer to a LONG variable.

Sec. 4.2 Introductory C Programming with OS/2 177

A particularly important definition, is one that allows the programmer to estab­
lish a FAR pointer:

#define MAKEP(sel,off) ((PVOID)MAKEULONG(off,sel))

where

and

typedef VOID FAR *PVOID;

#define MAKEULONG(l,h) ((ULONG) (((USHORT) (1))

((ULONG)((USHORT))(h)))<<l6))

Access of the video context, for example, is via the following sequence:

VioSetMode (((struct_VIOMODEINFO far*)&CGAm) ,vio_hdl);

VioScrLock (wait2, (char far *)dstatl,vio_hdl);

VioScrUnLock(vio_hdl);

Here the structure_ VIOMODEINFO is defined as CGAm and must satisfy the API
constraints for structure members. It is defined in the Toolkit context as

typedef struct _ VIOMODEINFO {

USHORT cb;

UC HAR fbType;

UCHAR color;

USHORT col;

USHORT row;

USHORT hres;

US HORT vres;

UCHAR fmt_ID;

UCHAR attrib;

} VIOMODEINFO;

Note that the structure above has the same form as the structure used in the assem­
bly language programs except for the two added parameters, which are reserved and
of no significance to the current programs. The video handle is short and declared
with

SHANDLE vio_hdl O;

where

typedef unsigned short SHANDLE;

178 OS/2 and C Chap. 4

The remaining parameters are defined as would be expected in the usual C conven­
tion.

This, then, is how the API access is achieved based on the Toolkit definitions.
The programmer can, of course, choose to develop his or her own definitions;
however, it can be expected that they would be similar to those found in the
Toolkit. Note that the function prototyping follows the assembler conventions estab­
lished in the API library by IBM. The parameter setup in these calls is similar to
that established for the basic assembler routines except that a pascal convention has
been used.

4.2.3 Graphics Using C and OS/2

Figure 4.4 illustrates the MAKE file for a program swave.c, which plots a dynami­
cally varying sine wave. Figure 4.Sa is the flowchart for swave.c and Figure 4.Sb
the actual program code for this module. This code opens with the needed include
file accesses and then sets up the keyboard buffer, an associated structure, several
integer and character parameters, and the floating point arrays x[] and y[]. Next the
principal calling routine, the function mainO, is established.

swave.obj:
cl -c -Zi -Os -FPc swave.c

gphrout.obj: gphrout.c
cl -c -zi -Os -FPc gphrout.c

swave.exe: swave.obj gphrout.obj
link /CO swave.obj+gphrout.obj,swave,,slibce.lib/NOE os2.lib/NOE

Figure 4.4 MAKE file for swave.c.

In the beginning of main(), a number of structures are defined: the physical
buffer (PVBPrt2) and two video mode structures (CGAm and STDm). These all
follow the convention of the Toolkit and the OS/2 parameter definitions for the API
calls [6]. The sine wave is to be iteratively displayed: Each iteration is incremented
a finite time interval to simulate motion. The total number of iterations read is
followed by the setup for the video CGA mode. The first VioSetMode parameter
could have been specified as

(PVIOMODEINFO)&CGAm

instead of using the structure-oriented syntax. The screen is locked and the physical
buffer accessed, using VioGetPhysBuf(). Note that this access allows the program to
return a selector to the buffer, PVBPrt2.asel[O]. The call to sine_wave() includes
specification of the number of iterations and the selector to the physical buffer. Once
the return from sine_wave() takes place, the screen is unlocked and a keyboard
hesitate implemented. This is followed by a reset of the mode to 80 x 25 (STDm)
and the program exit.

Sec. 4.2 Introductory C Programming with OS/2 179

SETUP
DATA

INPUT#
ITERATIONS

SETCGA
MODE

CLEAR
SCREEN

LOCK
BUFFER

GET PHYSICAL
BUFFER SELECTOR

PLOT
SINE WAVE

UNLOCK
SCREEN BUFFER

KEYBOARD
HESITATE

SET STD
MODE

EXIT
Figure 4.Sa Flowchart for swave.c.

The sine_ waveO program generates an array of 199 points of the sine wave of
frequency 1 Hz and time interval of 0.02 second. This figure is plotted on the dis­
play and then removed [with upltptQ]. After each plot followed by removal, the time
value is incremented by one-tenth of a second. The routine cclsCGAO clears the
CGA screen. Note that it functions similarly to the earlier mainO calls to lock,
unlock, and get the screen buffer. This routine calls clrCGAQ, which actually writes

180 OS/2 and C Chap. 4

/*.This routine sets & clears CGA mode with screen clear--swave.c
• The generalized nomenclature is used.
* A dynamic sine wave has been added to the CGA mode output.
• This eine wave gradually moves across the screen
* The routine calls gphrout.c graphics functions. */

#define INCL BASE
#include <os2.h>
#include <math.h>

struct STRINGINBUF lkbd_buf;
CHAR kbd_buf[80];

UINT action = o;
UINT error code • O;
UINT wait ;;; 1;

CHAR dstat[l];
CHAR dstatl[l];

float x[250],y[250J;

main()
{
SHANDLE vio hdl • O;
SHANDLE kbd-hdl O;
UINT wait2 ;;; 1;
UINT xh = 75,xe = 150,yb • 25,ye • 175;
SEL MMl;

int no_iter;

struct VIOPllYSBUF PVBPrt2;
struct -VIOMODEINFO CGAm;
struct :vIOMODEINFO STDm;

PVBPrt2.pBuf - (BYTE far*) (OxB8000);
PVBPrt2.cb • OX4000;

CGAm.cb = 12;
CGAm.fbType • 7;
CGAm.color = 2;
CGAm.col • 40;
CGAm.row = 25;
CGAm..hres = 320;
CGAm.vres • 200;

STDm.cb = 12;
STDm,fbType = 1;
STDm.color = 4;
STDm.col = 80;
STDm.row • 25;
STDm.hres • 720;
STDm..vres = 400;

lkbd_buf.cb = 80;
printf("Input number of iterations\n");
scanf("td",&no_iter);

/* Conditional load •/

I* keyboard buf len */
I* keyboard buffer •/

I* end thread */
I* result code •/
I* reserved word */

I* lock status •/
I* lock status */

I* screen coords */

I* video handle */
I* keyboard handle *I
I* reserved */
I* box points */
I* selector */

I* number iteration *I

I* physical buffer */
I* CGA structure •/
I* 80 x 25 struct */

I* buffer start */
I* buffer size */

I* struct length */
I* CGA mode */
/* CGA color */
I* text columns */
I* text rows */
I* CGA hor res */
I* CGA vert res */

I* struct length */
/* 80 x 25 mode */
I* STD color */
I* text columns */
I* text rows */
I* STD hor res */
I* STD vert res */

I* buffer size */

/* no. updates */

/* set CGA mode */
ViOSetMode(((struct _VIOMODEINFO far *)&CGAm),vio_hdl);

cclsCGA(vio_hdl);

VioScrLock(wait2,(char far *)dstatl,vio_hdl);

/* clear CGA screen */

/* lock screen */
/* .Physical buffer */

Figure 4.Sb The program swave.c, which plots a dynamic sine wave.

Sec. 4.2 Introductory C Programming with OS/2

VioGetPhysBuf((struct _VIOPHYSBUF far *)&PVBPrt2,vio_hdl);

MMl • PVBPrt2.asel[OJ;

sine_wave(no_iter,MMl);

VioscrUnLock(vio_hdl);

/* selector */

I* sine wave •/

/* unlock screen */
/* hesitate screen */

KbdStringin((char far *)kbd buf,
((struct _STRINGINBUF far *)&lkbd_buf),
wait,kbd_hdl);

/* set STD mode */
VioSetMode(((struct _VIOMODEINFO far *)&STDm),vio_hdl);

DosExit(action,error_code);
)

sine_wave(NN,MMl)
int NN;
SEL MMl;
{
float scale=35.,mid=lOO.;
int mmid=lOO,zero=O,end=200,npts=l99,nl,n;
double PI= 3.141592654,t;

t = o.o;

for(nl=l;nl <= NN;nl++)
{
for(n=l;n <• npts;n++)

{
y[n]=scale*(float) (sin(2.*PI*t));
y[n)=mid-y[n);
x[n]=(int) (n);
t = t +.02;
)

for(n=l;n <= (npts-1) ;n++)
pltpt(x[n],x[n+l],y[n),y[n+l],MMl);

for(n=l;n <= (npts-l);n++)
upltpt(x[n],x[n+l],y[n],y[n+l],MMl);

t=t+O.l;
l

cclsCGA(vio hdll)
SHANDLE vie hdll;
{ -
SEL MM;
UINT waitl = 1;
struct _VIOPHYSBUF PVBPrtl;

PVBPrtl.pBuf =(BYTE far *)(OxBSOOO);
PVBPrtl.cb = Ox4000;

/* plot parameters •/

I* start time */

I* loop screens */

/* loop array pts *I

I* sine wave */
/* adjust plot •/
I* col coordinate *I
I* increment time */

I* plot points */

I* unplot points */

I* major shift */

/* physical buffer */

/* phys buf start */
/* buffer length */

VioScrLock(waitl,(char far *)dstat,vio_hdll); /*lock screen*/
/* physical buffer */

VioGetPhysBuf((struct _VIOPHYSBUF far *)&PVBPrtl,vio_hdll);

MM= PVBPrtl.asel[O); /*selector*/

clrCGA(MM); /* CGA clear*/

Figure 4.Sb (Continued)

181

182

VioScrUnLock(vio_hdll);
l

clrCGA(MM)
SEL MM;
(
INT n;
INT Nl = OxlF3F;
INT DM = Ox2000;
PCHAR ptr;

for(n = O;n <= N1;n++)
{
ptr = MAKEP(MM,n);
*ptr = O;
l

for(n = O;n <= N1;n++)
{
ptr = MAKEP(MM,DM+n);
*ptr = O;
l

Figure 4.Sb (Co11cluded)

OS/2 and C

/* unlock screen */

/* end odd buffer */
/* even offset */
/* pointer scr buf */

Chap. 4

/* odd far pointer */
/* clear odd buffer */

/* even far pointer */
/* clear even buffer */

a zero to each byte in the CGA buffer area. The function MAKEPO is used to
generate the pointer to the physical buffer values, with the selector value passed
from the earlier VioGetPhysBufO call and the offset generated internally.

Figure 4.6 illustrates the graphics routines used in the calls to generate the sine
wave graphics: wdotQ, uwdotQ, pltpt(), and upltpt(). In addition, a box drawing
routine bboxx() and the vertical and horizontal line drawing routines are included.

4.2.4 Low-Level Access for Printer Graphics

Figure 4. 7 illustrates the MAKE file for a program, prtwave.c, which plots a sine
wave on the graphics printer (in this case an Epson FX-85 dot matrix printer). The
MAKE file specifies three C source code files: prtwave.c, the actual sine wave
generator; pprtscr.c, a C source code file that contains the code to drive the printer;
and gphrout.c, the graphics routines specified in Figure 4.6.

Figure 4.8a illustrates the flowchart for prtwave.c and Figure 4.8b the corre­
sponding source code for prtwave.c. This code is very similar to the program
swave.c except that the printer routine arrays have been declared in the preproces­
sor area and a new sine wave routine, ssine_wave(), is called. This routine plots a
single sine wave of 199 points at a selected frequency read in from main(). A call
to prtscrO causes the screen to print on the printer.

Figure 4.9a illustrates the flowchart for the print-screen CGA mode routine,
pprtscr.c. Figure 4.9b contains the code for this routine. Note that this routine per­
forms exactly like its counterpart, prtscr.asm, in assembly language. The only differ­
ence is that an intermediate 16,000-byte buffer is not used. The same ESC charac­
ter outputs are sent to the printer via Dos Write() once the printer is opened as a file
device using DosOpen(). The data from the CGA screen is output as 25 blocks of
640 bytes (eight rows by 80 bytes per row). The routine ldarray is used to load

Sec. 4.2 Introductory C Programming with OS/2

/* Graph routines Protected Mode--gphrout.c */

#define INCL BASE
#include <os2.h>

bboxx(xb,xe,yb,ye,MMl)
UINT xb,xe,yb,ye;
BEL MMl;
{
lineh(yb,xb,xe,MMl);
lineh(ye,xb,xe,MMl);
linev(xb,yb,ye,MMl);
linev(xe,yb,ye,MMl);
}

lineh(y ,xl,x2 ,MMl)
UINT y,xl,x2;
BEL MMl;
(
UINT n;
for(n = xl;n <= x2;n++)

wdot(n,y,MMl);
)

linev(x,yl,y2,MM1)
UINT x,yl,y2;
BEL MMl;
{
UINT n;
for(n • yl;n <• y2;n++)

wdot(x,n,MMl);
)

wdot(x,y,MMl)
UINT x,y;
BEL MMl;
{
PCHAR ptr;
UINT DM = oxoooo;
CHAR MABKl = OxOl;

if(y & OXOl)
DM = Ox2000;

ptr = MAKEP(MMl,DM+(SO*(Y >> 1) + (x >> 2)))1
•ptr •(*ptr I (MASKl « (2* (3 - x t 4))));
)

uwdot(x,y,MMl)
UINT x,y;
SEL MMl;
{
PCHAR ptr;
UINT DM = oxoooo;
CHAR MASKl = oxoo;

if(y & OxOl)
DM = Ox2000;

ptr - MAKEP(MMl,DM+(SO*(Y >> 1) + (x >> 2)))1
ptr = (MASKl << (2(3 - x 'l 4)));
)

pltpt(xl,x2,yl,y2,MM1)
float x1,x2,y1,y21
BEL MMl;
{
float m;
int row;
int col;

if(xl = x2)
m = 1000.;

/* top line */
/* bottom line */
/* right line */
/* left line */

I* hor line */

/* vertical line */

/* x=col,y=row */

/* set dot */

/* even buffer */
/* dot location */
I* "OR" dot */

/* clear dot */

/* even buffer */
/* dot location */
/* write undot */

/* slope */

/* zero divide */

Figure 4.6 Graph routines used in the library cgraph.lib and taken from
gphrout.c.

183

184

else
m = (y2-yl)/(x2-xl);

if(X2 > Xl)
(
for(col = (int) (xl)+l;col <= (int)(x2);col++)

(

}
else

{

row =(int)(yl + m•(col - xl));
wdot(col,row,MMl);
}

if{X2 < Xl)
{

/* normal slope */

/* line equation */
I* write dot */

for(col ={int) (X2)+1;col <= (int} {Xl) ;col++)
(
row=(int) (y2 + m•(col - x2));
wdot(col,row,MMl); /*write dot*/

}
else

{

}

col = (int) (xl); /* verticle line */
if(yl > y2)

{
for(row=(int) (y2)+1;row <= (int)(yl);row++)

wdot(col,row,MMl);
}

else
{
for(row=(int) (yl)+l;row <= (int)(y2);row++)

wdot(col,row,MMl)I

upltpt(xl,x2,yl,y2,MM1)
float x1,x2,y1,y2;
SEL MMl;
{
float m;
int row;
int col;

if(Xl == X2)
m = 1000.;

else
m = {y2-yl)/(x2-xl);

if(X2 > Xl)
{
for(col = (int)(xl};col <=(int) (x2);col++)

{

}
else

{

row• (int} (yl + m•(col - xl));
uwdot(col,row,MMl);
)

if (X2 < Xl)
{

/* slope */

I* zero divide */

I* normal slope */

/* line segment */
/* erase dot */

for(col = (int)(x2)+1;col <=(int) (xl);col++)
{
row=(int) (y2 + m•(col -x2));
uwdot(col,row,MMl); /*erase dot*/

}
else

{

)

col= (int)(xl);
if(yl > y2)

{
for(row=(int) (y2)+1;row <=

uwdot(col,row,MMl);
)

else
{
for(row=(int)(yl)+l;row <=

uwdot(col,row,MMl);

(int) (yl);row++)
I* erase dot */

(int) (y2) ;row++)
/* erase dot */

Figure 4.6 (Concluded')

Sec. 4.2 Introductory C Programming with OS/2

prtwave.obj: prtwave.c
cl -c -zi -Os -FPc prtwave.c

pprtscr.obj: pprtscr.c
cl -c -zi -os -FPc pprtscr.c

gphrout.obj: gphrout.c
cl -c -Zi -os -FPc gphrout.c

prtwave.exe: prtwave.obj pprtscr.obj gphrout.obj
link /CO prtwave.obj+pprtscr.obj+gphrout.obj,prtwave,,\

slibce.lib/NOE os2.lib/NOE,

Figure 4.7 MAKE file for prtwave.c, which plots a sine wave on the printer.

Figure 4.Sa Flowchart for a program
prtwave.c, which plots a sine wave on
the printer.

SETUP
DATA

185

INPUT
FREQUENCY

SETCGA
MODE

CLEAR
SCREEN

LOCK
BUFFER

GET PHYSICAL
BUFFER SELECTOR

PLOT
SINE WAVE

PRINT
SCREEN

UNLOCK
SCREEN BUFFER

KEYBOARD
HESITATE

SET STD
MODE

EXIT

186 OS/2 and C Chap. 4

/* This routine sets & clears CGA mode with screen clear--prtwave.c
* The generalized nomenclature is used.
• A sine wave has been added to the CGA mode output.
• The routine calls gphrout.c graphics functions.
• It prints the plot. */

#define INCL BASE
#include <os2.h>
#include <math.h>

struct STRINGINBUF lkbd_buf;
CHAR kbd_buf[80J;

UINT action = O;
UINT error code O;
UINT wait ;;; l;

CHAR dstat[l];
CHAR dstatl[l];

float x[250],y[25DJ;
BYTE coll[320];
BYTE MM[4] = {OX40,0xlO,Ox04,0x01};
BYTE w[S] = {128,64,32,16,8,4,2,l};
BYTE s[4];
BYTE shiftl[4] = {6,4,2,0};
BYTE in_bufferl(4] {OxlB,Ox4B,64,l};
BYTE in_buffer2(2) = {OxOD,OxOA};
BYTE in_buffer3(3] = {OxlB,Ox41,8};
BYTE in_buffer4[2) = {OxlB,Ox32};
BYTE dev_name[5] { 1 L1 , 1 P 1 ,'T', 1 1 1 ,0};

main()

extern prtscr();

SHANDLE vio hdl
SHANDLE kbd-hdl
UINT wait2 ;;; l;
UINT xb = 75,xe
SEL MMl;

float freq;

O;
o;

150,yb

struct _VIOPHYSBUF PVBPrt2;
struct VIOMODEINFO CGAm;
struct =VIOMODEINFO STDm;

25,ye 175;

PVBPrt2.pBuf = (BYTE far*) (OXB8000);
PVBPrt2.cb = Ox4000;

CGAm.cb = 12;
CGAm.fbType = 7;
CGAm.color = 2;
CGAm.col = 40;
CGAm.row = 25;
CGAm.hres 320;
CGAm.vres = 200;

STDm.cb = 12;
STDm.fbType = l;
STDm.color = 4;
STDm.col = so;
STOm.row = 25;
STDm.hres 720;
STDm.vres = 400;

/* Conditional load */

/* keyboard buf len */
/* keyboard buffer */

/* end thread */
/* result code */
/* reserved word */

/* lock status */
/* lock status */

/* screen coords */
/* column array */
/* mask */
/* weights */
/* dummy */
/* shift count */
/* ESC K (320-256) */
I* CR,LF */
/* ESC A 8/72 */
I* ESC 2 */
/* device */

/* Prtsc routine */

/* video handle */
/* keyboard handle */
/* reserved */
/* box points */
/* selector */

/* frequency */

/* physical buffer */
/* CGA structure */
/* 80 x 25 struct */

/* buffer start */
/* buffer size */

/* struct length */
/* CGA mode */
I* CGA color */
/* text columns */
/* text rows */
/* CGA hor res */
/* CGA vert res */

/* struct length */
/* 80 x 25 mode */
/* STD color */
/* text columns */
/* text rows */
/* STD hor res */
/* STD vert res */

Figure 4.Sb The program prtwave.c.

Sec. 4.2 Introductory C Programming with OS/2

lkbd_buf.cb • BO;

printf("Input frequency (Hz)\n");
scanf("'f",&freq);

/* buffer size */

/* set CGA mode */
VioSetMode(((struct _VIOMODEINFO far *)&CGAm),vio_hdl);

cclsCGA(vio_hdl); /* clear CGA screen */

VioScrLock(wait2,(char far *)dstatl,vio_hdl); /*lock screen*/
/* physical buffer */

VioGetPhysBuf((struct _VIOPHYSBUF far *)&PVBPrt2,vio_hdl);

MMl = PVBPrt2.asel[OJ;

ssine_wave(freq,MMl);

prtscr(MMl);

VioScrUnLock(vio_hdl);

KbdStringin((char far *)kbd_buf,

I*

I*

I*

I*
I*

((struct _STRINGINBUF far *)&lkbd_buf),
wait,kbd_hdl);

selector */

sine wave */

print screen *I
unlock screen */
hesitate screen */

/* set STD mode */
VioSetMode(((struct _VIOMODEINFO far *)&STDm),vio_hdl);

DosExit(action,error_code);
}

ssine_wave(freq,MMl)
float freq;
SEL MMl;
{
float scale=JS.,mid=lOO.;
int mmid=lOO,zero=O,end=200,npts•l99,nl,n;
double PI - 3.141592654,t;

t = o.o;
for(n=l;n <= npts;n++)

{
y[n]•scale*(float)(sin(2.*PI*freq•t));
y[n]-mid-y[n];
x[n]=(int)(n);
t = t +.02;
}

for(n•l;n <= (npts-l);n++)
pltpt(x[n],x[n+l],y(n],y(n+lJ,MMl);

cclsCGA(vio_hdll)
SHANDLE vio hdll;
{ -
SEL MM2;
UINT waitl = 1;
struct _VIOPHYSBUF PVBPrtl;

PVBPrtl.pBuf = (BYTE far *)(OxBBOOO);
PVBPrtl.cb = OX4000;

/* plot parameters */

I* start time */
I* loop array pts *I

I* sine wave */
I* adjust plot */
I* col coordinate *I
I* increment time *I

I* plot points *I

/* physical buffer */

/* phys buf start */
/* buffer length */

VioScrLock(waitl,(char far *)dstat,vio_hdll); /*lock screen*/
/* physical buffer */

VioGetPhysBuf((struct _VIOPHYSBUF far *)&PVBPrtl,vio_hdll);

MM2 - PVBPrtl.asel[O]; /*selector•/

Figure 4.8b (Continued)

187

188

clrCGA(MM2);

VioScrUnLock(vio_hdll);
}

clrCGA (MMJ)
SEL MMJ;
{
INT n;
INT Nl = OxlFJF;
INT OM = Ox2000;
PCHAR ptr;

for(n = o;n <= Nl;n++)
{
ptr = MAKEP(MMJ,n);
*ptr = O;
}

for(n = O;n <= Nl;n++)
{
ptr = MAKEP(MMJ,DM+n);
*ptr = O;
}

Figure 4.8b (Concluded)

OS/2and C

/* CGA clear */

/* unlock screen */

/* end odd buffer */
/* even offset */
/* pointer scr buf */

Chap. 4

/* odd far pointer */
/* clear odd buffer */

/* even far pointer */
/* clear even buffer */

these eight rows in the following manner: For each of the 80 bytes in a row, the
byte is unfolded into its four pixel values (to make the 320 pixels per CGA row).
The single byte containing the four pixel values is stored in four locations: s[O], s[l],
s[2], and s[3]. These values are in turn masked, shifted, and weighted according to
their row position. A running total is generated across all rows for each pixel posi­
tion and stored in coll[]. The coll[] values are returned to prtscrO (the pprtscr.c
function that accomplishes the screen print). Each buffer row and column value is
returned using

prt = MAKEP (MMl, DM + (80 *(row>>l) + (col>>2)));

Here MMl is the selector value and DM = Ox2000 if the row value is odd. Figure
4.10 illustrates a typical sine wave plotted using this program.

4.3 MEMORY MANAGEMENT AND MULTITASKING WITH C

The API services offer a wide variety of multitasking and memory management
options, as we have seen. There is an important constraint to consider when employ­
ing programs that run in a multitasking environment: The code is reentrant if differ-

Sec. 4.3 Memory Management and Multitasking with C

OPEN
PRINTER

SET
SPACING

SET
LINES

SETUP BLOCK AND
BLOCK COUNT

CALL
I darray ()

SET
GRAPHIC MODE

PRINT
COLUMNS

OUTPUT
CR&LF

INCREMENT
BLOCK

Figure 4.9a Flowchart for the
program pprtscr.c, which performs
the print operation in CGA mode.

189

190

/* This is a c print screen routine -- pprtscr.c */

#define INCL BASE
#include <os2.h>

prtscr(MMl)
SEL MMl;
{

I* ---------------------------------• •
Printer parameters

--------------------------------- *I

OS/2 and C Chap. 4

/* selector */

extern
extern
extern
extern

BYTE
BYTE
BYTE
BYTE

in_bufferl(];
in_buffer2[J;
in buffer3[J;
in:::buffer4[J;

/* ESC K (320-256) r */
I* CR,LF */
/* ESC A 8/72 */
/* ESC 32 -- 1/6 */
/* byte counts */

USHORT bytesin=320,bytesout=O,bytesin1•4,bytesin2=2,bytesin3=3;

extern BYTE dev_name[J; I* device name *I
HFILE dev hand O; I* handle */
USHORT deV_act = O; I* action */
ULONG dev_size = o; I* size */
USHORT dev attr = O; I* attribute */
USHORT dev:::flaq = l; I* open file */
USHORT dev mode = OxOOCl; I* private,nodeny *I
ULONG dev_rsv = o; I* reserved */

extern BYTE coll[]; /* column array */

UINT N; /* block count */
int blk_cnt,sixforty=640,n;

/* open printer */
DosOpen(dev_name,(PHFILE)&dev_hand,(PUSHORT)&dev_act,dev_size,

dev_attr,dev_flaq,dev_mode,dev_rsv);
/* set spacinq */

DosWrite(dev_hand,in_buffer3,bytesin3,(PUSHORT)&bytesout);
/* set lines •/

Doswrite(dev_hand,in_buffer4,bytesin2,(PUSHORT)&bytesout);

blk cnt=O;
for(n=l;n <= 25;n++)

{
N = blk_cnt * sixforty;

/* 640 block */

/* block bytes */

ldarray(N,MMl); /*load array*/
/* qraphics mode */

DosWrite(dev hand,in bufferl,bytesinl,(PUSHORT)&bytesout);
- - /* print columns */

DosWrite(dev_hand,coll,bytesin,(PUSHORT)&bytesout);
I* CR,LF */

DosWrite(dev_hand,in_buffer2,bytesin2,(PUSHORT)&bytesout);

blk cnt++;
} -
DosClose(dev_hand);
}

ldarray(N,MMl)
UINT N;
SEL MMl;
{
extern BYTE MM[];
extern BYTE w[];
extern BYTE s [J ;
extern BYTE shiftl[J;

Figure 4.9b The routine pprtscr.c.

/* inc block count */

/* close printer */

/* mask */
/* weiqhts */
/* dummy */
/* shift */

Sec. 4.3 Memory Management and Multitasking with C

int n,nl,m,N4,row,col;
extern BYTE coll[);

N4 = N/80;
for(n = O;n <= 79;n++)

{

)

for(m = O;m <~ 3;m++)
coll[n*4+m] = O;

for(nl = O;nl <= 7;nl++)
{
row = N4 + nl;
for(m = O;m <= J;m++)

{
col = n•4;
s[m) = rbuf(row,col,MMl);
)

for(m = O;m <= J;m++)
{
s[m) = (s[m) & MM[m));
s[m] = (s[m) >> shiftl[m]);
s[m] = s[m] • w[nl);
col = n•4 + m;
coll[col] = coll[col) + s[m);
)

rbuf(y,x,MMl)
SEL MMl;
int x,y;
{
PCHAR ptr;
UINT DM = OxOOOO;

if(y & OxOl)
OM = Ox2000;

ptr = MAKEP(MMl,DM + (SO*(Y >> l)+(x >> 2)));
return(•ptr);
)

Figure 4.9b (Concluded)

....... _
....

/* column array */

/* block row */

/* initialize •/

/* nearest byte */
/* screen byte •/

/* mask */
/* shift rt */
/* weight •/
/* column index */
/* column value */

/* selector */
I* x=col,y=row *I

I* buffer ptr */
I* even/odd */

/* odd row */

I* byte pointer *I
I* return value *I

191

,. ..
·· _,_ ·· _ ··"

.. Figure 4.10 Representative sine wave
output for the program prtwave.c.

192 OS/2 and C Chap. 4

ent threads call the same function. Hence in multithreaded applications the API
services, which have code written for the multithreaded environment, are a more
desirable way to write code than are the multithreaded versions of the standard C
library routines. We always base our routines on the API calls.

In general, the variety of memory management services is large. These serv­
ices include DosAllocSeg(), DosSubAllocSeg(), and DosAllocShrSeg(). In the next
section we consider the creation of a shared segment. This is among the more
complex variants of segment manipulation and constitutes a useful example. Simi­
larly, the creation of a process or thread can be contingent on synchronization. For
example, if both a parent and a child process access a shared segment, some form
of synchronization is needed to ensure that one process does not write over the
results of another before the data is properly used. In general we achieve synchro­
nization using semaphores. This approach, using semaphores for synchronization and
the API services for multitasking, allows easy development of both non-reentrant
and reentrant code in the OS/2 multitasking environment. Memory management is,
of course, a subset of this activity, particularly when sharing segments.

4.3.1 Creating and Accessing Segments

A good example of the use of memory management is the creation and access of
shared segments. Figure 4.lla is a flowchart for the program pipestc.c. This program
is the C version of the assembly language program, pipest.asm, which appears in
Figure 3.22b. The program sets up a shared segment, creates a pipe, uses sema­
phores for synchronization, and passes a message to the pipe via the pipe's buffer
area. A child process, pipeclc.c, then reads the pipe message and prints the message
to the screen. The process is shown in Figure 4.llb, and the code for the child
process appears in Figure 4.12. The MAKE file for pipestc.c is illustrated in Figure
4.13a, and the MAKE file for pipeclc.c is presented in Figure 4.13b.

The program pipestc.c opens with four string expressions of CHAR type.
These expressions define the pointers msg_pd, prgm_nm, shrname, and aseml.
Within the calling function, main(), a number of local variables have been defined
using the standard OS/2 type casts. In the API service call to DosAllocShrSeg(), for
example, the parameters are of the type

SEL msell;

CHAR FAR *shrname;

USHORT msize = 512;

where USHORT = unsigned short (16-bit word) and SEL denotes a selector: un­
signed short SEL. The actual call in DosAllocShrSeg() specifies that the selector,
msell, be specified as a pointer object:

(PSEL) &msell

Here the address of msell is treated as the pointer, as it should be.
When DosMakePipe() executes a read handle and write handle are returned for

Sec. 4.3 Memory Management and Multitasking with C 193

SETUP
DATA

CREATE
SHARED SEGMENT

MAKE
PIPE

PASS PIPE READ
HANDLE TO SEGMENT

CREATE
SEMAPHORE

BEEP

WRITE
MESSAGE TO PIPE

PASS MESSAGE
LENGTH TO SEGMENT

SET
SEMAPHORE

CREAT
PROCESS#2

WAIT CLEAR
SEMAPHORE

KILL
PROCESS

EXIT

CHILD
PROCESS

Figure 4.lla Flowchart for C program
to emulate pipest.asm, a pipe and
shared segment program.

194

/* Program to emulate pipest.asm -- pipestc.c
* This routine sets up a child and accesses a shared
* memory segment. */

#define INCL BASE
#include <os2.h>
#include <string.h>

CHAR •msg_pO = "This is the OS/2 pipe message\n";
CHAR FAR *prgm nm• "PIPECLC.EXE";
CHAR FAR •shrname = "\ \SHAREMEM\ \SDATl. DAT";
CHAR FAR •aseml. "\\SEM\\SDAT.DAT";

OS/2and C

INT blank[l] = {OX0007);
size t lmsg_pO;
main()

/* Scroll attribute */
/* length result */

{

Chap. 4

/*--•/
/* Locally Defined Variables */

/*--*/
I* Shared buffer */

USHORT maize = 5l.2; I* Buffer size */
SEL msell: I* Selector */

I* Pipe parameters *I
HF ILE read_hdl,write_hdl; I* Pointer to pipe handles *I
USHORT pflag = 256; I* Pipe size bytes *I
US HORT bytes_written; I* Length of write *I

I* Semaphore parameters *I
USHORT no excl • l; I* No exclusive */
HSEM seiii_hdll; I* Semaphore handle *I
LONG no_to • -1; I* No timeout */

I* Beep */
US HORT freq • 5000; /* 5,ooo Hertz */
US HORT duration = 500; I* 500 millisec */

I* Child process */
CHAR obj_nm_buf[40]; I* Failure buffer */
USHORT lobj_nm_buf • 40; I* Length buffer */
USHORT async 1; I* Child asynchronous */
CHAR argst O; I* NULL command parm */
CHAR envst O; I* NULL environment parm */
RESULTCODES PIDD; I* Structure-result codes */

PU INT ptr; I* Pointer */

US HORT action • 1; I* Terminate all threads *I
USHORT result O; I* Completion code */

USHORT error2; /* Dummy error return */

/*--•/
els(); /* Clear screen */

/* Create shared sec;iment */
error2 • DosAlloCShrSeg(msize,shrname,(PSEL)&msell);

if(error2 I• 0)
{
printf("Result code
exit(l);
)

/* Check creation error */

%d",error2);

Figure 4.llb Program code for pipestc.c, illustrated in Figure 4.lla.

