AIX VS COBOL Compiler/6000

Language Reference

SC23-2177-00

First Edition (March 1990)

This edition of the Language Reference for IBM AIX VS COBOL Compiler/6000 applies to Version
Number 1.1 of the IBM AIX VS COBOL Compiler/6000 Licensed Program and to all subsequent
releases of these products until otherwise indicated in new releases or technical newsletters.

The following paragraph does not apply to the United Kingdom or any country where such pro-
visions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPO-
RATION PROVIDES THIS MANUAL “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Some states do not
allow disclaimer of express or implied warranties in certain transactions; therefore, this statement
may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are period-
ically made to the information herein; these changes will be incorporated in new editions of the pub-
lication. IBM may make improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM products
(machines and programs), programming, or services that are not announced in your country. Such
references or information must not be construed to mean that IBM intends to announce such IBM
products, programming, or services in your country. Any reference to an IBM licensed program in
this publication is not intended to state or imply that you can use only IBM’s licensed programs.
You can use any functionally equivalent program instead.

Requests for copies of this publication and for technical information about IBM products should be
made to your IBM Authorized Dealer or your IBM Marketing Representative.

A reader’s comment form is provided at the back of this publication. If the form has been removed,
address comments to IBM Corporation, Department 997, 11400 Burnet Road, Austin,
Texas 78758-3493. IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

IBM is a registered trademark of International Business Machines Corporation.
©Copyright International Business Machines Corporation 1987, 1990. All rights reserved.
©Copyright Micro Focus, Ltd. 1987, 1990. All rights reserved.

Notice to U.S. Government Users - Documentation Related to Restricted Rights - Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

ii Language Reference

Trademarks

The following trademarks apply to this book.

IBM is a registered trademark of International Business Machines Corporation.
AIX PS/2 VS COBOL is a trademark of International Business Machines Corporation.

AIX VS COBOL Compiler/6000 is a trademark of International Business Machines Cor-
poration.

AIX/RT VS COBOL is a trademark of International Business Machines Corporation.
RT is a registered trademark of International Business Machines Corporation.

AIX is a trademark of International Business Machines Corporation.

AIX VS COBOL is a trademark of International Business Machines Corporation.

OS/VS COBOL and VS COBOL II are trademarks of International Business Machines
Corporation.

VS COBOL is a trademark of Micro Focus.

Trademarks iii

iv Language Reference

About This Book

This book discusses the IBM implementation of the VS COBOL language on the AIX Oper-
ating System. The book contains language syntax and semantics representing COBOL at
the ANSI 85 High Level and ANSI 74 High Level.

Please note that this book does not teach COBOL language programming. You should use
this book for reference only.

Who Should Read This Book

This book is intended for persons with some knowledge of COBOL programming concepts
and some experience in writing COBOL programs.

This book assumes you know how to use your AIX system. You should be able to log on,
create files, edit files, and use various other operating system commands.

How This Book is Organized

Part 1, Introduction and COBOL Concepts

Chapter 1, “Introduction,” provides an introduction to the COBOL language elements,
book notation style, and formats and rules.

Chapter 2, “COBOL Concepts,” describes the language concepts and Identification,
Environment, Data, and Procedure Divisions.

Part 2, The Nucleus

Chapter 3, “Introduction to the Nucleus,” describes the internal processing of data
within the four divisions of a program.

Chapter 4, “Identification Division in the Nucleus,” describes the Identification Divi-
sion of the nucleus.

Chapter 5, “Environment Division in the Nucleus,” describes the Environment Divi-
sion of the nucleus.

Chapter 6, “Data Division,” describes the Data Division of the nucleus.

Chapter 7, “Procedure Division in the Nucleus,” describes the Procedure Division of
the nucleus.

Part 3, File I/O, Source Control, and Inter-Program Communication

Chapter 8, “File Input and Output,” describes the use of sequential, relative, and
indexed I/O with files.

Chapter 9, “COBOL Source Library,” describes editing text, copying text from a source
user library file and replacing text in the source program.

Chapter 10, “Listing Control,” describes the functions of the list control statement.

Chapter 11, “Interprogram Communication,” describes the facility by which a program
can communicate with one or more programs.

Part 4, Advanced Features

Chapter 12, “Table-Handling,” describes the capability for defining tables of contig-
uous data items and accessing items within the table.

About This Book v

Chapter 13, “Sort-Merge,” describes the capability of ordering, sorting and merging
files.

Chapter 14, “Report Writer,” describes the Report Writer feature, which emphasizes
the organization, format, and contents of an output report.

Chapter 15, “Communication,” describes how to access, process, and create messages,
and how to communicate with local and remote communication devices.

Chapter 16, “Segmentation,” describes the capability to specify object program overlay
requirements.

Chapter 17, “Program Debugging,” describes the procedures for monitoring execution
of the object program.

Chapter 18, “Screen-Handling,” describes the enhanced screen handling facilities.

Appendix A, “Ryan-McFarland Syntax Supplement,” provides supplemental syntax
information for when you submit your code to the COBOL system and the RM directive
is set.

Appendix B, “Data General Syntax Supplement,” provides supplemental syntax infor-
mation for when you submit your code to the COBOL system and the DG directive is
set.

Appendix C, “Microsoft Syntax Supplement,” lists AIX VS COBOL syntax that is com-
patible with Microsoft COBOL.

Appendix D, “Reserved Word List,” lists the reserved words.

This book also contains an index and a glossary that defines terms used in this publication.

Highlighting

Text

This book uses two sets of highlighting conventions:

Highlighting within text
Highlighting within syntax diagrams.

Type styles appearing within the text show the following:

Type Style Description

Monospace Examples appear in monospace type.

Bold Commands, messages, and keywords appear in bold type.

Bold Italic New terms appear in bold italic type.

Syntax Diagrams

Throughout this book, syntax is described using the structure defined below:

[]

Read the syntax diagrams from left to right, from top to bottom, following the path of
the line.

The following symbol indicates the beginning of a statement:

»——

vi Language Reference

The following symbol indicates that the statement syntax is continued on the next line:

—

The following symbol indicates that a statement is continued from the previous line:

»——

The following symbol indicates the end of a statement:

—>a

Required items appear on the horizontal line (the main path).

»>— STATEMENT

required item ——><

Optional items appear below the main path.

»»— STATEMENT L _] >
optional item

When you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main path.
»»— STATEMENT —E required choicel :]—~—-—>4

required choice2
If choosing an item is optional, the entire stack appears below the main path.

»»— STATEMENT e
l:optional choicel :]

optional choice2

An arrow returning to the left above the main line indicates an item that can be

repeated.

repeatable item —>«

»»>—— STATEMENT

A repeat arrow above a stack indicates that you can make more than one choice from
the stacked items, or repeat a single choice.

COBOL key words appear on the main path in uppercase letters. They must be spelled
exactly as shown. Optional COBOL words appear below the main path in uppercase
letters and are not required.

Variables appear in all lowercase letters (for example parmx). They represent user
supplied names or values.

Dialects or language extensions appear in italic font with callouts at the right margin
identifying the dialects.

»»— DIALECT WORD —— dialect-parml —»« osvs

About This Book vii

»—— STATEMENT identifier-1
Ry A R
teral-1 item-1

o If a dialect allows the omission of a COBOL word or words, a no word appears under
the COBOL word.

COBOL WORD
NO WORD

e If punctuation marks, parentheses, arithmetic opersztors, or such symbols are shown,
they must be entered as part of the syntax.

The following example shows how the syntax is used:

E ‘

v

»—l_———j——identifier—m > 1
T0 LROUNDED——‘
'a |
identifier-n > 2
LROUNDED ——J
1» >
|——DIAL:‘:'CT l'IORD—l osVvs
a
2 »

— ON

where item-1 is:

identifier-2

E Titeral-2

viii

arithmetic-expression-1—

————:I— SIZE ERROR imperative-statement —

v

The STATEMENT key word must be specified and coded as shown.
This operand is required. Either identifier-1 or literal-1 can be coded.

The operand item-1 is optional. It can be coded or not, as required by the appli-
cation. If coded, it may be repeated with each entry separated by one or more
blanks. Entry selections allowed for this operand are described at the bottom of
the diagram.

The operand identifier-n is optional. If specified, it can be repeated with one or

more blanks separating each entry. Each entry can be assigned the key word
ROUNDED.

In cases where multiple lines must be continued, a number is given at the end of
one line and the beginning of the next to show syntax flow.

The ON SIZE ERROR key word, with associated imperative statement, can be
coded after the last identifier-n operand. If coded, SIZE ERROR is required, ON
is optional, and it appears below the main path.

The dialect word is a supported non-ANS85 dialect. The word and the callout
both appear in italic font.

Language Reference

The following notations are highlighted to indicate features outside ANSI X3.23-1985:

OSVSs For IBM OS/VS COBOL Release 2.4 and earlier.
VSC2 For IBM VS COBOL II Release 2.
MF For Micro Focus extensions.

Related Publications

The AIX VS COBOL Compiler/6000 documentation is available in hardcopy publications
only. Softcopy information to support AIX and other licensed programs is provided with
the product. The entire AIX library is available as softcopy on a CD-ROM. Refer to the
operating system documentation for more detailed information on the various features of
AIX. The following hardcopy documentation is also available: User’s Guide for IBM AIX
VS COBOL Compiler[6000 describes how to compile and execute AIX VS COBOL programs.

Ordering Additional Copies of This Book

To order additional copies of this publication, use the form number SC23-2177-00.

About This Book ix

x Language Reference

Contents

PART 1. Introduction and COBOL Concepts

Chapter 1. Introduction 11
Contents 1-2
About This Chapter e 1-3
IBM AIX VS COBOL Language 1-4.
Program Structure 1-7
Manual Format e 1-7
Chapter 2. COBOL Concepts 2-1
Contents 2-2
About This Chapter e 2-3
Language Concepts 2-4
Character Set 2-4
Language Structure 2-5
Concept Of Computer-Independent Data Description 2-16
Explicit and Implicit Specifications 2-34
Program Structure 2-37
Identification Division e 2-38
Environment Division 2-39
Data Division 2-41
Procedure Division 2-44
Reference Format 2-52
Reserved Words e 2-55

PART 2. The Nucleus

Chapter 3. Introduction to the Nucleus 31
Contents 3-2
About This Chapter 3-3
Function of the Nucleus 3-4
Overall Language 34
A COBOL Source Program 35
Chapter 4. Identification Division in the Nucleus 4-1
Contents e 4-2
About This Chapter e 4-3
General Description 4-4
PROGRAM-ID Paragraph e 4-6
DATE-COMPILED Paragraph i 4-7
REMARKS Paragraph e 4-8
Chapter 5. Environment Division in the Nucleus 5-1
Contents e 5-2
About This Chapter e 5-3
General Description 5-4
Configuration Section 5-4
SOURCE-COMPUTER Paragraph 5-5
OBJECT-COMPUTER Paragraph it 5-6
SPECIAL-NAMES Paragraph 5-8
Chapter 6. Data Division 6-1
Contents e 6-2
About This Chapter e 6-5
WORKING-STORAGE SECTION i 6-6

Contents xi

xii

Data Description — Complete Entry Skeleton 6-7

BLANK WHEN ZERO Clause st s s s 6-11
Data-Name or FILLER Clause i 6-12
JUSTIFIED Clause ot e s s s s s s, 6-13
Level Number e e 6-15
PICTURE Clause s s s s s, 6-18
REDEFINES Clause s s s 6-29
RENAMES Clause s s s s s 6-32
SIGN Clause 6-35
SYNCHRONIZED Clause oot s s s s 6-37
USAGE Clause e 6-39
VALUE Clause s e 6-41
Chapter 7. Procedure Division in the Nucleus 7-1
Contents 7-2
About This Chapter e 7-5
Procedure Division in the Nucleus 7-6
Arithmetic Expressions e 7-7
Conditional Expressions e 79
Common Phrases and General Rules for Statement Formats 7-19
ACCEPT Statement 7-22
ADD Statement 7-24
ALTER Statement 7-27
COMPUTE Statement o s s s, 7-29
CONTINUE Statement s e 7-31
DISPLAY Statement o 7-32
DIVIDE Statement 7-34
ENTER Statement 7-38
EVALUATE Statement s s 7-39
EXAMINE Statement 7-43
EXEC(UTE) Statement e 7-45
EXHIBIT Statement 7-46
EXIT Statement 7-48
GO TO Statement 7-50
IF Statement 7-52
INITIALIZE Statement e e e 7-54
INSPECT Statement e 7-57
MOVE Statement 7-65
MULTIPLY Statement e 7-69
ON Statement 7-711
PERFORM Statement s s 7-73
SET Statement 7-84
STOP Statement 7-86
STRING Statement 7-87
SUBTRACT Statement st 7-91
TRANSFORM Statement et s 7-94
UNSTRING Statement 7-96

PART 3. File I/O, Source Control, and Inter-Program Communication

Chapter 8. File Input and Output 81
Contents e e 8-2
About This Chapter 8-5
Introduction 8-6
Sharing Files on Multiuser Systems, 8-12
Environment Division for File Input and Output 8-16
INPUT-OUTPUT SECTION e s, 8-16
FILE-CONTROL Paragraph 8-17
FILE-CONTROL Entry e 8-18
I-O Control Paragraph e 8-29
Data Division for File Input and Output 8-34
BLOCK CONTAINS Clauset ittt e e e e 8-39

