
SC2.3-2.198-00

First Edition (March 1990)

This edition of the A/X Calls and Subroutines Reference for /BMR/SC System/6000 applies to IBM AIX
Version 3 for RISC System/6000, Version 3 of IBM AIXwindows Environment/SOOO, IBM AIX System
Network ArchitectureServices/6000, IBM AIX 3270 Host ConnectionProgram/6000, IBM AIX 3278/79
Emulation/6000, IBM AIX Network Management/6000, and IBM AIX Personal Computer Simulator/6000 and
to all subsequent releases of these products until otherwise indica~ed in new releases or technical
newsletters.

The following paragraph does not apply to the. United Kingdom or any country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS MANUAL "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warranties in certain transactions; therefore, this statement may not apply to you.

IBM does not warrant that the contents of this publication or the accompanying source code examples,
whether individually or as one or more groups, will meet your requirements or that the publication or the
accompanying source code examples are error-free.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated·in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines
and programs), programming, or services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce such IBM products, programming,
or services in your country. Any reference to an IBM licensed program in this publication is not intended to
state or imply that you can use only IBM's licensed program. You can use any functionally equivalent
program instead.

Requests for copies of this publication and for technical information about IBM products should be made to
your IBM Authorized Dealer or your IBM Marketing Representative.

A reader's comment form is provided at the back of this publication. If the form has been removed, address
comments to IBM Corporation, Department 997, 11400 Burnet Road, Austin, Texas 78758-3493. IBM may
use or distribute whatever information you supply .in any way it believes appropriate without incurring any
obligation to you. .

@) Copyright Adobe Systems, Inc., 1984, 1987

@) Copyright X/Open Company Limited, 1988. All Rights Reserved.

@) Copyright IXI Limited, 1989. All rights reserved.

@) Copyright AT&T, 1984, 1985, 1986, 1987, 1988,1989. All rights reserved.

@) Silicon Graphics, Inc., 1988. All rights reserved.

Use, duplication or disclosure of the SOFTWARE by the Government is subject to restrictions as set
forth in FAR 52.227-19(c)(2) or subparagraph (c)(1)(Ii) of the Rights in Technical Data and Computer
SOFTWARE clause at SFARS 252.227-7013, and/or in similar or successor clauses in the FAR, or
the DOD or NASA FAR Supplement. Unpublished rights reserved under the Copyright Laws of the
United States. Contractor/manufacturer isSIUCON GRAPHICS, INC., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

@) Copyright Carnegie Mellon, 1988. All rights reserved.

@) Copyright Stanford University, 1988. All rights reserved.

Permission to use, copy, modify, and distribute this program for any purpose and without fee is
hereby granted, provided that this copyright and permission notice appear on all copies and
supporting documentation, the name of Carnegie Mellon and Stanford University not be uSed in
advertising or publicity pertaining to distribution of the program without specific prior permission, and
notice be given in supporting documentation that copying and distribution is by permission of
Carnegie Mellon and Stanford University. Carnegie Mellon and Stanford University make no
representations about the suitability of this software for any purpose. It is provided "as is" without
express or implied warranty.

@) Copyright Sun Microsystems, Inc., 1985, 1986, 1987, 1988. All rights reserved.

The Network File System (NFS) was developed by Sun Microsystems, Inc.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license
from The Regents of the University of California. We acknowledge the following institutions for their role in its
development: the Electrical Engineering and Computer Sciences Department at the Berkeley Campus.

The Rand MH Message Handling System was developed by the 'Rand Corporation and the University of
California.

Portion of the code and documentation described in this book were derived from code and documentation
developed under the auspices of the Regents of the University of California and have been acquired and
modified under the provisions that the following copyright notice and permission notice appear:

@) Copyright Regents of the University of California, 1986, 1987. All rights reserved.

Redistribution and use in source and binary forms are permitted provided that this notice is
preserved and that due credit is given to the University of California at Berkeley. The name of the
University may not be used to endorse or promote products derived from this software without
specific prior written permission. This software is provided "as is" without express or implied
warranty.

Portions of the code and documentation described in this book were derived from code and documentation
developed by Massachusetts Institute of Technology, Cambridge, Massachusetts, and Digital Equipment
Corporation, Maynard, Massachusetts, and have been acquired and modified under the provision that the
following copyright notice and permission notice appear:

@)' Copyright Digital Equipment Corporation, 1985, 1988. All rights reserved.

@) Copyright 1985, 1986, 1987, 1988 Massachusetts Institute of Technology. All rights reserved.

Permission to use, copy, modify, and distribute this program and its documentation for any purpose
and without fee is hereby granted, provided that this copyright, permission, and disclaimer notice
appear on all copies and supporting documentation; the name of M.I.T. or Digital not be used in
advertising or publicity pertaining to distribution of the program without specific prior permission.
M.I.T. and Digital makes no representations about the suitability of this software for any purpose. It is
provided "as is" without express or implied warranty.

@) Copyright INTERACTIVE Systems Corporation 1984. All rights reserved.

@) Copyright 1989, Open Software Foundation, Inc. All rights reserved.

@) Copyright 1987, 1988, 1989, Hewlett-Packard Company. All rights reserved.

@) Copyright 1988 Microsoft Corporation. All rights reserved.

@) Copyright Graphic Software Systems Incorporated, 1984, 1990. All rights reserved.

@) Copyright Micro Focus, Ltd., 1987, 1990. All rights reserved.

@) Copyright Paul Milazzo, 1984, 1985. All rights reserved.

@) Copyright EG Pup User Process, Paul Kirton, and lSI, 1984. All rights reserved.

@) Copyright Apollo Computer, Inc., 1987. All rights reserved.

@) Copyright TITN, Inc., 1984, 1989. All rights reserved.

This software is derived in part from the ISO Development Environment (ISODE). IBM acknowledges source
author Marshall Rose and the following institutions for their role in its development: The Northrup
Corporation and The Wollongong Group.

However, the following copyright notice protects this documentation under the Copyright laws of the United
States and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying,
and making derivative works.

@) Copyright International Business Machines Corporation 1987, 1990. All rights reserved.

Notice to U.S. Government Users - Documentation Related to Restricted Rights - Use, duplication or
disclosure is subject to restriction$ set forth in GSA ADP Schedule Contract with IBM Corporation.

Trademarks and Acknowledgements

The following trademarks and acknowledgements apply to this information:

AIX is a trademark of International Business Machines Corporation.

AIXwindows is a trademark of International Business Machines Corporation.

Apollo is a trademark of Apollo Computer, Inc.

IBM is a registered trademark of International Business Machines Corporation.

NCK is a trademark of Apollo Computer, Inc.

NCS is a trademark of Apollo Computer, Inc.

Network Computing Kernel is a trademark of Apollo Computer, Inc.

Network Computing System is a trademark of Apollo Computer, Inc.

Network File System and NFS are trademarks of Sun Microsystems, Inc.

POSIX is a trademark of the Institute of Electrical and Electronic Engineers (IEEE).

RiSe System/SOOO is a trademark of International Business Machines Corporation.

SNA 3270 is a trademark of International Business Machines Corporation.

UNIX was developed and licensed by AT&T and is a registered trademark of AT&T
Corporation.

X/OPEN is a trademark of X/OPEN Company Limited.

Note to Users
The term "network information services (NIS)" is now used to refer to the service formerly
known as "Yellow Pages." The functionality remains the same; only the name has changed.
The name "Yellow Pages" is a registered trademark in the United Kingdom of British
Telecommunications pic, and may not be used without permission.

Legal Notice to Users Issued by Sun Microsystems, Inc.
"Yellow Pages" is a registered trademark in the United Kingdom of British
Telecommunications pic, and may also be a trademark of various telephone companies
around the world. Sun will be revising future versions of software and documentation to
remove references to "Yellow Pages."

Trademarks V

vi Base Operating System Reference

About This Book

This book, Calls and Subroutines Reference: Base Operating System, provides information
on application programming interfaces to the Advanced Interactive Executive Operating
System (referred to in this text as AIX) for use on the IBM RISC System/6000 System. This
book is part of AIX Calls and Subroutines Reference for IBM RISC System/6000,
SC23-2198, which is divided into the following four major sections:

• Volumes 1 and 2, Calls and Subroutines Reference: Base Operating System, contains
reference information about the system calls, subroutines, functions, macros, and
statements associated with AIX base operating system runtime services, communications
services, and devices services.

• Volumes 3 and 4, Calls and Subroutines Reference: User Interface, contain reference
information about the AIXwindows widget classes, subroutines, and resource sets; the
AIXwindows Desktop resource sets; the Enhanced X-Windows subroutines, macros,
protocols, extensions, and events; the X-Window toolkit subroutines and macros; and the
curses and extended curses subroutine libraries.

• Volume 5, Calls and Subroutines Reference: Kernel Reference, contains reference
information about kernel services, device driver operations, file system operations
subroutines, the configuration subsystem, the communications subsystem, the high
function terminal (HFT) subsystem, the logical volume subsystem, the printer subsystem,
and the SCSI subsystem.

• Volumes 6, Calls and Subroutines Reference: Graphics, contains reference information
and example programs for the Graphics Library (GL) and the AIXwindows Graphics
Support Library (XGSL) subroutines.

Who Should Use This Book
This book is intended for experienced C programmers. To use this book effectively, you
should be familiar with AIX or UNIX System V commands, system calls, subroutines, file
formats, and special files. If you are not already familiar with the AIX operating system or the
UNIX System V operating system, see AIX General Concepts and Procedures.

How to Use This Book
Overview of Contents

This book contains. the following alphabetically arranged sections consisting of system calls,
subroutines, functions, macros and statements. In this book all system calls are described
as subroutines.

• Base Operating System Runtime (BOS) Services

• Communications Services

- SNA Services

- AIX 3270 Host Connection Program (HCON)

- Remote Procedure Calls (RPC)

- Sockets

- Simple Network Management Protocol (SNMP)

- Network Computing System (NCS)

About This Book vii

Highlighting

- Data Link Controls

- X.2S Application

• Devices Services

The following highlighting conventions are used in this book:

Bold Identifies commands, keywords, files, directories, and other items whose
names are predefined by the system.

Italics Identifies parameters whose actual names or values are to be supplied by
the user.

Monospace Identifies examples of specific data values, examples of text similar to what
you might see displayed, examples of portions of program code similar to
what you might write as a programmer, messages from the system, or
information you should actually type.

Related Publications
The following books contain information about or related to application programming
interfaces:

• AIX General Programming Concepts for IBM RISC System/6000, Order Number
SC23-220S.

• AIX Communication Programming Concepts for IBM RISC System/6000, Order Number
SC23-2206.

• AIX Kernel Extensions and Device Support Programming Concepts for IBM RISC
System/6000, Order Number SC23-2207.

• AIX Files Reference for IBM RISC System/6000, Order Number SC23-2200.

• IBM RISC System/60DO Problem Solving Guide, Order Number SC23-2204.

• XL C Language Reference for IBM AIX Version 3 for RISC System/6000, Order Number
SC09-1260.

• XL C User's Guide for IBM AIX Version 3 for RISC System/6000, Order Number
SC09-12S9.

Ordering Additional Copies of This Book
To order additional copies of this book, use Order Number SC23-2198.

viii Base Operating System Reference

Contents

Base Operating System (BOS) Runtime Services

Subroutines A - Z . 1-1
FORTRAN Basic Linear Algebra Subroutines (BLAS) 1-823

Communications Services
AIX 3270 Host Connection Program (HCON) . 2-1
Data Link Controls ... 3-1
Network Computing System (NCS) 4-1
Remote Procedure Calls (RPC) 5-1
Simple Network Management Protocol (SNMP) 6-1
SNA Services ... 7-1
Sockets . 8-1
X.25 Application ... 9-1

Devices Services ... 10-1

Appendix A: Base Operating System Error Codes A-1

Appendix B: ODM Error Codes B-1

Appendix C: X.25 Application Error Codes. C-1

Index ... X-1

Contents ix

x Base Operating System Reference

8ase Operating System (80S) Runtime Services

Base Operating System Runtime 1-1

1-2 Base Operating System Reference

a641, ...

8641 or 1648 Subroutine

Purpose

Library

Syntax

Converts between long integers and base-54 ASCII strings.

Standard C Library (libc.a)

long a641 (String)
char ·String;

char *164a (Longlntege;,
long Longlnteger,

Description
The a641 and 164a subroutines maintain numbers stored in base-64 ASCII characters. This
is a notation in which long integers are represented by up to 6 characters, each character
representing a digit in a base-64 notation.

The following characters are used to represent digits:

/
0-9
A-Z
a-z

Parameters
String

Longlnteger

Return Values

represents
represents
represent
represent
represent

o
1
2-11
12-37
38-63

Specifies the address of a null-terminated character string.

Specifies a long value to convert.

The a641 subroutine takes a pointer to a null-terminated character string containing a value
in base-64 representation and returns the corresponding long value. If the string pointed to
by the String parameter contains more than 6 characters, the 8641 subroutine uses only the
first 6.

Conversely, the 164a subroutine takes a long parameter and returns a pointer to the
corresponding base-64 representation. If the Longlntegerparameter is a value of 0, the 164a
subroutine returns a pointer to a null string.

The value returned by the 1648 subroutine is a pOinter into a static buffer, the contents of
which are overwritten by each call.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Base Operating System Runtime 1-3

abort

abort Subroutine

Purpose
Generates a SIGIOT signal to end the current process.

Library
Standard C Library (libc.a)

Syntax
int abort ()

Description
The abort subroutine causes a SIGIOT signal to be sent to the current process. This usually
terminates the process and produces a memory dump.

It is possible for the abort subroutine to return control if the SIGIOT signal is caught or
ignored. In this case, the abort subroutine returns the value returned by the kill subroutine.

If the SIGIOT signal is neither caught nor ignored, and if the current directory is writable, the
system produces a memory dump in the core file in the current directory. The shell then
displays the following message:

abort - core dumped

Note: The SIGABRT signal is defined to be the same as the SIGIOT signal.

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

Related Information
The exit, atexit, _exit subroutine, kill, killpg subroutines, sigaction, sigvec, signal
subroutines.

The dbx command.

1-4 Base'Operating System Reference

abs, ...

abs, diY, labs, Idiv, imul_dbl, or umul_dbl Subroutine

Purpose

Library

Syntax

Computes absolute value, division, and double precision multiplication of integers.

Standard C Library (libc.a)

int abs (i)
int i;

long labs (i)
long i;

div_t div (Numerator, Denominator)
int Numerator, Denominator;

void imul_dbl (i, j, Result)
long i, j;
long *Result;

Idiv_t Idiv (Numerator, Denominator)
long Numerator, Denominator;

void umul_dbl (i, j, Result)
unsigned long i, j;
unsigned long *Result;

Description
The abs subroutine returns the absolute value of its integer operand.

Note: A two's-complement integer can hold a negative number whose absolute value is too
large for the integer to hold. When given this largest negative value, the abs
subroutine returns the same value.

The div subroutine computes the quotient and remainder of the division of the number
represented by the Numerator parameter by that specified by the Denominator parameter. If
the division is inexact, the sign of the resulting quotient is that of the algebraic quotient, and
the magnitude of the resulting quotient is the largest integer less than the magnitude of the
algebraic quotient. If the result cannot be represented (for example if the denominator is
zero), the behavior is undefined.

The labs subroutine and Idiv subroutine are included for compatibility with the ANSI C
library, and accept long integers as parameters, rather than as integers. However, on all
systems supported by AIX for RISC System/6000, there is no difference between an integer
and a long integer.

The imul_dbl subroutine computes the product of two signed longs i and j, and stores the
double long product into an array of two signed longs pointed to by the Result parameter.

The umul_dbl subroutine computes the product of two unsigned longs i and j, and stores
the double unsigned long product into an array of two unsigned longs pOinted to by the
Result parameter.

Base Operating System Runtime 1-5

abs, ...

Parameters

Numerator

j

Denominator

Result

Return Values

Specifies, for abs, some integer; for labs and imuLdbl, some long
integer; for umuLdbl, some unsigned long integer.

Specifies, for diY, some integer; for Idiy, some long integer.

Specifies, for imul_dbl, some long integer; for umuLdbl, some unsigned
long integer.

Specifies, for diY, some integer; for Idiy, some long integer.

Specifies, for imul_dbl, some long integer; for umuLdbl, some unsigned
long integer.

The abs and labs subroutines return the absolute value. The imul_dbl and umuLdbl
subroutines have no return values. The diy subroutine returns a structure of type diY_I. The
Idiy subroutine returns a structure of type Idiy_t, comprising the quotient and the remainder.
The structure is displayed as:

struct Idiy_t {
int quot; /* quotient */
int rem; /* remainder */

};

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

The imul_dbl subroutine and umuLdbl subroutine are not included in the ANSI C Library.

Related information
The floor, ceil, nearest, trunc, itrunc, uitrunc, fmod, fabs subroutines.

1-6 Base Operating System Reference

access

access Subroutine

Purpose

Library

Syntax

Determines the accessibility of a file.

Standard C Library (libc.a)

#include <sys/access.h>
int access (Path, AccessMode)
char *Path;
int AccessMode;

Description
The access subroutine checks the accessibility of the file, using the path name.

Parameters
Path

A ccess Mo de

Return Values

Points to the full path name. If the Path parameter refers to a symbolic
link,.the access subroutine returns information about the file pointed to
by the symbolic link.

Access permission to all components of the Path parameter is
determined using the real user 10 instead of the effective user 10, the
group access list (including the real group 10) instead of the effective
group 10, and the inherited privilege set instead of the effective privilege
set.

Specifies the type of access. The bit pattern contained in the
AccessMode parameter is constructed by logically ~Ring the following
values:

R_ACC

W_ACC

X_ACC

E_ACC

Checks read permission.

Checks write permission.

Checks execute (search) permission.

Checks to see if the file exists.

If the requested access is permitted, the access subroutine returns a value of O. If the
requested access is denied, it returns a value of -1 and sets the global variable errno to
indentify the error.

Error Codes
Access to the file is denied if one or more of the following are true:

ENOENT The named file does not exist.

Base Operating System Runtime 1-7

access

EACCES

EROFS

Permission bits of the file mode do not permit the requested
access.

Write access is requested for a file on a read-only file system.

The access subroutine can also fail if additional errors on page A-1 occur.

If Network File System is installed on the system, the access subroutine can also fail if the
following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The chmod, fchmod subroutines, statx subroutine.

1-8 Base Operating System Reference

acct

acct Subroutine

Purpose

Library

Syntax

Enables and disables process accounting.

Standard C Library (libc.a)

int acct (Path)
char *Path;

Description

Parameter

The acct subroutine enables the accounting routine when the Path parameter specifies the
path name of the file to which an accounting record is written for each process that
terminates. When the Path parameter is a 0 or NULL value, the acct subroutine disables the
accounting routine.

If the Path parameter refers to a symbolic link, the acct subroutine causes records to be
written to the file pointed to by the symbolic link.

If Network File System is installed on your system, the accounting file can reside on another
node.

Warning: To ensure accurate accounting, each node must have its own accounting file,
which can be located on any node in the network.

The calling process must have root user authority to use the acct subroutine.

Path Specifies a pointer to the path name of the file or a NULL pointer.

Return Values
Upon successful completion, the acct subroutine returns a value of O. Otherwise, a value of
-1 is returned and the global variable errno is set to indicate the error.

Error Codes
The acct subroutine fails if one or more of the following are true:

EPERM

ENOENT

EACCES

EACCES

EBUSY

EROFS

The calling process does not have root user authority.

The file named by the Path parameter does not exist.

The file named by the Path parameter is not an ordinary file.

Write permission is denied for the named accounting file.

An attempt is made to enable accounting when it is already
enabled.

The named file resides on a read-only file system.

Base Operating System Runtime 1-9

acct

The acct subroutine can also fail if additional errors on page A-1 occur.

If Network File System is installed on the system, the acct subroutine can also fail if the
following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

The BSD acct subroutine can be used to switch an accounting file; this is not the case with
the AIX Version 3 Operating System acct subroutine.

Related Information
The _exit, exit, atexit subroutines, raise subroutine, sigaction, signal, sigvec subroutines.

The acct file.

1-1 0 Base Operating System Reference

acl_chg or acl_fchg Subroutine

Purpose

Library

Syntax

Changes the access control information on a file.

Security Library (libs.a)

#include <sys/access/h>

int acl_chg (Path, How, Mode, Who)
char *Path;
int HoW;
int Mode;
int Who;

int acLfchg (FileDescriptor, How, Mode, Who)
int Fi/eDescriptor;
int HoW;
int Mode;
int Who;

Description
The acl_chg and acl_fchg subroutines modify the access control information of a specified
file.

Parameters
FileDescriptor

How

Mode

Path

Specifies the file descriptor of an open file.

Specifies how the permissions are to be altered for the affected entries of
the ACL. This parameter must be one of:

ACC_SPECIFY

Allow the types of access included in the Mode
parameter.

Deny the types of access included in the Mode
parameter.

Grants the access modes included in the Mode
parameter and restricts the access modes not
included in the Mode parameter.

Specifies the access modes to be changed. The Mode parameter is a bit
mask containing zero or more of the following values:

Allows read permission.

Allows write permission.

Allows execute or search permission.

Specifies a pOinter to the path name of a file.

Base Operating System Runtime 1-11

Who

Return Values

Specifies which entries in the ACLare affected. This parameter must be
one of:

ACC_OBJ_OWNER

ACC_OBJ_GROUP

ACC_OTHERS

Changes the owner entry in the base ACL.

Changes the group entry in the base ACL.

Changes all entries in the ACL except the
base entry for the owner.

Changes all entries in the ACL.

On successful completion, the acl_chg and acLfchg subroutines return a value of O.
Otherwise, a value of -1 is returned and the global variable errno is set to indicate the error.

Error Codes
The acl_chg subroutine fails and the access control information for a file remains
unchanged if one or more of the following are true:

ENOTDIR

ENOENT

ENOENT

EACCESS

EFAULT

ESTALE

ELOOP

ENOENT

A component of the Path prefix is not a directory.

A component of the Path does not exist or has the disallow truncation
attribute (see the ulimit subroutine).

The Path parameter was null.

Search permission is denied on a component of the Path prefix.

The Path parameter points to a location outside of the allocated address
space of the process.

The process's root or current directory is located in a virtual file system that
has been unmounted.

Too many symbolic links were encountered in translating the Path
parameter.

A symbolic link was named, but the file to which it refers does not exist.

ENAMETOOLONG
A component of the Path parameter exceeded 255 characters or the entire
Path parameter exceeded 1023 characters.

The acl_fchg subroutine fails and the file permissions remain unchanged if the following is
true:

EBADF The file descriptor FileDescriptor is not valid.

The acl_chg or acl_fchg subroutine fails and the access control information for a file
remains unchanged if one or more of the following are true:

EROFS

EINVAL

The named file resides on a read-only file system.

The How parameter is not one of ACC_PERMIT, ACC_DENY, or
ACC_SPECIFY.

1-12 Base Operating System Reference

EINVAL The Mode parameter contained values other than R_ACC, W_ACC, or
X_ACC.

EINVAL The Who parameter is not one of ACC_OWNER, ACC_GROUP,
ACC_OTHERS, or ACC_ALL.

The acl_chg or acl_fchg subroutine fails and the access control information for a file
remains unchanged if one or more of the following are true:

An 1/0 error occurred during the operation. EIO

EPERM The effective user 10 does not match the 10 of the owner of the file and the
invoker does not have root user authority.

If NFS is installed on your system, the acl_chg and acl_fchg subroutines can also fail if the
following is true:

ETIMEDOUT
The connection timed out.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The chacl subroutine, statacl subroutine, chmod subroutine, stat subroutine.

The acLget subroutine, acl_put subroutine, acLset subroutine

The acLget command, acLput command, chmod command.

Base Operating System Runtime 1-13

acl_get or acl_fget Subroutine

Purpose

Library

Syntax

Gets the access control information of a file.

Security Library (libs.a)

#include <sys/access.h>

char *acl_get (Path)
char *Path;

char *acLfget (FileDescriptory
int FileDescriptor;

Description
The acl_get and acl_fget subroutines retrieve the access control information for a file
system object. This information is returned in a buffer pointed to by the return value. The
structure of the data in this buffer is unspecified. The value returned by these subroutines
should be used only as an argument to the acLput or acLfput subroutines to copy or
restore the access control information.

Parameters
Path Specifies the pathname of the file.

FileDescriptor Specifies the file descriptor of an open file.

Return Values
On successful completion, the acl_get and acl_fget subroutines return a pointer to the
buffer containing the access control information. Otherwise, a NULL pointer is returned and
the global variable errno is set to indicate the error.

Error Codes

1-14

The acLget subroutine fails if one or more of the following are true:

ENOTDIR

ENOENT

ENOENT

EACCESS

EFAULT

ESTALE

A component of the Path prefix is not a directory.

A component of the Path does not exist or the process has the disallow
truncation attribute (see the ulimit subroutine).

The Path parameter was null.

Search permission is denied on a component of the Path prefix.

The Path parameter points to a location outside of the allocated address
space of the process.

The process's root or current directory is located in a virtual file system that
has been unmounted.

Base Operating System Reference

Security

ELOOP

ENOENT

Too many symbolic links were encountered in translating the Path
parameter.

A symbolic link was named, but the file to which it refers does not exist.

ENAMETOOLONG
A component of the Path parameter exceeded 255 characters or the entire
Path parameter exceeded 1 023 characters.

The acLfget subroutine fails if the following is true:

EBADF The FileDescriptor parameter is not a valid file descriptor.

The acLget or acLfget subroutine fails if the following is true:

EIO An liD error occurred during the operation.

If NFS is installed on your system, the acLget and acLfget subroutines can also fail if the
following is true:

ETIMEDOUT
The connection timed out.

Access Control

Auditable Events

The invoker must have search permission for all components of
the Path prefix.

None.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The chacl subroutine, statacl subroutine, chmod subroutine, stat subroutine.

The acl_chg, acl_fchg subroutines, acl_put, acl_fput subroutines, acl_set, acl_fset
subroutines.

The acl_get command, acLput command, chmod command.

Base Operating System Runtime 1-15

acl_put or acl_fput Subroutine

Purpose

Library

Syntax

Sets the access control information of a file.

Security Library (libs.a)

#include <sys/access.h>

int acl_put (Path, Access, Free)
char *Path;
char *Access;
int Free;

int acLfput (FileDescriptor, Access, Free)
int FileDescriptor;
char *Access;
int Free;

Description
The acl_put and aCI_fput subroutines set the access control information of a file system
object. This information is contained in a buffer returned by a call to the acLget or acl_fget
subroutines. The structure of the data in this buffer is unspecified ..

Parameters
Path Specifies the pathname of a file.

File Descrip tor

Access

Free

Specifies the file descriptor of an open file.

Specifies a pointer to the buffer containing the access control information.

Specifies whether the buffer space is to be deallocated. The following
values are valid:

• 0

• 1

Means the space is not deallocated.

Means the space is deallocated.

Return Values
On successful completion, the acl_put and acLfput subroutines return a value of O.
Otherwise, -1 is returned and the global variable errno is set to indicate the error.

Error Codes

1-16

The acl_put subroutine fails and the access control information for a file remains unchanged
if one or more of the following are true:

ENOTDIR

ENOENT

A component of the Path prefix is not a directory.

A component of the Path does not exist or has the disallow truncation
attribute (see the ulimit subroutine).

Base Operating System Reference

Security

ENOENT

EACCESS

EFAULT

ESTALE

ELOOP

ENOENT

The Path parameter was null.

Search permission is denied on a component of the Path prefix.

The Path parameter points to a location outside of the allocated address
space of the process.

The process's root or current directory is located in a virtual file system that
has been unmounted.

Too many symbolic links were encountered in translating the Path
parameter.

A symbolic link was named, but the file to which it refers does not exist.

ENAMETOOLONG
A component of the Path parameter exceeded 255 characters or the entire
Path parameter exceeded 1023 characters.

The acl_fput subroutine fails and the file permissions remain unchanged if the following is
true:

EBADF The FileDescriptor parameter is not a valid file descriptor.

The acl_put or acl_fput subroutine fails and the access control information for a file
remains unchanged if one or more of the following are true:

EROFS

EINVAL

EINVAL

EIO

The named file resides on a read-only file system.

The Access parameter does not point to a valid access control buffer.

The Free parameter is not 0 or 1 .

An lID error occurred during the operation.

If NFS is installed on your system, the acl_put and acl_fput subroutines can also fail if the
following is true:

ETIMEDOUT
The connection timed out.

Access Control

Auditable Events

Event Name

chacl

fchacl

The invoker must have search permission for all components of
the Path prefix.

Tail Information

Path

FileDescriptor

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Base Operating System Runtime 1-17

Related Information
The chacl subroutine, statacl subroutine, chmod subroutine, stat subroutine.

The acLchg subroutine, acLget subroutine, acl_set subroutine.

The acl_get command, aclJ)ut command, chmod command.

1-18 Base Operating System Reference

acl_set or acl_fset Subroutine

Purpose

Library

Syntax

Sets the access control information of a file.

Security Library (libs.a)

#include <sys/access.h>

int acl_set (Path, OwnerMode, GroupMode, DefaultMode)
char *Path;
int OwnerMode;
int GroupMode;
int De fa ultMode;

int acLfset (FileDescriptor, OwnerMode, GroupMode, DefaultMode)
int *FileDescriptor,;
int OwnerMode;
int GroupMode;
int DefaultMode;

Descri ptio n
The acl_set and acl_fset subroutines set the base entries of the Access Control List of the
file. All other entries are discarded. Other access control attributes are left unchanged.

Parameters
DefaultMode

FileDescriptor

GroupMode

OwnerMode

Path

Specifies the access permissions for the default class.

Specifies the file descriptor of an open file.

Specifies the access permissions for the group of the file.

Specifies the access permissions for the owner of the file.

Specifies a pointer to the path name of a file.

The mode parameters specify the access permissions in a bitmask containing zero or more
of the following values:

Authorize read permission.

Authorize write permission.

Authorize execute or search permission.

Return Values
Upon successful completion, the acLset and acl_fset subroutines return the value O.
Otherwise, the value -1 is returned and the global variable errnois set to indicate the error.

Base Operating System Runtime 1-19

acl set, ...

Error Codes

1-20

The acl_set subroutine fails and the access control information for a file remains unchanged
if one or more of the following are true:

ENOTDIR

ENOENT

ENOENT

EACCESS

EFAULT

ESTALE

ELOOP

ENOENT

A component of the Path prefix is not a directory.

A component of the Path does not exist or has the disallow truncation
attribute (see the ulimit subroutine).

The Path parameter was null.

Search permission is denied on a component of the Path prefix.

The Path parameter points to a location outside of the allocated address
space of the process.

The process's root or current directory is located in a virtual file system that
has been unmounted.

Too many symbolic links were encountered in translating the Path
parameter.

A symbolic link was named, but the file to which it refers does not exist.

ENAMETOOLONG
A component of the Path parameter exceeded 255 characters or the entire
Path parameter exceeded 1 023 characters.

The acl_fset subroutine fails and the file permissions remain unchanged if the following is
true:

EBADF The file descriptor FileDescriptor is not valid.

The acl_set or acl_fset subroutine fails and the access control information for a file remains
unchanged if one or more of the following are true:

EROFS

EINVAL

EIO

EPERM

The named file resides on a read-only file system.

One of the Mode parameters contained values other than R_ACC, W_ACC,
orX_ACC.

An I/O error occurred during the operation.

The effective user ID does not match the ID of the owner of the file and the
invoker does not have root user authority.

If NFS is installed on your system, the acLset and acLfset subroutines can also fail if the
following is true:

ETIMEDOUT The connection timed out.

Base Operating System Reference

Security
Access Control

Auditable Events

Event Name

chacl

fchacl

The invoker must have search permission for all components of
the Path prefix.

Tail Information

Path

Fi/eDescriptor

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The chacl subroutine, statacl subroutine, chmod subroutine, stat subroutine.

The acl_get subroutine, acl_put subroutine, acl_chg subroutine.

The acl_get command, acl_put command, chmod command.

Base Operating System Runtime 1-21

addssys

addssys Subroutine

Purpose

Library

Syntax

Adds the SRCsubsys record to the subsystem object class.

System Resource Controller Library (libsrc.a)

#include <sys/srcobj.h>
#include <sys/spc.h>

int addssys(SRCSubsystem)
struct SRCsubsys * SRCSubsystem;

Description

Parameter

The addssys subroutine adds a record to the subsystem object class. You must call
defssys to initialize the SRCSubsystem buffer before your application program uses the
SRCsubsys structure. The SRCsubsys structure is defined in the sys/srcobj.h header file.

The executable running with this subroutine must be running with the group system.

SRCSubsystem A pointer to the SRCsubsys structure.

Return Values
Upon successful completion, the addssys subroutine returns a value of O. Otherwise, it
returns a value of -1 and odmerrno is set to indicate the error, or an SRC error code is
returned.

Error Codes
The addssys subroutine fails if one or more of the following are true:

SRC_NONAME

SRC_NOPATH

SRC_BADNSIG

SRC_BADFSIG

SRC_NOCONTACT

SRC_SUBEXIST

SRC_SYNEXIST

SRC_SUBSYS2BIG

SRC_SYN2BIG

SRC_CMDARG2BIG

No subsystem name specified.

No subsystem path specified.

Invalid stop normal signal.

Invalid stop force signal.

Contact not signal, sockets, or message queue

New subsystem name already on file.

New subsystem synonym name already on file.

Subsystem name too long.

Synonym name too long.

Command arguments too long.

1-22 Base Operating System Reference

SRC_PATH2BIG

SRC_STDIN2BIG

SRC_STDOUT2BIG

SRC_STDERR2BIG

SRC_GRPNAM2BIG

Subsystem path too long.

stdin path too long.

stdout path too long.

stderr path too long.

Group name too long.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

File
/etc/objrepos/SRCsubsys

Related Information

SRC Subsystem Configuration object class.

The chssys subroutine, delssys subroutine, defssys subroutine.

The mkssys command, chssys command, rmssys command.

The System Resource Controller Overview in General Programming Concepts.

addssys

Base Operating System Runtime 1-23

adjtime

adjtime Subroutine

Purpose

Library

Syntax

Corrects the time to allow synchronization of the system clock.

Standard C Library (libc.a)

#include <sys/time.h>

int adjtime (Delta, Olddelta)
struct timeval * Delta;
struct timeval * Olddelta;

Description
The adjtime subroutine makes small adjustments to the system time, as returned by the
gettimeofday subroutine, advancing or retarding it by the time specified by the Delta
parameter of the timeval structure. If Delta is negative, the clock is slowed down by
incrementing it more slowly than normal until the correction is complete. If Delta is positive, a
larger increment than normal is used. The skew used to perform the correction is generally a
fraction of one percent. Thus, the time is always a monotonically increasing function. A time
correction from an earlier call to adjtime may not be finished when adjtime is called again. If
the Olddelta parameter is non-zero, then the structure pointed to will contain, upon return,
the number of microseconds still to be corrected from the earlier call.

This call may be used by time servers that synchronize the clocks of computers in a local
area network. Such time servers would slow down the clocks of some machines and speed
up the clocks of others to bring them to the average network time.

The adjtime subroutine is restricted to the users with root user authority.

Parameters
Delta Specifies the amount of time to be altered.

Olddelta Contains the number of microseconds still to be corrected from an earlier
call.

Return Values
A return value of 0 indicates that the adjtime subroutine succeeded. A return value of-1
indicates than an error occurred, and errno is set to indicate he error.

Error Codes
The adjtime subroutine fails if the following is true:

EFAULT An argument address referenced invalid memory

EPERM The process's effective user ID does not have root user authority.

1-24 Base Operating System Reference

adjtime

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The gettimeofday, settimeofday, ftime subroutines, gettimer subroutine.

Base Operating System Runtime 1-25

asinh, ...

asinh, acosh, or atanh Subroutine

Purpose

Library

Syntax

Computes inverse hyperbolic functions.

IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

#include <math.h>

double asinh (x)
double x;

double acosh (x)
double x;

double atanh (x)
double x;

Description
The asinh subroutine, acosh subroutine, and atanh subroutine compute the inverse
hyperbolic functions.

The asinh subroutine returns the hyperbolic arc sine of x, in the range -HUG E_ VAL to
+HUGE_ VAL. The acosh subroutine returns the hyperbolic arc cosine of x, in the range 1 to
+HUGE_ VAL. The atanh subroutine returns the hyperbolic arc tangent of x, in the range
-HUGE_VAL to +HUGE_ VAL.

Note: Compile any routine that uses subroutines from the libm.a library with the -1m flag.
To compile the asinh.c file, for example:

cc asinh.c -1m

Parameters
x Specifies some double-precision floating-point value.

Error Codes
The acosh subroutine returns a NaNQ if x < 1.

The atanh subroutine returns a NaNQ if Ixl > 1.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The exp, expm1, log, log10, pow subroutines, sinh, cosh, tanh subroutines, copysign,
nextafter, scalb, 10gb, ilogb subroutines.

1-26 Base Operating System Reference

assert

assert Macro

Purpose

Library

Syntax

Verifies a program assertion.

Standard C Library (libc.a)

#include <assert.h>

void assert (Expression)
int Expression;

Description

Parameter

The assert macro puts error messages into a program. If the Expression is false, the assert
macro writes the following message to standard error and stops the program:

Assertion failed: Expression, file FileName, line LineNumber

In the error message, FileName is the name of the source file and LineNumber is the source
line number of the assert statement.

For Japanese Language Support, the error message is taken from the standard C library
message catalog.

If you compile a program with the preprocessor option -DNDEBUG, or with the preprocessor
control statement #define NDEBUG before the #include <assert.h> statement, assertions
will not be compiled into the program.

Expression Specifies an expression that can be evaluated as TRUE or FALSE.
This expression is evaluated in the same manner as the C language
"if" statement.

Implementation Specifics
This macro is part of AIX Base Operating System (BOS) Runtime.

The assert macro uses the _assert() library routine.

Related Information
The abort subroutine.

The cpp command.

Base Operating System Runtime 1-27

atof, ...

atof, strtod, atoff, or strtof Subroutine

Purpose

Library

Syntax

Converts an ASCII string to a float or double floating-point number.

Standard C Library (libc.a)

#include <stdlib.h>

double atof (NumberPointe/)
char * NumberPointer;

double strtod (NumberPointer, EndPointer)
char * NumberPointer, * *EndPointer,

float atoff (NumberPointer)
char * NumberPointer,

float strtof (NumberPointer, EndPointer)
char * NumberPointer, **EndPointer

Description
The atof subroutine and strtod subroutine convert a character string, pointed to by the
NumberPointer parameter, to a double-precision floating-point number. The atoff subroutine
and strtof subroutine convert a character string, pointed to by the NumberPointer
parameter, to a single-precision floating-point number. The first unrecognized character ends
the conversion.

These subroutines recognize a character string when the characters appear in one of the
two following orders:

• An optional string of white-space characters

• An optional sign

• A non-empty string of digits optionally containing a radix character

• An optional e or E followed by an optionally signed integer.

Or

• An optional string of white-space characters

• An optional sign

• One of the strings: "INF", "infinity", "NaNQ", or "NaNS" (case insensitive).

Parameters
NumberPointer

EndPointer

Specifies a character string to convert.

A pointer to the character that ended the scan or a NULL value.

1-28 Base Operating System Reference

atof, ...

Error Codes
If the string is empty or begins with an unrecognized character, +0.0 is returned.

For the strtod or strtof subroutines, if the value of EndPointer is not:

(char**) NULL

then a pOinter to the character that terminated the scan is stored in *EndPointer. If a
floating-point value cannot be formed, "'EndPointer is set to NumberPointer.

The at of (NumberPointer) subroutine call is equivalent to:

strtod (NumberPointer, (char **) NULL).

The atoff (NumberPointet) subroutine call is equivalent to:

strtof (NumberPointer, (char **) NULL).

If the correct return value overflows, a properly signed HUGE_VAL is returned. On
underflow, a properly signed zero is returned.

Note: The setlocale function may affect the radix character used in the conversion.

The atoff and strtof subroutines have only one rounding error. (If the atof or strtod
subroutines are used to create a double and then that double is converted to a float, two
rounding errors could occur.)

If the correct value would cause overflow, +/- HUGE is returned (according to the sign of the
value), and errno is set to ERANGE.

If the correct value would cause underflow, zero is returned and errno is set to ERANGE.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

The atoff and strtof subroutines are not part of the ANSI C Library. The accuracy of these
routines is at least as accurate as required by the IEEE Standard for Binary Floating-Point
Arithmetic. The atof and strtod subroutines accept at least 17 significant decimal digits. The
atoff and strtof subroutines accept at least nine leading zeroes. Leading zeroes are not
counted as significant digits.

Related Information
The scanf subroutine, strtol, strtoul, atol, atoi subroutines, wstrtol, watol, watoi
subroutines.

Base Operating System Runtime 1-29

audit

audit Subroutine

Purpose

Library

Syntax

Enables and disables system auditing.

Standard C Library (libc.a)

#include <sys/audit.h>
nt audit (Command, Argument)
int Command;
int Argument;

Description
The audit subroutine enables or disables system auditing.

When auditing is enabled, audit records are created for security-relevant events. These
records can be collected through the auditbin subroutine, or through the Idev/audit special
file interface.

Parameters
Command Defined in the sys/audit.h header file, can be one of the following values:

1-30 Base Operating System Reference

Returns a mask indicating the state of the auditing
subsystem. The mask is a logical ORing of the
AUDIT_ON, AUDIT_OFF, AUDIT_PANIC, and
AUDIT _NOPANIC flags. The Argument parameter
is ignored.

Enables auditing. If auditing is already enabled,
only the failure mode behavior will change. The
Argument parameter is used to specify recovery
behavior in the presence of failure and may include
one or more of the following values, defined in
sys/audit.h:

The operating system will shutdown if an audit
record cannot be written to a bin. Note that
binmode auditing must be enabled prior to invoking
this call if AUDIT_PANIC is specified.

Disables the auditing system if auditing is enabled.
If the auditing system is disabled, the audit
subroutine does nothing. The Argument parameter
is ignored.

Disables the auditing system (as for AUDIT_OFF)
and resets the auditing system. If auditing is
already disabled, only the system configuration is
reset. Resetting the audit configuration involves
clearing the audit events and audited objects table

audit

and terminating bin and stream aUditing. The
Argument parameter is ignored.

Argument Specifies the behavior when a bin write fails.

Return Values
For a Command value of AUDIT_QUERY, the audit subroutine returns, upon successful
completion, a mask indicating the state of the auditing subsystem. The mask is a logical
ORing of the AUDIT_ON, AUDIT_OFF, AUDIT_PANIC, and AUDIT_NOPANIC flags. For
any other Command value, the audit subroutine returns 0 on successful completion.

If the audit subroutine fails, a value of -1 is returned and errno is set to indicate the error.

Error Codes
The audit subroutine fails if either of the following is true:

EINVAL

EINVAL

The Command parameter is not one of AUDIT_ON, AUDIT_OFF,
AUDIT_RESET, or AUDIT_QUERY.

The Command parameter is AUDIT_ON and the Argument parameter
includes values other than AUDIT_PANIC.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The auditbin subroutine, auditlog subroutine, auditproc subroutine, auditevents
subroutine, auditobj subroutine.

The audit command.

Base Operating System Runtime 1-31

auditbin

auditbin Subroutine

Purpose

Library

Syntax

Defines files to contain audit records

Standard C Library (libc.a)

#include <sys/audit.h>
int auditbin (Command, Current, Next, Threshold)
int Command;
int Current;
int Next;
int Threshold;

Description
The auditbin subroutine establishes an audit bin file into which the kernel writes audit
records. Optionally, it may be used to establish an overflow bin into which records are written
when the current bin reaches the size specified by the Threshold parameter.

Parameters
Command If nonzero, may specify:

1-32 Base Operating System Reference

If the file specified by Current is not the kernel's
current bin file, the auditbin subroutine fails
immediately with errno set to EBUSV.

The auditbin subroutine should not return until:

bin full

bin failure

bin contention

The kernel writes the number of
bytes specified by the Threshold
parameter to the file descriptor
specified by the Current parameter.
Upon successful completion,
auditbin returns a O. The kernel
writes subsequent audit records to
the file descriptor specified by the
Next parameter.

An attempt to write an audit record
to the file specified by the Current
parameter fails. If this occurs,
auditbin fails with errno set to the
return code from the auditwrite
subroutine.

Another process had already
issued a successful auditbin
subroutine. If this occurs, audtbin
fails with errno set to EBUSV.

Current

Next

Threshold

Return Values

auditbin

system shutdown
The auditing system was
shutdown, If this occurs, auditibin
fails with errno set to EINTR.

A file descriptor for a file to which the kernel should immediately write audit
records.

Specifies the file descriptor which will be used as the current audit bin if the
value of the Threshold parameter is exceeded or if a write to the current bin
should fail. If this value is -1, no switch will occur.

Specifies the maximum size of the current bin. If 0, the auditing subsystem
will not switch bins. If it is non-zero, the kernel will begin writing records to
the file specified by the Next parameter if writing a record to the file
specified by the Cur parameter would cause the size of this file to exceed
Threshold bytes. If no next bin is defined and AUDIT_PANIC was specified
when the auditing subsystem was enabled, the system will be shutdown. If
the size of the Threshold parameter was too small to contain a bin header
and a bin tail, then the auditbin subroutine will fail and an errno of EINVAL
will be set.

If the auditbin subroutine is successful, a value of 0 returns.

If the auditbin subroutine fails, a value of- 1 returns and errno is set to indicate the error. If
this occurs, the result of the call does not indicate whether any records were written to the
bin.

Error Codes
The auditbin subroutine fails if any of the following are true:

EBADF

EINVAL

EINVAL

EBUSV

EBUSV

EINTR

The Current parameter is not a file descriptor for a regular file open for
writing, or the Next parameter is neither -1 nor a file descriptor for a regular
file open for writing.

The Command parameter specifies a nonzero value other than
AUDIT _EXCL or AUDIT_WAIT.

The Threshold parameter value is less than the size of a bin header and
trailer.

The Command parameter specifies AUDIT _EXCL and the kernel is not
writing audit records to the file specified by Current.

The Command parameter specifies AUDIT_WAIT and another process has
already registered a bin.

The auditing subsystem is shutdown.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Base Operating System Runtime 1-33

auditbin

Related Information
The audit subroutine, auditevents subroutine, auditlog subroutine, auditproc subroutine,
auditobj subroutine.

The audit command.

The audit.h file.

1-34 Base Operating System Reference

aUditevents

auditevents Subroutine

Purpose

Syntax

Gets or sets the status of system event auditing.

#include <sys/audit.h>
int auditevents (Command, Classes, Nclasses)
int Command;
struct audit_class *Classes;
int Nclasses;

Description
The auditevents subroutine reads or writes the audit class definitions which control event
auditing in the kernel. Each audit class is a set of one or more audit events.

System auditing need not be enabled to set or query the event lists. The audit subroutine
can be directed to clear all event lists with the AUDIT_RESET command.

Parameters
Command

Classes

Specifies whether the event lists are to be read or written. The values for
the Command parameter, defined in sys/audit.h, are:

AUDIT_SET

AUDIT_GET

AUDIT_LOCK

Sets the lists of audited events.

Queries the lists of audited events.

Queries the lists of audited events. This also blocks
any other process attempting to set the list of audit
events. The lock is released when the process
holding the lock dies or calls auditevents with the
Command parameter set to AUDIT_SET.

The base array of a_event structures for the AUDIT_SET operation, or after
and AUDIT_GET or AUDIT_LOCK operation. The audit_class structure is
defined in sys/audit.h and contains the following members:

Note: Event and class names are limited to 15 significant characters.

A pointer to the name of the audit class.

A pointer to a list of null-terminated audit event names for
this audit class. The list is ended by a null name (a leading
null byte, or two consecutive null bytes) ..

The length of the event list in ae_list. This length includes
the terminating null bytes. On an AUDIT_SET operation,
the caller must set this field to indicate the actual length of
the list (in bytes) pOinted to by ae_list. On an AUDIT_GET
or AUDIT_LOCK operation, auditevents sets this field to
indicate the actual size of the list.

Base Operating System Runtime 1-35

auditevents

Security

Nc/asses Serves a dual purpose. For AUDIT _SET,Nc/asses specifies the number of
elements in the events array. For AUDIT_GET and AUDIT_LOCK,
Nclasses specifies the size of the buffer pointed to by the Classes
parameter.

Warning: Only 32 audit classes are supported. One class is implicitly defined by the system
to include all audit events (ALL). The administrator of the system should not attempt to
define more than 31 audit classes.

The calling process must have the AUDIT_CONFIG kernel privilege in order to use the
auditevents subroutine.

Return Codes .
If the auditevents subroutine completes successfully, the number of audit classes is
returned if the Command parameter is AUDIT_GET or AUDIT_LOCK; a value of 0 is
returned if the Command parameter is AUDIT_SET. If this call fails, a value of -1 is
returned and errno is set to indicate the error.

Error Codes
The auditevents subroutine fails if anyone of the following is true:

EPERM

EINVAL

EINVAL

EINVAL

ENOS PC

EFAULT

EFAULT

EFAULT

The calling process does not have the AUDIT_CONFIG kernel privilege.

The value of Command is not AUDIT_SET, AUDIT_GET, or AUDIT_LOCK.

The Command parameter is AUDIT_SET and the values of the Nc/asses
parameter is greater than or equal to 32.

A class name or event name is longer than 15 significant characters.

The value of Command is AUDIT_GET or AUDIT_LOCK and the size of the
buffer as specified by Nc/asses is not large enough to hold the list of event
structures and names. If this occurs, the first word of the buffer is set to the
required buffer size.

The Classes parameter points outside of the process' address space.

The ae_list field of one or more audit_class structures passed for an
AUDIT_SET operation points outside of the process' address space.

The Command is AUDIT_GET or AUDIT_LOCK and the size of the
Classes buffer is not large enough to hold an integer.

Implementation Specifications
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

1-36

The audit subroutine, auditbin subroutine, auditlog subroutine, auditobj subroutine,
auditproc subroutine.

The auditread subroutine, auditwrite subroutine.

The audit command.

Base Operating System Reference

auditlog

auditlog Subroutine

Purpose

Library

Syntax

Appends an audit record to the audit trail file.

Standard C Library (libc.a)

#include <sys/audit.h>
int auditlog (Event, Result, Buffer, BufferSize)
char * Event;
int Result;
char * Buffer,
int Buffersize;

Description
The auditlog subroutine generates an audit record. The kernel audit logging component will
append a record for the specified Event if system auditing is enabled, process auditing is not
suspended and the Event parameter is in one or more of the audit classes for the current
process.

The audit logger generates the audit record by adding the Event and Result parameters to
the audit header and including the information in the Buffer parameter as the audit tail.

Parameters
Event

Result

The name of the audit event to be generated. This parameter should be the
name of an audit event. Audit event names are truncated to 15 characters
plus NULL.

Describes the result of this event. Valid values are defined in sys/audit.h and
include the following:

AUDIT_OK

AUDIT_FAIL

The event was successful.

The event failed.

AUDIT_FAlL_ACCESS
The event failed because of any access control denial.

AUDIT _FAIL_DAC

The event failed because of a discretionary access control
denial.

AUDIT _FAIL_PRIV
The event failed because of a privilege control denial.

AUDIT _FAIL_AUTH
The event failed because of an authentication denial.

Other non-zero values of the Result parameter will be converted into
AUDIT_FAIL.

Base Operating System Runtime 1-37

auditlog

Buffer

BufferS;ze

Points to a buffer containing the tail of the audit record. The format of the
information in this buffer depends on the event name.

Specifies the size of the Buffer parameter including the terminating NULL
character.

Return Values
Upon successful completion, the auditlog subroutine returns a value of O. If auditlog fails, a
value of -1 is returned and errno is set to indicate the error.

The auditlog subroutine does not return any indication of a failure to write the record due to
the auditing subsystem configuration.

Error Codes
The auditlog subroutine fails if any of the following are true:

EFAULT

EINVAL

EINVAL

The Event or Buffer parameter points outside of the process' address
space.

The auditing system is either interrupted or not initialized.

The length of the audit record is greater than 32 kilobytes.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

1-38

The audit subroutine, auditbin subroutine, auditevents subroutine, auditobj subroutine,
auditproc subroutine, auditwrite subroutine.

Base Operating System Reference

auditobj

auditobj Subroutine

Purpose

Library

Syntax

Gets or sets the auditing mode of a system data object.

Standard C Library (libc.a)

#include <sys/audit.h>

int auditobj (Command, Obj_Events, Objsize)
int Command;
struct o_event *Obj_Events;
int ObjSize;

Description
The auditobj subroutine reads or writes the audit events to be generated by accessing
selected objects. For each object in the file system name space, it is possible to specify the
event generated per access mode. This call allows an administrator to define new audit
events in the system that correspond to accesses to the specified objects. These events are
not treated differently than the system-defined events.

System auditing need not be enabled to set or query the object audit events. The audit
subroutine can be directed to clear the object audit event definitions with the AUDIT_RESET
command.

Parameters
Command Specifies whether the object audit event lists are to be read or written. The

valid values for the Command parameter, defined in sys/audit.h are:

AUDIT_SET

AUDIT_GET

AUDIT_LOCK

Sets the list of object audit events.

Queries the list of object audit events.

Queries the list of object audit events. This also
blocks any other process attempting to set or lock the
list of audit events. The lock is released when the
process holding the lock dies or calls auditobj with
the Command parameter set to AUDIT_SET.

Specifies a buffer that contains AUDIT_SET, or will contain AUDIT_GET or
AUDIT_LOCK as the list of object audit events. This buffer is an array of
o_event structures. The o_event structure is defined in sys/audit.h and
contains the following members.

Specifies the type of the object, in terms of naming space.
Currently, only one object naming space is supported:

Denotes the file system naming space.

Specifies the name of the object.

Base Operating System Runtime 1-39

auditobj

ObjSize

Specifies any array of event names to be generated when
the object is accessed. Note that event names in AIX are
currently limited to 16 bytes, including the trailing NULL.
The index of an event name in this array corresponds to an
access mode. Valid indices are defined in the audit.h file
and include the following:

• AUDIT_READ

• AUDIT_WRITE

• AUDIT_EXEC

For an AUDIT_SET operation, the ObjSize parameter specifies the number
of object audit event definitions in the array pointed to by the Obj_Events
parameter. For an AUDIT_GET or AUDIT_LOCK operation, the ObjSize
parameter specifies the size of the buffer pointed to by the Obj_Events
parameter.

Return Values
If the auditobj subroutine completes successfully, the number of object audit event
definitions is returned if the Command parameter is AUDIT_GET or AUDIT_LOCK; a value
of 0 is returned if the Command parameter is AUDIT_SET. If this call fails, a value of -1 is
returned and errno is set to indicate the error.

Error Codes
The auditobj subroutine fails if any of the following are true;

EINVAL

EINVAL

EINVAL

ENOENT

ENOSPC

EFAULT

EFAULT

EFAULT

The value of the Command parameter is not AUDIT_SET, AUDIT_GET or
AUDIT_LOCK.

The Command parameter is AUDIT_SET and either the value of one or
more of the o_type fields is not AUDIT_FILE.

An event name was longer than 15 significant characters.

The Command parameter is AUDIT_SET and the parent directory of one of
the file system objects does not exist.

The value of the Command parameter is AUDIT_GET or AUDIT_LOCK and
the size of the buffer as specified by the ObjSize parameter is not large
enough to hold the list of event structures and names. If this occurs, the
first word of the buffer is set to the required buffer size.

The Obj_Events parameter points outside the address space of the process.

The Command parameter is AUDIT_SET and one or more of the o_name
fields points outside the address space of the process.

The Command parameter is AUDIT_GET or AUDIT_LOCK and the buffer
size of the Obj_Events parameter is not large enough to hold the integer.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

1-40 Base Operating System Reference

auditobj

Related Information
The audit subroutine, auditbin subroutine, auditevents .subroutine, auditlog subroutine,
auditproc subroutine.

The audit command.

The audit.h file

Base Operating System Runtime 1-41

auditpack

auditpack Subroutine

Purpose

Library

Syntax

Compresses and uncompresses audit bins.

Security Library (libs.a)

#include <sys/audit.h>
#include <stdio.h>

char *auditpack {Expand, Buffet}
int Expand;
char */but,

Description
The auditpack subroutine can be used to compress or uncompress bins of audit records.

Parameters
Expand

Buffer

Return Values

Specifies the operation. Valid values, which are defined in the sys/audit.h
header file, are one of the following:

AUDIT_PACK

AUDIT_UNPACK

Performs standard compression on the audit bin.

Unpacks the compressed audit bin.

Specifies the buffer containing the bin to be compressed or uncompressed.
This buffer must contain a standard bin as described in the audit. h file.

If the auditpack subroutine is successful, a pointer to a buffer containing the processed
audit bin is returned. If unsuccessful, a NULL pointer is returned and errno is set to indicate
the error.

Error Codes
The auditpack subroutine fails if one or more of the following values is true:

EINVAL

EINVAL

EINVAL

ENOSPC

The Expand parameter is not one of the valid values (AUDIT_PACK or
AUDIT_UNPACK).

The Buffer parameter does not point to a valid buffer.

The Expand parameter is AUDIT_PACK and the bin in the Buffer parameter
is already compressed on the Expand parameter is AUDIT_UNPACK and
the bin in the Buffer parameter is already unpacked.

The function is unable to allocate space for a new buffer.

1-42 Base Operating System Reference

auditpack

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS). Runtime.

Related Information
The auditread subroutine.

The auditcat command.

Base Operating System Runtime 1-43

auditproc

auditproc Subroutine

Purpose

Library

Syntax

Gets or sets the audit state of a process.

Standard C Library (libc.a)

#include <sys/audit.h>
int auditproc (Processid, Command, Argument, Length)
int Processid;
int Command;
int Argument;
int Length;

Description
The auditproc subroutine queries or sets the auditing state of a process. There are two
parts to the auditing state of a process:

• The list of administrative events to be audited for this process. Administrative events are
defined by the auditevents subroutine. Each class includes a set of audit events. When a
process causes an audit event, that event may be logged in the audit trail, if it is included
in one or more of the audit classes of the process .

• The audit status of the process. Auditing for a process may be suspended or resumed.
Functions that generate an audit record can first check to see whether auditing is
suspended. If process auditing is suspended, no audit events are logged for a process.
This is described the auditlog subroutine documentation.

Parameters
Processid The process ID of the process to be affected. If Processid is 0, the

auditproc subroutine affects the current process.

1-44

Command Specifies the action to be taken. Defined in the audit.h file, valid values for
the are as follows:

AUDIT_QEVENTS

AUDIT_EVENTS

AUDIT_QSTATUS

Returns the list of audit classes defined for the
current process. The Argument parameter is a
pointer to a character buffer. The Length parameter
is the size of this buffer. On return, this buffer
contains a list of null-terminated audit class names.
A null name terminates the list.

Sets the list of audit classes to be audited for the
process. The Argument parameter is a pointer to a
list of null-terminated audit class names. The
Length parameter is the length of this list.

Returns the audit status of the current process. You
can only check the status of the current process. If
the Processidparameter is nonzero, -1 returns and

Base Operating System Reference

Argument

Length

Return Values

auditproc

errno is set to EINVAL. The Length and Argument
parameters are ignored. A return value of
AUDIT_SUSPEND indicates auditing is suspended.
A return value of AUDIT_RESUME indicates
normal auditing for this process.

Sets the audit status of the current process. The
Length parameter is ignored, and the Processid
parameter must be zero. If Argument is
AUDIT_SUSPEND, the audit status is set to
suspend event auditing for this process. If the
Argument parameter is AUDIT_RESUME, the audit
status is set to resume event auditing for this
process.

Specifies a character pointer for the audit class buffer for an AUDIT_EVENT
or an AUDIT_QEVENTS value of the Command parameter or an integer
defining the audit status to be set for an AUDIT_STATUS operation.

Size of the audit class character buffer.

The auditproc subroutine returns the following values upon successful completion:

• The previous audit status (AUDIT_SUSPEND or AUDIT_RESUME), if the call queried or
set the audit status (the Command parameter was AUDIT_QSTATUS or
AUDIT_STATUS).

• The value 0 if the call queried or set audit events (the Command parameter was
AUDIT_QEVENTS or AUDIT_EVENTS).

Error Codes
If the auditproc subroutine fails if one or more of the following are true:

EINVAL

EINVAL

EINVAL

ENOSPC

EFAULT

An invalid value was specified for the Command parameter.

The Command parameter is set to AUDIT_QSTATUS or AUDIT_STATUS
value and the pid value is nonzero.

The Command parameter is set to AUDIT_STATUS value and the
Argument parameter is not set to AUDIT_SUSPEND or AUDIT_RESUME.

The Command parameter is AUDIT _QEVENTS and the buffer size is
insufficient. In this case, the return value is the required buffer size, in
bytes.

The Command parameter is AUDIT_QEVENTS or AUDIT_EVENTS and
the Argument parameter points to a location outside of the process's
allocated address space.

Base Operating System Runtime 1-45

auditproc

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The audit subroutine, auditbin subroutine, auditevents subroutine, auditlog subroutine,
auditobj subroutine, auditwrite subroutine.

1-46 Base Operating System Reference

auditread

auditread Subroutine

Purpose

Library

Syntax

Reads an audit record.

Security Library (libs.a)

#include <sys/audit.h>
#include <stdio.h>

char *auditread (FilePointer, AuditRecord)
FILE * File Pointer,
struct aud_rec *AuditRecord;

Description
The auditread subroutine will read the next audit record from the specified file descriptor.
Bins on this input stream will be unpacked and uncompressed if necessary.

Parameters
File Poin ter

AuditRecord

Return Values

Specifies the file descriptor from which to read.

Specifies the buffer to contain the header. The first short in this buffer
must contain a valid number for the header.

If the auditread subroutine completes successfully, a pointer to a buffer containing the tail of
the audit record is returned. The length of this buffer is returned in the ah_length field of the
header file. If it is unsuccessful, a NULL pointer is returned and errno is set to indicate the
error.

Error Codes
The auditread subroutine fails if one or more of the following is true:

EINVAL

EBADF

ENOSPC

The ah_magic field in the header does not contain a valid number.