Sec. 4.3 Memory Management and Multitasking with C

els()

/* create pipe */
DosMakePipe((PHFILE)&read_hdl,(PHFILE)&write_hdl,pflag);

ptr • MAKEP(msell,2);
•ptr = read_hdl;

/* Pointer to 2nd word */
/* Read handle */

/* Create system sem */
Doscreatesem(no_excl,(PHSEM)&sem_hdll,(PCHAR)aseml);

DosBeep(freq,duration); /* Beep speaker */

lmsg__po = strlen(msg__pO); /* Length of message */

/* Write to handle */
DosWrite(write_hdl,(PVOID)msg__pO,lmsg__pO,

(PUSHORT)&bytes_written);

ptr = MAKEP(msell,4);
•ptr = bytes_written;

DosSemSet(sem_hdll);

error2 = DosExecPgm((PCHAR)obj_nm_buf,
lobj nm buf,async,
(PCHAR)&argst,
(PCHAR) &envst,
(PRESULTCODES)&PIDD,
prgm_nm);

if(error2 != O)
(
printf(11Error on opening child");
exit(l);
)

OosSemWait(sem_hdll,no_to);

/* Pointer to Jrd word */
/* Length of write */

/* Set semaphore */

/* Initiate child */

/* Check creation error */

/* wait on child •/

/* Terminate child */
DosKillProcess(PIDD.codeTerminate,PIDD.codeResult);

DosExit(action,result);
)

{
USHORT
USHORT
USHORT
USHORT
USHORT
HVIO

tr = o;
le = o;
br = 23;
re = 79;
no line = 25;
viO_hdl;

/* Terminate parent */

/* top row */
/* left column */
/* bottom row */
/* right column */
/* no. lines */
/* handle */

/* Clear screen */
VioScrollUp(tr,lc,br,rc,no_line,(PCHAR)blank,vio_hdl);
)

Figure 4.llb (Concluded)

195

the pipe. The read handle, read_hdl, is written into the second word of the shared
segment. A semaphore is created to synchronize the parent and child process. Essen­
tially, we want the parent to wait on the child process until the child completes its
write to the screen. The parent process (pipestc.c) writes the message to the pipe
buffer using Dos Write(), and a return count of the length of the message written is
placed in the shared segment buffer at offset 4. Next, the semaphore is set and the
child process started. Once the child completes, the semaphore is cleared and the

196 OS/2and C

/* This is the child process -- pipeclc.c
* It writes the actual screen message using pipes */

#define INCL BASE
#include <os2.h>

CHAR FAR •aseml = "\\SEM\\SDAT.DAT";
CHAR FAR *shrname = "\\SHAREMEM\\SDATl.DAT";
CHAR buffer[256];

main()

/* --* Local Variables
* --*/

I* Exit parameters */
USHORT action = l; I* Terminates all threads
USHORT result = O; I* Completion code */

HVIO vio_hdl; I* Video handle */

I* Beep */
USHORT freq = 4000; /* 4,000 Hertz */
USHORT duration = 500; /* 500 millisec */

HSEM sem_hdll; I* Semaphore handle *I
SEL shrsel; I* Shared Segment Sel */

HFILE read_hdl; /* Read handle */

USHORT lmsg; I* Length message */
USHORT bytes_read; I* Bytes read */

USHORT FAR *ptr; /* 32-bit pointer */

I* ---*/

Dosopensem((PHSEM)&sem_hdll,aseml);

DosBeep(freq,duration);

DosGetShrSeg(shrname,(PSEL)&shrsel);

ptr = MAKEP(shrsel,2);
read_hdl = •ptr;
ptr = MAKEP(shrsel,4);
lmsg = •ptr;

/* Open semaphore */

/* Beep speaker */

/* Shared Segment */

/* Pointer to 2nd word */
/* Read handle */
/* Pointer to 3rd word */
/* Length of message */

/* Read message */
DosRead(read_hdl,buffer,lmsg,(PSHORT)&bytes_read);

VioWrtTTy(buffer,lmsg,vio_hdl);

DosSemClear(sem_hdll);

DosExit(action,result);
}

/* Write message */

/* Clear semaphore */

/* Terminate process */

Figure 4.12 Program code for child process, pipeclc.c, used by pipestc.c.

Chap. 4

*/

Sec. 4.3 Memory Management and Multitasking with C

pipestc.obj: pipestc.c
cl -c -zi -os -FPc pipestc.c

pipestc.exe: pipestc.obj
link /CO pipestc.obj,pipestc,,\

slibce.lib/NOE os2.lib/NOE,,

(a)

pipeclc.obj: pipeclc.c
cl -c -zi -os -FPc pipeclc.c

pipeclc.exe: pipeclc.obj
link /co pipeclc.obj,pipeclc,,\

slibce.lib/NOE os2.lib/NOE,,

(b)

Figure 4.13 (a) MAKE file for pipestc.c and (b) MAKE file for pipeclc.c.

197

wait state for the parent is terminated. The child process is terminated (along with
any dependent processes), and the parent is completed with the termination
DosExit(). The child process is illustrated in Figure 4.12.

4.3.2 Creating a Thread or Process

In Figure 4.llb the parent process initiates a child process specified using the
pointer prgm_nm. This specification links the two processes and is the last parame­
ter ofDosExecPgm(). Figure 4.12 contains the program for the child. Note that the
semaphore name and the shared segment name are the same as those specified by
the parent. This constitutes the common link between the two processes. The speaker
is beeped to indicate that the child is operating. The shared segment is retrieved and
the pipe read handle and buffer length obtained. DosRead() is used to load buffer[]
with the message in the pipe, and this message is printed using VioWvtTTY().

The return to the parent results in termination of the work semaphore. The
child process is terminated by the parent, as well, with a full exit from the parent
mode. Note that DosKillProcess() is not absolutely necessary because the child,
pipeclc.exe, has been terminated but is good programming practice because it termi­
nates all dependent processes started by the child, in addition to the child process
itself, if needed. Figure 4.llb also illustrates the clear screen routine, which is a one­
time call to VioScrollUp().

Figure 4.14 contains the MAKE file for a program ckthread.c, which creates a
thread as opposed to a new process. Remember that a thread shares resources with

198 0$/2 and C

ckthred.obj: ckthred.c
cl -c -Zi -Gs -FPc -F coo -Lp ckthred.c

ckthred.exe: ckthred.obj
link /CO ckthred.obj,ckthred,ckthred,slibce.lib/NOE os2.lib/NOE,,

Figure 4.14 MAKE file for ckthred.c. This program checks the formation of
child threads.

Chap. 4

the subordinate or child threads. This is unlike creation of a new process, where
each subordinate process has its own encapsulated resources.

Since each thread has its own stack (a resource unique to the thread) a high­
level-language compiler such as C will report stack overflow errors because the
thread's unique stack space does not overlap within a given process. This usually
generates an error message (in the Microsoft C Optimizing Compiler Version 5.1,
for example). To avoid such error messages, a compiler option, -Gs, can be used to
eliminate stack checking only when the stack space is known to be sufficient [7].
This will allow the compilation of programs that generate separate threads without
generating an error condition. Each thread should allow a minimum stack size of
2048 bytes. In Figure 4.14 the compile and link allow generation of symbolic
debugging information through options -Zi (compiler) and /CO (linker).

Figure 4.15 illustrates a simple OS/2 C language program which generates a
thread that prints the message

"This is the subordinate thread"

to the display. A second message is printed following completion of the child thread
action and return to the parent calling thread. The latter thread prints the message

"This is the main thread"

Both threads generate 500-millisecond tones. Synchronization is achieved using
semaphores.

In the example program illustrated in Figure 4.15, no error checking exists
following the API calls. This is because the program is fully debugged and the need
for such diagnostics is minimized. During the debugging phase such diagnostics
were included. Should a malfunction occur the user can, of course, set up such
checking procedures. Note that in the call DosCreateThread(), the third parameter
references byte 2047 in the stack as the stack start. This is because of the way the
stack pointer is changed following a push to the stack. Element 2047 is the top of
the stack in terms of address, and each push decrements the stack pointer to a lower
address. Throughout this example the Toolkit nomenclature has been used. The type
casting is in keeping with the Toolkit defined types and the actual API calls reflect
the IBM Toolkit definitions for setup of the API functions.

Sec. 4.3 Memory Management and Multitasking with C

#define INCL BASE
#include <os2.h>

#include <strinq.h>
#define SSIZE 2048

void FAR threadl(void):

CHAR *msq_pl = "\n This is the main thread \n":
CHAR *msg_p2 = "This is the subordinate thread \n";
CHAR FAR *aseml = "\\SEM\\SDAT.DAT":
CHAR stackl[SSIZE]:
HVIO vie hdl;
HSEM sem=hdll;

size t lmsg_pl;
size=t lmsg_p2;

main()
(
USHORT
USHORT

TID
LONG

freq = 3000, duration = 500;
action = 1, result = o, no_excl

threadID;
no_to = -1;

l;

/* Thre

/* Stack for threadl */

/* Thread ID •/
/* no timeout */

DosBeep(freq,duration); /*Beep Speaker*/
/* Create semaphore */

DoscreateSem(no_excl,(PHSEM)&sem_hdll,(PCHAR)aseml);

DosSemSet(sem_hdll): /* Set semaphore */

DosCreateThread(threadl,(PTID)&threadID,(PBYTE)&stack1[2047]):

Dossemwait(sem_hdll,no_to):

lmsq_pl = strlen(msq_pl):

VioWrtTTy(msg_pl,lmsg_pl,vio_hdl);

DosExit(action,result);
)

void FAR threadl(void)
{
USHORT freql = 5000, duration

DosBeep(freql,duration);

lmsq_p2 = strlen(msg_p2);

400;

VioWrtTTy(msg_p2,lmsg_p2,vio_hdl);

DosSemClear(sem_hdll):
)

/* wait thread */

/* Length Message 1 */

/* End main thread */

/* Beep speaker */

/* Length Message *I

/* Message 2 */

/* Clear semaphore */

Figure 4.15 The program ckthred.c, which creates and exercises a child thread.

199

200 OS/2and C Chap. 4

4.4 OTHER PROGRAMS

We have seen several examples of how to employ the API services in the C envi­
ronment. These were beginning examples. In this section it will be useful to develop
several more examples illustrating the lower-level nature of the API calls in this C
environment. A great deal about the OS/2 implementation can be learned from these
examples since frequently implementation features are obscured by the general
syntax considerations.

4.4.1 A Rotating Tetrahedron

As a starting point, consider two-dimensional space represented by the usual Carte­
sian axes: x and y. Now consider the rotation of the point (x1, y1) to (xi, Yi)· Here,
if r is the radius of the points from the origin

xi = r cos(a1)

Y1 = r sin(a1)

and

xi = r cos(ai)

Yi = r sin(a1)

Writing

ai = a + ai

we have

c:) (r cos(a + a,))
=

r sin(a + a 1)

which becomes (") c c*) - y, sffi(a))

Yi = x1 sin(a) + y1 cos(a)

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

when the trigonometric identities are used for sine and cosine of the addition of two
angles [4]. In matrix form

(
x2) (xi cos(a) - sin(a)) (x1) (4.S)

y2 = y2 sin(a) + cos(a) y1

This rotation can be extended to three dimensions, where

Sec. 4.4 Other Programs

a : rotation angle about the x-axis
13 : rotation angle about the y-axis
y : rotation angle about the z-axis

201

and we obtain the rotation matrices (A, B, and C, respectively) appearing in Table
4.1. Choosing an order to the rotation, we generate an overall three-dimensional
rotation given by the matrix

R= CBA (4.9)

This matrix is indicated in Table 4.1 and will serve as the basis for rotation of the
tetrahedron. Note that the three rotations in Equation (4.9) are not orthogonal. We
would need to select a different set of rotation angles to ensure orthogonality.

TABLE 4.1 ROTATION MATRICES FOR THREE-DIMENSIONAL MOVEMENT

R =

0 0]
c?s a -sin a
sma cosa

[
cos 13 cosy

CBA = cos 13 sin y
-sin 13

[
cos 13 0 sin 13]

B = 0 1 0
-sin 13 0 cos 13

sin a sin 13 cos y - cos a sin y
sin a sin 13 sin y + cos a cos y

sin a cos 13

[
cosy

C = si~ y

-sin y
cosy
0 ~]

cosasinl3cosy+sinasiny]
cos a sin 13 sin y - sin a cos y

cos a cos 13

If we have a point on the tetrahedron given by (x, y, z), it is possible to define a
rotated point based on R using

(4.10)

In this example the tetrahedron appearing in Figure 4.16 will be used and rotated
using R.

Figure 4.17 is the MAKE file for the rotating tetrahedron program. Note that
pprtscr.c is not compiled in this MAKE file and we assume that an object module
is available at link time. Figure 4.18a is the Structure Chart for this program. Fig­
ure 4.18b illustrates a flowchart for tetra.c, the main program module. Figure 4.19
contains the code for tetra.c. This module reads the three angular rates of rotation:
a 0, 130, and y0• Also read in is a scale factor for the size of the display image and the
number of iterations to be rotated. Each iteration assumes an effective time incre­
ment of dt = 0.05 unit.

202 OS/2and C

z

(0,0,1)
/

Figure 4.16 Three-dimensional starting representation for the tetrahedron.

tetra.obj: tetra.c
cl -c -zi -Gs -FPc -F coo -Lp tetra.a

rotetra.obj: rotetra.c
cl -c -Zi -Gs -FPc -F coo -Lp rotetra.c

rotmat.obj: rotmat.c
cl -c -zi -Gs -FPc -F coo -Lp rotmat.c

rotpt.obj: rotpt.c
cl -c -Zi -Gs -FPc -F coo -Lp rotpt.c

dmapoirit.obj: dmapoint.c
cl -c -zi -Gs -FPc -F coo -Lp dmapoint.c

udmapoin.obj: udmapoin.c
cl -c -Zi -Gs -FPc -F coo -Lp udmapoin.c

tetra.axe: tetra.obj rotetra.obj rotmat.obj rotpt.obj \
dmapoint.obj udmapoin.obj pprtscr.obj cgraph.lib

link tetra+rotetra+rotmat+rotpt+dmapoint+udmapoin+pprtscr,,,\
slibce.lib/NOE os2.lib/NOE cgraph.lib/NOE,,

Figure 4.17 The MAKE file, tetra.mak, for the rotating tetrahedron.

Chap. 4

Sec. 4.4 Other Programs 203

000
PROGRAM TO
CREATE
ROTATING
TETRAHEDRON

I
l I 1

100 200 300

INITIALIZE CALCULATE EXIT
WINDOW ROTATED WINDOW

TETRAHEDRON

J I
l l l]

110 120 210 220

ROTATION SCALING AND GET TRANSLATE
ANGLES NUMBER OF MESSAGE MESSAGE

ITERATIONS

Figure 4.18a Structure Chart for the rotating tetrahedron program.

The module tetra.c contains the usual structures for VioSetModeQ. After the
display and physical buffer selectors are obtained, a call is made to r_tetra(), which
sets up the new dynamic angle variables and calls rot_tetra(), which appears in
Figure 4.20. Note that the arrays XX[], YY[], and ZZ[] are used to transfer the
vertexes of the tetrahedron to rot_point(), where these points undergo the appropri­
ate rotations. A call rot_mat() sets up the rotation matrix constants. The two func­
tions DMA point() and uDMApoin() generate and remove the connecting lines,
respectively. Figure 4.21 illustrates the calculation of the rotation matrix elements
and should be compared with R in Table 4.1. Figure 4.22 merely completes Equa­
tion (4.10).

Figures 4.23 and 4.24 show the routines for accessing the physical screen
buffer (DMApoint.c) and removing an existing dot on the screen (uDMApoin.c).
They call wdot() and uwdot(), respectively, which are obtained from the library,
cgraph.lib (see Figure 4.6).

Figures 4.25a and 4.25b illustrate the rotating tetrahedron after 100 iterations
and 50 iterations, respectively. The input values for rates of rotation are a 0 = {30 =
y 0 = 1 and the scale is 60 units. These figures were obtained using prtscr().

4.4.2 Plotting Dow Jones Activity

The major purpose of this example is to illustrate disk access under OS/2. We need
to recognize that some activities that are performed using the API calls can also be
performed using the default C library (run time). Disk access is one of these activi­
ties.

204

SETUP
DATA

SETCGA
MODE

CLEAR
SCREEN

LOCK
SCREEN

GET PHYSICAL
BUFFER SELECTOR

CACULATE AND PLOT
ROTATED TETRAHEDRON

PRINT
SCREEN

UNLOCK
SCREEN BUFFER

KEYBOARD
HESITATE

SET STD
MODE

EXIT

OS/2 and C Chap. 4

Figure 4.18b Flowchart for tetra.c,
the rotating tetrahedron program.

Sec. 4.4 Other Programs

* The routine calls gphrout.c graphics functions. */

#define INCL BASE
#include <os2.h>
#include <stdio.h>

struct STRINGINBUF lkbd_buf;
CHAR kbd_buf[BO];

UINT action = O;
UINT error code = O;
UINT wait ;;: l;

CHAR dstat[l];
CHAR dstatl[l];

float XX[5] {0.,1.,0.,0.,0.)
float YY[5] = {0.,0.,1.,0.,0.)
float ZZ[5J = {0.,0.,0.,0.,1.)

float x,y,z;
float scale;
float a[lOJ;
float xxl[5],yyl[5];
float XXX1[5],yyyl[5];
float dt = 0.05;
int NTOTAL;
float alpha,beta,gamma,alphaO,betao,gammao;

I*
*
*
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
/*

main()

Print Screen Parameters

coll[320];
MM(4] = {OX40,0xlO,Ox04,0x01);
w[8] = {128,64,32,16,8,4,2,l};
s[4J;
shiftl[4J = {6,4,2,0};
in bufferl[4] {OxlB,Ox4B,64,l};
in:buffer2[2] = {OXOD,OxOA};
in_buffer3[3] = {OxlB,Ox41,8};
in buffer4[2] = {OxlB,Ox32};
deV_name[S] = {'L','P','T','l',O};

extern prtscr(};

SllANDLE vio hdl O;
SllANDLE kbd-hdl O;
UINT wait2 ;;: l;
SEL MMl;

struct VIOPHYSBUF PVBPrt2;
struct =VIOMODEINFO CGAm;
struct _VIOMODEINFO STDm;

PVBPrt2.pBuf = (BYTE far*} (OXB8000};
PVBPrt2.cb = Ox4000;

CGAm.cb = 12;
CGAm.fbType = 7;
CGAm.color = 2;

/* This program gener

/* conditional load */

/* keyboard buf len */
/* keyboard buffer */

/* end thread */
/* result code */
/* reserved word */

/* lock status */
/* lock status */

/* Coords tetra */

*I

*I

I* Prtsc routine */

I* video handle */
/* keyboard handle */
I* reserved */
I* dummy selector */

/* physical buffer */
/* CGA structure */
I* BO x 25 struct */

I* buffer start */
I* buffer size */

I* struct length *I
I* CGA mode */
I* CGA color •/

Figure 4.19 Program code for tetra.c, the main calling program for the rotating
tetrahedron.

205

206

CGAm.col = 40;
CGAm.row = 25;
CGAm.hres = 320;
CGAm.vres = 200;

STDm.cb = 12;
STDm.fbType = l;
STDm.color = 4;
STDm.col = 80;
STDm.row = 25;
STDm.hres = 720;
STDm.vres - 400;

lkbd_buf.cb = 80;

printf(11 Input x-rotation rad/sec \n");
scanf("%f 11 ,&alphaO);
printf("Input y-rotation rad/sec \n");
scanf("%f",&betaO);
printf("Input z-rotation rad/sec \n");
scanf ("%f", &gammaO) ;
printf("Input scale \n");
scanf("%f11 ,&scale);
printf("Input total no. iterations \n");
scanf("%d 11 ,&NTOTAL);

OS/2 and C

/* text columns •/
/* text rows •/
/* CGA her res •/
/* CGA vert res *I

/* struct length •/
/* 80 x 25 mode •/
/* STD color •/
/* text columns •/
/* text rows •/
/* STD her res •/
/* STD vert res *I

/* buffer size •/

/* set CGA mode •/
VioSetMode(((struct _VIOMODEINFO far •)&CGAm),vio_hdl);

cclsCGA(vio_hdl); /* clear CGA screen •/

VioScrLock(wait2,(char far *)dstatl,vio_hdl); /*lock screen•/
/* physical buffer •/

VioGetPhysBuf((struct _VIOPHYSBUF far •)&PVBPrt2,vio_hdl);

MMl = PVBPrt2.asel[O);

r_tetra(MMl);

prtscr(MMl);

VioScrUnLock(vio_hdl);

KbdStringin((char far •)kbd_buf,

/* selector •/

/* tetrahedron */

/* print screen */

/* unlock screen */
/* hesitate screen */

((struct STRINGINBUF far •)&lkbd_buf),
wait,kbd_hdl);

/* set STD mode •/
VioSetMode(((struct _VIOMODEINFO far *)&STDm),vio_hdl);

DosExit(action,error_code);
}

r tetra (MM2}
- SEL MM2;

{
int n;

alpha = o.;
beta=O.,
qamma = o;

/* x-angle •/
/* y-angle •/
/* z-angle •/

Chap. 4

for(n = l;n <= NTOTAL;n++)
(/* dynamic angles •/
alpha = alpha + alphaO*dt;
beta = beta + betaO•dt;
gamma = gamma + qamm.aO•dt;

rot_tetra(alpha,beta,qamma,n-l,MM2);

Figure 4.19 (Continued)

/* rotation •/

Sec. 4.4 Other Programs

cclsCGA(vio_hdll)
SHANDLE vio hdll;
{ -
SEL MM;
UINT waitl = 1;
struct _VIOPHYSBUF PVBPrtl;

PVBPrtl.pBuf = (BYTE far*) (OxB8000);
PVBPrtl.cb = Ox4000;

/* physical buffer */

/* phys buf start */
/* buffer length */

VioscrLock(waitl,(char far *)dstat,vio_hdll); /*lock screen*/
/* physical buffer */

VioGetPhysBuf((struct _VIOPHYSBUF far *)&PVBPrtl,vio_hdll);

MM= PVBPrtl.asel[O];

clrCGA(MM);

VioScrUnLock(vio_hdll);
)

clrCGA(MM)
SEL MM;
{
INT n;
INT Nl = OxlFJF;
INT OM = Ox2000;
PCHAR ptr;

for(n = O;n <= Nl;n++)
{
ptr = MAKEP(MM,n);
*ptr = O;
}

for(n = o;n <= Nl;n++)

(
ptr = MAKEP(MM,DM+n);
*ptr = O;
}

Figure 4.19 (Concluded)

/* selector •/

/* CGA clear */

/* unlock screen */

/* end odd buffer */
/* even offset */
/* pointer scr buf •/

/* odd far pointer •/
/* clear odd buffer */

/* even far pointer */
/* clear even buffer */

207

Figure 4.26 presents a routine timhist.c that runs in Protected Mode and func­
tions identically to its Real Mode counterpart. The program generates a disk file that
serves as a time-ordered database. The program accepts three values per record: a
month, a year, and a tabulated value. The library functions, called in this code
correspond to the standard C library functions, which are reentrant, hence can be
used for Protected Mode calls. For the example to be illustrated in subsequent fig­
ures, this routine was used to create a database of monthly Dow Jones values be­
tween January 1988 and December 1988.

208

/* Function to rotate tetrahedron •/

#define INCL BASE
#include <os2.h>

rot_tetra(alphal,betal,gammal,N,MMl)
float alphal,betal,gammal;
int N;
SEL MMl;
{
extern float XX[J,YY[J,ZZ[J;
extern float x,y,z;
extern float scale;
extern float xxl[),yyl[J;
int n;

if(N > 0)

OS/2 and C

/* angles •/

I* Tetra points •/
/* point */
/* scaling */
/* tetrahedron */

(/* Clear tetrahedron •/
uDMApoin(xxl[l] ,xxl[2] ,yyl[l) ,yyl[2] ,MMl);
uDMApoin(xxl[l],xxl[3],yyl[l),yyl[3],MMl);
uDMApoin(XXl[l] ,XX1[4) ,yyl[l) ,yyl[4] ,MMl);
uDMApoin(xxl[2),xxl[3],yyl[2],yyl[3],MMl);
uDMApoin(xxl[2] ,xxl[4] ,yyl[2] ,yyl[4] ,MMl);
uDMApoin(xxl[3],xxl[4],yyl[3],yyl[4],MMl);
}

rot_mat(alphal,betal,galtllllal);

for(n = l;n <= 4;n++)
(
x•XX[n];
y = YY[n];
z = ZZ[n];
rot_point();
xxl[n] = x•scale + 150.;
yyl[n] = y•scale + 100;
}

/* load rotate */

/* x-projection */
/* y-projection */

/* Rotate tetrahedron */
DMApoint(xxl[l],XX1[2],yyl[l],yyl[2],MMl);
DMApoint(xxl[l],xxl[3],yyl[l],yyl[3],MMl);
DMApoint(xxl[l] ,XX1[4] ,yyl[l] ,yyl[4] ,MMl);
DMApoint(xxl[2],XX1[3],yyl[2],yyl[3],MMl};
DMApoint(xxl[2] ,xxl[4] ,yyl[2] ,yyl[4] ,MMl);
DMApoint(xxl[3] ,xxl[4] ,yyl[3] ,yyl[4] ,MMl);
}

Figure 4.20 The routine rotetra.c, which sets up the tetrahedron and calls the
rotation matrices.

Chap. 4

Figure 4.27 contains the MAKE file for dja.c, which reads the database created
and generates a plot of the activity. In this case, this activity corresponds to the Dow
Jones performance. Figure 4.28 presents the actual program code for dja.c. Note the
needed API calls to clear the screen, plot the graphics, and print the screen. Figure
4.29 is the prtscr() output for this Dow Jones time history. The curve consists of
monthly values rounded to the nearest five points.

The use of fprintf() constitutes the standard 1/0 call for the disk write and
works as well in Protected Mode as in Real Mode. IBM and Microsoft have main­
tained this standard 1/0 interface within the constraints of OS/2.

Sec. 4.4 Other Programs

/* Function to calculate rotation matrix •/

#include <math.h>

rot_mat(alpha,beta,gamma)
float alpha,beta,gamma;
(
extern float a[);
double al,CA,CB,CG,SA,SB,SG;

al (double) (alpha);
CA cos(al);
SA sin(al);
al (double)(beta);
CB cos(al);
SB sin(al);
al (double) (gamma) ;
CG cos(al);
SG sin(al);

a[l] (float) (CB•CG);
a[2] (float) (SA*SB*CG - CA*SG);
a[J] (float) (CA•SB•CG + SA*SG);
a[4] (float) (CB•SG);
a[5J (float) (SA•SB•SG + CA*CG) ;
a[6] (float) (CA•SB•SG - SA*CG);
a[7] (float) (-SB);
a[B] (float) (SA•CB);
a[9J (float) (CA•CB);
)

/* angles •/

/* rotation matrix */

/* Sines & cosines */

/* Matrix elements */

Figure 4.21 The program rolmat.c, which calculates the rotation matrix.

/* Function to generate rotated point •/

rot__point ()
(
extern float x,y,z;
extern float a[];
float xl,yl,zl;

xl a[l]*x + a[2]*Y + a(JJ•z
yl = a[4J•x + a[5J*Y + a[6J*z
zl = a[7J•x + a[B]*Y + a[9]*z

x = xl;
y yl;

zl;

/* point •/
/* rotation matrix •/
/* intermediate */

Figure 4.22 The program rotpt.c, which rotates a point.

209

210 OS/2and C

/* This routine plots a connecting line using DMA */

#define INCL BASE
finclude <os2.h>

DMApoint (xl,x2,yl,y2,MM1)
float xl,x2,yl,y2;
SEL MMl;
(
float m;
int row;
int col;

if (xl x2)
m 1000;

else
m (y2 - yl)/ (x2 - xl);

if(x2 > xl)
{

/*Upper limit on slope•/

/* normal slope •/

for (col =(int) (xl)+l; col <= (int) (X2): col++)

else
{

{ /* y-axis behavior •/
row= (int) (yl + m•(col - xl));
wdot(col,row,MMl); /*write dot*/
}

if(X2 < Xl)
{
for(col =(int){x2)+l;col

{
<= (int) (xl); col++)

row = (int) (y2 + m•(col
wdot(col,row,MMl);

/* y-axis behavior */
- x2));

else
{

}

col = (int) (xl):
if(yl > y2)

{
for(row = (int) (y2)+l;row <=

wdot(col,row,MMl):

else
(
for(row = (int) (yl)+l;row <=

wdot(col,row,MMl);

/* write dot •/

/* Vertical line •/

(int) (yl) ;row++)
/* write dot •/

(int) (y2) ;row++)
/* write dot •/

Chap. 4

Figure 4.23 The program DMApoint.c, which writes a point on the display using DMA.

Sec. 4.4 Other Programs

/* This routine removes a connecting line using DMA */

#define INC BASE
#include <os2.h>

uDMApoin(xl,x2,yl,y2,MMl)
float xl,x2,yl,y2;
SEL MMl;
{
float m;
int row;
int col;

if (xl x2)
m = 1000; /*Upper limit on slope•/

else
m (y2 - yl)/{x2 - xl); /* normal slope */

if(X2 > Xl)
{
for {col ={int) {xl)+l; col<= (int) (x2); col++)

{
row= (int) (yl + m•(col - xl));
uwdot(col,row,MMl); /* erase dot */

else
{

}

if(x2 < xl)
{
for(col =(int) (X2)+l;col <= (int)(xl); col++)

{
row = (int) (y2 + m• (col - x2));
uwdot(col,row,MMl); /*erase dot*/

else
{

}

col= (int) (xl);
if(yl > y2)

{
for(row = (int) (y2)+1;row <=

uwdot(col,row,MMl);

else
{

/* Vertical line •/

(int) (yl) ;row++)
I* erase dot */

for(row = (int)(yl)+l;row <= (int) (y2);row++)
uwdot(col,row,MMl); /* erase dot */

Figure 4.24 The program uDMApoin.c, which removes a point from the
display using DMA.

(a) (b)

Figure 4.25 (a) The tetrahedron after 100 iterations with and scale = 60.
(b) The tetrahedron after 50 iterations with and scale = 60.

211

212 OS/2 and C

/* Routine to create time-history/value database -- timhist.c*/

#include <stdio.h>

int month[288),year[288);
float value[288);
char FN1[81);

main()
{
int n,counter,check;
FILE •outfile;

/* I/O file */

/* time arrays */
/* quant. interest */
/* filename array */

/* integer var. */
/* stream pointer */

Chap. 4

printf("Input database filename \n");
gets{FNl);
n = l;
month[O) = l;

/* library routine •/
/* initialize index */
/* init month not o *I

while(month[n-1] != O)
{
printf("Input month as int (O terminates)\n");
scanf("%d",&month[n));
if(month[n] != O)

{
printf("Input year as 2-digit int\n");
scanf("%d",&year[n]);
printf("Input value - floating point\n11);

scanf("%f",&value[n]);
}

n++; I* increment index *I
if(n > 288)

exit(l};

counter = n - 2;

if((outfile fopen(FNl,"w")} ==NULL)
{
printf("OUtput file failure: %s" ,FNl};
exit(l);
}

fprintf(outfile,"%d ",counter};
for(n = l;n <= counter;n++)

I* overflow mem

I* fix count */

I* open out file

/* output count

fprintf (outfile, "%d %d %f ",month[n) ,year[n), value[n]);

if((check = fclose(outfile}} != O}
{
printf("Error in output file close");
exit{l);
}

/* close file */

*I

*I

*I

Figure 4.26 The routine timhist.c, whieh creates a data file consisting of dates
and values.

dja.obj: dja. c
cl -c -Zi -Gs -FPc -F coo -Lp dja.c

dja.exe: dja.obj pprtscr.obj cgraph.lib
link dja+pprtscr,,,\

slibce.lib/NOE os2.lib/NOE cgraph.lib/NOE,,

Figure 4.27 The MAKE file for dja.c, which plots the Dow Jones activity
generated by timhist.c.

Sec. 4.4 Other Programs

#define INCL BASE
#include <stdio.h>
#include <os2.h>
#include <math.h>
#include <stdlib.h>

int month[288],year[288];
float value[288];
char FN1[81];
float xx[1024J;
char buffer[90],bufferl[90];

struct STRINGINBUF lkbd_buf;
CHAR kbd_buf[SO];

UINT action z O;
UINT error code = O;
UINT wait ;; l;

CHAR dstat[l];
CHAR dstatl[l];

I*
• •

Print Screen Parameters

BYTE coll[320];
BYTE MM[4] = {Ox40,0x10,0x04,0X01};
BYTE w[8] = (128,64,32,16,8,4,2,l};
BYTE s[4];
BYTE shift1[4] = (6,4,2,0};
BYTE in bufferl[4] (Ox1B,Ox4B,64,l};
BYTE in=buffer2[2] = {OXOD,OxOA};
BYTE in_buffer3[3] = {Ox1B,Ox41,8};
BYTE in_buffer4[2] = {Ox1B,OX32};
BYTE dev_name[5] = {'L','P','T','1',0};

I*

main{)
{
int n,counter,check,N,i,delta,nmaxs,nmins;
FILE •infile;
double x,y,z;
float maxt,mint,b,bl;

extern prtscr {) ;

SHANDLE vio hdl
SHANDLE kbd-hdl
UINT wait2 ;; 1;
SEL MMl;

O;
O;

struct VIOPHYSBUF PVBPrt2;
struct =VIOMODEINFO CGAm;
struct _VIOMODEINFO STDm;

PVBPrt2.pBuf = {BYTE far *J(OxBSOOO);
PVBPrt2.cb • Ox4000;

CGAm.cb • 12;
CGAm.fbType = 7;
CGAm.color = 2;
CGAm.col • 40;
CGAm.. row = 25;

/* Routine to read Do

I* time arrays */
I* quantity */
I* filename array */
I* Scratch buffers */

I* keyboard buf len */
I* keyboard buffer */

I* end thread * /
I* result code */
I* reserved word */

I* lock status */
I* lock status */

*I

*I

/* integer var. */
/* stream pointer */

I* print screen •/

/* video handle */
/* keyboard handle */
/* reserved */
/* dummy selector •/

I* physical buffer •/
/* CGA structure */
/* so x 25 struct */

/* buffer start */
/* buffer size •/

/* struct length •/
/* CGA mode */
/* CGA color */
/* text columns */
/* text rows */

Figure 4.28 The program dja.c, which plots t1le Dow Jones activity.