Language Reference

CODE-SET Clause ot e s s s s 8-40

DATARECORDS Clause e e e e 8-42
LABEL RECORDS Clause 8-43
LINAGE Clause e e e e e e 8-44
RECORD Clause e e e e e e e 8-47
RECORDING MODE Clause 8-50
VALUE OF Clause e e e e e e e 8-51
Procedure Division for File Input and Output 8-53
CLOSE Statement e 8-53
COMMIT Statement it e e 8-58
DELETE Statement e 8-59
OPEN Statement e 8-62
READ Statement 8-68
REWRITE Statement e 8-75
START Statement e 8-79
UNLOCK Statement e e e e 8-85
USE Statement e 8-86
WRITE Statement e 8-89
Chapter 9. COBOL Source Library 9-1
Contents e 9-2
About This Chapter e 9-3
Introduction 94
COPY Statement e 9-5
REPLACE Statement 9-10
Chapter 10. Listing Control 10-1
Contents e e 10-2
About This Chapter e 10-3
SKIP1, SKIP2, and SKIP3 Statements, 10-4
EJECT Statement e 10-5
TITLE Statement e e e e 10-6
Chapter 11. Interprogram Communication 11-1
Contents e 11-2
About This Chapter e 11-5
Introduction e 11-6
Language Concepts e 11-6
Nested Source Programs, 11-10
END PROGRAM Header 11-13
Identification Division in the Interprogram Communication Module 11-15
Data Division in the Interprogram Communication Module 11-17
LINKAGE SECTION e e e e e e 11-17
File Description Entry in the Interprogram Communication Module 11-19
Data Description Entry in the Interprogram Communication Module 11-25
Report Description Entry in the Interprogram Communication Module 11-28
EXTERNAL Clause i e e e e e 11-30
GLOBAL Clause e e e e e e e 11-31
Procedure Division in the Interprogram Communication Module 11-33
CALL Statement e 11-36
CANCEL Statement e 11-43
CHAIN Statement e e 11-45
ENTRY Statement e 11-47
EXIT PROGRAM Statement 11-50
GOBACK Statement e 11-51
USE Statement 11-52
USE BEFORE REPORTING Statement 11-53

PART 4. Advanced Features
Chapter 12. Table-Handling 12-1

Contents xiii

Contents e, 12-2

About This Chapter e 12-3
Introduction e 124
Data Division in the Table-Handling Module 12-5
OCCURS Clause e e s s s 12-5
USAGE ISINDEX Clause it e 12-12
Procedure Division in the Table-Handling Module 12-13
SEARCH Statement e e 12-14
SET Statement e 12-19
Table-Handling Sample Program 12-21
Chapter 13. Sort-Merge 13-1
Contents e 13-2
About This Chapter e 13-3
Introduction 13-4
Environment Division in the Sort-Merge Module—Input-Output Section 13-4
FILE-CONTROL Paragraph 13-5
FILE-CONTROL Entry e e e 13-6
I-O-CONTROL Paragraph e 13-8
Data Division in the Sort-Merge Module 13-10
Sort-Merge File Description - Complete Entry Skeleton 13-10
DATA RECORDS Clause i e i 13-12
RECORD CONTAINS Clause e 13-13
Procedure Division in the Sort-Merge Module 13-14
MERGE Statement 13-14
RELEASE Statement e 13-18
RETURN Statement e 13-19
SORT Statement e e 13-21
Sort-Merge Sample Program 13-26
Chapter 14. Report Writer 14-1
Contents e 14-2
About This Chapter e 14-5
Introduction e 14-6
REPORT SECTION e e e e 14-6
Report Structure e 14-6
Environment Division in the Report Writer Module 14-10
INPUT-OUTPUT Section i e e e e 14-10
FILE-CONTROL Paragraph 14-10
I-O-CONTROL Paragraph S 14-10
Data Division in the Report Writer Module 14-11
File Description Entry 14-11
REPORT Clause e e e e e e e 14-14
REPORT SECTION e e e e e 14-16
CODE Clause e e e 14-19
CONTROL Clause e e e e e e s e 14-20
PAGE Clause e 14-22
Example 1 14-25
Example 2 e 14-26
Example 3 e e 14-27
Report Group Description Entry 14-28
COLUMN NUMBER Clauset 14-45
Data-Name e e e 14-46
GROUP INDICATE Clause et e e 14-47
Level-Number e 14-48
LINE NUMBER Clause e e e 14-49
NEXT GROUP Clause e e e e e 14-51
SIGN Clause e 14-53
SOURCE Clause e e e e e e e 14-55
SUM Clause e e 14-56
TYPE Clause 14-59
USAGE Clause e e e e e 14-63

xiv Language Reference

VALUE Clause 14-64

Procedure Division in the Report Writer Module 14-66
CLOSE Statement 14-67
GENERATE Statement 14-68
INITIATE Statement e 14-71
OPEN Statement e 14-72
SUPPRESS Statement 14-73
TERMINATE Statement e 14-74
USE BEFORE REPORTING Statement 14-76
Report Writer Sample Program 14-77
Chapter 15. Communication 15-1
Contents e 15-2
About This Chapter e 15-3
Introduction e 15-4
Data Division in the Communication Module 15-4
Procedure Division in the Communication Module 15-19
ACCEPT MESSAGE COUNT Statement 15-20
DISABLE Statement 15-21
ENABLE Statement 15-23
PURGE Statement e 15-25
RECEIVE Statement 15-26
SEND Statement 15-29
Communication Sample Program 15-33
Chapter 16. Segmentation 16-1
Contents e 16-2
About This Chapter 16-3
Introduction 16-4
General Description of Segmentation 16-4
Structure of Program Segments 16-6
Restrictions on Program Flow 16-7
Chapter 17. Program Debugging 17-1
Contents 17-2
About This Chapter 17-3
Introduction 17-4
Environment Division in COBOL Debug 17-5
WITH DEBUGGING MODE Clause 17-5
Procedure Division in COBOL Debug 17-6
READY TRACE Statement 17-6
RESET TRACE Statement e e 17-7
USE FOR DEBUGGING Statement 17-8
Debugging Lines 17-13
Debugging Facilities Sample Program 17-14
Chapter 18. Screen-Handling 18-1
Contents 18-2
About This Chapter e 18-5
Introduction 18-6
Environment Division in the Screen-Handling Module 18-8
SPECIAL-NAMES Paragraph 18-9
CONSOLE IS CRT Clause i e e 18-10
CURSOR IS Clause i e e e e 18-11
CRT STATUS Clause e e e e e 18-12
Data Division in the Screen-Handling Module 18-14
SCREEN SECTION e e s e s 18-14
Screen Description — Complete Entry Skeleton 18-15
AUTO Clause e 18-21
BACKGROUND-COLOR Clause 18-22
BELL Clause e 18-24
BLANK Clause e 18-25

Contents xv

xvi

BLANK WHEN ZERO Clause 18-26

BLINK Clause e e e 18-27
COLUMN Clause e e e e e e e e 18-28
FOREGROUND-COLOR Clause 18-30
FULL Clause e e e e e 18-32
GRID Clause e 18-34
HIGHLIGHT Clause e e e e e 18-35
JUSTIFIED Clause e e e 18-36
LEFTLINE Clause e e e e e e 18-37
LINE Clause e 18-38
OCCURS Clause i e e e e e e e 18-40
OVERLINE Clause e e e e e 18-42
PICTURE Clause e e e 1843
PROMPT .Clauseo it e e e e e 18-45
REQUIRED Clause e e e 18-46
REVERSE-VIDEO Clause i 18-47
SECURE Clause e e e e 18-48
SIGN Clause . . .- 18-49
SIZE Clause e 18-50
UNDERLINE Clause e e e e 18-51
VALUE Clause e e s s e e e 18-52
ZERO-FILL Clause e e e e e 18-53
Procedure Division 18-54
ACCEPT Statement e e 18-55
DISPLAY Statement 18-61
Appendix A. Ryan-McFarland Syntax Supplement A-1
Introduction A-3
Reserved Words e A-3
Identification Division - The PROGRAM-ID Paragraph A-3
Environment Division A-3
Data Division e A-6
Procedure Division A-8
Appendix B. Data General Syntax Supplement B-1
Introduction e B-3
Long User-Defined Names B-3
Environment Division B-4
Data Division e B-6
Procedure Division e B-7
Appendix C. Microsoft Syntax Supplement C-1
Introduction C-3
Compatibility with Microsoft COBOL C-3
Dialect Controlling Directives C-3
Summary of Syntactic Differences C-3
Problem Determination C-8
Appendix D. Reserved Word List D-1
Introduction D-3
Appendix E. Obsolete Language Elements E-1
Introduction E-3
List of Obsolete Language Elements E-3
GlOSSATY G-1
Index X-1

Language Reference

Figures

A Sample COBOL Program Showing Source Format 1-10
Example of Level Numbers in Group Descriptions 2-17
Example of Level Numbers Representing a Data Hierarchy 2-17
Storage Allocation 2-18
Sample Computer Storage Allocation 2-23
Number Storage 2-27
Reference Format for a COBOL Source Line 2-52
PICTURE Character Precedence Chart 6-28
Relational Operators 7-11
INSPECT Statement and the Execution Result 7-63
The VARYING Option of a PERFORM Statement with the TEST BEFORE

Phrase Having One Condition 7-78
The VARYING Option of a PERFORM Statement with the TEST BEFORE

Phrase Having Two Conditions 7-79
The VARYING Option of a PERFORM Statement with the TEST AFTER

Phrase Having One Condition 7-80
The VARYING Option of a PERFORM Statement with a TEST AFTER

Phrase Having Two Conditions 7-81
Valid Combinations of File Status Keys land 2 8-12
Relationship of CLOSE Statement with File Category 8-57
Flowchart of SEARCH Operation Containing Two WHEN Phrases 12-18
Nlustration of PAGE Clause Ranges 14-24
Values Assumed for Omitted PAGE Clause Options 14-24
Report Heading Group Presentation Rules Table 14-36
Page Heading Group Presentation Rules Table 14-37
Body Group Presentation Rules 14-39
Report Footing Presentation Rules 14-44
Communication Status Key Condition 15-8
Error Key Values 15-9
Permitted Use Of Options 18-7

Figures xvii

ie

mdo

[~y

Language Reference

Tables

Figurative Constant Values and the Reserved Words 2-12
Special Registers, Implicit Data Description Picture, and Usage 2-13
Data Levels, Classes, and Categories 2-19
Incorporation of Sign Data into the Requisite Digit 2-21
COMP(UTATIONAL) Format Data Item Character-Position (Byte) Storage
Assignment 2-22
Change of Results Due to TRUNC Directive 224
Binary-Coded Decimal Form 2-25
COMPUTATIONAL-3 Sign Digit Representation 2-26
Numeric Data Storage for the COMP(UTATIONAL)-3 or

PACKED-DECIMAL PICTURE Clause 2-26
Explicit Scope Terminators 2-36
Function-Name Reference 5-14
Editing Types for Data Categories 6-23
Editing Symbols in PICTURE Character Strings 6-24
Combination of Symbols in Arithmetic Expressions 7-8
Combinations of Conditions, Logical Operators, and Parentheses 7-17
MOVE Statement Data Categories 7-68
Default Locking for Sequential Files 8-14
Default Locking for Relative and Indexed Files 8-15
AFTER POSITIONING Phrase with identifier-2 8-95
AFTER POSITIONING Phrase with integer-1 8-95
Storage Layout for Table-Three 12-9
SET Statement Valid Operand Combinations 12-20
Status Key Combinations 13-7
Page Regions Established by the Page Clause 14-25
Permissible Clause Combinations in Format 3 Entries 14-32
Page Footing Presentation Rules 14-41
Valid Combinations of CRT Status Keys1and2 18-13
Mapping of File I-O Status Codes A-11
Reserved Words D4

Tables xix

xx Language Reference

PART 1. Introduction and COBOL Concepts

PART 1. Introduction and COBOL Concepts

Language Reference

Chapter 1. Introduction

Introduction 1-1

Contents

About This Chapter e 1-3
IBM AIX VS COBOL Languaget 1-4
Supported Language Elements of IBM OS/VSCOBOL 1-4
Supported Elements of IBM VSCOBOLII 1-4
Supported Micro Focus COBOL Enhancements 1-5
Supported Double-Byte Character Set Features DBCS) 1-5
Program Structure e 1-7
Manual Format e 1-7
General Format e 1-7
Syntax Rules e 1-8
General Rules 1-8
Elements e 1-8
Source Format e 1-8
Sequence Number 1-8
Indicator Area 1-8
Areas Aand B 19

1-2 Language Reference

About This Chapter

This chapter describes the following:

e The AIX VS COBOL language coverage
¢ The formats and rules used in this manual
¢ The source format of COBOL source records.

Introduction 1-3

IBM AIX VS COBOL Language

COmmon Business Oriented Language, COBOL, is the programming language most widely
used in commercial and administrative data processing.

The AIX VS COBOL language is a superset of ANSI COBOL 1985 HIGH as specified in
American National Standard Programming Language COBOL ANSI X3.23-1985. Language
extensions include: ‘

* Some of the more commonly used extensions of IBM OS/VS COBOL (Release 2.4 and
earlier)

¢ Most of the language constructs of IBM VS COBOL II (Release 2), December, 1986

e Additional extensions unique to this implementation of COBOL such as:

— Micro Focus specific extensions
— Ryan McFarland syntax

— Data General syntax

— Microsoft syntax.

Combinations of these extensions are permissible in program source. In addition, a flag-
ging option to identify the various language extensions in COBOL source programs
ensures that programs can be verified as being valid for any given one of the language
specifications.

AIX VS COBOL Compiler/6000 allows programmers to write SAA-conforming programs
according to the SAA CPI COBOL Reference, SC26-4354-1.

AIX VS COBOL Compiler/6000 is source code compatible with AIX/RT VS COBOL and
with AIX PS/2 VS COBOL.

AIX VS COBOL fully supports the ANSI optional modules Segmentation, Report Writer,
and Debug. The syntax for the ANSI optional module Communications is accepted, but
Communications is not supported at run time.

Supported Language Elements of IBM OS/VS COBOL

The elements of OS/VS COBOL that are fully supported include:
e The EXAMINE, EXHIBIT, TRANSFORM, ON, and GOBACK procedural statements

e The RETURN-CODE, CURRENT-DATE, TIME-OF-DAY, TALLY, and
WHEN-COMPILED special registers

* Language Level 1 COPY statement and COPY...SUPPRESS feature

e 2 4, and 8 byte COMPUTATIONAL and SYNCHRONIZED numeric data memory allo-
cation option

¢ The ENTRY...USING statement mechanism
e The REMARKS paragraph and EJECT and SKIP statements.

Many other language features are supported either fully or at the documentary level.

Supported Elements of IBM VS COBOL II

Some supported elements of IBM VS COBOL II not already listed above are:
¢ Nested COPY statements

¢ LENGTH special register

e TITLE statement

1-4 Language Reference

e TUSAGE POINTER
¢ ADDRESS special register.