The FilePointer parameter is not valid.

The auditread subroutine is unable to allocate space for the tail buffer.

Other error codes are returned by the read subroutine.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The auditpack subroutine.

Base Operating System Runtime 1-47

auditwrite

auditwrite Subroutine

Purpose

Library

Syntax

Writes an audit record.

Security Library (libs.a)

#include <sys/audit.h>
#include <stdio.h>

int auditwrite (Event, Result,

char * Event,
int Result;

Buffer 1 , Length 1, Buffer2, Length2 ...)

char * Buffer 1 , * Buffer2 ... ;
int Length 1, Length2 ... ;

Description
The auditwrite subroutine will build the tail of an audit record and then write it with the
auditlog subroutine. The tail is built by gathering the specified buffers. The last buffer
pointer must be a NULL.

Parameters
Event Specifies the name of the event to be logged.

Result Specifies the audit status of the event. Valid values are defined in the
sys/audit.h file and are listed in the auditlog subroutine.

Buffer1, Buffer2 Specifies the character buffers containing audit tail information. Note
that numerical values must be passed by reference. The correct size
can be computed with the sizeof C function.

Length 1, Length2 Specifies the lengths of the corresponding buffers.

Return Values
If the auditwrite subroutine completes successfully, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

Error Codes
The auditwrite subroutine fails if one or more of the following is true:

ENOSPC The auditwrite subroutine is unable to allocate space for the tail buffer.

Other error codes are returned by the auditlog subroutine.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The auditlog subroutine.

1-48 Base Operating System Reference

bcopy, ...

bcopy, bcmp, bzero or ffs Subroutine

Purpose

Library

Syntax

Performs bit and byte string operations.

Standard C Library (libc.a)

void bcopy (Source, Destination, Length)
char * Source, * Destination;
int Length;

int bcmp (String1, String2, Length)
char * String 1, * String2;
int Length;

void bzero (String, Length)
char * String;
int Length;

int ffs (Index)
int Index;

Description
The bcopy, bcmp, and bzero subroutines operate on variable length strings of bytes. They
do not check for null bytes as do the string routines.

The bcopy subroutine copies the value of the Length parameter in bytes from the string in
the Source parameter to the string in the Destination parameter.

The bcmp subroutine compares byte string in the String1 parameter against byte string of
the String2 parameter, returning a zero value if the two strings are identical and a nonzero
value otherwise. Both strings are assumed to be Length bytes long.

The bzero subroutine zeroes out the string in the String parameter for the value of the
Length parameter in bytes.

The ffs subroutine finds the first bit set in the Index parameter passed to it and returns the
index of that bit. Bits are numbered starting at 1. A return value of 0 indicates that the value
passed is O.

Warning: The bcopy subroutine takes parameters backwards from the strcpy subroutine.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The memcmp, memccpy, memchr, memcpy, memmove, memset subroutines, string
subroutines, NCstring subroutines, NLstring subroutines, swab subroutine.

Base Operating System Runtime 1-49

bessel

bessel: jO, j1, jn, yO, y1, or yn Subroutine

Purpose

Library

Syntax

Computes Bessel functions.

IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

#include <math.h>

double jO (x)
double x;

double j1 (x)
double x;

double jn (n, x)
int n:
double x;

double yO (x)
double x;

double y1 (x)
double x;

double yn (n, x)
int n;
double x;

Description
Bessel functions are used to compute wave variables, primarily in the field of
communications.

The jO subroutine and j1 subroutine return Bessel functions of x of the first kind, of orders 0
and 1, respectively. The jn subroutine returns the Bessel function of x of the first kind of
order n.

The yO subroutine and y1 subroutine return the Bessel functions of x of the second kind, of
orders 0 and 1, respectively. The yn subroutine returns the Bessel function of x of the
second kind of order n. The value of x must be positive.

Note: Compile any routine that uses subroutines from the libm.a library with the -1m flag.
To compile the jO.c file, for example:

cc jO.c -1m

Parameters
x Specifies some double-precision floating-point value.

n Specifies some integer value.

1-50 Base Operating System Reference

Error Codes
When using libm.a (-1m):

Non-positive values cause yO, y1, and yn to return the value NaNQ.

When using libmsaa.a (-Imsaa):

bessel

Values too large in magnitude cause the functions jO, j1, yO, and y1 to return 0 and to set
errno to ERANGE. In addition, a message indicating TLOSS error is printed on the standard
error output.

Non-positive values cause yO, y1, and yn to return the value -HUGE and to set errno to
EDOM. In addition, a message indicating argument DOMAIN error is printed on the standard
error output.

These error-handling procedures may be changed with the matherr subroutine when using
libmsaa.a (-Imsaa).

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The matherr subroutine.

Base Operating System Runtime 1-51

brk, ...

brk or sbrk Subroutine

Purpose

Syntax

Changes data segment space allocation.

int brk (EndDataSegment)
char * EndDataSegment;

char *sbrk (Increment)
int Increment;

Description
The brk subroutine and the sbrk subroutine dynamically change the amount of space
allocated for the data segment of the calling process. (For information about segments, see
the exec subroutine. For information about the maximum amount of space that can be
allocated, see the ulimit and getrlimit system calls.)

The change is made by resetting the break value of the process, which determines the
maximum space that can be allocated. The break value is the address of the first location
beyond the current end of the data area in the process private segment. The amount of
available space increases as the break value increases. The available space is initialized to
a value of 0 at the time it is used. The break value can be automatically rounded up to a size
appropriate for the memory management architecture.

The brk subroutine sets the break value to the value of the EndDataSegment parameter and
changes the amount of available space accordingly.

The sbrk subroutine adds to the break value the number of bytes contained in the Increment
parameter and changes the amount of available space accordingly. The Increment
parameter can be a negative number, in which case the amount of available space is
decreased.

Parameters
EndDataSegment

Increment

Return Values

Specifies the effective address of the maximum available data.

Specifies any integer.

Upon successful completion, the brk subroutine returns a value of 0, and the sbrk
subroutine returns the old break value. If either subroutine is unsuccessful, a value of -1 is
returned and the global variable errno is set to indicate the error.

Error Codes
The brk subroutine and the sbrk subroutine are unsuccessful and the allocated space
remains unchanged if one or more of the following are true:

ENOMEM The requested change allocates more space than is allowed by a
system-imposed maximum. (For information on the system-imposed
maximum on memory space, see the ulimit system call.)

1-52 Base Operating System Reference

ENOMEM

Implementation Specifics

brk, ...

The requested change sets the break value to a value greater than
or equal to the start address of any attached shared memory
segment. (For information on shared memory operations, see the
shmat subroutine.)

These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The exec subroutine, shmat subroutine, getrlimit subroutine, shmdt subroutine, ulimit
subroutine.

The _end, _etext, _edata identifier.

Base Operating System Runtime 1-53

bsearch

bsearch Subroutine

Purpose

Library

Syntax

Performs a binary search.

Standard C Library (libc.a)

#include <stdlib.h>

void *bsearch (Key, Base, NumberOfElements, Size, ComparisonPointery

void *Key, *Base;
Size_t Size, NumberOfElements;
int (*ComparisonPointery (void *, void *);

Description
The bsearch subroutine is a binary search routine.

The bsearch subroutine searches an array of NumberOfElements objects, the initial
member of which is pointed to by the Base parameter, for a member that matches the object
pointed to by the Key parameter. The size of each member in the array is specified by the
Size parameter.

The array must already be sorted in increasing order according to the provided comparison
fu nction Comparison Pointer parameter.

Parameters
Key Points to the object to be sought in the array.

Points to the element at the base of the table. Base

NumberOfElements

Comparison Pointer

Size

Specifies the number of elements in the array.

Points to the comparison function, which is called with two
arguments that point to the Key parameter object and to an
array member, in that order.

Specifies the size of each member in the array.

Return Values

1-54

For the Key parameter: If the Key parameter value is found in the table, the bsearch
subroutine returns a pointer to the element found.

If the Key parameter value is not found in the table, the bsearch subroutine returns the
NULL value. If two members compare as equal, the matching member is unspecified.

For the ComparisonPointer parameter: The comparison function compares its parameters
and returns a value as follows:

• If the first parameter is less than the second parameter, the Comparison Pointer
parameter returns a value less than O.

Base Operating System Reference

bsearch

• If the first parameter is equal to the second parameter, the ComparisonPointerparameter
returns a value of O.

• If the first parameter is greater than the second parameter, the ComparisonPointer
parameter returns a value greater than O.

The comparison function need not compare every byte, so arbitrary data can be contained in
the elements in addition to the values being compared.

The Key and Base parameters should be of type pointer-to-element, and cast to type
pointer-to-character. Although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The hsearch subroutine, Isearch subroutine, qsort subroutine.

Donald E. Knuth's The Art of Computer Programming, Volume 3,6.2.1, Algorithm B. This
book was published in Reading, Massachusetts by Addison-Wesley, 1981.

Base Operating System Runtime 1-55

catclose

catclose Subroutine

Purpose

Library

Syntax

Closes a specified message catalog.

Standard C Library (libc.a)

#include <nl_types.h>

int catclose (Cata/ogDescriptory
nl_catd Cata/ogDescriptor,

Description

Parameter

The catclose subroutine closes a specified message catalog. If your program accesses
several message catalogs you may reach the NL_MAXOPEN number of opened catalogs,
and you must close some before opening more. Before exiting, programs should close any
catalog they have opened.

The catclose subroutine will close a message catalog only when the number of calls to
catclose matches the combined number of calls to catopen and NLcatopen in an
application.

Cata/ogDescriptor Points to the message catalog that is returned from a call to
the catopen or NLcatopen subroutine.

Return Values
The catclose subroutine returns a value of 0 if it closes the catalog successfully, or if the
number of calls to catclose is fewer than the number of calls to catopen and NLcatopen.

Error Codes
The catclose subroutine returns a value of -1 if it does not succeed in closing the catalog.
The catclose subroutine fails if the number of calls to catclose is greater than the number
of calls to catopen and NLcatopen, or if the Cata/ogDescriptorparameter value is not valid.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The catopen, NLcatopen subroutine.

1-56 Base Operating System Reference

catgetmsg

catgetmsg Subroutine

Purpose

Library

Syntax

Copies a message from a catalog into a user-defined character string buffer.

Standard C Library (Iibc.a)

#include <nl_types>

char *catgetmsg (Cata/ogDescriptor, SetNumber, MessageNumber, Buffer, BufferLength)
nl_catd Cata/ogDescriptor;
int SetNumber, MessageNumber, BufferLength;
char * Buffer,

Description
The catgetmsg subroutine retrieves a message from a catalog after a successful call to the
catopen subroutine. As with the catgets subroutine, you specify a catalog with the
Cata/ogDescriptor parameter returned by the catopen subroutine.

If the message is found, the catgetmsg subroutine returns the Buffer pointer that points to
the message.

The catgetmsg subroutine copies up to BufferLengtlr-1 bytes of the message into the buffer
specified by the Buffer parameter. The catgetmsg subroutine does not split a 2-byte
character (an extended character).

Parameters
Cata/ogDescriptor

SetNumber

MessageNumber

Buffer

BufferLength

Error Codes

Specifies a catalog description that is returned by the catopen
subroutine.

Specifies the set 10.

Specifies the message 10. SetNumberand MessageNumber
specify a particular message in the catalog to retrieve.

Points to the buffer in which the retrieved message is placed.

Specifies the length of the buffer.

If the catgetmsg subroutine fails, the Buffer parameter points to an empty string.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

The catgetmsg subroutine has been withdrawn from X/Open.

Related Information
The catgets subroutine, NLcatgets subroutine, NLgetamsg subroutine.

Base Operating System Runtime 1-57

catgets

catgets Subroutine

Purpose

Library

Syntax

Retrieves a message from a catalog.

Standard C Library (libc.a)

#include <nl_types>

char *catgets (CatalogDescriptor, SetNumber, MessageNumber, String)
nl_catd Cata/ogDescriptor,
int SetNumber, MessageNumber;
char * String;

Description
The catgets subroutine retrieves a message from a catalog after a successful call to the
catopen or NLcatopen subroutine. If the catgets subroutine finds the specified message, it
loads that message into a character string buffer, ends the message string with a null
character, and returns the pointer to the buffer.

The pointer is used to reference the buffer and display the message; use the printf or
NLprintf subroutine with either the %s or %n$s conversion specification. The message in
the buffer is overwritten by the next call to the catgets subroutine.

The catgets and catgetmsg subroutines retrieve messages from an open catalog. The AIX
operating system includes two functions for getting messages that are not defined by
X/Open: the NLcatgets and the NLgetamsg subroutines.

Parameters
Catalog Descriptor

SetNumber

MessageNumber

String

Specifies a catalog description that is returned by the catopen or
NLcatopen subroutine.

Specifies the set 10.

Specifies the message 10. SetNumberand MessageNumber
specify a particular message in the catalog to retrieve.

Specifies the character string buffer.

Error Codes
If the catgets subroutine fails for any reason, it returns the user-supplied default message
string, String.

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

Related Information
The catgetmsg subroutine, NLcatgets subroutine, NLgetamsg subroutine.

1-58 Base Operating System Reference

catopen, ...

catopen or NLcatopen Subroutine

Purpose

Library

Syntax

Opens a specified message catalog.

Standard C Library (libc.a)

include <limits.h>
include <nl_types.h>

nl_catd catopen (CatalogName, Parametery
char * CatalogName;
int Parameter;

nLcatd NLcatopen (CatalogName, Parametery
char * CatalogName;
int Parameter;

Description
The catopen subroutine opens a specified message catalog and returns a catalog
descriptor that you use to retrieve messages from the catalog.

The NLcatopen subroutine prepares a catalog to be opened. To avoid unnecessary opening
of files, NLcatopen does not actually open the catalog until a message is needed.

The special nl_catd data type is used for catalog descriptors. Since this data type is defined
in the nl_types.h header file, include this file in your application program.

If the catalog file name referred to by the CatalogName parameter begins with a I, it is
assumed to be an absolute path name. If the catalog file name is not an absolute path
name, the user environment determines the directory paths to search.

The environment variable NLSPATH defines the directory search path. You can use two
special variables, O/oN and %L, in the environment variable NLSPATH.

The variable %N will be replaced by the catalog name referred to by the call that opens the
message catalog. The variable %L will be replaced by the value of the LANG environment
variable.

You can use the LANG environment variable to refer to message catalogs that are separated
into directories based on natural languages. For example, if the catopen subroutine
specifies a catalog with the name rnycrnd, and the environment variables are set as follows:

NLSPATH= •• /%N:./%N:/systern/nls/%L/%N:/systern/nls/%N
LANG=Fr FR

then the application searches for the catalog in the following order:

•• /rnycrnd
• /rnycrnd
/systern/nls/Fr_FR/rnycrnd
/systern/nls/rnycrnd

Base Operating System Runtime 1-59

catopen, ...

If you omit the variable %N in a directory specification within the environment variable
NLSPATH, the application assumes that the path defines a directory and searches for the
catalog in that directory before searching the next specified path.

Parameters
Cata/ogName Specifies the catalog file to open.

Parameter

Error Codes

Included for compatibility with X/Open, but is not used by the AIX
operating system. Takes the value of O.

The eatopen and NLeatopen subroutines return a value of -1 if they cannot find the file or if
the number of catalogs already open is equal to the NL_MAXOPEN limit defined in the
mesg.h header file.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The eatelose subroutine.

1-60 Base Operating System Reference

cfgetospeed, ...

cfgetospeed, cfsetospeed, cfgetispeed, or cfsetispeed
Subroutine

Purpose

Library

Syntax

Get and set input and output baud rates.

Standard C Library (libc.a)

#include <termios.h>

speed_t cfgetospeed (TermiosPointer,
struct termios *TermiosPointer,

int cfsetospeed (TermiosPointer, Speed)
struct termios *TermiosPointer,
speed_t Speed;

speed_t cfgetispeed (TermiosPointer,
struct termios *TermiosPointer,

int cfsetispeed (TermiosPointer, Speed)
struct termios *TermiosPointer,
speed_t Speed;

Description
The baud rate subroutines are provided for getting and setting the values of the input and
output baud rates in the termios structure. The effects on the terminal device described
below do not become effective and not all errors are detected until the tcsetattr function is
successfully called.

The input and output baud rates are stored in the termios structure. The values shown
below are supported. The name symbols in this table are defined in the termios.h file.

The type speed_t is defined in the termios.h file as an unsigned integral type.

The cfgetospeed subroutine returns the output baud rate stored in the termios structure
pointed to by the TermiosPointer parameter.

The cfsetospeed subroutine sets the output baud rate stored in the termios structure
pointed to by the TermiosPointer parameter to the value specified by the Speed parameter.

The cfgetispeed subroutine returns the input baud rate stored in the termios structure
pointed to by the TermiosPointer parameter.

The cfsetispeed subroutine sets the input baud rate stored in the termios structure pointed
to by the TermiosPointer parameter to the value specified by the Speed parameter.

Certain values for speeds have special meanings when set in the termios structure and
passed to the tcsetattr function. These are discussed in the tcsetattr subroutine.

Base Operating System Runtime 1-61

cfgetospeed, ...

Baud Rate Values
Name
80
850
875
8110
8134
8150
8200
8300

Parameters
TermiosPointer

Speed

Return Values

Description
Hang up
50 baud
75 baud
110 baud
134 baud
150 baud
200 baud
300 baud

Name
8600
81200
81800
82400
84800
89600
819200
838400

Points to a termios structure.

Specifies the baud rate.

Description
600 baud
1200 baud
1800 baud
2400 baud
4800 baud
9600 baud
19200 baud
38400 baud

The cfgetospeed and cfgetispeed subroutines return exactly the value found in the
termios data structure, without interpretation.

Example

80th the cfsetospeed and cfsetispeed subroutines return a value of zero if successful and
-1 to indicate an error.

To set the output baud rate to zero to force modem control lines to no longer be asserted,
enter:

cfsetospeed (&my_termios, aD);
tcsetattr (stdout, TCSADRAIN, &my_termios);

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The tcsetattr subroutine.

The termios.h header file.

1-62 Base Operating System Reference

chacl, ...

chacl or fchacl Subroutine

Purpose

Library

Syntax

Changes the permissions on a file.

Standard C Library (libc.a)

#include <sys/acl,h>
#include <sys/mode.h>

int chacl (Path, ACL, ACLSize)
char *Path;
struct acl *ACL;
int ACLSize;

int fchacl (FileDescriptor, ACL, ACLSize)
int FileDescriptor,
struct acl *ACL;
int ACLSize;

Description
The chacl and fchacl subroutines set the access control attributes of a file according to the
Access Control List structure pointed to by the ACL parameter. This structure is defined in
the sys/acl.h file and contains the following members:

acLmode

The size of the ACL (Access Control List) in bytes, including the base
entries.

The file mode.

The access permissions for the file owner.

The access permissions for the file group.

The access permissions for the default class others.

An array of the extended entries for this access control list.

The following bits in the acl_mode field are defined in the sys/mode.h file and are
significant for this subroutine:

Enables the setuid attribute on an executable file.

Enables the setgid attribute on an executable file. Enables the group
inheritance attribute on a directory.

Enables linking restrictions on a directory.

Enables extended ACL entry processing. If this attribute is not set, only the
base entries (owner, group, and default) are used for access authorization
checks.

Other bits in the mode are ignored.

Base Operating System Runtime 1-63

chacl, ...

The fields for the base ACL - owner, group, and others - may contain the following bits
which are defined in the sys/access.h file:

Allows read permission.

Allows write permission.

Allows execute or search permission.

Parameters
Path Specifies the path name of the file.

FileDescriptor

ACL

ACLSize

Return Values

Specifies the file descriptor of an open file.

Specifies the Access Control List to be established on the file. The format of an
ACL is defined in the sys/acl.h header file.

Specifies the size of the buffer containing the ACL.

Upon successful completion, the chacl and fchacl subroutines return a value of O. If the
chacl or fchacl subroutine fails, a value of -1 is returned, and the global variable errno is
set to indicate the error.

Error Codes
The chacl subroutine fails and the access control information for a file remains unchanged if
one or more of the following are true:

ENOTDIR

ENOENT

ENOENT

EACCESS

EFAULT

ESTALE

ELOOP

ENOENT

A component of the Path prefix is not a directory.

A component of the Path does not exist or has the disallow truncation
attribute (see the ulimit system call).

The Path parameter was null.

Search permission is denied on a component of the Path prefix.

The Path parameter points to a location outside of the allocated address
space of the process.

The process's root or current directory is located in a virtual file system that
has been unmounted.

Too many symbolic links were encountered in translating the Path
parameter.

A symbolic link was named, but the file to which it refers does not exist.

ENAMETOOLONG
A component of the Path parameter exceeded 255 characters or the entire
Path parameter exceeded 1023 characters.

1-64 Base Operating System Reference

Security

chacl, ...

The chacl or fclacl subroutine fails and the access control information for a file remains
unchanged if one or more of the following are true:

EROFS

EFAULT

EINVAL

EINVAL

EIO

EPERM

The named file resides on a read-only file system.

The ACL parameter points to a location outside of the allocated address
space of the process.

The ACL parameter does not point to a valid Access Control List.

The ACL_Len field in the ACL is not valid.

An lID error occurred during the operation.

The effective user 10 does not match the 10 of the owner of the file and the
invoker does not have root user authority.

The fchacl subroutine fails and the file permissions remain unchanged if the following is
true:

EBADF The file descriptor FileDescriptoris not valid.

If NFS is installed on your system, the chacl and fchacl subroutines can also fail if the
following is true:

ETIMEDOUT The connection timed out.

Access Control
The invoker must have search permission for all components of the Path
prefix.

Auditable Events

Event Name rai//nformation

chacl Path

fchacl File Descrip tor

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The statacl subroutine, chmod subroutine, stat subroutine.

The acl_get subroutine, acl_put subroutine, acl_set subroutine, acl_chg subroutine.

The acl_get command, acLput command.

Base Operating System Runtime 1-65

chdir

chdir Subroutine

Purpose

Library

Syntax

Changes the current directory.

Standard C Library (libc.a)

int chdir (Path)
char *Path;

Description

Parameter

The chdir subroutine changes the current directory to the directory indicated by the Path
parameter.

Path A pointer to the path name of the directory. If the Path parameter refers to a
symbolic link, the chdir subroutine sets the current directory to the directory
pointed to by the symbolic link. If Network File System is installed on the
system, this path can cross into another node.

The current directory, also called the current working directory, is the
starting point of searches for path names that do not begin with a / (slash).
The calling process must have search access to the directory specified by
the Path parameter.

Return Values
Upon successful completion, the chdir subroutine returns a value of O. Otherwise, a value of
-1 is returned and the global variable errno is set to identify the error.

Error Codes
The chdir subroutine fails and the current directory remains unchanged if one or more of the
following are true:

EACCES

ENOENT

ENOTDIR

Search access is denied for the named directory.

The named directory does not exist.

The path name is not a directory.

The chdir subroutine can also fail if additional errors on page A-1 occur.

If Network File System is installed on the system, the chdir system call can also fail if the
following is true:

ETIMEDOUT The connection timed out.

1-66 Base Operating System Reference

chdir

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The chroot subroutine.

The cd command.

Base Operating System Runtime 1-67

chmod, ..•

chmod or fchmod Subroutine

Purpose

Library

Syntax

Changes file access permissions.

Standard C Library (libc.a)

#include <sys/stat.h>

int chmod (Path, Mode)
char *Path;
int Mode;

int fchmod (FileDescriptor, Mode)
char * FileDescriptor;
int Mode;

Description
The chmod subroutine sets the access permissions of the file specified by the Path
parameter. If Network File System is installed on your system, this path can cross into
another node.

Use the fchmod subroutine to set the access permissions of an open file pointed to by the
FileDescriptor parameter.

The access control information is set according to the Mode parameter. The use of these
subroutines will implicitly disable extended ACL entries and is therefore discouraged.

Parameters
FileDescriptor

1-68

Specifies the file descriptor of an open file.

Mode Specifies the bit pattern which determines the access permissions. The Mode
parameter is constructed by logically ORing one or more of the following
values, which are defined in the sys/mode.h header file:

SJSGID

SJSVTX

Base Operating System Reference

Enables the setuid attribute for an executable file. A process
executing this program acquires the access rights of the owner
of the file.

Enables the setgid attribute for an executable file. A process
executing this program acquires the access rights of the group
of the file.
Enables the group inheritance attribute for a directory. Files
created in this directory will have a group equal to the group of
the directory.

Enables the link/unlink attribute for a directory. Files may not
be linked to in this directory and files may only be unlinked if
the requesting process has write permission for the directory
and is either the owner of the file or the owner of the directory.

S_IRUSR

S_IWUSR

S_IXUSR

S_IRGRP

S_IWGRP

S_IXGRP

S_IROTH

S_IWOTH

S_IXOTH

chmod, ...

Enables the link/unlink attribute for a direcsave text attribute
for an executable file. The program is not unmapped after
usage.

Enables enforcement-mode record locking for a regular file.
File locks requested with the lockfO subroutine are enforced.

Permits the file's owner to read it.

Permits the file's owner to write to it.

Permits the file's owner to execute it (or to search the
directory).

Permits the file's group to read it.

Permits the file's group to write to it.

Permits the file's group to execute it (or to search the
directory).

Permits others to read the file.

Permits others to write to the file.

Permits others to execute the file (or to search the directory).

Other mode values exist that can be set with the mknod subroutine, but not
with the chmod subroutine.

Path Specifies the full path name of the file.

Return Values
Upon successful completion, the chmod subroutine and fchmod subroutine return a value
of O. If the chmod subroutine or fchmod subroutine fails, a value of -1 is returned, and the
global variable errno is set to identify the error.

Error Codes
The chmod subroutine fails and the file permissions remain unchanged if one or more of the
following are true: .

ENOTDIR

EACCESS

EFAULT

ESTALE

ELOOP

ENOENT

A component of the Path prefix is not a directory.

Search permission is denied on a component of the Path prefix.

The Path parameter points to a location outside of the allocated address
space of the process.

The process's root or current directory is located in a virtual file system that
has been unmounted.

Too many symbolic links were encountered in translating the Path
parameter.

A symbolic link was named, but the file to which it refers does not exist.

Base Operating System Runtime 1-69

chmod, ...

Security

ENOENT

ENOENT

ENOENT

A component of the Path does not exist or has the disallow truncation
attribute (see the ulimit subroutine).

The Path parameter was null.

The named file does not exist.

ENAMETOOLONG
A component of the Path parameter exceeded 255 characters or the entire
Path parameter exceeded 1023 characters.

The fchmod subroutine fails and the file permissions remain unchanged if the following is
true:

EBADF The file descriptor Fi/eDescriptor is not valid.

The chmod or fchmod subroutine fails and the access control information for a file remains
unchanged if one or more of the following are true:

EROFS

EIO

EBUSY

The named file resides on a read-only file system.

An 1/0 error occurred during the operation.

The value of the Mode parameter would change the enforced lov=cking
attribute of an open file.

If NFS is installed on your system, the acl_chg and acl_fchg subroutines can also fail if the
following is true:

ETIMEDOUT
The connection timed out.

Access Control
The invoker must have search permission for all components of the Path
prefix.

Implementation Specifics
These subroutines are part of AIX Base Operating System (80S) Runtime.

Related Information

1-70

The chacl subroutine, statacl subroutine, stat subroutine.

The acl_get subroutine, acl_put subroutine, aCI_set subroutine, acl_chg subroutine.

The acl_get command, acl_put command, chmod command.

Base Operating System Reference

chown, ...

chown, fchown, chownx, or fchownx Subroutine

Purpose

Syntax

Changes file ownership.

#include <sys.chownx.h>
int chown (Path, Owner, Group)
char *Path;
uid_t Owner;
gid_t Group;

int fchown (FileDescriptor, Owner, Group)
int FileDescriptor;
uid_t Owner;
gid_t Group;

int chownx (Path, Owner, Group, Flags)
char *Path;
uid_t Owner;
gid_t Group;
int Flags;

int fchownx (FileDescriptor, Owner, Group, Flags)
int FileDescriptor;
uid_t Owner;
gid_t Group;
int Flags;

Description
The chown, chownx, fchown, and fchownx subroutines set the file owner and group IDs
of the specified file system object. Root user authority is required to change the owner of a
file.

The new owner or group will inherit the access control permissions in the base Access
Control List. All other permissions are unchanged by this function.

Parameters
FileDescriptor

Flags

Specifies the file descriptor of an open file.

Specifies whether each of the file owner ID and group ID is to be
changed. This parameter is constructed by logically ~Ring the
following values:

Ignores the value specified in the Owner
parameter and leaves the owner I D of the
file unaltered.

Ignores the value specified in the Group
parameter and leaves the group I D of the
file unaltered.

Base Operating System Runtime 1-71

chown, ...

Group

Owner

Path

Specifies the new group of the file. If this value is -1, the group will not
be changed.

Specifies the new owner of the file. If this value is -1, the owner will
not be changed.

Specifies the full path name of the file. If Path resolves to a symbolic
link, the ownership of the symbolic link is changed.

Return Values
Upon successful completion, the chown, chownx, fChown,' and fchownx subroutines
return a value of O. If the chown, chownx, fchown, or fchownx subroutines fail, a value of
-1 is returned and errno is set to indicate the error.

Error Codes

1-72

The chown or chownx subroutines fail and the owner and group of a file remain unchanged
if one or the following are true:

ENOTDIR

EACCESS

EFAULT

ESTALE

ELOOP

ENOENT

ENOENT

ENOENT

A component of the path prefix is not a directory.

Search permission is denied on a component of the Path parameter.

The Path parameter points to a location outside of the allocated address
space of the process.

The process's root or current directory is located in a virtual file system that
has been unmounted.

Too many symbolic links were encountered in translating the Path
parameter.

A symbolic link was named, but the file to which it refers does not exist.

A component of the Path parameter does not exist or the process has the
disallow truncation attribute set.

The Path parameter was null.

ENAMETOOLONG
A component of the Path parameter exceeded 255 characters of the entire
Path parameter exceeded 1023 characters.

The fchown or fchownx subroutines fail and the file owner and group remain unchanged if
the following is true:

EBADF

EIO

The named file resides on a read-only file system.

An 1/0 error occurred during the operation.

Base Operating System Reference

Security

chown, ...

Access Control
The invoker must have search permission for all components of the Path
parameter.

Auditing Events

Event

FILE_SetOwner

Information

object descriptor, owner, group

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The chmod subroutine.

Base Operating System Runtime 1-73

chroot

chroot Subroutine

Purpose

Library

Syntax

Changes the effective root directory.

Standard C Library (libc.a)

int chroot (Path)
char • Path;

Description

Parameter

The chroot subroutine causes the directory named by the Path parameter to become the
effective root directory. If the Path parameter refers to a symbolic link, the chroot subroutine
sets the effective root directory to the directory pointed to by the symbolic link. If Network
File System is installed on your system, this path can cross into another node.

The effective root directory is the starting point when searching for a file's path name that
begins with / (slash). The current directory is not affected by the chroot subroutine.

The calling process must have root user authority in order to change the effective root
directory. The calling process must also have search access to the new effective root
directory.

The .. (dot dot) entry in the effective root directory is interpreted to mean the effective root
directory itself. Thus, .. (dot dot) cannot be used to access files outside the subtree rooted at
the effective root directory.

Path A pointer to the new effective root directory.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and the global variable errno is set to indicate the error.

Error Codes
The chroot subroutine fails and the effective root directory remains unchanged if one or
more of the following are true:

ENOENT

EACCES

EPERM

The named directory does not exist.

The named directory denies search access.

The process does not have root user authority.

The chroot subroutine can also fail if additional errors on page A-1 occur.

If Network File System is installed on the system the chroot subroutine can also fail if the
following is true:

ETIMEDOUT The connection timed out.

1-74 Base Operating System Reference

chroot

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The chdir subroutine.

The chroot command.

Base Operating System Runtime 1-75

chssys

chssys Subroutine

Purpose

Library

Syntax

Modifies the subsystem objects associated with the SubsystemName parameter.

System Resource Controller Library (libsrc.a)

#include <sys/srcobj.h>
#include <sys/spc.h>

int chssys(Subsystem Name, SRCSubsystem)
char * SubsystemName;
struct SRCsubsys * SRCSubsystem;

Description
The chssys subroutine modifies the subsystem objects associated with SubsystemName
with the values in the SRCsubsystem parameter. This will modify the objects associated with
subsystem in the following object classes: Subsystem object, Subserver object, Notify
object. The Subserver and Notify object classes will only be updated if the subsystem name
has been changed.

The SRCsubsys structure is defined in the sys/srcobj.h header file.

The executable running with this subroutine must be running with the group system.

Parameters
SRCSubsystem

SubsystemName

Return Values

Points to the SRCsubsys structure.

Specifies the name of the subsystem.

Upon successful completion, the chssys subroutine returns a value of O. Otherwise, it
returns a value of -1 and odmerrno is set to indicate the error or an SRC error code is
returned.

Error Codes
The chssys subroutine is unsuccessful if one or more of the following are true:

SRC_NONAME

SRC_NOPATH

SRC_BADNSIG

SRC_BADFSIG

SRC_NOCONTACT

SRC_SSME

SRC_SUBEXIST

No subsystem name is specified.

No subsystem path is specified.

Invalid stop normal signal.

Invalid stop force signal.

Contact not signal, sockets, or message queues.

Subsystem name does not exist.

New subsystem name is already on file.

1-76 Base Operating System Reference

SRC_SYNEXIST

SRC_NOREC

SRC_SUBSVS2BIG

SRC_SYN2BIG

SRC_CMDARG2BIG

SRC_PATH2BIG

SRC_STDIN2BIG

SRC_STDOUT2BIG

SRC_STDERR2BIG

SRC_GRPNAM2BIG

New subsystem synonym name is already on file.

The specified SRCsubsys record does not exist.

Subsystem name is too long.

Synonym name is too long.

Command arguments are too long.

Subsystem path is too long.

stdin path is too long.

stdout path is too long.

stderr path is too long.

Group name is too long.

Implementation Specifics

Files

This subroutine is part of AIX 8ase Operating System (80S) Runtime.

/etc/o bj repos/S R Cs u bsys

letc/objrepos/SRCsubsvr

letc/objrepos/SRCnotify

SRC Subsystem Configuration object class.

SRC Subserver Configuration object class.

SRC Notify Method object class.

Related Information
The addssys subroutine, delssys subroutine.

The chssys command, mkssys command, rmssys command.

The System Resource Controller Overview in General Programming Concepts.

chssys

Base Operating System Runtime 1-77

ckuserlD

ckuserlD Subroutine

Purpose

Library

Syntax

Authenticates the user

Security Library (Iibs.a)

#include<login.h>
int ckuserlD(User, Mode)
int Mode;
char *User;

Description
The ckuserlD function will authenticate the account specified by the User parameter. The
mode of the authentication is given by the Mode parameter.

Parameters

Security

1-78

User Specifies the name of the user to authenticated.

Mode Specifies the mode of authentication. This parameter is a bit mask and may
contain one or more of the following values, which are defined in the login.h
file:

file access

The primary authentication methods defined for the
User parameter are checked. All primary
authentication checks must be passed.

The secondary authentication methods defined for the
User parameter are checked. Secondary
authentication checks need not be done successfully.

Primary and secondary authentication methods are set for each user in
/etc/security/user by defining the AUTH1 and AUTH2 attributes. If no primary
methods are defined for a user, SYSTEM is assumed. If no secondary
methods are defined, there is no default.

The calling process must have access to the account information in the user
data base and the authentication data. These include:

modes file

r /etc/passwd

r /etc/secu rity /passwd

r /etc/security/user

r /etc/security/login .cfg

Base Operating System Reference

ckuserlD

Return Values
If the account is valid for the specified usage, the ckuserlD subroutine returns a value of O.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

Error Codes
The ckuserlD subroutine fails if one or more of the following are true:

ESAD

EINVAL

Security authentication failed for the user.

The Mode parameter is not one or more of S_PRIMARY or
S_SECONDARV.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The ckuseracct subroutine, getpcred subroutine, setpcred subroutine, getpenv
subroutine, setpenv subroutine.

The login command and su command.

Base Operating System Runtime 1-79

ckuseracct

ckuseracct Subroutine

Purpose

Library

Syntax

Checks the validity of the user account

Security Library (libs.a)

#include <usersec.h>

int ckuseracct(Name, Mode, Tty)
char * Name;
int Mode;
char * Tty;

Description
The ckuseracct subroutine will check the validity of the account of the user specified by the
Name parameter. The mode of the account usage is given by the Mode parameter, while the
Tty parameter defines the terminal being used for the access.

The ckuseracct subroutine will check for the following conditions:

• account existence

• account expiration

Other Mode specific checks are made as described in the Mode parameter.

• S_lOGIN

• S_RLOGIN

• S_SU

• S_DAEMON

Parameters
Name

Mode

Specifies the login name of the user whose account is to be validated.

Specifies the manner of usage. Valid values are defined in the usersec.h file
and are listed below. The Mode parameter must be one of these or zero.

1-80 Base Operating System Reference

Verifies the locallogins are permitted for this account.

Verifies that the su command is permitted and that the
current process has a group 10 which can invoke the su
command to switch to the account.

Verifies the account can be used to invoke daemon or batch
programs via the src or cron subsystems.

Verifies the account can be used for remote log ins via the
rlogind or telnetd programs.

Security

ckuseracct

Tty Specifies the terminal of the originating activity. If this parameter is a NULL
pointer or a NULL string, no tty origin checking is done.

File Access The calling process must have access to the account information in the user
data base. This includes:

modes file

r letc/passwd

r letc/secu rity luser

Return Values
If the account is valid for the specified usage, the ckuseracct subroutine returns a value of
O. Otherwise, a value of -1 is returned and errno is set to the appropriate error code.

Error Codes
The ckuseracct subroutine fails if one or more of the following are true:

ENOENT

ESTALE

EACCES

EACCES

EACCES

EINVAL

The user specified in the Name parameter does not have an account.

The user's account is expired.

The specified terminal does not have access to the specified account.

The Mode parameter is S_SU and the current process is not permitted to
user the su command to access the specified user.

Access to the account is not permitted in the specified Mode.

The Mode parameter is not one of S_LOGIN, S_SU, S_DAEMON,
S_RLOGIN.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The ckuserlD subroutine, getpcred subroutine, setpcred subroutine, getpenv subroutine,
setpenv subroutine.

The login command, cron command, rlogin command, telnet command, su command.

Base Operating System Runtime 1-81

class, ...

class, finite, isnan, or unordered Subroutines

Purpose

Library

Syntax

Determines classifications of floating-point numbers.

IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

#include<math.h>
#include<float.h>

int class{x)
double x;

int finite{x)
double x;

int isnan{x)
double x;

int unordered{x, Y)
double x, Y;

Description
Th~ class subroutine, finite subroutine, isnan subroutine, and unordered subroutin
determine the classification of their floating-point value. The unordered subroutine
determines if a floating-point comparison involving x and ywould generate the IEEE
floating-point unordered condition (such as whether x or y is a NaN).

The class subroutine returns an integer that represents the classification of the floating-point
x parameter. The values returned by the class subroutine are defined in the float.h header
file. The return values are the following:

FP _PLUS_NORM

FP _MINUS_NORM

FP _PLUS_DENORM

FP _MINUS_DENORM

FP _PLUS_ZERO

FP _MINUS_ZERO

FP _PLUS_INF

FP _MINUS_INF

FP_NANS

FP_NANQ

1-82 Base Operating System Reference

Positive normalized, nonzero x

Negative normalized, nonzero x

Positive denormalized, nonzero x

Negative denormalized, nonzero x

x = +0.0

x =-0.0

x= +INF

x= -INF

x = Signaling Not a Number (NaNS)

x = Quiet Not a Number (NaNQ)

class, ...

The finite subroutine returns a nonzero value if the x parameter is a finite number; that is, if

x is not ±INF, NaNQ, or NaNS.

The is nan subroutine returns a nonzero value if the x parameter is an NaNS or a NaNQ.
Otherwise, it returns zero.

The unordered subroutine returns a nonzero value if a floating-point comparison between x
and ywould be unordered. Otherwise, it returns zero.

Note: Compile any routine that uses subroutines from the libm.a library with the -1m flag.
To compile the class.c file, for example, enter:

cc class.c -1m

Parameters
x Specifies some double-precision floating-point value.

y Specifies some double-precision floating-point value.

Error Codes
The finite, isnan, and unordered subroutines neither return errors nor set bits in the
floating-point exception status, even if a parameter is an NaNS.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standards 754-1985 and
854-1987)

Base Operating System Runtime 1-83

clock

clock Subroutine

Purpose
Reports CPU time used.

Library
Standard C Library (libc.a)

Syntax
#include <time.h>

clock_t clock ();

Description
The clock subroutine reports the amount of CPU time used (in microseconds). The reported
time is the sum of the CPU time of the calling process and its terminated child processes for
which it has executed wait, system or pc lose subroutines.

Return Value
The clock subroutine returns the amount of CPU time used since the first call to the clock
subroutine.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The getrusage, times subroutine, wait, waitpid, wait3 subroutine.

The system subroutine, pclose subroutine, vtimes subroutine.

1-84 Base Operating System Reference

close

close Subroutine

Purpose

Syntax

Closes the file associated with a file descriptor.

close (FileDescriptory
int FileDescriptor;

Description

Parameter

The close subroutine closes the file associated with the FileDescriptor parameter. If Network
File System is installed on your system, this file can reside on another node.

All file regions associated with the file specified by the FileDescriptor parameter that this
process has previously locked with the lockf or fcntl subroutine are unlocked. This occurs
even if the process still has the file open by another file descriptor.

If the FileDescriptor parameter resulted from an open subroutine that specified 0 _DEFER,
and this was the last file descriptor, all changes made to the file since the last fsync
subroutine are discarded.

If the FileDescriptor parameter is associated with a mapped file, it is unmapped. The shmat
subroutine provides more information about mapped files.

When all file descriptors associated with a pipe or FIFO special file have been closed, any
data remaining in the pipe or FIFO is discarded. If the link count of the file is 0 when all file
descriptors associated with the file have been closed, the space occupied by the file is freed,
and the file is no longer accessible.

Note: If FileDescriptor refers to a device and the close subroutine actually results in a
device close, and the device close routine returns an error, the error is returned to
the application. However, the FileDescriptor is considered closed and it may not be
used in any subsequent calls.

All open file descriptors are closed when a process exits. In addition, file descriptors
may be closed during exec if the close-on-exec flag has been set for that file
descriptor.

FileDescriptor Specifies a valid open file descriptor.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and the global variable errno is set to identify the error.

Error Codes
The close subroutine fails if the following is true:

EBADF The File Des crip tor parameter does not specify a valid open file
descriptor.

Base Operating System Runtime 1-85

close

If Network File System is installed on the system, the close subroutine can also fail if the
following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The exec subroutines, fcntl subroutine, ioctl subroutine, lockfx subroutine, open, open x,
creat subroutines, pipe subroutine, socket subroutine.

1-86 Base Operating System Reference

compile, ...

compile, step, or advance Subroutine

Purpose

Library

Syntax

Compiles and matches regular-expression patterns.

Standard C Library (libc.a)

#define INIT
#define GETC()
#define PEEKC()
#define UNGETC(c)
#define RETURN(pointer)
#define ERROR(val)

#include <regexp.h>
#include <NLregexp.h>

declarations
getc_code
peekc_code
ungetc_code
return_ code
erro,-code

char *compile (/nString, Expbuffer, Endbuffer, EndOfFile)
char * InString, * Expbuffer, * Endbuffer;
char EndOfFile;

int step (String, Expbuffery
char * String, * Expbuffer;

int advance (String, Expbuffel)
char * String, * Expbuffer;

Description
The regexp.h header file defines several general purpose subroutines that perform
regular-expression pattern matching. Programs that perform regular-expression pattern
matching such as ed, sed, grep, bs, and expr use this source file. In this way, only this file
needs to be changed in order to maintain regular expression compatibility between
programs.

The NLregexp.h header file handles extended characters and requires access to the locale
information for collation and character class determination. NLregexp.h accepts character
classes as described in ed.

The interface to these header files is complex. Programs that include this file define the
following six macros before the #include <regexp.h> or the #include <NLregexp.h>
statement. These macros are used by the compile subroutine.

INIT This macro is used for dependent declarations and initializations. It is placed
right after the declaration and opening { (left brace) of the compile
subroutine. The definition of INIT must end with a ; (semicolon). INIT is
frequently used to set a register variable to point to the beginning of the
regular expression so that this register variable can be used in the
declarations for GETC, PEEKC, and UNGETC. Otherwise, you can use
INIT to declare external variables that GETC, PEEKC, and UNGETC need.

Base Operating System Runtime 1-87

compile, ...

GETC()

PEEKC()

UNGETC(c)

R ETU R N (pointe!)

ERROR(va~

Error

11

16

25

36

41

42

43

44

45

46

48

49

50

70

This macro returns the value of the next character in the regular
expression pattern. Successive calls to the GETC macro should
return successive characters of the pattern.

This macro returns the next character in the regular' expression.
Successive calls to the PEEKC macro should return the same
character, which should also be the next character returned by the
GETC macro.

This macro causes the parameter c to be returned by the next call
to the GETC and PEEKC macros. No more than one character of
pushback is ever needed and this character is guaranteed to be the
last character read by the GETC macro. The return value of the
UNGETC macro is always ignored.

This macro is used on normal exit of the compile subroutine. The
pointer parameter points to the first character immediately following
the compiled regular expression. This is useful for programs that
have memory allocation to manage.

This macro is used on abnormal exit from the compile subroutine. It
should never contain a return statement. The val parameter is an
error number. The error values and their meanings are:

Meaning

Interval end point too large.

Bad number.

\ digit out of range.

Illegal or missing delimiter.

No remembered search String.

\ (?\) imbalance.

Too many \(.

More than two numbers given in \{ \}.

} expected after \.

First number exceeds second in \{ \}.

Invalid end point in range expression.

[] imbalance.

Regular expression overflow.

Invalid endpoint in range

The compile subroutine compiles the regular expression for later use. The Instring
parameter is never used explicitly by the compile subroutine, but you can use it in your
macros. For instance, you may want to pass the string containing the pattern as the Instring
parameter to compile and use the INIT macro to set a pointer to the beginning of this string.

1-88 Base Operating System Reference

compile, ...

(The example below uses this technique.) If your macros do not use Instring, then call
compile with a value of ((char *) 0) for this parameter.

The Expbuffer parameter points to a character array where the compiled regular expression
is to be placed. The Endbuffer parameter points to the location that immediately follows the
character array where the compiled regular expression is to be placed. If the compiled
expression cannot fit in (Endbuffer-Expbuffet) bytes, the call ERROR(50) is made.

The EndOfFile parameter is the character that marks the end of the regular expression. For
example, in ed this character is usually / (slash).

The regexp.h and NLregexp.h header files define other subroutines that perform actual
regular-expression pattern matching. One of these is the step subroutine.

The String parameter of step is a pointer to a null-terminated string of charactdrs to be
checked for a match.

The Expbuffer parameter points to the compiled regular expression, which was obtained by
a call to the compile subroutine.

The step subroutine returns the value 1 if the given string matches the pattern, and 0 if it
does not match. If it matches, then step also sets two global character pointers: loe1,
which pOints to the first character that matches the pattern, and loe2, which points to the
character immediately following the last character that matches the pattern. Thus, if the
regular expression matches the entire string, loe1 points to the first character of the String
parameter and loe2 pOints to the null character at the end of the String parameter.

The step subroutine uses the global variable eiref, which is set by compile if the regular
expression begins with a 1\ (circumflex). If this variable is set, then step only tries to match
the regular expression to the beginning of the string. If you compile more than one regular
expression before executing the first one, then save the value of eiref for each compiled
expression and set circf to that saved value before each call to step.

Using the same parameters that were passed to it, the step subroutine calls a subroutine
named advance. The step function increments through the String parameter and calls
advance until advance returns a 1, indicating a match, or until the end of string is reached.
To constrain the String parameter to the beginning of the string in all cases, call the advance
subroutine directly instead of calling the step subroutine.

When advance subroutine encounters an * (asterisk) or a \{ \} sequence in the regular
expression, it advances its pointer to the string to be matched as far as possible and
recursively calls itself, trying to match the rest of the string to the rest of the regular
expression. As long as there is no match, the advance subroutine backs up along the string
until it finds a match or reaches the point in the string that initially matched the * or \{ \}. It is
sometimes desirable to stop this backing-up before the initial point in the string is reached.
If the locs global character is equal to the point in the string sometime during the
backing-up process, advance breaks out of the loop that backs up and returns O. This is
used by ed and sed for global substitutions on the whole line so that expressions like s/y*//g
do not loop forever.

Parameters
Instring

Expbuffer

String containing the pattern to be compiled. The Instring parameter is not
used explicitly by the compile subroutine, but may be used in macros.

Pointer to a character array where the compiled regular expression is to be
placed.

Base Operating System Runtime 1-89

compile, ...

Example

Endbuffer Pointer to the location that immediately follows the character array where
the compiled regular expression is to be placed.

EndOfFile Character that marks the end of the regular expression.

String Pointerto a null-terminated string of characters to be checked for a match.

The following is an example of the regular expression macros and calls from the grep
command.

#define INIT
#define GETC()
#define PEEKC()
#define UNGETC(c)
#define RETURN(c)
#define ERROR(c)

#include <regexp.h>

register char *sp=instring;
(*sp++)
(*sp)
(-sp)
return;
regerr ()

compile (patstr,expbuf, &expbuf[ESIZE], '\0');

if (step (linebuf, expbuf))
succeed();

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The NCctype subroutine, and regcmp, regex subroutines.

The ed command, sed command, and, grep command.

National Language Support Overview in General Programming Concepts

1-90 Base Operating System Reference

conv Subroutines

Purpose

Library

Syntax

Translates characters.

Standard C Library (libc.a)

#include <ctype.h>

int toupper (Character)
int Character;

int tolower (Character)
int Character;

int _toupper (Character)
int Character;

int _tolower (Character)
int Character;

int toascii (Character)
int Character;

int NCesc (Pointer, CharacterPointer)
NLchar * Pointer,
char * CharacterPointer;

int NCtoupper (Xcharacter)
int Xcharacter;

int NCtolower (Xcharacter)
int Xcharacter;

int _NCtoupper (Xcharacter)
int Xcharacter;

int _NCtolower (Xcharactery
int Xcharacter;

int NCtoNLchar (xcharacter)
int Xcharacter;

int NCunesc (CharacterPointer, POintery
char * CharacterPointer,
NLchar * Pointer,

int NCflatchr (Xcharactery
int Xcharacter;

cony

Base Operating System Runtime 1-91

cony

Description

1-92

The NCxxxxxx subroutines translate all characters, including extended characters, as code
points. The other subroutines translate traditional ASCII characters only.

The toupper and the tolower subroutines have as domain the range of the gete subroutine:
-1 through 255.

If the parameter of the toupper subroutine represents a lowercase letter, the result is the
corresponding uppercase letter. If the parameter of the tolower subroutine represents an
uppercase letter, the result is the corresponding lowercase letter. All other values in the
domain are returned unchanged.

The _toupper and _tolower routines are macros that accomplish the same thing as the
toupper and tolower subroutines, but they have restricted domains and are faster. The
_toupper routine requires a lowercase letter as its parameter; its result is the corresponding
uppercase letter. The _tolower routine requires an uppercase letter as its parameter; its
result is the corresponding lowercase letter. Values outside the domain cause undefined
results.

The value of the Xcharacterparameter is in the domain of any legal NLehar data type. It can
also have a special value of -1, which represents the end of file (EOF).

If the parameter of the NCtoupper subroutine represents a lowercase letter according to the
current collating sequence configuration, the result is the corresponding uppercase letter. If
the parameter of the NLtolower subroutine represents an uppercase letter according to the
current collating sequence configuration, the result is the corresponding lowercase letter. All
other values in the domain are returned unchanged.

The _NCtoupper and _NCtolower routines are macros that perform the same function as
the NCtoupper and NCtolower subroutines, but have restricted domains and are faster.
The _NCtoupper macro requires a lowercase letter as its parameter; its result is the
corresponding uppercase letter. The _NCtolower macro requires an uppercase letter as its
parameter; its result is the corresponding lowercase letter. Values outside the domain cause
undefined results.

The NCtoNLehar subroutine yields the value of its parameter with all bits turned off that are
not part of an NLehar data type.

The NCese subroutine converts the NLehar value of the Pointer parameter into one or more
ASCII bytes stored in the character array pointed to by the CharacterPointer parameter. If
the NLehar data type represents an extended character, it is converted into a printable
ASCII escape sequence that uniquely identifies the extended character. NCese returns the
number of bytes it wrote. The display symbol table lists the escape sequence for each
character.

The opposite conversion is performed by the NCunese macro, which translates an ordinary
ASCII byte or escape sequence starting at CharacterPointer into a single NLehar at Pointer.
NCunese returns the number of bytes it read.

The NCflatehr subroutine converts its parameter value into the single ASCII byte that most
closely resembles the parameter character in appearance. If no ASCII equivalent exists, it
converts the parameter value to a question mark (?).

(The NCflatehr subroutine is not supported when running AIX with Japanese Language
Support.)

Note: The setloeale subroutine may affect the conversion of the decimal point symbol and
the thousands separator.

Base Operating System Reference

Parameters
Character

Xcharacter

CharacterPointer

Pointer

Implementation Specifics

The character to be converted.

An NLchar value to be converted.

A pointer to an ASCII character array.

A pointer to an escape sequence.

These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The ctype subroutines, Japanese cony subroutines, getc, fgetc, getchar, getw
subroutines, getwc, fgetwc, getwchar subroutines, setlocale subroutine.

conv

Base Operating System Runtime 1-93

copysign, ...

copysign, nextafter, scalb, 10gb, or ilogb Subroutine

Purpose

Library

Syntax

Computes certain binary floating-point arithmetic functions.

IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

#include <math.h>
#include <float.h>

double copysign (x, y)
double x, y;

double nextafter (x, y)
double x, y;

double scalb(x, n)
double x;
int n;

double logb(x)
double x;

int ilogb (x)
double x;

Description
These subroutines compute certain functions recommended in the IEEE Standard for Binary
Floating-Point Arithmetic. The other such recommended function is provided in the class
subroutine.

The copysign subroutine returns the x parameter with the same sign as y.

The nextafter subroutine returns the next representable neighbor of x in the direction of y. If
x = y, the result is x.

The scalb subroutine returns x times 2**n.

The 10gb subroutine returns a floating-point double that is equal to the unbiased exponent of
the x parameter. Special cases are:

10gb (NaN) = NaNQ

10gb (infinity) = + INF

10gb (0) = -INF

Note: When the x parameter is finite and nonzero, then 10gb (x) satisfies the following
equation:

1 < = sca1b (lXi, -(int) 10gb (x)) < 2

1-94 Base Operating System Reference

copysign, ...

The ilogb subroutine returns an integer that is equal to the unbiased exponent of x. Special
cases are:

ilogb (NaN) = LONG_MIN

ilogb (INF) = LONG_MAX

ilogb (0) = LONG_MIN

Note: ilogb (x) is equivalent to (int) 10gb (x). However, ilogb may be faster on some
platforms of IBM AIX Version 3 for RISC System/SOOO.

Compile any routine that uses subroutines from the libm.a library with the -1m flag. To
compile the copysign.c file, for example, enter:

cc copysign.c -1m

Parameters
x Specifies some double-precision floating-point value.

y Specifies some double-precision floating-point value.

n Specifies some integer value.

Return Values
The nextafter subroutine sets the overflow bit in the floating-point exception status when x is
finite but nextafter (x, y) is infinite. Likewise, when the nextafter subroutine is
denormalized, the underflow exception status flag is set.

The logb(O) subroutine returns -INF and sets the division-by-zero exception status flag.

The i1ogb{O) subroutine returns LONG_MIN and sets the division-by-zero exception status
flag.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The class, finite, isnan, unordered subroutines, fp_invalid_op, fp_divbyzero,
fp_overflow, fp_underflow, fp_inexact, fp_any_xcp, fp_iop_snan, fp_iop_infsinf,
fp_iop_infdinf, fp_iop_zrdzr, fp_iop_infmzr, fpjop_invcmp subroutines.

The IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standards 754-1985
and 854-1987).

Base Operating System Runtime 1-95

crypt, ...

crypt, encrypt or set key Subroutine

Purpose

Library

Syntax

Performs basic encryption of data.

Standard C Library (libc.a)

char *crypt (Key, Salt)
char * Key, * Salt;

void encrypt (Block, Edflag)
char * Block;
int Edflag;

void set key (Key)
char *Key;

Description
The crypt and encrypt subroutines provide encryption of data. The crypt subroutine
performs a one way encryption of a fixed data array with the supplied Key parameter, using
the Salt parameter to perturb the encryption algorithm. The encrypt subroutine encrypts or
decrypts the data supplied in the Block parameter by using the key supplied by an earlier
call to the setkey subroutine. The data in the Block parameter on input must be an array of
64 characters, with each character having the value of ASCII "0" or ASCII "1".

Parameters
Block

Edflag

Key

Salt

A 64-character array containing the values (char) 0 and (char) 1. Upon
return, this buffer will contain the encrypted or decrypted data.

If this parameter is zero, the argument is encrypted; if non-zero, it is
decrypted.

Specifies an 8 character string which is used to change the encryption
algorithm.

Specifies a 2 character string chosen from the set ["a-zA-ZO-9./"]. The
Salt parameter is used to vary the hashing algorithm in one of 4096 different
ways.

Compatibility Interface
These functions are provided for compatibility with UNIX system implementations.

Return Values
The crypt subroutine returns a pointer to the encrypted password. The first two characters
of it are the same as the Salt parameter.

Note: The return value points to static data that is overwritten by subsequent calls.

1-96 Base Operating System Reference

crypt, ...

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The newpass subroutine.

The login command, passwd command, su command.

Base Operating System Runtime 1-97

cs

cs Subroutine

Purpose

Syntax

Compare and swap data.

int cs (Destination, Compare, Value)
int * Destination;
int Compare;
int Value;

Description
The cs command compares Compare with the integer pointed to by Destination. If they are
equal, Value is stored in the integer pointed by Destination and cs returns O. If the values
are different, cs returns 1, and the value pointed by Destination is not affected. The compare
and store are executed as an atomic operation, therefore no process switches occur
between them.

The cs subroutine can be used to implement interprocess communication facilities or to
manipulate data structures shared among several processes, such as linked lists stored in
shared memory.

The following examples shows how a new element can be inserted in a NULL terminated list
stored in shared memory and maintained by several processes, with the following code:

struct elern {
struct elem *next;

} ;
struct elern
do

*list, *new_elem;

new_elem->next = list;
while (cs((int *)&list, (int) (new elem->next),

(int)newelem)); -

Parameters
Destination Specifies the address of the integer that will be compared with Compare,

and if need be, where Value will be stored.

Compare

Value

Specifies the value that will be compared with the integer pointed by
Destination.

Specifies the value that will be stored in the integer pointed by Destination if
Destination and Compare are equal.

Error Codes
If the integer pointed by Destination references memory that does not belong to the process
address space then the SIGSEGV signal is sent to the process.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

1-98 Base Operating System Reference

cs

Related Information
The sigaction, sigvec, signal subroutine, shmget subroutine, shmat subroutine, shmdt
subroutine, shmctl subroutine.

Base Operating System Runtime 1-99

ctermid

ctermidSubroutine

Purpose

Library

Syntax

Generates the path name for the controlling terminal.

Standard C Library (libc.a)

#include <stdio.h>
char *ctermid (String)
char * String;

Description

Parameter

The ctermid subroutine generates the path name of the controlling terminal for the current
process and stores it in a string.

The difference between the ctermid subroutine and the ttyname subroutine is that the
ttyname subroutine must be handed a file descriptor and returns the actual name of the
terminal associated with that file descriptor, while the ctermid subroutine returns a string
(/dev/tty) that refers to the terminal if used as a file name. Thus, the ttyname subroutine is
useful only if the process already has at least one file open to a terminal.

String If the String parameter is a NULL pointer, the string is stored in an internal
static area and the address is returned. The next call to the ctermid
subroutine overwrites the contents of the internal static area.

If the String parameter is not a NULL pOinter, it points to a character array
of at least L_ctermid elements as defined in the stdio.h header file. The
path name is placed in this array and the value of the String parameter is
returned.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The ttyname, isatty subroutines.

1-100 Base Operating System Reference

ctime, ...

ctime, localtime, gmtime, mktime, difftime, asctime, tzset, or
timezone Subroutine

Purpose

Library

Syntax

Converts the formats of date and time representations.

Standard C Library (libc.a)

#include <time.h>
char *ctime (Clock)
time_t *Clock;

struct tm *Iocaltime (Clock)
time_t *Clock;

struct tm *gmtime (Clock)
time_t *Clock;

time_t mktime(Timeptry
struct tm * Timeptr,

double *difftime(Time1, TimeO)
time_t TimeO, Time1;

char *asctime (Tm)
struct tm * Tm;

void tzset ()

extern long timezone;
extern int daylight;
extern char *tzname[2];

char *timezone(Zone, Destination)
int Zone, Destination;

Description
The ctime subroutine converts a time value pointed to by the Clock parameter, which
represents the time in seconds since 00:00:00 Greenwich Mean Time (GMT), January 1,
1970, into a 26-character string in the following form:

Sun Sep 16 01:03:52 1973\n\0

The width of each field is always the same as shown here.

The ctime subroutine adjusts for the timezone and daylight savings time, if it is in effect.

The localtime subroutine converts the long integer pointed to by the Clock parameter, which
contains the time in seconds since 00:00:00 GMT, January 1, 1970, into a tm structure. The
localtime subroutine adjusts for the time zone and for daylight-saving time, if it is in effect.

The gmtime subroutine converts the long integer pointed to by the Clock parameter into a
tm structure containing the Greenwich Mean Time, which is the time that AIX uses.

Base Operating System Runtime 1-101

ctime, ...

1-102

The tm structure is defined in the time.h header file, and it contains the following members:

int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

/* Seconds (0 - 59) */
/* Minutes (0 - 59) */
/* Hours (0 - 23) */
/* Day of month (1 - 31) */
/* Month of year (0 - 11) */
/* Year - 1900 */
/* Day of week (Sunday = 0) */
/* Day of year (0 - 365) */
/* Nonzero = Daylight saving time */

The mktime subroutine is the reverse function of the gmtime subroutine.