213

214 OS/2 and C

CGAm.hres = 320; I* CGA hor res */
CGAm.vres = 200; I* CGA vert res •/

STDm.cb = 12; /* struct length */
STDm.fbType = l; I* 80 x 25 mode */
STDm.color = 4; /* STD color */
STDm.col = SO; I* text columns */
STDm.row = 25; /* text rows */
STDm.hres = 720; I* STD hor res */
STDm.vres = 400; I* STD vert res */

lkbd_buf.cb SO; I* buffer size */

printf("Input database filename\n");
gets(FNl); /*library routine*/
if((infile = fopen(FNl, "r")) == NULL)

{
printf("Input file failure: %s" ,FNl);
exit(l);
)

fscanf(infile,"%:d ",&counter); /*no. records*/
for(n • l;n <= counter;n++)

(
fscanf(infile,"%d %d %f ",&month[n),&year[n),&value[n]);
printf("%5d %5d %6.0f \n",month[n),year[n],value[n));
)

if((check = fclose(infile)) != O)
(
printf("Error in input file close");
exit(l);
)

mint = l.e4;
maxt = o.o;

N = counter;
for(i = l;i <= N;i++)

(
if(maxt < value[i])

maxt = value[i];
if(mint > value[i])

mint value[i];

delta = maxt - mint;
delta = delta/10;
if(delta < 1)

delta = l;
if(delta > 1 && delta < 5)

delta 5;
if(delta > 5 && delta < 10)

delta 10;
if(delta > 10 && delta < 50)

delta 50;
if(delta > 50 && delta < 100)

delta 100;
if(delta > 100 && delta < 500)

delta 500;
if(delta > 500)

(
printf(" delta> 500 11);

exit(l);
}

nmaxs = maxt/delta + 1;
nmins = mint/delta;

Figure 4.28 (Continued)

/* reverse limit */
/* reverse limit */

/* max/min */

/* Set scale */

Chap. 4

Sec. 4.4 Other Programs

maxt = delta•nmaxs;
mint = delta•nmins;
if(mint <= O)

mint = mint - delta;

x = mint;
y = fabs(x);
z = (float) (y);
bl = (z)/((float) (x));
if(maxt > z && bl < O)

mint = -maxt;
else

{
if(maxt < z && bl < O)

maxt z;

/* scaled min •/

/* scaled max */

b = 150./(maxt - mint); /*plot coords •;
for(i = l;i <= N;i++)

(
value(i] = 25. + (150. - b•(value(i] - mint));
xx[i] = 25. + (i - 1)*(256./(float) (N));
)

/* CGA mode */
VioSetMode(((struct _VIOMODEINFO far•)&CGAm),vio_hdl);

cclsCGA(vio_hdl); /* clear screen */

VioScrLock(wait2,(char far *)dstatl,vio_hdl); /* lock buffer •/

/* get physical buf •/
VioGetPhysBuf((struct _VIOPHYSBUF far •)&PVBPrt2,vio_hdl);

MMl = PVBPrt2.asel(OJ;

box_norm(MMl) ;

for (n=l;n<=(N-1) ;n++)
pltpt(xx(n],xx(n+l],value[n],value[n+l],MMl);

/* selector •/

/* plot box */

/* plot points */

prtscr(MMl); /*print screen *I

VioscrUnLock(vio_hdl); /*unlock buffer*/

KbdStringin((char far *)kbd_buf, /*hesitate*/
((struct STRINGINBUF far •)&lkbd_buf),
wait,kbd_hdl) ;

/* STD mode */
VioSetMode(((struct _VIOMODEINFO far •)&STDm),vio_hdl);

OosExit(action,error code);
} -

box_norm(SEL MM)
{
int xxbeg,xxend,yybeg,yyend;

xxbeg 25;
xxend 281;
yybeg = 25;
yyend = 175;

bboxx(xxbeg,xxend,yybeg,yyend,MM);
)

Figure 4.28 (Continued)

/* box parameters */

/* draw box •;

215

216

cclsCGA(SHANDLE vio_hdl1)
{
SEL MM;
UINT waitl = l;
struct _VIOPHYSBUF PVBPrtl;

PVBPrtl.pBuf = (BYTE far*) (OxBSOOO);
PVBPrtl.cb = Ox4000;

VioScrLock(waitl, (char far *)dstat,vio_hdll);

OS/2 and C Chap. 4

/* physical buffer •/

/* phys buf start •/
/* buffer length */

/* lock screen */

VioGetPhysBuf((struct _VIOPHYSBUF far *)&PVBPrtl,vio_hdl1);

MM= PVBPrt1.asel[O];

clrCGA(MM);

VioScrUnLock(vio_hdl1);
)

clrCGA(SEL MM)
{
int n;
int N1 = Ox1F3F;
int DM = Ox2000;
PCHAR ptr;

for(n = O;n <• Nl;n++)
{
ptr = MAKEP(MM,n);
*ptr = O;
)

for(n = O;n <= Nl;n++)
{
ptr = MAKEP(MM,DM+n);
*ptr = O;
}

/* selector •/

/* CGA clear •/

/* unlock buffer */

/* end odd buffer •/
/* even offset */
/* pointer scr buf •/

/* odd far pointer */
/* clear odd buffer */

/* even far pointer */
/* clear even buffer */

Figure 4.28 (Concluded)

Dow Jones Industrials

3000

:>.,
··

2250

1500 ·----f-···------
1986 1987 1988 1989

Figure 4.29 Annotated plot of Dow Jones activity through the October 1987
crash.

Sec. 4.4 Other Programs 217

4.5 SUMMARY

This chapter has served to illustrate the OS/2 and C programming language inter­
face. C represents a higher degree of abstraction than does assembler. The IBM
Toolkit provides a complete set of types and API function prototypes to permit high­
level access to the API services. The low-level nature of these services is illustrated
in the C context.

Graphics under C are developed and a new print screen routine in C is pre­
sented that allows a screen dump in graphics mode. This screen dump program is
designed for operation with CGA mode. The standard C syntax is presented and a
knowledge of this syntax is assumed as a prerequisite to understanding the chapter.

The creation of multitasking routines is developed using multiple threads and
processes. Finally, the issues associated with programming multitasked routines in C
are developed through program examples. This chapter is necessarily introductory
and establishes a basis for programming OS/2 applications using the C language.

REFERENCES

1. Microsoft Optimizing C Compiler Version 5.1, Microsoft Corporation, Redmond, WA,
1988.

2. IBM C/2, Language Reference and Fundamentals, International Business Machines Cor­
poration, Boca Raton, FL, 1987.

3. Operating System/2 Programmer's Toolkit Version 1.0 and 1.1, Programmer's Guide,
International Business Machines Corporation, Boca Raton, FL, 1987.

4. Godfrey, J. T., Applied C: The IBM Microcomputers, Prentice-Hall Inc., Englewood
Cliffs, NJ, 1990.

5. Kernighan, B. W., and Ritchie, D. M., The C Programming Language, Prentice-Hall
Inc., Englewood Cliffs, NJ, 1988.

6. Operating System/2 Technical Reference, Vols. 1 and 2, International Business Machines
Corporation, Boca Raton, FL, 1988.

7. Schildt, H., OS/2 Programming: An Introduction, Osborne McGraw-Hill, Berkeley, CA,
1988, p. 174.

PROBLEMS

4.1 When using the IBM Toolkit definitions, what precaution must be used between Ver­
sions 1.0 and 1.1?

4.2 What are the implications for the standard C 1/0 library running under the Protected
Mode of OS/2?

4.3 The Version 5.1 of the Microsoft C Optimizing Compiler passes formal parameters
with type specifications for these parameters appearing in the function definition.
Typically, a function definition such as

218

INT box_norm(waitt, float x, float y)

replaces

INT box_norm(waitt, x, y)
INT waitt;
float x,y;

OS/2 and C Chap. 4

The type specification moves within the formal parameter list itself. What characteris­
tic of this type definition remains consistent across formal parameter types?

4.4 In Figure 4.1, why must the input word integer be less than 32,768?
4.5 The OS/2 references dictate the manner in which the API services must be loaded on

the stack. Using the normal C calling convention, what parameter access on the local
stack exists? How does the Toolkit modify the API calls to load the local stack cor­
rectly for access?

4.6 What does the syntax

CHAR FAR *ptr;

mean? Why is the following acceptable?

CHAR FAR *shrname = "\ \SHAREMEM\ \SDATl. DAT";

4.7 What does the function MAKEP (sel,off) accomplish?
4.8 In Figure 4.5b, what is the significance of the following?

PVBPrt2.pBuf = (BYTE far *)(OxBBOOO);

4.9 What is wrong with the code

float y;
double t;

y = sin(2.* PI *t);

Assume that PI is defined as

#define PI 3 .141592 654

4.10 What differentiates uwdot() from wdot()? (See Figure 4.6.)
4.11 In pltpt() and upltpt() (Figure 4.6) the x-values are associated with column values and

the y-values are associated with row values. Explain.
4.12 In setting up the printer for a dump of the display, the following command is used

(Figure 4.9b):

Sec. 4.4 Other Programs 219

DosWrite(dev_hand,in_buffer,bytesinl,(PUSHORT)&bytesort);

Here bytesinl = 4 and

BYTE in_bufferl[4] = {Ox1B,Ox4B,64,1};

What is the significance of this output value?
4.13 What is the meaning of the DosWrite() execution in Figure 4.9b with in_buffer3[]

defined as

BYTE in_buffer3[3] = {Ox1B,Ox41,8};

4.14 In Figure 4.llb, are the semaphores used RAM semaphores or system semaphores?
4.15 What is characteristic about all the API function calls and their associated formal

parameters?
4.16 What is the generic mechanism used by the semaphore calling sequence to ensure

synchronization between two processes? Between two threads?
4.17 In Figure 4.12, what is the purpose of accessing the shared segment?
4.18 When creating a thread within a process, how is the thread's stack handled?
4.19 Throughout the examples of this chapter, error checking for such actions as creating a

thread have been deleted from the basic code. Please comment on this lack of error
checking intrinsic to the programs.

4.20 In the program tetra.c (Figure 4.19), what are the basic vertex points used for the
tetrahedron?

4.21 In Figure 4.28, where does the routine dja.c acquire the function bboxx()?

5 Additional OS/2
Considerations

In Chapter 4, C programming for the OS/2 full-screen mode was presented. We saw
that the C code required low-level access for many operations that call API func­
tions. C has the advantages afforded high-level languages as well as low-level ac­
cess to the operating system via these API services. Hence C is an ideal candidate
language for programming OS/2. Occasionally, a need will exist for generating a
special-purpose routine in assembly language and interfacing it to C program code.
The methodology for accomplishing this is discussed in Section 5.1.

The Microsoft linker, which comes with the C compiler utilities, serves to load
and link the object modules required by a program. When an .exe program is gen­
erated by the linker, all needed object modules must be input to the link process.
This can be cumbersome, especially when large library files are called by the linker.
OS/2 possesses the capability for two types of dynamic linking using dynamic
linked libraries (DLL), where external references can be resolved by means other

221

222 Additional OS/2 Considerations Chap. 5

than the static linking normally employed. DLL satisfy external references either
during loading, load-time linking, or at run-time, run-time linking. In the former case
all external references are satisfied by the linker through knowledge of where the
DLL routines reside. In this case a priori knowledge about the location of the
needed DLL routines exists even though these routines are not located within the
.exe module at linking. When a program begins execution the DLL routines are
loaded, when called, based on this knowledge of where these routines reside. In run­
time linking, the DLL routines are located at the time they are called and then
loaded. The latter approach takes slightly longer than load-time linking but leaves
the basic executable module unencumbered.

Why would OS/2 implement dynamic linked libraries? Primarily because of
the multitasking feature. Since multitasking and memory management require move­
ment into and out of memory, it is desirable to keep executable modules as small as
possible. DLL management is one technique for achieving small executable modules.
In Section 5.2 we address DLL implementation. In the remainder of the chapter we
consider programming conventions, take a brief additional look at the API, and
study a representative C example.

5.1 MIXED-LANGUAGE PROGRAMMING AND OS/2

We have seen how both assembly language and C code can be used for program­
ming under OS/2. C code is preferred as the level of abstraction or task complex­
ity increases. C, however, yields less optimized object code than does assembly lan­
guage programming. Hence for critical applications, C routines must be interfaced
to assembly language modules. This is particularly true when hardware is to be
accessed directly or execution speed is important. In this section, where we address
the integration of C and assembler, we will assume that the C modules call assem­
bler modules when appropriate.

Assembler has a basic template for setup to interface to Microsoft C:

TITLE.,.

; Description •••

_DATAl

VARl

_DATAl

SEGMENT BYTE PUBLIC 'DATA'

PUBLIC _VARl,.,,

ENDS

Sec. 5.1 Mixed-Language Programming and OS/2

_TEXT

_Function

_Function
_TEXT

SEGMENT BYTE PUBLIC 'CODE'
ASSUME CS:_TEXT,DS:_DATAl
PUBLIC _Function*
PROC NEAR
PUSH BP
MOV BP,SP
SUB SP, 10
PUSH BX
PUSH ex
PUSH DX
PUSH SI
PUSH DI

PUSH DS
MOV AX,SEG _DATAl
MOV DS,AX

(main body)

MOV AX, •••
POP DS
POP DI
POP SI
POP DX
POP ex
POP BX
MOV SP,BP
POP BP
RET
ENDP
ENDS
EMO

223

To interpret this template, consider first the segment definitions. Two segments
are defined: _TEXT and _DATAl, the code segment and the data segment, respec­
tively. The data segment is not _DATA because all parameters from the calling data
segment will be passed using the stack. Hence there is no need to keep the "old"
data segment during execution of the assembler code. The new segment, _DAT Al,
is optional as needed. Following definition of the segment registers using ASSUME,
a procedure, _Function, is defined. This function must be PUBLIC so that it can be
called externally. Upon entry to the procedure, a return address will be pushed on
the stack. This address is an offset (2 bytes) for NEAR calls. After the call the
calling routine has its frame pointer in the BP register. This pointer serves as the
basis for moving from frame to frame. The template requires pushing this address on
the stack. Four bytes now reside on the stack for a NEAR call. The stack pointer
now contains the new frame pointer, which is loaded into BP, and space is allocated

224 Additional OS/2 Considerations Chap. 5

on the stack by advancing the stack pointer 10 bytes (as an example). These steps
are accomplished with the code

PUSH BP

MOV BP,SP

SUB SP, 10

Next, the general-purpose registers (except AX) and the index registers are pushed
on the stack. Finally, the old data segment address (appearing in DS) is saved on the
stack and a new data segment address for _DATAl is loaded into DS.

The parameters passed to the assembler reside starting at [BP+4] because a
return address and a frame pointer have been loaded. Assuming that all parameters
are of type int, they will reference as [BP+4], [BP+6], [BP+8], and so on. Clearly,
other data types will occupy space accordingly. The return values from the assem­
bler routine will occupy AX or AX and DX. At this point all pushed registers are
popped, the caller's frame pointer restored, and the return address accessed. This,
then, briefly describes the template for interfacing assembler to C.

Figure 5.1 illustrates a C program that reads an upper and lower frequency, a
number of iterations, and an individual tone duration (in milliseconds). The program
generates a musical or tone scale at intervals of 100 Hz for the range of frequencies
spanned by the upper and lower frequencies. This C program calls an assembly
language routine, scaleslQ, which accesses the tone generator. This assembly lan­
guage routine appears in Figure 5.2 and follows the normal assembly language
template for the C interface [1]. Note that the main portion of this routine simply
passes the formal parameters to @DosBeep. In this case the frequency, freq, is
passed at [BP+4] and the duration, dduration, is passed at [BP+6]. The inclusion

!Fl

include sysmac. inc
END IF

loads the API services as required.
The routine scalesl.asm, which appears in Figure 5.2, was assembled with the

instruction

masm scalesl

The C program appearing in Figure 5.1 was compiled using

cl -c -Zi; scales.c

The linking was accomplished as

link scales+scalesl, scales, ,doscalls,,, /CO

Sec. 5.1 Mixed-Language Programming and OS/2

I* Thia proqram qeneratea scales and
* calla an assembler routine */

#define INCL BASE
#include <os2.h>
#include <stdio.h>

UINT low_freq,hiqh_freq,no_iterations,dduration;

UINT action - O;
UINT error_code O;

main()

printf("Input lower frequency (Hz) - inteqer\n");
scanf("t:d11 ,&low_freq);
printf("Input hiqher frequency (Hz)·- inteqer\n");
scanf("td",&hiqh freq);
printf("Input nuiiiber iterations \n");
scanf("td",&no_iterations);
printf("Input component duration \n");
scanf("td",&dduration);

sscale(); /* tone qenerator */

sscale()

DosExit(action,error_code);
}

{
extern scalesl();
int freq,n,m,N;

low freq ~ low freq/100;
low:freq • low:freq * 100;

if(low freq <• 100)
low:freq = 200;

hiqh freq = hiqh freq/100;
hiqh:freq • hiqh:freq * 100;

m == O;
N • (hiqh_freq - low_freq)/100;

while(m <• no_iterations)
{
for(n = l;n <• N;n++)

{
freq • low freq + n •100;
scalesl(freq,dduration);
}

for(n • l;n <= H;n++)
{
freq = hiqh freq - n * 100;
scalesl(freq,dduration);
l

m++;
}

I* assembler module *I

I* normalize */

I* minimum set */

I* normalize */

I* initialize loop *I
I* no. tone points *I

I* check limit *I

I* up-scale */

I* set frequency *I
I* tone */

I* down-scale */

I* set frequency *I
I* tone */
I* increment loop */

Figure 5.1 C program to generate musical scale based on input frequencies and
time duration.

225

226 Additional OS/2 Considerations

PAGE 40,132
TITLE scalesl - Routine to generate scales (saclesl.asm)
;

DESCRIPTION: This routine generates various tones.
[BP+4) contains the frequency and [BP+6) contains
the duration in millisec.

I Fl
include sysmac.inc

ENDIF

_TEXT SEGMENT BYTE PUBLIC 'CODE'
ASSUME CS: TEXT
PUBLIC scalesl

_scalesl -PROC NEAR

push BP
mov BP,SP
sub SP,8
push DI
push SI
push AX
push BX
push ex
push DX

@DosBeep [BP+4],[BP+6]

pop DX
pop ex
pop BX
pop AX
pop SI
pop DI
mov SP,BP
pop BP

ret
scalesl ENDP

-TEXT ENDS
- END

;Begin beep

Figure 5.2 C-callable assembly language routine to generate tonals.

5.2 DYNAMIC LINKING AND RESOURCE MANAGEMENT

Chap. 5

Dynamic linking is a method of generating an executable program where not all
modules are loaded into the execute file at link time but are loaded on demand
during execution [2]. Under OS/2 a single code segment can be accessed by mul­
tiple programs, and such reentrant code facilitates dynamic linked library (DLL)
usage, where simultaneous access of a library routine is possible. This is in keeping
with the goal of minimizing code in a multitasking environment.

The two types of dynamic linking, load-time linking and run-time linking,
serve distinctly different needs. Load-time linking involves complete knowledge of
where a needed external routine resides prior to execution and is appropriate for fre­
quently used routines. Run-time linking requires locating and installing external
routines upon their call from an executing program. This form of linking is used
primarily for accessing routines on an infrequent basis.

Sec. 5.2 Dynamic Linking and Resource Management 227

5.2.1 Using Dynamic Linked Libraries

We have seen that dynamic linked libraries (DLL) are useful when it is desirable to
minimize the amount of code linked with multiple executable routines or tasks in a
multitasking environment. It is in support of multitasking that DLL can contribute
significantly. The run-time dynamic linking circumvents this situation where a DLL
can be released from an executable module.

There are actually three types of linked modules possible when dynamic link­
ing is employed:

1. Load-time dynamic Linking
a. Preloaded DLL
b. Load on Call DLL

2. Run-time dynamic Linking
a. Explicit Load and Call

To fully appreciate the nuances among these options, we must examine the concept
of a definition file, where one of these options is determined for each DLL imple­
mentation. Briefly, the preloaded DLL requires that these DLL routines be loaded at
the start of execution. The load on call DLL implies that the code be loaded as each
DLL routine is called by the executing program using guidance in the definition file.
Finally, the explicit load and call situation for run-time dynamic linking requires that
the DLL be accessed using API services. We will consider each type of DLL access
in Section 5.2.4.

The LINK utility is used to join object routines into executable modules that
have all their external references accounted for. The linker is used to create either
a DLL or an executable, .exe, file. How does this work? Basically, the module
definition file (.def) specifies whether or not a particular output (from the linker) is
to be a DLL or an .exe file. This definition file also includes a number of statements
that can be used to tailor executable code to accomplish various optimizations. It in­
cludes information that distinguishes between a DLL or application, a list of im­
ported and exported functions (see below), the size of the stack and heap, and a
number of options for the code and data segments. The latter option allows speci­
fication of whether or not segments are to be preloaded or loaded on demand. When
using the linker we have noticed that a prompt for a definition file always occurs as
the last entry in the linker prompt sequence. So far we have left this entry blank,
which is an appropriate default for applications. We will now use this prompt to
supply a .def file where appropriate.

5.2.2 The Definition File

Table 5.1 illustrates the allowed (and in some cases the mutually exclusive) state­
ments that can appear in the module definition file. The first two statements are
either NAME or LIBRARY. The former specifies the name of an application (.exe)
and the latter specifies the name of a DLL (.dll). The description (DESCRIPTION)

228 Additional OS/2 Considerations Chap. 5

merely states in prose the module purpose. The statement PROTMODE specifies
that a module is to run under Protected Mode. The statement

CODE [load] [shared] [execute] [privilege]

is used to define the default attributes for all the module's code segments. Subse­
quent statements using the SEGMENTS key word can override this statement
(CODE) to tailor segment usage. In the CODE statement above, [load] is used to
specify whether or not the code segments are physically loaded at the start of exe­
cution or on demand. This option has two possible values: PRELOAD (for loading
at start of execution) and LOADONCALL (for demand loading).

The next option, [shared], specifies whether code segments in a DLL are to be
accessed by all tasks needing these segments as a single instance or as multiple
instances (where duplicate copies of the DLL routine are generated). This option has
two possible values: SHARED (where only one copy of the code segment exists) or
NONSHARED (where a unique copy of the code segments is loaded for each ref­
erence). The option [execute] allows code segments to remain distinct through the
value EXECUTEONLY. In this case the code segment selector cannot be loaded
into DS. The alternative value, EXECUTEREAD, permits the segment selector to be
loaded into DS. Finally, [privilege] is used to give code segments 1/0 privilege at
level 2 by having IOPL specified.

TABLE 5.1 MODULE DEFINITION FILE STATEMENTS

Statement Comments

NAME Declares a module as an application
LIBRARY Declares a module as a DLL module
DESCRIPTION Defines module descriptively
PROTMODE Declares a module as a Protected Mode routine
CODE (load](shared](execute][privilege]

[load]: specified whether code loaded at the start of execution
(PRELOAD) or on demand (LOADONCALL)

[shared]: one copy of code loaded (SHARED) or multiple
copies loaded with tasks (NONSHARED)

(execute]: (EXECUTEONLY)-code segments can only be
executed; or (EXECUTEREAD)-they can be read as well

(privilege]: allows code segment I/0 capability
(IOPL)

DATA [load](instance][shared](write][privilege]
(load]: specifies whether code loaded at the start of execution

(PRELOAD) or on demand (LOADONCALL)
[instance]: no automatic data segment created (NONE), all

instances share the same automatic data segment
(SINGLE),and multiple copies for each instance (MULTI­
PLE)

(shared]: same copy of a segment shared (SHARED) and new
copies loaded for each instance (NONSHARED)

Sec. 5.2 Dynamic Linking and Resource Management 229

TABLE 5.1 (Concluded)

Statement

(READ WRITE)
SEGMENTS

IMPORTS

Comments

[write]: specifies that a memory segment can be written to
or only read (READO NL Y)

[segname] [CLASS(' classname ')][minalloc] [segflags]
[segname]: name of segment whose attributes are to be

changed
[classname]: 'CODE' or 'DATA'
[minalloc]: minimum number of bytes reserved for segment
[segflags]: attributes assigned to segment
[intname]modulename.[entryname or entryordinal]
[intname]: name to be used within importing module
modulename: application library that contains functions
[entryname] : entry point to DLL routine
(entryordinal]: DLL routine ordinal position

EXPORTSentryname[=intname][@ordinal][RESIDENTNAME][NODATA]argnum
entryname: name to be used by accessing routines
[intname]: real name of routine

STACKSIZE

HEAPSIZE
STUB

The statement

[@ordinal]: defines the routine's ordinal value within export
module

[RESIDENTNAME]: used with @ordinal argument to specify
resident always

[NODATA]: if present, specifies no stack or automatic data
segment

argnum: number of parameters to be received or IOPL
Number of bytes an application or DLL needs for its own

stack
Number of bytes in application or DLL heap
Name of a DOS 3.x program to replace an application or

library invoked in Real Mode instead of correctly specify­
ing Protected Mode

DATA [load][instance](shared][write][privilege]

is used to specify the default attributes for all the module's data segments. The first,
[load], is the same as for the CODE statement except that LOADONCALL is the
default option when no load argument is specified. The option [instance] describes
the automatic data segment, which is the physical segments(s) represented by the
name dgroup. This segment(s) contains the local heap and stack area for an appli­
cation. It can take one of three values: NONE (no automatic segment), SINGLE (all
application instances share the same automatic data segment), and MULTIPLE (de­
fault value where each instance has its own automatic data segment).

The argument [shared] parallels the [instance] value. It has two values:
SHARED (same copy of a segment is shared by multiple instances of an applica-

230 Additional OS/2 Considerations Chap. 5

tion) and NONSHARED (new copies of data segments are loaded for each instance
of an application; this is the default value). The [shared] argument and the [in­
stance] argument must match. If a conflict arises, all segments in dgroup are shared,
and all others are nonshared.

The argument [write] specifies whether the data segments can be written to or
not: READONLY (cannot be written) and READWRITE (default option; the seg­
ment can be written to as well as read). The argument [privilege] is the same as for
CODE. The statement

SEGMENTS
(segname](CLASS('classname')][minalloc](segflags]

is used to assign attributes individually to code. or data segments. The parameter
[segname] denotes the segment label and can be q~clared as 'CODE' or 'DATA' via
the classname. The default is 'CODE'. Each ~11gment is allocated a minimum
number of bytes: [minalloc]. The argument [segflags] can be any combination of
arguments specified above with CODE or DATA segments.

The form of the IMPORTS statement is

IMPORTS
[intname] modulename. [entrynamelentryordinal]

Here intname specifies the internally used name of the importing module as it calls
an external entry point (the ASCII string, entryname, within the DLL). The parame­
ter modulename is the name of the application or DLL containing the needed func­
tions, and entryordinal merely identifies entryname by its ordinal position with the
DLL.

The form of the EXPORTS statement is

EXPORTS
entryname(=intname)[@ordinal][RESIDENTNAME)[NODATA)argnum

This statement defines the routines within a DLL or application that are to be
available for other programs. Alternatively, it can be used to specify routines that are
to have level 2 1/0 privileges. The argument entryname defines the name that call­
ing modules will use when accessing the exported routine. The parameter [=intname]
is the real name appearing in the exporting routine. The [@ordinal] parameter de­
fines the routine's ordinal value within the module.

The argument [RESIDENTNAME] is used only when [@ordinal] is specified
and it indicates that the function's name must be resident at all times and, conse­
quently, the name and ordinal value will be stored in the DLL export table. The
[NODATA] argument means that the export routines will have neither a stack nor
an automatic data segment. Finally, argnum takes on the value IOPL when the ex­
port routine is to have level 2 privilege.

STACKSIZE specifies the number of bytes an application or DLL needs for

Sec. 5.2 Dynamic Linking and Resource Management 231

the local stack. Similarly, HEAP SIZE specifies the number of bytes an application
or DLL needs for its local heap. STUB specifies the name of a DOS executable file
to be run in place of a Protected Mode application or library when such applications
or libraries are invoked under Real Mode.

5.2.3 Creating a DLL

In the preceding section we saw examples of the use of IMPORT and EXPORT in
the definition file. IMPORT specifies the routines that will be used by an executable
file and incorporated at load or run time, as indicated in the application definition
file. EXPORTS specifies the routines that will be transferred to the executable file
at load or run time from the DLL, as indicated in the DLL definition file.

To see this work, consider the creation of a DLL and its incorporation with
other modules. The following sequence of steps corresponds to Example 1 in Sec­
tion 5.2.4, where the program code will be specified:

link dyninit.obj dlinkl.obj, dynll.dll, doscalls.lib, dynll,def

This link statement links dyninit and dlinkl (both object modules) to create dynll.
We assume that dynll.defhas the LIBRARY option with dynll specified. Then the
created routine has the .dll extension, denoting it as a dynamic linked library. The
single library, doscalls.lib, imports the API service routines. Hence, from the fore­
going process comes the DLL, dynl 1.dll.

Dynamic linked libraries must be linked with applications as libraries, not .dll
files. Hence the import library utility, implib, can be used to create this library based
on the definition file. The routines above, for example, are in dynl 1.dll, but the
entry points can be specified in dynll.lib, which is created as follows:

implib dynll.lib dynll.def

Here implib creates dynll.lib, which has the entry points specified by the EXPORT
table in dynll.def.

The last step is to create the application run file and satisfy all external refer­
ences through library access (as an example). Assume that the application exists as
an object module named dynl.obj. The link procedures will be

link dynl.obj, dynl.exe, ,doscalls. lib dynll. lib,,

Here dynl.exe is the output for dynl.obj and uses both doscalls.lib (the API serv­
ice) and dynll.lib (the library file for the DLL). During execution of dynl.exe the
DLL routines will be accessed via the dynll.lib table (these DLL routines reside in
dynll.dll).

The importance of specifying EXPORT and IMPORT files should now be
clear. It is the only way of identifying DLL routines to the implib utilities that create
the DLL needed library file. This file points to the available DLL routines (this file
is output from imp lib with extension .lib).

232 Additional OS/2 Considerations Chap. 5

5.2.4 DLL Examples

In the preceding section we outlined how to create a DLL using an appropriately
constructed module definition file. Both the link and implib utilities were used in
this process. File names were specified without actually presenting the files them­
selves, in order that the mechanics of the linking process could be illustrated. By
way of introducing an example, the code is now presented for the files in question.

Example 1. Figure 5.3 shows the main application program, dynl.asm, which

PAGE 40,132
TITLE DYNl - Main calling program example #l (dynl.asm)

DESCRIPTION: This program calls dynll.dll to demonstrate
preloaded assembler dynamic link libraries •

• 286c
.sall

.xlist
INCL_BASE equ l
include 052.INC

.list

extrn dlinkl:FAR

dgroup GROUP data

STACK SEGMENT PARA STACK 'STACK'
db 64 dup('STACK ')

STACK ENDS

data SEGMENT PARA PUBLIC 'DATA'

;Suppresses macro lists

;defines automatic data seg

msgl
msgl_l

db
equ

'Dynamic Link Pre-loaded Routine',ODH,OAH
&-msgl

msg2
msg2_ 1

db
equ

'Error on access OLL',ODH,OAH
$-msg2

;
action equ
result dw
vio_hdl equ

data ENDS

0
0
0

CSEG SEGMENT PARA PUBLIC 'CODE'
ASSUME CS:CSEG,DS:dgroup

DYNl PROC FAR

EXIT:

DYNl

push ds
lea bx,msg
push bx
push msgl_l

call dlinkl

cmp ax,o
je EXIT

@VioWrtTTY

@DosExit
ENDP

CSEG ENDS
END DYNl

msg2,msg2_1,vio_hdl

action, result

;code to end thread
;return code for error
;video handle

;push message segment
;offset of message
;save offset
;message length

;DLL routine to print msg
;
;check for error
;jump if OK

Figure 5.3 Main dynamic link library calling program, illustrating preloaded
DLL routines.

Sec. 5.2 Dynamic Linking and Resource Management 233

imports routines from the DLL. It is this file that must be linked with doscalls.lib
and dynll.lib to create the application executable module. The data segment for this
module is named data and the code segment is CSEG. In the figure three values are
pushed to the stack: first, the data segment address for data; second, the offset
address for msgl; and finally, the length of msgl is pushed. These values will
eventually be accessed using a structure (template) and the stack starting address.
During a push operation a variable is placed on the stack and then the stack pointer
is decreased. Hence the stack loads as

msgl_l

offset of msgl

segment address of msgl

(lowest address)

(next lower address)

(highest address)

Following this loading of the stack a call to the DLL routine (dlinkl) is made.
The operating system automatically places a return address (4 bytes for a FAR call)
on the stack in response to the call instruction. Figure 5.4 illustrates the called pro­
cedure, dlinkl, contained in the module dlinkl.asm. The first instruction of the
called procedure saves the old (current) value of bp and sp now points to this saved
copy of bp. Recognizing that the stack pointer is decreased following each push, the
following stack values appear on the local stack:

caller's bp

caller's ip

caller's cs

msgl_l

offset of msgl

segment address of msgl

(lowest address)

(highest address)

In the routine dlinkl the next instruction transfers the value in sp (which is the
saved copy of the old bp's address) to bp. The routine pushes ds (which points to
the dynl.asm data segment) and loads the DLL routines's data segment address into
ds. The program can now access structures of the form specified by stl, which
appears in the new data segment. This access takes the form

variable.field

where the fields specified for stl are m_len, m_offs, and m_seg. There are also three
unnamed fields. Choosing variable equal to the address of the old bp, we can access
the stack using the structure template. Hence the following values of interest can be
retrieved by the DLL routine:

234 Additional OS/2 Considerations

PAGE 40,132
TITLE DLINKl -- DLL routine for example #1 (dlinkl.asm)

DESCRIPTION: This is the DLL routine for example #1.
It is pre-loaded •

• 286c
.sall

extrn VioWrtTTY:FAR

dgroup GROUP data_dlll
;
data_dlll SEGMENT PARA PUBLIC 'DATA'
;

;Suppresses macro listings

;API routine

vio_hdl equ O ;video handle

stl struc
dw ?
dw ?
dw ?

m len dw ?
m=offs dw ?
m_seg dw ?
stl ENDS
data_dlll ENDS

CODEl SEGMENT PARA PUBLIC 'CODE'
ASSUME CS:CODEl,DS:dgroup
PUBLIC dlinkl

dlinkl PROC FAR

push bp
mov bp,sp
push ds
mov ax,data_dlll
mov ds,ax

push [bp] .m_seg
push [bp].m_offs
push [bp].m_len
push vio_hdl

call FAR ptr VioWrtTTY

pop ds
pop bp
ret

dlinkl ENDP
CODEl ENDS

END

;parameter structure
;caller's bp
;caller's ip
;caller's cs
;message length
;message ptr offset
;message ptr seq

;caller's frame ptr
;local stack
;caller's ds
;load new ds

;use explicit parameter
;values because locations
;come from local stack

;message seg address
;message offset address
;length message
;video handle

;direct API call

;restore caller's data seg
;restore frame pointer

Figure 5.4 The called procedure, dlinkl, for the example of Figure 5.3.

[bp] .m_len - length of msgl
[bp] .m_offs - the offset of msgl
[bp] .m_seg - the segment address of msgl

Chap. 5

In dlinkl these values are pushed on the stack as well as the video handle and a
FAR call to

VioWrtTTY

is made. Note that macro version is not used and the API service directly accessed.

Sec. 5.2 Dynamic Linking and Resource Management 235

Execution of these instructions results in the message "Dynamic Link Preloaded
Routine" appearing on the screen with a line feed and carriage return.

The routine dlinkl is a member of the DLL, dynll.dll module created by the
first link discussed above. This routine, dlinkl.obj, was linked with a routine
dyninit.obj. What is this routine? Each DLL must have an initialization routine. For
dynll.dll the initialization routine is dyninit.obj and this routine appears in Figure
5.5. This initialization routine simply writes the message "DLL Initialized" to the
screen and forces the operating system to initialize the DLL. To ensure that the ini­
tialization routine executes first the DLL entry point to the module's procedure, init
is specified as a parameter in the END pseudo-op: END init. Following initialization
the routine must return a value of 1, not 0, to the calling program.

