MPR601UM-01 MPC601UM/AD

PowerPC 601

RISC Microprocessor User's Manual

PewerpP @ MOTOROLA

]
oll

About This Book

The primary objective of thisuser’s manual isto define the functionality of the PowerPC™
601 microprocessor for use by software and hardware devel opers. The 601 processor isthe
first in the family of PowerPC microprocessors, and can provide a reliable foundation for
developing products compatible with subsequent processors in the PowerPC family. The
601 provides a bridge between the POWER architecture and the PowerPC architecture, and
as aresult differs from the PowerPC architecture in some respects. Therefore, a secondary
objective of this manual is to describe these differences.

The PowerPC architecture is comprised of the following components:

» PowerPC user instruction set architecture—This includes the base user-level
instruction set (excluding afew user-level cache-control instructions), user-level
registers, programming model, data types, and addressing modes.

» PowerPC virtual environment architecture—This describes the semantics of the
memory model that can be assumed by software processes and includes descriptions
of the cache model, cache-control instructions, address aliasing, and other related
Issues. Implementations that conform to the PowerPC virtual environment
architecture also adhere to the PowerPC user instruction set architecture, but may
not necessarily adhere to the PowerPC operating environment architecture.

» PowerPC operating environment architecture—T his includes the structure of the
memory management model, supervisor-level registers, and the exception model.
I mplementations that conform to the PowerPC operating environment architecture
also adhereto the PowerPC user instruction set architecture and the PowerPC virtual
environment architecture.

It is beyond the scope of the manual to provide a thorough description of the PowerPC
architecture. It must be kept in mind that each PowerPC processor is a unique PowerPC
implementation.

For readers of this manual who are concerned about compatibility issues regarding
subsequent PowerPC processors, it is critical to read Chapter 1, “Overview,” and in
particular Appendix H, “Implementation Summary for Programmers,” which outlinesin a
very general manner the components of the PowerPC architecture, and indicates where and
how the 601 diverges from the PowerPC definition. Instances where the 601 differs from
the PowerPC architecture are noted throughout the manual.

About This Book xli

Audience

This manual is intended for system software and hardware developers and applications
programmers who want to develop products for the 601 microprocessor and PowerPC
processors in genera. It is assumed that the reader understands operating systems,
microprocessor system design, and the basic principles of RISC processing.

Organization
Following is a summary and a brief description of the major sections of this manual:

o Chapter 1, “Overview,” is useful for readers who want a general understanding of
the features and functions of the PowerPC architecture and the 601 processor. This
chapter also providesageneral description of how the 601 differsfrom the PowerPC
architecture.

» Chapter 2, “Registersand Data Types,” is useful for software engineerswho need to
understand the PowerPC programming model and the functionality of the registers
implemented in the 601. This chapter also describes PowerPC conventions for
storing datain memory.

» Chapter 3, “Addressing Modesand I nstruction Set Summary,” providesan overview
of the PowerPC addressing modes and a description of the instructionsimplemented
by the 601, including the portion of the PowerPC instruction set and the additional
instructions implemented by the 601.

Specific differences between the 601 implementation and the PowerPC
implementation of individual instructions are noted.

» Chapter 4, “Cache and Memory Unit Operation,” provides a discussion of cache
timing, look-up process, MESI protocol, and interaction with other units. This
chapter contains information that pertains both to the PowerPC virtual environment
architecture and to the specific implementation in the 601.

» Chapter 5, “Exceptions,” describes the exception model defined in the PowerPC
operating environment architecture and the specific exception model implemented
in the 601.

» Chapter 6, “Memory Management Unit,” provides descriptions of the MMU,
interaction with other units, and address tranglation. Although this chapter does not
provide an in-depth description of both the 64-bit and 32-bit memory management
model defined by the PowerPC operating environment architecture, it does note
differences between the defined 32-bit PowerPC definition and the 601 memory
management implementation.

» Chapter 7, “Instruction Timing,” provides information about latencies, interlocks,
special situations, and various conditionsto hel p make programming more efficient.
This chapter is of specia interest to software engineers and system designers.
Because each PowerPC implementation is unique with respect to instruction timing,
this chapter primarily contains information specific to the 601.

xlii PowerPC 601 RISC Microprocessor User's Manual

e Chapter 8, “Signal Descriptions,” provides descriptions of individual signals of the
601.

o Chapter 9, “System Interface Operation,” describes signal timings for various
operations. It also provides information for interfacing to the 601.

e Chapter 10, “Instruction Set,” functions as a handbook of the PowerPC instruction
set. It provides opcodes, sorted by mnemonic, aswell asamore detailed description
of eachinstruction. Instruction descriptionsindicate whether aninstruction is part of
the PowerPC architectureor if it is specific to the 601. Each description indicates any
differencesin how the 601 implementation differsfrom the PowerPC definition. The
descriptions aso indicate the privilege level of each instruction and which execution
unit or units executes the instruction.

* Appendix A, “Instruction Set Listings,” lists the superset of PowerPC and 601
processor instructions.

» Appendix B, “POWER Architecture Cross Reference,” describes the relationship
between the 601 and the POWER architecture.

» Appendix C, “PowerPC Instructions Not Implemented,” describes the set of
PowerPC instructions not implemented in the 601 processor.

» Appendix D, “Classes of Instructions,” describes how instructions are classified
from the perspective of the PowerPC architecture.

* Appendix E, “Multiple-Precision Shifts,” describes how multiple-precision shift
operations can be programmed.

» Appendix F, “Floating-Point Models,” gives examples of how the fl oating-point
conversion instructions can be used to perform various conversions.

* Appendix G, “Synchronization Programming Examples,” gives examples showing
how synchronization instructions can be used to emul ate various synchronization
primitives and how to provide more complex forms of synchronization.

* Appendix H, “Implementation Summary for Programmers,” is acompilation of the
differences between the 601 processor and the PowerPC architecture.

* Appendix I, “Instruction Timing Examples,” shows instruction timings for code
sequences, emphasi zing situations where stalls may be encountered and showing
methods of avoiding stalls where possible.

* Thismanual also includes a glossary and an index.
In this document, the terms “PowerPC 601 microprocessor” and “601” are used to denote

the first microprocessor from the PowerPC architecture family. The PowerPC 601
microprocessors are available from IBM as PPC601 and from Motorola as MPC601.

About This Book xliii

Additional Reading

Following is alist of additional reading that provides background for the information in
this manual:

* John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative
Approach, Morgan Kaufmann Publishers, Inc., San Mateo, CA

e PowerPC 601 RISC Microprocessor Hardware Specifications, MPC601EC/D
(Motorola order number) and MPR601HSU-01 (IBM order number)

» PowerPC 601 RISC Microprocessor Technical Summary, MPC601/D (Motorola
order number) and MPR601TSU-01 (IBM order number)

» PowerPC Architecture, published by International Business Machines Corporation,
52G7487 (order number)

Conventions
This document uses the following notational conventions:

ACTIVE_HIGH Names for signals that are active high are shown in uppercase text
without an overbar.

ACTIVE_LOW A bar over asignal name indicatesthat the signal is active low—for
example, ARTRY (addressretry) and TS (transfer start). Active-low
signals arereferred to as asserted (active) when they are low and
negated when they are high. Signals that are not active-low, such as
APO-AP3 (address bus parity signals) and TTO-TT4 (transfer type
signals) are referred to as asserted when they are high and negated
when they are low.

mnemonics I nstruction mnemonics are shown in lowercase bold.

italics Italics indicate variable command parameters, for example, beetrx

X'OF Hexadecima numbers

b'0011' Binary numbers

rA|0 The contents of a specified GPR or the value O.

REG[FIELD] Abbreviations or acronyms for registers are shown in uppercase
text. Specific bit fields or ranges are shown in brackets.

X In certain contexts, such as asignal encoding, thisindicates adon’t

care. For example, if TTO-TT3 are binary encoded b'’x001', the state
of TTOisadon't care.

Acronyms and Abbreviations
Tablei contains acronyms and abbreviations that are used in this document.

xliv PowerPC 601 RISC Microprocessor User's Manual

Table i.

Acronyms and Abbreviated Terms

Term Meaning
ALU Arithmetic logic unit
ATE Automatic test equipment
ASR Address space register
BAT Block address translation
BIST Built-in self test
BPU Branch processing unit
BUC Bus unit controller
BUID Bus unit ID
CAR Cache address register
CMOS Complementary metal-oxide semiconductor
COP Common on-chip processor
CR Condition register
CRTRY Cache retry queue
CTR Count register
DABR Data address breakpoint register
DAE Data access exception
DAR Data address register
DBAT Data BAT
DEC Decrementer register
DSISR DAE/source instruction service register
EA Effective address
EAR External access register
ECC Error checking and correction
FPECR Floating-point exception cause register
FPR Floating-point register
FPSCR Floating-point status and control register
FPU Floating-point unit
GPR General-purpose register
IABR Instruction address breakpoint register
IBAT Instruction BAT
IEEE Institute for Electrical and Electronics Engineers
1Q Instruction queue

About This Book

xlv

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
ITLB Instruction translation lookaside buffer
U Integer unit
L2 Secondary cache
LIFO Last-in-first-out
LR Link register
LRU Least recently used
LSB Least-significant byte
Isb Least-significant bit
MESI Modified/exclusive/shared/invalid—cache coherency protocol
MMU Memory management unit
MQ MQ register
MSB Most-significant byte
msb Most-significant bit
MSR Machine state register
NaN Not a number
No-Op No operation
PID Processor identification tag
PIR Processor identification register
POWER Performance Optimized with Enhanced RISC architecture
PR Privilege-level bit
PTE Page table entry
PTEG Page table entry group
PVR Processor version register
RAW Read-after-write
RISC Reduced instruction set computer
RTC Real-time clock
RTCL Real-time clock lower register
RTCU Real-time clock upper register
RTL Register transfer language
RWITM Read with intent to modify
SDR1 Table search description register 1
SLB Segment lookaside buffer

PowerPC 601 RISC Microprocessor User's Manual

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
SPR Special-purpose register
SPRGn General SPR
SR Segment register
SRRO Machine status save/restore register 0
SRR1 Machine status save/restore register 1
TAP Test access port
B Time base register
TLB Translation lookaside buffer
TTL Transistor-to-transistor logic
UTLB Unified translation lookaside buffer
uuT Unit under test
WAR Write-after-read
WAW Write-after-write
WIM Write-through/cache-inhibited/memory-coherency enforced bits
XATC Extended address transfer code
XER Integer exception register

Terminology Conventions

Tableii describes terminology conventions used in this manual.

Table ii. Terminology Conventions

IBM

This Manual

Data storage interrupt (DSI)

Data access exception (DAE)

Direct store segment

1/0 controller interface segment

Effective address

Effective or logical address (logical is used
in the context of address translation)

Effective segment ID (ESID) (64-bit
implementations—not on the 601)

Logical segment ID (LSID) (64-bit
implementations—not on the 601)

Extended mnemonics

Simplified mnemonics

Extended Opcode

Secondary opcode

Fixed-point unit (FXU)

Integer unit (1U)

Instruction storage interrupt (1SI)

Instruction access exception (IAE)

Interrupt

Exception

Problem mode (or problem state)

User-level privilege

About This Book

xIvii

Table ii. Terminology Conventions (Continued)

IBM

This Manual

Programmable 1/0 (P10)

1/0 controller interface operation

Real address

Physical address

Real mode address translation

Direct address translation

Relocation

Translation

Special direct store segment

Memory-forced I/O controller interface
segment

Storage (noun)

Memory (noun)

Storage (verb)

Access (verb)

Store in

Write back

Store through

Write through

Tableiii describes register and bit naming conventions used in this manual.

Table iii. Register and Bit Name Convention

IBM

This Manual

Problem mode bit (MSR[PR])

Privilege level bit (MSR[PR])

Instruction relocate bit (MSR[IR])

Instruction address translation bit (MSR[IT])

Data relocate bit (MSR[DR])

Data address translation bit (MSR[DT])

Interrupt prefix bit (MSR[IP])

Exception prefix bit (MSR[EP])

Recoverable interrupt bit (MSR[RI])
(not on the 601)

Recoverable exception bit (MSR[RE])
(not on the 601)

Problem state protection key (SR[Kp])

User-state protection key (SR[Ku])

DSISR DSISR acronym redefined as “DAE/Source
Instruction Service Register”
SDR1 SDR1 acronym redefined as “Table Search

Description Register 1”

Block effective page index (BATx[BEPI])

Block logical page index (BATX[BLPI])

Block real page number (BATX[BRPN])

Physical block number (BATX[PBN])

Block length (BATX[BL])

Block size mask (BATX[BSM])

Real page number (PTE[RPN])

Physical page nhumber (PTE[PPN])

xlviii

PowerPC 601 RISC Microprocessor User's Manual

Chapter 1
Overview

This chapter provides an overview of PowerPC™ 601 microprocessor features, including
ablock diagram showing the major functional components. It also provides an overview of
the PowerPC architecture, and information about how the 601 implementation differs from
the architectural definitions.

1.1 PowerPC 601 Microprocessor Overview

This section describes the features of the 601, provides a block diagram showing the major
functional units, and gives an overview of how the 601 operates.

The 601 is the first implementation of the PowerPC family of reduced instruction set
computer (RISC) microprocessors. The 601 implements the 32-bit portion of the PowerPC
architecture, which provides 32-bit effective (logical) addresses, integer datatypes of 8, 16,
and 32 hits, and floating-point data types of 32 and 64 bits. For 64-bit PowerPC
implementations, the PowerPC architecture provides 64-bit integer data types, 64-hit
addressing, and other features required to complete the 64-bit architecture.

The 601 is a superscalar processor capable of issuing and retiring three instructions per
clock, one to each of three execution units. Instructions can complete out of order for
increased performance; however, the 601 makes execution appear sequential.

The 601 integrates three execution units—an integer unit (IU), a branch processing unit
(BPU), and afloating-point unit (FPU). The ability to execute three instructionsin parallel
and the use of simple instructions with rapid execution times yield high efficiency and
throughput for 601-based systems. Most integer instructions execute in one clock cycle.
The FPU is pipelined so a single-precision multiply-add instruction can be issued every
clock cycle.

The 601 includes an on-chip, 32-Kbyte, eight-way set-associative, physically addressed,
unified instruction and data cache and an on-chip memory management unit (MMU). The
MMU contains a 256-entry, two-way set-associative, unified translation lookaside buffer
(UTLB) and provides support for demand paged virtual memory address translation and
variable-sized block trandation. Both the UTLB and the cache use least recently used
(LRU) replacement agorithms.

Chapter 1. Overview 1-1

The 601 has a 64-bit data bus and a 32-bit address bus. The 601 interface protocol allows
multiple masters to compete for system resources through a central external arbiter.
Additionaly, on-chip snooping logic maintains cache coherency in multiprocessor
applications. The 601 supports single-beat and burst data transfers for memory accesses; it
also supports both memory-mapped 1/0 and 1/O controller interface addressing.

The 601 uses an advanced, 3.6-V CMOS process technology and maintains full interface
compatibility with TTL devices.

1.1.1 601 Features

This section describes details of the 601's implementation of the PowerPC architecture.
Major features of the 601 are as follows:

» High-performance, superscalar microprocessor

— As many asthreeinstructions in execution per clock (one to each of the three
execution units)

— Single clock cycle execution for most instructions
— Pipelined FPU for all single-precision and most double-precision operations
» Three independent execution units and two register files
— BPU featuring static branch prediction
— A 32-bitIU
— Fully IEEE 754-compliant FPU for both single- and double-precision operations
— Thirty-two GPRs for integer operands
— Thirty-two FPRs for single- or double-precision operands
* High instruction and data throughput
— Zero-cycle branch capability
— Programmabl e static branch prediction on unresolved conditional branches
— Instruction unit capable of fetching eight instructions per clock from the cache
— An eight-entry instruction queue that provides |ook-ahead capability

— Interlocked pipelines with feed-forwarding that control data dependenciesin
hardware

— Unified 32-Kbyte cache—eight-way set-associative, physically addressed; LRU
replacement algorithm

— Cachewrite-back or write-through operation programmeable on a per page or per
block basis

— Memory unit with a two-element read queue and a three-element write queue
— Run-time reordering of loads and stores
— BPU that performs condition register (CR) look-ahead operations

1-2 PowerPC 601 RISC Microprocessor User's Manual

— Address trandation facilities for 4-Kbyte page size, variable block size, and
256-Mbyte segment size

— A 256-entry, two-way set-associative UTLB
— Four-entry BAT array providing 128-Kbyte to 8-Mbyte blocks
— Four-entry, first-level ITLB
— Hardware table search (caused by UTLB misses) through hashed page tables
— 52-bit virtual address; 32-hit physical address
» Facilities for enhanced system performance
— Bus speed defined as selectabl e division of operating frequency
— A 64-bit split-transaction external data bus with burst transfers
— Support for address pipelining and limited out-of-order bus transactions
— Snooped copyback queues for cache block (sector) copyback operations
— Busextensions for I/O controller interface operations
— Multiprocessing support features that include the following:
— Hardware enforced, four-state cache coherency protocol (MESI)
— Separate port into cache tags for bus snooping
* In-system testability and debugging features through boundary-scan capability

1.1.2 Block Diagram

Figure 1-1 providesablock diagram of the 601 that illustrates how the execution units—IU,
FPU, and BPU—operate independently and in parallel.

The 601's 32-Kbyte, unified cache tag directory has a port dedicated to snooping bus
transactions, preventing interference with processor access to the cache. The 601 also
provides address tranglation and protection facilities, including a UTLB and a BAT array,
and a four-entry ITLB that contains the four most recently used instruction address
trandations for fast access by the instruction unit.

Instruction fetching and issuing is handled in the instruction unit. Tranglation of addresses
for cache or external memory accesses are handled by the memory management unit. Both
unitsare discussed in more detail in Sections 1.1.3, “Instruction Unit,” and 1.1.5, “Memory
Management Unit (MMU).”

Chapter 1. Overview 1-3

(INSTRUCTION FETCH)
|
RTC INSTRUCTION UNIT
RTCU INSTRUCTION
QUEUE
RTCL
8 WORDS
INSTRUCTION ' INSTRUCTION
ISSUE LOGIC
Y Y |
U BPU FPU
[~ /] B
GPR %;5 FPR
XER FILE IR FILE FPSCR
A A
1 WORD 2 WORDS
 / DATA]
4 ADDRESS Y
Y
MMU
y Y 32-KBYTE
[uTB | [ITLB | PHYSICAL ADDRESS | Tacs| CACHE
> (INSTRUC-
BAT TION AND DA-
ARRAY
ADDRESS A)
Y
MEMORY UNIT ——— DAl
READ WRITE QUEUE | DATA
QUEUE SNOOP 8 WORDS
SNOOP
ADDRESS
¢ ADDRESS
A
Y DATA
2 WORDS ¢
SYSTEM INTERFACE
A A

v 64-BIT DATA BUS (2 WORDS)

v 32-BIT ADDRESS BUS (1 WORD)

Figure 1-1. PowerPC 601 Microprocessor Block Diagram

PowerPC 601 RISC Microprocessor User's Manual

1.1.3 Instruction Unit

As shown in Figure 1-1, the 601 instruction unit, which contains an instruction queue and
the BPU, provides centralized control of instruction flow to the execution units. The
instruction unit determines the address of the next instruction to be fetched based on
information from asequential fetcher and the BPU. The IU a so enforces pipelineinterlocks
and controls feed-forwarding.

The sequential fetcher contains a dedicated adder that computes the address of the next
sequential instruction based on the address of the last fetch and the number of words
accepted into the queue. The BPU searches the bottom half of the instruction queue for a
branch instruction and uses static branch prediction on unresolved conditional branches to
allow the instruction fetch unit to fetch instructions from a predicted target instruction
stream while a conditional branch is evaluated. The BPU also folds out branch instructions
for unconditional branches.

Instructions issued beyond a predicted branch do not complete execution until the branch
is resolved, preserving the programming model of sequential execution. If any of these
instructions are to be executed in the BPU, they are decoded but not issued. FPU and U
instructions are issued and allowed to complete up to the register write-back stage.
Write-back is performed when a correctly predicted branch is resolved, and instruction
execution continues without interruption along the predicted path.

If branch prediction is incorrect, the instruction fetcher flushes all predicted path
instructions and instructions are issued from the correct path.

1.1.3.1 Instruction Queue

The instruction queue, shown in Figure 1-1, holds as many as eight instructions (a cache
block) and can be filled from the cache during a single cycle. The instruction fetch can
access only one cache sector at atime and will load as many instruction as space in the IQ
alows.

The upper half of theinstruction queue (Q4—Q7) provides buffering to reduce the frequency
of cache accesses. Integer and branch instructions are dispatched to their respective
execution units from QO through Q3. QO functions as the initial decode stage for the 1U.

For a more detailed overview of instruction dispatch, see Section 1.3.7, “601 Instruction
Timing.”

1.1.4 Independent Execution Units

The PowerPC architecture's support for independent floating-point, integer, and branch
processing execution units alows implementation of processors with out-of-order
instruction issue. For example, because branch instructions do not depend on GPRs or
FPRs, branches can often be resolved early, eliminating stalls caused by taken branches.

The following sections describe the 601's three execution units—the BPU, 1U, and FPU.

Chapter 1. Overview 1-5

1.1.4.1 Branch Processing Unit (BPU)

The BPU performs condition register (CR) look-ahead operations on conditional branches.
The BPU looks through the bottom half of the instruction queue for a conditional branch
instruction and attempts to resolve it early, achieving the effect of a zero-cycle branch in
many Ccases.

The BPU uses a bit in the instruction encoding to predict the direction of the conditional
branch. Therefore, when an unresolved conditional branch instruction is encountered, the
601 fetches instructions from the predicted target stream until the conditional branch is
resolved.

The BPU contains an adder to compute branch target addresses and three special-purpose,
user-control registers—the link register (LR), the count register (CTR), and the CR. The
BPU calculates the return pointer for subroutine calls and saves it into the LR for certain
types of branch instructions. The LR also contains the branch target address for the Branch
Conditional to Link Register (bclrx) instruction. The CTR contains the branch target
address for the Branch Conditional to Count Register (bcctrx) instruction. The contents of
the LR and CTR can be copied to or from any GPR. Because the BPU uses dedicated
registers rather than general-purpose or floating-point registers, execution of branch
instructions is largely independent from execution of integer and floating-point
instructions.

1.1.4.2 Integer Unit (IU)

The 1U executes all integer instructions and executes floating-point memory accesses in
concert with the FPU. The IU executes one integer instruction at a time, performing
computations with its arithmetic logic unit (ALU), multiplier, divider, integer exception
register (XER), and the general-purpose register file. Most integer instructions are
single-cycle instructions.

The 1U interfaces with the cache and MMU for all instructions that access memory.
Addresses are formed by adding the source 1 register operand specified by the instruction
(or zero) to either a source 2 register operand or to a 16-bit, immediate value embedded in
the instruction.

Load and store instructions are issued and translated in program order; however, the
accesses can occur out of order. Synchronizing instructions are provided to enforce strict
ordering.

Load and store instructions are considered to have completed execution with respect to
precise exceptions after the address is trandated. If the address for a load or store
instruction hitsinthe UTLB or BAT array and it is aligned, the instruction execution (that
is, calculation of the address) takes one clock cycle, allowing back-to-back issue of load
and storeinstructions. Thetime required to perform the actual load or store operation varies
depending on whether the operation involves the cache, system memory, or an 1/O device.

1-6 PowerPC 601 RISC Microprocessor User's Manual

1.1.4.3 Floating-Point Unit (FPU)

The FPU contains a single-precision multiply-add array, the floating-point status and
control register (FPSCR), and thirty-two 64-bit FPRs. The multiply-add array alows the
601 to efficiently implement floating-point operations such as multiply, add, divide, and
multiply-add. The FPU is pipelined so that most single-precision instructions and many
double-precision instructions can be issued back-to-back. The FPU contains two additional
instruction queues. These queues alow floating-point instructions to be issued from the
instruction queue even if the FPU is busy, making instructions available for issue to the
other execution units.

Likethe BPU, the FPU can accessinstructions from the bottom half of theinstruction queue
(Q3—Q0), which permits floating-point instructions that do not depend on unexecuted
instructions to be issued early to the FPU.

The 601 supports al |EEE 754 floating-point data types (normalized, denormalized, NaN,
zero, and infinity) in hardware, eliminating the latency incurred by software exception
routines.

1.1.5 Memory Management Unit (MMU)

The 601's MMU supports up to 4 Petabytes (252) of virtual memory and 4 Gigabytes (232)
of physical memory. The MMU also controls access privileges for these spaces on block
and page granularities. Referenced and changed status are maintained by the processor for
each page to assist implementation of a demand-paged virtual memory system.

The instruction unit generates all instruction addresses; these addresses are both for
sequential instruction fetches and addresses that correspond to a change of program flow.
The integer unit generates addresses for data accesses (both for memory and the 1/0
controller interface).

After an address is generated, the upper order bits of the logical (effective) address are
trandlated by the MMU into physical address bits. Simultaneously, the lower order address
bits (that are untranslated and therefore considered both logical and physical), are directed
to the on-chip cache where they form the index into the eight-way set-associative tag array.
After trandating the address, the MMU passes the higher-order bits of the physical address
to the cache, and the cache lookup compl etes. For cache-inhibited accesses or accesses that
miss in the cache, the untranslated lower order address bits are concatenated with the
trandated higher-order address bits; the resulting 32-bit physical addressisthen used by the
memory unit and the system interface, which accesses external memory.

The MMU dso directs the address translation and enforces the protection hierarchy
programmed by the operating system in relation to the supervisor/user privilege level of the
access and in relation to whether the accessis aload or store.

For instruction accesses, the MMU first performs alookup in the four entries of the ITLB
for both block- and page-based physical address translation. Instruction accesses that miss
in the ITLB and all data accesses cause a lookup in the UTLB and BAT array for the

Chapter 1. Overview 1-7

physical address trandation. In most cases, the physical address trandation resides in one
of the TLBs and the physical address bits are readily available to the on-chip cache. In the
case where the physical address tranglation misses in the TLBs, the 601 automatically
performs a search of the trandation tables in memory using the information in the table
search description register 1 (SDR1) and the corresponding segment register.

Memory management in the 601 is described in more detall in Section 1.3.6.2, “601
Memory Management.”

1.1.6 Cache Unit

The PowerPC 601 microprocessor contains a 32-Kbyte, eight-way set associative, unified
(instruction and data) cache. The cache line size is 64 bytes, divided into two eight-word
sectors, each of which can be snooped, |oaded, cast-out, or invalidated independently. The
cache is designed to adhere to a write-back policy, but the 601 allows control of
cacheability, write policy, and memory coherency at the page and block level. The cache
uses aleast recently used (LRU) replacement policy.

As shown in Figure 1-1, the cache provides an eight-word interface to the instruction
fetcher and load/store unit. The surrounding logic selects, organizes, and forwards the
requested information to the requesting unit. Write operations to the cache can be
performed on a byte basis, and a complete read-modify-write operation to the cache can
occur in each cycle.

The instruction unit provides the cache with the address of the next instruction to be
fetched. In the case of a cache hit, the cache returns the instruction and as many of the
instructionsfollowing it as can be placed in the eight-word instruction queue up to the cache
sector boundary. If the queue is empty, as many as eight words (an entire sector) can be
loaded into the queue in parallel.

The cache tag directory has one address port dedicated to instruction fetch and load/store
accesses and one dedicated to snooping transactions on the system interface. Therefore,
snooping does not require additional clock cycles unless a snoop hit that requires a cache
status update occurs.

1.1.7 Memory Unit

The 601's memory unit contains read and write queues that buffer operations between the
external interface and the cache. These operations are comprised of operations resulting
from load and store instructions that are cache misses and read and write operations
required to maintain cache coherency, table search, and other operations. The memory unit
also handles address-only operations and cache-inhibited loads and stores. As shown in
Figure 1-2, the read queue contains two elements and the write queue contains three
elements. Each element of the write queue can contain as many as eight words (one sector)
of data. One element of the write queue, marked snoop in Figure 1-2, isdedicated to writing
cache sectors to system memory after a modified sector is hit by a snoop from another
processor or snooping device on the system bus. The use of the write queue guarantees a

1-8 PowerPC 601 RISC Microprocessor User's Manual

high priority operation that ensures a deterministic response behavior when snooping hits
amodified sector.

ADDRESS DATA
(from cache) (from cache)
READ WRITE QUEUE
(to cache) QUEUE
A - SNOOP
DATA QUEUE - >
k 1 1 1 1 1 1
(four word) , ADDRESS | DATA
Y Y

| SYSTEM INTERFACE |

Figure 1-2. Memory Unit

The other two elements in the write queue are used for store operations and writing back
modified sectors that have been deallocated by updating the queue; that is, when a cache
location isfull, the least-recently used cache sector is deallocated by first being copied into
the write queue and from there to system memory. Note that snooping can occur after a
sector has been pushed out into the write queue and before the data has been written to
system memory. Therefore, to maintain a coherent memory, the write queue elements are
compared to snooped addresses in the same way as the cache tags. If a snoop hits awrite
gueue element, the data is first stored in system memory before it can be loaded into the
cache of the snooping bus master. Coherency checking between the cache and the write
gueue prevents dependency conflicts. Single-beat writesin the write queue are not snooped;
coherency is ensured through the use of special cache operations that accompany the
single-beat write operation on the bus.

Execution of aload or store instruction is considered complete when the associated address
tranglation completes, guaranteeing that the instruction has compl eted to the point where it
isknown that it will not generate an internal exception. However, after address trandlation
iscomplete, aread or write operation can still generate an external exception.

Load and store instructions are always issued and translated in program order with respect
to other load and store instructions. However, aload or store operation that hitsin the cache
can complete ahead of those that miss in the cache; additionally, loads and stores that miss
the cache can be reordered as they arbitrate for the system bus.

If aload or store misses in the cache, the operation is managed by the memory unit which
prioritizes accesses to the system bus. Read requests, such as loads, RWITMs, and
instruction fetches have priority over single-beat write operations. The priorities for
accessing the system bus are listed in Section 4.10.2, “Memory Unit Queuing Priorities”

Chapter 1. Overview 1-9

The 601 ensures memory consistency by comparing target addresses and prohibiting
instructions from compl eting out of order if an address matches. Load and store operations
can be forced to execute in strict program order.

1.1.8 System Interface

Because the cache on the 601 is an on-chip, write-back primary cache, the predominant
type of transaction for most applications is burst-read memory operations, followed by
burst-write memory operations, 1/0O controller interface operations, and single-beat
(noncacheabl e or write-through) memory read and write operations. Additionally, there can
be address-only operations, variants of the burst and single-beat operations (global memory
operations that are snooped, and atomic memory operations, for example), and address
retry activity (for example, when a snooped read access hits a modified line in the cache).

Memory accesses can occur in single-beat (1-8 bytes) and four-beat burst (32 bytes) data
transfers. The address and data buses are independent for memory accesses to support
pipelining and split transactions. The 601 can pipeline as many as two transactions and has
limited support for out-of-order split-bus transactions.

Access to the system interface is granted through an external arbitration mechanism that
allows devices to compete for bus mastership. This arbitration mechanism is flexible,
allowing the 601 to be integrated into systems that implement various fairness and bus
parking procedures to avoid arbitration overhead. Additional multiprocessor support is
provided through coherency mechanisms that provide snooping, externa control of the
on-chip cache and TLB, and support for a secondary cache. Multiprocessor software
support is provided through the use of atomic memory operations.

Typically, memory accesses are weakly ordered—sequences of operations, including
load/store string and multiple instructions, do not necessarily complete in the order they
begin—maximizing the efficiency of the bus without sacrificing coherency of the data. The
601 allows read operations to precede store operations (except when a dependency exists,
of course). In addition, the 601 can be configured to reorder high priority write operations
ahead of lower priority store operations. Because the processor can dynamically optimize
run-time ordering of load/store traffic, overall performance isimproved.

1.2 Levels of the PowerPC Architecture

The PowerPC architecture consists of the following layers, and adherence to the PowerPC
architecture can be measured in terms of which of the following levels of the architecture
is implemented:

» PowerPC user instruction set architecture—Defines the base user-level instruction
set, user-level registers, datatypes, floating-point exception model, memory models
for a uniprocessor environment, and programming model for uniprocessor
environment.

1-10 PowerPC 601 RISC Microprocessor User's Manual

* PowerPC virtual environment architecture—Describes the memory model for a
multiprocessor environment, defines cache control instructions, and describes other
aspects of virtual environments. |mplementations that conform to the PowerPC
virtual environment architecture also adhere to the PowerPC user instruction set
architecture, but may not necessarily adhere to the PowerPC operating environment
architecture.

» PowerPC operating environment architecture—Defines the memory management
model, supervisor-level registers, synchronization requirements, and the exception
model. Implementations that conform to the PowerPC operating environment
architecture also adhere to the PowerPC user instruction set architecture and the
PowerPC virtual environment architecture definition.

Note that while the 601 is said to adhere to the PowerPC architecture at all three levels, it
diverges in aspects of its implementation to a greater extent than should be expected of
subsequent PowerPC processors. Many of the differences result from the fact that the 601
design provides compatibility with an existing architecture standard (POWER), while
providing a reliable platform for hardware and software development compatible with
subsequent PowerPC processors.

Note that except for the POWER instructions and the RTC implementation, the differences
between the 601 and the PowerPC architecture are primarily differences in the operating
environment architecture.

The PowerPC architecture allows a wide range of designs for such features as cache and
system interface implementations.

1.3 The 601 as a PowerPC Implementation

The PowerPC architectureis derived from the IBM Performance Optimized with Enhanced
RISC (POWER) architecture. The PowerPC architecture shares the benefits of the POWER
architecture optimized for single-chip implementations. The architecture design facilitates
parallel instruction execution and is scalable to take advantage of future technological
gains. For compatibility, the 601 also implements instructions from the POWER user
programming model that are not part of the PowerPC definition.

Chapter 1. Overview 1-11

This section describes the PowerPC architecture in general, noting where the 601 differs.
The organization of this section follows the sequence of the chapters in this manual as
follows:

Features—Section 1.3.1, “Features,” describes general features that the 601 shares
with the PowerPC family of microprocessors. It does not list PowerPC features not
implemented in the 601.

Registers and programming model—Section 1.3.2, “ Registers and Programming
Model,” describes the registersfor the operating environment architecture common
among PowerPC processors and describesthe programming model. It also describes
differences in how the registers are used in the 601 and describes the additional
registers that are unique to the 601.

Instruction set and addressing modes—Section 1.3.3, “Instruction Set and
Addressing Modes,” describes the PowerPC instruction set and addressing modes
for the PowerPC operating environment architecture. It defines the PowerPC
Instructions implemented in the 601 as well as additional instructions implemented
in the 601 but not defined in the PowerPC architecture.

Cache implementation—Section 1.3.4, “ Cache Implementation,” describes the
cache model that is defined generally for PowerPC processors by the virtual
environment architecture. It also provides specific details about the 601 cache
implementation.

Exception model—Section 1.3.5, “Exception Model,” describes the exception
model of the PowerPC operating environment architecture and the differencesin the
601 exception model.

Memory management—Section 1.3.6, “Memory Management,” describesgenerally
the conventions for memory management among the PowerPC processors. This
section also describes the general differences between the 601 and the 32-bit
PowerPC memory management specification.

Instruction timing—Section 1.3.7, “601 Instruction Timing,” provides a general
description of the instruction timing provided by the superscalar, parallel execution
supported by the PowerPC architecture.

System interface—Section 1.3.8, “ System Interface,” describes the signals
implemented on the 601.

1.3.1 Features

The 601 is a high-performance, superscalar PowerPC implementation. The PowerPC
architecture allows optimizing compilersto scheduleinstructions to maximize performance
through efficient use of the PowerPC instruction set and register model. The multiple,
independent execution units allow compilers to maximize parallelism and instruction

1-12

PowerPC 601 RISC Microprocessor User's Manual

throughput. Compilers that take advantage of the flexibility of the PowerPC architecture
can additionally optimize system performance of the PowerPC processors.

The 601 implements the PowerPC architecture, with the extensions and variances listed in
Appendix H, “Implementation Summary for Programmers.”

Specific features of the 601 are listed in Section 1.1.1, “601 Features.”

1.3.2 Registers and Programming Model

The following subsections describe the general features of the PowerPC registers and
programming model and of the specific 601 implementation, respectively.

1.3.2.1 PowerPC Registers and Programming Model

The PowerPC architecture defines register-to-register operations for most computational
instructions. Source operands for these instructions are accessed from the registers or are
provided as immediate values embedded in the instruction opcode. The three-register
instruction format allows specification of a target register distinct from the two source
operands. Load and store instructions transfer data between registers and memory.

PowerPC processors have two levels of privilege—supervisor mode of operation (typically
used by the operating environment) and one that corresponds to the user mode of operation
(used by the application software). The programming models incorporate 32 GPRs, 32
FPRs, special-purposeregisters (SPRs), and several miscellaneousregisters. Notethat there
are several registers that are part of the PowerPC architecture that are not implemented in
the 601; for example, the time base registers are not implemented in the 601. Likewise, each
PowerPC implementation has its own unique set of hardware implementation (HID)
registers, which are implementation-specific.

Thisdivision allowsthe operating system to control the application environment (providing
virtual memory and protecting operating-system and critical machine resources).
Instructions that control the state of the processor, the address translation mechanism, and
supervisor registers can be executed only when the processor is operating in supervisor
mode.

The following sections summarize the PowerPC registers that are implemented in the 601
processor. Chapter 2, “Register Models and Data Types,” provides more detailed
information about the registersimplemented in the 601.

1.3.2.1.1 General-Purpose Registers (GPRSs)

The PowerPC architecture defines 32 user-level, general-purpose registers (GPRs). These
registers are either 32 bits wide in 32-bit PowerPC implementations and 64 bits wide in
64-bit PowerPC implementations. The GPRs serve as the data source or destination for all
integer instructions.

Chapter 1. Overview 1-13

1.3.2.1.2 Floating-Point Registers (FPRS)

The PowerPC architecture aso defines 32 user-level 64-bit floating-point registers (FPRS).
The FPRs serve as the data source or destination for floating-point instructions. These
registers can contain data objects of either single- or double-precision floating-point
formats.

1.3.2.1.3 Condition Register (CR)

The CR is a 32-bit user-level register that consists of eight four-bit fields that reflect the
results of certain operations, such as move, integer and floating-point compare, arithmetic,
and logical instructions, and provide a mechanism for testing and branching.

1.3.2.1.4 Floating-Point Status and Control Register (FPSCR)

The floating-point status and control register (FPSCR) is a user-level register that contains
all exception signal bits, exception summary bits, exception enable bits, and rounding
control bits needed for compliance with the IEEE 754 standard.

1.3.2.1.5 Machine State Register (MSR)

The machine state register (MSR) is a supervisor-level register that defines the state of the
processor. The contents of this register is saved when an exception is taken and restored
when the exception handling completes. The 601 implements the M SR as a 32-bit register;
64-bit PowerPC processors implement a 64-bit MSR.

1.3.2.1.6 Segment Registers (SRs)

For memory management, 32-bit PowerPC implementations implement sixteen 32-bit
segment registers (SRs). Figure 2-12 shows the format of a segment register whenthe T bit
is cleared and Figure 2-13 shows the layout when the T bit (SR[0]) is set. The fieldsin the
segment register are interpreted differently depending on the value of bit O.

1.3.2.1.7 Special-Purpose Registers (SPRs)

The PowerPC operating environment architecture defines numerous special-purpose
registers that serve a variety of functions, such as providing controls, indicating status,
configuring the processor, and performing special operations. Some SPRs are accessed
implicitly as part of executing certain instructions. All SPRs can be accessed by using the
Move to/from Special Purpose Register instructions, mtspr and mfspr.

In the 601, all SPRs are 32 bitswide.

1.3.2.1.8 User-Level SPRs
The following 601 SPRs are accessible by user-level software:

* Link register (LR)—The link register can be used to provide the branch target
address and to hold the return address after branch and link instructions. The LR is
32 bits wide in 32-bit implementations.

* Countregister (CTR)—The CTR isdecremented and tested automatically asaresult
of branch-and-count instructions. The CTR is 32 bits wide in 32-hit
implementations.

1-14 PowerPC 601 RISC Microprocessor User's Manual

Integer exception register (XER)—The 32-bit XER contains the integer carry and
overflow bits and two fields for the Load String and Compare Byte Indexed (Iscbx)
instruction (a POWER instruction implemented in the 601 but not defined by the
PowerPC architecture).

1.3.2.1.9 Supervisor-Level SPRs

The 601 also contains SPRs that can be accessed only by supervisor-level software. These
registers consist of the following:

The 32-bit dataaccess exception (DAE)/source instruction serviceregister (DSISR)
defines the cause of data access and alignment exceptions.

The data address register (DAR) is a 32-bit register that holds the address of an
access after an alignment or data access exception.

Decrementer register (DEC) is a 32-bit decrementing counter that provides a
mechanism for causing a decrementer exception after a programmable delay.
PowerPC architecture defines that the DEC frequency be provided as a subdivision
of the processor clock frequency; however, the 601 implements a separate clock
input that serves both the DEC and the RTC facilities.

The 32-bit table search description register 1(SDR1) specifies the page table format
used in logical-to-physical address trandlation for pages.

The machine status save/restore register 0 (SRRO) isa 32-bit register that is used by
the 601 for saving the address of the instruction that caused the exception, and the
address to return to when a Return from Interrupt (rfi) instruction is executed.

The machine status save/restore register 1 (SRR1) is a 32-hit register used to save
machine status on exceptions and to restore machine status when an rfi instruction
Is executed.

General SPRs, SPRGO-SPRGS3, are 32-hit registers provided for operating system
use.

The external accessregister (EAR) is a 32-bit register that controls accessto the
external control facility through the External Control Input Word Indexed (eciwx)
and External Control Output Word Indexed (ecowx) instructions.

The processor version register (PVR) isa32-bit, read-only register that identifiesthe
version (model) and revision level of the PowerPC processor.

Block address translation (BAT) registers—The PowerPC architecture defines 16
BAT registers, divided into four pairs of data BATs (DBATS) and four pairs of
instruction BATs (IBATS). The 601 includes four pairs of unified BATs
(BATOU-BAT3U and BATOL-BAT3L). See Figure 1-3 for alist of the SPR
numbers for the BAT registers. Figure 2-23 and Figure 2-24 show the format of the
upper and lower BAT registers. Note that the format for the 601’ simplementation of
the BAT registers differs from the PowerPC architecture definition.

Chapter 1. Overview 1-15

1.3.2.2 Additional Registers in the 601

During normal execution, a program can access the registers, shown in Figure 1-3,
depending on the program’s access privilege (supervisor or user, determined by the
privilege-level (PR) bit in the machine state register (MSR)). Note that registers such asthe
general-purpose registers (GPRs) and floating-point registers (FPRs) are accessed through
operandsthat are part of theinstructions. Accessto registers can be explicit (that is, through
the use of specific instructions for that purpose such as Move to Special-Purpose Register
(mtspr) and Move from Special-Purpose Register (mfspr) instructions) or implicit as the
part of the execution of an instruction. Some registers are accessed both explicitly and
implicitly.

The numbers to the left of the SPRs indicate the number that is used in the syntax of the
instruction operands to access the register.

Figure 1-3 shows al the 601 registers and includes the following registers that are not part
of the PowerPC architecture:

* Red-timeclock (RTC) registers—RTCU and RTCL (RTC upper and RTC lower).
The registers can be read from by user-level software, but can be written to only by
supervisor-level software. As shown in Figure 1-3, the SPR numbers for the RTC
registers depend on the type of access used. For more information, see
Section 2.2.5.3, “Real-Time Clock (RTC) Registers (User-Level).”

* MQregister (MQ). The MQ register is a 601-specific, 32-bit register used asa
register extension to accommodate the product for the multiply instructions and the
dividend for the divide instructions. It is also used as an operand of long rotate and
shift instructions. This register, and the instructions that requireiit, is provided for
compatibility with POWER architecture, and is not part of the PowerPC
architecture. For more information, see Section 2.2.5.1, “MQ Register (MQ).” The
MQ register istypically accessed implicitly as part of executing a computational
instruction.

» Block-address trandlation (BAT) registers. The 601 includes eight block-address
trandation registers (BATS), consisting of four pairs of BATs (IBATOU-IBAT3U
and IBATOL—-BAT3L). See Figure 1-3 for alist of the SPR numbers for the BAT
registers. Figure 2-23 and Figure 2-24 show the formats of the upper and lower BAT
registers. Note that the PowerPC architecture hastwice as many BAT registersasthe
601.

» Hardware implementation registers (HIDO-HID2, HID5, and HID15). These
registers are provided primarily for debugging. For more information, see Section
2.3.3.13.1, “Checkstop Sources and Enables Register—HIDO” through Section
2.3.3.13.5, “Processor Identification Register (PIR)—HID15.” HID15 holds the
four-bit processor identificationtag (PID) that isuseful for differentiating processors
in multiprocessor system designs. For more information, see Section 2.3.3.13.5,
“Processor |dentification Register (PIR)—HID15.” Note that whileit is not
guaranteed that the implementation of HID registersis consistent anong PowerPC

1-16 PowerPC 601 RISC Microprocessor User's Manual

processors, other processors may be designed with similar or identical HID
registers.

/ User-Level SPRs \

USER PROGRAMMING

MODEL SPRO | MQ Register *
SPR1 | XER—Integer Exception Register
FPRO SPR4 | RTCU—RTC Upper Register (For reading only)*3
FPR1 SPR5 | RTCL—RTC Lower Register (For reading only)®3
o SPR8 | LR—Link Register
g SPR9 | CTR—Count Register
FPR31 0 EE
0 63
GPRO Condition Supervisor-Level SPRs
GPR1 Register SPR18 | DSISR—DAE/ Source Instruction Service Register
° | CR I SPR19 | DAR—Data Address Register
: 0 31 SPR20 | RTCU—RTC Upper Register (For writing only)%3
GPR31)) SPR21 | RTCL—RTC Lower Register (For writing only)-3
0 31 Flgta;tlzg zr?éjnt SPR22 | DEC—Decrementer Register
Control SPR25 | SDR1—Table Search Description Register 1
Register SPR26 | SRR0—Save and Restore Register 0
SPR27 | SRR1—Save and Restore Register 1
0 31 SPR272 | SPRGO—SPR General 0
SPR273 | SPRG1—SPR General 1
SPR274 | SPRG2—SPR General 2
SUPERVISOR PROGRAMMING SPR275 | SPRG3—SPR General 3
MODEL SPR282 | EAR—EXxternal Access Register
SPR287 | PVR—Processor Version Register
SPR528 | IBATOU—BAT 0 Upper 2
Segment SPR529 | IBATOL—BAT 0 Lower 2
Registers SPR530 | IBAT1U—BAT 1 Upper 2
SRO SPR531 | IBAT1L—BAT 1 Lower 2
SR1 SPR532 | IBAT2U—BAT 2 Upper 2
Machine State (] SPR533 | IBAT2L—BAT 2 Lower 2
Register ? . SPR534 | IBAT3U—BAT 3 Upper
MSR SR15 SPR535 | IBAT3L—BAT 3 Lower 2
0 31 0 31 SPR1008 | HIDO?
SPR1009 | HID1?!
SPR1010 | HID2 (IABR) !
SPR1013 | HID5 (DABR) !

K 0 31/

1 601-only registers. These registers are not necessarily supported by other PowerPC processors.

2 These registers may be implemented differently on other PowerPC processors. The PowerPC architecture defines two sets of
BAT registers—eight IBATs and eight DBATSs. The 601 implements the IBATs and treats them as unified BATs.

3 RTCU and RTCL registers can be written only in supervisor mode, in which case different SPR numbers are used.

4 DEC register can be read by user programs by specifying SPR6 in the mfspr instruction (for POWER compatibility).

Figure 1-3. PowerPC 601 Microprocessor Programming Model—Registers

Chapter 1. Overview 1-17

1.3.3 Instruction Set and Addressing Modes

The following subsections describe the PowerPC instruction set and addressing modes in
general. Differences in the 601's instruction set are described in Section 1.3.3.2, “601
Instruction Set.”

1.3.3.1 PowerPC Instruction Set and Addressing Modes

All PowerPC instructions are encoded as single-word (32-bit) opcodes. Instruction formats
are consistent among all instruction types, permitting efficient decoding to occur in parallel
with operand accesses. Thisfixed instruction length and consistent format greatly simplifies
instruction pipelining.

1.3.3.1.1 PowerPC Instruction Set
The PowerPC instructions are divided into the following categories:

* Integer instructions—These include computational and logical instructions.

— Integer arithmetic instructions
— Integer compare instructions
— Integer logical instructions
— Integer rotate and shift instructions
* Floating-point instructions—These include floating-point computational
instructions, as well as instructions that affect the floating-point status and control
register (FPSCR).
— Floating-point arithmetic instructions
— Hoating-point multiply/add instructions
— Floating-point rounding and conversion instructions
— Floating-point compare instructions
— Hoating-point status and control instructions

» Load/store instructions—These include integer and floating-point load and store
instructions.

— Integer load and store instructions

— Integer load and store multiple instructions
— Foating-point load and store

— Foating-point move instructions

— Primitives used to construct atomic memory operations (Iwarx and stwcx.
instructions)

* Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow.

— Branch and trap instructions
— Condition register logical instructions

1-18 PowerPC 601 RISC Microprocessor User's Manual

» Processor control instructions—These instructions are used for synchronizing
memory accesses and management of caches, UTLBs, and the segment registers.

— Move to/from specia purpose register instructions
— Moveto/from MSR

— Synchronize

— Instruction synchronize

— TLB invalidate

» Memory control instructions—These instructions provide control of caches, TLBs,
and segment registers.

— Supervisor-level cache management instructions

— User-level cacheinstructions

— Segment register manipulation instructions

— Trandlation lookaside buffer management instructions

Note that this grouping of the instructions does not indicate which execution unit executes
aparticular instruction or group of instructions. Thisinformation, which is useful in taking
full advantage of superscalar paralel instruction execution, is provided in Chapter 7,
“Instruction Timing,” and Chapter 10, “Instruction Set.”

Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision (one word) and double-precision (one double
word) floating-point operands. The PowerPC architecture uses instructions that are four
bytes long and word-aligned. It provides for byte, half-word, and word operand |oads and
stores between memory and a set of 32 general-purpose registers (GPRS). It aso provides
for word and double-word operand loads and stores between memory and a set of 32
floating-point registers (FPRS).

Computational instructions do not modify memory. To use a memory operand in a
computation and then modify the same or another memory location, the memory contents
must be loaded into a register, modified, and then written back to the target location with
distinct instructions.

PowerPC processors follow the program flow when they are in the normal execution state.
However, the flow of instructions can be interrupted directly by the execution of an
instruction or by an asynchronous event. Either kind of exception may cause one of several
components of the system software to be invoked.

1.3.3.1.2 Calculating Effective Addresses

The effective address (EA) isthe 32-hit address computed by the processor when executing
amemory access or branch instruction or when fetching the next sequential instruction.

Chapter 1. Overview 1-19

The PowerPC architecture supports two simple memory addressing modes:

* EA =(rA|0) + offset (including offset = 0) (register indirect with immediate index)
* EA =(rAJ|0) +rB (register indirect with index)

These simple addressing modes allow efficient address generation for memory accesses.
Calculation of the effective address for aligned transfers occurs in asingle clock cycle.

For amemory accessinstruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the storage operand is considered to wrap around
from the maximum effective address to effective address 0.

Effective address computations for both data and instruction accesses use 32-bit unsigned
binary arithmetic. A carry from bit O isignored in 32-bit implementations.

1.3.3.2 601 Instruction Set
The 601 instruction set is defined as follows:

» The 601 implements the 32-bit PowerPC architecture instructions except as
indicated in Appendix C, “PowerPC Instructions Not Implemented.” Otherwise, all
instructions not implemented in the 601 are defined as optiona in the PowerPC
architecture.

* The 601 supports a number of POWER instructions that are otherwise not
implemented in the PowerPC architecture. These are listed in Appendix B,
“POWER Architecture Cross Reference.” Individual instructions are described in
Chapter 10, “Instruction Set.”

* The 601 implementsthe External Control Input Word Indexed (eciwx) and Externa
Control Output Word Indexed (ecowx) instructions, which are optional in the
PowerPC architecture definition.

» Severd of theinstructions implemented in the 601 function somewhat differently
than they are defined in the PowerPC architecture. These differencestypically stem
from design differences; for instance, the PowerPC architecture defines several
cache control instructions specific to separate instruction and data cache designs.

When executed on the 601, such instructions may provide a subset of the functions
of the instruction or they may be no-ops.

For alist of all PowerPC instructions and all 601-specific instructions, see Appendix A,
“Instruction Set Listings” Chapter 10, “Instruction Set,” describes each instruction,
indicating whether an instruction is 601-specific and describing any differences in the
implementation on the 601.

1.3.4 Cache Implementation

The following subsections describe the PowerPC architecture’s treatment of cache in
general, and the 601-specific implementation, respectively.

1-20 PowerPC 601 RISC Microprocessor User's Manual

1.3.4.1 PowerPC Cache Characteristics

The PowerPC architecture does not define hardware aspects of cache implementations. For
example, some PowerPC processors may have separate instruction and data caches
(Harvard architecture), while others, such as the 601, implement a unified cache.

PowerPC implementations can control the following memory access modes on a page or
block basis:

» Write-back/write-through mode
» Cache-inhibited mode
* Memory coherency

Note that in the 601 processor, a block is defined as an eight-word sector. The PowerPC
virtual environment architecture defines cache management instructions that provide a
means by which the application programmer can affect the cache contents.

1.3.4.2 601 Cache Implementation

The 601 has a 32-K byte, eight-way set-associative unified (instruction and data) cache. The
cache is physically addressed and can operate in either write-back or write-through mode
as specified by the PowerPC architecture.

The cacheis configured as eight sets of 64 lines. Each line consists of two sectors, four state
bits (two per sector), several replacement control bits, and an addresstag. The two state bits
implement the four-state MESI (modified-exclusive-shared-invalid) protocol. Each sector
contains eight 32-bit words. Note that the PowerPC architecture defines the term block as
the cacheabl e unit. For the 601 processor, the block isasector. A block diagram of the cache
organization is shown in Figure 1-4.

Each cacheline contains 16 contiguous words from memory that areloaded from a 16-word
boundary (that is, bits A26-A 31 of the logical addresses are zero); thus, a cache line never
crosses a page boundary. Misaligned accesses across a page boundary can incur a
performance penalty.

Cache reload operations are always performed on a sector basis (that is, the cache is
snooped and updated and coherency is maintained on a per-sector basis). However, if the
other sector in the line is marked invalid, an optional, low-priority update of that sector is
attempted after the sector that contained the critical word isfilled. The ability to attempt the
other sector update can be disabled by the system software.

External bus transactions that load instructions or data into the cache always transfer the
missed quad word first, regardless of itslocation in acache sector; then the rest of the cache
sector is filled. As the missed quad word is loaded into the cache, it is simultaneously
forwarded to the appropriate execution unit so instruction execution resumes as quickly as
possible.

Chapter 1. Overview 1-21

To ensure coherency among caches in a multiprocessor (or multiple caching-device)
implementation, the 601 implements the MES|I protocol. MESI stands for
modified/exclusive/shared/invalid. These four statesindicate the state of the cache block as
follows:

* Modified—The cache block is modified with respect to system memory; that is, data
for this addressis valid only in the cache and not in system memory.

* Exclusive—This cache block holds valid data that is identical to the data at this
address in system memory. No other cache has this data.

» Shared—Thiscache block holdsvalid datathat isidentical to thisaddressin system
memory and at least one other caching device.

* Invalid—This cache block does not hold valid data.
Cache coherency is enforced by on-chip hardware bus snooping logic. Since the cache tag

directory has a separate port dedicated to snooping bus transactions, bus snooping traffic
does not interfere with processor access to the cache unless a snoop hit occurs.

]]
8 SETS . .
LJ A d
[[T [[
I [T | I [i
LINE O| ADDRESSTAG| | | | [SECTORO SECTOR 1 —
LI 1 —
[M —
L1 L
[I B
[L1 .
L {1 [] |
[] [] []
[] [] []
° Bl ° ° |
] \J \J =
LINE 63| ADDRESSTAG| | | | [~ <—— B8WORDS —><—— 8WORDS >
< 16 WORDS >|

Figure 1-4. Cache Unit Organization

1.3.5 Exception Model

The following subsections describe the PowerPC exception model and the 601
implementation, respectively.

1-22 PowerPC 601 RISC Microprocessor User's Manual

1.3.5.1 PowerPC Exception Model

The PowerPC exception mechanism allows the processor to change to supervisor state asa
result of externa signals, errors, or unusual conditions arising in the execution of
instructions. When exceptions occur, information about the state of the processor is saved
to certain registers and the processor begins execution at an address (exception vector)
predetermined for each exception. The exception handler at the specified vector is then
processed with the processor in supervisor mode. The PowerPC exception model is
described in detail in Chapter 5, “Exceptions.”

Although multiple exception conditions can map to a single exception vector, a more
specific condition may be determined by examining a register associated with the
exception—for example, the DAE/source instruction service register (DSISR) and the
floating-point status and control register (FPSCR). Additionally, some exception conditions
can be explicitly enabled or disabled by software.

The PowerPC architecture requires that exceptions be handled in program order; therefore,
although a particul ar implementation may recognize exception conditions out of order, they
are presented strictly in order. When an instruction-caused exception is recognized, any
unexecuted instructionsthat appear earlier in theinstruction stream, including any that have
not yet entered the execute state, are required to compl ete before the exception istaken. Any
exceptions caused by those instructions are handled first. Likewise, exceptions that are
asynchronous and precise are recognized when they occur, but are not handled until all
instructions currently in the execute stage successfully complete execution and report their
results.

Unless a catastrophic condition causes a system reset or machine check exception, only one
exception is handled at a time. If, for example, a single instruction encounters multiple
exception conditions, those conditions are encountered sequentially. After the exception
handler handles an exception, the instruction execution continues until the next exception
condition is encountered. However, in many cases there is no attempt to reexecute the
instruction. This method of recognizing and handling exception conditions sequentially
guarantees that exceptions are recoverable.