The difftime subroutine computes the difference between two calendar times: the
Time 1 - TimeO parameters.

The asctime subroutine converts a tm structure to a 26-character string of the same format
as ctime.

If the TZ environment variable is defined, then its value overrides the default time zone,
which is the U.S. Eastern time zone. The environment facility contains the format of the
time zone information specified by TZ. TZ is usually set when the system is started with the
value that is defined in either the letc/environment or letc/profile files. However, it can also
be set by the user as a regular environment variable for performing alternate time zone
conversions.

The tzset subroutine sets the timezone, daylight, and tzname external variables to reflect
the setting of TZ. tzset is called by ctime and localtime, and it can also be called explicitly
by an application program.

The timezone external variable contains the difference, in seconds, between GMT and local
standard time. For example, timezone is 5 * 60 * 60 for U.S. Eastern Standard Time.

The daylight external variable is nonzero when a daylight-saving time conversion should be
applied. By default, this conversion follows the standard U.S. conventions; other conventions
can be specified. The default conversion algorithm adjusts for the peculiarities of U.S.
daylight-saving time in 1974 and 1975. See environ. for information about specifying
alternate daylight-saving time conventions.

The tzname external variable contains the name of the standard time zone (tzname[O]) and
of the time zone when daylight-saving time is in effect (tzname[1]). For example:

char *tznarne[2] = {"EST", "EDT"};

The timezone subroutine returns the name of the timezone associated with the first
argument, which is measured in minutes westward of Greenwich. If the second argument is
0, the standard name is used, otherwise the Daylight Saving version. If the required name
does not appear in an internal table, the difference from GMT is produced; e.g. in Afganistan
timezone [-(60 * 4 + 30),01 is appropriate because it is 4:30 ahead of GMT and the string
GMT +4:30 is produced.

The time.h header file contains declarations of all these subroutines, externals, and the tm
structure.

Warning: The return values point to static data that is overwritten by each call.

Base Operating System Reference

Parameters
Clock

Tim ep tr

Timet

TimeO

Tm

Zone

Destination

Pointer to the time value in seconds.

Pointer to a tm structure.

Pointer to a time_t structure.

Pointer to a time_t structure.

Pointer to a tm structure.

The minutes westward of Greenwich Mean Time.

Standard Time, if 0, otherwise Daylight Savings Time

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

ctime, ...

The timezone subroutine was added for BSD compatibility, and is not part of the ANSI C
Library.

Related Information
The getenv, NLgetenv subroutines, NLstrtime, strftime subroutines, and NLtmtime
subroutine, gettimer subroutine.

The gettimer subroutine.

Base Operating System Runtime 1-103

ctype

ctype Subroutines

Purpose

Library

Syntax

Classifies characters.

Standard Character Library (libc.a)

#include <ctype.h>

int isalpha (Charactetj
int Character;

int isupper (Charactetj
int Character;

int islower (Charactetj
int Character;

int isdigit (Charactetj
int Character;

int isxdigit (Charactetj
int Character;

int isalnum (Charactetj
int Character;

int isspace (Charactetj
int Character;

int ispunct (Charactetj
int Character;

int isprint (Charactetj
int Character;

int isgraph (Charactetj
int Character;

int iscntrl (Charactetj
int Character;
int isascii (Charactetj
int Character;

Description

1-104

The ctype subroutines classify character-coded integer values specified in a table. Each of
these subroutines returns a nonzero value for TRUE and 0 for FALSE.

Base Operating System Reference

Parameter

ctype

The following list shows the set of values for which each subroutine returns a nonzero
(TRUE) value:

isalnum

isalpha

isupper

islower

isdigit

isxdigit

isspace

ispunct

isprint

isgraph

iscntrl

isascii

Character

Character is a letter or a digit.

Character is a letter.

Character is an uppercase letter.

Character is a lowercase letter.

Character is a digit in the range [0-9].

Character is a hexadecimal digit in the range [0-9], [A-F], or [a-fl.

Character is a space, tab, carriage return, neW-line, vertical tab, or form
feed character.

Character is a punctuation character (neither a control character nor an
alphanumeric character).

Character is a printing character: alphanumeric, punctuation, or space.

Character is a printing character, like isprint, but, unlike isprint, isgraph
returns FALSE (0) for the space character.

Character is an ASCII delete character (0177 or Ox7F), or an ordinary
control character (less than 040 or Ox20).

Character is an ASCII character whose value is in the range 0-0177
(0-Ox7F), inclusive.

Character to be tested (integer value).

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The NCctype subroutines, Japanese ctype subroutines, setlocale subroutine.

National Language Support Overview in General Programming Concepts.

Base Operating System Runtime 1-105

cuserid

cuserid Subroutine

Purpose

Library

Syntax

Gets the alphanumeric user name associated with the current process.

Standard C Library (libc.a)

#include <stdio.h>

char *cuserid (String)
char * String;

Description

Parameter

The cuserid subroutine generates a character string representing the user name of the
owner of the current process.

String If the String parameter is a NULL pointer, the character string is stored into
an internal static area, the address of which is returned.

If the String parameter is not a NULL pointer, the character string is stored
into the array pointed to by the String parameter. This array must contain at
least L_cuserid characters. L_cuserid is a constant defined in the stdio.h
header file.

If the user name cannot be found, the cuserid subroutine returns a NULL
pointer; if the String parameter is not a NULL pointer, a null character ('\0')
is stored into String[O].

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

1-106

The getlogin subroutine, getpwent, getpwuid, getpwnam, setpwent, endpwent,
setpufile subroutines.

Base Operating System Reference

defssys

defssys Subroutine

Purpose

Library

Syntax

Initializes the SRCsubsys structure with default values.

System Resource Controller Library (libsrc.a)

#include <sys/srcobj.h>
#include <sys/spc.h>

void defssys(SRCSubsystem)
struct SRCsubsys * SRCSubsystem;

Description

Parameter

The defssys subroutine initializes the SRCsubsys structure with the following default
values:

Field Value

display SRCYES

multiple SRCNO

contact SRCSOCKET

waittime TIMELIMIT

priority 20

restart ONCE

stderr /dey/console

stdin /dey/console

stdout /dey/console

All other numeric fields are set to 0, and all other alphabetic fields are set to an empty string.

This function must be called to initialize the SRCsubsys structure before an application
program uses this structure to add records to the subsystem object class.

SRCSubsystem Points to the SRCsubsys structure, which is defined in the
sys/srcobj.h header file.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Base Operating System Runtime 1-107

defssys

Related Information
The addssys subroutine.

The System Resource Controller Overview in General Programming Concepts.

1-108 Base Operating System Reference

delssys

delssys Subroutine

Purpose

Library

Syntax

Removes the subsystem objects associated with the SubsystemName parameter.

System Resource Controller Library (libsrc.a)

#include <sys/srcobj.h>
#include <srcerrno.h>

int delssys(Subsys tem Name)
char * SubsystemName;

Description

Parameter

The delssys subroutine removes the subsystem objects associated with the
SubsystemName parameter. This removes all objects associated with the subsystem from
the following object classes: Subsystem object, Subserver object, Notify object.

The executable running with this subroutine must be running with the group system.

SubsystemName Specifies the name of the subsystem.

Return Values
Upon successful completion, the delssys subroutine returns a positive value. If no record is
found, a value of 0 is returned. Otherwise, -1 is returned and odmerrno is set to indicate
the error.

Implementation Specifics

Files

This subroutine is part of AIX Base Operating System (BOS) Runtime.

letc/objrepos/SRCsubsys

letc/objrepos/SRCsubsvr

letc/objrepos/SRCnotify

SRC Subsystem Configuration object class.

SRC Subsystem Configuration object class.

SRC Notify Method object class.

Related Information
The addssys subroutine, chssys subroutine.

The mkssys command, chssys command, rmssys command.

The System Resource Controller Overview in General Programming Concepts.

Base Operating System Runtime 1-109

disclaim

disclaim Subroutine

Purpose

Syntax

Disclaims the content of a memory address range.

#include <sys/shm.h>

int disclaim (Address, Length, Flag)
char * Address;
unsigned int Length, Flag;

Description
The disclaim subroutine marks an area of memory that has content that is no longer
needed. This allows the system to stop paging the memory area. This subroutine cannot be
used on memory that is mapped to a file by the shmat subroutine.

Parameters
Address Points to the beginning of the memory area.

Specifies the length of the memory area in bytes. Length

Flag Must be the value ZERO_MEM, which indicates that each memory location
in the address range is to be set to a value of O.

Return Values
Upon successful completion, the disclaim subroutine returns a value of O.

Error Codes
If the discla'im subroutine is unsuccessful, it returns a value of -1 and sets the global
variable errno to indicate the error. The disclaim subroutine if unsuccessful if one or more
of the following are true:

EFAULT

EINVAL

EINVAL

The calling process does not have write access to the area of memory that
begins at the Address parameter and extends for the number of bytes
specified by the Length parameter.

The value of the Flag parameter is not valid.

The memory area is mapped to a file.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The shmat subroutine, shmctl subroutine, shmdt subroutine, shmget subroutine.

1-110 Base Operating System Reference

drand48, ...

drand48, erand48, jrand48, Icong48, Irand48, mrand48,
nrand48, seed48, or srand48 Subroutine

Purpose

Library

Syntax

Generate uniformly distributed pseudo-random number sequences.

Standard C Library (libc.a)

double drand48 ()

double erand48 (xsubl)
unsigned short xsub~3];

long jrand48 (xsubl)
unsigned short xsub~3];

void Icong48 (Parametery
unsigned short Parametet{7];

long Irand48 ()

long mrand48 ()

long nrand48 (xsubl)
unsigned short xsub~3];

unsigned short *seed48 (Seed16v)
unsigned short Seed16v[3];

void srand48 (SeedValue)
long SeedValue;

Description
This family of subroutines generates pseudo-random numbers using the linear congruential
algorithm and 48-bit integer arithmetic.

The drand48 subroutine and erand48 subroutine return non-negative double-precision
floating-point values uniformly distributed over the range of y values such that 0 < y < 1.

The Irand48 subroutine and nrand48 subroutine return non-negative long integers uniformly
distributed over the range of y values such that 0 < y < 2**31.

The mrand48 subroutine and jrand48 subroutine return signed long integers uniformly

distributed over the range of y values such that -2**31 < Y < 2**31 .

The srand48 subroutine, seed48 subroutine, and Icong48 subroutine initialize the
random-number generator. Programs should call one of them before calling the drand48,
Irand48 or mrand48 subroutines. (Although it is not recommended practice, constant default
initializer values are supplied automatically if the drand48, Irand48 or mrand48 subroutines
are called without first calling an initialization subroutine.) The erand48, nrand48, and
jrand48 subroutines do not require that an initialization subroutine to be called first.

Base Operating System Runtime 1-111

drand48, ...

All the subroutines work by generating a seqlJence of 48-bit integer values, x(/], according
to the linear congruential formula:

x[n+1] = (ax[n] + c)rood ro, n is > = 0

The parameter m = 248; hence 48-bit integer arithmetic ,is performed. Unless the Icong48
subroutine has been called, the multiplier value a and the addend value care:

a = 5DEECE66D base 16 = 273673163155 base 8

c = B base 16 = 13 base 8

Parameters
xsubi Specifies an array of three shorts, which, when concatenated together, form

a 48-bit integer.

SeedValue

Seed16v

Parameter

Specifies the initialization value to begin randomization. Changing this value
changes the randomization pattern.

Specifies another seed value; an array of three unsigned shorts that form a
48-bit seed value.

Specifies an array of seven shorts, which specifies the initial xsubi value,
the multiplier value a and the add-in value c.

Return Values

1-112

The value returned by the drand48, erand48, jrand48, Irand48, nrand48, and mrand48
subroutines is computed by first generating the next 48-bit x(/] in the sequence. Then the
appropriate number of bits, according to the type of data item to be returned, are copied
from the high-order (most significant) bits of x[1] and transformed into the returned value.

The drand48, Irand48, and mrand48 subroutines store the last 48-bit x(/] generated into an
internal buffer; that is why they must be initialized prior to being invoked.

The erand48, jrand48, and nrand48 subroutines require the calling program to provide
storage for the successive x[1] values in the array pointed to by the xsubi parameter. That is
why these routines do not have to be initialized; the calling program merely has to place the
desired initial value of x[l] into the array and pass it as a parameter.

By using different parameters, the erand48, jrand48, and nrand48 subroutines allow
separate modules of a large program to generate several independent sequences of
pseudo-random numbers. In other words, the sequence of numbers that one module
generates does not depend upon how many times the subroutines are called by other
modules.

The Icong48 subroutine specifies the initial x[1] value, the multiplier value a, and the addend
value c. The Parameter array elements Parameter{O-2] specify x(/], Parameter{3-5] specify
the multiplier a, and Parameter{6] specifies the 16-bit addend c. After Icong48 has been
called, a subsequent call to either the srand48 or seed48 subroutine restores the standard a
and c as specified previously.

The initializer subroutine seed48 sets the value of x[1] to the 48-bit value specified in the
array pointed to by the Seed16v parameter. In addition, seed48 returns a pointer to a 48-bit
internal buffer that contains the previous value of x(/]. that is used only by seed48. The
returned pOinter allows you to restart the pseudo-random sequence at a given point. Use the
pointer to copy the previous x[1] value into a temporary array. Later you can call seed48 with
a pointer to this array to resume where the original sequence left off.

Base Operating System Reference

drand48, ...

The initializer subroutine srand48 sets the high-order 32 bits of x[/] to the 32 bits contained
in its parameter. The low order 16 bits of x[/] are set to the arbitrary value 330E16.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The rand, srand subroutine, random, srandom, initstate, setstate subroutine.

Base Operating System Runtime 1-113

drem

drem Subroutine

Purpose

Library

Syntax

Computes the IEEE Remainder as defined in the IEEE Floating-Point Standard.

IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

#include <math.h>

double drem (x, y)
double x, y;

Description
The drem subroutine calculates the remainder r= x- n x y, where n is the integer nearest
the exact value of xly; moreover if In -x/y I = 1/2, then n is an even value.
Therefore, the remainder is computed exactly, and I r 1 is less than or equal to I y I 12 .

The IEEE Remainder differs from FMOD in that the IEEE Remainder always returns an r
such that 1 r 1 is less than or equal to 1 y 1 12, while FMOD returns an r such that I r 1 is
less than or equal to 1 y I. The IEEE Remainder is useful for argument reduction for
transcendental functions.

Note: Compile any routine that uses subroutines from the libm.a library with the -1m flag.
To compile the drem.c file, for example:

cc drem. c -1m

Parameters
x Some double-precision floating-point value.

y Some double-precision floating-point value.

Return Values
The drem subroutine returns a NaNQ for (x, 0) and (+ INF, y).

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-114

The floor, ceil, nearest, trunc, rint, itrunc, uitrunc, fmod, fabs subroutines, copysign,
nextafter, scalb, 10gb, ilogb subroutines.

IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standards 754-1985 and
854-1987) describes the IEEE Remainder Function.

Base Operating System Reference

ecvt, ...

ecvt, fcvt, or gcvt Subroutine

Purpose

Library

Syntax

Converts a floating-point number to a string.

Standard C Library (libc.a)

#include <stdlib.h>

char *ecvt (Value, NumberOfDigits, DecimalPointer, Sign)
double Value;
int NumberOfDigits, * DecimalPointer, * Sign;

char *fcvt (Value, NumberOfDigits, DecimalPointer, Sign)
double Value;
int NumberOfDigits, * DecimalPointer, * Sign;

char *gcvt (Value, NumberOfDigits, Buffery
double Value;
int NumberOfDigits;
char * Buffer;

Description
The ecvt subroutine, fcvt subroutine, and gcvt subroutine convert floating-point numbers to
strings.

The ecvt subroutine converts the Value parameter to a null-terminated string and returns a
pointer to it. The NumberOfDigits parameter specifies the number of digits in the string. The
low-order digit is rounded according to the current rounding mode. The ecvt subroutine sets
the integer pointed to by the DecimalPointer parameter to the position of the decimal point
relative to the beginning of the string. (A negative number means the decimal point is to the
left of the digits given in the string). The decimal point itself is not included in the string. The
ecvt subroutine also sets the integer pointed to by the Sign parameter to a nonzero value if
the Value parameter is negative, and sets it to 0 otherwise.

The fcvt subroutine operates identically to the ecvt subroutine, except that the correct digit
is rounded for C or FORTRAN F-format output of the number of digits specified by
NumberOfDigits.

Note: In the F-format, the NumberOfDigits parameter is the number of digits desired after
the decimal point. Large numbers produce a long string of digits before the decimal
point, and then NumberOfDigits digits after the decimal point. Generally, the gcvt
and ecvt subroutines are more useful for large numbers.

The gcvt subroutine converts the Value parameter to a null-terminated string, stores it in the
array pointed to by the Buffer parameter, and then returns Buffer. The gcvt subroutine
attempts to produce a string of NumberOfDigits significant digits in FORTRAN F-format. If
this is not possible, the E-format is used. The gcvt subroutine suppresses trailing zeros. The
string is ready for printing, complete with minus sign, decimal point, or exponent, as
appropriate.

Base Operating System Runtime 1-115

ecvt, ...

The ecvt, fcvt, and gcvt subroutines represent the following special values that are
specified in ANSI/IEEE standards 754·1985 and 854-1987for floating-point arithmetic:

Quiet NaN

Signalling NaN

Infinity

NaNQ

NaNS

INF

The sign associated with each of these values is stored into the Sign parameter. Note also
that 0 can be positive or negative. In the IEEE floating-point, zeros also have signs and set
the Sign parameter appropriately.

Warning: All three subroutines store the strings in a static area of memory whose contents
are overwritten each time one of the subroutines is called.

Parameters
Value Specifies some double-precision floating-point value.

NumberOfDigits

DecimalPointer

Sign

Buffer

Specifies the number of digits in the string.

Specifies the position of the decimal point relative to the beginning
of the string.

The sign associated with the return value is placed in the Sign
parameter. In IEEE floating-point, since 0 can be signed, the Sign
parameter is set appropriately for signed o.

Specifies a character array for the string.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-116

The atof, atoff, strtod, strtof subroutines, scanf subroutine, printf subroutine,
fp_read_rnd, fp_swap_rnd subroutines.

IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standards 754-1985 and
854-1987).

Base Operating System Reference

_end, ...

end, etext, 'or edata Identifier - - -
Purpose

Define the first addresses following the program, initialized data, and all data.

Syntax
extern _end;

extern _etext;

extern _edata;

Description
The external names _end, _etext, and _edata are defined by the loader for all programs.
They are not subroutines, but identifiers associated with the following addresses:

The first address following the program text

_edata The first address following the initialized data region

The first address following the data region that is not initialized. The name
end (with no underscore) defines the same address as does _end (with
underscore).

The break value of the program is the first location beyond the data. When a program begins
running, this location coincides with end. However, many factors can change the break
value, including:

• The brk or sbrk subroutine

• The malloe subroutine

• The standard input/output subroutines

• The -p flag on the ee command.

Therefore, use brk or sbrk(O), not end, to determine the break value of the program.

Implementation Specifics
These identifiers are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The malloe subroutine, brk, sbrk subroutine.

Base Operating System Runtime 1-117

erf , ...

erf or erfc Subroutine

Purpose

Library

Syntax

Computes the error and complementary error functions.

IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

#include <math.h>

double ert (x)
double x;

double ertc (x)
double x;

Description

Parameter

The ert subroutine returns the error function of the x parameter, defined as the fol/owing:

erf(x) = (2/sqrt(pi) * (integral [0 to x] of exp(-(t**2» dt)

erfc(x) = 1.0 - erf(x)

The ertc subroutine is provided because of the extreme loss of relative accuracy if erf (x)
is called for large values of the x parameter and the result is subtracted from 1. For example,
12 decimal places are lost when calculating (1.0 - erf (5»).

Note: Compile any routine that uses subroutines from the libm.a library with the -1m flag.
To compile the erf.c file, for example, enter:

cc erf.c -1m

x Specifies some double-precision floating-point value.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The exp, expm1, log, log10, log1 p, pow subroutines, sqrt, cbrt subroutines.

1-118

errlog

errlog Subroutine

Purpose

Library

Syntax

Logs application errors.

Run-time Services Library.

#include <sys/errids.h>
int errlog (Buffer, Cnt)
char * Buffer,
unsigned int Cnt,

Description
The errlog subroutine writes an error to the error log device driver. This subroutine is used
by application programs.

Parameters
Buffer

Cnt

Return Values
o

-1

Points to a buffer that contains an error record.

Specifies the size in bytes of the error record in the buffer.

Successful.

Error message if unsuccessful.

Implementation Specifics

Files

This subroutine is part of AIX Base Operating System (BOS) Runtime.

/dev/error

librts.a

Provides standard device driver interfaces required by the error log
component.

Run-time Services Library.

Related Information
The errdemon daemon.

The errclear command, errdead command, errinstall command, errlogger command,
errmsg command, errpt command, errstop command, errupdate command.

The error file.

The errsave kernel service.

Base Operating System Runtime 1-119

exec

exec: execl, execv, execle, execve, execlp, execvp, or exect
Subroutine

Purpose

Library

Syntax

Executes a file.

Standard C Library (libc.a)

int exec I (Path, ArgumentO [, Argument1, ...], 0)
char * Path, * ArgumentO, * Argumentt, ... ;

int execle (Path, ArgumentO [, Argument1, ...],0,
En vironmen tPo in te I}

char * Path, * ArgumentO, * Argument 1 ,
... , * EnvironmentPointer{];

int execlp (File, ArgumentO [, Argument1, ...], 0)
char * File, * ArgumentO, * Argument 1, ... ;

int execv (Path, ArgumentV)
char *Path, *ArgumentV'{];

int execve (Path, ArgumentV,
En vironmen tPoin tel}

char *Path, *ArgumentV'{], *EnvironmentPointer{];

int execvp (File, ArgumentV)
char * File, * ArgumentV'{];

extern char **environ;

int exect (Path,ArgumentV, EnvironmentPointel}
char *Path, *ArgumentV, *EnvironmentPointer [];

Description

1-120

The exec subroutine, in all its forms, executes a new program in the calling process. The
exec subroutine does not create a new process, but overlays the current program with a
new one, which is called the new process image. The new process image file can be one of
three file types:

• An executable binary file in extended COFF format. (See the a.out file.)

• An executable text file that contains a shell procedure (only the execlp and execvp
subroutines allow this type of new process image file).

• A file that names an executable binary file or shell procedure to be run.

The last of the types mentioned is recognized by a header with the following syntax:

#! Path [String]

The #! is the file magic number, which identifies the file type. The path name of the file to be
executed is specified by the Path parameter. The String parameter is an optional character
string that contains no tab or space characters. If specified, this string is passed to the new

Base Operating System Reference

exec

process as an argument in front of the name of the new process image file. The header must
be terminated with a new-line character. When called, the new process passes the Path
parameter as Argument\l{O]. If a String parameter is specified in the new process image file,
the exec subroutine sets ArgumentV[O]. to the String and Path parameters concatenated
together. The rest of the arguments passed are the same as those passed to the exec
subroutine.

exect is included for compatibility with older programs being traced with the ptrace
command. The program being executed is forced into hardware single-step mode.

Parameters
Path

File

Specifies a pointer to the path name of the new process image file.
If Network File System is installed on your system, this path can
cross into another node. Data is copied into local virtual memory
before proceeding.

Specifies a pointer to the name of the new process image file.
Unless the File parameter is a full path name, the path prefix for the
file is obtained by searching the directories named in the PATH
environment variable. The initial environment is supplied by the
shell.

Note: The execlp subroutine and the execvp subroutine take File parameters, but the rest
of the exec subroutines take Path parameters. (For information about the
environment, see the environment miscellaneous facility and the sh command.)

ArgumentO [, Argument1, ... 1
Point to null-terminated character strings. The strings constitute the
argument list available to the new process. By convention, at least
the ArgumentO parameter must be present, and it must point to a
string that is the same as the Path parameter or its last component.

ArgumentV Specifies an array of pointers to null-terminated character strings.
These strings constitute the argument list available to the new
process. By convention, the ArgumentV parameter must have at
least one element, and it must point to a string that is the same as
the Path parameter or its last component. The last element of the
ArgumentV parameter is a NULL pointer.

EnvironmentPointer An array of pointers to null-terminated character strings. These
strings constitute the environment for the new process. The last
element of the EnvironmentPointer parameter is a NULL pointer.

When a C program is run, it receives the following parameters:

main (ArgumentCount, ArgumentV, EnvironmentPointel)
int ArgumentCount;
char *Argument\t1], *EnvironmentPointet{];

In this example, the ArgumentCount parameter is the argument count, and the ArgumentV
parameter is an array of character pointers to the arguments themselves. By convention, the
value of the ArgumentCount parameter is at least 1, and the Argument\l{O] parameter points
to a string containing the name of the new process image file.

The main routine of a C language program automatically begins with a run-time start-off
routine. This routine sets the environ global variable so that it points to the environment

Base Operating System Runtime 1-121

exec

1-122

array passed to the program in EnvironmentPointer. You can access this global variable by
including the following declaration in your program:

extern char **environ;

The execl, execv, execlp, and execvp subroutines use the environ global variable to pass
the calling process current environment to the new process.

File descriptors open in the calling process remain open, except for those whose
close-on-exec flag is set. For those file descriptors that remain open, the file pointer is
unchanged. (For information about file control, see the fcntl.h header file.)

If the new program requires shared libraries, the exec subroutine finds, opens, and loads
each of them into the new process address space. The referenced counts for shared
libraries in use by the issuer of the exec are decremented. Shared libraries are searched for
in the directories listed in the LlBPATH environment variable. If any of these files is remote,
the data is copied into local virtual memory.

The exec subroutines reset all caught signals to the default action. Signals that cause the
default action continue to do so after the exec subroutines. Ignored signals remain ignored,
the signal mask remains the same, and the signal stack state is reset. (For information about
signals, see the sigaction subroutine.)

The exec subroutines cause the following changes in the privilege sets of the process:

• Upon exec, the inherited privilege set is assigned the value of the old effective privilege
set.

• The effective and maximum privilege set are assigned the value of the logical union of the
old effective privilege set and the privilege set assigned to the file named in the Path
parameter.

The exec subroutines do not alter the value of the TrustedState parameter of the process.

If the SetUserlD mode bit of the new process image file is set, the exec subroutine sets the
effective user ID of the new process to the owner ID of the new process image file. Similarly,
if the SetGrouplD mode bit of the new process image file is set, the effective group ID of the
new process is set to the group ID of the new process image file. The real user ID and real
group 10 of the new process remain the same as those of the calling process. (For
information about the SetlD modes, see the chmod subroutine.)

When one or both of the set 10 mode bits is set and the file to be executed is a remote file,
the file user and group IDs go through outbound translation at the server. Then they are
transmitted to the client node where they are translated according to the inbound translation
table. These translated IDs become the user and group IDs of the new process.

Profiling is disabled for the new process. (For information about profiling, see the profil
subroutine.) .

The new process inherits the following attributes from the calling process:

• The nice value (See the getpriority subroutine, setpriority subroutine, nice subroutine)

• The process 10

• The parent process 10

• The process group ID

• The semadj values (See the semop subroutine)

Base Operating System Reference

Examples

exec

• The tty group 10 (See the exit, atexit, _exit subroutines, sigaction subroutine)

• The trace flag (See request 0 of the ptrace subroutine)

• The time left until an alarm clock signal (See the incinterval subroutine, setitimer
subroutine, and alarm subroutine)

• The current directory

• The root directory

• The file mode creation mask (See the umask subroutine)

• The file size limit (See the ulimit subroutine)

• The resource limits (See the getrlimit subroutine, setrlimit subroutine, and vlimit
subroutine)

• The privileges (See the above discussion)

• The utime, stime, cutime, and cstime subroutines(See the times subroutine)

• The login user 10

• The suspend/resume process audit flag (See the auditproc subroutine)

• The general/special user audit flag.

1. To run a command and pass it a parameter, enter:

exec 1 p (" 1 i", " 1 i", "-a 1", 0);

The execlp subroutine searches each of the directories listed in the PATH environment
variable for the Ii command, and then it overlays the current process image with this
command. The execlp subroutine is not returned, unless the Ii command cannot be
executed. Note that this example does not run the shell command processor, so
operations interpreted by the shell, such as using wildcard characters in file names, are
not valid.

2. To run the shell to interpret a command, enter:

exec1("/bin/sh", "sh", "-c", "li -1 *.c", 0);

This runs the sh (shell) command with the -c flag, which indicates that the following
parameter is the command to be interpreted. This example uses the execl subroutine
instead of the execlp subroutine because the full path name /bin/sh is specified, making
a PATH search unnecessary.

Running a shell command in a child process is generally more useful than simply using
the exec subroutine, as shown in this example. The simplest way to do this is to use the
system subroutine.

3. The following is an example of a new process file that names a program to be run:

#! /bin/awk-f
{ for (i = NF; i > 0; --i) print $i }

Base Operating System Runtime 1-123

exec

If this file is named reverse, entering the following command on the command line:

reverse chapter! chapter2

causes the following command to be run:

Ibin/awk -f reverse chapter! chapter2

Note: The exec subroutines use only the first line of the new process image file and ignore
the rest of it. Also, the awk command interprets the text that follows a # (comment
character sign) as a comment.

Return Values
Upon successful completion, the exec subroutines do not return because the calling process
image is overlaid by the new process image. If the exec subroutines return to the calling
process, the value of -1 is returned and the global variable errno is set to identify the error.

Error Codes

1-124

The exec subroutine fails and returns to the calling process if one or more of the following
are true:

EACCES

EACCES

ENOEXEC

ENOEXEC

ETXTBSY

ENOMEM

E2BIG

EFAULT

EPERM

The new process image file is not an ordinary file.

The mode of the new process image file denies execution permission.

The exec subroutine is not an execlp subroutine or an execvp subroutine,
and the new process image file has the appropriate access permission but
the magic number in its header is not valid.

The new process image file has a valid magic number in its header, but the
header is damaged or is incorrect for the machine on which the file is to be
run.

The new process image file is a pure procedure (shared text) file that is
currently open for writing by some process.

The new process requires more memory than is allowed by the
system-imposed maximum MAXMEM.

The number of bytes in the new process argument list is greater than the
system-imposed limit. This limit is defined as NCARGS in the sys/param.h
header file.

The Path, ArgumentV, or EnviromentPointer parameter points outside of the
process address space.

The SetUserlD or SetGrouplD mode bit is set on the process image file, and
the translation tables at the server or client do not allow translation of this
user or group 10.

The exec subroutines can also fail if one or more of the following conditions that apply to
any service that requires path name resolution are true:

EACCES

EFAULT

Search permission is denied on a component of the path prefix.

The Path parameter points outside of the allocated address
space of the process.

Base Operating System Reference

EIO

ElOOP

ENAMETOOLONG

ENOENT

ENOENT

ENOENT

ENOTDIR

ESTAlE

exec

An liD error occurred during the operation.

Too many symbolic links were encountered in translating the
Path parameter.

A component of a path name exceeded 255 characters and the
process has the disallow truncation attribute (see the ulimit
subroutine), or an entire path name exceeded 1023 characters.

A component of the path prefix does not exist.

A symbolic link was named, but the file to which it refers does not
exist.

The path name is null.

A component of the path prefix is not a directory.

The root or current directory of the process is located in a virtual
file system that has been unmounted.

In addition, some errors can occur when using the new process file after the old process
image has been overwritten. These errors include problems in setting up new data and stack
registers, problems in mapping a shared library, or problems in reading the new process file.
Because returning to the calling process is not possible, the system sends the SIGKllL
signal to the process when orie of these errors occurs.

If an error occurred while mapping a shared library, an error message describing the reason
for error will be written to standard error before the signal SIGKlll is sent to the process. If
a shared library cannot be mapped, one or more of the following is true:

ENOENT

ENOTDIR

ENAMETOOLONG

EACCES

EACCES

ENOEXEC

ETXTBSY

ENOMEM

ESTALE

One or more components of the path name of the shared library
file do not exist.

A component of the path prefix of the shared library file is not a
directory.

A component of a path name prefix of a shared library file
exceeded 255 characters, or an entire path name exceeded 1023
characters.

Search permission is denied for a directory listed in the path
prefix of the shared library file.

The shared library file mode denies execution permission.

The shared library file has the appropriate access permission, but
a magic number in its header is not valid.

The shared library file is currently open for writing by some other
process.

The shared library requires more memory than is allowed by the
system-imposed maximum.

The process root or current directory is located in a virtual file
system that has been unmounted.

Base Operating System Runtime 1-125

exec

If Network File System is installed on the system, the exec subroutine can also fail if the
following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-126

The chmod, fchmod subroutines, exit subroutine, fcntl subroutine, fork subroutine,
getrusage, times subroutines, incinterval, alarm subroutines, nice subroutine, profil
subroutine, ptrace subroutine, semop subroutine, settimer subroutine, sigaction, signal,
sigvec subroutines, shmat subroutine, system subroutine, ulimit subroutine, umask
subroutine.

The varargs macros.

The a.out file.

The sh command, ksh command.

The environment miscellaneous facility.

Base Operating System Reference

exit, ...

exit, atexit, or _exit Subroutine

Purpose

Library

Syntax

Terminates a process.

Standard C Library (libc.a)

#include <stdlib.h>

void exit (Status)
int Status;

void _exit (Status)
int Status;

int atexit (Function)
void (* Function) (void»;

Description
The atexit subroutine registers functions to be called at normal process termination for
cleanup processing.

The exit subroutine terminates the calling process after calling the Standard 1/0 Library
_cleanup function to flush any buffered output. Also, it calls any functions registered
previously for the process by the atexit subroutine. Finally, it calls the _exit subroutine,
which completes process termination and does not return. The _exit subroutine terminates
the calling process and causes the following to occur:

• All of the file descriptors open in the calling process are closed. If Network File System is
installed on your system, some of these files can be remote. Since the _exit subroutine
terminates the process, any errors encountered during these close operations go
unreported.

• If the parent process of the calling process is running a wait call, it is notified of the
termination of the calling process and the low-order 8 bits (that is, bits 0377 or OxFF) of
the Status parameter are made available to it.

• If the parent process is not running a wait call when the child process terminates, it may
still do so later on, and the child's status will be returned to it at that time.

• The parent process is sent a SIGCHLD signal when a child terminates; however, since
the default action for this signal is to ignore it, the signal usually is not seen.

• Terminating a process by exiting does not terminate its child processes.

• Each attached shared memory segment is detached and the value of shm_nattch in the
data structure associated with its shared memory identifier is decremented by 1 .

• For each semaphore for which the calling process has set a semadj value, that semadj
value is added to the semval of the specified semaphore. (The semop subroutine
provides information about semaphore operations.)

• If the process has a process lock, text lock, or data lock, an unlock is performed. (See
the plock subroutine.)

Base Operating System Runtime 1-127

exit, ...

• An accounting record is written on the accounting file if the system accounting routine is
enabled. (The acet subrouHne provides information about enabling accounting routines.)

• Locks set by the fcntl, flock, and lockf subroutines are removed.

Note: The system init process is used to assist cleanup of terminating processes. If the
code for the init process is replaced, the program must be prepared to accept
SIGCHLD signals and issue a wait call for each.

Parameters
Status Indicates the status of the process.

Function Specifies up to 32 functions that are called at normal process termination for
cleanup processing. A push-down stack of functions is kept, such that the
last function registered is the first function called.

Return Values
Upon successful completion, the atexit subroutine returns a value of O. Otherwise, a
nonzero value is returned. The exit and _exit subroutines do not return a value.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

If the parent process of the calling process is not ignoring SIGCHLD, the calling process is
transformed into a zombie process, and its parent process is sent a SIGCHLD signal to
notify it of the death of a child process.

A zombie process is a process that occupies a slot in the process table, but has no other
space allocated to it either in user of kernel space. The process table slot that it occupies is
partially overlaid with time accounting information to be used by the times subroutine. (See
the sys/proc.h header file.)

A process remains a zombie until its parent issues one of the wait subroutines. At this time,
the zombie is laid to rest, and its process table entry is released.

Termination of a process does not terminate its child processes. Instead, the parent process
ID of all of the calling process child processes and zombie child processes is set to the
process ID of init. The init process thus inherits each of these processes, and catches their
SIGCHLD signals and calls the wait subroutine for each of them.

If the process is a controlling process, the SIGHUP signal will be sent to each process in the
foreground process group of the controlling terminal belonging to the calling process.

If the process is a controlling process, the controlling terminal associated with the session is
disassociated from the session, allowing it to be acquired by a new controlling process.

If the exit of the process causes a process group to become orphaned, and if any member of
the newly-orphaned process group is stopped, then a SIGHUP signal followed by a
SIGCONT signal will be sent to each process in the newly-orphaned process group.

Related Information
The acct subroutine, sigaction, signal, sigvee subroutines, times subroutine, wait,
waitpid, wait3 subroutines. '

1-128 Base Operating System Reference

exp, ...

exp, expm1, log, log10, log1 p, or pow Subroutine

Purpose

Library

Syntax

Computes exponential, logarithm, and power functions.

IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

#include <math.h>

double exp (x)
double x;

double expm1 (x)
double x;

double log (x)
double x;

double log10 (x)
double x;

double log1 p (x)
double x;

double pow (x, y)
double x, y;

Description
These subroutines are used to compute exponential, logarithm, and power functions.

The exp subroutine returns exp (x).

The expm1 subroutine returns exp (x)-l.

The log subroutine returns the natural logarithm of x. The value of x must be positive.

The log10 subroutine returns the logarithm base 10 of x. The value of x must be positive.

The log1 p subroutine returns log (1 + x).

The pow subroutine returns x**y. If xis negative or 0, then ymust be an integer. If yis 0,
then pow returns 1.0 for all x.

The expm1 subroutine and log1 p subroutine are useful to guarantee that financial
calculations of ((l+x**n)-l) lx, namely:

e xprn 1 (n * log 1 P (x)) / x

are accurate when x is tiny (for example, when calculating small daily interest rates). These
subroutines also simplify writing accurate inverse hyperbolic functions.

Base Operating System Runtime 1-129

exp, ...

Note: Compile any routine that uses subroutines from the libm.a library with the -1m flag.
To compile the pow. c file, for example:

cc pow.c -1m

Parameters
x Specifies some double-precision floating-point value.

y Specifies some double-precision floating-point value.

Error Codes

1-130

When using libm.a (-1m):

exp

log

If the correct value would overflow, exp returns HUGE_VAL and errno is set
to ERANGE.

If x is less than zero, log returns the value NaNQ and sets errno to EDOM.
If x equals zero, log returns the value -HUGE_VAL but does not modify
errno.

log10 If x is less than zero, log10 returns the value NaNQ and sets errno to
EDOM. If x equals zero, log returns the value -HUGE_VAL but does not
modify errno.

pow If the correct value overflows, pow returns HUGE_VAL and sets errno to
ERANGE. If x is negative and y is not an integer, pow returns NaNQ and
sets errno to EDOM. If x equals zero and y is negative, pow returns
HUGE_VAL but does not modify errno.

When using libmsaa.a (-Imsaa):

exp

log

log10

pow

If the correct value would overflow, exp returns HUGE_VAL. If the correct
value would underflow, exp returns O. In both cases errno is set to
ERANGE.

If x is non-positive, ,log returns the value -HUGE_VAL, and sets errno to
EDOM. A message indicating DOMAIN error (or SING error when x = 0) is
output to standard error.

If x is non-positive, log10 returns the value -HUGE_VAL and sets errno to
EDOM. A message indicating DOMAIN error (or SING error when x = 0) is
output to standard error.

If x = 0 and y is non-positive, or if x is negative and y is not an integer, pow
returns 0 and sets errno to EDOM. In these cases a message indicating
DOMAIN error is output to standard error. When the correct value for pow
would overflow or underflow, pow returns + or - HUGE_VAL or 0
respectively and sets errno to ERANGE.

These error-handling procedures may be changed with the matherr subroutine when using
libmsaa.a (-Imsaa).

Base Operating System Reference

exp, ...

When using either libm.a (-1m) or libmsaa.a (-Imsaa):

expm1 If the correct value overflows, expm1 returns HUGE_VAL but does not
modify errno.

log1p If x < -1 , log1 p returns the value NaNQ. If x = -1, log1 p returns the value
-HUGE_VAL. In neither case is errno modified.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

The expm1 and log1 p subroutines are not part of the ANSI C Library.

Related Information
The hypot, cabs subroutines, sinh, cosh, tanh subroutines, matherr subroutine.

Base Operating System Runtime 1-131

fclear

fclear Subroutine

Purpose

Library

Syntax

Makes a hole in a file.

Standard C Library (Iibc.a)

long fclear (FileDescriptor, NumberOfBytes)
int FileDescriptor,
unsigned long NumberOfBytes;

Description
The fclear subroutine zeros the number of bytes specified by the NumberOfBytes parameter
starting at the current position of the file open on the file descriptor FileDescriptor. If Network
File System is installed on your system, this file can reside on another node.

The fclear subroutine cannot be applied to a file that a process has opened with the
O_DEFER mode. Successful completion of the fclear subroutine clears the SetUserlD and
SetGrouplD attributes of the file if the calling process does not have root user authority.

Parameters
File Descriptor

NumberOfBytes

The file specified by the FileDescriptor parameter must be open for
writing. This function differs from the logically equivalent write
operation in that it returns full blocks of binary zeros to the file system,
constructing holes in the file.

The number of bytes that the seek pointer is advanced. If you use the
fclear subroutine past the end of a file, the rest of the file is cleared
and the seek pointer is advanced by NumberOfBytes. The file size is
updated to include this new hole, which leaves the current file position
at the byte immediately beyond the new end-of-file pointer.

Return Values
Upon successful completion, a value of NumberOfBytes is returned. Otherwise, a value of
-1 is returned and the global variable errno is set to indicate the error.

Error Codes

1-132

The fclear subroutine fails if one or more of the following are true:

EIO

EBADF

EINVAL

EMFILE

110 error.

The FileDescriptor parameter is not a valid file descriptor open for
writing.

The file is not a regular file.

The file is mapped O_DEFER by one or more processes.

Base Operating System Reference

fclear

EAGAIN The write operation in the fclear subroutine failed due to an enforced
write lock on the file.

If Network File System is installed on the system the fclear subroutine can also fail if the
following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The truncate, ftruncate subroutines, open subroutine.

Base Operating System Runtime 1-133

fclose, ...

fclose or fflush Subroutine

Purpose

Library

Syntax

Closes or flushes a stream.

Standard C Library (libc.a)

#include <stdio.h>

int fclose (Stream)
FILE * Stream;

int fflush (Stream)
FILE *Stream;

Description

Parameter

The fclose subroutine writes buffered data to the stream specified by the Stream parameter,
and then closes the stream. fclose is automatically called for all open files when the exit
subroutine is invoked.

The fflush subroutine writes any buffered data for the stream specified by the Stream
parameter and leaves the stream open.

Stream Specifies the output stream.

Return Values
Upon successful completion, the fclose and fflush subroutines return a value of O.
Otherwise, a value of EOF is returned.

Implementation Specifics
These subroutines are part of AIX Base Operating System (80S) Runtime.

Related Information

1-134

The close subroutine, exit, atexit, _exit subroutines, fopen, freopen, fdopen subroutines,
setvbuf, setbuf, setbuffer, setlinebuf subroutines.

Base Operating System Reference

fcntl, ...

fentl, dup, or dup2 Subroutine

Purpose

Library

Syntax

Controls open file descriptors.

Standard C Library (libc.a)

#include <fcntl.h>

int fcntl (FileDescriptor, Command, Argumen~
int FileDescriptor, Command, Argument;

int dup2(Old, New)
int Old, New;

int dup(FileDescriptory
int FileDescriptor;

Description
The fcntl subroutine performs controlling operations on the open file specified by the
FileDescriptor parameter. If Network File System is installed on your system, the open file
can reside on another node. The fcntl subroutine is used to:

• duplicate open file descriptors

• set and get the file descriptor flags

• set and get the file status flags

• manage record locks

• manage asynchronous 1/0 ownership

• close multiple files.

General Record Locking Information:
Any lock is either an enforced lock or an advisory lock, and any lock is either a read lock or a
write lock.

Warning: Buffered 1/0 does not work properly when used with file locking. Do not use the
standard 1/0 package routines on files that are going to be locked.

For a lock to be an enforced lock, the Enforced Locking attribute of the file must be set; for
example, the S_ENFMT bit must be set, but the S_IXGRP, S_IXUSR and S_IXOTH bits
must be clear. Otherwise, the lock is an advisory lock. A given file can have advisory or
enforced locks, but not both. The description of the sys/mode.h header file provides a
description of file attributes.

When a process holds an enforced lock on a section of a file, no other process can access
that section of the file with the read or write subroutines. In addition, the open and
ftruncate subroutines are prevented from truncating the locked section of the file, and the
fclear subroutine can not modify the locked section of the file. If another process attempts to

Base Operating System Runtime 1-135

fcntl, ...

read or modify the locked section of the file, it sleeps until the section is unlocked or returns
with an error indication.

When a process holds an advisory lock on a section of a file, no other process can lock that
section of the file (or an overlapping section) with the fentl subroutine. No other subroutines
are affected. This means that processes must voluntarily call fentl in order to make advisory
locks effective.

When a process holds a read lock on a section of a file, other processes can also set read
locks on that section or on subsets of it. Read locks are also called shared locks.

A read lock prevents any other process from setting a write lock on any part of the protected
area. If the read lock is also an enforced lock, no other process can modify the protected
area.

The file descriptor on which a read lock is being placed must have been opened with read
access.

When a process holds a write lock on a section of a file, no other process can set a read
lock or a write lock on that section. Write locks are also called exclusive locks. Only one
write lock and no read locks can exist for a specific section of a file at any time.

If the lock is also an enforced lock, no other process can read or modify the protected area.

Some general rules about file locking include:

• Changing or unlocking part of a file in the middle of a locked section leaves two smaller
sections locked at each end of the originally locked section.

• When the calling process holds a lock on a file, that lock can be replaced by later calls to
the fentl subroutine.

• All locks associated with a file for a given process are removed when the process closes
any file descriptor for that file.

• Locks are not inherited by a child process after running a fork subroutine.

Note: Deadlocks due to file locks in a distributed system are not always detected. When
such deadlocks are possible, the programs requesting the locks should set time-out
timers.

Locks can start and extend beyond the current end of a file, but cannot be negative relative
to the beginning of the file. A lock can be set to extend to the end of the file by setting the
Lien field to O. If such a lock also has the I_start and Lwhence fields set to 0, the whole file
is locked.

Parameters

1-136

File Descrip tor

Argument

Specifies an open file descriptor obtained from a successful open, fentl,
or pipe subroutine.

Specifies a variable that depends on the value of the Command
parameter.

Base Operating System Reference

Command

fcntl, ...

Specifies the operation to be performed. The following Command
parameter values get a file descriptor or associated flags or set those
flags:

F_GETFD

Returns a new file descriptor as follows:

• Lowest numbered available file descriptor greater than
or equal to the Argument parameter

• Same object references as the original file

• Same file pointer as the original file (that is, both file
descriptors share one file pointer if the object is a file)

• Same access mode (read, write, or read-write)

• Same file status flags (That is, both file descriptors
share the same file status flags.)

• The close-on-exec flag (FD_CLOEXEC bit)
associated with the new file descriptor is set to remain
open across exec subroutines.

Gets the close-on-exec flag (FD_CLOEXEC bit)
associated with the file descriptor FileDescriptor. The
Argument parameter is ignored.

Sets the close-on-exec flag (FD_CLOEXEC bit)
associated with the FileDescriptor parameter to the value
of the Argument parameter.

Gets the file status flags for the file referred to by the
FileDescriptor parameter. The Argument parameter is
ignored.

The Argument parameter specifies the desired flags. The
following flags may be given:

• O_APPENDorFAPPEND

• O_NDELAYorFNDELAY

• O_NONBLOCKorFNONBLOCK

• O_SYNC or FSYNC

• FASYNC

O_NDELAY and O_NONBLOCK affect only
operations against file descriptors derived from the
same open subroutine. In BSD, these apply to all file
descriptors that refer to the object.

Sets or clears a file lock.

Gets the first lock that blocks the lock described in the
flock structure.

Performs the same function as F _SETLK except that if a
read or write lock is blocked by existing locks, the

Base Operating System Runtime 1--137

fcntl, ...

Old

New

process sleeps until the section of the file is free to be
locked.

F _GETOWN Gets the process 10 or process group currently receiving
SIGIO and SIGURG signals. Process groups are
returned as negative values.

F _SETOWN Sets the process or process group to receive SIGIO and
SIGURG signals. Process groups are specified by
supplying the Argument parameter as negative;
otherwise the Argument parameter is interpreted as a
process ID.

F _ CLOSEM Closes all file descriptors from Argument up to
OPEN_MAX.

Specifies an open file descriptor.

Specifies an open file descriptor that is returned by the dup2 subroutine.

Compatibility Interfaces
fnetl (FileDescriptor, Command, Argumenn
is equivalent to:
loekfx (FileDescriptor, Command, Argumenn

when the Command parameter is F _SETLK, F _SETLKW, or F _GETLK.

dup (FileDescriptot)
is equivalent to:

fnetl (FileDescriptor, F _DUPFD, 0).

dup2 (Old, New)
is equivalent to:
fentl(Old F _DUPFD, New)

Return Values

1-138

Upon successful completion, the value returned depends on the value of the Command
parameter as follows:

Command

F_DUPFD

F_GETFD

F_SETFD

F_GETFL

F_SETFL

F_GETOWN

F_SETOWN

F_GETLK

Return Value

A new file descriptor.

The value of the flag (only the FO_CLOEXEC bit is defined).

A value other than -1.

The value of file flags.

A value other than -1 .

The value of descriptor owner.

A value other than -1.

A value other than -1.

Base Operating System Reference

F_SETLK

F_SETLKW

F_CLOSEM

A value other than -1 .

A value other than -1 .

A value other than -1 .

fcntl, ...

If the fcntl subroutine fails, a value of -1 is returned and the global variable errno is set to
indicate the error.

Error Codes
The fcntl subroutine fails if one or more of the following are true:

EBADF

EMFILE

EINVAL

EINVAL

ESRCH

The FileDescriptor parameter is not a valid open file descriptor.

The Command parameter is F _DUPFD and OPEN_MAX file descriptors
are currently open.

The Command parameter is F _DUPFD and the Argument parameter is
negative or greater than or equal to OPEN_MAX.

An illegal value was provided for the Command parameter.

The value of the Command parameter is F _SETOWN and the process 10
given as Argument is not in use.

The dup and dup2 subroutines fail if one or both of the following are true:

EBADF The Old parameter is not a valid open file descriptor or the New
parameter file descriptor is out of range.

EMFILE The number of file descriptors exceeds OPEN_MAX or there is no file
descriptor above the value of the New parameter.

If Network File System is installed on the system the fcntl subroutine can also fail if the
following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

If FileDescriptor refers to a terminal device or socket, then asynchronous liD facilities can be
used. These facilities are normally enabled via use of the ioctl subroutine with the
FIOASYNC, FIOSETOWN, and FIOGETOWN commands. However, a BSO compatible
mechanism is also available if the application is linked with libbsd.

When using libbsd, asynchronous liD is enabled by using F _SETFL with the FASYNC flag
set in the Argument parameter. The F _GETOWN and F _SETOWN commands are used to
get the current asynchronous liD owner and to set the asynchronous liD owner.

Related Information
The close subroutine, execl, excecv, execle, execve, execlp, execvp, exect subroutines,
lockf subroutine, openx, open, creat subroutines.

The fcntl.h header file.

Base Operating System Runtime 1-139

feof,

feof, ferror, clearerr, or fileno Macro

Purpose

Library

Syntax

Checks the status of a stream.

Standard C Library (libc.a)

#include <stdio.h>

int feof (Stream)
FILE *Stream;

int ferror (Stream)
FILE *Stream

void clearerr (Stream)
FILE *Stream;

int fileno (Stream)
FILE * Stream;

Description

Parameter

The feof macro inquires about the end-of-file character. If EOF has previously been
detected reading the input stream specified by the Stream parameter, a nonzero value is
returned. Otherwise, a value of 0 is returned.

The ferror macro inquires about input/output errors. If an I/O error has previously occurred
when reading from or writing to the stream specified by the Stream parameter, a nonzero
value is returned. Otherwise, a value of 0 is returned.

The clearerr macro inquires about the status of a stream. The clearerr macro resets the
error indicator and the EOF indicator to 0 for the stream specified by the Stream parameter.

The fileno macro inquires about the status of a stream. The file no macro returns the integer
file descriptor associated with the input pointed to by the Stream parameter.

Note: Since this routine is implemented as a macro, it cannot be declared or redeclared.

Stream Specifies the input or output stream.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The open subroutine, fopen, freopen, fdopen subroutines.

1-140 Base Operating System Reference

floor, ...

floor, ceil, nearest, trunc, rint, itrunc, uitrunc, fmod, or fabs
Subroutine

Purpose

Library

Syntax

The floor subroutine, ceil subroutine, nearest subroutine, trunc subroutine, and rint
subroutine round floating-point numbers to floating-point integer values.

The itrunc subroutine and uitrunc subroutine round floating-point numbers to signed and
unsigned integers, respectively.

The fmod subroutine and fabs subroutine compute the Modulo Remainder and
floating-point absolute value functions, respectively.

IEEE Math Library (Iibm.a)
or System V Math Library (Iibmsaa.a)
Standard C Library (libc.a) (separate syntax follows.)

#include <math.h>
double floor (x)
double x;

double ceil (x)
double x;

double fmod (x,y)
double x, y;

double fabs (x)
double x;

Standard C Library (libc.a)

#include <stdlib.h>
#include <limits.h>

double rint (x)
double x;

int itrunc (x)
double x;

unsigned int uitrunc (x)
double x;

Description
The floor subroutine returns the largest floating-point integer value not greater than the x
parameter.

The ceil subroutine returns the smallest floating-point integer value not less than the x
parameter.

The nearest subroutine returns the nearest floating-point integer value to the x parameter. If
x lies exactly halfway between the two nearest floating-point integer values, the floating-point
integer that is even is returned.

Base Operating System Runtime 1-141

floor, ...

The trunc subroutine returns the nearest floating-point integer value to the x parameter in
the direction of zero. This is equivalent to truncating off the fraction bits of the x parameter.

The rint subroutine returns one of the two nearest floating-point integer values to the x
parameter. To determine which integer is returned, use the current floating-point rounding
mode as described in the IEEE Standard for Binary Floating-Point Arithmetic.

If the current rounding mode is round toward -INF, rint(x) is identical to floor(x).

If the current rounding mode is round toward +INF, rint(x) is identical to ceil(x).

If the current rounding mode is round to nearest, rint(x) is identical to nearest(x).

If the current rounding mode is round toward zero, rint(x) is identical to trunc(x).

Note: The default floating-point rounding mode is round to nearest. All C main programs
begin with the rounding mode set to round to nearest.

The itrunc subroutine returns the nearest signed integer to the x parameter in the direction
of zero. This is equivalent to truncating the fraction bits from of the x parameter and then
converting x to a signed integer.

The uitrunc subroutine returns the nearest unsigned integer to the x parameter in the
direction of zero. This is equivalent to truncating off the fraction bits of the x parameter and
then converting x to an unsigned integer.

The fmod subroutine computes the modulo floating-point remainder of x/yo The fmod
subroutine returns the value x-iy for some i such that if y is non-zero, the result has the
same sign as x and magnitude less than the magnitude of y.

The fabs subroutine returns the absolute value of x, Ixl.
Note: Compile any routine that uses subroutines from the libm.a library with the -1m flag.

To compile the floor.c file, for example, enter:

cc floor.c -1m

Parameters
x Specifies some double-precision floating-point value.

y Specifies some double-precision floating-point value.

Error Codes
The itrunc and uitrunc subroutines return LONG_MAX if x is greater than or equal to

LONG_MAX and LONG_MIN if xis equal to or less than LONG_MIN. The itrunc subroutine
returns LONG_MIN if x is a NaNQ or NaNS. The uitrunc subroutine returns zero if x is a
NaNQ or NaNS. (LONG_MAX and LONG_MIN are defined in the limits.h header file.)

The fmod subroutine for (x/O) returns a NaNQ and sets the global variable errno to EDOM.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

The itrunc, uitrunc, trunc, nearest, and rint subroutines are not part of the ANSI C Library.

1-142 Base Operating System Reference

floor, ...

Related Information
The fp_read_rnd, fp_swap_rnd subroutines.

The ANSI C FLT _ROUNDS macro, which is in the f1oat.h header file.

IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standards 754-1985 and
854-1987).

Base Operating System Runtime 1-143

fopen, ...

fopen, freopen, or fdopen Subroutine

Purpose

Library

Syntax

Opens a stream.

Standard C Library (libc.a)

#include <stdio.h>

FILE *fopen (Path, Type)
char * Path, * Type;

FILE *freopen (Path, Type, Stream)
char * Path, * Type;
FILE *Stream;

FILE *fdopen (FileDescriptor, Type)
int FileDescriptor,
char * Type;

Description

1-144

The fopen subroutine opens the file named by the Path parameter and associates a stream
with it. The fopen subroutine returns a pointer to the FILE structure of this stream.

When you open a file for update, you can perform both input and output operations on the
resulting stream. However, an output operation cannot be directly followed by an input
operation without an intervening fflush subroutine call or a file positioning operation (fseek,
fsetpos, or rewind subroutine). Also, an input operation cannot be directly followed by an
output operation without an intervening flush or file positioning operation, unless the input
operation encounters the end of the file.

When you open a file for append (that is, when the Type parameter is a or a+), it is
impossible to overwrite information already in the file. You can use the fseek subroutine to
reposition the file pointer to any position in the file, but when output is written to the file, the
current file pointer is ignored. All output is written at the end of the file and causes the file
pointer to be repositioned to the end of the output.

If two separate processes open the same file for append, each process can write freely to
the file without destroying the output being written by the other. The output from the two
processes is intermixed in the order in which it is written to the file. Note that if the data is
buffered, it is not actually written until it is flushed.

The freopen subroutine substitutes the named file in place of the open stream. The original
stream is closed regardless of whether the openx subroutine succeeds. The freopen
subroutine returns a pointer to the FILE structure associated with Stream. The freopen
subroutine is typically used to attach the pre-opened streams associated with stdin, stdout,
and stderr to other files.

The fdopen subroutine associates a stream with a file descriptor obtained from an openx
subroutine, dup subroutine, creat subroutine, or pipe subroutine. These subroutines open
files but do not return pointers to FILE structures. Many of the standard 1/0 package

Base Operating System Reference

fopen, ...

subroutines require pointers to FILE structures. Note that the Type of stream specified must
agree with the mode of the open file.

Parameters
Path

Type

Points to a character string that contains the name of the file to be
opened.

Points to a character string that has one of the following values:

r Open text file for reading.

w Create a new text file for writing, or open and truncate to
zero length.

a Append (open text file for writing at the end of the file, or
create for writing).

rb Open binary file for reading.

wb Create a binary file for writing, or open and truncate to
zero length.

ab Append (open binary file for update, writing at the end of
the file, or create for writing.)

r+ Open for update (reading and writing).

w+ Truncate or create for update.

a+ Append (open text file for update, writing at end of file,or
create for writing).

r+b or rb+ Open binary file for update (reading and writing).

w+b or wb+ Create binary file for update, or open and truncate to
zero length.

a+b or ab+ Append (Open a binary file for update, writing at the end
of the file, or create for writing).

Note: The system does not distinguish between text and binary files. In the AIX Version 3
Operating System, the b value in the Type parameter value is ignored.

Stream Specifies the input stream.

File Descriptor Specifies a valid open file descriptor.

Return Values
If the fopen, fdopen, or freopen subroutine fails, a NULL pointer is returned and the global
variable errno is set to indicate the error.

Error Codes
The fopen subroutine fails if one or both of the following are true:

EACCES Search permission is denied on a component of the path prefix, or the file
exists and the permissions specified by mode are denied, or the file does

Base Operating System Runtime 1-145

fopen, ...

EINVAL

not exist and write permission is denied for the parent directory of the file to
be created.

The type of stream given to fdopen does not agree with the type of the
already open file.

The freopen subroutine fails if the following is true:

EINVAL The Type argument is not a valid type.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

POSIX: wand w+ types do not truncate, and a and a+ types do not create.

SAA: At least eight streams, including three standard text streams, can open simultaneously.
80th binary and text modes are supported.

Related Information

1-146

The fclose, fflush subroutines, fseek, rewind, ftell, fgetpos, fsetpos subroutines,
setbuf, setvbuf, setbuffer, setlinebuf subroutines.

The open, openx, creat subroutines.

Base Operating System Reference

fork,. ..

fork or vfork Subroutine

Purpose

Libraries

Syntax

Creates a new process.

fork: Standard C Library (libc.a)

vfork: Berkeley Compatibility Library (libbsd.a)

#include <sys/types.h>

pid_t fork ()

int vfork ()

Description
The fork subroutine creates a new process. The new process (child process) is an almost
exact copy of the calling process (parent process). The child process inherits the following
attributes from the parent process:

• Environment

• Close on exec flags (described in the exec subroutines)

• Signal handling settings (that is, SIG_DFL, SIG_IGN, Function Address)

• Set user 10 mode bit

• Set group 10 mode bit

• Inherited, effective, and maximum privilege vectors

• Trusted state

• Profiling on/off status

• Nice value

• All attached shared libraries

• Process group 10

• tty group 10 (described in the exit, atexit, and _exit subroutines, signal subroutine, and
raise subroutine)

• Current directory

• Root directory

• File mode creation mask (described in the umask subroutine)

• File size limit (described in the ulimit subroutine)

• Attached shared memory segments (described in the shmat subroutine)

• Attached mapped file segments (described in the shmat subroutine)

• List of auditable events

Base Operating System Runtime 1-147

fork, ...

• Audit status flag

• Debugger process ID and multiprocess flag if the parent process has multiprocess
debugging enabled (described in the ptrace subroutine).