Supported Micro Focus COBOL Enhancements

A screen-handling module, comprising a SCREEN SECTION and additional formats of
ACCEPT and DISPLAY statements, which enables the user to specify exact location of
fields on a display screen, accept data entered at specified positions, display literal text at
specified positions, define display screen attributes, and control console features.

Enhanced file I-O with an additional ORGANIZATION to handle text files efficiently and
to handle optional definition of file names either within a program source (data variable or
literal) or at run time from operating system environment variables. File sharing features
and record locking are also provided.

Supported Double-Byte Character Set Features (DBCS)

AIX VS COBOL supports the use of Double-Byte Character Set (DBCS) features as speci-
fied in the SAA CPI COBOL Reference. In this manual, references to DBCS supported
features will be enclosed in a framing box, as follows:

[DBCS Support 1

l End of DBCS Support |

Note: To use the DBCS-supporting implementation of AIX VS COBOL, you must have
installed the DBCS version of the AIX VS COBOL compiler, and you must use the DBCS
compiler option on your compilations. See the User’s Guide for more information on
installation and options.

Below is a summary of supported DBCS features. These include all DBCS features sup-
ported in the SAA CPI COBOL Reference. Features specified in SAA have page references
to the SAA CPI COBOL Reference (SC26-4354-1).

SAA
Page Supported Feature

18 Summary of DBCS elements supported
20 DBCS characters allowed in character strings
22 DBCS character strings allowed in literals and comments

26 There is a DBCS type of literal; mixed strings

26 SBCS and DBCS characters can be mixed in nonnumeric literals
27 Specification for G* ” DBCS literal

28 DBCS characters allowed in comments

34 DBCS literals cannot be continued

44 DBCS character strings allowed in comments in ID division

54 CURRENCY SIGN clause cannot use uppercase G

63 RECORD KEY clause in Environment Division may use DBCS data item
78 DBCS class and category added to chart of data categories

93 BLANK WHEN ZERO clause not allowed for DBCS items

Introduction 1-5

94
94
95
102
103
106
106
106
108
110
111
119
122
124
126
129
131
132
134
143
147
180
201
211
216
227
228
229
230
253
254
263
267
268
270
280
286
293
293
294

JUSTIFIED RIGHT may be used for DBCS items

OCCURS clause may be specified for a DBCS item

ASC/DESC KEY phrase may use DBCS item in OCCURS clause in SEARCH ALL
Lowercase g is equivalent to uppercase G for DBCS PIC strings
PICTURE clause description for G, DBCS B

PICTURE symbol sequence chart

G may appear more than once in one PIC character string

G may appear alone in the PIC character string

DBCS and DBCS-edited are additional data categories

PICTURE string description for DBCS and DBCS-edited item

Describes insertion symbols allowed for DBCS items

RENAMES clause in Data Division may specify DBCS items
SYNCHRONIZED clause is ignored for DBCS items

DISPLAY-1 is added as a USAGE type

DISPLAY-1 usage phrase defines a DBCS item

VALUE clause associated with a DBCS item must contain a DBCS literal
DBCS literals allowed in VALUE clauses

Relation tests allowed for DBCS items

DBCS items allowed in PROCEDURE DIVISION USING clause
Relational operators can be used with DBCS items

Rules for comparing DBCS operands are same as nonnumeric operands
CALL USING phrase may use DBCS items

EVALUATE statement may use DBCS items and literals
INITIALIZE..REPLACING may use DBCS as a category

INSPECT statement may use DBCS items and literals

MOVE statement may use DBCS items and literals

MOVE statement semantics for DBCS items and literals

MOVE statement conversion semantics for DBCS items

MOVE statement table of sending/receiving categories

READ statement: INTO phrase may use DBCS items

READ statement: KEY IS phrase may use DBCS items

REWRITE statement: FROM identifier may be a DBCS item

SEARCH statement: identifier-1 may be DBCS item

SEARCH statement: WHEN phrase may use DBCS relations, conditional names
SEARCH statement may include DBCS items for ASC/DESC KEY items
START data-name may be a DBCS item

STRING statement may use DBCS items and literals

UNSTRING statement can operate on DBCS item

UNSTRING statement: DELIMITED BY phrase may use DBCS items
UNSTRING statement: INTO phrase may use DBCS items

1-6 Language Reference

295 UNSTRING statement: POINTER phrase may use DBCS items
302 WRITE statement may use DBCS items

317 TITLE statement may use DBCS literals

329 DBCS, DISPLAY-1 included in Reserved Word list

341 Glossary defines DBCS

357 Index entry for DBCS

357 Index entry for DISPLAY-1

359 Index entry for G symbol in PICTURE clause

In addition to SAA DBCS support, AIX VS COBOL provides DBCS support for the fol-
lowing features:

¢ Condition tests (level 88 items may be DBCS items)
e ENTRY...USING may use DBCS items
¢ COPY..REPLACING may use DBCS items.

Program Structure

A COBOL program consists of four divisions:
1. Identification Division — An identification of the program

2. Environment Division — A description of the equipment to be used to compile and run
the program

Data Division — A description of the data to be processed

Procedure Division — A set of procedures to specify the operations to be performed on
the data.

Each division is divided into sections, which are further divided into paragraphs, which in
turn are made up of sentences.

Within these subdivisions of a COBOL program, further subdivisions exist as clauses and
statements. A clause is an ordered set of COBOL elements that specify an attribute of an
entry, and a statement is a combination of elements in the Procedure Division that
includes a COBOL verb and constitutes a program instruction.

Manual Format

This section describes the format of this manual.

General Format

A general format is the specific arrangement of the elements of a clause or a statement.
Throughout this document a format is shown adjacent to information defining the clause
or statement. When more than one specific arrangement is permitted, the general format
is separated into numbered formats. Clauses must be written in the sequence given in the
general formats. (Clauses that are optional must appear in the sequence shown if they are
used.) In certain cases, stated explicitly in the rules associated with a given format, the
clauses may appear in sequences other than those shown. Applications, requirements, or
restrictions are shown as rules.

Introduction 1-7

Syntax Rules

Syntax rules define or clarify the order in which words or elements are arranged to form
larger elements, such as phrases, clauses, or statements. Syntax rules also impose
restrictions on individual words or elements.

These rules are used to define or clarify how the statement must be written. This includes
the order of the elements of the statement and restrictions on what each element may rep-
resent.

General Rules

A general rule defines or clarifies the meaning, or relationship of meanings, of an element
or set of elements. It is used to define or clarify the semantics of the statements, and the
effect it has on execution or production of intermediate code.

Elements

Elements which make up a clause or a statement consist of uppercase words, lowercase
words, level numbers, brackets, braces, connectives, and special characters (see Chapter 2,
“COBOL Concepts”).

Source Format

The COBOL source format divides each COBOL source record into 72 columns. These
columns are used in the following ways:

Columns 1-6 Sequence number
Column 7 Indicator area
Columns 8-11 Area A

Columns 12-72 Area B

See “Reference Format” on page 2-52 for more details.

Sequence Number

A sequence number of six digits may be used to identify each source program line. If
column 1 contains an asterisk (*), or columns 1 and 2 contain a form feed character fol-
lowed by an asterisk, the entire line is ignored by the compiler and does not appear in the
list file. This facility allows list files to be used as source files.

Indicator Area

An asterisk (*) in the indicator area marks the line as documentary comment only. Such a
comment line can appear anywhere in the program after the Identification Division header.
Any characters from the ASCII character set can be included in area A and area B of the
line.

A stroke (/) in the indicator area acts as a comment line above but causes the page to eject
before printing the comment.

A letter D in the indicator area represents a debugging line. Areas A and B may contain
any valid COBOL sentence.

A hyphen (—) in the indicator area represents a continuation of the previous line without
spaces or the continuation of a nonnumeric literal (see Chapter 2, “COBOL Concepts”).

1-8 Language Reference

Areas A and B

Section names and paragraph names begin in area A and are followed by a

period and a space. Level indicators FD, SD, CD, and 01, 66, 77, 78, and 88 MF
begin in area A and are followed in area B by the appropriate file and

record description.

No rules regarding area A and area B are enforced except in relation to MF
comment entries in the Identification Division.

Introduction 1-9

More than one sentence is permitted in each source record. The source format of a typical
program is illustrated in Figure 1-1.

1**

2* COBOL INVADERS CALLING PROGRAM *
3* VERSION 1.1 *
4x 2/8/84 *
5% COPYRIGHT (C) MICRO FOCUS 1984 *

6***************************************

7 SPECIAL-NAMES.

8 CONSOLE IS CRT.

9 DATA DIVISION.

10 WORKING-STORAGE SECTION.

11 01 GET-CHARACTER PIC X VALUE X"83".
12 01 CHARACTER-FOUND PIC 99 COMP.

13 01 SCAN-KEYBOARD PIC X VALUE X"D9".
14 01 SCAN-RESULT PIC 99 COMP.

15 COPY "READY.DDS".

(COPY FILE INCLUDED HERE.)

35 01 SCREEN-I0-PARAMETERS.

36 03 SCREEN-I0 PIC X VALUE X"87".

37 03 WRITE-TEXT PIC 99 COMP VALUE 1.

38 03 READ-TEXT PIC 99 COMP VALUE 0.

39 03 WRITE-ATTRIB PIC 99 COMP VALUE 3.

40 01 FORM-PARAMS.

41 03 I0-LENGTH PIC 9(4) COMP VALUE 1094.
42 03 SCREEN-OFFSET PIC 9(4) COMP VALUE 1.
43 03 BUFFER-OFFSET PIC 9(4) COMP VALUE 1.
44 01 SCORE-PARAMS.

45 03 S-I0-LENGTH PIC 9(4) COMP VALUE 23.
46 03 S-SCREEN-OFFSET PIC 9(4) COMP VALUE 1841.
47 03 S-BUFFER-OFFSET PIC 9(4) COMP VALUE 1.
48 01 SCORE-TEXT.

49 03 S-TEXT-1 PIC X(12) VALUE “LAST SCORE:".
50 03 SCORE PIC 9(4).

51 03 S-TEXT-2 PIC X(7) VALUE "POINTS".
52 01 SCREEN-ATTR-1 PIC X(1094).

53 01 CURSOR-POSITION.

54 03 CURSOR-LINE PIC 99 COMP VALUE 25.
55 03 CURSOR-CHAR PIC 99 COMP VALUE 00.

56 01 DUMMY PIC 99 COMP.

57 01 MOVE-CURSOR-ROUTINE PIC X VALUE X"E6".
58 PROCEDURE DIVISION.

59 START-UP.

Figure 1-1 (Part 1 of 2). A Sample COBOL Program Showing Source Format

1-10 Language Reference

60 DISPLAY SPACE

61 CALL MOVE-CURSOR-ROUTINE USING DUMMY, CURSOR-POSITION

62 CALL SCREEN-IO USING WRITE-TEXT, FORM-PARAMS, READY-00

63 CALL SCREEN-IO USING WRITE-TEXT, SCORE-PARAMS, SCORE-TEXT.
64 LOOP.

65 MOVE ALL "?" TO SCREEN-ATTR-1

66 CALL SCREEN-IO USING WRITE-ATTRIB, FORM-PARAMS, SCREEN-ATTR-1
67 PERFORM DELAY-LOOP 30 TIMES

68 **xkkkkxkk*HAS A KEY BEEN PRESSED?

69 CALL SCAN-KEYBOARD USING SCAN-RESULT

70 IF SCAN-RESULT =1

71 GO TO CALL-INVADERS.

72 MOVE ALL " " TO SCREEN-ATTR-1

73 CALL SCREEN-IO USING WRITE-ATTRIB, FORM-PARAMS, SCREEN-ATTR-1
74 PERFORM DELAY-LOOP 30 TIMES

Jh¥*kxk*kk**ARHAS A KEY BEEN PRESSED?

76 CALL SCAN-KEYBOARD USING SCAN-RESULT

77 IF SCAN-RESULT =1

78 GO TO CALL-INVADERS.

79 GO TO LOOP.

80 DELAY-LOOP.

81 CALL INVADERS.

gzrxxkdkddkkxkWHICH KEY WAS PRESSED?

83 CALL GET-CHARACTER USING CHARACTER-FOUND

84 IF CHARACTER-FOUND = 27

85 STOP RUN.

86 IF CHARACTER-FOUND = 32

87 CALL "INV-SUB" USING SCORE

88 GO TO START-UP.

89 GO TO LOOP.

WJ\-VJL ~ /

A I T
Cols. 8-11 Area A Cols. 12-72 Area B

Col. 7 Indicator Area

Cols. 1-6 Sequence Number

Figure 1-1 (Part 2 of 2). A Sample COBOL Program Showing Source Format

Introduction 1-11

1-12 Language Reference

Chapter 2. COBOL Concepts

COBOL Concepts 2-1

Contents

About This Chapter 2-3
Language Concepts e 2-4
Character Set e 2-4
Language Structure e 2-5
Separators e 2-5
Character-Strings e 2-6
COBOL Wordst e e e e e e e e e e 2-6
Literals e e e 2-9
PICTURE Character-Stringsttt 2-15
Comment-Entries e 2-15
Concept Of Computer-Independent Data Description 2-16
Concept Of Levels e 2-16
Concepts of Classesof Data 2-18
Algebraic Signs 2-19
Standard Alignment Rules 2-19
Item Alignment for Increased Object Code Efficiency 2-20
Selection of Character Representation and Radix 2-20
DISPLAY Format e e e e e e 2-21
COMPUTATIONAL, COMP, BINARY, COMPUTATIONAL-4, or COMP-4 Format 2-21
COMPUTATIONAL-3 COMP-3 PACKED-DECIMAL Format 2-25
COMPUTATIONAL-5 Or COMP-5 Formato, 2-27
COMPUTATIONAL-X Or COMP-X Formatuuiein.. 2-28
POINTER Format e e e e e e 2-28
Uniqueness of Reference 2-28
Explicit and Implicit Specifications 2-34
Explicit And Implicit Procedure Division References 2-34
Explicit and Implicit Transfers of Control 2-34
Explicit and Implicit Attributes 2-35
Explicit and Implicit Scope Terminators 2-36
Program Structure e 2-37
Optional Division, Section, and Paragraph Headings 2-37
Identification Division 2-38
Organization e e 2-38
Structure e e 2-38
General Format e 2-38
Environment Division e 2-39
Organization e 2-39
Structure e 2-39
General Format 2-40
Data Division e 2-41
Data Division Organization 2-41
General Format 2-42
Procedure Division 2-44
Statements and Sentences 2-46
Reference Format e 2-52
Reference Format Representation 2-52
Division, Section, and Paragraph Formats 2-54
Data Division Entries 2-54
Reserved Words e e 2-55

2-2 Language Reference

About This Chapter

This chapter describes the basic COBOL concepts. The following aspects are covered:

e Basic language elements, such as character set, language structure, and data
description concepts

e Program structure

¢ Identification Division
¢ Environment Division
¢ Data Division

s Procedure Division.