PAGE 40,132
TITLE DYNINIT -- Initialization Routine for DLL-1 (dyninit.asm)

DESCRIPTION: This routine is the initialization routine
for the DLL dynll.dll. The routine merely prints a message .

• 286c
.sall

.xlist
include sysmac.inc

.list

dgroup GROUP init_data

init_data

initOK equ
msg db
msg_l equ
vio_hdl equ

SEGMENT PARA PUBLIC 'DATA'

1
1 DLL Initialized',ODH,OAH
$-msg
0

init_data ENDS

CINIT SEGMENT PARA PUBLIC 'CODE'
ASSUME CS:CINIT,DS:dgroup
init PROC FAR

push bp

@VioWrtTTY msg,msg_l,vio_hdl

mov ax, initOK

pop bp
ret

init ENDP
CINIT ENDS

END init

;Suppresses macro listings

;include API services

;defines automatic data seg

;OK return code
;Initialization message
;message length
;video handle

;save frame pointer

;Write initialization msg

;OK return value

;restore frame pointer

;DLL entry point

Figure 5.5 The initialization routine for the DLL called by the program in
Figure 5.3.

236 Additional OS/2 Considerations Chap. 5

Finally, Figure 5.6 presents the module definition file. This file is associated
with the library dynll.lib. Hence all references to segments and routines must come
from dlinkl.asm and dyninit.asm. In this example these segments are preloaded, as
specified in the definition file. Only dlinkl is exported because this is the only
routine used by dynl.exe. Note that the presence of LIBRARY specifies that dynll
will be a DLL.

LIBRARY DYNll

PROTMODE

DESCRIPTION 'Example #1 DLL'

SEGMENTS

EXPORTS

init data
CINIT
data dlll
CODEl

dlinkl

CLASS 'DATA' PRELOAD
PRE LOAD
CLASS 'DATA' PRELOAD
PRE LOAD

Figure 5.6 The module definition file, dynll.def.

Example 2. For this example, a load-on-call execution was prescribed for the
DLL routines exported to the application. All routines remain the same as in Ex­
ample 1 except the definition file, named dynll.def. This file appears in Figure 5.7.

LIBRARY DYN22

PROTMODE

DESCRIPTION 'Example #2 DLL'

SEGMENTS

EXPORTS

init data
CINIT
data dlll
CODEl

dlinkl

CLASS 'DATA' LOADONCALL
LO ADON CALL
CLASS 'DATA' LOADONCALL
LOADONCALL

Figure 5.7 The module definition file, dyn22.def.

It is important to note that the data segments (init_ data, for the initialization routine,
and data_dlll, for the DLL routine) in the DLL as well as the Code segments in the
DLL are loaded as called based on the parameter LOADONCALL.

The link and definition utilities are executed as follows:

Sec. 5.2 Dynamic Linking and Resource Management 237

link dyninit dlinkl, dyn22, ,doscalls.lib,dyn22.def

implib dyn22. lib dyn22. def

link dynl.obj, dynl.exe,,doscalls.lib dyn22.lib,,

These commands produced an executable module, dynl.exe, which accessed the
dynamic link library, dyn22.dll, and imported the routine dlinkl only when actually
called in the program dynl.exe. In the earlier example access was granted immedi­
ately because of the preload condition. Execution of dynl.exe produces the same
result as it did in Example 1, but the DLL input occurred at load time rather than
when linking takes place. Note that the message to the screen still reads

"DLL Initialized
Dynamic Link Preloaded Routine"

even though the load-on-call status exists. This is because we have changed only the
definition file to check this DLL implementation.

Example 3. In this example we illustrate an example of run-time dynamic
linking based on the OS/2 API services. Following the lead set by the first two
examples, the routines dyninit.asm and dlinkl.asm were used to make up the DLL.
Figure 5.8 illustrates the main calling module, dyn2.asm.

The routine dyn2.asm uses the API service @DosLoadModule to load the
DLL (DYN33.DLL) and it returns a handle to the DLL. To access entry points
within DYN33.DLL the API services macro @DosGetProcAddr is called and an ad­
dress returned for the entry DLINKl. This address is returned in addr_proc. Next the
message parameters are pushed on the stack so that they can be accessed by
DLINKl. A call is made via the CALL instruction and this writes msgl to the
screen. Following release of the DLL using @DosFreeModule, the program exit
takes place. Note that the two ASCIIZ strings corresponding to the DLL and the
entry point name have uppercase letters. This is because the assembler always uses
uppercase and both the API functions in dyn2.asm are case sensitive. The CALL
instruction is not case sensitive; hence the references to dlinkl in dynl.asm are
unaffected by whether the reference is to dlinkl or DLLNKl. In dyn2.asm the
references must be upper case.

Figure 5.9 illustrates the DLL definition file for Example 3. There are few
changes in this file (DYN33.DEF) from earlier .def files. These three examples
constitute the three ways in which dynamic link libraries can be implemented under
OS/2. The examples all employed assembly language for both the calling module
and the routines appearing in the DLL. The link sequence for Example 3 is as
follows:

link dyninit + dlinkl,dyn33, ,doscalls,dyn33.def

implib dyn33. lib dyn33 .def

link dyn2, dyn2,, doscalls+dyn33,,

238 Additional OS/2 Considerations

PAGE 40,132
TITLE DYN2 - Main calling program example #3 (dyn2.asm)

DESCRIPTION: This program calls dyn33.dll to demonstrate
explicit load by application assembler dynamic link libraries.
The main calling routine is DYN2 •

• 286c
.sall

.xlist
include sysmac.inc

.list

;Suppresses macro lists

;API services

Chap. 5

dgroup GROUP data ;defines automatic data seg

STACK SEGMENT PARA STACK 'STACK' ;stack defined
db 128 dup ('STACK ')

STACK ENDS

data SEGMENT PARA PUBLIC 'DATA'

msgl db
msgl_l equ

'Dynamic Link Run-Time Routine',ODH,OAH
$-msgl

msg2 db
msg2_1 equ

action equ
result dw
vio_hdl equ

obj_buf
obj_buf_len
obj_buf_add
name mod
hhandle

name_proc
addr_proc

data ENDS

'Error on access DLL',ODH,OAH
$-msg2

0
0
0

dd
dw
dd
db
dw

db
dd

64 dup(?)
$-obj_buf
obj buf
'DYN°J3 1 ,0
0

1 DLINK1 1 , 0
0

CSEG SEGMENT PARA PUBLIC 'CODE'
ASSUME CS:CSEG,DS:dgroup

DYN2 PROC FAR

;code to end thread
;return code for error
;video handle

;error returm buffer
;length error buffer
;address buffer
;module name
;handle to DLL module

;DLL procedure name

@DosLoadModule obj_buf_add,obj_buf_len,name_mod,hhandle
cmp ax, O ;check for error
jne ERROR

@DosBeep 4000,200

@OosGetProcAddr hhandle,name_proc,addr_proc
cmp ax,o ;check for error
jne ERROR

@DosBeep 1000,500

push ds
lea bx,msgl
push bx
push msgl_l

call addr_proc

;push message segment
;offset of message
;save offset
;message length

;OLL routine to print msg

Figure 5.8 Run-time dynamic linked library calling module.

Sec. 5.3 Optimizing the C Design Process

@DosFreeModule hhandle
cmp ax,o
je EXIT

ERROR:
@VioWrtTTY msg2,msg2_1,vio_hdl

EXIT:
@DosExit action, result

DYN2 ENDP
CSEG ENDS

END DYN2

Figure 5.8 (Concluded)

LIBRARY dyn33 INITINSTANCE

PROTMODE

DATA NONSHARED

DESCRIPTION 'Example #3 DLL'

SEGMENTS

;check for error

;error message

;terminate all threads

init data CLASS 'DATA' LOADONCALL
CINIT LOADONCALL
data dlll CLASS 'DATA' LOADONCALL
CODEl LOADONCALL

HEAPSIZE 1024

EXPORTS
dlinkl

Figure 5.9 The module definition file, dyn33.def.

239

It is possible to access a DLL in an additional fashion: through specification
of IMPORTS entry points in a module definition file. By listing the library entry
points to be imported in a definition file for the application, the application can
import DLL routines.

5.3 OPTIMIZING THE C DESIGN PROCESS

Most modern textbooks address the topics of structured programming, modular code,
and top-down design. These techniques have come to embody an organized ap­
proach to program development which is repeatable in an optimal sense. This
approach is predictable and meaningful in that programmers of differing back­
grounds will approach algorithm development in the same fashion when these tools
are used. In the following discussion we explore each of these topics, starting with
top-down design because it represents the start of the design process.

240 Additional OS/2 Considerations

5.3.1 Top-Down Design, Structured Programming,
and Modular Code

Chap. 5

Top-down design is an informal strategy for starting with a global problem statement
and then subdividing the development into smaller and smaller modules until each
module accomplishes a singular task. Such a systematic approach to design leads to
modular techniques that develop and link program elements together to solve the
overall task.

A convenient starting point for the top-down approach is to define the func­
tional structure for the program under consideration. This functional structure has
been reflected in the Structure Charts of earlier programming examples. These charts
illustrate a hierarchy of importance for the components of the program. Structure
Charts are established by associating with level 0 an overall functional statement of
the programming problem. This occupies a single box at the top of the hierarchy.
Next, the level 1 position categories associated with variable 1/0 and algorithm
computation are indicated at a reasonably high level. Below this level, successive
reduction of the problem into multiple smaller pieces occurs, with the relationships
clearly defined. Through this process the program architecture is defined in terms of
hierarchy. The Structure Chart does not, however, illustrate the dynamic interrela­
tionship among modular components. Also, it does not illustrate at the module level
the flow of execution for the program. To achieve this, the top-down design proc­
ess needs an additional mechanism for describing program activity. This mechanism
can take one of two forms: the flowchart or pseudo-code, which describes the pro­
gram activity in natural-language syntax. In this book we employ flowcharts for de­
scribing programs dynamically. (The reader can just as conveniently approach pro­
gram design using pseudo-code, but it is generally less compact than flowcharts,
hence our use of the latter technique.)

In general, the procedure discussed here is a reasonable approach to program
design. The structure chart reflects the high-level functionalism and the flowcharts
illustrate the more detailed dynamics at the module level. Top-down design is infor­
mal and thus most useful for small-scale design tasks. When faced with larger de­
sign problems, the programmer must resort to additional techniques to supplement
the guidance obtained from the top-down methodology. We will consider two addi­
tional tools, as discussed earlier: modular programming and structured code.

The reader will note by now that in programs appearing in this book, there is
a tendency to relegate many of the tasks to smaller functions and modules. This
suggests the notion of modular programming. Modular programming concepts have
been established over a long period of time during which theoretical methods
evolved for designing programs [3,4]. The principal requirement on smaller program
units or modules is that they be independently testable and can be integrated to ac­
complish the overall program objective.

Modules are generally defined, in the context of C programming, in terms of
one or more related functions. Each function should perform a single independent
task and be self-contained, with one exit and entry point. This suggests a single

Sec. 5.3 Optimizing the C Design Process 241

"thread" to program execution, which is the manner in which most modern comput­
ers execute code. Module execution in the world of the CPU is sequential. With this
architecture in mind, it becomes straightforward to accept the one entry and one exit
feature associated with functions, at least theoretically.

We discussed global variables as a mechanism for returning more than one
value from a function. When is this likely to become most necessary? One situation
is the generation of an array of similar values. Here a single function might be used
to compute a time series, for example, and each computation would generate an
array element in recursive fashion. Obviously, the function should be self-contained
and all array values generated at once. Consider the following function:

filter (N)
int N;

{
extern float y[l · x[J;
float b, c;
int n;
y(O]=O;
b=.01;
c=.001;

for (n=l; n<=N; n++)
y[n]=c*y(n-l]+b*x(n];

}

/*x=time element*/

/*Initialize*/

This low-pass filter generates a smoothing of the time series x[n]. The array y[n] is
generated in its entirety with the simple one-statement for loop. It would be highly
undesirable to fail to return the complete array from this function; hence the use of
global variables is appropriate. This use does not detract from the modular nature of
the function. Thus even though a module (or function) has one entry and one exit
point, multiple values can be returned.

Size is handled by accepting a general guideline that modules contain between
10 and 100 lines of code. This is suggested as a rule of thumb and if, for example,
the code were written in APL, 100 lines would be very tiresome to debug. For C,
however, the guideline seems appropriate, as evidenced by the modules in this book.
A more rigorous enforcement of size must resort to quantitative measures such as
complexity and complexity metrics. Consider the metric [5]

N = Nl + N2 (5.1)

where

Nl = total number of operators in a module
N2 = total number of operands in a module

Returning to the function filter, the following counts apply:

242 Additional OS/2 Considerations Chap. 5

OPERATOR COUNT OPERAND COUNT

= 6 y[O] 2

for 1 b 3

< 1 c 3

++ 1 0 1

* 2 y[] 3

x[] 2

n 7

N 3 (variable)

11 24

Here N is 35 [from Equation (5.1)]. What does this mean? To interpret N, a body
of statistical data must evolve based on complex interactions between programmers
and code. It is clear from this example that N = 35 is a reasonably simple program.
In reference 6, a similar example with N = 28 is illustrated. Again, this metric value
indicates a relatively small and understandable module.

The programmer is unlikely to apply a complexity metric during program de­
velopment. It is, nonetheless, useful to allow complexity to guide program develop­
ment, particularly when modules begin to approach a high level of difficulty (for the
programmer developing the code). Let us summarize some general guidelines on
module development in C:

1. Restrict modules to between 10 and 100 lines of code.
2. Within the module concept, allow one entry and one exit (exception handling

can call for multiple exits, but this is an abortive condition and the error state
should be flagged before the exit).

3. Arrays should be treated globally.
4. Modules returning a single value should do so formally with returnO.
S. Modules returning multiple but small numbers of variables should do so with

pointers (pointers are complex, so the trade-off here is how many pointers are
involved).

6. Modules returning large numbers of variables, other than arrays, should be
rewritten.

7. Modules returning an intermediate number of variables can do so with global
declarations.

8. A module should perform one self-contained task.
9. Allow for exceptions to these guidelines when the code can be made easier to

understand and it is not time-critical.

272 App. A IBM Macro Assembler/2

TABLE A.2 MACRO ASSEMBLER INSTRUCTIONS (8086 CONVENTION)

Instruction

Arithmetic
ADC dest,src

ADD dest,src
DIV src

IDIV src

IMUL src

MUL src
SBB dest,src

SUB dest,src
Logical

AND dest,src

NEG dest
NOT dest
OR dest,src

TEST dest,src

XOR dest,src

Move
MOV dest,src

MOVS dest-str,
src-str

load
LOOS src-str

Purpose

Add with carry

Addition
Unsigned divide

Signed integer
division

Signed integer
multiply

Unsigned multiply
Subtract with bor­

row
Subtract

Logical AND

Two's complement
Logical NOT
Logical inclusive

OR

Logical compare

Exclusive OR

Move

Move byte or word
string

Load byte or word
string

Comments

Performs an addition of the two ope­
rands and adds one if CF is set.

Adds the two operands.
Divides the numerand (AL and AH for

byte division and AX and DX for
word division) by src. The result
is returned in AL (byte) or AX
(word).

Signed division using the registers of
DIV.

Multiplies AL or AX times src.

Same as IMUL.
Subtracts the two operands and sub­

tracts one if CF is set.
Subtracts the two operands.

Performs the bit conjunction of the two
operands: the result is zero except
when both bits are set.

Forms the two's complement of dest.
Inverts dest bit by bit.
Performs the bit logical inclusive dis­

junction of the two operands: returns
a one except when both bits are zero.

Performs the bit conjunction of the two
operands with only the flags affected.

Performs the bit logical exclusive dis­
junction of the two operands: returns
a one when one operand is zero.

Moves:
l. To memory from AX (AL)
2. To AX (AL) from memory
3. To seg-reg from memory/reg
4. To reg from seg-reg
5. To reg from reg

To reg from memory
To memory from reg

6. To reg from immediate
7. To memory from immediate

Transfers a byte or word string from
src, addressed by SI, to dest, ad­
dressed by DI.

Transfers a byte (word) from src, ad­
dressed by SI, to AL (AX) and ad­
justs SI.

App.A IBM Macro Assembler/2 271

easier to implement in assembler since the API in OS/2 is presented as a generic as­
sembler interface. C provides such an interface but is sophisticated and relies on the
use of special macro libraries (see Appendix C) to set up the API function calls.

With these thoughts in mind, let us briefly summarize the IBM Macro Assem­
bler/2. We will not attempt to illustrate examples of the language; the early chapters
accomplish that. In this appendix we merely present the assembler constructs in
tabular form based on reference 3. Table A.1 presents the addressing modes for the
language. There are seven forms of addressing within the Macro Assembler. Table
A.2 contains brief descriptions for the basic instruction set common to the Intel 8086

TABLE A.1 MACRO ASSEMBLER ADDDRESING MODES

Mode

Immediate

Register

Direct

Register indirect

Base relative

Direct indexed

Base indexed

Comment

A byte or word constant in the source operand is loaded into a
register operand. Example: mov ax,18.

Register destination operands are loaded from register source ope­
rands. Example: mov ds,ax.

A register destination operand is loaded with the value of a location
specified by its offset added to DS. Example: mov ax,dddw, where
dddw is a variable in the data segment (addressed by DS).

The effective address (segment offset) is contained in BX, BP, SI,
or DI, and this is used to load a register. Example:

MDV bx' OFFSET dddw
MDvax1[bxJ

Here the brackets indicate bx contains an address.
The effective address for the source is obtained by adding a displace­

ment to BX or BP, which are assumed to contain an offset, Example:

MDV bP 10FFSET dddw
MDV ax 1[bp+l1J

Here the effective source address is the sum of an index register
(SI or DI) and an offset. Example:

MDVSi1l1
MDV ax 1dddw [sil

This loads ax with the same value as loaded in the base relative
example.

Typically, the effective source address is the sum of a base register
(BX or BP), an index register (SI or DI), and a displacement.
Example:

MDV bx 10FFSET dddw
MDV Si ill
MDV ax 1[bxHsi+ZJ

Appendices

A IBM Macro
Assembler /2

In this appendix we present the IBM Macro Assembler/2, which can be used to
program the assembler under both DOS and OS/2 [1, 2]. In the early chapters all
programming was accomplished in assembly language. A major consideration,
however, is how desirable is this choice of language for the IBM microcomputer en­
vironment? The answer lies in how the programmer intends to use the assembly lan­
guage. Basically, assembler is very programming intensive and serves best when
access of the system hardware is important. For the OS/2 Kernel service functions
this is particularly important when acquiring or writing to the display, the video
services (Vio), or the DOS functions (Dos) within the API. In addition to access of
the system hardware, another associated requirement should be mentioned: rapid
access of the hardware. The assembler is ideally suited for this requirement but has
the added stipulation that the programmer must be prepared to devote considerable
effort to writing very low-level code.

In this book an alternative language, the C programming language, is consid­
ered. C is more ideally suited for programming applications that require higher-level
functions to accomplish tasks. Typical examples of these functions are sine and
cosine, other hyperbolic and trigonometric functions, and a multitude of mathemati­
cal and statistical special-purpose functions. These can all be built up from assem­
bly language programs by the user, but it is usually more desirable to access these
functions through a high-level language, using the assembler-constructed libraries
within the language. The general experience is, however, that the API calls are

270

Problems 269

5.12 Why are all lines appearing in Figures 5.19 through 5.23 not removed using the cri­
teria that a negative direction to the facet normal constitutes a hidden line?

5.13 Show that the limit of Equation (5.13) is A 2 when (x, y) = (0, 0).
5.14 In the surface plotting program appearing in Figure 5.14, the disk read function,

xarray_diskrd0, is called prior to setting the CGA screen mode. Why?
5.15 In Figure 5.17 ,how would the function threeD_facets() change (aside from removal

of the define and include statement associated with OS/2) if this routine were to exe­
cute in a normal Real Mode program?

268 Additional OS/2 Considerations Chap. 5

2. Nguyen, T., and Moska, R., Advanced Programmer's Guide to OS/2, Brady Communi­
cations Company, Inc., New York, 1989, p. 316.

3. LaBudde, K., Structured Programming Concepts, McGraw-Hill Book Company, New
York, 1987, p. 26.

4. Parnas, D., Information Distribution Aspects of Design Methodology, Carnegie-Mellon
University Technical Report, Carnegie-Mellon University, Pittsburgh, PA, 1971.

5. Fitzsimmons, A., and Love, T., A Review and Evaluation of Software Science, ACM
Computing Surveys, Vol. 10, No. 1, pp. 3-18, 1978.

6. Martin, J., and McClure, C., Structured Techniques for Computing, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1985, p. 70.

7. Dijkstra, E., Structured Programming, Software Engineering 1969, NATO Scientific
Affairs Division, Brussels, Belgium, 1969.

8. Sedgewick, R.,Algorithms, Addison-Wesley Publishing Company, Reading, MA, 1984.
9. Bentley, J., Programming Pearls, Addison-Wesley Publishing Company, Reading, MA,

1986.
10. Folk, M. J. ,and Zoellick, B., File Structures, Addison-Wesley Publishing Company,

Reading, MA, 1987.
11. Petzold, C., Programming the OS/2 Presentation Manager, Microsoft Corporation,

Redmond, WA 1989.

PROBLEMS

5.1 If a routine is self-contained within a task and called very infrequently, what OS/2
technique could be used to conserve storage?

5.2 What sequence of steps differentiates a DLL from another executable module?
5.3 In Figure 5.2, what is the parameter on the stack at BP+2?
5.4 How does one differentiate a DLL module from another source code module?
5.5 Define the difference between IMPORTS and EXPORTS as appearing in the module

definition file.
5.6 What key API services are required for run-time DLL loading which are not required

for load-time linking? Structurally, why are these API services needed?
5.7 If you wished to achieve an understanding of the relationships between program

components, would you choose a Structure Chart or a flowchart? Explain.
5.8 What is the dominant characteristic of a C function? What are the implications of

this characteristic for program structure?
5.9 In C program code, when is it appropriate to use globally defined variables? Why

are these variables generally considered undesirable to program understanding?
5.10 Why is the include file "pmwin.h" not available as part of OS/2 Version 1.0?
5.11 In defining the three-dimensional surface, the grid of points is defined in the x-y

plane and facets established by connecting cyclically the projected points defined by
the surface itself. In plotting the resulting surface, the points are collapsed along the
x-axis. Why is this necessary?

References 267

5.6 SUMMARY

This chapter has provided an examination of additional basic OS/2 features within
the core API and has reinforced programming techniques within the C language, the
primary language of choice for programming the Presentation Manager as well as
more complex activities under OS/2. We began with a look at mixed-language pro­
gramming in the context of C and assembler. Next, dynamic linked libraries were
investigated from the viewpoint of assembly language, where they are more clearly
understood. The use of load-time DLLs is recommended when memory allocation is
to be optimized and a set of routines is to be called on a frequent basis. Load-time
dynamic linking has the advantage that the calling routine does not need to ascer­
tain the location of the module at loading. Run-time dynamic linking is recom­
mended for those applications where memory allocation is dynamic and at a pre­
mium and the routines to be accessed are done so infrequently. This technique
requires access through API service calls.

The C design process was examined from the viewpoint of top-down design,
structured programming, and modular code. Recommendations were provided regard­
ing module size and implementation. A typical template for C design was presented
and the difficult issues of style and form touched upon. Style is such a crucial factor
in the development of maintainable code that it is very surprising how often it is
overlooked. Similarly, form can mean the difference between code that runs, and
code that purports to accomplish the job but is so cumbersome and slow that it fails
to achieve its objectives within a reasonable length of time.

All the API services return values that depend on the outcome of the call. The
question of whether or not a program should monitor those outcomes, once the
original debugging is complete, was left to the reader. Frequently, in the interest of
brevity, the full API return checking has been suppressed in this book unless a
hardware failure can result, such as the inability to access a disk.

A reexamination of the basic API core services was referenced: the Kbd, Mou,
Vio, and Dos services. These are the Version 1.0 services and have since been
added to by the presence of the PM functions, although these PM services are not
treated in this book. Finally, a C application was developed. This application con­
sisted of the plotting of a three-dimensional surface in the CGA mode of the OS/2
command screen mode. The purpose of the presentation was to illustrate the man­
ner in which moderately large-scale programs would be interfaced to OS/2 in the
normal operational environment, with a particular emphasis on the techniques out­
lined earlier in the chapter, such as modular code development.

REFERENCES

1. Godfrey, J. T., Applied C: The IBM Microcomputers, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1990, p. 237.

266 Additional OS/2 Considerations Chap. 5

Figure 5.21 Surface plot with N = 7, a = y = 0.0 and ~ = 1.2.

Figure 5.22 Surface plot with N = 7, a y = 0.0 and ~ = 1.4.

Figure 5.23 Surface plot with N = 12, a = y = 0.0 and ~ 1.0.

Sec. 5.5 Advanced C Example: A Three-Dimensional Surface

uwdot(col,row,MMl);
}

/* erase dot */

}
else

{
col = {int) (xl) i
if(yl > y2)

{
for(roW=(int) (y2)+l;row <= (int)(yl);row++)

uwdot(col,row,MMl); /*erase dot*/
}

else
{
for(roW=(int){yl)+lirow <= (int) (y2)irow++)

uwdot(col,row,MMl); /* erase dot */

Figure 5.18 (Co11cluded)

.....
_.... ~.~. <:::::· .
--·- ·-.. _

..
. :::· ·· . .

·· ··.:· ..
.. ---

...... ··· ····· ...

.. /:: ... ·:: __ · ·· ... ·-.

.. - .---

Figure 5.19 Surface plot with N = 7, a y 0.0 and 13 = 0.8.

.-·l-·-·-. _.-· ._ ___ · ..

Figure 5.20 Surface plot with N = 7, a y = 0.0 and 13 1.0.

265

264 Additional OS/2 Considerations

if (Xl •• X2)
m•lOOO.;

else
m • (y2-yl)/(x2-xl):

if(X2 > Xl)
{
for(col • (int) (xl)+l:col <-(int) (x2):col++)

(

else
{

row •(int) (yl + m•(col - xl)):
wdot(col,row,MMl);
}

if(x2 < xl)
{

/* zero divide •/

/* normal slope •/

/* line equation •/
/* write dot */

for(col =(int) (x2)+1:col <= (int) (xl):col++)
{
row=(int)(y2 + m•(col - x2));
wdot(col,row,MMl); /*write dot*/

}
else

{

}

col= (int}(xl}; /* verticle line•/
if(yl > y2)

{
for(row=(int)(y2)+1:row <=(int) (yl) :row++}

wdot(col,row,MMl);
}

else
{
for(row=(int}(yl)+l:row <= (int} (y2};row++)

wdot(col,row,MMl);

upltpt(xl,x2,yl,y2,MM1)
float xl,x2,yl,y2;
SEL MMl;
{
float m;
int row;
int col:

if(Xl == X2)
m = 1000.;

else
m = (y2-yl)/(x2-xl):

if(X2 > Xl)
{
for(col = (int)(xl):col <= (int)(x2) :col++)

{

else
{

row= (int)(yl + m•(col - xl));
uwdot(col,row,MMl);
}

if {x2 < xl}
{

/* slope */

/* zero divide */

/* normal slope */

/* line segment */
/* erase dot */

for(col = (int) (x2)+l:col <= (int)(xl):col++)
{
row=(int) (y2 + m•(col -x2)):

Figure 5.18 (Continued)

Chap. 5

Sec. 5.5 Advanced C Example: A Three-Dimensional Surface

/* Graph routines Protected Mode--gphrout.c */

#define INCL BASE
#include <os2.h>

bboxx(xb,xe,yb,ye,MMl)
UINT xb,xe,yb,ye;
SEL MMl;
{
lineh(yb,xb,xe,MMl);
lineh(ye,xb,xe,MMl);
linev(xb,yb,ye,MM1);
linev(xe,yb,ye,MMl);
)

lineh(y,xl,x2,MM1)
UINT y,xl,x2;
SEL MMl;
{
UINT·n;
for(n = xl;n <= x2;n++)

wdot(n,y,MMl);
I

linev(x,yl,y2,MM1)
UINT x,yl,y2;
SEL MMl;
{
UINT n;
for(n = yl;n <= y2;n++)

wdot(x,n,MMl);
I

wdot(x,y,MMl}
UINT x,y;
SEL MMl;
{
PCHAR ptr;
UINT OM = OxOOOO;
CHAR MASKl = OxOl;

if (y & OxOl)
DM = Ox2000;

ptr = MAKEP(MMl,OM+(BO*(Y >> 1) + (x >> 2)));
•ptr =(*ptr I (MASKl « (2*(3 - x % 4))));
I

uwdot(x,y,MMl)
UINT x,y;
SEL MMl;
{
PCHAR ptr;
UINT OM = oxoooo;
CHAR MASKl = OxOO;

if(y & OxOl)
OM = Ox2000;

ptr = MAKEP(MM1,0M+(80*(Y >> l} + (x >> 2)));
ptr = (MASKl << (2(3 - x % 4)));
}

pltpt(xl,X2,yl,y2,MM1}
float xl,x2,yl,y2;
SEL MMl;
{
float m;
int row;
int col;

/* top line */
/* bottom line */
/* right line •/
/* left line */

/* hor line */

/* vertical line •/

/* x=col,y=row •/

/* set dot */

/* even buffer */
/* dot location */
/* "OR" dot */

/* clear dot */

/* even buffer */
/* dot location */
/* write undot */

/* slope */

Figure 5.18 The file gphrout.c, containing the expanded line plot routines (and
the line unplot routines).

263

262 Additional OS/2 Considerations

/* Function to plot JD facets: coordinates for CGA -- facetJd.c•/

#define INCL BASE
#include <os2.h>
#include <stdio.h>

threeD_facets(ml,MMl)
int ml; /* index */
SEL MMl;
(
extern int count;
extern float xarray[],x,y,z,scaley = 125.,scalez = 75.;
float zl,z2,yl,y2;
int n,nc;
float z_start = 25.,y_start = 25.,z_mid = 75.,y_mid = 125.;
float dyl,dy2,dzl,dz2,xa[5],ya[5],za[5);

nc = 3•count; /* next y-value */

Chap. 5

xa[l) xarray[ml);
ya[l) xarray[ml+l);
za[l) xarray[ml+2);
xa[2] xarray[ml+J);
ya[2) xarray[ml+4);
za[2) xarray[ml+5);

/* lst y-value grid */

xa[JJ
ya[J)
za(J)
xa[4J
ya[4)
za[4)

xarray[ml+nc+J];
xarray[ml+nc+4];
xarray(ml+nc+S];
xarray[ml+nc];
xarray[ml+nc+l];
xarray[ml+nc+2];

dyl ya[2) - ya[l);
dy2 ya[J) - ya[2);
dzl za[2) - za[l);
dz2 za[J) - za[2);
if((dyl*dz2 - dzl•dy2) > O)

{
for(n = l;n <= 4;n++)

{
za[n) = z_start + (z_mid -
ya[n) = y_start + (y_mid +
)

for(n
{
yl
y2
zl
Z2

l;n <= J;n++)

ya[n);
ya[n+l];
za[n);

= za[n+l);

pltpt(yl,y2,zl,z2,MM1);
}

yl ya[4);
y2 ya(l);
zl za[4);
z2 za[l);

pltpt(yl,y2,zl,z2,MM1);
}

za[n]•scalez);
ya[n)•scaley);

/* 2nd y-value grid */

/* ck rotation */

/* scale facet */

/* plot 3 of 4 */

/* collapsed y-z */

/* 4th segment */

Figure S.17 The file facet3d.c, used to generate the individual surface facets.

Sec. 5.5 Advanced C Example: A Three-Dimensional Surface

/* Function to scale xarray data */

#include <stdio.h>

scale()

extern int ncount,mcount;
extern float xarray[],scalex,scaley,scalez;
int n,m,ml;
float max_x = -l.el4,max_y = -l.e14,max_z = -l.el4;
float min_x = 1.e14,min_y = 1.e14,min_z = 1.el4;

ml = l;
for(n = l;n <= ncount;n++)

(
for(m = l;m <= mcount;m++)

(
if(max_x < xarray[ml])

max_x = xarray[ml);
if(min_x > xarray[ml])

min_x = xarray[ml];
if(max__y < xarray[ml+l])

max__y = xarray[ml+l];
if(min_y > xarray(ml+l])

min__y = xarray[ml+l];
if(max_z < xarray[m1+2])

max_z = xarray[m1+2);
if(min_z > xarray[ml+2]);

min_z = xarray[ml+2];
ml=ml+J;
)

scalex = 2./(max x - minx);
scaley = 2./(max:::Y - min=y);
scalez = 2./(max z - min z);
ml = l; - -
for(n = l;n <= ncount;n++)

(
for(m = l;m <= mcount;m++)

/* max/min determine */

/* next point set */

/* scale [-1,l] */

(/* normalize [1,-1) */
xarray[ml] = -1. + scalex*(xarray[ml] - min_x);
xarray[ml+l] = -1. + scaley*(xarray[ml+l] - min__y);
xarray[ml+2] = -1. + scalez*(xarray[ml+2] - min_z);

ml =ml + 3;
)

Figure 5.16 The file xscale.c, used for scaling the array between (-1,+1) along
all three axes.

261

tively, this tilts the viewing angle upward so that the observer is looking down at an
angle toward the image. Figures 5.20 through 5.22 maintain a and y at zero but
change~ to span 1.0, 1.2, and 1.4 radians, respectively. This progressively tilts the
image toward the reader, as illustrated. Figure 5.23 presents the figure for a= y =
0 and ~ = 1.0 with N = 12 instead of N = 7 [see Equation (5.13)].

260 Additional OS/2 Considerations

VioGetPhysBuf((struct _VIOPHYSBUF far *)&PVBPrtl,vio_hdll);

MM - PVBPrtl.asel(O]; I* selector */

clrCGA (MM) ; /* CGA clear •/

VioScrUnLock(vio_hdll); /* unlock screen */

Figure 5.14 (Concluded)

/* Function to read xarray from disk */

#include <stdio.h>

xarray _ diskrd ()
(
extern float xarray(J;
int n,check,counter;
FILE •infile;
char FN2 (81];

printf("Input read database filename \n");
qets(FN2);
qets(FN2);

if((infile = fopen(FN2, "r")) == NULL)
{
printf ("Input file failure") ;
exit(l);
}

fscanf(infile, 11 %d \n",&counter);
for(n = l;n <= counter;n++)

fscanf(infile,"%f \n",&xarray[n));
if((check = fclose(infile)) != O)

{
printf("Error on input file close");
exit(l);
}

return(counter) ;
}

Figure 5.15 The file xadiskr.c, for reading the disk file input to the surface
plotting program.