The child process differs from the parent process in the following ways:

• The child process has a unique process ID.

• The child process has a different parent process ID.

• The child process has its own copy of the parent process's file descriptors. However, each
of the child's file descriptors shares a common file pointer with the corresponding file
descriptor of the parent process.

• All semadj values are cleared. (Information about semadj values can be found in the
semop subroutine.)

• Process locks, text locks, and data locks are not inherited by the child process.
(Information about locks can be found in the plock subroutine.)

• If multi-process debugging is turned on, the trace flags are inherited from the parent;
otherwise the trace flags are reset. (A discussion of request 0 can be found in the ptrace
subroutine.)

• The child process's utime, stime, cutime, and cstime subroutines are set to O. (More
information can be found in the getrusage, times, and vtimes subroutines.)

• Any pending alarms are cleared in the child process. (More information can be found in
the incinterval subroutine, setitimer subroutine, and alarm subroutine).

• The set of signals pending for the child process is initialized to the empty set.

Return Values
Upon successful completion, the fork subroutine returns a value of 0 to the child process
and returns the process ID of the child process to the parent process. Otherwise, a value of
-1 is returned to the parent process, no child process is created, and the global variable
errno is set to indicate the error.

Error Codes
The fork subroutine fails if one or more of the following are true:

EAGAIN

EAGAIN

ENOMEM

The system-imposed limit on the total number of processes executing
would be exceeded.

The system-imposed limit on the total number of processes executing for a
single user would be exceeded.

There is not enough space left for this process.

Implementation Specifics

1-148

These subroutines are part of AIX Base Operating System (BOS) Runtime.

The vfork subroutine is supported as a compatibility interface for older BSD system
programs, and can be used by compiling with Berkeley Compatibility Library (libbsd.a).

In the AIX Version 3 Operating System, the parent process is not forced to wait until the child
either exits or execs, as it is in BSD systems. The child process is given a new address

Base.Operating System Reference

fork, ...

space, as in the fork subroutine. The child process does not share any parent address
space.

Related Information
The exec subroutines, _exit, exit, atexit subroutines, getrusage, times subroutines,
getpriority, setpriority subroutines, nice subroutine, plock subroutine, ptrace subroutine,
raise subroutine, semop subroutine, shmat subroutine, sigaction, signal, sigvec
subroutines, ulimit subroutine, umask subroutine, wait, waitpid, wait3 subroutines.

Base Operating System Runtime 1-149

fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable,
fp_disable_all, or fp_disable Subroutine

Purpose

Library

Syntax

These subroutines allow operations on the floating-point trap control.

Standard e Library (libc.a)

#include <fptrap.h>

int fp_any_enableO
int fp_is_enabled(Mask)
fptrap_t Mask;

void fp_enable_aIlO
void fp_enable(Mask)
fptrap_t Mask;

void fp_disable_aIlO
void fp_disable(Mask)
fptrap_t Mask;

Description
Th3 Rise System/SOOO currently does not generate an interrupt for floating-point traps.
Therefore, the common method of catching the signal SIGFPE and calling an appropriate
trap handler to identify a floating-point trap is not supported.

These subroutines aid in manipulating floating-point traps and identifying the trap state and
type.

The header file fptrap.h defines the following names for the individual bits in the
floating-point trap control:

TRP _INVALID

TRP _DIV _BY_ZERO

TRP _OVERFLOW

TRP _UNDERFLOW

TRP _INEXACT

Invalid Operation Summary

Divide by Zero

Overflow

Underflow

Inexact Result

Parameters
Mask A 32-bit pattern that identifies floating-point traps.

Return Values

1-150

The fp_any_enable subroutine returns 1 if any floating-point traps are enabled. Otherwise,
o is retu rned.

Base Operating System Reference

The fp_is_enabled subroutine returns 1 if the floating-point trap(s) specified by Mask are
enabled. Otherwise, 0 is returned.

The fp_enable_all subroutine enables all floating-point traps.

The fp_enable subroutine enables all floating-point trap(s) specified by Mask.

The fp_disable_all subroutine disables all floating-point traps.

The fp_disable subroutine disables all floating-point trap(s) specified by Mask.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The fp_clr_flag, fp_set_flag, fp_read_flag, fp_swap_flag subroutines, fp_invalid_op,
fp_divbyzero, fp_overflow, fp_underflow, fp_inexact, fp_any_xcp, fp_iop_snan,
fp_iop_infsinf, fp_iop_infdinf, fp_iop_zrdzr, fp_iop_infmzr, fp_iop_invcmp subroutines,
fp_read_rnd, fp_swap_rnd subroutines.

The IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standards 754-1985
and 854-1987).

Base Operating System Runtime 1-151

fp_clr_flag, fp_set_flag, fp_read_flag, or fp_swap_flag
Subroutine

Purpose

Library

Syntax

These subroutines allow operations on the floating-point exception flags.

Standard e Library (libc.a)

#include <float.h>
#include <fpxcp.h>

void fp_clr_flag(Mask)
fpflag_t Mask;

void fp_set_flag(Mask)
fpflag_t Mask;

fpflag_t fp_read_flag()

fpflag_t fp_swap_flag(Mask)
fpflag_t Mask;

Description

1-152

The RiSe System/6000 currently does not generate an interrupt for floating-point
exceptions. Therefore, the common method of catching the signal SIGFPE and calling an
appropriate trap handler to identify a floating-point exception is not supported.

These subroutines aid in determining when an exception has occurred and the exception
type. These subroutines can be called explicitly around blocks of code that may cause a
floating-point exception.

According to the IEEE Standard for Binary Floating-Point Arithmetic, there are five types of
floating-point operations that must be signaled when detected in a floating-point operation.
They are: Invalid Operation, Division by Zero, Overflow, Underflow, and Inexact. An Invalid
Operation occurs when the result cannot be represented (for example, a sqrt operation on
a number less than 0).

The IEEE Standard for Binary Floating-Point Arithmetic states: "For each type of exception,
the implementation shall provide a status flag that shall be set on any occurrence of the
corresponding exception ... lt shall be reset only at the user's request. The user shall be able
to test and to alter the status flags individually and should further be able to save and restore
all five at one time."

Floating-point operations can set flags in the floating-point exception status but can not clear
them. You can clear a flag in the floating-point exception status using an explicit software
action such as fp_swap_flag (0).

Base Operating System Reference

The header file fpxcp.h defines the following names for the individual flags in the
floating-point exception status:

FP_INVALID

FP _OVERFLOW

FP _UNDERFLOW

FP _DIV _BY_ZERO

FP_INEXACT

Invalid operation summary

Overflow

Underflow

Divide by zero

Inexact result

In addition to the above flags, the AIX for RiSe System/SOOO supports additional information
about the cause of an Invalid Operation exception. The following flags are included in the
floating-point exception status and defined in the fpxcp.hheader file. The flag number for
each exception type varies, but the mnemonics are the same for all ports. The Invalid
Operation detail flags are not required for conformance to the AIX for RiSe System/SOOO.

FP _INV _NANS

FP_INV_ISI

FP_INV_IDI

FP _INV_ZDZ

FP_INV_IMZ

FP_INV_CMP

FP _INV _REM_YO

FP _INV _REM_X1

FP _INV _SQRT

FP _I NV_CVI

Parameters

Signalling NaN

INF -INF

INF / INF

0/0

INF x a

Unordered compare

Remainder (x,y) with y=O

Remainder (x,y) with x=INF

Square root of a negative number

Conversion to integer error

Mask A 32-bit pattern that identifies floating-point exception flags.

Return Values
The fp_clr_flag (Mask) subroutine resets the exception status flag(s) defined by Mask to a
(false). The remaining flags in the exception status are unchanged. The return value is that
of the exception status before the reset.

The fp_set_flag (Mask) subroutine sets the exception status flag(s) defined by Mask to 1
(true). The remaining flags in the exception status are unchanged. The return value is that of
the exception status before the set.

The fp_read_flag () subroutine returns the current floating-point exception status. The
flags in the returned exception status can be tested using the flag definitions above. You can
test individual flags or sets of flags.

The fp_swap_flag (Mask) subroutine writes Mask into the floating-point status and returns
the floating-point exception status from before the write.

Base Operating System Runtime 1-153

You can set or reset multiple exception flags using fp_set_flag and fp_clr_flag by ANDing
or ORing definitions for individual flags. For example, the following resets both the overflow
and inexact flags:

fp_clr_flag (FP_OVERFLOW I FP_INEXACT)

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

1-154

The fp_invalid_op, fp_divbyzero, fp_overflow, fp_underflow, fp_inexact, fp_any_xcp,
fp_iop_snan, fp_iop_infsinf, fp_iop_infdinf, fp_iop_zrdzr, fp_iop_infmzr,
fp_iop_invcmp subroutines.

The fp_read_rnd, fp_swap_rnd subroutines.

The fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all,
fp_disable subroutines.

IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standards 754-1985 and
854-1987) describes the IEEE floating-point exceptions.

Base Operating System Reference

fp_invalid_op, fp_divbyzero, fp_overflow, fp_underflow,
fp_inexact, fp_any_xcp, fp_iop_snan, fp_iop_infsinf,
fp_iop_infdinf, fp_iop_zrdzr, fp_iop_infmzr, or fp_iop_invcmp
Subroutine

Purpose

Library

Syntax

Tests to see if a floating-point exception has occurred.

Standard e Library (libc.a)

#include<float.h>
#include<fpxcp.h>

int fp_invalid_op()
int fp_divbyzero{)

int fp_overflow()
int fp_underflow()

int fp_inexact()
int fp_any_xcp{)

int fp_iop_snan{)
int fp_iop_infsinf{)

int fp_iop_infdinfO
int fp_iop_zrdzr()

int fp_iop_infmzr()
int fp_iop_invcmp()

Description
The RiSe System/SOOO currently does not generate an interrupt for floating-point
exceptions. Therefore, the common method of catching the signal SIGFPE and calling an
appropriate trap handler to identify the floating-paint exception is not supported.

These subroutines aid in determining when an exception has occurred and the exception
type. These subroutines can be called explicitly around blocks of code that may cause a
floating~point exception.

Return Values
The fp_invalid_op subroutine returns 1 if a floating-point invalid operation exception status
flag is set. Otherwise, 0 is returned.

The fp_divbyzero subroutine returns 1 if a floating-point divide by zero exception status flag
is set. Otherwise, 0 is returned.

The fp_overflow subroutine returns 1 if a floating-point overflow exception status flag is set.
Otherwise, 0 is returned.

Base Operating System Runtime 1-155

The fp_underflow subroutine returns 1 if a floating-point underflow exception status flag is
set. Otherwise, 0 is returned.

The fp_inexact subroutine returns 1 if a floating-point inexact exception status flag is set.
Otherwise, 0 is returned.

The fp_any_xcp subroutine returns1 if a floating.:point invalid operation, divide by zero,
overflow, underflow, or inexact exception status flag is set. Otherwise, 0 is returned.

The following routines are available for the AIX for RiSe System/6000 platform only:

The fp_iop_snan subroutine returns 1 if a floating-point invalid operation exception status
flag is set due to a signalling NaN (NaNS). Otherwise, 0 is returned.

The fp_iop_infsinf subroutine returns 1 if a floating-point invalid operation exception status
flag is set due to a INF-INF. Otherwise, 0 is returned.

The fp_iop_infdinf subroutine returns 1 if a floating-point invalid operation exception status
flag is set due to a INF/INF. Otherwise, 0 is returned.

The fp_iop_zrdzr subroutine returns 1 if a floating-point invalid operation exception status
flag is set due to a 0.0/0.0. Otherwise, 0 is returned.

The fp_iopjnfxzr subroutine returns 1 if a floating-point invalid operation exception status
flag is set due to a INF*O.O. Otherwise, 0 is returned.

The fp_iop_invcmp subroutine returns 1 if a floating-point invalid operation exception status
flag is set due to a compare involving a NaN. Otherwise, 0 is returned.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

1-156

The fp_read_rnd, fp_swap_rnd subroutines, fp_clr_flag, fp_set_flag, fp_read_flag,
fp_swap_flag subroutines, fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable,
fp_disable_all, fp_disable subroutines.

Base Operating System Reference

fp_read_rnd or fp_swap_rnd Subroutine

Purpose

Library

Syntax

Read and set the IEEE floating-point rounding mode.

Standard e Library (libc.a)

#include <float.h>

fprnd_t fp_read_rndO

fprnd_t fp_swap_rnd(RoundMode)
fprnd_t RoundMode;

Description
The fp_read_rnd subroutine returns the current rounding mode. The fp_swap_rnd
subroutine changes the rounding mode to the RoundMode parameter and returns the value
of the rounding mode before the change.

Floating-point rounding occurs when the infinitely precise result of a floating-point operation
cannot be represented exactly in the destination floating-point format (such as,
double-precision format).

The IEEE Standard for Binary Floating-Point Arithmetic allows floating-point numbers to be
rounded in 4 different ways: round toward zero, round to nearest, round toward +INF and
round toward -INF. Once a rounding mode is selected it affects all subsequent floating-point
operations until another rounding mode is selected.

Note: The default floating-point rounding mode is round to nearest. All e main programs
begin with the rounding mode set to round to nearest.

The encodings of the rounding modes are those defined in the ANSI C Standard. The
header file float.h contains definitions for the rounding modes. Below is the float.h
definition, the ANSI C Standard value, and a description of each rounding mode.

float.h Definition

FP_RND_RZ

FP_RND_RN

FP_RND_RP

FP_RND_RM

ANSI Value

o

2

3

Description

Round toward 0

Round to nearest.

Round toward +INF

Round toward -INF

Note: For IBM AIX Version 3 for RiSe System/6000, the ANSI C Standard macro
FLT_ROUNDS is defined in float.h as an invocation of fp_read_rnd. The ANSI C
Standard does not specify a mechanism for changing the rounding mode.

Base Operating System Runtime 1-157

The subroutine fp_swap_rnd can be used to swap rounding modes by saving the return
value from fp_swap_rnd(RoundMode). This can be useful in functions that need to force a
specific rounding mode for use during the function but wish to restore the caller's rounding
mode on exit. Below is a code fragment that accomplishes this action:

save_mode = £p_swap_rnd (new_mode);
•... desired code using new_mode
(void) £p_swap_rnd(save_mode)j /*restore caller's mode*/

Parameters
RoundMode

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

1-158

The floor, ceil, nearest, trunc, rint, itrunc, uitrunc, fmod, fabs subroutines, fp_clr_flag,
fp_set_flag, fp_read_flag, fp_swap_flag subroutines, fp_any_enable, fp_is_enabled,
fp_enable_all, fp_enable, fp_disable_all, fp_disable subroutines.

Base Operating System Reference

fread, ...

fread or fwrite Subroutine

Purpose

Library

Syntax

Performs binary input/output.

Standard C Library (libc.a)

#include <stdio.h>

size_t fread ((void *) Pointer, Size, NumberOfltems, Stream)
size_t Size, NumberOfltems;
FILE *Stream;

size_t fwrite ((void *) Pointer, Size, NumberOfltems, Stream)
size_t Size, NumberOfltems;
FILE *Stream;

Description
The fread subroutine copies NumberOfltems items of data from the input stream into an
array beginning at the location pointed to by the Pointer parameter. Each data item has the
type * Pointer.

The fread subroutine stops copying bytes if an end-of-file or error condition is encountered
while reading from the input specified by the Stream parameter, or when the number of data
items specified by the NumberOfltems parameter have been copied. It leaves the file pointer
of the Stream parameter, if defined, pointing to the byte following the last byte read, if there
is one. The fread subroutine does not change the contents of the Stream parameter.

The fwrite subroutine appends NumberOfltems items of data of the type * Pointer from the
array pointed to by the Pointer parameter to the output stream.

The fwrite subroutine stops writing bytes if an error condition is encountered on the stream,
or when the number of items of data specified by the NumberOfltems parameter have been
written. The fwrite subroutine does not change the contents of the array pointed to by the
Pointer parameter.

Parameters
Pointer

Size

NumberOfltems

Stream

Return Values

Points to an array.

Specifies the size of the variable type of the array pointed to by the
Pointer parameter.

Specifies the number of items of data.

Specifies the input or output stream.

The fread and fwrite subroutines return the number of items actually transferred. If the
NumberOfltems parameter is negative or 0, no characters are transferred, and a value of 0
is returned.

Base Operating System Runtime 1-159

fread, ...

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-160

The fopen, freopen, fdopen subroutines, getc, fgetc, getchar, getw, getwc, fgetwc,
getwchar subroutines, gets, fgets, getws, fgetws subroutines, printf, fprintf, sprintf,
NLprintf, NLfprintf, NLsprintf subroutines, putc, putchar, fputc, putw, putwc,
putwchar, fputwc subroutines, puts, fputs, putws, fputws subroutines, read subroutine,
scanf, fscanf, sscanf, NLscanf, NLfscanf, NLsscanf subroutines, write subroutine.

Base Operating System Reference

frevoke

frevoke Subroutine

Purpose

Library

Syntax

Revokes access to a file by other processes.

Standard C Library (libc.a)

i nt frevoke(Fildescriptory
int Fildescriptor,

Description

Parameter

The frevoke subroutine revokes access to a file by other processes.

All accesses to the file are revoked, except through the file descriptor provided as the
Fildescriptor parameter to the frevoke subroutine. Subsequent attempts to access the file
using another file descriptor established before the frevoke subroutine fail and cause the
process to be killed.

A process qan revoke access to a file only if its effective user 10 is the same as the file
owner 10, or if the invoker has root user authority.

Note: The frevoke subroutine has no affect on subsequent attempts to open the file. To
assure exclusive access to the file, the caller should change the mode of the file
before issuing the frevoke subroutine. Currently the frevoke subroutine works only
on terminal devices.

Fildescriptor A file descriptor returned by a successful open subroutine.

Return Values
Upon successful completion, the frevoke subroutine returns a value of O.

If the frevoke subroutine fails, it returns a value of -1 and the global variable errno is set to
indicate the error.

Error Codes
The frevoke subroutine fails if the following is true:

EBADF

EPERM

EINVAL

The Fildescriptor parameter is not the valid file descriptor of a terminal.

The effective user ID of the calling process is not the same as the file owner
ID.

Access rights revocation is not implemented for this file.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Base Operating System Runtime 1-161

frevoke

Related Information
The revoke subroutine.

1-162 Base Operating System Reference

frexp, ...

frexp, Idexp, or modf Subroutine

Purpose

Library

Syntax

Manipulates floating-point numbers.

Standard C Library (Iibc.a)

#include <math.h>

double frexp (Value, Exponent)
double Value;
int * Exponent;

double Idexp (Mantissa, Exponent)
double Mantissa;
int Exponent;

double modf (Value, IntegerPointer)
double Value, * In tegerPointer,

Description
Every non-zero number can be written uniquely as x * 2**n, where the mantissa (fraction) x
is in the range 0.5 <= Ixl < 1.0, and the exponent, n, is an integer.

The frexp subroutine breaks a floating-point number into a normalized fraction and an
integral power of 2. It stores the integer in the object pointed to by the Exponent parameter
and returns the fraction part.

The Idexp subroutine multiplies a floating-point number by an integral power of 2.

The modf subroutine breaks the Value parameter into an integral and fractional part, each of
which has the same sign as the value. It stores the integral part as a double in the location
pOinted to by the IntegerPointer parameter.

Parameters
Value

Exponent

Mantissa

In tegerPointer

Return Values

Specifies some double-precision floating-point value.

For frexp, specifies an integer pointer to store the exponent; for
Idexp, some integer value.

Specifies some double-precision floating-point value.

Specifies a double pOinter in which to store the signed integral part.

The frexp subroutine returns a value x such that x is in (0.5, 1 .0) or is 0, and the Value
parameter equals x * 2**(* Exponen~. If the Value parameter is zero, * Exponent and x are
zero. If the Value parameter is a NaN, x is a NaNQ and *Exponent is set to LONG_MIN. If
the Value parameter is +/-IN.F, x is +/- 0.0, and *Exponent is set to +/- LONG_MAX.

The Idexp subroutine returns the value x * 2**(Exponen~.

Base Operating System Runtime 1-163

frexp, ...

The modf subroutine returns the signed fractional part of Value and stores the signed
integral part in the object pOinted to by IntegerPointer. If Value is a NaN, then a NaNQ is
returned and a NaNQ is stored in the object pOinted to by IntegerPointer. If Value is +/-INF,
then +/- 0.0 is returned, and +/-INF is stored in the object pOinted to by In tegerPointer.

Error Codes
If the result of the Idexp subroutine overflows, then +/- HUGE_VAL is returned, and the
global variable errno is set to ERANGE.

If the result of the Idexp subroutine underflows, 0 is returned, and the global variable errno
is set to ERANGE.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-164

The sgetl, sputl subroutines, scanf, fscanf, sscanf, NLscanf, NLFscanf, NLsscanf
subroutines.

Base Operating System Reference

fscntl

fscntl Subroutine

Purpose

Library

Syntax

Controls file system control operations.

Standard C Library (libc.a)

#include <sys/types.h>
#include <sys/fscntl.h>

i nt fscntl (vfs_id, Command,Argument,
ArgumentSize)

int vfs_id;
int Command;
char * Argument;
int ArgumentSize;

Description
The fscntl subroutine performs a variety of file system specific functions. These functions
typically require root user authority.

At present only one file system, the journalled file system, supports any commands via the
fscntl subroutine. The only supported command is FS_EXTENDFS. This is used to increase
the size of a mounted file system.

Note: Application programs should not call this function, as it is reserved for system
management commands such as the chfs command.

Parameters

Command

Argument

ArgumentSize

Return Values

Identifies the file system to be acted upon. This
information is returned by the stat subroutine in the
st_vfs field of the stat.h header file.

Identifies the operation to be performed.

Specifies a pointer to a block of file system specific
information that defines how the operation is to be
performed.

Defines the size of the buffer pointed to by the
Argument parameter.

Upon successful completion, the fscntl subroutine returns a value of O. Otherwise, a value
of -1 is returned and the global variable errno is set to indicate the error.

Error Codes
The fscntl subroutine fails if one or both of the following are true:

EINVAL The vfs_id parameter does not identify a valid file system.

Base Operating System Runtime 1~165

fscntl

EINVAL The Command parameter is not recognized by the file system.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

1-166 Base Operating System Reference

fseek, ...

fseek, rewind, ftell, fgetpos, or fsetpos Subroutine

Purpose

Library

Syntax

Repositions the file pointer of a stream.

Standard C Library (libc.a)

#include <stdio.h>

int fseek (Stream, Offset, Whence)
FILE * Stream;
long Offset;
int Whence;

void rewind (Stream)
FILE * Stream;

long ftell (Stream)
FILE * Stream;

int fsetpos (Stream, Position)
FILE * Stream;
fpos_t Position;

int fgetpos (Stream, Position)
FILE * Stream;
fpos_t Position;

Description
The fseek subroutine sets the position of the next input or output operation on the 1/0
stream specified by the Stream parameter. The position of the next operation is determined
by the Offset parameter, which can be either positive or negative.

The fseek subroutine sets the file pointer associated with the specified Stream as follows:

• If the Whence parameter is 0, the pointer is set to the value of the Offset parameter.

• If the Whence parameter is 1, the pointer is set to its current location plus the value of the
Offset parameter.

• If the Whence parameter is 2, the pointer is set to the size of the file plus the value of the
Offset parameter.

The fseek subroutine fails if attempted on a file that has not been opened using the fopen
subroutine. In particular, the fseek subroutine cannot be used on a terminal or on a file
opened with the popen subroutine.

The rewind subroutine is equivalent to seekdir (Stream, (long) 0, 0), except that it does not
return a value.

The fseek and rewind subroutines undo any effects of the ungetc subroutine.

A successful call to the fsetpos subroutine clears the EOF indicator and undoes any effects
of the ungetc subroutine. ')

Base Operating System Runtime 1-167

fseek, ...

After an fseek or a rewind, the next operation on a file opened for update can be either
input or output.

The fgetpos subroutine is similar to the ftell subroutine and the fsetpos subroutine is
similar to the fseek subroutine. The fgetpos subroutine stores the current value of the file
position indicator for the stream pointed to by the Stream parameter in the object pointed to
by the Position parameter. The fsetpos subroutine sets the file position indicator according
to the value of the Position parameter, returned by a prior call to the fgetpos subroutine.

Parameters
Stream Specifies the I/O stream.

Offset

Whence

Position

Determines the position of the next operation.

Determines the value for the file pointer associated with the Stream
parameter.

Specifies the value of the file position indicator.

Return Values
Upon successful completion, the fseek subroutine returns a value of O. Otherwise, a
nonzero value is returned.

The ftell subroutine returns the offset of the current byte relative to the beginning of the file
associated with the named stream.

Upon successful completion, the fgetpos and fsetpos subroutines return O. Otherwise, a
value of -1 is returned and the global variable errno is set to EINVAL.·

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The Iseek subroutine, fopen, freopen, fdopen subroutines.

1-168 Base Operating System Reference

fsync

fsync Subroutine

Purpose

Library

Syntax

Writes changes in a file to permanent storage.

Standard C Library (libc.a)

int fsync (FileDescriptot?
int FileDescriptor,

Description

Parameter

The fsync subroutine causes all modified data in the file open on the FileDescriptor
parameter to be saved to permanent storage. On return from the fsync subroutine, all
updates have been saved on permanent storage.

Data written to a file that some process has opened for deferred update (with ° _DEFER) will
not be written to permanent storage until some process issues an fsync subroutine against
this file, or until some process runs a synchronous write system call (with O_SYNC) to this
file. See the fcntl.h header file and the open subroutine for descriptions of O_DEFER and
O_SYNC.

Note: The file identified by the FileDescriptor parameter must be open for writing when the
fsync subroutine is issued or the call fails. This restriction was not enforced in BSD
systems.

FileDescriptor A valid open file descriptor.

Return Values
Upon successful completion, the fsync subroutine returns a value of O. Otherwise, a value
of -1 is returned and the global variable errno is set to indicate the error.

Error Codes
The fsync subroutine fails if one or more of the following are true:

EIO

EBADF

EINVAL

1/0 error.

FileDescriptor is not a valid file descriptor open for writing.

The file is not a regular file.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The open subroutine, sync subroutine, write subroutine.

The fcntl.h header file.

Base Operating System Runtime 1-169

ftok

ftok Subroutine

Purpose

Library

Syntax

Generates a standard interprocess communication key.

Standard C Library (Iibc.a)

#include <sys/types.h>
#include <sys/ipc.h>

key_t ftok (Path, 10)
char *Path;
charlO;

Description
The ftok subroutine returns a key, based on the Path and 10 parameters, to be used to
obtain interprocess communication identifiers. The ftok subroutine returns the same key for
linked files if called with the same 10 parameter. Different keys are returned for the same file
if different 10 parameters are used.

All interprocess communication facilities require you to supply a key to the msgget, semget,
and shmget subroutines in order to obtain interprocess communication identifiers. The ftok
subroutine provides one method of creating keys, but many other methods are possible.
Another way to do this, for example, is to use the project ID as the most significant byte of
the key, and to use the remaining portion as a sequence number.

Warning: It is important for each installation to define standards for forming keys. If some
standard is not adhered to, it is possible for unrelated processes to interfere with each
other's operation.

Parameters
Path Specifies the path name of an existing file that is accessible to the process.

10 Specifies a character that uniquely identifies a project.

Return Values
Upon successful completion, the ftok subroutine returns a key that can be passed to the
msgget, semget, or shmget subroutine.

Error Codes
The ftok subroutine returns the value (key_t)-1 if one or more of the following are true:

The file named by the Path parameter does not exist.

The file named by the Path parameter is not accessible to the process.

The 10 parameter is a value of 0 ('\0').

1-170 Base Operating System Reference

ftok

Warning: If the Path parameter of the ftok subroutine names a file that has been removed
while keys still refer to it, then the ftok subroutine returns an error. If that file is then
recreated, the ftok subroutine will probably return a different key than the original one.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The msgget subroutine, semget subroutine, shmget subroutine.

Base Operating System Runtime 1-171

ftw

ftw Subroutine

Purpose

Library

Syntax

Walks a file tree.

Standard C Library (libc.a)

#include <ftw.h>

int ftw (Path, Function, Depth)
char *Path;
int (* Function) ();
int Depth;

Description

1-172

The ftw subroutine recursively searches the directory hierarchy that descends from the
directory specified by the Path parameter.

For each file in the hierarchy, the ftw subroutine calls the function specified by the Function
parameter, passes it a pointer to a null-terminated character string containing the name of
the file, a pointer to a stat structure containing information about the file, and an integer.
(See the stat system call for more information about this structure.)

The integer passed to the Function parameter identifies the file type, and it has one of the
following values:

FTW_F

FTW_D

FTW_DNR

FTW_NS

Regular file

Directory

Directory that cannot be read

A file for which the stat structure could not be executed successfully.

If the integer is FTW_DNR, then the files and subdirectories contained in that directory are
not processed.

If the integer is FTW_NS, then the stat structure contents are meaningless. An example of a
file that causes FTW_NS to be passed to the Function parameter is a file in a directory for
which you have read permission but not execute (search) permission.

The ftw subroutine finishes processing a directory before processing any of its files or
subdirectories.

The ftw subroutine continues the search until the directory hierarchy specified by the Path
parameter is completed, an invocation of the function specified by the Function parameter
returns a nonzero value, or an error is detected within the ftw subroutine, such as an 1/0
error.

The ftw subroutine uses one file descriptor for each level in the tree. The Depth parameter
specifies the maximum number of file descriptors to be used. In general, the ftw subroutine
runs faster if the value of the Depth parameter is at least as large as the number of levels in

Base Operating System Reference

ftw

the tree. However, the Depth parameter must not be greater than the number of file
descriptors currently available for use. If the value of the Depth parameter is 0 or negative,
the effect is the same as if it were 1.

Because the ftw subroutine is recursive, it is possible for it to terminate with a memory fault
due to stack overflow when applied to very deep file structures.

The ftw subroutine uses the malloc subroutine to allocate dynamic storage during its
operation. If the ftw subroutine is terminated prior to its completion, such as by the longjmp
subroutine being executed by the function specified by the Function parameter or by an
interrupt routine, the ftw subroutine cannot free that storage. The storage remains allocated.
A safe way to handle interrupts is to store the fact that an interrupt has occurred, and
arrange to have the function specified by the Function parameter return a nonzero value the
next time it is called.

Parameters
Path

Function

Depth

Return Values

Specifies the directory hierarchy to be searched.

Specifies the file type.

Specifies the maximum number of file descriptors to be used.

If the directory hierarchy is completed, the ftw subroutine returns a value of O. If the function
specified by the Function parameter returns a nonzero value, the ftw subroutine stops its
search and returns the value that was returned by the function.

Error Codes
If the ftw subroutine detects an error, a value of -1 is returned and the global variable errno
is set to indicate the error.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
Themalloc.free.realloc.calloc.mallopt.mallinfo.alloca subroutines, setjmp, longjmp
subroutines, signal subroutine, stat subroutine.

Base Operating System Runtime 1-173

getc, ...

getc, fgetc, getchar, or getw Subroutine

Purpose

Library

Syntax

Gets a character or word from an input stream.

Standard I/O Package (libc.a)

#include <stdio.h>

int getc (Stream)
FILE *Stream;

int fgetc (Stream)
FILE *Stream;

int getchar ()

int getw (Stream)
FILE *Stream;

Description

1-174

The getc macro returns the next byte from the input specified by the Stream parameter and
moves the file pointer, if defined, ahead one byte in Stream. The getc macro cannot be used
where a subroutine is necessary; for example, a subroutine pointer cannot point to it.

Because it is implemented as a macro, getc does not work correctly with a Stream
parameter that has side effects. In particular, the following does not work:

getc(*f++)

In cases like this, use the fgetc subroutine instead.

The fgetc subroutine performs the same function as the getc macro, but fgetc is a genuine
subroutine, not a macro. The fgetc subroutine runs more slowly than getc, but takes less
space.

The getchar macro returns the next byte from stdin. the standard input stream. Note that
getchar is also a macro.

The getc and getchar macros have also been implemented as subroutines for ANSI
compatibility. To access the subroutines instead of the macros insert #undef getc or #undef
getchar at the beginning of the source file .

. The getw subroutine returns the next word (int) from the input specified by the Stream
parameter and increments the associated file pointer, if defined, to point to the next word.
The size of a word varies from one machine architecture to another. The getw subroutine
returns the constant EOF at the end of the file or when an error occurs. Since EOF is a valid
integer value, the feof and ferror subroutines should be used to check the success of getw.
The getw subroutine assumes no special alignment in the file.

Because of possible differences in word length and byte ordering from one machine
architecture to another, files written using the putw subroutine are machine-dependent and
may not be readable using getw on a different type of processor.

Base Operating System Reference

getc,. ..

Parameter
Stream A pointer to the file structure of an open file.

Return Values
These subroutines and macros return the integer constant EOF at the end of the file or upon
an error.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The fopen, freopen, fdopen subroutines, fread, fwrite subroutines, getwc, fgetwc,
getwchar subroutines, gets, fgets subroutines, putc, putchar, fputc, putw subroutines,
scanf, fscanf, sscanf, NLscanf, NLfscanf, NLsscanf, wsscanf subroutines.

Base Operating System Runtime 1-175

getcwd

getcwd Subroutine

Purpose

Library

Syntax

Gets the path name of the current directory.

Standard C Library (libe.a)

ehar *getewd (Buffer, Size)
char * Buffer,
int Size;

Description
The getewd subroutine returns a pointer to a string containing the path name of the current
directory.

The getewd subroutine calls the getwd subroutine to obtain the path name.

Parameters
Buffer Pointer to a string space to hold the path name. If the Buffer parameter is a

NULL pointer, the getewd subroutine, using the malloe subroutine, obtains
the number of bytes of free space as specified by the Size parameter. In this
case, the pointer returned by the getewd subroutine can be used as the
parameter in a subsequent call to the free subroutine.

Size The length of the string space. The value of the Size parameter must be at
least 2 greater than the length of the path name to be returned.

Return Values
If the getewd subroutine fails, a NULL value is returned and the global variable errno is set
to indicate the error. The getewd subroutine fails if the Size parameter is not large enough
or if an error occurs in a lower-level function.

Error Codes
The getewd subroutine fails if one or both of the following are true:

EINVAL

ERANGE

The Size argument is 0 or negative.

The Size argument is greater than 0 but is smaller than the length of the
path name plus 1 .

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The malloe subroutine,getwd subroutine.

1-176 Base Operating System Reference

getdtablesize Subroutine

Purpose
Gets the descriptor table size.

Library
Standard C Library (libc.a)

Syntax
int getdtablesize ()

Description

getdtablesize

Each process has a fixed-size descriptor table, which is guaranteed to have at least 2000
slots. The entries in the descriptor table are numbered with small integers starting at o.

Return Value
The getdtablesize subroutine returns the size of the descriptor table.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The close subroutine, open subroutine, select subroutine.

Base Operating System Runtime 1-177

getenv, ...

getenv or NLgetenv Subroutine

Purpose

Library

Syntax

Returns the value of an environment variable.

Standard C Library (libc.a)

char *getenv (Name)
char *Name

char *NLgetenv (Name)
char *Name

Description
The getenv subroutine searches the environment list for a string of the form Name: Value.
Environment variables are sometimes called shell variables since they are frequently set
with shell commands.

The NLgetenv subroutine gets an NLS parameter from the locale information set up by a
call to the setlocale subroutine. This parameter should belong in one of the following
categories:

LC_MONETARY
LC_NUMERIC
LC_TIME
LC_MESSAGES

If the information solicited is not found in the tables set up by the setlocale subroutine, an
American English default table is searched and the value in that default table is returned. If
no data can be found, a NULL pointer is returned.

Parameters
Name The name of an environment variable; can be null.

Return Values
The getenv subroutine returns a pointer to the value in the current environment, if such a
string is present. If such a string is not present, a NULL pointer is returned.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

The NLgetenv subroutine is not part of the ANSI C Library.

Related Information
The setlocale and putenv subroutine.
National Language Support Overview in Programming Concepts and Procedures.

1-178 Base Operating System Reference

getfsent, ...

getfsent, getfsspec, getsfile, getfstype, setfsent, or endfsent
Subroutine

Purpose

Library

Syntax

Gets information about a file system.

Standard C Library (libc.a)

#include <fstab.h>

struct fstab *getfsent[]

struct fstab *getfsspec [Specia~
char * Special;

struct fstab *getfsfile[File]
char *File;

struct fstab *getfstype[Type]
char * Type;

void setfsent[]

void endfsent[]

Description
The getfsent subroutine reads the next line of the file, opening the file if necessary.

The setfsent subroutine opens the file and positions to the first record.

The endfsent subroutine closes the file.

The getfsspec and getfsfile subroutines sequentially search from the beginning of the file
until a matching special file name or file system file name is found, or until the end of the file
is encountered. The getfstype subroutine does likewise, matching on the file system type
field.

Note: All information is contained in a static area, so it must be copied if it is to be saved.

Parameters
Special

File

Type

Return Value

Specifies the file system file name.

Specifies the file name.

Specifies the file system type.

The getfsent, getfsspec, getfstype, and getsfile subroutines return a pointer to a structure
that contains information about a file system. The header file fstab.h describes the
structure. A pointer to NULL is returned on EOF or error.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Base Operating System Runtime 1-179

getgid, ...

getgid or getegid Subroutine

Purpose

Library

Syntax

Gets the process group IDs.

Standard C Library (libc.a)

#include <sys/types.h>

gid_t getgid 0

gid_t getegid 0

Description
The getgid subroutine returns the real group 10 of the calling process.

The getegid subroutine returns the effective group ID of the calling process.

Return Values
The getgid and getegid subroutines return the requested group ID.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

1-180

The getgidx subroutine, getgroups subroutine, setgidx subroutine, setgroups subroutine,
setgid subroutine, initgroups subroutine.

The setgroups command, groups command.

Base Operating System Reference

getgidx

getgidx Subroutine

Purpose

Library

Syntax

Gets the process group IDs.

Standard C Library (libe.a)

#inelude <sys/id.h>

uid_t getgidx (Which)
int Which;

Description

Parameter

The getgidx subroutine returns the specified group 10 of the current process.

Which Specifies which group 10 to return. The valid values for this parameter are
defined in sys/id~h and include:

ID _EFFECTIVE
Returns the effective group 10 of the process.

Returns the real group 10 of the process.

Returns the saved group 10 of the process.

Return Values
Upon successful completion, the getgidx subroutine returns the requested group 10. If the
getgidx subroutine fails, a value of -1 is returned and the global variable errno is set to
indicate the error.

Error Code
The getgidx subroutine fails if:

EINVAL The Which parameter is not one of ID_EFFECTIVE, ID_REAL, or
ID_SAVED.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The getgroups subroutine, setgidx subroutine, setgroups subroutine, getgid subroutine,
setgid subroutine, initgroups subroutine.

Base Operating System Runtime 1-181

getgrent, ...

getgrent, getgrgid, getgrnam, putgrent, setgrent or endgrent
Subroutine

Purpose

Library

Syntax

Accesses the basic group information in the user database.

Standard C Library (libc.a)

#include <grp.h>

struct group *getgrent ()

struct group *getgrgid (Gid)
gid_t Gid;

struct group *getgrnam (Name)
char *Name;

int putgrent (Group, File)
struct group Group;
FILE *File;

void setgrent ()

void endgrent ()

Description

1-182

These subroutines may be used to access the basic group attributes. These attributes can
also be accessed with the getgroupattr subroutine, which can access all group attributes
and offer better granularity of access.

The setgrent subroutine opens the user database (if not already open) and rewinds the
cursor to point to the first group entry in the database.

The getgrent, getgrnam, and getgrgid subroutines return information about the requested
group. The getgrent subroutine returns the next group in the sequential search, getgrnam
returns the first group in the data base whose name matches the Name parameter and
getgrgid returns the first group in the data base whose group 10 matches the Gid
parameter. The endgrent subroutine will close the user data base.

The putgrent subroutine writes a group entry to a file in the colon separated format of the
/etc/group file. Note that an exclamation mark 'I' will be written into the gr_passwd field
and this field is ignored and is only there for compatibility with older versions of UNIX.

The group structure, which is returned by the getgrent, getgrnam, and getgrgid
subroutines, is defined in the grp.h header file, and it contains the following members:

The name of the group.

The password of the group. Note that this field is no longer used by the
system and so its value is meaningless.

Base Operating System Reference.

getgrent, ...

The ID of the group.

The members of the group.

If NIS is enabled on the system, these routines will attempt to retrieve the group information
from the NIS authentication server.

Warning: The information that is returned by the gretgrent, getgrnam and getgrgid
subroutines is stored in a static area and will be overwritten on subsequent calls to these
routines. If it is to be saved, it should be copied.

Warning: These subroutines should not be used in conjunction with the getgroupattr
subroutine. The results are unpredictable.

Parameters
Gid Specifies the group I D of the group for which the basic attributes are to be

read.

Name Specifies the name of the group for which the basic attributes are to be read.

Return Values
The getgrent, getgrnam, and getgrgid subroutines return a pointer to a valid group
structure if successful. Otherwise, a NULL pointer is returned.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The getpwent subroutine, getgroupattr subroutine, getuserattr subroutine, setuserdb
subroutine.

Base Operating System Runtime 1-183

getgroupattr, ...

getgroupattr, IDtogroup, nextgroup, or putgroupattr Subroutine

Purpose

Library

Syntax

Accesses the group information in the user database.

Security Library (libs.a)

#include <usersec.h>

int getgroupattr(Group, Attribute, Value, Type)
char * Group; .
char * Attribute;
void *Value;
int Type;

int putgroupattr(Group, Attribute, Value, Type)
char * Group;
char *Attribute;
void *Value;
int Type;

char *IDtogroup(Gid)
gid_t Gid;

char *nextgroup(Mode, Argument)
int Mode, Argument;

Description

1-184

These subroutines may be used to access group information. Because of their greater
granularity and extensibility, these should be used instead of the getgrent, putgrent,
getgrnam, getgrgid, setgrent, and endgrent subroutines.

The getgroupattr subroutine reads a specified attribute from the group data base. If the
data base is not already open, the getgroupattr subroutine will do an implicit open for
reading.

The putgroupattr subroutine writes a specified attribute into the group data base. If the data
base is not already open,the putgroupattr subroutine will do an implicit open for reading
and writing. The data changed by putgroupattr must be explicitly committed by calling the
putgroupattr subroutine with a Type parameter which includes the SEC_COMMIT value.
Until the data is committed, only the get subroutine calls within the process will return the
written data.

The IDtogroup subroutine translates a group ID into a group name.

The nextgroup subroutine returns the next group in a linear search of the group data base.
The consistency of consecutive searches depends upon the underlying storage access
mechanism and is not guaranteed by this function.

Values which are returned by these subroutines are in dynamically allocated buffers and
need not be moved prior to the next call.

Note: These functions and the setpwent and setgrent functions should not be used
simultaneously. The result can be unpredictable.

Base Operating System Reference

getgroupattr, ...

The setuserdb and enduserdb subroutines should be used to open and close the user data
base.

Parameters
Argument

Attribute

Gid

Group

Mode

The Argument parameter is presently unused and must be specified as
NULL.

Specifies the name of the attribute which is to be read. This can be one of
the following, which are defined in the usersec.h file:

S_IO

S_USERS

S_AOMS

S_AOMIN

The group 10. Type: SEC_INT.

The members of the group. Type: SEC .. LlST.

The administrators of the group. Type: SEC_LIST.

Defines the administrative status of a group.
Type: SEC_BOOl

Specifies the group 10 to be translated into a group name.

Specifies the name of the group for which an attribute is to be read.

Specifies the search mode. This parameter can be used to delimit the
search to one or more user credential data bases. Specifying a non_NULL
Mode also implicitly rewinds the search. A NULL mode should be used to
continue the search sequentially through the data base. This attribute may
include one or more of the following values specified as a bit mask; these
are defined in the usersec;h file:

The local data base of groups will be included in the
search.

All credentials servers for the system are searched.

Type Specifies the type of attribute expected. Valid values are defined in the
usersec.h file and include:

SEC_CHAR

SEC_LIST

The format of the attribute is an integer. The buffer
returned by the getuserattr subroutine and the buffer
supplied by the putuserattr subroutine is defined to
contain an integer.

The format of the attribute is a NULL terminated
character string.

The format of the attribute is a list of NULL terminated
character strings. The list itself is NULL terminated.

The format of the attribute is an integer where zero
indicates false and non-zero indicates true.

For the putgroupattr subroutine, this value specified
by itself indicates that changes to the named group
are to be committed to permanent storage. The
Attribute and Value parameters are ignored. If no

Base Operating System Runtime 1-185

getgroupattr, ...

Security

group is specified. the changes to all modified groups
will be committed.

The corresponding attribute will be deleted from the
data base.

Updates all the group data base files with the new
group name when using the putgroupattr subroutine.

Value Specifies the address of a buffer in which the attribute is to be stored
(getgroupattr) or is stored (putgroupattr).

file access The calling process must have access to the group information in the user
data base. This includes:

modes file

rw /etc/group (write access for putgroupattr)

rw /etc/security/group (write access for putgroupattr)

Return Values
The getroupattr and putgroupattr subroutines, when successfully completed, return a
value of O. Otherwise, a value of -1 is returned and errno is set to indicate the error.

The IDtogroup and nextgroup subroutines return a character pointer to a buffer containing
the requested group name, if successfully completed. Otherwise a NULL pOinter is returned
and errno is set to indicate the error.

Error Codes

1-186

These subroutines fail if the following is true:

EACCES Access permission is denied for the data request.

All of these functions will return errors from other functions.

The getgroupattr and putgroupattr subroutines fail if one or more of the following is true:

ENOATTR

ENOENT

EINVAl

EINVAl

EINVAl

EINVAl

The specified group attribute does not exist for this group.

The specified Group parameter does not exist or the attribute is not defined
for this user.

The Attribute parameter does not contain one of the defined attributes.

The Value parameter does not point to a valid buffer or to valid data for this
type of attribute.

The Type parameter does not contain only one of SEC_INT, SEC_BOOl,
SEC_CHAR, or SEC_LIST or SEC_COMMIT.

The Type parameter specifies that an individual attribute is to be committed
and the Group parameter is NULL.

Base Operating System Reference

getgroupattr, ...

The IDtogroup subroutine fails if the following is true:

ENOENT The Gid parameter could not be translated into a valid group name on the
system.

The nextgroup subroutine fails if one or more of the following is true:

EINVAL

EINVAL

ENOENT

The Mode parameter is not one of NULL, S_LOCAL, or S_SYSTEM.

The Argument parameter is not NULL.

The end of the search was reached.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The getuserattr subroutine, getuserpw subroutine, setuserdb subroutine, setpwdb
subroutine.

Base Operating System Runtime 1-187

getgroups

getgroups Subroutine

Purpose

Library

Syntax

Gets the concurrent group set of the current process.

Standard C Library (libc.a)

#include <grp.h>

int getgroups (Ngroups, Gidset)
int Ngroups;
gid_t * Gidset;

Description
The getgroups subroutine gets the concurrent group set of the process. The list is stored in
the array pointed to by the Gidset parameter. The Ngroups parameter indicates the number
of entries that can be stored in this array. The getgroups subroutine never returns more
than NGROUPS_MAX entries. (NGROUPS_MAX is a constant defined in the limits.h
header file.) If Ngroups is zero, the getgroups subroutine returns the number of groups in
the concurrent group set.

Parameters
Gidset Pointer to the array in which the process's concurrent group set of the user

process is stored.

Ngroups Indicates the number of entries that can be stored in the array pointed to by the
Gidset parameter.

Return Values
Upon successful completion, the getgroups subroutine returns the number of elements
stored into the array pointed to by the Gidset parameter. If getgroups fails, then a value of
-1 is returned and errno is set to indicate the error.

Error Codes
The getgroups subroutine fails if the following is true:

EFAULT

EINVAL

The Ngroups and Gidset parameters specify an array that is partially or
completely outside of the allocated address space of the process.

The argument Ngroups is smaller than the number of groups in the
concurrent group set.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

1~188 Base Operating System Reference

Related Information
The setgroups subroutine, getgidx subroutine, setgidx subroutine.

The getgid subroutine, setgid subroutine, initgroups subroutine.

The setgroups command, groups command.

getgroups

Base Operating System Runtime 1-189

getinterval, ...

getinterval, incinterval, absinterval, resinc, resabs, alarm,
ualarm, getitimer or setitimer Subroutine

Purpose

Library

Syntax

Manipulate the expiration time of interval timers.

Standard C Library (libc.a)

#include <sys/times.h>

int getinterval (Timerid, Value)
ti mer _ t Timerid;
itimerstruc_t * Value;

int incinterval (Timerid, Value, Ovalue)
ti mer _ t Timerid;
itimerstruc_t * Value, *Ovalue;

int absinterval (Timerid, Value, Ovalue)
ti mer _ t Timerid;
itimerstruc_t * Value, *Ovalue;

int resabs (Timerid, Resolution, Maximum)
timer_t Timerid;
ti mestruc _ t * Resolution, * Maximum;

int resinc (Timerid, Resolution, Maximum)
timer _t Timerid;
timestruc_t * Resolution, * Maximum;

unsigned int alarm (Seconds)
unsigned int Seconds;

unsigned int ualarm (Value, Intv~
unsigned int Value, Intvl;

int setitimer (Which, Value, Ovalue)
int Which;
struct itimerval * Value;
struct itimerval *Ovalue;

int getitimer (Which, Value)
int Which;
struct itimerval * Value;

Description

1-190

The getinterval, incinterval, and absinterval subroutines manipulate the expiration time of
interval timers. These functions use a timer value defined by the itimerstruc_t structure,
which includes the following members:

timestruc_t itjnterval; /* timer interval period */
timestruc_t iCvalue; /* timer interval expiration */

Base Operating System Reference

getinterval, ...

If the it_value member is non-zero, it indicates the time to the next timer expiration. If
it_value is 0, the per-process timer is disabled. If the it_interval member is non-zero, it
specifies a value to be used in reloading it_value when the timer expires. If it_interval is 0,
the timer is to be disabled after its next expiration (assuming it_value is non-zero).

The getinterval subroutine returns an itimerstruc_t value to the Value parameter. The
it_value member of this structure represents the amount of time in the current interval
before the timer expires, should one exist (or 0 if not) for the per-process timer specified in
the Timerid parameter. The it_interval member has the value last set by the incinterval or
absinterval subroutines. The members of the Value parameter are subject to the resolution
of the timer.

The incinterval subroutine sets the value of a per-process timer to a given offset from the
current timer setting. The absinterval subroutine sets the value of the per-process timer to
a given absolute value. If the specified absolute time has already expired, absinterval will
succeed and the expiration notification will be made. Both functions update the interval
timer period. Time values smaller than the resolution of the specified timer are rounded up
to this resolution. Time values larger than the maximum value of the specified timer are
rounded down to the maximum value.

The resinc and resabs subroutines return the resolution and maximum value of the interval
timer contained in the Timerid parameter. The resolution of the interval timer is contained in
the Resolution parameter, and the maximum value is contained in the Maximum parameter.
These values might not be the same as the values returned by the corresponding system
timer, the gettimer subroutine. In addition, it is likely that the maximum values returned by
the resinc and resabs subroutines will be different.

Note: If a non-privileged user attempts to submit a fine granularity timer (i.e., a timer
request less than 10 milliseconds), the timer request is raised to 10 milliseconds.

Parameters
Timerid

Value

Ovalue

Resolution

Maximum

The id of the interval timer.

Pointer to a itimerstruc_t structure.

Represents the previous amount of time before the timer would have
expired.

Resolution of the timer.

Maximum value of the interval timer.

Compatibility Interface
The alarm, ualarm, getitimer. and setitimer subroutines are provided for compatibility with
older AIX, AT&T System V, and BSD systems.

The alarm, ualarm, and setitimer subroutines are implemented to call the incinterval
subroutine with the appropriate flag set.

The getitimer subroutine is implemented as a call to the getinterval subroutine.

Return Values
If these subroutines are successful, a 0 is returned. A return value of -1 indicates that an
error occurred and errno is set. The alarm subroutine returns the amount of time in seconds
remaining before the system is scheduled to generate the SIGALARM signal from the
previous call to alarm, or zero if there was no previous alarm request.

Base Operating System Runtime 1-191

getinterval, ...

Error Codes
If the getinterval, incinterval, absinterval, resinc or resabs subroutine fails, a -1 is
returned and errno is set to one of the following error codes:

EINVAL

EIO

The Timerid parameter does not correspond to an id returned by the
gettimerid subroutine.

A value structure specified a nanosecond value less than zero or greater
than or equal to one 1000 million.

An error occurred while accessing the timer device.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The gettimer subroutine, gettimerid subroutine.

1-192 Base Operating System Reference

getlogin

getlogin Subroutine

Purpose
Gets the user's login name.

Library
Standard C Library (libc.a)

Syntax
char *getlogin ()

Description

File

The getlogin subroutine returns a pointer to the login name as found in the letc/utmp file.
Use the getlogin subroutine in conjunction with the getpwnam subroutine to locate the
correct password file entry when the same user 10 is shared by several login names.

If the getlogin subroutine is called within a process that is not attached to a terminal, it
returns a NULL pointer.

If the login name is not found, the getlogin subroutine returns a NULL pointer.

Warning: The getlogin subroutine returns a pointer to a static area that is overwritten by
successive calls.

letc/utmp

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The getgrent, getgrgid, getgrnam, setgrent, endgrent subroutines, getpwent, getpwuid,
setpwent, endpwent subroutines.

Base Operating System Runtime 1-193

getopt

getopt Subroutine

Purpose

Library

Syntax

Gets flag letters from the argument vector.

Standard C Library (Iibc.a)

int getopt (ArgumentC, ArgumentV, OptionString)
int ArgumentC;
char **ArgumentV;
char * OptionString;

extern int optind;
extern char optopt;
extern int opterr;
extern char *optarg;

Description
The getopt subroutine returns the next flag letter in the ArgumentV parameter list that
matches a letter in the OptionString parameter. The getopt subroutine is an aid to help
programs interpret shell command-line flags that are passed to them.

The optarg external variable is set to point to the start of the flag's parameter on return from
the getopt subroutine.

The getopt subroutine places the ArgumentVindex of the next argument to be processed in
optind. optind is externally initialized to 1 so that Argument\llO] is not processed.

Parameters
ArgumentC The number of parameters passed to the routine.

ArgumentV

OptionString

The list of parameters passed to the routine.

A string of recognized flag letters. If a letter is followed by a colon,
the flag is expected to take a parameter that mayor may not be
separated from it by white space.

Return Values
When all flags have been processed (that is, up to the first non-flag argument), the getopt
subroutine returns EOF. The special flag - (dash dash) can be used to delimit the end of
the flags; EOF is returned, and - is skipped.

Error Codes

1-194

The getopt subroutine prints an error message on stderr and returns (int) '?' (question
mark) when it encounters a flag letter that is not included in the OptionString parameter.

Note: The external int optopt variable is set to the real option found in the ArgumentV
parameter. This is true whether the flag is in the OptionString parameter or not.

You can set the int variable opterr to zero to suppress the generation of error messages.

Base Operating System Reference

getopt

Implementation Specifics
This command is part of AIX Base Operating System (BOS) Runtime.

Related Information
The getopt command.

Base Operating System Runtime 1-195

getpagesize

getpagesize Subroutine

Library
Standard C Library (libc.a)

Purpose
Gets the system page size.

Syntax
int getpagesize()

Description
The getpagesize subroutine returns the number of bytes in a page. Page granularity is the
granularity of many of the memory management calls.

The page size is a System page size and may not be the same as the underlying hardware
page size.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The brk, sbrk subroutines.

The pagesize command.

1--196 Base Operating System Reference

getpass

getpass Subroutine

Purpose

Library

Syntax

Reads a password.

Standard C Library (libc.a)

#include <stdio.h>

char *getpass (Prompt)
char * Prompt;

Description

Parameter

The getpass subroutine will open the controlling terminal of the current process, write the
specified Prompt parameter to that device and read up to the value of PASS_MAX
characters until a new line or EOF condition is detected. Echoing of charters is disabled
during the read.

Note: The characters are returned in a static data area which will be overwritten upon
subsequent calls to this routine.

Prompt Specifies a prompt to.be displayed on the terminal. If this parameter is NULL,
the prompt passwd: is used. Note that an empty string is treated the same as
a NULL string.

Return Values
If the information is successfully read, a pointer to the string is returned. If an error occurs, a
NULL pOinter is returned and errno is set to indicate the error.

Error Codes
The getpass subroutine fails if one or more of the following is true:

EINTR

ENXIO

An interrupt occurred while reading the terminal device.

The process does not have a controlling terminal.

Other errors may be set by any subroutines invoked by this function.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The newpass subroutine, getuserpw subroutine.

Base Operating System Runtime 1-197

getpcred

getpcred Subroutine

Purpose

Library

Syntax

Reads the current process credentials

Ssecurity Library (libs.a)

#include <usersec.h>

char **getpcred(Which)
int *Which;

Description
The getpcred subroutine will read the specified process security credentials and return them
in a character buffer.

Parameters
Which Specifies which credentials are to be read. This parameter is a bit mask and

may contain one or more of the following values, which are defined in the
usersec.h file:

CRED_RUID

CRED_LUID

CRED_RGID

CRED_GROUPS

CRED_AUDIT

CRED_RLlMITS

The real user name.

The login user name.

The real group name.

The concurrent group set.

The audit class.

The BSD resource limits.

Note: Support of all the process resource limits is
needed, not just the file size. Use the
getrlimit call.

The umask.

If the Which parameter is equal to NULL, all credentials are returned.

Return Values

1-198

Upon successful return, the getpcred subroutine returns a pointer to a string containing the
requested values. If getpcred fails, a value of -1 is returned and errno is set to indicate the
error.

Base Operating System Reference

getpcred

Error Codes
The getpcred subroutine fails if one or the more following are true:

EINVAL The Which parameter contains invalid credentials requests.

Other errors may be set by any subroutines invoked by the getpcred subroutine.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The setpenv subroutine, getpenv surbroutine, setpcred subroutine, ckuseracct
subroutine, ckuserlD subroutine.

Base Operating System Runtime 1-199

getpenv

getpenv Subroutine

Purpose

Library

Syntax

Reads the current process credentials

Security Library (libs.a)

#include <usersec.h>

char **getpenv(Which)
int Which;

Description

Parameter

The getpenv subroutine reads the specified environment variables and returns them in a
character buffer.

Which Specifies which environment variables are to be returned. This parameter is a
bit mask and may contain one or more of the following values, which are
defined in the usersec.h file:

The normal user-state environment. Typically, the shell
variables are contained here.

The system-state environment. This data is located in
system space and is protected from unauthorized access.

All variables will be returned by setting the Which parameter to logically OR
the PENV _USER and PENV _SYSTEM values.

The variables are returned in a NULL terminated array of character pointers in
the form var=val. The user state environment variables are prefaced by the
string USRENVIRON:, and the system state variables are prefaced with
SYSENVIRON:. If user state environment is requested, the current working
directory is always returned, in a variable named PWD. If this variable is not
present in the existing environment, the getpenv subroutine will add it to the
returned string.

Return Values

1-200

Upon successful return, the getpenv subroutine returns the environment values. If getpenv
fails, a value of NULL is returned and errno is set to indicate the error. Note that this
function can partially succeed, returning only the values that the process will permit it to
read.

Base Operating System Reference

getpenv

Error Codes
The getpenv subroutine fails if one or more of the following are true:

EINVAL The Which parameter contains values other than PENV _USR or
PENV_SYS.

Other errors may be set by any subroutines invoked by the getpenv subroutine.

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

Related Information
The ckuseracct subroutine, ckuserlD subroutine, getpcred subroutine, setpenv
subroutine.

Base Operating System Runtime 1-201

getpid, ...

getpid, getpgrp, or getppid Subroutine

Purpose

Syntax

Gets the process 10, process group 10, and parent process 10.

pid_t getpid()

pid_t getpgrp()

pid_t getppid()

Description
The getpid subroutine returns the process 10 of the calling process.

The getpgrp subroutine returns the process group 10 of the calling process.

The getppid subroutine returns the process group 10 of the calling process parent process.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

In the AIX Version 3 Operating System, the POSIX version of the getpgrp subroutine is
implemented. The process group 10 of the calling process is returned. (The 8SD version
allows a process 10 as input and returns the process group 10 of that process.)

Related Information

1-202

The exec subroutines, fork subroutine, setpgid subroutine, sigaction, sigvec, signal
subroutines, setpgrp subroutine.

Base Operating System Reference

getpri

getpri Subroutine

Purpose

Library

Syntax

Returns the sch~duling priority of a process.

Standard C Library (libc.a)

int getpri (Process/D)
pid_t pid;

Description

Parameter

The getpri subroutine returns the scheduling priority of a process.

Process/D Specifies the process 10. If this value is 0, the current process scheduling
priority is returned.

Return Values
Upon successful completion, the getpri subroutine returns the scheduling priority of the
process. Otherwise, a value of -1 is returned and the global variable errno is set to indicate
the error.

Error Codes
The getpri subroutine fails if one or both of the following are true:

EPERM

ESRCH

A process was located, but its effective and real user ID did not match those
of the process executing the getpri subroutine, and the calling process did
not have root user authority.

No process can be found corresponding to that specified by the ProcesslD
parameter.

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

Related Information
The setpri subroutine.

Base Operating System Runtime 1-203

getpriority, ...

getpriority, setpriority, or nice Subroutine

Purpose

Libraries

Syntax

Gets or sets nice value.

getpriority, setpriority: Standard C Library (libc.a)

nice: Standard C Library (libc.a); Berkeley Compatibility Library (libbsd.a)

#include <sys/resource.h>

int getpriority(Which, Who)
int Which;
int Who;

int setpriority(Which, Who, Priority)
int Which;
int Who;
int Priority;

int nice(lncrement)
int Increment;

Description
The nice value of the process, process group, or user, as indicated by the Which and Who

parameters is obtained with the getpriority subroutine and set with the setpriority

subroutine.

The getpriority subroutine returns the highest priority (lowest numerical value) pertaining to
any of the specified processes. The setpriority subroutine sets the priorities of all of the
specified processes to the specified value. If the specified value is less than -20, a value of
-20 is used; if it is greater than 20, a value of 20 is used. Only processes that have root user
authority can lower nice values.