Exception handlers should save the information stored in SRRO and SRR1 early to prevent
the program state from being lost due to a system reset and machine check exception or to
an instruction-caused exception in the exception handler, and before enabling external
interrupts.

The PowerPC architecture supports four types of exceptions:

» Synchronous, precise—These are caused by instructions. All instruction-caused
exceptions are handled precisely; that is, the machine state at the time the exception
occursisknown and can be compl etely restored. Thismeansthat (excluding thetrap
and system call exceptions) the address of the faulting instruction is provided to the
exception handler and that neither the faulting instruction nor subsequent
instructionsin the code stream will complete execution. Theinstructionsthat invoke

Chapter 1. Overview 1-23

trap and system call exceptions complete execution before the exception is taken.
When exception processing completes, execution resumes at the address of the next
instruction.

» Synchronous, imprecise—The PowerPC architecture defines two imprecise
floating-point exception modes, recoverable and nonrecoverable. Even though the
601 provides a means to enable the imprecise modes, it implements these modes
identically to the precise mode (i.e., al enabled floating-point enabled exceptions
are always precise on the 601).

» Asynchronous, precise—The external interrupt and decrementer exceptions are
maskabl e asynchronous exceptions that are handled precisely. When these
exceptions occur, their handling is postponed until all instructions, and any
exceptions associated with those instructions, complete execution.

» Asynchronous, imprecise—T here are two non-maskabl e asynchronous exceptions
that are imprecise: system reset and machine check exceptions. These exceptions
may not be recoverable, or may provide a limited degree of recoverability for
diagnostic purpose.

The PowerPC architecture defines severa of the exceptions differently than the 601
implementation. For example, the PowerPC exception model provides a unique vector for
the trace exception; the 601 vectors trace exceptions to the run-mode exception handler.
Other differences are noted in the following section, Section 1.3.5.2, “The 601 Exception
Model”

1.3.5.2 The 601 Exception Model

As specified by the PowerPC architecture, all 601 exceptions can be described as either
precise or imprecise and either synchronous or asynchronous. Asynchronous exceptionsare
caused by events external to the processor’s execution; synchronous exceptions, which are
al handled precisely by the 601, are caused by instructions.

The 601 exception classes are shown in Table 1-1.

Table 1-1. PowerPC 601 Microprocessor Exception Classifications

Synchronous/Asynchronous Precise/lmprecise Exception Type
Asynchronous Imprecise Machine check
System reset
Asynchronous Precise External interrupt
Decrementer
Synchronous Precise Instruction-caused exceptions

Although exceptions have other characteristics as well, such as whether they are maskable
or nonmaskabl e, the distinctions shown in Table 1-1 define categories of exceptionsthat the
601 handles uniquely. Note that Table 1-1 includes no synchronous imprecise instructions.

1-24 PowerPC 601 RISC Microprocessor User's Manual

While the PowerPC architecture supports imprecise handling of floating-point exceptions,
the 601 implements these exception modes as precise exceptions.

The 601's exceptions, and conditions that cause them, are listed in Table 1-2. Exceptions
that are specific to the 601 are indicated.

Table 1-2. Exceptions and Conditions

Exception
Type

Vector Offset
(hex)

Causing Conditions

Reserved

00000

System reset

00100

A system reset is caused by the assertion of either SRESET or HRESET.

Machine check

00200

A machine check is caused by the assertion of the TEA signal during a data bus
transaction.

Data access

00300

The cause of a data access exception can be determined by the bit settings in

the DSISR, listed as follows:

1 Setif the translation of an attempted access is not found in the primary
hash table entry group (HTEG), or in the rehashed secondary HTEG, or in
the range of a BAT register; otherwise cleared.

4 Setif a memory access is not permitted by the page or BAT protection
mechanism described in Chapter 6, “Memory Management Unit”; otherwise
cleared.

5 Setif the access was to an I/O segment (SR[T] =1) by an eciwx, ecowx,
lwarx, stwcx., or Iscbx instruction; otherwise cleared. Set by an eciwx or
ecowx instruction if the access is to an address that is marked as
write-through.

6 Set for a store operation and cleared for a load operation.

9 Setif an EA matches the address in the DABR while in one of the three
compare modes.

11 Setif eciwx or ecowx is used and EAR[E] is cleared.

Instruction
access

00400

An instruction access exception is caused when an instruction fetch cannot be

performed for any of the following reasons:

» The effective (logical) address cannot be translated. That is, there is a page
fault for this portion of the translation, so an instruction access exception
must be taken to retrieve the translation from a storage device such as a
hard disk drive.

e The fetch access is to an 1/0 segment.

* The fetch access violates memory protection. If the key bits (Ks and Ku) in
the segment register and the PP bits in the PTE or BAT are set to prohibit
read access, instructions cannot be fetched from this location.

External
interrupt

00500

An external interrupt occurs when the INT signal is asserted.

Alignment

00600

An alignment exception is caused when the 601 cannot perform a memory
access for any of several reasons, such as when the operand of a floating-point
load or store operation is in an /O segment (SR[T] = 1) or when a scalar
load/store operand crosses a page boundary. Specific exception sources are
described in Section 5.4.6, “Alignment Exception (x'00600").”

Chapter 1. Overview

1-25

Table 1-2. Exceptions and Conditions (Continued)

Exception
Type

Vector Offset
(hex)

Causing Conditions

Program

00700

A program exception is caused by one of the following exception conditions,
which correspond to bit settings in SRR1 and arise during execution of an
instruction:

* Floating-point enabled exception—A floating-point enabled exception
condition is generated when the following condition is met:

(MSR[FEQ] | MSR[FEL1]) & FPSCR[FEX] is 1.
FPSCR[FEX] is set by the execution of a floating-point instruction that
causes an enabled exception or by the execution of a “move to FPSCR”
instruction that results in both an exception condition bit and its
corresponding enable bit being set in the FPSCR.

« lllegal instruction—An illegal instruction program exception is generated
when execution of an instruction is attempted with an illegal opcode or illegal
combination of opcode and extended opcode fields (including PowerPC
instructions not implemented in the 601), or when execution of an optional
instruction not provided in the 601 is attempted (these do not include those
optional instructions that are treated as no-ops). The PowerPC instruction
set is described in Chapter 3, “Addressing Modes and Instruction Set
Summary.”

« Privileged instruction—A privileged instruction type program exception is
generated when the execution of a privileged instruction is attempted and the
MSR register user privilege bit, MSR[PR], is set. In the 601, this exception is
generated for mtspr or mfspr with an invalid SPR field if SPR[0] = 1 and
MSRI[PR] = 1. This may not be true for all PowerPC processors.

« Trap—A trap type program exception is generated when any of the
conditions specified in a trap instruction is met.

Floating-point
unavailable

00800

A floating-point unavailable exception is caused by an attempt to execute a
floating-point instruction (including floating-point load, store, and move
instructions) when the floating-point available bit is disabled, MSR[FP] = 0.

Decrementer

00900

The decrementer exception occurs when the most significant bit of the
decrementer (DEC) register transitions from 0 to 1. Must also be enabled with
the MSR[EE] bit.

1/0 controller
interface error

00A00

An 1/O controller interface error exception is taken only when an operation to an
I/O controller interface segment fails (such a failure is indicated to the 601 by a

particular bus reply packet). If an I/O controller interface exception is taken on a
memory access directed to an I/O segment, the SRRO contains the address of

the instruction following the offending instruction. Note that this exception is not
implemented in other PowerPC processors.

Reserved

00B0OO

System call

00C00

A system call exception occurs when a System Call (sc) instruction is executed.

Reserved

00D00

Other PowerPC processors may use this vector for trace exceptions.

Reserved

00EOQO0

The 601 does not generate an interrupt to this vector. Other PowerPC
processors may use this vector for floating-point assist exceptions.

Reserved

OOE10-00FFF

Reserved

01000-01FFF

Reserved, implementation-specific

1-26

PowerPC 601 RISC Microprocessor User's Manual

Table 1-2. Exceptions and Conditions (Continued)

Exception Vector Offset Causing Conditions
Type (hex)
Run mode/ 02000 The run mode exception is taken depending on the settings of the HID1 register
trace exception and the MSR[SE] bit.

The following modes correspond with bit settings in the HID1 register:

¢ Normal run mode—No address breakpoints are specified, and the 601
executes from zero to three instructions per cycle

¢ Single instruction step mode—One instruction is processed at a time. The
appropriate break action is taken after an instruction is executed and the
processor quiesces.

e Limited instruction address compare—The 601 runs at full speed (in parallel)
until the EA of the instruction being decoded matches the EA contained in
HID2. Addresses for branch instructions and floating-point instructions may
never be detected.

¢ Full instruction address compare mode—Processing proceeds out of 1Q0.
When the EA in HID2 matches the EA of the instruction in 1Q0, the
appropriate break action is performed. Unlike the limited instruction address
compare mode, all instructions pass through the 1QO0 in this mode. That is,
instructions cannot be folded out of the instruction stream.

The following mode is taken when the MSR[SE] bit is set.

* MSR[SE] trace mode—Note that in other PowerPC implementations, the
trace exception is a separate exception with its own vector x'00D00".

1.3.6 Memory Management

The following subsections describe the PowerPC memory management architecture, and
the specific 601 implementation, respectively.

1.3.6.1 PowerPC Memory Management

The primary functions of the MMU areto translate logical (effective) addressesto physical
addresses for memory accesses, 1/0 accesses (most /O accesses are assumed to be
memory-mapped), and 1/O controller interface accesses, and to provide access protection
on blocks and pages of memory.

There are three types of accesses generated by the 601 that require address translation:
instruction accesses, data accesses to memory generated by load and store instructions, and
I/O controller interface accesses generated by load and store instructions.

The PowerPC MMU and exception model support demand-paged virtual memory. Virtual
memory management permits execution of programs larger than the size of physical
memory; demand-paged implies that individual pages are loaded into physical memory
from system memory only when they are first accessed by an executing program.

The hashed page table is a variable-sized data structure that defines the mapping between
virtual page numbers and physical page numbers. The page table size is a power of 2, and
its starting address is amultiple of its size.

The page table contains a number of page table entry groups (PTEGs). A PTEG contains
eight page table entries (PTES) of eight bytes each; therefore, each PTEG is 64 bytes long.

Chapter 1. Overview 1-27

PTEG addresses are entry points for table search operations. Figure 6-16 showstwo PTEG
addresses (PTEGaddrl and PTEGaddr2) where a given PTE may reside.

Address translations are enabled by setting bitsin the MSR—MSR][IT] enables instruction
trandations and MSR[DT] enables data transl ations.

1.3.6.2 601 Memory Management

The 601 MMU provides 4 Gbytes of logical address space accessible to supervisor and user
programs with a 4-Kbyte page size and 256-Mbyte segment size. Block sizes range from
128 Kbyte to 8 Mbyte and are software selectable. In addition, the 601 uses an interim
52-bit virtual address and hashed page tablesin the generation of 32-bit physical addresses.

A UTLB provides address trandation in parallel with the on-chip cache access, incurring
no additional time penalty in the event of a UTLB hit. The UTLB is a cache of the most
recently used page table entries. Softwareis responsible for maintaining the consistency of
the UTLB with memory. The 601's UTLB is a 256-entry, two-way set-associative cache
that contains instruction and data address translations. The 601 provides hardware table
search capability through the hashed page table on UTLB misses. Supervisor software can
invalidate UTLB entries selectively. In addition, UTLB control instructions can optionally
be broadcast on the external interface for remote invalidations.

The 601 aso provides afour-entry BAT array that maintains address translationsfor blocks
of memory. These entries define blocks that can vary from 128 Kbytes to 8 Mbytes. The
BAT array is maintained by system software.

To accelerate the instruction unit operation, the 601 uses a four-entry ITLB. The ITLB
contains up to four copies of the most recently used instruction address translations (page
or block) providing theinstruction unit accessto the most recently used transl ations without
requiring the UTLB or BAT array. The processor ensures that the ITLB is consistent with
the UTLB, and uses an LRU replacement algorithm when a miss is encountered.

The 601 MMU relies on the exception processing mechanism for the implementation of the
paged virtual memory environment and for enforcing protection of designated memory
areas. Exception processing is described in Chapter 5, “Exceptions” Section 2.3.1,
“Machine State Register (MSR),” describes the MSR of the 601, which controls some of
the critical functionality of the MMU.

As specified by the PowerPC architecture, the hashed page table is a variable-sized data
structure that defines the mapping between virtual page numbers and physical page
numbers. The pagetable sizeisapower of 2, and its starting addressisamultiple of itssize.

Also as specified by the PowerPC architecture, the page table contains anumber of PTEGs.
A PTEG contains eight page table entries (PTES) of eight bytes each; therefore each PTEG
is 64 bytes long. PTEG addresses are entry points for table search operations. Figure 6-16
shows two PTEG addresses (PTEGaddrl and PTEGaddr2) where a given PTE may reside.

1-28 PowerPC 601 RISC Microprocessor User's Manual

1.3.7 601 Instruction Timing

The 601 is a pipelined superscalar processor. A pipelined processor is one in which the
processing of an instruction is broken down into discrete stages, such as decode, execute,
and writeback. Because the tasks required to process an instruction are broken into a series
of tasks, an instruction does not require the entire resources of an execution unit. For
example, after an instruction completes the decode stage, it can pass on to the next stage,
while the subsequent instruction can advance into the decode stage. This improves the
throughput of the instruction flow. For example, it may take three cycles for an integer
instruction to complete, but if there are no stalls in the integer pipeline, a series of integer
instructions can have a throughput of one instruction per cycle.

A superscalar processor is one in which multiple pipelines are provided to alow
instructions to execute in parallel. The 601 has three execution units, one each for integer
instructions, floating-point instructions, and branch instructions. The IU and the FPU each
have dedicated register files for maintaining operands (GPRs and FPRs, respectively),
allowing integer calculations and floating-point calculations to occur simultaneously
without interference.

The 601 pipeline description can be broken into two parts, the processor core, where
instruction execution takes place, and the memory subsystem, the interface between the
processor core and system memory. The system memory includes aunified 32-Kbyte cache
and the bus interface unit.

Figure 1-5 shows the 601’s instruction queue and the |U, FPU, and BPU pipelines.
Each of the stages shown in Figure 1-5 is described in Section 7.2, “ Pipeline Description.”

As shown in Figure 1-5, integer instructions are dispatched only from Q0 (where they are
also usually decoded); whereas branch and floating-point instructions can be dispatched
from any of the bottom four elements in the instruction queue (1Q0- Q3). The dispatch of
integer instructions is restricted in this manner to provide an ordered flow of instructions
through the integer pipeline, which in turn provides a mechanism that ensures that all
instructions appear to complete in order. As branch and floating-point instructions are
dispatched their position in the instruction stream is recorded by means of tags that
accompany the previous integer instruction through the integer pipeline. Note that when a
floating-point or branch instruction cannot be tagged to an integer instruction, it is tagged
to ano-op, or bubble, in the integer pipeline.

Logic associated with the integer completion (IC) stage reconstructs the program order,
checks for data dependencies, and schedules the write-back stages of the three pipelines.
Note that it is not necessary that the write-back stages need only be serialized if there are
data dependencies. For example, instructions that update the condition register (CR) must
perform write-back in strict order.

Chapter 1. Overview 1-29

FA

Fetch Arbitration

Y V*

[owo]

CACC — ISB

Cache (memory subsystem)

Q7 > FPSB '—
1Q6

Q@ y Data Access
Q5 Queueing Unit

Dispatch Unit
(Instructions in the 1Q 1Q4
are said to be in the
dispatch stage (DS)) Y

BE IQ3 | 1 F1
<—‘ 1Q2 Y ’7
MR_|<—‘ Q1 | s FD

1Q0 Y

ID < FPM
- 1

FPA

Floating-Point
¢ Unit (FPU)
Y

BW IC IWA IwL

= Cycle Boundary

Branch Processing Integer Unit (IU)

Unit (BPU) = Unit Boundary

1 An integer instruction can be passed to the ID stage in the same cycle in which it enters 1QO.

Figure 1-5. Pipeline Diagram of the Processor Core

1-30 PowerPC 601 RISC Microprocessor User's Manual

The tagging mechanism is described in Section 7.3.1.4.4, “ Synchronization Tags for the
Precise Exception Model .

To minimize latencies due to data dependencies, the |U provides feed-forwarding. For
example, if an integer instruction requires data that is the result of the execution of the
previous instruction, that datais made available to the |U at the same time that the previous
instruction’s write-back stage updates the GPR. This eliminates an additional clock cycle
that would have been necessary if the IU had to access the GPR. Feed-forwarding is
available between IU execute and decode stage and 1U write-back and decode stage.
Feed-forwarding is described in Section 7.2.1.2, “Integer Unit (1U).”

Most integer instructions require one clock cycle per stage. Because results for most integer
instructions are available at the end of the execute stage, a series of single-cycle integer
instructions allow athroughput of one instruction per clock cycle. Other instructions, such
as the integer multiply, require more than one clock cycle to complete execution. These
instructions reduce the throughput accordingly.

The floating-point pipeline has more stages than the IU pipeline, as shown in Figure 1-5.
The 601 supports both single- and double-precision floating-point operations, but
double-precision instructions generally take longer to execute, typically by requiring two
cyclesin the FD, FPM, and FPA stages. However, many of these instructions, such as the
double-precision floating-point multiply (fmul) and double-precision floating-point
accumulate instructions (fmadd, fmsub, fnmadd, and fnmsub), allow stages to overlap.
For example, when the second cycle of the FD stage begins, the first stage of FPM begins.
Similarly the FPM stage overlaps with the FPA stage, allowing these instructions to
compl ete these stagesin four clock cyclesinstead of six. The timings for these instructions
are shown in Section 7.3.4.5.2, “Double-Precision Instruction Timing.”

Because the PowerPC architecture can be applied to such a wide variety of
implementations, instruction timing among various PowerPC processors varies
accordingly.

1.3.8 System Interface
The system interface is specific for each PowerPC processor implementation.

The 601 provides a versatile system interface that allows for a wide range of
implementations. The interface includes a 32-bit address bus, a 64-bit data bus, and 52
control and information signals (see Figure1-6). The system interface alows for
address-only transactions as well as address and data transactions. The 601 control and
information signals include the address arbitration, address start, address transfer, transfer
atribute, address termination, data arbitration, data transfer, data termination, and
processor state signals. Test and control signals provide diagnostics for selected internal
circuitry.

Chapter 1. Overview 1-31

ADDRESS -——> <«—> DATA

ADDRESS ARBITRATION <——>» <——» DATA ARBITRATION
ADDRESS START <——>» <——> DATA TRANSFER
ADDRESS TRANSFER <-——» 601 <«——> DATA TERMINATION
TRANSFER ATTRIBUTE <——> Processor | _ PROCESSOR STATE
ADDRESS TERMINATION <——» <—— TEST AND CONTROL

CLOCKS «=—»

I =
+36V ~

Figure 1-6. System Interface

The system interface supports bus pipelining, which allows the address tenure of one
transaction to overlap the data tenure of another. The extent of the pipelining depends on
external arbitration and control circuitry. Similarly, the 601 supports split-bus transactions
for systems with multiple potential bus masters—one device can have mastership of the
address bus while another has mastership of the data bus. Allowing multiple bus
transactions to occur simultaneously increases the available bus bandwidth for other
activity and as aresult, improves performance.

The 601 supports multiple masters through a bus arbitration scheme that allows various
devicesto competefor the shared busresource. The arbitration logic can implement priority
protocols, such as fairness, and can park masters to avoid arbitration overhead. The MES
protocol ensures coherency among multiple devices and system memory. Also, the 601's
on-chip cache and UTLB and optional second-level caches can be controlled externally.

The 601 clocking structure allows the bus to operate at integer multiples of the processor
cycletime.

The following sections describe the 601 bus support for memory and /O controller
interface operations. Note that some signals perform different functions depending upon
the addressing protocol used.

1.3.8.1 Memory Accesses

Memory accesses allow transfer sizes of 8, 16, 24, 32, 40, 48, 56, or 64 bitsin one bus clock
cycle. Datatransfers occur in either single-beat transactions or four-beat burst transactions.
A single-beat transaction transfers as much as 64 bits. Single-beat transactions are caused
by non-cached accessesthat access memory directly (that is, reads and writes when caching
isdisabled, cache-inhibited accesses, and storesin write-through mode). Burst transactions,
which aways transfer an entire cache sector (32 bytes), are initiated when a sector in the
cache is read from or written to memory. Additionally, the 601 supports address-only
transactions used to invalidate entries in other processors’ TLBs and caches.

1-32 PowerPC 601 RISC Microprocessor User's Manual

1.3.8.2 1/O Controller Interface Operations

Both memory and 1/0 accesses can use the same bus transfer protocols. The 601 also has
the ability to define memory areas as I/O controller interface areas. Accesses to the 1/0
controller interface redefine the function of some of the address transfer and transfer
attribute signals and add control to facilitate transfers between the 601 and specific 1/0
devices that respond to this protocol. 1/0 controller interface transactions provide multiple
transaction operations for variably-sized data transfers (1 to 128 bytes) and support a split
request/response protocol. The distinction between the two types of transfersis made with
separate signals—T S for memory-mapped accesses and XATS for 1/0 controller interface
accesses. Refer to Chapter 9, “ System Interface Operation,” for more information.

1.3.8.3 601 Signals
The 601 signals are grouped as follows:

* Address arbitration signals—The 601 uses these signals to arbitrate for address bus
mastership.

» Addresstransfer start signals—These signalsindicate that a bus master has begun a
transaction on the address bus.

* Addresstransfer signals—These signals, which consist of the address bus, address
parity, and address parity error signals, are used to transfer the address and to ensure
the integrity of the transfer.

» Transfer attribute signals—These signals provide information about the type of
transfer, such asthe transfer size and whether the transaction is bursted,
write-through, or cache-inhibited.

* Addresstransfer termination signals—These signals are used to acknowledge the
end of the address phase of the transaction. They also indicate whether a condition
exists that requires the address phase to be repeated.

» Dataarbitration signals—The 601 uses these signals to arbitrate for data bus
mastership.

» Datatransfer signals—These signals, which consist of the data bus, data parity, and
data parity error signals, are used to transfer the data and to ensure the integrity of
the transfer.

» Datatransfer termination signals—Data termination signals are required after each
data beat in adatatransfer. In asingle-beat transaction, the data termination signals
also indicate the end of the tenure, while in burst accesses, the data termination
signalsapply toindividual beatsand indicate the end of the tenure only after thefinal
databeat. They aso indicate whether a condition exists that requires the data phase
to be repeated.

e System status signals—These signalsincludetheinterrupt signal, checkstop signals,
and both soft- and hard-reset signals. These signals are used to interrupt and, under
various conditions, to reset the processor.

Chapter 1. Overview 1-33

* Processor state signals—These two sighal s are used to set the reservation coherency
bit and set the size of the 601's output buffers.

» Miscellaneous signals—T hese signal s provide information about the state of the
reservation coherency bit.

* COP interface signals—The common on-chip processor (COP) unit is the master
clock control unit and it provides a serial interface to the system for performing
built-in self test (BIST).

» Test interface signals—These signals are used for internal testing.

» Clock signals—These signals determine the system clock frequency. These signals
can a'so be used to synchronize multiprocessor systems.

NOTE

A bar over a signa name indicates that the signal is active
low—for example, ARTRY (address retry) and TS (transfer
start). Active-low signals are referred to as asserted (active)
when they arelow and negated when they are high. Signalsthat
are not active-low, such as APO-AP3 (address bus parity
signals) and TTO-TT4 (transfer type signals) are referred to as
asserted when they are high and negated when they are low.

1.3.8.4 Signal Configuration
Figure 1-7 illustrates the 601 microprocessor's logical pin configuration, showing how the
signals are grouped.

1-34 PowerPC 601 RISC Microprocessor User's Manual

P BR 1 1 | DBG .
ADDRESS | BG o1 1 < DBWO | DATA
ARBITRATION | ABB — 1 1 l< DBB _ | ARBITRATION
ADDRESS —_ Ts o1 _
TRANSFER o ~ XATS i 1 64 |« DHO-DH31, DLO-DL31
START L= > A D DPO-DP7 > | DATA
P AO-A31 oo D SPE > | TRANSFER
ADDRESS | —
TRANSFER | < APO-AP3 > _
- APE 1 1 | TA —
- 1 |< DRTRY | DATA
—‘ T4 1 1 l< TEA TERMINATION
P TT0-TT3 -l 2 N -
B TCO-TC1 5 1 | INT -
P TSIZO-TSIZ2 r3 O]l CKSTP_IN
TRANSFER | TBST 1 O] D CKSTP_OUT _
ATTRIBUTE - Ci i =< HRESET L
- (\.‘:\I;TL 1 1 | SEE;E/T SYSTEM
= CSE0-CSE2 > é 1 B SC_DRIVE > | STATUS
- HP_SNP_REQ o1 - —
ADDRESS [Z AACK |1
TERMINATION - ARTRY .l 1
< SHD |1 7 l< ESP INTERFACE ‘]_ ESP SCAN
— - "—I INTERFACE
— 2X_PCLK o1 21 |< TEST INTERFACE
PCLK_EN g D SYS_QUIESC
— »(1 1 | = TEST
CLOCKS BCLK_EN 1 1 < RESUME SIGNALS
RTC ~ 1 1 QUIESC_REQ _
- 59 59
L
+3.6 V

Figure 1-7. PowerPC 601 Microprocessor Signal Groups

1.3.8.5 Real-Time Clock

The real-time clock (RTC) facility, which is specific to the 601, provides a high-resolution
measure of real timeto provide time of day and date with a calendar range of 136.19 years.
The RTC consists of two registers—the RTC upper (RTCU) register and the RTC lower
(RTCL) register. The RTCU register maintains the number of seconds from apoint in time
specified by software. The RTCL register counts nanoseconds. The contents of either
register may be copied to any GPR.

Chapter 1. Overview 1-35

1-36 PowerPC 601 RISC Microprocessor User's Manual

Chapter 2
Registers and Data Types

This chapter describes the PowerPC 601 microprocessor’s register organization, how these
registers are accessed, and how data is represented in these registers. The 601 always
operatesin one of three distinct states which are described as follows:

* Normal instruction execution state—In this state, the 601 executes instructionsin
either user mode or supervisor mode. User mode can be entered from supervisor
mode by executing the appropriate instructions. If an exception is detected whilein
user mode, the processor enters supervisor mode and begins executing the
instructions at a predetermined location associated with the type of exception
detected. In supervisor mode, the program has access to memory, registers,
instructions, and other resources not available to programs executing in user mode.

* Reset state—Inthereset state all processor instruction executionisaborted, registers
areinitialized appropriately, and external signals are placed in the high-impedance
state. For more information about the reset state, see Section 2.7, “Reset.”

» Checkstop state—\When aprocessor isin the checkstop state, instruction processing
Is suspended and generally cannot be restarted without resetting the processor. The
checkstop state is provided to help identify and diagnose problems. The checkstop
state is described in Section 5.4.2.2, “Checkstop State (MSR[ME] = 0).”

The PowerPC architecture defines register-to-register operations for all computational
instructions. Source data for these instructions are accessed from the on-chip registers or
are provided as immediate values embedded in the opcode. The three-register instruction
format allows specification of a target register distinct from the two source registers, thus
preserving the origina data for use by other instructions and reducing the number of
instructions required for certain operations. Data is transferred between memory and
registers with explicit load and store instructions only.

2.1 Normal Instruction Execution State

During normal execution, a program can access the registers, shown in Figure 2-1,
depending on the program’s access privilege (supervisor or user, determined by the
privilege-level (PR) bit in the machine state register (M SR)). The general-purpose registers
(GPRs) and floating-point registers (FPRs) are accessed through instruction operands.
Access to registers can be explicit (that is, through the use of specific instructions for that

Chapter 2. Registers and Data Types 2-1

purpose such as Move to Special-Purpose Register (mtspr) and Move from Special-
Purpose Register (mfspr) instructions) or implicit as part of the execution of an instruction.
Some registers are accessed both explicitly and implicitly.

e

USER PROGRAMMING

MODEL
FPRO
FPR1
o
[o]
[o]
FPR31
0 63
GPRO Condition
Register
GPR1
° | CR I
[]
° 0 31
GPR31) .
o 31 Floating Point
Status and
Control
Register
FPSCR
0 31

SUPERVISOR PROGRAMMING

MODEL
Segment
Registers
SRO
SR1
Machine State]
Register 2 .
MSR SR15
0 31 0 31

\

SPRO
SPR1
SPR4
SPR5
SPR8
SPR9

SPR18
SPR19
SPR20
SPR21
SPR22
SPR25
SPR26
SPR27
SPR272
SPR273
SPR274
SPR275
SPR282
SPR287
SPR528
SPR529
SPR530
SPR531
SPR532
SPR533
SPR534
SPR535
SPR1008
SPR1009
SPR1010
SPR1013

User-Level SPRs

MQ Register!

XER—Integer Exception Register

RTCU—RTC Upper Register (For reading only)'3

RTCL—RTC Lower Register (For reading only)-3

LR—Link Register

CTR—Count Register

0

Supervisor-Level SPRs

31

DSISR—DAE/ Source Instruction Service Register

DAR—Data Address Register

RTCU—RTC Upper Register (For writing only)l'3

RTCL—RTC Lower Register (For writing only)3

DEC—Decrementer Register*

SDR1—Table Search Description Register 1

SRR0—Save and Restore Register 0

SRR1—Save and Restore Register 1

SPRGO—SPR General 0

SPRG1—SPR General 1

SPRG2—SPR General 2

SPRG3—SPR General 3

EAR—EXxternal Access Register

PVR—Processor Version Register

IBATOU—BAT 0 Upper 2

IBATOL—BAT 0 Lower 2

IBAT1U—BAT 1 Upper 2

IBAT1L—BAT 1 Lower 2

IBAT2U—BAT 2 Upper 2

IBAT2L—BAT 2 Lower 2

IBAT3U—BAT 3 Upper 2

IBAT3L—BAT 3 Lower 2

HIDO 1

HID1 1!

HID2 (IABR) 1

HID5 (DABR) !

0

31

~

/

1 601-only registers. These registers are not necessarily supported by other PowerPC processors.

2 These registers may be implemented differently on other PowerPC processors. The PowerPC architecture defines two sets of
BAT registers—eight IBATs and eight DBATs.The 601 implements the IBATs and treats them as unified BATs.

3 RTCU and RTCL registers can be written only in supervisor mode, in which case different SPR numbers are used.

4 DEC register can be read by user programs by specifying SPR6 in the mfspr instruction (for POWER compatibility).

Figure 2-1. Programming Model—Registers

2-2

PowerPC 601 RISC Microprocessor User's Manual

The numbers to the left of the SPRs indicate the number that is used in the syntax of the
instruction operands to access the register.

The 601's user- and supervisor-level registers are described as follows:

User-level register s—The user-level registers can be accessed by all software with
either user or supervisor privileges. These include the following:

— General-purposeregisters (GPRs). The 601 general -purpose register file consists
of thirty-two 32-bit GPRs designated as GPRO-GPR31. Thisregister file serves
as the data source or destination for all integer instructions and provide data for
generating addresses. See Section 2.2.1, “General Purpose Registers (GPRs),”
for more information.

— Hoating-point registers (FPRs). The floating-point register file consists of thirty-
two 64-bit FPRs designated as FPRO-FPR31, which serves as the data source or
destination for all floating-point instructions. These registers can contain data
objects of either single- or double-precision floating-point format. In the 601 the
floating-point register fileis part of the FPU. For more information, see Section
2.2.2, “Floating-Point Registers (FPRS).”

— Hoating-point status and control register (FPSCR). The FPSCR is a user-control
register in the FPU. It contains all floating-point exception signal bits, exception
summary bits, exception enable bits, and rounding control bits needed for
compliance with the |EEE 754 standard. For more information, see
Section 2.2.3, “Floating-Point Status and Control Register (FPSCR).”

— Condition register (CR). The condition register is a 32-hit register, divided into
eight 4-bit fields, CRO—CRY7, that reflects the results of certain arithmetic
operations and provides a mechanism for testing and branching. For more
information, see Section 2.2.4, “Condition Register (CR).”

The remaining user-level registers are SPRs. Note, however, that the PowerPC
architecture provides a separate mechanism for accessing SPRs (the mtspr and
mfspr instructions). These instructions are commonly used to access certain
registers, while other SPRs may be more typically accessed as the side effect of
executing other instructions. The XER and MQ registers are set implicitly by many
Instructions.

— MQ register (MQ). The MQ register is a 601-specific, 32-bit register used as a
register extension to accommodate the product for the multiply instructions and
the dividend for the divide instructions. It is also used as an operand of long
rotate and shift instructions. This register, and the instructions that requireit, is
provided for compatibility with POWER architecture, and is not part of the
PowerPC architecture. For more information, see Section 2.2.5.1, “MQ Register
(MQ).” The MQ register istypically accessed implicitly as part of executing a
computational instruction.

— Integer exception register (XER). The XER is a 32-hit register that indicates

overflow and carries for integer operations. For more information, see Section
2.2.5.2, “Integer Exception Register (XER).”

Chapter 2. Registers and Data Types 2-3

— Real-time clock (RTC) registers—RTCU and RTCL (RTC upper and RTC
lower). The RTCU register maintains the number of seconds from atime
specified by software. The RTCL register maintains a fraction of the current
second in nanoseconds. At the user-level, these registers can be read from with
the mfspr instruction. As shown in Figure 2-1, the SPR numbers for the RTC
registers depends on the type of access used. The contents of either register can
be copied to any GPR. Theseregisters are specific to the 601. Theseregistersare
not required by the PowerPC architecture, which instead uses the time base
facility. For more information, see Section 2.2.5.3, “Real-Time Clock (RTC)
Registers (User-Level).”

— Link register (LR). The 32-bit link register providesthe branch target addressfor
the Branch Conditional to Link Register (bclrx) instruction, and can optionally
be used to hold the logical address of the instruction that follows a branch and
link instruction, typically used for linking to subroutines. For more information,
see Section 2.2.5.4, “Link Register (LR).”

— Count register (CTR). The count register is a 32-bit register for holding aloop
count that can be decremented during execution of appropriately coded branch
instructions. The CTR can also provide the branch target address for the Branch
Conditional to Count Register (bcctr x) instruction. For more information, see
Section 2.2.5.5, “Count Register (CTR).”

Supervisor-level register s—The 601 incorporates registers that can be accessed
only by programs executed with supervisor privileges. Theseregisters consist of the
machine state register, segment registers, and supervisor SPRs, described as
follows:

— Machine state register (MSR). A 32-bit register that defines the state of the
processor; see Figure 2-11. The M SR can be modified by the Move to Machine
State Register (mtmsr), System Call (sc), and Return from Exception (rfi)
instructions. It can be read by the Move from Machine State Register (mfmsr)
instruction. Note that the MSR is a 64-bit register in 64-bit PowerPC
implementations and a 32-hit register in 32-bit PowerPC implementations. For
more information see Section 2.3.1, “Machine State Register (MSR).”

— Segment registers (SR). The 601 implements sixteen 32-bit segment registers
(SRO-SR15). Figure 2-12 and Figure 2-13 show theformat of asegment register.
The fields in the segment register are interpreted differently depending on the
value of bit 0. For more information, see Section 2.3.2, “Segment Registers.”

PowerPC 601 RISC Microprocessor User's Manual

The remaining supervisor-level registers are SPRs.

— DAFE/source instruction service register (DSISR). A 32-bit register that defines
the cause of data access and alignment exceptions; see Figure 2-14. For more
information, see Section 2.3.3.2, “DAE/Source Instruction Service Register
(DSISR).”

— Dataaddressregister (DAR). A 32-hit register shown in Figure 2-15. After adata
access or an alignment exception, DAR is set to the effective address generated
by the faulting instruction. For more information, see Section 2.3.3.3, “Data
Address Register (DAR).”

— Real-time clock (RTC) registers—RTCU and RTCL (RTC upper and RTC
lower). The registers can be read from by user-level software, but can be written
to only by supervisor-level software. As shown in Figure 2-1, the SPR numbers
for the RTC registers depend on the type of access used. For more information,
see Section 2.2.5.3, “Real-Time Clock (RTC) Registers (User-Level).”

— Decrementer register (DEC). Thisregister is a32-bit decrementing counter that
provides a mechanism for causing a decrementer exception after a
programmable delay. In the 601, the RTC provides the frequency for the DEC.
In other PowerPC implementations, the frequency is a subdivision of the
processor clock. For more information, see Section 2.3.3.5, “ Decrementer
(DEC) Register.”

— Table search description register 1 (SDR1). Thisregister isa 32-bit register that
specifies the page table base address used in virtual-to-physical address
trandation. For more information, see Section 2.3.3.6, “ Table Search
Description Register 1 (SDR1).”

— Machine status save/restore register O (SRRO). Thisregister is a 32-bit register
that is used by the 601 for saving machine status on exceptions and restoring
machine status when an rfi instruction is executed. SRRO is shown in
Figure 2-18. For more information, see Section 2.3.3.7, “Machine Status
Save/Restore Register 0 (SRRO0).”

— Machine status save/restore register 1 (SRR1). Thisregister is a 32-bit register
used to save machine status on exceptions and to restore machine statuswhen an
rfi instruction isexecuted. SRR1isshownin Figure 2-19. For moreinformation,
see Section 2.3.3.8, “Machine Status Save/Restore Register 1 (SRR1).”

— General SPRs (SPRGO-SPRG3). These registers are 32-hit registers provided
for operating system use. See Figure 2-20. For more information, see
Section 2.3.3.9, “Genera SPRs (SPRGO-SPRG3).”

— External accessregister (EAR). Thisregister is a 32-bit register used in
conjunction with the eciwx and ecowx instructions. Note that the EAR register
and the eciwx and ecowx instructions are optional in the PowerPC architecture
and may not be supported in other PowerPC processors. For more information
about the external control facility, see Section 2.3.3.10, “External Access
Register (EAR).”

Chapter 2. Registers and Data Types 2-5

— Processor versionregister (PVR). Thisregister isa32-bit, read-only register that
identifies the version (model) and revision level of the PowerPC processor. For
more information, see Section 2.3.3.11, “Processor Version Register (PVR).”

— Block-addresstrandation (BAT) registers. The 601 includes eight block-address
trandlation registers (BATS), consisting of four pairsof BATs (IBATOU-IBAT3U
and IBATOL-IBAT3L). See Figure 2-1for alist of the SPR numbersfor the BAT
registers. Figure 2-23 and Figure 2-24 show the formats of the upper and lower
BAT registers. Note that the PowerPC architecture has twice as many BAT
registers as the 601. For more information, see Section 2.3.3.12, “BAT
Registers.”

— Hardware implementation registers (HIDO-HID2, HID5, and HID15). These
registers are provided primarily for debugging. For more information, see
Section 2.3.3.13.1, “ Checkstop Sources and Enables Register—HIDO” through
Section 2.3.3.13.5, “Processor Identification Register (PIR)—HID15.” HID15
holds the four-bit processor identification tag (PID) that is useful for
differentiating processors in multiprocessor system designs. For more
information, see Section 2.3.3.13.5, “Processor |dentification Register (PIR)—
HID15”

Notethat there are registers common to other PowerPC processorsthat are not implemented
in the 601. When the 601 detects SPR encodings other than those defined in this document,
it either takes a program exception (if bit O of the SPR encoding is set) or it treats the
instruction as ano-op (if bit 0 of the SPR encoding is clear).

2.1.1 Changing Privilege Levels

Supervisor-level accessis provided through the 601’s exception mechanism. That is, when
an exception is taken, either due to an error or problem that needs to be serviced or
deliberately through the use of atrap or System Call (sc) instruction, the processor begins
operating in supervisor mode. The level of accessis indicated by the privilege-level (PR)
bit in the MSR.

In user mode, the processor has access to user-level registers, memory, and instructions. In
supervisor mode, the processor has access to additional registers, instructions, and usually
has more authority to access memory. Instructions that can be accessed only from
supervisor-level are listed in Section 3.2, “ Exception Summary.”

2.2 User-Level Registers

This section describesin detail the registersthat can be accessed by user-level software. All
user-level registers can be accessed by supervisor-level software.

2.2.1 General Purpose Registers (GPRS)

Integer datais manipulated in the IU’s thirty-two 32-bit GPRs shown in Figure 2-2. These
registers are accessed as source and destination registersin the instruction syntax.

2-6 PowerPC 601 RISC Microprocessor User's Manual

GPRO
GPR1

GPR31

Figure 2-2. General Purpose Registers (GPRS)

All GPRs are cleared by hard reset.

2.2.2 Floating-Point Registers (FPRS)

The PowerPC architecture provides thirty-two 64-bit FPRs as shown in Figure 2-3. These
registers are accessed as source and destination registers for floating-point instructions.
Each FPR supports the double-precision floating-point format. Every instruction that
interprets the contents of an FPR as a floating-point value uses the double-precision
floating-point format for this interpretation.

All floating-point arithmetic instructions operate on data located in FPRs and, with the
exception of compare instructions, place the result into an FPR. Information about the
status of floating-point operations is placed into the floating-point status and control
register (FPSCR) and in some cases, into CR after the completion of instruction execution.
For information on how CR is affected for floating-point operations, see Section 2.2.4,
“Condition Register (CR).”

Load and store double instructions transfer 64 bits of data between memory and the FPRs
with no conversion. Load single instructions are provided to read a single-precision
floating-point value from memory, convert it to double-precision floating-point format, and
place it in the target floating-point register. Store single instructions are provided to read a
double-precision floating-point value from a floating-point register, convert it to single-
precision floating-point format, and place it in the target memory location.

Single- and double-precision arithmetic instructions accept values from the FPRs in
double-precision format. For single-precision arithmetic instructions, all input values must
be representabl e in single-precision format; otherwise, the result placed into the target FPR
and the setting of status bits in the FPSCR and in the condition register are undefined.

The 601's floating-point arithmetic instructions produce intermediate results that may be
regarded asinfinitely precise. After normalization or denormalization, if the precision of the
intermediate result cannot be represented in the destination format (single or double
precision), it isrounded before being placed in thetarget FPR. Thefinal result isthen placed
into the FPR in the double-precision format.

Chapter 2. Registers and Data Types 2-7

FPRO
FPR1

FPR31

Figure 2-3. Floating-Point Registers (FPRs)

All FPRs are cleared by hard reset.

2.2.3 Floating-Point Status and Control Register (FPSCR)
The FPSCR, shown in Figure 2-4, contains bits to do the following:

» Record exceptions generated by floating-point operations

» Record the type of the result produced by a floating-point operation

e Control the rounding mode used by floating-point operations

» Enable or disable the reporting of exceptions (invoking the exception handler)

Bits 0-23 are status hits. Bits 24-31 are control bits. Bitsin the FPSCR are updated at the
completion of the instruction execution.

Except for the floating-point enabled exception summary (FEX) and floating-point invalid
operation exception summary (VX), the floating-point exception condition bits in the
FPSCR are bits 0-12 and 21-23 and are sticky. That is, once set, sticky bits remain set until
they are cleared by an mcrfs, mtfsfi, mtfsf, or mtfsb0 instruction.

FEX and VX are the logical ORs of other FPSCR bits. Therefore these two bits are not
listed among the FPSCR bits directly affected by the various instructions.

FPSCR [] Reserved
VXIDI VXZDZ — VXSOFT
VXIS| —————— ———— VXIMZ VXSQRT
VXSNAN —I li VXVC l_ VXCVI
FX [FEX Vx| ox| ux| zx | xx FR| FI FPRF |0 VE|OE|UE|ZE|XE| 0 | RN

01 2 3 4 5 6 7 8 9 10 11 12 13 1415 1920 21 22 23 24 25 26 27 28 29 30 31
Figure 2-4. Floating-Point Status and Control Register (FPSCR)
A listing of FPSCR bit settings is shown in Table 2-1.

Table 2-2 illustrates the floating-point result flags used by the 601. The result flags
correspond to FPSCR bits 15-19.

2-8 PowerPC 601 RISC Microprocessor User's Manual

Table 2-1. FPSCR Bit Settings

Bit(s)

Name

Description

FX

Floating-point exception summary (FX). Every floating-point instruction implicitly sets
FPSCR[FX] if that instruction causes any of the floating-point exception bits in the FPSCR to
transition from 0 to 1. The mcrfs instruction implicitly clears FPSCR[FX] if the FPSCR field
containing FPSCR[FX] is copied. The mtfsf, mtfsfi, mtfsb0, and mtfsb1 instructions can set
or clear FPSCR[FX] explicitly. This is a sticky bit.

FEX

Floating-point enabled exception summary (FEX). This bit signals the occurrence of any of
the enabled exception conditions. It is the logical OR of all the floating-point exception bits
masked with their respective enable bits. The mcrfs instruction implicitly clears FPSCR[FEX]
if the result of the logical OR described above becomes zero. The mtfsf, mtfsfi, mtfsb0, and
mtfsb1l instructions cannot set or clear FPSCR[FEX] explicitly. This is not a sticky bit.

VX

Floating-point invalid operation exception summary (VX). This bit signals the occurrence of
any invalid operation exception. It is the logical OR of all of the invalid operation exceptions.
The mcrfs instruction implicitly clears FPSCR[VX] if the result of the logical OR described
above becomes zero. The mtfsf, mtfsfi, mtfsb0, and mtfsb1 instructions cannot set or clear
FPSCR[VX] explicitly. This is not a sticky bit.

OX

Floating-point overflow exception (OX). This is a sticky bit. See Section 5.4.7.4, “Overflow
Exception Condition.”

UXx

Floating-point underflow exception (UX). This is a sticky bit. See Section 5.4.7.5, “Underflow
Exception Condition.”

ZX

Floating-point zero divide exception (ZX). This is a sticky bit. See Section 5.4.7.3, “Zero
Divide Exception Condition.”

XX

Floating-point inexact exception (XX). This is a sticky bit. See Section 5.4.7.6, “Inexact
Exception Condition.”

VXSNAN

Floating-point invalid operation exception for SNaN (VXSNAN). This is a sticky bit. See
Section 5.4.7.2, “Invalid Operation Exception Conditions.”

VXISI

Floating-point invalid operation exception for co-co (VXISI). This is a sticky bit. See Section
5.4.7.2, “Invalid Operation Exception Conditions.”

VXIDI

Floating-point invalid operation exception for co/co (VXIDI). This is a sticky bit. See Section
5.4.7.2, “Invalid Operation Exception Conditions.”

10

VXZDz

Floating-point invalid operation exception for 0/0 (VXZDZ). This is a sticky bit. See Section
5.4.7.2, “Invalid Operation Exception Conditions.”

11

VXIMZ

Floating-point invalid operation exception for «*0 (VXIMZ). This is a sticky bit. See Section
5.4.7.2, “Invalid Operation Exception Conditions.”

12

VXVC

Floating-point invalid operation exception for invalid compare (VXVC). This is a sticky bit.
See Section 5.4.7.2, “Invalid Operation Exception Conditions.”

13

FR

Floating-point fraction rounded (FR). The last floating-point instruction that potentially
rounded the intermediate result incremented the fraction. See Section 2.5.6, “Rounding.” This
bit is not sticky.

14

Fl

Floating-point fraction inexact (Fl). The last floating-point instruction that potentially rounded
the intermediate result produced an inexact fraction or a disabled overflow exception. See
Section 2.5.6, “Rounding.” This bit is not sticky.

Chapter 2. Registers and Data Types 2-9

Table 2-1. FPSCR Bit Settings (Continued)

Bit(s) Name Description
15-19 | FPRF Floating-point result flags (FPRF). This field is based on the value placed into the target
register even if that value is undefined. Refer to Table 2-2 for specific bit settings.
15 Floating-point result class descriptor (C). Floating-point instructions other than the
compare instructions may set this bit with the FPCC bits, to indicate the class of
the result.

16-19 Floating-point condition code (FPCC). Floating-point compare instructions always
set one of the FPCC bits to one and the other three FPCC bits to zero. Other
floating-point instructions may set the FPCC bits with the C bit, to indicate the
class of the result. Note that in this case the high-order three bits of the FPCC
retain their relational significance indicating that the value is less than, greater
than, or equal to zero.

16 Floating-point less than or negative (FL or <)
17 Floating-point greater than or positive (FG or >)
18 Floating-point equal or zero (FE or =)

19 Floating-point unordered or NaN (FU or ?)

20 — Reserved

21 VXSOFT | Notimplemented in the 601. This is a sticky bit. For more detailed information refer to
Table 5-17 and Section 5.4.7.2, “Invalid Operation Exception Conditions.”

22 VXSQRT | Notimplemented in the 601. For more detailed information refer to Table 5-17 and Section
5.4.7.2, “Invalid Operation Exception Conditions.”

23 VXCVI Floating-point invalid operation exception for invalid integer convert (VXCVI). This is a sticky
bit. See Section 5.4.7.2, “Invalid Operation Exception Conditions.”

24 VE Floating-point invalid operation exception enable (VE). See Section 5.4.7.2, “Invalid
Operation Exception Conditions.”

25 OE Floating-point overflow exception enable (OE). See Section 5.4.7.4, “Overflow Exception
Condition.”

26 UE Floating-point underflow exception enable (UE). This bit should not be used to determine

whether denormalization should be performed on floating-point stores. See Section 5.4.7.5,
“Underflow Exception Condition.”

27 ZE Floating-point zero divide exception enable (ZE). See Section 5.4.7.3, “Zero Divide Exception
Condition.”

28 XE Floating-point inexact exception enable (XE). See Section 5.4.7.6, “Inexact Exception
Condition.”

29 — Reserved. This bit may be implemented as the non-IEEE mode bit (NI) in other PowerPC

implementations.

30-31 | RN Floating-point rounding control (RN). See Section 2.5.6, “Rounding.”
00 Round to nearest

01 Round toward zero

10 Round toward +infinity

11 Round toward —infinity

The FPSCR is cleared by hard reset.

2-10 PowerPC 601 RISC Microprocessor User's Manual

Table 2-2. Floating-Point Result Flags in FPSCR

Result Flags

(Bits 15-19) Result value class
C<>=7?
10001 Quiet NaN
01001 —Infinity
01000 —Normalized number
11000 —Denormalized number
10010 -Zero

00010 +Zero

10100 +Denormalized number

00100 +Normalized number

00101 +Infinity

2.2.4 Condition Register (CR)

The condition register (CR) is a 32-bit register that reflects the result of certain operations
and provides a mechanism for testing and branching. The bits in the CR are grouped into
eight 4-bit fields, CRO—CR7, as shown in Figure 2-5.

CRO CR1 CR2 CR3 CR4 CR5 CR6 CR7
0 34 78 1112 15 16 19 20 23 24 27 28 31

Figure 2-5. Condition Register (CR)

The CR fields can be set in one of the following ways:

» Specified fields of the CR can be set by amove instruction (mtcrf, or merfs) to the
CR from aGPR.

» Specified fields of the CR can be moved from one CRx field to another with the
mcr f instruction.

» A specified field of the CR can be set by amoveinstruction (mcrxr) to the CR from
the XER.

» Condition register logical instructions can be used to perform logical operations on
specified bits in the condition register.

* CRO can betheimplicit result of an integer operation.

* CR1 can betheimplicit result of afloating-point operation.

* A gpecified CR field can be the explicit result of either an integer or floating-point
compare instruction.

Branch instructions are provided to test individual CR bits. The condition register is cleared
by hard reset.

Chapter 2. Registers and Data Types 2-11

2.2.4.1 Condition Register CRO Field Definition

In most integer instructions, when the Rc bit is set, the first three bits of CRO are set by an
algebraic comparison of the result to zero; the fourth bit of CRO is copied from XER[SO].
The addic., andi., and andis. instructions set these four bits implicitly. These bits are
interpreted as shown in Table 2-3. If any portion of the result (the 32-bit value placed into
thetarget register) isundefined, the value placed into thefirst three bits of CRO is undefined.

Table 2-3. Bit Settings for CRO Field of CR

C|:3Flit0 Description
0 Negative (LT)—This bit is set when the result is negative.
1 Positive (GT)—This bit is set when the result is positive (and not zero).
2 Zero (EQ)—This bit is set when the result is zero.
3 Summary overflow (SO)—This is a copy of the final state of XER[SQ] at the completion of the instruction.

2.2.4.2 Condition Register CR1 Field Definition

In al floating-point instructions except mcrfs, fcmpu, and fcmpo, when Rc is specified,
CRL1 is copied from bits 0-3 of the floating-point status and control register (FPSCR). For
more information about the FPSCR, see Section 2.2.3, “Floating-Point Status and Control
Register (FPSCR).” The bit settings for the CR1 field are shown in Table 2-4.

Table 2-4. Bit Settings for CR1 Field of CR

CR1 —
Bit Description
4 Floating-point exception (FX)—This is a copy of the final state of FPSCR[FX] at the completion of the
instruction.
5 Floating-point enabled exception (FEX)—This is a copy of the final state of FPSCR[FEX] at the
completion of the instruction.
6 Floating-point invalid exception (VX)—This is a copy of the final state of FPSCR[VX] at the completion of
the instruction.
7 Floating-point overflow exception (OX)—This is a copy of the final state of FPSCR[OX] at the completion
of the instruction.

2.2.4.3 Condition Register CRn Field—Compare Instruction

When a specified CR field is set by a compare instruction, the bits of the specified field are
interpreted, as shown in Table 2-5. A condition register field can also be accessed by the
mfcr, merf, and mterf instructions.

2-12 PowerPC 601 RISC Microprocessor User's Manual

Table 2-5. CRn Field Bit Settings for Compare Instructions

CRn

Bit* Description

0 Less than, Floating-point less than (LT, FL).

For integer compare instructions, (rA) < SIMM, UIMM, or (rB) (algebraic comparison) or (rA) SIMM,
UIMM, or (rB) (logical comparison).

For floating-point compare instructions, (frA) < (frB).

1 Greater than, floating-point greater than (GT, FG).

For integer compare instructions, (rA) > SIMM, UIMM, or (rB) (algebraic comparison) or (rA) SIMM,
UIMM, or (rB) (logical comparison).

For floating-point compare instructions, (frA) > (frB).

2 Equal, floating-point equal (EQ, FE).
For integer compare instructions, (rA) = SIMM, UIMM, or (rB).
For floating-point compare instructions, (frA) = (frB).

3 Summary overflow, floating-point unordered (SO, FU).

For integer compare instructions, this is a copy of the final state of XER[SO] at the completion of the
instruction.

For floating-point compare instructions, one or both of (frA) and (frB) is not a number (NaN).

*Here, the bit indicates the bit number in any one of the four-bit subfields, CRO-CR7.

2.2.5 User-Level SPRs

User-level SPRs can be accessed by either user- or supervisor-level instructions. The
mechanism referred to for accessing SPRs is the set of Move to Specia Purpose Register
(mtspr) and Move from Special Purpose Register (mfspr) instructions. These instructions
are commonly used to access certain registers, while other SPRs may be more typically
accessed asthe side effect of executing other instructions. Some SPRs are implementation-
specific; as noted, some SPRs in the 601 may not be implemented in other PowerPC
processors, or may not be implemented in the same way in other PowerPC processors.

In general for registers with reserved bits, implementations return zeros or return the value
last written to those bits. The only user-level SPR, in the 601,with reserved bitsisthe XER,
which returns zeros.

The RTCL register is defined as 32 bits, but the lowest-order seven bits are not
implemented. Those bits are reserved, and zeros are loaded into the respective bit positions
of the target register when the RTCL isread.

When the 601 detects SPR encodings other than those defined in this document, it either
takes a program exception (if bit O of the SPR encoding is set) or it treats the instruction as
ano-op (if bit 0 of the SPR encoding is clear).

2.2.5.1 MQ Register (MQ)

The MQ register (MQ), shownin Figure 2-6, isa 32-bit register used as aregister extension
to accommodate the product for the multiply (mulx) instruction and the dividend for the
divide (divx) instruction. It is also used as an operand of long rotate and shift instructions.
Note that the mulx, divx, and some of the long rotate and shift instructions are not part of

Chapter 2. Registers and Data Types 2-13

the PowerPC architecture. See Chapter 10, “Instruction Set” for amore detailed account of
instructions not implemented in the PowerPC architecture.

MQ

Figure 2-6. MQ Register (MQ)

The MQ register is not defined in the PowerPC architecture. However, in the 601, it may be
modified as a side effect during the execution of the mulli, mullw, mulhs, mulhu, divw,
and divwu instructions, which are PowerPC instructions.

The value written to the MQ register during these operations is operand-dependent and
therefore, the MQ contents become undefined after any of these instructions executes. In
addition, the MQ is modified by the implementation-specific instructions supported by the
601 that are not part of the PowerPC architecture. These are listed in Table 2-6.

Table 2-6. PowerPC 601 Microprocessor-Specific Instructions that Modify the MQ

Register
Mnemonic Instruction Name Read/Write
mul Multiply Read/write
div Divide Read/write
divs Divide Short Read/write
sliq Shift Left Immediate with MQ Read/write
slliq Shift Left Long Immediate with MQ Read/write
sle Shift Left Extended Write
sleq Shift Left Extended with MQ Read/write
slliq Shift Left Long Immediate with MQ Read/write
sliq Shift Left Long with MQ Read/write
slq Shift Left with MQ Write
sraiq Shift Right Algebraic Immediate with MQ | Write
sraq Shift Right Algebraic with MQ Write
sre Shift Right Extended Write
srea Shift Right Extended Algebraic Write
sreq Shift Right Extended with MQ Read/write
sriq Shift Right Immediate with MQ Write
srliq Shift Right Long Immediate with MQ Read/write
srlq Shift Right Long with MQ Read/write
srqg Shift Right with MQ Write

2-14

PowerPC 601 RISC Microprocessor User's Manual

The PowerPC instructions listed in Table 2-7 use the MQ register as a buffer to create a
temporary 64-bit value. These instructions leave the MQ register in an undefined state.

Table 2-7. PowerPC Instructions that Use the MQ Register

Mnemonic Instruction Name
mulli Multiply Low Immediate
mullw Multiply Low
mulhw Multiply High Word
mulhwu Multiply High Word Unsigned
divw Divide Word
divwu Divide Word Unsigned

The Move to Special Purpose Register (mtspr) and Move from Special Purpose Register
(mfspr) can access the MQ register. The SPR number for the MQ register isO.