COBOL Concepts 2-3

Language Concepts

This section describes the following:

Character Sets

Language Structures
Separators

Characters

Strings

COBOL Words

Literals

Figurative Constant Values
Constant Names

Special Registers

PICTURE Character-Strings
Comment Entries.

® © & o o & o ¢ oo o o o

Character Set

The most basic and indivisible unit of the language is the character. The set of characters
used to form IBM AIX VS COBOL character-strings and separators includes the letters of
the alphabet, digits, and special characters. The character set consists of the following
characters:

0to9 Digits
AtoZ Uppercase letters

atoz Lowercase letters

Space

+ Plus sign

- Minus sign or hyphen

* Asterisk

/ Oblique stroke/slash

= Equal sign

$ Dollar sign

. Period (full stop) or decimal point

Comma or decimal point

Semicolon

Quotation mark

Apostrophe OSVS vSc2
Left parenthesis

Right parenthesis

Greater than symbol

Less than symbol

Colon

.o Nt N =we
AV =

Lowercase letters may be used in character-strings. Each lowercase letter is equivalent to
the corresponding uppercase letter except when used in nonnumeric literals.

The AIX VS COBOL language is restricted to the preceding character set, but the content
of nonnumeric literals, comment lines, comment entries, and data may include any ASCII
characters. For more information refer to Appendix D, “Reserved Word List.”

2-4 Language Reference

I

DBCS Support |

Characters from the Double-Byte Character Set (DBCS) are valid characters in certain
COBOL character-strings.

Lowercase g is equivalent to uppercase G in DBCS PICTURE strings.

L

End of DBCS Support

Language Structure

The individual characters of the language are concatenated to form character-strings and
separators. A separator may be concatenated with another separator or with a character-
string. A character-string may only be concatenated with a separator. The concatenation
of character-strings and separators forms the text of a source program.

Separators

A separator is a string of one or more punctuation characters. The rules for forming sepa-
rators are as follows:

1.

The space character is a separator. More than one space can be used as a single sepa-
rator. All spaces immediately following the comma, semicolon, or period separators
are considered part of that separator and are not considered to be the space separator.

Commas and semicolons, when followed immediately by a space are separators that
can be used anywhere the separator space is used. However, the comma is always used
in a PICTURE character-string.

The period character, when followed by a space, is a separator. The period character
must be used only to indicate the end of a sentence, or as shown in formats.

The right and left parenthetical symbols are separators. Parentheses may appear only
in balanced pairs of left and right parentheses delimiting subscripts, indexes, arith-
metic expressions, or conditions.

The quotation mark character () is a separator. An opening quotation mark must be
preceded immediately by a space or left parenthesis. A closing quotation mark must be
followed immediately by a space, comma, semicolon, period, or right parenthesis sepa-
rator.

Quotation marks may appear only in balanced pairs delimiting nonnumeric literals,
except when the literal is continued. Refer to “Continuation of Lines” on page 2-53.

The apostrophe character may replace the quotation mark character in a OSVS VSC2
program.

Both the quotation mark and the apostrophe may appear within the same MF
program.

Pseudo-text delimiters are separators. An opening pseudo-text delimiter must be pre-
ceded immediately by a space. A closing pseudo-text delimiter must be followed imme-
diately by a space, comma, semicolon, or period separator.

Pseudo-text delimiters may appear only in balanced pairs delimiting pseudo-text. Refer
to Chapter 8, “File Input and Output.”

COBOL Concepts 2-5

8. The separator space can immediately precede all separators except the following:
a. As specified by reference format. Refer to “Reference Format” on page 3-4.

b. The separator closing quotation mark. In this case, a preceding space is consid-
ered to be part of the nonnumeric literal and not as a separator.

c. The opening pseudo-text delimiter, where the preceding space is required.

9. The comma and semicolon separators may be used anywhere the separator space is

used in the formats. In the source program, comma and semicolon are interchange-
able.

10. The separator space may follow immediately any separator except the opening quota-
tion mark. In this case, a following space is considered as part of the nonnumeric
literal and not as a separator.

A punctuation character which appears as part of the specification of a PICTURE
character-string (refer to Chapter 3, “Introduction to the Nucleus”) or numeric literal
is not considered to be a punctuation character. It is considered to be a symbol used
in the specification of that PICTURE character-string or numeric literal. PICTURE
character-strings are delimited only by the space, comma, semicolon, or period separa-
tors.

The rules established for the formation of separators do not apply to the characters
which comprise the contents of nonnumeric literals, comment entries, or comment
lines.

Character-Strings

A character-string is a character or a sequence of contiguous characters which forms a
AIX VS COBOL word, literal, PICTURE character-string, or comment-entry. A character-
string is delimited by separators.

| DBCS Support l

You can use DBCS character-strings to form literals and comments. DBCS character-
strings are constructed using characters from the Double-Byte Character Set of the system.
DBCS character-strings can be embedded into nonnumeric strings.

| End of DBCS Support |

COBOL Words

A COBOL word is a character-string of not more than 30 characters that forms a user-
defined word, system name, or reserved word. Within a given source program, these
classes of COBOL words form disjoint sets. A COBOL word may belong to one and only
one of these classes.

The same COBOL word may be used as a system name and as a user-defined vScC2
word within the source program, provided the system name has not been set

up as a reserved word. The class of a specific occurrence of this COBOL

word is determined by the context of the clause or phrase in which it occurs.

2-6 Language Reference

User-Defined Words

A user-defined word is a COBOL word supplied by the user to satisfy the format of a clause
or statement. Each character of a user-defined word is selected from the set of characters
A B, C,..7Z a b, c, ..z (interpreted as equivalent to uppercase), numbers 0, ... 9, and -.
The - may not appear as the first or last character.

Implemented user-defined word types are as follows:

alphabet name

condition name

constant name MF
data-name

file name

index name

level number

library name

mnemonic name

paragraph name

program name

record name

routine name

section name

segment number

split-key name MF
text name

Within a given source program, 15 of these 17 types of user-defined words are grouped into
12 disjoint sets. The following are disjoint sets:

alphabet names

cd names

condition names, constant names, data-names, MF
record names, split-key names MF
file names

index names
library names
mnemonic names
paragraph names
program names
routine names
section names
text names

All user-defined words, except segment numbers and level numbers, can belong to only one
of these disjoint sets. Further, all user-defined words within a disjoint set must be unique.
Refer to “Uniqueness of Reference” on page 2-28.

With the exception of paragraph name, section name, level number and
segment number, all user-defined words must contain at least one alpha-
betic character or one occurrence of the hyphen character. MF

Segment numbers and level numbers need not be unique. Specification of a segment
number or level number may be identical to any other segment number or level number
and may even be identical to a paragraph name or section name.

Condition Name

A condition name is a name which is assigned to a specific value, set of values, or range of
values, within a complete set of values that a data item may assume. The data item itself
is called a conditional variable. ‘

Condition names may be defined in the Data Division or in the SPECIAL-NAMES para-
graph within the Environment Division, where a condition name must be assigned to the
ON STATUS or OFF STATUS, or both, of the run-time switches.

COBOL Concepts 2-7

A condition name is used only in the RERUN clause or in conditions as an abbreviation
for the relation condition. This relation condition states that the associated conditional
variable is equal to one of the set of values to which the condition name is assigned.

Constant Name
A constant name is a name which is assigned as the name of a fixed value. MF

Mnemonic Name

A mnemonic name assigns a user-defined word to an implementer name. These associ-
ations are established in the SPECIAL-NAMES paragraph of the Env1ronment Division.
Refer to “SPECIAL-NAMES Paragraph” on page 5-8.

Paragraph Name

A paragraph name is a word that names a paragraph in the Procedure Division.
Section Name

A section name is a word that names a section in the Procedure Division.
Other User-Defined Words

Refer to the Glossary for definitions of all other types of user-defined words.

System Names

A system name is a COBOL word used to communicate with the operating environment.
Each character used in the formation of a system name must be selected from the set of
characters A, B,C, ... Z, a,b,..z 0, ..9and-, except that the - may not appear as the
first or last character.

There are three types of system names:

¢ computer name
¢ implementer name
¢ language name.

Within a given implementation, these three types of system names form disjoint sets. A
given system name may belong to one and only one of them.

Refer to the Glossary for the individually defined system names.

Reserved Words

A reserved word is a COBOL word on a specified list that may be used in COBOL source
programs, but must not appear in the programs as a user-defined word or system name.
Reserved words can only be used as specified in the general formats.

There are six types of reserved words:

Key words

Optional words
Connectives

Special registers
Figurative constants
Special character words.

Key Words

A key word is a word required when the format in which the word appears is used in a
source program. Within each format, key words are uppercase and underlined.

Key words are of three types:

¢ Verbs such as ADD, READ, and ENTER
¢ Required words that appear in statement and entry formats

2-8 Language Reference

¢ Words that have a specific functional meaning, such as NEGATIVE, SECTION, and so
on.

Optional Words

" Within each format, uppercase words not underlined are called optional words and may
appear at your discretion. The presence or absence of an optional word does not alter the
semantics of the COBOL program in which it appears.

Connectives

There are three types of connectives:

e Qualifier connectives used to associate a data-name, condition name, and text name, or
a paragraph name with its qualifier: OF, IN.

e Series connectives that link two or more consecutive operands: , (separator comma) or
; (separator semicolon).

¢ Logical connectives used in the formation of conditions: AND, OR.

Special Registers

Certain words are used to name and reference special registers. Special registers are
memory areas created by the AIX VS COBOL system. The primary use of special registers
is to store information produced in conjunction with the use of specific COBOL features.

These special registers include LINAGE COUNTER (refer to Chapter 8, “File Input and
Output”) and DEBUG-ITEM (refer to Chapter 17, “Program Debugging”).

Figurative Constants

Figurative constants are used to name and reference specific constant values. These
reserved words are specified in Appendix D, “Reserved Word List.”

Special Character Words

The arithmetic operators and relation characters are reserved words. Refer to the Glos-
sary.

Literals
A literal is one of the following:

* A character-string whose value is implied by the ordered set of characters of which it
1s composed, or

e A reserved word that references a figurative constant, or

o A user-defined word that references a constant value. MF

Every literal belongs to one of two types: nonnumeric or numeric.

| DBCS Support

There is a DBCS type of literal.
’ End of DBCS Support |

COBOL Concepts 2-9

Nonnumeric Literals

A nonnumeric literal is a character-string delimited at both ends by quota-
tion marks or apostrophes and consisting of any allowable character in the OSVS VSC2
character set. Nonnumeric literals may be of 1 to 160 characters in length.
Whether quotation marks or apostrophes are used as delimiters, the pres-
ence of that delimiter within a nonnumeric literal may be represented by
two contiguous occurrences. The presence of the character not serving as
the delimiter is represented by a single occurrence. The value of a nonnu-
meric literal in the object program is the string of characters itself, except:

e The delimiting quotation marks are excluded.

¢ Each embedded pair of contiguous delimiter characters represents a single character.

All other punctuation characters are part of the value of the nonnumeric literal rather
than separators. All nonnumeric literals are category alphanumeric. Refer to “PICTURE
Clause” on page 6-18.

In addition, hexadecimal binary values can be attributed to nonnumeric MF
literals by expressing literals as:
X'nn' or x'nn'

where n is a hexadecimal character in the set 0-9 A-F a-f. nn may be
repeated up to 120 times, but the number of hexadecimal digits must be even.
The X may be uppercase or lowercase.

| DBCS Support |

In nonnumeric literals, Single-Byte Character Set (SBCS) and DBCS characters can be
mixed within a character-string. AIX VS COBOL statements process mixed strings without
sensitivity to the machine representation. Those statements that operate on a byte-to-byte
basis (for example, STRING and UNSTRING) may result in strings that are not valid mix-
tures of SBCS and DBCS. It is the user’s responsibility to be certain that the statements
are used correctly.

Nonnumeric literals are specified as PIC X items and are not protected from
mid-DBCS-character splitting. A literal declared as PIC G is a DBCS literal, and must
contain only DBCS characters. The DBCS (PIC G) literals are protected from
mid-DBCS-character splitting.

| End of DBCS Support |

Numeric Literals

Numeric literals are character-strings whose characters are selected from the digits 0
through 9, the plus sign, the minus sign, and/or the decimal point. The implementation
allows for numeric literals of 1 to 18 digits in length. The rules for the formation of
numeric literals are as follows:

1. A literal must contain at least one digit.

2. A literal must not contain more than one sign character. If a sign is used, it must
appear as the leftmost character of the literal. If the literal is unsigned, the literal is
positive.

3. A literal must not contain more than one decimal point. The decimal point is treated
as an assumed decimal point, and may appear anywhere within the literal except as the
rightmost character. If the literal contains no decimal point, the literal is an integer.

If a literal conforms to the rules for the formation of numeric literals, but is enclosed
in quotation marks, it is a nonnumeric literal and it is treated as such by the AIX VS
COBOL system.

2-10 Language Reference

4. The value of a numeric literal is the algebraic quality represented by the characters in
the numeric literal. Every numeric literal is category numeric. Refer to “PICTURE
Clause” on page 6-18.