The nice subroutine increments the nice value by Increment.

Parameters
Which Specifies one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.

1-204

Who

Priority

Increment

Interpreted relative to the Which parameter (a process identifier, process
group identifier, and a user ID, respectively). A zero value for the Who
parameter denotes the current process, process group, or user.

Specifies a value in the range -20 to 20. Negative nice values cause more
favorable scheduling.

Specifies a value that is added to the current process nice value. Negative
values can be specified, although values exceeding either the high or low
limit are truncated.

Base Operating System Reference

getpriority, ...

Return Values
On successful completion, the getpriority subroutine returns an integer in the range -20 to
20. A return value of -1 can also indicate an error, and in this case the global variable errno
is set.

On successful completion, the setpriority subroutine returns O. Otherwise, -1 is returned
and the global variable errno is set to indicate the error.

On successful completion, the nice subroutine returns the new nice value minus {NZERO}.
Otherwise, a value of -1 is returned and the global variable errno is set to indicate the error.

Note: -1 can also be returned as a valid return value; in that case the calling process
should also check errno.

Error Codes
The getpriority and setpriority subroutines fail if one or more of the following are true:

ESRCH

EINVAL

No process was located using the Which and Who parameter values
specified.

The Which parameter was not recognized.

In addition to the errors indicated above, the setpriority subroutine can fail if one or both of
the following are true:

EPERM

EACCESS

A process was located, but neither the effective nor the real user 10 of the
caller, and neither the effective nor the real user ID of the process executing
the setpriority subroutine has root user authority.

The call to setpriority would have changed the priority of a process to a
value lower than its current value, and the effective user 10 of the process
executing the call did not have root user authority.

The nice subroutine fails if the following is true:

EPERM The Increment parameter is negative or greater than 2 x {NZERO} and the
calling process does not have appropriate privileges.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

To provide upward compatibility with older programs, the nice interface, originally found in
AT&T System V, is supported.

Note: Process priorities in AT&T System V are defined in the range of 0 to 39, rather than
-20 to 20 as in BSD, and the nice library routine is supported by both. Accordingly,
two versions of nice are supported by the AIX Version 3 Operating System. The
default version behaves like the AT&T System V version, with the Increment
parameter treated as the modifier of a value in the range of 0 to 39 (0 corresponds to
-20,39 to 19, and priority 20 is not reachable with this interface).

If the behavior of the BSO version is desired, compile with the Berkeley Compatibility
Library (libbsd.a) and the Increment parameter is treated as the modifier of a value
in the range -20 to 20.

Related Information
The exec subroutines.

Base Operating System Runtime 1-205

getpwent, ...

getpwent, getpwuid, getpwnam, putpwent, setpwent, or
endpwent Subroutine

Purpose

Library

Syntax

Accesses the basic user information in the user data base.

Standard C Library (libc.a)

#include <pwd.h>

struct passwd *getpwent ()

struct passwd *getpwuid (User/D)
uid_t UserlD;

struct passwd *getpwnam (Name)
char *Name;

int putpwent (Password, File)
struct passwd * Password;
FILE *File;

void setpwent ()

void endpwent ()

Description

1-206

These subroutines may be used to access the basic user attributes.

The setpwent subroutine opens the user database (if not already open) and rewinds the
cursor to point to the first user ~ntry in the database.

The getpwent, getpwnam, and getpwuid subroutines return information about the
requested user. The getpwent subroutine returns the next user entry in the sequential
search, getpwnam returns the first user entry in the data base whose name matches the
Name parameter and getpwuid returns the first user entry in the data base whose 10
matches the UserlD parameter.

The putpwent subroutine writes a password entry into a file in the colon separated format of
the letc/passwd file. Note that the pw_passwd field will be written into the corresponding
field in the file. If this user's password is stored in the shadow password file, this field must
be an exclamation mark'!'. The password in the shadow file cannot be updated with this
function, the putuserpw subroutine should be used to update this file.

The endpwent subroutine will close the user data base.

The user structure, which is returned by the getpwent, getpwnam and getpwuid
subroutines and which is written by the putpwent subroutine, isdefined in the pwd.h file
and has the following members:

pw_name The name of the user.

pw_passwd The encrypted password of the user. Note that if the password is not stored
in the letc/passwd file and the invoker does not have access to the shadow

Base Operating System Reference

pw_gecos

pw_dir

pw_shell

getpwent, ...

file which contains them, this field will contain an undecryptable string
(usually an asterisk '*').

The 10 of the user.

The group 10 of the principle group of the user.

The personal information about the user.

The home directory of the user.

The initial program for the user.

Warning: All information generated by the getpwent, getpwnam, and getpwuid
subroutines is stored in a static area and will be overwritten on subsequent calls to these
routines. If it is to be saved, it should be copied.

Warning: These subroutines should not be used in conjunction with the getuserattr
subroutine. The results are unpredictable.

Parameters
File Specifies an open file whose format is like that of letc/passwd.

Security

Name

Password

UserlD

Specifies the name of the user for which the basic attributes are to be read.

Specifies the password structure which contains the user attributes which
are to be written.

Specifies the 10 of the user for which the basic attributes are to be read.

File Access The calling process must have access to the basic information in the user
data base. This includes the following files:

modes file

rw letc/passwd (write access for putpwent only)

letc/security/passwd (if the password is desired)

Return Values
The getpwent, getpwnam and getpwuid subroutines return a pointer to a valid password
structure if successful. Otherwise, a NULL pointer is returned.

Implementation Specifics
These subroutines are part of AIX Base Operating System (80S) Runtime.

Related Information
The getgrent subroutine, getgroupattr subroutine, getuserattr subroutine, setuserdb
subroutine, getuserpw, putuserpw subroutines.

Base Operating System Runtime 1-207

getrlimit, ...

getrlimit, setrlimit, or vlimit Subroutine

Purpose

Library

Syntax

Controls maximum system resource consumption.

Standard C Library (libc.a)

#include <sys/time.h>
#include <sys/resource.h>

int setrlimit(Resource1,RLp)
int Resource 1;
struct rlimit *RLP;

int getrlimit (Resource 1, RLP)
int Resource1;
struct rlimit *RLP;

#include <sys/vlimit.h>

vlimit (Resource2, Value)
int Resource2, Value;

Description

1-208

Limits on the consumption of system resources by the current process and each process it
creates are obtained with the getrlimit system call, and set with the setrlimit subroutine.

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded a
process can receive a signal (for example, if the CPU time is exceeded), but it is allowed to
continue until it reaches the hard limit or modifies its resource limit. The rlimit structure is
used to specify the hard and soft limits on a resource, as defined in the sys/resource.h
header file.

The calling process must have root user authority in order to raise the maximum limits.
Other processes can alter rlim_curwithin the range from 0 to rlim_max or (irreversibly) lower
rlim_max.

An infinite value for a limit is defined as RUM_INFINITY.

Because this information is stored in the per-process information, this subroutine must be
executed directly by the shell if it is to affect all future processes created by the shell; limit is
thus a built-in command to the shells.

The system refuses to extend the data or stack space when the limits would be exceeded in
the normal way: a break system call fails if the data space limit is reached. When the stack
limit is reached, the process receives a SIGSEGV signal; if this signal is not caught by a
handler using the signal stack, this signal kills the process. When the soft CPU time limit is
exceeded, a signal SIGXCPU is sent to the offending process.

The vlimit subroutine is also supported, but this facility is superceded by the getrlimit
subroutine.

Base Operating System Reference

Parameters
Resource 1

RLP

Resource2

Value

Return Values

getrlimit, ...

Can be one of the following values:

RLiMIT _DATA

RLlMIT_RSS

The maximum amount of CPU time (in seconds) to be
used by each process.

The largest size, in bytes, of any single file that can be
created.

The maximum size, in bytes, of the data segment for a
process; this defines how far a program can extend its
break with the sbrk subroutine.

The maximum size, in bytes, of the stack segment for
a process; this defines how far a program stack
segment can be extended. Stack extension is
performed automatically by the system.

The largest size, in bytes, of a core file that can be
created.

The maximum size, in bytes, to which a process's
resident set size can grow. This imposes a limit on the
amount of physical memory to be given to a process; if
memory is tight, the system prefers to take memory
from processes that are exceeding their declared
resident set size.

Points to the rlimit structure, which contains the current (soft) and hard
limits. For the getrlimit subroutine, the requested limits are returned in this
structure, and for the setrlimit subroutine, the desired new limits are
specified here.

The flags for this parameter are defined in the sys/vlimit.h header file, and
are mapped to corresponding flags for the setrlimit subroutine.

An integer that is used as a hard limit parameter to the setrlimit subroutine.

On successful completion, a return value of 0 is returned, changing or returning the resource
limit. Otherwise, a value of -1 is returned and the global variable errno is set to indicate the
error.

Error Codes
The getrlimit, setrlimit or vlimit subroutine fails if one or more of the following are true:

EFAULT

EINVAL

EPERM

The address specified for the RLP parameter is invalid.

The Resource1 parameter is not a valid resource.

The limit specified to the setrlimit system call would have raised the
maximum limit value, and the caller does not have root user authority.

Base Operating System Runtime 1-209

getrlimit, ...

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The sigaction, sigvec,signal subroutines, sigstack subroutine, ulimit subroutine.

1-210 Base Operating System Reference

getrusage, ...

getrusage, times, or vtimes Subroutine

Purpose

Libraries

Syntax

Gets information about resource utilization.

getrusage, times: Standard C Library (libc.a)

vtimes: Berkeley Compatibility Library (libbsd.a)

#include <sys/time.h>
#include <sys/time.h>

int getrusage (Who, RUsage)
int Who;
struct rusage *RUsage;

#include <sys/types.h>
#include <sys/times.h>

time_t times (Buffer)
struct tms * Buffer,

#include <sys/times.h>

vtimes (ParentVm, ChildVm)
struct vtimes *ParentVm, ChildVm;

Description
The getrusage subroutine returns information describing the resources utilized by the
current process, or all its terminated child processes.

The times subroutine fills the structure pointed to by the Buffer parameter with
time-accounting information. All time values reported by the times subroutine are in tenths
of a second, unless execution profiling is enabled. When profiling is enabled, the times
subroutine reports values in 1/60 of a second.

The tms structure is defined in the sys/times.h header file, and it contains the following
members:

time_t
time_t
time_t
time_t

tms_utime;
tms_stime;
tms_cutime;
tms_cstime;

This information comes from the calling process and each of its terminated child processes
for which it has executed a wait subroutine.

The CPU time used while executing instructions in the user space of the
calling process.

The CPU time used by the system on behalf of the calling process.

The sum of the tms_utimes and the tms_cutimes of the child processes.

The sum of the tms_stimes and the tms_cstimes of the child processes.

Base Operating System Runtime 1-211

getrusage, ...

Note: The system measures time by counting clock interrupts. The precision of the values
reported by the times subroutine depends on the rate at which the clock interrupts
occur.

Parameters
Who RUSAGE_SELF or RUSAGE_CHILDREN.

1-212

RUsage A pointer to a buffer that will be filled in as described in the sys/resource.h
header file. The fields are interpreted as follows:

ru_maxrss

rujdrss

ru_majflt

ru_msgrcv

The total amount of time spent executing in user mode.

The total amount of time spent in the system executing on
behalf of the process(es).

The maximum resident set size utilized (in kilobytes).

An integral value indicating the amount of memory used by
the text segment that was also shared among other
processes. This value is expressed in units of kilobytes *
seconds-ot-execution and is calculated by summing the
number of shared memory pages in use each time the
internal system clock ticks, and then averaging over one
second intervals.

An integral value of the amount of unshared memory
residing in the data segment of a process (expressed in
units of kilobytes * seconds-of-execution).

The number of page faults serviced without any I/O activity:
here I/O activity is avoided by reclaiming a page frame from
the list of pages awaiting reallocation.

The number of page faults serviced that required I/O
activity.

The number of times a process was swapped out of main
memory.

The number ot times the file system had to perform input.

The number of times the file system had to perform output.

The number of IPC messages sent.

The number of IPC messages received.

The number of signals delivered.

The number of times a context switch resulted due to a
process voluntarily giving up the processor before its time
slice was completed (usually to await availability of a
resource).

Base Operating System Reference

Buffer

ParentVm

ChildVm

Return Values

getrusage, ...

The number of times a context switch resulted due to a
higher priority process becoming runnable or because the
current process exceeded its time slice.

Note: The numbers the ru_inblock and ru_outblock fields account only for
real I/O; data supplied by the caching mechanism is charged only to
the first process to read or write the data.

Points to a structure.

Points to a vtimes structure that will contain the accounting information for
the current process.

Points to a vtimes structure that will contain the accounting information for
the terminated child processes of the current process.

Upon successful completion, the getrusage subroutine returns a value of O. Otherwise, a
value of -1 is returned and the global variable errno is set to indicate the error.

Upon successful completion, the times subroutine returns the elapsed real time, in 1/60 of a
second, since an arbitrary reference time in the past (for example, system start-up time).
This reference time does not change from one call of the times subroutine to another.

Error Codes
The getrusage subroutine fails if either of the following is true:

EINVAL

EFAULT

The Who parameter is not a valid value.

The address specified for RUsage is not valid.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

The vtimes subroutine is supported to provide compatibility with older programs.

The vtimes subroutine returns accounting information for the current process and for the
terminated child processes of the current process. Either ParVm or Ch Vm or both may be 0,
in which case only the information for the pOinters which are nonzero are returned.

After the call, each buffer contains information as defined by the contents of the
sys/vtimes.h include file.

Related Information
The gettimer, time subroutines, wait, waitpid, wait3 subroutines.

Base Operating System Runtime 1-213

gets, ...

gets or fgets Subroutine

Purpose

Library

Syntax

Gets a string from a stream.

Standard I/O Library (libc.a)

#include <stdio.h>
char *gets (String)
char * String;

char *fgets (String, Number, Stream)
char * String;
int Number;
FILE *Stream;

Description
The gets subroutine reads characters from the standard input stream, stdin, into the array
pointed to by the String parameter. Data is read until a new-line character is read or an
end-of-file condition is encountered. If reading is stopped due to a new-line character, the
new-line character is discarded and the string is terminated with a null character.

The fgets subroutine reads characters from the data pointed to by the Stream parameter
intc the array pointed to by the String parameter. Data is read until the value of the Number
parameter -1 characters have been read, until a new-line character is read and transferred
to String, or until an end-of-file condition is encountered. The string is then terminated with
a null character.

Parameters
String A pointer to a string to receive characters.

Stream A pointer to the FILE structure of an open file.

Number An upper bound on the number of characters to read.

Return Value
If the end of the file is encountered and no characters have been read, no characters are
transferred to String and a NULL pointer is returned. If a read error occurs, a NULL pointer
is returned. Otherwise, String is returned.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

1-214

The ferror, feaf, clearerr, fileno macros, fopen, freopen, fdopen subroutines, fopen,
freopen, fdopen, subroutines, fread subroutine, getc, fgetc, getchar, getw subroutines,
getwc, fgetwc, getwchar subroutines, getws, fgetws subroutines, puts, fputs subroutines,
putws, fputws subroutines, scanf, fscanf, sscanf, NLscanf, NLsscanf subroutines.

Base Operating System Reference

getssys Subroutine

Purpose

Library

Syntax

Reads a subsystem record.

System Resource Controller Library (Iibsrc.a)

#include <sys/srcobj.h>
#include <sys/spc.h>

int getssys(Subsystem Name, SRCSubsystem)
char * Subsystem Name;
struct SRCsubsys * SRCSubsystem;

Description

getssys

The getssys subroutine reads a subsystem record associated with the SubsystemName
parameter and returns the OOM record in the SRCSubsystem parameter.

The SRCsubsys structure is defined in the sys/srcobj.h header file.

Parameters
SRCSubsystem

Subsystem Name

Return Values

Points to a SRCsubsys structure.

Specifies the name of the subsystem to be read.

Upon successful completion, the getssys subroutine returns a value of O. Otherwise, it
either returns a value of -1 and odmerrno is set to indicate the error, or it returns
SRC_NOREC.

Error Code
The getssys subroutine fails if the following is true:

Subsystem name does not exist.

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

File
letc/objrepos/SRCsubsys

Related Information

SRC Subsystem Configuration object class.

The addssys subroutine, delssys subroutine, getsubsvr subroutine.

The System Resource Controller Overview in General Programming Concepts.

Base Operating System Runtime 1-215

getsubsvr

getsubsvr Subroutine

Purpose

Library

Syntax

Reads a subsystem record.

System Resource Controller Library (libsrc.a)

#include <sys/srcobj.h>
#include <sys/spc.h>

int getsubsvr(SubserverName, SRCSubservel)
char * SubserverName;
struct SRCSubsvr * SRCSubserver,

Description
The getsubsvr subroutine reads a subsystem record associated with the SubserverName
parameter and returns the OOM record in the SRCSubserver parameter.

The SRCsubsvr structure is defined in the sys/srcobj.h header file and includes ,the
following fields:

char sub_type[30];
char subsysname[30];
short sub_code;

Parameters
SRCSubserver Points to the SRCsubsvr structure.

SubserverName Specifies the subserver to be read.

Return Values
Upon successful completion, the getsubsvr subroutine returns a value of O. Otherwise, it
either returns a value of -1 and odmerrno is set to indicate the error, or SRC_NOREC is
returned.

Error Code
The getsubsvr subroutine fails if the following is true:

The specified SRCsubsvr record does not exist.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

File
letc/objrepos/SRCsubsvr SRC Subserver Configuration object class.

1-216 Base Operating System Reference

getsubsvr

Related Information
The getssys subroutine.

The System Resource Controller Overview in General Programming Concepts.

Base Operating System Runtime 1-217

gettimeofday, ...

gettimeofday, settimeofday, or ftime Subroutine

Purpose

Libraries

Syntax

Gets and sets date and time.

gettimeofday, settimeofday: Standard C Library (Iibc.a)

ftime: Berkeley Compatibility Library (libbsd.a)

#include <sys/time.h>
int gettimeofday (Tp, Tzp)
struct timeval * Tp;
struct timezone * Tzp;

int settimeofday (Tp, Tzp)
struct timeval * Tp;
struct timezone * Tzp;

int ftime (Tp)
struct timeb * Tp;

Description
The system's notion of the current Greenwich time and the current time zone is obtained
with the gettimeofday subroutine, and set with the settimeofday subroutine. The time is
expressed in seconds and microseconds since midnight (0 hour), January 1, 1970. The
resolution of the system clock is hardware dependent, and the time may be updated
continuously or in "ticks." If Tzp is zero, the time zone information will not be returned or set.

Only users with SEC_SYS_ATTR system privilege may change the date and time.

The Tp parameter returns a pointer to a timeval structure which contains the time since the
epoch began in seconds and microseconds.

The timezone structure indicates the local time zone (measured in minutes of time
westward from Greenwich), and a flag that, if nonzero, indicates that daylight saving time
applies locally during the appropriate part of the year.

In addition to the difference in timer granularity, the timezone structure distinguishes these
subroutines from the POSIX gettimer and settimer subroutines, which deal strictly with
Greenwich Mean Time.

Parameters
Tp Pointer to a timeval structure, defined in the sys/time.h file.

Tzp Pointer to a timezone structure, defined in the sys/time.h file.

Return Values

1-218

If the subroutine succeeds, a value of 0 is returned. If an error occurs, a value of -1 is
returned and errno is set to indicate the error.

Base Operating System Reference

gettimeofday, ...

Error Codes
The possible errors are:

EFAULT

EPERM

A parameter pOints to an invalid address.

The process's effective user 10 does not have root user authori~y.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

The gettimeofday and settimeofday subroutines are supported for compatibility with BSO
programs.

The ftime subroutine is included for compatibility with older BSO programs. It's function has
been obsoleted by the gettimeofday subroutine.

Related Information
The ctime, localtime, gmtime, mktime, difftime, asctime, tzset, timezone subroutines.

The gettimer subroutine, adjtime subroutine.

The date command.

Base Operating System Runtime 1-219

gettimer, ...

gettimer, settimer, restimer, stime, or time Subroutine

Purpose

Library

Syntax

Gets or sets the current value for the specified system-wide timer.

Standard C Library (libc.a)

#include <sys/time.h>

int gettimer(Timer_type, TimePointery
int Timer_type;
timestruc_t * TimePointer,

int settimer(Timer_type, TimePointery
int Timer_type;
timestruc_t * Tp;

int restimer(Timer_type, Resolution, Maximum Value)
int Timer_type;
timestruc_t *Resolution, * Maximum Value;

int stime(Tp)
long Tp;

<include time.h>
time_t time(Tp)
time_t *Tp;

Description

1-220

The settimer subroutine is used to set the current value of the Tp parameter for the
system-wide timer, specified by the Timer_type parameter. The gettimer subroutine is used
to get the current value of the Tp parameter for the system-wide timer, specified by the
Timer_type parameter. The Tp parameter points to a structure of type timestruc_t, which
includes the following members:

unsigned long tv_sec; /* seconds */
long tv _nsec; /* nano-seconds * /

The tv_nsec member is only valid if greater than or equal to zero, and less than the number
of nanoseconds in a second (1000 million).

The resolution of any timer can be obtained by the restimer subroutine. The Resolution
parameter represents the resolution of the specified timer. The Maximum Value parameter
represents the maximum possible timer value. The value of these parameters are the
resolution accepted by the settimer subroutine.

Note: If a non-privileged user attempts to submit a fine granularity timer (Le., a timer
request less than 10 milliseconds), the timer request is raised to 10 milliseconds.

Base Operating System Reference

Parameters
Timer_type

TimePointer

Resolution

Maximum Value

Tp

gettimer, ...

Specifies the system-wide timer.

TIMEOFDAY (POSIX system clock timer) This timer represents the
time-of-day clock for the system. For this timer the
values returned by the gettimer subroutine and
specified by the settimer subroutine represent the
amount of time since 00:00:00 GMT, January 1, 1970.

Points to a structure of type timestruc_t.

The resolution of a specified timer.

The maximum possible timer value.

Time in seconds.

Compatibility Interface
The stime and time subroutines are implemented to provide compatibility with older AIX,
AT&T System V, and BSD systems. They are implemented to simply call the settimer and
gettimer subroutines using the TIMEOFDAY timer.

Return Values
The gettimer, settimer, restimer, and stime subroutines return a 0 if the call is successful.
A return value of -1 indicates an error occurred, and errno is set. The time subroutine
returns the value of time in seconds since Epoch, (Le., 00:00:00 GMT, January 1, 1970).

Error Codes
If an error occurs a return value of -1 is received and errno is set to one of the following
error codes:

EINVAL

EIO

EPERM

The Timer_type parameter does not specify a known system-wide timer.
The Tp parameter of the settimer subroutine is outside the range for the
specified system-wide timer.

An error occurred while accessing the timer device.

The requesting process does not have the appropriate privilege to set the
specified timer.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The getinterval subroutine, ctime subroutine.

Base Operating System Runtime 1-221

gettimerid

gettimerid Subroutine

Purpose

Library

Syntax

Allocates a per-process interval timer.

Standard C Library (libc.a)

#include <sys/time.h>
#include <sys/events.h>

timer_t gettimerid(Timer_type, Notify_type)
int Timer_type;
int Notify_type;

Description

1-222

The gettimerid subroutine is used to allocate a per-process interval timer based on the
timer with the given timer type. The unique ID is used to identify the interval timer in interval
timer requests. (See getinterval subroutine). The particular timer type, the
Timer_type parameter, is defined in the sys/time.h file, and can identify either a
system-wide timer or a per-process timer. The mechanism by which the process is to be
notified of the expiration of the timer event is the Notify_type parameter, which is defined in
the sys/events.h file.

The Timer_type parameter repres'ents one of the following timer types supported under AIX
Version 3:

TIMEOFDAV

TIMER_VIRTUAL

(POSIX system clock timer) This timer represents the
time-of-day clock for the system. For this timer the values
returned by the gettimer subroutine and specified by the
settimer subroutine represent the amount of time since 00:00:00
GMT, January 1, 1970, in nanoseconds.

(Alarm timer) This timer schedules the delivery of a SIG_ALRM
signal at a timer specified in the call to the settimer subroutine.

(Real time timer) The real time timer decrements in real time. A
SIG_ALRM signal is delivered when this timer expires.

(Virtual timer) The virtual timer decrements in process virtual
time. it runs only when the process is executing in user mode. A
SIGVTALRM signal is delivered when it expires.

(Profiling timer) The profiling timer decrements both when
running in user mode and when the system is running for the
process. It is designed to be used by processes to profile their
execution statistically. A SIGPROF signal is delivered when the
profiling timer expires.

The system shall cause a SIGALRM signal to be sent to the process whenever the interval
timer expires.

Base Operating System Reference

gettimerid

Interval timers are not inherited by a child process across a fork subroutine, or across an
exec subroutine, if the notification mechanism is DELIVERY_EVENTS. Interval timers with
a notification value of DELIVER_SIGNALS are inherited across an exec subroutine.

Parameters
Notify_type

Return Values

Notifies the process of the expiration of the timer event.

Identifies either a system-wide timer or a per-process timer.

If the gettimerid subroutine succeeds, it returns a timer_t structure which can be passed to
the per-process interval timer subroutines, such as the getinterval subroutine. If an error
occurs, the value -1 is returned, and errno is set.

Error Codes
If the gettimerid subroutine fails, the value -1 is returned and errno is set to one of the
following error codes:

EAGAIN

EINVAL

The calling process has already allocated all of the interval timers
associated with the specified timer type for this implementation.

The specified timer type is not defined.

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

Related Information
The exec subroutine, fork subroutine, gettimer, settimer, restimer subroutines,
getinterval, incinterval, absinterval, resabs, resinc subroutines, reltimerid subroutine.

Base Operating System Runtime 1-223

getttyent, ...

getttyent, getttynam, setttyent, or endttyent Subroutine

Purpose

Library

Syntax

Gets a tty description file entry.

Standard C Library (Iibc.a)

#include <ttyent.h>

struct ttyent *getttyentO

struct ttyent *getttynam(Name)
char *Name;

void setttyent()

void endttyent

Description

1-224

The getttyent and getttynam subroutines each return a pointer to an object with the ttyent
structure, containing the broken-out fields of a line from the tty description file. The ttyent
structure is in the ttyent.h header file and contains the following fields:

The name of the character-special file in the directory "/dev". For various
reasons, it must reside in the directory "/dev".

The command (usually getty) which is called by init to initialize tty line
characteristics. In fact, any arbitrary command can be used; a typical use is
to initiate a terminal emulator in a window system.

The name of the of the default terminal type connected to this tty line. This
is typically a name from the termcap data base. The environment variable
TERM is initialized with this name by getty or login.

A mask of bit fields which indicate various actions to be allowed on this tty
line. The following is a description of each flag.

TTY_ON Enables logins (i.e., init will start the specified getty
command on this entry).

TTY_SECURE Allows root user to login on this terminal. Note that
TTY_ON must be included for this to be useful.

ty_window The command to execute for a window system associated with the line. The
window system will be started before the command specified in the ty_getty
entry is executed. If none is specified, this will be null.

ty_comment The trailing comment field, if any; a leading delimiter and white space will be
removed.

Note: The getttyent and getttynam subroutines require links to /lib/libodm.a and
/usr/libllibcfg.a. .

Base Operating System Reference

Parameter

getttyent, ...

The getttyent subroutine reads the next line from the tty file, opening the file if necessary;
the settyent subroutine rewinds the file; the endttyent subroutine closes it.

The getttyent subroutine searches from the beginning of the file until a matching Name is
found (or until the EOF is encountered).

Name Specifies the name of a tty description file.

Return Value
Null pointer (0) returned on EOF or error.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The ttyslot subroutine.

The init command, getty command, login command.

Base Operating System Runtime 1-225

getuid, ...

getuid or geteuid Subroutine

Purpose

Library

Syntax

Gets the process's real or effective user 10.

Standard C Library (libc.a)

#iclude <sys.types.h>

uid_t getuid()

uid_t geteuid()

Description
The getuid subroutine returns the real user 10 of the current process.

The geteuid subroutine returns the effective user 10 of the current process.

Return Values
The getuid and geteuid subroutines return the corresponding user 10.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The getuidx subroutine, setuid subroutine, setuidx subroutine.

1-226 Base Operating System Reference

getuidx

getuidx Subroutine

Purpose

Library

Syntax

Gets the process user lOs.

Standard C Library (libc.a)

#include <sys/id.h>

uid_t getuidx (Which)
int Which;

Description

Parameter

The getuidx subroutine returns the specified user 10 of the current process.

Which Specifies which user 10 to return. The valid values for this parameter are
defined in sys/id.h and include:

ID_EFFECTIVE

ID_REAL

ID_SAVED

ID_LOGIN

Returns the effective user 10 of the process.

Returns the real user 10 of the process.

Returns the saved user 10 of the process.

Returns the login user 10 of the process.

Return Values
Upon successful completion, the getuidx subroutine returns the requested user 10. If the
getuidx subroutine fails, a value of -1 is returned and the global variable errno is set to
indicate the error.

Error Code
The getuidx subroutine fails if:

EINVAL The Which parameter is not one of ID_EFFECTIVE, ID_REAL, ID_SAVEO,
or ID_LOGIN.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The setuid subroutine, setuidx subroutine, getuid subroutine.

Base Operating System Runtime 1-227

getuinfo

getuinfo Subroutine'

Purpose

Library

Syntax

Finds the value associated with a user information name.

Standard C Library (libc.a)

char *getuinfo (Name)
char *Name;

Description

Parameter

The getuinfo subroutine searches a user information buffer for a string of the form
Name=value and returns a pointer to the value substring if Name is found. NULL is returned
if Name is not found.

The user information buffer searched is pointed to by the global variable:

extern char *INuibpi

This variable is initialized to NULL.

If the INuibp global variable is NULL when the getuinfo subroutine is called, the usrinfo
subroutine is run to read user information from the kernel into a local buffer. The address of
the buffer is then put into the INuibp external variable. The usrinfo subroutine is
automatically called the first time the getuinfo subroutine is called if the INuibp external
variable is not set.

Name A user information name.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The usrinfo subroutine.

1-228 Base Operating System Reference

getuserattr, ...

getuserattr, IDtouser, nextuser, or putuserattr Subroutine

Purpose

Library

Syntax

Accesses the user information in the user data base.

Security Library (libs.a)

#include <usersec.h>

int getuserattr (User, Attribute, Value, Type)
char * User;
char *Attribute;
void *Value;
int Type;

int putuserattr (User, Attribute, Value, Type)
char * User;
char *Attribute;
void *Value;
int Type;

char *IDtouser(Uid)
uid_t *Uid;

char *nextuser (Mode, Argument)
int Mode, Argument;

Description
These subroutines may be used to access user information. Because of their greater
granularity and extensibility these routines should be used instead of the getpwent routines.

The getuserattr subroutine reads a specified attribute from the user data base. If the data
base is not already open, the getuserattr subroutine will do an implicit open for reading.

The putuserattr subroutine writes a specified attribute into the user data base. If the data
base is not already open, the putuserattr subroutine will do an implicit open for reading and
writing. The data changed by putuserattr must be explicitly committed by calling
putuserattr with a Type parameter equal to SEC_COMMIT. Until all the data is committed,
only these subroutines within the process will return the written data.

The IDtouser subroutine translates a user ID into a user name.

The nextuser subroutine returns the next user in a linear search of the user data base. The
consistency of consecutive searches depends upon the underlying storage access
mechanism and is not guaranteed by this function.

Values which are returned by these functions are in dynamically allocated buffers and need
not be moved prior to the next call.

The setuserdb and enduserdb subroutines should be used to open and close the user data
base.

Base Operating System Runtime 1-229

getuserattr, ...

Note: These subroutines and the setpwent and setgrent subroutines should not be used
simultaneously. The results can be unpredictable.

Parameters
Argument

Attribute

The Argument parameter is presently unused and must be specified as
NULL.

Specifies the name of the attribute which is to be read. This can be one of
the following, which are defined in the usersec.h file:

S_IO The user ID.Type: SEC_INT.

S_PGRP The principle group name. Type: SEC_CHAR.

S_ GROUPS The groups to which the user belongs, other than the
principle group. Type: SEC_LIST.

S_AOMGROUPS The groups for which the user is an administrator.
Type: SEC_LIST.

S_AOMIN Defines the administrative status of a user.
Type: SEC_BOOL.

S_AUOITCLASSES Defines the audit classes to which the user belongs.
Type: SEC_LIST.

S_HOME Defines the home directory. Type: SEC_CHAR.

S_SHELL Defines the initial program run by a user.
Type: SEC_CHAR.

S_GECOS Defines the personal information for a user.
Type: SEC_CHAR.

S_USRENV Defines the user-state environment variables.
Type: SEC_LIST.

S_SYSENV Defines the protected-state environment variables.
Type: SEC_LIST.

S_LOGINCHK Defines if the user account can be used for local
logins. Type: SEC_BOOL.

S_SUCHK Defines if the user account can be accessed with the
su command. Type SEC_BOOL.

S_RLOGINCHK Defines if the user account can be used for remote
logins via telnet or rlogin. Type: SEC_BOOL.

S_OAEMONCHK Defines if the user account can be used for daemon
execution of programs and subsystems via cron or
src.

1-230 Base Operating System Reference

S_T PAT H

S_UFSIZE

S_UCPU

S_UDATA

getuserattr, ...

Defines how the account may be used on the Trusted
Path. Type: SEC_CHAR. This attribute must be one
of the following:

nosak

notsh

always

on

The Secure Attention Key is not enabled
for this account.

The Trusted Shell cannot be accessed
from this account.

This account may only run Trusted
Programs.

Normal Trusted Path processing applies.

Defines a list of ttys which mayor may not be used to
access this account. Type: SEC_LIST.

Defines the groups which mayor may not be
permitted to access this account. Type: SEC_LIST.

Defines the expiration date for this account, in
seconds since the epoch. Type: SEC_CHAR.

Defines the primary authentication methods for this
account. Type: SEC_LIST.

Defines the secondary authentication methods for this
account. Type: SEC_LIST.

Defines the process file size limit. Type: SEC_INT.

Defines the process CPU time limit. Type: SEC_INT.

Defines the process data segment size limit. Type:
SEC_INT.

Defines the process stack segment size limit.
Type: SEC_INT.

Defines the process real memory size limit.
Type: SEC_INT.

Defines the process core file size limit. Type:
SEC_INT.

Defines the passwd field in the letc/passwd file.

Defines the file creation mask for a user. Type:
SEC_INT.

Note: These values are string constants which should be used by
applications both for convenience and to permit optimization in latter
implementations.

Base Operating System Runtime 1-231

getuserattr, ...

Security

1-232

Mode Specifies the search mode. This parameter can be used to delimit the
search to one or more user credentials data bases. Specifying a non_NULL
Mode also implicitly rewinds the search. A NULL mode should be used to
continue the search sequentially through the data base. This attribute may
include one or more of the following values specified as a bin mask; these
are defined in the usersec.h file:

Locally defined users will be included in the search.

All credentials servers for the system are searched.

Type Specifies the type of attribute expected. Valid types are defined in the
usersec.h file and include:

SEC_Baal

SEC_COMMIT

The format of the attribute is an integer. The buffer
returned by the getuserattr subroutine and the buffer
supplied by the putuserattr subroutine are defined to
contain an integer.

The format of the attribute is a NULL terminated
character string.

The format of the attribute is a list of NULL terminated
character strings. The list itself is NULL terminated.

The format of the attribute is a boolean.

For the putuserattr subroutine, this value specified by
itself indicates that changes to the named group are to
be commited to permanent storage. The Attribute and
Value parameters are ignored. If no group is specified,
the changes to all modified groups will be committed.

The corresponding attribute will be deleted from the
data base.

Updates all the group data base files with the new
user name when using the putuserattr subroutine.

Uid Specifies the user 10 to be translated into a user name.

User Speoifies the name of the user for which an attribute is to be read.

Value Specifies the address of a buffer in which the attribute is to be stored
(getuserattr) or is stored (putuserattr).

File Access The calling process must have access to the account information in the user
data base and the authentication data. This includes:

modes

rw

rw

file

/etc/passwd

/etc/group

Base Operating System· Reference

getuserattr, ...

rw /etc/security/user

rw /etc/security/limits

rw /etc/security/audit/audit.config

rw /etc/security/group

rw /etc/security/environ

Return Values
The getuserattr and putuserattr subroutines return 0 if completed successfully. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

The IDtouser and nextuser subroutines return a character pointer to a buffer containing the
requested group name if successful. Otherwise a NULL pointer is returned and errno is set
to indicate the error.

Error Codes
These subroutines fail if the following is true:

EACCES Access permission is denied for the data request.

The getuserattr and putuserattr subroutines fail if one or more of the following is true:

ENOENT

ENOATTR

EINVAL

EINVAL

The specified User parameter does not exist or the attribute is not defined
for this user.

The specified user attribute does not exist for this user.

The Attribute parameter does not contain one of the defined attributes or
NULL.

The Value parameter does not point to a valid buffer or to valid data for this
type of attribute.

The IDtouser subroutine fails if the following is true:

ENOATTR

ENOENT

The specified user attribute does not exist for this user.

The Uid parameter could not be translated into a valid user name on the
system.

The nextuser subroutine fails if one or more of the following are true:

EINVAL

EINVAL

The Mode parameter is not one of NULL, S_LOCAL, or S_SYSTEM.

The Argument parameter is not NULL.

ENOENT The end of the search was reached.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Base Operating System Runtime 1-233

getuserattr, ...

Related Information

1-234

The getgroupattr subroutine, getuserpw subroutine, setuserdb subroutine, setpwdb
subroutine.

Base Operating System Reference

getuserpw, ...

getuserpw or putuserpw Subroutine

Purpose

Library

Syntax

Accesses the user authentication data.

Security Library (libs.a)

#include <userpw.h>

struct userpw *getuserpw(User)
char *User,

int putuserpw(Password)
struct userpw * Password;

Description
These subroutines may be used to access user authentication information. Because of their
greater granularity and extensibility these should be used instead of the getpwent routines.

The getuserpw subroutine reads the user's locally-defined password information.

The putuserpw subroutine updates or creates a locally defined password information
stanza in the letc/security/passwd file.

Parameters
Password Specifies the password structure which is to be used to update the

password information for this user. This structure is defined in userpw.h
and contains the following members:

upw_lastupdate

Specifies the user's name.

Specifies the user's password.

Specifies the time (in seconds since the Epoch) when
the password was last updated.

Specifies attributes of the password. This member is
a bitmask of the following values, defined in the
userpw.h file.

PW_NOCHECK Specifies that new passwords
need not meet password
restrictions in effect for the
system.

Specifies that the password was
last set by an administrator and
will need to be changed at the
next successful use of the login
or su command.

Base Operating System Runtime 1-235

getuserpw, ...

Security

Specifies that password
information for this user may
only be changed by user or by
the root user.

User Specifies the name of the user for which password information is to be read.

File Access The calling process must have access to the user authentication data in the
user data base. This includes:

modes file

rw /etc/secu rity /passwd

Return Values
The getuserpw subroutine returns a valid pointer to a pw structure if successfully
completed. Otherwise, a NULL pointer is returned and errno is set to indicate the error.

Error Codes
The getuserpw and putuserpw subroutines fail if the following are true:

ENOENT The user does not have an entry in the /etc/security/passwd file.

ENAMETOOLONG
The user name is greater than the PW _NAMELEN value in characters

Other errors may be set by any subroutines invoked by getuserpw or putuserpw.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

1-236

The getuserattr subroutine, getgroupattr subroutine, setuserdb subroutine, setpwdb,
endpwdb subroutines.

Base Operating System Reference

getutent, ...

getutent, getutid, getutline, pututline, setutent, endutent, or
utmpname Subroutine

Purpose

Library

Syntax

Accesses utmp file entries.

Standard C Library (libc.a)

#include <utmp.h>

struct utmp *getutent ()

struct utmp *getutid (/0)
struct utmp */0;

struct utmp *getutline (Line)
struct utmp * Line;

void pututline (Ufmp)
struct utmp *Ufmp;

void setutent ()

void endutent ()

void utmpname (File)
char *Fi/e;

Descri ption
The getutent, getutid, and getutline subroutines return a pointer to a structure of the
following type:

#define ut name
#define ut id

struct utmp
{
char ut_user[8];
char ut_id[14];
char ut_line[12];
short ut_pid;
short ut_type;
struct exit status
{
short e_termination;
short e_exit;
} ut_exit;
time_t ut_time;
char ut_host[16];
} ;

ut user
ut line

/* User name */
/* /etc/inittabid */
/* Device name (console, lnxx) */
/* Process 1D */
/* Type of entry */

/* Process termination status */
/* Process exit status */
/* The exit status of a DEAD_PROCESS
/* Time entry was made */
/* Host name */

Base Operating System Runtime

*/

1-237

getutent, ...

The getutent subroutine reads the next entry from a utmp-like file. If the file is not already
open, this subroutine opens it. If the end of the file is reached, the getutent subroutine fails.

The pututline subroutine writes the supplied Utmp parameter structure into the utmp file. If
you have not searched for the proper place in the file using one of the getut routines, the
pututline subroutine calls getutid to search forward for the proper place. It is expected that
the user of pututline searched for the proper entry using one of the getut subroutines. If so,
pututline does not search. If the pututline subroutine does not find a matching slot for the
entry, it adds a new entry to the end of the file.

The setutent subroutine resets the input stream to the beginning of the file. You should do
this before each search for a new entry if you want to examine the entire file.

The endutent subroutine closes the currently open file.

The utmpname subroutine changes the name of the file to be examined from letc/utmp to
any other file. The name specified is usually lusr/adm/wtmp. If the specified file does not
exist, no indication is given. You are not aware of this fact until your first attempt to reference
the file. The utmpname subroutine does not open the file. It closes the old file, if it is
currently open, and saves the new file name.

The most current entry is saved in a static structure. If you want to make multiple accesses,
you must copy or use the structure between each access. The getutid and getutline
subroutines examine the static structure first. If the contents of the static structure match
what they are searching for, they do not read the utmp file. Therefore, you must fill the static
structure with zeros after each use if you want to use these subroutines to search for
multiple occurrences.

If the pututline subroutine finds that it is not already at the correct place in the file, the
implicit read it performs does not overwrite the contents of the static structure returned by
the getutent subroutine, the getuid subroutine, or the getutline subroutine. This allows you
to get an entry with one of these subroutines, modify the structure, and pass the pointer
back to the pututline subroutine for writing.

These subroutines use buffered standard 110 for input, but the pututline subroutine uses an
unbuffered nonstandard write to avoid race conditions between processes trying to modify
the utmp and wtmp files.

Parameters
10 If you specify type RUN_LVL, BOOT_TIME, OLD_TIME, or NEW_TIME in

the 10 parameter, the getutid subroutine searches forward from the current
pOint in the utmp file until an entry with a uLtype matching 1D->uLtype is
found.

1-238

Line

If you specify one of the types INIT _PROCESS, LOGIN_PROCESS,
USER_PROCESS or DEAD_PROCESS in the Id parameter, then the
getutid subroutine returns a pointer to the first entry whose type is one of
these four and whose uLid field matches 1d->uLid. If the end of the file is
reached without a match, the getutid subroutine fails.

The getutline subroutine searches forward from the current point in the
utmp file until it finds an entry of the type LOGIN_PROCESS or
USER_PROCESS that also has a uLline string matching the Line->uLline
parameter string. If the end the of file is reached without a match, the
getutline subroutine fails.

Base Operating System Reference

getutent, ...

Utmp Points to the utmp structure.

File Specifies the name of the file to be examined.

Return Value

Files

These subroutines fail and return a NULL pointer if a read or write fails due to the end of the
file or a permission conflict.

letc/utmp

lusr/adm/wtmp

The path to the utmp file, which contains a record of users logged into
the system.

The path to the wtmp file, which contains accounting information
about users logged in.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The ttyslot subroutine.

The utmp, wtmp, .Uog files.

Base Operating System Runtime 1-239

getvfsent, ...

getvfsent, getvfsbytype, getvfsbyname, getvfsbyflag,
setvfsent, or endvfsent Subroutine

Purpose

Library

Syntax

Gets a vfs file entry.

Standard C Library(libc.a)

#include <vfs.h>
#include <vmount.h>

struct vfs_ent *getvfsent()

struct vfs_ent *getvfsbytype(vfsType)
int vtsType;

struct vfs_ent *getvfsbyname(vfsName)
char * vfsName;

struct vfs_ent *getvfsbyflag(vfsFlag)
int vfsFlag;

void setvfsent()

void endvfsent()

Description

1-240

The getvfsent subroutine, when first called, returns a pointer to the first vfs_ent structure in
the file. On the next call, it returns a pointer to the next vfs_ent structure in the file.
Successive callis can be used to search the entire file.

The vfs_ent structure is defined in the vfs.h header file, and it contains the following
members:

char vfsent_name;
int vfsent_type;
int vfsent_flags;
char *vfsent_mnt_hlpr;
char *vfsent_fs_hlpr;
char *vfsent_vinfop;

The getvfsbytype subroutine searches from the beginning of the file until it finds a vfs type
matching the vfsType parameter. The subroutine then returns a pointer to the structure in
which it was found.

The getvfsbyname subroutine searches from the beginning of the file until it finds a vfs
name matching the vfsName parameter. The search is made using flattened names; the
characters of the name searched for are the ASCII equivalent character.

The getvfsbytype subroutine searches from the beginning of the file until it finds a type
matching the vfs Type parameter.

The getvfsbyflag subroutine searches from the beginning of the file until it finds the entry
whose flag corresponds to those defined in the vfs.h file. Currently, these are
VFS_DFLT_LOCAL and VFS_DFLT_REMOTE.

Base Operating System Reference

getvfsent, ...

The setvfsent subroutine rewinds the vfs file to allow repeated searches.

The endvfsent subroutine closes the vfs file when processing is complete.

Warning: All information is contained in a static area, so it must be copied if it is to be
saved.

Parameters
vfsType

vfsName

vfsFlag

Return Values

Specifies a vfs type.

Specifies a vfs name.

Specifies either VFS_DFLT_LOCAL or VFS_DFLT_REMOTE.

The getvfsent, getvfsbytype, getvfsbyname and getvfsbyflag subroutines return a
pointer to a vfs_ent structure containing the broken-out fields of a line in the /etc/vfs file. If
an end-of-file condition or an error is encountered on reading, a NULL pointer is returned.

Implementation Specifics
These suborutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The getfsent, getfsspec, getfstype, getsfile, setfsent, endfsent subroutines.

The National Language Support Overview in General Programming Concepts.

Base Operating System Runtime 1-241

getwc, ...

getwc, fgetwc, or getwchar Subroutine

Purpose

Library

Syntax

Gets a wide character from an input stream.

Standard I/O Package (libc.a)

#include <stdio.h>

i nt getwc (Stream)
FILE *Stream;

i nt fgetwc (Stream)
FILE *Stream;

int getwchar ()

Description

Parameter

The getwc subroutine gets the next 1-byte or 2-byte character from the input stream
specified by the Stream parameter, and returns an wchar _t data type as an integer. The
fgetwc subroutine performs the same function as getwc.

The getwchar subroutine gets the next 1-byte or 2-byte character from the standard input
stream and returns an wchar_t as an integer.

Stream Input data.

Return Values
These subroutines and macros return the integer constant EOF at the end of the file or upon
an error.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-242

The fopen, freopen, fdopen subroutines, fread, fwrite subroutines, getc, fgetc, getchar,
getw subroutines, gets, fgets subroutines, putwc, putwchar, fputwc subroutines, scanf,
fscanf, sscanf, NLscanf, NLfscanf, wsscanf subroutines.

National Language Support Overview in General Programming Concepts.

Base Operating System Reference

getwd

getwd Subroutine

Purpose

Library

Syntax

Gets current directory path name.

Standard C Library (libc.a)

char *getwd (PathName)
char * PathName;

Description

Parameter

The getwd subroutine determines the absolute path name of the current directory, then
copies that path name into the area pOinted to by the PathName parameter.

The maximum path name length, in characters, is set by the PATH_MAX definition, as
specified in the limits.h file.

Pa th Name Points to the full path name.

Return Values
If the call to the getwd subroutine is successful, a pointer to the absolute path name of the
current directory is returned. If an error occurs, the getwd subroutine returns a value of 0
and places a message in the PathName parameter.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BaS) Runtime.

Related Information
The getcwd subroutine.

Base Operating System Runtime 1-243

getws, ...

getws or fgetws Subroutine

Purpose
Gets a string from a stream.

Library
Standard C Library (libc.a)

Japanese Language Support Syntax
When running AIX with Japanese Language Support on your system, the following
subroutines stored in libc.a, are provided:

#include <stdio.h>
#include <NLchar.h>
NLchar *getws (String)
NLchar * String;

NLchar *fgetws (String, Number, Stream)
NLchar * String;
int Number;
FILE *Stream;

Description
Japanese Language Support Information

The getws subroutine expands 1-byte and 2-byte character input values to uniform NLchar
(2-byte) width. With this exception, getws functions exactly like the gets subroutine.

The fgetws subroutine also expands 1-byte and 2-byte character input values to uniform
NLchar (2-byte) width. Again, with this exception, fgetws works just like fgets.

Parameters
String A pointer to a string to receive characters.

Stream A pointer to the FILE structure of an open file.

Number An upper bound on the number of characters to read.

Return Value
If the end of the file is encountered and no characters have been read, no characters are
transferred to the String parameter and a NULL pointer is returned. If a read error occurs, a
NULL pointer is returned. Otherwise, String is returned.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

1-244 Base Operating System Reference

getws, ...

Related Information
The ferror, feof, clearerr, fileno macros, fopen, freopen, fdopen subroutines, fread
subroutine, getc, fgetc , getchar, getw subroutines, getwc, fgetwc, getwchar subroutines,
gets, fgets subroutines, puts, fputs subroutines, putws, fputws subroutines, scanf,
fscanf, sscanf, NLscanf, NLsscanf subroutines.

National Language Support Overview in General Programming Concepts

Base Operating System Runtime 1-245

hsearch, ...

hsearch, hcreate, or hdestroy Subroutine

Purpose

Library

Syntax

Manages hash tables.

Standard C Library (Iibc.a)

#include <search.h>

ENTRY *hsearch (Item, Action)
ENTRY Item;
Action Action;

int hcreate (NumberOfElements)
unsigned int NumberOfElements;
void hdestroy ()

Description
The hsearch subroutine is a hash table search routine. It returns a pOinter into a hash table
that indicates the location of a given entry. The hsearch subroutine uses open addressing
with a multiplicative hash function.

The hcreate subroutine allocates sufficient space for the table. You must call the hcreate
subroutine before calling the hsearch subroutine.

The hdestroy subroutine deletes the hash table. This allows you to start a new hash table
since only one table can be active at a time.

Parameters
Item Identifies a structure of the type ENTRY as defined in the search.h header

file. It contains two pointers:

1-246

Action

Item.key Points to the comparison key.

Item.data Points to any other data associated with that key.

Pointers to types other than char should be cast to pointer-to-character.

Specifies a value of the Action enumeration type that indicates what is to be
done with an entry if it cannot be found in the table:

ENTER

FIND

Enters the Item into the table at the appropriate pOint. If the
table is full, a NULL pointer is returned.

Does not enter the Item into the table, but returns a NULL
pointer if the Item cannot be found.

NumberOfElements

Provides an estimate of the maximum number of entries that the table
contains. Under some circumstances, the hcreate subroutine may actually
make the table larger than specified.

Base Operating System Reference

hsearch, ...

Return Values
Upon successful completion, the hcreate subroutine returns a value of 1.

Error Code
The hcreate subroutine returns a value of 0 if it cannot allocate sufficient space for the table.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The bsearch subroutine, Isearch subroutine, tsearch subroutine.

Base Operating System Runtime 1-247

hypot, ...

hypot or cabs Subroutine

Purpose

Library

Syntax

Computes the Euclidean distance function and complex absolute value.

IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

#include <math.h>

double hypot (x, y)
double x, y;

double cabs (z)
struct {double x, y;} z;

Description
The hypot subroutine and cabs subroutine compute sqrt (x**2 + y**2) in such a way that
underflow will not occur, and overflow occurs only if the final result warrants it.

The cabs subroutine is commonly referred to as computing the complex absolute value.

Note: Compile any routine that uses subroutines from the libm.a library with the -1m flag.
To compile the hypot.c file, for example:

cc hypot.c -1m

Parameters
x Specifies some double-precision floating-point value.

y Specifies some double-precision floating-point value.

z Specifies a structure that has two double elements (z = xi + yj).

Error Codes

1-248

When using libm.a (-1m):

If the correct value overflows, the hypot subroutine returns HUGE_VAL.

Note: hypot (INF, value) = hypot (value, INF) = +INF for all values, even if value = NaN.

When using libmsaa.a (-Imsaa):

If the correct value overflows, the hypot subroutine returns HUGE_VAL and sets the global
variable errno to ERANGE.

These error-handling procedures may be changed with the matherr subroutine when using
libmsaa.a (-Imsaa).

Base Operating System Reference

hypot, ...

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The sqrt subroutine, matherr subroutine.

Base Operating System Runtime 1-249

IMAIXMapping

IMAIXMapping Subroutine

Purpose

Library

Syntax

Translates a pair of KeySymbol and State to a string and returns a pointer to this string.

Input Method Library (libIM.a)

caddr_t IMAIXMapping (/MMap, KeySymbol, State, NBytes)
IMMap Immap;
KeySym KeySymbol;
uint State;
int *NBytes;

Description
The IMAIXMapping subroutine translates a pair of KeySymbol and State to a string and
returns a pointer to this string.

This function handles the diacritic character sequence and ALT NumPad sequence

Parameters
IMMap Identifies the keymap

KeySymbol Key symbol to which the string is mapped.

State State to which the string is mapped.

NBytes Returns the length of the returning string.

Return Values
If the length set by the NBytes parameter has a postive value, the IMAIXMapping
subroutine returns a pointer to the returning string. Note that the returning string is not null
terminated.

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

Related Information

1-250

The IMlnitializeKeymap subroutine, IMFreeKeymap subroutine, IMSimpleMapping
subroutine.

AIX Input Method Overview in General Programming Concepts.

Base Operating System Reference

IMAuxCreate

IMAuxCreate Subroutine

Purpose

Syntax

Callback function that tells the application program to create an Auxiliary area.

int IMAuxCreate(lM, AuxiliarylD, UData)
IMObject 1M;
caddr_t *AuxiliaryID;
caddr_t UData;

Description
The IMAuxCreate subroutine is invoked by the Input Method if it wants to create an Auxiliary
area. The Auxiliary area may contain several different forms of data and is not restricted by
the interface.

Most Input Methods will only have a single Auxiliary area displayed at a time but callbacks
must be capable of handling multiple Auxiliary areas.

Parameters
1M

AuxiliarylD

Indicates the Input Method instance.

Identifies the newly created Auxiliary area.

UData An application datum specified in the parameter of the IMCreate subroutine.

Return Values
On successful return of the IMAuxCreate subroutine, an id of the created Auxiliary area is
set to the AuxiliarylD parameter and IMNoError is returned. Otherwise, IMNoError is
returned.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The IMCreate subroutine.

AIX Input Method Overview in General Programming Concepts.

Base Operating System Runtime 1-251

IMAuxDestroy

IMAuxDestroy Subroutine

Purpose

Syntax

Callback function that notifies the Callback API to destroy any knowledge of all the Auxiliary
areas.

int IMAuxDestroy(lM, AuxiliarylD, UData)
IMObject 1M;
caddr_t AuxiliarylD;
caddr_t UData;

Description
The IMAuxDestroy subroutine is called by the Input Method when the auxiliary area should
be destroyed.

Parameters
1M Indicates the Input Method instance.

Identifes the Auxiliary area to be destroyed. Auxi/iarylD

UData An application datum specified in the parameter of the IMCreate subroutine.

Return Values
If an error happens, the IMAuxDestroy subroutine returns IMError. Otherwise, IMNoError
is returned.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The IMCreate subroutine.

AIX Input Method Overview in General Programming Concepts.

1-252 Base Operating System Reference

IMAuxDraw

IMAuxDraw Subroutine

Purpose

Syntax

Callback function that tells the application program to draw the auxiliary area.

int IMAuxDraw(/M, AuxiliarylD, Auxiliarylnformation, UData)
IMObject 1M;
caddr_t AuxiliarylD;
IMAuxlnfo *Auxiliarylnformation;
caddr _t UData;

Description
The IMAuxDraw subroutine is invoked by the Input Method when the Auxiliary area should
be drawn. The Auxiliary area should also be created if it has not previously been done.

Parameters
1M

Auxi/iarylD

Auxiliarylnformation

Indicates the Input Method instance.

Identifies the auxiliary area.

Points to the IMAUXINFO structure.

UData Application datum specified in the parameter of the IMCreate
subroutine.

Return Values
If an error happens, the IMAuxDraw subroutine returns IMError. Otherwise, IMNoError is
returned.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The IMAuxCreate subroutine.

AIX Input Method Overview in General Programming Concepts.

Base Operating System Runtime 1-253

IMAuxHide

IMAuxHide Subroutine

Purpose

Syntax

Callback function that tells the application program to hide the Auxiliary area.

int IMAuxHide(/M, AuxiliarylO, UOata)
IMObject 1M;
caddr _t Auxi/iaryIO;
caddr_t UOata;

Description
The IMAuxHide subroutine is called by the Input Method when the Auxiliary area should be
hidden.

Parameters
1M Indicates the Input Method instance.

Identifies the Auxiliary area to be hidden. AuxiliarylO

UOata An application datum specified in the parameter of the IMCreate subroutine.

Return Values
If an error occurs, the IMAuxHide subroutine returns IMError. Otherwise, IMNoError is
returned.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The IMAuxCreate subroutine.

AIX Input Method Overview in General Programming Concepts.

1-254 Base Operating System Reference

IMBeep

IMBeep Subroutine

Purpose

Syntax

Callback function that tells the application program to emit a beep sound.

int IMBeep(/M, Percent, UData)
IMObject 1M;
int Percent;
caddr_t UData;

Description
The IMBeep subroutine tells the application program to emit a beep sound.

Parameters
1M Indicates the Input Method instance.

Percent Specifies the beep level. The value range is from -100 to 100 inclusively
and the value -100 means no beep.

UData

Return Values

An application datum specified by the parameter to the IMCreate
subroutine.

If an error happens, the IMBeep subroutine returns IMError. Otherwise, IMNoError is
returned.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The IMCreate subroutine.

AIX Input Method Overview in General Programming Concepts.

Base Operating System Runtime 1-255

imcalloc

imcalloc Subroutine

Purpose

Library

Syntax

Allocates space for an array.

Input Method Library (libIM.a)

caddr_t imcalloc(NumberOfElements, ElementSize)
uint NumberOfElements, ElementSize;

Description
The imcalloc subroutine allocates space for an array with the number of elements specified
by the NumberOfElements parameter. Each element is of the size specified by the
ElementSize parameter. The space is initialized to O's.

Parameters
NumberOfElements Specifies the number of elements in the array.

Specifies the size of each element. ElementSize

Return Values
If an error happens during the imcalloc subroutine the abort subroutine is called.

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

Related Information
The abort subroutine, imfree subroutine, immalloc subroutine, imrealloc subroutine.

AIX Input Method Overview in General Programming Concepts.

1-256 Base Operating System Reference

IMClose Subroutine

Purpose

Library

Syntax

Closes the Input Method.

Input Method Library (libIM.a)

void IMClose(/mfep)
IMFep Imfep;

Description

IMClose

The IMClose subroutine closes the Input Method. All Input Method instances, previously
created, must be destroyed using the 1M Destroy subroutine before calling the IMClose
subroutine or memory will not be cleared.

Parameters
Imfep Specifies the Input Method.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The IMDestroy subroutine.

AIX Input Method Overview in General Programming Concepts.

Base Operating System Runtime 1-257

IMCreate

IMCreate Subroutine

Purpose

Library

Syntax

Creates one instance of an IMObject for a particular Input Method.

Input Method Library (libIM.a)

IMObject IMCreate(/Mfep, IMCal/back, UData)
IMFep IMfep;
IMCaliback "IMCal/back;
caddr_t UData;

Description
The IMCreate subroutine creates one instance of a particular Input Method. Several Input
Method instances can be created under one Input Method.

Parameters
IMfep

IMeal/back

UData

Specifies the Input Method.

A pointer to the caller supplied IMCaliback structure.

The optional UData parameter may be used to pass an application own
information to the CALLBACK functions. Using this, the application can
avoid the external references from the CALLBACK functions. The Input
Method never changes this parameter, it merely passes it to the CALLBACK
functions. The UData parameter is usually a pOinter to the application data
structure which may contain the information about location, font id, and so
forth.

Return Values
The IMCreate subroutine returns a pOinter to the created Input Method instance of type
IMObject. If the subroutine fails, NULL is returned and the global variable imerrno is set to
indicate the error.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The IMProcess subroutine, IMDestroy subroutine.

AIX Input Method Overview in General Programming Concepts.

1-258 Base Operating System Reference

IMDestroy Subroutine

Purpose

Library

Syntax

Destroys an Input Method instance.

Input Method Library (libIM.a)

void IMDestroy(/M)
IMObject 1M;

Description
The IMDestroy subroutine destroys an Input Method instance.

Parameters
1M Specifies the Input Method instance to be destroyed.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The IMCreate subroutine, IMClose subroutine.

AIX Input Method Overview in General Programming Concepts.

IMDestroy

Base Operating System Runtime 1-259

imfree

imfree Subroutine

Purpose

Library

Syntax

Frees a block of memory.

Input Method Library (libIM.a)

void imfree(Pointer)
caddr_t Pointer,

Description

Parameter

The imfree subroutine frees the block of memory pointed to by the Pointer parameter.

Pointer Points to a block of memory. The block pointed to by the Pointer parameter
must have been previously allocated by the imcalloc subroutine.

Implementation Specifics
This subroutine is part of AIX8ase Operating System (80S) Runtime.

Related Information
The imcalloc subroutine, immalloc subroutine, imrealloc subroutine.

AIX Input Method Overview in General Programming Concepts.