The MQ register is not part of the PowerPC architecture and will not be supported in other
PowerPC microprocessors.

The MQ register is cleared by hard reset.

2.2.5.2 Integer Exception Register (XER)
Theinteger exception register (XER) isauser-level, 32-bit register as shown in Figure 2-7.

[] Reserved

SO|OV|CA 0000000000000 Byte compare value 0 Byte count

01 2 3 15 16 23 24 25 31
Figure 2-7. Integer Exception Register (XER)

XER isdesignated SPR1. The bit definitionsfor XER, shown in Table 2-8, are based on the
operation of an instruction considered as awhole, not on intermediate results. For example,
the result of the Subtract from Carrying (subfcx) instruction is specified as the sum of three
values. This instruction sets bits in the XER based on the entire operation, not on an
intermediate sum.

Chapter 2. Registers and Data Types 2-15

Table 2-8. Integer Exception Register Bit Definitions

Bit(s) | Name Description

0 SO Summary Overflow (SO)—The summary overflow bit (OV) is set whenever an instruction (except
mtspr) sets the overflow bit (OV) to indicate overflow and remains set until software clears it (with
the mtspr or mcrxr instruction). It is not altered by compare instructions or other instructions that
cannot overflow.

1 ov Overflow (OV)—The overflow bit is set to indicate that an overflow has occurred during execution
of an instruction. Integer and subtract instructions having OE = 1 set OV if the carry out of bit 0 is
not equal to the carry out of bit 1, and clear it otherwise. The OV bit is not altered by compare
instructions or other instructions that cannot overflow.

2 CA Carry (CA)—In general, the carry bit is set to indicate that a carry out of bit 0 occurred during
execution of an instruction. Add carrying, subtract from carrying, add extended, and subtract from
extended instructions set CA to one if there is a carry out of bit 0, and clear it otherwise. The CA
bit is not altered by compare instructions, or other instructions that cannot carry, except that shift
right algebraic instructions set the CA bit to indicate whether any “1” bits have been shifted out of
a negative quantity.

3-15 — Reserved

16-23 This field contains the byte to be compared by a Load String and Compare Byte Indexed (Iscbx)
instruction. Note that Iscbx is not a part of the PowerPC architecture.

24 — Reserved

25-31 This field specifies the number of bytes to be transferred by a Load String Word Indexed (Iswx),

Store String Word Indexed (stswx) or Load String and Compare Byte Indexed (Iscbx) instruction.

The XER is cleared by hard reset.

2.2.5.3 Real-Time Clock (RTC) Registers (User-Level)

The real-time clock (RTC) registers provide a high-resolution measure of rea time for
indicating the date and time of day. The RTC facility provides a calendar range of roughly
135 years. The RTC registers are 601-specific.

The RTC input is sampled using the CPU clock. Therefore, if the CPU clock is less than
twice the RTC frequency, real-time clock (and decrementer) sampling and incrementing
errors will occur. Therefore, in systems that change the CPU clock frequency dynamically
beyond this limit, a method of saving and restoring the real-time clock register values via
external meansis recommended for accuracy of the RTC.

The RTC registers, shown in Figure 2-8, consist of the following:

* Rea-time clock upper (RTCU)—This register specifies the number of seconds that
have elapsed since the time specified in the software.

* Real-time clock lower (RTCL)—Thisregister contains the number of nanoseconds
since the beginning of the current second.

Reading any portion of the RTC registers does not affect its contents. The writing of the
RTCU and RTCL registersis allowed for supervisor programs only (mtspr is supervisor-

2-16 PowerPC 601 RISC Microprocessor User's Manual

only for RTC registers) and as supervisor-level registers, RTCU and RTCL must be
accessed using different SPR numbers, as shown in Figure 2-1.

In user-level, RTCU and RTCL areread-only. The SPR numbersfor the RTCU, RTCL, and
DEC registers differ depending upon whether the mtspr or mfspr instruction is used. For
the mtspr instruction, RTCU is SPR20, RTCL is SPR2. For the mfspr instruction, RTCU
isSPR4, RTCL is SPR5.

For compatibility with the PowerPC user instruction set architecture, it is recommended
that the Move from Time Base instruction (mftb) be used instead of the mfspr instruction.
Thisinstruction, whichisnot implemented in the 601, causes anillegal instruction program
exception on the 601; the mfspr instruction can be used to perform the operation in the
601’s exception handler, and will function as defined in the architecture on other PowerPC
processors. The mftb instruction, is described in Appendix C, “PowerPC Instructions Not
Implemented.”

RTCU
0 31
L)
[] Reserved
00 RTCL 0000000
0 12 2425 31
(2)

Figure 2-8. Real-Time Clock (RTC) Registers

The RTC runs constantly while power is applied and the external 7.8125 MHz oscillator is
connected. Note that the RTC will not be implemented in other PowerPC processors. The
condition register is cleared by hard reset. Note that when an external clock is connected to
the RTC, the RTCL and RTCU registers are incremented automatically.

Both registers are cleared by a hard reset.

2.2.5.3.1 Real-Time Clock Lower (RTCL) Register

The RTCL functions as a 23-bit counter that provides the lower word of the RTC. As an
indicator of the granularity of the RTC, enough bits are implemented to provide aresolution
that is finer than the time required to execute 10 Add Immediate (addi) instructions. The
following details describe the RTCL.:

* Bits0-1 and bits 25-31 are not implemented. (The number of lower order bits
required is determined by the frequency of the oscillator—7.8125 MHz)

* Theleast significant implemented bit of the RTCL (bit 24) isincremented every
128 nS.

* The period of the RTCL is one billion nanoseconds (one second).

Chapter 2. Registers and Data Types 2-17

» Unlessitisaltered by software, the RTCL reaches its terminal count value of
999,999,872 (one billion minus 128) after 999,999,999 nS. The next time RTCL is
incremented, it cyclesto all zeros and RTCU isincremented.

» Usingthemfspr instruction with RTCL doesnot affect its contents. Unimplemented
bits are read as zeros.

» If themtspr instruction isused to replace the contents of the RTCL with the contents
of a GPR, the values of the GPR corresponding to the unimplemented bits in the
RTCL areignored.

2.2.5.3.2 Real-Time Clock Upper (RTCU) Register

The RTCU register is a 32-bit binary counter in which the least-significant bit is
incremented in synchronization with the transition to zero of the RTCL counter (after one-
billion nanoseconds—that is, every second). All 32 bits of the RTCU are implemented.
When the RTCU is set to al ones, the next timeit isincremented it becomes all zeros.

When the contents of the RTCU or the RTCL are copied to a GPR, bits in the GPR
corresponding to the unimplemented bits in the RTCL are cleared.

2.2.5.3.3 Reading the RTC

The contents of either RTC register can be copied into a GPR by user programs with the
mfspr instruction. Because the RTCL continues to increment and the RTCU may be
incremented while instructions are being executed that read the two RTC registers, when
the current time is required in a form that includes more than the upper or lower word of
the RTC, the following procedure should be used:

1. Execute the following instruction sequence:

mfspr rA,r4 [read RTCL
mfspr rB,r5 [read RTCU
mfspr rC,r4 [read RTCL

2. 1f (rC)=(rA)

then the correct value has been obtained
elserepeat step 1

Step 2 is required because the RTC continues to increment and the RTCU may increment
while the instructions that read the two halves of the RTC are being executed. If the values
inrC and r A match, the RTCU has not been incremented, and the RTCU value can be used
along with the value in r B as the current RTC value. However, if the values of rC and rA
differ, the RTCU has been incremented and it cannot be guaranteed which, if either, RTCU
value should be associated with the value in r B.

Successive readings of the RTC registers do not necessarily give unique values. If unique
values are required, and if updating the RTCL at least once in the time it takes to execute
10 addi instructionsisinsufficient to ensure unique values, a software solution is required.

2-18 PowerPC 601 RISC Microprocessor User's Manual

2.2.5.3.4 RTC Synchronization in a Multiprocessor System

Typically, RTCs must be synchronized in a multiprocessor system. One way to achieve
synchronization is to use a gated RTC clock as the input to all 601sin a system. The gate
clock can be enabled and disabled through the use of an I/O access (either 1/0 controller
interface store instruction to a selected BUID, or a memory-mapped 1/0O access). This
allows the RTC input clock to all processors to be turned on and off at the same time. Each
processor’s RTC register can then be loaded to the same value before starting the RTC input
clock.

2.2.5.4 Link Register (LR)

The 32-hit link register (LR) supplies the branch target address for the Branch Conditional
to Link Register (bclrx) instruction, and can be used to hold the logical address of the
instruction that follows a branch and link instruction. The format of LR is shown in
Figure 2-9.

Branch Address

Figure 2-9. Link Register (LR)

Note that although the two least-significant bits can accept any values written to them, they
are ignored when the LR is used as an address. The link register can be accessed by the
mtspr and mfspr instructions using SPR number 8. Fetching instructions along the target
path (loaded by an mtspr instruction) is possible provided the link register is loaded
sufficiently ahead of the branch instruction. It is usually possible for the 601 to fetch along
atarget path loaded by a branch and link instruction.

Both conditional and unconditional branch instructions include the option of placing the
effective address of the instruction following the branch instruction in the LR.

As aperformance optimization, and as an aid for handling the precise exception model, the
601 implements a two-entry link register shadow. Shadowing allows the link register to be
updated by branch instructions that are executed out-of-order with respect to integer
instructions without destroying machine state information if any integer instructions takes
a precise exception. Thisis not visible from software. The link register is cleared by hard
reset.

Note that athough the 601 does not implement a link stack register, one may be
implemented in subsequent PowerPC processors. For compatibility, use of the link register
should be controlled following the description in Section 3.6.1.5, “Branch Conditional to
Link Register Address Mode”

Chapter 2. Registers and Data Types 2-19

2.2.5.5 Count Register (CTR)

The count register (CTR) is a 32-bit register for holding a loop count that can be
decremented during execution of branch instructions that contain an appropriately coded
BO field. If the value in CTR is 0 before being decremented, it is—1 afterward. The count
register can aso provide the branch target address for the Branch Conditional to Count
Register (bcctrx) instruction. The CTR is shown in Figure 2-10.

CTR

Figure 2-10. Count Register (CTR)

Fetching instructions along the target path is also possible provided the count register is
loaded sufficiently ahead of the branch instruction.

The count register can be accessed by the mtspr and mfspr instructions by specifying the
SPR number 9. In branch conditional instructions, the BO field specifies the conditions
under which the branch is taken. The first four bits of the BO field specify how the branch
is affected by or affects the condition register and the count register. The encoding for the
BO field is shown in Table 3-25. The count register is cleared by hard reset.

2.3 Supervisor-Level Registers

Some 601 registers can be accessed only by supervisor-level software. These include the
machine state register (MSR), the segment registers, and several SPRs.

2.3.1 Machine State Register (MSR)

The machine state register (MSR), shown in Figure 2-11, isa 32-bit register that definesthe
state of the processor. When an exception occurs, MSR bits, as described in Table 2-9, are
altered as determined by the exception. The MSR can aso be modified by the mtmsr, sc,
and rfi instructions. It can be read by the mfmsr instruction. Note that in 64-bit PowerPC
implementations, the MSR is a 64-bit register.

[] Reserved

000000000000O0OOO EE|PR|FP|MEJFEO|SE| O [FE1 O |EP| IT|DT[00 | O[O
0 151617 18 19 20 2122 23 24 25 26 27 28 29 30 31

Figure 2-11. Machine State Register (MSR)

Table 2-9 shows the bit definitions for the MSR.

2-20 PowerPC 601 RISC Microprocessor User's Manual

Table 2-9. Machine State Register Bit Settings

Bit(s) Name Description
0-15 — Reserved*
16 EE External exception enable
0 While the bit is cleared the processor delays recognition of external interrupts and
decrementer exception conditions.
1 The processor is enabled to take an external interrupt or the decrementer exception.
17 PR Privilege level
0 The processor can execute both user- and supervisor-level instructions.
1 The processor can only execute user-level instructions.
18 FP Floating-point available
0 The processor prevents dispatch of floating-point instructions, including floating-point
loads, stores, and moves.
1 The processor can execute floating-point instructions, and can take floating-point
enabled exception type program exceptions.
19 ME Machine check enable
0 Acheckstop is taken, unless either HIDO[CE] or HIDO[EM] is cleared (disabled), in which
case the machine check exception is taken.
1 Machine check exceptions are enabled.
In the 601, this bit is set after a hard reset, although the PowerPC architecture specifies that
this bit is cleared.
20 FEO Floating-point exception mode 0 (See Table 2-10).
21 SE Single-step trace enable
0 The processor executes instructions normally.
1 The processor generates a single-step trace exception upon the successful execution of
the next instruction. In the 601 this is implemented as a run-mode exception; the
PowerPC architecture defines this as a trace exception. When this bit is set, the
processor dispatches instructions in strict program order. Successful execution means
the instruction caused no other exception. Single-step tracing may not be present on all
implementations.
22 — Reserved * on the 601
23 FE1 Floating-point exception mode 1 (See Table 2-10).
24 — Reserved. This bit corresponds to the AL bit of the POWER architecture.
25 EP Exception prefix. The setting of this bit specifies whether an exception vector offset is
prepended with Fs or 0s. In the following description, nnnnn is the offset of the exception. See
Table 5-2.
0 Exceptions are vectored to the physical address x'000n_nnnn'.
1 Exceptions are vectored to the physical address xX'FFFn_nnnn'.
26 IT Instruction address translation
0 Instruction address translation is disabled.
1 Instruction address translation is enabled.
For more information see Chapter 6, “Memory Management Unit.”
27 DT Data address translation
0 Data address translation is disabled.
1 Data address translation is enabled.
For more information see Chapter 6, “Memory Management Unit.”
28-29 — Reserved

Chapter 2. Registers and Data Types 2-21

Table 2-9. Machine State Register Bit Settings (Continued)

Bit(s) Name Description
30 — Reserved* on the 601
31 — Reserved * on the 601

*These reserved bits may be used by other PowerPC processors. Attempting to change these bits does not
affect the operation of the 601. These bit positions always return a zero value when read. Note that bits 15 and
31 (ELE and LE) are defined by the PowerPC architecture to control little- and big-endian mode.

The floating-point exception mode bits are interpreted as shown in Table 2-10. For further
details, see Section 5.4.7.1, “Floating-Point Enabled Program Exceptions.” Note that these
bits are logically ORed, so that if either is set the processor operates in precise mode.

Table 2-10. Floating-Point Exception Mode Bits

FEO | FE1 Mode
0 0 Floating-point exceptions disabled
0 1 Floating-point imprecise nonrecoverable*
1 0 Floating-point imprecise recoverable*
1 1 Floating-point precise mode

*Because FEO and FE1 are logically ORed on the
601, neither of these modes is available. If either bit
is set, the processor operates in precise mode.

Table 2-11 indicates the state of the M SR after a hard reset.

Table 2-11. State of MSR at Power Up

Bit Description
0-15 0 (Reserved)
16-18 0
19 1
20-24 0
25 1
26-27 0
28-31 0 (Reserved)

2.3.2 Segment Registers

The sixteen 32-bit segment registers are present only in 32-bit PowerPC implementations.
Figure 2-12 shows the format of a segment register in the 601. The value of bit O, the T bit,
determines how the remaining register bits are interpreted.

2-22 PowerPC 601 RISC Microprocessor User's Manual

[] Reserved

00000

VSID

78

Figure 2-12. Segment Register Format (T = 0)

31

Segment registers can be accessed by using the mtsr and mtsrin instructions. Segment
register bit settingswhen T = 0 are described in Table 2-12.

Table 2-12. Segment Register Bit Settings (T = 0)

Bits Name Description
0 T T = 0 selects this format
1 Ks Supervisor-state protection key
2 Ku User-state protection key
3-7 — Reserved
8-31 VSID Virtual segment ID

Figure 2-13 shows the bit definition when T = 1.

T [Ks|Ku BUID Controller Specific Information Packet 1(0-3)
0 1 2 11 12 27 28 31
Figure 2-13. Segment Register Format (T = 1)
The bitsin the segment register when T = 1 are described in Table 2-13.
Table 2-13. Segment Register Bit Settings (T = 1)
Bits Name Description
0 T T =1 selects this format.
1 Ks Supervisor-state protection key
2 Ku User-state protection key
3-11 BUID Bus unit ID. If BUID = x'07F' the
transaction is a memory-forced 1/0
controller interface operation.
12-27 — Device specific data for 1/0 controller
28-31 Packet 1(0-3) | This field contains address bits 0-3 of the
packet 1 cycle (address-only).
Chapter 2. Registers and Data Types 2-23

If T =0 in the selected segment register, the effective address is a reference to an ordinary
memory segment. For ordinary memory segments, the segmented address translation
mechanism may be superseded by the block address translation (BAT) mechanism. If not,
the 52-hit virtual address (VA) isformed by concatenating the following:

* The 24-bit VSID field from the segment register
* The 16-hit page index, EA[4-19]
* The 12-bit byte offset, EA[20-31]

The VA is then trandated to a physical address as described in Section 6.8, “Memory
Segment Model”

If T =1 in the selected segment register, the effective address is a reference to an 1/0
controller interface segment. No reference is made to the page tables. For further discussion
of address translation see Section 6.10, “1/O Controller Interface Address Trandlation.”

The 601 defines two types of 1/0 controller interface segments (segment register T-bit set)
based on the value of the bus unit ID (BUID), asfollows:

e |/O controller interface (BUID # x'07F)—I/O controller interface accesses include
all transactions between the 601 and subsystems (referred to as bus unit controllers
(BUCs) mapped through 1/0 controller interface address space).

» Memory-forced 1/0O controller interface (BUID = x'07F)—Memory-forced 1/0
controller interface operations access memory space. They do not usethe extensions
to the memory protocol described for I/O controller interface accesses, and they
bypass the page- and block-trandlation and protection mechanisms. The physical
addressisfound by concatenating bits 28-31 of the respective segment register with
bits 4-31 of the effective address. This address is marked as noncacheable, write-
through, and global.

Because memory-forced 1/O controller interface accesses address memory space,
they are subject to the same coherency control as other memory reference
operations. More generally, accesses to memory-forced 1/O controller interface
segments are considered to be cache-inhibited, write-through and memory-coherent
operations with respect to the 601 cache and bus interface.

See Section 9.6.2, “1/O Controller Interface Transaction Protocol Details” for more
information about the BUID.

The segment registers are cleared by hard reset.

2.3.3 Supervisor-Level SPRs

Many of the SPRs can be accessed only by supervisor-level instructions; any attempt to
access these SPRs with user-level instructions will result in a privileged exception. Some
SPRs are implementation-specific; some 601 SPRs may not be implemented in other
PowerPC processors, or may not be implemented in the same way. Table 2-14 summarizes
how the 601 treats the undefined bits in supervisor-level SPRs.

2-24 PowerPC 601 RISC Microprocessor User's Manual

Table 2-14. Undefined Bits in Supervisor-Level Registers

Register | Value Returned for Undefined Bits

FPSCR Zero

SDR1 Zero

All BATs Value last written to that bit position

HIDO Zero
HID1 Value last written to that bit position
HID2 Value last written to that bit position
HID5 Value last written to that bit position
HID15 Zero

In some cases, not al of aregister’s bits are implemented in hardware. For example, the
RTCL register is defined to be 32 bits, but in the 601 only the 23 most significant bits exist
in hardware. Similarly, the DEC register is defined as having 32 bits, but only the 25 most
significant bits are implemented in hardware. In both cases, the unimplemented bits are
returned as zeros when they are read by the mfspr instruction.

The RTCU and RTCL register in supervisor mode and the mtspr instruction requires a
different SPR encoding. For the mtspr instruction, RTCU is SPR20 and RTCL is SPR21.

When the 601 detects SPR encodings other than those defined in this document, it either
takes a program exception (if bit O of the SPR encoding is set) or it treats the instruction as
ano-op (if bit 0 of the SPR encoding is clear).

2.3.3.1 Synchronization for Supervisor-Level SPRs and Segment
Registers

The processor has synchronization requirements when updating the following MMU

registers when the corresponding address trandation is enabled (data accesses with

MSR[DT] = 1 or instruction fetches with MSR[IT] = 1):

« SDR1
 BATs(if MSR[DT] =1or MSR[IT] =1)
e Segment registers

In addition, there are other software requirements that should be observed when modifying
these MMU registers and the MSR[IT] bit.

2.3.3.1.1 Context Synchronization

The processor checksfor read and write dependencies with respect to segment registersand
special purpose registers, and executes a series of instructions involving those registers so
that read/write dependencies are not violated. For example, if an mtspr instruction writes
avalueto aparticular SPR and an mfspr instruction later in the instruction stream reads the
same SPR, the mfspr reads the value written by the mtspr.

Chapter 2. Registers and Data Types 2-25

It is important to note that dependencies caused by side effects of writing to segment
registers and SPRs are not checked automatically. If an mtspr instruction writes avalue to
an SPR that changes how address trandation is performed, a subsequent load instruction is
not guaranteed to use the new tranglation until the processor is explicitly synchronized by
using one of the following context-synchronizing operations:

* isync (Instruction Synchronize) instruction

* sC(System Cadl) instruction
» rfi (Return from Interrupt) instruction
* Any exception other than machine check and system reset

Table 2-15 provides information on data access synchronization requirements.

Table 2-15. Data Access Synchronization

Instruction/ Event

Required Prior

Required After

mtmsr (ME) None Context-synchronizing event
mtmsr (DT) None Context-synchronizing event
mtmsr (PR) None Context-synchronizing event
mtsr Context-synchronizing event Context-synchronizing event

mtspr (BAT)

Context-synchronizing event

Context-synchronizing event

mtspr (SDR1)

sync

Context-synchronizing event

mtspr (EAR)

Context-synchronizing event

Context-synchronizing event

tibie™

Context-synchronizing event

Context-synchronizing event

1 The context-synchronizing event (most likely an isync instruction) prior to the tibie instruction ensures that all
previously issued memory access instructions have completed to a point where they will no longer cause an
exception. The context-synchronizing event following the tlbie instruction ensures that subsequent memory
access instructions will not use the TLB entry being invalidated. To ensure that all memory accesses previously
translated by the TLB entry being invalidated have completed with respect to memory and that reference and
change bit updates associated with those memory accesses have completed, a sync instruction rather than a
context-synchronizing event is required after the tlbie instruction. Multiprocessor systems have other
requirements to synchronize TLB invalidation.

For information on instruction access synchronization requirements see Table 2-16.

Table 2-16. Instruction Access Synchronization

Instruction/ Event Required Prior Required After

Exception * None None
mtmsr (EP) None None
mtmsr (EE) 2 None None
mtmsr (ME) None Context-synchronizing event

mtmsr (IT) None Context-synchronizing event

2-26 PowerPC 601 RISC Microprocessor User's Manual

Table 2-16. Instruction Access Synchronization (Continued)

Instruction/ Event Required Prior Required After
mtmsr (FP) None Context-synchronizing event
mtmsr (FEO,1) None Context-synchronizing event
mtmsr (SE) None Context-synchronizing event
rfi 1 None None
mtsr None Context-synchronizing event
mtspr (BAT) None Context-synchronizing event
mtspr (SDR1) 3 None Context-synchronizing event
tibie None Context-synchronizing event

1 These events are context-synchronizing.
2 The effect of altering the EE bit is immediate as follows:

« If an mtmsr clears the EE bit, neither an external interrupt nor a decrementer exception occurs if the instruction
is executed.

« |f an mtmsr sets the EE bit, and an external interrupt or decrementer exception was being held off by the EE
bit being 0, the exception is taken before the next instruction in the program stream that set the bit to 0 is
issued.

3The mtspr(SDR1) instruction is shown for completeness. Data accesses have stronger requirements that
override this specification.

Note that the sync instruction, although not defined as context-synchronizing in the
PowerPC architecture, can sometimes be used to provide the required synchronization.
When async instruction is encountered, the 601 processor synchronizes updatesto the CR,
CTR, LR, MSR, FPSCR, and XER registers.

In general, context-synchronization is required when writes to registers that affect
addressing are preceded or followed by load or store instructions. Specifically, a context-
synchronizing operation or a sync instruction must precede a modification of the BAT or
segment registers when the corresponding address translations are enabled. A sync
instruction must precede the modification of SDR1 when the corresponding (data accesses
with MSR[DT] = 1 or instruction fetches with MSR[IT] = 1) address trandations are
enabled, guaranteeing that the reference and change bits are updated in the correct context.

If the corresponding address trand ations are enabled, a context synchronization operation
must follow the modification of any of the above registers.

When several of the registerslisted above are modified with no intervening instructionsthat
are affected by the changes, context synchronization or sync instructions are not required
between the alterations. However, instructions fetched and/or executed after the alteration
but before the context synchronizing operation may be fetched and/or executed in either the
context that existed before the alteration or the context established by the alteration.

For synchronization within a sequence of instructions, the isync instruction can be used as
shown in the first example.

Chapter 2. Registers and Data Types 2-27

Example 1. Using the isync instruction—In this example a single segment register (n)
needs to be updated in a context where loads and stores might otherwise execute ahead of
the mtsr instruction and use the outdated address translation. Data and instruction address
trandation is enabled (MSR[DT] = 1 and MSR[IT] = 1):

isync

mtsr sr,rn

isync

Thefirst isync instruction allows all instructions in the pipeline to complete, alowing the
mtsr instruction to dispatch and execute by itself.

Example 2: Using the isync instruction with a series of register modifications—In
example 1, the single mtsr instruction could safely be replaced with a series of mtsr
instructions without each requiring an isync instruction. However, if both mtsr and mfsr
instructions are needed, they should be separated by an isync instruction, as follows:
isync

mtsr s,rO

mtsr srrl

mtsr si,r7
isync

mfsr r8,sr
mfsr r9,sr

mfsr r15,sr
isync

Example 3: Using the rfi instruction—When several registers are updated with no
intervening loads or stores with MSR[DT] = 1 or instruction fetches with MSR[IT] = 1,
context-synchronization between updates is unnecessary. When an exception is taken, the
processor is synchronized automatically. In this example, a list of segment registers is
updated with several mtsr instructions followed by a single context-synchronizing
operation.

Because this example modifies all 16 segment registers (and therefore, affects the segment
register(s) that control instruction fetching, this particular sequence must be executed in
direct address trandation mode (MSR[IT] = 0). Therefore, no synchronization is required
before the segment registers are loaded. Even if the segment register(s) that control
instruction fetching is not to be reloaded, the sequence can be executed with instruction
address trandation enabled (MSR[IT] = 1) and no additional synchronization before the
segment register instructions.

In this example the rfi instruction provides the needed synchronization after all 16 segment
registers are loaded and before translated |oads and stores are executed.

2-28 PowerPC 601 RISC Microprocessor User's Manual

mtsr s,r0
mtsr srrl

mtsr sr,r15
<|load rest of machine state>
rfi

2.3.3.1.2 Other Synchronization Requirements by Register
This section describes additional synchronization requirements.

SDR1 and MSR—The SDR1 register should be modified only when MSR[IT] = 0. In
addition, the MSR[1T] bit should be altered only by software that has an address mapping
such that logical addresses map directly to physical addresses.

Segment Registers—The only fields that should be modified in a segment register
currently used for instruction fetching are the Ks and Kp bits. Note that any time segment
registers are updated, the changes are guaranteed to take effect (including changes of the
Kx bits) only after a context-synchronizing operation has occurred.

BAT Registers—The only fields that should be modified in a BAT register currently used
for instruction fetching are the Ks, Kp and theV (valid) bits. In the case of modifying the
V bit for a BAT register currently used for instruction accesses, the instructions
immediately following the mtspr for the BAT register must also be mapped by the page
address translation mechanism with the same logical to physical address mapping (or
aternately, the instructions must be duplicated in the newly mapped space). Note that any
time the BAT registers are updated, the changes are guaranteed to take affect (including
changes of the Kx hits) only after a context-synchronizing operation has completed.

In order to make a BAT register pair valid such that the BAT array entry then trand ates the
current instruction stream, the following sequence should be used if fieldsin both the upper
and lower BAT registers are to be modified (for instruction address translation):

1. Clear theV bit in the BAT register pair.

2. Initialize the other fields in the BAT register pair appropriately.

3. SettheV bit in the BAT register pair.

4. Perform a context-synchronizing operation.

2.3.3.2 DAE/Source Instruction Service Register (DSISR)

The 32-bit DSISR, shown in Figure 2-14, identifies the cause of data access and alignment
exceptions.

DSISR

Figure 2-14. DAE/Source Instruction Service Register (DSISR)

Chapter 2. Registers and Data Types 2-29

For information about bit settings, see Section 5.4.3, “Data A ccess Exception (x'00300"),”
and Section 5.4.6, “Alignment Exception (x'00600").”

The DSISR is cleared after a hard reset.

2.3.3.3 Data Address Register (DAR)
The DAR isa 32-bit register as shown in Figure 2-15.

DAR

Figure 2-15. Data Address Register (DAR)

The effective address generated by amemory access instruction is placed in the DAR if the
access causes an exception (/O controller interface error, or alignment exception). For
information, see Section 5.4.3, “Data Access Exception (x'00300),” and Section 5.4.6,
“Alignment Exception (x'00600").”

2.3.3.4 Real-Time Clock (RTC) Registers (Supervisor-Level)

The RTC registers can be written to only by supervisor-level software. Different SPR
numbers must be used with the mtspr instruction. The SPR number for the RTCU register
is 20; the SPR number for RTCL is21.

The PowerPC architecture defines the DEC register as supervisor-only access for both
reads and writes. SPR22 is used for both reads and writes. The POWER architecture
provides user-level read access using SPR6. To ensure compatibility with subsequent
PowerPC processors, the mfspr instruction should not be used in user-level.

2.3.3.5 Decrementer (DEC) Register

The DEC, shown in Figure2-16, is a 32-bit decrementing counter that provides a
mechanism for causing a decrementer exception after a programmable delay. On the 601,
the DEC is driven by the same frequency as the RTC (7.8125 MHz). On other PowerPC
processors, the DEC frequency is based on a subdivision of the processor clock. The DEC
is cleared by hard reset.

DEC

Figure 2-16. Decrementer Register (DEC)

2-30 PowerPC 601 RISC Microprocessor User's Manual

2.3.3.5.1 Decrementer Operation

The DEC counts down, causing an exception (unless masked by M SR[EE]) when it passes
through zero. The DEC satisfies the following requirements:

» Theoperation of the RTC and the DEC are coherent (that is, the counters are driven
by the same fundamental time base).

» Loading a GPR from the DEC has no effect on the DEC.
» Storing a GPR to the DEC replaces the value in the DEC with the value in the GPR.

* Whenever hit 0 of the DEC changesfrom 0to 1, adecrementer exception request is
signaled. (The exception breaks the pipeline in such away that instructions in the
execute state (except for instructions that have been dispatched ahead of
undispatched integer instructions) compl ete execution, and instructions in decode
stage remain undecoded until the exception handler returns control to theinterrupted
program). Multiple DEC exception requests may be received before the first
exception occurs; however, any additional requests are cancel ed when the exception
occurs for the first request.

» |f the DEC isaltered by software and the content of bit O is changed from 0to 1, an
exception request is signaled.

Note that the seven low-order bits are not implemented. Bit 24 changes every 128 nS. The
RTC input is sampled using the CPU clock. Therefore, if the CPU clock is less than twice
the RTC frequency, real-time clock (and decrementer) sampling and incrementing errors
will occur. Therefore, in systemsthat change the CPU clock frequency dynamically beyond
this limit, a method of saving and restoring the real-time clock register values via external
means s required.

2.3.3.5.2 Writing and Reading the DEC

The content of the DEC can be read or written using themfspr and mtspr instructions, both
of which are supervisor-level when they refer to the DEC. However, the 601 also allowsthe
reading of the DEC in user mode (for POWER compatibility) viathe SPR6 register. Note
that this functionality will not be supported in subsequent PowerPC processors. Using a
simplified mnemonic for themtspr instruction, the DEC may bewritten from GPRr A with
the following:

mtspr(dec) rA
If the execution of this instruction causes bit 0 of the DEC to change from 0 to 1, an

exception request is signaled. The DEC may be read into GPR rA with the following
sequence:

mfspr(dec) rA

Chapter 2. Registers and Data Types 2-31

2.3.3.6 Table Search Description Register 1 (SDR1)
The table search description register 1 (SDR1) is shown in Figure 2-17.

[] Reserved

HTABORG 0000000 HTABMASK
0 15 16 222331

Figure 2-17. Table Search Description Register 1 (SDR1)

The bits of the SDR1 are described in Table 2-17.

Table 2-17. Table Search Description Register 1 (SDR1) Bit Settings

Bits Name Description
0-15 HTABORG The high-order 16 bits of the 32-bit physical address of the page table
16-22 — Reserved

23-31 HTABMASK Mask for page table address

The HTABORG field in SDR1 containsthe high-order 16 bits of the 32-bit physical address
of the page table. Therefore, the page table is constrained to lie on a 218 byte (64 Kbytes)
boundary at a minimum. At least 10 bits from the hash function are used to index into the
page table. The page table must consist of at least 64 Kbytes 21° PTEGs of 64 bytes each.

The page table can be any size 2" where 16 < n < 25. As the table size is increased, more
bits are used from the hash to index into the table and the value in HTABORG must have
more of itslow-order bitsequal to 0. TheHTABMASK field in SDR1 containsamask value
that determines how many bits from the hash are used in the page table index. This mask
must be of the form b'00...011...1"; that is, a string of O bits followed by a string of 1bits.
The 1 bits determine how many additional bits (at least 10) from the hash are used in the
index; HTABORG must have this same number of low-order bits equal to 0. See
Figure 6-21.

The number of low-order O bits in HTABORG must be at least the number of 1 bits in
HTABMASK so that thefinal 32-bit physical address can be formed by logically ORing the
various components.

2.3.3.7 Machine Status Save/Restore Register 0 (SRRO0)

The machine status save/restore register 0 (SRRO) is a 32-hit register the 601 uses to save
machine status on exceptions and restore machine status when an rfi instruction is
executed. It also holds the EA for the instruction that follows the System Call (sc)
instruction. The SRRO is shown in Figure 2-18.

2-32 PowerPC 601 RISC Microprocessor User's Manual

SRRO

031
Figure 2-18. Save/Restore Register 0 (SRRO0)

When an exception occurs, SRRO is set to point to an instruction such that al prior
instructions have completed execution and no subsequent instruction has begun execution.
The instruction addressed by SRRO may not have completed execution, depending on the
exception type. SRRO addresses either the instruction causing the exception or the
immediately following instruction. The instruction addressed can be determined from the
exception type and status bits.

The SRRO is cleared by hard reset.

For information on how specific exceptions affect SRRO, refer to the descriptions of
individual exceptionsin Chapter 5, “ Exceptions.”

2.3.3.8 Machine Status Save/Restore Register 1 (SRR1)

The SRR1 is a 32-bit register used to save machine status on exceptions and to restore
machine status when an rfi instruction is executed. The SRR1 is shown in Figure 2-19.

sﬁRl
0 151631

Figure 2-19. Machine Status Save/Restore Register 1 (SRR1)

In general, when an exception occurs, bits 0-15 of SRR1 areloaded with exception-specific
information and bits 16-31 of MSR are placed into bits 16-31 of SRR1.

The SRR1 is cleared by hard reset.

For information on how specific exceptions affect SRR1, refer to the individual exceptions
in Chapter 5, “Exceptions.”

2.3.3.9 General SPRs (SPRGO0-SPRG3)

SPRGO through SPRG3 are 32-hit registers provided for general operating system use, such
as performing afast state save or for supporting multiprocessor implementations. SPRGO—
SPRG3 are shown in Figure 2-20.

Chapter 2. Registers and Data Types 2-33

SPRGO
SPRG1
SPRG2
SPRG3

Figure 2-20. General SPRs (SPRG0O-SPRG3)

2.3.3.10 External Access Register (EAR)

The EAR isa 32-bit SPR that controls access to the external control facility and identifies
the target device for external control operations. The external control facility provides a
means for user-level instructions to communicate with specia external devices. The EAR
isshown in Figure 2-21.

|:|Reserved
E 000000000000000000000000000 RID
01 272831

Figure 2-21. External Access Register (EAR)

This register is provided to support the External Control Input Word Indexed (eciwx) and
External Control Output Word Indexed (ecowx) instructions, which are described in
Chapter 10, “Instruction Set.” Although access to the EAR is privileged, the operating
system can determine which tasks are alowed to issue external access instructions and
when they are allowed to do so. The bit settings for the EAR are described in Table 2-18.
Interpretation of the physical address transmitted by the eciwx and ecowx instructions and
the 32-bit value transmitted by the ecowx instruction is not prescribed by the PowerPC
architecture but is determined by the target device.

For example, if the external control facility is used to support agraphics adapter, the ecowx
instruction could be used to send the translated physical address of a buffer containing
graphics data to the graphics device. The ecowx instruction could be used to load status
information from the graphics adapter.

2-34 PowerPC 601 RISC Microprocessor User's Manual

Table 2-18. External Access Register (EAR) Bit Settings

Bit Name Description
0 E Enable bit
1 Enabled
0 Disabled

If this bit is set, the eciwx and ecowx instructions can perform the
specified external operation. If the bit is cleared, an eciwx or ecowx
instruction causes a data access exception.

1-27 — Reserved

28-31 RID Resource ID. The RID is formed by concatenating TBST]||TSIZ0—
TSIZ2. Note that in other PowerPC implementations, this field may
use bits 26-31.

This register can also be accessed by using the mtspr and mfspr instructions using the
value 282, b'01000 11010'. Synchronization requirements for the EAR are shown in
Table 2-15 and Table 2-16.

The EAR is cleared by hard reset.

2.3.3.11 Processor Version Register (PVR)

The PVR is a 32-hit, read-only register that identifies the version and revision level of the
PowerPC processor (see Figure 2-22). The PVR cannot be modified. The contents of the
PVR can be copied to a GPR by the mfspr instruction. Read accessto the PVR isavailable
in supervisor mode only; write access is not provided.

Version Revision

0 151631

Figure 2-22. Processor Version Register (PVR)

The PVR consists of two 16-hit fields:

* Version (bits 0-15)—A 16-bit number that identifies the version of the processor
and of the PowerPC architecture. The processor version number is x'0001' for the
601.

* Revision (bits 16-31)—A 16-bit number that distinguishes between variousrel eases
of aparticular version, (that is, an engineering change level). The value of the
revision portion of the PV R isimplementation-specific. The processor revision level
Is changed for each revision of the device. Contact your support center for specific
information about the revision of the processor you are using.

Chapter 2. Registers and Data Types 2-35

2.3.3.12 BAT Registers

The block address trandation mechanism in the 601 is implemented as a software-
controlled array (BAT array). The BAT array maintains the address trandlation information
for four blocks of memory. The BAT array in the 601 is maintained by the system software
and isimplemented as a set of eight special-purpose registers (SPRs). Each block isdefined
by apair of SPRs called upper and lower BAT registers.

The 601 includes eight block-addresstrandation (BAT) registers, grouped into four register
pairs. (IBATOU-IBAT3U and IBATOL—IBAT3L). Note that the PowerPC architecture
identifies these SPRs as IBATS, in the 601, they are implemented as unified BATs. See
Figure 2-1 for alist of the SPR numbers for the BAT registers. Note that other PowerPC
implementations may have two sets of four pairs of BAT registers. The additional eight
registers are data BATSs, or DBATS, (DBATOU-DBAT3U and DBATOL-DBAT3L). These
BATs use the eight SPR numbers subsequent to those used by the IBATs (536-543).

Note that the implementation of the bit fields in the BATs are different from the other
PowerPC implementations. Figure 2-23 and Figure 2-24 show the format of the upper and
lower BAT registers for the 601.

0 14 15 24 25 2728 2930 31
BLPI 0000000000 WIM |Ks|Ku| PP

[] Reserved

Figure 2-23. Upper BAT Register

[] Reserved

PBN 0000000000 Vv BSM
0 14 15 24 25 26 31

Figure 2-24. Lower BAT Register

Table 2-19 describes the bitsin the BAT registers.

2-36 PowerPC 601 RISC Microprocessor User's Manual

Table 2-19. BAT Registers

Register Bits Name Description
Upper 0-14 BLPI Block logical page index. This field is compared with bits 0-14 of the logical
BAT address to determine if there is a hit in that BAT array entry.
Registers
15-24 — Reserved
25-27 WIM Memory/cache access mode bits
W Write-through
| Caching-inhibited
M Memory coherence
For detailed information about the WIM bits, see Section 6.3, “Memory/Cache
Access Modes.”
28 Ks Supervisor mode key. This bit interacts with MSR[PR] and the PP field to
determine the protection for the block. For more information, see Section 6.4,
“General Memory Protection Mechanism.”
29 Ku User mode key. This bit also interacts with MSR[PR] and the PP field to
determine the protection for the block. For more information, see Section 6.4,
“General Memory Protection Mechanism.”
30-31 PP Protection bits for block. This field interacts with MSR[PR] and the Ks or Ku to
determine the protection for the block as described in Section 6.4, “General
Memory Protection Mechanism.”
Lower 0-14 PBN Physical block number. This field is used in conjunction with the BSM field to
BAT generate bits 0—14 of the physical address of the block.
Registers
15-24 — Reserved
25 \% BAT register pair (BAT array entry) is valid if V = 1.
26-31 BSM Block size mask (0...5). BSM is a mask that encodes the size of the block.

Values for this field are listed in Table 2-20.

Table 2-20 liststhe BAT arealengths encoded in by BAT[BSM].

Table 2-20. BAT Area Lengths

Bfgngtrﬁa BSM Encoding
128 Kbytes 00 0000
256 Kbytes 00 0001
512 Kbytes 00 0011
1 Mbyte 000111
2 Mbytes 00 1111
4 Mbytes 011111
8 Mbytes 11 1111

Chapter 2. Registers and Data Types

2-37

Only thevalues shown in Table 2-20 arevalid for the BSM field. The rightmost bit of BSM
isaligned with bit 14 of the logical address. A logical address is determined to be within a
BAT areaif thelogical address matchesthe valuein the BLPI field.

The boundary between the string of zeros and the string of onesin BSM determinesthe bits
of logical address that participate in the comparison with BLPI. Bitsin the logical address
corresponding to onesin BSM are cleared for this comparison.

Bitsin the logical address corresponding to ones in the BSM field, concatenated with the
17 bits of the logical address to the right (more significant bits) of BSM, form the offset
withinthe BAT area. Thisisdescribed in detail in Chapter 6, “Memory Management Unit.”

The value loaded into BSM determines both the length of the BAT area and the alignment
of the area in both logical and physical address space. The values loaded into BLPI and
PBN must have at |east as many low-order zeros as there are onesin BSM.

The BAT registersare cleared by hard reset. Use of BAT registersisdescribed in Chapter 6,
“Memory Management Unit.”

2.3.3.13 601 Implementation-Specific HID Registers

PowerPC processors may have implementation-specific SPRs, referred to as HID registers.
Additional SPR encodings allow access to the implementation-dependent registers within
the 601. The SPR encodings for the 601's HID registers are described in Table 2-21. Note
that these encodings use split-field notation; that is, the order of two 5-bit components of
the 10-bit encoding is reversed.

Table 2-21. Additional SPR Encodings

SPR Number SPSRFESR—I;;;%(g?Oa) Register Name Access
1008 11111 10000 Checkstop sources and enables register (HIDO) Supervisor
1009 11111 10001 601 debug modes register (HID1) Supervisor
1010 11111 10010 IABR (HID2) Supervisor
1013 11111 10101 DABR (HID5) Supervisor
1023 11111 11111 PIR (HID15) Supervisor

For additional information about the mtspr and mfspr instructions, refer to Chapter 10,
“Instruction Set.”

2.3.3.13.1 Checkstop Sources and Enables Register—HIDO

The checkstop sources and enables register (HIDO), shown in Figure 2-25, is a supervisor-
level register that defines enable and monitor bits for each of the checkstop sourcesin the
601. The SPR number for HIDO is 1008.

2-38 PowerPC 601 RISC Microprocessor User's Manual

HIDO

EDT EBA EBD
ESH —— — ECP
ECD —————— ——— EIU
ETD —I li EPP
CE| s | M|TD|cD|sH|DT|BA|BD|CP|IU|PP| 000 |ES|EM LM

0 1 2 3 4 5

[] Reserved

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21222324252I62I728 ZIQBI()?:l
DRF
DRL
PAR
EMC EHP

Figure 2-25. Checkstop Sources and Enables Register (HIDO)

Table 2-22 defines the bits in HIDO. The enable bits (bits 15-31) can be used to mask
individual checkstop sources, although these are provided primarily to mask off any false
reports of such conditionsfor debugging purposes. Bit O (HIDO[CE]) isamaster checkstop
enable; if it is cleared, all checkstop conditions are disabled; if it is set, individual
conditions can be enabled separately. HIDO[EM] (bit 16) enables and disables machine
check checkstops; clearing this bit masks machine check checkstop conditions that occur
when MSR[ME] is cleared. Bits 1-11 are the checkstop source bits, and can be used to
determine the specific cause of a checkstop condition.

Table 2-22. Checkstop Sources and Enables Register (HIDO) Definition

Bit Name Description
0 CE Master checkstop enable. Enabled if set. If this bit is cleared and the TEA signal is asserted,
a machine check exception is taken, regardless of the setting of MSR[ME].
1 Microcode checkstop detected if set.
2 M Double machine check detected if set.
3 TD Multiple TLB hit checkstop if set.
4 CD Multiple cache hit checkstop if set.
5 SH Sequencer time out checkstop if set.
6 DT Dispatch time out checkstop if set.
7 BA Bus address parity error if set.
8 BD Bus data parity error if set.
9 CP Cache parity error if set.
10 U Invalid microcode instruction if set.
11 PP I/O controller interface access protocol error if set.
12-14 — Reserved
15 ES Enable microcode checkstop. Enabled by hard reset. Enabled if set.

Chapter 2. Registers and Data Types 2-39

Table 2-22. Checkstop Sources and Enables Register (HIDO) Definition (Continued)

Bit Name Description

16 EM Enable machine check checkstop. Disabled by hard reset. Enabled if set. If this bit is cleared
and the TEA signal is asserted, a machine check exception is taken, regardless of the setting
of MSR[ME].

17 ETD Enable TLB checkstop. Disabled by hard reset. Enabled if set.

18 ECD Enable cache checkstop. Disabled by hard reset. Enabled if set.

19 ESH Enable sequencer time out checkstop. Disabled by hard reset. Enabled if set.

20 EDT Enable dispatch time out checkstop. Disabled by hard reset. Enabled if set.

21 EBA Enable bus address parity checkstop. Disabled by hard reset. Enabled if set.

22 EBD Enable bus data parity checkstop. Disabled by hard reset. Enabled if set.

23 ECP Enable cache parity checkstop. Disabled by hard reset. Enabled if set.

24 EIU Enable for invalid ucode instruction checkstop. Enabled by hard reset. Enabled if set.

25 EPP Enable for 1/0 controller interface access protocol checkstop. Disabled by hard reset.

Enabled if set.

26 DRF 0 Optional reload of alternate sector on instruction fetch miss is enabled.
1 Optional reload of alternate sector on instruction fetch miss is disabled.
27 DRL 0 Optional reload of alternate sector on load/store miss is enabled.
1 Optional reload of alternate sector on load/store miss is disabled.
28 LM 0 Big-endian mode is enabled.
1 Little-endian mode is enabled.
For more information about byte ordering, see Section 2.4.3, “Byte and Bit Ordering.” Note
that in the PowerPC architecture, the selection between big- and little-endian mode is
controlled by two bits in the MSR.
29 PAR 0 Precharge of the ARTRY and SHD signals is enabled.
1 Precharge of the ARTRY and SHD signals is disabled.
30 EMC 0 No error detected in main cache during array initialization.
1 Error detected in main cache during array initialization.
31 EHP 0 The HP_SNP_REQ signal is disabled. Use of the WRS queue position is restricted to a

snoop hit that occurs when a read is pending. That is, its address tenure is complete but
the data tenure has not begun.

1 The HP_SNP_REQ signal is enabled. Use of the WRS queue position is restricted to a
snoop hit on an address tenure that had HP_SNP_REQ asserted.

All enablebitsexcept 15 and 24 are disabled at start up. The operating system should enable
these checkstop conditions before the power-on reset sequence is complete.

Checkstop enable bits can be set or cleared without restriction. If a checkstop source bit is
set, it can be cleared; however, if the corresponding checkstop condition is still present on
the next clock, the bit will be set again. A checkstop source bit can only be set when the
corresponding checkstop condition occurs and the checkstop enable bit is set; it cannot be
set viaan mtspr instruction. That is, you cannot manually cause a checkstop.

2-40 PowerPC 601 RISC Microprocessor User's Manual

The HIDO register is set to x'80010080' by the hard reset operation. However, the state of
the EMC bit depends on the results of the power-on diagnostics for the main cache array.
Thisbit is set if the cache fails the built-in self test during the power-on sequence.

2.3.3.13.2 601 Debug Modes Register—HID1

The 601 debug modes register (HID1) is a supervisor-level register that defines enable bits
for the various debug modes supported by the 601; see Figure 2-26. The SPR number for
HID1 is 1009.

HID1
[] Reserved

0000 RM 0000000 TL 000000000O0OOOOO

3 4

7 8 910 16 17 18 31

Figure 2-26. PowerPC 601 Microprocessor Debug Modes Register

Table 2-23 shows bit settings for the HID1 register. Note that if both the single instruction
step option is specified for the M field (b'100") and the trap to run mode exception option is
specified in the RM field (b'10"), the processor iterates in an infinite loop.

Table 2-23. HID1 Register Definition

Bit Name Description
0 — Reserved
1-3 M 601 run modes

000 Normal run mode

001 Undefined. Do not use.

010 Limited instruction address compare.

011 Undefined. Do not use.

100 Single instruction step

101 Undefined. Do not use.

110 Fullinstruction address compare

111 Full branch target address compare

4-7 — Reserved
8-9 RM Response to address compare or single step

00 Hard stop (Stop L1 clocks).

01 Soft stop (Wait for system activity to quiesce).

10 Trap to run mode exception (address vector x'02000"), with the base address
indicated in by the setting of MSR[IP]. This mode is valid for address comparisons
and may produce unpredictable results when used with HID single-instruction step
mode.

11 Reserved. Do not use.

Note that when HID1[8-9] = 10, the trap address of x'2000' has a base address

indicated by the setting of MSR[IP]. This mode is valid for address comparisons and

may produce unpredictable results when used with HID single-step mode.
10-16 — Reserved. Do not use.
17 TL When set, this bit disables the broadcast of the tlbie instruction.
18-31 — Reserved. Do not use.

Chapter 2. Registers and Data Types 2-41

Note that when HID1[8-9] = 10, the trap address of x'2000" has a base address indicated by
the setting of MSRJ[IP]. This mode is valid for address comparisons and may produce
unpredictable results when used with the HID single-step mode.

The HID1 register is cleared by a hard reset.

2.3.3.13.3 Instruction Address Breakpoint Register (IABR)—HID2

The instruction address breakpoint register (IABR), is also HID2. The IABR, shown in
Figure 2-27, is a supervisor-level register defined to hold an effective address that is used
to compare with either the logical address of the instruction in the decode phase of the
pipeline or the EA of a branch target depending on the mode specified by the value of
HID1[M]. The results of the comparison are used differently depending on the debug mode
used.

HID2
[] Reserved
CEA 00
0 29 30 31

Figure 2-27. Instruction Address Breakpoint Register (IABR)—HID2

Table 2-24 lists HID2 register definitions. The HID2 register is cleared by the hard reset
operation.

The SPR number for HID2 is 1010.

Table 2-24. HID2 Register Definition

Bit Name Description
0-29 CEA Comparison effective address
30-31 — Reserved. This field should be
set to zero.

2.3.3.13.4 Data Address Breakpoint Register (DABR)—HID5

The data address breakpoint register (DABR) (HID5), as shown in Figure 2-28, isdesigned
to hold an effective address that is used to compare with the effective address generated by
aload or store operation. The results of the comparison are used to cause a data access
exception when the appropriate 601 debug mode bits are set (as described in
Section 2.3.3.13.2, “601 Debug Modes Register—HID1").

HIDS [] Reserved

DAB lo| sa |
0 28 29 30 31

Figure 2-28. Data Address Breakpoint Register (DABR)

2-42 PowerPC 601 RISC Microprocessor User's Manual

Table 2-25 describes bit settings in HID5. The HID5 register is cleared by the hard reset

operation.
Table 2-25. HID5 Register Definition
Bit Name Description

0-28 DAB Data address breakpoint (EA). This field is set to the double-word EA to compare with
enabled load or store EAs.

29 — Reserved, although on an mfspr (DABR), the value returned is the value last written.

30-31 | SA Memory access types:
00 Breakpoints disabled
01 Breakpoints load accesses only
10 Breakpoints store accesses only
11 Breakpoints both load and store accesses

The SPR number for HID5is 1013.

If the DABR featureis enabled, operationsthat hit against a properly enabled DABR cause
a data access exception. For this type of data access exception (DAE), bit 9 of the DSISR
is set and the data address register (DAR) contains the EA that caused the DABR match. If
the access crossed a double-word boundary, the DAR contains the EA of the access from
the first double word (even if the DABR match was on the second double word). For more
information about data access exceptions, see Section 5.4.3, “Data Access Exception

(x'00300)”

Table 2-26 describes how each instruction type interacts with the DABR feature.

Table 2-26. DABR Results

Operation Description
Load If any part of the load access touches the double word specified in the DABR, and the appropriate
instructions enable bit is set, then the DAE occurs. In this case, the memory read operation is inhibited and
register rD is not updated. If the operation is a load with update, the update to register rA is also
inhibited.
Store If any part of the store access touches the double word specified in the DABR and the appropriate
instructions enable bit is set, the DAE occurs and the memory access is inhibited.
If the operation is a store with update, then the update to register rA is also inhibited.
If the operation is a Store Conditional instruction and the reservation bit is not set at the time of the
DABR compare (at the end of execution as soon as the EA is calculated), the DAE is not taken.
Load and store | These instructions are sequenced one register (one word) at a time through the 1U for EA
string and calculation. Each access is checked against the DABR as it is presented to the ATU. If a match
multiple occurs, the instruction is aborted and a DAE is taken.
instructions

If the initial EA for the string or multiple is not word-aligned, some individual accesses may cross a
double-word boundary. If either double word hits in the DABR, the access is inhibited and the DAE
occurs.

Chapter 2. Registers and Data Types

2-43

Table 2-26. DABR Results (Continued)

Operation Description

Iscbx This instruction is not supported by the DABR Feature. No DAE occurs, even if the EA matches.
instruction

Cache control | These instructions are not supported by the DABR Feature. No DAE occurs even if the EA
instructions matches.

2.3.3.13.5 Processor Identification Register (PIR)—HID15

The PIR register, shown in Figure 2-29, is a 32-bit, supervisor-level register that holds the
4-bit processor identification tag (PID). This tag is useful for processor differentiation in
multiprocessor system designs. The tag is aso used to identify the sender and receiver tag
for 1/O controller interface operations. For more information, see Section 9.6, “Memory-
vs. |/O-Mapped 1/0O Operations.” The PIR can be accessed by the mfspr instruction by
using the SPR number 1023, as follows:

sync
mfspr rD,1023

sync
The PIR is cleared by the hard reset operation.

PIR [] Reserved

00000000O0OOOOOOOOOOOOOOOOOOOOO | PID |
0 27 28 31

Figure 2-29. Processor Identification Register (PIR)

2.4 Operand Conventions
This section describes the conventions used for storing values in registers and memory.

2.4.1 Data Organization in Memory and Data Transfers

Bytes in memory are numbered consecutively starting with 0. Each number is the address
of the corresponding byte.

Memory operands may be bytes, half words, words, or double words, or, for the |load/store
multiple and move assist instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest-numbered byte).
Operand length isimplicit for each instruction.

2-44 PowerPC 601 RISC Microprocessor User's Manual

2.4.1.1 Alignment and Misaligned Accesses

The operand of a single-register memory access instruction has a natura alignment
boundary equal to the operand length. In other words, the “natural” address of an operand
is an integral multiple of the operand length. A memory operand is said to be aligned if it
isaligned at its natural boundary; otherwise it is misaligned.

Operands for single-register memory access instructions have the characteristics shown in
Table 2-27. (Although not permitted as memory operands, quad words are shown because
guad-word alignment is desirable for certain memory operands).

Table 2-27. Memory Operands

Operand Length Agdaﬁ%i;‘zl)
Byte 8 bits XXXX
Half word 2 bytes xxx0
Word 4 bytes xx00
Double word 8 bytes x000

Note: An “x” in an address bit position indicates that the bit
can be 0 or 1 independent of the state of other bits in
the address.

The concept of alignment is also applied more generally to data in memory. For example,
12 bytes of data are said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In addition,
alignment may affect performance. For single-register memory accessinstructions, the best
performance is obtained when memory operands are aligned. Additional effects of data
placement on performance are described in Chapter 7, “Instruction Timing.”

Instructions are four bytes long and word-aligned.

2.4.2 Effect of Operand Placement on Performance

The placement (location and alignment) of operands in memory affect the relative
performance of memory accesses. Best performance is guaranteed if memory operands are
aligned on natural boundaries. To obtain the best performance across the widest range of
PowerPC processor implementations, the programmer should assume the performance
model described in Figure 2-30 with respect to the placement of memory operands.

Chapter 2. Registers and Data Types 2-45

Operand Boundary Crossing
Size Byte Alignment None Cache Line Page BAT/Segment
Integer
4 Byte 4 Optimal — — —
<4 Good Good Poor Poor
2 Byte 2 Optimal — — —
<2 Good Good Poor Poor
1 Byte 1 Optimal — — —
Imw, stmw 4 Good Good Good Poor
String Good Good Poor Poor
Float
8 Byte 8 Optimal — — —
4 Good Good Poor Poor
<4 Poor Poor Poor Poor
4 Byte 4 optimal — — _
<4 Poor Poor Poor Poor

Figure 2-30. Performance Effects of Memory Operand Placement

The performance of accesses varies depending on the following:
* Operand size
* Operand alignment
» Crossing acache block (sector) boundary
» Crossing a page boundary
* Crossing aBAT boundary
» Crossing a segment boundary

The load/store multiple instructions are defined by the PowerPC architecture to operate
only on aligned operands, although the 601 supports unaligned operands. The move assist
instructions have no alignment requirements.