Chap. 5

and if the facet is to be plotted, further scaling from [-1.,1.] to screen coordinates
is implemented. Here only the y-z plane is considered (the x-axis is collapsed).

Figure 5.18 contains the file gphrout.c used as a basis for the library
cgraph.lib. These routines are called to access the screen buffer. Figure 5.19 illus­
trates the output with a= y = 0 (no rotation about the x and z axes). In this figure
~= 0.8, which is a counterclockwise rotation of 0.8 radian about the y-axis. Effec-

Sec. 5.5 Advanced C Example: A Three-Dimensional Surface

clrCGA (MMM)
SEL MMM;
(
INT n;
INT Nl = Ox1F3F;
INT DM = Ox2000;
PCHAR ptr;

for(n = O;n <= N1;n++)
(
ptr = MAKEP(MMM,n);
*ptr = O;
)

for(n = O;n <= Nl;n++)
(
ptr = MAKEP(MMM,DM+n);
*ptr = O;
)

/* Function to read xarray from disk */

#include <stdio.h>

xarray_diskrd()
(
extern float xarray[];
int n,check,counter;
FILE •infile;
char FN2 [81);

printf("Input read database filename \n11);

gets(FN2);
gets(FN2);

if((infile = fopen(FN2, "r")) == NULL)
{
printf("Input file failure");
exit(l);
)

fscanf(infile, 11 %d \n",&counter);
for(n = l;n <= counter;n++)

fscanf(infile, 11 %f \n11 ,&xarray[n]);
if((check = fclose(infile)) != O)

{
printf("Error on input file close");
exit(l);
)

return(counter);
)

/* end odd buffer */
/* even offset */
/* pointer scr buf */

/* odd far pointer */
/* clear odd buffer */

/* even far pointer */
/* clear even buffer •/

/* set STD mode */
VioSetMode(((struct _VIOMODEINFO far *)&STDm),vio_hdl);

DosExit(action,error_code);
)

cclsCGA(vio_hdll)
SHANDLE vio hdll;
(-
SEL MM;
UINT waitl = l;
struct _VIOPHYSBUF PVBPrtl;

PVBPrt~.pBuf = (BYTE far•) (OxBSOOO);
PVBPrtl.cb = Ox4000;

VioScrLock(waitl,(char far *)dstat,vio_hdll);

Figure 5.14 (Co11ti11ued)

/* physical buffer •/

/* phys buf start */
/* buffer length */

/* lock screen */
/* physical buffer */

259

258

/*
*
*

I*
*
*

Additional OS/2 Considerations

lkbd_buf.cb • 80;

setup Rotated Figure

printf("Input ncount\n");
scanf("%d 11 ,&ncount);
Printf("\n Square array: ncount=mcount\n11);

mcount=ncount;
count=ncount;

printf("Input x-rotation (rad)\n");
scanf("%f",&alphaO);
printf("Input y-rotation (rad)\n");
scanf("%f 11 ,&beta0);
printf("Input z-rotation (rad)\n");
scanf("%f",&qanunaO);

/* buffer size */

•/

/* x-axis count *I

/* y-xais count */
I* grid shift */
/* Input rotations
I* x-rotation */

/* y-rotation *I

I* z-rotation *I

Chap. 5

*I

rot mat(alphaO,betaO,gammaO);
N =-xarray_diskrd();

I* loads global a[] *I

ml = 1;
for(n = l;n <= ncount;n++)

{
for(m = l;m <= mcount;m++)

{
x = xarray[ml];
y = xarray[ml+l];
z = xarray[m1+2];
rot__point () ;
xarray[ml] = x;
xarray[ml+l] y;
xarray[ml+2] = z;
ml = ml + J;
)

Graphics Screen Access

scale();

I* disk values */

/* 1st facet group *I

/* x-input rotation */
/* y-input rotation */
/* z-input rotation */
/* rotate (x,y,z) */
/* reload x */
/* reload y */
/* reload z */
/* inc index J */

*I
/* x,y,z-> [1,-1] */

/* set CGA mode */
VioSetMode(((struct _VIOMODEINFO far *)&CGAm),vio_hdl);

cclsCGA(vio_hdl); /* clear CGA screen */

VioscrLock(wait2,(char far *)dstatl,vio_hdl); /*lock screen*/
/* physical buffer */

VioGetPhysBuf((struct _VIOPHYSBUF far *)&PVBPrt2,vio_hdl);

MMl = PVBPrt2.asel[O];

ml = 1;
run count= J•ncount•mcount - (ncount•J + 6);
farcn = l;n <= ncount;n++)

{
for(m = l;m <= mcount;m++)

{
if(ml < nm_count)

threeD_facets(ml,MMl);
ml = ml + J;
)

prtscr(MMl);

VioScrUnLock(vio_hdl);

.KbdStringln({char far *)kbd_buf,

/* selector */

I* adjust llmit */

/* check facet count */
/* plot facets */
/* increment index */

/* PrtSc routine */

/* unlock screen */
/* hesitate screen */

((struct STRINGINBUF far •)&lkbd_buf),
wait,kbd_hdl);

Figure S.14 (Continued)

Sec. 5.5 Advanced C Example: A Three-Dimensional Surface

/* This routine sets & clears CGA mode with screen clear--mmain3d.c
The generalized nomenclature is used.
A JD (sin(u)/u)**2 is plotted.
The routine calls gphrout.c graphics functions. •/

#define INCL BASE
#include <os2.h>
#include <stdio.h>

I* Conditional load *I

struct STRINGINBUF lkbd_buf;
CHAR kbd_buf[80];

UINT action = o;
UINT error code = O;
UINT wait ;;; l;

CHAR dstat[l];
CHAR dstatl[l];

float xarray[3072],scalex,scaley,scalez,x,y,z,a[10]:
int ncount,mcount,count;

/*

I*
/*

!•
/*
I*

I*
/*

!•
/*

OS2 includes */

keyboard buf len *I
keyboard buffer •/

end thread */
result code •/
reserved word */

lock status */
lock status •/

needed globals */
x-y count max */

/* ---

•
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
I*
main()

Print Screen Parameters

col1[320];
MM[4] = {Ox40,0xlO,Ox04,0x01};
W[8] = {128,64,32,16,8,4,2,l};
S(4];
shiftl[4] = {6,4,2,0};
in_bufferl[4] {Ox1B,Ox4B,64,l};
in_buffer2[2] = {OxOD,OxOA};
in_buffer3[3] = {Ox1B,Ox41,8};
in_buffer4[2] = {OxlB,Ox32};
dev_name[5] = ('L','P','T', 1 1 1 ,0};

•;
/* raster line array •/
/* byte mask •/
/* gross weight */
/* dummy */
/* byte pos. shift •/
/* location byte */
I* c.r & l.f. •/
I*
I*

escape sequence */
line spacing */

-- *I

extern prtscr();

SHANDLE vio hdl = O;
SHANDLE kbd-hdl = O;
UINT wait2 = 1,nnn;
UINT xb = 75,xe = 150,yb
SEL MMl;
int n,m,ml,N,nm_count;
float alphaO,betao,gammao;

struct VIOPHYSBUF PVBPrt2;
struct -VIOMODEINFO CGAm;
struct =VIOMODEINFO STDm;

25,ye 175;

PVBPrt2.pBuf = (BYTE far*) (OxBSOOO);
PVBPrt2.cb = Ox4000;

CGAm.cb = 12;
CGAm.fbType = 7;
CGAm.color = 2;
CGAm.col = 40;
CGAm.row = 25;
CGAm.hres = 320;
CGAm.vres = 200;

STDm.cb = 12;
STDm.fbType = l;
STOm.color = 4;
STDm.col = 80;
STOm.row = 25;
STDm.hres 720;
STOm.vres = 400;

/*

/*
I*
/*
I*
/*
I*
I*

I*
I*
I*

I*
/*

I*
I*
I*
I*
I*
I*
I*

I*
/*
I*
I*
/*
I*
I*

PrtScr routine */

video handle */
keyboard handle *I
reserved */
box points */
selector */
plot variables */
direction cosines *I
physical buffer */
CGA structure */
80 x 25 struct •/

buffer start */
buffer size */

struct length */
CGA mode */
CGA color */
text columns */
text rows */
CGA hor res */
CGA vert res */

struct length */
80 x 25 mode */
STD color */
text columns */
text rows */
STD hor res */
STD vert res */

Figure 5.14 The program mmain3d.c, which is the main calling program for
plotting 2nd printing the three-dimensional surface.

257

256 Additional OS/2 Considerations

/* Function to write xarray to disk */

#include <stdio.h>

xarray_diskwt(NCOUNT)
int NCOUNT;
(
int n,check;
FILE *outfile;
char FNl[Sl];
extern float xarray[);

printf("Input database filename\n");
gets(FNl);
gets(FNl);

if ((outf ile = fopen (FNl, "w")) == NULL)
(
printf("Output file failure");
exit(l);
)

fprintf(outfile,"%d \n 11 ,NCOUNT);
for(n = l;n <= NCOUNT;n++)

fprintf(outfile, "%f \n" ,xarray[n]);
if((check = fclose(outfile)) != 0)

{
printf("Error on output file close");
exit(l);
)

/* Number points */

Figure 5.12 The file xadiskw.c, which generates a Protected Mode disk write
using reentrant library routines.

mmain3d.obj: mmain3d.c
cl -c -zi mmainJd.c

facet3d.obj: facet3d.c
cl -c -zi facet3d.c

xscale.obj: xscale.c
cl -c -Zi xscale.c

rotmat.obj: rotmat.c
cl -c -Zi rotmat.c

rotpt.obj: rotpt.c
cl -c -zi rotpt.c

xadiskr.obj: xadiskr.c
cl -c -zi xadiskr.c

pprtscr.obj: pprtscr.c
cl -c -zi pprtscr.c

mmain3d.exe: mmainJd.obj xscale.obj facet3d.obj pprtscr.obj\
rotmat.obj rotpt.obj xadiskr.obj cgraph.lib

link /CO nunain3d+xscale+facet3d+rotmat+rotpt+pprtscr+\
xadiskr,,,cgraph,,

Figure 5.13 The MAKE file for the program that plots a three-dimensional
surface based on an input data file.

Chap. 5

Sec. 5.5 Advanced C Example: A Three-Dimensional Surface

/* generate Jd surface */

#include <math.h>

float xarray(2000),x(500],y(500],z[500);

main()
{
int n,m,ncount = 21,mcount = 21,ml,m2,N,NN;
float A= 10., error= 1.e-5;
double PI = 3.141592654,u,v;

printf("Input interval divider\n");
scanf(11 %:d",&NN);

m2 = l;
ml = l;
for(n = l;n <= ncount;n++)

{
for(m = l;m <= mcount;m++)

{

}

x[m2) = (float){m - mcount + 10);
y(m2] = (float) (n - ncount + 10);
u = {double) (x[m2));
v = (double) (y(m2]);
u = (double) ((PI/NN)*sqrt{u*u + v•v));

if((u <error) && (u >-error))
z[m2] = A;

else
z(m2) = A*{sin(u)/u);

z(m2) = z[m2]*z[m2);
xarray(ml] = x(m2];
xarray(ml+l] = y(m2);
xarray(ml+2] = z(m2];
m2++;
ml =ml + 3;
}

N = ml-1;
xarray_diskwt(N);

Figure 5.11 The program gen3d.c, which generates the surface data file.

255

trates the disk write function. Figure 5.13 contains the MAKE file for the program
that plots the three-dimensional surface.

Figure 5.14 presents a main calling function for the program that plots the
three-dimensional surface input using xarray _ diskrdO, which is contained in Figure
5.15. The function threeD _graphO reads rotation angles for locating the observer and
rotates the input points. These functions, rotmatO and rotptO, have been mentioned
previously. Next, the data is scaled using scale(), which appears in Figure 5.16. The
function scale() simply ensures that all x, y, and z values lie within the interval
[-1.,1.].

After scaling the data, threeD _graph() clears the screen, sets CGA display
mode, and plots the facets using threeD _facet(). This function appears in Figure
5.17. The routine threeD _facet() first loads the arrays xa[], ya[], and za[] with each
of the four vertex points on the facet. A check for a hidden-line condition is made,

254 Additional OS/2 Considerations Chap. 5

where the first row consists of Cartesian unit vectors. Since it is the x-axis term we
are interested in, we examine

(5.10)
Here

(5.11)

If

n < 0 x (5.12)

the facet contains hidden lines.

A Simple Mathematical Example

It is useful to create a simple example to illustrate a three-dimensional surface.
Consider the function

[(n IN),.,jx2 + y2]2
(5.13)

This function has the familiar (sin x/x)2 behavior. We note that in the limit (x, y)
= (0, 0) the result is

z =A2 (5.14)

It is useful to generate values for x and yin the range [-10.,10.] with N = an input
value that is a measure of the range of z.

Figure 5.10 illustrates the MAKE file for a program gen3d.c, which creates

gen3d.obj: gen3d.c
cl -c -Zi gen3d.c

xadiskw.obj: xadiskw.c
cl -c -zi xadiskw.c

gen3d.exe: gen3d.obj xadiskw.obj
link gen3d.obj+xadiskw.obj,,,,

Figure 5.10 The MAKE file for the program
that writes the data file for a three-dimensional
(sin x /x)2 surface.

this surface data file. Figure 5.11 illustrates a main calling program that generates
these values and writes them to disk. Initially, the total number of values (x, y, z) for
each point on an x-y grid spaced at unity intervals in the range above, is written to
disk followed by the points themselves in x, y, z order. This is an array and is
defined as specified above. It is the array xarray[] in Figure 5.11. Figure 5.12 illus-

Sec. 5.5 Advanced C Example: A Three-Dimensional Surface 253

Connecting these points cyclically yields the surface facet. When collapsed along the
x-axis we have the final points

1: (0, y"',f(x,,, Y.,))
2: (0, Ym+t' f(x,, • Ynr+t))
3: (0, Ynr+t' f(x,,+t' Yni+l))
4: (O,y.,,f(xn+1•Y.,))

If these points are plotted with the y-axis corresponding to column values and
the z-axis corresponding to row values, a surface representation will be displayed
with facets outlined.

It is important to recognize that the surface described above will display all
lines appearing in the facets. This includes "hidden lines," which are those lines
appearing in facets whose view would normally be obstructed. This obstruction re­
sults from the fact that other facets are located in front of the facet in question when
viewed in the chosen direction.

To avoid illustrating hidden lines, it is useful to delete plotting of facets con­
taining these lines. Although there are several ways to eliminate these hidden line
facets, a very simple procedure is to create a vector normal to the facet and ignore
the facet if this vector has a negative component pointing into the screen. Since the
x-axis is normal to the screen, this implies that a negative, x-component of this
normal vector would denote a facet with hidden lines.

We can create this normal vector from any three points in the surface. Suppose
that we have the vertices defined by vectors from the origin:

P1 = (xi' Y1• z1)

P2 = (x2, Y 2• z2)

P3 = (x3, Y3• z3)

and cyclically define line segments

m1 = (P1 - P3)

m2 = (P2- P1)

m3 = (p3- P2)

(5.6)

(5.7)

Then a normal to the surface subtended by these three line segments is given by

n = m; x mi+i (i = 1, 2, 3) (5.8)

In this equation i is cyclic (modulo 3). The vector product is defined by the deter­
minant

-0 /.'. 'k' I J

n = m. m. m. (5.9)
IX ty IZ

m<i+l)x m<i+llY m<i+l)z

252 Additional OS/2 Considerations Chap. 5

Here the sets {xn} and {yn,} have been chosen to span the space of interest. The
three-dimensional surface is then determined relative to this grid using Equation
(5.3). We assume further that an observer is located at the point (x , y , z) which is

• A d P. p PN achieved by a rotation (a, ...,, y) about the x, y, an z axes, respectively. (ote that
this rotation is not composed of orthogonal components.) This rotation was treated
in some detail in Chapter 4 and the reader is referred to the routine rotmatO and
rotptQ for a complete discussion.

With this formulation, then, we can generate an abstract three-dimensional
space with the observer located at any point in the space. Following the rotation a
new set of coordinates is defined by

(
x')

n

y' =
f~~1n•Y'm)

(5.5)

R(a, f3, y) is given by Table 4.1. To display this space it will be useful to collapse
the x-axis once a suitable rotation has been achieved. The points plotted on this
display will then be members of the set

{(O, y'n? f(x'n• y'm)): n=l,2, ... ,N; m=l,2, ... ,M}

The order for the display will be to let {y'",} correspond to column positions and
{f(x'n, y'm)} correspond to row positions.

One final concept is needed: the notion of a facet. Basically, for plotting
purposes it is useful to break the surface into facets (or small localized areas). The
methodology for achieving this (used here) is to consider a grid structure on the x-y
plane and assume a facet to be bounded by each set of grid lines projected onto the
surface. For example, if we consider a surface grid, it is clear that the four x-y plane
grid points

1: (x,,,ym, 0)
2: (x,,,ym, 0)
3: (xn+I' Ym+I' 0)
4: (x11+J:' Ym• 0)

define the locations of the vertices of the grid. Lines connecting 1 and 2, 2 and 3,
3 and 4, and 4 and 1, respectively, define the grid. Projecting these lines onto the
surface yields the surface points

1: (x,,. y 111,f(x,,,y"'))
2: (x,,, Ym+I'f(x,,, Ym+I))
3: (x,,+I' Ym+I' f(xn+J:' Ym+l))
4: (x,,+J:' Ym,f(x,,+1•Ym))

Sec. 5.5 Advanced C Example: A Three-Dimensional Surface

5.4 REEXAMINING THE CORE VERSUS PRESENTATION
MANAGER API SERVICES

251

The core or basic API services are largely derivative from the OS/2 Version 1.0,
where only keyboard (Kbd), mouse (Mou), video (Vio), and DOS (Dos) calls are
available. These are the only services treated in this book. For those readers famil­
iar with Microsoft's Windows environment, the PM presents a similar graphics-like
interface. It is programmed in a fashion similar, but not identical, to Windows. Pro­
gramming the PM requires a great deal of concentration and patience. This effort
will be simplified greatly when additional object-oriented tools are developed.
Petzold [11] has written a lengthy book on how to accomplish this Presentation
Manager programming. The reader is cautioned that some differences exist between
the PM described in Petzold's book, which is based on the Microsoft version, and
the IBM version of the Presentation Manager, which was released after the Micro­
soft version. When accessing the graphical interface, for example, in the full com­
mand screen mode the Vio calls must be used. Under PM the Gpi function calls are
used.

5.5 ADVANCED C EXAMPLE: A THREE-DIMENSIONAL SURFACE

In this section we present an analytical approach for describing three-dimensional
surfaces within the framework of simple vector arithmetic. A technique for remov­
ing "hidden lines" is illustrated based on consideration of the rotating characteristics
of facets. Here a facet is a member of a logical subdivision of the three-dimensional
surface. We begin with a brief discussion of surface characterization.

Functions of Two Variables

It is convenient to denote a function of one variable using the notation

y = f(x) (5.2)

Graphically, such a relationship is represented with a two-dimensional plot using the
independent variable, x, along the horizontal axis and the dependent variable, y,
along the vertical axis. When a function depends on two variables it is representable
in a three-dimensional space defined by

z = f(x, y) (5.3)

In displaying such data a third axis must somehow be represented on a two-dimen­
sional surface, the display screen. We have seen that it is useful to assume three
perpendicular (orthogonal) axes: an x-axis, a y-axis, and a z-axis. Points in this space
are denoted by

(x, y, z) = (x, y, f(x, y)) (5.4)

The geometry for a three-dimensional surface consists of a grid of x-y points.

{(x,,, y111 , O)}: n = 1, 2, .. ., N; m = 1, 2, ... , M }

250

TABLE 5.3 (Concluded)

Type

Hashing

Heaps

Linked lists

Priority queues

Sparse arrays

Additional OS/2 Considerations

Comments

accessible either sequentially, randomly, or
directly via indexes or keys.

Chap. 5

This is a structure technique in which an algorithm
or function is used to generate an address of a
data element from a key. Typical associated struc­
tures would be a hash list.

Heaps are most easily described as binary tree
structures possessing order and shape. Order, for
example, might specify that the value at any node
is less than or equal to the value at the children.
Shape suggests the tree architecture.

These data structures are used as indexes to other
structures and have an associated pointer index
that points to a relative record in the primary list.

This is a set of elements arranged according to
priority. When an element is added or deleted, we
do so in accordance with assigned priority or
associated rules.

These are data structures with many zero elements.
They can be reduced significantly to smaller
storage by using additional indexing arrays with
an appropriate indexing algorithm.

5.3.3 API Return Values and Error Checking

When an API routine is called, it contains a return value in the AX register which
is passed back to the calling routine. In general, if this AX or return value is zero,
the call has been successful. If not, one of several possible error conditions may
exist, depending on the value returned. The user has an option as to how to treat
these calls.

As an example of a typical API error return processing, consider

error = DosGetPID (process IDs) ;
if (errorl=O)

{

printf ("Error on acquiring process ID");
exit(l);
}

The reader should feel free to insert his or her own error processing as appropriate
following API service calls.

Sec. 5.3 Optimizing the C Design Process 249

ized algorithms for handling large data organizations that require speed of access of
optimized storage. Similarly, sparse array techniques minimize the amount of stor­
age needed for multidimensional data.

TABLE 5.2 SOME TYPICAL ALGORITHMS

Type

Mathematical

Sorting

Searching
String processing
Geometric

Graph

Advanced

Comments

Arithmetic, random numbers, interpolation, simultane­
ous equations, integration

Exchange, bubble, quicksort, radix, priority queues,
selection/merging

Sequential, binary, tree, hashing
Pattern matching, parsing, file compression
Polygons, line intersection, convex surfaces, grids,

closest point
Connectivity, mazes, shortest path, topological sorting,

networks
Systolic arrays, FFT, dynamic programming, linear

programming

All these techniques are used in developing the area of data structures and database
design. The interested reader is referred to reference 9 for specific details of large­
scale implementations. In this book we will confine most of the discussion to the
primitive structures listed in the beginning of Table 5.3.

TABLE 5.3 SOME REPRESENTATIVE DATA STRUCTURES

Type

Arrays

Bit strings

Bit maps

Databases

Comments

These structures consist of concatenated variables
stored in a block and accessible via one or more
indexes.

These structures constitute the basic building blocks
of any language and are accessible in C by using
the bitwise operators.

This is a mapping of a set of variables and their
associated parameters onto a set of bits, which
constitutes a smaller set of storage. All attributes
of the variables are not represented in this fashion,
and the mapping must be attribute specific.

Databases are complex data structure.s consisting of
data items or fields collected into records that are

248

increment++;
}

}

Now consider the alternative

for (n=l;n<=N;n++)
{
v[n]=v[n]*v[n]
for (m=l;m<=M;m++)

{

Additional OS/2 Considerations

if((v[n]>q[m]) & (v[n]<q[m+l]))
increment++;
}

}
}

Chap. 5

The second form is admittedly more cumbersome, although easier to understand.
What about time criticality? In the first fragment the expression

v[n] = v[n] *v[n]

is executed NM times, while in the second fragment it executes only N times. The
latter program fragment ensures an optimum time-critical compiled result. Although
this example may appear academic, it is representative of the decisions regarding
form that must be made.
Algorithm development The topic of this section is algorithms. Algorithms are
structured approaches to solving mathematically, particular problems amenable to
solutions. A more general definition would, of course, encompass most programming
efforts. We have iterative and recursive programming and it is true that a fundamen­
tal technique in designing efficient solutions is the recursive method, because this
approach builds on an earlier solution. Table 5.2 illustrates some typical algorithms
as discussed by Sedgewick [8]. We have already seen examples of some of these
algorithm techniques. In general, we will not address the complete class of problems
covered by the table; the interested reader is referred to reference 8 for a complete
discussion. It is important, however, to recognize that algorithms are what computer
programs are all about. Problems amenable to algorithmic solution can easily be
tailored to computers.
Data Structures We briefly consider the subject of data structures [9] (as opposed
to file structures [10]). Table 5.3 illustrates some well-known data structures used in
small- and large-scale program development. We have already seen arrays used as
a basic element of the C language. Using the bitwise operators, it is possible to en­
ter or extract information from data elements at the bit level. More complex data
structures, such as hashed lists, heaps, linked lists, and priority queues, are special-

Sec. 5.3 Optimizing the C Design Process 247

As part of style we need to consider templates. This topic is meant to cover
the overall program structure. A general template is as follows:

Module 1 (main())

Documentation (comment describing module)
Preprocessor (include files, define directions, globals)

main() (function definition)

Module 2 (functionl(),. .. functionN())

Documentation (comment describing functions)
functionl()

functionN ()

Module 3 (function(N+l)(),. .. functionM())

Documentation (comment describing functions)
function(N+l)()

functionM()

Module L (functionQ(),. .. functionR())

Here

and

Documentation (comment describing functions)
functionQ ()

functionR ()

l<N<N+l< ••• <M< ••• <Q< ••• <R

2<3< ••• <L

Finally, we consider form. Good form consists of defining the optimum meth­
odology for implementing an algorithm. Unfortunately, most algorithms are suffi­
ciently complex that it is difficult to decide what the best way to implement the al­
gorithm might be. The issue of form must be addressed in a somewhat simplistic
fashion. Consider the following code fragment:

for (n=l;n<=N;n++)
{

for (m=l;m<=M;m++)
{
v[n]=v(n]*v[n]:
if ((v[n]>q[m]) & (v(n]<q[m+l]))

246 Additional OS/2 Considerations Chap. 5

5.3.2 Templates, Style, and Form

Style is a somewhat elusive feature of programming which reflects individual
thought patterns as much as any organized approach to program development.
Consider, for example, the problem of variable definition, mentioned earlier. The
following is easily understood:

mortgage_int = loan__principal * interest_rate.

What about the following?

Instantaneous_amp = exp(-time/delay_factor)*
I cos (2. * pi * frequency * time)

For technically inclined users, the following is much easier:

A = exp(-t/tau) * cos(2. * pi * f * t)

(Those who are not technically trained probably will not care about such details.)
Programmers with a background in FORTRAN, ALGOL, or original BASIC

are familiar with restrictions on the length of a variable name. They tend to be more
cryptic than programmers of more recent vintage, who are used to 32-character
limits. This is decidedly a learned style feature. More important is the need to clar­
ify variable meaning. If the programmer provides a design document, which is
essential for a clear understanding of the program, each variable should be deline­
ated in an unambiguous fashion. In cumbersome assignments, spelling out each
variable name in a wordy fashion can often obscure the meaning of the underlying
relationship. Similarly, by being too cryptic or obscure, the meaning of the equality
can escape the reader.

An additional feature of style is the nature of actual code reduction. In other
words, is the code compact, or can each relationship be followed in easily readable
form? The code

if(((xl==cl) I (x2==+c2)) & ((x3==c3) I (x4==c4)))
Al:

is compact, the following is slightly easier to follow:

if((xl==cl) I (x2==c2))
{
if((x3==c3) I (x4==c4))

{

Al:
}

}

(If the reader has doubts as to which is easier, try assigning values and working out
the truth table.)

Sec. 5.3 Optimizing the C Design Process 245

structures the use of exception handling must be clarified. Consider the if... state­
ment in the following form:

if(check==O)
{

printf ("Denominator zero");
exit(l);
}

Here the if statement specifically looks for an error condition and prints the message
explaining this condition prior to exit. The exception handling is part of the if
purpose. A sequence of the form

for (n=l; n<=N; n++)
{
x=x+a;
if (x==NTOTAL)

{

printf ("x max exceeded");
exit(l);
}

a=a+b;
}

is less desirable because the causative factors (a, b, and x too large) are unclear at
time of the exit. In general, we use the unconditional exit only [exit (1)] and we
only use this exit when the complete nature of the error condition is absolutely clear.
Also, it is used subject to the constraints indicated above. A typical use is

if ((check=fopen (FNl, "r"))==NULL)
{
printf ("Error on read file open");
exit(l);
}

To some extent this discussion is semantic. Exits from within loops should not
occur. Since C does not allow branching or jumps (as in assembler, FORTRAN, and
other languages), there is really no way to exit a loop except with an exception
handler or a goto. We have virtually ruled out goto statements, so only exception
handling remains. The latter exit should be avoided within a loop structure. Flag the
condition and upon exit from the loop report all relevant parameter data prior to
exit. The latter exit should be accomplished using a conditional structure that spe­
cifically tests the exception status.

244 Additional OS/2 Considerations Chap. 5

This artifact illustrates what functional activities are subordinate to other activities.
At a glance, the user can glean overall functional program relationships from the
program Structure Chart. This entity should be developed as the first component of
program design. Next, the execution flow must be developed. The functional flow­
chart serves as a convenient vehicle for accomplishing this.

Briefly, there are a number of types of flowcharts. They vary from more
functionally oriented descriptions of program behavior, in which generalized activ­
ity is interconnected, to very detailed descriptions where each line of code literally
occupies a place in the overall flowchart. In this book we favor the functional
approach because it is a good compromise: It gives the user a sense of the program
execution and does not require pages of description.

As an alternative to the flowchart, pseudo-code can be used. Pseudo-code has
the advantage that it is very close to the actual program mechanics and has the
structure of natural language. With pseudo-code the uninitiated can develop a feel­
ing for program execution while not fully comprehending the language syntax in
which the program is written. A number of authors of high-level languages are de­
veloping program design languages (PDLs) which are essentially pseudo-code. The
POL approach to program design is particularly appropriate for very large-scale
program development that may require significant development time. In this case a
need exists to have an easily understood design document that can be made avail­
able to new programming team members. For most microcomputer applications,
however, the flowchart is quite suitable.

Actual module implementation within the confines of structured code employs
sequential and control statements as discussed above. The module should have one
entry and one exit path (with exception control handled so as to delineate the error
condition). Finally, each module should be documented to explain its function and
what data structures exist, where needed. The relationship of one module to another
can be delineated in special cases where it is not explained in an associated flow­
chart or Structure Chart.

The purpose of this short discussion is to reemphasize the importance of struc­
tured programming in the C language by briefly illustrating several features of the
language. Also, we discuss some philosophical implications for structured code.We
begin with the one entry and one exit precept applied to module definition. This
control mechanism can be extended backward to the architectural structures men­
tioned earlier. Next we discuss the implications of style and form. (Also, a brief
look at templates is treated as part of style.) Finally, a general look at algorithm de­
velopment is used to round out the discussion. Also, data structures are treated.

The control and loop structures used in the C language are designed to provide
one entry and one exit to modules. This ensures that control flow is linear through
the structure (if, if ... else, ... , while, do ... while, etc.). Also, exit conditions are clearly
made available to the user during execution. With regard to iterative structures such
as loops, it is clear that multiple exits can be disastrous because the user may never
learn about the state of the system that causes the exit condition. To jump outside
a loop that is undergoing normal execution is highly undesirable. With conditional

Sec. 5.3 Optimizing the C Design Process 243

An example of point 9 would be where very simple "bookkeeping" is involved in
a module for clarity and maintenance purposes. Also, the use of globals does not ap­
preciably increase the level of difficulty of a small program but can significantly
reduce the size of variable handling code (particularly when pointers are used as an
alternative).

The major difficulty with software development is not in determining how to
make the computer function to execute a program but rather, in ensuring that a
given program actually generates the output it was intended to generate. The empha­
sis here is on software integrity, with the presumption made that the programmer
will learn the mechanics of programming within a particular language. To simplify
program design and development, structured programming techniques evolved.
Dijkstra [7] defined the initial concept, and structured programming is now a well­
established discipline which has greatly affected the C architecture. The notion of
structured programming in the broadest sense encompasses top-down design and
modular programming. At a more localized level, structured programming focuses on
coding techniques intended to simplify program understanding and facilitate program
use (such as program modification and maintenance). In the following discussion we
focus on the latter area: structured code.

The most desirable structure concept is sequentially defined code. In this
instance instructions are executed as they are encountered. C provides for two
deviations from this approach: conditional execution and iterative loops. We have
seen examples of both of these conditions. Conditional execution included use of the
forms

1. if .. .
2. if ... else
3. the conditional operator
4. switch ... case ... break

Similarly, iterative loops utilize the forms

1. while ...
2. do ... while
3. for .. .

These two groups of statements are the most important control mechanisms in the
C language. They form the basis of C structured coding techniques. Although C
allows the goto ... statement, it is discouraged and appropriate only in very extenu­
ating circumstances. It should be argued forcefully that any code segment using a
goto can be rewritten to avoid this statement. The major difficulty with goto state­
ments, as pointed out by Dijkstra, is that unrestrained branching within a module
can take place. This can lead to difficulty in understanding the intent of the code.

Structured code begins with a hierarchical description in the Structure Chart.

322 Answers To Problems

pendent thread has a particular piece of code that must execute prior to any other
operation for the parent process. Then it would be desirable to monitor and ensure
that this code executed, before continuing. Clearly, this could be dynamic and change
with the active chronology of execution.

2.17. DosExit is used to terminate an application and return to OS/2. All other returns
NEAR or F.

Chapter 3
3.1. The drivers mentioned operate from the kernel, level 0. They must originate here

because they have to be protected ahead of all other code. We cannot have a disk­
write preempted in the middle, nor can we tolerate "jerky" mouse cursor movement
as the mouse position changes.

3.2. The macro calls admittedly remove a layer of detail from the program code. This
layer would tend to expand the code by a factor of 4 to 7. All the pushes to the
stack have been suppressed prior to each API call and the call takes on the form of
a higher-level-language (HLL) function call. The data area tends to expand consid­
erably with all the macro parameter definitions, but the actual executable code re­
mains compact. This requires the programmer to develop a general familiarity with
the macro calls at the level of the IBM Programmer's Toolkit or Appendix C of this
book. Once this familiarity bas developed it is a very easy matter to read the result­
ing "structured" code and follow the flow of execution. Hence maintenance becomes
an easy task. Clarity (of how the code executes) is also paramount, and much more
so under the macro call format. The macro calls do, however, inhibit debugging in
that the in-line code is missing. If the user prints a copy of the list file with macros
expanded, tracing the source code is still an easy matter. In general, these approaches
tend to be a matter of preference based on the programmer's orientation. We favor
the HLL appearance of the code. It makes functional performance of the code the
primary mechanism to be emphasized. Expansion of the in-line code makes it more
obscure from a functional viewpoint but easier (and essential) to debug.

3.3. For the segment to be sharable, bit 0, to be sharable through @DosGiveSeg, or bit 1,
to be sharable through @DosGetSeg, must be set in the flags word (the third pa­
rameter in the calling list). Bit 2 of this same flags word must be set if the segment
is to be discardable.

3.4. The write to the huge segment must use the proper selector. When crossing the 64K­
byte boundary the program must access a new but contiguous selector.