1-260 Base Operating System Reference

IMFreeKeymap

IMFreeKeymap Subroutine

Purpose

Library

Syntax

Frees resources allocated by the IMlnitializeKeymap subroutine.

Input Method Library (liblM.a)

void IMFreeKeymap(/MMap)
IMMap IMMap;

Description
The IMFreeKeymap subroutine frees resources allocated by the IMlnitializeKeymap
subroutine.

Parameter
IMMap Identifies the keymap.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The IMlnitializeKeymap subroutine.

AIX Input Method Overview in General Programming Concepts.

Base Operating System Runtime 1-261

IMlndicatorDraw

IMlndicatorDraw Subroutne

Purpose

Syntax

Callback function that tells the application program to draw the indicator.

int IMlndicatorDraw{IM, Indicatorlnformation, UData)
IMObject 1M;
IMlndicatorlnfo *Indicatorlnformation;
caddr_t UData;

Descri ption
The IMlndicatorDraw subroutne is called by the Input Method when the value of the
indicator is changed.

Parameters
1M Indicates the Input Method instance.

Indicatorlnformation

UData

Points to the IMlndicatorlnfo structure that hold the current value of the
Indicator. However, the interpretation of this value varies among (phonic)
languages. The Input Method provides a function to interpret this value.

An application datum specified by the parameter to the IMCreate subroutine.

Return Values
If an error happens, the IMlndicatorDraw subroutne returns IMError. Otherwise,
IMNoError is returned.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The IMlndicatorHide subroutne.

AIX Input Method Overview in General Programming Concepts.

1-262 Base.Operating System Reference

IMlndicatorHide

IMlndicatorHide Subroutine

Purpose

Syntax

Callback function that tells the application program to hide the indicator.

int IMlndicatorHide(/M, UData)
IMObject 1M;
caddr_t UData;

Description
The IMlndicatorHide subroutine is called by the Input Method when the Indicator should be
hidden.

Parameters
1M Indicates the Input Method instance.

UData An application datum specified by the parameter to the IMCreate
subroutine.

Return Values
If an error happens, the IMlndicatorHide subroutine returns 1M Error. Otherwise,
IMNoError is returned.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The IMlndicatorDraw subroutine.

AIX Input Method Overview in General Programming Concepts.

Base Operating System Runtime 1-263

IMlnitialize

IMlnitialize Subroutine

Purpose

Library

Syntax

Initializes the Input Method for a particular language.

Input Method Library (liblM.a)

IMFep IMlnitialize(Language)
IMLanguage Language;

Description
The IMlnitialize subroutine initializes the Input Method for a particular language. Each Input
Method can produce one or more Input Method instances, which are created by calling the
IMCreate subroutine.

Parameters
Language Specifies the language to be used. Each Input Method is dynamically linked

to the application program.

Return Values
If IMlnitialize succeeds, it returns a handle of type IMFep. Otherwise, NULL is returned and
the global variable imerrno is set to indicate the error.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The IMCreate subroutine.

AIX Input Method Overview in General Programming Concepts.

1-264 Base Operating System Reference

IMlnitializeKeymap·

IMlnitializeKeymap Subroutine

Purpose

Library

Syntax

Initializes the keymap associated to the specified language.

Input Method Library (libIM.a)

IMMap IMlnitalizeKeymap(Language)
IMLanguage Language;

Description

Parameter

The IMlnitializeKeymap subroutine initializes the keymap associated to the specified
language. The Keyboard Mapping Table defines the keymap searching order.

Language Specifies the language to be used.

Return Values
The IMlnitializeKeymap subroutine returns an identifier of type IMMap. Returning NULL
means the occurrence of an error. IMMap is type defined in the im.h as caddr_t. This
identifier is used for keymap manipulation functions.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The IMQueryLanguage subroutine, IMFreeKeymap subroutine.

AIX Input Method Overview in General Programming Concepts.

Base Operating System Runtime 1-265

IMlocti

IMloctl Subroutine

Purpose

Library

Syntax

Performs a variety of control or query operations on the Input Method.

Input Method Library (libIM.a)

int IMloctl(IM, Operation, Argument)
IMObject 1M;
int Operation;
char *Argument;

Description
The IMloctl subroutine performs a variety of control or query operations on the Input Method
specified by the 1M parameter. In addition, the IMloctl subroutine can be used to control
unique function of each language Input Method.

Parameters
1M Specifies the Input Method instance.

Specifies the operation.

1-266

Operation

Argument The use of this parameter depends on the particular operation performed.

The following operations are defined across languages.

1M_Refresh Refresh the text area, Auxiliary area and Indicator by calling
the needed callback functions if these area's contents are
not empty. The Argument parameter is not used.

IM_GetString The application can use this operation to get the current
pre-editing string. The Argument parameter is an address of
the IMSTR structure supplied by the caller. The callback
function is invoked to clear the pre-editing if it exists.

1M_Clear Clears the text area and the Auxiliary area if they exist. If
the Argument parameter is not NULL, this operation will
invoke the callback functions to clear the screen.

1M_Reset Clears the Auxiliary area if it currently exists. If the
Argument parameter is NULL, it clears only the Input
Method's internal buffer, otherwise, the required callback
functions are invoked.

IM_ Change Length
Used to change the maximum length of the pre-editing
string.

IM_QueryState This operation returns the status of the text area, the
Auxiliary area and the Indicator. It also returns beep status
and the processing mode. The results are stored into the
caller supplied IMQueryState structure pointed to by the
Argument parameter.

Base Operating System Reference

Return Values

IMlocti

I M_QueryText Returns the detailed information about the text area. The
results are stored in the caller supplied IMQueryText
structure pointed to by the Argument parameter.

1M_Query Auxiliary
Returns the detailed information about the Auxiliary area.
The results are stored in the caller supplied
IMQueryAuxiliary structure pointed to by the Argument
parameter.

IM_ Querylndieator
Returns the detailed information about the Indicator. The
results are stored in the caller supplied IMQuerylndicator
structure pointed to by the Argument parameter.

IM_ QuerylndieatorString
Returns the Indicator string corresponding to the current
indicator. Results are stored into the caller supplied
IMQuerylndieatorString structure pointed to by the
Argument parameter. The caller can request either short
form or long form by specifying in the format member of the
IMQuerylndieatorString structure.

The IMloeti subroutine returns IMError if the error happens. In this case, the global variable
imerror is set to indicate the error.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The IMProeess subroutine.

AIX Input Method Overview in General Programming Concepts.

Base Operating System Runtime 1-267

immalloc

immalloc Subroutine

Purpose

Library

Syntax

Returns a pointer to a block of memory of at least the number of bytes specified by the Size
parameter.

Input Method Library (libIM.a)

caddr_t immalloc(Size)
uint Size;

Description

Parameter

The immalloc subroutine returns a pointer to a block of memory of at least the number of
bytes specified by the Size parameter. The block is aligned so that it can be used for any
type of data.

Size Specifies the size, in bytes, of the memory block.

Return Values
If an error happens during the immalloc subroutine, the subroutine calls the abort
subroutine.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The imcalloc subroutine, imfree subroutine, imrealloc subroutine.

The abort subroutine.

AIX Input Method Overview in General Programming Concepts.

1-268 Base Operating System Reference

IMProcess

IMProcess Subroutine

Purpose

Library

Syntax

Processes keyboard events and does the language specific input processing.

Input Method Library (libIM.a)

int IMProcess (1M, KeySymbol, State, String, Length)
IMObject 1M;
KeySym KeySymbol;
uint State;
caddr _t *String;
uint *Length;

Description
This is a main entry points to the Input Method.

The IMProcess subroutine processes one keyboard event at a time.

Processing of the IMProcess subroutine may look like the following:

1. Validates the 1M parameter.

2. Keyboard translation for all its supported modifier states.

3. Invokes internal function to do language dependent processing.

4. Performs any necessary Callback functions depending on the internal state.

5. Returns to application, setting the String and Length parameters appropriately.

Parameters
1M

KeySymbol

State

Specifies the Input Method instance.

Defines the set of keyboard symbols that will be handled.

State of the keyboard.

String Holds the returned string. Returning NULL means that the input is used or
discarded by the Input Method.

Note: The String parameter is not a null terminated string.

Length Stores the length of the String parameter in bytes.

Return Values
The return code for the IMProcess subroutine has one of the following meanings:

IMError

IMTextAndAuxiliaryOff

Error caused during this subroutine.

No text string in the Text area and the Auxiliary area is not
shown.

Base Operating System Runtime 1-269

IMProcess

IMTextOn

IMAuxiliaryOn

IMTextAndAuxiliaryOn

Text string in the Text area but no Auxiliary area.

No text string in the Text area and the Auxiliary area is
shown.

Text string in the Text area and the Auxiliary is shown.

This function returns IMError if the error happens. In this case, the global variable imerrno
is set to indicate the error.

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

Related Information
The IMCreate subroutine, IMClose subroutine.

AIX Input Method Overview in General Programming Concepts.

1-270 Base Qper~ting System Reference

IMProcessAuxiliary

IMProcessAuxiliary Subroutine

Purpose

Library

Syntax

Notifies the Input Method of input for an Auxiliary area.

Input Method Library (libIM.a)

int IMProcessAuxiliary (/M, Auxiliary/D, Button, Pane/Row, Pane/Column,
Item Row, /temColumn)
IMObject /M;
caddr _t AuxiliarylD;
uint Button;
uint Pane/Row;
uint Pane/Column;
uint ItemRow;
uint ItemColumn;

Description
The IMProcessAuxiliary subroutine is used to notify the Input Method instance of input for
an Auxiliary area.

Parameters
1M

Auxiliary/D

Button

PanelRow

Specifies the Input Method instance.

Identifies the Auxiliary area that has process.

Tells the type of input

1M_OK

1M_CANCEL

1M_ENTER

1M_RETRY

1M_ABORT

1M_IGNORE

1M_YES

1M_NO

1M_HELP

1M_SELECTED

OK button is pushed.

CANCEL button is pushed.

ENTER button is pushed.

RETRY button is pushed.

ABORT button is pushed.

IGNORE button is pushed.

YES button is pushed.

NO button is pushed.

HELP button is pushed.

Selection has been made. Only in this case, the
PanelRow, PanelColumn, ItemRow, and ItemColumn
parameters have meaningful values.

Indicates the panel on which the selection event occurred.

Base Operating System Runtime 1-271

1M ProcessAuxii iary

PanelColumn Indicates the panel on which the selection event occurred.

ItemRow Indicates the selected item.

Item Column Indicates the selected item.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The IMAuxCreate subroutine.

AIX Input Method Overview in General Programming Concepts.

1-272 Base Operating System Reference

IMQueryLanguage

IMQueryLanguage Subroutine

Purpose

Library

Syntax

Checks to see if the specified (phonic) language is supported.

Input Method Library (libIM.a)

uint IMQueryLanguage(Language)
1M Language Language;

Description
The IMQueryLanguage subroutine checks to see if the specified (phonic) language
specified by the Language parameter is supported.

The keyboard mapping table in the Understanding Keyboard Mapping article in General
Programming Concepts contains a listing of supported languages and their names.

Parameter
Language The specified (phonic) language.

Return Values
The IMQueryLanguage subroutine returns true if the specified language is supported.
Otherwise, false is returned.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The IMlnitialize subroutine, IMClose subroutine.

AIX Input Method Overview in General Programming Concepts.

Base Operating System Runtime 1-273

imrealloc

imrealloc Subroutine

Purpose

Library

Syntax

Changes the size of a block of memory.

Input Method Library (libIM.a)

caddr_t imrealloc(Pointer, Size)
caddr_t Pointer,
uint Size;

Description
The imrealloc subroutine changes the size of the block of memory pointed to by the Pointer
parameter to the number of bytes specified by the Size parameter, and then it returns a
pointer to the block. The contents of the block remain unchanged up to the lesser of the old
and new sizes.

Parameters
Pointer Points to a block of memory.

Size Specifies, in bytes, the new size of the block.

Return Values
If an error happens during the imrealloc subroutine, the subroutine calls the abort
subroutine.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The imcalloc subroutine, imfree subroutine, immalloc subroutine.

The abort subroutine.

AIX Input Method Overview in General Programming Concepts.

1-274 Base Operating System Reference

IMRebindCode

IMRebindCode Subroutine

Purpose

Library

Syntax

Rebinds the string to the specified KeySymbol and State pair.

Input Method Library (libIM.a)

IMRebindCode(lMMap, KeySymbol, State, String, NBytes)
IMMap IMMap;
KeySym KeySymbol;
uint State;
caddr_t String;
int NBytes;

Description
The IMRebindCode subroutine can be used to rebind the string to the specified KeySymbol
and State pair. It changes the binding of the keyboard temporarily. After issuing the
IMRebindCode subroutine, subsequent calls to the IMAIXMapping or IMSimpleMapping
subroutines return the supplied string instead of the string found in the keymap file.

If the NBytes parameter is zero and the String parameter is not NULL, then the String
parameter points to a 2-byte array that contains the code page and code points of a dead
key. If the String parameter is NULL and NBytes is not zero, then NBytes defines a function
10.

Parameters
IMMap

KeySymbol

State

String

NBytes

Specifies the keymap.

Key symbol to which the String parameter is bound.

State to which the String parameter is bound.

Rebinding string.

Length of the rebinding string.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The IMlnitializeKeymap subroutine, IMFreeKeymap subroutine, IMSimpleMapping
subroutine, IMAIXMapping subroutine.

AIX Input Method Overview in General Programming Concepts.

Base Operating System Runtime 1-275

IMSimpleMapping

IMSimpleMapping Subroutine

Purpose

Library

Syntax

Translates a pair of KeySymbol and State parameters to a string and returns a pointer to this
string.

Input Method Library (libIM.a)

caddr_t IMSimpleMapping (lMMap, KeySymbol, State, NBytes)
IMMap IMMap;
KeySym KeySymbol;
uint State;
int *NBytes;

Description
Like the IMAIXMapping subroutine, the IMSimpleMapping subroutine translates a pair of
KeySymbol and State parameters to a string and returns a pointer to this string. A" the
parameters have the same meaning as those in the IMAIXMapping subroutine.

The IMSimpleMapping subroutine differs from the IMAIXMapping subroutine in that this
function does not support the diacritic character sequence or the ALT NumPad sequence.

Parameters
IMMap

KeySymbol

State

NBytes

Identifies the keymap

Key symbol to which the string is mapped.

State to which the string is mapped.

Returns the length of the returning string.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-276

The IMAIXMapping subroutine, IMFreeKeymap subroutine, IMlnitializeKeymap
subroutine.

AIX Input Method Overview in General Programming Concepts.

Base Operating System Reference

IMTextCursor

IMTextCursor Subroutine

Purpose

Syntax

Callback function that sets the new display cursor position.

int IMTextCursor(lM, Direction,
Cursor, UData)

IMObject 1M;
uint Direction;
int *Cursor;
caddr _t UData;

Description
The IMTextCursor subroutine is invoked by Input Method when the cursor up or down key is
input to the IMProcess subroutine.

This subroutine sets the new display cursor position in the text area to the integer pointed to
by the Cursor parameter. The cursor position is relative to the top of the text area or -1 if
the cursor should not be moved.

This subroutine is a hook of the Input Method which always treats a text string as one
dimensional because the Input Method does not know about actual screen. However, in the
terminal emulator, text string sometimes wraps to the next line, namely, it occupies multiline.
This single- to mUlti- line conversion is done in this subroutine. So the cursor up or down
should be interpreted by the subroutine, and the subroutine informs the corresponding
cursor position relative to the text string to the AIX Input Method.

Parameters
1M

Direction

Cursor

Indicates the Input Method instance.

Specifies Up or Down.

The new cursor position or -1.

UData An application datum specified in the parameter of the IMCreate function.

Return Values
If an error happens, the IMTextCursor subroutine returns IMError. Otherwise, IMNoError
is returned.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The IMTextDraw subroutine.

AIX Input Method Overview in General Programming Concepts.

Base Operating System Runtime 1-277

IMTextDraw

IMTextDraw Subroutine

Purpose

Syntax

Callback function that tells the application program to draw the text string.

int IMTextDraw(/M, Textlnfo, UData)
IMObject 1M;
IMTextinfo *Textlnfo;
caddr_t UData;

Description
The IMTextDraw subroutine is invoked by the Input Method whenever it needs to update the
screen with its internal string.

Parameters
1M Indicates the Input Method instance.

Points to the IMTextinfo structure. Textlnfo

UData An application datum specified in the parameter of the IMCreate subroutine.

Return Values
If an error happens, the IMTextDraw subroutine returns IMError. Otherwise, IMNoError is
returned.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The IMCreate subroutine.

AIX Input Method Overview in General Programming Concepts

1-278 Base Operating System Reference

IMTextHide Subroutine

Purpose

Syntax

Callback function that tells the application program to hide the text area.

int IMTextHide(/M, UData)
IMObject 1M;
caddr_t UData;

Description

IMTextHide

The IMTextHide subroutine is invoked by the Input Method when the text area should be
cleared.

Parameters
1M Indicates the Input Method instance.

UData An application datum specified in the parameter of the IMCreate subroutine.

Return Values
If an error happens, the IMTextHide subroutine returns IMError. Otherwise, IMNoError is
returned.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The IMTextDraw subroutine.

AIX Input Method Overview in General Programming Concepts.

Base Operating System Runtime 1-279

IMTextStart

IMTextStart Subroutine

Purpose

Syntax

Callback function that notifies the application program of the length of the pre-editing space.

int IMTextStart(lM, Space, UData)
IMObject 1M;
int *Space;
caddr _t UData;

Description
The IMTextStart subroutine is invoked by the Input Method when the pre-editing is started,
prior to drawing anything. The purpose of this function is to notify the Input Method of the
length of the pre-editing space. This function sets the length of the available space (>=0) on
the display to the integer pointed to by the Space parameter. Setting a value of -1 is
acceptable to indicate that the pre-editing space is dynamic.

For example, if the Text area where the pre-editing string is drawn to has a fixed length and
growing the pre-editing string beyond the right-most boundary wouldn't be expected,
changing the maximum length of the pre-editing string must be possible because ususally
pre-editing starts at the current cursor pOSition.

Parameters
1M Indicates the Input Method instance.

Space

UData

Maximum length of pre-editing string.

An application datum specified in the parameter of the IMCreate subroutine.

Return Values
If an error happens, the IMTextStart subroutine returns IMError. Otherwise, IMNoError is
returned.

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

Related Information
The IMCreate subroutine.

AIX Input Method Overview in General Programming Concepts.

1-280 Base Operating System Reference

initgroups

initgroups Subroutine

Purpose

Library

Syntax

Initializes concurrent group set.

Standard C Library (libc.a)

int initgroups (User, Basegid)
char *User,
gid_t Basegid;

Description
The initgroups subroutine reads the defined group membership of the specified User and
sets the concurrent group set of the current process to that value. The Basegid parameter is
always included in the concurrent group set. It is normally the principal user's group. If the
user is in more that NGROUPS_MAX groups, only NGROUPS_MAX groups are set,
including the Basegid group.

Warning: The initgroups subroutine uses the getgrent subroutines. If the program that
invokes initgroups uses any of these subroutines, then calling initgroups overwrites the
static group structure.

Parameters
User Specifies the user whose groups are to be used to initialize the group set.

Basegid Specifies an additional group to include in the group set.

Return Values
Upon successful completion, the initgroups subroutine returns a value of O. If the
initgroups subroutine fails, a value of 1 is returned and the global variable errno is set to
indicate the error.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The getgroups subroutine, getgidx subroutine, setgidx subroutine, setgroups subroutine.

The getgid subroutine.

The setgroups command, groups command.

Base Operating System Runtime 1-281

insque

insque or remque Subroutine

Purpose

Library

Syntax

Inserts or removes an element in a queue.

Standard C Library (libc.a)

struct qelem [

];

struct qelem *next;
struct qelem *prev;
char q_data[];

insque (Element, Pred)
struct qelem * Element, * Pred;

remque (Element)
struct qelem * Element;

Description
The insque subroutine and remque subroutine manipulate queues built from double-linked
lists. Each element in the queue must be in the form of a qelem structure. The next and
prey elements of that structure must point to the elements in the queue immediately before
and after the element to be inserted or deleted.

The insque subroutine inserts the element pointed to by the Element parameter into a
queue immediately after the element pointed to by the Pred parameter.

The remque subroutine removes the element defined by the Element parameter from a
queue.

Parameters
Pred Points to the element in the queue immediately before the element to be

inserted or deleted.

Element Points to the element in the queue immediately after the element to be
inserted or deleted.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

1-282 Base Operating System Reference

ioctl, ...

ioctl or ioctlx Subroutine

Purpose

Syntax

Performs control functions associated with open file descriptors.

#include <sys/ioctl.h>
#include <sys/types.h>

int ioctl (file_descriptor, cmd, argument)
int file_descriptor, cmd;
void * argument;

int ioctlx (file_descriptor, cmd, argument, ext)
int file_descriptor, cmd;
void * argument;
int ext;

Parameters
file_descriptor Specifies the open file descriptor for which the control operation is to

be performed.

cmd

argument

ext

Description

Specifies the control function to be performed. The value of this
parameter depends on which object is specified by the file_descriptor
parameter.

Specifies additional information required by the function requested in
the cmd parameter. The data type of this parameter (a void pointer) is
object-specific, and is typically used to point to an object
(device)-specific data structure. However, in some device-specific
instances, this parameter is used as an integer.

Specifies an extension parameter used with the ioctlx subroutine. This
parameter is passed on to the object associated with the specified
open file descriptor. Although normally of type int, this parameter can
be used as a pointer to a device-specific structure for some devices.

The ioctl subroutine performs a variety of control operations on the object associated with
the specified open file descriptor. This function is typically used with character or block
special files, with sockets, or with generic device support such as the termio general
terminal interface.

The control operation provided by this function call is specific to the object being addressed,
as are the data type and contents of the argument parameter. The ioctlx form of this
function can be used to pass an additional extension parameter to objects supporting it.

Most AIX device drivers support a common ioctl operation, IOCINFO, that returns device
information. This operation and the information returned is defined in the <sys/devinfo.h>
header file. This header file should be included if the IOCINFO ioctl operation in to be used.
The argument parameter for this operation should point to a caller-provided devinfo
structure to be filled in by the device driver specified by the open file descriptor.

Base Operating System Runtime 1-283

ioctl, ...

Specific device operations supported by the ioctl function are provided by the particular
deVice driver, usually described with the relevant special file documentation . Refer to
Understanding Socket Data Transfers for a description of the ioctl operations supported by
socket objects.

Performing an ioctl function on a file descriptor associated with an ordinary file results in an
error being returned.

Return Values
If the ioctl subroutine fails, a value of -1 is returned. The errno global variable is set to
indicate the error.

Error Codes
The ioctl subroutine fails if one or more of the following are true:

EBADF

ENOTTY

ENODEV

ENXIO

EFAULT

EINVAL

EINTR

The file_descriptor parameter is not a valid open file descriptor.

The file_descriptor parameter is not associated with an object that
accepts control functions.

The file_descriptor parameter is associated with a valid character or
block special file, but the supporting device driver does not support the
ioctl function.

The file_descriptor parameter is associated with a valid character or
block special file, but the supporting device driver is not in the
configured state.

The argument or ext parameter is used to point to data outside of the
process's address space.

The cmd or argument parameter is not valid for the specified object.

A signal was caught during the ioctl or ioctlx subroutine and the
process had not enabled re-startable subroutines for the signal.

Object-specific error codes are defined in the documentation for associated with the object.

Related Information

1-284

The ddioctl device driver entry point.

The fp_ioctl kernel service.

Understanding Socket Data Transfers.

Special Files Overview, in General Programming Concepts.

Understanding Block I/O Device Drivers, in Kernel Extensions and Device Support
Programming Concepts.

Understanding Character I/O Device Drivers, in Kernel Extensions and Device Support
Programming Concepts.

Sockets Overview, in Communications Programming Concepts.

termio General Terminal Interface in General Programming Concepts.

Base Operating System Reference

Japanese cony

Japanese Cony Subroutines

Purpose
Translates characters.

Library
Standard C Library (libc.a)

Japanese Language Support Syntax
When running AIX with Japanese Language Support on your system, the following
subroutines, stored in the Iibc.a library, are provided:

#include <jctype.h>
int atojis (Character?
int Character;

int jistoa (Character?
int Character;

int _atojis (Character?
int Character;

int -iistoa (Character?
int Character;

int tojupper (Character?
int Character;

int tojlower (Character?
int Character;

int _tojupper (Character?
int Character;

int _tojlower (Character?
int Character;

int toujis (Character?
int Character,

int kutentojis (Character?
int Character;

int tojhira (Character?
int Character;

int tojkata (Character?
int Character;

int NCwunesc (Pointer,CharacterPointer)
NLchar *Pointer, * CharacterPointer,

Base Operating System Runtime 1-285

Japanese cony

Description
The NCwunesc subroutine translate all characters, including extended characters, as code
points. The other subroutines translate traditional ASCII characters only.

When running AIX with Japanese Language Support on your system, the legal value of the
Character parameter is in the range from 0 to NLCOLMAX.

The jistoa subroutine converts an SJIS ASCII equivalent to the corresponding ASCII
equivalent. The atojis subroutine converts an ASCII character to the corresponding SJIS
equivalent. Other values are returned unchanged.

The .Jistoa and _atojis routines are macros that function like the jistoa and atojis
subroutines, but are faster and have no error checking function.

The tojlower subroutine converts a SJIS uppercase letter to the corresponding SJIS
lowercase letter. The tojupper subroutine converts an SJIS lowercase letter to the
corresponding SJIS uppercase letter. All other values are returned unchanged.

The _tojlower and _tojupper routines are macros that function like the tojlower and
tojupper subroutines, but are faster and have no error-checking function.

The toujis subroutine sets all parameter bits that are not 16-bit SJIS code to zero.

The kutentojis subroutine converts a kuten code to the corresponding SJIS code. The
kutentojis routine returns 0 if the given kuten code is invalid.

The tojhira subroutine converts an SJIS katakana character to its SJIS hiragana equivalent.
Any value that is not an SJIS katakana character is returned unchanged.

The tojkata subroutine converts an SJIS hiragana character to its SJIS katakana equivalent.
Any value that is not an SJIS hiragana character is returned unchanged.

The _tojhira and _tojkata subroutines attempt the same conversions without checking for
valid input.

The NCwunesc subroutine converts the escape sequence pointed to by the Pointer
parameter to a single NLchar pointed to by CharacterPointer. NCwunesc returns the
number of NLchar data types used in the translation.

For all functions except the toujis subroutine, the out-of-range parameter values are
returned without conversion.

Parameters
Character Character to be converted.

Pointer

CharacterPointer

Pointer to the escape sequence.

Pointer to a single NLchar.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-286

The ctype subroutines, cony subroutines, getc, fgetc, getchar, getw, getwc, fgetwc,
getwchar subroutines, setlocale subroutine.

National Language Support Overview in General Programming Concepts.

Base Operating System Reference

Japanese ctype

Japanese ctype Subroutines

Purpose
Classifies characters.

Library
Standard Character Library (libc.a)

Japanese Language Support Syntax
When running AIX with Japanese Language Support on your system, the following
subroutines, stored in the libc.a library, are provided:

#include <jctype.h>

int isjalpha (Character)
int Character;

int isjupper (Charactery
int Character;

int isjlower (Charactef)
int Character;

int isjlbytekana (Charactef);
int Character;

int isjdigit (Charactef)
int Character;

int isjxdigit (Charactery
int Character;

int isjalnum (Charactef)
int Character;

int isjspace (Charactef)
int Character;

int isjpunct (Charactef)
int Character;

int isjparen (Charactef)
int Character;

int isparent (Charactef);
intCharacter;

int isjprint (Charactef)
int Character;

int isjgraph (Charactef)
int Character;

int isjis (Charactet?

Base Operating System Runtime 1-287

Japanese ctype

int Character;

int isjhira (Character)
int Character;

int isjkanji (Character)
int Character;

int isjkata (Character)
int Character;

Description

1-288

The Japanese ctype subroutines classify character-coded integer values specified in a .
table. Each of these subroutines returns a nonzero value for TRUE and 0 for FALSE.

The following list shows the classification functiosn for character sets within SJIS (SJIS).

isjis Character is an SJIS character.

isjhira

isjkata

isjkanji

OxAO -OxDF
Ox8140 - Ox817E Ox8180 ~ Ox81 FC

I I I I
Ox9F40 - Ox9F7E Ox9F80 - Ox9FFC
OxE040 - OxE07 A OxE080 - OxEOFC

I I I I
OxFC40 - OxFC7E OxFC80 - OxFCFC

Character is a hiragana character.

Ox829F - Ox82F1

Character is a katakana character.

Ox8340 - Ox837E Ox8380 - Ox8396
OxAO - OxDF

Character is a kanji character.

Ox889F - Ox88FC
Ox8940 - Ox897E Ox8980 - Ox89FC

I I I I
Ox9740 - Ox977E Ox9780 - Ox97FC
Ox9840 - Ox9872 Ox989F - Ox98FC
Ox9940 - Ox997E Ox9980 - Ox99FC

I I I I
Ox9F40 - Ox9F7E Ox9F80 - Ox9FFC
OxE040 - OxE07E OxE080 - OxEOFC

I I I I
OxE940 - OxE97E OxE980 - OxE9FC
OxEA40 - OxEA 7E OxEA80 - OxEAA2
OxFA5C - OxFA 7E OxFA80 - OxFAFC
OxFB40 - OxFB7E OxFB80 - OxFBFC
OxFC40 - OxFC4B

The following list shows the classification functions for double-width equivalents within SJIS.

isjalpha Character is an alphabetic SJIS character.

Ox8260 - Ox8279 Ox8281 - Ox829A

Base Operating System Reference

isjspace

isjpunct

Japanese ctype

Character is a space SJIS character.

Ox8140

Character is a punctuation SJIS character (neither a control character nor
an alphanumeric character).

Ox8141- Ox8151 Ox815A - Ox8198 Ox81 F5 - Ox81

isjparent and isjparen

isjdigit

isjxdigit

isjupper

isjlower

iSjprint

Character is a bracketing SJIS character.

Ox8169 - Ox817A

Character is a digit SJIS character in the range [0-9].

Ox824F - Ox8258

Character is an Arabic hexadecimal SJIS character in the range [0-9],
[A-F], or [a-fl.

Ox824F - Ox8258
Ox8260 - Ox8265
Ox8281 - Ox8286

Character is an uppercase SJIS character.

Ox8260 - Ox8279

Character is a lowercase SJIS character.

Ox8281 - Ox829A

Character is a printing SJIS character, including the space character.

8140 - 817E
8180-81AC
81 B8 - 81 BF
81C8-81C9
81CB-81CE
81DA-81E5
81E7-81E8
81FO-81F7
81FC
824F - 8258
8260 - 8279
8281 - 829A
829F - 82F1
8340 - 837E
8380 - 8396
839F - 83B6
83BF - 8306
8440 - 8460
8470 - 847E
8480 - 8491
849F - 84BE
889F - 88FC
8940 - 897E 8980 - 89FC
I I I I

Base Operating System Runtime 1-289

Japanese ctype

isjgraph

Parameter
Character

Return Values

9740 - 977E 9780 - 97FC
9840 - 9872 989F - 98FC
9940 - 997E 9980 - 99FC
I I I I

9F40 - 9F7E 9F80 - 9FFC
E040 - E07E E080 - EOFC
I I I I

E940 - E97E E980 - E9FC
EA40 - EA 7E EA80 - EAA2
FA40 - FA7E FA80 - FAFC
FB40 - FB7E FB80 - FBFC
FC40 - FC4B

Character is a printing SJIS character, excluding the space character.

8141-817E
8180 - 81AC
81B8-81BF
81C8-81C9
81CB-81CE
81 DA - 81 E5
81E7-81E8
81 FO - 81 F7
81FC
824F - 8258
8260 - 8279
8281 - 829A
829F - 82F1
8380 - 8396
839F - 83B6
83BF -83D6
8440 - 8460
8470 - 847E
8480 - 8491
849F - 84BE
889F - 88FC
8940 - 897E 8980 - 89FC
I I I I

9740 - 977E 9780 - 97FC
9840 - 9872 989F - 98FC
9940 - 997E 9980 - 99FC
I I I I

9F40 - 9F7E 9F80 - 9FFC
E040 - E07E E080 - EOFC
I I I I

E940 - E97E E980 - E9FC
EA40 - EA 7E EA80 - EAA2
FA40 - FA 7E FA80 - FAFC
FB40 - FB7E FB80 - FBFC
FC40 - FC4B8340 - 837E

Character to be tested.

The iSjprint and isjgraph subroutines return a 0 value for user-defined characters.

1-290 Base Operating System Reference

Japanese ctype

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The ctype subroutines, NCctype subroutines and setlocale subroutine.

National Language Support Overview in General Programming Concepts.

Base Operating System Runtime 1-291

jcode

jcode Subroutines

Purpose
Perform string' conversion on a-bit processing codes.

Library
Standard C Library (libc.a)

Japanese Language Support Syntax

1-292

When running AIX with Japanese Language Support on your system, the following
subroutines, stored in libc.a, are provided:

#include <jcode.h>,

char *jistosj(String1, String2)
char * String 1, *String2;

char *jistouj(String 1, String2)
char * String 1, * String2;

char *sjtojis(String1, String2)
char * String 1, * String2;

char *sjtouj(String 1, String2)
char *String1, *String2;

char *ujtojis(String1, String2)
char * String 1, * String2;

char *ujtosj(String 1, String2)
char * String 1, * String2;

char *cjistosj(String1, Sfring2)
char * String 1, *String2;

char *cjistouj(String1, String2)
char *String1, *Sfring2;

char *csjtojis(String1, String2)
char * String 1, * String2;

char *csjtouj(String1, String2)
char * String 1, *Sfring2;

char *cujtojis(String 1, String2)
char * String 1, *String2;

char *cujtosj(String1, String2)
char * String 1, * String2;

Base Operating System Reference

jcode

Description
The jistosj, jistouj, sjtojis, sjtouj, ujtojis, and ujtosj subroutines perform string conversion
on 8-bit processing codes. The String2 parameter is converted and the converted string is
stored in the String1 parameter. The overflow of the String1 parameter is not checked. Also,
the String2 parameter must be a valid string. Code validation is not permitted.

The jistosj subroutine converts JIS to SJIS. The jistouj subroutine converts JIS to UJIS.
The sjtojis subroutine converts SJIS to JIS. The sjtouj subroutine converts SJIS to UJIS.
The ujtojis subroutine converts UJIS to JIS. The ujtosj subroutine converts UJIS to SJIS.

The cjistosj, cjistouj, csjtojis, csjtouj, cujtojis, and cujtosj macros perform code
conversion of 8-bit processing JIS Kanji characters. A character is removed from the String2
parameter, its code is converted and stored in the String 1 parameter. The String 1 parameter
is returned. The validity of the String2 parameter is not checked.

The cjistosj macro converts from JIS to SJIS. The cjistouj macro converts from JIS to
UJIS. The csjtojis macro converts from SJIS to JIS. The csjtouj macro converts from SJIS
to UJIS. The cujtojis macro converts from UJIS to JIS. The cujtosj macro converts from
UJIS to SJIS.

Parameters
String 1 Stores converted string or code.

String2 String or code to be converted.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The Japanese cony subroutines, Japanese ctype subroutines.

Base Operating System Runtime 1-293

ki II '"""

kill or killpg Subroutine

Purpose

Library

Syntax

Sends a signal to a process or to a group of processes.

Standard C Library (libc.a)

int kill(Process, Signa~
pid_t Process;
int Signal;

killpg(ProcessGroup, Signa~
int ProcessGroup;
int Signal;

Description
The kill subroutine sends the signal specified by the Signal parameter to the process or
group of processes specified by the Process parameter.

To send a signal to another process, either the real or the effective user 10 of the sending
process must match the real or effective user 10 of the receiving process, and the calling
process must have root user authority.

The processes that have the process IDs 0 and 1 are special processes and are sometimes
referred to here as procO and proc1, respectively.

Processes can send signals to themselves.

Note: Sending a signal does not imply that the operation is successful. All signal operations
must pass the access checks prescribed by each enforced access control policy on
the system.

Parameters
Process Specifies the process or group of processes.

1-294

If the Process parameter is greater than 0, the signal specified by the
Signal parameter is sent to the process that has a process ID equal to
the value of the Process parameter.

If the Process parameter is 0, the signal specified by the Signal
parameter is sent to all of the processes, excluding procO and proc1,
whose process group 10 is equal to the process group 10 of the
sender.

If the Process parameter is -1 , the signal specified by the Signal
parameter is sent to all of the processes, excluding procO and proc1, if
the calling process passes the access checks for the process to be
signalled. If the calling process effective user 10 has root user
authority, all processes, excluding procO and proc1, are signalled.

If the Process parameter is negative but not -1, the signal specified by
the Signal parameter is sent to all of the processes which have a

Base Operating System Reference

process group 10 equal to the absolute value of the Process
parameter.

ki II, ...

Signal Specifies the signal. If the Signal parameter is 0 (the null signal), error
checking is performed but no signal is sent. This can be used to check
the validity of the Process parameter.

Process Group Specifies the process group.

Return Values
Upon successful completion, the kill subroutine returns a value of O. Otherwise, a value of
-1 is returned and the global variable errno is set to indicate the error.

Error Codes
The kill subroutine fails and no signal is sent if one or more of the following are true:

The Signal parameter is not a valid signal number. EINVAL

EINVAL The Signal parameter is SIGKILL, SIGSTOP, SIGTSTP or SIGCONT and
the Process parameter is 1 (proc1).

ESRCH No process can be found corresponding to that specified by the Process
parameter.

EPERM The real or effective user 10 does not match the real or effective user 10 of
the receiving process, or the calling process does not have root user
authority.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

The following interface is provided for BSD Compatibility:

killpg(ProcessGroup, Signa~
int Process Group;
int Signal;

is equivalent to:

if (ProcessGroup < 0)
{

}

errno = ESRCH;
return (-1);

return (kill(-ProcessGroup, Signa~);

Related Information
The getpid, getpgrp, getppid subroutines, setpgid, setpgrpsubroutines, sigaction,
signal, sigvec subroutines.

The kill command.

Base Operating System Runtime 1-295

kleenup

kleenup Subroutine

Purpose

Library

Syntax

Cleans up the run-time environment of a process.

Standard C Library (libc.a)

int kleenup (FileDescriptor, Siglgn, SigKeep)
int FileDescriptor,
int Siglgn[];
int SigKeep[];

Description
The kleenup subroutine initializes the run-time environment for a trusted process by:

• Closing unnecessary file descriptors.

• Resetting the alarm time.

• Resetting signal handlers.

• Turning off UCOMPAT _DIRSYS5.

• Resetting the ulimit value, if it is less than a reasonable value (8192).

Parameters
File Descriptor

Siglgn, SigKeep

A file descriptor; the. kleenup subroutine closes all file descriptors
greater than or equal to the FileDescriptor parameter.

Pointers to lists of signal numbers. If non-NULL, these lists are
terminated by zeros. The handling of any signals specified by the
SigKeep parameter is left unchanged. Any signals specified by the
Siglgn parameter are set to SIG_IGN. The handling of all signals
not specified by either list is set to SIG_DFL. Some signals cannot
be reset and are left unchanged.

Return Value
The kleenup subroutine is always successful and always returns a value of O. Errors in
closing files are not reported, and it is not an error to attempt to modify a signal that the
process is not allowed to handle.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

1-296 Base Operating System Reference

knlist

knlist Subroutine

Purpose

Syntax

Translates names to addresses in the running system.

#include <nlist.h>

int knlist{NList, NumberOfElements, Size)
struct nlist * NList;
int NumberOfElements;
int Size;

Description
The knlist subroutine allows a program to examine the list of symbols exported by kernel
routines to other kernel modules.

The first field in the nlist structure is an input parameter to the knlist subroutine. The
remaining fields are filled in by knlist. The nlist structure consists of the following fields:

unsigned short n_type

char n_sclass

The name of the symbol whose attributes are to be retrieved.

A descriptor for the segment in which the object named by the
symbol resides. The only use of this descriptor is as the
Extension parameter on a subroutine against /dev/mem.

The offset of the object in this segment.

Symbol type.

Section number.

Storage class.

If the name is not found, both the n_value and n_type fields are set to o.
The nlist.h header file is automatically included by a.out.h for compatibility. However, do not
include a.out.h if you only need the information necessary to use the knlist subroutine. If
you do include a.out.h, follow the #include statement with the line:

#undef n name

Parameters
NList

NumberOfElements

Size

Return Values

Points to an array of nlist structures.

Specifies the number of structures in the array of nlist structures.

Specifies the size of each structure.

Upon successful completion, knlist returns a value of O. Otherwise, a value of -1 is returned
and the global variable errno is set to indicate the error.

Base Operating System Runtime 1-297

knlist

Error Code
The knlist subroutine fails when the following is true:

EFAULT The NUst parameter points outside the limit of the array of nlist structures.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The nlist subroutine.

1-298 Base Operating System Reference

13tol, ...

13tol or Itol3 Subroutine

Purpose

Library

Syntax

Converts between 3-byte integers and long integers.

Standard C Library (libc.a)

void 13tol (LongPointer, CharacterPointer, Number)
long * LongPointer,
char * CharacterPointer,
int Number,

void Itol3 (CharacterPointer, LongPointer, Number)
char * CharacterPointer,
long * LongPointer,
int Number,

Description
The 13tol subroutine converts a list of the number of 3-byte integers specified by the Number
parameter packed into a character string pointed to by the CharacterPointer parameter into
a list of long integers pOinted to by the LongPointer parameter.

The Itol3 subroutine performs the reverse conversion, from long integers (the LongPointer
parameter) to 3-byte integers (the CharacterPointer parameter).

These functions are useful for file system maintenance where the block numbers are 3 bytes
long.

Warning: The numerical values of the long integers are machine-dependent because of
possible differences in byte ordering.

Parameters
LongPointer

CharacterPointer

Number

Implementation Specifics

Specifies the address of a list of long integers.

Specifies the address of a list of 3-byte integers.

Specifies the number of list elements to convert.

These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The fs file format.

Base Operating System Runtime 1-299

Idahread

Idahread Subroutine

Purpose

Library

Syntax

Reads the archive header of a member of an archive file.

Object File Access Routine Library (libld.a)

#include <stdio.h>

#include <ar.h>

#include <filehdr.h>
#include <Idfcn.h>

int Idahread (IdPointer, ArchiveHeadefj
LDFILE *ldPointer,
ARCHDR * A rchive Reader,

Description
If TVPE(ldPointet) is the archive file magic number, the Idahread routine reads the archive
header of the common object file currently associated with IdPointer into the area of memory
beginning at ArchiveHeader.

Parameters
IdPointer Points to the LDFILE structure that was returned as the result of a

successful call to Idopen or Idaopen.

ArchiveHeader Points to a FILHDR structure.

Return Values
The Idahread subroutine returns SUCCESS or FAILURE.

Error Codes
The Idahread routine fails if TVPE(ldPointefj does not represent an archive file, or if it
cannot read the archive header.

Implementation Specifics
This subroutine is part of AI X 8ase Operating System (80S) Runtime.

Related Information

1-300

The Idfhread subroutine, Idlread, Idlinit, Idlitem subroutines, Idshread, Idnshread
subroutines, Idtbread subroutine, Idgetname subroutine.

Base Operating System Reference

Idclose, ...

Idclose or Idaclose Subroutine

Purpose

Library

Syntax

Closes a common object file.

Object File Access Routine Library (libld.a)

#include <stdio.h>
#include <filehdr.h>
#include <Idfcn.h>

int Idclose(/dPointetj
LDFILE *ldPointer;

int Idaclose(ldPointer)
LDFILE *ldPointer,

Description

Parameter

The Idopen and Idclose subroutines provide uniform access to both simple object files an~
object files that are members of archive files. Thus, an archive of common object files can be
processed as if it were a series of simple common object files.

If TYPE(ldPointet) is the magic number of an archive file, and if there are any more files in
the archive, the Idclose subroutine reinitializes OFFSET(ldPointer) to the file address of the
next archive member and returns FAILURE. The Idfile structure is prepared for a
subsequent Idopen.

If TYPE(ldPointet) does not represent an archive file, the Idclose subroutine closes the file
and frees the memory allocated to the Idfile structure associated with IdPointer.

The Idaclose subroutine closes the file and frees the memory allocated to the Idfile
structure associated with IdPointer regardless of the value of TYPE (ldPointer).

IdPointer Pointer to the LDFILE structure that was returned as the result of a
successful call to Idopen or Idaopen.

Return Values
The Idclose subroutine returns SUCCESS or FAILURE.

The Idaclose subroutine always returns SUCCESS, and is often used in conjunction with
the Idaopen subroutine.

Error Code
The Idclose subroutine returns FAILURE if there are more files to archive.

Base Operating System Runtime 1-301

Idclose, ...

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The Idopen, Idaopen subroutines.

1-302 Base Operating System Reference

Idfhread

Idfhread Subroutine

Purpose

Library

Syntax

Reads the file header of a common object file.

Object File Access Routine Library (libld.a)

#include <stdio.h>
#include <filehdr.h>
#include ddfcn.h>

int Idfhread (ldPointer, FileHeader)
LDFILE * IdPointer;
FILHDR *FileHeader;

Description
The Idfhread subroutine reads the file header of the common object file currently associated
with IdPointer into the area of memory beginning at FileHeader.

Parameters
IdPointer Pointer to the LDFILE structure that was returned as the result of a

successful call to Idopen or Idaopen.

FileHeader Pointer to a FILHDR structure.

Return Values
The Idfhread subroutine returns SUCCESS or FAILURE.

Error Codes
The Idfhread subroutine fails if if it cannot read the file header.

Note: In most cases, the use of Idfhread can be avoided by using the macro
header(ldPointery defined in Idfcn.h. The information in any field or fieldname of
the file header may be accessed using header (dPointery field name.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The Idahread subroutine,ldlread, Idlinit, Idlitem subroutines, Idshread, Idnshread
subroutines, Idtbread subroutine, Idgetname subroutine.

Base Operating System Runtime 1-303

Idgetname

Idgetname Subroutine

Purpose

Library

Syntax

Retrieves symbol name for common object file symbol table entry.

Object File Access Routine Library (libld.a)

#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include ddfcn.h>

char *Idgetname (ldPointer, Symbol)
LDFILE *ldPointer;
SYMENT * Symbol;

Description
The Idgetname subroutine returns a pointer to the name associated with Symbol as a string.
The string is in a static buffer local to Idgetname that is overwritten by each call to
Idgetname, and therefore, must be copied by the caller if the name is to be saved.

The common object file format handles arbitrary length Symbol names with the addition of a
string table. The Idgetname subroutine returns the symbol name associated with a symbol
table entry for an XCOFF-format object file.

Parameters
IdPointer Points to the LDFILE structure that was returned as the result of a

successful call to Idopen or Idaopen.

Symbol Points to an initialized SYMENT structure.

Error Codes

1-304

The Idgetname subroutine returns NULL (defined in the stdio.h file) for aCOFF-format
object file if the name cannot be retrieved. This situation can occur:

if the string table cannot be found,

if not enough memory can be allocated for the string table,

if the string table appears not to be a string table (for example, if an auxiliary entry is handed
to Idgetname that looks like a reference to a name in a non-existent string table), or

if the name's offset into the string table is past the end of the string table.

Typically, the Idgetname subroutine is called immediately after a successful call to the
Idtbread subroutine to retrieve the name associated with the Symbol table entry filled by the
Idtbread subroutine.

Base Operating System Reference

Idgetname

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The Idahread subroutine, Idfhread subroutine, Idlread, Idlinit, Idlitem subroutines,
Idshread, Idnshread subroutines, Idtbread subroutine.

Base Operating System Runtime 1-305

Idlread, ...

Idlread, Idlinit, or Idlitem Subroutine

Purpose

Library

Syntax

Manipulates line number entries of a common object file function.

Object File Access Routine Library (libld.a)

#include <stdio.h>
#include <filehdr.h>
#include dinenum.h>
#include ddfcn.h>

int Idlread (ldPointer, LineNumber, LineEntry)
LDFILE *ldPointer;
long Functionlndex;
unsigned short LineNumber;
LlNENO LineEntry;

int Idlinit (ldPointer, Functionlndex)
LDFILE *ldPointer,
long Functionlndex;

int Idlitem (ldPointer, LineNumber, LineEntry)
LDFILE *ldPointer,
unsigned short LineNumber;
LlNENO LineEntry,

Description
The Idlread subroutine searches the line number entries of the common object file currently
associated with IdPointer. The Idlread subroutine begins its search with the line number
entry for the beginning of a function and confines its search to the line numbers associated
with a single function. The function is identified by Function Index, the index of its entry in the
object file symbol table. The Idlread subroutine reads the entry with the smallest line
number equal to or greater than LineNumber into the memory beginning at Line En try.

The Idlinit subroutine and Idlitem subroutine together perform exactly the same function as
the Idlread routine. After an initial call to Idlread or Idlinit, Idlitem may be used to retrieve
a series of line number entries associated with a single function. The Idlinit subroutine
simply locates the line number entries for the function identified by Function Index. The
Idlitem subroutine finds and reads the entry with the smallest line number equal to or
greater than LineNumber into the memory beginning at LineEntry.

Parameters
IdPointer Points to the LDFILE structure that was returned as the result of a

successful call to Idopen or Idaopen.

LineNumber Specifies the index of the first LineNumberentry to be read.

LineEntry Points to a LlNENO structure.

Functionlndex Points to the symbol table index of a function.

1-306 Base Operating System Reference

Idlread, ...

Return Values
The Idlread, Idlinit, and Idlitem subroutines return SUCCESS or FAILURE.

Error Codes
The Idlread subroutine fails if there are no line number entries in the object file, if
Functionlndex does not index a function entry in the symbol table, or if it finds no line
number equal to or greater than LineNumber. The Idlinit subroutine fails if there are no line
number entries in the object file or if Functionlndex does not index a function entry in the
symbol table. The Idlitem subroutine fails if it finds no line number equal to or greater than
LineNumber.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The Idahread subroutine, Idfhread subroutine, Idshread, Idnshread subroutines, Idtbread
subroutine, Idgetname subroutine.

Base Operating System Runtime 1-307

Idlseek, ...

Idlseek or Idnlseek Subroutine

Purpose

Library

Syntax

Seeks to line number entries of a section of a common object file.

Object File Access Routine Library (libld.a)

#include <stdio.h>
#include <filehdr.h>
#include ddfcn.h>

int Idlseek (ldPointer, Section Index)
LDFILE * IdPointer,
unsigned short Section Index;

int Idnlseek (/dPointer, SectionName)
LDFILE * IdPointer,
char * SectionName;

Description
The Idlseek subroutine seeks to the line number entries of the section specified by
Sectionlndex of the common object file currently associated with IdPointer. The first section
has an index of 1 .

The Idnlseek subroutine seeks to the line number entries of the section specified by
SectionName.

Parameters
IdPointer Points to the LDFILE structure that was returned as the result of a

successful call to Idopen or Idaopen.

Section Index

Section Name

Specifies the index of the section whose line number entries are to
be seeked to.

Specifies the name of the section whose line number entries are to
be seeked to.

Return Values
The Idlseek and Idnlseek subroutines return SUCCESS or FAILURE.

Error Codes

1-308

The Idlseek subroutine fails if Section Index is greater than the number of sections in the
object file; the Idnlseek subroutine fails if there is no section name corresponding with
SectionName. Either function fails if the specified section has no line number entries or if it
cannot seek to the specified line number entries.

Base Operating System Reference

Idlseek, ...

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The Idohseek subroutine, Idsseek, Idnsseek subroutines, Idtbseek subroutine, Idrseek,
Idnrseek subroutines.

Base Operating System Runtime 1-309

Idohseek

Idohseek Subroutine

Purpose

Library

Syntax

Seeks to the optional file header of a common object file.

Object File Access Routine Library (libld.a)

#include <stdio.h>
#include <filehdr.h>
#include <Idfcn.h>

int Idohseek (ldPointery
LDFILE * IdPointer,

Description

Parameter

The Idohseek subroutine seeks to the optional file header of the common object file
currently associated with IdPointer.

IdPointer Points to the LDFILE structure that was returned as the result of a
successful call to Idopen or Idaopen.

Return Values
The Idohseek subroutine returns SUCCESS or FAILURE.

Error Codes
The Idohseek subroutine fails if the object file has no optional header or if it cannot seek to
the optional header.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-310

The Idsseek, Idnsseek subroutines, Idtbseek subroutine, Idrseek,ldnrseek subroutines,
Idlseek, Idnlseek subroutines.

Base Operating System Reference

Idopen, ...

Idopen or Idaopen Subroutine

Purpose

Library

Syntax

Opens a common object file for reading.

Object File Access Routine Library (libld.a)

#include <stdio.h>
#include <filehdr.h>
#include <Idfcn.h>

Idfile *ldopen(FileName, IdPointery
char * FileName;
LDFILE * IdPointer,

LDFILE *ldaopen(FileName, IdPointery
char * FileName;
LDFILE * IdPointer,

Description
The Idopen subroutine and Idclose subroutine provide uniform access to both simple object
files and object files that are members of archive files. Thus, an archive of common object
files can be processed as if it were a series of simple common object files.

If TYPE(ldPointer) has the value NULL, the Idopen subroutine opens FileName and allocate
and initialize the Idfile structure, and returns a pointer to the structure to the calling program.

If IdPointer is valid and if TYPE(ldPointer) is the archive magic number, the Idopen
subroutine reinitializes the Idfile structure for the next archive member of FileName.

The Idopen and Idclose subroutines are designed to work in concert. The Idclose
subroutine returns FAILURE only when TYPE(ldPointer) is the archive magic number and
there is another file in the archive to be processed. Only then should Idopen be called with
. the current value of IdPointer. In all other cases, in particular whenever a new FileName is
opened, Idopen should be called with a NULL IdPointer argument.

Base Operating System Runtime 1-311

Idopen, ...

The following is an example for the use of Idopen and Idclose:

/* for each FileName to be processed */

ldPointer NULL;
do

if ((ldPointer Idopen(FileName, ldPointer)) != NULL)

/* check magic number */
/* process the file */

while(ldclose(ldPointer) == FAILURE);

If the value of IdPointer is not NULL, the Idaopen subroutine opens FileName again and
allocate and initializes a new Idfile structure, copying the TYPE, OFFSET, and HEADER
fields from IdPointer. The Idaopen subroutine returns a pointer to the new Idfile structure.
This new pointer is independent of the old pointer, IdPointer. The two pointers may be used
concurrently to read separate parts of the object file. For example, one pointer may be used
to step sequentially through the relocation information, while the other is used to read
indexed symbol table entries.

Parameters
IdPointer Pointer to the LDFILE structure.

FileName Specifies the file name of an object file or archive of object files.

Error Codes
Both Idopen and Idaopen open FileName for reading. Both functions return NULL if
FileName cannot be opened, or if memory for the Idfile structure cannot be allocated. A
successful open does not insure that the given file is a common object file or an archived
object file.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The Idclose, Idaclose subroutines.

The Extended Common Object File Format (XCOFF).

1-312 Base Operating System Reference

Idrseek, ...

Idrseek or Idnrseek Subroutine

Purpose

Library

Syntax

Seeks to relocation entries of a section of a common object file.

Object File Access Routine Library (libld.a)

#include <stdio.h>
#include <filehdr.h>
#include <Idfcn.h>

int Idrseek (ldPointer, Section Index)
Idfile *ldPointer;
unsigned short Section Index;

int Idnrseek (ldPointer, SectionName)
Idfile * IdPointer;
char *SectionName;

Description
The Idrseek subroutine seeks to the relocation entries of the section specified by

Sectionlndex of the common object file currently associated with IdPointer.

The Idnrseek subroutine seeks to the relocation entries of the section specified by
Section Name.

Parameters
IdPointer

Section Index

Section Name

Return Values

Points to the LDFILE structure that was returned as the result of a
successful call to Idopen or Idaopen.

Specifies an index of the section whose relocation entries are to be
seeked to.

Specifies the name of the section whose relocation entries are to be
seeked to.

The Idrseek and Idnrseek subroutines return SUCCESS or FAILURE.

Error Codes
The Idrseek subroutine fails if Section Index is greater than the number of sections in the
object file; Idnrseek fails if there is no section name corresponding with *SectionName.
Either function fails if the specified section has no relocation entries or if it cannot seek to the
specified relocation entries. Note that the first section has an index of 1.

Base Operating System Runtime 1-313

Idrseek, ...

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-314

The Idohseek subroutine, Idtbseek subroutine, Idsseek, Idnsseek subroutines, Idlseek,
Idnlseek subroutines.

f.

Base Operating· System Reference

Idshread, ...

Idshread or Idnshread Subroutine

Purpose

Library

Syntax

Reads an indexed/named section header of a common object file.

Object File Access Routine Library (libld.a)

#include <stdio.h>
#include <filehdr.h>
#include <Idfcn.h>
#include <Idfcn.h>

int Idshread (IdPointer, Section Index, SectionHead)
LDFILE *ldPointer;
unsigned short Section Index;
SCNHDR *SectionHead;

int Idnshread (ldPointer, Section Name, SectionHead)
LDFILE *ldPointer,
char *SectionName;
SCNHDR *SectionHead;

Description
The Idshread subroutine reads the section header specified by Sectionlndex of the common
object file currently associated with IdPointer into the area of memory beginning at
SectionHead.

The Idnshread subroutine reads the section header specified by Section Name into the area
of memory beginning at Section Head.

Parameters
IdPointer

Section Index

Section Head

Section Name

Return Values

Points to the LDFILE structure that was returned as the result of a
successful call to Idopen or Idaopen.

Specifies the index of the section header to be read.

Specifies the name of the section header to be read.

Points to an SCNHDR structure.

The Idshread and Idnshread subroutines return SUCCESS or FAILURE.

Error Codes
The Idshread subroutine fails if Section Index is greater than the number of sections in the
object file; the Idnshread subroutine fails if there is no section name corresponding with
SectionName. Either function fails if it cannot read the specified section header. Note that
the first section has an index of 1 .

Base Operating System Runtime 1-315

Idshread,. ..

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-316

The Idahread subroutine, Idfhread subroutine, Idlread, Idlinit, Idlitem subroutines,
Idtbread subroutine, Idgetname subroutine.

Base Operating System Reference

Idsseek, ...

Idsseek or Idnsseek Subroutine

Purpose

Library

Syntax

Seeks to an indexed/named section of a common object file.

Object File Access Routine Library (Iibld.a)

#include <stdio.h>
#include <filehdr.h>
#include <Idfcn.h>

int Idsseek (ldPointer, Section Index)
LDFILE * IdPointer,
unsigned short Sectionlndex;

int Idnsseek (ldPointer, SectionName)
LDFILE * IdPointer;
char *SectionName;

Description
The Idsseek subroutine seeks to the section specified by Sectionlndex of the common
object file currently associated with IdPointer.

The Idnsseek subroutine seeks to the section specified by SectionName.

Parameters
IdPointer

Section Index

SectionName

Return Values

Points to the LDFILE structure that was returned as the result of a
successful call to Idopen or Idaopen.

Specifies the index of the section whose line number entries are to
be seeked to.

Specifies the name of the section whose line number entries are to
be see ked to.

The Idsseek and Idnsseek subroutines return SUCCESS or FAILURE.

Error Codes
The Idsseek subroutine fails if Section Index is greater than the number of sections in the
object file; Idnsseek fails if there is no section name corresponding with SectionName.
Either function fails if there is no section data for the specified section or if it cannot seek to
the specified section. Note that the first section has an index of 1.

Base Operating System Runtime 1-317

Idsseek, ...

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-318

The Idohseek subroutines, Idtbseek subroutine, Idrseek, Idnrseek subroutines, Idlseek,
Idnlseek subroutines.

Base Operating System Reference

Idtbindex

Idtbindex Subroutine

Purpose

Library

Syntax

Computes the index of a symbol table entry of a common object file.

Object File Access Routine Library (libld.a)

#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <Idfcn.h>

long Idtbindex (ldPointery
LDFILE * IdPointer,

Description

Parameter

The Idtbindex subroutine returns the (LONG) index of the symbol table entry at the current
position of the common object file associated with IdPointer.

The index returned by Idtbindex may be used in subsequent calls to Idtbread. However,
since Idtbindex returns the index of the symbol table entry that begins at the current
position of the object file, if Idtbindex is called immediately after a particular symbol table
entry has been read, it returns the index of the next entry.

IdPointer Points to the LDFILE structure that was returned as a result of a successful
call to Idopen or Idaopen.

Error Codes
The Idtbindex routine fails if there are no symbols in the object file, or if the object file is not
positioned at the beginning of a symbol table entry. Note that the first symbol in the symbol
table has an index of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The Idtbseek subroutine, Idtbread subroutine.

Base Operating System Runtime 1-319

Idtbread

Idtbread Subroutine

Purpose

Library

Syntax

Reads an indexed symbol table entry ofa common object file.

Object File Access Routine Library (libld.a)

#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <Idfcn.h>

int Idtbread (ldPointer, Symbollndex, Symbo~
LDFILE * IdPointer;
long Symbollndex;
SYMENT *Symbol;

Description
The Idtbread subroutine reads the symbol table entry specified by Symbollndex of the
common object file currently associated with IdPointer into the area of memory beginning at
Symbol.

Parameters
IdPointer Points to the LDFILE structure that was returned as the result of a

successful call to Idopen or Idaopen.

Symbollndex Specifies the index of the symbol table entry to be read.

Symbol Points to a SYMENT structure.

Return Values
The Idtbread subroutine returns SUCCESS or FAILURE.

Error Codes
The Idtbread subroutine fails if Symbollndex is greater than or equal to number of symbols
in the object file, or if it cannot read the specified symbol table entry. Note that the first
symbol in the symbol table has an index of O.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-320

The Idahread subroutine, Idfhread subroutine, Idlread, Idlinit, Idlitem subroutines,
Idshread, Idnshread subroutines, Idgetname subroutine.

Base Operating System Reference

Idtbseek

Idtbseek Subroutine

Purpose

Library

Syntax

Seeks to the symbol table of a common object file.