2.4.2.1 Instruction Restart

If amemory access crosses a page or segment boundary, anumber of conditions could abort
the execution of the instruction after part of the access has been performed. For example,
this may occur when a program attempts to access a page it has not previously accessed or
when the processor must check for a possible change in memory attributes when an access
crosses a page boundary. When this occurs, the operating system may restart the
instruction. If the instruction is restarted, some bytes at that word address may be |oaded
from or stored to the target location a second time.

2-46 PowerPC 601 RISC Microprocessor User's Manual

The following rules apply to memory accesses with regard to restarting the instruction:

» Aligned accesses—A single-register instruction that accesses an aligned operand is
not partially executed.

* Misaligned accesses—A single-register instruction that accesses a misaligned
operand may be partially executed if the access crosses a page boundary and a data
access exception occurs on the second page.

» Load/store multiple, move assist—These instructions may be partially executed if,
in accessing the locations specified by the instruction, a page boundary is crossed
and a data access exception occurs on the second page.

2.4.2.2 Atomicity

All aligned accesses are atomic. Instructions causing multiple accesses (for example,
load/store multiple and move assist instructions) are not atomic.

2.4.2.3 Access Order

The ordering of memory accesses is not guaranteed unless the programmer inserts
appropriate ordering instructions, even if the accesses are generated by a single instruction.
Misaligned accesses, |oad/store multiple instructions, and move assist instructions have no
implicit ordering characteristics. For example, processor A may store aword operand on an
odd half-word boundary. It may appear to processor A that the store completed atomically.
Processor or other mechanism B, executing aload from the same location, may get aresult
that is a combination of the value of the first half word that existed prior to the store by
processor A and the value of the second half word stored by processor A.

2.4.3 Byte and Bit Ordering

The PowerPC architecture supports both big- and little-endian byte ordering. The default
byte- and bit ordering is big-endian, as shown in Figure 2-31. Byte ordering can be set to
little-endian by setting the LM bit in the HIDO register. Note that the mechanism for
selecting between byte orderings is different in the 601 than it is in the PowerPC
architecture. The PowerPC architecture provides two enable bits in the MSR that allow
independent control for user- and supervisor-level software.

MTB
| Byte 0 Byte 1 | v/ Byte N (max) |
Big-Endian Byte Ordering
msb bit n (max)
(o[:]z] N]

Big-Endian Bit Ordering

Figure 2-31. Big-Endian Byte and Bit Ordering

Chapter 2. Registers and Data Types 2-47

If individual data items were indivisible, the concept of byte ordering would be
unnecessary. Order of bits or groups of bits within the smallest addressable unit of memory
isirrelevant, because nothing can be observed about such order. Order matters only when
scalars, which the processor and programmer regard as indivisible quantities, can be made
up of more than one addressabl e units of memory.

For a device in which the smallest addressable unit is the 64-bit double word, there is no
guestion of the order of bytes within double words. All transfers of individua scalars
between registers and memory are of double words. A subset of the 64 bit scalar (for
example, abyte) is not addressable in memory. As aresult, to access any subset of the bits
of a scalar, the entire 64-bit scalar must be accessed, and when a memory location is read,
the 64-hit value returned is the 64-bit value last written to that location.

For PowerPC processors, the smallest addressable memory unit is the byte (8 bits), and
scalars are composed of one or more sequential bytes. When a 32-bit scalar is moved from
aregister to memory, it occupies four consecutive byte addresses, and a decision must be
made regarding the order of these bytes in these four addresses.

The choice of byte ordering is arbitrary. Although there are 24 ways (4!) to specify the
ordering of four bytes within aword, illustrated as all the permutations of ordering of four
elements—ABCD, ABDC, ACBD, ACDB...DBCA, DCAB, DCBA—where the bytes are
ordered lowest address to highest address, only two of these orderings are practical—
ABCD (big-endian) and DCBA (little-endian).

The following example shows how the byte ordering is changed from big- to little-endian
mode by setting HIDO[28] (n refers to the address):

<msr[eg] is off (zero) >

n sync |Instructions

n+4 sync laccessed in

n+8 sync |big-endian mode
n+c mtspr hid0(28)|

n+10 sync |Instructions

n+14 sync laccessed in

n+18 sync [little-endian mode

The sameinstruction sequence can be used to go from little- to big-endian mode by clearing
HIDO[28].

2.4.3.1 Little-Endian Address Manipulation

In little-endian operations, the three least significant bits of an address are manipulated to
provide the appearance of a little-endian memory to the program for aligned loads and
stores, asfollows:

New_addr(29) <- EA(29) xor (word | half | byte)
New_addr(30) <- EA(30) xor (half | byte)
New_addr(31) <- EA(31) xor (byte)

2-48 PowerPC 601 RISC Microprocessor User's Manual

The physical address used for an access generated by aload or a store to an operand that is
less than a doubleword is modified as indicated. Addresses for aligned double-word
accesses and cache control operations are not modified since the endian mode has no effect
on aligned accesses larger than one word.

On a data access exception, the DAR contains the effective address (EA) generated by the
memory access instruction (that is, the address before modification) regardiess of the
endian mode selected. SRRO contains the EA of an instruction as described in Chapter 5,
“Exceptions,” (that is, the address before modification).

If the processor isin little-endian mode, the address is modified; if the processor isin big-
endian mode, the address is unmodified.

The T bit does not affect address manipulation or the detection of alignment exception
conditions. ThereforeI/O interface controller operationsand BUID x'07F segmentsreceive
the modified address. The ecowx and eciwx instructions are treated as no-opsif the T bitis
set regardless of whether the 601 isin little-endian mode.

Because the 601 defines a cache block as 32 bytes, bits 27-31 of the address are not used
for snooping. The program address should be specified, when an address is loaded into
HID2 or HIDS. That is, if the processor is in little-endian mode, a little-endian address
should be specified, and if the processor isin big-endian mode, a big-endian address should
be specified.

2.4.3.2 Little-Endian Alignment Exceptions

Additional alignment exception conditions can occur when the processor isin little-endian
mode.

L oad/store multiple operands (regardless of EA)

e Imw stmw
e |schxx stswi
e |swi stswx
e |swx

The new alignment exception conditions are prioritized with other alignment exceptions
ahead of data access exceptions. See Section 2.4.5.2, “Misaligned Scalars’ for more
information.

2.4.3.3 Little-Endian Instruction Fetching

In little-endian mode, instructions are fetched in big-endian order; however, theinstructions
are swapped within adouble word before being passed to the instruction queue, thus putting
the instructions in little-endian order for execution. On exceptions, the 601 reports the
correct effective address (as defined by the programming model or computed by a storage
access instruction) regardless of the endian mode selected.

Chapter 2. Registers and Data Types 2-49

2.4.3.4 Big-Endian Byte Ordering

Big-endian ordering (ABCD) assigns the lowest address to the highest-order eight bits of
the scalar. Thisis called big-endian because the big end of the scalar, considered as abinary
number, comes first in memory.

2.4.3.5 Little-Endian Byte Ordering

Little-endian byte ordering (DCBA) assigns the lowest address to the lowest-order
(rightmost) 8 bits of the scalar. The little end of the scalar, considered as a binary number,
comes first in memory.

2.4.4 Structure Mapping Examples

Thefollowing C programming example contains an assortment of scalars and one character
string. The value presumed to be in each structure element is shown in hexadecimal in the
comments and are used below to show how the bytes that comprise each structure element
are mapped into memory.

struct {
int a /* x'11121314' word */
double b; [* x'2122232425262728' doubleword */
char * C; /* x'31323334' word */
char d7; /*'A'*B''C,'D'E,F,G array of bytes */
short € /* x'5152' halfword */
int f; /* x'61626364' word */

}s

2.4.4.1 Big-Endian Mapping

The big-endian mapping of a structure Sis shown in Figure 2-32. Addresses are shown in
hexadecimal at the left of each double word and in small figures below each byte. The
content of each byte, as shown in the preceding C programming example, is shown in
hexadecimal as characters for the elements of the string.

w | B 12 1’ w0 0 0
00 01 02 03 04 05 06 07
08 21 22 23 24 25 26 27 28
08 09 0A 0B oC ob OE OF
10 31 32 33 34 ‘A ‘B’ ‘C’ ‘D’
10 11 12 13 14 15 16 17
18 ‘E’ ‘F ‘G’ * 51 52 * @)
18 19 1A 1B 1C 1D 1E 1F
20 61 62 63 64
20 21 22 23

Figure 2-32. Big-Endian Mapping of Structure S

2-50 PowerPC 601 RISC Microprocessor User's Manual

Note that the C structure mapping introduces padding (skipped bytesindicated by asterisks
“(*)” in Figure 2-32) in the map in order to align the scalars on their proper boundaries—
4 bytes between a and b, one byte between d and e, and two bytes between e and f. Both
big- and little-endian mappings use the same amount of padding.

2.4.4.2 Little-Endian Mapping

Figure 2-33 shows the structure, S, using little-endian mapping. Double words are laid out
from right to left.

o o o o | 1 12 13 1 |
07 06 05 04 03 02 01 00
21 22 23 24 25 26 27 28 08
OF OE 0D oc 0B 0A 09 08
D’ ‘C’ ‘B’ A 31 32 33 34 10
17 16 15 14 13 12 11 10
*) *) 51 52 *) G’ F = 18
1F 1E 1D 1C 1B 1A 19 18
61 62 63 64 20
23 22 21 20

Figure 2-33. Little-Endian Mapping of Structure S

2.4.5 PowerPC Byte Ordering

The default mapping for PowerPC processors is big-endian. In the 601, little-endian mode
can be selected after a hard reset by setting the LM bit in the HIDO register in the 601
through the use of the mtspr instruction. Note that the PowerPC architecture defines two
bitsin the M SR for specifying byte ordering—LE (little-endian mode) and ELE (exception
little-endian mode). These bits are not implemented in the 601.

The 601 big- and little-endian mode operation differs from the PowerPC architecturein the
following ways:
» Choice of big- or little-endian modes is provided through HIDO[LM]—nbit 28 of
HIDO. The PowerPC architecture defines two bitsin the MSR for this purpose.

» Thebasic mode switching sequence requiresthree sync instructionsfollowed by the
mtspr accessto HIDO[28], followed by three more syncinstructions. This sequence
should be used whenever the state of this bit is changed.

» External and decrementer exceptions should be disabled before executing the
sequence.

» The starting address of the sequence does not matter; however, the sequence cannot
Cross a protection boundary.

* In some cases the mtspr accessto HIDO[LM] can occur twice depending on the
alignment of the instruction.

Chapter 2. Registers and Data Types 2-51

* Insome cases not al of the sync instructions will actually be executed, depending
on the starting address of the sequence.

» Although HIDO[LM] can be switched dynamically, there are certain constraints
(such as turning off trandlation and emptying the memory queues) that must be
considered before the bit can be switched. Note that, when switching modes
between tasks, this code sequence may not allow the 601 to operate at an optimal
performance level.

2.4.5.1 Aligned Scalars

For the load and store instructions, the effective address is computed as specified in the
instruction descriptions in Chapter 3, “Addressing Modes and Instruction Set Summary.”

Table 2-28 shows how the physical address is modified.

Table 2-28. EA Modifications

Data Width (Bytes) EA Modification
8 No change
4 XOR with b'100'
2 XOR with b'110'
1 XOR with b'111'

The modified physical address is passed to the data cache or the main memory and the
specified width of the data is transferred between a GPR or FPR and the (as modified)
addressed memory locations. Although the data is stored using big-endian byte ordering
(but not in the same bytes within double words aswith LM = 0), the modification of the EA
makes it appear to the processor that it is stored in little-endian mode.

The structure Swould be placed in memory as shown in Figure 2-34.

00 11 12 13 14
00 01 02 03 04 05 06 07
08 21 22 23 24 25 26 27 28
08 09 0A 0B oC 0D OE OF
10 ‘D’ ‘C’ ‘B’ ‘A 31 32 33 34
10 11 12 13 14 15 16 17
18 * * 51 52 ® G’ F E
18 19 1A 1B 1C 1D 1E 1F
o | O © ©o o | & e e o4
20 21 22 23 24 25 26 27

Figure 2-34. PowerPC Little-Endian Structure Sin Memory or Cache

2-52 PowerPC 601 RISC Microprocessor User's Manual

Because of the modifications on the EA, the same structure Sappears to the processor to be
mapped into memory this way when LM = 1 (little-endian enabled). This is shown in
Figure 2-35.

11 12 13 14 00
07 06 05 04 03 02 01 00
21 22 23 24 25 26 27 28 08
OF OE 0D oC 0B 0A 09 08
‘D’ ‘C ‘B’ ‘A 31 32 33 34 10
17 16 15 14 13 12 11 10
(@] * 51 52 * ‘G’ ‘F ‘E’ 18
1F 1E 1D 1C 1B 1A 19 18
61 62 63 64 20
23 22 21 20

Figure 2-35. PowerPC Little-Endian Structure S as Seen by Processor

Note that as seen by the program executing in the processor, the mapping for the structure
Sis identical to the little-endian mapping shown in Figure 2-33. From outside of the
processor, the addresses of the bytes making up the structure Sare as shown in Figure 2-34.
These addresses match neither the big-endian mapping of Figure 2-32 or the little-endian
mapping of Figure 2-33. This must be taken into account when performing I/O operations
in little-endian mode; thisis discussed in Section 2.4.7, “PowerPC Input/Output in Little-
Endian Mode”

2.4.5.2 Misaligned Scalars

Performing an XOR operation on the low-order bits of the address of a scalar requires the
scalar to be aligned on aboundary equal to amultiple of itslength. When executing in little-
endian mode (LM = 1), the 601 takes an alignment exception whenever a load or store
instruction is issued with a misaligned EA, regardless of whether such an access could be
handled without causing an exception in big-endian mode (LM = 0).

The PowerPC architecture states that half words, words, and double words be placed in
memory such that the little-endian address of the lowest-order byteisthe EA computed by
the load or store instruction; the little-endian address of the next-lowest-order byte is one
greater, and so on. Figure 2-36 shows afour-byte word stored at little-endian address 5. The
word is presumed to contain the binary representation of x'11121314'.

12 13 14 (*) @) @) @) @)
07 06 05 04 03 02 01 00
@) @) @) @) *) @) @) 11 08
OF OE 0D oc 0B 0A 09 08

00

Figure 2-36. PowerPC Little-Endian Mode, Word Stored at Address 5

Chapter 2. Registers and Data Types 2-53

Figure 2-37 showsthe same word stored by alittle-endian program, as seen by the memory
system (assuming big-endian mode).

Figure 2-37. Word Stored at Little-Endian Address 5 as Seen by Big-Endian
Addressing

Note that the misaligned word in this example spans two double words. The two parts of
the misaligned word are not contiguous in the big-endian addressing space.

2.4.5.3 Non-Scalars

The PowerPC architecture has two types of instructions that handle non-scalars (multiple
instances of scalars). Neither type can deal with the modified EAsrequired in little-endian
mode and both types cause alignment exceptions.

2.4.5.3.1 String Operations
The load and store string instructions, listed in Table 2-29, cause alignment exceptions
when they are executed in little-endian mode (HIDO[LM] = 1).

Table 2-29. Load/Store String Instructions that Take Alignment Exceptions if LM =1

Mnemonic Description
Iswi Load String Word Immediate
Iswx Load String Word Indexed
stswi Store String Word Immediate
stswx Store String Word Indexed
Iscbx Load String and Compare Byte Indexed

String accesses are inherently byte-based operations, which, for improved performance, the
601 handles as a series of word-aligned accesses.

Note that the system software must determine whether to emulate the excepting instruction
or treat it asan illegal operation. Because little-endian mode programs are new with respect
to the PowerPC architecture—that is, they are not POWER binaries—having the compiler
generate theseinstructionsin little-endian mode would be slower than processing the string
in-line or by using a subroutine call.

2-54 PowerPC 601 RISC Microprocessor User's Manual

2.4.5.3.2 Load and Store Multiple Instructions

The instructions in Table 2-30 cause alignment exceptions when executed in little-endian
mode (HIDO[LM] = 1).

Table 2-30. Load/Store Multiple Instructions that Take Alignment Exceptions if

LM=1
Mnemonic Instruction
Imw Load Multiple Word
stmw Store Multiple Word

Although the words addressed by these instructions are on word boundaries, each word is
in the half of its containing double word opposite from where it would be in big-endian
mode.

Note that the system software must determine whether to emulate the excepting instruction
or treat it asan illegal operation. Because little-endian mode programs are new with respect
to the PowerPC architecture—that is, they are not POWER binaries—having the compiler
generate theseinstructionsin little-endian mode would be slower than processing the string
in-line or by using a subroutine call.

2.4.6 PowerPC Instruction Memory Addressing in Little-Endian
Mode

Each PowerPC instruction occupies 32 bits (one word) of memory. PowerPC processors
fetch and execute instructions as if the current instruction address had been advanced one
word for each sequential instruction. When operating with LM = 1, the addressis modified
according to thelittle-endian rule for fetching word-length scalars; that is, it is XORed with
b'100'. A program is thus an array of little-endian words with each word fetched and
executed in order (not including branches).

Consider the following example:

loop:
cmplwi r5,0
beq done
lwzux r4, r5, ré
add r7,r7,r4
subi r5, 1
b loop
done:
Stw r7, total

Assuming the program starts at address 0O, these instructions are mapped into memory for
big-endian execution as shown in Figure 2-38.

Chapter 2. Registers and Data Types 2-55

00 loop: cmplwi r5, 8 beq done
00 01 02 03|04 05 06 07

08 Iwzux r4, r5, r6 add r7,r7, r4
08 09 OA OB|OC OD OE OF
10 subir5, 1 b loop

10 11 12 13 14 15 16 17
18 done: stw r7, total
18 19 1A 1B |1C 1D 1E 1F

Figure 2-38. PowerPC Big-Endian, Instruction Sequence as Seen by Processor

If this same program is assembled for and executed in little-endian mode, the mapping seen
by the processor appears as shown in Figure 2-39.

Each machine instruction appears in memory as a 32-bit integer containing the value
described in the instruction description, regardless of whether LM is set. This is because
scalars are always mapped in memory in big-endian byte order.

beq done
07 06 05 04

loop: cmplwi
03 02 01 00

addr7,r7,r4
OF OE OD oOC

lwzux r4, r5, r6
0B O0A 09 08

b loop

subir5, 1

00

08

10

17 16 15 14|13 12 11 10

done: stw r7, total 18
1F 1E 1D 1C|1B 1A 19 18

Figure 2-39. PowerPC Little-Endian, Instruction Sequence as Seen by Processor

When little-endian mapping is used, all references to the instruction stream must follow
little-endian addressing conventions, including addresses saved in system registers when
the exception istaken, return addresses saved in the link register, and branch displacements
and addresses.

* Aninstruction address placed in the link register by branch and link, or an
instruction address saved in an SPR when an exception istaken isthe addressthat a
program executing in little-endian mode would use to access the instruction as a
word of data using aload instruction.

* Anoffset in arelative branch instruction reflects the difference between the
addresses of the instructions, where the addresses used are those that a program
executing in little-endian mode would use to access the instructions as data words
using aload instruction.

2-56 PowerPC 601 RISC Microprocessor User's Manual

» A target addressin an absolute branch instruction is the address that a program
executing in little-endian mode would use to access the target instruction as aword
of datausing aload instruction.

2.4.7 PowerPC Input/Output in Little-Endian Mode

Input/output operations, such as writing the contents of a memory page to disk, transfers a
byte stream on both big- and little-endian systems. For the disk transfer, byte O of the page
iswritten to the first byte of adisk record and so on.

For a PowerPC system running in big-endian mode, both the processor and the memory
subsystem recognize the same byte as byte 0. However, this is not true for a PowerPC
system running in little-endian mode because of the modification of the three low-order bits
when the processor accesses memory.

In order for I/O transfers in little-endian mode to appear to transfer bytes properly, they
must be performed as if the bytes transferred were accessed one at atime, using the little-
endian address modification appropriate for the single-byte transfers (XOR the bits with
b'111"). Thisdoes not mean that I/O on little-endian PowerPC machines must be done using
only one-byte-wide transfers. Data transfers can be as wide as desired, but the order of the
bytes within double words must be asif they were fetched or stored one at atime.

Note that I/O operations can also be performed with certain devices by merely storing to or
loading from addresses that are designated as I/O controller interface addresses (SR[T] is
set). Care must be taken with such operations when defining the addresses to be used
because these addresses are subjected to the EA modifications described in Table 2-28. A
load or store that maps to a control register on a device may require the bytes of the value
transferred to bereversed. If thisreversal isrequired, theloads and stores with byte reversal
instructions may be used.

2.5 Floating-Point Execution Models

The IEEE-754 standard includes 32-bit and 64-bit arithmetic. The standard requires that
single-precision arithmetic be provided for single-precision operands. The standard permits
double-precision arithmetic instructions to have either (or both) single-precision or double-
precision operands, but statesthat single-precision arithmetic instructions should not accept
double-precision operands.

The PowerPC architecture follows these guidelines:
» Double-precision arithmetic instructions can have operands of either or both
precisions
» Single-precision arithmetic instructions require all operands to be single-precision
* Double-precision arithmetic instructions produce double-precision values
» Single-precision arithmetic instructions produce single-precision values

Chapter 2. Registers and Data Types 2-57

For arithmetic instructions, conversions from double- to single-precision must be done
explicitly by software, while conversions from single- to double-precision are done
implicitly.

All PowerPC implementations provide the equivalent of the following execution modelsto
ensure that identical results are obtained. Definition of the arithmetic instructions for
infinities, denormalized numbers, and NaNs follow conventions described in the following
sections.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic
uses two additional bit positions to avoid potential transient overflow conditions. An extra
bit is required when denormalized double-precision numbers are prenormalized. A second
bit is required to permit computation of the adjusted exponent value in the following
examples when the corresponding exception enable bit is one:

* Underflow during multiplication using a denormalized factor.
* Overflow during division using a denormalized divisor.

2.5.1 Execution Model for IEEE Operations

The following description uses 64-bit arithmetic as an example; 32-bit arithmetic issimilar
except that the fraction field is a 23-bit field and the single-precision guard, round, and
sticky bits (described in this section) are logically adjacent to the 23-bit FRACTION field.

The bits and fields for the | EEE 64-bit execution model are defined as follows:

* TheShitisthesign hit.
» TheC bitisthe carry bit that captures the carry out of the significand.

» TheL bitistheleading unit bit of the significand which receivestheimplicit bit from
the operands.

 The FRACTION isa52-hit field, which accepts the fraction of the operands.

* Theguard (G), round (R), and sticky (X) bits are extensions to the low-order bits of
the accumulator. The G and R bits are required for post normalization of the result.
The G, R, and X bits are required during rounding to determine if the intermediate
result is equally near the two nearest representable values. The X bit serves as an
extension to the G and R bits by representing the logical OR of all bits that may
appear to the low-order side of the R bit, either due to shifting the accumulator right
or other generation of low-order result bits. The G and R bits participate in the | eft
shifts with zeros being shifted into the R bit. Table 2-31 shows the significance of
the G, R, and X bits with respect to the intermediate result (IR), the next lower in
magnitude representable number (NL), and the next higher in magnitude
representable number (NH).

2-58 PowerPC 601 RISC Microprocessor User's Manual

Table 2-31. Interpretation of G, R, and X Bits

G|R | X Interpretation

0 0 0 | IR is exact

0O 1

0 1 | 0 | IRcloserto NL

0 1 1

1 0 0 | IR midway between NL & NH
110 1

1 1 0 | IR closerto NH

1 1 1

The significand of the intermediate result is made up of the L bit, the FRACTION, and the
G, R, and X bits.

Theinfinitely precise intermediate result of an operation is the result normalized in bits L,
FRACTION, G, R, and X of the floating-point accumulator.

Before results are stored into an FPR, the significand is rounded if necessary, using the
rounding mode specified by FPSCR[RN]. If rounding causes a carry into C, the significand
is shifted right one position and the exponent is incremented by one. This may yield an
inexact result and possibly exponent overflow. Fraction bits to the left of the bit position
used for rounding are stored into the FPR, and low-order bit positions, if any, are set to zero.

Four rounding modes are provided which are user-selectable through FPSCR[RN] as
described in Section 2.5.6, “Rounding.” For rounding, the conceptual guard, round, and
sticky bits are defined in terms of accumulator bits.

Table 2-32 showsthe positions of the guard, round, and sticky bitsfor double-precision and
single-precision floating-point numbers.

Table 2-32. Location of the Guard, Round and Sticky Bits

Format Guard Round Sticky
Double G bit R bit X bit
Single 24 25 26-52 G,R,X

Rounding can be treated as though the significand were shifted right, if required, until the
least significant bit to be retained isin the low-order bit position of the FRACTION. If any
of the guard, round, or sticky bits are nonzero, the result isinexact.

Chapter 2. Registers and Data Types 2-59

Z1 and Z2, defined in Section 2.5.6, “Rounding,” can be used to approximate the result in
the target format when one of the following rulesis used:

¢ Round to nearest

— Guard hit = 0: Theresult istruncated. (Result exact (GRX = 000) or closest to
next lower value in magnitude (GRX = 001, 010, or 011)

— Guard bit = 1: Depends on round and sticky bits:

Case a If the round or sticky bit is one (inclusive), the result is incremented.
(result closest to next higher value in magnitude (GRX = 101, 110, or 111))

Case b: If the round and sticky bits are zero (result midway between closest
representable values) then if the low-order bit of the result isone, theresult is
incremented. Otherwise (the low-order bit of the result is zero) the result is
truncated (thisis the case of atie rounded to even).

 If during the round to nearest process, truncation of the unrounded number produces
the maximum magnitude for the specified precision, the following action is taken:

— Guard bit = 1: Store infinity with the sign of the unrounded resullt.
— Guard hit = 0: Store the truncated (maximum magnitude) value.

* Round toward zero—Choose the smaller in magnitude of Z1 or Z2. If the guard,
round, or sticky bit is nonzero, the result is inexact.

* Round toward +infinity
Choose Z1.

* Round toward —infinity
Choose Z2.

Where the result isto have fewer than 53 bits of precision because the instructionis
afloating round to single-precision or single-precision arithmetic instruction, the
intermediate result either isnormalized or is placed in correct denormalized form
before the result is potentially rounded.

2.5.1.1 Execution Model for Multiply-Add Type Instructions

The PowerPC architecture makes use of aspecial instruction form that performs up to three
operations in one instruction (a multiply, an add, and a negate). With this added capability
isthe ability to produce a more exact intermediate result as an input to the rounder. The 32-
bit arithmetic is similar except that the fraction field is smaller. Note that the rounding
occurs only after add; therefore, the computation of the sum and product together are
infinitely precise before the final result is rounded to a representable format.

The first part of the operation is a multiply. The multiply has two 53-bit significands as
inputs, which are assumed to be prenormalized, and produces a result conforming to the
above model. If there is a carry out of the significand (into the C bit), the significand is
shifted right one position, placing the L bit into the most significant bit of the FRACTION
and placing the C bit into the L bit. All 106 bits (L bit plusthe fraction) of the product take
part in the add operation. If the exponents of the two inputs to the adder are not equal, the

2-60 PowerPC 601 RISC Microprocessor User's Manual

significand of the operand with the smaller exponent is aligned (shifted) to the right by an
amount added to that exponent to make it equal to the other input’s exponent. Zeros are
shifted into the left of the significand as it is aligned and bits shifted out of bit 105 of the
significand are ORed into the X' bit. The add operation also produces a result conforming
to the above model with the X' bit taking part in the add operation.

The result of the add is then normalized, with all bits of the add result, except the X' bit,
participating in the shift. The normalized result provides an intermediate result as input to
the rounder that conforms to the model described in Section 2.5.1, “Execution Model for
| EEE Operations,” where:

» Theguard bit ishit 53 of the intermediate result.

* Theround bit isbit 54 of the intermediate result.
* Thesticky bitisthe OR of all remaining bitsto the right of bit 55, inclusive.

If the instruction is floating negative multiply-add or floating negative multiply-subtract,
the final result is negated.

Status bits are set to reflect the result of the entire operation: for example, no status is
recorded for the result of the multiplication part of the operation.

2.5.2 Floating-Point Data Format

The PowerPC architecture defines the representation of a floating-point value in two
different binary, fixed-length formats. The format may be a 32-bit format for a single-
precision floating-point value or a64-bit format for adoubl e-precision floating-point val ue.
The single-precision format may be used for datain memory. The double-precision format
can be used for datain memory or in floating-point registers.

The length of the exponent and the fraction fields differ between these two precision
formats. The structure of the single-precision format is shown in Figure 2-40; the structure
of the double-precision format is shown in Figure 2-41.

EXP FRACTION
01 89 31

Figure 2-40. Floating-Point Single-Precision Format

EXP FRACTION
01 1112 63

Figure 2-41. Floating-Point Double-Precision Format

Chapter 2. Registers and Data Types 2-61

Vauesin floating-point format consist of three fields:
e S(sign hit)
* EXP (exponent + bias)
* FRACTION (fraction)

If only aportion of afloating-point dataitem in memory is accessed, as with aload or store
instruction for a byte or half word (or word in the case of floating-point double-precision
format), the val ue affected depends on whether the PowerPC system is using big- or little-
endian byte ordering, which is described in Section 2.4.3, “Byte and Bit Ordering.” Big-
endian mode is the default.

The significand consists of a leading implied bit concatenated on the right with the
FRACTION. This leading implied bit is a 1 for normalized numbers and a O for
denormalized numbers in the unit bit position (that is, the first bit to the left of the binary
point). Values representable within the two floating-point formats can be specified by the
parameters listed in Table 2-33.

Table 2-33. IEEE Floating-Point Fields

Parameter Single-Precision Double-Precision

Exponent bias +127 +1023

Maximum exponent +127 +1023

(unbiased)

Minimum exponent -126 -1022

Format width 32 bits 64 bits

Sign width 1 bit 1 bit

Exponent width 8 bits 11 bits

Fraction width 23 bits 52 bits

Significand width 24 bits 53 bits

The exponent is expressed as an 8-bit value for single-precision numbers or an 11-bit value
for double-precision numbers. These bits hold the biased exponent; the true value of the
exponent can be determined by subtracting 127 for single-precision numbers and 1023 for
double-precision values. Thisis shown in Figure 2-42. Note that using a bias eliminates the
need for a sign bit. The highest-order bit is used both to generate the number, and is an
implicit sign bit. Note also that two values are reserved—all bits set indicates that the
number is an infinity or NaN and all bits cleared indicates that the number is either zero or
denormalized.

2-62 PowerPC 601 RISC Microprocessor User's Manual

Biased Exponent Single-Precision Double-Precision
(binary) (unbiased) (unbiased)
11..... 11 Reserved for Infinities and NaNs
11..... 10 +127 +1023
11..... 01 +126 +1022
Positive <
10..... 00 1 1
Zero _—__yp 01..... 11 0 0
01..... 10 -1 -1
Negative
00..... 01 -126 -1022
00..... 00 Reserved for Zeros and Denormalized Numbers

Figure 2-42. Biased Exponent Format

2.5.2.1 Value Representation

The PowerPC architecture defines numerical and non-numerical values representable
within single- and double-precision formats. The numerical values are approximations to
the real numbers and include the normalized numbers, denormalized numbers, and zero
values. The non-numerical values representable are the positive and negative infinities, and
the NaNs. The positive and negative infinities are adjoined to the real numbers but are not
numbers themselves, and the standard rules of arithmetic do not hold when they appear in
an operation. They arerelated to the real numbers by “order” alone. It is possible, however,
to define restricted operations among numbers and infinities as defined below. The relative
location on the real number line for each of the defined entitiesis shown in Figure 2-43.

Unrepresentable, small numbers

v

—00 |—NORM |—DENORM‘ -0 | | +0 | +DENORM | +NORM | +00
< | 1 | . | >
| Tiny——» |« Tiny—>]

Figure 2-43. Approximation to Real Numbers

Chapter 2. Registers and Data Types 2-63

The positive and negative NaNs are not related to the numbers or oo by order or value, but
they are encodings that convey diagnostic information such as the representation of
uninitialized variables. Table 2-34 describes each of the floating-point formats.

Table 2-34. Recognized Floating-Point Numbers

Sign Bit Biased Exponent Leading Bit Fraction Value
0 Maximum X Nonzero +NaN
0 Maximum X Zero +Infinity
0 0 < Exponent < Maximum 1 Nonzero +Normalized
0 0 0 Nonzero +Denormalized
0 0 0 Zero +0
1 0 0 Zero -0
1 0 0 Nonzero —Denormalized
1 0 < Exponent < Maximum 1 Nonzero —Normalized
1 Maximum X Zero —Infinity
1 Maximum X Nonzero —NaN

The following sections describe floating-point values defined in the architecture:

2.5.2.2 Binary Floating-Point Numbers

Binary floating-point numbers are machine-representable values used to approximate real
numbers. Three categories of numbers are supported: normalized numbers, denormalized
numbers, and zero values.

2.5.2.3 Normalized Numbers (tNORM)
The values for normalized numbers have a biased exponent value in the range:

e 1-254in single-precision format
e 1-2046 in double-precision format
The implied unit bit is one. Normalized numbers are interpreted as follows:
NORM = (-1)Sx 2F x (1.fraction)
where (9) is the sign, (E) is the unbiased exponent and (1.fraction) is the significand

composed of aleading unit bit (implied bit) and afractional part. Theformat for normalized
numbersis shown in Figure 2-44.

2-64 PowerPC 601 RISC Microprocessor User's Manual

M'N<E>(<BP,2'S\"EEBI)T <MAX FRACTION = ANY BIT PATTERN

SIGN OF MANTISSA, 0OR 1

Figure 2-44. Format for Normalized Numbers

The ranges covered by the magnitude (M) of a normalized floating-point number are
approximately equal to the following:

Single-precision format:
1.2x10°® < M < 3.4x10%®
Double-precision format:

2.2x1073%8 < M < 1.8x10308

2.5.2.4 Zero Values (x0)

Zero values have a biased exponent value of zero and a mantissa (leading bit = 0) value of
zero. Thisis shown in Figure 2-45. Zeros can have a positive or negative sign. The sign of
zero isignored by comparison operations (that is, comparison regards +0 as equal to -0).

EXPONENT =0

(BIASED) FRACTION =0

| SIGN OF MANTISSA, 0OR 1

Figure 2-45. Format for Zero Numbers

2.5.2.5 Denormalized Numbers (DENORM)

Denormalized numbers have a biased exponent value of zero and a nonzero fraction field
value. The format for denormalized numbersis shown in Figure 2-46.

EXPONENT =0 FRACTION = ANY NONZERO
(BIASED) BIT PATTERN

SIGN OF MANTISSA,00R 1

Figure 2-46. Format for Denormalized Numbers

Chapter 2. Registers and Data Types 2-65

Denormalized numbers are nonzero numbers smaller in magnitude than the representable
normalized numbers. They are values in which the implied unit bit is zero. Denormalized
numbers are interpreted as follows:

DENORM = (-1)Sx 2EMN x (0.fraction)

where (Emin) is the minimum representable exponent value (—126 for single-precision,
—1022 for double-precision).

2.5.2.6 Infinities ()
Positive and negative infinities have the maximum biased exponent value:

* 255in the single-precision format
» 2047 in the double-precision format

The format for infinitiesis shown in Figure 2-47.

EXPONENT = MAXIMUM _
(BIASED) FRACTION =0

SIGN OF MANTISSA, 0OR 1
Figure 2-47. Format for Positive and Negative Infinities

The fraction value is zero. Infinities are used to approximate values greater in magnitude
than the maximum normalized value. Infinity arithmetic is defined as the limiting case of
real arithmetic, with restricted operations defined between numbers and infinities. Infinities
and the reals can be related by ordering in the affine sense:

—oo < every finite number < +co

Arithmetic using infinite numbersis always exact and does not signal any exception, except
when an exception occurs due to the invalid operations as described in Section 5.4.7.2,
“Invalid Operation Exception Conditions.”

2.5.2.7 Not a Numbers (NaNs)

NaNs have the maximum biased exponent value and a nonzero fraction field value. The
format for NaNsis shown in Figure 2-48. The sign bit of NaNsisignored (that is, NaNs are
neither positive nor negative). If the high-order bit of the fraction field isa zero, the NaN is
asignaling NaN; otherwise it isaquiet NaN (QNaN).

EXPONENT = MAXIMUM FRACTION = ANY NONZERO
(BIASED) BIT PATTERN

| SIGN OF MANTISSA (0 for +NaN, 1 for —NaN)
Figure 2-48. Format for NaNs

Signaling NaNs signal exceptions when they are specified as arithmetic operands.

2-66 PowerPC 601 RISC Microprocessor User's Manual

Quiet NaNs represent the results of certain invalid operations, such as invalid arithmetic
operations on infinities or on NaNs, when the invalid operation exception is disabled
(FPSCR[VE] = 0). QNaNs are generated under the following conditions:

* Aninvalid operation occurs and FPSCR[VE] =0

* Anmffsinstruction isexecuted and the upper 32 bits are undefined (this case is 601-
specific).

» On Floating Convert to Integer with Round (fctir) and Floating Convert to Integer
with Round toward Zero (fctir z) the PowerPC architecture defines bits 0-31 of the

target floating point register as undefined. In the 601, these bits take on the value
X'FFF8 0000" (which is the representation for a QNaN).

Quiet NaNs propagate through all operations, except ordered comparison and conversion
to integer operations without signaling exceptions. Specific encodings in QNaNs can thus
be preserved through a sequence of operations and used to convey diagnostic information
to help identify results from invalid operations.

When a QNaN results from an operation because an operand isaNaN or because a QNaN
is generated due to a disabled invalid operation exception, the following rule is applied to
determine the QNaN with the high-order fraction bit set to one that is to be stored as the
result:

If (frA) isaNaN
ThenfrD « (frA)
Elseif (frB) isaNaN
ThenfrD — (frB)
Elseif (frC) isaNaN
ThenfrD — (frC)
Elseif generated QNaN
ThenfrD — generated QNaN

If the operand specified by fr A isaNaN, that NaN is stored as the result. Otherwise, if the
operand specified by frB isaNaN (if the instruction specifies an fr B operand), that NaN is
stored as the result. Otherwise, if the operand specified by frC isaNaN (if the instruction
specifies an frC operand), that NaN is stored as the result. Otherwise, if a QNaN is
generated by adisabled invalid operation exception, that QNaN is stored as the result. If a
QNaN isto be generated as aresult, the QNaN generated has asign bit of zero, an exponent
field of all ones, and a high-order fraction bit of one with all other fraction bits zero. An
instruction that generatesa QNaN asthe result of adisabled invalid operation generatesthis
QNaN. Thisis shown in Figure 2-49.

0 111..1 1000....0

SIGN OF MANTISSA, NaN OR 1

Figure 2-49. Representation of Generated QNaN

Chapter 2. Registers and Data Types 2-67

2.5.3 Sign of Result

The following rules govern the sign of the result of an arithmetic operation, when the
operation does not yield an exception. These rules apply even when the operands or results
are +0 or +oo:

» Thesign of the result of an addition operation is the sign of the source operand
having the larger absolute value. If both operands have the same sign, the sign of the
result of an addition operation is the same as the sign of the operands. The sign of
the result of the subtraction operation, X —y, is the same as the sign of the result of
the addition operation, X + (-y).

* When the sum of two operands with opposite sign, or the difference of two operands
with the same sign, is exactly zero, the sign of the result is positive in all rounding
modes except round toward negative infinity(—eo), in which casethe signisnegative.

* Thesign of theresult of amultiplication or division operation is the exclusive OR
of the signs of the source operands.

» Thesign of the result of around to single-precision or convert to/from integer
operation is the sign of the source operand.

For multiply-add instructions, these rules are applied first to the multiplication operation
and then to the addition or subtraction operation (one of the source operandsto the addition
or subtraction operation is the result of the multiplication operation).

2.5.4 Normalization and Denormalization

When an arithmetic operation produces an intermediate result, consisting of a sign bit, an
exponent, and a nonzero significand with a zero leading bit, the result is not a normalized
number and must be normalized before it is stored.

A number is normalized by shifting its significand left while decrementing its exponent by
onefor each bit shifted, until the leading significand bit becomes one. The guard bit and the
round bit participate in the shift with zeros shifted into the round bit; see Section 2.5.1,
“Execution Model for IEEE Operations.” During normalization, the exponent is regarded
asif itsrangewere unlimited. If the resulting exponent valueislessthan the minimum value
that can be represented in the format specified for the result, the intermediate result is said
to be “tiny” and the stored result is determined by the rules described in Section 5.4.7.5,
“Underflow Exception Condition.” The sign of the number does not change.

When an arithmetic operation produces a nonzero intermediate result whose exponent is
less than the minimum value that can be represented in the format specified, the stored
result may need to be denormalized. The result is determined by the rules described in
Section 5.4.7.5, “Underflow Exception Condition.”

A number is denormalized by shifting its significand to the right while incrementing its
exponent by one for each bit shifted until the exponent equal s the format’s minimum value.
If any significant bits arelost in this shifting process then “Loss of Accuracy” has occurred
and an underflow exception is signaled. The sign of the number does not change.

2-68 PowerPC 601 RISC Microprocessor User's Manual

When denormalized numbers are operands of multiply and divide operations, operands are
prenormalized internally before performing the operations.

2.5.5 Data Handling and Precision

There are specific instructions for moving floating-point data between the FPRs and
memory. For double-precision format data, the data is not altered during the move. For
single-precision data, the format is converted to double-precision format when data is
loaded from memory into an FPR. A format conversion from double- to single-precisionis
performed when datafrom an FPR is stored. Floating-point exceptions cannot occur during
these operations.

All arithmetic operations use floating-point double-precision format.

Floating-point single-precision formats are used by the following four types of instructions:

» Load Floating-Point Single-Precision (Ifs)—This instruction accesses asingle-
precision operand in single-precision format in memory, convertsit to double-
precision, and loads it into an FPR. Exceptions are not detected during the load
operation.

* Floating-point Round to Single-Precision (fr spx)—If the operand is not already in
single-precision range, the floating round to single-precision instruction rounds a
double-precision operand to single-precision, checking the exponent for single-
precision range and handling any exceptions according to respective enable bitsin
the FPSCR. The instruction places that operand into an FPR as a double-precision
operand. For results produced by single-precision arithmetic instructions and by
single-precision loads, this operation does not alter the value.

» Single-precision arithmetic instructions—These instructionstake operands from the
FPRs in double-precision format, performs the operation asiif it produced an
intermediate result correct to infinite precision and with unbounded range, and then
forces this intermediate result to fit in single-precision format. Status bitsin the
FPSCR and in the condition register are set to reflect the single-precision result. The
result is then converted to double-precision format and placed into an FPR. The
result falls within the range supported by the single format.

» For single-precision operations, source operands must be representable in single-
precisionformat. If they are not, the result placed into the target FPR, and the setting
of status bitsin the FPSCR and in the condition register, are undefined.

» Store Floating-Point Single-Precision (stfs)—This form of instruction converts a
double-precision operand to single-precision format and stores that operand into
memory. If the operand requires denormalization in order to fit in single-precision
format, it is automatically denormalized prior to being stored. No exceptions are
detected on the store operation (the value being stored is effectively assumed to be
the result of an instruction of one of the preceding three types).

Chapter 2. Registers and Data Types 2-69

When the result of a Load Floating-Point Single-Precision (Ifs), Floating-Point Round to
Single-Precision (fr spx), or single-precision arithmetic instruction is stored in an FPR, the
low-order 29 fraction bits are zero. Thisis shown in Figure 2-50.

Bit 35 1
EXP XXXXXXXXXXXXXXXXXXXXXXXx00000000000000000000000000000
01 1112 63

Figure 2-50. Single-Precision Representation in an FPR

The frspx instruction allows conversion from double- to single-precision with appropriate
exception checking and rounding. This instruction should be used to convert double-
precision floating-point values (produced by double-precision load and arithmetic
instructions) to single-precision values before storing them into single-format memory
elements or using them as operands for single-precision arithmetic instructions. Values
produced by single-precision load and arithmetic instructions can be stored directly, or used
directly as operands for single-precision arithmetic instructions, without preceding the
store, or the arithmetic instruction, by frspx.

A single-precision value can be used in double-precision arithmetic operations. Thereverse
is true only if the double-precision value can be represented in single-precision format.
Some implementations may execute single-precision arithmetic instructions faster than
double-precision arithmetic instructions. Therefore, if double-precision accuracy is not
required, using single-precision data and instructions can speed operations.

2.5.6 Rounding

All arithmetic instructions defined by the PowerPC architecture produce an intermediate
result considered infinitely precise. This result must then be written with a precision of
finite length into an FPR. After normalization or denormalization, if the infinitely precise
intermediate result cannot be represented in the precision required by the instruction, it is
rounded before being placed into the target FPR.

The instructions that potentially round their result are the arithmetic, multiply-add, and
rounding and conversion instructions. As shown in Figure 2-51, whether rounding occurs
depends on the source values.

2-70 PowerPC 601 RISC Microprocessor User's Manual

FI=0

Rounding FR=0

Fl=1

Fraction

FR=0

Fl=1

Figure 2-51. Rounding Flow Diagram

Each of these instructions sets FPSCR bits FR and Fl, according to whether rounding
occurs (FI) and whether the fraction was incremented (FR). If rounding occurs, Fl is set to
one and FR may be either zero or one. If rounding does not occur, both FR and FI are
cleared. Other floating-point instructions do not alter FR and FI. Four modes of rounding
are provided that are user-sel ectabl e through the fl oating-point rounding control field in the
FPSCR. See Section 2.2.3, “Floating-Point Status and Control Register (FPSCR).” These
are encoded as follows in Table 2-35.

Table 2-35. FPSCR Bit Settings—RN Field

RN Rounding Mode
00 Round to nearest

01 Round toward zero

10 Round toward +infinity
11 Round toward —infinity

Let Z betheinfinitely precise intermediate arithmetic result or the operand of a conversion
operation. If Z can be represented exactly in the target format, no rounding occurs and the
result in al rounding modes is equivalent to truncation of Z. If Z cannot be represented
exactly in the target format, let Z1 and Z2 be the next larger and next smaller numbers
representable in the target format that bound Z; then Z1 or Z2 can be used to approximate
the result in the target format.

Chapter 2. Registers and Data Types 2-71

Figure 2-52 shows a graphical representation of Z, Z1, and Z2 in this case and Figure 2-53
shows the selection of Z1 and Z2 for the four rounding settings.

By incrementing LSB of Z
Infinitely precise value
By truncating after LSB

Y | Y

Z2 Z1 0 Z2 Z1

Negative values ._’_. Positive values

Figure 2-52. Relation of Z1 and Z2

A

Rounding follows the four following rules:

* Round to nearest—Choose the best approximation (Z1 or Z2. In case of atie, choose
the one which is even (least significant bit 0)).

* Round toward zero—Choose the smaller in magnitude (Z1 or Z2).
* Round toward +infinity—Choose Z1.
* Round toward —infinity—Choose Z2.

See Section 2.5.1, “Execution Model for IEEE Operations,” for a detailed explanation of
rounding. If Z isto berounded up and Z1 does not exist (that is, if thereis no number larger
than Z that is representable in the target format), then an overflow exception occursif Z is
positive and an underflow exception occursif Z is negative. Similarly, if Z isto be rounded
down and Z2 does not exist, then an overflow exception occurs if Z is negative and an
underflow exception occursif Z ispositive. The resultsin these cases are defined in Section
5.4.7.1, “Floating-Point Enabled Program Exceptions.”

2-72 PowerPC 601 RISC Microprocessor User's Manual

2.6 PowerPC Registers Unimplemented in the 601

Z is infinitely
precise result
or operand

Does Z fit

Yes

target format?

LNO

| Z1<72<272 |

¢No

Round

Yes

>

Rounding = Truncation

toward —?

¢No

Round

Yes

Choose 72

toward +o0?

¢No

Round

Yes

Choose Z1

toward 0?

¢No

Round

Choose 71

to nearest

Choose best approxi-

mation (Z1 or Z2)

¢ if tie

Choose even value (Z1
or Z2 whose Isb is 0)

Figure 2-53. Selection of Z1 and Z2

The following PowerPC registers are not implemented in the 601.:

The time base SPRs are used in the PowerPC architecture instead of the RTC

registers. The architected time base facility operates as a subdivision of the

frequency provided by the processor clock.

Floating-point exception cause register (FPECR)—Thisis a supervisor-level SPR
(1023) that is used by some implementations to determine the cause of a floating-

point error.

Chapter 2. Registers and Data Types

» Address space register (ASR)—The ASR isa64-bit SPR used in 64-bit
implementations to perform address translations.

» Each PowerPC processor implements a unique set of HID registers. Note that some
of these registers may be implemented the same way in more than one PowerPC
processor design.

An mtspr or mfspr instruction that specifies an unimplemented register is treated as a no-
op. If aprivilege violation is indicated, the program exception has priority over the no-op.
This can occur if a user-mode program tries to access a register with bit 0 of the SPR
encoding field (in the instruction format) set. However, in this case the program exception
istaken regardless of whether the SPR encoding specified an implemented register.

2.7 Reset

The following sections describe hard reset and soft reset in the 601 processor. For more
information about the reset exception see Section 5.4.1, “Reset Exceptions (x'00100").”

2.7.1 Hard Reset

The hard reset sequence begins when the hard reset signal HRESET is negated after being
driven as described in Section 8.2.9.4.1, “Hard reset (HRESET)—Input.” Note that a hard
reset operation is required on power-on in order to properly reset the 601.

Table 2-36 shows the state of the registers after a hard reset and before it fetches the first
instruction from address x'FFFO 0100’ in the system reset exception vector.

Table 2-36. Settings after Hard Reset (Used at Power-On)

Register Setting Register Setting

GPRs All Os SRR1 00000000

FPRs All Os SPRGO 00000000
FPSCR 00000000 SPRG1 00000000
Condition register All Os SPRG2 00000000
Segment registers All Os SPRG3 00000000

MSR 00001040 (ME and EP EAR 00000000

set)

MQ 00000000 PVR 000100011

XER 00000000 BAT registers All Os

RTCU® 00000000 HIDO 800100802
RTCL3 000000003 HID1 00000000

Link register 00000000 HID2 00000000

CTR 00000000 HID5 00000000
DSISR 00000000 HID15 00000000

2-74 PowerPC 601 RISC Microprocessor User's Manual

Table 2-36. Settings after Hard Reset (Used at Power-On) (Continued)

Register Setting Register Setting
DAR 00000000 TLBs All Os
DEC® 00000000 Cache All Os
SDR1 00000000 Tag directory All Os. (However, the LRU

bits are initialized such
that each side of the
cache has a unique LRU
value).

SRRO 00000000

Notes: 1 In the earliest release of the 601 (DD1), this is 00010000. Later versions of the hardware may be different.
2 Master checkstop enable on, sequencer GPR self-test checkstop invalid microcode instruction checkstop on.

3 Note that if external clock is connected to RTC for the 601, then the RTCL, RTCU, and DEC can change from
their initial value of Os without receiving instructions to load those registers.

Thefollowing is aso true after a hard reset operation:

» External checkstops are enabled.

» The on-chip COP has given control of the PIs/POs to the rest of the chip for
functional use.

* Sincethe reset exception has data and instruction transation disabled (MSR[DT]
and M SR[IT] both cleared), the chip operates in direct address translation mode.
Thisimpliesthat instruction fetches as well as |oads and stores are cacheable.
(Operations that correspond to direct address trandations are implicitly cacheable,
not write-through mode, and require coherency checking on the bus).

* All internal arrays and registers are cleared during the hard reset process.
* Raenitializes big-endian mode.

2.7.2 Soft Reset

Registers are not re-initialized when a soft reset occurs (SRESET is asserted as described
in Section 8.2.9.4.2, “Soft reset (SRESET)—Input”). The SRRO and SRR1 registers are
updated with instruction and MSR data, and the MSR values are reset according to
procedures described in Section 5.4.1, “ Reset Exceptions (x'00100").”

Chapter 2. Registers and Data Types 2-75

2-76 PowerPC 601 RISC Microprocessor User's Manual

Chapter 3
Addressing Modes and Instruction Set
Summary

This chapter describes instructions and address modes supported by the PowerPC 601
microprocessor. These instructions are divided into the following categories:

* Integer instructions—These include arithmetic and logical instructions.

» Floating-point instructions—These include floating-point arithmetic instructions, as
well as instructions that affect the floating-point status and control register.

» Load/store instructions—These include integer and floating-point load and store
Instructions.

* Flow control instructions—These include branching instructions, condition register
logical instructions, trap instructions, and other instructions that affect the
instruction flow.

* Processor control instructions—These instructions are used for synchronizing
memory accesses and management of caches, TLBS, and the segment registers.

This grouping of the instructions does not necessarily indicate the execution unit that
processes a particular instruction or group of instructions. Thisinformation, which is useful
in taking full advantage of the 601's superscalar parallel instruction execution, is provided
in Chapter 10, “Instruction Set.”

Integer instructions operate on byte, half-word, and word operands. Floating-point
instructions operate on single-precision and double-precision floating-point operands. The
PowerPC architecture uses instructions that are four bytes long and word-aligned. It
provides for byte, half-word, and word operand fetches and stores between memory and a
set of 32 general-purpose registers (GPRS). It also provides for word and double-word
operand fetches and stores between memory and a set of 32 floating-point registers (FPRS).

Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation and then modify the same or another memory location,
the memory contents must be loaded into aregister, modified, and then written back to the
target location using load or store instructions.

Chapter 3. Addressing Modes and Instruction Set Summary 3-1

The 601 appears to execute instructions sequentially and in program order, but the
execution of a sequence of instructions may be interrupted as a result of an exception
caused by one of the instructionsin the sequence, or by some asynchronous event.

3.1 Memory Addressing

A program references memory using the effective (logical) address computed by the
processor when it executes a memory access or branch instruction, or when the next
sequential instruction is fetched.

3.1.1 Effective Address Calculation

An effective address is the 32-bit sum computed by the processor when executing a
memory access or branch instruction or when fetching the next sequential instruction. For
a memory access instruction, if the sum of the effective address and the operand length
exceeds the maximum effective address, the memory operand is considered to wrap around
from the maximum effective address through effective address 0, as described in the
following paragraphs.

Effective address computations for both data and instruction accesses use 32-hit unsigned
binary arithmetic. A carry from bit O isignored.

Load and store operations have three categories of effective address generation:

» Register indirect with immediateindex mode. The d operand isadded to the contents
of the GPR specified by the r A operand to generate the effective address.

* Register indirect with index mode. The contents of the GPR specified by r B operand
are added to the contents of the GPR specified by ther A operand to generate the
effective address.

* Register indirect mode. The contents of the GPR specified by ther A operand are
used as the effective address.

Branch instructions have three categories of effective address generation:

* |Immediate addressing. The BD or LI operands are sign extended, and are appended
with b'00" in the two low-order bit positions (bits 30 and 31) to generate the branch
effective address. If the AA bit (bit 30) iscleared, the BD or LI operands are treated
as displacements; if the AA bit is set, the BD or LI operands are treated as absolute
addresses.

» Link register indirect. The contents of the link register with the two low-order bits
cleared to zero are used as the branch effective address.

» Count register indirect. The contents of the count register with the two low-order bits
cleared to zero are used as the branch effective address.

Branch instructions can optionally load the link register with the next sequential instruction
address (current instruction address + 4).

3-2 PowerPC 601 RISC Microprocessor User's Manual

3.1.2 Context Synchronization

The System Call (sc), Return from Interrupt (rfi), and Instruction Synchronize(isync)
instructions perform context synchronization by allowing previously issued instructions to
complete before performing a context switch. Execution of one of these instructions
ensures the following:

* No higher priority exception exists.
» All previous instructions have completed to a point where they can no longer cause

an exception. If aprior memory access instruction causes direct-store error
exceptions, the results must be determined before this instruction is executed.

* Previous instructions complete execution in the context (privilege, protection, and
address translation) under which they were issued.

» Theinstructions following the sc, rfi, or isync instruction execute in the context
established by these instructions.

The Move to Machine State Register instruction (mtmsr) is execution synchronizing. It
ensures that all preceding instructions have completed execution and will not cause an
exception before the instruction executes, but does not ensure subsequent instructions
execute in the newly established environment. For example, if themtmsr setsthe MSR(PR)
bit to 1, unless an isync immediately follows the mtmsr, a privileged instruction could be
executed or privileged access could be performed without causing an exception even
though the MSR(PR) bit indicates user mode.

3.2 Exception Summary

There are two kinds of exceptionsin the 601—those caused directly by the execution of an
instruction and those caused by an asynchronous event. Either may cause components of
the system software to be invoked.

Exceptions can be caused directly by the execution of an instruction as follows:

* Anattempt to execute anillegal instruction or an attempt by a user-level program to
execute the supervisor-level instructions listed below cause theillegal instruction or
supervisor-level instruction handler to be invoked. The 601provides the following
supervisor-level instructions: dcbi, mfmsr, mfspr, mfsr, mfsrin, mtmsr, mtspr,
mtsr, mtsrin, rfi, and tlbie. Note that the mfspr and mtspr instructions are
executable at both the user- and supervisor-level, depending on the SPR encoding.

* An attempt to access memory in a manner that violates memory protection, or an
attempt to access memory that is not available (page fault), causes the data access
exception handler or instruction access exception handler to be invoked.

* An attempt to access memory with an effective address alignment that isinvalid for
the instruction causes the alignment exception handler to be invoked.

» Theexecution of an scinstruction causes the system service program to be invoked.

Chapter 3. Addressing Modes and Instruction Set Summary 3-3

» The execution of atrap instruction that traps causes the program exception trap
handler to be invoked.

» The execution of afloating-point instruction when floating-point instructions are
disabled causes the floating-point unavailable handler to be invoked.

» Theexecution of an instruction that causes a floating-point exception while
floating-point exceptions are enabled causes the floating-point enabled exception
handler to be invoked.

Exceptions caused by asynchronous events are described in Chapter 5, “ Exceptions.”