The size of a numeric literal in standard data format characters is equal to the number
of digits specified by the user.
In addition, hexadecimal binary values can be attributed to numeric literals MF
by expressing literals as:
H'nn' or h'nn'
where n is a hexadecimal character in the set 0-9 A-F a-f. nn may be

repeated up to 8 times, but the number of hexadecimal digits must be even.
The H may be uppercase or lowercase.

| DBCS Support

DBCS Literals
DBCS literals have the following format:

)

»»— G"DBCS-string"

G Is the literal type designator for a DBCS literal

” Is the opening and closing delimiter

DBCS-string
Represents DBCS characters.

In general, the rules for forming a nonnumeric literal also apply to DBCS literals. The
maximum length of DBCS literals, however, is 28 double-byte characters, and they may not
be continued across lines.

' End of DBCS Support |

Figurative Constant Values

Figurative constant values are generated by the AIX VS COBOL system and referred to
using the reserved words given below. These words must not be bounded by quotation
marks when used as figurative constants. The singular and plural forms of figurative con-
stants are equivalent and may be used interchangeably.

COBOL Concepts 2-11

The figurative constant values and the reserved words used to reference them are shown in
Table 2-1.

Table 2-1. Figurative Constant Values and the Reserved Words

CONSTANT REPRESENTATION

ZERO ZEROS Represents the value 0, or one or more of the character 0

ZEROES depending on context.

SPACE SPACES Represents one or more of the character space from the comput-
er’s character set.

HIGH-VALUE Represents one or more of the character that has the highest

HIGH-VALUES ordinal position in the program collating sequence. (Hex FF for
the ASCII character set.)

LOW-VALUE Represents one or more of the character that has the lowest

LOW-VALUES ordinal position in the program collating sequence. (Hex 00 for

the ASCII character set.)

QUOTE QUOTES Represents one or more of the character ”. The word QUOTE or
QUOTES cannot be used in place of a quotation mark in a
source program to bound a nonnumeric literal. Thus,
QUOTEABD QUOTE is incorrect as a way of stating the nonnu-
meric literal “ABD”.

ALL literal Represents one or more characters of the string of characters
comprising the literal. The literal must be either a nonnumeric
literal or a figurative constant other than ALL literal. When a
figurative constant is used, the word ALL is redundant and is
used for readability only.

NULL NULLS Represents one or more unset pointer values. vSC2
A pointer variable with the NULL value is
guaranteed not to point to any data item.

| DBCS Support

The figurative constant values for DBCS programs are:

HIGH-VALUE, HIGH-VALUES hex FFFF
ZERO, ZEROS, ZEROES hex 824F
LOW-VALUE, LOW-VALUES hex 0000
QUOTE, QUOTES hex 818D
SPACE, SPACES hex 2020

l End of DBCS Support |

When a figurative constant represents a string of one or more characters, the length of the
string is determined by the AIX VS COBOL system from context according to the following
rules:

1. When a figurative constant is associated with another data item, as when the figura-
tive constant is moved to or compared with another data item, the string of characters
specified by the figurative constant is repeated character by character on the right
until the size of the resulting string is equal to the size, in characters, of the associated
data item. This is done prior to, and independent of, the application of any JUSTIFIED
clause associated with the data item.

2. When a figurative constant is not associated with another data item, as when the figu-
rative constant appears in a DISPLAY, STRING, STOP, or UNSTRING statement, the
length of the string is one character.

DISPLAY SPACE in Format 2 of the DISPLAY statement is an exception. MF

2-12 Language Reference

A figurative constant may be used wherever a literal appears in a format, except that
whenever the literal is restricted to having only numeric characters in it, the only figura-

tive constant permitted is ZERO (ZEROS, ZEROES).

When the figurative constants HIGH-VALUES(S) or LOW-VALUE(S) are used in the
source program, the actual character associated with each figurative constant depends
upon the program collating sequence specified. Refer to “OBJECT-COMPUTER

Paragraph” on page 5-6 and “SPECIAL-NAMES Paragraph” on page 5-8.

Constant Names

Special Registers

Constant names are user-defined words described in the Data Division in MF
level-78 data description entries. A constant name may be used wherever a
literal appears in a format. The effect of a constant name is the same as the
literal assigned in its data description. A constant name with an integer
value can also be used wherever a format requires an integer. For example, a
constant may be used in place of a level number or segment number, or in a
PICTURE character-string.
A constant name can only be used after it has been described. It cannot be
the object of a forward reference.
Special registers are data items generated by the AIX VS COBOL system OSVS VSC2
and referred to by using their associated names (see Table 2-2). These
special registers are subject to special rules of reference and have implicit
data descriptions (PICTURES), as individually described.
Table 2-2 (Page 1 of 3). Special Registers, Implicit Data Description Picture, and Usage
Implicit
Data
Special Description
Register Picture Usage
CURRENT-DATE | X(8) The CURRENT-DATE special register OSVS
contains the value of the
current date (as supplied by the
COBOL program execution environment)
in the form: MMDDYY
where MM is the month
number, DD is the day of
the month, and YY is the
year number (from 1900). CURRENT-DATE
is valid only as the sending area
of a MOVE statement.
TALLY 9(5) COMP The TALLY special register OSVS VSC2
contains information produced by the
EXAMINE ... TALLYING statement.
It is valid as a data-name in a
Procedure Division statement
wherever an elementary data item
may be referenced.

COBOL Concepts 2-13

Table 2-2 (Page 2 of 3). Special Registers, Implicit Data Description Picture, and Usage

Special
Register

Implicit
Data
Description
Picture

Usage

TIME-OF-DAY

%6) DISPLAY

The TIME-OF-DAY special register
contains the value of the current
time of day (24-hour clock)

(as supplied by the COBOL program
execution environment) in the

form: hhmmss where hh = hour,
mm = minutes, and 88 = seconds.
TIME-OF-DAY is valid only as the
sending area of a MOVE statement.

OSVS

RETURN-CODE

S9(4) COMP
(This can be
changed by
the
RTNCODE-SIZE
directive) MF

The RETURN-CODE special OSVS VSC2
register may:

e Be set by a program, prior to the
execution of a STOP RUN, EXIT
PROGRAM or GOBACK statement,
to pass a value to the invoking
program (or the execution
environment).

¢ Be read, subsequent to a
CALL to another COBOL program,
to obtain the RETURN-CODE set
by that CALLed program.

A program’s RETURN-CODE is set

to 0 when the program is first

entered. The RETURN-CODE is valid
as a data-name in a Procedure Division
statement wherever an elementary

data item may be referenced. If a
program using a 2-byte RETURN-CODE
returns to a program using o 4-byte
RETURN-CODE, the top 2 bytes of the
calling program’s RETURN-CODE will be
undefined.

WHEN-COMPILED

X(20)

The WHEN-COMPILED special
register contains the time and
date that the COBOL program was submitted
to the AIX VS COBOL system, in the

form: hh.mm.ssMMM DD, YYYY

where hh = hours (24-hour clock),

mm = minutes, 88 = seconds,

MMM = month name (first 3

characters), DD = day of month,

and YYYY = year.

WHEN-COMPILED is valid only as the
sending area of a MOVE statement.

OSVS

2-14 Language Reference

Table 2-2 (Page 3 of 3). Special Registers, Implicit Data Description Picture, and Usage
Implicit
Data
Special Description
Register Picture Usage
WHEN-COMPILEL X{(20) The WHEN-COMPILED special VSC2
register contains the time and
date that the COBOL program was submitted
to the AIX VS COBOL system in the
form: MM/DD/YYhh.mm.ss
where DD, hh, mm and ss are as above.
YY = year in century and
MM = month in year.
WHEN-COMPILED is valid only as
the sending area of a MOVE statement.
SORT-MESSAGE | X(8) These items may be referenced OSVS VSC2
SORT-FILE-SIZE | S9(8) COMP in the Procedure Division but
SORT-MODE-SIZE| S9(5) COMP will contain zero (except SORT-MESSAGE
SORT-CORE-SIZE | S9(8) COMP and SORT-CONTROL which
SORT-CONTROL | X(8) will contain spaces).
SORT-RETURN S9(4) COMP SORT-RETURN may be used to OSVS VSC2
cause an abnormal termination
of a SORT procedure. If a
value of 16 is moved into this
field, the SORT operation will
be terminated after the next
RELEASE or RETURN.
ADDRESS USAGE IS An ADDRESS special register vSsc2
POINTER exists for each 01 and 77 level
item in the LINKAGE and MF
WORKING-STORAGE SECTION.
The value of the special register
is the address of the record.

Each reserved word used to refer to a figurative constant value is a distinct character-
string with the exception of the construction ALL literal, which is composed of two dis-

tinct character-strings.

PICTURE Character-Strings

A PICTURE character-string consists of certain combinations of characters in the COBOL
character set used as symbols. Refer to “PICTURE Clause” on page 6-18 for the PICTURE
character-string and the rules that govern its use.

Any punctuation character that appears as part of the specification of a PICTURE
character-string is not considered a punctuation character, but rather a symbol used in the
specification of that PICTURE character-string.

Comment-Entries

A comment-entry in the Identification Division may be any combination of characters from
the character set of the computer.

COBOL Concepts 2-15

i DBCS Support |

Character-strings that form comments may contain either DBCS characters or a combina-
tion of DBCS and SBCS characters. Multiple comment lines containing DBCS strings are
allowed. The embedding of DBCS characters in a comment line must be done on a line-by-
line basis. DBCS characters cannot be continued to a following line.

, End of DBCS Support |

Concept Of Computer-Independent Data Description

To make data as computer independent as possible, the characteristics or properties of the
data are described in relation to a standard data format rather than an equipment oriented
format. This standard data format is oriented to general data processing applications, and
uses the decimal system to represent numbers (regardless of the radix used by the com-
puter) and the remaining characters in the AIX VS COBOL character set to describe non-
numeric data items.

Concept Of Levels

A level concept, or hierarchy, is inherent in the structure of a logical data record. This
concept arises from the need to specify subdivisions of a record for the purpose of data
reference. Once a subdivision has been specified, it may be further subdivided to permit
more detailed data referral.

The most basic subdivisions of a record, those not further subdivided, are called elemen-
tary items. Consequently, a record is said to consist of a sequence of elementary items, or
the record itself may be an elementary item.

In order to refer to a set of elementary items, the elementary items are combined into
groups. Each group consists of a named sequence of one or more elementary items.
Groups, in turn, may be combined into groups of two or more groups, etc. Thus, an ele-
mentary item may belong to more than one group.

Level Numbers

A system of level numbers shows the organization of elementary items and

group items. Since records are the most inclusive data items, level

numbers for records start at 01. Less inclusive data items are assigned

higher (not necessarily successive) level numbers not greater in value than

49. A maximum of 49 levels in a record is allowed. There are special level

numbers (66, 77, 78, and 88) which are exceptions to this rule (see below). MF
Separate entries are written in the source program for each level number

used.

A group includes all group and elementary items following it until a level
number less than or equal to the level number of that group is encount-
ered. All items which are immediately subordinate to a given group item
should be described using identical level numbers greater than the level
number used to describe that group item. This rule is not insisted upon. OSVS VSC2

2-16 Language Reference

Correct Incorrect but Permitted

01 A. 01 A.
05 C-1. 05 C-1.
10 D PICTURE X. 10 D PICTURE X.
10 E PICTURE X. 10 E PICTURE X.
05 C-2. 04 B-1. 0svs vscz

Figure 2-1. Example of Level Numbers in Group Descriptions

Three types of entries exist for which there is no true concept of level. These are:

¢ Entries that specify elementary items or groups introduced by a RENAMES clause
¢ Entries that specify noncontiguous working storage and linkage data items

¢ Entries that specify condition names.

Entries describing items by means of RENAMES clauses for the purpose of regrouping
data items have been assigned the special level number 66.

Entries that specify noncontiguous data items, which are not subdivisions of other items,
and are not themselves subdivided, have been assigned the special level number 77.

Entries that specify constant names, to be associated with the value of a par- MF
ticular literal, have been assigned the special level number 78.

Entries that specify condition names, to be associated with particular values of a condi-
tional variable, have been assigned the special level number 88.

For an example of level numbers representing a data hierarchy, see Figure 2-2.

01 RECORD-ENTRY-ITEM-1. This entry
02 MAJOR-GROUP-ITEM-1. This entry | includes
03 FILLER PIC... includes
* 03 ELEM-1 PIC...
02 MAJOR-GROUP-ITEM-2.
03 REGULAR-GROUP-ITEM-1. —] This entry
* 04 ELEM-2 PIC... This entry | includes
04 SUB-GROUP-1.] includes
05 ELEM-3 PIC... This entry
05 ELEM-4 PIC... includes
05 ELEM-5 PIC... |
04 ELEM-6 PIC...
04 SUB-GROUP-2. " This entry
05 ELEM-7 PIC... includes
05 ELEM-8 PIC... _
03 REGULAR-GROUP-ITEM-2.
* 04 ELEM-9 PIC... This entry
* 04 ELEM-10 PIC... | includes
* 02 ELEM-11 PIC...
77 NONCONTIGUOUS-ELEM-1 PIC...
77 NONCONTIGUOUS-ELEM-2 PIC...
01 RECORD-ENTRY-ITEM-2. This entry
......... includes
etc.

* % F X

* *

Figure 2-2. Example of Level Numbers Representing a Data Hierarchy

Note that indentation of COBOL source code is only a readability convention and is not
part of the language.

Elementary items are by definition those items with no subordinate entries (entries with no
numerically greater level numbers) following, and must have a storage definition associ-

COBOL Concepts 2-17

ated with them. Refer to “PICTURE Clause” on page 6-18 and “USAGE Clause” on
page 6-39.

Only elementary items (marked with an asterisk, ¥, above) and FILLER items (marked with
a # sign above) will have storage explicitly reserved for them (in accordance with
“PICTURE Clause” on page 6-18). Nonelementary items have implicit storage associated
with them of size determined by their subordinate items plus any FILLER bytes needed for
synchronization. Refer to “SYNCHRONIZED Clause” on page 6-37.

Level numbers need not be consecutively ascending or descending as shown in Figure 2-2
on page 2-17 for clarity. Thus, the next subordinate level after 01 could be 05, and the next
level 10, and so on.