Object File Access Routine Library (libld.a)

#include <stdio.h>
#include <filehdr.h>
#include <Idfcn.h>

int Idtbseek (IdPointery
LDFILE * IdPointer;

Description

Parameter

The Idtbseek subroutine seeks to the symbol table of the common object file currently
associated with IdPointer.

IdPointer Points to the LDFILE structure that was returned as the result of a
successful call to Idopen or Idaopen.

Return Values
The Idtbseek subroutine returns SUCCESS or FAILURE.

Error Codes
The Idtbseek subroutine fails if the symbol table has been stripped from the object file, or if
it cannot seek to the symbol table.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The Idohseek subroutine, Idrseek, Idnrseek subroutines, Idsseek, Idnsseek subroutines.
Idlseek, Idnlseek subroutines.

Base Operating System Runtime 1-321

Igamma, ...

Igamma or gamma Subroutine

Purpose

Library

Syntax

Computes the natural logarithm of the gamma function. The subroutine names Igamma and
gamma are different names for the same function.

IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

#include <math.h>

extern int signgam;

double Igamma (x)
double x;

double gamma (x)
double x;

Description

Parameter

The Igamma subroutine returns the natura/logarithm of the absolute value of the gamma
function of the x parameter, where the gamma function of x is defined as:

G(x) = integral [0 to INF] of «e**(-t) * t**(x-l) dt)

The sign of Igamma of x is stored in the external integer variable signgam. The x
parameter may not be a non-positive integer.

Do not use the expression:

g = exp(lgaroma(x)) * signgam

to compute g = G (x). Instead, use a sequence such as:

19 = 19aroma(x);
g = exp(lg) * signgam:

because the variable signgam can be relied on only after Igamma has finished execution.

Note: Compile any routine that uses subroutines from the libm.a library with the -1m flag.
To compile the Igamma.c file, for example:

cc 19amma.c -1m

x Specifies some double-precision floating-point value.

Error Codes

1-322

When using libm.a (-1m):

For non-positive integer arguments, the Igamma function returns NaNQ and sets the
division-by-zero bit in the floating-point exception status.

Base Operating System Reference

Igamma, ...

If the correct value overflows, Igamma returns HUGE_VAL. If the correct value underflows,
Igamma returns O.

When using libmsaa.a (-Imsaa):

For non-positive integer arguments, the Igamma function returns HUGE_VAL, and sets the
global variable errno is set to EDOM. A message indicating SING error is printed on the
standard error output.

If the correct value overflows, Igamma returns HUGE_VAL, and sets the global variable
errno is set to ERANGE.

These error-handling procedures may be changed with the matherr subroutine when using
libmsaa.a (-Imsaa).

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The exp, expm1, log, log10, log1p, pow subroutines, matherr subroutine.

Base Operating System Runtime 1-323

link

link Subroutine

Purpose

Library

Syntax

Creates an additional directory entry for an existing file.

Standard C Library (libc.a)

int link (Path 1, Path2)
char * Path 1, * Path2;

Description
The link subroutine creates an additional hard link (directory entry) for an existing file. Both
the old and the new link share equal access rights to the underlying object.

Parameters
Path 1 Points to the path name of an existing file.

Path2 Points to the path name for the new directory entry to be created.

If Network File System is installed on your system, these paths can cross into another node.

With hard links, both the Path 1 and Path2 parameters must reside on the same file sYstem.
Creating links to directories requires root user authority.

Return Values
Upon successful completion, the link subroutine returns a value of O. Otherwise, a value of
-1 is returned, and the global variable errno is set to indicate the error.

Error Codes

1-324

The link subroutine fails if one or more of the following are true:

ENOENT

EEXIST

EPERM

EXDEV

EACCES

EMLINK

EROFS

The file named by the Path 1 parameter does not exist.

The link named by the Path2 parameter already exists.

The file named by the Path 1 parameter is a directory and the
calling process does not have root user authority.

The link named by the Path2 parameter and the file named by
the Path 1 parameter are on different file systems.

The requested link requires writing in a directory with a mode that
denies write permission.

The file already has the maximum number of links.

The requested link requires writing in a directory on a read-only
file system.

Base Operating System Reference

ENOSPC

EOQUOT

link

The directory in which the entry for the new link is being placed
cannot be extended because there is no space left on the file
system containing the directory.

The directory in which the entry for the new link is being placed
cannot be extended because the user's quota of disk blocks on
the file system containing the directory has been exhausted.

The link subroutine can also fail if additional errors on page A-1 occur.

If Network File System is installed on the system, the link system call can also fail if the
following is true:

ETIMEOOUT The connection timed out.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The unlink subroutine.

The link command, In command, rm command.

Base Operating System Runtime 1-325

load

load Subroutine

Purpose

Syntax

Loads and binds an object module into the current process.

int (*Ioad (FilePath, Flags, LibraryPath» ()
char * FilePath;
uint Flags;
char * LibraryPath;

Description

1-326

The load subroutine loads the object file for the program into the calling process. Unlike the
exec subroutine, load does not replace the current program with the new one. Instead, it
loads the new program into the process private segment at the current break value and the
break value is updated to point past the new program.

The exec subroutine is similar to the load subroutine, except that exec does not have an
explicit library path parameter; it has only the USPATH environment variable. Also, USPATH
is ignored when the exec'd program has more privilege than the caller, for example, in the
case of an suid program.

If the calling process later uses the unload subroutine to unload the object file, once the file
is loaded, the space is unusable by the process except through the load subroutine. If the
kernel finds an unused space created by a previous unload, rather than load the program at
the break value, it loads the program into this unused space. Space for loaded programs is
managed by the kernel and not by any user level storage management routine.

A large application can be split up into one or more object files in one of two ways that
allows execution within the same process. The first way is to create each of the application's
object files separately and use load to explicitly load an object when it is needed. The other
way is to specify the relationship between the object files when they are created by defining
imported and exported symbols.

Object files can import symbols from other object files. Whenever symbols are imported from
one or more other object files, these object files are automatically loaded to resolve the
symbol references if the required object files are not already loaded, and if the imported
symbols are not specified as "deferred resolution". These object files can be archive
members in libraries or separate object files and can have either "shared" or "private" object
file characteristics that control how and where they are loaded.

Shared object files (typically members of a shared library archive) are loaded into the shared
library region, when their access permissions are such that sharing is acceptable. Shared
object files without the required permissions for sharing and private object files are loaded
into the process private region.

When the loader resolves a symbol it uses the filename recorded with that symbol to find the
object file that exports the symbol. If the file name contains any"/" characters, it is used
directly and must name an appropriate object file. However, if the filename is a basename
(contains no "/" characters), the loader searches the directories specified in the default
library path for an object file with that basename.

The library path is a string containing one or more directory path names separated by a
colon. If the basename is not found the search continues, using the library path specfied in

Base Operating System Reference

load

the object file containing the symbol being resolved (normally the library path specified to the
Id command that created the object file). The first instance of the basename found is used.
An error occurs if this object file cannot be loaded or does not export a definition of the
symbol being resolved.

The default library path may be specified using the LibraryPath parameter. If not explicitly
set, the default library path may be obtained fro the LlBPATH environment variable or from
the object file specified by the FilePath parameter.

Programs loaded by this subroutine are automatically unloaded when the process terminates
or when exec is executed. They are explicitly unloaded by calling the unload subroutine.

Parameters
* FilePath A pointer to the name of the object file to be loaded. If the FilePath name

contains no "/" symbols, it is treated as a basename, and should be in one
of the directories listed in the library path.

The library path is either the value of LibraryPath (if not NULL), or the value
of LlBPATH (if set). If no library path is provided, the object file should be in
the current directory.

If FilePath is not a basename (if it contains at least one "/" character), the
name is used as it is, and no library path searches are performed to locate
the object file.

Flags Used to modify the behaviour of the load service as follows (see the Idr.h
file):

LibraryPath

The typical value for loading modules.

L_NOAUTODEFER -Specifies that any unresolved imports
(designated for deferred resolution) must be explicitly
resolved by use of the loadbind subroutine. This allows
unresolved imports to be explicitly resolved at a later time
with a specified object module. If this flag is not specified,
unresolved imports (marked for deferred resolution) are
resolved at the earliest opportunity when any module is
loaded that has exported symbols matching unresolved
imports.

A pointer to a character string that specifies the default library search path.

If LibraryPath is NULL and LlBPATH is set, the LlBPATH value is used as
the default load path. If neither default library path option is provided, the
library path specified in the loader section of the object file specified in
FilePath is used as the default library path.

If the object file is not in LibraryPath or LlBPATH (if LibraryPath was NULL),
then the library path specified in the loader section of the object file
importing the symbol is used, to locate the object file exporting the required
symbol. The library path in the importing object file was specified when the
object file was link edited (by the Id command).

The library path search is not performed when either a relative or an
absolute pathname is specified for the object file exporting the symbol.

Base Operating System Runtime 1-327

load

Return Values
Upon successful completion, the load subroutine returns the pointer to function for the main
entry point of the program.

Error Codes
If the load subroutine fails, a NULL pointer is returned, the program is not loaded, and errno
is set to indicate the error. The load subroutine fails if one or more of the following are true
of an object file to be explicitly or automatically loaded:

EACCES

EINVAL

ELOOP

ENOEXEC

ENOMEM

ETXTBSY

The program file is not an ordinary file, or the mode of the program file
denies execution permission, or search permission is denied on a
component of the path prefix.

The program file has a valid magic number in its header, but the header is
damaged or is incorrect for the machine on which the file is to be run.

Too many symbolic links were encountered in translating the pathname.

An error occurred when loading or resolving symbols for the specified object
file. This can be due to an attempt to load an object file with an invalid
XCOFF header, a failure to resolve symbols that were not specified as
"deferred resolution" or several other load time related problems. The
loadquery subroutine can be used to return more information about the
load failure.

The program requires more memory than is allowed by the system-imposed
maximum.

The program file is currently open for writing by some process.

ENAMETOOLONG

ENOENT

ENOTDIR

ESTALE

A component of a path name exceeded 255 characters, or an entire path
name exceeded 1023 characters.

A component of the path prefix does not exist, or the path name is NULL.

A component of the path prefix is not a directory.

The process's root or current directory is located in a virtual file system that
has been unmounted.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Inform.ation
The Id command.

The exec subroutine, unload subroutine, Idbind subroutine, loadquery subroutine.

1~328 Base Operating System Reference

loadbind

loadbind Subroutine

Purpose

Syntax

Provides specific runtime resolution of a module's deferred symbols.

int loadbind{Flag, ExportPointer, ImportPointery
int Flag;
void * ExportPointer, * ImportPointer,

Description
The loadbind subroutine controls the runtime resolution of a previously loaded object
module's unresolved imported symbols.

The load bind subroutine is used when the following occurs: two modules are loaded.
Module A, an object module loaded at runtime with the load subroutine, has designated that
some of its imported symbols be resolved at a later time. Module B contains exported
symbols to resolve module A's unresolved imports.

To keep module A's imported symbols from being resolved until the load bind service is
called, you can specify the load subroutine flag, L_NOAUTODEFER, when loading module
A.

Parameters
Flag

ExporlPointer

ImportPointer

Currently not used.

Set to the function pointer returned by the load subroutine when
module B was loaded.

Set to the function pointer returned by the load subroutine when
module A was loaded.

The ImportPointer or ExporlPointer parameters may also be set to any exported static data
area symbol or function pointer contained in the associated module. This would typically be
the function pOinter returned from the load of the specified module.

Return Values
A 0 is returned if the loadbind subroutine is successful.

Error Codes
A -1 is returned if an error is detected, with the errno global variable set to an associated
error code:

EINVAL

ENOMEM

Either the ImportPointer or ExporlPointer is not valid (the pointer to
ExporlPointer or ImportPointer does not correspond to a loaded prog ram
module or library).

The program requires more memory than allowed by the system-imposed
maximum.

After an error is returned by the loadbind subroutine, you may also use the loadquery
subroutine to obtain additional information about the load bind error.

Base Operating System Runtime 1-329

loadbind

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The load subroutine, unload subroutine, loadquery subroutine.

The Id command.

1-330 Base Operating System Reference

loadquery

loadquery Subroutine

Purpose

Syntax

Returns error information from the load subroutine or exec subroutine; also provides a list of
object files loaded for the current process.

int loadquery(Flags, Buffer, BufferLength)
int Flags;
void * Buffer,
unsigned int BufferLength;

Description
The loadquery subroutine obtains detailed information about an error reported on the last
load subroutine or exec subroutine executed by a calling process. The loadquery
subroutine may also be used to obtain a list of object file names for all object files that have
been loaded for the current process.

Parameters
Buffer

BufferLength

Flags

Points to a Buffer in which to store error message or object file
information.

Specifies the number of bytes available in Buffer.

Specifies the action of the loadquery function as follows:

L_GETINFO - Returns a list of all object files loaded for the current
process, and stores the list in Buffer. The object file information is
contained in a sequence of LD _IN FO structures as defined in the
sys/ldr.h header file. Each structure contains the module location in
virtual memory and the path name that was used to load it into memory.
The file descriptor field in the LD_INFO structure is not filled in by this
function.

L_GETMESSAGES - Returns detailed error information describing the
failure of a previously invoked load or exec function, and stores the error
message information in Buffer. Upon successful return from this function
the beginning of the Buffer contains an array of character pointers. Each
character pointer points to a string in the buffer containing a loader error
message. The character array ends with a NULL character pointer. Each
error message string consists of an ASCII message number followed by
zero or more characters of error-specific message data. Valid message
numbers are listed in the sys/ldr.h header file.

You can format the error messages returned by the L_GETMESSAGES
function and write them to standard error using the standard system
command letc/execerror as follows:

char *buffer[1024];
buffer[O] = "execerror";
buffer[l] = "name of program that failed to load";
loadquery(L GETMESSAGES, &buffer[2],sizeof buffer -8);
execvp("/et~/execerror",buffer);

Base Operating System Runtime 1-331

loadquery

This sample code causes the application to terminate after the messages
are written to standard error.

Return Values
Upon successful completion, loadquery returns the requested information in the caller's
buffer specified by the Buffer and BufferLength parameters.

Error Codes
The loadquery subroutine returns with a return code of -1 and the global variable errno is
set to one of the following when an error condition is detected:

ENOMEM

EINVAL

The caller's buffer specified by the Buffer and BufferLength parameters is
too small to return the information requested. When this occurs, the
information in the buffer is undefined.

The function specified in the Flags parameter is not valid or an error
occurred when accessing the caller's buffer.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The exec subroutine, load subroutine, unload subroutine, load bind subroutine.

The Id command.

1-332 Base Operating System Reference

localeconv

localeconv Subroutine

Purpose
Sets the locale dependent conventions of an object.

Library
Standard C Library (libc.a)

Syntax
#include <Iocale.h>
struct Iconv *Iocaleconv ()

Description
The localeconv subroutine sets the components of an object using the Iconv structure.
The Iconv structure contains values appropriate for the formatting of numeric quantities
(monetary and otherwise) according to the rules of the current locale.

The members of the structure with the type char * are strings, any of which (except
decimal_point) can point to a NULL string, to indicate that the value is not available in the
current locale or is of zero length. The members with type char are nonnegative numbers,
any of which can be CHAR_MAX to indicate that the value is not available in the current
locale. The members include the following:

char *decimal_point

char *thousands_sep

char *grouping

char *currency _symbol

char *mon_decimaLpoint

char *mon_grouping

char *positive_sign

The decimal-point character used to format
non-monetary quantities.

The character used to separate groups of digits to the
left of the decimal pOint in formatted non-monetary
quantities.

A string whose elements indicate the size of each
group of digits in formatted non-monetary quantities.

The international currency symbol applicable to the
current locale, left justified within a four-character
space-padded field. The character sequences are in
accordance with those specified in ISO 4217 Codes
for the Representation of Currency and Funds.

The local currency symbol applicable to the current
locale.

The decimal point used to format monetary quantities.

The separator for groups of digits to the left of the
decimal point in formatted monetary quantities.

A string whose elements indicate the size of each
group of digits in formatted monetary quantities.

The string used to indicate a nonnegative formatted
monetary quantity.

Base Operating System Runtime 1-333

localeconv

char *negative_sign The string used to indicate a negative formatted
monetary quantity.

The number of fractional digits (those to the right of
the decimal point) to be displayed in a formatted
monetary quantity.

Set to 1 or 0 if the currency_symbol respectively
precedes or succeeds the value for a nonnegative
formatted monetary quantity.

Set to 1 or 0 if the currency_symbol respectively is
or is not separated by a space from the value for a
nonnegative formatted monetary quantity.

Set to 1 or 0 if the currency_symbol respectively
precedes or succeeds the value for a negative
formatted monetary quantity.

Set to 1 or 0 if the currency_symbol respectively is
or is not separated by a space from the value for a
negative formatted monetary quantity.

Set to a value indicating the positioning of the
positive_sign for nonnegative formatted monetary
quantity.

Set to a value indicating the positioning of the
negative_sign for a negative formatted monetary
quantity.

The elements of grouping and mon_grouping are interpreted according to the following:

other

No further grouping is to be performed.

The previous element is to be repeatedly used for the remainder of the
digits.

The value is the number of digits that comprise the current group. The
next element is examined to determine the size of the next group of
digits to the left of the current group.

The value of p_sign_posn and n_sign_posn is interpreted according to the following:

o Parenthesis surround the quantity and currency_symbol.

1 The sign string precedes the quantity and currency_symbol.

2 The sign string succeeds the quantity and currency_symbol.

3 The sign string immediately precedes the currency_symbol.

4 The sign string immediately succeeds the currency_symbol.

Return Values

1-334

A pointer to the filled-in object is returned. The structure pointed to by the return value shall
not be modified by the program, but may be overwritten by a subsequent call to localeconv.

Base Operating System Reference

localeconv

In addition, calls to setlocale with categories LC_ALL, LC_MONETARY or LC_NUMERIC
may cause subsequent calls to localeconv to return different values based on the selection
of the locale.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The setlocale subroutine.

National Language Support Overview in General Programming Concepts.

Base Operating System Runtime 1-335

lockfx, ...

lockfx, lockf or flock Subroutine

Purpose

Library

Syntax

Controls open file descriptors.

Standard C Library (libc.a)

#include <fcntl.h>

int lockfx (FileDescriptor, Command, Argumen~
int FileDescriptor,
int Command;
struct flock * Argument;

#include <sys/lockf.h>

int lockf{ FileDescriptor, Request, Size)
int FileDescriptor,
int Request;
off_t Size;

#include <sys/file.h>

int flock{ FileDescriptor, Operation)
int FileDescriptor,
int Operation;

Description
The lockfx subroutine is used to lock and unlock sections of an open file. lockfx provides a
subset of locking function provided by the fcntl subroutine.

The lockf subroutine also locks and unlocks sections of an open file; however, its interface
is limited to setting only write (exclusive) locks.

Although the lockfx, lockf, flock, and fcntl interfaces are all different, the implementations
are fully integrated. Therefore, locks obtained from one subroutine are honored and
enforced by any of the lock subroutines.

Warning: Buffered I/O does not work properly when used with file locking. Do not use the
standard I/O package routines on files that are going to be locked.

A parameter to the lockfx subroutine that creates the lock determines whether it is a read
lock or a write lock.

The file descriptor on which a write loc~ is being placed must have been opened with write
access.

Parameters

1-336

File Descriptor A file descriptor returned by a successful open or fcntl subroutine,
identifying the file to which the lock is to be applied or removed.

Base Operating System Reference

Command

Argument

Request

Size

Operation

Return Values

lockfx, ...

One of the following constants for lockfx:

• F _SETLK: Sets or clears a file lock. The I_type field of the flock
structure indicates whether to establish a read or write lock, or to
remove either type of lock. If a read or write lock cannot be set, the
lockfx subroutine returns immediately with an error value of -1 .

• F _SETLKW: Performs the same function as F _SETLK except that
if a read or write lock is blocked by existing locks, the process
sleeps until the section of the file is free to be locked.

• F _GETLK: Gets the first lock that blocks the lock described in the
flock structure. If a lock is found, the retrieved information
overwrites the information in the flock structure. If no lock is found
that would prevent this lock from being created, the structure is
passed back unchanged except that the I_type field is set to
F _UNLCK.

A pointer to a structure of type flock, defined in the flock.h header file.

One of the following constants for lockf:

• F _ULOCK: Unlocks a previously locked region in the file.

• F _LOCK: Locks the region for exclusive use. This request causes
the calling process to sleep if the region overlaps a locked region,
and to resume when it is granted the lock.

• F _TEST: Tests to see if another process has already locked a
region. The lockf subroutine returns 0 if the region is unlocked. If
the region is locked, then -1 is returned and the global variable
errno is set to EACCES.

The number of bytes to be locked or unlocked for lockf. The region
starts at the current location in the open file and extends forward if
Size is positive and backward if Size is negative. If the Size parameter
is 0, the region starts at the current location and extends forward to
the maximum possible file size, including the unallocated space after
the end of the file.

One of the following constants for flock:

• LOCK_SH: Apply a shared lock.

• LOCK_EX: Apply an exclusive lock.

• LOCK_NB: Do not block when locking. This value can be logically
ORed with either LOCK_SH or LOCK_EX.

• LOCK_UN: Remove a lock.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and the global variable errno is set to indicate the error.

Base Operating System Runtime 1-337

lockfx, ...

Error Codes
The lockfx, lockf, and flock subroutines fail if one or more of the following are true:

EBADF

EINVAL

EDEADLK

ENOLCK

The FileDescriptor parameter is not a valid open file descriptor.

The request is not valid.

The lock is blocked by some lock from another process. Putting the calling
process to sleep while waiting for that lock to become free would cause a
deadlock.

The lock table is full. Too many regions are already locked.

The lockfx subroutine fails if one or more of the following are true:

EAGAIN

EAGAIN

The Command parameter is F _SETLK, the I_type field is F _RDLCK, and
the segment of the file to be locked is already write-locked by another
process.

The Command parameter is F _SETLK, the I_type field is F _WRLCK, and
the segment of a file to be locked is already read-locked or write-locked by
another process.

The lockf subroutine fails if the following is true:

EWOULDBLOCK The file is locked and the LOCK_NB option was specified.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

The flock subroutine locks and unlocks entire files. This is a limited interface maintained for
BSD compatibility, although its behavior differs from BSD in a few subtle ways. In order to
apply a shared lock, the file must be opened for reading, and to apply an exclusive lock, it
must be opened for writing. Also, locks are not inherited; therefore, a child process cannot
unlock a file locked by the parent process.

Related Information

1-338

The close subroutine, execve subroutine, fcntl subroutine, fork subroutine, open
subroutine.

The flock.h header file, sys/file.h header file.

Base Operating System Reference

Isearch, ...

Isearch or Ifind Subroutine

Purpose

Library

Syntax

Performs a linear search and update.

Standard C Library (libc.a)

void *Isearch (Key, Base, NumberOfElementsPointer, Width, ComparisonPointer)
void * Key, Base;
size_t Width, NumberOfElementsPointer,
int (ComparisonPointer) ();

void *Ifind (Key, Base,NumberOfElementsPointer, Width, ComparisonPointer)
void * Key, Base;
size_t Width, NumberOfElementsPointer,
int (ComparisonPointer) ();

Description
The Isearch subroutine performs a linear search.

The algorithm returns a pOinter to a table where data can be found. If the data is not in the
table, the program adds it at the end of the table.

The Ifind subroutine is identical to the Isearch subroutine, except that if the data is not
found, it is not added to the table. In this case, a NULL pointer is returned.

The pointers to the Key parameter and the element at the base of the table should be of type
pointer-to-element and cast to type pointer-to-character. The value returned should be cast
into type pointer-to-element.

The comparison function need not compare every byte; therefore, the elements can contain
arbitrary data in addition to the values being compared.

Warning: Undefined results can occur if there is not enough room in the table for the
Isearch subroutine to add a new item.

Parameters
Key Specifies the data to be sought in the table.

Base Points to the first element in the table.

NumberOfElementsPointer

Points to an integer containing the current number of elements in the table.
This integer is incremented if the data is added to the table.

Comparison Pointer

Specifies the name (that you supply) of the comparison function (strcmp,
for example). It is called with two parameters that point to the elements
being compared.

Base Operating System Runtime 1-339

Isearch, ...

Width Specifies the size of an element in bytes.

Return Values
The comparison function compares its parameters and return a value as follows:

• If the first parameter equals the second parameter, the Comparison Pointer parameter
returns a value of O.

• If the first parameter does not equal the second parameter, the ComparisonPointer
parameter returns a value of 1 .

Implementation Specifics
These subroutines are part of AIX 8ase Operating Systems (80S) Runtime.

Related Information

1-340

The bsearch subroutine, hsearch subroutine, tsearch subroutine, qsort subroutine.

Donald E. Knuth's The Art of Computer Programming, Volume 3, 6.1, Algorithm S. This book
was published in Reading, Massachusetts by Addison-Wesley, 1981.

Base Operating System Reference

Iseek

Iseek Subroutine

Purpose

Library

Syntax

Moves read-write file pointer.

Standard C Library (libc.a)

#include <sys/types.h>
#include <unistd.h>

off_t Iseek (FileDescritpor, Offset, Whence)
int FileDescriptor,
off_t Offset;
int Whence;

Description
The Iseek subroutine sets the file pointer for the open file specified by the FileDescriptor
parameter.

Parameters
FileDescriptor

Offset

Whence

Return Values

Specifies a file descriptor obtained from a successful open or fentl
subroutine.

Specifies a value, in bytes, that is used in conjunction with the Whence
parameter to set the file pointer. A negative value causes seeking in the
reverse direction. The resulting file position may also be negative.

Specifies how to interpret the Offset in setting the file pointer associated
with the FileDescriptor parameter, as follows:

SEEK_SET Sets the file pointer to the value of the Offset parameter.

SEEK_CUR Sets the file pointer to its current location plus the value
of the Offset parameter.

SEEK_END Sets the file pointer to the size of the file plus the value of
the Offset parameter.

Upon successful completion, the resulting pointer location, measured in bytes from the
beginning of the file, is returned. If the Iseek system call fails, a value of -1 is returned and
the global variable errno is set to indicate the error.

Error Codes
The Iseek subroutine fails and the file pointer remains unchanged if any of the following are
true:

EBADF

ESPIPE

The FileDescriptor parameter is not an open file descriptor.

The FileDescriptor parameter is associated with a pipe (FIFO) or a socket.

Base Operating System Runtime 1-341

Iseek

EINVAL

EINVAL

The Whence parameter is an invalid value.

The resulting offset would be negative.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-342

The fcntl subroutine, fseek, rewind, ftell, fgetpos, fsetpos subroutines, open subroutine,
read subroutine, write subroutine.

Base Operating System Reference,

Ivm_changelv

Ivm_changelv Subroutine

Purpose

Library

Syntax

Changes the attributes of a logical volume.

Logical Volume Manager Library (liblvm.a)

#include <Ivm.h>

int Ivm_changelv (Change/v)
struct changelv * Change/v;

Description
The Ivm_changelv subroutine changes the attributes of an existing logical volume.

The changelv structure pointed to by the Change/v parameter is defined in the Ivm.h
header file and contains the following members:

struct changelv{

}

struct lv_id lv_id;
char *lvname;
long maxsize;
long permissions;
long bb_relocation;
long mirror_policy;
long write_verify;
long mirwrt_consist;

struct lv_id{
struct unique_id vg_id;
long minor_num;}

The Iv_id specifies the logical volume to be changed. The Ivname specifies either the full
path name of the logical volume, or a single file name that must reside in the /dev directory,
(Le., rhd1). This field must be a null-terminated string of from 1 to LVM_NAMESIZ bytes,
including the null byte, and must be the name of a raw/character device. If a raw/character
device is not specified for the Iv name field, the Logical Volume Manager will add an 'r' to
the file name in order to have a raw device name. If there is no raw device entry for this
name, the Logical Volume Manager will return the LVM_NOTCHARDEV error code. The
maxsize field specifies the new maximum size of the logical volume in number of logical
partitions (1 - LVM_MAXLPS). A change in the maxsize field does not change the existing
size of the logical volume. The permissions field specifies the permission assigned to the
logical volume, either read only, or read/write, and the bb_relocation field specifies if bad
block relocation is desired. The mirror_policy field specifies how the copies of the logical
partition should be written. This field can be either LVM_SEQUENTIAL or LVM_PARALLEL.
The write_verify field specifies if writes to the logical volume should be checked for
successful completion. The values for this field are either LVM_ VERIFY or
LVM_NOVERIFY. Any other fields in the parameter list that are not to be changed should
either contain a zero (0), or be set to null if they are pointers.

Base Operating System Runtime 1-343

Ivm _ changelv

Parameter

The mirwrt_consist field tells whether mirror write consistency recovery will be performed
for this logical volume. The Logical Volume Manger always insures data consistency among
mirrored copies of a logical volume during normal I/O processing. For every write to a logical
volume, the Logical Volume Manager generates a write request for every mirror copy. A
problem arises if the system crashes in the middle of processing a mirrored write (before all
copies are written). If mirror write consistency recovery is requested for a logical volume, the
Logical Volume Manager keeps additional information to allow recovery of these inconsistent
mirrors. Mirror write consistency recovery should be performed for most mirrored logical
volumes. Logical volumes, such as the page space, that do not use the existing data when
the volume group is re-varied on do not need this protection.

The logical volume must not be open when trying to change the permissions,
bb_relocation, write_verify, mirror_policy, or mirwrt_consist fields. If the volume group
that contains the logical volume to be changed is not on-line, an error will be returned.

Changelv A pointer to the changelv structure.

Return Value
Upon successful completion, a value of 0 is returned.

Error Codes

1-344

If the change Iv subroutine fails, then it returns one of the following values.

LVM_MAPFSHMAT

LVM_MAPFRDWR

LVM_ALLOCERR

LVM_NOTCHARDEV

LVM_INVALlD_MIN_NUM

Base Operating System Reference

A routine that requires a volume group to be on-line has
encountered one that is off-line.

A field in the changelv structure is invalid or the pOinter to
the changelv structure is invalid.

The mapped file, which contains a copy of the volume
group descriptor area used for making changes to the
volume group, could not be opened.

An error occurred while trying to attach the mapped file.

An error occurred while trying to read or write the mapped
file.

The volume group reserved logical volume could not be
opened.

The logical volume was open. It must be closed to change
the permissions, bb_relocation, write_verify,
mirror_policy, or mirwrt_consist fields.

The logical volume device entry is invalid and cannot be
checked to determine if it is raw.

A memory allocation error occurred.

The device is not a raw/character device.

An invalid minor number was received.

LVM_INVCONFIG

Implementation Specifics

A logical volume already exists with the name passed into
the routine.

An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
module id is invalid, if the major number given is already in
use, or if the volume group device could not be opened.

An error occurred while trying to write the volume group
descriptor area to the logical volume.

This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The Ivm_querylv subroutine, Ivm_varyonvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

Base Operating System Runtime 1-345

Ivm_changepv Subroutine

Purpose

Library

Syntax

Changes the attributes of a physical volume in a volume group.

Logical Volume Manager Library (liblvm.a)

#include <Ivm.h>

int Ivm_changepv (Changepv)
struct changepv * Changepv;

Description

Parameter

The Ivm_changepv subroutine changes the state of the specified physical volume.

The changepv structure pointed to by the Changepv parameter is defined in the Ivm.h
header file and contains the following members:

struct changepv{
struct unique_id vg_id;
struct unique_id pv_id;
long rem_ret;
long allocation;}

The Ivm_changepv subroutine changes the state of the physical volume specified by the
pv_id field. The rem_ret field should be set to LVM_REMOVEPV to temporarily remove the
physical volume from the volume group, or LVM_RETURNPV to return the physical volume
to the volume group. When a physical volume is temporarily removed from the volume
group, there wi" be no access to that physical volume through the Logical Volume Manager
while that physical volume is in the removed state. Also, when a physical volume is removed
from the volume group, any copies of the volume group descriptor area which are contained
on that physical volume are removed from the volume group and therefore wi" not be
counted in the quorum count of descriptor area copies which are needed for a volume group
to be varied on.

The allocation field should be set to LVM_NOALLOCPV to disallow the allocation of
physical partitions to the physical volume, or LVM_ALLOCPV to allow the allocation of
physical partitions to the physical volume. It is not necessary to change both state fields; for
example, the allocation field could be set to LVM_NOALLOCPV and the rem_ret field could
simply be set to zero to indicate no change is desired. The vg_id field identifies the volume
group that contains the physical volume to be changed. The volume group must be on-line,
or an error is returned.

Changepv Pointer to the changepv structure.

Return Value
Upon successful completion, a value of 0 is returned.

1-346 Base Operating System Reference

Ivm_changepv

Error Codes
If the Ivm~changepv subroutine fails, then it returns one of the following values.

LVM_MAPFOPN

LVM_MAPFSHMAT

LVM_MAPFRDWR

LVM_ALLOCERR

LVM_BELOW_QRMCNT

LVM_NOTCHARDEV

LVM_WRTDAERR

LVM_PVOPNERR

LVM_RDPVID

LVM_INVCONFIG

LVM_LVMRECERR

LVM_PVDAREAD

The volume group containing the physical volume to be
changed is off-line and should be on-line.

A field in the changepv structure is invalid, or the pointer to
the changepv structure is invalid.

The mapped file, which contains a copy of the volume
group descriptor area used for making changes to the

. volume group, could not be opened.

An error occurred while trying to attach the mapped file.

An error occurred while trying to read or write the mapped
file.

The volume group reserved logical volume could not be
opened.

A memory allocation error occurred.

The physical volume cannot be removed because there
would not be a quorum of available physical volumes.

The device entry for the physical volume is invalid and
cannot be checked to determine if it is raw.

The device specified is not a character/raw device.

An error occurred while trying to write the volume group
descriptor area to the physical volume.

The physical volume device could not be opened.

The record which contains the physical volume id could not
be read.

The bad block directory on the physical volume could not be
read from and/or written to.

An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
module id is invalid, if the major number given is already in
use, or if the volume group device could not be opened.

The Ivm record could not be read or written.

An error occurred while trying to read the volume group
descriptor area from the specified physical volume.

Base Operating System Runtime 1-347

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

Related Information
The Ivm_querypv subroutine.

Logical Volume Programming Overview in General Programming Concepts.

1-348 Base Operating System Reference

Ivm_createlv

Ivm createlv Subroutine

Purpose

Library

Syntax

Creates an empty logical volume in a specified volume group.

Logical Volume Manager Library (liblvm.a)

#include <Ivm.h>

int Ivm_createlv (Create/v)
struct create Iv *Createlv;

Description
The Ivm_createlv subroutine creates an empty logical volume in an existing volume group
with the information supplied. The Ivm_extendlv subroutine should be called to allocate
partitions once the logical volume is created.

The create Iv structure pointed to by the Createlv parameter is defined in the Ivm.h header
file and contains the following members:

struct createlv {
char *lvname;
struct unique_id vg_id;
long minor_num;

}

long maxsize;
long mirror_policy;
long permissions;
long bb_relocation;
long write_verify;
long mirwrt_consist;

struct unique_id{
unsigned long
unsigned long
unsigned long
unsigned long

wordl;
word2;
word3 ;
word4 ;

}

The Ivname field specifies the special file name of the logical volume, and can be either the
full path name or a single file name that must reside in the /dev directory (e.g., rhd1). All
name fields must be null-terminated strings of from 1 to LVM_NAMESIZ bytes, including the
null byte. If a raw/character device is not specified for the Iv name field, the Logical Volume
Manager will add an 'r' to the file name in order to have a raw device name. If there is no
raw device entry for this name, the Logical Volume Manager will return the
LVM_NOTCHARDEV error code. The v9_id field specifies the unique 10 of the volume
group that will contain the logical volume. The minor_num field must be in the range from 1
to maxlvs. The maxlvs field is set when a volume group is created and is returned by the
Ivm_queryv9 subroutine. The maxsize field is the maximum size in logical partitions for the
logical volume and must be in the range of 1 to LVM_MAXLPS. The mirror_policy field
specifies how the physical copies will be written. The mirror_policy should be either
LVM_SEQUENTIAL or LVM_PARALLEL to indicate how the physical copies of a logical

Base Operating System Runtime 1-349

Ivm createlv

1-350

partition are to be written when there is more than one copy. The permissions field
indicates read/write or read only permission for the logical volume, and the bb_relocation
field indicates that bad block relocation is desired. The write_verify field indicates that
writes to the logical volume are to be verified as successful.

The mirwrt_consist field tells whether mirror write consistency recovery will be performed
for this logical volume.

The Logical Volume Manger always insures data consistency among mirrored copies of a
logical volume during normal I/O processing. For every write to a logical volume, the Logical
Volume Manager generates a write request for every mirror copy. A problem arises if the
system crashes in the middle of processing a mirrored write (before all copies are written). If
mirror write consistency recovery is requested for a logical volume, the Logical Volume
Manager keeps additional information to allow recovery of these inconsistent mirrors. Mirror
write consistency recovery should be performed for most mirrored logical volumes. Logical
volumes, such as the page space, that do not use the existing data when the volume group
is re-varied on do not need this protection.

All fields in the createlv structure must have a valid value in them, or an error will be
returned.

The Ivm_createlv subroutine uses the createlv structure to build an information area for the
logical volume. If the volume group that is to contain this logical volume is not varied
on-line, the LVM_OFFLINE error code is returned.

Values for the mirror_policy field:

LVM_SEQUENTIAL For this logical volume, use a sequential method of writing
the physical copies (if more than one) of a logical partition.

For this logical volume, use a parallel method of writing the
phYSical copies (if more than one) of a logical partition.

Values for the permissions field:

LVM_RDONLY

LVM_RDWR

Create the logical volume with read only permission.

Create the logical volume with read/write permission.

Values for the bb_relocation field:

LVM_RELOC

LVM_NORELOC

Values for the write_verify field:

LVM_VERIFY

LVM_NOVERIFY

Bad block relocation is desired.

Bad block relocation is not desired.

Write verification is desired.

Write verification is not desired.

Values for the mirwrt_consist field:

LVM_NOCONSIST

Base Operating System Reference

Mirror write consistency recovery will be done for this logical
volume.

Mirror write consistency recovery will not be done for this
logical volume.

Parameter
Createlv A pOinter to the createlv structure.

Return Value
Upon successful completion, a value of 0 is returned.

Error Codes
If the Ivm_createlv subroutine fails, then it returns one of the following values.

LVM_MAPFSHMAT

LVM_MAPFRDWR

LVM_DALVOPN

LVM_INVALlD_MIN_NUM

LVM_LVEXIST

LVM_NOTCHARDEV

Implementation Specifics

The logical volume device entry is invalid and cannot be
checked to determine if it is raw.

A routine that requires a volume group to be on-line has
encountered one that is off-line.

The volume group that the logical volume was requested to
be a member of already has the maximum number of
logical volumes.

A field in the createlv structure is invalid, or the pointer to
the createlv structure is invalid.

The mapped file, which contains a copy of the volume
group descriptor area used for making changes to the
volume group, could not be opened.

An error occurred while trying to attach the mapped file.

An error occurred while trying to read or write the mapped
file.

The descriptor area logical volume could not be opened.

A minor number passed into the routine is invalid.

A logical volume already exists with the name passed into
the routine.

The Ivname name given does not represent a raw/character
device.

A memory allocation error has occurred.

This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The Ivm_extendlv subroutine, Ivm_varyonvg subroutine, Ivm_querylv subroutine,
Ivm_queryvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

Base Operating System Runtime 1-351

Ivm_createvg

Ivm_createvg Subroutine

Purpose

Library

Syntax

Creates a new volume group and installs the first physical volume.

Logical Volume Manager Library (Iiblvm.a)

#include <Ivm.h>

int Ivm_createvg (Createvg)
struct createvg *Createvg;

Description

1-352

The Ivm_createvg subroutine is used to create a new volume group and to install its first
physical volume. The physical volume must not exist in another volume group.

The createvg structure pointed to by the Createvg parameter is found in the Ivm.h header
file and defined as follows:

struct createvg
{
mid_t kmid;
char *vgname;
long vg_major;
char *pvname;
long maxlvs;
long ppsize;
long vgda_size;
short int override;
struct unique_id vg_id;
} ;

The kmid field is the module id which identifies the entry point of the logical volume device
driver module. The module id is returned when the logical volume device driver is loaded
into the kernel.

The vgname field is the character special file name, which is either the full path name or a
file name that resides in the /dev directory (e.g., rvg13), of the volume group device. This
device is actually a logical volume with minor number 0 (zero), which is reserved for use by
the Logical Volume Manager.

The vg_major field is the major number for the volume group which is to be created.

The pvname field is the character special file name, which is either the full path name or a
single file name that resides in the /dev directory (e.g., rhdiskO) of the physical volume
being installed in the new volume group.

The maxlvs field is the maximum minor number, which will be allowed for a logical volume
in the volume group. The range is 1 to LVM_MAXLVS.

The ppsize field specifies the size of the phYSical partitions in the volume group. The range
is LVM_MINPPSIZ to LVM_MAXPPSIZ. The size in bytes of every physical partition in the
volume group is 2 to the power of ppsize.

Base Operating System Reference

Parameter

Ivm _ createvg

The vgda_size field is the number of 512 byte blocks which are to be reserved for one copy
of the volume group descriptor area. The range is LVM_MINVGDASIZ to
LVM_MAXVGDASIZ. Twice this amount of space will be reserved on each physical volume
in the volume group so that two copies of the volume group descriptor area may be saved
when needed.

The override field specifies whether or not the LVM_VGMEMBER error code should be
ignored. If the override field is TRUE, the Logical Volume Manager will create the volume
group with the specified physical volume even if it appears to belong to another volume
group; as long as that volume group is not varied on. If the volume group is varied on, the
LVM_MEMACTVVG error code is returned. If the override field is FALSE, the Logical
Volume Manager will return the LVM_ VGMEMBER error code, if the specified physical
volume is a member of another volume group whether that volume group is varied on or
varied off. If the LVM_MEMACTVVG or LVM_ VGMEMBER error code is returned, the vg_id
field will contain the 10 of the volume group that the specified physical volume is a member
of.

The vg_id field is an output field in which the 10 of the newly created volume group will be
returned upon successful completion.

The physical volume installed into the new volume group will contain two copies of the
volume group descriptor area in the reserved area at the beginning of the physical volume,
since this is the first physical volume installed. The volume group descriptor area contains
information about the physical and logical volumes in the volume group. This descriptor area
is used by the Logical Volume Manager to manage the logical volumes and physical
volumes in the volume group.

Createvg Pointer to the createvg structure.

Return Value
Upon successful completion, a value of 0 is returned.

Error Codes
If the Ivm_createvg subroutine fails, then it returns one of the following values.

LVM_NOTCHARDEV

LVM_ VGMEMBER

LVM_INVALlD_PARAM

LVM_PVOPNERR

The device entry for the physical volume is invalid and
cannot be checked to determine if it is raw.

The device specified is not a character/raw device.

The physical volume cannot be installed into the specified
volume group because its LVM record indicates it is already
a member of another volume group. If the caller feels that
the information in the LVM record is incorrect, the override
field can be set to TRUE in order to override this error. This
error is only returned when the override field is set to
FALSE.

A field in the createvg structure is invalid.

The physical volume device could not be opened.

Base Operating System Runtime 1-353

Ivm_createvg

LVM_LVMRECERR

LVM_MEMACTVVG

LVM_VGDASPACE

LVM_ALLOCERR

LVM_INVCONFIG

Implementation Specifics

The LVM record, which contains information about the
volume group descriptor area, could not be read or could
not be written.

The record, which contains the physical volume id, could
not be read.

The physical volume specified is a member of another
volume group that is varied on. This is returned only when
the override field is set to TRUE.

An error occurred while trying to write the volume group
descriptor area to the physical volume.

The physical volume cannot be installed into the specified
volume group because there is not enough space in the
volume group descriptor area to add a description of the
physical volume and its partitions.

The physical volume could not be installed into the volume
group because the bad block directory could not be read
from and/or written to.

A memory allocation error occurred.

An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
module id is invalid, if the major number given is already in
use, or if the volume group device could not be opened.

The volume group reserved logical volume could not be
opened.

This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The Ivm_ varyonvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

1-354 Base Operating System Reference

Ivm deletelv

Ivm deletelv Subroutine

Purpose

Library

Syntax

Deletes a logical volume from its volume group.

Logical Volume Manager Library (Iiblvm.a)

#include <Ivm.h>

int Ivm_deletelv (Lv_iet)
struct Iv_id *Lv_id;

Description

Parameter

The Ivm_deletelv subroutine deletes the logical volume specified by the Lv_id parameter
from its volume group. The logical volume must not be opened, and the volume group must
be on-line, or an error is returned. Also, all logical partitions belonging to this logical volume
must be removed using the Ivm_reducelv subroutine before the logical volume can be
deleted.

Lv_id Specifies the logical volume to be deleted.

Return Value
Upon successful completion, a value of 0 is returned.

Error Codes
If the Ivm_deletelv subroutine fails, then it returns one of the following values:

LVM_ OFFLINE

LVM_MAPFSHMAT

LVM_MAPFRDWR

A routine that requires a volume group to be on-line has
encountered one that is off-line.

An open logical volume was encountered when it should be
closed.

The logical volume 10 passed in is not a valid logical
volume, or the pointer to the logical volume is invalid.

The logical volume cannot be deleted because there are
existing logical partitions.

The mapped file, which contains a copy of the volume
group descriptor area used for making changes to the
volume group, could not be opened.

An error occurred while trying to attach the mapped file.

An error occurred while trying to read or write the mapped
file.

Base Operating System Runtime 1-355

Ivm deletelv

LVM_ALLOCERR

LVM_NOTCHARDEV

LVM_INVCONFIG

LVM_WRTDAERR

Implementation Specifics

The volume group reserved logical volume could not be
opened.

An invalid minor number was received.

A memory allocation error occurred.

The device specified is not a character/raw device.

An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
major number in the mapped file is invalid.

An error occurred while trying to write the volume group
descriptor area to the physical volume.

The device entry for the logical volume is invalid and cannot
be checked to determine if it is raw.

This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The Ivm_ varyonvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

1-356 Base Operating System Reference

Ivm_deletepv Subroutine

Purpose

Library

Syntax

Deletes a physical volume from a volume group.

Logical Volume Manager Library (Iiblvm.a)

#include <Ivm.h>

int Ivm_deletepv (Pv_id, Vg_id)
struct unique_id * Vg_id;
struct unique_id * Pv_id;

Description
The Ivm_deletepv subroutine deletes the physical volume specified by the Pv_id parameter
from its volume group. The Vg_id parameter indicates the volume group that contains the
physical volume to be deleted. The physical volume must not contain any partitions of a
logical volume, or the LVM_PARTFND error code is returned. In this case, the user must
delete logical volumes or relocate the partitions that reside on the physical volume. The
volume group containing the physical volume to be deleted must be varied on or an error is
returned.

Parameters
Pv_id Specifies the physical volume to be deleted.

Vg_id Specifies the volume group that contains the physical volume to be deleted.

Return Values
Upon successful completion, one of the following positive return codes will be returned.

LVM_SUCCESS

LVM_ VGDELETED

Error Codes

The physical volume was successfully deleted.

The physical volume was successfully deleted, and the
volume group was also deleted because that physical
volume was the last one in the volume group.

If the Ivm_deletepv subroutine does not complete successfully, one of the following
negative error codes will be returned.

LVM_INVALlD_PARAM

LVM_PARTFND

The volume group which contains the physical volume to be
deleted is off-line and should be on-line.

An invalid parameter was passed into the routine.

This routine cannot delete the specified physical volume
because it contains physical partitions allocated to a logical
volume.

Base Operating System Runtime 1-357

LVM_MAPFSHMAT

LVM_MAPFRDWR

LVM_DALVOPN

LVM_PVOPNERR

LVM_LVMRECERR

LVM_ALLOCERR

LVM_NOTCHARDEV

LVM_WRTDAERR

LVM_'NVCONFIG

The mapped file, which contains a copy of the volume
group descriptor area used for making changes to the
volume group, could not be opened.

An error occurred while trying to attach the mapped file.

An error occurred while trying to read or write the mapped
file.

The descriptor area logical volume could not be opened.

The physical volume device could not be opened.

The Ivm record could not be read or written.

A memory allocation error occurred.

The physical volume to be deleted does not have a raw
device entry.

The physical volume specified has an invalid device entry
and cannot be checked to determine if it is raw.

An error occurred while trying to write the volume group
descriptor area to the physical volume.

An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
module id is invalid, if the major number given is already in
use, or if the volume group device could not be opened.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

1-358

The Ivm_deletelv subroutine, Ivm_varyonvg subroutine, Ivm_reducelv subroutine,
Ivm_migratepp subroutine, Ivm_queryvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

Base Operating System Reference

Ivrn extendlv

Ivm extendlv Subroutine

Purpose

Library

Syntax

Extends a logical volume by a specified number of partitions.

Logical Volume Manager Library (liblvm.a)

#include <Ivm.h>

int Ivm_extendlv (Lv_id, Extend/v)
struct Lv_id *Lv_id;
struct ext_redlv * Extend/v;

Description
The Ivm_extendlv subroutine extends a logical volume specified by the Lv_id parameter by
adding a completely new logical partition or by adding another copy to an existing logical
partition.

The ext_redlv structure pointed to by the Extend/v parameter is defined in Ivm.h header file
and contains the following members:

struct ext_redlv{
long size;
struct pp *parts;

}
struct pp {

struct unique_id pv_id;
long lp_num;
long pp_num;

}

Within this structure is the parts field, which is a pointer to an array of pp structures. Also in
the ext_redlv structure, is the size field which is the number of entries in the array pointed to
by the parts variable. The parts array should have one entry for each physical partition
being allocated and the size field should reflect a total of these entries. The size field should
never be zero; if it is, an error will be returned. Within the pp structure is a Ip_num field
which is the number of the logical partition that you are extending. This number should be in
the range of 1 to the maximum number of logical partitions allowed in the logical volume
being extended. The maximum number of logical partitions allowed on the logical volume is
the maxsize field returned from a query of the logical volume, and must be in the range of 1
to LVM_MAXLPS. Also in the pp structure are-the pp_num and pv_id. The pp_num field
is the number of the physical partition to be allocated as a copy of the logical partition. This
number should be in the range of 1 to the number of physical partitions allowed on the
physical volume specified by the pv_id field (The pp_count field returned from a query of
the physical volume. This field is in the range 1 to LVM_MAXPPS). The physical partition
specified by the pp_numshould have a state of LVM_PPFREE (i.e., should not be
allocated). The pv_id field should contain the valid 10 of a physical volume that is a member
of the same volume group as the logical volume being extended. The volume group should
be varied on, or an error is returned.

Base Operating System Runtime 1-359

Ivm extendlv

An example of a correct parts array and size value follows:

size = 4 (The size field is set to 4 because there are 4 struct
pp entries.)

parts:
entry1

entry2

entry3

entry4

pv_id = 4321
lp_num = 2
pp_num = 1
pv id = 1234
lp_num = 2
pp_num = 3
pv id = 5432
lp_num = 3
pp_num = 5
pv id = 4242
lp_num = 2
pp_num = 12

Up to 3 copies (physical partitions) can be allocated to the same logical partition, and an
error will be returned if an attempt is made to add more. It is also possible to have entries
with a valid Ip_"um and zeroes for the pv_id and pp_"um fields; this type of entry specifies
that this logical partition should be ignored (nothing will be allocated for the logical partition).
Another way to have a logical partition ignored is to simply skip an entry for it.

EXAMPLE 1
size = 2
parts:

entry1

entry2

EXAMPLE 2
size = 3
parts:

entry1

entry2

entry3

pv_id 0
lp_num 3
pp_num 0
pv_id = 4467
lp_num 5
pp_num = 3

pv_id = 5347
lp_num = 1
pp_num = 1
pv_id = 8790
lp_num = 3
pp_num = 3
pv_id = 2938
lp_num 6
pp_num = 6

(Entry 1 would indicate that lp 3
should be ignored.)

Logical partition numbers 2, 4, and 5 will be ignored since there were no entries for them in
the array.

Parameters
Extendlv Pointer to the ext_redlv structure.

Pointer to the Iv_id structure, which specifies the logical volume to extend.

Return Value
Upon successful completion, a value of 0 is returned.

1-360 Base Operating System Reference

Ivm extendlv

Error Codes
If the Ivm_extendlv subroutine fails, then it returns one of the following values.

LVM_OFFLINE

LVM_INVALID _PARAM

LVM_NOALLOCLP

LVM_LPNUM_INVAL

LVM_PPNUM_INVAL

LVM_PVSTATE_INVAL

LVM_MAPFSHMAT

LVM_MAPFRDWR

LVM_ALLOCERR

LVM_INV _DEVENT

LVM_NOTCHARDEV

LVM_INRESYNC

LVM_INVCONFIG

The volume group is off-line and should be on-line.

Either one or both of the Extendlvor Lv_id parameters are
invalid or the Lv_id parameter is not a valid logical volume.
This could also mean that one of the fields in the ext_redlv
structure is invalid.

The logical partition specified already has three copies.

A logical partition number passed in is invalid.

A physical partition number passed in is invalid.

A physical volume id sent in specifies a physical volume
with a state of LVM_PVNOALLOC.

The mapped file, which contains a copy of the volume
group descriptor area used for making changes to the
volume group, could not be opened.

An error occurred while trying to attach the mapped file.

An error occurred while trying to read or write the mapped
file.

The volume group reserved logical volume could not be
opened.

An invalid minor number was received.

A memory allocation error occurred.

The device entry for the physical volume is invalid and
cannot be checked to determine if it is raw.

The device specified is not a character/raw device.

The logical partition to be extended is being resynced, and
cannot be extended while the resync is in progress.

An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
major number in the mapped file is invalid.

An error occurred while trying to write the volume group
descriptor area to the physical volume.

Base Operating System Runtime 1-361

Ivm extendlv

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-362

The Ivm_changelv subroutine, Ivm_createlv subroutine, Ivm_reducelv subroutine,
Ivm_ varyonvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

Base Operating System Reference

Ivm_installpv Subroutine

Purpose

Library

Syntax

Installs a physical volume into a volume group.

Logical Volume Manager Library (liblvm.a)

#include <Ivm.h>

int Ivm_installpv (Installpv)
struct installpv * Installpv;

Description
The Ivm_installpv subroutine installs a physical volume into a specified volume group. The
physical volume must not exist in another volume group.

The installpv structure pointed to by the Installpv parameter is found in the Ivm.h header
file and is defined as follows:

struct installpv
{

char *pvname;
struct unique_id vg_id;
short int override;
struct unique_id out_vg_id;

} ;

The pvname field is the character special file name, which can be either a full path name or
a single file name that resides in the /dev directory (e.g., rhdiskO), of the physical volume
being installed into the volume group specified by the vQ_id field. The pvname field must
be a null-terminated string of from 1 to LVM_NAMESIZ bytes, including the null byte, and
must be the name of a raw/character device. If a raw device is not specified for the pvname
field, the Logical Volume Manager will add an 'r' to the file name in order to have a raw
device name. If there is no raw device entry for this name, the Logical Volume Manager will
return the LVM_NOTCHARDEV error code.

The override field specifies whether or not the LVM_ VGMEMBER error code should be
ignored. If the override field is TRUE, the Logical Volume Manager will install the physical
volume into the specified volume group even if the physical volume is a member of another
volume group. This is done only if the other volume group is not varied on. If it is varied on,
the LVM_MEMACTVVG error code is returned. If the override field is FALSE, the
LVM_ VGMEMBER error code is returned if the physical volume belongs to another volume
group wheter that volume group is varied on or varied off. The LVM_ALRDYMEM error code
is returned if the physical volume is already a member of the specified volume group. This
error is returned no matter what the setting is of the override field.

The out_vQ_id field contains the 10 of the volume group that the physical volume is a
member of if either the LVM_MEMACTVVG or the LVM_ VGMEMBER error code is
returned.

Base Operating System Runtime 1-363

Parameter

Each physical volume installed into a volume group will contain a volume group descriptor
area in the reserved area at the beginning of the physical volume. The volume group
descriptor area contains information about the physical and logical volumes in the volume
group. This descriptor area is used by the Logical Volume Manager to manage the logical
volumes and physical volumes in the volume group.

Installpv Pointer to the installpv structure.

Return Values
Upon successful completion, a value of 0 is returned.

Error Codes

1-364

If the Ivm_installpv subroutine fails, then it returns one of the following negative values.

LVM_VGMEMBER

LVM_ VGDASPACE

LVM_PVOPNERR

LVM_LVMRECERR

LVM_MAPFOPN

Base Operating System Reference

The physical volume is already a member of the specified
volume group.

A volume group specified is off-line. It must be varied-on to
perform this operation.

The physical volume cannot be installed into the specified
volume group because its LVM record indicates it is already
a member of another volume group. If the caller feels that
the information in the LVM record is incorrect, the override
field can be set to TRU E in order to override thIS error. This
error is only retur~ed when the override field is set to
FALSE.

The physical volume cannot be installed into the specified
volume group because the maximum allowed number of
physical volumes are already installed in the volume group.
The maximum number of physical volumes is
LVM_MAXPVS.

The physical volume cannot be installed into the specified
volume group because there is not enough space in the
volume group descriptor area to add a description of the
physical volume and its partitions.

The physical volume device could not be opened.

The LVM record, which contains information about the
volume group descriptor area, could not be read or could
not be written.

The record which contains the physical volume id could not
be read.

The mapped file, which contains a copy of the volume
group descriptor area used for making changes to the
volume group, could not be opened.

An error occurred while trying to write to the mapped file.

LVM_INVCONFIG

LVM_ALLOCERR

LVM_I NVALI D_PARAM

LVM_NOTCHARDEV

LVM_INV _DEVENT

LVM_MEMACTVVG

LVM_INVCONFIG

Implementation Specifics

The volume group reserved logical volume could not be
opened.

The physical volume could not be installed into the volume
group because the bad block directory could not be read
from and/or written to.

An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
major number in the mapped file is invalid.

A memory allocation error occurred.

An invalid parameter was passed into the routine.

The device specified is not a character/raw device.

The device entry for the physical volume is invalid and
cannot be checked to determine if it is raw.

The physical volume specified is a member of another
volume group that is varied on. This is returned when the
override field is TRUE.

An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
module id is invalid, if the major number given is already in
use, or if the volume group device could not be opened.

An error occurred while trying to write the volume group
descriptor area to the physical volume.

This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The Ivm_varyonvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

Base Operating System Runtime 1-365

Ivm_migratepp

Ivm_migratepp Subroutine

Purpose

Library

Syntax

Moves a physical partition to a specified physical volume.

Logical Volume Manager Library (liblvm.a)

#include <Ivm.h>

int Ivm_migratepp (Migratepp)
struct migratepp * Migratepp;

Description

Parameter

The Ivm_migratepp subroutine moves the physical partition specified by the oldpp_num
field from the physical volume specified by the oldpv_id field to the physical partition, the
newpp_num field, located on the physical volume given in the newpv_id field. The vg_id
field specifies the volume group that contains both the old physical volume and the new
physical volume. This volume group should be varied on, or an error is returned.

The migratepp structure pointed to by the Migratepp parameter is defined in the Ivm.h
header file and contains the following members:

struct migratepp{

}

struct unique_id vg_id;
long oldpp_num;
long newpp_num;
struct unique_id oldpv_id;
struct unique_id newpv_id;

Migratepp Points to the migratepp structure.

Return Value
Upon successful completion of the Ivm_migratepp subroutine a value of 0 is returned.

Error Codes

1-366

If the Ivm_migratepp subroutine fails, then it returns one of the following values.

LVM_NOTSYNCED

LVM_OFFLINE

L VM_INVALID _PARAM

LVM_MAPFOPN

Base Operating System Reference

The resync involving the physical partitions of the
migratepp call was not complete.

The volume group is off-line and should be on-line.

One of the parameters passed in did not have a valid value.

The mapped file, which contains a copy of the volume
group descriptor area used for making changes to the
volume group, could not be opened.

LVM_MAPFSHMAT

LVM_MAPFRDWR

LVM_NOALLOCLP

LVM_LPNUM_INVAL

LVM_PPNUM_INVAL

LV M_PVSTAT E_I NVAL

LVM_ALLOCERR

LVM_NOTCHARDEV

LVM_INV _DEVENT

LVM_INVALlD_MIN_NUM

LVM_INVLPRED

LVM_INVCONFIG

LVM_MIGRATE_FAIL

LVM_INRESYNC

Implementation Specifics

Ivm_migratepp

An error occurred while trying to attach the mapped file.

An error occurred while trying to read or write the mapped
file.

The volume group reserved logical volume could not be

opened.

The logical partition specified already has three copies.

A logical partition number is invalid.

A physical partition number is invalid.

A phYSical volume specified has a state of
LVM_PVNOALLOC.

A memory allocation error occurred.

A device is not a raw/character device.

A device has a major number that does not correspond to
the volume group being worked in.

An invalid minor number was received.

A reduction was requested that would leave a logical
partition with no good copies.

An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
module id is invalid, if the major number given is already in
use, or if the volume group device could not be opened.

An error occurred while trying to write the volume group
descriptor area to the physical volume.

The migration failed due to an error in the resync phase.

The physical partition being migrated is allocated to a
logical partition that is being resynced. The migration
cannot be completed while the resync is in progress.

This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The Ivm_querypv subroutine, Ivm_varyonvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

Base Operating System Runtime 1-367

Ivm_querylv Subroutine

Purposes

Library

Syntax

Queries a logical volume and returns all pertinent information.

Logical Volume Manager Library (liblvm.a)

#include <Ivm.h>

int Ivm_querylv (Lv_id, Query/v, Pvname)
struct Iv_id *Lv_id;
struct querylv *Query/v;
char * Pvname;

Description

1-368

The Ivm_querylv subroutine returns information for the logical volume specified by the
Lv_id parameter.