3.3 Integer Instructions
This section describes the integer instructions. These consist of the following:

* Integer arithmetic instructions

* Integer compare instructions

* Integer rotate and shift instructions
» Integer logical instructions.

Integer instructions use the content of the GPRs as source operands and place results into
GPRs, into the integer exception register (XER), and into condition register fields. Trap
instructions compare the contents of one GPR with a second GPR or with immediate data
and, if the conditions are met, invoke the program exception trap handler.

These instructions treat the source operands as signed integers unless the instruction is
explicitly identified as an unsigned operation.

The integer instructions that are coded to update the condition register and the integer
logical and arithmetic instructions (addic., andi., and andis.) set condition register field
CRO (bits 0-3) to characterize the result of the operation. The condition register field CRO
isset asif the result were compared algebraically to zero.

The integer arithmetic instructions (addic, addic., subfic, addc, subfc, adde, subfe,
addme, subfme, addze, and subfze) always set integer exception register bit, CA, to reflect
the carry out of bit O. Integer arithmetic instructions with the overflow enable (OE) bit set
will cause the XER bits SO and OV to be set to reflect overflow of the 32-bit resuilt.

Unless otherwise noted, when condition register field CRO and the XER are affected they
reflect the value placed in the target register.

3.3.1 Integer Arithmetic Instructions

In the 601, instructions that select the overflow option (enable XER(OV)) or that set the
integer exception register carry bit (CA) may delay the execution of subsequent
instructions.

3-4 PowerPC 601 RISC Microprocessor User's Manual

The 601 integer unit contains the user accessible MQ register and supports the multiply
(mul), divide (div), shift, and rotate instructions that use this register. Neither the register
nor the associated instructions are present in other PowerPC processors nor are they defined
in the PowerPC architecture. The execution of any PowerPC multiply or divide instruction
causes the content of the MQ to be undefined.

Table 3-1 lists the integer arithmetic instructions for the 601. Note that some of the
instructions are specific to the 601 implementation.

Table 3-1. Integer Arithmetic Instructions

Name Mnemonic Operand Operation
Syntax
Add addi rD,rA,SIMM The sum (rA|0) + SIMM is placed into register rD.
Immediate
Add addis rD,rA,SIMM The sum (rA|0) + (SIMM || x '0000") is placed into register rD.
Immediate
Shifted
Add add rD,rA,rB The sum (rA) + (rB) is placed into register rD.
add add Add
addo add. Add with CR Update. The dot suffix enables the update of
addo. the condition register.
addo Add with Overflow Enabled. The o suffix enables the
overflow bit (OV) in the XER.
addo. Add with Overflow and CR Update. The o. suffix enables
the update of the condition register and enables the
overflow bit (OV) in the XER.
Subtract subf rD,rA,rB The sum = (rA) + (rB) +1 is placed into rD.
from SUE:' subf Subtract from
subfo subf. Subtract from with CR Update. The dot suffix enables the
subfo. update of the condition register.
subfo Subtract from with Overflow Enabled. The o suffix enables
the overflow. The o suffix enables the overflow bit (OV) in
the XER.
subfo. Subtract from with Overflow and CR Update. The o. suffix
enables the update of the condition register and enables
the overflow bit (OV) in the XER.
Add addic rD,rA,SIMM The sum (rA) + SIMM is placed into register rD.
Immediate
Carrying
Add addic. rD,rA,SIMM The sum (rA) + SIMM is placed into rD. The condition register is
Immediate updated.
Carrying
and Record
Subtract subfic rD,rA,SIMM The sum = (rA) + SIMM + 1 is placed into register rD.
from
Immediate
Carrying

Chapter 3. Addressing Modes and Instruction Set Summary 3-5

Table 3-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand Operation
Syntax
Add addc rD,rA,rB The sum (rA) + (rB) is placed into register rD.
Carrying addc. addc Add Carrying
ggggg addc. Add Carrying with CR Update. The dot suffix enables the
’ update of the condition register.
addco Add Carrying with Overflow Enabled. The o suffix enables
the overflow bit (OV) in the XER.
addco. Add Carrying with Overflow and CR Update. The o. suffix
enables the update of the condition register and enables
the overflow bit (OV) in the XER.
Subtract subfc rD,rA,rB The sum - (rA) + (rB) + 1 is placed into register rD.
f(r:om . SUEIC' subfc Subtract from Carrying
arrying zﬂbfgg subfc. Subtract from Carrying with CR Update. The dot suffix
) enables the update of the condition register.
subfco Subtract from Carrying with Overflow. The o suffix enables
the overflow bit (OV) in the XER.
subfco. Subtract from Carrying with Overflow and CR Update.
The o. suffix enables the update of the condition register
and enables the overflow bit (OV) in the XER.
Add adde rD,rA,rB The sum (rA) + (rB) + XER[CA] is placed into register rD.
Extended adde. adde Add Extended
addeo adde. Add Extended with CR Update. The dot suffix enables the
addeo. update of the condition register.
addeo Add Extended with Overflow. The o suffix enables the
overflow bit (OV) in the XER.
addeo. Add Extended with Overflow and CR Update. The o. suffix
enables the update of the condition register and enables
the overflow bit (OV) in the XER.
Subtract subfe rD,rA,rB The sum = (rA) + (rB) + XER[CA] is placed into register rD.
gignded zﬂgizo subfe Subtract from Extended _ _
subfe. Subtract from Extended with CR Update. The dot suffix
subfeo. enables the update of the condition register.
subfeo Subtract from Extended with Overflow. The o suffix
enables the overflow bit (OV) in the XER.
subfeo. Subtract from Extended with Overflow and CR Update.
The o. suffix enables the update of the condition register
and enables the overflow (OV) bit in the XER.
Add to addme rD,rA The sum (rA) + XER[CA] + xX'FFFFFFFF' is placed into register rD.
!)':gﬁdgge Zggmz'o addme Addto M?nus One Extended _
addme. Add to Minus One Extended with CR Update. The dot
addmeo. suffix enables the update of the condition register.
addmeo Add to Minus One Extended with Overflow. The o suffix
enables the overflow bit (OV) in the XER.
addmeo. Add to Minus One Extended with Overflow and CR

Update. The o. suffix enables the update of the condition
register and enables the overflow (OV) bit in the XER.

PowerPC 601 RISC Microprocessor User's Manual

Table 3-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand Operation
Syntax
Subtract subfme rD,rA The sum = (rA) + XER(CA) + xX'FFFFFFFF' is placed into register rD.
f(;?]'z Minus zﬂgim:o subfme Subtract from M@nus One Extended _
subfme. Subtract from Minus One Extended with CR Update. The
Extended subfmeo. dot suffix enables the update of the condition register.
subfmeo Subtract from Minus One Extended with Overflow. The o
suffix enables the overflow bit (OV) in the XER.
subfmeo. Subtract from Minus One Extended with Overflow and CR
Update. The o. suffix enables the update of the condition
register and enables the overflow bit (OV) in the XER.
Add to Zero | addze rD,rA The sum (rA) + XER[CA] is placed into register rD.
Extended Zgg;g'o addze Add to Zero Extended _ _
addzeo addze. Add to Zero Extended with CR _U_pdate._The dot suffix
) enables the update of the condition register.
addzeo Add to Zero Extended with Overflow. The o suffix enables
the overflow bit (OV) in the XER.
addzeo. Add to Zero Extended with Overflow and CR Update. The
0. suffix enables the update of the condition register and
enables the overflow bit (OV) in the XER.
Subtract subfze rD,rA The sum = (rA) + XER[CA] is placed into register rD.
from Zero subfze. subfze Subtract from Zero Extended
Extended subfzeo subfze. Subtract from Zero Extended with CR Update. The dot
subfzeo. suffix enables the update of the condition register.
subfzeo Subtract from Zero Extended with Overflow. The o suffix
enables the overflow bit (OV) in the XER.
subfzeo. Subtract from Zero Extended with Overflow and CR
Update. The o. suffix enables the update of the condition
register and enables the overflow bit (OV) in the XER.
Negate neg rD,rA The sum = (rA) + 1 is placed into register rD.
neg. neg Negate
Eggg neg. Negate with CR Update. The dot suffix enables the update
go. of the condition register.
nego Negate with Overflow. The o suffix enables the overflow bit
(QV) in the XER.
nego. Negate with Overflow and CR Update. The o. suffix
enables the update of the condition register and enables
the overflow bit (OV) in the XER.
Multiply mulli rD,rA,SIMM The low-order 32 bits of the 48-bit product (rA) LB5IMM are placed into
Low register rD. The low-order 32 bits of the product are the correct 32-bit
Immediate product. The low-order bits are independent of whether the operands

are treated as signed or unsigned integers. However, XER[OV] is set
based on the result interpreted as a signed integer.

The high-order bits are lost. This instruction can be used with
mulhwx to calculate a full 64-bit product.

Chapter 3. Addressing Modes and Instruction Set Summary 3-7

Table 3-1. Integer Arithmetic Instructions (Continued)

Name

Mnemonic

Operand
Syntax

Operation

Multiply
Low

mullw
mullw.
mullwo
mullwo.

rD,rA,rB

The low-order 32 bits of the 64-bit product (rA)[{rB) are placed into
register rD. The low-order 32 bits of the product are the correct 32-bit
product. The low-order bits are independent of whether the operands
are treated as signed or unsigned integers. However, XER[OV] is set
based on the result interpreted as a signed integer.

The high-order bits are lost. This instruction can be used with
mulhwx to calculate a full 64-bit product.This instruction may execute
faster if rB contains the operand having the smaller absolute value.

mullw Multiply Low

mullw. Multiply Low with CR Update. The dot suffix enables the
update of the condition register.

mullwo Multiply Low with Overflow. The o suffix enables the
overflow bit (OV) in the XER.

mullwo. Multiply Low with Overflow and CR Update. The o. suffix
enables the update of the condition register and enables
the overflow bit (OV) in the XER.

Multiply
High Word

mulhw
mulhw.

rD,rA,rB

The contents of rA and rB are interpreted as 32-bit signed integers.
The 64-bit product is formed. The high-order 32 bits of the 64-bit
product are placed into rD.

Both operands and the product are interpreted as signed integers.

This instruction may execute faster if rB contains the operand having
the smaller absolute value.

mulhw Multiply High Word
mulhw. Multiply High Word with CR Update. The dot suffix enables
the update of the condition register.

Multiply
High Word
Unsigned

mulhwu
mulhwu.

rD,rA,rB

The contents of rA and of rB are extracted and interpreted as 32-bit
unsigned integers. The 64-bit product is formed. The high-order 32
bits of the 64-bit product are placed into rD.

Both operands and the product are interpreted as unsigned integers.

This instruction may execute faster if rB contains the operand having
the smaller absolute value.

mulhwu Multiply High Word Unsigned
mulhwu. Multiply High Word Unsigned with CR Update. The dot
suffix enables the update of the condition register.

PowerPC 601 RISC Microprocessor User's Manual

Table 3-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand Operation
Syntax
Divide Word | divw rD,rA,rB The dividend is the signed value of (rA). The divisor is the signed
divw. value of (rB). The quotient is placed into rD. The remainder is not
divwo supplied as a result.
divwo.

Both operands are interpreted as signed integers. The quotient is the
unique signed integer that satisfies the following:

dividend = (quotient * divisor) + r

where 0 < r < |divisor| if the dividend is nhon-negative, and —|divisor| <
r < 0 if the dividend is negative.

If an attempt is made to perform any of the divisions

x'8000_0000' /-1
or
<anything>/0

the contents of register rD are undefined, as are the contents of the
LT, GT, and EQ bits of the condition register field CRO if the
instruction has condition register updating enabled. In these cases, if
instruction overflow is enabled, then XER[OV] is set.

The 32-bit signed remainder of dividing (rA) by (rB) can be computed
as follows, except in the case that (rA) = —231 and (rB) = —1:

divw rD,rA,rB D = quotient
mullw rD,rD,rB D = quotient [divisor
subf rD,rD,rA rD = remainder

divw Divide Word

divw. Divide Word with CR Update. The dot suffix enables the
update of the condition register.

divwo Divide Word with Overflow. The o suffix enables the overflow
bit (OV) in the XER.

divwo. Divide Word with Overflow and CR Update. The o. suffix
enables the update of the condition register and enables the
overflow bit (OV) in the XER.

Chapter 3. Addressing Modes and Instruction Set Summary 3-9

Table 3-1. Integer Arithmetic Instructions (Continued)

Name

Mnemonic

Operand
Syntax

Operation

Divide
Word
Unsigned

divwu
divwu.
divwuo
divwuo.

rD,rA,rB

The dividend is the value of (rA). The divisor is the value of (rB). The
32-bit quotient is placed into rD. The remainder is not supplied as a

result.

Both operands are interpreted as unsigned integers. The quotient is
the unique unsigned integer that satisfies the following:

dividend = (quotient * divisor) + r

where 0 < r < divisor.

If an attempt is made to perform the division

<anything>/0

the contents of register rD are undefined, as are the contents of the
LT, GT, and EQ bits of the condition register field CRO if the
instruction has the condition register updating enabled. In these
cases, if instruction overflow is enabled, then XER[OV] is set.

The 32-bit unsigned remainder of dividing (rA) by (rB) can be
computed as follows:

divwu rD,rA,rB
mullw rD,rD,rB
subf rD,rD,rA

rD = quotient
rD = quotient * divisor
rD = remainder

divwu
divwu.

Divide Word Unsigned

Divide Word Unsigned with CR Update. The dot suffix
enables the update of the condition register.

Divide Word Unsigned with Overflow. The o suffix enables
the overflow bit (OV) in the XER.

Divide Word Unsigned with Overflow and CR Update. The
o. suffix enables the update of the condition register and
enables the overflow bit (OV) in the XER.

divwuo

divwuo.

Difference
or Zero
Immediate

dozi

rD,rA,SIMM

This is a POWER instruction, and is not part of the PowerPC
architecture. This instruction will not be supported by other
PowerPC implementations.

The sum - (rA) + SIMM + 1 is placed into register rD if greater than O;
if the sum is less than or equal to 0, register rD is cleared to 0.

This instruction is specific to the 601.

3-10

PowerPC 601 RISC Microprocessor User's Manual

Table 3-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic

Operand
Syntax

Operation

Difference doz
or Zero doz.
dozo
dozo.

rD,rA,rB

This is a POWER instruction, and is not part of the PowerPC
architecture. This instruction will not be supported by other
PowerPC implementations.

The sum = (rA) + (rB) + 1 is placed into register rD. If the value in
register rA is algebraically greater than the value in register rB,
register rD is cleared.

If the instruction has condition register updating enabled, condition
register field CRO is set to reflect the result placed in register rD (i.e.,
if register rD is set to zero, EQ is set to 1).

If the instruction has overflow enabled, XER[OV] is only set on
positive overflows.

doz Difference or Zero

doz. Difference or Zero with CR Update. The dot suffix enables
the update of the condition register.

dozo Difference or Zero with Overflow. The o suffix enables the
overflow bit (OV) in the XER.

dozo. Difference or Zero with Overflow and CR Update. The o.
suffix enables the update of the condition register and
enables the overflow bit (OV) in the XER.

This instruction is specific to the 601.

Absolute abs
abs.
abso
abso.

rD,rA

This is a POWER instruction, and is not part of the PowerPC
architecture. This instruction will not be supported by other
PowerPC implementations.

The absolute value |(rA)| is placed into register rD. If register rA
contains the most negative number (i.e., x ‘80000000, the result of
the instruction is the most negative number and sets the XER[OV] bit
if enabled.

abs Absolute

abs. Absolute with CR Update. The dot suffix enables the
update of the condition register.

abso Absolute with Overflow. The o suffix enables the overflow
bit (OV) in the XER

abso. Absolute with Overflow and CR Update. The o. suffix
enables the update of the condition register and enables
the overflow bit (OV) in the XER.

This instruction is specific to the 601.

Chapter 3. Addressing Modes and Instruction Set Summary 3-11

Table 3-1. Integer Arithmetic Instructions (Continued)

Name

Mnemonic

Operand
Syntax

Operation

Negative
Absolute

nabs
nabs.
nabso
nabso.

rD,rA

This is a POWER instruction, and is not part of the PowerPC
architecture. This instruction will not be supported by other
PowerPC implementations.

The negative absolute value —|(rA)| is placed into register rD.

Note: nabs never overflows. If the instruction is overflow enabled,
then XER[OV] is cleared to zero and XER[SO] is not changed.

nabs Negative Absolute

nabs. Negative Absolute with CR Update. The dot suffix enables
the update of the condition register.

nabso Negative Absolute with Overflow. The o suffix enables the
overflow bit (OV) in the XER

nabso. Negative Absolute with Overflow and CR Update. The o.
suffix enables the update of the condition register and
enables the overflow bit (OV) in the XER.

This instruction is specific to the 601.

Multiply

mul
mul.
mulo
mulo.

rD,rA,rB

This is a POWER instruction, and is not part of the PowerPC
architecture. This instruction will not be supported by other
PowerPC implementations.

Bits 0—31 of the product (rA)[{rB) are placed into register rD. Bits
32-63 of the product (rA)L{rB) are placed into the MQ register.

If the condition register updating is enabled, then LT, GT, and EQ
reflect the result in the low-order 32 bits (contents of MQ register). If
the instruction is overflow enabled, then the XER[SO] and XER[OV]
bits are set to one if the product cannot be represented in 32 bits.

mul Multiply

mul. Multiply with CR Update. The dot suffix enables the update
of the condition register.

mulo Multiply with Overflow. The o suffix enables the overflow
bit (OV) in the XER.

mulo. Multiply with Overflow and CR Update. The o. suffix
enables the update of the condition register and enables
the overflow bit (OV) in the XER.

This instruction is specific to the 601.

3-12

PowerPC 601 RISC Microprocessor User's Manual

Table 3-1. Integer Arithmetic Instructions (Continued)

Name Mnemonic Operand Operation
Syntax
Divide div rD,rA,rB This is a POWER instruction, and is not part of the PowerPC
div. architecture. This instruction will not be supported by other
divo PowerPC implementations.
divo.

The quotient [(rA) || (MQ)]/(rB) is placed into register rD. The
remainder is placed in the MQ register. The remainder has the same
sign as the dividend, except that a zero quotient or a zero remainder
is always positive. The results obey the equation:

dividend = (divisor [lquotient) + remainder

where dividend is the original (rA) || (MQ), divisor is the original (rB),
quotient is the final (rD), and remainder is the final (MQ).

If the condition register updating is enabled, condition register field
CRO bits LT, GT, and EQ reflect the remainder. If the instruction is
overflow enabled, then the XER[SO] and XER[OV] bits are set to one
if the quotient cannot be represented in 32 bits.

For the case of —231/—1, the MQ register is cleared to zero and —2%1is
placed in register rD. For all other overflows, (MQ), (rD), and
condition register field CRO (if condition register updating is enabled)
are undefined.

div Divide

div. Divide with CR Update. The dot suffix enables the update
of the condition register.

divo Divide with Overflow. The o suffix enables the overflow bit
(OV) in the XER.

divo. Divide with Overflow and CR Update. The o. suffix enables

the update of the condition register and enables the
overflow bit (OV) in the XER.

This instruction is specific to the 601.

Chapter 3. Addressing Modes and Instruction Set Summary 3-13

Table 3-1. Integer Arithmetic Instructions (Continued)

Operand

Name Mnemonic Syntax Operation
Divide Short | divs rD,rA,rB This is a POWER instruction, and is not part of the PowerPC
divs. architecture. This instruction will not be supported by other
divso PowerPC implementations.
divso.

The quotient (rA)/(rB) is placed into register rD. The remainder is

placed in MQ. The remainder has the same sign as the dividend,

except that a zero quotient or a zero remainder is always positive.
The results obey the equation:

dividend = (divisor [lquotient) + remainder

where the dividend is the original (rA), divisor is the original (rB),
quotient is the final (rD), and remainder is the final (MQ).

If the condition register updating is enabled, then the condition
register field CRO bits LT, EQ, and GT reflect the remainder. If the
instruction is overflow enabled, then the XER[SO] and XER[OV] bits
are set to one if the quotient cannot be represented in 32 bits (e.g., as
is the case when the divisor is zero, or the dividend is —231 and the
divisor is —1). For the case of 23111, the MQ register is cleared and
231 placed in register rD. For all other overflows, (MQ), (rD), and
condition register field CRO (if condition register updating is enabled)
are undefined.

divs Divide Short

divs. Divide Short with CR Update. The dot suffix enables the
update of the condition register.

divso Divide Short with Overflow. The o suffix enables the

overflow bit (OV) in the XER.

divso. Divide Short with Overflow and CR Update. The o. suffix
enables the update of the condition register and enables
the overflow bit (OV) in the XER.

This instruction is specific to the 601.

In addition to supporting al of the PowerPC integer arithmetic instructions, the 601
supports the POWER arithmetic instructions summarized in Table 3-1 and Table 3-2 and
described in detail in Chapter 10, “Instruction Set.” Note that in order to achieve full
compatibility with future PowerPC implementations, it is up to software to either emulate
these operations in the program exception handler, or to completely avoid their use.

3-14

PowerPC 601 RISC Microprocessor User's Manual

Table 3-2. PowerPC 601 Microprocessor-Specific Integer Arithmetic Instruction

Summary
Mnemonic Instruction Name
dozi Difference or Zero Immediate
dozx Difference or Zero
absx Absolute
nabsx Negative Absolute
mulx Multiply
divx Divide
divsx Divide Short

3.3.2 Integer Compare Instructions

Theinteger compareinstructions algebraically or logically compare the contents of register
rA with ether the UIMM operand, the SIMM operand, or the contents of register rB.
Algebraic comparison compares two signed integers. Logical comparison compares two
unsigned numbers. Table 3-3 summarizes the integer compare instructions provided by the
601processor.

Table 3-3. Integer Compare Instructions

Name Mnemonic Operand Operation
Syntax

Compare cmpi crfD,L,rA,SIMM | The contents of register rA is compared with the sign-extended

Immediate value of the SIMM operand, treating the operands as signed
integers. The result of the comparison is placed into the CR field
specified by operand crfD.

Compare cmp crfD,L,rA,rB The contents of register rA is compared with register rB, treating
the operands as signed integers. The result of the comparison is
placed into the CR field specified by operand crfD.

Compare cmpli crfD,L,rA,UIMM | The contents of register rA is compared with x'0000' || UIMM,

Logical treating the operands as unsigned integers. The result of the

Immediate comparison is placed into the CR field specified by operand crfD.

Compare cmpl crfD,L,rA,rB The contents of register rA is compared with register rB, treating

Logical the operands as unsigned integers. The result of the comparison is
placed into the CR field specified by operand crfD.

While the PowerPC architecture specifies that the value in the L field determines whether
the operands are treated as 32- or 64-bit values, the 601 ignoresthe valuein the L field and
treats the operands as 32-bit values. The simplified mnemonics for integer compare
instructions as shown in Table 3-4 correctly clear the L value in the instruction rather than
requiring it to be coded as a numeric operand.

Chapter 3. Addressing Modes and Instruction Set Summary 3-15

The crfD field can be omitted if the result of the comparison is to be placed in CRO.
Otherwise the target CR field must be specified in the instruction crfD field, using one of
the CR field symbols (CRO—CR7) or an explicit field number.

The instructions listed in Table 3-4 are simplified mnemonics supported in all PowerPC
implementations that provide compare word capability for 32-bit operands.

Table 3-4. Word Compare Simplified Mnemonics

Operation Simplified Mnemonic Equivalent to:
Compare Word Immediate | cmpwi crfD,rA,SIMM cmpi crfD,0,rA,SIMM
Compare Word cmpw crfD,rA,rB cmp crfD,0,rA,rB
Compare Logical Word cmplwi crfD,rA,UIMM cmpli crfD,0,rA,UIMM
Immediate
Compare Logical Word cmplw crfD,rA,rB cmpl crfD,0,rA,rB

The following examples demonstrate the use of the simplified word compare mnemonics:

» Compare 32 bitsin register r A with immediate value 100 and place result in
condition register field CRO.

cmpwi rA,100 (equivalent to cmpi 0,0,r A,100)
» Sameas (1), but place resultsin condition register field CR4.
cmpwi cr4,rA,100 (equivalent to cmpi 4,0,r A,100)

» CompareregistersrA and rB aslogical 32-bit quantities and place result in
condition register field CRO.

cmplw rA,rB (equivalent to cmpl 0,0,rA,rB)

3.3.3 Integer Logical Instructions

The logical instructions shown in Table 3-5 perform bit-parallel operations. Logical
instructions with the condition register update enabled and instructionsandi. and andis. set
condition register field CRO to characterize the result of the logical operation. These fields
are set asif the sign-extended low-order 32 bits of the result were algebraically compared
to zero. Logical instructions without condition register update and the remaining logical
instructions do not modify the condition register. Logical instructions do not change the
XER[SO], XER[OV], and XER[CA] bits.

3-16 PowerPC 601 RISC Microprocessor User's Manual

Table 3-5. Integer Logical Instructions

Name Mnemonic Operand Operation
Syntax
AND andi. rA,rS,UIMM | The contents of rS is ANDed with x'0000' || UIMM and the result is
Immediate placed into rA.
AND andis. rA,rS,UIMM | The contents of rS is ANDed with UIMM || x'0000' and the result is
Immediate placed into rA.
Shifted
OR ori rA,rS,UIMM | The contents of rS is ORed with x'0000' || UIMM and the result is
Immediate placed into rA.
The preferred no-op is ori 0,0,0
OR oris rA,rS,UIMM | The contents of rS is ORed with UIMM |[x'0000' and the result is
Immediate placed into rA.
Shifted
XOR Xori rA,rS,UIMM | The contents of rS is XORed with x'0000' || UIMM and the result is
Immediate placed into rA.
XOR Xoris rA,rS,UIMM | The contents of rS is XORed with UIMM |[x'0000" and the result is
Immediate placed into rA.
Shifted
AND and rArS,rB The contents of rS is ANDed with the contents of register rB and the
and. result is placed into rA.
and AND
and. AND with CR Update. The dot suffix enables the update of
the condition register.
OR or rArS,rB The contents of rS is ORed with the contents of rB and the result is
or. placed into rA.
or OR
or. OR with CR Update. The dot suffix enables the update of the
condition register.
XOR xor rA,rS,rB The contents of rS is XORed with the contents of rB and the result is
xor. placed into register rA.
xor XOR
xor. XOR with CR Update. The dot suffix enables the update of
the condition register.
NAND nand rA,rS,rB The contents of rS is ANDed with the contents of rB and the one’s
nand. complement of the result is placed into register rA.
nand NAND
nand. NAND with CR Update. The dot suffix enables the update of
the condition register.
NAND with rA = rB can be used to obtain the one's complement.
NOR nor rArS,rB The contents of rS is ORed with the contents of rB and the one’s
nor. complement of the result is placed into register rA.

nor NOR
nor. NOR with CR Update. The dot suffix enables the update of
the condition register.

NOR with rA = rB can be used to obtain the one's complement.

Chapter 3. Addressing Modes and Instruction Set Summary 3-17

Table 3-5. Integer Logical Instructions (Continued)

Name Mnemonic Operand Operation
Syntax
Equivalent eqv rA,rS,rB The contents of rS is XORed with the contents of rB and the
eqv. complemented result is placed into register rA.
eqv Equivalent
egv. Equivalent with CR Update. The dot suffix enables the
update of the condition register.
AND with andc rA,rS,rB The contents of rS is ANDed with the complement of the contents of
Complement | andc. rB and the result is placed into rA.
andc AND with Complement
andc. AND with Complement with CR Update. The dot suffix
enables the update of the condition register.
OR with orc rA,rS,rB The contents of rS is ORed with the complement of the contents of rB
Complement | orc. and the result is placed into rA.
orc OR with Complement
orc. OR with Complement with CR Update. The dot suffix
enables the update of the condition register.
Extend Sign extsb rArS Register r S[24-31] are placed into rA[24—-31]. Bit 24 of rS is placed
Byte extsb. into rA[0-23].
extsb Extend Sign Byte
extsb. Extend Sign Byte with CR Update. The dot suffix enables the
update of the condition register.
Extend Sign extsh rArS Register r S[16-31] are placed into rA[16—31]. Bit 16 of rS is placed
Half Word extsh. into rA[0-15].
extsh Extend Sign Half Word
extsh. Extend Sign Half Word with CR Update. The dot suffix
enables the update of the condition register.
Count cntlzw rA,rS A count of the number of consecutive zero bits of rS is placed into rA.
Leading cntlzw. This number ranges from 0 to 32, inclusive.
Zeros Word

cntlzw Count Leading Zeros Word

cntlzw. Count Leading Zeros Word with CR Update. The dot suffix
enables the update of the condition register.

When the Count Leading Zeros Word instruction has condition

register updating enabled, the LT field is cleared to zero in CRO.

3.3.4 Integer Rotate and Shift Instructions

Rotate and shift instructions provide powerful and genera ways to manipulate register
contents. Table 3-6 shows the types of rotate and shift operations provided by the 601.

3-18

PowerPC 601 RISC Microprocessor User's Manual

Table 3-6. Rotate and Shift Operations

Operation Description

Extract Select a field of n bits starting at bit position b in the source register, right or left justify this field in the
target register, and clear all other bits of the target register to zero.

Insert Select a field of n bits in the source register, insert this field starting at bit position b of the target
register, and leave other bits of the target register unchanged. (No simplified mnemonic is provided for
insertion of a field when operating on double words; such an insertion requires more than one
instruction.)

Rotate Rotate the contents of a register right or left n bits without masking.

Shift Shift the contents of a register right or left n bits, clearing vacated bits to O (logical shift).

Clear Clear the leftmost or rightmost n bits of a register to 0.

Clear left Clear the leftmost b bits of a register, then shift the register left by n bits. This operation can be used to
and shift scale a known non-negative array index by the width of an element.

left

The U performs rotation operations on datafrom a GPR and returns the result, or aportion
of the result, to a GPR. Rotation operations rotate a 32-bit quantity left by a specified
number of bit positions. Bits that exit from position O enter at position 31. A rotate right
operation can be accomplished by specifying a rotation of 32-n bits, where n is the right
rotation amount.

Rotate and shift instructions employ amask generator. The mask is 32 bitslong and consists
of “1” bits from a start bit, MB, through and including a stop bit, ME, and “0” bits
elsawhere. The values of MB and ME range from 0 to 31. If MB > ME, the“1” bits wrap
around from position 31 to position 0. Thus the mask is formed as follows:

if MB < ME then

mask[mstart—-mstop] = ones

mask[all other bits] = zeros
else

mask[mstart—31] = ones

mask[0—mstop] = ones

mask[all other bits] = zeros

It is not possible to specify an al-zero mask. The use of the mask is described in the
following sections.

If condition register updating is enabled, rotate and shift instructions set condition register
field CRO according to the contents of r A at the completion of the instruction. Rotate and
shift instructions do not change the values of XER[OV] and XER[SO] bits. Rotate and shift
instructions, except algebraic right shifts, do not change the XER[CA] bit.

Chapter 3. Addressing Modes and Instruction Set Summary 3-19

Simplified mnemonics alow simpler coding of often-used functions such as clearing the
leftmost or rightmost bits of a register, left justifying or right justifying an arbitrary field,
and performing simple rotates and shifts. Some of these are shown as examples with the
rotate instructions.

POWER Compatibility Note: In addition to supporting the PowerPC integer rotate and
shift instructions, the 601 also supports all POWER rotate and shift instructions. Note that
in order to achieve full compatibility with all POWER applications on future PowerPC
implementations, it is left up to software to either emulate these operations in the
instruction exception handler, or to completely avoid their use. These 601-specific rotate
and shift instructions are summarized in Table 3-7.

Table 3-7. PowerPC 601 Microprocessor-Specific Rotate and Shift Instructions

Mnemonic Instruction Name
rimix Rotate Left then Mask Insert

rribx Rotate Right and Insert Bit

maskgx Mask Generate

maskirx Mask Insert from Register

slgx Shift Left with MQ

srgx Shift Right with MQ

sligx Shift Left Immediate with MQ

slligx Shift Left Long Immediate with MQ
srigx Shift Right Immediate with MQ
srligx Shift Right Long Immediate with MQ
sllgx Shift Left Long with MQ

srlgx Shift Right Long with MQ

slex Shift Left Extended

sleqx Shift Left Extended with MQ

srex Shift Right Extended

sregx Shift Right Extended with MQ
sraigx Shift Right Algebraic Immediate with MQ
sragx Shift Right Algebraic with MQ
sreax Shift Right Extended Algebraic

3-20 PowerPC 601 RISC Microprocessor User's Manual

3.3.4.1 Integer Rotate Instructions

Integer rotate instructions rotate the contents of a register. The result of the rotation is
inserted into the target register under control of amask (if amask bit is 1 the associated bit
of the rotated data is placed into the target register, and if the mask bit is O the associated
bit in the target register is unchanged), or ANDed with a mask before being placed into the
target register.

Rotate | eft instructions allow right-rotation of the contents of aregister to be performed by
aleft-rotation of 32 —n, where n isthe number of bits by which to rotate right.

The integer rotate instructions are summarized in Table 3-8.

Table 3-8. Integer Rotate Instructions

Name Mnemonic | Operand Syntax Operation
Rotate Left | rlwinm rA,rS,SH,MB,ME | The contents of register rS are rotated left by the number of bits
Word rlwinm. specified by operand SH. A mask is generated having “1” bits from
Immediate the bit specified by operand MB through the bit specified by
then AND operand ME and “0” bits elsewhere. The rotated data is ANDed
with Mask with the generated mask and the result is placed into register rA.

rlwinm Rotate Left Word Immediate then AND with Mask

rlwinm. Rotate Left Word Immediate then AND with Mask with
CR Update. The dot suffix enables the update of the
condition register.

Simplified mnemonics:

extlwi rA,rS,nb rlwinm rA,rS,b,0,n-1

srwi rArS,n rlwinm rA,rS,32-n,n,31

clrrwi rA,rS,n rlwinm rA,rS,0,0,31-n

Note: The rlwinm instruction can be used for extracting, clearing

and shifting bit fields using the methods shown below:

To extract an n-bit field that starts at bit position b in register rS,
right-justified into rA (clearing the remaining 32-n bits of rA), set
SH=b +n, MB=32-n, and ME=31.

To extract an n-bit field that starts at bit position bin rS,
left-justified into rA, set SH=b, MB=0, and ME=n-1.

To rotate the contents of a register left (right) by n bits, set SH=n
(32-n), MB=0, and ME=31.

To shift the contents of a register right by n bits, set SH=32-n,
MB=n, and ME=31.

To clear the high-order b bits of a register and then shift the result
left by n bits, set SH=n, MB=b-n and ME=31-n.

To clear the low-order n bits of a register, set SH=0, MB=0, and
ME=31-n.

Chapter 3. Addressing Modes and Instruction Set Summary 3-21

Table 3-8. Integer Rotate Instructions (Continued)

Name

Mnemonic

Operand Syntax

Operation

Rotate Left
Word then
AND with
Mask

rlwnm
rlwnm.

rA,rS,rB,MB,ME

The contents of rS are rotated left by the number of bits specified
by rB[27-31]. A mask is generated having “1” bits from the bit
specified by operand MB through the bit specified by operand ME
and “0” bits elsewhere. The rotated data is ANDed with the
generated mask and the result is placed into rA.

Rotate Left Word then AND with Mask

Rotate Left Word then AND with Mask with CR Update.
The dot suffix enables the update of the condition
register.

Simplified mnemonics:
rotlw rA,rS,rB rlwnm rA,rS,rB,0,31

rlwinm
rlwinm.

Note: The rlwinm instruction can be used to extract and rotate bit
fields using the methods shown below:

To extract an n-bit field that starts at the variable bit position b in
the register specified by operand rS, right-justified into rA (clearing
the remaining 32-n bits of rA), set r B[27-31]=b+n, MB=32-n, and
ME=31.

To extract an n-bit field that starts at variable bit position b in the
register specified by operand rS, left-justified into rA (clearing the
remaining 32-n bits of rA), set rB[27-31]=b, MB=0, and ME=n-1.

To rotate the contents of the low-order 32 bits of a register left
(right) by variable n bits, set rB[27-31]=n (32-n), MB=0, and
ME=31.

Rotate Left
Word
Immediate
then Mask
Insert

rlwimi
rlwimi.

rA,rS,SH,MB,ME

The contents of rS are rotated left by the number of bits specified
by operand SH. A mask is generated having “1” bits from the bit
specified by MB through the bit specified by ME and “0” bits
elsewhere. The rotated data is inserted into rA under control of the
generated mask.

Rotate Left Word Immediate then Mask

Rotate Left Word Immediate then Mask Insert with CR
Update. The dot suffix enables the update of the
condition register.

Simplified mnemonic:
rlwimi rA,rS,32-b,b,b+n-1

Note: The opcode rlwimi can be used to insert a bit field into the
contents of register specified by operand rA using the methods
shown below:

To insert an n-bit field that is left-justified in rS into rA starting at bit
position b, set SH=32-b, MB=b, and ME=(b+n)-1.

To insert an n-bit field that is right-justified in rS into rA starting at
bit position b, set SH=32-(b+n), MB=b, and ME=(b+n)-1.
Simplified mnemonics are provided for both of these methods.

rlwimi
rlwimi.

inslwi rArS,n,b

3-22

PowerPC 601 RISC Microprocessor User's Manual

Table 3-8. Integer Rotate Instructions (Continued)

Name Mnemonic | Operand Syntax Operation
Rotate Left | rImi rArS,rB,MB,ME | This is a POWER instruction, and is not part of the PowerPC
then Mask rimi. architecture. This instruction will not be supported by other
Insert PowerPC implementations.
The contents of rS is rotated left the number of positions specified
by bits 27-31 of rB. The rotated data is inserted into rA under
control of the generated mask.
rimi Rotate Left then Mask Insert
rimi. Rotate Left then Mask Insert with CR Update. The dot
suffix enables the update of the condition register.
This instruction is specific to the 601.
Rotate rrib rA,rS,rB This is a POWER instruction, and is not part of the PowerPC
Right and rrib. architecture. This instruction will not be supported by other
Insert Bit PowerPC implementations.
Bit 0 of rS is rotated right the amount specified by bits 27-31 of rB.
The bit is then inserted into rA.
rrib Rotate Right and Insert Bit
rrib. Rotate Right and Insert Bit with CR Update. The dot
suffix enables the update of the condition register.
This instruction is specific to the 601.
Mask maskg rArS,rB This is a POWER instruction, and is not part of the PowerPC
Generate maskg. architecture. This instruction will not be supported by other
PowerPC implementations.
Let mstart = rS[27-31], specifying the starting point of a mask of
ones. Let mstop = rB[27-31], specifying the end point of the mask
of ones.
If mstart < mstop+1 then
MASK(mstart...mstop) = ones
MASK(all other bits) = zeros
If mstart = mstop+1 then
MASK(0-31) = ones
If mstart > mstop+1 then
MASK(mstop+1...mstart-1) = zeros
MASK(all other bits) = ones
MASK is then placed in rA.
maskg Mask Generate
maskg. Mask Generate with CR Update. The dot suffix enables
the update of the condition register.
This instruction is specific to the 601.
Mask maskir rArS,rB This is a POWER instruction, and is not part of the PowerPC
Insert from maskir. architecture. This instruction will not be supported by other
Register PowerPC implementations.

Register rS is inserted into rA under control of the mask in rB.

maskir
maskir.

Mask Insert from Register
Mask Insert from Register with CR Update. The dot
suffix enables the update of the condition register.

This instruction is specific to the 601.

Chapter 3. Addressing Modes and Instruction Set Summary

3-23

3.3.4.2 Integer Shift Instructions

The instructions in this section perform left and right shifts. Immediate-form logical
(unsigned) shift operations are obtained by specifying masks and shift values for certain
rotate instructions. Simplified mnemonics are provided to make coding of such shifts

simpler and easier to understand.

Any shift right algebraic instruction, followed by addze, can be used to divide quickly by

2",

Multiple-precision shifts can be programmed as shown in Appendix E, “Multiple-Precision

Shifts”

The integer shift instructions are summarized in Table 3-9.

Table 3-9. Integer Shift Instructions

Name

Mnemonic

Operand
Syntax

Operation

Shift Left
Word

slw
slw.

rA,rS,rB

The contents of rS are shifted left the number of bits specified by
rB[27-31]. Bits shifted out of position O are lost. Zeros are supplied to
the vacated positions on the right. The 32-bit result is placed into rA.

If rB[26] = 1, then rA is filled with zeros.

slw Shift Left Word
slw. Shift Left Word with CR Update. The dot suffix enables the
update of the condition register.

Shift Right
Word

Srw
SIw.

rA,rS,rB

The contents of rS are shifted right the number of bits specified by
rB[27-31]. Zeros are supplied to the vacated positions on the left.
The 32-bit result is placed into rA.

If rB[26] = 1, then rA is filled with zeros.

srw Shift Right Word
Srw. Shift Right Word with CR Update. The dot suffix enables
the update of the condition register.

Shift Right
Algebraic
Word
Immediate

srawi
srawi.

rA,rS,SH

The contents of rS are shifted right the number of bits specified by
operand SH. Bits shifted out of position 31 are lost. The 32-bit result
is sign extended and placed into rA. XER[CA] is set if r S contains a
negative number and any “1” bits are shifted out of position 31;
otherwise XER[CA] is cleared. An operand SH of zero causes rA to
be loaded with the contents of rS and XER[CA] to be cleared to 0.

srawi Shift Right Algebraic Word Immediate
srawi. Shift Right Algebraic Word Immediate with CR Update.
The dot suffix enables the update of the condition register.

3-24

PowerPC 601 RISC Microprocessor User's Manual

Table 3-9. Integer Shift Instructions (Continued)

Name

Operand

Mnemonic Syntax

Operation

Shift Right
Algebraic
Word

sraw rA,rS,rB The contents of rS are shifted right the number of bits specified by
sraw. rB[27-31]. If rB[26] = 1, then rA is filled with 32 sign bits (bit 0) from
rS. If rB[26] = O, then rA is filled from the left with sign bits. XER[CA]
is set to 1 if rS contains a negative number and any “1” bits are
shifted out of position 31; otherwise XER[CA] is cleared to 0. An
operand (rB) of zero causes rA to be loaded with the contents of rS,
and XER[CA] to be cleared to 0. Condition register field CRO is set
based on the value written into rA.

sraw Shift Right Algebraic Word
sraw. Shift Right Algebraic Word with CR Update. The dot suffix
enables the update of the condition register.

Shift Left
with MQ

slq rA,rS,rB This is a POWER instruction, and is not part of the PowerPC
slq. architecture. This instruction will not be supported by other
PowerPC implementations.

Register rS is rotated left n bits where n is the shift amount specified
in bits 27-31 of register rB. The rotated word is placed in the MQ
register.

When bit 26 of register rB is a zero, a mask of 32 — n ones followed
by n zeros is generated.

When bit 26 of register rB is a one, a mask of all zeros is generated.
The logical AND of the rotated word and the generated mask is
placed into register rA.

slq Shift Left with MQ
slq. Shift Left with MQ with CR Update. The dot suffix enables
the update of the condition register.

This instruction is specific to the 601.

Shift Right
with MQ

srq rA,rS,rB This is a POWER instruction, and is not part of the PowerPC
srq. architecture. This instruction will not be supported by other
PowerPC implementations.

Register rS is rotated left 32 — n bits where n is the shift amount

specified in bits 27-31 of register rB. The rotated word is placed into

the MQ register. When bit 26 of register rB is a zero, a mask of n

zeros followed by 32-n ones is generated.

When bit 26 of register rB is a one, a mask of all zeros is generated.

The logical AND of the rotated word and the generated mask is

placed in rA.

srq Shift Right with MQ

srg. Shift Right with MQ with CR Update. The dot suffix
enables the update of the condition register.

This instruction is specific to the 601.

Chapter 3. Addressing Modes and Instruction Set Summary 3-25

Table 3-9. Integer Shift Instructions (Continued)

Name

Mnemonic

Operand
Syntax

Operation

Shift Left
Immediate
with MQ

sliq
sliqg.

rA,rS,SH

This is a POWER instruction, and is not part of the PowerPC
architecture. This instruction will not be supported by other
PowerPC implementations.

Register rS is rotated left n bits where n is the shift amount specified
by operand SH. The rotated word is placed in the MQ register. A
mask of 32 — n ones followed by n zeros is generated. The logical
AND of the rotated word and the generated mask is placed into
register rA.

sliq Shift Left Immediate with MQ
sliq. Shift Left Immediate with MQ with CR Update. The dot
suffix enables the update of the condition register.

This instruction is specific to the 601.

Shift Right
Immediate
with MQ

srig
srig.

rA,rS,SH

This is a POWER instruction, and is not part of the PowerPC
architecture. This instruction will not be supported by other
PowerPC implementations.

Register rS is rotated left 32 — n bits where n is the shift amount
specified by operand SH. The rotated word is placed into the MQ
register. A mask of n zeros followed by 32 — n ones is generated. The
logical AND of the rotated word and the generated mask is placed in
register rA.

sriq Shift Right Immediate with MQ
Sriq. Shift Right Immediate with MQ with CR Update. The dot
suffix enables the update of the condition register.

This instruction is specific to the 601.

Shift Left
Long
Immediate
with MQ

sllig
sllig.

rA,rS,SH

This is a POWER instruction, and is not part of the PowerPC
architecture. This instruction will not be supported by other
PowerPC implementations.

Register rS is rotated left n bits where n is the shift amount specified
by SH. A mask of 32 — n ones followed by n zeros is generated. The
rotated word is then merged with the contents of MQ, under control of
the generated mask. The merged word is placed into rA. The rotated
word is placed into the MQ register.

slliq Shift Left Long Immediate with MQ
slliq. Shift Left Long Immediate with MQ with CR Update. The
dot suffix enables the update of the condition register.

This instruction is specific to the 601.

3-26

PowerPC 601 RISC Microprocessor User's Manual

Table 3-9. Integer Shift Instructions (Continued)

Name

Mnemonic

Operand
Syntax

Operation

Shift Right
Long
Immediate
with MQ

srlig
srlig.

rA,rS,SH

This is a POWER instruction, and is not part of the PowerPC
architecture. This instruction will not be supported by other
PowerPC implementations.

Register rS is rotated left 32 — n bits where n is the shift amount
specified by operand SH. A mask of n zeros followed by 32 — n ones
is generated. The rotated word is then merged with the contents of
the MQ register, under control of the generated mask. The merged
word is placed in register rA. The rotated word is placed into the MQ
register.

srliq Shift Right Long Immediate with MQ
srliq. Shift Right Long Immediate with MQ with CR Update. The
dot suffix enables the update of the condition register.

This instruction is specific to the 601.

Shift Left
Long with
MQ

sllg
sliq.

rA,rS,rB

This is a POWER instruction, and is not part of the PowerPC
architecture. This instruction will not be supported by other
PowerPC implementations.

Register rS is rotated left n bits where n is the shift amount specified
in bits 27-31 of register rB.

When bit 26 of register rB is a zero, a mask of 32 — n ones followed
by n zeros is generated. The rotated word is then merged with the
contents of the MQ register, under control of the generated mask.

When bit 26 of register rB is a one, a mask of 32 — n zeros followed
by nones is generated. A word of zeros is then merged with the
contents of the MQ register, under control of the generated mask.

The merged word is placed in register rA. The MQ register is not
altered.

sliq Shift Left Long with MQ
sliq. Shift Left Long with MQ with CR Update. The dot suffix
enables the update of the condition register.

This instruction is specific to the 601.

Shift Right
Long with
MQ

srlg
srlq.

rA,rS,rB

This is a POWER instruction, and is not part of the PowerPC
architecture. This instruction will not be supported by other
PowerPC implementations.

Register rS is rotated left 32 — n bits where n is the shift amount
specified in bits 27-31 of register rB.

When bit 26 of register rB is a zero, a mask of n zeros followed by
32 — nones is generated. The rotated word is then merged with the
contents of the MQ register, under control of the generated mask.

When bit 26 of register rB is a one, a mask of n ones followed by
32 —n zeros is generated. A word of zeros is then merged with the
contents of the MQ register, under control of the generated mask.

The merged word is placed in register rA. The MQ register is not
altered.

srlg Shift Right Long with MQ
srlq. Shift Right Long with MQ with CR Update. The dot suffix
enables the update of the condition register.

This instruction is specific to the 601.

Chapter 3. Addressing Modes and Instruction Set Summary

3-27

Table 3-9. Integer Shift Instructions (Continued)

Name

Mnemonic

Operand
Syntax

Operation

Shift Left
Extended

sle
sle.

rA,rS,rB

This is a POWER instruction, and is not part of the PowerPC
architecture. This instruction will not be supported by other
PowerPC implementations.

Register rS is rotated left n bits where n is the shift amount specified
in bits 27-31 of register rB. The rotated word is placed in the MQ
register. A mask of 32 — n ones followed by n zeros is generated.

The logical AND of the rotated word and the generated mask is
placed in register rA.
sle Shift Left Extended

sle. Shift Left Extended with CR Update. The dot suffix
enables the update of the condition register.

This instruction is specific to the 601.

Shift Right
Extended

sre
sre.

rA,rS,rB

This is a POWER instruction, and is not part of the PowerPC
architecture. This instruction will not be supported by other
PowerPC implementations.

Register rS is rotated left 32 — n bits where n is the shift amount
specified in bits 27-31 of register rB. The rotated word is placed into
the MQ register. A mask of n zeros followed by 32 — n ones is
generated.

The logical AND of the rotated word and the generated mask is
placed in register rA.
sre Shift Right Extended

sre. Shift Right Extended with CR Update. The dot suffix
enables the update of the condition register.

This instruction is specific to the 601.

Shift Left
Extended
with MQ

sleq
sleq.

rA,rS,rB

This is a POWER instruction, and is not part of the PowerPC
architecture. This instruction will not be supported by other
PowerPC implementations.

Register rS is rotated left n bits where n is the shift amount specified
in bits 27-31 of register rB. A mask of 32 — n ones followed by n
zeros is generated. The rotated word is then merged with the
contents of the MQ register, under control of the generated mask.
The merged word is placed in register rA. The rotated word is placed
in the MQ register.

sleq Shift Left Extended with MQ
sleq. Shift Left Extended with MQ with CR Update. The dot
suffix enables the update of the condition register.

This instruction is specific to the 601.

3-28

PowerPC 601 RISC Microprocessor User's Manual

Table 3-9. Integer Shift Instructions (Continued)

Name Mnemonic Operand Operation
Syntax
Shift Right sreq rA,rS,rB This is a POWER instruction, and is not part of the PowerPC
Extended sreq. architecture. This instruction will not be supported by other
with MQ PowerPC implementations.
Register rS is rotated left 32 — n bits where n is the shift amount
specified in bits 27—-31 of register rB. A mask of n zeros followed by
32 — nones is generated. The rotated word is then merged with the
contents of the MQ register, under control of the generated mask.
The merged word is placed in register rA. The rotated word is placed
into the MQ register.
sreq Shift Right Extended with MQ
sreq. Shift Right Extended with MQ with CR Update. The dot
suffix enables the update of the condition register.
This instruction is specific to the 601.
Shift Right sraiq rA,rS,SH This is a POWER instruction, and is not part of the PowerPC
Algebraic sraiq. architecture. This instruction will not be supported by other
Immediate PowerPC implementations.
with MQ

Register rS is rotated left 32 — n bits where n is the shift amount
specified by the operand SH. A mask of n zeros followed by 32 — n
ones is generated. The rotated word is placed in the MQ register.

The rotated word is then merged with a word of 32 sign bits from
register rS, under control of the generated mask. The merged word is
placed in register rA. The rotated word is ANDed with the
complement of the generated mask. This 32-bit result is ORed
together and then ANDed with bit 0 of register rS to produce
XER[CA].

Shift Right Algebraic instructions can be used for a fast divide by 21 if
followed with addze.

Shift Right Algebraic Immediate with MQ
Shift Right Algebraic Immediate with MQ with CR Update.
The dot suffix enables the update of the condition register.

This instruction is specific to the 601.

sraiq
sraiq.

Chapter 3. Addressing Modes and Instruction Set Summary

3-29

Table 3-9. Integer Shift Instructions (Continued)

Name

Mnemonic

Operand
Syntax

Operation

Shift Right
Algebraic
with MQ

sraq
sraq.

rA,rS,rB

This is a POWER instruction, and is not part of the PowerPC
architecture. This instruction will not be supported by other
PowerPC implementations.

Register rS is rotated left 32 — n bits where n is the shift amount
specified in bits 27—-31 of register rB. When bit 26 of register rB is a
zero, a mask of n zeros followed by 32 — n ones is generated. When
bit 26 of register rB is a one, a mask of all zeros is generated. The
rotated word is placed in the MQ register. The rotated word is then
merged with a word of 32 sign bits from register rS, under control of
the generated mask.

The merged word is placed in register rA.

The rotated word is ANDed with the complement of the generated
mask. This 32-bit result is ORed together and then ANDed with bit 0
of register rS to produce XER[CA].

Shift Right Algebraic instructions can be used for a fast divide by 21 if
followed with addze.

sraq Shift Right Algebraic with MQ
srag. Shift Right Algebraic with MQ with CR Update. The dot
suffix enables the update of the condition register.

This instruction is specific to the 601.

Shift Right
Extended
Algebraic

srea
srea.

rA,rS,rB

This is a POWER instruction, and is not part of the PowerPC
architecture. This instruction will not be supported by other
PowerPC implementations.

Register rS is rotated left 32 — n bits where n is the shift amount
specified in bits 27-31 of register rB. A mask of n zeros followed by
32 — nones is generated. The rotated word is placed in the MQ
register.

The rotated word is then merged with a word of 32 sign bits from
register rS, under control of the generated mask.

The merged word is placed in register rA.

The rotated word is ANDed with the complement of the generated
mask. This 32-bit result is ORed together and then ANDed with bit 0
of register rS to produce XER[CA].

Shift Right Extended Algebraic
Shift Right Extended Algebraic with CR Update. The dot
suffix enables the update of the condition register.

This instruction is specific to the 601.

srea
srea.

3-30

PowerPC 601 RISC Microprocessor User's Manual

3.4 Floating-Point Instructions
This section describes the floating-point instructions, which include the following:

* Floating-point arithmetic instructions

» Floating-point multiply-add instructions

» Floating-point rounding and conversion instructions
» Floating-point compare instructions

» Floating-point status and control register instructions

Floating-point loads and stores are discussed in Section 3.5, “Load and Store Instructions.”

3.4.1 Floating-Point Arithmetic Instructions

Single-precision instructions execute faster than their double-precision equivalents in the
601. For additional details on floating-point performance, refer to Chapter 7, “Instruction
Timing.”

The floating-point arithmetic instructions are summarized in Table 3-10.

Table 3-10. Floating-Point Arithmetic Instructions

Name Mnemonic Operand Operation
Syntax
Floating- fadd frD,frA,frB The floating-point operand in register frA is added to the
Point Add fadd. floating-point operand in register frB. If the most significant bit of the

resultant significand is not a one the result is normalized. The result
is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into register frD.

Floating-point addition is based on exponent comparison and
addition of the two significands. The exponents of the two operands
are compared, and the significand accompanying the smaller
exponent is shifted right, with its exponent increased by one for each
bit shifted, until the two exponents are equal. The two significands
are then added algebraically to form an intermediate sum. All 53 bits
in the significand as well as all three guard bits (G, R, and X) enter
into the computation.

If a carry occurs, the sum's significand is shifted right one bit position
and the exponent is increased by one.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fadd Floating-Point Add
fadd. Floating-Point Add with CR Update. The dot suffix enables
the update of the condition register.

Chapter 3. Addressing Modes and Instruction Set Summary 3-31

Table 3-10. Floating-Point Arithmetic Instructions (Continued)

Name

Mnemonic

Operand
Syntax

Operation

Floating-
Point Add
Single-

Precision

fadds
fadds.

frD,frA,frB

The floating-point operand in register frA is added to the
floating-point operand in register frB. If the most significant bit of the
resultant significand is not a one, the result is normalized. The result
is rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into register frD.

Floating-point addition is based on exponent comparison and
addition of the two significands. The exponents of the two operands
are compared, and the significand accompanying the smaller
exponent is shifted right, with its exponent increased by one for each
bit shifted, until the two exponents are equal. The two significands
are then added algebraically to form an intermediate sum. All 53 bits
in the significand as well as all three guard bits (G, R, and X) enter
into the computation.

If a carry occurs, the sum's significand is shifted right one bit position
and the exponent is increased by one.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fadds
fadds.

Floating-Point Single-Precision
Floating-Point Single-Precision with CR Update. The dot
suffix enables the update of the condition register.

Floating-
Point
Subtract

fsub
fsub.

frD,frA,frB

The floating-point operand in register frB is subtracted from the
floating-point operand in register frA. If the most significant bit of the
resultant significand is not a 1, the result is normalized. The result is
rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into register frD.

The execution of the Floating-Point Subtract instruction is identical to
that of Floating-Point Add, except that the contents of register frB
participates in the operation with its sign bit (bit 0) inverted.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fsub
fsub.

Floating-Point Subtract
Floating-Point Subtract with CR Update. The dot suffix
enables the update of the condition register.

Floating-
Point
Subtract
Single-
Precision

fsubs
fsubs.

frD,frA,frB

The floating-point operand in register frB is subtracted from the
floating-point operand in register frA. If the most significant bit of the
resultant significand is not a 1, the result is normalized. The result is
rounded to the target precision under control of the floating-point
rounding control field RN of the FPSCR and placed into register frD.

The execution of the Floating-Point Subtract instruction is identical to
that of Floating-Point Add, except that the contents of register frB
participates in the operation with its sign bit (bit 0) inverted.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fsubs
fsubs.

Floating-Point Subtract Single-Precision
Floating-Point Subtract Single-Precision with CR Update.
The dot suffix enables the update of the condition register.

3-32

PowerPC 601 RISC Microprocessor User's Manual

Table 3-10. Floating-Point Arithmetic Instructions (Continued)

Name

Mnemonic

Operand
Syntax

Operation

Floating-
Point
Multiply

fmul
fmul.

frD,frA,frC

The floating-point operand in register frA is multiplied by the
floating-point operand in register frC.