The data record in Figure 2-2 on page 2-17 would produce storage allocation in the fol-
- lowing manner:

44— data division —
RECORD-ENTRY-ITEM-1 R-E-1-2
M-G-1-1 MAJOR-GROUP- I TEM-2)
etc.
REGULAR-GROUP-ITEM-1 R-G-1-2
SUB-GROUP-2 $-G-2
Fiec| e-1 | E-2 | €-3 | E-4 | E-5 | E-6 | E-7 | E-8 | E-9 | E-10 | E-11 |N-E-1| N-E-2

Figure 2-3. Storage Allocation

Concepts of Classes of Data

The five categories of data items (refer to “PICTURE Clause” on page 6-18) are grouped
into four classes: alphabetic, numeric, DBCS, and alphanumeric. For alphabetic, DBCS,
and numeric, the classes and categories are synonymous. The alphanumeric class includes
the categories of alphanumeric-edited, numeric-edited, and alphanumeric (without editing).
Every elementary item, except for an index data item, belongs to one of the classes and to
one of the categories. The class of a group item is treated at object time as alphanumeric
regardless of the class of elementary items subordinate to the group item. The relationship
of the class and categories of data items are depicted in Table 2-3 on page 2-19.

2-18 Language Reference

Table 2-3. Data Levels, Classes, and Categories

Level of Item Class Category
Elementary Alphabetic Alphabetic
Numeric Numeric
Alphanumeric Numeric-Edited
Alphanumeric-Edited
Alphanumeric
DBCS DBCS

Nonelementary Group Alphanumeric Alphabetic

Numeric
Numeric-Edited
Alphanumeric-Edited
Alphanumeric

DBCS

Algebraic Signs

Algebraic signs fall into two categories: operational signs, for indicating algebraic proper-
ties of signed numeric data items and signed numeric literals; and editing signs, for identi-
fying the sign of the item in edited reports.

The SIGN clause permits the programmer to explicitly state the location of the operational
sign. The clause is optional. If it is not used, operational signs are defined by setting bit 6
of the trailing digit for ASCII numbers (see Table 2-4).

Editing signs are inserted into a data item by using the sign control symbols of the
PICTURE clause.

Standard Alignment Rules

The standard rules for positioning data within an elementary item depend on the category
of the receiving item. These rules are:

1.

If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved to the receiving character posi-
tions with zero-fill or truncation on either end as required.

b. When an assumed decimal point is not explicitly specified, the data item is treated
as if it had an assumed decimal point immediately following its rightmost character
and is aligned as in item 1a above. ‘

If the receiving data item is a numeric-edited data item, the data moved to the edited
item is aligned by decimal point with zero-fill or truncation at either end, as required
within the receiving character positions of the data item, except where editing require-
ments cause replacement of the leading zeros.

If the receiving data item is alphanumeric (other than a numeric-edited data item),
alphanumeric-edited or alphabetic, the sending data is moved to the receiving char-
acter positions and aligned at the leftmost character position in the data item with
space fill or truncation to the right, as required.

DBCS Support |

For DBCS receiving items, the data is aligned at the leftmost character position, and (f
necessary) truncated or padded with DBCS spaces at the right.

End of DBCS Support |

COBOL Concepts 2-19

If the JUSTIFIED clause is specified for the receiving item, these standard rules are modi-
fied as described in “JUSTIFIED Clause” on page 6-13.

Item Alignment for Increased Object Code Efficiency

Some computer memories are organized to have natural addressing boundaries in the com-
puter memory (for example, word boundaries, half-word boundaries, byte boundaries). The
object program determines the way in which data is stored and need not respect these
natural boundaries.

However, certain uses of data (for example, in arithmetic operations or in subscripting)
may be facilitated if the data is stored so as to be aligned on these boundaries. Specif-
ically, additional machine operations for accessing and storing data may be repeated if
portions of two or more data items appear between adjacent natural boundaries, or if
certain natural boundaries divide a single data item.

Data items aligned on these natural boundaries to avoid additional machine operations are
defined as synchronized. A synchronized item is assumed to be introduced and carried in
that form. However, conversion to synchronized form occurs only during the execution of
a statement other than READ or WRITE which stores data in the item.

Synchronization can be accomplished in two ways:
* By use of the SYNCHRONIZED clause.

* By organizing the data suitably on the appropriate natural boundaries without using
the SYNCHRONIZED clause.

By using the SYNCHRONIZED clause, special types of alignment within a group may
affect the results of statements in which the group is used as an operand. The effect of the
implicit FILLER and the semantics of any statement referencing these groups are
described in “Implicit FILLER or Padding Bytes” on page 2-22 and “Example of Implicit
FILLER Assignments” on page 2-23.

Selection of Character Representation and Radix

The value of a numeric item, which is defined as numeric by its PICTURE (refer to
“PICTURE Clause” on page 6-18), may be represented in memory in either binary or
decimal form depending on the USAGE clause of the declaration. Refer to “USAGE
Clause” on page 6-39. These numeric formats are:

¢ DISPLAY
e COMPUTATIONAL, COMP, BINARY
COMPUTATIONAL-4 or COMP-4 VSC2 OSVS
e COMPUTATIONAL-3, COMP-3 or PACKED-DECIMAL MF OSVS
VvScC2
* COMPUTATIONAL-5 or COMP-5 MF
e POINTER VvS8cC2
¢ COMPUTATIONAL-X or COMP-X MF

2-20 Language Reference

DISPLAY Format

The numeric digit characters that represent the number value for the display format are
held in radix 10, one digit character per byte of computer memory, in ASCII representation.
This is the standard data format of the COBOL language. If the data item is signed and
the sign is not specified as SEPARATE (refer to “SIGN Clause” on page 6-35) the numeric
sign is incorporated into either the leading or trailing digit, according to the LEADING or
TRAILING phrase in the SIGN clause. Sign data is incorporated into the requisite digit as
shown in Table 2-4 (bit 6 (value 40) of the character is set from zero to one if the whole
number has a negative value). If the data item is signed and the sign is specified as SEPA-
RATE, then the sign is held as a separate single character, additional to the digits, either
ASCII character + or — as necessary. This sign character appears as the leading or
trailing byte of the stored numeric data item according to the LEADING or TRAILING
phrase of the sign clause.

Table 2-4. Incorporation of Sign Data into the Requisite Digit

Leading or Sign Digit Character (and hexadecimal value) for:
Trailing Value

Digit Before Sign

Incorporation Positively-Signed Values Negatively-Signed Values
0 0(30) p(70)

1 1(31) q(71)

2 2(32) r(72)

3 3(33) s(73)

4 4(34) t(74)

5 5(35) u(75)

6 6(36) v(76)

7 7(37) w(77)

8 8(38) x(78)

9 9(39) y(79)

Storage character position requirements for DISPLAY data items are equal to the number
of 9s in the PICTURE clause plus one if the sign is specified as SEPARATE. The SYN-
CHRONIZED clause has no effect on DISPLAY format data declarations.

COMPUTATIONAL, COMP, BINARY, COMPUTATIONAL-4, or
COMP-4 Format

These numeric data items are held in computer memory in pure binary two’s complement
representation. In this format, number values are held in radix of two where each com-
puter bit in the representation starting from the right (least significant) and represents the
presence or absence of an increasingly significant power of two in that value. Negative
numbers are represented by complementing (inverting all the bit values of) their positive
counterpart, and then adding one to the whole. Storage requirements depend on the
number of 9s in the PICTURE clause and whether the numeric data item is signed or
unsigned (refer to “PICTURE Clause” on page 6-18, and “SIGN Clause” on page 6-35).
The AIX VS COBOL system assigns storage for COMPUTATIONAL items in one of two
modes: byte storage and word storage. Byte storage is the default storage assignment mode
for the AIX VS COBOL language.

COBOL Concepts 2-21

Computer Memory Natural Boundaries

The fundamental natural boundaries of computer memory are usually based on an 8-bit
character known as a byte. Within this fundamental framework, machines fall into two
broad categories: those with no other natural boundaries (byte storage computers) and
those with other natural boundaries based on multiples of the fundamental boundary of the
byte (word storage computers).

In byte storage mode, AIX VS COBOL assigns numeric storage such that each numeric
item occupies the minimum number of bytes (refer to “Selection of Character Represen-
tation and Radix” on page 2-20). The SYNCHRONIZED clause has no meaning in the
context and hence has no effect. Byte storage is the default storage assignment mode for
AIX VS COBOL.

Within word storage computers natural boundaries may occur at 2-byte, 4-byte and/or
8-byte boundaries. Accordingly, the VS COBOL language can provide data item storage
assignment and synchronization when the COMPUTATIONAL clause and possibly the
SYNCHRONIZED clause are used. This word storage assignment of COMPUTATIONAL
format data is controlled by an AIX VS COBOL system directive, IBMCOMP. Refer to the
User’s Guide for information on how to invoke this feature.

Table 2-5. COl\gP(UTATIONAL) Format Data Item Character-Position (Byte) Storage Assign-
men

Number of Digits (9s) in PICTURE Character-Positions (Bytes) of

Representation Storage Assigned

Signed Unsigned Byte Storage Word Storage

Mode

1-2 1-2 1 2

3-4 3-4 2 2

5-6 5-7 3 4

79 8-9 4 4

10-11 10-12 5 8

12-14 13-14 6 8

15-16 15-16 7 8

17-18 17-18 8 8

Note: Byte storage is the default storage assignment mode for VS COBOL. For details
of how to enable the word storage feature of the AIX VS COBOL system using the
IBMCOMP system directive, refer to the User’s Guide.

Implicit FILLER or Padding Bytes

When the word storage assighment mode is enabled, and a numeric data item is specified
as COMPUTATIONAL, extra character positions or bytes of computer memory may be
assigned to that data item (refer to Figure 2-4 on page 2-23). These bytes are known as
padding, or implicit FILLER bytes, and are not normally accessible to the program.
Similar implicit FILLER bytes can be generated by use of the SYNCHRONIZED clause.

Synchronization

If a data item description contains the SYNCHRONIZED clause, and word storage mode is
enabled, then the position of that item within the computer memory is aligned such that
the right (least significant) end is on a natural boundary of the memory. Extra character
positions (bytes) of computer memory are reserved adjacent to synchronized items to
achieve this alignment. These bytes, known as padding bytes or implicit FILLER bytes,
are normally inaccessible to the computer program.

Each elementary data item described as SYNCHRONIZED is aligned to the natural
memory boundary corresponding to its data item storage assignment (according to
Table 2-5). Thus, in word storage mode, a numeric data item with a PICTURE description

2-22 Language Reference

of 89 (5) is assigned 4 bytes of memory (1 padding byte and 3 data bytes). If SYNCHRO-
NIZED was specified, it is aligned to the next nearest 4-byte boundary. The total (4-byte)
memory assignment is aligned so the number of bytes from the beginning of the record con-
taining the item to the left (most significant) end of the item was a multiple of four. If the
previous item does not end on a 4-byte boundary, then implicit FILLER assignments are
necessary to achieve this.

Other such implicit FILLER bytes may be generated by using the SYNCHRONIZED items
in nonelementary data descriptions containing an OCCURS clause. Refer to “OCCURS
Clause” on page 12-5. This is because extra bytes may need to be reserved for each group
item occurrence so that the second or subsequent occurrences have the same alignment to
the natural boundaries of the computer memory as did the first occurrence.

Implicit Synchronization

With word storage mode enabled, all record level data descriptions are automatically syn-
chronized to a full 8-byte boundary.

Example of Implicit FILLER Assignments

The following COBOL data description produces the computer memory allocation shown in
Figure 2-4. An explanation of the symbols used in the figure is shown below it.

01 UNSYNCHRONIZED-RECORD.
02 UNSYNCHRONIZED-DATA-1 PIC 9(3) DISPLAY.
02 UNSYNCHRONIZED-DATA-2 PIC X(2).
01 COMPOUND-REPEATED-RECORD.
02 ELEMENTARY-ITEM-1 PIC X(2).
02 GROUP-ITEM OCCURS 3 TIMES.
03 ELEMENTARY-ITEM-2 PIC X.
03 ELEMENTARY-ITEM-3 PIC S9(2) COMP SYNC.
03 ELEMENTARY-ITEM-4 PIC S9(4) V9(2) COMP SYNC.
03 ELEMENTARY-ITEM-5 PIC X (5).

UNSYNCHRONIZED- COMPOUND-REPEATED-RECORD
RECORD
GROUP-ITEM (1) GROUP-ITEM (2)
etc. >
E E E E
v I I I I
w1 | D EIl|, 3 El4 EI5 5 3 EI4 EI5
2
99 9ix xleee|x x(x|#|ccl#flcccc xxxx>($x|#cc##ccccxxxxx
I [J I [[I] [] I I | I I f | I [|

8 8 8 8 8 8

Figure 2-4. Sample Computer Storage Allocation

where:

@ indicates implicit FILLER bytes allocated due to automatic synchronization of a
record (01-level) description.

indicates implicit FILLER bytes allocated when following data item is explicitly
synchronized.

$ indicates implicit FILLER bytes allocated when a nonelementary item is subject

to an OCCURS clause.

COBOL Concepts 2-23

9 indicates bytes allocated for a numeric DISPLAY character.

X indicates bytes allocated for an alphanumeric DISPLAY character.
C indicates bytes allocated for a COMPUTATIONAL data storage.
Truncation

In data items of USAGE COMP, data is held in binary format as described in the previous
sections. The memory allocated for an item may have space for larger numbers than speci-
fied by the PICTURE clause. For example, an item described as PIC 99 COMP is normally
assigned one byte, which can hold numbers up to 255.

To conform with the rules of ANSI COBOL, numbers behave as decimal numbers, regard-
less of their format. In an arithmetic statement, if the result is bigger than the PICTURE
clause of a receiving item allows, this causes a size error, and if the ON SIZE ERROR
phrase is specified the result is not stored in the receiving item. In a nonarithmetic state-
ment, if this situation occurs, the decimal value is truncated on the left to the number of
digits specified in the PICTURE clause.