3.5. There must be some common link between the two processes. Usually, this is a
common element name such as

\SEM\SDA'l'.DA'l'

or

\QUEUES\QDA'l'.DA'l'

which appears in both processes and is the same. The system then provides the con­
nection. Alternative to this is the passing of a selector or printer in a common

Answers To Problems

2.7
kbd_buf
lkbd_buf
iowait
kbdhdl
freq
dur

@KbdStringin
@Dos Beep

db 80
dw $-kbd_buf
dw 0
equ 0
dw 1000
dw 5000

kbd_buf,lkbd_buf,iowait,kbdhdl
freq,dur

321

2.8. Yes, all calls to the API can be made in full form, where each push and pop, as
well as EXTRN declaration, is stated explicitly according to the rules of OS/2. The
toolkit simply provided a set of assembler .inc files and C .h files that facilitated
usage of the API services through very functional macros.

2.9. The key assumption is that segment selectors can be treated as segment addresses.
Since the 80286 accesses segments using the selectors, the selector value must reside
in a segment register. The address is then calculated in the usual Protected Mode
fashion, where the segment selector acts as a segment address. The use of segment
override addressing, such as

es: [bp]

simply permits specification of an address in the usual fashion, where the segment
selector is made to correspond to the physical segment address when VioGetPhysBuf
is exercised.

2.10. They represent FAR locations because the entry points are called from external API
modules, hence a 32-bit address must be specified.

2.11. No hierarchy should have a single child subordinate to a parent. The box 310 should
be absorbed in 300.

2.12. The command is

@Doswrite dev_hand,in_buffer5,bytesin3,bytesout

where the undefined parameter is

in_buffer5 db 1BH,41H,OCH

2.13. It is intuitive that they cannot be preempted by an OS/2 task switch, or the possibil­
ity of losing data from the device would occur.

2.14. To access the screen buffer (physical) properly, the screen must be locked; hence if
scr_ld is to load scr_buffer with the screen context, it must be locked. If prtscr is
executed when the screen is locked, it could dominate access time for the physical
display buffer. Hence the program should load a temporary buffer, release the screen
context, and then begin the print operation.

2.15. Ten complete raster segments.

2.16. The DosExitCritSec corresponds to exit of a critical section of execution for a thread
and returns control to a process. This could be used, for example, when an inde-

320

2.2. @VioGetPhysBuf

2.3. @VioScrLock

macro
@define
@pushs
@pushw
call
endm

macro
@define
@pushw
@pushw
@pushw
call
endm

Answers To Problems

dstruc,rsrvd
VIOGETPHYSBUF
dstruc
rsrvd
far ptr VIOGETPHYSBUF

wait,status,handle
VIOSCRLOCK
wait
status
handle
far ptr VIOSCRLOCK

2.4. The VioGetPhysBuf structure, PVBPtrl, needs to be specified as

PVBPtrl
bufstl
buflenl
phys ell

2.5 ••••
freq
dur

@Dos Beep

2.6 ••••
waitf
dstat
viohdl
PVBPtrl
bufstl
buflenl
physell

@VioScrLock
@VioGetPhysBuf
push physell
pop es
mov dh,25
mov, dl, 154
mov bx, 75
mov cx,235
call connl2
@VioScrUnLock

label FAR
dd OAOOOOH
dd 6D60H
dw 0

dw 5000
dw 1000

freq,dur

equl
db ?
equ 0
label FAR
dd 0B8000H
dd 4000H
dw 0

waitf,dstatk,viohdl
PVBPtrl,viohdl

viohdl

Answers To Problems 319

1.10. This occurs as a result of IBM's reservation of the last 384 KB of address space for
special-purpose system memory, much of which is either screen buffer memory or
ROM (read-only memory). OS/2 extended memory resides from 1 MB to 16 MB (in
the physical address space).

1.11. Physical memory occupies the actual hardware locations accessed by the 24 pins
from the address lines of the 80286 CPU chip. This can be a maximum of 16 MB
(224). Virtual memory is memory allocated in an abstract sense by the system. Since
there are 16,384 (214) possible selectors with 65,536 locations per selector, there are
a maximum total of 1,073,741,824 possible locations that can be addressed uniquely
in this virtual space. OS/2 manages this space by mapping each segment selector to
a segment base address through manipulation of the translation registers. Hence, if
the available physical memory is less than 16 MB, for example, and the required
program and data memory exceed 16 MB or the actual physical memory, OS/2 will
move code and data to and from disk as needed.

1.12. The Table Indicator (TI) bit in the segment selector is set for references to system
memory. It is zero for references to local application program memory. There are
536,870,912 locations accessible by applications in virtual memory.

1.13. If the data communications service resided at level 0, it could preempt the CPU dur­
ing long sessions which would mask out other, potentially more important interrupts.
This could lead to catastrophic failure.

1.14. The boot record loads the Machine Status Word register with a MSW that has bit
zero set for Protected Mode operation. Subsequent loads of this register using the
LMSW instruction can modify this state.

1.15. 1. Initialization Routine-Assembler
2. Strategy Routine-C
3. Interrupt Service Routine-Assembler

1.16. A pipe references a bulk memory area, whereas a queue allows access to individual
members of the queue.

1.17. The API framework is more cumbersome for assembly language programs where
software interrupts (using INT) provide immediate low-level access to the system
hardware, for example. On the other hand, the API call orientation allows a rather
elegant description of the services, which can enhance understanding and readability.
In the C environment the API services are an asset, providing very readable function­
like access to system services.

1.18. In both cases the threads must synchronize their access.

1.19. DosSleep. Unlike a process, the thread cannot terminate itself. Threads can be ter­
minated only when the thread's parent process is terminated.

1.20. No, the Gpi services can be used only with the PM.

1.21. Modaless because the screen context is not preempted.

Chapter 2
2.1. (a) pins 8, 6, 4, 3, and 2

(b) pins 8, 7, 4, 2, and 1
(c) pins 7, 5, 3, and 1

318

extrn
endif
endm

1.5. @VioScrUnLock macro
@define
@pushw
call
end um

where

@pushw macro
mov
push
endm

and

@define macro
ifndef
extrn
end if
endm

1.6. @VioScrLock macro
@define
@pushw
@pushs
@pushw
call
endm

callname:far

handle
VIOSCRUNLOCK
handle

Answers To Problems

far ptr VIOSCRUNLOCK

pa rm
ax,parm
ax

callname
callname
callname:far

wait,status,handle
VIOSCRLOCK
wait
status
handle
far ptr VIOSCRLOCK

where @define and @pushw are defined as in the answers to Problems 1.4 and 1.5
and

@pushs macro pa rm
mov ax,SEG parm
push ax
lea ax,parm
push ax
endm

1.7. 1. A multitasking environment
2. A memory management facility
3. The PM user-friendly interface

1.8. Since we are talking about applications code, the non-system-oriented instruction set
is applicable, and this is generally common to both CPUs with few exceptions. The
major drawback to 80386 code is the use of references to the extended register set
(32-bit registers): EAX, EBX, ECX, While the 80286 general-purpose registers
(AX, BX, CX, ...) are a subset of these extended registers, the converse is not true.

1.9. 2

Answers to Problems

Chapter 1

1.1. 81CA H

1.2. No, while OS/2 employs time slicing to share access to a single CPU among mul­
tiple separate tasks or threads, it is not designed to service more than one CPU.
Hence OS/2 does not provide for the parallel operation of multiple CPUs.

1.3. 4, 294, 967, 295 (232 -1); +2, 147, 483, 647 (231 -1)

1.4. @DosExit

where

@pushw

and

@define

macro
@define
@pushw
@pushw
call
endm

macro
mov
push
endm

macro
ifndef

action,result
DOSEXIT
action
result
far ptr DOSEXIT

pa rm
ax,parm
ax

callname
callname

317

316

TABLE E.2 (Concluded)

Service

MouGetDevStatus

MouReadEventQue
MouGetNumQueEl
MouFlushQue
MouRemovePtr

MouFlushQue
MouRemovePtr

MouDrawPtr

MouGetPtrShape/
MouSetPtrShape

MouGetPtrPos/
MouSetPtrPos

MouRegister

MouDeRegister
MouSynch

App.E Keyboard and Mouse Kernel Functions

Description

Getting the state of the pointer and the event
queue

Reading a data record from the event queue
Determining the number of records in the queue
Clearing the queue
Defining a restricted screen area where the

pointer is not allowed to appear
Clearing the queue
Defining a restricted screen area where the

pointer is not allowed to appear
Redefining a restricted screen area, where the

pointer is allowed to appear
Getting or setting the shape of the pointer

Getting or setting the vertical and horizontal
positions of the pointer

Registering another mouse subsystem for the
current session

Canceling the registration of a mouse subsystem
Synchronizing access for a mouse subsystem

with the mouse device driver

REFERENCE

1. IBM Operating System/2 Programmer's Toolkit, International Business Machines Corpo­
ration, Boca Raton, FL, 1987.

App.E Keyboard and Mouse Kernel Functions 315

TABLE E.1 (Concluded)

Service Description

KbdFlush

KbdOpen/kbdClose

KbdGetFocus/
KbdFreeFocus

KbdGetStatus/
KbdSetStatus

KbdGetCP/
KbdSetCP

KbdSetCustXt
KbdRegister

KbdI>eRegister
KbdSynch

E.3 THE MOUSE SERVICES

Clears the keyboard input buffer of all queued
keystrokes

Opening and closing a handle to a secondary logical
keyboard

Getting and releasing the input focus by the second­
ary keyboard

Getting and setting the keyboard state

Getting and setting the II> of the system code page
used to translate scan codes into ASCII codes

Installing a customized keyboard translation table
Registering a keyboard subsystem for the current

session
Canceling the registration of a keyboard subsystem
Synchronizing the subsystem's access to the physical

keyboard

Table E.2 indicates the mouse API services. Again, these services are available
through the macros and functions defined in the IBM Toolkit.

TABLE E.2 THE MOUSE FUNCTION CALLS

Service

Mou Open

Mou Close

MouGetNumButtons
MouGetEventMask/
MouSetEventMask
MouSetDevStatus

MouGetNumMickeys

MouGetScaleFact/
MouSetScaleFact

Description

Initializes the mouse event queue and obtains a
handle to access it

Closes the mouse device for the current session
and removes the mouse device driver handle
from the list of valid open mouse device
handles

Determining the number of buttons supported
Getting or setting the types of events reported by

data records
Setting mouse data to be returned in mickeys

instead of coordinates (a mickey is a unit of
measurement for physical mouse motion,
whose value depends on the mouse device
driver currently loaded)

Determining the number of mouse motion units
per centimeter

Getting or setting the mickey-to-pet ratio for
mouse motion

314 App.E Keyboard and Mouse Kernel Functions

BSE.H
This file allows the user to set up defined symbols such as all
the OS/2 API kernel functions, including those that begin with
Dos, kbd, Vio, and Mou. It includes loading of BSEDOS.H,
BSESUB.H, and BSEERR.H.

Level 3: OS/2
BSEDOS.H

This file sets up constants, structures, and function prototypes for
the Dos services.

BSESUB.H
This file sets up constants, structures, and function prototypes for
the Vio, kbd, and Mou services.

BSEERR.H
This file sets up error code constants for the OS/2 kernel API
services.

The remaining .h files are Presentation Manager files and are only available under
the OS/2 1.1 or higher. The .inc files are defined as follows:

Level 1: SYSMAC.INC
This file sets up all the API macros by calling DOSCALLS.INC
and SUBCALLS.INC.

Level 2: OS/2 kernel
DOSCALLS.INC

This file sets up all macros for Dos calls.
SUBCALLS.INC

This file sets up all macros for kbd, Mou, and Vio calls.

E.2 THE KEYBOARD SERVICES

Table E.1 illustrates the keyboard services. These are available with the IBM OS/2
Toolkit referenced throughout the book.

TABLE E.1 KEYBOARD FUNCTION CALLS

Service

KbdStringln
KbdCharln

KbdPeek

KbdXlate

Description

Reads a string from the keyboard and loads a buffer
Reads a character and loads the associated internal

structure
Allows examination of a character data record

without removing it from the buffer
Translates a scancode and shift key state into an

ASCII character code, using the code page set for
the keyboard

E Keyboard and Mouse
Kernel Functions

In this book we describe the OS/2 Kernel API services which are used to access the
full-screen mode. In this appendix we discuss the keyboard and mouse services.
These calls cannot be used in a Presentation Manager application.

E.1 ACCESSING THE TOOLKIT

To employ the Toolkit functions [1] the programmer must resort to defining and
using various assembler and C structures and databases that contain parameter infor­
mation. These structures and data types are contained in a set of files, with exten­
sion .inc for the assembler and a set of files with extension .h for the C compiler.
The .h files are defined as follows (we use .h and .H interchangeably):

Level 1: OS/2 and Presentation Manager
OS2.H (includes OS2def.H, BSE.H, and PM.H)

This file sets up the compiler for access to all OS/2 definitions,
base include files, and files needed to define Presentation Man­
ager data types, functions, and structures.

Level 2: OS/2
0$2DEF.H

This file defines common constants, data types, error codes, and
structures needed to OS/2 kernel access.

313

312

TABLE D.1 (Concluded)

Program

dyn22.def
dyn2.asm
dyn33.def
gen3d.c
xadiskw.c
mmain3d.c
xadiskr.c
xscale.c
facet3d.c
gphrout.c

App.D Programs Used in This Book

Description

Definition file for load on call
Assembler program for run-time DLL
Definition file for dyn2.asm
C program that generates a surface
Diskwrite
Main calling program for 3D surface
Diskread
Scales array for mmain3d.c
Generates facets for mmain3d.c
Plot routines

Page

236
238
239
255
256
257
260
261
262
263

Table D.2 MAKE Files Used in Text

Program

ioprgm.mak
swave.mak
prtwave.mak
pipestc.mak
pipeclc.mak
ckthred.mak
dja.mak
gen3d.mak
mmain3d.mak

Description

MAKE file for ioprgm.c
MAKE file for swave.c
MAKE file for prtwave.c
MAKE file for pipestc.c
MAKE file for pipeclc.c
MAKE file for ckthred.c
MAKE file for dja.c
MAKE file for gen3d.c
MAKE file for mmain3d.c

Page

173
178
184
197
197
198
212
254
256

App. D Programs Used in This Book 311

TABLED.1 (Continued)

Program Description Page

prtscrm.asm Modified prtscr.asm used with twolnm.asm 101
nos2512.asm Creates shared segment, child process, and prints 106

screen
nos261.asm Child process that generates random numbers 111
nos252.asm Supplemental routines needed by nos2512.asm 113
memseg.asm Program that creates and reallocates memory 117
hugeseg.asm Program that allocates a huge segment 122
suballo.asm Program that suballocates memory 126
ckthl.asm Program that sets up two threads using RAM 132

semaphores
unos251.asm Uses multiple threads to generate a box 136
nnos252.asm Support routines for unos251.asm 141
ckprl.asm Program that sets up two processes using system 146

semaphores
os2p2.asm Child process using system semaphores 149
pipest.asm Pipe main setup program 152
pipecl.asm Child process for pipe communications 155
queuest.asm Queue main setup program 158
queuecl.asm Child process for queue example 161
ioprgm.c C program to illustrate Protected Mode 172
swave.c C program to plot dynamic sinewave 180
gphrout.c C graphic routines used in cgraph.lib 183
prtwave.c C program to print sinewave 186
pprtscr.c C program to print screen 190
pipestc.c C program counterpart to pipest.asm 194
pipeclc.c C program counterpart to pipecl.asm 196
ckthred.c C program that creates a child thread 199
tetra.c C program for rotating tetrahedron 205
rotetra.c C program that sets up tetrahedron 208
rotmat.c C program that calculates rotation matrices 209
rotpt.c C program that rotates a point 209
DMApoint.c C program that removes a point from the display 211
timhist.c C program that creates time-history/value database 212
dja.c C program that plots Dow Jones activity 213
scales.c C program to generate musical scales 225
scalesl.asm Assembler routine to generate scales 226
dynl.asm Assembler program for preloaded DLL routines 232
dlinkl.asm Assembler routine that is DLL for dynl.asm 234
dyninit.asm Initialization routine for DLL 235

D Programs Used
in This Book

In this appendix we list the programs used in this book. Table D.1 presents each
program, a brief description, and the page number corresponding to the program.
Table D.2 contains the MAKE files that appear in the text.

TABLE 0.1 PROGRAMS CONTAINED IN THE TEXT

Program Description Page

ptr2.asm Assembler program to print "74" to generate line 46
boxprtl.asm Assembler program to plot two lines to display 56
scrld.asm Assembler procedure to load screen buffer 62
prtscr.asm Assembler procedure to print the screen 65
twoln.asm Assembler procedure to plot/print two lines 69
graphl.asm Partial contents of GRAPHLIB.LIB 72
connl2.asm Procedure to plot connected line 76
slopeln.asm Program to plot connecting line 78
bboxl.asm Procedure to generate a box 82
llinev.asm Procedure to generate a vertical line 83
bbox.asm Program to plot/print box 84
twolnm.asm Modified twoln.asm that creates a screen buffer 97
scrldm.asm Modified scrld.asm used with twolnm.asm 100

310

App.C Function Declarations and Macros Used to Interface the API

@VioScrLock macro ml, m2, m3
@def VIOSCRLOCK
@pw
@ps
@pw
call
endm

ml
m2
m3
far ptr VIOSCRLOCK

use: Figure 2.3, 2.7b, 2.8, 2.10, 2.15, 3.1, 3.6, 3.18b, 3.19

@VioScrUnLock macro
@def
@pw

ml
VIOSCRUNLOCK
ml

call far ptr VIOSCRUNLOCK
endm

;waitflag
;status
;handle

;selector

use: Figure 2.3, 2.7b, 2.8, 2.10, 2.15, 3.1, 3.4, 3.6, 3.18b, 3.19

@VioScrollUp macro ml, m2, m3, m4, ms, m6, m7
@def VIOSCROLLUP
@pw ml ;top
@pw m2 ;left
@pw m3 ;bottom
@pw m4 ;right

309

@pw m5 ;number lines
@ps m6
@pw m7
call far ptr VIOSCROLLUP
endm

use: Figure 2.3, 2.8, 3.6, 3.l 7b, 3.18b, 3.20b, 3.22b

@VioSetMode macro ml, m2
@def VIOSETMODE
@ps ml
@pw m2
call far ptr VIOSETMODE
endm

use: Figure 2.3, 2.7b, 2.10, 2.15, 3.1, 3.4, 3.18b

@VioWrtTTY macro ml, m2, m3
@def VIOWRTTTY
@ps ml
@pw m2
@pw m3
call far ptr VIOWRTTTY
endm

use: Figure 3.l 7b, 3.20b, 3.2lb, 3.23b, 3.24b

;attribute
;handle

;modedata
;handle

;charstr
;length
;handle

308 App. C

@DosSubSet

Function Declarations and Macros Used to Interface the API

macro
@def
@pw
@pw
@pw
call

ml, m2,
DOS SUBSET
ml
m2
m3
far ptr

m3

DOSSUBSET

;selector
;flags
;size

use: Figure 3.15

@DosWrite macro ml, m2, m3, m4
@def DOS WRITE
@pw ml
@ps m2
@pw m3
@ps m4
call far ptr DOSWRITE
endm

use: Figure 2.1, 2.6b, 3.3, 3.22b

@DosWriteQueuel macro ml, m2, m3, m4, ms
@def DOSWRITEQUEUEl

;handle
;buffer
;length
;byteswritten

@pw ml ;handle
@pw m2 ; request
@pw m3 ; length
@pd m4 ; buffer
@pw ms ;priority
call far ptr DOSWRITEQUEUEl
endm

use: Figure 3.25b

@KbdStringin macro ml, m2, m3, m4
@def KBDSTRINGIN
@ps ml
@ps m2
@pw m3
@pw m4
call far ptr KBDSTRINGIN
endm

use: Figure 2.3, 2.2b, 2.10, 2.15, 3.1, 3.4, 3.18b

@VioGetPhysBuf macro
@def
@ps
@pw
call
endm

ml, m2
VIOGETPHYSBUF
ml
m2
far ptr VIOGETPHYSBUF

use: Figure 2.3, 2.7b, 2.8, 2.10, 2.15, 3.1, 3.4, 3.6, 3.18b, 3.19

;buffer
;length
;iowait
;handle

;structure
;reserved

App.C Function Declarations and Macros Used to Interface the API

use: Figure 3.24b

call far ptr DOSREADQUEUE
endm

@DosReAllocSeg macro ml, m2

use: Figure 3.8

@DosSemClear

@def DOSREALLOCSEG
@pw
@pw

ml
m2

call far ptr DOSREALLOCSEG
endm

macro
@def
@pd

ml
DOSSEMCLEAR
ml

call far ptr DOSSEMCLEAR
endm

use: Figure 3.17b, 3.2lb, 3.23b

@DosSemSet macro
@def
@pd

ml
DOSSEMSET
ml

call far ptr DOSSEMSET
endm

use: Figure 3.l 7b, 3.20b, 3.22b

@DosSemWait macro
@def
@pd
@pd

ml, m2
DOSSEMWAIT
ml
m2

call far ptr DOSSEMWAIT
endm

use: Figure 3.l 7b, 3.20b, 3.22b

@DosSubAlloc macro ml, m2, m3
@def DOSSUBALLOC
@pw ml
@ps m2
@pw m3
call far ptr DOSSUBALLOC
endm

use: Figure 3.15

;size
;selector

;handle

;handle

;handle
;timeout

;selector
;offset
;size

307

306 App.C Function Declarations and Macros Used to Interface the API

@pw m5 ;attribute
@pw m6 ;openflag
@pw m7 ;openmode
@pd m8 ;O
call far ptr DOSOPEN
endm

use: Figure 2.1, 2.6b

@DosOpenQueue macro ml, m2, m3
@def DOSOPENQUEUE
@ps ml ;owner ID

@ps m2 ;handle
@ps m3 ;name
call far ptr DOSOPENQUEUE
endm

use: Figure 3.25b

@DosOpenSem macro ml, m2
@def DOSOPENSEM
@ps ml ;handle
@ps m2 ;name
call far ptr DOSOPENSEM
endm

use: Figure 3.2lb, 3.23b

@DosRead macro ml, m2, m3, m4
@def DOS READ
@pw ml ;handle
@ps m2 ;buffer
@pw m3 ;length
@ps m4 ;bytesread
call far ptr DOS READ
endm

use: Figure 3.23b

@DosReadQueue macro ml, m2, m3, m4, m5, m6, m7, ma
@def DOSREADQUEUE
@pw ml ;handle
@ps m2 ;request
@ps m3 ;length
@ps m4 ;address
@pw m5 ;code
@pw m6 ;nowait
@ps m7 ;priority
@pd m8 ;semhandle

App.C Function Declarations and Macros Used to Interface the API

call far ptr DOSGETHUGESHIFT
endm

use: Figure 3.12

@DosGetShrSeg macro ml, m2
@def DOSGETSHRSEG
@ps ml
@ps m2
call far ptr DOSGETSHRSEG
endm

use: Figure 3.5, 3.23b

@DosGiveSeg macro ml, m2, m3
@def DOSGIVESEG
@pw ml
@pw m2
@ps m3
call far ptr DOSGIVESEG
endm

use: Figure 3.25b

@DosKillProcess macro ml, m2
@def DOSKILLPROCESS
@pw ml
@pw m2
call far ptr DOSKILLPROCESS
endm

use: Figure 3.4, 3.20b, 3.22b, 3.24b

@DosMakePipe macro ml, m2, m3
@def DOSMAKEPIPE
@ps ml
@ps m2
@pw m3
call far ptr DOSMAKEPIPE
endm

use: Figure 3.22b

@Dos Open macro ml, m2, m3, m4, mS, m6,
@def DOS OPEN
@ps ml
@ps m2
@ps m3
@pd m4

iname
iselector

icaller sel
iprocess ID

irecipient

iaction
iresult

iread hdl
iwrite hdl
isize

m7, m8

iname
ihandle
iaction
isize

305

sel

304 App. C

use: Figure 3.20b, 3.22b

@DosCreateThread

use: Figure 3.l 7b, 3.18b

@DosExecPgm

Function Declarations and Macros Used to Interface the API

call far ptr DOSCREATESEM
endm

macro ml, m2, m3
@def DOSCREATETHREAD
@pd ml ;address
@ps m2 ;thread ID

@pd m3 ;end stack
call far ptr DOSCREATETHREAD
endm

macro ml, m2, m3, m4, ms, m6, m7
@def DOSEXECPGM
@ps
@pw
@pw
@ps
@ps
@ps
@ps

ml
m2
m3
m4
ms
m6
m7

call far ptr DOSEXECPGM
endm

; name buffer
;length
;flags
;argpointer
;envpointer
;retrun
;pgmpointer

use: Figure 3.4, 3.20b, 3.22b, 3.24b

@DosExit macro ml, m2
@def DOSEXIT
@pw ml
@pw m2
call far ptr DOSEXIT
endm

use: all processes

@DosFreeSeg macro ml
@def DOSFREESEG
@pw ml
call far ptr DOSFREESEG
endm

use: Figure 3.1, 3.4, 3.5, 3.12, 3.15, 3.24b, 3.25b

@DosGetHugeShift macro ml
@def DOSGETHUGESHIFT
@ps ml

;action
;result

;selector

;shiftcount

App. C Function Declarations and Macros Used to Interface the API

@DosAllocShrSeg macro ml, m2, m3

use: Figure 3.4, 3.22b

@DosBeep

@def DOSALLOCSHRSEG
@pw
@ps
@ps

ml
m2
m3

call far ptr DOSALLOCSHRSEG
endm

macro ml, m2
@def DOS BEEP
@pw ml
@pw m2
call far ptr DOS BEEP
endm

ino. bytes
:name
:selector

:hertz
:duration

use: Figure 3.l 7b, 3.18b, 3.20b, 3.2lb, 3.22b, 3.23b, 3.24b, 3.25b

@DosClose macro ml
@def DOSCLOSE
@pw ml :handle
call far ptr DOSCLOSE
endm

use: Figure 2.1, 2.6b, 3.3, 3.4

@DosCloseQueue macro ml
@def DOSCLOSEQUEUE
@pw ml :handle
call far ptr DOSCLOSEQUEUE
endm

use: Figure 3.24b, 3.25b

@DosCreateQueue macro ml, m2, m3
@def DOSCREATEQUEUE
@ps ml :handle
@pw m2 :priority
@ps m3 :name
call far ptr DOSCREATEQUEUE
endm

use: Figure 3.24b

@DosCreateSem macro ml, m2, m3
@def DOSCREATESEM

303

@pw ml :no exclusive
@ps m2 :handle
@ps m3 :name

302 App.C Function Declarations and Macros Used to Interface the API

@ps macro ml ;push address
mov ax, SEG ml
push ax
mov ax, OFFSET ml
push ax
endm

@pd macro ml ;push doubleword
push ds
push bx
mov ax, SEG ml
mov ds, ax
mov bx, OFFSET ml
push word ptr [bx]
mov ax, [bx+2]
push bp
push sp
pop bp
xchg [bp+6], ax
pop bp
mov ds, ax
pop ax
pop bx
push ax
endm

With these preliminary macros defined it is now possible to define the macro calls
used in the book.

@DosAllocHuge

use: Figure 3.12

@DosAllocSeg

macro
@def
@pw
@pw
@ps
@pw
@pw
call
endm

macro
@def
@pw
@ps
@pw
call
endm

use: Figure 3.1, 3.8, 3.15, 3.25b

ml, m2, m3, m4, m5
DOSALLOCHUGE
ml
m2
m3
m4
m5
far ptr DOSALLOCHUGE

ml, m2, m3
DOSALLOCSEG
ml
m2
m3
far ptr DOSALLOCSEG

;no. segments
;size last seg
;selector
;max seg
;flags

;no. bytes
;selector
;flags

App. C Function Declarations and Macros Used to Interface the API 301

points determined by symbols such as INCL_BASE. Typically, these include files
are:

Level 1 (OS/2):
Level 2 (OS/2):

Level 3 (OS/2):

Level 2 (PM):

Level 3 (PM):

os/2.inc (includes os/2.def.inc.bse.inc, and pm.inc)
os/2def.inc (defines constants, types, error codes, and struc­
tures)
bse.inc (includes bsedos.inc, bsesub.inc, and bseerr.inc)
bsedos.inc (defines constants, structures, and prototypes for
the Dos API)
bsesub.inc (sets up calls for Via, Kbd, and Mou API)
bseerr.inc. (sets up error code constants for all API calls)
pm.inc (includes pmwin.inc, pmgpi.inc, pmdef.inc,
pmavio.inc, pmspl.inc, pmpic.inc, pmord.inc, pmbitmap.inc,
pmfont.inc)
pmwin.inc (sets up windows, message manager, keyboard,
mouse, and dialog manager API calls)
purgpi.inc (sets up Gpi API calls)
pmdev.inc (sets up device context API calls)
pmavio.inc (sets up the PM Via API calls)
pmspl.inc [sets up the spool (Spl) API calls]
pmpic.inc (sets up the picture API calls)
pmord.inc (sets up the GOCA orders for the Gpi API calls)
pmbitmap.inc (sets up the bitmap types)
pmfont.inc (sets up the types for fonts)

These include files contain macros for loading API service routines and push­
ing the stack with appropriate parameter data. In this appendix it is desirable to
present a similar set of macro-based or function calls used in the assembly language
in this book. These macros bridge the gap between the macro calls used in the text
and the actual assembler code required to lead a particular API service. They are
very similar to the macros available through the Toolkit. We ignore the error-pro­
cessing features of the Toolkit macros and leave the addition of these features to the
reader. With these thoughts in mind, let us begin with several subordinate macro
definitions:

@pw macro ml ipush word
mov ax,ml
push ax
endm

@def macro nm idefine API entry
if ndef nm
extrn nm: far
end if
endm

C Function Declarations
and Macros Used
to Interface the API

The IBM Programmer's Toolkit Versions 1.0 and 1.1 [1.2] contain a set of assem­
bler macros and C function declarations that provide interfaces to the API services.
In addition, Version 1.1 contains macros and C function declarations for accessing
the Presentation Manager (PM). In this appendix we address similar interfaces for
C and assembler and provide the relevant code for the macro calls (assembler) and
function declarations (C) used in this book. The reader is referred to the Toolkit for
a complete discussion of similar macros and function declarations.

C. 1 THE ASSEMBLER INTERFACE

The primary assembler include file in Version 1.0, and available under Version 1.1,
is

sysmac.inc

This, in turn, calls

doscalls.inc
subcalls.inc

which loads Dos, Mou, Kbd, and Vio service macros.
Under Version 1.1, a new set of include files is provided with variable entry

300

App. B Microsoft C Compiler Version 5.1 299

We can use pointers to access this structure through the same approach; for ex­
ample, the fifth element can be accessed using

pear_ type -> •••

These two statements have identical results.
In a structure, space is reserved for each element. In a union, space is reserved

only for the largest element; all other elements must share this space. For example,
in the following template:

union
{
int c;
int d;
float g;
double h;
} letter, *pletter;

the largest amount of space reserved for the union is 8 bytes with the h variable. All
the remaining variables must share the space in storage with this variable amount.
Since c and d each occupy 2 bytes and g occupies 4 bytes, this union can be used
to store c, d, and g simultaneously, or, alternatively, h or other combinations less
than or equal to 8 bytes.

This discussion completes our brief look at C. We have attempted to touch
only on those syntax features that are used in programming the OS/2 Kernel.

REFERENCES

1. Microsoft C 5.1 Optimizing Compiler: Code View, and Utilities, Microsoft Editor, Mixed­
Language Programming Guide, Microsoft Corporation, Redmond, WA, 1987.

2. Microsoft C 5.1 Optimizing Compiler: Run-Time Library Reference, Microsoft Corpora­
tion, Redmond, WA, 1987.

3. Microsoft C 5.1 Optimizing Compiler: User's Guide and Language Reference, Microsoft
Corporation, Redmond, WA, 1987.

4. Godfrey, J. T., Applied C: The IBM Microcomputers, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1990.

5. Petzold, C., Programming the OS/2 Presentation Manager, Microsoft Corporation, Red­
mond, WA, 1989.

298 App.B Microsoft C Compiler Version 5.1

In many respects C is the language of choice for programming the API once
the programmer obtains a familiarity with its features. Certainly, C is the choice for
programming the Presentation Manager [5].

The structure for a function in C has the following form:

function_name()

formal parameter types

{

local parameter types

statements

return expression;
}

Here the lines of code immediately following the function definition statement
contain the typing for formal parameters. The function brackets are next, with the
local parameter typing contained within the function brackets, together with all re­
maining function statements. If a value such as d is to be returned, this value is as­
signed and used as the argument of a return() statement.

A structure, for example, can look as follows:

struct tag_name
{

type declarations

} struct_name;

This architecture allows a tag name identifier, tag_name, to be used with later
definitions to define a structure that has similar characteristics. For example, the
structure

struct car
{

char olds, chevy, pontiac;
char accura, honda, mazda;
char ford, lincoln, mercury;
} car_type, *pcar_type;

has as tag, car, and as structure name, car_type. The structure elements can be
accessed using a period to offset the element from the structure name. In the struc­
ture above the fifth element is accessed using

car_type.honda == •••

App.B Microsoft C Compiler Version 5.1 297

contains some additional operators of less utility. The basic C data types are as
follows:

int integer (2 bytes); signed
long integer (4 bytes); signed
short integer (2 bytes); signed
unsigned integer; zero or positive values

unsigned int (2 bytes); 0 - 255
unsigned long (4 bytes); 0 - 65535
unsigned short (2 bytes); 0 - 255

char character (1 byte) 38 38
float floating (4 bytes); -10307 +10307
double floating (8 bytes); -10 - +10

Within the OS/2 Kernel programming are a number of additional derived types
used by Microsoft and IBM to expand the flexibility of OS/2. Some of these types
are

SEL segment selector
PSEL pointer to selector
SHANDLE handle
BYTE byte (char)
PC HAR pointer to character
HF ILE handle to file
HSEM handle to semaphore
PU INT pointer to unsigned integer
HVIO handle to video context
TIO thread ID

The addition of the Presentation Manager files adds many more derived types to the
OS/2 inventory.

The basic C storage classes are auto, external, static, and register:

auto

external

static

register

generated with temporary duration within a module as a
local class
generated for all time as a global
generated for all time but local in scope
generated with temporary duration within a module as
local and, if possible, associated with a CPU register

The remaining topics to be briefly examined are functions, structures, unions,
and pointers. This, then, will complete our look at the C syntax. The examples in
the text are intended to provide additional insight into the C language and its appli­
cability in the OS/2 programming environment.