If the most significant bit of the resultant significand is not a 1, the
result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR and placed into register frD.

Floating-point multiplication is based on exponent addition and
multiplication of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fmul Floating-Point Multiply
fmul. Floating-Point Multiply with CR Update. The dot suffix
enables the update of the condition register.

Floating-
Point
Multiply
Single-
Precision

fmuls
fmuls.

frD,frA,frC

The floating-point operand in register frA is multiplied by the
floating-point operand in register frC.

If the most significant bit of the resultant significand is not a 1, the
result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR and placed into register frD.

Floating-point multiplication is based on exponent addition and
multiplication of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.

fmuls Floating-Point Multiply Single-Precision
fmuls. Floating-Point Multiply Single-Precision with CR Update.
The dot suffix enables the update of the condition register.

Floating-
Point Divide

fdiv
fdiv.

frD,frA,frB

The floating-point operand in register frA is divided by the
floating-point operand in register frB. No remainder is preserved.

If the most significant bit of the resultant significand is not a 1, the
result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR and placed into register frD.

Floating-point division is based on exponent subtraction and division
of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1 and zero divide
exceptions when FPSCR[ZE] = 1.

fdiv Floating-Point Divide
fdiv. Floating-Point Divide with CR Update. The dot suffix
enables the update of the condition register.

Chapter 3. Addressing Modes and Instruction Set Summary 3-33

Table 3-10. Floating-Point Arithmetic Instructions (Continued)

Operand

Name Mnemonic Syntax Operation
Floating- fdivs frD,frA,frB The floating-point operand in register frA is divided by the
Point fdivs. floating-point operand in register frB. No remainder is preserved.
g_W'dle If the most significant bit of the resultant significand is not a 1, the
Plrr;?:izi-on result is normalized. The result is rounded to the target precision

under control of the floating-point rounding control field RN of the
FPSCR and placed into register frD.

Floating-point division is based on exponent subtraction and division
of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1 and zero divide
exceptions when FPSCR[ZE] = 1.

fdivs Floating-Point Divide Single-Precision
fdivs. Floating-Point Divide Single-Precision with CR Update.
The dot suffix enables the update of the condition register.

3.4.2 Floating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate rounding
operation. The fractional part of the intermediate product is 106 bits wide, and all 106 bits
take part in the add/subtract portion of the instruction.

The floating-point multiply-add instructions are summarized in Table 3-11.

Table 3-11. Floating-Point Multiply-Add Instructions

Operand

Name Mnemonic Syntax Operation

Floating- fmadd frD,frA,frC,frB | The floating-point operand in register frA is multiplied by the

Point fmadd. floating-point operand in register frC. The floating-point operand in

Multiply- register frB is added to this intermediate result.

Add If the most significant bit of the resultant significand is not a one the
result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR and placed into register frD.

FPSCR[FPRF] is set to the class and sign of the result, except for

invalid operation exceptions when FPSCR[VE] = 1.

fmadd Floating-Point Multiply-Add

fmadd. Floating-Point Multiply-Add with CR Update. The dot suffix
enables the update of the condition register.

3-34 PowerPC 601 RISC Microprocessor User's Manual

Table 3-11. Floating-Point Multiply-Add Instructions (Continued)

Name Mnemonic Operand Operation
Syntax

Floating- fmadds frD,frAfrC,frB | The floating-point operand in register frA is multiplied by the

Point fmadds. floating-point operand in register frC. The floating-point operand in

Multiply- register frB is added to this intermediate result.

g‘qd | If the most significant bit of the resultant significand is not a one the

ng_e_' result is normalized. The result is rounded to the target precision

recision under control of the floating-point rounding control field RN of the

FPSCR and placed into register frD.

FPSCR[FPRF] is set to the class and sign of the result, except for

invalid operation exceptions when FPSCR[VE] = 1.

fmadds Floating-Point Multiply-Add Single-Precision

fmadds. Floating-Point Multiply-Add Single-Precision with CR
Update. The dot suffix enables the update of the condition
register.

Floating- fmsub frD,frA,frC,frB | The floating-point operand in register frA is multiplied by the

Point fmsub. floating-point operand in register frC. The floating-point operand in

Multiply- register frB is subtracted from this intermediate result.

Subtract If the most significant bit of the resultant significand is not a one the
result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR and placed into register frD.

FPSCR[FPRF] is set to the class and sign of the result, except for

invalid operation exceptions when FPSCR[VE] = 1.

fmsub Floating-Point Multiply-Subtract

fmsub. Floating-Point Multiply-Subtract with CR Update. The dot
suffix enables the update of the condition register.

Floating- fmsubs frD,frA,frC,frB | The floating-point operand in register frA is multiplied by the

Point fmsubs. floating-point operand in register frC. The floating-point operand in

Multiply- register frB is subtracted from this intermediate result.

g_ubtlract If the most significant bit of the resultant significand is not a one the

ng_e_— result is normalized. The result is rounded to the target precision

recision under control of the floating-point rounding control field RN of the

FPSCR and placed into register frD.

FPSCR[FPRF] is set to the class and sign of the result, except for

invalid operation exceptions when FPSCR[VE] = 1.

fmsubs Floating-Point Multiply-Subtract Single-Precision

fmsubs. Floating-Point Multiply-Subtract Single-Precision with CR
Update. The dot suffix enables the update of the condition
register.

Chapter 3. Addressing Modes and Instruction Set Summary 3-35

Table 3-11. Floating-Point Multiply-Add Instructions (Continued)

Name

Mnemonic

Operand
Syntax

Operation

Floating-
Point
Negative
Multiply-
Add

fnmadd
fnmadd.

frD,frA,frC,frB

The floating-point operand in register frA is multiplied by the
floating-point operand in register frC. The floating-point operand in
register frB is added to this intermediate result.

If the most significant bit of the resultant significand is not a one the
result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR, then negated and placed into register frD.

This instruction produces the same result as would be obtained by
using the floating-point multiply-add instruction and then negating the
result, with the following exceptions:

¢ QNaNs propagate with no effect on their sign bit.
* QNaNs that are generated as the result of a disabled invalid
operation exception have a "sign" bit of zero.

* SNaNs that are converted to QNaNs as the result of a disabled
invalid operation exception retain the "sign" bit of the SNaN.
FPSCR[FPRF] is set to the class and sign of the result, except for

invalid operation exceptions when FPSCR[VE] = 1,

fnmadd Floating-Point Negative Multiply-Add
fnmadd. Floating-Point Negative Multiply-Add with CR Update. The
dot suffix enables the update of the condition register.

Floating-
Point
Negative
Multiply-
Add
Single-
Precision

fnmadds
fnmadds.

frD,frA,frC,frB

The floating-point operand in register frA is multiplied by the
floating-point operand in register frC. The floating-point operand in
register frB is added to this intermediate result.

If the most significant bit of the resultant significand is not a one the
result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR, then negated and placed into register frD.

This instruction produces the same result as would be obtained by
using the floating-point multiply-add instruction and then negating the
result, with the following exceptions:

* QNaNs propagate with no effect on their sign bit.

¢ QNaNs that are generated as the result of a disabled invalid
operation exception have a “sign” bit of zero.

* SNaNs that are converted to QNaNs as the result of a disabled
invalid operation exception retain the “sign” bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1,

fnmadds Floating-Point Negative Multiply-Add Single-Precision

fnmadds. Floating-Point Negative Multiply-Add Single-Precision with
CR Update. The dot suffix enables the update of the
condition register.

3-36

PowerPC 601 RISC Microprocessor User's Manual

Table 3-11. Floating-Point Multiply-Add Instructions (Continued)

Name Mnemonic Operand Operation
Syntax
Floating- fnmsub frD,frA,frC,frB | The floating-point operand in register frA is multiplied by the
Point fnmsub. floating-point operand in register frC. The floating-point operand in
Negative register frB is subtracted from this intermediate result.
ZI utlftlrp Iy; If the most significant bit of the resultant significand is not a one the
ubtrac result is normalized. The result is rounded to the target precision
under control of the floating-point rounding control field RN of the
FPSCR, then negated and placed into register frD.
This instruction produces the same result as would be obtained by
using the floating-point multiply-subtract instruction and then negating
the result, with the following exceptions:
¢ QNaNs propagate with no effect on their sign bit.
* QNaNs that are generated as the result of a disabled invalid
operation exception have a sign bit of zero.
* SNaNs that are converted to QNaNs as the result of a disabled
invalid operation exception retain the sign bit of the SNaN.
FPSCR[FPRF] is set to the class and sign of the result, except for
invalid operation exceptions when FPSCR[VE] = 1.
fnmsub Floating-Point Negative Multiply-Subtract
fnmsub. Floating-Point Negative Multiply-Subtract with CR Update.
The dot suffix enables the update of the condition register.
Floating- fnmsubs frD,frA,frC,frB | The floating-point operand in register frA is multiplied by the
Point fnmsubs. floating-point operand in register frC. The floating-point operand in
Negative register frB is subtracted from this intermediate result.
gugtlgit If the most significant bit of the resultant significand is not a one the
Siun e result is normalized. The result is rounded to the target precision
Pre?:izion under control of the floating-point rounding control field RN of the

FPSCR, then negated and placed into register frD.

This instruction produces the same result as would be obtained by
using the floating-point multiply-subtract instruction and then negating
the result, with the following exceptions:

» QNaNs propagate with no effect on their "sign" bit.
* QNaNs that are generated as the result of a disabled invalid
operation exception have a "sign" bit of zero.

* SNaNs that are converted to QNaNs as the result of a disabled
invalid operation exception retain the "sign" bit of the SNaN.
FPSCR[FPRF] is set to the class and sign of the result, except for

invalid operation exceptions when FPSCR[VE] = 1.

fnmsubs Floating-Point Negative Multiply-Subtract Single-Precision

fnmsubs. Floating-Point Negative Multiply-Subtract
Single-Precision with CR Update. The dot suffix enables
the update of the condition register.

Chapter 3. Addressing Modes and Instruction Set Summary 3-37

3.4.3 Floating-Point Rounding and Conversion Instructions

The floating-point rounding instruction is used to truncate a 64-bit double-precision
number to a 32-bit single-precision floating-point number. The floating-point convert
instructions converts a 64-bit double-precision floating point number to a 32-bit signed
integer number.

The PowerPC architecture defines bits 0-31 of floating-point register frD as undefined
when executing the Floating-Point Convert to Integer Word (fctiw) and Floating-Point
Convert to Integer Word with Round toward Zero (fctiwz) instructions. In the 601, these
bits take on the value x'FFF8 0000 (which is the representation for a QNaN). This value
may differ in future PowerPC processors, and software should avoid dependence on this
601 feature.

The floating-point rounding and conversion instructions are shown in Table 3-12.

Examples of uses of these instructions to perform various conversions can be found in
Appendix F, “Floating-Point Models”

Table 3-12. Floating-Point Rounding and Conversion Instructions

Operand

Name Mnemonic Operation
Syntax

Floating- frsp frD,frB If it is already in single-precision range, the floating-point operand in
Point frsp. register frB is placed into register frD. Otherwise the floating-point
Round to operand in register frB is rounded to single-precision using the
Single- rounding mode specified by FPSCR[RN] and placed into register frD.
Precision The rounding is described fully in Appendix F, “Floating-Point

Models.”

FPSCR[FPRF] is set to the class and sign of the result, except for

invalid operation exceptions when FPSCR[VE] = 1.

frsp Floating-Point Round to Single-Precision

frsp. Floating-Point Round to Single-Precision with CR Update.

The dot suffix enables the update of the condition register.

Floating- fctiw frD,frB The floating-point operand in register frB is converted to a 32-bit
Point fctiw. signed integer, using the rounding mode specified by FPSCR[RN],
Convert to and placed in bits 32—63 of register frD. Bits 0—31 of register frD are
Integer undefined.
Word

If the operand in register frB is greater than 231 — 1, bits 32-63 of
register frD are set to X' 7FFF_FFFF'.

If the operand in register frB is less than —231, bits 3263 of register
frD are set to x '8000_0000'".

The conversion is described fully in Appendix F, “Floating-Point
Models.”

Except for trap-enabled invalid operation exceptions, FPSCR[FPRF]
is undefined. FPSCR[FR] is set if the result is incremented when
rounded. FPSCR[FI] is set if the result is inexact.

fctiw Floating-Point Convert to Integer Word
fctiw. Floating-Point Convert to Integer Word with CR Update.
The dot suffix enables the update of the condition register.

3-38 PowerPC 601 RISC Microprocessor User's Manual

Table 3-12. Floating-Point Rounding and Conversion Instructions (Continued)

Name Mnemonic Operand Operation
Syntax
Floating- fctiwz frD,frB The floating-point operand in register frB is converted to a 32-bit
Point fctiwz. signed integer, using the rounding mode Round toward Zero, and
Convert to placed in bits 32—63 of register frD. Bits 0-31 of register frD are
Integer undefined.
\éV;)l:?](;Nlth If the operand in frB is greater than 231 — 1, bits 32—63 of frD are set

to X'7FFF_FFFF'.

If the operand in register frB is less than —231, bits 32—-63 of register
frD are set to x '8000_0000'".

The conversion is described fully in Appendix F, “Floating-Point
Models.”

Except for trap-enabled invalid operation exceptions, FPSCR[FPRF]
is undefined. FPSCR[FR] is set if the result is incremented when
rounded. FPSCR[FI] is set if the result is inexact.

fctiwz Floating-Point Convert to Integer Word with Round Toward
Zero

fctiwz. Floating-Point Convert to Integer Word with Round Toward
Zero with CR Update. The dot suffix enables the update of
the condition register.

3.4.4 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point registers
and the comparison ignores the sign of zero (that is, +0 = —0). The comparison can be
ordered or unordered. The comparison sets one bit in the designated CR field and clearsthe
other three bits. The FPCC (floating-point condition code; bits 16-19 in the floating-point
status and control register) is set in the same way.

The CR field and the FPCC are interpreted as shown in Table 3-13.
Table 3-13. CR Bit Settings

Bit Name Description
0 FL (frA) < (frB)

1 FG (frA) > (frB)

2 FE (frA) = (frB)

3 FU (frA) ? (frB) (unordered)

The PowerPC architecture defines CR1 and the CR field specified by operand crfD as
undefined when executing the Floating-Point Compare Unordered (fcmpu) and
Floating-Point Compare Ordered (fcmpo) instructions with condition register updating
enabled.

Chapter 3. Addressing Modes and Instruction Set Summary 3-39

The floating-point compare instructions are summarized in Table 3-14.

Table 3-14. Floating-Point Compare Instructions

Name Mnemonic Operand Operation
Syntax

Floating- fcmpu crfD,frA,frB | The floating-point operand in register frA is compared to the

Point floating-point operand in register frB. The result of the compare is

Compare placed into CR field crfD and the FPCC.

Unordered)
If an operand is a NaN, either quiet or signaling, CR field crfD and the
FPCC are set to reflect unordered. If an operand is a Signaling NaN,
VXSNAN is set.

Floating- fcmpo crfD,frA,frB | The floating-point operand in register frA is compared to the

Point floating-point operand in register frB. The result of the compare is

Compare placed into CR field crfD and the FPCC.

Ordered If an operand is a NaN, either quiet or signalling, CR field crfD and
the FPCC are set to reflect unordered. If an operand is a Signalling
NaN, VXSNAN is set, and if invalid operation is disabled (VE = 0)
then VXVC is set. Otherwise, if an operand is a Quiet NaN, VXVC is
set.

3.4.5 Floating-Point Status and Control Register Instructions

Every FPSCR instruction appears to synchronize the effects of al floating-point
instructions executed by agiven processor. Executing an FPSCR instruction ensuresthat all
floating-point instructions previoudly initiated by the given processor appear to have
completed before the FPSCR instruction is initiated and that no subsequent floating-point
instructions appear to be initiated by the given processor until the FPSCR instruction has
completed. In particular:

» All exceptions caused by the previoudly initiated instructions are recorded in the
FPSCR before the FPSCR instruction is initiated.

» All invocations of the floating-point exception handler caused by the previously
initiated instructions have occurred before the FPSCR instruction is initiated.

» No subsequent floating-point instruction that depends on or altersthe settings of any
FPSCR bits appears to be initiated until the FPSCR instruction has compl eted.

Floating-point memory access instructions are not affected by the execution of the FPSCR

instructions.

The floating-point status and control register instructions are summarized in Table 3-15.

3-40

PowerPC 601 RISC Microprocessor User's Manual

Table 3-15. Floating-Point Status and Control Register Instructions

Name

Mnemonic

Operand
Syntax

Operation

Move from
FPSCR

mffs
mffs.

frD

The contents of the FPSCR are placed into bits 32—-63 of register frD.
In the 601, bits 0-31 of floating-point register frD are set to the value
X'FFFF_FFFF'.

Move from FPSCR
Move from FPSCR with CR Update. The dot suffix enables
the update of the condition register.

mffs
mffs.

Move to
Condition
Register
from FPSCR

mcrfs

crfD,crfS

The contents of FPSCR field specified by operand crfS are copied to
the CR field specified by operand crfD. All exception bits copied are
cleared to zero in the FPSCR.

Move to
FPSCR
Field
Immediate

mtfsfi
mtfsfi.

crfD,IMM

The value of the IMM field is placed into FPSCR field crfD. All other
FPSCR fields are unchanged.

Move to FPSCR Field Immediate

Move to FPSCR Field Immediate with CR Update. The dot
suffix enables the update of the condition register.

When FPSCR[0-3] is specified, bits 0 (FX) and 3 (OX) are set to the
values of IMM[0] and IMM]3] (that is, even if this instruction causes
OX to change from 0 to 1, FX is set from IMM[O] and not by the usual
rule that FX is set to 1 when an exception bit changes from 0 to 1).
Bits 1 and 2 (FEX and VX) are set according to the usual rule
described in Section 2.2.3, “Floating-Point Status and Control
Register (FPSCR),” and not from IMM[1-2].

mtfsfi
mtfsfi.

Move to
FPSCR
Fields

mtfsf
mtfsf.

FM,frB

Bits 32—63 of register frB are placed into the FPSCR under control of
the field mask specified by FM. The field mask identifies the 4-bit
fields affected. Let i be an integer in the range 0-7. If FM = 1 then
FPSCR field i (FPSCR bits 4LJ through 4[+3) is set to the contents
of the corresponding field of the low-order 32 bits of register frB.

Move to FPSCR Fields
Move to FPSCR Fields with CR Update. The dot suffix
enables the update of the condition register.

In other PowerPC implementations, the mtfsf instruction may
perform more slowly when only a portion of the fields are updated.
This is not the case in the 601.

When FPSCR[0-3] is specified, bits 0 (FX) and 3 (OX) are set to the
values of frB[32] and frB[35] (that is, even if this instruction causes
OX to change from 0 to 1, FX is set from frB[32] and not by the usual
rule that FX is set to 1 when an exception bit changes from 0 to 1).
Bits 1 and 2 (FEX and VX) are set according to the usual rule
described in Section 2.2.3, “Floating-Point Status and Control
Register (FPSCR),” and not from frB[33-34].

mtfsf
mtfsf.

Move to
FPSCR Bit 0

mtfsb0
mtfsbO.

crbD

The bit of the FPSCR specified by operand crbD is cleared to 0.
Bits 1 and 2 (FEX and VX) cannot be explicitly reset.

mtfsbO Move to FPSCR Bit 0
mtfsb0. Move to FPSCR Bit 0 with CR Update. The dot suffix
enables the update of the condition register.

Chapter 3. Addressing Modes and Instruction Set Summary

3-41

Table 3-15. Floating-Point Status and Control Register Instructions (Continued)

Operand

Name Mnemonic
Syntax

Operation

Move to mtfsbl crbD The bit of the FPSCR specified by operand crbD is set to 1.

FPSCRBIt1 | mtfsbl. Bits 1 and 2 (FEX and VX) cannot be reset explicitly.

mtfsbl Move to FPSCR Bit 1

mtfsb1l. Move to FPSCR Bit 1 with CR Update. The dot suffix
enables the update of the condition register.

3.5 Load and Store Instructions

This section describes the load and store instructions of the 601, which consist of the
following:

* Integer load instructions

* Integer storeinstructions

» Integer load and store with byte reversal instructions

* Integer load and store multiple instructions

* Floating-point load instructions

* Floating-point store instructions

* Floating-point move instructions

* Memory synchronization instructions

3.5.1 Integer Load and Store Address Generation

Integer load and store operations generate effective addresses using register indirect with
immediate index mode, register indirect with index mode, or register indirect mode. Note
that the 601 is optimized for load and store operations that are aligned on natural
boundaries, and operations that are not naturally aligned may suffer performance
degradation. Refer to section 5.4.6.1, “Integer Alignment Exceptions’ for additional
information about load and store address alignment exceptions.

3.5.1.1 Register Indirect with Immediate Index Addressing

Instructions using this addressing mode contain a signed 16-bit immediate index
(d operand) which is sign extended to 32 bits, and added to the contents of a general
purpose register specified in theinstruction (r A operand) to generate the effective address.
If ther A field of the instruction specifiesr0, avalue of zero will be added to the immediate
index (d operand) in place of the contents of r0. The option to specify rA or O isshownin
the instruction descriptions as (r A|0).

Figure 3-1 shows how an effective address is generated when using register indirect with
immediate index addressing.

3-42 PowerPC 601 RISC Microprocessor User's Manual

0 67 1112 16 17 31

Instruction Encoding: |Opcode | rD/rS| A | d
0 16 17 17 31
Sign Extension d
Yes

| GPR (rA) Effective Address
Y
0 31
, Store »| Memory
| GPR (rD/rS) [Load Interface

Figure 3-1. Register Indirect with Immediate Index Addressing

3.5.1.2 Register Indirect with Index Addressing

Instructions using this addressing mode cause the contents of two general purpose registers
(specified as operandsr A and r B) to be added in the generation of the effective address. A
zero in place of the rA operand causes a zero to be added to the contents of the general
purpose register specified in operand rB. The option to specify rA or 0 is shown in the
instruction descriptions as (rA|0).

Figure 3-2 shows how an effective address is generated when using register indirect with
index addressing.

0 67 1112 1617 2122 30 31
| Opcode | rD/rS| rA | rB | Subopcode |0|

[] Reserved Instruction Encoding:

0 Y 31
| GPR (B) |

Yes n l

GPR (rA) Effective Address
Y
0 31
: Store > Memory
GPR (rD/rS) [Load Interface

Figure 3-2. Register Indirect with Index Addressing

Chapter 3. Addressing Modes and Instruction Set Summary 3-43

3.5.1.3 Register Indirect Addressing

Instructions using this addressing mode use the contents of the general purpose register
specified by the r A operand as the effective address. A zero in the r A operand causes an
effective address of zero to be generated. The option to specify rA or 0 is shown in the
instruction descriptions as (r A|0).

Figure 3-3 shows how an effective address is generated when using register indirect
addressing.

0 67 1112 1617 2122 30 31
[] Reserved Instruction Encoding: | opcode [rors] ra | nB | subopcode [o]
Yes ? 31
rA=0? =|OOOOC 00000
No
0 31
GPR (rA)
0 Y 31
=I Effective Address
Y
0 31
Store »| Memory
GPR (rD/rS) B Load Interface

Figure 3-3. Register Indirect Addressing

3.5.2 Integer Load Instructions

For load instructions, the byte, half word, word, or double word addressed by EA isloaded
into rD. Many integer load instructions have an update form, in which r A is updated with
the generated effective address. For these forms, if rA # 0 and rA # rD, the effective
addressis placed into r A and the memory element (byte, half word, or word) addressed by
EA isloaded into rD.

Note that non-601 implementations of the architecture may run the load half algebraic
instructions (lha, Ihax) and the load with update (Ibzu, Ibzux, Ihzu, Ihzux, Ihau, lhaux)
instructions with greater latency than other types of load instructions. In the 601, these
instructions operate with the same latency as other load instructions. For details on
instruction timing, see Chapter 7, “Instruction Timing.”

3-44 PowerPC 601 RISC Microprocessor User's Manual

The PowerPC architecture defines |oad with update instructionswithrA =0orrA =rD as
an invalid form. In the POWER architecture, these forms are not considered invalid and
specifications exist for these cases. To maintain compatibility with the POWER
architecture, for the case wherer A = 0, the 601 does not updater 0. In caseswherer A = rD,
the load data is loaded into rD and the register r A update is suppressed. In addition, the
PowerPC architecture defines integer load instructions with the condition register update
option enabled to be an invalid form and the POWER architecture does not. For
compatibility, the 601 executes the instruction in a manner consistent with the PowerPC
architecture and it causes an undefined value to be placed into the condition register CRO
field.

Table 3-16 summarizes the load instructions available for the 601.

Table 3-16. Integer Load Instructions

Name Mnemonic Operand Operation
Syntax

Load Byte Ibz rD,d(rA) The effective address is the sum (rA|0)+d. The byte in memory

and Zero addressed by the EA is loaded into register rD[24—31]. The remaining
bits in register rD are cleared to 0.

Load Byte Ibzx rD,rA,rB The effective address is the sum (rA|0)+(rB). The byte in memory

and Zero addressed by the EA is loaded into register rD[24—31]. The remaining

Indexed bits in register rD are cleared to 0.

Load Byte Ibzu rD,d(rA) The effective address (EA) is the sum (rA|0)+d. The byte in memory

and Zero addressed by the EA is loaded into register rD[24—-31]. The remaining

with Update bits in register rD are cleared to 0. The EA is placed into register rA. If
operand rA = 0 the 601 does not update r0, or if rA = rD the load data
is loaded into register rD and the register update is suppressed.
Although the PowerPC architecture defines load with update
instructions with operand rA = 0 or rA = rD as invalid forms, the 601
allows these cases.

Load Byte Ibzux rD,rA,rB The effective address (EA)is the sum (rA|0)+(rB). The byte

and Zero addressed by the EA is loaded into register rD[24—31]. The remaining

with bits in register rD are cleared to 0. The EA is placed into register rA. If

Update operand rA = 0 the 601 does not update register r0, or if rA =rD the

Indexed load data is loaded into register rD and the register update is
suppressed. Although the PowerPC architecture defines load with
update instructions with operand rA =0 or rA =D as invalid forms,
the 601 allows these cases.

Load lhz rD,d(rA) The effective address is the sum (rA|0)+d. The half word in memory

Half Word addressed by the EA is loaded into register rD[16—31]. The remaining

and Zero bits in rD are cleared to 0.

Load lhzx rD,rA,rB The effective address is the sum (rA|0)+(rB). The half word in

Half Word memory addressed by the EA is loaded into register rD[16—-31]. The

and Zero remaining bits in register rD are cleared.

Indexed

Chapter 3. Addressing Modes and Instruction Set Summary 3-45

Table 3-16. Integer Load Instructions (Continued)

Name Mnemonic Operand Operation
Syntax

Load lhzu rD,d(rA) The effective address is the sum (rA|0)+d. The half word in memory

Half Word addressed by the EA is loaded into register rD[16—31]. The remaining

and Zero bits in register rD are cleared.

with Update The EA is placed into register rA.
If operand rA = 0 the 601 does not update register r0, or if rA =rD the
load data is loaded into register rD and the register update is
suppressed. Although the PowerPC architecture defines load with
update instructions with operand rA = 0 or rA =rD as invalid forms,
the 601 allows these cases.

Load Ihzux rD,rA,rB The effective address is the sum (rA|0)+(rB). The half word in

Half Word memory addressed by the EA is loaded into register rD[16—-31]. The

and Zero remaining bits in register rD are cleared. The EA is placed into

with register rA. Although the PowerPC architecture defines load with

Update update instructions with operand rA = 0 or rA = rD as invalid forms,

Indexed the 601 allows these cases.

Load lha rD,d(rA) The effective address is the sum (rA|0)+d. The half word in memory

Half Word addressed by the EA is loaded into register rD[16—-31]. The remaining

Algebraic bits in register rD are filled with a copy of the most significant bit of
the loaded half word.

Load lhax rD,rA,rB The effective address is the sum (rA|0)+(rB). The half word in

Half Word memory addressed by the EA is loaded into register rD[16-31]. The

Algebraic remaining bits in register rD are filled with a copy of the most

Indexed significant bit of the loaded half word.

Load lhau rD,d(rA) The effective address is the sum (rA|0)+d. The half word in memory

Half Word addressed by the EA is loaded into register rD[16—31]. The remaining

Algebraic bits in register rD are filled with a copy of the most significant bit of

with Update the loaded half word. The EA is placed into register rA. If operand
rA = 0 the 601 does not update register r0, or if rA =rD the load data
is loaded into register rD and the register update is suppressed.
Although the PowerPC architecture defines load with update
instructions with operand rA = 0 or rA = rD as invalid forms, the 601
allows these cases.

Load lhaux rD,rA,rB The effective address is the sum (rA|0)+(rB). The half word in

Half Word memory addressed by the EA is loaded into register rD[16—-31]. The

Algebraic remaining bits in register rD are filled with a copy of the most

with significant bit of the loaded half-word. The EA is placed into register

Update rA. If operand rA=0 the 601 does not update r0, or if rA = rD the load

Indexed data is loaded into register rD and the register update is suppressed.
Although the PowerPC architecture defines load with update
instructions with operand rA = 0 or rA = rD as invalid forms, the 601
allows these cases.

Load Word lwz rD,d(rA) The effective address is the sum (rA|0)+d. The word in memory

and Zero addressed by the EA is loaded into register rD[0-31].

Load Word lwzx rD,rA,rB The effective address is the sum (rA|0)+(rB). The word in memory

and Zero addressed by the EA is loaded into register rD[0-31].

Indexed

3-46 PowerPC 601 RISC Microprocessor User's Manual

Table 3-16. Integer Load Instructions (Continued)

Name Mnemonic Operand Operation
Syntax

Load Word lwzu rD,d(rA) The effective address is the sum (rA|0)+d. The word in memory

and Zero addressed by the EA is loaded into register rD[0-31]. The EA is

with Update placed into register rA. If operand rA = 0 the 601 does not update
register r0, or if rA = rD the load data is loaded into register rD and
the register update is suppressed. Although the PowerPC
architecture defines load with update instructions with operand rA =0
or rA = rD as invalid forms, the 601 allows these cases.

Load Word lwzux rD,rA,rB The effective address is the sum (rA|0)+(rB). The word in memory

and Zero addressed by the EA is loaded into register rD[0-31]. The EA is

with placed into register rA. If operand rA = 0 the 601 does not update

Update register r0, or if rA = rD the load data is loaded into register rD and

Indexed the register update is suppressed. Although the PowerPC
architecture defines load with update instructions with operand rA =0
or rA = rD as invalid forms, the 601 allows these cases.

3.5.3 Integer Store Instructions

For integer store instructions, the contents of register r S are stored into the byte, half word,
word or double word in memory addressed by EA. Many store instructions have an update
form, in which register rA is updated with the effective address. For these forms, the
following rules apply:

o IfrA #£0, the effective address is placed into register rA.

* IfrS=rA, thecontentsof register r S are copied to the target memory el ement, then
the generated EA isplaced intorA.

The PowerPC architecture defines store with update instructionswithrA = 0 asan invalid
form. In the POWER architecture, thisform isnot considered invalid and in thiscaserA is
not updated. To maintain compatibility with POWER in this case, the 601 does not update
register r 0. In addition, the PowerPC architecture defines integer storeinstructions with the
condition register update option enabled to be an invalid form and the POWER architecture
does not. To maintain compatibility in these cases, the 601 executes the instruction as
described in the PowerPC architecture, and it loads an undefined valueinto CRO field of the
condition register.

Table 3-17 provides a summary of the integer store instructions for the 601.

Chapter 3. Addressing Modes and Instruction Set Summary 3-47

Table 3-17. Integer Store Instructions

Name Mnemonic Operand Operation
Syntax

Store Byte stb rS,d(rA) The effective address is the sum (rA|0) + d. Register rS[24-31] is
stored into the byte in memory addressed by the EA.

Store Byte sthx rS,rArB The effective address is the sum (rA|0) + (rB). rS[24—31] is stored

Indexed into the byte in memory addressed by the EA.

Store Byte stbu rS,d(rA) The effective address is the sum (rA|0) + d. rS[24-31] is stored into

with Update the byte in memory addressed by the EA. The EA is placed into
register rA.

Store Byte stbux rS,rArB The effective address is the sum (rA|0) + (rB). rS[24—31] is stored

with into the byte in memory addressed by the EA. The EA is placed into

Update register rA.

Indexed

Store sth rS,d(rA) The effective address is the sum (rA|0) + d. rS[16—31] is stored into

Half Word the half word in memory addressed by the EA.

Store sthx rS,rArB The effective address (EA) is the sum (rA|0) + (rB). rS[16-31] is

half Word stored into the half word in memory addressed by the EA.

Indexed

Store sthu rS,d(rA) The effective address is the sum (rA|0) + d. rS[16-31] is stored into

Half Word the half word in memory addressed by the EA. The EA is placed into

with Update register rA.

Store sthux rS,rArB The effective address is the sum (rA[0) + (rB). rS[16—31] is stored

Half Word into the half word in memory addressed by the EA. The EA is placed

with into register rA.

Update

Indexed

Store Word stw rS,d(rA) The effective address is the sum (rA|0) + d. Register rS is stored into
the word in memory addressed by the EA.

Store Word | stwx rS,rA,rB The effective address is the sum (rA|0) + (rB). rS is stored into the

Indexed word in memory addressed by the EA.

Store Word stwu rS,d(rA) The effective address is the sum (rA|0) + d.

with Update Register rS is stored into the word in memory addressed by the EA.
The EA is placed into register rA.

Store Word | stwux rS,rA,rB The effective address is the sum (rA|0) + (rB). Register rS is stored

with into the word in memory addressed by the EA. The EA is placed into

Update register rA.

Indexed

3-48 PowerPC 601 RISC Microprocessor User's Manual

3.5.4 Integer Load and Store with Byte Reversal Instructions

Table 3-18 describes integer load and store with byte reversal instructions. Note that in
other PowerPC implementations, |oad byte-reverse instructions may have greater latency
than other load instructions.

This is not the case in the 601. These instructions operate with the same latency as other

load instructions.

Table 3-18. Integer Load and Store with Byte Reversal Instructions

Name Mnemonic Operand Operation
Syntax
Load Ihbrx rD,rA,rB The effective address is the sum (rA|0) + (rB). Bits 0—7 of the half
Half Word word in memory addressed by the EA are loaded into rD[24-31].
Byte- Bits 8—15 of the half word in memory addressed by the EA are
Reverse loaded into rD[16—23]. The rest of the bits in rD are cleared to 0.
Indexed
Load Word Iwbrx rD,rA,rB The effective address is the sum (rA|0) + (rB). Bits 0-7 of the
Byte- word in memory addressed by the EA are loaded into rD[24-31].
Reverse Bits 8—15 of the word in memory addressed by the EA are loaded
Indexed into rD[16-23]. Bits 16—23 of the word in memory addressed by
the EA are loaded into rD[8-15]. Bits 24-31 of the word in
memory addressed by the EA are loaded into rD[0-7].
Store sthbrx rS,rA,rB The effective address is the sum (rA|0) + (rB). rS[24-31] are
Half Word stored into bits 0—7 of the half word in memory addressed by the
Byte- EA. rS[16-23] are stored into bits 8—15 of the half word in
Reverse memory addressed by the EA.
Indexed
Store Word stwbrx rS,rA,rB The effective address is the sum (rA|0) + (rB). rS[24-31] are
Byte- stored into bits 0—7 of the word in memory addressed by EA.
Reverse rS[16-23] are stored into bits 815 of the word in memory
Indexed addressed by the EA. rS[8-15] are stored into bits 16—23 of the
word in memory addressed by the EA. rS[0-7] are stored into bits
24-31 of the word in memory addressed by the EA.

3.5.5 Integer Load and Store Multiple Instructions

The load/store multiple instructions are used to move blocks of datato and from the GPRs.
The load multiple and store multiple instructions may have operands that require memory
accesses crossing a 4-Kbyte page boundary. As a result, these instructions may be
interrupted by a data access exception associated with the address trandlation of the second
page. In this case, the 601 performs all of the memory references from the first page, and
none of the memory references from the second page before taking the exception. For
additional information, refer to Section 5.4.3, “Data Access Exception (x'00300').”

In future implementations, these instructions are likely to have greater latency and take
longer to execute, perhaps much longer, than a sequence of individual load or store
instructions that produce the same results.

Chapter 3. Addressing Modes and Instruction Set Summary 3-49

The PowerPC architecture defines the load multiple word (Imw) instruction with r A in the
range of registersto be loaded as an invalid form. In the POWER architecture, thisformis
not considered invalid. To maintain compatibility with the POWER architecture in this
case, the 601 will execute the instruction normally, except that the loading of register rA is
skipped. If rA =0, theregister is not considered to be actually used for addressing, and the
update of rO (if it is in the range of registers to be loaded) is loaded. In addition, the
PowerPC architecture defines the load multiple and store multiple instructions with
misaligned operands (that is, the EA is not a multiple of 4) to be an invalid form and the
POWER architecture does not. To maintain compatibility with the POWER architecture,
the 601 executes these instructions subject to the performance degradation as described in
5.4.6.1, “Integer Alignment Exceptions.” Note that on other PowerPC implementations,
load and store multiple instructions that are not on a word boundary either take an
alignment exception or generate results that are boundedly undefined.

Table 3-19 summarizes the integer load and store multiple instructions for the 601.

Table 3-19. Integer Load and Store Multiple Instructions

Name Mnemoni Operand Operation
c Syntax

Load Imw rD,d(rA) The effective address is the sum (rA|0) + d.

Multiple — a2y

Word n=32-rD.
n consecutive words starting at EA are loaded into the GPR specified
by rD through GPR 31.
If the EA is not a multiple of four, the alignment exception handler
may be invoked if a page boundary is crossed.

Store stmw rS,d(rA) The effective address is the sum (rA|0) + d.

Multiple - _

Word n=(32-rs).
n consecutive words starting at the EA are stored from the GPR
specified by rS through GPR 31.
If the EA is not a multiple of four, the alignment exception handler
may be invoked if a page boundary is crossed.

3.5.6 Integer Move String Instructions

The integer move string instructions allow movement of data from memory to registers or
from registersto memory without concern for alignment. These instructions can be used for
a short move between arbitrary memory locations or to initiate a long move between
misaligned memory fields. However, in future implementations, these instructions are
likely to have greater latency and take longer to execute, perhaps much longer, than a
sequence of individual load or store instructions that produce the same results.

3-50 PowerPC 601 RISC Microprocessor User's Manual

L oad/store string indexed instructions of zero length have no effect. Table 3-20 summarizes
the integer move string instructions available for the 601.

Table 3-20. Integer Move String Instructions

Name Mnemonic Operand Operation
Syntax

Load String | Iswi rD,rA,NB The EA is (rA[0).

YVord diat Let n=NB if NB#0, n=32if NB = 0; nis the number of bytes to load.

mmediate Let nr= (n/4); nris the number of registers to receive data.
n consecutive bytes starting at the EA are loaded into GPRs rD
through rD+nr-1. Bytes are loaded left to right in each register. The
sequence of registers wraps around to r0 if required. If the four bytes
of register rD+nr-1 are only partially filled, the unfilled low-order
byte(s) of that register are cleared to 0.
If rA is in the range of registers specified to be loaded, it will be
skipped in the load process. If operand rA = 0, the register is not
considered as used for addressing, and will be loaded.

Load String | Iswx rD,rA,rB The EA is the sum (rA|0)+(rB).

Word Let n = XER[25-31]; nis the number of bytes to load.

Indexed

Let nr= CEIL(n/4); nris the number of registers to receive data.

If n>0, n consecutive bytes starting at the EA are loaded into registers
rD through rD+nr-1.

Bytes are loaded left to right in each register. The sequence of
registers wraps around to r0 if required. If the four bytes of register
rD+nr-1 are only partially filled, the unfilled low-order byte(s) of that
register are cleared to 0.

If n=0, the contents of register rD is undefined.

If rAis in the range of registers specified to be loaded, it will be
skipped in the load process. If operand rA=0, the register is not
considered as used for addressing, and will be loaded.

Chapter 3. Addressing Modes and Instruction Set Summary 3-51

Table 3-20. Integer Move String Instructions (Continued)

Name

Mnemonic

Operand
Syntax

Operation

Load String
and
Compare
Byte
Indexed

Iscbx
Iscbhx.

rD,rA,rB

This is a POWER instruction, and is not part of the PowerPC
architecture. This instruction will not be supported by other
PowerPC implementations.

The EA is the sum (rA|0)+(rB). XER[25-31] contains the byte count.
Register rD is the starting register. n = XER[25-31], which is the
number of bytes to be loaded. nr= CEIL(n/4), which is the number of
registers to receive data. Starting with the leftmost byte in rD,
consecutive bytes in memory addressed by the EA are loaded into rD
through rD+nr-1, wrapping around back through GPR 0 if required,
until either a byte match is found with XER[16—23] or n bytes have
been loaded. If a byte match is found, that byte is also loaded.

Bytes are always loaded left to right in the register. In the case when
a match was found before n bytes were loaded, the contents of the
rightmost byte(s) not loaded of that register and the contents of all
succeeding registers up to and including rD+nr-1 are undefined. Also,
no reference is made to memory after the matched byte is found. In
the case when a match was not found, the contents of the rightmost
byte(s) not loaded of rD+nr-1 is undefined.

When XER[25-31]=0, the content of rD is unchanged. The count of
the number of bytes loaded up to and including the matched byte, if a
match was found, is placed in XER[25-31].

Iscbx
Iscbx.

Load String and Compare Byte Indexed

Load String and Compare Byte Indexed with CR Update.
The dot suffix enables the update of the condition register.
This instruction is specific to the 601.

Store
String
Word
Immediate

stswi

rS,rA,NB

The EA is (rA[0).

Let n=NB if NB # 0, n= 32 if NB = 0; nis the number of bytes to
store.

Let nr= CEIL(n/4); nris the number of registers to supply data.

n consecutive bytes starting at the EA are stored from register rS
through rS+nr-1.

Bytes are stored left to right from each register. The sequence of
registers wraps around through r0 if required.

Store
String
Word
Indexed

stswx

rS,rA,rB

The effective address is the sum (rA|0)+(rB).
Let n = XER[25-31]; nis the number of bytes to store.
Let nr= CEIL(n/4); nris the number of registers to supply data.

n consecutive bytes starting at the EA are stored from register rS
through rS+nr-1.

Bytes are stored left to right from each register. The sequence of
registers wraps around through r0 if required.

Load string and store string instructions may involve operands that are not word-aligned.
As described in Section 5.4.6, “Alignment Exception (x'00600"),” a misaligned string
operation suffers a performance penalty compared to an aligned operation of the sametype.
A non-word-aligned string operation that crosses a 4-Kbyte boundary, or a word-aligned
string operation that crosses a 256-Mbyte boundary always causes an alignment exception.

3-52 PowerPC 601 RISC Microprocessor User's Manual

A non-word-aligned string operation that crosses a double-word boundary is also slower
than aword-aligned string operation.

Although a word-aligned string operation that crosses a 4-Kbyte boundary operates at the
601's fastest rate, the instruction may be interrupted by a data access exception associated
with the address trandlation of the second page. In this case, the 601 performs all memory
references from the first page and none from the second before taking the exception. For
more information, refer to Section 5.4.3, “ Data Access Exception (x'00300).”

The Load String and Compare Byte Indexed (Iscbx) instruction can lead to several
architecturally undefined results. When the last register loaded is only partialy filled, the
remaining bytes are considered to be undefined. If loading is terminated due to a byte
match, all succeeding bytes are considered to be undefined. In addition, if the condition
register update option is enabled, and XER[25-31] = O, condition register field CRO is
undefined. In al of these cases, the 601 does not guarantee particular results for these
undefined fields. The values should simply be treated as undefined.

If the EA associated with an Iscbx instruction is directed to amemory-forced 1/0 controller
interface segment (that is, the segment register T bit isset and the BUID field equalsx'07F),
the addressistrand ated appropriately and the operation proceeds. On the other hand, if the
EA associated with an Iscbx instruction is directed to an 1/O segment (that is, the segment
register T bit is set but the BUID does not equal x'07F'), the 601 takes a data access
exception and sets bit 5 of the DSISR.

If rA isin the range of registers to be loaded for a Load String Word Immediate (Iswi)
instruction or if either rA or rB arein the range of registers to be loaded for a Load String
Word Indexed (Iswx) or Iscbx instruction, then the PowerPC architecture considers the
instruction to be of aninvalid form. In the POWER architecture, thisformisnot considered
invalid and specifications exist for these cases. To maintain compatibility with the POWER
architecture in this case, the 601 executes the instruction normally, but loading of these
registersisinhibited. In addition, thelswx, Iscbx and stswx instructionsthat specify astring
length of zero are considered an invalid form in the PowerPC architecture, but not in the
POWER architecture. For compatibility with the POWER architecture, the 601 executes
these instructions, but does not alter register rD or cause amemory access.

3.5.7 Memory Synchronization Instructions

Memory synchronization instructions control the order in which memory operations are
completed with respect to asynchronous events, and the order in which memory operations
are seen by other processors or memory access mechanisms. Additional information about
these instructions and about related aspects of memory management can be found in
Chapter 6, “Memory Management Unit.”

Internally, the 601 handles the synchronize (sync) and the Enforce In-Order Execution of
I/0O (eieio) instructions identically. These instructions delay execution of subsequent
instructions until previous instructions have completed to the point that they can no longer

Chapter 3. Addressing Modes and Instruction Set Summary 3-53

cause an exception, until all previous memory accesses are performed globally, and the
sync or elelo operation is broadcast onto the 601 bus interface.

System designs that use a second-level cache should take special care to accept the
broadcast sync operation and perform the appropriate actions to guarantee that memory
references that may be queued internally to the second-level cache have been performed
globally.

The number of cycles required to complete a sync or eelo instruction depends on system
parameters and on the processor's state when the instruction isissued. As aresult, frequent
use of these instructions may degrade performance dlightly.

The PowerPC architecture defines the sync instruction with condition register update
enabled to be an invalid form, whereas the POWER architecture does not. For
compatibility, the 601 executes the instruction consistently with the PowerPC architecture,
and loads an undefined value into condition register field CRO.

The Instruction Synchronize (isync) instruction causes the 601 to purge its instruction
buffers, wait for any preceding sync instructions to complete, and then branch to the next
sequential instruction (which has the effect of clearing the pipeline behind the isync
instruction).

The proper paired use of the Load Word and Reserve Indexed (Iwarx) and Store Word
Conditional Indexed (stwcx.) instructions allows programmers to emulate common
semaphore operations such as “test and set”, “compare and swap”, “exchange memory”,
and “fetch and add” . Examples of these semaphore operations can be found in Appendix G,
“Synchronization Programming Examples.” The lwar x instruction must be paired with an
stwcex. instruction with the same effective address used for both instructions of the pair, and

the reservation granularity is 32 bytes.

The concept behind the use of the lwarx and stwex. instructions is that a processor may
load a semaphore from memory, compute a result based on the val ue of the semaphore, and
conditionally store it back to the same location. The conditional store is performed based
upon the existence of a reservation established by the preceding Iwarx. If the reservation
exists when the store is executed, the store is performed and a bit is set to one in the
Condition Register. If the reservation does not exist when the store is executed, the target
memory location is not modified and a bit is set to zero in the condition register.

The lwarx and stwcx. primitives allow software to read a semaphore, compute a result
based on the value of the semaphore, store the new value back into the semaphore |ocation
only if that location has not been modified since it wasfirst read, and determineif the store
was successful. If the store was successful, the sequence of instructionsfrom the read of the
semaphore to the store that updated the semaphore appear to have been executed atomically
(that is, no other processor or mechanism modified the semaphore location between the
read and the update), thus providing the equivalent of areal atomic operation. However,
other processors may have read from the location during this operation.

3-54 PowerPC 601 RISC Microprocessor User's Manual

The Iwarx and stwcx. instructions require the EA to be aligned. Exception handling
software should not attempt to emulate a misaligned Iwarx or stwcx. instruction, because
there is no correct way to define the address associated with the reservation.

In general, the lwarx and stwcx. instructions should be used only in system programs,
which can be invoked by application programs as needed.

At most one reservation exists ssmultaneously on any processor. The address associated
with the reservation can be changed by a subsequent Iwarx instruction. The conditional
store is performed based upon the existence of a reservation established by the preceding
Iwar x regardless of whether the address generated by the Iwar x matches that generated by
the stwcx. A reservation held by the processor is cleared by any of the following:

e executing an stwcex. instruction to any address,
e execution of an sc instruction,
* execution of an instruction that causes an exception,
» occurrence of an asynchronous exception,
» attempt by some other device to modify alocation in the reservation granularity (32
bytes).
The memory synchronization instructions available for the 601 are summarized in

Table 3-21.

Table 3-21. Memory Synchronization Instructions

Name

Mnemonic

Operand
Syntax

Operation

Enforce
In-Order
Execution of
110

eieio

The eieio instruction provides an ordering function for the effects of
load and store instructions executed by a given processor. Executing
an eieio instruction ensures that all memory accesses previously
initiated by the given processor are complete with respect to main
memory before allowing any memory accesses subsequently initiated
by the given processor to access main memory.

The eieio instruction orders load and store operations to cache-
inhibited memory, and store operations to write-through cache
memory.

The eieio instruction performs the same function as a sync
instruction when executed by the 601.

Instruction
Synchronize

isync

This instruction waits for all previous instructions to complete, and
then discards any fetched instructions, causing subsequent
instructions to be fetched (or refetched) from memory and to execute
in the context established by the previous instructions. This
instruction has no effect on other processors or on their caches.

Chapter 3. Addressing Modes and Instruction Set Summary 3-55

Table 3-21. Memory Synchronization Instructions (Continued)

Name

Mnemonic

Operand
Syntax

Operation

Load Word
and
Reserve
Indexed

lwarx

rD,rA,rB

The effective address is the sum (rA|0)+(rB). The word in memory
addressed by the EA is loaded into register rD.

This instruction creates a reservation for use by an stwcx. instruction.
An address computed from the EA is associated with the reservation,
and replaces any address previously associated with the reservation.

The EA must be a multiple of 4. If it is not, the alignment exception
handler will be invoked if the word loaded crosses a page boundary,
or the results may be undefined.

Store Word
Conditional
Indexed

stwcx.

rS,rA,rB

The effective address is the sum (rA|0)+(rB).

If a reservation exists, register rS is stored into the word in memory
addressed by the EA and the reservation is cleared.

If a reservation does not exist, the instruction completes without
altering memory or the contents of the cache.

The EQ bit in the condition register field CRO is modified to reflect
whether the store operation was performed (i.e., whether a
reservation existed when the stwcx. instruction began execution). If
the store was completed successfully, the EQ bit is set to one.

The EA must be a multiple of 4; otherwise, the alignment exception
handler will be invoked if the word stored crosses a page boundary,
or the results may be undefined.

Synchronize

sync

Executing a sync instruction ensures that all instructions previously
initiated by the given processor appear to have completed before any
subsequent instructions are initiated by the given processor. When
the sync instruction completes, all memory accesses initiated by the
given processor prior to the sync will have been performed with
respect to all other mechanisms that access memory. The sync
instruction can be used to ensure that the results of all stores into a
data structure, performed in a “critical section” of a program, are seen
by other processors before the data structure is seen as unlocked.

The eieio instruction may be more appropriate than sync for cases in
which the only requirement is to control the order in which memory
references are seen by 1/O devices.

3.5.8 Floating-Point Load and Store Address Generation

Floating point load and store operations generate effective addresses using the register
indirect with immediate index mode and register indirect with index mode, the details of
which are described below. Floating-point loads and stores are not supported for 1/0
accesses when the SR[BUID] is not equal to x'07F'. The use of floating-point loads and
stores for 1/0 access will result in an alignment exception.

3-56

PowerPC 601 RISC Microprocessor User's Manual

3.5.8.1 Register Indirect with Immediate Index Addressing

Instructions using this addressing mode contain a signed 16-bit immediate index (d
operand) which is sign extended to 32 bits, and added to the contents of a general purpose
register specified in the instruction (r A operand) to generate the effective address. A zero
in the r A operand causes a zero to be added to the immediate index (d operand). Thisis
shown in the instruction descriptions as (r A|0).

Figure 3-4 shows how an effective address is generated when using register indirect with
immediate index addressing.

0 67 1112 1617 31
Instruction Encoding: |Opcode| frD/rS | A |

o

0 16 17 v 31

Sign Extension d
Yes n
Y
—(F
No
0 31 0 31

| GPR (rA) Effective Address
Y
0 63
. Store »| Memory
| FPR (frD/frS) B Load Access

Figure 3-4. Register Indirect with Immediate Index Addressing

3.5.8.2 Register Indirect with Index Addressing

Instructions using this addressing mode add the contents of two general purpose registers
(specified in operands rA and rB) to generate the effective address. A zero in the rA
operand causes a zero to be added to the contents of general purpose register specified in
operand rB. Thisis shown in the instruction descriptions as (r A|0).

Figure 3-5 shows how an effective address is generated when using register indirect with
index addressing.

Chapter 3. Addressing Modes and Instruction Set Summary 3-57

0 67 1112 1617 2122 30 31

[[]Reserved Instruction Encoding: | Opcode| frD/frS | rA | rB | Subopcode | 0
0 Y 31
| GPR (1B)

@ Yes n
~(+
No
0 31 0 31
GPR (rA) Effective Address
Y
0 63 Store »| Memory

FPR (frD/frS) Load Access

1
|4
|

Figure 3-5. Register Indirect with Index Addressing

The PowerPC architecture defines floating-point load and store with update instructions
(Ifsu, Ifsux, Ifdu, Ifdux, stfsu, stfsux, stfdu, stfdux) with operand r A = 0 asinvalid forms
of the instructions, but the POWER architecture does not. To maintain compatibility with
the POWER architecture, the 601 accesses memory for these cases but inhibits the update
of the integer register rO.

In addition, the PowerPC architecture defines floating-point |oad and storeinstructionswith
the condition register update option enabled to be an invalid form. For compatibility with
the POWER architecture, the 601 executes the instruction normally, but aso writes an
undefined value into the condition register field CR1.

The PowerPC architecture defines that the FPSCR[UE] bit should not be used to determine
whether denormalization should be performed on floating-point stores. The 601 complies
with this definition, athough this is different from some POWER architecture
implementations.

3.5.9 Floating-Point Load Instructions

There are two forms of the floating-point load instruction—single-precision and
double-precision formats. Because the FPRs support only floating-point, double-precision
format, single-precision floating-point load instructions convert single-precision data to
double-precision format before loading the operands into the target FPR. This conversion
is described in Section 3.5.9.1, “Double-Precision Conversion for Floating-Point Load
Instructions.” Table 3-22 provides a summary of the floating-point load instructions.

3-58 PowerPC 601 RISC Microprocessor User's Manual

Table 3-22. Floating-Point Load Instructions

Name Mnemonic Operand Operation
Syntax
Load Ifs frD,d(rA) The effective address is the sum (rA|0)+d.
gl_oatllng-Pomt The word in memory addressed by the EA is interpreted as a
ng_e_— floating-point single-precision operand. This word is converted to
recision floating-point double-precision format and placed into register frD.
Load Ifsx frD,rA,rB The effective address is the sum (rA|0)+(r B).
gl_oa?ng— Point The word in memory addressed by the EA is interpreted as a
Plrr;?:izi-on floating-point single-precision operand. This word is converted to
Indexed floating-point double-precision and placed into register frD.
Load Ifsu frD,d(rA) The effective address is the sum (rA|0)+d.
gl_oatllng-Pomt The word in memory addressed by the EA is interpreted as a
ng_e_— ith floating-point single-precision operand. This word is converted to
UredC|f|on wi floating-point double-precision (see Section 3.5.9.1,
pdate “Double-Precision Conversion for Floating-Point Load Instructions,”)
and placed into register frD.
The EA is placed into the register specified by rA.
Load Ifsux frD,rA,rB The effective address is the sum (rA|0)+(r B).
gl_oa:mg-Pomt The word in memory addressed by the EA is interpreted as a
ng_e_— ith floating-point single-precision operand. This word is converted to
Ured(:lflon wi floating-point double-precision (see Section 3.5.9.1,
| z a ed “Double-Precision Conversion for Floating-Point Load Instructions,”)
ndexe and placed into register frD.
The EA is placed into the register specified by rA.
Load Ifd frD,d(rA) The effective address is the sum (rA|0)+d.
Eloaéllng-Pomt The double word in memory addressed by the EA is placed into
ouble- register frD.
Precision
Load Ifdx frD,rA,rB The effective address is the sum (rA|0)+(r B).
Eloaglng-Pomt The double word in memory addressed by the EA is placed into
ouble- register frD.
Precision
Indexed
Load Ifdu frD,d(rA) The effective address is the sum (rA|0)+d.
Eloaktallng-Polnt The double word in memory addressed by the EA is placed into
ouble- register frD.
Precision with
Update The EA is placed into the register specified by rA.
Load Ifdux frD,rA,rB The effective address is the sum (rA|0)+(r B).
Eloaktjllng-Pomt The double word in memory addressed by the EA is placed into
ouble- register frD.
Precision with
Update The EA is placed into the register specified by rA.
Indexed

Chapter 3. Addressing Modes and Instruction Set Summary

3-59

3.5.9.1 Double-Precision Conversion for Floating-Point Load
Instructions

The steps for converting a floating-point value from a single-precision memory format to

the double-precision register format are as follows:

WORD[0-31] is the floating-point, single-precision operand accessed from memory.
Normalized Operand

If WORD[1-8] > 0 and WORD[1-8] < 255
frD[0~1] < WORD[0-1]
frD[2] < ~WORDI[1]
frD[3] < ~WORD[1]
frD[4] < ~WORDI[1]
frD[5-63] < WORD[2-31] || 290'0

Denormalized Operand

If WORD[1-8] = 0 and WORD[9-31] # 0
sign < WORDIQ]
exp < -126
frac[0-52] < b'0"|| WORD[9-31] || 2%b'0'
normalize the operand
Do whilefrac0=0
frac < frac[1-52] || b'0'
exp<exp-1
End
frD[Q] <sign
frD[1-11] < exp + 1023
frD[12-63] < frac[1-52]

Infinity / QNaN / SNaN / Zero

If WORD[1-8] = 255 or WORD[1-31] =0
frD[0-1] < WORDJ[0-1]
frD[2] <WORD[1]
frD[3] <WORD[1]
frD[4] < WORD[1]
frD[5-63] < WORD[2-31] || 2%b'0’

For double-precision floating-point load instructions, no conversion isrequired as the data
from memory is copied directly into the FPRs.