However, data in USAGE COMP items can be forced to behave as binary MF
data. Truncation only occurs if it is necessary in order for the data to fit the

space allocated. The behavior of USAGE COMP items is controlled by the

setting of an AIX VS COBOL system directive, TRUNC. Refer to the User’s

Guide for details on how to invoke this feature. This directive selects

whether the decimal value is truncated to the picture size, or the binary value

is truncated to the space available. It distinguishes between results of arith-

metic statements and data being moved by nonarithmetic statements.

Regardless of the setting of the directive, an arithmetic statement gives the MF
size error condition if the result has more decimal digits than specified in
the PICTURE clause of a receiving item.

Example of Truncation

The TRUNC directive can change the results of some operations, as demon- MF
strated in the following examples in which item A is described as PIC 99
COMP.
Table 2-6. Change of Results Due to TRUNC Directive
Result
Operation TRUNC NOTRUNC TRUNC ”"ANSI”
MOVE 163 TO A 63 163 63
MOVE 263 TO A 63 7 63
MOVE 13 TO A, 63 163 undefined results
ADD 150 TO A
MOVE 13 TO A, 63 7 undefined results
ADD 250 TO A

2-24 Language Reference

Notes: MF

1. This directive has no effect on the truncation of low order digits in non-
integer data. This always conforms with the behavior specified in ANSI
COBOL.

2. If the IBMCOMP system directive is set, extra upper bytes may be allo-
cated to a COMP item. These are counted in the space allocated. When
IBMCOMP is on, padding bytes may be generated before a COMP item
with a SYNC clause. These are not part of the item, and are never
affected by data stored in the item.

3. When a value being stored into a signed item is limited to the number of
digits allowed by the PICTURE clause, it can never be big enough to
overwrite the sign bit. When NOTRUNC is set, the value, if large
enough, will overwrite the sign bit.

COMPUTATIONAL-3 COMP-3 PACKED-DECIMAL Format

This form, commonly called binary-coded-decimal form, represents numeric data items in
radix 10, but with each digit of the value held in only one-half of one computer character,
as described in Table 2-7. The sign is held in a separate trailing digit (half-character) posi-
tion; that is, at the right (least significant) end of the item.

Table 2-7. Binary-Coded Decimal Form
Digit Representation in Hexadecimal
Left Half-Character Right Half-Character
Digit Value (odd-digit) (even-digit)
0 X'00' X'00'
1 X'10' X'or'
2 X'20' X'02'
3 X'30' X'03'
4 X'40' X'04'
5 X'50" X'05'
6 X'60" X'06'
7 X'70" X'07'
8 X'80! X'08'
9 X'90" X'09'

Note: Count even and odd starting from the right.

Table 2-8 on page 2-26 shows the sign digits used for COMPUTATIONAL-3; storage
memory requirements for this format depend only on the number of 9s in the PICTURE
clause of the data item (see Table 2-9 on page 2-26).

COBOL Concepts 2-25

Table 2-8. COMPUTATIONAL-3 Sign Digit Represen-

tation
Sign of

Sign Convention Data Sign Half-
in the PICTURE Item Character,
Clause Value in Hexadecimal
Unsigned n/a X'0F!'
Signed + X'0C'
Signed - X'0D!
Table 2-9. Numeric Data Storage for the

COMP(UTATIONAL)-3 or

PACKED-DECIMAL PICTURE

Clause

Bytes Required

Number of Digits
(Signed or Unsigned)

1

2-3

4-5

6-7

8-9

10-11

12-13

14-15

QCI0 I [(H|Ut| W ||

16-17

—
=]

18

2-26 Language Reference

Examples
1. For COMPUTATIONAL-3 and PICTURE 9999, the number + 1234 would be stored as

follows:
0 1 2 3 4 E
0000 0001 0010 0011 0100 1111
-
1 byte

Figure 2-5. Number Storage

where F represents the nonprinting plus sign.

2. For COMPUTATIONAL-3 and PICTURE S9999, the number + 1234 is stored as in
number 1 above, except that the least significant digit would be replaced by C(1100)
representing the plus sign.

3. For COMPUTATIONAL-3 and PICTURE S9999, the number — 1234 is stored as in
number 1 above, except that the least significant byte would be replaced by D(1101)
representing the minus sign.

The SYNCHRONIZED clause (with or without the LEFT or RIGHT phrase) has no effect
on COMPUTATIONAL-3 data declarations.

COMPUTATIONAL-5 Or COMP-5 Format

This format is the same as COMPUTATIONAL format. Refer to “COMPU- MF
TATIONAL, COMP, BINARY, COMPUTATIONAL-4, or COMP-4
Format” on page 2-21.

It has the following differences from the COMPUTATIONAL format:

e The value that can be stored is not limited to the number of decimal
digits indicated in the PICTURE clause, but to the largest binary
number for which the allocated storage has space.

¢ The machine code of some processors stores the bytes of numeric fields in
reverse order. That is, low-order bytes are stored at the lowest addresses
and successively higher-order bytes at successively higher addresses.
This is the mirror image of normal order where the high-order bytes are
stored at the lowest addresses and successively lower-order bytes at suc-
cessively higher addresses.

— On processors where the machine code stores the bytes of numeric
fields in reverse order, COMPUTATIONAL-5 items are stored in
reverse order. For example, hexadecimal 12 34 56 78 9A is stored as
9A 78 56 34 12.

— On processors where the machine code stores the bytes of numeric
fields in normal order, COMPUTATIONAL-5 items are stored in
normal order.

COBOL Concepts 2-27

COMPUTATIONAL-X Or COMP-X Format

This format is the same as COMPUTATIONAL format. See “COMPUTA-
TIONAL, COMP, BINARY, COMPUTATIONAL-4, or COMP-4 Format” on
page 2-21.

It has the following differences from the COMPUTATIONAL format:

.

The PICTURE character string can consist of all Xs. If it does, the
number of Xs gives the length of the item in bytes.

Whether the PICTURE character string consists of Xs or 9s, the value
that can be stored is limited to the largest binary number for which the
allocated storage has space. The item is not affected by the TRUNC,
COMP, SYNC, ALIGN, or IBMCOMP system directives.

The use of COMP-X items in arithmetic statements is restricted to ADD,
SUBTRACT, MULTIPLY and DIVIDE statements with two operands
(each either a literal or a COMP-X item) and no ON SIZE ERROR
phrase. Refer to “ON SIZE ERROR Phrase and NOT ON SIZE
ERROR Phrase” on page 7-19, “ADD Statement” on page 7-24,
“DIVIDE Statement” on page 7-34, “MULTIPLY Statement” on
page 7-69, and “SUBTRACT Statement” on page 7-91. Such statements
follow these rules of two’s complement binary arithmetic:

— If the result is too big for the target item, high-order binary digits are
truncated.

— If the result is not an integer, only the integer part is stored.

— If the result is less than zero, the two’s complement of the absolute
value of the result is stored. This is subsequently interpreted as a
positive (unsigned) integer.

— If a negative literal is used in a MULTIPLY or DIVIDE statement,
its sign is ignored and it is treated as positive.

If a nonarithmetic statement attempis to store a negative value in a
COMP-X item, the absolute value is stored.

POINTER Format

VS COBOL assigns four bytes of storage for POINTER format. The method
of data storage is machine-dependent.

Uniqueness of Reference

Uniqueness of Reference contains the following categories:

Qualification
Subscripting

Indexing

Reference Modification
Identifier
Condition-Name.

2-28 Language Reference

MF

MF

VSC2

Qualification

Every user-specified name in a COBOL source program must be unique, either because no
other name has the identical spelling and hyphenation, or because the name exists within
a hierarchy of names such that references to the name can be made unique by mentioning
one or more of the higher levels of the hierarchy. The higher levels are called qualifiers
and the process that specifies uniqueness is called qualification. Enough qualification
must be mentioned to make the name unique. However, it may not be necessary to
mention all levels of the hierarchy.

Within the Data Division, all data-names used for qualification must be associated with a
level indicator or a level number. Therefore, two identical data-names must not appear as
entries subordinate to a group item unless they are capable of being made unique through
qualification.

In the Procedure Division, two identical paragraph names must not appear in the same
section.

In the hierarchy of qualification, names for level indicators are the most significant, fol-
lowed by the names for level-number 01, followed by names for level-number 02 through 49.
A section name is the only qualifier available for a paragraph name. Thus, the most signif-
icant name in the hierarchy must be unique and cannot be qualified. Subscripted or
indexed data-names and conditional variables, as well as procedure names and data-names,
may be made unique by qualification. The name of a conditional variable can be used as a
qualifier for any of its condition names. Regardless of the available qualification, no name
can be both a data-name and procedure name.

Qualification is performed by following a data-name, a condition name, a paragraph name,
or a text name with one or more phrases composed of a qualifier preceded by IN or OF. IN
and OF are logically equivalent.

The following figure shows the general formats for qualification:

Format 1

data- -1 >
ondition —I i:OF data—name-z—J

condition-name
IN

Format 2

_—] >4

OF section-name

»»— paragraph-name l:
IN

Format 3

»»— text-name

tOF h‘blr'ary—name—J
)

COBOL Concepts 2-29

The rules for qualification are as follows:

1. Each qualifier must be of a successively higher level and within the same hierarchy as
the name it qualifies.

The same name must not appear at two levels in a hierarchy.

If a data-name or a condition name is assigned to more than one data item in a source
program, the data-name or condition name must be qualified each time it is referred to
in the Procedure, Environment, and Data Divisions (except in the REDEFINES clause,
where qualification is unnecessary and must not be used).

4. A paragraph name must not be duplicated within a section. When a paragraph name is
qualified by a section name, the word SECTION must not appear. A paragraph name
need not be qualified when referred to from within the same section.

A data-name cannot be subscripted when it is being used as a qualifier.

A name can be qualified even though it does not need qualifications. If there is more
than one combination of qualifiers that ensures uniqueness, then any such set can be
used.

Qualified names may have up to 50 qualifiers.

7. 1If more than one COBOL library is available to the AIX VS COBOL system, text name
must be qualified each time it is referenced.

Subscripting

Subscripts can be used only when reference is made to an individual element within a list
or table of like elements that have not been assigned individual data-names. Refer to
“OCCURS Clause” on page 12-5.

The subscript can be represented either by a numeric literal that is an integer, by a data-
name, or by a data-name followed by the operator + or —, followed by an unsigned integer
numeric literal. The data-name must be a numeric elementary item that represents an
integer, and the whole subscript must be delimited by the balanced pair of separators left
parenthesis and right parenthesis.

The subscript data-name may be signed. If it is signed, it must be positive. The lowest
possible subscript value is 1. This value points to the first element of the table. The next
sequential elements of the table are pointed to by subscripts whose values are 2, 3, and so
on. The highest permissible subscript value, in any particular case, is the maximum
number of occurrences of the item as specified in the OCCURS clause.

The subscript, or set of subscripts, that identifies the table element is delimited by the bal-
anced pair of separators, left parenthesis and right parenthesis, following the table element
data-name. The table element data-name appended with a subscript is called a subscripted
data-name or an identifier. When more than one subscript is required, they are written in
the order of successively less inclusive dimensions of the data organization. Up to 16 sub-
scripts are permitted.

2-30 Language Reference

The following figure shows the general format for subscripting:

J

»——[data-name-1 —_J_ (data-name-2
condition-name i:+:|— literal-2

literal-1

HRRES

where:
literal-1 must be a positive integer literal.
literal-2 must be an unsigned numeric integer.

data-name-2 may not be subscripted or indexed.

Indexing

References can be made to individual elements within a table of like elements by specifying
indexing for that reference. An index is assigned to that level of the table using the
INDEXED BY phrase in the definition of a table. A name specified in the INDEXED BY
phrase is known as an index name and is used to refer to the assigned index. The value of
an index corresponds to the occurrence number of an element in any table. An index name
must be initialized before it is used as a table reference. An index name can be given an
initial value by a SET statement.

Direct indexing is specified using an index name in the form of a subscript. Relative
indexing is specified when the index name is followed by the operators + or —, followed by
an unsigned integer numeric literal, all delimited by the balanced pair of separators, left
parenthesis and right parenthesis, following the table element data-name. The occurrence
number resulting from relative indexing is determined by incrementing (where the operator
+ 1s used) or decrementing (where the operator — is used), by the literal value, or the
occurrence number represented by the index value. When more than one index name is
required, the names are written in the order of successively less inclusive dimensions of
the data organization.

When a statement which refers to an indexed table element is executed, the value con-
tained in the index referenced by the index name for the table element must neither corre-
spond to a value less than one nor to a value greater than the highest permissible
occurrence number of an element of the associated table. This restriction also applies to
the value resulting from relative indexing. Up to 16 index names can be used with a data-
name.

The following figure shows the general format for indexing:

data-name—_l—(index-name-1) —>
condition-name 11"ce1r'a1-1—J k+]——h"cera1-2—J

where:
literal-1 must be a positive numeric integer.

literal-2 must be an unsigned numeric integer.

COBOL Concepts 2-31

Reference Modification

2-32

Reference modification defines a data item by specifying a leftmost character and length
for the data item. Unless otherwise specified, it is allowed anywhere an identifier refer-
encing an alphanumeric data item is permitted. The general format for reference modifica-
tion is:

data-name (leftmost-character-position: [length])

where:

Data-name may be qualified or subscripted and must reference a data item whose usage
is DISPLAY.

leftmost-character-position and length must be arithmetic expressions.
The rules for reference modification are as follows:

1. Each character of a data item referenced by data-name is assigned an ordinal number,
incrementing by one, from the leftmost position to the rightmost position. The leftmost
position is assigned the ordinal number one. If the data description entry for data-
name contains a SIGN IS SEPARATE clause, the sign position is assigned an ordinal
number within that data item.

2. If the data item referenced by data-name is described as numeric, numeric-edited,
alphabetic, or alphanumeric-edited, it is operated upon for reference modification as if
it were redefined as an alphanumeric data item of the same size as the data item refer-
enced by data-name.

3. Reference modification for an operand is evaluated as follows:

a. If subscripting is specified for the operand, the reference modification is evaluated
immediately after evaluation of the subscripts.

b. If subscripting is not specified for the operand, the reference modification is evalu-
ated at the time subscripting would have been evaluated if subscripts had been
specified.