296 App.B Microsoft C Compiler Version 5.1

When expression2 is evaluated TRUE, the associated statements are executed. Once
the continue statement is executed, the processing jumps to the end of the loop
without entering the second if structure regardless of whether expression3 is TRUE
or FALSE.

Table B.1 illustrates the major operators found in the C language. Table B.2

TABLE B.1 C OPERATORS

Operator Discussion

< > Grouping
< > Executes all contained syntax
+ + Increment

Decrement
* Multiply
I Divide
+ Add

Subtract
< Less than
> Greater than
< = Less than or equal
> = Greater than or equal
u AND: logical
l l OR: logical

Equal: assignment
+= Adds right-hand quantity to left hand

Subtracts right-hand quantity from left hand
* = Multiplies left hand by right hand
I= Divides left hand by right hand

Equal to: relational
! = Not equal to: relational

'X. Modulus
z = Modulus after dividing left hand by right hand
* Pointer: gives the value at the pointed address
s. Pointer: gives the address of the variable

TABLE B.2 ADDITIONAL C OPERATORS

Operator

(type)

sizeof
->

?:
«
»

Discussion

Changes the type of a variable
Returns the size in bytes of the variable
Assigns a structure member
Assigns a structure member
NOT: bitwise
Takes one's complement: bitwise
AND: bitwise
EXCLUSIVE OR: bitwise
OR: bitwise
Conditional operator
Left shift: bitwise
Right shift: bitwise

App.B Microsoft C Compiler Version 5.1 295

Here the alternate statements are executed when expression is FALSE. The case,
switch, and default statements work together. Consider the following structure:

switch (expression)
{
case A:

statement #1;
break;

case B:
statement #2;
break;

case C:
statement #3;
break;

default:
statement N;
break;

}

Here, if the value of expression takes on A, B, C, ... the corresponding case se­
quence is executed. For all values not specified with a subsequent case statement,
the default statement sequence is executed.

The switch decision structure is used frequently in the Presentation Manager
windows processing. We do not use this structure because the examples in this book
did not involve multiple options. The break syntax was used to jump around subse­
quent statements once the preceding statement had been executed.

There are two statements that can be used to alter the sequence of processing.
These are the jump statements, continue and goto. Consider the following loop:

for(expressionl)
{

statements

if{expression2)
{
alternatel statements

continue;
}

if(expression3)
{
alternate2 statements

}
}

294

for (k=l;k<=N;k++)
{

statements

}

The while loop has the form

while(expression)
{
statements

}

App.B Microsoft C Compiler Version 5.1

where expression is returned as a TRUE or FALSE value. When TRUE the state­
ments in the brackets are executed. Otherwise, the processing passes to subsequent
statements, outside the brackets.

The do while loop has an inverted structure with a test at the end of the loop:

do
{
statements

} while(expression)

Here statements are executed the first time through the loop and each subsequent
time that expression evaluates TRUE.

Decision structures are represented by the if, else, case, switch, and default
statements. The if structure is of the form

if(expression)
{

statements

}

where a TRUE value for expression causes the statements to be executed. The else
statement appears as follows, and is used in conjunction with the if statement:

if(expression)
{

statements

}
else

{
alternate statements

}

B Microsoft C
Compiler Version 5. l

In Part III of this book the OS/2 Kernel was programmed using the C language. The
specific C implementaion used was the Version 5.1 C Optimizing Compiler devel­
oped by the Microsoft Corporation [1-3]. This compiler was one of the first that
was made commercially available that would execute in the Protected Mode, so that
it could be used with OS/2. Associated with the compiler is a Toolbox that is dis­
cussed in Appendix C. This Toolbox provides high-level C interfaces to the OS/2
APL These interfaces are suitable for use with the Microsoft C compilers and are
provided as a set of .h include files.

In this appendix we briefly review some of the C language syntax used in this
book. We assume that the reader has a familiarity with C, hence we only provide
this appendix for reference. The following categories are mentioned:

1. Control structures
2. Operators
3. Data types and storage classes
4. Other syntax

The treatment of this appendix is similar to that given in Applied C: The IBM Mi­
crocomputers [4].

The basic control structures fall into three categories: loops, decision structures,
and jumps. Loops consist of the for, while, and do while syntax. The for loop struc­
ture takes the form, for example:

293

292

TABLE A.11 (Concluded)

Instruction

FENl/FNENI

FLDCW source

FSTCW/FNSTCW
destination

FSTSW/FNSTSW
destination

FCLEX/FNCLEX

FSTENV/FNSTENV
destination

FLDENV source

FSAVE/FNSAVE
destination

FRSTOR source
FINCSTP

FFREE destination
FDECSTP

FNOP
FWAIT

Purpose

Enable inter­
rupts

Load control
word

Store control
word

Store status
word

Clear excep­
tions

Store environ­
ment

Load environ­
ment

Save state

Restore state
Increment stack

pointer
Free register
Decrement stack

pointer
No operation
Wait instruc­

tion

App.A IBM Macro Assembler/2

Comments

This instruction is the reverse of FDISI and
clears the interrupt mask in the control
word.

This instruction replaces the current control
word with the word defined by the source
operand.

This instruction writes the current control
word to the memory location defined by
destination.

This instruction writes the current status word
to the memory location defined by destina­
tion.

Clears all exception flags, the interrupt request
and busy flag.

Writes the basic status and exception pointers
to the memory location defined by destina­
tion.

Reloads the 8087 environment from the mem­
ory area defined by the source.

Writes the environment and register stack to
the memory location specified by the desti­
nation operand.

Reloads the 8087 from the source operand.
Adds I to the stack pointer.

Changes the destination's tag to empty.
Subtracts I from the stack pointer.

Causes no operation.
Causes the 8088 to wait until the current 8087

instruction is complete before the 8088 ex­
ecutes another instruction.

REFERENCES

1. IBM Macro Assembler Version 2.00 Language Reference, International Business Ma­
chines Corporation, Boca Raton, FL, 1984.

2. IBM Macro Assembler Version 2.00 Fundamentals: Assemble, Link, and Run, Interna­
tional Business Machines Corporation, Boca Raton, FL, 1984.

3. Godfrey, J. T., IBM Microcomputer Assembly Language: Beginning to Advanced, Pren­
tice-Hall, Inc., Englewood Cliffs, NJ, 1989.

App.A IBM Macro Assembler/2

TABLE A.11 (Continued)

Instruction

FICOM source

FICOMP source

FTST

FXAM

Transcendental
FPTAN

FPATAN

F2XM1

FYLZX

FYLZXP1

Constant
FLDZ
FLD1
FLDP1
FLDL2T

FLDL2E
FLDLGZ
FLDLN2

Control
FIN IT /FNINIT

FDISI/FNOISI

Purpose

Integer compare

Integer compare/
pop

Test

Examine

Partial tangent

Partial arc tan­
gent

Y * log2
(X + 1)

Load zero
Load +1.0
Load pi
Load log2(10)

Load log2(e)
Load log10(2)
Load loge(2)

Initialize proc-
essor

Disable inter-
rupts

291

Comments

This instruction compares ST(O) to the source
operand, which is an integer-memory op­
erand.

This instruction is identical to FICOM except
the stack top, ST(O), is popped following
the compare.

This instruction tests ST(O) relative to +0.0.
The result of the test is returned in the condi­
tion code of the status word: (C3, CO) =
(0, 0) for ST positive, (0, 1) for ST negative,
(1, 0) for ST zero, and (1,1) if ST cannot
be compared.

The stack top, ST(O), is examined and the
result returned in the condition code field
as specified in the Version 2.0 Macro As­
sembler Reference manual.

This instruction calculates Y/X = TAN(z).
The value z is contained in ST(O) prior to
execution. Following execution, Y is con­
tained in ST(l) and X contained in.ST(O).

This instruction calculates z = ARCTAN(Y/
X), where Xis ST(O) and Y is ST(l). The
result, z, is returned to ST(O).

This instruction calculates 2x - l, where x
is taken from ST(O) and must be in the
range (0, 0.5). The result is replaced in
ST(O).

This instruction calculates Y * log2(X), where
X is ST(O) and Y is ST(l). The stack top
is popped and the result returned to the
new ST(O).

This instruction is the same as FYL2X except
1 is added to X. X must be in the range
(0, 1 - Y2t2).

This instruction loads +0.0 in ST(O).
This instruction loads + 1.0 in ST(O).
This instruction loads pi into ST(O).
This instruction loads log2(10) into the stack

top, ST(O).
This instruction loads log2(e) into ST(O).
This instruction loads log10(2) into ST(O).
This instruction loads loge(2) into ST(O).

This instruction accomplishes a hardware reset
of the 8087.

This instruction prevents the 8087 from issu­
ing an interrupt request.

290

TABLE A.11 (Continued)

Instruction

FIDIV source

FDIVR

FDIVRP destination 1

source

FIDIVR source

Miscellaneous
FSQRT

FSCALE

FPREl'I

FRNDINT

FXTRACT

FABS

FCHS
Comparison

FCOl'I

FCOl'IP

FCOl'IPP

Purpose

Integer divide

Real reversed
divide

Real reversed
divide/pop

Integer divide
reversed

Square root

Scale

Partial remain­
der

Round to integer

Extract expo­
nent/sig­
nificand

Absolute value

Change sign

Real compare

Real compare/
pop

Real compare/
pop twice

App.A IBM Macro Assembler/2

Comments

This instruction divides the destination by the
source and returns the quotient to the desti­
nation. The destination is ST(O) and the
source is an integer-memory operand.

This instruction is identical with FDIV except
the source is divided by the destination.
The quotient is still returned in the destina­
tion.

This instruction is identical to FDIVP except
the source is divided by the destination.
The quotient is still returned in the destina­
tion.

This instruction is identical to FIDIV except
the source is divided by the destination.
The quotient is still returned in the destina­
tion.

This instruction replaces the content of ST(O)
with its square root.

This instruction interprets the value of the
number contained in ST(I) as an integer.
This value is added to the exponent -of the
number in ST(O), which is equivalent to
multiplying ST(O) by 2 raised to this integer
power.

This instruction takes the modulo of ST rela­
tive to the number contained in ST(l). The
sign is the same as that of ST(O).

This instruction rounds ST(O) to an integer.
The rules for rounding are determined by
setting the RC field of the control word.
RC = 00 (round to nearest integer), 01
(round downward, IO (round upward), and
11 (round toward 0).

This instruction reduces the number in ST(O)
to a significand and an exponent for 80-
bit arithmetic.

This instruction yields the absolute value of
ST(O).

This instruction reverses the sign of ST(O).

This instruction compares the source operand
[which can be specified as a real-memory
operand or implicit as ST(l)] and ST(O).

This instruction is identical with FCOM except
the stack top, ST(O), is popped following
the compare.

This instruction is identical with FCOM except
the stack top, St(O), and ST(l) are popped
following the compare.

App.A IBM Macro Assembler/2

TABLE A.11 (Continued)

Instruction

FISUB source

FSUBR

FSUBRP

FISUBR source

Multiplication
FMUL

FMULP destination 1

source

FIMUL source

Division
FDIV

FDIVP destination 1

source

Purpose

Integer subtrac­
tion

Real reversed
subtract

Real reversed
subtract/pop

Integer reversed
subtract

Real multiply

Real multiply/
pop

Integer multiply

Real divide

Real divide/pop

289

Comments

The destination, ST(O), has the source op­
erand, an integer-memory operand, sub­
tracted from it and the result is stored in
ST(O).

The destination is subtracted from the source
and the result left in the destination. The
operand configuration is the same as for
FSUB.

This instruction is the same as FSUBP except
the destination is subtracted from the
source. ST(O) still serves as the source op­
erand.

This instruction is the same as FISUB except
the destination is subtracted from the
source. The source is still an integer-mem­
ory operand.

This instruction multiplies the destination op­
erand by the source and returns the product
in the destination. The instruction can be
executed with no operands [ST(O) is the
implied source and ST(l) the destination],
with the source specified as a real-memory
operand and ST(O) the destination, and with
both destination register and source register
[one of which is ST(O)] specified.

This instruction uses ST(O) as the source op­
erand and another register as the destination.
The product is returned in the destination
register and the stack top popped.

This instruction multiplies the destination by
the source and returns the product in the
destination. The destination is ST(O) and
source is an integer-memory operand.

This instruction divides the destination by the
source and returns the quotient to the desti­
nation. The instruction can be executed with
no operands [ST(O) is the implied source
and ST(l) the implied destination], with a
source specified and ST(O) the implied desti­
nation, and with a source [ST(O)] and desti­
nation (another register) specified.

This instruction divides the destination by the
source and returns the quotient to the desti­
nation. It then pops the top of the 8087
stack. The source is the ST(O) register and
the destination operand is another stack reg­
ister.

288 App.A IBM Macro Assembler/2

TABLE A.11 COPROCESSOR INSTRUCTION SET

Instruction

Data transfer
FLO source

FST destination

FSTP destination

FXCH destination

FILO source

FIST destination

FISTP destination

FBLO source

FBSTP destination

Addition
FAOO

FAOOP destination 1

source

FIAOO inte!fer­
memo rY

Subtraction
FSUB

FSUBP destination 1

source

Purpose

Load real

Store real

Store real/pop

Exchange ST

Load integer

Store integer

Store integer/
pop

Load BCD

Store BCD/pop

Real addition

Real add/pop

Integer addition

Real subtraction

Real subtract/
pop

Comments

Pushes the source data onto the top of the
register stack, ST(O).

This instruction copies ST(O) into the indicated
destination (real), which can be a memory
operand or register.

This instruction copies ST(O) into the indicated
destination and then pops ST(O) off the
stack.

This instruction exchanges ST(O) with the in­
dicated destination.

This instruction pushes the source data (in­
teger) onto the top of the stack, ST(O).

This instruction stores ST(O), the stack top,
in the indicated destination, which must be
an integer memory operand.

This instruction stores ST(O), the stack top,
in the indicated destination, which must be
an integer memory operand, and then pops
ST(O) off the stack.

This instruction pushes the source, which must
be a BCD number, onto the stack at ST(O).

This instruction stores ST(O) as a BCD number
at the destination and pops ST(O) off the
stack.

This instruction can be used without operands
[assumes ST(l) added to ST(O) with the
result in ST(O)], with a real-memory op­
erand added to ST(O), or with explicit refer­
ence to ST(O) added to another register.

The source is ST(O) and the destination must
be another stack register. The result is left
in the alternate stack register used as the
destination.

The destination, ST(O), is added to the source,
iriteger memory, and the sum returned in
ST(O).

This instruction can be used without operands
[assumes ST(l) is the destination and ST(O)
is subtracted from it with the result in
ST(l)], with a real-memory operand sub­
tracted from ST(O) and the result in ST(O),
or with explicit reference to ST(O) and an­
other register (the destination containing the
result).

The source, ST(O), is subtracted from the des­
tination, another stack register, and the re­
sult stored in the destination.

App.A IBM Macro Assembler/2

TABLE A.10 SPECIAL-PURPOSE MACRO OPERATORS

Operator Description

Format: text&text. This operator concatenates text er symbols. An example
is

TC1 MACRO x
LEA OX, CHAR&X
MDV AH, 8
INT 21H
ENOM

Here a call TCl A would load DX with a character start position CHARA.
; ; Format: ;;text. A comment preceded by two semicolons is not produced

as part of the expansion when a MACRO or REPT is defined in an
assembly.

Format: !character. Causes the character to be interpreted as a literal
value, not a symbol.

'X. Format: %expression. Converts expression to a number. During expansion,
the number is substituted for expression. Consider

MAC1 MACRO x
L1 x * 1000

MAC2 '.l'.Ll .x
ENOM

MAC2 MACRO y,x
PROO&X DB 'Production No. &X = &Y'

ENOM

This yiolds "PRODS DB 'Production No. 5 = 5000,' "
when called with MACl 5.

287

286 App. A IBM Macro Assembler/2

TABLE A.9 (Concluded)

Pseudo-op Description

• LFCOND This pseudo-op causes the listing of conditional blocks that evaluate
as false .

• L I s T an d . LIST causes a listing of source and object code in the output assembler
, XLI ST list file .. XLIST turns this listing off. These pseudo-ops can be

used to selectively list code during the assembly of programs,
especially long sequences of instructions.

'l:OUT Form: %OUT text. This pseudo-op is used to monitor progress through
a long assembly. The argument "text" is displayed, when encoun­
tered, during the assembly process.

PAGE Form: PAGE operandi, operand2. Controls the length (operandi)
in lines and the width (operand2) in characters of the assembler
list file .

• SFCOND This pseudo-op suppresses the listing of conditional blocks that evalu-
ate as false.

SUBTTL Form: SUBTTL text. Generates a subtitle to be listed after each
listing of title.

• TFCOND This pseudo-op changes the listing setting (and default) for false
conditionals to the opposite state.

TITLE Form: TITLE text. This pseudo-op specifies a title to be listed on
each page of the assembler listing. It may be used only once.

ENDM ENDM is the terminator for MACRO, REPT, IRP, and IRPC.
EX ITM EXITM provides an exit to an expansion (REPT, IRP, IRPC, or

MACRO) when a test proves that the remaining expansion is not
needed.

IRP Form: IRP dummy, <operandlist>. The number of operands (sepa-
rated by commas) in operandlist determines the number of times
the following code (terminated by ENDM) is repeated. At each
repetition, the next item in operandlist is substituted for all occur­
rences of dummy.

IRPC Form: IRPC dummy, string. This is the same as IRP except at each
repetition the next character in string is substituted for all occur­
rences of dummy.

LOCAL Form: LOCAL dummylist. LOCAL is used inside a MACRO struc-
ture. The assembler creates a unique symbol for each entry in
dummylist during each expansion of the macro. This avoids the
problem of a multiply defined label, for example, when multiple
expansions of the same macro take place in a program.

MACRO Form: name MACRO dummylist. The statements following the
MACRO definition, before ENDM, are the macro. Dummylist
contains the parameters to be replaced when calling the macro
during assembly. The form of this call is name parmlist. Parmlist
consists of the actual parameters (separated by commas) used in
the expansion.

PURGE Form: PURGE macro-name, PURGE deletes the definition
of a specified MACRO and allows the space to be used. This is
beneficial when including a macro library during assembly but
desiring to remove those macros not used during the assembly.

App.A IBM Macro Assembler/2

TABLE A.9 (Continued)

Pseudo-op

END

ENDP
ENDS

EQU

EVEN
EXTRN

GROUP

INCLUDE

LABEL

NAME

DRG

PROC

PUBLIC

.RADIX

RECORD

SEGMENT

STRUC

.CREFand
• XCREF

• LALL I. SALL I

and .XALL

Description

Form: END [expression]. END identifies the end of the source pro­
gram, and the optional expression identifies the name of the entry
point.

Form: procedure-name ENDP. Designates the end of a procedure.
Form: structure-name ENDS or seg-name ENDS. Designates the end

of a structure or segment.
Form: name EQU expression. Assigns the value of expression to

name. This value may not be reassigned.
Form: label = expression. Assigns the value of expression to label.

May be reassigned.
EVEN ensures that the code following starts on an even boundary.
Form: EXTRN name:type, EXTRN is used to indicate that

symbols used in this assembly module are defined in another
module.

Form: name GROUP seg-name, GROUP collects all segments
named and places them within a 64K physical segment.

Form: INCLUDE [drive] [path] filename.ext. INCLUDE assembles
source statements from an alternate source file into the current
source file.

Form: name LABEL type. LABEL defines the attributes of name
to be type.

Form: NAME module-name. NAME gives a module a name. It may
be used only once per assembly.

Form: ORG expression. The location counter is set to the value of
expression.

Form: procedure-name PROC [attribute]. PROC identifies a block
of code as a procedure and must end with RET/ENDP. The attribute
is NEAR or FAR.

Form: PUBLIC symbol, PUBLIC makes symbols externally
available to other linked modules.

Form: .RADIX expression .. RADIX allows the default base (decimal)
to be changed to a value between 2 and 16.

Form: recordname RECORD fieldname:width [=exp],
RECORD defines a bit pattern to format bytes and words for bit
packing (see text).

Form: segname SEGMENT [align-type] [combine-type] ['class'] (see
Chapter 3 for a discussion of this pseudo-op).

Form: structure-name STRUC. STRUC is used to allocate and initial­
ize multibyte variables using DB, DD, DQ, DT, and DW. It must
end with ENDS.

This listing pseudo-op provides cross-reference information when a
filespec is indicated in response to the assembler prompt (CREF) .
It is the normal default condition .. XCREF results in no output
for cross reference when in force .

. LALL lists the complete macro text for all expansions .. SALL sup­
presses listing of all text and object code produced by macros.
.XALL produces a source line listing only if object code results.

285

284 App. A IBM Macro Assembler/2

TABLE A.9 APPLICATION-ORIENTED PSEUDO-OPS

Pseudo-op

ELSE

ENDIF
IF

IFB

IF DEF

IFDIF

IFE

IFIDN

IFNB

IFNDEF

IF1

IFZ

.20sc

.8086

.8087

ASSUME

COMMENT

DB
DD
DQ

OT

ow

Description

This pseudo-op must be used in conjunction with a conditional pseudo­
op and serves to provide an alternate path.

This pseudo-op ends the corresponding IFxxx conditional.
Form: IF expression. When the expression is true, the code following

this pseudo-op is executed; otherwise it branches to an ELSE entry
point or an ENDIF. IF pseudo-ops can be nested.

Form: IFB <operand>. This is the "if blank" pseudo-op and it is
true if the operand has not been specified as in a MACRO call,
for example. The code following the IFB is executed when operand
is blank. Otherwise, the IP jumps to ENDIF.

Form: IFDEF symbol. If symbol has been defined via the EXTRN
pseudo-op, this is true and the code following the pseudo-op is
executed.

Form: IFDIF <operandi>, <operand2>. The code following this
pseudo-op is executed if the string operand I is different from the
string operand2.

Form: IFE expression. The code following this pseudo-op is executed
if expression = 0.

Form: IFIDN <operandi>, <operand2>. The code following this
pseudo-op is executed if the string operandi is identical to the
string operand2.

Form: IFNB <operand>. The code following this pseudo-op is exe­
cuted if the operand is not blank.

Form: IFNDEF symbol. The code following this pseudo-op is executed
if the symbol has not been defined via the EXTRN pseudo-op.

This pseudo-op is true if the assembler is in pass I , and it is used
to load macros from a macro library (as an example).

This pseudo-op is true if the assembler is in pass 2, and it can be
used to inform the programmer what version of the program is
being used (when coupled with appropriate logic and a %OUT).

This pseudo-op tells the assembler to recognize and assemble 80286
instructions used by the IBM AT.

This pseudo-op tells the assembler not to recognize and assemble
80286 instructions.

This pseudo-op tells the assembler to recognize and assemble 8087
coprocessor instructions and data formats.

Form: ASSUME seg-reg: seg-name, This pseudo-op tells the
assembler which segment register segments belong to.

Form: COMMENT delimiter text delimiter. COMMENT allows the
programmer to enter comments without semicolons. It is not recog­
nized by the SALUT program.

Form: [variable] DB [expression]. It is used to initialize byte storage.
DD has the same form as DB except it applies to doubleword quantities.
DQ has the same form as DB except it applies to four-word quantities.
DT has the same form as DB except it applies to 10-byte packed

decimal.
DW has the same form as DB except it applies to word quantities.

App. A IBM Macro Assembler/2

TABLE A.8 (Concluded)

Operator

MASK

WIDTH

+

*
MOD

SHL

SHR
EQ

NE

LT

LE

GT

GE

AND1
OR1 and
XOR

NOT

Type

Record specific

Record specific

Arithmetic

Arithmetic

Arithmetic

Arithmetic

Arithmetic

Arithmetic
Relational

Relational

Relational

Relational

Relational

Relational

Logical

Logical

Description

The format of this operator is MASK recfield. It
returns a bit mask for the field. The mask has
bits set for positions included in the field and 0
for bits not included in the field.

The format of this operator is WIDTH recfield. It
evaluates to a constant in the range 1 to 16 and
returns the width of a record or record field.

Returns the sum of two terms. Form: terml +
term2.

Returns the difference of two terms. Form:
terml - term2.

Returns the product of two terms. Form: terml *
term2.

Form: terml MOD term2. It returns the remainder
obtained by dividing terml by term2.

Form: terml SHL term2. It shifts the bits of terml
left by the amount contained in term2. Zeros
are filled in the new bits.

Same as SHL except the shift is to the right.
Form: terml EQ term2. Returns a value -1 'TRUE)

if terml equals term2, or 0 (FALSE) otherwise.
Form: terml NE term2. Returns a value -1 (TRUE)

if terml does not equal term2, or 0 (FALSE)
otherwise.

Form: terml LT term2. Returns a value -1 (TRUE)
if term I is less than term2, or 0 (FALSE) other­
wise.

Form: terml LE term2. Returns a value -1 (TRUE)
if terml is less than or equal to term2, or 0
(FALSE) otherwise.

Form: terml GT term2. Returns a value -1 (TRUE)
if terml is greater than term2, or 0 (FALSE)
otherwise.

Form: terml GE term2. Returns a value -1 (TRUE)
if terml is greater than or equal to term2, or 0
(FALSE) otherwise.

These operators have the form terml (operator)
term2 and return each bit position as follows:

terml bit term2 bit AND OR XOR

1 1 1 1 0
1 0 0 1 1
0 1 0 1 1
0 0 0 0 0

Form: NOT term. This operator complements each
bit of term.

283

282 App.A IBM Macro Assembler/2

TABLE A.8 IBM MACRO ASSEMBLER OPERATORS

Operator

PTR

Se!f-re!f1
Se!f-naMe

GrouP-naMe

SHORT

THIS

HIGH

LOW

SEG

OFFSET

TYPE

SIZE
LENGTH

SHIFT
COUNT

Type

Attribute

Attribute

Attribute

Attribute

Attribute

Attribute

Value returning

Value returning

Value returning

Value returning
Value returning

Record specific

Description

This operator has the form type PTR expression.
It is used to override the type attribute (BYTE,
WORD, DWORD, QWORD, or TBYTE) of a
variable or the attribute of a label (NEAR or
FAR). The expression field is the variable or
label that is to be overridden.

The segment override operator changes the segment
attribute of a label, variable, or address expres­
sion. It has three forms:

se!f-re!f:addr-exPression
se!f-naMe:addr-exPression

!frouP-naMe:addr-exPression

This operator is used when a label follows a JMP
instruction and is within 127 bytes of the JMP.
It has the form JMP SHORT label and changes
the NEAR attribute. A pass 2 NOP instruction
is avoided.

The form of this operator is THIS type. The operator
produces an operand whose segment attribute is
equal to the defining segment, whose offset equals
IP, and a type attribute defined by "type." For
example, "AAA EQU THIS WORD" yields an
AAA with attribute WORD instead of NEAR
(if used in the same code segment).

This operator accepts a number/address argument
and returns the high-order byte.

This operator accepts a number/address argument
and returns the low-order byte.

This operator returns the segment value of the vari­
able or label.

This operator returns the offset value of the variable
or label.

For operand arguments, this operator returns a value
equal to the number of bytes of the operand. If
a structure name, it returns the number of bytes
declared by STRUC. If the operand is a label,
it returns 65534 (FAR) and 65535 (NEAR).

This operator returns the value LENGTH x TYPE.
For a DUP entry, LENGTH returns the number

of units allocated for the variable. For all others
it returns a I .

This operator is used with the RECORD pseudo­
op and is the name of the record field. The format
of RECORD is: recordname RECORD field­
name: width. The value of fieldname, when used
in an expression, is the shift count to move the
field to the far right within the byte or word.

App.A IBM Macro Assembler/2 281

TABLE A.7 SYSTEMS-ORIENTED 80286 AND 80386 INSTRUCTIONS

Instruction

ARPL dest. 1 source

CLTS

LAR dest. 1 source

LGDT /LIDT M

LLDT source

LMSW source

LSL de st. 1 source

LTR source

SGDT /SIOT M

SLOT de st,

SMSW de st,

VERR/VERW source

STR de st,

Purpose

Adjust RPL field of
selector

Clear Task Switched
Flag

Load access rights byte

Load Global/Interrupt
Descriptor Table
register

Load Local Descriptor
Table register

Load Machine Status
Word

Load segment limit

Load Task Register
Store Global/Interrupt

Descriptor Table
register

Store Local Descriptor
Table register

Store Machine Status
Word

Verify a segment for
reading or writing

Store Task Register

Comments

If the RPL field of the selector (protection
bits) in dest. is less than the RPL field
of source, ZF = l and the RDL field of
dest. is set to match source.

The Task Switch Flag is in the Machine
Status Word and is set each time a task
change occurs. This instruction clears that
flag.

Destination contains a selector. If the associ­
ated descriptor is visible at the called pro­
tection level, the access rights byte of
the descriptor is loaded into the high byte
of source (low byte = 0).

m points to 6 bytes of memory used to pro­
vide Descriptor Table values (Global and
Interrupt). This instruction loads these ta­
bles into the appropriate 80286 registers.

Source is a selector pointing to the Global
Descriptor Table. The GDT should, in
tum, be a Local Descriptor Table. The
LDT register is then loaded with source.

The Machine Status Word is loaded from
source.

If the Descriptor Table value pointed to by
the selector in destination is visible at
the current protection level, a limit value
specified by source is loaded into this
descriptor.

The Task Register is loaded from source.
The contents of the specified Descriptor Ta­

ble register are copied to 6 bytes of mem­
ory pointed to by m.

The Local Descriptor Table register is stored
in the word register or memory location
specified by destination.

The Machine Status Word is stored in the
word register or memory location speci­
fied by destination.

Source is a selector. These instructions de­
termine whether the segment correspond­
ing to this selector is reachable under the
current protection level.

The contents of the Task Register are stored
in destination.

280 App.A IBM Macro Assembler/2

TABLE A.6 ADDITIONAL 80386 APPLICATION INSTRUCTIONS

Instruction

BSF dest,, source

BSR de st,, source

BT base' offset

BTC base, offset

BTR base, offset

BTS base, offset

CWDE, CWD

CMPSD

CDQ

INSD

LODSD

MOVSD

MOVSX

MOVZX

OUT SD

PO PAD

PDP FD

PUSHAD

PUSHFD

SCASD

SETcc de st.

SHLD dest. 'Count

SHRD de st. 1 Count

STD SD

Purpose

Bit scan forward

Bit scan reverse
Bit test

Bit test and comple-
ment

Bit test and reset

Bit test and set

Convert word to dou-
bleword

Compare double-
words

Convert doubleword
to quadword

Input
Load string operand
Move data from

string to string
Move with sign-

extend
Move with zero-

extend
Output
Pop all general regis-

ters
Pop stack into

EFLAGS
Push all general reg-

isters
Push EFLAGS onto

stack
Compare string data

Byte set on condition

Double-precision­
shift left

Double-precision
shift right

Store string data

Comments

The source word (doubleword) is scanned for a
set bit and the index value of this bit loaded
in destination. Scanning is from right to left.

Scans as in BSF but reverse order.
This instruction loads the bit value from base

at offset in the base, into the CF register.
This instruction loads the bit value from base

at- offset in the base, into the CF register, and
complements the bit in base.

This instruction loads the bit value from base
at offset in the base, into the CF register, and
resets the bit to 0.

This instruction is identical to BTR, but the re­
sulting bit is set to l .

This instruction converts the signed word in AX
to a doubleword in EAX.

This instruction compares ES : [EDI] with
DS:[ESI].

Converts the signed doubleword in EAX to a
signed 64-bit integer in the register pair
EDX:EAX by extending the sign into EDX.

Input from port DX to ES:[EDI] (doubleword).
Load doubleword DS:[ESI] into EAX.
Move doubleword DS:[ESI] to ES:[EDI].

Move byte to word, byte to dword, and word
to dword with sign extend.

Move byte to word, byte to dword, and word
to dword with 0 extend.

Output dword DS:[ESI] to port in DX.
Pops the eight 32-bit general registers.

Pops the 32-bit stack top into EFLAGS.

Pushes the eight 32-bit general registers onto
the stack.

Pushes the EFLAGS register onto the stack.

Compares dwords EAX and ES:[EDI] and up­
dates. EDI.

Stores a byte (equal to 1), if cc, the condition,
is met (following a compare, for example).
Otherwise, a value of 0 is stored at the destina­
tion.

The destination is shifted left by count.

Same as SHLD but shift is to the right.

Store EAX in dword ES: [EDI] and update EDI.

App.A IBM Macro Assembler/2 279

TABLE A.5 ADDITIONAL 80286 APPLICATION INSTRUCTIONS

Instruction

BOUND dest. 1source

ENTER iMMediate-wo rd 1

iMMediate-bYte

IMUL dest. tiMMediate

INS/INSB/INSW

dest.-string1Port

LEAVE

OUTS/OUTSB/OUTSW

Port .source-string

POPA

PUSH iMMediate

RCL de st, 1CL

RCR de st, 1CL

ROL de st, 1CL

ROR dest. 1CL

SAL/SHL de st, 1CL

SARdest.1CL

SHR dest. 1CL

Purpose

Check array index
against bounds

Make stack frame for
procedure parame­
ters

Integer immediate
multiply

Input from port to
string

High-level procedure
exit

Output string to port

Pop all general regis­
ters

Push immediate onto
stack

Rotate left through
carry

Rotate right through
carry

Rotate left

Rotate right

Shift arithmetic left/
shift logical left

Shift arithmetic right

Shift logical right

Comments

This instruction ensures that an index (des­
tination) is above or equal to the first
word in the memory location defined
by source. Similarly, it must be below
or equal to "source + 2."

"Immediate-word" specifies how many
bytes of storage to be allocated on the
stack for the routine being entered. ''Im­
mediate-byte" specifies the nesting
level of the routine within the high-level
source code being entered.

Does a signed multiplication of destination
by an immediate value.

Transfers a byte or word string from the
port numbered by DX to ES: DI. The
operand dest.-string determines the type
of move: byte or word.

Executes a procedure return for a high­
level language.

Transfers a byte or word string from mem­
ory at DS : DI to the port numbered by
DX.

Restores the eight general-purpose regis­
ters saved on the stack by PUSHA.

This instruction pushes the immediate data
onto the stack.

Same as RCL for 8088 except count can
be 31.

Same as RCR for 8088 except count can
be 31.

Same as ROL for 8088 except count can
be 31.

Same as ROR for 8088 except count can
be 31.

Same as 8088 instructions except count
can be 31.

Same as 8088 instruction except count can
be 31.

Same as 8088 instruction except count can
be 31.

278 App.A IBM Macro Assembler/2

TABLE A.4 THE COMPARE INSTRUCTION GROUP

Instruction

CMP destination, source

CMPS destination-str
source-st r
(CMPSB)
(CMPSW)

Purpose

Compare two
operands

Compare byte or
word string

Comments

This instruction causes the source to
be subtracted from the destination;
however, only the flags are af­
fected. The destination remains un­
changed.