Many floating-point load instructions have an update form in which register r A is updated
with the EA. For these forms, if operand r A # 0, the effective addressis placed into register
r A and the memory element (word or double word) addressed by the EA isloaded into the
floating-point register specified by operand frD.

3-60 PowerPC 601 RISC Microprocessor User's Manual

3.5.10 Floating-Point Store Instructions

This section describes floating-point store instructions. There are two basic forms of the
store instruction—single- and double-precision. Because the FPRs support only
floating-point, double-precision format, single-precision floating-point store instructions
convert double-precision data to single-precision format before storing the operands. The
conversion steps are described in Section 3.5.10.1, “Double-Precision Conversion for
Floating-Point Store Instructions.” Table 3-23 is a summary of the floating point store
instructions provided by the 601.

Table 3-23. Floating-Point Store Instructions

Name Mnemonic Operand Operation
Syntax
Store stfs frS,d(rA) The EA is the sum (rA|0)+d.
Fl.oating-Poi_nF The contents of register frS is converted to single-precision and
Single-Precision stored into the word in memory addressed by the EA.
Store stfsx frS,rA,rB The EA is the sum (rA|0)+(rB).
F!oating-Poi_n'F The contents of register frS is converted to single-precision and
Single-Precision stored into the word in memory addressed by the EA.
Indexed
Store stfsu frS,d(rA) The EA is the sum (rA|0)+d.
F!oating-Poi_nF The contents of register frS is converted to single-precision and
Single-Precision stored into the word in memory addressed by the EA.
with Update
The EA is placed into the register specified by operand rA.
Store stfsux frS,rArB The EA is the sum (rA|0)+(rB).
gli?]atl'en_%i%'igon The contents of register frS is converted to single-precision and
ng stored into the word in memory addressed by the EA.
with Update
Indexed The EA is placed into the register specified by operand rA.
Store stfd frS,d(rA) The effective address is the sum (rA|0)+d.
Eloaglng_jl-jljon;ti n The contents of register frS is stored into the double word in
ouble-Frecisio memory addressed by the EA.
Store stfdx frS,rA,rB The EA is the sum (rA|0)+(rB).
Eloaglng_jl-jljon;ti n The contents of register frS is stored into the double word in
ouble-Frecisio memory addressed by the EA.
Indexed
Store stfdu frS,d(rA) The effective address is the sum (rA|0)+d.
Eloakt)llngl-DPmr_lt_ The contents of register frS is stored into the double word in
ouble-rrecision memory addressed by the EA.
with Update
The EA is placed into register rA.
Store stfdux frS,rA,rB The EA is the sum (rA|0)+(rB).

Floating-Point
Double-Precision
with Update
Indexed

The contents of register frS is stored into the double word in
memory addressed by EA.

The EA is placed into register rA.

Chapter 3. Addressing Modes and Instruction Set Summary

3-61

3.5.10.1 Double-Precision Conversion for Floating-Point Store
Instructions

The stepsfor converting a floating-point value from the double-precision register format to
single-precision memory format are as follows:

Let WORD[0-31] be the word in memory written to.
No Denor malization Required

If fr S[1-11] > 896 or fr §1-63] = 0
WORDI[0-1] < fr§[0-1]
WORD[2-31]< fr§[5-34]

Denormalization Required

If 874 < fr§[1-11] < 896
sign < frgQ]
exp < fr§[1-11] — 1023
frac<b'l' || fr§12—63]
Denormalize operand
Do while exp < -126
frac < b'0" || frac[0-62]
exp<exp+1
End
WORDI0] <sign
WORD[1-8] < x'00'
WORD[9-31] < frac[1-23]

For double-precision floating-point store instructions, no conversion isrequired as the data
from the FPRs is copied directly into memory. Many floating-point store instructions have
an update form, in which register r A is updated with the effective address. For these forms,
if operand r A # 0, the effective addressis placed into register rA.

Floating-point storeinstructions are listed in Table 3-23. Recall that r A, rB, and r D denote
GPRs, whilefrA, frB, frC, frS, and fr D denote FPRs.

3.5.11 Floating-Point Move Instructions

Floating-point move instructions copy data from one floating-point register to another with
data modifications as described for each instruction. These instructions do not modify the
FPSCR. The condition register update option in these instructions controls the placing of
result status into condition register field CR1. If the condition register update option is
enabled, then CR1is set, otherwise CR1 isunchanged. Floating-point moveinstructionsare
listed in Table 3-24.

3-62 PowerPC 601 RISC Microprocessor User's Manual

Table 3-24. Floating-Point Move Instructions

Name Mnemonic Operand Operation
Syntax
Floating- fmr frD,frB The contents of register frB is placed into frD.
;gm.tsi\g(r)ve foar. fmr Floating-Point Move Register
9! fmr. Floating-Point Move Register with CR Update. The dot
suffix enables the update of the condition register.
Floating- fneg frD,frB The contents of register frB with bit O inverted is placed into register
Point fneg. frD.
Negate fneg Floating-Point Negate
fneg. Floating-Point Negate with CR Update. The dot suffix
enables the update of the condition register.
Floating- fabs frD,frB The contents of frB with bit O cleared to 0 is placed into frD.
Zﬁmtl " fabs. fabs Floating-Point Absolute Value
v lso ute fabs. Floating-Point Absolute Value with CR Update. The dot
alue suffix enables the update of the condition register.
Floating- fnabs frD,frB The contents of frB with bit O set to one is placed into frD.
Eomtt_ fnabs. fnabs Floating-Point Negative Absolute Value
Asga| I\t/e fnabs. Floating-Point Negative Absolute Value with CR Update.
Valsuoeu € The dot suffix enables the update of the condition register.

3.6 Branch and Flow Control Instructions

Branch instructions are executed by the BPU. Some of these instructions can redirect
instruction execution conditionally based on the value of bits in the condition register.
When the branch processor encounters one of these instructions, it scans the execution
pipelines to determine whether an instruction in progress may affect the particular
condition register bit. If no interlock is found, the branch can be resolved immediately by
checking the bit in the condition register and taking the action defined for the branch
instruction.

If an interlock is detected, the branch is considered unresolved and the direction of the
branch is predicted using the “y” bit as described in Table 3-25. The interlock is monitored
while instructions are fetched for the predicted branch. When the interlock is cleared, the
branch processor determines whether the prediction was correct based on the value of the
condition register bit. If the prediction is correct, the branch is considered completed and
instruction fetching continues. If the prediction is incorrect, the fetched instructions are
purged, and instruction fetching continues along the aternate path.

3.6.1 Branch instruction Address Calculation

Branch instructions can alter the sequence of instruction execution. Instruction addresses
are always assumed to be word aligned with the 601; the processor ignores the two
low-order bits of the generated branch target address.

Chapter 3. Addressing Modes and Instruction Set Summary 3-63

Branch instructions compute the effective address (EA) of the next instruction address
using the following addressing modes:

* Branchrelative

» Branch conditional to relative address

» Branch to absolute address

» Branch conditional to absolute address

» Branch conditional to link register

» Branch conditional to count register

3.6.1.1 Branch Relative Address Mode

Instructions that use branch relative addressing generate the next instruction address by
sign extending and appending b'00" to the immediate displacement operand LI, and adding
the resultant value to the current instruction address. Branches using this address mode
have the absolute addressing option (AA) disabled. If the link register update option (LK)
isenabled, the effective address of theinstruction following the branch instructionis placed
in the link register.

Figure 3-6 shows how the branch target address is generated when using the branch relative
addressing mode.

0 6 7 29 30 31
Instruction Encoding: | 18 | Ll |aafid

0 6 7 Y 29 30 31

|Sign Extension| LI 0|0

0 31
Current Instruction Address

0 31

D Reserved Branch Target Address

Figure 3-6. Branch Relative Addressing

3.6.1.2 Branch Conditional Relative Address Mode

If the branch conditions are met, instructions that use the branch conditiona relative
address mode generate the next instruction address by sign extending and appending b'00'
to the immediate displacement operand (BD) and adding the resultant value to the current
instruction address. Branches using this address mode have the absolute addressing option
(AA) disabled. If the link register update option (LK) is enabled, the effective address of
the instruction following the branch instruction is placed in the link register.

3-64 PowerPC 601 RISC Microprocessor User's Manual

Figure 3-7 shows how the branch target address is generated when using the branch
conditional relative addressing mode.

0 67 1112 1617 30 31
16 BO BI BD AA[LK [[] Reserved

Instruction Encoding:

31
Next Sequential Instruction Address

0 16 17 29 30 31

Sign Extension BD | 0 | 0 |
0 31 Y
Current Instruction Address +

0 31

| Branch Target Address

Figure 3-7. Branch Conditional Relative Addressing

3.6.1.3 Branch to Absolute Address Mode

Instructions that use branch to absolute address mode generate the next instruction address
by sign extending and appending b'00" to the LI operand. Branches using this address mode
have the absolute addressing option (AA) enabled. If the link register update option (LK)
isenabled, the effective address of theinstruction following the branch instructionis placed
in the link register.

Figure 3-8 shows how the branch target address is generated when using the branch to
absolute address mode.

0 6 7 29 30 31

Instruction Encoding: 18 Ll |aafid
0 6 7 Y 29 30 31

Sign Extension LI 110

0 Y 29 30 31

Branch Target Address 0fo0

Figure 3-8. Branch to Absolute Addressing

Chapter 3. Addressing Modes and Instruction Set Summary 3-65

3.6.1.4 Branch Conditional to Absolute Address Mode
If the branch conditions are met, instructions that use the branch conditional to absolute
address mode generate the next instruction address by sign extending and appending b'00'
to the BD operand. Branches using this address mode have the absolute addressing option
(AA) enabled. If thelink register update option (LK) isenabled, the effective address of the
instruction following the branch instruction is placed in the link register.

Figure 3-9 shows how the branch target address is generated when using the branch
conditional to absolute address mode.

0 67 1112 1617 29 30 31
Instruction Encoding: | 16 BO BI BD AA|LK

0 31
Next Sequential Instruction Address

Condition
Met?

0 16 17 29 30 31
| Sign Extension BD 110

0 Y 29 30 31
| Branch Target Address | O| O|

Figure 3-9. Branch Conditional to Absolute Addressing

3.6.1.5 Branch Conditional to Link Register Address Mode

If the branch conditions are met, the branch conditional to link register instruction generates
the next instruction address by fetching the contents of thelink register and clearing the two
low order bits to zero. If the link register update option (LK) is enabled, the effective
address of the instruction following the branch instruction is placed in the link register.

Figure 3-10 shows how the branch target address is generated when using the branch
conditional to link register address mode.

3-66 PowerPC 601 RISC Microprocessor User's Manual

0 67 1112 16 17

Instruction Encoding:| 19 | BO | BI |00000|

[] Reserved

31

Next Sequential Instruction Address

Condition
Met?

Yes

LR I

\
A

31

Branch Target Address

Figure 3-10. Branch Conditional to Link Register Addressing

3.6.1.6 Branch Conditional to Count Register

If the branch conditions are met, the branch conditional to count register instruction
generates the next instruction address by fetching the contents of the count register and
clearing the two low order bits to zero. If the link register update option (LK) is enabled,
the effective address of the instruction following the branch instructionis placed in the link

register.

Figure 3-11 shows how the branch target address is generated when using the branch

conditional to count register address mode.

Chapter 3. Addressing Modes and Instruction Set Summary

3-67

0 67 1112 1617 2122 30 31
Instruction Encoding: | 19 BO | BI |00000 528 |LK [Reserved

0 31
Next Sequential Instruction Address

Condition
Met?

CTR I

[o]
L]

0 31

| Branch Target Address |

Figure 3-11. Branch Conditional to Count Register Addressing

3.6.2 Conditional Branch Control

For branch conditional instructions, the BO operand specifies the conditions under which
the branch istaken. Thefirst four bits of the BO operand specify how the branch is affected
by or affects the condition and count registers. The fifth bit, shown in Table 3-25 as having
the valuey, is used by some PowerPC implementations for branch prediction as described
bel ow.

The encodings for the BO operands are shown in Table 3-25.

Table 3-25. BO Operand Encodings

BO Description

0000y Decrement the CTR, then branch if the decremented CTR # 0 and the condition is
FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is
FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR # 0 and the condition is
TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is
TRUE.

011zy Branch if the condition is TRUE.

1200y Decrement the CTR, then branch if the decremented CTR # 0.

3-68 PowerPC 601 RISC Microprocessor User's Manual

Table 3-25. BO Operand Encodings (Continued)

BO Description

1201y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.

The z indicates a bit that must be zero; otherwise, the instruction form is invalid.

The y bit provides a hint about whether a conditional branch is likely to be taken and is used by the
601 to improve performance. Other implementations may ignore the y bit.

The “branch always’ encoding of the BO operand does not have a“y” hit.
Setting the “y” bit to O indicates a predicted behavior for the branch instruction:

» For bex with a negative value in the displacement operand, the branch is taken.

* Inall other cases (bcx with anon-negative value in the displacement operand, bclr x,
or bectrx), the branch is not taken.

Setting the “y” bit to 1 reverses the preceding indications.

The sign of the displacement operand is used as described above even if the target is an
absolute address. The default value for the “y” bit should be 0, and should only be set to 1
if software has determined that the prediction corresponding to “y” = 1 ismore likely to be
correct than the prediction corresponding to “y” = 0. Software that does not compute branch
predictions should set the “y” bit to zero.

In most cases, the branch should be predicted to be taken if the value of the following
expression is 1, and to fal through if the valueis 0.

((BO[O] & BO[2]) | S) O BO[4]

In the expression above, S (bit 16 of the branch conditional instruction coding) is the sign
bit of the displacement operand if the instruction has a displacement operand and is O if the
operand isreserved. BO[4] isthe“y” bit, or O for the “branch always’ encoding of the BO
operand. (Advantageistaken of the fact that, for bclrx and bectrx, bit 16 of the instruction
is part of areserved operand and therefore must be 0.)

The 5-bit Bl operand in branch conditional instructions specifies which of the 32 bitsin the
CR represents the condition to test.

When the branch instructions contain immediate addressing operands, the target addresses
can be computed sufficiently ahead of the branch instruction that instructions can be
fetched aong the target path. If the branch instructions use the link and count registers,
instructions along the target path can be fetched if the link or count register is loaded
sufficiently ahead of the branch instruction.

Chapter 3. Addressing Modes and Instruction Set Summary 3-69

Branching can be conditional or unconditional, and optionally a branch return address is
created by the storage of the effective address of the instruction following the branch
instruction in the link register after the branch target address has been computed. Thisis
done regardless of whether the branch is taken. While the 601 does not provide a link
register stack, future implementations may keep a stack of the link register values most
recently set by branch and link instructions, with the possible exception of the form shown
below for obtaining the address of the next instruction. To benefit from this stack, the
following programming conventions should be used.

In the examples below, let A, B, and Glue represent subroutine labels.
Obtaining the address of the next instruction— use the following form of branch and link.

bcl 20,31,$+4

Loop counts— keep them in the count register, and use one of the branch conditional
instructions to decrement the count and to control branching (for example, branching back
to the start of aloop if the decremented counter value is nonzero).

Computed GOTOs, case statements, etc.— Use the count register to hold the address to
branch to, and use the bcctr instruction with the link register option disabled (LK = 0) to
branch to the selected address.

Direct subroutine linkage— where A calls B and B returns to A. The two branches should
be asfollows:

» A callsB—Useabranch instruction that enables the link register (LK = 1).
* B returnsto A—Use the bclr instruction with the link register option disabled
(LK = 0) (thereturn addressisin, or can be restored to, the link register).

Indirect subroutine linkage—whereA calls Glue, Glue calls B, and B returnsto A rather than
to Glue. (Such acalling sequence is common in linkage code used when the subroutine that
the programmer wants to call, here B, is in a different module from the caller: the binder
inserts “glue” code to mediate the branch.)

The three branches should be as follows:

* A calsGlue—Use abranch instruction that sets the link register with the link
register option enabled (LK = 1).

* Glue calls B—Place the address of B in the count register, and use the bectr
instruction with the link register option disabled (LK = 0).

* B returnsto A—Use the bclr instruction with the link register option disabled
(LK =0) (thereturn addressisin, or can be restored to, the link register).

3.6.3 Basic Branch Mnemonics

The mnemonicsin Table 3-26 allow all the common BO operand encodings to be specified
as part of the mnemonic, along with the absolute address (AA) and set link register (LK)
bits.

3-70 PowerPC 601 RISC Microprocessor User's Manual

Notice that there are no simplified mnemonics for relative and absolute unconditional
branches. For these, the basic mnemonics b, ba, bl, and bla are used.

Table 3-26. Simplified Branch Mnemonics

LR bit not set LR bit set
bc bca bclr to bcectr | bcl bcla bclrl to bcctrl
Branch Semantics Relative | Absolute | LR to Relative | Absolute | LR to CTR
CTR

Branch unconditionally | — — blir bctr — — birl betrl
Branch if condition true | bt bta btlr btctr btl btla btirl btctrl
Branch if condition bf bfa bflr bfctr bfl bfla bflrl bfctrl
false
Decrement CTR, bdnz bdnza bdnzir — bdnzl bdnzla bdnzirl —
branch if CTR nonzero
Decrement CTR, bdnzt bdnzta bdnztlr — bdnztl bdnztla bdnztlirl —
branch if CTR nonzero
AND condition true
Decrement CTR, bdnzf bdnzfa bdnzflr — bdnzfl bdnzfla bdnzfirl —
branch if CTR nonzero
AND condition false
Decrement CTR, bdz bdza bdzlr — bdzl bdzla bdzlrl —
branch if CTR zero
Decrement CTR, bdzt bdzta bdztlr — bdztl bdztla bdztirl —
branch if CTR zero
AND condition true
Decrement CTR, bdzf bdzfa bdzflr — bdzfl bdzfla bdzflrl —
branch if CTR zero
AND condition false

Table 3-26 provides the abbreviated set of simplified mnemonics for the most commonly
performed conditional branches. Unusual cases of conditional branches can be coded using
a basic branch conditional mnemonic (bc, bclr, bectr) with the condition to be tested
specified as a numeric first operand.

Instructions using a mnemonic from Table 3-26 that tests a condition specify the condition
as the first operand of the instruction. Table 3-27 summarizes the mnemonic symbols and
the equivalent numeric values used to interpret acondition register CR field during abranch
conditional instruction compare operation.

Chapter 3. Addressing Modes and Instruction Set Summary

3-71

Table 3-27. Condition Register CR Field Bit Symbols

Symbol Value Meaning
It 0 Less than
gt 1 Greater than
eq 2 Equal
so 3 Summary overflow
un 3 Unordered (after
floating-point comparison)

Table 3-28 summarizes the mnemonic symbols and the equivalent numeric values used to
identify the condition register CR field to be evaluated by the compare operation.

Table 3-28. Condition Register CR Field Identification Symbols

Symbol Value Meaning
cr0 0 CRO
crl 4 CR1
cr2 8 CR2
cr3 12 CR3
cr4 16 CR4
cr5 20 CR5
cré 24 CR6
cr7 28 CR7

The simplified branch mnemonics and the symbols in Table 3-27 and Table 3-28 are
combined in an expression that identifies the bit (0-31) of CR to be tested, as follows.
Examples:

» Decrement CTR and branch if it is still nonzero (closure of aloop controlled by a
count loaded into CTR).

bdnz target (equivalent to bc 16,0,target)
» Sameas (1) but branch only if CTR is nonzero and condition in CROis“equal.”
bdnzt eq,target (equivalent to bc 8,2,target)

» Sameas(2), but “equal” conditionisin CR5.
bdnzt 4* cr 5+eq,target (equivalent to bc 8,22 target)

3-72 PowerPC 601 RISC Microprocessor User's Manual

e Branchif bit 27 of CR isfase.

bf 27 target (equivaent to bc 4,27 target)
» Sameas(4), but set the link register. Thisisaform of conditional “call.”
bfl 27 target (equivalent to bcl 4,27 target)

3.6.4 Branch Mnemonics Incorporating Conditions

The mnemonics defined in Table 3-30 are variations of the “branch if condition true” and
“branch if condition false” BO encodings, with the most common values of the Bl operand
represented in the mnemonic rather than specified as a numeric operand.

The two-letter codes for the most common combinations of branch conditions are shownin
Table 3-29.

Table 3-29. Two-Letter Codes for Branch Comparison Conditions

Code Meaning

It Less than

le Less than or equal

eq Equal

ge Greater than or equal

gt Greater than

nl Not less than

ne Not equal

ng Not greater than

SO Summary overflow

ns Not summary overflow

un Unordered (after floating-point comparison)

nu Not unordered (after floating-point
comparison)

These codes are reflected in the ssmplified mnemonics shown in Table 3-30.

Chapter 3. Addressing Modes and Instruction Set Summary 3-73

Table 3-30. Simplified Branch Mnemonics with Comparison Conditions

LR bit not set LR bit set
Branch Semantics bc _ bca bclr to bccetr bcl _ bcla bclrl to | bectrl
Relative | Absolute | LR to CTR | Relative | Absolute | LR to CTR

Branch if less than blt blta bitlr bltctr blitl bitla bltlrl bltctrl
Branch if less than or equal | ble blea blelr blectr blel blela blelrl blectrl
Branch if equal beq bega beqlr beqctr | beql begla beqlrl beqctrl
Branch if greater than or bge bgea bgelr bgectr | bgel bgela bgelrl bgectrl
equal
Branch if greater than bgt bgta bgtlr bgtctr bgtl bgtla bgtlrl bgtctrl
Branch if not less than bnl bnla bnlir bnlctr bnll bnlla bnlirl bnlctrl
Branch if not equal bne bnea bnelr bnectr | bnel bnela bnelrl bnectrl
Branch if not greater than bng bnga bnglr bngctr | bngl bngla bnglrl bngctrl
Branch if summary bso bsoa bsolr bsoctr | bsol bsola bsolrl bsoctrl
overflow
Branch if not summary bns bnsa bnslir bnsctr | bnsl bnsla bnsirl bnsctrl
overflow
Branch if unordered bun buna bunir bunctr | bunl bunla bunirl bunctrl
Branch if not unordered bnu bnua bnulr bnuctr | bnul bnula bnulrl bnuctrl

Instructions using the mnemonics in Table 3-30 specify the condition register field in an
optional first operand. If the CR field being tested is CRO, this operand need not be
specified. Otherwise, one of the CR field symbols listed in Table 3-28 is coded as the first

operand.

Examples:

» Branchif CRO reflects condition “not equal .”
(equivalent to bc 4,2,target)
» Sameas(1), but conditionisin CR3.

bne target

bne cr 3,target

(equivaent to bc 4,14 target)

» Branchto an absolutetarget if CR4 specifies*” greater than,” setting the link register.
Thisisaform of conditional “call”, asthereturn addressis saved in thelink register.

bgtla cr4,target

(equivalent to bcla 12,17 target)

» Sameas(3), but target addressis in the count register.
(equivalent to bectrl 12,17)

bgtctrl cr4

3-74

PowerPC 601 RISC Microprocessor User's Manual

3.6.5 Branch Instructions
Table 3-31 describes the branch instructions provided by the 601.

Table 3-31. Branch Instructions

Operand

Name Mnemonic
Syntax

Operation

Branch b imm_addr b Branch. Branch to the address computed as the sum of

ba the immediate address and the address of the current

bl instruction.

bla ba Branch Absolute. Branch to the absolute address
specified.

bl Branch then Link. Branch to the address computed as the
sum of the immediate address and the address of the
current instruction. The instruction address following this
instruction is placed into the link register (LR).

bla Branch Absolute then Link. Branch to the absolute
address specified. The instruction address following this
instruction is placed into the link register (LR).

Branch bc BO,BI, The BI operand specifies the bit in the condition register (CR) to be
Conditional bca target_addr used as the condition of the branch. The BO operand is used as
bcl described in Table 3-25.

bela bc Branch Conditional. Branch conditionally to the address

computed as the sum of the immediate address and the
address of the current instruction.

bca Branch Conditional Absolute. Branch conditionally to the
absolute address specified.

bcl Branch Conditional then Link. Branch conditionally to the
address computed as the sum of the immediate address
and the address of the current instruction. The instruction
address following this instruction is placed into the link
register.

bcla Branch Conditional Absolute then Link. Branch
conditionally to the absolute address specified. The
instruction address following this instruction is placed into
the link register.

Branch bclr BO,BI The Bl operand specifies the bit in the condition register to be used
Conditional belrl as the condition of the branch. The BO operand is used as described
to Link in Table 3-25.

Register bclr Branch Conditional to Link Register. Branch conditionally

to the address in the link register.

bclrl Branch Conditional to Link Register then Link. Branch
conditionally to the address specified in the link register.
The instruction address following this instruction is then
placed into the link register.

Chapter 3. Addressing Modes and Instruction Set Summary 3-75

Table 3-31. Branch Instructions (Continued)

Operand

Name Mnemonic Syntax Operation
Branch bccetr BO,BI The Bl operand specifies the bit in the condition register to be used
Conditional bectrl as the condition of the branch. The BO operand is used as described
to Count in Table 3-25.
Register bccetr Branch Conditional to Count Register. Branch
conditionally to the address specified in the count register.
bcctrl Branch Conditional to Count Register then Link. Branch

conditionally to the address specified in the count register.

The instruction address following this instruction is placed

into the link register.
Note: If the “decrement and test CTR” option is specified (BO[2]=0),
the instruction form is invalid. For the 601, the decremented count
register is tested for zero and branches based on this test, but
instruction fetching is directed to the address specified by the
nondecremented version of the count register. Use of this invalid form
of this instruction is not recommended.

3.6.6 Condition Register Logical Instructions

Condition register logical instructions, shown in Table 3-32, and the Move Condition
Register Field (mcrf) instruction are defined as flow control instructions, although they are
executed by the IU.

Notethat if the link register update option (LR) is enabled for any of these instructions, the
PowerPC architecture defines these forms of the instructions as invalid; however, the 601
executes these instructions and leaves the link register in an undefined state.

3-76

PowerPC 601 RISC Microprocessor User's Manual

Table 3-32. Condition Register Logical Instructions

Name Mnemonic Operand Operation
Syntax
Condition crand crbD,crbA,crbB | The bit in the condition register specified by crbA is ANDed with
Register the bit in the condition register specified by crbB. The result is
AND placed into the condition register bit specified by crbD.
Condition cror crbD,crbA,crbB | The bit in the condition register specified by crbA is ORed with
Register OR the bit in the condition register specified by crbB. The result is
placed into the condition register bit specified by crbD.
Condition crxor crbD,crbA,crbB | The bit in the condition register specified by crbA is XORed with
Register the bit in the condition register specified by crbB. The result is
XOR placed into the condition register bit specified by crbD.
Condition crnand crbD,crbA,crbB | The bit in the condition register specified by crbA is ANDed with
Register the bit in the condition register specified by crbB. The
NAND complemented result is placed into the condition register bit
specified by crbD.
Condition crnor crbD,crbA,crbB | The bit in the condition register specified by crbA is ORed with
Register the bit in the condition register specified by crbB. The
NOR complemented result is placed into the condition register bit
specified by crbD.
Condition creqv crbD,crbA, The bit in the condition register specified by crbA is XORed with
Register crbB the bit in the condition register specified by crbB. The
Equivalent complemented result is placed into the condition register bit
specified by crbD.
Condition crandc crbD,crbA, The bit in the condition register specified by crbA is ANDed with
Register crbB the complement of the bit in the condition register specified by
AND with crbB and the result is placed into the condition register bit
Complement specified by crbD.
Condition crorc crbD,crbA, The bit in the condition register specified by crbA is ORed with
Register crbB the complement of the bit in the condition register specified by
OR with crbB and the result is placed into the condition register bit
Complement specified by crbD.
Move mcrf crfD,crfS The contents of crfS are copied into crfD. No other condition
Condition register fields are changed.
Register
Field

Chapter 3. Addressing Modes and Instruction Set Summary

3-77

3.6.7 System Linkage Instructions

This section describes the system linkage instructions (see Table 3-33). The System Call
(sc) instruction permits a program to call on the system to perform a service.

Table 3-33. System Linkage Instructions

Name

Mnemonic

Operand
Syntax

Operation

System Call

SC

When executed, the effective address of the instruction following the
sc instruction is placed into SRRO. Bits 16—31 of the MSR are placed
into bits 16—-31 of SRR1, and bits 0-15 of SRR1 are set to undefined
values. Then a system call exception is generated. The exception
causes the MSR to be altered as described in Section 5.4, “Exception
Definitions.”

The exception causes the next instruction to be fetched from offset
x'C00' from the base physical address indicated by the new setting of
MSRJIP]. For a discussion of POWER compatibility with respect to
instruction bits 16—29, refer to Appendix B, Section B.10, “System
Call/Supervisor Call.” To ensure compatibility with future versions of
the PowerPC architecture, bits 16—-29 should be coded as zero and
bit 30 should be coded as a 1. The PowerPC architecture defines bit
31 as reserved, and thereby cleared to 0; in order for the 601 to
maintain compatibility with the POWER architecture, the execution of
an sc instruction with bit 31 (the LK bit) set to 1 will cause an update
of the Link register with the address of the instruction following the sc
instruction.

This instruction is context synchronizing.

Return
from
Interrupt

rfi

Bits 16—-31 of SRR1 are placed into bits 16—31 of the MSR, then the
next instruction is fetched, under control of the new MSR value, from
the address SRR0O[0-29] || b'00".

This instruction is a supervisor-level instruction and is context
synchronizing.

3.6.8 Simplified Mnemonics for Branch Processor Instructions

To ssimplify assembly language programming, a set of simplified mnemonics and symbols
is provided that defines simple shorthand for the most frequently used forms of branch
conditional, compare, trap, rotate and shift, and certain other instructions.

Mnemonics are provided so that branch conditional instructions can be coded with the
condition as part of the instruction mnemonic rather than as a numeric operand. Some of
these are shown as examples with the branch instructions.

The PowerPC architecture-compliant assemblers provide the mnemonics and symbols
listed here and possibly others. Programs written to be portable across various assemblers
for the PowerPC architecture should not assume the existence of mnemonics not defined
here.

3-78 PowerPC 601 RISC Microprocessor User's Manual

3.6.9 Trap Instructions and Mnemonics

The trap instructions shown in Table 3-34 are provided to test for a specified set of
conditions. If any of the conditions tested by a trap instruction are met, the system trap
handler is invoked. If the tested conditions are not met, instruction execution continues
normally.

Table 3-34. Trap Instructions

Name Mnemonic Operand Operand Syntax
Syntax

Trap Word twi TO,rA,SIMM | The contents of rA is compared with the sign-extended SIMM

Immediate operand. If any bit in the TO operand is set to 1 and its corresponding
condition is met by the result of the comparison, then the system trap
handler is invoked.

Trap Word tw TO,rArB The contents of rA is compared with the contents of rB. If any bit in
the TO operand is set to 1 and its corresponding condition is met by
the result of the comparison, then the system trap handler is invoked.

The trap instructions evaluate a trap condition as follows:

The contents of register r A is compared with either the sign-extended SIMM field or with
the contents of register rB, depending on the trap instruction. The comparison results in
five conditions which are ANDed with operand TO. If theresult isnot O, the trap exception
handler isinvoked. These conditions are provided in Table 3-35.

Table 3-35. TO Operand Bit Encoding

TO Bit ANDed with Condition
0 Less than
1 Greater than
2 Equal
3 Logically less than
4 Logically greater than

A standard set of codes has been adopted for the most common combinations of trap
conditions, as shown in Table 3-36. The mnemonics defined in Table 3-37 are variations of
the trap instructions, with the most useful values of the trap instruction TO operand
represented as a mnemonic rather than specified as a numeric operand.

Chapter 3. Addressing Modes and Instruction Set Summary 3-79

Table 3-36. Trap Mnemonics Coding

Code Meaning Tgr:?:%zri?\gd < > = <U >U
It Less than 16 1 0 0 0 0
le Less than or equal 20 1 0 1 0 0
eq Equal 4 0 0 1 0 0
ge Greater than or equal 12 0 1 1 0 0
gt Greater than 8 0 1 0 0 0
nl Not less than 12 0 1 1 0 0
ne Not equal 24 1 1 0 0 0
ng Not greater than 20 1 0 1 0 0
11t Logically less than 2 0 0 0 1 0
lle Logically less than or equal 6 0 0 1 1 0
Ige Logically greater than or 5 0 0 1 0 1

equal
Igt Logically greater than 1 0 0 0 0 1
Inl Logically not less than 5 0 0 1 0 1
Ing Logically not greater than 6 0 0 1 1 0
(none) Unconditional 31 1 1 1 1 1

Note: <U indicates an unsigned less than evaluation will be performed.
>U indicates an unsigned greater than evaluation will be performed.

These codes are reflected in the mnemonics shown in Table 3-37.

Table 3-37. Trap Mnemonics

32-Bit Comparison
Trap Semantics twi Immediate tw Register
Trap unconditionally — trap
Trap if less than twlti twlt
Trap if less than or equal twlei twle
Trap if equal tweqi tweq
Trap if greater than or equal twgei twge
Trap if greater than twgti twgt
Trap if not less than twnli twnl
Trap if not equal twnei twne
Trap if logically less than twillti twllt

3-80 PowerPC 601 RISC Microprocessor User's Manual

Examples:

» Trapif Rx, considered as a 32-bit quantity, is logically greater than x'7FF".

twlgrA, X'7FF (equivalent to twi 1,rA, X'7FF)

Table 3-37. Trap Mnemonics (Continued)

32-Bit Comparison

Trap Semantics twi Immediate tw Register

Trap if not greater than twngi twng
Trap if logically less than twllti twillt

Trap if logically less than or equal twllei twlle
Trap if logically greater than or equal twlgei twilge
Trap if logically greater than twlgti twigt
Trap if logically not less than twinli twinl
Trap if logically not greater than twingi twing

e Trap unconditionally

trap

(equivalent to tw 31,0,0)

3.7 Processor Control Instructions

Processor control instructions are used to read from and write to the machine state register
(MSR), condition register (CR), and specia purpose registers (SPRs).

3.7.1 Move to/from Machine State Register and Condition Register
Instructions

Table 3-38 summarizes the instructions provided by the 601 for reading from or writing to
the machine state register and the condition register.

Chapter 3. Addressing Modes and Instruction Set Summary

3-81

Table 3-38. Move to/from Machine State Register/Condition Register Instructions

Name Mnemonic Operand Operation
Syntax
Move to mtcrf CRM,rS The contents of rS are placed into the condition register under control
Condition of the field mask specified by operand CRM. The field mask identifies
Register the 4-bit fields affected. Let ibe an integer in the range 0-7. If
Fields CRM(/) =1, then CR field / (CR bits 4*i through 4*i+3) is set to the
contents of the corresponding field of r S.
In some PowerPC implementations, this instruction may perform
more slowly when only a portion of the fields are updated as opposed
to all of the fields. This is not true for the 601.
Move to mcrxr crfD The contents of XER[0-3] are copied into the condition register field
Condition designated by crfD. All other fields of the condition register remain
Register unchanged. XER[0-3] is cleared to O.
from XER
Move from mfcr rD The contents of the condition register are placed into rD.
Condition
Register
Move to mtmsr rs The contents of rS are placed into the MSR.
Machine This instruction is a supervisor-level instruction and is context
State synchronizing.
Register
Move from mfmsr rD The contents of the MSR are placed into rD. Thisis a
Machine supervisor-level instruction.
State
Register

3.7.2 Move to/from Special-Purpose Register Instructions

The 601 defines an additional register (MQ register) to the user register set and
programming model. As aresult, the mtspr and mfspr instructions have been extended to
accommodate access to the MQ register for the 601. The SPR field encoding for the MQ
register is b'00000 00000'".

For compatibility with the POWER architecture, the 601 also allows user-level read access
to the decrementer (DEC) register. Note that the PowerPC architecture does not allow
user-level accessto the DEC register. The SPR encoding for DEC isb'00110 00000" and is
valid only for the mfspr instruction. For more information about the mtspr and mfspr
instructions, refer to Chapter 10, “Instruction Set.”

Simplified mnemonics are provided for the mtspr and mfspr instructions so they can be
coded with the SPR name as part of the mnemonic rather than as a numeric operand. Some
of these are shown as examples with the two instructions (see Table 3-39).

3-82 PowerPC 601 RISC Microprocessor User's Manual

Table 3-39. Move to/from Special Purpose Register Instructions

Name Mnemonic Operand Operation
Syntax
Move to mtspr SPR,rS The SPR field denotes a special purpose register, encoded as shown
Special in Table 3-40. The contents of rS are placed into the designated SPR.
;urpotse Simplified mnemonic examples:
egister mtxer rA mtspr 1,rA
mtlr rA mtspr 8,rA
mtctr rA mtspr 9,rA
Move from mfspr rD,SPR The SPR field denotes a special purpose register, encoded as shown
Special in Table 3-40. The contents of the designated SPR are placed into rD.
Eurpotse Simplified mnemonic examples:
egister mfxer rA mfspr rA,1
mflr rA mfspr rA,8
mfctr rA mfspr rA,9

For mtspr and mfspr instructions, the SPR number coded in assembly language does not
appear directly as a 10-bit binary number in the instruction. The number coded is split into
two 5-bit halves that are reversed in the instruction, with the high-order 5 bits appearing in
bits 1620 of the instruction and the low-order 5 bitsin bits 11-15.

Table 3-40 summarizes the SPR encodings to which the 601 permits user-level access.

Table 3-40. User-Level SPR Encodings

Decimal Register
Value in rD SPR[0-4] SPR[5-9] 9 Description
Name
0 b'00000 00000 MQ MQ register
1 b'00001 00000’ XER Integer exception register
4 '00100 00000’ RTCU Real- time clock upper
register!
5 b'00101 00000' RTCL Real- time clock lower register?
6 '00110 00000’ DEC Decrementer register 2
8 b'01000 00000 LR Link register
9 b'01001 00000 CTR Count register

1 Read-only when accessed at user-level.

2 Access to the DEC register is restricted to read-only while the processor is in the user
mode. User-level decrementer access is provided for POWER compatibility, and is
specific to the 601.

Chapter 3. Addressing Modes and Instruction Set Summary 3-83

Table 3-41 summarizes SPR encodings that the 601 permits at the supervisor level.

Table 3-41. Supervisor-Level SPR Encodings

v;igrirr]]arlo SPR[0—4] SPR[5-9] Rﬁiﬁfr Description
18 b'10010 00000 DSISR DAE/source instruction service
register
19 b'10011 00000 DAR Data address register
20 b'10100 00000 RTCU Real- time clock upper register
21 b'10101 00000 RTCL Real- time clock lower register
22 b'10110 00000’ DEC Decrementer register
25 b'11001 00000 SDR1 Table search description
register 1
26 b'11010 00000’ SRRO Save and restore register 0
27 b'11011 00000 SRR1 Save and restore register 1
272 '10000 01000' SPRGO SPR general 0
273 b'10001 01000 SPRG1 SPR general 1
274 b'10010 01000’ SPRG2 SPR general 2
275 b'10011 01000’ SPRG3 SPR general 3
282 b'11010 01000 EAR External access register
287 b'11111 01000 PVR Processor version register
528 b'10000 10000 IBATOU Instruction BAT O upper
529 b'10001 10000 IBATOL Instruction BAT 0O lower
530 b'10010 10000’ IBAT1U Instruction BAT 1 upper
531 b'10011 10000 IBAT1L Instruction BAT 1 lower
532 '10100 10000 IBAT2U Instruction BAT 2 upper
533 b'10101 10000 IBAT2L Instruction BAT 2 lower
534 b'10110 10000 IBAT3U Instruction BAT 3 upper
535 b'10111 10000 IBAT3L Instruction BAT 3 lower
1008 b'10000 11111 Checkstop Checkstop sources and
(HIDO) enables register
1009 b'10001 11111 Debug Debug modes register
(HID1)
1010 b'10010 11111 IABR Instruction address breakpoint
(HID2) register
1013 b'10101 11111 DABR Data address breakpoint
(HID5) register

3-84 PowerPC 601 RISC Microprocessor User's Manual

Table 3-41. Supervisor-Level SPR Encodings (Continued)

Decimal Register Description
Value in rD SPR[0-4] SPR[5-9] Name
1023 b'11111 11111 PIR Processor identification
(HID15) register

If the SPR field contains any value other than one of the values shown in Table 3-40, the
instruction form is invalid. For an invalid instruction form in which SPR[0]=1, the system
supervisor-level instruction error handler will be invoked if the instruction is executed by a
user-level program. If the instruction is executed by a supervisor-level program, the result
is a no-op.

SPR[0]=1 if and only if writing the register is supervisor-level. Execution of this instruction
specifying a defined and supervisor-level register when MSR[PR]=1 results in a privilege
violation type program exception.

SPR encodings for the DEC, MQ, RTCL, and RTCU registers are not part of the PowerPC
architecture. For forward compatability with other members of the PowerPC
microprocessor family the mftb instruction should be used to obtain the contents of the
RTCL and RTCU registers. The mftb instruction is a PowerPC instruction unimplemented
by the 601, and will be trapped by the illegal instruction exception handler, which can then
issue the appropriate mfspr instructions for reading the RTCL and RTCU registers

The PVR (processor version register) is a read-only register.

SPR encodings shown in Table 3-40 can also be used while at the supervisor level.

The mtspr and mfspr instructions specify a special purpose register (SPR) as a numeric
operand. Simplified mnemonics are provided that represent the SPR in the mnemonic rather
than requiring it to be coded as an operand. Table 3-42 below specifies the simplified
mnemonics provided on the 601 for SPR operations.

Table 3-42. SPR Simplified Mnemonics

Special Purpose Moye tq .SPR Move to SPR Movgfrom SPR Move from SPR
. Simplified) Simplified .
Register . Instruction . Instruction
Mnemonic Mnemonic

Integer unit exception mtxer rS mtspr 1,rS mfxer rD mfspr rD,1

register

Link register mtlr rS mtspr 8,rS mflr rD mfspr rD,8

Count register mtctr rS mtspr 9,rS mfctr rD mfspr rD,9

DAE/source instruction mtdsisr rS mtspr 18,rS mfdsisr rD mfspr rD,18

service register

Data address register mtdar rS mtspr 19,rS mfdar rD mfspr rD,19

Decrementer mtdec rS mtspr 22,rS mfdec rD mfspr rD,22

Table search mtsdrlrS mtspr 25,rS mfsdrl rD mfspr rD,25

description register 1

Status save/restore mtsrrO rS mtspr 26,rS mfsrrO rD mfspr rD,26

register 0

Chapter 3. Addressing Modes and Instruction Set Summary

3-85

Table 3-42. SPR Simplified Mnemonics (Continued)

Special Purpose Mo_ve tq .SPR Move to SPR Mov_efrom SPR Move from SPR
. Simplified : Simplified .
Register . Instruction . Instruction
Mnemonic Mnemonic

Status save/restore mtsrrlrS mtspr 27,rS mfsrrl rD mfspr rD,27

register 1

General SPRs mtsprg n, rS mtspr 272+n,rS mfsprg rD, n mfspr rD,272+n

(SPRGO—SPRG3)

External access register | mtear rS mtspr 282,rS mfear rD mfspr rD,282

Processor version _ _ mfpvr rD mfspr rD,287

register

BAT register, upper mtibatu n, rS mtspr 528+(2*n),rS mfibatu rD, n mfspr rD,528+(2*n)

Bat register, lower mtibatl n, rS mtspr 529+ (2*n),rS | mfibatl rD, n, mfspr rD,529+(2*n)

3.8 Memory Control Instructions
This section describes memory control instructions, which include the following:

» Cache management instructions
* Segment register manipulation instructions
» Trandation lookaside buffer management instructions

3.8.1 Supervisor-Level Cache Management Instruction

Table 3-43 summarizes the operation of the only supervisor-level cache management
instruction implemented on the 601.

3-86 PowerPC 601 RISC Microprocessor User's Manual

Table 3-43. Cache Management Supervisor-Level Instruction

Operand

Name Mnemonic Syntax Operation
Data dcbi rA,rB The effective address is the sum (rA|0)+(rB).
CB:FCT(G The action taken depends on the memory mode associated with the
In\c/);:li date target, and the state (modified, unmodified) of the block. The

following list describes the action to take if the block containing the
byte addressed by the EA is or is not in the cache.

* Coherency required (WIM = xx1)

— Unmodified block—Invalidates copies of the block in the
caches of all processors.

— Modified block—Invalidates copies of the block in the caches
of all processors. (Discards the modified contents.)

— Absent block—If copies are in the caches of any other
processor, causes the copies to be invalidated. (Discards any
modified contents.)

» Coherency not required (WIM = xx0)

— Unmaodified block—Invalidates the block in the local cache.

— Modified block—Invalidates the block in the local cache.
(Discards the modified contents.)

— Absent block—No action is taken.

When data address translation is enabled, MSR[DT]=1, and the
logical (effective) address has no translation, a data access exception
occurs. See Section 5.4.3, “Data Access Exception (x'00300").”

The function of this instruction is independent of the write-through
and cache-inhibited/allowed modes determined by the WIM bit
settings of the block containing the byte addressed by the EA.

This instruction is treated as a store to the addressed byte with
respect to address translation and protection. The reference and
change bits are modified appropriately.

If the EA specifies a memory address for which T = 1 in the
corresponding segment register, the instruction is treated as a no-op.

This is a supervisor-level instruction.

3.8.2 User-Level Cache Instructions

The instructions summarized in this section provide user-level programs the ability to
manage the 601’s unified cache. Theterm block in the context of the cache refersto a sector
within the cache (and not a block defined by the block address trandation (BAT)
mechanism).

Aswith other memory-related instructions, the effect of the cache instructions on memory
are weakly consistent. If the programmer needs to ensure that cache or other instructions
have been performed with respect to all other processors and mechanisms, a sync
instruction must be placed in the program following those instructions.

When data address trandation is disabled (MSR[DT] = 0), the Data Cache Block Set to
Zero (dcbz) instruction allocates a line in the cache and may not verify that the physical
address is valid. If a line is created for an invalid physical address, a machine check

Chapter 3. Addressing Modes and Instruction Set Summary 3-87

condition may result when an attempt is made to write that line back to memory. The line
could bewritten back asthe result of the execution of an instruction that causes acache miss
and the invalid addressed line is the target for replacement or a Data Cache Block Store
(dcbst) instruction.

Any cache control instruction that generates an effective address that correspondsto an 1/0
controller interface segment (SR[T] = 1) that has the SR[BUID] field equal to x'07F
trandlates the address appropriately and performsthe cache operation based on that address.
A cache control instruction that generates an effective address that corresponds to an 1/0
controller interface segment (SR[T] = 1), but with the SR[BUID] not equal to x'07F is
treated as a no-op.

Since the 601 is implemented with a unified (combined instruction and data) cache, the
Instruction Cache Block Invalidate (icbi) instruction is treated as a no-op by the 601
processor. Table 3-44 summarizes the cache instructions that are accessible to user-level
programs.

Table 3-44. User-Level Cache Instructions

Operand

Name Mnemonic
Syntax

Operation

Data dcbt rA,rB The EA is the sum (rA|0)+(rB).
Cache

Block Touch This instruction provides a method for improving performance

through the use of software-initiated fetch hints. The 601 performs the
fetch for the cases when the address hits in the UTLB or the BTLB,
and when it is permitted load access from the addressed page. The
operation is treated similarly to a byte load operation with respect to
memory protection.

If the address translation does not hit in the UTLB or BTLB, or if it
does not have load access permission, the instruction is treated as a
no-op.

If the access is directed to a cache-inhibited page, or to an I1/O
controller interface segment, then the bus operation occurs, but the
cache is not updated.

This instruction never affects the reference or change bits in the
hashed page table.

While the 601 maintains a cache line size of 64 bytes, the dcbt
instruction may only result in the fetch of a 32-byte sector (the one
directly addressed by the EA). The other 32-byte sector in the cache
line may or may not be fetched, depending on activity in the dynamic
memory queue.

A successful dcbt instruction will affect the state of the TLB and
cache LRU bits as defined by the LRU algorithm.

Data dcbtst rA,rB The EA is the sum (rA|0)+(rB).
Cache
Block
Touch for
Store

The dcbtst instruction operates exactly like the dcbt instruction as
implemented on the 601.

3-88 PowerPC 601 RISC Microprocessor User's Manual

Table 3-44. User-Level Cache Instructions (Continued)

Name

Mnemonic

Operand
Syntax

Operation

Cache Line
Compute
Size

clcs

rD,rA

This is a POWER instruction, and is not part of the PowerPC
architecture. This instruction will not be supported by other
PowerPC implementations.

This instruction places the cache line size specified by operand rA
into register rD. The rA operand is encoded as follows:

01100 Instruction cache line size (returns value of 64)
01101 Data cache line size (returns value of 64)
01110 Minimum line size (returns value of 64)

01111 Maximum line size (returns value of 64)

All other encodings of the rA operand return undefined values.
This instruction is specific to the 601.

Data
Cache
Block Set
to Zero

dcbz

rA,rB

The EA is the sum (rA|0)+(rB).

If the block (the cache sector consisting of 32 bytes) containing the
byte addressed by the EA is in the data cache, all bytes are cleared
to 0.

If the block containing the byte addressed by the EA is not in the data
cache and the corresponding page is caching-allowed, the block is
established in the data cache without fetching the block from main
memory, and all bytes of the block are cleared to O.

If the page containing the byte addressed by the EA is
caching-inhibited or write-through, then the system alignment
exception handler is invoked.

If the block containing the byte addressed by the EA is in coherence
required mode, and the block exists in the data cache(s) of any other
processor(s), it is kept coherent in those caches.

The dcbz instruction is treated as a store to the addressed byte with
respect to address translation and protection.

If the EA corresponds to an 1/O controller interface segment
(SR[T] = 1), the dcbz instruction is treated as a no-op.

Data
Cache
Block Store

dcbst

rA,rB

The EA is the sum(rA|0)+(rB).

If the block (the cache sector consisting of 32 bytes) containing the
byte addressed by the EA is in coherence required mode, and a block
containing the byte addressed by the EA is in the data cache of any
processor and has been modified, the writing of it to main memory is
initiated.

The function of this instruction is independent of the write-through
and cache-inhibited/allowed modes of the block containing the byte
addressed by the EA.

This instruction is treated as a load from the addressed byte with
respect to address translation and protection.

If the EA corresponds to an 1/O controller interface segment
(SR[T] = 1), the dcbst instruction is treated as a no-op.

Chapter 3. Addressing Modes and Instruction Set Summary 3-89

Table 3-44. User-Level Cache Instructions (Continued)

Operand

Name Mnemonic Syntax Operation
Data dcbf rA,rB The EA is the sum (rA[0) + (rB).
Cache The action taken depends on the memory mode associated with the
Block Flush target, and on the state of the block. The following list describes the

action taken for the various cases, regardless of whether the page or
block containing the addressed byte is designated as write-through or
if it is in the caching-inhibited or caching-allowed mode.

» Coherency required (WIM = xx1)

— Unmodified block—Invalidates copies of the block in the
caches of all processors.

— Modified block—Copies the block to memory. Invalidates
copies of the block in the caches of all processors.

— Absent block—If modified copies of the block are in the caches
of other processors, causes them to be copied to memory and
invalidated. If unmodified copies are in the caches of other
processors, causes those copies to be invalidated.

» Coherency not required (WIM = xx0)

— Unmodified block—Invalidates the block in the processor’s
cache.

— Modified block—Copies the block to memory. Invalidates the
block in the processor’s cache.

— Absent block—Does nothing.

3.8.3 Segment Register Manipulation Instructions

The instructions listed in Table 3-45 provide access to the segment registers of the 601.
These instructions operate completely independently of the MSR[IT] and MSR[DT] bit
settings. Note that the r A operand is not defined for the mtsrin and mfsrin instructionsin
the 601. Refer to Section 2.3.3.1, “Synchronization for Supervisor-Level SPRs and
Segment Registers,” for serialization requirements and other recommended precautions to
observe when manipulating the segment registers.

3-90 PowerPC 601 RISC Microprocessor User's Manual

Table 3-45. Segment Register Manipulation Instructions

Operand

Name Mnemonic Operation
Syntax

Move to mtsr SR,rS The contents of rS is placed into segment register specified by
Segment operand SR.
Register This is a supervisor-level instruction.
Move to mtsrin rS,rB The contents of rS are copied to the segment register selected by bits
Segment 0-3 of rB.
Reg|ster This is a supervisor-level instruction.
Indirect
Move from mfsr rD,SR The contents of the segment register specified by operand SR are
Segment placed into rD.
Register This is a supervisor-level instruction.
Move from mfsrin rD,rB The contents of the segment register selected by bits 0-3 of rB are
Segment copied into rD.
Reg|ster This is a supervisor-level instruction.
Indirect

3.8.4 Translation Lookaside Buffer Management Instruction

The 601 implements a TLB that caches portions of the page table. As changes are made to
the address trandlation tables, the TLB must be updated. This is done by explicitly
invalidating TLB entries (both in the set) with the Translation Lookaside Buffer Invalidate
Entry (tlbie) instruction. Refer to Chapter 6, “Memory Management Unit” for additional
information about TLB operation. Table 3-46 summarizes the operation of the tlbie

instruction.

Chapter 3. Addressing Modes and Instruction Set Summary

3-91

Table 3-46. Translation Lookaside Buffer Management Instruction

Operand

Name Mnemonic Operation
Syntax
Translation tibie rB The effective address is the contents of rB. If the TLB contains an
Lookaside entry corresponding to the EA, that entry is removed from the TLB.
Buffer The TLB search is done regardless of the settings of MSR[IT] and
Invalidate MSRI[DT]. Also, a TLB invalidate operation is broadcast on the
Entry system bus unless disabled by setting bit 17 in HID1.

Block address translation for the EA, if any, is ignored.

Because the 601 supports broadcast of TLB entry invalidate
operations, the following must be observed:

« The tlbie instruction must be contained in a critical section of
memory controlled by software locking, so that the tlbie is issued
on only one processor at a time.

* A sync instruction must be issued after every tlbie and at the end
of the critical section. This causes hardware to wait for the effects
of the preceding tlbie instructions(s) to propagate to all
processors.

A processor detecting a TLB invalidate broadcast does the following:

1. Prevents execution of any new load, store, cache control or tibie
instructions and prevents any new reference or change bit
updates

2. Waits for completion of any outstanding memory operations
(including updates to the reference and change bits associated
with the entry to be invalidated)

3. Invalidates the two entries (both associativity classes) in the UTLB
indexed by the matching address

4. Resumes normal execution

This is a supervisor-level instruction.

Nothing is guaranteed about instruction fetching in other processors if
tibie deletes the page in which another processor is executing.

Because the presence, absence, and exact semantics of the translation lookaside buffer
management instruction isimplementation dependent, system software should encapsul ate
uses of the instruction into subroutines to minimize the impact of migrating from one
implementation to another.

3.9 External Control Instructions

The external control instructions provide ameansfor auser-level program to communicate
with a special-purpose device. Two instructions are provided and are summarized in

Table 3-47.

3-92

PowerPC 601 RISC Microprocessor User's Manual

Table 3-47. External Control Instructions

Name Mnemonic Operand Operation
Syntax

External eciwx rD,rA,rB The EA is the sum (rA|0) + (rB).

ﬁomtr\(;\llord If the external access register (EAR) E-bit (bit 0) is set to 1, a load

| su d request for the physical address corresponding to the EA is sent to

ndexe the device identified by the EAR Resource ID bits (bits 28-31),
bypassing the cache. The word returned by the device is placed in
rD. The EA sent to the device must be word aligned.
If the EAR[E] = 0, a data access exception is invoked, with bit 11 of
DSISR set to 1, and bit 6 cleared to 0 to indicate that the exception
occurred during a load operation.
The eciwx instruction is supported for EAs that reference ordinary
memory segments (SR[T] = 0), for EAs mapped by BAT registers,
and for EAs generated when MSR[DT] = 0.The instruction is treated
as a no-op for EAs in I/O controller interface segments (SR[T] = 1).
The access caused by this instruction is treated as a load from the
location addressed by the EA with respect to protection and
reference and change recording.

External ecowx rS,rArB The EA is the sum (rA|0) + (rB).

Control If the External Access Register (EAR) E-bit (bit 0) is set to 1, a store

Output - :

Word request for the physical address corresponding to the EA and the

Indexed contents of rS are sent to the device identified by EAR[RID] (resource

ID) (bits 28-31), bypassing the cache. The EA sent to the device
must be word aligned.

If the EAR[E] = 0, a data access exception is invoked, with bit 11 of
DSISR set to 1, and bit 6 set to 1 to indicate that the exception
occurred during a store operation.

The ecowx instruction is supported for EAs that reference ordinary
memory segments (SR[T] = 0), for EAs mapped by BAT registers,
and for EAs generated when MSR[DT] = 0.The instruction is treated
as a no-op for EAs in 1/O controller interface segments (SR[T] = 1).

The access caused by this instruction is treated as a store to the
location addressed by the EA with respect to protection and
reference and change recording

3.10 Miscellaneous Simplified Mnemonics

In order to make assembly language programs simpler to write and easier to understand, a
set of simplified mnemonics is provided that define a shorthand for some of the most
frequently used instructions. PowerPC compliant assemblers provide the simplified
mnemonics listed here, and in the sections describing the branch, arithmetic, compare, trap,
rotate and shift, and move to/from special purpose register instructions. Programs written
to be portable across the various assemblers for the PowerPC architecture should not
assume the existence of mnemonics not defined in this user’s manual.

Chapter 3. Addressing Modes and Instruction Set Summary

3-93

3.10.1 No-Op

Many PowerPC instructions can be coded in a way that, effectively, no operation is
performed. An additional mnemonic is provided for the preferred form of no-op. If an
implementation performs any type of run-time optimization related to no-ops, the preferred
form is the no-op that will trigger this.

no-op (equivalent to ori 0,0,0)

3.10.2 Load Immediate

The addi and addis instructions can be used to load an immediate value into a register.
Additional mnemonics are provided to convey the ideathat no addition is being performed
but that data is being moved from the immediate operand of the instruction to aregister.