4. Reference modification creates a unique data item which is a subset of the data item
referenced by data-name. This unique data item is defined as follows:

a. The evaluation of leftmost-character-position specifies the ordinal position of the
leftmost character of the unique data item in relation to the leftmost character of
the data item referenced by data-name. Evaluation of leftmost-character-position
must result in a positive nonzero integer less than or equal to the number of char-
acters in the data item referenced by data-name.

b. The evaluation of length specifies the size of the data item to be used in the opera-
tion, in bytes. The evaluation of length must result in a positive nonzero integer.
The sum of leftmost-character-position and length minus the value one, must be
less than, or equal to, the number of characters in the data item referenced by data-
name. If length is not specified, the unique data item extends from and includes
the character identified by leftmost-character-position, up to and including the
rightmost character of the data item referenced by data-name.

5. The unique data item is considered an elementary data item without the JUSTIFIED
clause. It has the same class and category defined for the data item referenced by data-
name except that the categories numeric, numeric-edited, and alphanumeric-edited are
considered class and category alphanumeric.

Language Reference

Identifier

An identifier is a term used to show that a data-name, if not unique in a program, must be
followed by a syntactically correct combination of qualifiers, subscripts, or indexes neces-
sary to ensure uniqueness.

The following figure shows the general format for identifiers:

' |
|:(I):;:,— data-name-2 -—l

v

»— data-name-1

(data-name-3)
—i: index-name-1 —[E‘f]— lTiteral-2 —

literal-1

L (1eftmost-char-pos: ——L—-—_r)]
1

ength

Restrictions on subscripting and indexing are:

1. A data-name must not itself be subscripted nor indexed when that data-name is being
used as an index or subscript.

Indexing is not permitted where subscripting is not permitted.

An index may be modified only by the SET, SEARCH, and PERFORM statements.
Data items described by the USAGE IS INDEX clause permit storage of the values for
index names as data. The form in which these values are stored is dependent on a
system-controlling directive. Refer to the User’s Guide for details. Such data items are
called index data items.

4. In the format above, literal-1 must be a positive numeric integer. Literal-2 must be an
unsigned numeric integer.

Condition Name

Each condition name must be unique, or be made unique through qualification, indexing,
or subscripting. If qualification is used to make a condition name unique, the associated
conditional variable may be used as the first qualifier. If qualification is used, the hier-
archy of names associated with the conditional variable or the conditional variable itself
must be used to make the condition name unique.

If references to a conditional variable require indexing or subscripting, then references to
any of its condition names also require the same combination of indexing or subscripting.

The format and restrictions on the combined use of qualification, subscripting, and
indexing of condition names are exactly those of identifier, except that data-name-1 is
replaced by condition-name-1.

In the general formats, condition name refers to a condition name qualified, indexed, or
subscripted, as necessary.

COBOL Concepts 2-33

Explicit and Implicit Specifications

Four types of explicit and implicit specifications occur in COBOL source programs:
1. Explicit and implicit Procedure Division references

2. Explicit and implicit transfers of control

3. Explicit and implicit attributes
4

Explicit and implicit scope terminators.

Explicit And Implicit Procedure Division References

A COBOL source program can reference data items either explicitly or implicitly in Proce-
dure Division statements. An explicit reference occurs when the name of the referenced
item is written in a Procedure Division statement or when the name of the referenced item
is copied into the Procedure Division by the processing of a COPY statement. An implicit
reference occurs when the item is referenced by a Procedure Division statement without

the name of the referenced item being written in the source statement.

An implicit reference also occurs during the execution of a PERFORM statement, when
the index or data item referenced by the index name or identifier specified in the
VARYING, AFTER or UNTIL phrase is initialized, modified, or evaluated by the control
mechanism for the PERFORM statement. Such an implicit reference occurs only if the

data item contributes to the execution of the statement.

Explicit and Implicit Transfers of Control

The mechanism controlling program flow transfers control from statement to statement in
the sequence in which they were written in the source program, unless an explicit transfer
of control overrides this sequence or there is no next executable statement to which
control can be passed. The transfer of control from statement to statement occurs without
writing an explicit Procedure Division statement and, therefore, is an implicit transfer of

control.

COBOL provides both explicit and implicit means of altering the implicit control transfer

mechanism.

In addition to the implicit transfer of control between consecutive statements, implicit
transfer of control also occurs when the normal flow is altered without the execution of a
procedure branching statement. COBOL provides the following types of implicit control

flow alterations which override the statement-to-statement transfers of control:

1. When a paragraph is executed under control of another COBOL statement (for
example, PERFORM, USE, SORT, and MERGE) control is passed from the last state-
ment of the paragraph, to the control mechanism of the last executed controlling state-
ment. When a paragraph is executed under the control of a PERFORM statement
which executes iteratively, and the paragraph is the first paragraph in the range of
that PERFORM statement, an implicit transfer of control occurs between the control
mechanism for that PERFORM statement and the first statement in the paragraph for

each iterative execution of the paragraph.

2. When a SORT or MERGE statement is executed, an implicit transfer of control occurs

to any associated input or output procedures.

3. When any COBOL statement is executed which results in the execution of a declar-

ative section, an implicit transfer of control to the declarative section occurs.

that another implicit transfer of control occurs after execution of the declarative

section, as described in 1.

2-34 Language Reference

4. In any file operation (including OPEN and CLOSE), if a file does not MF
have a FILE STATUS data item declared for it and the file is not explic-
itly covered by a USE statement, then it is covered by an implicit USE
statement. The implied USE procedure is equivalent to:

USE AFTER ERROR PROCEDURE ON filename

IF status-key-1 =9
DISPLAY error-message UPON CONSOLE
STOP RUN.

Refer to the User’s Guide for the definition of error messages

An explicit transfer of control alters the implicit control transfer mechanism by the exe-
cution of a procedure branching or conditional statement. Refer to “Statements and
Sentences” on page 2-46. An explicit transfer of control can be caused only by the exe-
cution of a procedure branching or conditional statement. The execution of the procedure
branching statement ALTER does not in itself constitute an explicit transfer of control,
but affects the explicit transfer of control that occurs when the associated GO TO state-
ment is executed. The procedure branching statement EXIT PROGRAM causes an explicit
transfer of control when the statement is executed in a called program.

In this document, next executable statement is used to refer to the next COBOL state-
ment to which control is transferred according to the rules above and the rules for each
language element in the Procedure Division.

There is no next executable statement following:

1. The last statement in a declarative section when the paragraph in which it appears is
not being executed under the control of some other COBOL statement.

2. The last statement in a program when the paragraph in which it appears is not being
executed under the control of some other COBOL statement.

Explicit and Implicit Attributes

Attributes may be implicitly or explicitly specified. Any attribute which has been explic-
itly specified is called an explicit attribute. If an attribute has not been specified explic-
itly, then the attribute takes on the default specification. Such an attribute is known as
an implicit attribute.

For example, the usage of a data item need not be specified, in which case a data item’s
usage is DISPLAY.

COBOL Concepts 2-35

Explicit and Implicit Scope Terminators

Scope terminators delimit the scope of certain Procedure Division statements (delimited
scope statements) and are of two types: explicit and implicit.

The explicit scope terminators are listed below in Table 2-10 with their matching delimited
scope statements. In some cases, the delimited scope statement with which an explicit
scope delimiter is paired is determined differently for different COBOL language specifica-

tions.

Table 2-10. Explicit Scope Terminators
Explicit Scope Delimited Scope Statement
Terminator

ANSS85 VSC2
END-ADD ADD (ADD...) ON SIZE ERROR
END-CALL CALL (CALL...) ON OVERFLOW
END-COMPUTE COMPUTE (COMPUTE...) ON SIZE ERROR
END-DELETE DELETE (DELETE...) INVALID KEY
END-DIVIDE DIVIDE (DIVIDE...) ON SIZE ERROR
END-EVALUATE | EVALUATE EVALUATE
END-IF IF IF
END-MULTIPLY MULTIPLY (MULTIPLY...) ON SIZE ERROR
END-PERFORM in-line in-line PERFORM

PERFORM
END-READ READ (READ...) AT END and (READ...) INVALID KEY
END-RECEIVE RECEIVE
END-RETURN RETURN RETURN
END-REWRITE REWRITE (REWRITE...) INVALID KEY
END-SEARCH SEARCH SEARCH
END-START START (START...) INVALID KEY
END-STRING STRING (STRING...) ON OVERFLOW
END-SUBTRACT SUBTRACT (SUBTRACT...) ON SIZE ERROR
END-UNSTRING UNSTRING (UNSTRING...) ON OVERFLOW
END-WRITE WRITE (WRITE...) INVALID KEY

Implicit scope termination occurs:

e At the end of any sentence where the separator period terminates the scope of all pre-
vious statements not yet terminated.

¢ Within any statement containing another statement. The next phrase of the con-
taining statement following the contained statement (for example, ELSE, WHEN, AT
END, and so on) terminates the scope of any unterminated contained statement.

2-36 Language Reference

Program Structure

An AIX VS COBOL program consists of four divisions:

Identification Division — An identification of the program.

Environment Division — A description of the equipment to be used to compile and run
the program.

Data Division — A description of the data to be processed.

Procedure Division — A set of procedures to specify the operations to be performed on
the data.

Each division is divided into sections that are further divided into paragraphs, that in turn
are made up of sentences.

Any division may be optionally omitted. MF

Optional Division, Section, and Paragraph Headings

Some of the red tape statements required by the ANSI Standard COBOL Specifications are
optional when using AIX VS COBOL. However, it is possible to have AIX VS COBOL
system output warning messages when such statements are found to be missing by use of
the FLAG directive. Refer to the User’s Guide. Such statements are identified as optional
in this manual by enclosing them between brackets and highlighting them. The symbols
next to the highlighted areas indicate the dialect in which these features are optional.

COBOL Concepts 2-37

Identification Division

This section describes the organization, structure, and general format of the Identification
Division.

The Identification Division must be included in every COBOL source program except ANSI
85, where it is optional. This division identifies both the source program and the resultant
output listing. In addition, the user may include the date the program is written, the date
of the compilation of the source program, and other information as desired under the para-
graphs in the general format shown in “General Format.”

Organization

Paragraph headers identify the type of information contained in the paragraph. The name
of the program must be specified in the first paragraph, which is the PROGRAM-ID para-
graph. The other paragraphs are optional and may be included in this division at the
user’s discretion, in the order of presentation shown by the format in “General Format.”

Structure

The general format of the paragraphs in the Identification Division defines the order of
presentation in the source program.

General Format

The following figure shows the general format of the paragraphs in the Identification Divi-

sion:
» IDENTIFICATION DIVISION. — PROGRAM-ID. program-name. >
E ID DIVISION. l osvs vscz
NO WORDS NO WORDS MF
i\ AUTHOR. ’ INSTALLATION. * ‘
!— comment-entry -l l— comment-entry -J
|— DATE-WRITTEN. & l l— DATE-COMPILED. }
I—— comment-entry -—l I—— comment-entry —[
L SECURITY. osVs

REMARKS. [__

I— comment-entry —J comment-entry ——I

2-38 Language Reference

Environment Division

This section describes the organization, structure, and general format of the Environment
Division.

The Environment Division specifies a standard method of expressing those aspects of a
data processing problem dependent upon the physical characteristics of a specific com-
puter. This division allows specification of the configuration of the source computer and
the object computer. In addition, information relating to input-output control, special
hardware characteristics, and control techniques can be specified in this division.

The Environment Division must be included in every COBOL source program.

Organization

Two sections make up the Environment Division:

¢ The Configuration Section deals with the characteristics of the source computer and
the object computer. This section is divided into three paragraphs:

— The SOURCE-COMPUTER paragraph, describing the computer configuration on
which the intermediate code is produced

— The OBJECT-COMPUTER paragraph, describing the computer configuration on
which the object (intermediate code) program is to be run

— The SPECIAL-NAMES paragraph, that relates the implementation names used by
the AIX VS COBOL system to the mnemonic names used in the source program.

¢ The INPUT-OUTPUT SECTION deals with the information needed to control trans-
mission and handling of data between external media and the object program. This
section is divided into two paragraphs:

— The FILE-CONTROL paragraph, which names and associates the files with
external media

— The I-O-CONTROL paragraph, which defines special control techniques to be used
in the object program.

Structure

The general format of the sections and paragraphs in the Environment Division defines the
order of presentation in the source program.

COBOL Concepts 2-39

General Format

The following figure shows the general format of the sections and paragraphs in the Envi-
ronment Division:

— ENVIRONMENT DIVISION. >
— NO WORDS MF
> >1
— CONFIGURATION SECTION. L —[> 2
— NO WORDS SOURCE-COMPUTER. ‘_ J MF
source-computer-entry
1» l >
T T |
0BJECT-COMPUTER. |_ _| SPECIAL-NAMES. l_ j
object-computer-entry special-names-entry
> > 3
INPUT-QOUTPUT-SECTION. FILE-CONTROL. file-control-entry >4
NO WORDS NO WORDS J MF
Kl >

4»
L I-0-CONTROL. L

input-output-control-entry —l

2-40 Language Reference

Data Division

This section defines the physical and logical aspects of data description.

The Data Division describes the data that the object program is to accept as input, to
manipulate, to create, or to produce as output.

Data Division Organization

The Data Division is divided into sections. These are the FILE,
WORKING-STORAGE, LINKAGE, COMMUNICATION, REPORT and
SCREEN SECTIONS. MF

The FILE SECTION defines the structure of data files. Each file is defined by a file
description entry and one or more record descriptions. Record descriptions are written
immediately following the file description entry.

The WORKING-STORAGE SECTION describes records and noncontiguous data items that
are not part of external data files but are developed and processed internally. It also
describes data items whose values are assigned in the source program and do not change
during the execution of the object program.

The LINKAGE SECTION appears in the called program and describes data items to be
referred to by the calling and the called program. Its structure is the same as the
WORKING-STORAGE SECTION.

The COMMUNICATION SECTION describes the data item in the source program that
serves as the interface between the MCS and the program.

The REPORT SECTION contains one or more report description entries (RD entries), each
of which forms the complete description of a report.

The SCREEN SECTION defines the atiributes of the displ<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>