The source string (with DI as an index
for the extra segment) is subtracted
from the destination string (which
uses SI as index). Only the flags
are affected and both DI and SI
are incremented. A typical se­
quence of instructions could be

MOV SI 1 OFFSET AAA
MOV 011 OFFSET BBB
CMPS AAA 1 BBB

Table A.5 contains additional instructions specific to the 80286 microproces­
sor. Table A.6 contains similar instructions for the 80386 microprocessor. Both of
these microproce~sors are designed to operate in Protected Mode. The computer used
in writing this book was a PC AT with a 6-MHz throughput rate, as opposed to the
4-MHz clocks associated with the IBM PC. Expansion to the PS/2 systems should
yield even faster performance than the 80286-based system used here. Table A.7
presents the system-oriented instructions available for the 80286 and 80386. These
instructions are not normally accessible by the applications programmer.

Table A.8 contains the Macro Assembler operators available to the program­
mer, Table A.9 contains the pseudo-operations available to the Macro Assembler
programmer, and Table A.10 contains a set of operators to be used with the macro
pseudo-op.

Table A.11 illustrates the coprocessor instruction set. These instructions begin
with the letter "F" and most rely on the use of the coprocessor stack registers, ST(O)
through ST(7), for implementation. These stack registers serve as the general-purpose
registers for the coprocessor. Usually, ST(O) serves as the source register and ST(l)
as the destination, particularly in implicit instructions such as F ADD when used
without operands.

App.A IBM Macro Assembler/2

TABLE A.3 (Concluded)

Instruction Purpose

JE short-label Jump if equal/
(JZ) if zero

JG short-label Jump if greater/if
(JNLE) not less or equal

JGE short-label Jump if greater or
(JNL) equal/if not less

JL short-label Jump if less/if not
(JNGE) greater or equal

JLE short-label Jump if less or
(JNG) equal/if not

greater
JMP target Jump
JNC short-label Jump if no carry

JNE short-label Jump if not equal/
(JNZ) if not zero

JNO short-label Jump if no over-
flow

JNB short-label Jump if no parity/
(JPO) if parity odd

JNS short-label Jump if no sign/if
positive

JO short-label Jump on overflow
JP short-label Jump on parity/

(JPE) if parity even
JS short-label Jump on sign

277

Comments

If the last operation to change ZF set this
flag (gave a result of 0), JE will cause
a jump to occur. This is a short-label
jump.

If ZF = 0 and SF = OF, the JG instruction
will cause a jump to short-label. This
instruction is used with signed operands.

This instruction is the same as JG except
ZF is not considered. If SF = OF, the
jump occurs. This is a short-label instruc­
tion with signed operands.

If SF # OF, the JL instruction will result
in a jump. This instruction is short-label
with signed operands.

IfZF = 1 or SF# OF, the JLE instruction
yields a short-label jump. The instruction
is used with signed operands.

This is a direct and unconditional jump.
If CF = 0, this instruction yields a short­

label jump.
If ZF = 0, this short-label jump will occur.

IfOF = 0, this short-label jump will occur.

If PF= 0, this short-label jump will occur.

If SF= 0, this short-label jump will occur.

IfOF = 1, this short-label jump will occur.
If PF= l, this short-label jump will occur.

If SF = l , this short-label jump will occur.

276 App.A IBM Macro Assembler/2

Table A.3 presents the jump instruction group. These instructions are used to
achieve execution control within the langauge. They accomplish this by providing
the capability to change the instruction execution sequence based on the outcome of
various tests. These tests can be performed by various instructions that change the
state of flags in the flags' register. Table A.4 illustrates the compare instructions,
which serve as a basis for accomplishing such testing. These instructions change the
flags without changing the source or destination.

TABLE A.3 JUMP INSTRUCTION GROUP

Instruction

JA short-label
(JNBE)

JAE short-label
(JNB)

JB short-label
(JNAE)
(JC)

JBE short-label
(JNA)

JCXZ short-label

Purpose

Jump if above/
if not below or

equal

Jump if above or
equal/if not be­
low

Jump if below/if
not above or

equal/if carry

Jump if below or
equal/if not
above

Jump if ex is zero

Comments

This jump is used in conjunction with the
carry and zero flags. If either or both
are set, no jump occurs. Suppose two
operands are compared; then if the desti­
nation is greater than the source (above)
CF = ZF = 0 and the jump occurs.
The jump is within -128 to + 127 bytes
(short-label) and unsigned operands are
used.

This jump is similar to JA except only the
carry flag is examined. If a previous com­
pare, for example, is performed and the
destination is greater or equal to the
source (above or equal), CF = 0 and
the jump occurs. This is a short-label
instruction with unsigned operands.

This jump is the opposite of JAE. If the
carry flag is set, the jump will occur.
Suppose a previous compare is per­
formed and the destination is less than
the source (below); CF = 1 and the jump
occurs. This is a short label instruction
with unsigned operands.

This jump is the same as JB except it also
takes place if the zero flag is set (below
or equal). It is short-label with unsigned
operands.

Suppose an instruction sequence causes the
count register (CX) to decrement. When
ex reaches 0, control would transfer to
the short-label after execution of JCXZ.
This is a short-label jump.

App.A IBM Macro Assembler/2

TABLE A.2 (Concluded)

Instruction

DAS

110
IN ace, port

OUT port, ace

Miscellaneous
XCHG dest,src
XLAT src-table

Purpose

Decimal subtract
adjust

Input byte/word

Output byte/word

Exchange
Translate

Comments

Adjust for decimal subtraction.

The byte/word contents of port are
loaded into AU AX.

The contents of the accumulator are
sent to port output.

275

Exchanges the source (src) with dest.
BX is loaded with a table address. AL

contains a location number (byte) in
the table and this byte is replaced
in AL.

family of microprocessors. These instructions are grouped by category:

1. Arithmetic
2. Logical
3. Move
4. Load
5. Loop
6. Stack
7. Count
8. Flags
9. Shift

10. Rotate
11. Store
12. String
13. Convert
14. Control
15. ASCII
16. Decimal
17. I/0
18. Miscellaneous

274

TABLE A.2 (Continued)

Instruction

RCR dest,cnt

ROL dest,cnt

ROR dest,cnt
Store

STOS dest-str

SAHF

String
REP

REP NE

SCAS dest-str

Convert
CWD

CBW

Control
CALL target
RET

ESC ext-opcode,
src

LOCK
NOP
WAIT

ASCII
AAA

AAD

AAH

AAS

Decimal
DAA

Purpose

Rotate right through
carry

Rotate left

Rotate right

Store byte or word
string

Store AH in flags

Repeat string opera-
ti on

Repeat string opera-
ti on

Scan byte or word
string

Convert word to
doubleword

Convert byte to
word

Calls a procedure
Return from a pro-

cedure
Escape

Lock bus
No operation
Wait

ASCII adjust for ad-
di ti on

ASCII adjust for di-
vision

ASCII adjust for
multiply

ASCII adjust for
subtraction

Decimal add adjust

App.A IBM Macro Assembler/2

Comments

Rotates dest right in wrap-around fash­
ion cnt bits where cnt is in CL.

Same as RCL except the high-order
bit rotates into CF as well as the
low-order bit.

Same as ROL except to the right.

Transfers a byte (word) from AL (AX)
to the location pointed to by DI.

Transfers the value in AH to the flags
register.

Causes the string operation that
follows to repeat until ex = 0,
ZF = 1.

Same as REP except ZF = 0.

Subtracts the dest-str from AL (AX)
one byte at a time and affects the
flags.

Sign extends AX into DX.

Sign extends AL into AX.

Calls a procedure (target).
Returns control to the calling routine.

Initiates the ext-opcode with operand
src.

Closes the bus to access.
A do-nothing operation.
A bus cycle state used for synchroniza­

tion.

Adjusts the sum for an ASCII numeri­
cal value following addition.

Adjusts the quotient for ASCII numeri­
cal value following division.

Adjusts the product for ASCII numeri­
cal value following multiplication.

Adjusts the difference for an ASCII
numerical value following subtrac­
tion.

Adjust for decimal addition.

App. A IBM Macro Assembler/2

TABLE A.2 (Continued)

Instruction

LAHF
LDS dest,src

LEA dest,src

LES dest,src

Loop

LOOP short-label

LOOPE short-label

LOOPNE short-
label

Stack

POP dest

POPF

PUSH src

PUS HF

Count
DEC dest
INC dest.

Flags

CLC
CLD
CLI
CMC

STC
STD
STI

Shift
SAL dest,cnt

SHL dest,cnt
SAR dest,cnt

SHR dest,cnt

Rotate
RCL dest,cnt

Purpose

Load AH from flags
Load data segment

register
Load effective ad­

dress
Load extra segment

register

Loop until count
complete

Loop if equal

Loop if not equal

Pop word off the
stack

Pop flags off the
stack

Push word onto the
stack

Push flags onto the
stack

Decrement
Increment

Clear carry flag
Clear direction flag
Clear interrupt flag
Complement carry

flag
Set carry flag
Set direction flag
Sets interrupt flag

Shift arithmetic left

Shift logical left
Shift arithmetic

right
Shift logical right

Rotate left through
carry

Comments

Transfers the flags to AH.
Loads a 32-bit address into DS and

dest (offset).
Transfers the offset of src to dest.

Loads a 32-bit address into ES and
dest (offset).

273

Control is transferred to short-label if
ex ~ 0 and ex is decremented.

Same as LOOP but control transfers
if ZF = 1, as an additional require­
ment.

Same as LOOPE except ZF must equal
0.

Transfers a word from the stack
(pointed to by SP) to dest.

Transfers the word from the stack top
to the flags register.

src is placed on the stack top.

The flags register is loaded onto the
top of the stack.

Subtract one from dest.
Add one to dest.

Sets Cf= 0.
Sets DF = 0.
Sets IF= 0.
Changes setting of CF.

Sets CF= 1.
Sets DF = 1.
Sets IF= 1.

Shifts dest cnt bits left. CL contains
cnt.

Same as SAL.
Same as SAL except shift if to the

right.
Same as SAR.

Rotates dest left in wrap-around fash­
ion cnt bits where cnt is in CL.

Answers To Problems

memory area such as a shared segment defined using

\SHAREMEM\SDAT.DAT

where the path is common to both processes.

323

3.6. RAM semaphores are a good candidate for intertask communications when each
thread is within the same process. When conducting interprocess communications,
system semaphores provide a good method for synchronization because they share a
common system memory area and can be passed back and forth.

3.7. The macro @pushs loads a 32-bit address for parm on the stack. The macro @pushd
loads the 32-bit contents of the double-word parameter parm onto the stack. The
fourth parameter of@DosWriteQueue must contain a pointer value, and the address
of this the double word containing this value is not of interest.

3.8. By clearing the semaphore using @DosSemClear.

3.9. There could be a segment protection violation, as both processes contend for the
speaker.

3.10. A pipe was used to pass buffered data directly. The queue, on the other hand, was
used to pass pointers to buffers. The queue employed a shared memory area allo­
cated by @DosAllocSeg, whose buffer address was passed via the queue.

3.11. See Table 3.1.

3.12. A shared segment is allocated with @DosAJlocShrSeg and is used when two or more
processes need to access a common buffer in interleaved or multiple asynchronous
fashion. The fact that both have simultaneous access must be regulated using sema­
phores, for example. A giveable segment, on the other hand, would be used when a
process desires to write to a common segment and then release the segment so that
another process can access the "given" segment.

3.13. Process 1

read_hdl
write_hdl
buf_flag
bytes_written

msize
ssell
shrname

@DosAllocShrSeg

@DosMakePipe

@DosCreateSem

dw ?

dw ?

dw 256 ;for example
dw ?

dw ?

dw ?

db '\SHAREMEM\SDATl.DAT',0

msize,shrname,msell ; allocate segment

read_hdl, write_hdl, buf_flag ;Create pipe

Synchronize

324 Answers To Problems

@DosWrite write_hdl,message,length,bytes_written ;Transfer

@DosSemSet

@DosExecPgm
@Dos Wait

Process 2

shrsel dw ?

; set semaphore

;execute child
;wait child completion

shrname db '\SHAREMEM\SDATl. DAT, , 0

read_hdl •••
bytes_read •••

@DosOpenSem •••

@DosGetShrSeg •••

; open semaphore

; get shared segment

; load read handle and message length from shared segment
buffer

@DosRead read_hdl, buffer, length, bytes_read ;read buffer

@DosSemClear ; clear semaphore

3.14. Process 1

q_hdl dw ?

q_name db '\QUEUES\QDAT.DAT' ,O

@DosCreateQueue q_hdl, ••• ; create queue

@DosExecPgm ••• ; execute child

@DosReadQueue q_hdl, ••• ; read queue buffer

;transfer message using 32-bit queue pointer to buffer

@DosFreeSeg •••

@DosCloseQueue •••

Process 2

q_hdl
q_name

; free allocated segment (process)

; close queue

dw ?

db '\QUEUES\QDAT.DAT',0

Answers To Problems

q_w
q_v
q_rr

@DosOpenQueue

@DosAllocSeg •••

dw 0
dd 0
dw 0

;load segment with message

@DosGiveSeg •••

@DoswriteQueuel •••

@DosFreeSeg q_w

@DosCloseQueue •••

325

;open queue

; allocate segment

;get read selector

;write address to queue

; free allocated segment

3.15. The intraprocess thread appears as a FAR entry point within the same process seg­
ment. An interprocess thread appears as a FAR call to an entry point in a new seg­
ment, and it must be started with DosExecPgm.

3.16. The calls

@DosAllocSeg
@DosReAllocSeg

actually create and reallocate global memory space. This memory can exist as vir­
tual addresses (on disk) or as actual data RAM. The call

@DosSubAlloc

subdivides an existing segment into smaller blocks of local memory. This call returns
a block offset to be used as the start of the memory block. No consideration of pre­
vious writes to the segment is made; hence a block can overwrite a memory area if
not properly handled. A recommended procedure is to suballocate the memory seg­
ment as early as possible, thereby obtaining a block offset from which to work.

Chapter 4

4.1. When IBM and Microsoft developed the two versions of the Toolkit, they modified
the structures and calling sequences between them. Calling the physical screen buffer
in Version 1.0 required a structure PhysBufData. In the Version 1.1 this structure
was renamed _ VIOPHYSBUF and the structure members have different tags between
versions. Hence many of the Version 1.1 Toolkit entities require slightly different no­
menclature than that of Version 1.0.

4.2. Many of the Standard C 1/0 library functions have been defined under Microsoft C
Optimizing Compiler Version 5.1 to run as reentrant routines. Hence these library
routines are callable in the usual fashion from Protected Mode.

326 Answers To Problems

4.3. All formal parameters specified as type int need not be type specified in the formal
parameter list. Hence, when passing parameters, only types other than int need be
specified.

4.4. The input value x is of int type, hence can be signed. The range of such signed
variables is [-32,768, 32,768]. Had this parameter been of type double or float, a
much greater range of values would be permissible.

4.5. The normal C local stack calling convention starts with the Nth parameter and con­
tinues to load the stack down to parameter 1. The API services require co.nventional
loading from parameter 1 to N. In the Toolkit a type APIENTRY is defined using
the pascal convention, which reorders the formal parameters on the stack from 1 to
N.

4.6. The code

CHAR FAR *ptr;

defines a FAR pointer, ptr, which points to a byte value using a 32-bit address. The
code

CHAR FAR *shrname = "\\SHAREMEM\\SDATl.DAT";

defines a FAR pointer, shrname, which points to a string value using a 32-bit ad­
dress and associates the string value with this 32-bit address.

4. 7. This function generates a full 32-bit address for a FAR call. The variables sel and
off correspond to selector and offset, respectively, and must be obtained separately.

4.8. This declaration associates a FAR pointer address of OxB8000 with a BYTE value
specified as the structure element PVBPrt2.pBuf. Note that this structure element is
specified as part of the physical buffer structure_ VIOPHYSBUF. The value in ques­
tion is the start address (32-bit) for the physical screen buffer.

4.9. The return from sin() is double precision; hence the defining relation should be

y = (float)(sin(2. *PI* t))l

4.10. The dot attribute for wdot() is 1, and the dot attribute for uwdot() is 0.

4.11. The column values represent horizontal increments, and the row values represent ver­
tical increments.

4.12. This is the character code for putting the Epson dot matrix printer (FX-85) into
graphics mode. The values OxlB and Ox4V specify

ESC k

and 64 is the difference between 256 and 320. Here the "1" indicates one block of
256 columns plus "64," to get 320 columns in the printer graphics mode. The ESC k
indicates that the printer must go to graphics mode.

4.13. This sends the Epson FX-85 printer the command

ESC A 8

Answers To Problems 327

which changes the printer output to case sn2-inch spacing for lines. This removes
any extra vertical spacing that might appear in the output and ensures that the eight
dots of vertical spacing will butt together as each vertical set of pins is executed for
each line (25 vertical lines of eight pins per line).

4.14. RAM semaphores.

4.15. The calls all employ type definitions for the formal parameters unless the parameters
are of basic integer type (such as INT, UINT, USHORT, SHOR'I).

4.16. One process must establish the semaphore, open the second process, and wait until
the second process is complete. The second process maintains synchronization by
executing with the first process blocked until

DosSemClear()

is issued by the second process. This allows the first process to cease being blocked
by

DosSemWait()

and continue execution beyond this instruction. Threads are handled in identical fash­
ion.

4.17. To pass the pipe read handle, read_hdl, to the second process, where it is used to
locate the pipe buffer and transfer the pipe message using

DosRead()

4.18. The thread's stack is separate from the calling thread's stack. Hence the compiler
will detect an overflow condition because the second thread's stack is "outside" the
stack originally defined for the overall process. To avoid compiler errors with the
Microsoft C Optimizing Compiler Version 5.1, for example, a compiler option of -Gs
must be used.

4.19. The programs have been debugged and it is assumed that no error checking is
needed intrinsically. Good form would retain such error checking when dynamic er­
rors can creep in. For clarity, we have avoided them in the code dynamics.

4.20. The points

4.21. From the library cgraph.lib.

Chapter 5

(x,y,z) = (1, 0, 0)
(0, 1, 0)
(0, 0, 0)
(0, 0, 1)

5.1. Load the routine as a run-time dynamic linker library (DLL).

5.2. The dynamic link library (.dll) executable module is generated from a group of ob­
ject modules as

link (group object modules),
(.dll module),, (libraries), (.def module)

328 Answers To Problems

Here the definition file must start with the LIBRARY keyword. Next, the .lib file is
created from

imp lib (• lib file) (• def module)

This definition file is the same one used earlier to define the .dll module.

5.3. The return address offset.

5.4. It appears in the definition file with LIBRARY, not NAME.

5.5. EXPORTS are the names of routines contained in a DLL which will be available to
be called by other modules. IMPORTS are the names of external routines to be used
by the DLL.

5.6. The two services needed are

DosLoadModule
DosGetProcAddr

The first is required to load the run-time .dll file, which must be specified in the ini­
tial calling program. This is the calling program's link with the DLL. The second is
needed to specify the DLL procedure entry point so that a simple FAR call to this
entry point can be made.

5.7. You would choose a flowchart because it illustrates the dynamic decision-oriented
performance of the program. There are several types of flowcharts: literal and func­
tional. The former spell out each individual programming step and tend to be very
detailed. Functional flowcharts are more desirable and address program activity in a
functional sense; that is, each block constitutes a major activity in the sequence of
program flow, and this activity usually consists of many program steps. A Structure
Chart merely illustrates the subordinate relationships among the program components.
This device is most useful for providing the user with an overview of the program
and a general picture of the major modules appearing in the program.

5.8. The dominant characteristic of a C function is a single entry and exit point and a
single return value. These features serve to make the program structure very orderly
with a downward flow of activity to the code instead of the varied branching found
in programs typified by FORTRAN code, for example. In FORTRAN programs, the
unrestricted use of GOTOs and conditional branching frequently makes following the
program flow difficult.

5.9. C programs can efficiently use global variables when large array components of da­
tabases are to be manipulated. In this case the use of arrays as local variables would
greatly expand the stack area and result in inefficient memory allocation. The diffi­
culty with using global variables in any implementation is that external modules that
call such variables frequently lose track of the time history of the variables. By treat­
ing variables as locally defined, the complete time picture of the performance of the
variable is available in the accessing module.

5.10. This is accessible only through the Presentation Manager, which did not become
available until OS/2 Version 1.1 was issued.

5.11. Three-dimensionally the x-axis points out of the image away from the plane of the
CRT. Hence a two-dimensional display, such as a CRT, can only illustrate the image

Answers To Problems 329

of a three-dimensional surface as it is projected onto such a two-dimensional display.
This projection is achieved by setting one of the coordinate sets equal to zero.

5.12. Some of the hidden facets appearing in the three-dimensional surface of Figures 5.19
through 5.23 actually have positive direction normals to the facet surface. Hence
these surfaces, even though hidden, will not satisfy the criterion that the normal
points into the plane of the CRT.

5.13. This equation has the form

using

sin u = u

This becomes

J~oA2 [1 -

• 2
lim A2 sm u
U-+0 -;;p:-

u3
+ 3!

g2
+ y/

3! 5!

u5
5!

- ...]2= A2

5.14. This routine must be called before setting the CGA mode because it prints a request
to the text screen (asking for the name of the data file).

5.15. The selector, MMI, would no longer be referenced.

Index

@define, 42
@pushs, 42
@pushw, 42
@DosAllocHuge, 121
@DosAllocSeg, 96
@DosAllocShrSeg, 105
@DosBeep, 132
@DosClose, 46
@DosCloseQueue, 158
@DosCreateQueue, 157
@DosCreateSem, 130
@DosCreateThread, 132
@DosExecPgm, 105
@DosExit, 46
@DosFreeSeg, 96, 112
@DosGetHugeShift, 123
@DosGetSeg, 116
@DosGetShrSeg, 105
@DosGiveSeg, 116
@D,osl5111Process, 106
@QosMakePipe, 152
@DosOpen, 46
@DosOpenSem, 130
@DosRead, 156
@DosReadQue~~· 159

@DosReallocSeg, 116
@DosSemClear, 130
@DosSemSet, 130
@DosSemWait, 130
@DosSubSet, 126
@DosWrite, 46
@DosWriteQueuel, 160
@VioGetPhysBuf, 56
@VioScrLock, 56
@VioScrollUp, 54
@VioScrUnlock, 56
@VioSetMode, 56
@VioWrtTTY, 132
@kbdStringln, 56

A

accessing huge segments, 119
accessing a memory segment, 112
accessing a shared segment, 105
access rights byte, 10
algorithm development, 248
align-type, 44

331

332

API.LIB, 40
APIENTRY, 176
API Services, 20
API type definitions, 176
Apple Mcintosh display, 17
Application Programming Interface, 2
assembler addressing modes, 271
assembler to C template, 222
assembler instructions, 272
assembler macro operators, 282
assembler pseudo-ops, 284
ASSUME pseudo-op, 44
asynchronous execution, 29
automatic segments, 229

B

base pointer, 176
bbox.asm, 82
bboxl.asm, 82
BIOS, 19
bitmap, 32
bitwise operators, 248
boot record, 17
boxprtl.asm, 69
branching in C, 245
bus, 5

c
Cartesian unit vector, 253
C compiler, 167
C control mechanisms, 243
cdecl, 33
CGA graphics mode, 54
cgraph.lib, 183
changing segment size, 115
child process, 30
child process in C, 192
ckthread.c, 199
C language syntax, 293
class, 44
clipboard, 32
CODE, 228
code segment privilege, 95
CodeView, 2
Color Graphics Adapter, 51

Index

combine-type, 44
Common Programming Interface, 31
complexity metrics, 241
connecting dot graphics lines, 74
CONNL2, 74
C operators, 296
coprocessor instructions, 288
core loop, 16
C parameter passing, 224
C program to generate threads, 199
C program structure, 171
creating a DLL, 231
creating huge segments, 119
creating a memory segment, 96
creating a pointer, 182
creating a process, 140
creating a shared segment, 105
creating a thread, 130
C screen graphics routines, 182
CSEG, 63
current protection level, 18
cursor, 17

D

DATAl, 223
data management, 14
data structures, 248
db pseudo-op, 45
definition library file, 29
DESCRIPTION, 228
descriptor cache register, 94
descriptor privilege, 95
descriptor table, 10
destruction of a memory segment, 95
device drivers, 14
direct memory access, 53
disk access, 204
dja.c, 214
dlinkl.asm, 233
DOS, 1
DosAllocShrSeg(), 192
doscalls.inc, 41
DOS Compatability Mode, 1
DosExecPgm(), 197
DosExit(), 197
DosKillProcess(), 197
DosMakePipe(), 192

Index

DOS partition, 6
DosRead(), 197
DosWrite(), 195
Dow Jones program, 214
dw pseudo-op, 45
dynamic linking, 29
dynamic-link libraries, 29
dynl.asm, 232
dynll.def, 231
dynll. dll, 231
dynll. lib, 231
dyn2.asm, 237
dyn22.def, 236
dyn22.lib, 237
dyn33.def, 237
dyn33.lib, 237

E
Enhanced Graphics Adapter, 51
erasable programmable read only

memory, 6
error checking, 250
EXECUTEONLY, 228
EXECUTEREAD, 228
Explicit Load and Call DLL, 227
EXPORTS, 229
Extended Edition, 2

F

facet, 252
facet3d.c, 262
Family.API, 35
Far call, 43
firmwave, 6
flagword, 12
form, 246
fprintf(), 218
Full-screen command prompt mode, 2
function macros, 300

G

gates, 11

gen3d.c, 255
giveable segment, 160
global descriptor table, 18
global space, 9
gphrout.c, 182
GRAPHICS.COM, 62
GRAPHLIB.LIB, 72
GROUP pseudo-op, 45
guidelines on C module

development, 240

H

handles, 17
heap, 227
HEAPSIZE, 229
hidden lines, 253
higher-level language, 19
hugeseg.asm, 122
huge segments, 29

IBM PS/2, 1
icon, 31
IFl pseudo-op, 45
implib, 231
import library utility, 231
IMPORTS, 230
include files, 168
INDEX field, 10
initialization routine dyninit.obj, 236
Intel CPU, 1
interfacing assembler to C, 221
interrup address space, 9
Interrupt Service Routine, 14
intersegment transfer, 11
IOPL, 18
IOPS, 30
iterative loops, 242

K
keyboard services, 313

333

334

L
latch, 6
ldarray, 63
ldmem, 112
levels of protection, 3
LIBRARY, 228
linear subspaces, 8
lineh, 61
linker, 28
LINK utility, 231
loader, 28
LOADONCALL, 228
Load on Call DLL, 227
local thread stack, 16
LS138 demultiplexers, 6
LS245 transcriber, 6

M

machine code, 44
Machine Status Word, 12
macro assembler, 43
MAKE file, 173
MAKEP function, 180
Memory Management, 93
memory-management registers, 8
message boxes, 32
metafile, 32
Microsoft C Compiler Version 5.1, 2
Microsoft Windows, 17
mixed-language programming, 222
Mixed Object Document Content

Architecture, 32
modal dialog boxes, 32
modaless dialog boxes, 32
Modular Code, 87
module size, 241
mouse, 17
mouse services, 313
multitasking, 29
multi-threaded applications, 188
musical scale program, 225

N

NAME, 228
NEAR procedure, 173

NONSHARED, 228
nos2512.asm, 106
nos261.asm, 111

0
object-oriented tools, 251
optimizing execution speed, 222
option/CO, 198
option-Gs, 198
option-Zi, 198
OS2P2.EXE, 149
overlapped windows, 32

p

PAGE pseudo-op, 45
pascal calling convention, 176
pel, 51
physical address, 4
physical memory space, 6
physical selector, 61
pipes, 14
pipes in C, 192
pipest.asm, 152
pixel, 51
polling model, 14
pprtscr.c, 182

Index

preemptive time-slicing dispatcher, 14
PRELOAD, 228
pre-loaded DLL, 227
Presentation Manager, 17
printer control characters, 48
printer graphics mode, 51
printer program, 46
printf, 172
print head weights, 48
privileged instruction exception, 18
process, 14
processor extension, 12
program design language, 244
program page numbers, 310
program to plot two lines, 56
program segment prefix, 48
Protected Mode features, 20
PROTMODE, 228
prtscr, 61
prtwave.c, 182

Index

pseudo-code, 87
pseudo-op, 44

Q

QUEUECL.EXE, 157
queues, 14

R

random access memory, 2
random box program, 136
reentrant, 29
registers, 4
representation of tetrahedron, 201
requested privilege level, 10
return values, 250
rotating tetrahedron, 200
rotation matrices, 201
rotation of a point, 200
rotetra.c, 205
RS-233C adapter, 5
run-time loading, 28

s
scalesl.asm, 226
scanf, 172
screen buffer, 42
screen buffer physical memory, 51
screen buffer pixel placement, 51
scr Id, 61
scr-ldm, 96
segment address translation registers, 10
segment descriptors, 10
segment selector, 9
segmented memory, 8
SEGMENTS, 228
semaphore, 14
semaphores in C, 192
sequentially defined code, 243
SHARED, 228
shared memory segments, 14
shared segments in C, 192
SHAREMEM, 105
simplified OS/2 architecture, 15

sine work program, 180
single-thread, 1
slopeln.asm, 74
stack, 19
stack pointer, 176
STACKSIZE, 228
Standard Edition 1.0, 1
Standard Edition 1.1, 2
Standard Mode (80x25), 54
stdio.h, 171
strategy routine, 14
Structure Chart, 34
Structured Programming, 87
Structured Query Language, 2
STUB, 228
style, 244
suballocating memory, 125
subcalls.inc, 41
swave.c, 180
synchronous execution, 30
sysmac.inc, 41

335

Systems Application Architecture, 31

T

table indicator, 10
task manager, 14
task state segments, 11
task switch, 18
temporary screen buffer, 104
termination panel, 32
tetra.c, 201
_TEXT, 223
thread, 14
three dimensional surface, 251
tiled windows, 32
timhist.c, 213
TITLE pseudo-op, 45
Toolkit, 30
Top-Down Design, 87
twoln.asm, 69
twolnm.asm, 96

v
VEDIT PLUS, 2
Video Graphics Adapter, 51
VioGetCurPos, 41

336

VIOMODEINFO structure, 177
VioScrollUp(), 197
VioWrtITY(), 197
virtual memory, 9

w
waitf, 60
wdot, 56
Windows Software Development Kit, 31

x
xadiskr.c, 260
xscale.c, 261

z
zero termination, 105

Index

Answers To Problems

2.7 .•••
kbd_buf
lkbd_buf
iowait
kbdhdl
freq
dur

@KbdStringin
@Dos Beep

db 80
dw $-kbd_buf
dw 0
equ 0
dw 1000
dw 5000

kbd_buf,lkbd_buf,iowait,kbdhdl
freq,dur

321

2.8. Yes, all calls to the API can be made in full form, where each push and pop, as
well as EXTRN declaration, is stated explicitly according to the rules of OS/2. The
toolkit simply provided a set of assembler .inc files and C .h files that facilitated
usage of the API services through very functional macros.

2.9. The key assumption is that segment selectors can be treated as segment addresses.
Since the 80286 accesses segments using the selectors, the selector value must reside
in a segment register. The address is then calculated in the usual Protected Mode
fashion, where the segment selector acts as a segment address. The use of segment
override addressing, such as

es: [bp]

simply permits specification of an address in the usual fashion, where the segment
selector is made to correspond to the physical segment address when VioGetPhysBuf
is exercised.

2.10. They represent FAR locations because the entry points are called from external API
modules, hence a 32-bit address must be specified.

2.11. No hierarchy should have a single child subordinate to a parent. The box 310 should
be absorbed in 300.

2.12. The command is

@Doswrite dev_hand,in_buffer5,bytesin3,bytesout

where the undefined parameter is

in_buffer5 db 1BH,41H,OCH

2.13. It is intuitive that they cannot be preempted by an OS/2 task switch, or the possibil­
ity of losing data from the device would occur.

2.14. To access the screen buffer (physical) properly, the screen must be locked; hence if
scr_ld is to load scr_buffer with the screen context, it must be locked. If prtscr is
executed when the screen is locked, it could dominate access time for the physical
display buffer. Hence the program should load a temporary buffer, release the screen
context, and then begin the print operation.

2.15. Ten complete raster segments.

2.16. The DosExitCritSec corresponds to exit of a critical section of execution for a thread
and returns control to a process. This could be used, for example, when an inde-

322 Answers To Problems

pendent thread has a particular piece of code that must execute prior to any other
operation for the parent process. Then it would be desirable to monitor and ensure
that this code executed, before continuing. Clearly, this could be dynamic and change
with the active chronology of execution.

2.17. DosExit is used to terminate an application and return to OS/2. All other returns
NEAR or F.

Chapter 3
3.1. The drivers mentioned operate from the kernel, level 0. They must originate here

because they have to be protected ahead of all other code. We cannot have a disk­
write preempted in the middle, nor can we tolerate "jerky" mouse cursor movement
as the mouse po5ition changes.

3.2. The macro calls admittedly remove a layer of detail from the program code. This
layer would tend to expand the code by a factor of 4 to 7. All the pushes to the
stack have been suppressed prior to each API call and the call takes on the form of
a higher-level-language (HLL) function call. The data area tends to expand consid­
erably with all the macro parameter definitions, but the actual executable code re­
mains compact. This requires the programmer to develop a general familiarity with
the macro calls at the level of the IBM Programmer's Toolkit or Appendix C of this
book. Once this familiarity has developed it is a very easy matter to read the result­
ing "structured" code and follow the flow of execution. Hence maintenance becomes
an easy task. Clarity (of bow the code executes) is also paramount, and much more
so under the macro call format. The macro calls do, however, inht"bit debugging in
that the in-line code is missing. If the user prints a copy of the list file with macros
expanded, tracing the source code is still an easy matter. In general, these approaches
tend to be a matter of preference based on the programmer's orientation. We favor
the HlL appearance of the code. It makes functional performance of the code the
primary mechanism to be emphasized. Expansion of the in-line code makes it more
obscure from a functional viewpoint but easier (and essential) to debug.

3.3. For the segment to be sharable, bit 0, to be sharable through @DosGiveSeg, or bit 1,
to be sharable through @DosGetSeg, must be set in the flags word (the third pa­
rameter in the calling list). Bit 2 of this same flags word must be set if the segment
is to be discardable.

3.4. The write to the huge segment must use the proper selector. When crossing the 64K­
byte boundary the program must access a new but contiguous selector.

3.S. There must be some common link between the two processes. Usually, this is a
common element name s~h as

\SEM\SDAT.DAT

or

\QUEUES\QDAT.DAT

which appears in both processes and is the same. The system then provides the con­
nection. Alternative to this is the passing of a selector or printer in a common