Load a 16-bit signed immediate value into rA:

li rD,value (equivalent to addi rA,0,value)
Load a 16-bit signed immediate value, shifted left by 16 bits, into r A:
lisrD,value (equivalent to addisrA,0,value)

3.10.3 Load Address

This mnemonic permits computing the value of a base-displacement operand, using the
addi instruction which normally requires a separate register and immediate operands.

larD,SIMM(rA) (equivalent to addi rD,rA,SIMM)

The la mnemonic is useful for obtaining the address of a variable specified by name,
allowing the assembler to supply the base register number and compute the displacement.
If the variable v is located at offset SIMMv bytes from the address in register rv, and the
assembler has been told to use register rv as a base for references to the data structure
containing v, then the following line causes the address of v to be loaded into register rD.

larD,v (equivalent to addi rD,rA,SIMMv

3.10.4 Move Register

Severa PowerPC instructions can be coded to simply copy the contents of one register to
another. An extended mnemonic is provided to move datafrom one register to another with
no computational activity.

The following instruction copies the contents of register rS into register rA. This

mnemonic can be coded with a “.” to cause the condition register update option to be
specified in the underlying instruction.

mr rA,rS (equivalenttoor rA,rSrS)

3-94 PowerPC 601 RISC Microprocessor User's Manual

3.10.5 Complement Register

Severa PowerPC instructions can be coded to complement the contents of one register and
place the result in another register. A simplified mnemonic is provided that complements
the contents of r S and places the resultsinto register r A. This mnemonic can be coded with
a “.” to cause the condition register update option to be specified in the underlying
instruction.

not rArS (equivalent tonor rA,rSrS)

Chapter 3. Addressing Modes and Instruction Set Summary 3-95

3-96 PowerPC 601 RISC Microprocessor User's Manual

Chapter 4
Cache and Memory Unit Operation

The PowerPC 601 microprocessor contains a 32-Kbyte, eight-way set associative, unified
(instruction and data) cache. The cache line size is 64 bytes, divided into two eight-word
sectors, each of which can be snooped, loaded, cast-out, or invalidated independently. The
cache is designed to adhere to a write-back policy, but the 601 allows control of
cacheability, write policy, and memory coherency at the page and block level. The cache
uses aleast recently used (LRU) replacement policy.

The 601’'s on-chip cache is nonblocking. Burst operations to the cache are the result of a
cache sector reload caused by a cache miss, and are buffered such that the cache update is
reduced to two single-cycle operations of four words. That is, the results of thefirst two and
the last two beats are buffered and written to the cache in single cycles apiece. This frees
the cache to perform lower priority operations in the meantime.

System operations, including cache operations, connect to the system interface through the
memory unit, which includes a two-element read queue and a three-element write queue.

As shown in Figure 1-1, the cache provides an eight-word interface to the instruction
fetcher and load/store unit. The surrounding logic selects, organizes, and forwards the
requested information to the requesting unit. Write operations to the cache can be
performed on a byte basis, and a complete read-modify-write operation to the cache can
occur in each cycle.

The cache unit and the memory unit coordinate cache reload and cast-out operations so that
a cache miss does not block the use of the cache for other operations during the next cycle.
Cache reload operations always occur on a sector basis, with the option of reloading the
additional sector as alow-priority operation. On load operations and fetch operations, the
critical datais forwarded to the requesting unit without waiting for the entire cache line to
be loaded.

The 601 maintains cache coherency in hardware by coordinating activity between the
cache, the memory unit, and the businterface logic. As bus operations are performed on the
bus by other processors, the 601 bus snooping logic monitors the addresses that are
referenced. These addresses are compared with the addresses resident in the cache. The
cache unit uses a second port into its tag directory to check for a matching entry and the

Chapter 4. Cache and Memory Unit Operation 4-1

memory queue unit does the same. If there is a snoop hit, the 601’s bus snooping logic
responds to the bus interface with the appropriate snoop status. An additional snoop action
may be forwarded to the cache or to the memory unit as aresult of a snoop hit.

Notethat in this chapter the term multiprocessor is used in the context of maintaining cache
coherency, although the system could include other devicesthat can access system memory,
maintain their own caches, and function as bus masters requiring cache coherency.

This chapter describes the organization of the 601's on-chip cache, the MESI cache
coherency protocol, special concernsfor cache coherency in single- and multiple-processor
systems, cache control instructions, various cache operations, and the interaction between
the cache and the memory unit.

4.1 Cache Organization

The cacheis configured as eight sets of 64 lines. Each line consists of two sectors, four state
bits (two per sector), an address tag, and several bitsto maintain the LRU function. Thetwo
state bits implement the four-state MESI (modified-exclusive-shared-invalid) protocol.
Each sector contains eight 32-bit words. Note that PowerPC architecture defines the
cacheable unit as a block, which is a sector in the 601.

The instruction unit accesses the cache frequently in order to maintain the flow of
instructions through the instruction queue. The queue is eight words (one sector) long, so
an entire sector can be loaded into the instruction unit on a single clock cycle.

The cache organization is shown in Figure 4-1. Note that the replacement algorithm is
strictly an LRU algorithm; that is, the least recently used sector is used, which may mean
that amodified sector will bereplaced on amissif it istheleast recently used, evenif invalid
sectors are available. However, for performance reasons, certain conditions (for example,
the execution of some cache instructions) generate accesses to the cache without modifying
the bits that perform the LRU function.

Each cacheline contains 16 contiguous words from memory that are loaded from a 16-word
boundary (that is, bits A26-A31 of the logical (effective) addresses are zero); as a result,
cache lines are aligned with page boundaries.

Note that address bits A20—-A25 provide an index to select a line. Bits A26-A31 select a
byte within a line. The tags consists of bits PAO—PA19. Address translation occurs in
parallel, such that higher-order bits (the tag bits in the cache) are physical.

4-2 PowerPC 601 RISC Microprocessor User's Manual

A

L] L]
8 SETS . .
LJ A d
/ [[1 [[
I [N B I [N —
LINE O| ADDRESSTAG| | | | M | SECTOR0 SECTOR 1 —
LLL T 1
L 1
I I O B
L1 L
L1 gu
L1 B
L] L] L]
]]]
° | ° ° |
1 \ \ -
LINE 63| ADDRESSTAG| | | | [~ <—— B8WORDS —><+—— 8WORDS >
| 16 WORDS >

Figure 4-1. Cache Organization

4.2 Cache Arbitration

The instruction unit and the integer unit both access the cache; however, the cache unit
handles only one access per cycle. Furthermore, since the cache is nonblocking, apreceding
cache operation may generate a cache reload operation which must also compete for cache
access. The bus snooping logic may create additional snoop actions that use the cache. The
601 efficiently handles simultaneous requests to access the on-chip cache.

The 601 implements cache arbitration logic to prioritize the various cache requests that can
occur on each cycle. The cache unit provides a cache retry queue (CRTRY) if a caching
operation cannot be completed. There are three entries in this queue, providing a buffer for
one outstanding floating-point store, abuffer for an integer load/store or floating-point |oad,
and a buffer for an instruction fetch. Priority is given first to floating-point stores, then to
integer stores, and finally to instruction fetches.

A similar situation arises with respect to the bus. Internal bus arbitration logic chooses the
highest priority operation from the memory queue for presentation onto the bus. These
priorities are listed in Section 4.10.2, “Memory Unit Queuing Priorities.”

Chapter 4. Cache and Memory Unit Operation 4-3

The 601 supports a fully-coherent 4-Gbyte physical memory address space. Bus snooping
isused to drive aMESI four-state cache-coherency protocol that ensures the coherency of
al processor and DMA transactions to and from global memory with respect to the
processor’s cache. The MESI protocol is described in Section 4.7.2, “MESI Protocol.” All
potential bus masters must employ similar snooping and coherency-control mechanisms.

4.3 Cache Access Priorities
The 601 prioritizes pending cache operations as follows:

1. Cachereloads. Note that the cache is nonblocking. Four-beat burst reloads on the
system bus are buffered into two, single-cycle transactions of four words each,
freeing the cache to perform lower priority operations in the meantime.

2. Second-cycle cast-out operations when the additional sector is modified

3. Snoop requeststhat hit in the tag directory. These may generate a cache sector push
operation or cache state change.

4. Floating-point store operations.

5. Integer operation retries. If ahigher priority operation occurs when an integer
operation isready to cacheitsresults, the results are held in abuffer until the higher
priority operation completes, then it isretried on the next clock cycle. This prevents
the integer unit from stalling when this situation occurs.

6. Integer unit requests
7. Instruction fetches

4.4 Basic Cache Operations

This section describes operations that can occur to the cache, and how these operations are
implemented in the 601.

4.4.1 Cache Reloads

A cache sector is reloaded after a read miss occurs in the cache. The cache sector that
contains the address is updated by a burst transfer of the data from system memory. Note
that if aread miss occurs in a multiprocessor system, and the data is modified in another
cache, the modified dataisfirst written to external memory before the cache reload occurs.

Aninstruction fetch that is generated to fill the instruction queue (not explicitly required by
the program flow) does not generate areload operation in the case of a cache miss.

4.4.2 Cache Cast-Out Operation

The 601 uses an L RU replacement algorithm to determine which of the eight possible cache
locations should be used for a cache update. Adding a new sector to the cache causes any
modified dataassociated with the least recently used element to be written back, or cast out,

4-4 PowerPC 601 RISC Microprocessor User's Manual

to system memory. This may be both sectors of the line, depending on which sectors are
modified, even though only one sector may be reloaded. Casting out of the adjacent sector
isreferred to as a second-cycle cast-out operation.

4.4.3 Cache Sector Push Operation

When a cache sector in the 601 is snooped and hit by another processor and the data is
modified, the cache sector must be written to memory and made available to the snooping
device. The cache sector that is hit is said to be pushed out onto the bus. The 601 supports
two kinds of push operations—normal push operations and enveloped high-priority push
operations, which are described in Section 4.7.11, “Enveloped High-Priority Cache Sector
Push Operation.”

4.4.4 Optional Cache Sector Line-Fill Operation

The two sectors in a cache line contain contiguous memory addresses; therefore, the two
sectors share the same line address tag. Cache coherency, however, is maintained on a
sector granularity, so there are separate coherency state bits for each sector. If one sector of
thelineisfilled from memory, the 601 may attempt to |oad the other sector asalow-priority
bus operation. If the other sector is not transferred, the cache line in the snooping processor
contains one sector that is in the shared state (the one that was transferred because of the
snoop hit) and one sector that isinvalid (if the optional cache line fill is not performed).
Correspondingly, the processor issuing the reload request may bring in the second cache
sector in a shared or exclusive state.

Note that the optional reload of an adjacent sector on an instruction fetch miss can be
disabled globally by setting bit 26 in the HIDO register, and the optional reload of the
adjacent sector on aload/store miss can be disabled by setting bit 27.

4.5 Cache Data Transactions

The 601 output signal TBST (transfer burst) indicates to the system whether the current
transaction is a single-beat transaction or four-beat burst transfer. Burst transactions have
an assumed address order. For cacheable load operations or cacheable, non-write-through
store operations that miss the cache, the 601 presents the quad-word aligned address
associated with the read or store that initiated the transaction.

Asshown in Figure 4-2, this quad word contains the address of the load or store that missed
the cache. This minimizes latency by allowing the critical code or datato be forwarded to
the processor before the rest of the sector isfilled. For all other burst operations, however,
the entire sector istransferred in order (oct-word aligned).

Chapter 4. Cache and Memory Unit Operation 4-5

601 Cache Address

Bits (27..28)
00 01 10 11
A B C D

If address requested is in double word A or B then the address placed on the bus are that of
quad-word A, and the four data beats are ordered in the following manner:

Beat
0 1 2 3

A B C D

If address requested is in double word C or D then the address placed on the bus will be that
of quad-word C, and the four data beats are ordered in the following manner:

Beat
0 1 2 3

C D A B

Figure 4-2. Quad-Word Address Ordering

4.6 Access to I/O Controller Interface Segments

The 601 supports both memory-mapped and 1/0O-mapped accessto |/O devices. In addition
to the high-performance bus protocol for memory-mapped /O accesses, the 601 provides
the ability to map memory areas to the 1/O controller interface (SR[T] = 1) with the
following two kinds of operations:

» |/O controller interface operations. These operations are considered to address the
noncoherent and noncacheable I/O controller interface; therefore, the 601 does not
maintain coherency for these operations, and the cache is bypassed completely.

* Memory-forced I/O controller interface operations. These operations are considered
to address memory space and are therefore subject to the same coherency control as
memory accesses. These operations are global memory references within the 601
and are considered to be noncacheable.

Cache behavior (write-back, cache-inhibition, and enforcement of MESI coherency) for
these operations is determined by the settings of the WIM bhits; see Section 6.3,
“Memory/Cache Access Modes.”

4.7 Cache Coherency

The primary objective of a coherent memory system is to provide the same image of
memory to all devices using the system. Coherency allows synchronization, cooperative
use of shared resources, and task migration among the processors. Otherwise, multiple
copiesof amemory location, some containing stale values, could exist in a system resulting

4-6 PowerPC 601 RISC Microprocessor User's Manual

in errors when the stale values are used. Each potential bus master must follow rules for
managing the state of its cache. For example, a device must broadcast its intention to read
a sector that is not currently in the cache. It must also broadcast the intention to write into
a sector that is currently not owned exclusively. Other devices respond to these broadcasts
by snooping their caches for the broadcast addresses and reporting status back to the
originating device. The status returned includes a shared indicator (another device has a
copy of the addressed sector) and a retry indicator (another device either has a modified
copy of the addressed sector that it needs to push out of the chip, or another device had a
problem that prevented appropriate snooping).

For faster performance, the 601 has a second path into the cache directory so snooping and
mainstream instruction processing occur concurrently. Instruction processing isinterrupted
only when the snoop control logic detects a state change or that a snoop push of modified
datais required to maintain memory coherency.

To maintain coherency, secondary caches must forward all relevant system bus traffic onto
the 601 bus, which takes the appropriate actions to maintain the MESI protocol.

Support for lwar x and stwcex. instructions on noncacheable pages may be somewhat more
complicated for a secondary cache than normal cacheable memory accesses. This is
because the secondary cache may not normally forward writesto noncacheable pagesin the
processor. However, to maintain the reservation coherency bit, the secondary cache must
forward al writes that hit against the address of a reservation set by a lwarx instruction
until the reservation is cleared.

4.7.1 Memory Management Access Mode Bits—W, |, and M

Some memory characteristics can be set on either ablock or page basis by using the WIM
bitsin the BAT registers or page table entry (PTE) respectively. The WIM bits control the
following functionality:

* Write-through (W bit)
e Caching-inhibited (I bit)
* Memory coherency (M bit)

These bits allow both single- and multiprocessor-system designs to exploit numerous
system-level performance optimizations. These bits are described in detail in Chapter 2,
“Registers and Data Types,” and Chapter 6, “Memory Management Unit.” Using these bits
carelessly can cause coherency problems—the processor must ensure that the coherency of
the location is maintained (i.e., the processor must manage mismatched W bit handling in
cases of mixed WIM = b'101' and WIM = b'001'.) The 601 considers either of these cases
to be aprogramming error that may compromise memory coherency. These paradoxes can
occur within a single processor or across several devices, as described in Section 4.7.5.1,
“Coherency in Single-Processor Systems,” and Section4.7.5.2, “Coherency in
Multiprocessor Systems.”

Chapter 4. Cache and Memory Unit Operation 4-7

4.7.2 MESI Protocol

The 601 cache characterizes each 32-byte sector it contains as being in one of four MESI
states. Addresses presented to the cache are indexed into the cache directory with bitsA20—
A25 and the upper-order 20 bits from the physical address trandation (PAO-PA19) are
compared against the indexed cache directory tags. If no tags match, the result is a cache
miss. If atag matches, acache hit occurred and the directory indicates the state of the sector
through two state bits kept with the tag. The four possible states for a sector in the cache
aretheinvalid state (1), the shared state (S), the exclusive state (E), and the modified state
(M). Thefour MESI states are defined in Table 4-1 and illustrated in Figure 4-3.

Table 4-1. MESI State Definitions

MESI State Definition

Modified (M) | The addressed sector is valid in the cache and in only this cache. The sector is modified with
respect to system memory—that is, the modified data in the sector has not been written back to
memory.

Exclusive (E) | The addressed sector is in this cache only. The data in this sector is consistent with system
memory.

Shared (S) The addressed sector is valid in the cache and in at least one other cache. This sector is always
consistent with system memory. That is, the shared state is shared-unmodified; there is no shared-
modified state.

Invalid (1) This state indicates that the addressed sector is not resident in the cache.

4-8 PowerPC 601 RISC Microprocessor User's Manual

Modified in Cache A Shared in Cache A

Cache A Cache B Cache A Cache B
M —»| Valid Data | — | Invalid Data S — 5| Valid Data S — 5| Valid Data
System Memory System Memory
— Invalid Data — Valid Data
Exclusive in Cache A Invalid in Cache A
Cache A Cache B Cache A Cache B
E —> Valid Data | —{ Invalid Data | —{ Invalid Data x— Don't Care

System Memory

— Valid Data

Figure 4-3. MESI States

4.7.3 MESI State Diagram

The 601 provides dedicated hardware to provide memory coherency by snooping bus
transactions. The address retry capability of the 601 enforces the MESI protocol, as shown
in Figure 4-4. Figure 4-4 assumes that the WIM bits are set to 001; that is, write-back,
caching-not-inhibited, and memory coherency enforced.

Chapter 4. Cache and Memory Unit Operation 4-9

Table 4-7 gives a detailed list of MESI transitions for various operations and WIM bit
Settings.

INVALID

(On a miss, the
replaced line is first
cast out to memory
if modified)

(sector write-back)

MODIFIED

BUS TRANSACTIONS

RH = Read Hit @ = Snoop Push
RMS = Read Miss, Shared

RME = Read Miss, Exclusive ® = Invalidate Transaction

WH = Write Hit

WM = Write Miss @z Read-with-Intent-to-Modify
SHR = Snoop Hit on a Read
SHW = Snoop Hit on a Write or @ = Read

Read-with-Intent-to-Modify

Figure 4-4. MESI Cache Coherency Protocol—State Diagram (WIM = 001)

4.7.4 MESI Hardware Considerations

In addition to the hardware required to monitor bus traffic for coherency, the 601 has a
cache port dedicated to snooping so that comparing cache entries to address traffic on the
bus does not affect the 601's on-chip cache.

Theglobal (GBL) signal, asserted as part of the address attribute fiel d, enables the snooping
hardware of the 601. Address bus masters assert GBL to indicate that the current transaction
isaglobal access (that is, an access to memory shared by more than one device). If GBL is
not asserted for the transaction, that transaction is not snooped.

4-10 PowerPC 601 RISC Microprocessor User's Manual

Normally, GBL reflects the M-bit value specified for the memory reference in the
corresponding trandation descriptor(s). Care must be taken to minimize the number of
pages marked as global, because the retry protocol enforces coherency and can use
considerable bus bandwidth if much datais shared. Therefore available bus bandwidth can
decrease as more traffic is marked global. Note that in Figure 4-4, write hits to unmodified
lines of nonglobal pages do not generate invalidate broadcasts.

The 601 snoops atransaction if the transfer start (TS) and GBL inputs are asserted together
in the same bus clock (thisis a qualified snooping condition). No snoop update to the 601
cache occurs if the snooped transaction is not marked global. This includes invalidation
cycles.

When the 601 detects a qualified snoop condition, the address associated with the TS is
compared with the cache tags through a dedicated cache-tag snoop port. Snooping finishes
if no hit is detected. If, however, the address hits in the cache, the 601 reacts according to
the MESI protocol shown in Figure 4-4.

Because they do not require snooping, cache sector cast-outs, and snoop pushes do not
assert GBL. The 601 marks these transactions as nonglobal .

To facilitate external monitoring of the internal cache tags, the cache set member signals
(CSEO0—CSE2) represent in binary the sector of the cache set being replaced on read
operations (including read-with-intent-to-modify operations). This does not apply and is
not necessary for write operations to memory. Note that these signalsare valid only for 601
burst operations. Table 4-2 shows the (cache set element) CSE encodings.

Table 4-2. CSEO-CSE?2 Signals

CSEO0-CSE2 Cache Set Element
000 Set0
001 Setl
010 Set 2
011 Set 3
100 Set 4
101 Set5
110 Set 6
111 Set7

4.7.5 Coherency Precautions

Cache coherency is greatly affected by whether the 601 is used in a single- or multiple-
processor implementation. This section describes precautions for implementing coherent
single- and multiple-processor systems.

Chapter 4. Cache and Memory Unit Operation 4-11

4.7.5.1 Coherency in Single-Processor Systems

The following situations concerning coherency can be encountered within a single-
processor implementation:

» Load or store to a cache-inhibited page (WIM = b'’X1X") and a cache hit occurs

Caching isinhibited for this page (I = 1). Load or store operations to a cache-
inhibited page that hit in the cache cause a paradox. If the addressed sector is not
modified, the 601 invalidates the sector and performs the memory access. If the
addressed sector in the cache line is modified, the 601 flushes the modified sector
before accessing memory.

» Storeto apage marked write-through (WIM = b'10X") and a cache hit to amodified
sector

This page is marked as write-through (W = 1). The 601 pushes the modified sector
to memory and marks the sector exclusive (E). Then the 601writes the datainto the
cache, marking it exclusive and passing on awrite-with-flush operation (to the
memory queue).

Note that when WIM bits are changed, it iscritical that the cache contents should reflect the
new WIM bit settings. For example, if a block or page that had allowed caching becomes
caching-inhibited, software should ensure that the appropriate cache sectors are flushed to
memory and invalidated.

4.7.5.2 Coherency in Multiprocessor Systems

Other situations concerning coherency can occur across multiple processors (or systems
that employ multiple devicesthat incorporate caches). Paradoxesin multiprocessor systems
are particularly difficult to handle since some scenarios cause modified data to be purged
and others may lead to bus deadlock scenarios.

Most multiprocessor paradoxes center around the interprocessor coherency of the memory
coherency bit (the M bit). Improper use of the M bit can lead to multiple devices accepting
a cache sector and marking the data as exclusive, leading to the possibility of the same
cache line being modified in multiple caches.

Although these coherency paradoxes are considered programming errors, the 601 attempts
to handl e the offending conditions and minimize the negative effects on memory coherency.
Note that the intent of this effort is to ease the debugging of multiprocessor operating
system devel opment.

4-12 PowerPC 601 RISC Microprocessor User's Manual

The following list shows some of the operations provided by the 601.

» Noncacheable write operations appear on the processor bus as write-with-flush
operations, which forces other processors with modified copies of the addressed
sector to write data back to memory and to mark the sector asinvalid in the cache.
Devices with an unmodified copy of the sector must mark the sector asinvalid in
their caches.

» All noncacheable read operations appear on the 601 bus as read (with clean)
operations, which forces processors with modified copies of the addressed data to
write the data back to memory before the read operation compl etes.

Note that when WIM bits are changed, it iscritical that the cache contents should reflect the
new WIM bit settings. For example, if a block or page that had allowed caching becomes
caching-inhibited, the appropriate cache sectors should be updated to leave no indication
that caching had previously been allowed.

Additional information on bus operations that are generated for specific instructions and
state conditions can be found in Chapter 9, “ System Interface Operation.”

4.7.6 Memory Loads and Stores

Table 4-3 provides ageneral overview of memory coherency actions performed by the 601
on load operations.

Table 4-3. Memory Coherency Actions on Load Operations

Cache State OpSrlj'jion ARTRY SHD Action
| Read Negated Negated Load data and mark E
| Read Negated Asserted Load data and mark S
| Read Asserted Don't care Retry read operation
S None Don't care Don't care Read from cache
E None Don't care Don't care Read from cache
M None Don't care Don't care Read from cache

Noncacheable cases are not part of this table. Thefirst three cases also involve selecting a
replacement class and casting-out modified data that may have resided in that replacement
class.

Table 4-4 provides an overview of memory coherency actions on store operations. This
table does not include noncacheabl e or write-through cases nor does it completely describe
the exact mechanisms for the operations described. It describes generally what happens
within the chip. The read-with-intent-to-modify (RWITM) examples involve selecting a
replacement class and casting-out modified data that may have resided in that replacement
class.

Chapter 4. Cache and Memory Unit Operation 4-13

Table 4-4. Memory Coherency Actions on Store Operations

Cache State OpeBrl;?ion ARTRY SHD Action
| RWITM Negated Don't care Load data, modify it, mark M
| RWITM Asserted Don't care Retry the RWITM
S Kill Negated Don't care Modify cache, mark M
S Kill Asserted Don't care Retry the kill operation
E None Don't care Don't care Modify cache, mark M
M None Don't care Don't care Modify cache

4.7.7 Atomic Memory References

The lwarx/stwex. instruction combination can be used to emulate atomic memory
references. These instructions are described in Chapter 3, “Addressing Modes and
Instruction Set Summary,” and Chapter 10, “Instruction Set.”

4.7.8 Snoop Response to Bus Operations

When the 601 is not the bus master, it monitors bustraffic and performs cache and memory-
gueue snooping as appropriate. The snooping operation is triggered by the receipt of a
gualified snoop request. A qualified snoop request is generated by the simultaneous
assertion of the TS and GBL bus signals.

Instruction processing is interrupted only when a snoop hit occurs and the snoop state
machine determines that an additional cache snoop is required to resolve the coherency of
the offended sector.

The 601 maintains a write queue of bus operations in progress and/or pending arbitration.
This write queue is also be snooped in response to qualified snoop requests. Note that
sector-length (four-beat) write operations, are always snooped in the write queue; however,
single-beat writes are not snooped. Coherency for single-beat writes is maintained by the
use of cache operations that are broadcast with the write on the system interface.

The 601 drivestwo snoop statussignals (ARTRY and SHD) in response to aqualified snoop
reguest that hits. These signals provide information about the state of the addressed sector
for the current bus operation. For more information about these signals, see Chapter 8,
“Signal Descriptions.”

4-14 PowerPC 601 RISC Microprocessor User's Manual

4.7.9 Cache Reaction to Specific Bus Operations

There are several bus transaction types defined for the 601 bus. The 601 must snoop these
transactions and perform the appropriate action to maintain memory coherency; see
Table 4-5. For exampl e, because single-beat write operations are not snooped when they are
gueued in the memory unit, additional operations such as flush or kill operations, must be
broadcast when the write is passed to the system interface to ensure coherency.

A processor may assert ARTRY for any bustransaction dueto internal conflictsthat prevent
the appropriate snooping. In general, if ARTRY is not asserted, each snooping processor
must take full ownership for the effects of the bus transaction with respect to the state of the
processor. The processor can assert ARTRY if aninternal conflict preventsit from snooping

properly.

The transactions in Table 4-5 correspond to the transfer type signals TTO-TT4, which are
described in Section 8.2.4.1, “ Transfer Type (TTO-TT4).”

Table 4-5. Response to Bus Transactions

Transaction Response

Clean block The clean operation is an address-only bus transaction, initiated by executing a dcbst
instruction. This operation affects only sectors marked as modified (M). Assuming the
GBL signal is asserted, modified sectors are pushed out to memory, changing the state
to E.

Flush block The flush operation is an address-only bus transaction initiated by executing a dcbf

instruction. Assuming the GBL signal is asserted, the flush block operation results in the

following:

« If the addressed sector is shared or exclusive, an additional snoop action is
generated internally that invalidates the addressed sector.

« If the addressed sector is in the M state, ARTRY is asserted and an additional

internally generated snoop action is initiated that pushes the modified sector out of the

cache and invalidates the sector.

If HIDO[31] = 0, and any bus read operation is pending during this snoop operation,

the write-back of the modified sector is considered to be a high-priority bus operation

that may be enveloped within the pending load operation.

If HIDO[31] = 1, and the snoop flush was presented with HP_SNP_REQ asserted, the

write-back of the modified sector is considered to be a high-priority bus operation that

may be enveloped within the pending load operation.

If the addressed sector hits any of the three entries in the write queue, that entry is

tagged as a high-priority push, after which it can be loaded from memory.

Chapter 4. Cache and Memory Unit Operation 4-15

Table 4-5. Response to Bus Transactions (Continued)

Transaction

Response

Write with flush
Write with flush atomic

Write-with-flush and write-with-flush-atomic operations occur after the processor issues

a store or stwcx. instruction, respectively.

« If the addressed sector is in the shared or exclusive state, the address snoop forces
the state of the addressed sector to invalid.

« If the addressed sector is in the modified state, the address snoop causes the ARTRY
to be asserted and initiates a push of the modified sector out of the cache and
changes the state of the sector to invalid.

« If HIDO[31] = 0, and any bus read operation is pending during this snoop operation,
the write-back of the modified sector is considered to be a high-priority bus operation
that may be enveloped within the pending load operation.

« If HIDO[31] = 1, and the snoop write was presented with HP_SNP_REQ asserted, the
write-back of the modified sector is considered to be a high-priority bus operation that
may be enveloped within the pending load operation.

« If the addressed sector hits any of the three entries in the write queue, that entry is
tagged as a high-priority push operation.

Kill block The kill-block operation is an address-only bus transaction initiated when one of the

following occurs:

» a dchi instruction is executed

* a dcbz operation to a block marked S or | is executed

« a write operation to a block marked S occurs

If a snoop hit occurs, an additional snoop is initiated internally and the sector is forced to
the | state, effectively killing any modified data that may have been in the sector. The
three-entry write queue is also snooped, and if a queue entry hits, it is purged.

Write with kill In a write-with-kill operation, the processor snoops the cache for a copy of the
addressed sector. If one is found, an additional snoop action is initiated internally and
the sector is forced to the | state, killing modified data that may have been in the sector.
In addition to snooping the cache, the three-entry write queue is also snooped. A kill
operation that hits an entry in the write queue purges that entry from the queue.

Read The read operation is used by most single-beat and burst read operations on the bus. A

Read atomic read on the bus with the GBL signal asserted causes the following responses:

« If the addressed sector is in the cache but is invalid, the 601 takes no action.

« If the sector is in the shared state, the 601 asserts the shared snoop status indicator.

« If the sector is in the E state, the 601 asserts the shared snoop status indicator and
initiates an additional snoop action to change the state of that sector from E to S.

« If the sector is in the cache in the M state, the 601 asserts both the ARTRY and the
SHD snoop status signals. It also initiates an additional snoop action to push the
modified sector out of the chip and to mark that cache sector as shared.

Read atomic operations appear on the bus in response to Iwarx instructions and

generate the same snooping responses as read operations.

Read with intent to modify
(RWITM)
RWITM atomic

An RWITM operation is issued to acquire exclusive use of a memory location for the

purpose of modifying it.

« If the addressed sector is in the | state, the 601 takes no action.

« If the addressed sector is in the cache and in the S or E state, the 601 initiates an
additional snoop action to change the state of the cache sector to I.

« If the addressed sector is in the cache and in the M state, the 601 asserts both the
ARTRY and the SHD snoop status signals. It also initiates an additional snoop action
to push the modified sector out of the chip and to change the state of that sector in the
cache fromMto I.

The RWITM atomic operations appear on the bus in response to stwcx. instructions
and are snooped like RWITM instructions.

4-16

PowerPC 601 RISC Microprocessor User's Manual

Table 4-5. Response to Bus Transactions (Continued)

Transaction Response

sync The sync instruction causes an address-only bus transaction. The 601 asserts the
ARTRY snoop status if there are any TLB-related snoop operations pending in the chip.
This transaction is also generated by the eieio instruction on the 601.

TLB invalidate A TLB invalidation operation is caused by executing a tlbie instruction. This instruction
transmits the 601's TLB index (bits 12—19 of the EA) onto the system bus. Other
processors on the bus invalidate TLB entries associated with EAs that match those bits.

1/O reply The 1/O reply operation is part of the I/O controller interface operation. It serves as the
final bus operation in the series of bus operations that service an I/O controller interface
operation.

4.7.10 Internal ARTRY Scenarios
The following scenarios, along with others, cause the 601 to assert the ARTRY signal.
* Snoop hitsto a sector in the M state (optional on kill requests)
* Snoop hits when areload dump request is active
* Snoop hitson avalid (that is, not cancelled) operation that is queued internally.
* Snoop hits while a cast-out request is pending during this or the next clock cycle.

4.7.11 Enveloped High-Priority Cache Sector Push Operation

If the 601 has a read operation outstanding on the bus and another pipelined bus operation
hits against a modified sector, the 601 provides a high-priority push operation. This
transaction can be enveloped within the address and data tenures of aread operation. This
feature prevents deadlocks in system organizations that support multiple memory-mapped
buses. More specifically, the 601 internally detects the scenario where a load request is
outstanding and the processor has pipelined awrite operation on top of the load. Normally,
when the data bus is granted to the 601, the resulting data bus tenure is used for the load
operation. The enveloped high-priority cache sector push feature defines a bus signal, the
data bus write only qualifier (DBWO), which, when asserted with a qualified data-bus
grant, indicates that the resulting data tenure should be used for the store operation instead.
Thissignal isdescribed in Section 9.10, “Using DBWO (Data Bus Write Only).” Note that
the enveloped copy-back operation is an internally pipelined bus operation.

4.8 Cache Control Instructions

Software must use the appropriate cache management instructions to ensure that caches are
kept consistent when data is modified by the processor or by input data transfer. When a
processor aters amemory location that may be contained in an instruction cache, software
must ensure that updates to memory are visible to the instruction fetching mechanism.

Chapter 4. Cache and Memory Unit Operation 4-17

Although the instructions to enforce coherency vary among implementations and hence
many operating systems will provide a system service for this function, the following
sequence istypical:

1. dcbst (update memory)

2. sync (wait for update)

3. ichi (invalidate copy in cache)

4. isync (invalidate copy in own instruction buffer)

These operations are necessary because the processor isnot required to maintain instruction
memory consistent with data memory. Software isresponsible for enforcing consistency of
instruction and data memory. Since instruction fetching may bypass the data cache,
changes made to items in the data cache may not be reflected in memory until after the
instruction fetch completes.

The PowerPC architecture defines instructions for controlling both the instruction and data
caches. Instruction cache control instructions are valid instructions on the 601, but may
function differently than they do when used on PowerPC processors that have separate
instruction and data caches.

Note that in the PowerPC architecture, the term cache block, or simply block when used in
the context of cache implementations, refers to the unit of memory at which coherency is
maintained. For the 601 this is the eight-word sector. This value may be different for other
PowerPC implementations. In-depth descriptions of coding these instructions is provided
in Chapter 3, “Addressing Modes and Instruction Set Summary,” and Chapter 10,
“Instruction Set.”

4.8.1 Cache Line Compute Size Instruction (clcs)

The clcs instruction places the cache information specified in the instruction into a target
register. This instruction is used by the POWER architecture to determine the maximum
and minimum line sizes for cache implementations. For a complete description of this
instruction, refer to Chapter 10, “Instruction Set.”

4.8.2 Data Cache Block Touch Instruction (dcbt)

Thisinstruction provides amethod for improving performance through the use of software-
initiated fetch hints. The 601 performs the fetch for the cases when the address hitsin the
UTLB or the BTLB, and when it is permitted load access from the addressed page. The
operation is treated similarly to a byte load operation with respect to memory protection.

If the address trandation does not hit in the UTLB or BTLB, or if it does not have load
access permission, the instruction is treated as a no-op.

If the accessis directed to acache-inhibited page, or to an 1/0O controller interface segment,
then the bus operation occurs, but the cache is not updated.

Thisinstruction never affects the reference or change bits in the hashed page table.

4-18 PowerPC 601 RISC Microprocessor User's Manual

While the 601 maintains a cache line size of 64 bytes, the dcbt instruction may only result
in fetching a32-byte sector (the one directly addressed by the EA). The other 32-byte sector
in the cache line may or may not be fetched, depending on activity in the dynamic memory
queue.

A successful dcbt instruction will affect the state of the UTLB and cache LRU bits as
defined by the LRU algorithm.

4.8.3 Data Cache Block Touch for Store Instruction (dcbtst)
Thedcbtst instruction behaves exactly like the dcbt instruction asimplemented on the 601.

4.8.4 Data Cache Block Set to Zero Instruction (dcbz)

If the block (the cache sector consisting of 32 bytes) containing the byte addressed by the
EA isinthe data cache, al bytes are cleared to 0.

If the block containing the byte addressed by the EA is not in the data cache and the
corresponding page is caching-allowed, the block is established in the data cache without
fetching the block from main memory, and all bytes of the block are cleared to O.

If the page containing the byte addressed by the EA is caching-inhibited or write-through,
then the system alignment exception handler is invoked.

If the block containing the byte addressed by the EA isin coherence required mode, and
the block exists in the data cache(s) of any other processor(s), it is kept coherent in those
caches.

The dcbz instruction is treated as a store to the addressed byte with respect to address
tranglation and protection.

If the EA corresponds to an 1/O controller interface segment (SR[T] = 1), the dcbz
instruction is treated as a no-op.

See Chapter 5, “Exceptions,” for more information about a possi bl e delayed machine check
exception interrupt that can occur by use of dcbz if the operating system has set up an
incorrect memory mapping.

4.8.5 Data Cache Block Store Instruction (dcbst)

If the block (the cache sector consisting of 32 bytes) containing the byte addressed by the
EA isin coherence required mode, and a block containing the byte addressed by the EA is
in the data cache of any processor and has been modified, the writing of it to main memory
isinitiated.

The function of this instruction is independent of the write-through and cache-
inhibited/allowed modes of the block containing the byte addressed by the EA.

Chapter 4. Cache and Memory Unit Operation 4-19

This instruction is treated as a load from the addressed byte with respect to address
tranglation and protection.

If the EA specifies a memory address for an I/O controller interface segment (segment
register T-bit = 1), the dcbst instruction is treated as a no-op.

4.8.6 Data Cache Block Flush Instruction (dcbf)

The action taken depends on the memory mode associated with the target, and on the state
of the sector. The list below describes the action taken for the various cases. The actions
described must be executed regardiess of whether the page containing the addressed byte
isin caching-inhibited or caching-allowed mode.

e Coherence-required mode
Unmodified sector—Invalidates copies of the sector in the caches of all processors.

Modified sector—Copies the sector to memory. Invalidates copies of the sector in
the caches of all processors.

Absent sector—If modified copies of the sector arein the caches of other processors,
causes them to be copied to memory and invalidated. If unmodified copiesarein the
caches of other processors, cause those copies to be invalidated.

» Coherence-not-required mode
Unmodified sector—Invalidates the sector in the processor’s cache.

M odified sector—Copies the sector to memory. Invalidate the sector in the
processor’s cache.

Absent sector—Does nothing.

The 601 treats this instruction as a load from the addressed byte with respect to address
tranglation and protection.

4.8.7 Enforce In-Order Execution of I/O Instruction (eieio)

The eeo instruction provides an ordering function for the effects of load and store
instructions executed by a given processor. Executing eleio ensures that all memory
accesses previoudly initiated by the given processor are completed with respect to main
memory before any memory accesses subsequently initiated by the processor access main
memory.

The eleio instruction orders loads and stores to caching-inhibited memory only.

The eeo instruction is intended for use only in doing memory-mapped 1/O. It can be
thought of as placing a barrier into the stream of memory accesses issued by a processor,
such that any given memory access appears to be on the same side of the barrier to both the
processor and the I/O device.

Theeeoinstruction may complete before previously initiated memory accesses have been
performed with respect to other processors and mechanisms.

4-20 PowerPC 601 RISC Microprocessor User's Manual

Unlike the sync instruction, eieio need not serialize the processor. It requires only that the
processor execute memory accesses in the order described above, and enforce that order in
any queues in the memory subsystem.

4.8.8 Instruction Cache Block Invalidate Instruction (icbi)

The icbi instruction is provided in the PowerPC architecture for use in processors with
separate instruction and data caches. The effective (logical) addressis computed, transl ated,
and checked for protection violations as defined in the PowerPC architecture; however, the
instruction functions as a no-op on the 601.

In the PowerPC architecture, the icbi instruction performs the following function:

» |f the block (sector) containing the byte addressed by EA isin coherency-required
mode and a sector containing the byte addressed by EA isin theinstruction cache of
any processor, the sector is made invalid in all such processors, so that subsequent
references cause the sector to be refetched.

» If coherency is not required for the sector containing the byte addressed by EA and
a sector containing the byte addressed by EA isin the instruction cache of this
processor, the sector is made invalid in this processor so that subsequent references
cause the sector to be fetched from main memory (or from a cache).

4.8.9 Instruction Synchronize Instruction (isync)

Theisync instruction waits for al previous instructions to complete and then discards any
previously fetched instructions, causing subsequent instructionsto be fetched (or refetched)
from memory and to execute in the context established by the previous instructions. This
instruction has no effect on other processors or on their caches.

4.9 Bus Operations Caused by Cache Control
Instructions

Table 4-6 provides an overview of the bus operationsinitiated by cache control instructions.
Note that Table 4-6 assumes that the WIM bits are set to 001; that is, since the cache is
operating in write-back mode, caching is permitted and coherency is enforced.

Chapter 4. Cache and Memory Unit Operation 4-21

Table 4-6. Bus Operations Caused by Cache Control Instructions (WIM = 001)

Operation Cache State Next Cache State Bus Operations Comment
sync/eieio Don't care No change sync First clears memory queue
dcbi Don't care I Kill —
dcbf IS, E I Flush —
dcbf M | Write with kill Sector is pushed
dcbst I,S, E No change Clean —
dcbst M E Write with kill Sector is pushed
dchz I M Kill May also cast out a sector
dcbz S M Kill —
dchz E,M M None Writes over modified data
dcbt | No change Read State change on reload

may cast out sector
dcbt S, E.M No change None —

Table 4-6 does not include noncacheable or write-through cases, nor does it completely
describe the mechanisms for the operations described. For more information, see
Section 4.11, “MESI State Transactions.”

Chapter 3, “Addressing Modes and I nstruction Set Summary,” and Chapter 10, “Instruction
Set,” describe the cache control instructions in detail. Several of the cache control
instructions broadcast onto the 601 interface so that all processors in a multiprocessor
system can take appropriate actions. The 601 contains snooping logic to monitor the busfor
these commands and the control logic required to keep the cache and the memory queues
coherent. For additional details about the specific bus operations performed by the 601, see
Chapter 9, “ System Interface Operation.”

4.10 Memory Unit

The 601's memory unit contains read and write queues that buffer operations between the
external interface and the cache. These operations are comprised of operations resulting
from load and store instructions that are cache misses, read and write operations required
to maintain cache coherency, and table search operations. As shown in Figure 4-5, the read
gueue contains two elements and the write queue contains three elements. Each element of
the write gueue can contain as many as eight words (one sector) of data. One element of the
write queue, marked snoop in Figure 4-5, is dedicated to writing cache sectors to system
memory after amodified sector is hit by a snoop from another processor or snooping device
on the system bus. The use of this queue guarantees that a high-priority operation receives
a deterministic response time when snooping hits a modified sector.

4-22 PowerPC 601 RISC Microprocessor User's Manual

ADDRESS DATA
(from cache) (from cache)
READ WRITE QUEUE
(to cache) QUEUE
A > SNOOP
DATA QUEUE = -
k 1 1 1 1 1 1
(four word) , ADDRESS | DATA

| SYSTEM INTERFACE |

Figure 4-5. Memory Unit

The other two elements in the write queue are used for store operations and writing back
modified sectors that have been deallocated by updating the queue; that is, when a cache
sector is full, the least-recently used cache sector is deallocated by first being copied into
the write queue and from there to system memory if it is modified. Note that snooping can
occur after a sector has been pushed out into the write queue and before the data has been
written to system memory. Therefore, to maintain a coherent memory, the write queue
elements are compared to snooped addresses in the same way as the cache tags. If a snoop
hits awrite queue element, the dataisfirst stored in system memory beforeit can be loaded
into the cache of the snooping bus master. Full coherency checking between the cache and
the write queue prevents dependency conflicts.

For adetailed discussion about the retry signals and bus operations pertaining to snooping,
see Chapter 9, “ System Interface Operation.”

Execution of aload or store instruction is considered complete when the associated address
tranglation compl etes, guaranteeing that the instruction has completed to the point where it
is known that it will not generate an internal exception. However, after address trandation
iscomplete, aread or write operation can generate an external exception.

Load and store instructions are always issued and translated in program order with respect
to other load and storeinstructions. However, aload or store operation that hitsin the cache
can complete ahead of those that miss in the cache; additionally, loads and stores that miss
the cache can be reordered as they arbitrate for the system bus.

If aload or store misses in the cache, the operation is managed by the memory unit which
prioritizes accesses to the system bus. Read requests, such as loads, RWITMs, and
instruction fetches have priority over single-beat write operations The priorities for
accessing the system bus are listed in Section 4.10.2, “Memory Unit Queuing Priorities.”
The 601 ensures memory consistency by comparing target addresses and prohibiting

Chapter 4. Cache and Memory Unit Operation 4-23

instructions from completing out of order if an address matches. Load and store operations
can beforced to executein strict program order by inserting async instruction between each
sequential memory access instruction.

4.10.1 Memory Unit Queuing Structure

The memory queue receives requests from the cache unit for arbitration onto the 601 bus
interface. These requests may either be presented immediately to the bus interface logic or
they may be queued for future arbitration onto the bus. The memory queue consists of a
two-element read queue and a three-element write queue. Each write queue element can
hold a sector of data (32 bytes) associated with a single address.

Some operations presented to the memory queue cannot be queued. These operations
typically require synchronization with respect to either the execution units, the cache, or the
memory gueue itself. In general, when these requests are presented and not arbitrated
directly onto the bus, they stall above the cache (but do not necessarily prevent use of the
cache) and attempt to re-arbitrate on the next cycle. These operationsinclude the following:

» Cache control instructions that are broadcast

» Execution of thetlbie instruction

» Execution of the sync instruction

» Execution of the eieio instruction

» Cacherequestsfor exclusive ownership when the sector isresident but not exclusive
in the cache

The memory queue also allows the optional loading of the sector adjacent to the one
containing the critical data. Asthe memory read queue receives and processes cache sector
reload requests, it is advantageous to fetch the other sector if it is not already in the cache
unless fetching the other sector delays access to data required for the machine to continue
processing. The memory unit logic detects whether other operations are pending; if not, it
initiates afetch for the other sector. Note that this function can be disabled by setting bit 26
in HIDO (for instruction fetch misses) and bit 27 in HIDO (for |oad/store misses).

4.10.2 Memory Unit Queuing Priorities

This section describes the priorities for access to the system interface:
1. High-priority cache push-out operations
2. Normal snoop push-out operations

3. /O controller interface segment accessesthat incur no additional delays(that is, they
have not been retried because of latency).

Cache instruction operations

Read requests, such as loads, RWITMs, and instruction fetches
Single-beat write operations

sync instructions

N o o k&

4-24 PowerPC 601 RISC Microprocessor User's Manual

8. Optional cache-linefill operations
9. Cache sector cast-out operations

10.1/O controller interface segment accesses that incur additional delays (that is, they
have been retried because of external device latency)

4.10.3 Bus Interface

The bus interface logic sequences operations onto the 601 bus according to defined
protocols. The bus interface logic is also responsible for snooping other bus traffic,
presenting these operations to the rest of the device for coherency considerations and
reporting the appropriate snoop status onto the bus.

For additional information about the 601 bus interface and the bus protocols, refer to
Chapter 9, “ System Interface Operation.”

4.11 MESI State Transactions

Table 4-7 shows MESI state transitions for various operations. The bus synchronization
column indicates whether exclusivity is required. Bus operations are described in
Table 4-5.

Table 4-7. MESI State Transitions

. Cache Bus Current Next . Bus
Operation Operation | sync WiM State State Cache Actions Operation
Load or Fetch Read No X0x I Same | 1 Cast out of modified Write with kill
(T=0) sector 1 (as required)

2 Pass four-beat read Read
to memory queue
3 Secondary cast out Write with kill

of sector 2 (as

required)
Load or Fetch Read No X0x S.EM Same | Read data from cache —
(T=0)
Load or Fetch Read No X1x Same | Pass single-beat read Read
T =0 or Load to memory queue
(T=1,
BUID = x'7F")
Load or Fetch Read No X1X SE | CRTRY read —
T=0orLoad
(T=1,
BUID = x'7F")
Load or Fetch Read No x1x M | CRTRY read (push Write with kill
T =0 or Load sector to write queue)
(T=1,
BUID = x'7F")

Chapter 4. Cache and Memory Unit Operation 4-25

Table 4-7. MESI State Transitions (Continued)

. Cache Bus Current Next . Bus
Operation Operation | sync WiM State State Cache Actions Operation
Load 1/0 — X1x — — — 1/0 load
(T=1, controller
BUID # x'7F") load
Iwarx Read Acts like other reads but bus operation uses special encoding
Store Write No 00x I Same | 1 Cast out of modified Write with kill
(T=0) sector (if necessary)

2 Pass RWITM to RWITM
memory queue
3 Cast out of sector 2 Write with kill
(if necessary)
Store Write Yes 00x S Same | 1 CRTRY write —
(T=0)) ,
2 Pass kil Kill
3 Write data to cache —
Store Write No 00x E.M Write data to cache —
(T=0)
Store # stwex. | Write No 10x Same | Pass single-beat write Write with
(T=0) to memory queue flush
Store # stwcx. | Write No 10x S,E Same | 1 Write data to cache —
(T=0)) —
2 Pass single-beat Write with
write to memory flush
queue
Store # stwcx. | Write No 10x M E 1 CRTRY write —
(T=0)
2 Push sector to write Write with kill
queue
Store (T = 0) Write No X1x Same | Pass single-beat write Write with
or stwcx. to memory queue flush
(WIM = 10x)
orstore (T =1,
BUID = x'7F'
Store (T =0) Write No X1x SE | CRTRY write —
or stwcex.
(WIM = 10x)
or store (T =1,
BUID = x'7F")
Store (T = 0) Write No X1x M | 1 CRTRY write —
or stwcx. - - —
(WIM = 10x) 2 Push sector to write Write with kill
orstore (T =1, queue
BUID = x'7F")
Store (T =1, I/0 No — — — — 1/0 store
BUID # x'7F") controller request
4-26 PowerPC 601 RISC Microprocessor User's Manual

Table 4-7. MESI State Transitions (Continued)

. Cache Bus Current Next . Bus
Operation Operation | sync WiM State State Cache Actions Operation
stwcx. Conditional | If the reserved bit is set, this operation is like other writes except the bus operation

write uses a special encoding.
dcbf Datacache | Yes XXX I,S,E Same | 1 CRTRY dcbf —
block flush
2 Pass flush Flush
Same | 3 State change only —
dcbf Datacache | No XXX M | Push sector to write Write with Kill
block flush queue
dcbst Datacache | Yes XXX I,S,E Same | 1 CRTRY dcbst —
block store
2 Pass clean Clean
Same Same | 3 No action —
dcbst Datacache | No XXX M E Push sector to write Write with kill
block store queue
dcbz Datacache | No X1x X X Alignment trap —
block set to
zero
dcbz Datacache | No 10x X X Alignment trap —
block set to
Zero
dcbz Datacache | Yes 00x Same | 1 CRTRY dcbz —
block set to — —
zero 2 Cast out of modified | Write with kill
sector
3 Pass kill Kill
4 Secondary cast out Write with kill
of sector 2
Same M 5 Clear sector —
dcbz Datacache | Yes 00x S Same | 1 CRTRY dcbz —
block set to
zero 2 Passkill Kill
Same 3 Clear sector —
dcbz Datacache | No 00x E.M Clear sector —
block set to
Zero
dcbt Datacache | No x1x Same | Pass single-beat read Read
block touch to memory queue
dcbt Datacache | No x1x S,E | CRTRY read —
block touch
dcbt Datacache | No x1x M | 1 CRTRY read —
block touch - - .
2 Push sector to write Write with Kkill
queue

Chapter 4. Cache and Memory Unit Operation

4-27

Table 4-7. MESI State Transitions (Continued)

. Cache Bus Current Next . Bus
Operation Operation | sync WiM State State Cache Actions Operation
dcbt Datacache | No X0x I Same | 1 Cast out of modified Write with kill

block touch sector (as required)
2 Pass four-beat read Read
to memory queue
3 Secondary cast out Write with kill
of sector (as
required)
dcbt Datacache | No X0x SEM Same | No action —
block touch
Secondary Secondary | No XXX Same | Cast out Write with kill
cast out cast out
Single-beat Reload No XXX Same | Forward data_in —
read dump 1
Four-beat Reload No XXX Same | 1 Forward data_in —
read (quad- dump 1 - -
word 1) 2 Write data_in to —
cache
Four-beat Reload No XXX S Write data_in to cache —
read (quad- dump 2
word 2)—S
Four-beat Reload No XXX E Write data_in to cache —
read (quad- dump 2
word 2)—E
Four-beat Reload No XXX Same | 1 Splice and forward —
write (quad- dumpl data_in
word 1) - -
2 Write data_in to —
cache
Four-beat Reload No XXX M Write data_in to cache —
write (quad- dump 2
word 2)
Optional Reload No XXX Same | Write data_in to cache —
reload of dump 1
adjacent
sector (quad-
word 1)
Optional Reload No XXX S Write data_in to cache —
reload of dump 2
adjacent
sector (quad-
word 2)—S
Optional Reload No XXX E Write data_in to cache —
reload of dump 2
adjacent
sector (quad-
word 2)—E
4-28 PowerPC 601 RISC Microprocessor User's Manual

Table 4-7. MESI State Transitions (Continued)

. Cache Bus Current Next . Bus
Operation Operation | sync WiM State State Cache Actions Operation
E-S Snoop No XXX E S State change only —

read (committed)
S| Snoop No XXX S | State change only —
write or Kill (committed)
E-| Snoop No XXX E | State change only —
write or kill (committed)
M-I Snoop No XXX M | State change only —
kill (committed)
Push Snoop No XXX M S Conditionally push Write with kill
M-S read
Push Snoop No XXX M | Conditionally push Write with kill
M- flush
Push Snoop No XXX M E Conditionally push Write with kill
M—-E clean
tibie TLB Yes XXX X X 1 CRTRY TLB —
invalidate invalidate
2 Pass TLB invalidate TLB invalidate
3 No action —
syncl/eieio Synchroniz | Yes XXX X X 1 CRTRY sync —
ation
2 Pass sync dsync
3 No action —

Note that dcbt is presented to the cache as a load operation. The instructions tibie and sync/eieio cause no
state transitions and are not cache operations but are included in the table to show how they are performed
by the memory unit queueing mechanism.

Note also that single-beat writes are not snooped in the write queue.

Chapter 4. Cache and Memory Unit Operation 4-29

4-30 PowerPC 601 RISC Microprocessor User's Manual

Chapter 5
Exceptions

The PowerPC exception mechanism allows the processor to change to supervisor state asa
result of externa signals, errors, or unusual conditions arising in the execution of
instructions. When exceptions occur, information about the state of the processor is saved
to certain registers and the processor begins execution at an address (exception vector)
predetermined for each exception. The exception handler at the specified vector is then
processed with the processor in supervisor mode.

Although multiple exception conditions can map to a single exception vector, a more
gpecific condition may be determined by examining a register associated with the
exception—for example, the DAE/source instruction service register (DSISR) and the
floating-point status and control register (FPSCR). Additionally, some exception conditions
can be explicitly enabled or disabled by software.

Except for the catastrophic asynchronous exceptions (machine check and system reset) the
PowerPC 601 microprocessor exception model is precise, defined as follows:

» Theexception handler is given the address of the excepting instruction (or the next
Instruction to execute in the case of asynchronous, precise exceptions).

» All instructions prior to the excepting instruction in the instruction stream have
compl eted execution and have written back their results.

* Noinstructions subsequent to the excepting instruction in the instruction stream
have been issued.

A detailed description of how theinstruction flow is handled in aprecise fashion is provided
in 7.3.1.4.4, “ Synchronization Tags for the Precise Exception Model.”

The PowerPC architecture requires that exceptions be handled in program order; therefore,
although a particular implementation may recognize exception conditions out of order, they
are presented strictly in order. When an instruction-caused exception is recognized, any
unexecuted instructionsthat appear earlier in theinstruction stream, including any that have
not yet entered the execute state, are required to compl ete before the exception istaken. Any
exceptions caused by those instructions are handled first. Likewise, exceptions that are
asynchronous and precise are recognized when they occur, but are not handled until all
instructions currently in the execute stage successfully complete execution and report their
results.

Chapter 5. Exceptions 5-1

Unless a catastrophic condition causes a system reset or machine check exception, only one
exception is handled at a time. If, for example, a single instruction encounters multiple
exception conditions, those conditions are encountered sequentially. After the exception
handler handles an exception, the instruction execution continues until the next exception
condition is encountered. However, in many cases there is no attempt to reexecute the
instruction. This method of recognizing and handling exception conditions sequentially
guarantees that exceptions are recoverable.

Exception handlers should save the information stored in SRRO and SRR1 early to prevent
the program state from being lost due to a system reset and machine check exception or to
an instruction-caused exception in the exception handler, and before enabling external
interrupts.

This chapter describes the 601 exception model, it explains each class of instruction, and it
describes how the program state is saved for individual exceptions.

5.1 Exception Classes

As specified by the PowerPC architecture, all 601 exceptions can be described as either
precise or imprecise and either synchronous or asynchronous. Asynchronous exceptionsare
caused by events external to the processor’s execution; synchronous exceptions, which are
al handled precisely by the 601, are caused by instructions.

The 601 exceptions are shown in Table 5-1.

Table 5-1. PowerPC 601 Microprocessor Exception Classifications

Synchronous/Asynchronous Precise/lmprecise Exception Type

Asynchronous Imprecise Machine check
System reset

Asynchronous Precise External interrupt
Decrementer

Synchronous Precise Instruction-caused exceptions

Although exceptions have other characteristics as well, such as whether they are maskable
or nonmaskabl e, the distinctions shown in Table 5-1 define categories of exceptionsthat the
601 recognizes. Note that Table 5-1 includes no synchronous impreciseinstructions. While
the PowerPC architecture supports imprecise floating-point exceptions, they do not occur
in the 601.

Exceptions, and conditions that ca