The querylv structure, found in the Ivm.h header file, is defined as follows:

struct querylv {

}

char Ivname[LVM_NAMESIZ];
struct unique_id vg_id;
long maxsize;
long mirror_policy;
long lv_state;
long currentsize;
long ppsize;
long permissions;
long bb_relocation;
long write_verify;
long mirwrt_consist;
long open_close;
struct pp *mirrors[LVM_NUMCOPIES]

struct pp {
struct unique_id pv_id;
long lp_num;
long pp_num;

}

The Pvname parameter enables the user to query from a volume group descriptor area on a
specific physical volume instead of from the Logical Volume Manager's most recent,
in-memory copy of the descriptor area. If the query is done this way, the volume group does
not have to be on-line; however, the data returned may reflect a back level descriptor area
instead of the most recent one. The Pvname parameter should specify either the full path
name of the physical volume that contains the descriptor area to query, or a single file name
that must reside in the /dev directory (e.g., rhdisk1). This parameter must be a null
terminated string of from 1 to LVM_NAMESIZ bytes, including the null byte and must
represent a raw device entry. If a raw/character device is not specified for the Pvname
parameter, the Logical Volume Manager will add an 'r' to the file name in order to have a

Base Operating System Reference

raw device name. If there is no raw device entry for this name, the Logical Volume Manager
will return the LVM_NOTCHARDEV error code.

If a pvname is specified, only the minor_num portion of the Lv_id parameter need be
supplied. The Logical Volume Manager will fill in the v9_id portion and return it to the user. If
the user wishes to query from the Logical Volume Manager's in-memory copy, the Pvname
parameter should be set to null. When using this method of query, the volume group must
be varied on, or an error will be returned.

Note: As long as the Pvname is not NULL, the Logical Volume Manager will attempt a
query from a physical volume and not its in-memory copy of data.

In addition to the Pvname, the caller passes the 10 of the logical volume to be queried (Lv_id
parameter) and the address of a pointer to the querylv structure, specified by the Query/v
parameter. The Logical Volume Manager will allocate the space needed for the querylv
structure and return the structure's address in the pointer variable passed in by the user.

The lv_state field specifies the current state of the logical volume and may have any of the
following bit specific values ORed together:

LVM_LVDEFINED

LVM_LVSTALE

The logical volume is defined.

The logical volume contains stale partitions.

The currentsize field is the current size in logical partitions of the logical volume. The
ppsize specifies the size of the physical partitions of all physical volumes in the volume
group. The size in bytes of every physical partition is 2 ** ppsize.

The permissions field specifies the permission assigned to the logical volume and may be
one of the following:

LVM_RDONLY

LVM_RDWR

Access to this logical volume is read only.

Access to this logical volume is read/write.

The bb_relocation field specifies if bad block relocation is desired and will be one of the
following:

LVM_RELOC

LVM_NORELOC

Bad blocks will be relocated.

Bad blocks will not be relocated.

The write_verify field specifies if write verification for the logical volume is desired and will
be one of the following:

LVM_VERIFY Write verification is performed on all writes to the logical
volume.

Write verification is not performed for this logical volume.

The mirwrt_consist field tells whether mirror write consistency recovery will be performed
for this logical volume.

The Logical Volume Manger always insures data consistency among mirrored copies of a
logical volume during normal I/O processing. For every write to a logical volume, the Logical
Volume Manager generates a write request for every mirror copy. A problem arises if the
system crashes in the middle of processing a mirrored write (before all copies are written). If
mirror write consistency recovery is requested for a logical volume, the Logical Volume
Manager keeps additional information to allow recovery of these inconsistent mirrors. Mirror

Base Operating System Runtime 1-369

write consistency recovery should be performed for most mirrored logical volumes. Logical
volumes, such as the page space, that do not use the existing data when the volume group
is re-varied on do not need this protection.

Values for the mirwrt_consist field:

LVM_NOCONSIST

Mirror write consistency recovery will be done for this logical
volume.

Mirror write consistency recovery will not be done for this
logical volume.

The open_close field specifies if the logical volume is opened or closed.

LVM_QLVOPEN

LVM_QLV_NOTOPEN

The logical volume is opened by one or more processes.

The logical volume is closed.

The mirrors field is an array of pointers to partition map lists (physical volume id, logical
partition number, and physical partition number for each copy of the logical partitions for the
logical volume). If a logical partition does not contain any copies, its pv_id, Ip_num, and
pp_num fields will contain zeros.

All other fields are described in the Ivm_createlv subroutine.

Parameters
Lv_id

Query/v

Pvname

Pointer to an Iv_id structure that specifies the logical volume to query.

Address of a pointer to the querylv structure.

Name of the physical volume from which to use the volume group descriptor
for the query. (Can also be NULL).

Return Value
Upon successful completion, a value of 0 is returned.

Error Codes

1-370

If the Ivm_querylv subroutine fails, then it returns one of the following values.

LVM_I NVALI D_PARAM

LVM_INVALlD_MIN_NUM

LVM_NOTCHARDEV

Base Operating System Reference

The subroutine could not allocate enough space for the
complete buffer.

The volume group containing the logical volume to query
was off-line.

An invalid parameter was passed into the routine.

The minor number of the logical volume is invalid.

The physical volume name given does not represent a
raw/character device.

The device entry for the physical volume specified by the
Pvname parameter is invalid and cannot be checked to
determine if it is raw.

If the query is done from the varied on volume group's current volume group descriptor area,
then one of the following negative return codes may be returned.

LVM_MAPFSHMAT

LVM_DALVOPN

The mapped file, which contains a copy of the volume
group descriptor area used for making changes to the
volume group, could not be opened.

An error occurred while trying to attach the mapped file.

The volume group reserved logical volume could not be
opened.

If a physical volume name has been passed, requesting that the query come from a specific
physical volume, then one of the following negative return codes may be returned.

LVM_PVOPNERR

LVM_LVMRECERR

Implementation Specifics

The physical volume device could not be opened.

The LVM record, which contains information about the
volume group descriptor area, could not be read.

An error occurred while trying to read the volume group
descriptor area from the specified physical volume.

The physical volume specified is not a member of a volume
group.

There are no volume group descriptor areas on the physical
volume specified.

A bad block was found in the volume group descriptor area
located on the physical volume that was specified for the
query; therefore, a query cannot be done from the specified
physical volume.

The bad bock directory could not be read or written.

This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The Ivm_varyonvg subroutine, Ivm_createlv subroutine.

Logical Volume Programming Overview in General Programming Concepts.

Base Operating System Runtime 1-371

Ivm_querypv Subroutine

Purpose

Library

Syntax

Queries a physical volume and returns all pertinent information.

Logical Volume Manager Library (liblvm.a)

#include <Ivm.h>

int Ivm_querypv (Vg_id, PV_id, Querypv,
Pvname)

struct unique_id * Vg_id;
struct unique_id * Pv_id;
struct querypv **Querypv;
char * Pvname;

Description

1-372

The Ivm_querypv subroutine returns information on the physical volume specified by the
Pv _id parameter.

The querypv structure, defined in the Ivm.h header file, contains the following members:

struct querypv {
long ppsize;
long pv_state;
long pp_count;

}

long alloc_ppcount;
struct pp_map *pp_map;
long pvnum_vgdas;

struct pp_map {

}

long pp_state;
struct lv_id lv_id;
long lp_num;
struct unique_id fst_alt_vol;
long fst_alt_part;
struct unique_id snd_alt_vol;
long snd_alt_part;

The Pvname parameter enables the user to query from a volume group descriptor area on a
specific physical volume instead of from the Logical Volume Manager's most recent,
in-memory copy of the descriptor area. If the query is done this way, the volume group does
not have to be on-line; however, the data returned may reflect a back level descriptor area
instead of the most recent one. The Pvname parameter should specify either the full path
name of the physical volume that contains the descriptor area to query or a single file name
that must reside in the /dev directory (.e.g., rhdisk1). This field must be a null terminated
string of from 1 to LVM_NAMESIZ bytes, including the null byte, and represent a
raw/character device. If a raw/character device is not specified for the pvname field, the
Logical Volume Manager will add an 'r' to the file name in order to have a raw device name.
If there is no raw device entry for this name, the Logical Volume Manager will return the

Base Operating System Reference

LVM_NOTCHARDEV error code. If a Pvname is specified, the vg_id will be returned by the
Logical Volume Manager through the Vg_id parameter passed in by the user. If the user
wishes to query from the Logical Volume Manager's in-memory copy, the Pvname
parameter should be set to null. When using this method of query, the volume group must be
varied on, or an error will be returned. NOTE As long as the Pvname is not NULL, the
Logical Volume Manager will attempt a query from a physical volume and not from its
in-memory copy of data.

In addition to the Pvname parameter, the caller passes the Vg_id parameter, indicating the
volume group that contains the physical volume to be queried, the unique id of the physical
volume to be queried, the Pv_id parameter, and the address of a pointer of the type
Querypv. The Logical Volume Manager will allocate enough space for the querypv structure
and return the address to this structure in the Querypv pointer passed in.

The pv_state field will contain the current state of the physical volume. The ppsize field
specifies the size of the physical partitions, which is the same for all partitions within a
volume group. The size in bytes of a physical partition is 2 to the power of ppsize. The
pp_count field will contain the total number of physical partitions on the physical volume.
The alloc_ppcount field will contain the number of allocated physical partitions on the
physical volume. The pvnum_vgdas field contains the number of volume group descriptor
areas (0, 1, or 2) that are on the specified physical volume. The pp_map field is a pointer to
an array that has entries for each physical partition of the physical volume. Each entry in
this array will contain the pp_state that specifies the state of the physical partition
(LVM_PPFREE, LVM_PPALLOC, or LVM_PPSTALE) and the Iv_id, the 10 of the logical
volume that it is a member of. Also in the struct pp_map array are the physical volume IDs
(fst_alt_vol and snd_alt_vol) and the physical partition numbers (fst_alt_part and
snd_alt_part) for the first and second alternate copies of the physical partition, and the
logical partition number (Ip_num) that the physical partition corresponds to. The fst_alt_ vol
and fst_alt_part fields will contain zeroes if the logical partition has only one physical copy.
The snd_alt_vol and snd_alt_part fields will contain zeroes if the logical partition has only
one or two physical copies.

Parameters
Vg_id

Pvname

Return Value

Pointer to a unique_id structure that specifies the volume group of which
the physical volume to query is a member.

Pointer to a unique_id structure that specifies the physical volume to query.

Address of a pointer to a querypv structure.

Name of physical volume from which to use the volume group descriptor
area for the query. This can also be NULL.

Upon successful completion, a value of ° is returned.

Error Codes
If the Ivm_querypv subroutine fails, then it returns one of the following negative return
codes.

The device entry for the physical volume is invalid and
cannot be checked to determine if it is raw.

Base Operating System Runtime 1-373

Ivm_querypv

The routine cannot allocate enough space for a complete
buffer.

The volume group specified is off-line and should be
on-line.

An invalid parameter was passed into the routine.

If the query is done from the varied-on volume group's current volume group descriptor
area, then one of the following negative return codes may be returned.

LVM_MAPFSHMAT

LVM_DALVOPN

The mapped file, which contains a copy of the volume
group descriptor area used for making changes to the
volume group, could not be opened.

An error occurred while trying to attach the mapped file.

The volume group reserved logical volume could not be
opened.

If a physical volume name has been passed, requesting that the query come from a specific
physical volume, then one of the following negative return codes may be returned.

LVM_PVOPNERR

LVM_LVMRECERR

LVM_NOTVGMEM

LVM_NOPVVGDA

LVM_NOTCHARDEV

LVM_VGDA_BB

The physical volume device could not be opened.

The LVM record, which contains information about the
volume group descriptor area, could not be read.

An error occurred while trying to read the volume group
descriptor area from the specified physical volume.

The physical volume is not a member of a volume group.

There are no volume group descriptor areas on this
physical volume.

A device is not a raw/character device.

A bad block was found in the volume group descriptor area
located on the physical volume that was specified for the
query; therefore, a query cannot be done from the specified
physical volume.

The bad bock directory could not be read or written.

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

Related Information
The Ivm_varyonvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

1-374 Base Operating System Reference

Ivm_queryvg Subroutine

Purpose

Library

Syntax

Queries a volume group and returns pertinent information.

Logical Volume Manager Library (liblvm.a)

#include <Ivm.h>

int Ivm_queryvg (Vg_id, Queryvg, Pvname)
struct unique_id * Vg_id;
struct queryvg ** Queryvg;
char * Pvname;

Description
The Ivm_queryvg subroutine returns information on the volume group specified by the
Vg_id parameter.

The queryvg structure, found in the Ivm.h header file, contains the following members:

struct queryvg {

}

long maxlvs;
long ppsize;
long freespace;
long num_lvs;
long num_pvs;
longtotal_vgdas;
struct lv_array *lvs;
struct pv_array *pvs;

struct pv_array {

}

struct unique_id pv_id;
long pvnum_vgdas;
char state;
char res[3];

struct lv_array {

}

struct lv_id lv id;
char lvname[LVM_NAMESIZ];
char state;
char res[3];

The Pvname parameter enables the user to query from a descriptor area on a specific
physical volume instead of from the Logical Volume Manager's most recent, in-memory
copy of the descriptor area. If the query is done this way, the volume group does not have to
be on-line; however, the data returned may reflect a back level descriptor area instead of
the most recent one. The Pvname parameter should specify either the full path name of the
physical volume that contains the descriptor area to query or a single file name that must
reside in the Idev directory (e.g., rhdisk1). The name must represent a raw device. If a
raw/character device is not specified for the Pvname parameter, the Logical Volume
Manager will add an 'r' to the file name in order to have a raw device name. If there is no
raw device entry for this name, the Logical Volume Manager will return the

Base Operating System Runtime 1-375

LVM_NOTCHARDEV error code. This field must be a null terminated string of from 1 to
LVM_NAMESIZ bytes, including the null byte. If a pvname is specified, the Logical Volume
Manager will return the vg_id to the user through the Vg_id pointer passed in. If the user
wishes to query from the Logical Volume Manager's in-memory copy, the Pvname
parameter should be set to nUll. When using this method of query, the volume group must be
varied on, or an error will be returned.

Note: As long as the pvname is not NULL, the Logical Volume Manager will attempt a
query from a physical volume and not its in-memory copy of data.

In addition to the Pvname parameter, the caller passes the unique ID of the volume group to
be queried (Vg_id), and the address of a pointer to a queryvg structure. The logical volume
manager will allocate enough space for the structure and return the address of the
completed structure in the Queryvg parameter passed in by the user.

The maxlvs field is the maximum number of logical volumes allowed in the volume group.
The ppsize field specifies the size of all physical partitions in the volume group. The size in
bytes of each physical partitions is 2 to the power of the ppsize field. The freespace field
contains the number of free physical partitions in this volume group. The number of logical
volumes and the number of physical volumes wi" be returned in the num_lvs and num_pvs
fields, respectively. The total_ vgdas field specifies the total number of volume group
descriptor areas for the entire volume group. The Ivs field is a pointer to an array of unique
ids, names. and states of the logical volumes in the volume group. The pvs field is a pOinter
to an array of unique ids, states, and the number of volume group descriptor areas for each
of the physical volumes in the volume group.

Parameters
Vg_id Pointer to a unique_id structure that specifies the volume group to be

queried.

Queryvg

Pvname

Address of a pointer to the queryvg structure.

Specifies the name of the physical volume that contains the descriptor area
to query and must be the name of a raw device.

Return Value
Upon successful completion, a value of 0 is returned.

Error Codes

1-376

If the Ivm_queryvg subroutine fails, then it returns one of the following negative return
codes.

LVM_OFFLINE

LVM_INVALlD_PARAM

The subroutine cannot allocate enough space for a
complete buffer.

The volume group is off-line and should be on-line.

An invalid parameter was passed into the routine.

If the query is done from the varied-on volume group's current volume group descriptor
area, then one of the following negative return codes may be returned.

Base Operating System Reference

The mapped file, which contains a copy of the volume
group descriptor area used for making changes to the
volume group, could not be opened.

LVM_MAPFSHMAT

LVM_DALVOPN

LVM_NOTCHARDEV

An error occurred while trying to attach the mapped file.

The volume group reserved logical volume could not be
opened.

The device entry for the physical volume specified by the
Pvname parameter is invalid and cannot be checked to
determine if it is raw.

A device is not a raw/character device.

If a physical volume name has been passed, requesting that the query come from a specific
physical volume, then one of the following negative return codes may be returned.

LVM_PVOPNERR

LVM_LVMRECERR

LVM_NOTVGMEM

LVM_NOPVVGDA

LVM_BADBBDIR

Implementation Specifics

The physical volume device could not be opened.

The LVM record, which contains information about the
volume group descriptor area, could not be read.

An error occurred while trying to read the volume group
descriptor area from the specified physical volume.

The physical volume is not a member of a volume group.

There are no volume group descriptor areas on this
physical volume.

A bad block was found in the volume group descriptor area
located on the physical volume that was specified for the
query; therefore, a query cannot be done from this physical
volume.

The bad bock directory could not be read or written.

This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The Ivm_ varyonvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

Base Operating System Runtime 1-377

Ivm_queryvgs

Ivm_queryvgs Subroutine

Purpose

Library

Syntax

Queries the volume groups of the system and returns information for the volume groups that
are on-line.

Logical Volume Manager Library (liblvm.a)

#include <Ivm.h>

int Ivm_queryvgs (Queryvgs, Kmid)
struct queryvgs **Queryvgs;
mid_t Kmid;

Description
The Ivm_queryvgs subroutine returns the volume group ids and major numbers for all
volume groups in the system that are on-line.

The caller passes the address of a pointer to a queryvgs structure and the logical volume
manager allocates enough space for the structure and returns the address of the structure in
the pointer passed in by the user. The caller also passes in a Kmid parameter, which
identifies the entry point of the logical device driver module.

struct queryvgs {

}

long nUIn_vgs;
struct {
long major_nuIn
struct unique_id vg_id;
} vgs [LVM_MAXVGS];

The num_vgs field contains the number of on-line volume groups on the system. The vgs
is an array of the volume group IDs and major numbers of all on-line volume groups in the
system.

Parameters
Queryvgs Address of a pointer that is of the type struct queryvgs.

Kmid Identifies the address of the entry point of the logical volume device driver
module.

Return Value
Upon successful completion, a value of 0 is returned.

Error Codes

1-378

If the Ivm_queryvgs subroutine fails, then it returns one of the following values.

Base Operating System Reference

The routine cannot allocate enough space for the complete
buffer.

LVM_I NVALI D_PARAM

LVM_INVCONFIG

Implementation Specifics

An invalid parameter was passed into the routine.

An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
module id is invalid, if the major number given is already in
use, or if the volume group device could not be opened.

This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The Ivm_ varyonvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

Base Operating System Runtime 1-379

Ivm reducelv Subroutine

Purpose

Library

Syntax

Reduces the size of a logical volume by a specified number of partitions.

Logical Volume Manager Library (liblvm.a)

#include <Ivm.h>

int Ivrn_reducelv (Lv_id, Reduce/v)
struct Iv_id *Lv_id;
struct ext_redlv * Reduce/v;

Description

1-380

The Ivm_reducelv subroutine reduces a logical volume specified by the Lv_id parameter.
This logical volume should be closed and should be a member of a volume group that is
on-line. On partial reductions of a logical volume, all remaining logical partitions must have
one good (non-stale) copy allocated to them. The Logical Volume Manager will not reduce
the last good (non-stale) copy of a logical partition on partial reductions to a logical volume.
If a reduction is refused for this reason, the resync routines can be used to make all stale
copies of a logical partition good so that a reduction can then be performed.

The ext_redlv structure, pointed to by the Reduce/v parameter, is found in the Ivm.h header
file and is defined as follows:

struct ext_redlv{
long size;
struct pp *parts;

}
struct pp {
struct unique_id pv_id;
long lp_num;
long pp_num;

}

Following is an example of a correct parts array and size value.

size = 4 (The size field is set to 4 because there
are
4 struct pp entries.)

parts:
entry1

entry2

entry3

entry4

pv_id = 4321
lp_num = 2
pp_num = 1
pv_id = 1234
lp_num = 2
pp_num = 3
pv_id = 5432
lp_num = 3
pp_num = 5
pv_id = 4242
lp_num 2
pp_num = 12

Base Operating System Reference

The Reducelv parameter is a pointer to an ext_redlv structure. Within this structure is the
parts field, which is a pointer to an array of struct pps. Also in the ext_redlv structure is the
size field which is the number of entries in the array that is pointed to by the parts field. The
parts array should have one entry for each physical partition being deallocated, and the size
field should reflect a total of these entries. Also, the size field should never be zero; if it is,
an error will be returned. Within the pp structure is a Ip_num field which is the number of
the logical partition that you are reducing. This number should be in the range of 1 to the
value of the maxsize field. The maxsize field is returned from the Ivm_querylv subroutine
and is the maximum number of logical partitions allowed for a logical volume. Also in the pp
structure, are the pp_num and pv_id fields. The pp_num is the number of the physical
partition to be deallocated as a copy of the logical partition. This number should be in the
range of 1 to the value of the pp_count field. The pp_count field is returned from the
Ivm_querypv subroutine and is the maximum number of physical partitions allowed on a
physical volume. Also, the physical partition specified by the pp_num should have a state
of LVM_PPALLOC (Le., should be allocated). The pv_id field should contain the valid ID of
a physical volume that is a member of the same volume group as the logical volume being
reduced.

Parameters
Reducelv Pointer to the ext_redlv structure.

Specifies the logical volume to be reduced.

Return Value
Upon successful completion, a value of 0 is returned.

Error Codes
If the Ivm_reducelv subroutine fails, then it returns one of the following values.

LVM_OFFLINE

LVM_INVALID _PARAM

LVM_PPNUM_INVAL

LVM_LPNUM_INVAL

LVM_MAPFOPN

LVM_MAPFSHMAT

LVM_MAPFRDWR

LVM_INVALlD_MIN_NUM

LVM_ALLOCERR

The volume group is off-line and should be on-line.

One of the parameters passed in is invalid, or one of the
fields in the structures pointed to by one of the parameters
is invalid.

The logical volume to be reduced was open and should be
closed.

A physical partition number passed in is invalid~

A logical partition number passed in is invalid.

The mapped file, which contains a copy of the volume
group descriptor area used for making changes to the
volume group, could not be opened.

An error occurred while trying to attach the mapped file.

An error occurred while trying to read or write the mapped
file.

An invalid minor number was received.

A memory allocation error occurred.

Base Operating System Runtime 1-381

Ivm reducelv

LVM_NOTCHARDEV

LVM_'NVCONF'G

The volume group reserved logical volume could not be
opened.

The reduction can not be completed because a logical
partition would exist with only stale copies remaining.

The device entry for the physical volume is invalid and
cannot be checked to determine if it is raw.

The device specified is not a character/raw device.

An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
module id is invalid, if the major number given is already in
use, or if the volume group device could not be opened.

An error occurred while trying to write the volume group
descriptor area to the physical volume.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-382

The Ivm_extendlv subroutine, Ivm_createlv subroutine, Ivm_deletelv subroutine,
Ivm_resynclp subroutine, Ivm_resynclv subroutine, Ivm_resyncpv subroutine.

Logical Volume Programming Overview in General Programming Concepts.

Base Operating System Reference

Ivm_resynclp Subroutine

Purpose

Library

Syntax

Synchronizes all physical partitions for a logical partition.

Logical Volume Manager Library (liblvm.a)

#include <Ivm.h>

int Ivm_resynclp (Lv_id, Lp_num)
struct Lv_id *Lv_id;
long Lp_num;

Description
The Ivm_resynclp subroutine initiates resynchronization for all the existing physical partition
copies of the specified logical partition, if required.

The Lv_id parameter specifies the logical volume that contains the logical partition needing
resynchronization. The Lp_num parameter is the logical partition number within the logical
volume to be resynchronized. The volume group must be varied on, or an error is returned.

Parameters
Lv_id Specifies the logical volume that contains the logical partition needing

resynch ron ization.

The logical partition number within the logical volume to be resynchronized.

Return Value
Upon successful completion the Ivm_resynclp subroutine returns a value of O.

Error Codes
If the Ivm_resynclp subroutine fails, then it returns one of the following values.

LVM_NOTSYNCED

LVM_OFFLINE

LVM_INVALlD_PARAM

LVM_MAPFOPN

LVM_MAPFSHMAT

LVM_MAPFRDWR

The logical partition was not completely resynced.

The volume group is off-line and should be on-line.

One of the fields passed in did not have a valid value.

The mapped file, which contains a copy of the volume
group descriptor area used for making changes to the
volume group, could not be opened.

An error occurred while trying to attach the mapped file.

An error occurred while trying to read or write the mapped
file.

The volume group reserved logical volume could not be
opened.

Base Operating System Runtime 1-383

LVM_ALLOCERR

LVM_NOTCHARDEV

LVM_INV_DEVENT

LVM_INVALlD_MIN_NUM

LVM_WRTDAERR

A memory allocation error occurred.

A device is not a raw/character device.

A device has a major number that does not correspond to
the volume group being worked in.

An invalid minor number was received.

An error occurred while trying to write the volume group
descriptor area to the physical volume.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-384

The Ivm_resynclv subroutine, Ivm_resyncpv subroutine, Ivm_extendlv subroutine,
Ivm_varyonvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

Base Operating System Reference

Ivm_resynclv

Ivrn_resynclv Subroutine

Purpose

Library

Syntax

Synchronizes all physical copies of all of the logical partitions for a logical volume.

Logical Volume Manager Library (liblvm.a)

#include <Ivm.h>

int Ivm_resynclv (Lv_id)
struct Lv_id *Lv_id;

Description

Parameter

The Ivm_resynclv subroutine synchronizes all physical copies of a logical partition for each
logical partition of the logical volume specified by the Lv_id parameter. The volume group
must be varied on or an error is returned.

Lv_id Specifies the logical volume name.

Return Value
Upon successful completion, the Ivm_resynclv subroutine returns a value of O.

Error Codes
If the Ivm_resynclv subroutine fails, then it returns one of the following values.

LVM_OFFLINE

LVM_INVALlD_PARAM

LVM_MAPFOPN

LVM_MAPFSHMAT

LVM_MAPFRDWR

LVM_NOTSYNCED

LVM_ALLOCERR

LVM_NOTCHARDEV

LVM_INV _DEVENT

The volume group is off-line and should be on-line.

One of the fields passed in did not have a valid value.

The mapped file, which contains a copy of the volume
group descriptor area used for making changes to the
volume group, could not be opened.

An error occurred while trying to attach the mapped file.

An error occurred while trying to read or write the mapped
file.

The volume group reserved logical volume could not be
opened.

The logical volume could not be completely resynced.

A memory allocation error occurred.

A device is not a raw/character device.

A device has a major number that does not correspond to
the volume group being worked in.

Base Operating System Runtime 1-385

LVM_INVALlD_MIN_NUM

LVM_WRTDAERR

An invalid minor number was received.

An error occurred while trying to write the volume group
descriptor area to the physical volume.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The Ivm_resyncpv subroutine, Ivm_resynclp subroutine, Ivm_varyonvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

1-386 Base Operating System Reference

Ivm_resyncpv

Ivm_resyncpv Subroutine

Purpose

Library

Syntax

Synchronizes all physical partitions on a physical volume with the related copies of the
logical partition to which they correspond.

Logical Volume Manager Library (liblvm.a)

#include <Ivm.h>

int Ivm_resyncpv (Vg_id, PV_id)
struct unique_id * Vg_id;
struct unique_id * Pv_id;

Description
The Ivm_resyncpv subroutine synchronizes all copies of the corresponding logical partition
for each physical partition on the physical volume specified by the Pv_id parameter. The
Vg_id parameter specifies the volume group that contains the physical volume to be
resynced. The volume group must be varied on, or the LVM_OFFLINE error code will be
returned.

Note: The resync of the physical volume is done by resyncing entire logical partitions that
any stale physical partitions belong to on the physical volume. Because a complete
logical partition is resynced, other physical volumes besides the one specified may
be partially or completely resynced.

Parameters
Vg_id Specifies the volume group that contains the physical volume to be

resynced.

Pv_id Specifies the physical volume.

Return Value
Upon successful completion the Ivm_resyncpv subroutine returns a value of O.

Error Codes
If the Ivm_resyncpv subroutine failS, then it returns one of the following values.

LVM_OFFLINE

LVM_INVALlD_PARAM

LVM_MAPFOPN

LVM_MAPFSHMAT

LVM_MAPFRDWR

The volume group is off-line and should be on-line.

One of the fields passed in did not have a valid value.

The mapped file, which contains a copy of the volume
group descriptor area used for making changes to the
volume group, could not be opened.

An error occurred while trying to attach the mapped file.

An error occurred while trying to read or write the mapped
file.

Base Operating System Runtime 1-387

LVM_NOTSYNCED

LVM_ALLOCERR

LVM_NOTCHARDEV

LVM_INV _DEVENT

The volume group reserved logical volume could not be
opened.

The physical volume could not be completely resynced.

A memory allocation error occurred.

A device is not a raw/character device.

A device has a major number that does not correspond to
the volume group being worked in.

An error occurred while trying to write the volume group
descriptor area to the physical volume.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The Ivm_resynclv subroutine, Ivm_resynclp subroutine, Ivm_varyonvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

1-388 Base Operating System Reference

Ivm_varyoffvg

Ivm_varyoffvg Subroutine

Purpose

Library

Syntax

Varies a volume group off-line.

Logical Volume Manager Library (liblvm.a)

#include <Ivm.h>

int Ivm_ varyoffvg (Varyoffvg)
struct varyoffvg * Varyoffvg;

Description

Parameter

The Ivm_varyoffvg subroutine varies a specified volume group off-line. All logical volumes
in the volume group to be varied off-line must be closed.

The varyoffvg structure pointed to by the Varyoffvg parameter is found in the Ivm.h header
file and defined as follows:

struct varyoffvg
{
struct unique_id vg_idi
long lvs_onlYi

} * Varyoffvg;

The Ivm_varyoffvg subroutine varies the volume group specified by the vg_id field off-line.

The Ivs_only flag is used to indicate whether the volume group is to be varied-off entirely or
whether system management commands, which act on the volume group, will still be
permitted. If the Ivs_only flag is TRUE, then all logical volumes in the volume group will be
varied-off, but the volume group will still be available for system management commands
which act on the volume group. If the Ivs_only flag is FALSE, then the entire volume group
is varied-off, and system management commands cannot be performed on the volume
group. The normal value for this flag is FALSE.

Varyoffvg Pointer to the varyoffvg structure.

Return Value
Upon successful completion, a value of 0 is returned.

Error Codes
If the Ivm_varyoffvg subroutine fails, then it returns one of the following negative values.

An open logical volume was encountered when it should be
closed.

The mapped file, which contains a copy of the volume
group descriptor area used for making changes to the
volume group, could not be opened.

Base Operating System Runtime 1-389

Ivm_ varyoffvg

LVM_MAPFSHMAT

LVM_MAPFRDWR

LVM_ALLOCERR

LVM_'NVALlD_PARAM

LVM_'NVCONF'G

LVM_NOTCHARDEV

Implementation Specifics

An error occurred while trying to attach the .mapped file.

An error occurred while trying to write to the mapped file.

A memory allocation error occurred.

An invalid parameter was passed into the routine.

An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
major number in the mapped file is invalid.

The volume group specified is off-line. It must be varied-on
to perform this operation.

The device entry for the physical volume is invalid and
cannot be checked to determine if it is raw.

The device specified is not a character/raw device.

This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The Ivm_varyonvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

1-390 Base Operating System Reference

Ivm_varyonvg Subroutine

Purpose

Library

Syntax

Varies a volume group on-line.

Logical Volume Manager Library (liblvm.a)

#include <Ivm.h>

int Ivm_ varyonvg (Varyonvg)
struct varyonvg * Varyonvg;

Description
The Ivm_varyonvg subroutine varies the specified volume group on-line. The
Ivm_varyonvg subroutine contacts the physical volumes in the volume group and performs
recovery of the volume group descriptor area if necessary.

The varyonvg structure pOinted to by the Varyonvg parameter is found in the Ivm.h header
file and defined as follows:

struct varyonvg
{

mid t kmid;
char *vgname;
long vg_major;
struct unique_id vg_id;
long noopen_lvs;
long reserved;
long auto_resync;
long misspv_von;
long missname_von;
short int override;
struct {

long num_pvs;
struct {

struct unique_id pv_id;
char *pvname; ,

} pv [LVM_MAXPVS];
} vvg_in;

struct {

} ;

long num_pvs;
struct {

struct unique_id pv_id;
char *pvname;

long pv_status;
} pv [2 * LVM_MAXPVS];

} vvg_out;

The kmid field is the module id that identifies the entry point of the logical volume device
driver module.

Base Operating System Runtime 1-391

1-392

The vgname field is the character special file name, which is either the full path name or a
file name that resides in the /dev directory (e.g. rvg13) of the volume group device. This
device is actually a logical volume with a minor number reserved for use by the Logical
Volume Manager.

The vg_major is the major number of the volume group to be varied on.

If the noopen_lvs flag is FALSE, the Ivm_ varyonvg subroutine builds and sends data
structures describing all logical volumes in the volume group to the logical volume device
driver. This enables those logical volumes to be opened and accessed. If the noopen_lvs
flag is TRUE, then queries to the volume group and any other system management
functions can be performed, but opens to the logical volumes in the volume group will not be
allowed.

The auto_resync is a flag that should contain either TRUE or FALSE. If auto_resync is
FALSE then resynchronization of physical and logical volumes containing stale partitions will
not be performed and should be initiated by the caller at some other time. The LVM
subroutines Ivm_resyncpv and Ivm_resynclv are provided to perform resynchronization of
physical and logical volumes, respectively. The recommended value for th,e auto_resync
flag is TRUE.

The structure vvg_in contains input from the caller to the Ivm_varyonvg subroutine which
describes the physical volumes in the volume group. The num_pvs field is the number of
entries in the pv array of structures. Each entry in the pv array contains the 10 (pv_id) and
name (pvname) of a physical volume in the volume group. Unless the volume group is
already varied on, this array should contain an entry for each physical volume in the volume
group.

The structure vvg_out contains output from the Ivm_varyonvg subroutine to the user that
describes the status of the physical volumes in the caller's input list and any additional
physical volumes which are found to be in the volume group but were not included in the
input list. The num_pvs is the number of entries in the pv array of structures. Each entry in
the pv array contains the 10 (pv_id), the name (pvname), and the status (pv_status) of a
physical volume contained in the input list or the volume group.

The pvname field is the character special file name, which is either the full path name or a
single file name that resides in the /dev directory (e.g., rhdiskO) of the physical volume
being installed in the new volume group.

Thepv _status field for each physical volume in the vvg_out structure will contain one of
the following values if either the volume group is varied on successfully or if the
LVM_MISSPVNAME or LVM_MISSINGPV error is returned:

LVM_PVMISSING

LVM_PVREMOVED

This physical volume is currently an active member of the volume
group.

This physical volume is currently missing from the volume group.

This physical volume has been temporarily removed from the
volume group by user request.

This physical volume is not a member of the specified volume
group.

This physical volume is a member of the volume group but its
name was not passed in the input list.

Base Operating System Reference

Ivm_varyonvg

LVM_DUPPVID A physical volume with the same pv_id as this physical volume
has already appeared earlier in the input list.

LVM_LVMRECNMTCH This physical volume needs to be deleted from the volume group
because it has invalid or non-matching data in its LVM record.
This may mean that the physical volume has been installed into
another volume group.

LVM_NAMIDNMTCH The pv_id for this physical volume was passed in the input list
but it does not match the pv_id of the specified physical volume
device name.

For physical volumes in the input list which are found to be members of the specified volume
group, the pv_status will contain the physical volume state of either LVM_PVACTIVE,
LVM_PVMISSING, or LVM_PVREMOVED. If a physical volume which has the same pv_id
has appeared previously in the input list, the pv_status field will contain LVM_DUPPVID.
For physical volumes in the list which are not members of the volume group, the pv_status
will be LVM_INVPVID.

In some cases, a physical volume that is a member of the volume group might have a
pv_status of LVM_LVMRECNMTCH. This means that the LVM record on the physical
volume has either invalid or non-matching data and that the physical volume cannot be
brought on line. If this happens, it is most likely because the physical volume has been
installed into another volume group without first deleting it from this one. The user should
now delete this physical volume from this volume group since it can no longer be accessed
as a member of this volume group.

For physical volumes that are members of the volume group but were not in the input list,
the pv_status will be LVM_NONAME or LVM_NAMIDNMTCH. In this case the pv_id field
will contain the 10 of the physical volume, and the pvname field will contain a null pointer.
An unsuccessful (negative) return code of LVM_MISSPVNAME will be returned to the caller
unless the subroutine was called with a value of TRUE for the missname_von flag.

The pv _status field for each physical volume in the vvg_out structure will contain one of
the following values if either the LVM_NOQUORUM or LVM_NOVGDAS error is returned.

Either the physical volume device could not be opened or
necessary information in the IPL record or the LVM record could
not be read.

The LVM record for this physical volume indicates that it is not a
member of the specified volume group.

The LVM record for this physical volume indicates that it is a
member of the specified volume group.

It is recommended that the missname_von flag contain a value of FALSE for the first call to
the Ivm_varyonvg subroutine since a value of TRUE will mean that any physical volume for
which a name was not passed in the input list will be given a state of LVM_PVMISSING, and
users of the volume group cannot have access to that physical volume until a subsequent
call is made to the Ivm_varyonvg subroutine for that volume group.

If the misspv_von flag is TRUE, the volume group will be varied on (provided a quorum
exists) even if some of the physical volumes in the volume group have a state of
LVM_PVMISSING or LVM_PVREMOVED. If the flag is FALSE, the volume group will be
varied on only if all physical volumes in the volume group are in the active state
(LVM_PVACTIVE). The value recommended for this flag is TRUE. For any physical volume

Base Operating System Runtime 1-393

Parameter

that has a state of LVM_PVMISSING or LVM_PVREMOVED when the volume group is
varied on, access to that physical volume will not be available through the Logical Volume
Manager. If the state of a physical volume is changed from LVM_PVREMOVED to
LVM_PVACTIVE through a call to the Ivm_changepv subroutine, then that physical volume
will again be available to the Logical Volume Manager, provided that it is not missing at the
time.

If the override flag is TRUE, an attempt will be made to vary on the volume group even if
access to a quorum (or majority) of volume group descriptor area copies cannot be obtained.
Provided that there is at least one valid copy of the descriptor area, the vary on of the
volume group will proceed with the latest available copy of the volume group descriptor area.

The recommended value for the override flag is FALSE. Note that if the user chooses to
override the LVM_NOQUORUM error and artificially force a quorum, the Logical Volume
Manger will not guarantee the data integrity of the data contained in the chosen copy of the
volume group descriptor area.

If a physical volume's state is LVM_PVMISSING when the volume group is varied on, then
access to that physical volume can be made available to the LVM only by again calling the
Ivm_varyonvg subroutine for that volume group. When the Ivm_varyonvg subroutine is
called for a volume group that is already varied on, a check will be made for any physical.
volumes in the volume group with a state of LVM_PVMISSING, and an attempt will be made
to open those physical volumes. Any previously missing physical volumes that are
successfully opened will be defined to the logical volume device driver, and access to those
physical volumes will again be available through the Logical Volume Manager.

When the Ivm_varyonvg subroutine is called for an already varied-on volume group for the
purpose of changing previously missing physical volumes back to the active state, the caller
does not need to pass an entire list of physical volumes in the vvg_in structure but only
needs to pass information for those missing physical volumes that he wishes to attempt to
return to the LVM_PVACTIVE state.

Varyonvg Pointer to the varyonvg structure.

Return Values
Upon successful completion, one or more of the following positive return codes will be
returned:

LVM_SUCCESS

LVM_CHKVVGOUT

The volume group was successfully varied on.

The volume group was varied on successfully, but there is
information in the vvg_out structure which should be
checked.

Error Codes

1-394

If the Ivm_ varyonvg subroutine does not complete successfully, one of the following
negative error codes will be returned:

LVM_MISSPVNAME

Base Operating System Reference

The volume group could not be varied on because access
to a quorum count, or majority, of all volume group
descriptor areas could not be obtained.

The volume group was not varied on because the volume
group contains a physical volume ID for which no name was

LVM_MISSINGPV

LVM_INVCONFIG

LVM_NOTCHARDEV

LVM_INV _DEVENT

LVM_ALLOCERR

LVM_MAPFOPN

Implementation Specifics

passed. The vvg_out structure will contain the pv_id, a
null pOinter for the pvname, and a pv _status of
LVM_NONAME for any physical volume in the volume
group for which a name was not passed in the vvg_in
structure. This error will be returned only if the
missname_von flag has a value of FALSE; otherwise, the
volume group will be varied on if a quorum is obtained.

The volume group was not varied on because one of the
physical volumes in the volume group has a state of either
LVM_PVMISSING or LVM_PVREMOVED. This error will be
returned only if the misspv_von flag has a value of FALSE;
otherwise, the volume g~oup will be varied on if a quorum is
obtained.

An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
module id is invalid, or if the major number given is already
in use.

The device specified is not a character/raw device.

The device entry for a specified device is invalid and cannot
be checked to determine if it is raw.

A field in the varyongvg structure is invalid or the pointer
structure is invalid.

An error occurred while trying to read or write the mapped
file.

A memory allocation error has occurred.

The mapped file, which contains a copy of the volume
group descriptor area used for making changes to the
volume group, could not be opened.

The volume group could not be varied on because access
to a valid copy of the volume group descriptor area could
not be obtained.

This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The Ivm_varyoffvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

Base Operating System Runtime 1-395

madd, ...

madd, msub, mult, mdiv, pow, ged, invert, rpow, msqrt, memp,
move, min, omin, fmin, m_in, mout, omout, fmout, m_out, sdiv,
or itom Subroutine

Purpose

Library

Syntax

Multiple precision integer arithmetic.

Berkeley Compatibility Library (libbsd.a)

#include <mp.h>
#include <stdio.h>

typedef struct mint tint Length; short * Value} MINT;

madd(a,b,c)
msub(a,b,c)
mult(a,b,c)
mdiv(a,b,q,ry
pow(a,b,m,c)
gcd(a,b,c)
invert(a,b,c)
rpow(a,n,c)
msqrt(a,b,ry
mcmp(a,b)
move(a,b)
min(a)
omin(a)
fmin(a,f)
m_in(a,n,f)
mout(a)
omout(a)
fmout(a,f)
m_out(a,n,f)
MINT *a, *b, *c, *m, *q, *r,
FILE *f;
int n;

sdiv(a,n,q,ry
MINT *a, *q;
short n;
short *r,

MINT *itom(n)

Description

1-396

These subroutines perform arithmetic on integers of arbitrary Length. The integers are
stored using the defined type MINT. Pointers to a MINT can be initialized using the itom
subroutine which sets the initial Value to n. After that, space is managed automatically by the
subroutines.

The madd subroutine, msub subroutine, and mult subroutine assign to c the sum,
difference, and product, respectively, of a and b.

Base Operating System Reference

madd, ...

The mdiv subroutine assigns to q and rthe quotient and remainder obtained from dividing a
by b.

The sdiv subroutine is like the mdiv subroutine except that the divisor is a short integer n
and the remainder is placed in a short whose address is given as r.

The msqrt subroutine produces the integer square root of a in b and places the remainder in
r.

The rpow subroutine calculates in c the value of a raised to the (regular integral) power n,
while the pow subroutine calculates this with a full multiple precision 'exponent b and the
result is reduced modulo m.

The ged subroutine returns the greatest common denominator of a and bin c, and the
invert subroutine computes c such that a*c mod b=1, for a and b relatively prime.

The memp subroutine returns a negative, zero, or positive integer value when a is less than,
equal to, or greater than b, respectively.

The move subroutine copies a to b. The min subroutine and mout subroutine do decimal
input and output while the omin subroutine and omout subroutine do octal input and output.
More generally, the fmin subroutine and fmout subroutine do decimal input and output
using file f, and the m_in subroutine and m_out subroutine do inputs and outputs with
arbitrary radix n. On input, records should have the form of strings of digits terminated by a
newline; output records have a similar form.

Parameters
Length

Value

a

b

c

f

m

n

q

r

Error Codes

Specifies the length of an integer.

Specifies the initial value to be used in the routine.

Specifies the first operand of the multiple precision routines.

Specifies the second operand of the multiple precision routines.

Contains the integer result.

A pointer of the type FILE that pOints to input and output files used with
input/output routines.

Indicates modulo.

Provides a value used to specify radix with m_in and m_out, power with
rpow, and divisor with sdiv.

Contains the quotient obtained from mdiv.

Contains the remainder obtained from mdiv, sdiv, and msqrt.

Error messages and core images are displayed as a result of illegal operations and running
out of memory.

Base Operating System Runtime 1-397

madd, ...

Implementation Specifics

Files

These subroutines are part of AIX Base Operating System (BOS) Runtime.

Programs that use the multiple-precision arithmetic functions must link with libbsd.a.

Bases for input and output should be less than or equal to 10.

pow is also the name of a standard math library routine.

lusr/inqlude/mp.h

llib/libbsd.a

include file

object code library

Related Information
The be command, de command.

1;...398 Base Operating System Reference

malloc, ...

malloc, free, realloc, calloc, mallopt, mallinfo, or alloca
Subroutine

Purpose

Libraries

Syntax

Provides a memory allocator.

Standard C Library (libc.a), Berkeley Compatibility Library (libbsd.a)

#include <malloc.h>

void *malloc (Size)
size_t int Size;

char *alloca (Size)
int Size;

void free {Pointe!}
void * Pointer,

void *realloc (Pointer, Size)
char * Pointer,
size_t Size;

int mallopt (Command, Value)
int Command
int Value;

struct mallinfo mallinfo{)

void *calloc (NumberOfElements, ElementSize)
size_t NumberOfElements;
size_t ElementSize;

Description
The malloe subroutine and free subroutines provide a simple general-purpose memory
allocation package.

The malloe subroutine returns a pointer to a block of memory of at least the number of bytes
specified by the Size parameter. The block is aligned so that it can be used for any type of
data. Undefined results occur if the space assigned by the malloc subroutine is overrun.

The malloc subroutine searches memory for the first contiguous area of free space of at
least the number of bytes specified by the Size parameter. The search is performed in a
circular pattern from the last block of memory allocated or freed. During the search, the
subroutine joins adjacent free blocks of memory. If a large enough contiguous area of free
space is not found, this subroutine issues an sbrk subroutine to get more memory from the
system.

The free subroutine frees the block of memory pointed to by the Pointer parameter for
further allocation. The block pointed to by the Pointer parameter must have been previously
allocated by the malloc subroutine. The free subroutine does not change the contents of
this block of memory. Undefined results occur if the Pointer parameter is not a valid pointer.

Sase Operating System Runtime 1-399

malloe, ...

1-400

The realloe subroutine changes the size of the block of memory pOinted to by the Pointer
parameter to the number of bytes specified by the Size parameter and returns a pointer to
the block. The contents of the block remain unchanged up to the lesser of the old and new
sizes. If a large enough block of memory is not available, the realloe subroutine calls the
malloe subroutine to enlarge the memory area and moves the data to the new space.

The realloe subroutine also works if the Pointer parameter pOints to a block freed since the
last call to the malloe subroutine, realloe subroutine, or ealloe subroutine.

The ealloe subroutine allocates space for an array with the number of elements specified by
the NumberOfElements parameter. Each element is of the size specified by the ElementSize
parameter. The space is initialized to zeros.

The alloea subroutine allocates the number of bytes of space specified by the Size
parameter in the stack frame of the caller. This space is automatically freed when the
subroutine that called the alloea subroutine returns to its caller.

The mallopt subroutine and mallinfo subroutine allow tuning the allocation algorithm at
execution time. These subroutines are implemented to provide compatibility with System V.
Nothing done with mallopt affects how memory is allocated by the system. malloe performs
efficient memory allocation without needing mallopt.

The mallopt subroutine initiates a mechanism that can be used to allocate small blocks of
memory quickly. Using this scheme, a large group (called a holding-block) of these small
blocks is allocated at one time. Then, each time a program requests a small amount of
memory, a pointer to one of the pre-allocated small blocks is returned. Different
holding-blocks are created for different sizes of small blocks and are created when needed.
This subroutine allows the programmer to set the following three values to maximize efficient
small block allocation for a particular application. The three values are:

grain

number

size

The grain of small block sizes. This value determines what range of small
block sizes is considered the same size, which influences the number of
separate holding-blocks allocated. For example, if the grain value is 16
bytes, all small blocks of 16 bytes or less belong to one holding-block and
blocks from 17 to 32 bytes belong to another holding-block. Thus, if the
grain value is too small, space may be wasted because many holding­
blocks are created.

The number of small blocks in a holding-block. If holding-blocks have many
more small blocks than the program is using, space is wasted. If
holding-blocks are too small or have too few small blocks in each,
performance gain is lost.

Below this value, a request to the malloe subroutine is filled using the
special small block algorithm. Initially this value, which is called MAXFAST,
is zero, which means that the small block option is not normally in use by
malloe.

The values for the Command parameter to the mallopt subroutine are:

Sets the GRAIN value to the Value parameter (must be greater than 0). The
sizes of all blocks smaller than MAXFAST are considered to be rounded up,
to the nearest multiple of GRAIN. The default value for the GRAIN
parameter is the smallest number of bytes that allows alignment of any data
type. When the GRAIN parameter is set, the Value parameter is rounded up
to a multiple of the default

Base Operating System Reference

malloc, ...

M_KEEP Preserves data-in a free-block until the next call to the malloe, realloe, or
ealloe subroutine. This option is provided only for compatibility with the
older version of the malloe subroutine and is not recommended.

M_MXFAST Sets the MAXFAST value to the value specified by the Value parameter.
The algorithm allocates all blocks below the size of MAXFAST in large
groups and then doles them out very quickly. The default value for
MAX FAST is O.

M_NLBLKS Sets the NUMBLKS value to the Value parameter. The aforementioned
large groups each contain NUMBLKS blocks. The value for NUMBLKS must
be greater than 1. The default value is 100.

The mallopt subroutine can be called repeatedly, but parameters cannot be changed after
the first small block is allocated from a holding-block. If the mallopt subroutine is called
again after the first small block is allocated, it returns an error.

The mallinfo subroutine can be used during program development to determine the best
settings of these parameters for a particular application. It must be called only after some
storage is allocated. Information is returned describing space usage. Refer to the malloe.h
file for details of the mallinfo structure.

Parameters
Size

Pointer

Command

Value

NumberOfElements

ElementSize

Return Values

Specifies a number of bytes of memory.

Points to the block of memory that was returned by malloe or
ealloe.

Specifies a mallopt subroutine command.

Specifies the value to which M_MXFAST, M_NLBLKS,
M_GRAIN, or M_KEEP is to be set.

Specifies the number of elements in the array.

Specifies the size of each element in the array.

Each of the allocation subroutines returns a pointer to space suitably aligned for storage of
any type of object. Cast the pointer to the pointer-to-element type before using it.

The malloe subroutine, realloe subroutine, and calloc subroutine return a NULL pointer if
there is no available memory or if the memory arena has been corrupted by storing outside
the bounds of a block. When this happens, the block pointed to by the Pointer parameter
may be destroyed.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

The valloe subroutine found in many BSD systems is supported as a compatibility interface
in the Berkeley Compatibility library (libbsd.a). The function of the valloe subroutine is
superseded by the malloe subroutine, which automatically page aligns large (greater than 1
page) requests. The valloe syntax follows:

ehar *valloe (Size)
unsigned int Size;

Base Operating System Runtime 1-401

malloe, ...

The alloea subroutine obtains storage by increasing the size of the current stack frame. The
speed of allocating storage this way and the automatic release of the storage on return of
the function, makes the alloea subroutine preferable to the malloe subroutine in many
applications.

Some assistance is typically required from compilers to remove dependence on a fixed-size
stack frame and to pass extra information to the alloea subroutine. The details vary
depending on hardware architecture, stack format, and linkage conventions, but the AIX
System/370 alloea subroutine support described in the following text is representative.

Space allocated by the alloea subroutine resides in its caller's stack frame on a double­
word boundary following the outgoing argument list.

The C compiler, through a switchable option, recognizes use of the function name alloea.
Unlike special-casing of other libe functions like strlen and memepy, which may be on by
default, alloea recognition is off by default because support can affect code quality in the
function using alloea.

When it is recognized that a function contains a call to the alloea subroutine:

• Code generated for the function addresses auto-variables, the incoming argument list,
and the incoming register save area by using a base register that is relative to the end of
the stack frame. The stack pointer, r13, is relative to the start of the stack frame and must
be used only to address the outgoing argument list and other values located below any
storage allocated by the alloea subroutine.

• The external name of alloea is left as "alloca" instead of being changed to "_alloca."
This ensures that only functions compiled with alloea support can call it. The
end-of-argument-list offset (rounded up) is passed as a hidden argument to alloea in the
four bytes following the BALR instruction. (This nonstandard call format is also used by
the stack-overflow checker and by the profiling mechanism.)

The alloea subroutine itself is written in assembler and does the following:

• Rounds space request up to a multiple of 8 bytes.

• If the request size exceeds red-zone capability, the alloea subroutine checks explicitly for
stack overflow and returns NIL if there is insufficient space.

• Decreases the r13 stack pointer by the request size. Copies the stack back-pointer table
into 4(r13).

• Determines the result value: r13 plus the hidden argument.

• Returns.

Related Information
The _end, _etext, _edata identifiers.

1-402 Base Operating System Reference

matherr

matherr Subroutine

Purpose.

Library

Syntax

Math error handling function.

System V Math Library (libmsaa.a)

#include <math.h>

int matherr (x)
struct exception *x;

Description
The matherr subroutine is called by math library routines when errors are detected.

You can use matherr or define your own procedure for handling errors by creating a function
named rnatherr in your program. Such a user-designed function must follow the same
syntax as matherr. When an error occurs, a pointer to the exception structure will be passed
to the user-supplied rnatherr function.This structure, which is defined in the math.h header
file, includes:

int Type;
char *Name;
double Argumentl, Argument2, ReturnValue;

Parameters
Type Specifies an integer describing the type of error that has occurred from the

flollowing list defined by the math.h header file:

DOMAIN - argument domain error

SING - argument singularity

OVERFLOW - overflow range error

UNDERFLOW - underflow range error

TLOSS - total loss of significance

PLOSS - partial loss of significance.

Name Points to a string containing the name of the routine that caused the error.

Argument 1 Points to the first argument with which the routine was invoked.

Argument2 Points to the second argument with which the routine was invoked.

Return Value Specifies the default value that is returned by the routine unless the user's
rnatherr function sets it to a different value.

Base Operating System Runtime 1-403

matherr

Return Values
If the user's matherr function returns a non-zero value, no error message is printed, and
errno will not be set.

Error Codes
If the function matherr is not supplied by the user, the default error-handling procedures,
described with the math library routines involved, will be invoked upon error. In every case,
errno is set to EDOM or ERANGE and the program continues.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-404

The bessel: jO, j1, jn, yO, y1, yn subroutines, exp, expm1, log, log10, log1 p, pow
subroutines, Igamma, gamma subroutines, hypot, cabs subroutines, sinh, cosh, tanh
subroutines, sin, cos, tan, asin, acos, atan, atan2 subroutines.

Base Operating System Reference

mblen Subroutine

Purpose

Library

Syntax

Determines the length in bytes of a multibyte character.

Standard C Library (libc.a)

#include <stdlib.h>

int mblen(Mbstring, Numbel)
char * Mbstring;
size_t Number,

Description

mblen

The mblen subroutine determines the length in bytes of a multibyte character, similar to the
NLchrlen subroutine.

Parameters
Mbstring

Number

Return Values

Pointer to a multibyte character string.

Maximum number of bytes to cosider.

The mblen subroutine returns 0 if the Mbstring parameter points to a null. It returns -1 if a
character cannot be formed from the Number parameter (or less than NumbeTj bytes
pointed to by the Mbstring parameter. If Mbstring is a null pointer, a 0 is returned.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The NLchar subroutines

National Language Support Overview in General Programming Concepts.

Base Operating System Runtime 1-405

mbscat, ...

mbscat, mbscmp, or mbscpy Subroutine

Purpose

Library

Syntax

Performs operations on multibyte character strings

Standard C Library (libc.a)

#include <mbstr.h>

char *mbscat(MbString1, MbString2)
char * MbString 1, * MbString2;

int mbscmp(MbString1, MbString2)
char * MbString 1, * MbString2;

char *mbscpy(MbString1, MbString2)
char * MbString 1, * MbString2);

Description
The mbscat, mbscmp and mbscpy subroutines operate on null-terminated multibyte
character strings.

The mbscat subroutine appends characters (code points) from the MbString2 parameter to
the end of the MbString1 parameter, appends null to the result, and returns MbString1.

The mbscmp subroutine compares multibyte characters in the MbString1 parameter to the
MbString2 parameter and returns an integer greater than zero if MbString1 is greater than
MbString2; zero if the strings are equivalent; and an integer less than zero if MbString1 is
less than MbString2.

The mbscpy subroutine copies multibyte characters from the MbString2 parameter to the
MbString1 parameter and returns MbString1. The copy operation terminates with the
copying of a null character.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-406

The mbsncat, mbsncmp, mbsncpy subroutines, wcscat, wcschr, wcscmp, wcscpy,
wcscspn subroutines.

National Language Support Overview in General Programming Concepts.

Base Operating System Reference

mbschr

mbschr Subroutine

Purpose

Library

Syntax

Locates a character (code point) in a multibyte character string.

Standard C Library (Iibc.a)

#include<mbstr.h>

char *mbschr{MbString, MbCharactel}
char * MbString;
int MbCharacter,

Description
The mbschr subroutine locates the first occurrence of MbCharacter in the string pointed to
by the MbString parameter. The MbCharacter parameter is the code point of a multibyte
character represented as an integer. The terminating null character is considered to be part
of the string.

Parameters
MbString

MbCharacter

Return Values

Pointer to a multibyte character string.

A code point of a multibyte character represented as an integer.

The mbschr subroutine returns a pOinter to MbCharacterwithin the multibyte character
string or a NULL pointer if MbCharacter does not occur in the string.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The wcsrchr subroutine, mbsrchr subroutine.

National Language Support Overview in General Programming Concepts.

Base Operating System Runtime 1-407

mbslen

mbslen Subroutine

Purpose

Library

Syntax

Determines the number of characters (code points) in a multibyte character string.

Standard C Library (libc.a)

#include <stdlib.h>

size _ t mbslen(MultibyteString)
char *mbs;

Description

Parameter

The mbslen subroutine determines the number of characters (code points) in a multibyte
character string.

MultibyteString Pointer to a multibyte character string.

Return Values
The mbslen subroutine returns the number of multibyte characters in a multibyte character
string. It returns 0 if the MultibyteString parameter points to a null or a character cannot be
formed from the string pointed to by the MultibyteString parameter.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The mblen subroutine.

National Language Support Overview in General Programming Concepts.

1-408 Base Operating System Reference

mbsncat, ...

mbsncat, mbsncmp, or mbsncpy Subroutine

Purpose

Library

Syntax

Performs operations on a specified number of null-terminated multibyte characters.

Standard C Library (libc.a)

#include <mbstr.h>

char *mbsncat(MbString1, MbString2, Number?
char * MbString 1, * MbString2;
size_t Number,

int mbsncmp(MbString1, MbString2, Number?
char * MbString 1, * MbString2;
size_t Number,

char *mbsncpy(MbString1, MbString2, Number)
char * MbString 1, MbString2;
size_t Number,

Description
The mbsncat, mbsncmp, and mbsncpy subroutines operate on null-terminated multibyte
character strings.

The mbsncat subroutine appends up to the value of the Number parameter of characters
(code points) from the MbString2 parameter to the end of the MbString1 parameter, appends
null to the result, and returns the MbString 1 parameter.

The mbsncmp subroutine compares up to the value of the Number parameter of multibyte
characters in the MbString1 parameter to the MbString2 parameter and returns an integer
greater than zero if MbString 1 is greater than MbString2; zero if the strings are equivalent;
and an integer less than zero if MbString1 is less than MbString2.

The mbsncpy subroutine copies up to the value of the N parameter of multibyte characters
from the MbString2 parameter to the MbString1 parameter and returns MbString1. If
MbString2 is shorter than Numbercharacters (code points), MbString1 is padded out to
Number characters with null characters.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The mbscat, mbscmp, mbscpy subroutines, wcsncat, wcsncmp, wcsncpy subroutines.

National Language Support Overview in General Programming Concepts.

Base Operating System Runtime 1-409

mbspbrk

mbspbrk Subroutine

Purpose

Library

Syntax

Locates the first occurrence of multibyte characters (code points) in a string.

Standard C Library (libc.a)

#include <mbstr.h>

char *mbspbrk(MbString1, MbString2)
char * MbString 1, * MbString2;

Description
The mbspbrk subroutine locates the first occurrence in the string pointed to by the
MbString1 parameter of any character from the string pointed to by the MbString2
parameter.

Parameters
MbString1 Pointer to a string being searched.

Pointer to a set of characters string. MbString2

Return Values
The mbspbrk subroutine returns a pointer to the character, or NULL if no character from the
string pointed to by the MbString2 parameter occurs in the string pointed to by the MbString1
parameter.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The wcspbrk subroutine, wcswcs subroutine.

National Language Support Overview in General Programming Concepts.

1-410 Base Operating System Reference

mbsrchr

mbsrchr Subroutine

Purpose

Library

Syntax

Locates a character (code point) in a multibyte character string.

Standard C Library (Iibc.a)

#include <mbstr.h>

char *mbsrchr(MbString, MbCharacter)

char * MbString;
int MbCharacter,

Description
The mbschr subroutine locates the last occurrence of the MbCharacter parameter in the
string pointed to by the MbString parameter. The MbCharacter parameter is the code pOint
of a multibyte character represented as an integer. The terminating null character is
considered to be part of the string.

Parameters
MbString Pointer to a multibyte character string.

MbCharacter A code point of a multibyte character represented as an integer.

Return Values
The mbsrchr subroutine returns a pointer to the MbCharacter parameter within the multibyte
character string or a NULL pointer if MbCharacter does not occur in the string.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The mbschr subroutine, wcsrchr subroutine.

National Language Support Overview in General Programming Concepts.

Base Operating System Runtime 1-411

mbstoint

mbstoint Subroutine

Purpose

Library

Syntax

Extracts a multibyte (single-byte or double-byte) character from a multibyte character string.

Standard C Library (libc.a)

#include <mbstr.h>

int mbstoint(MultibyteString)
char * MultibyteString;

Description

Parameter

The mbstoint subroutine extracts the multibyte character pointed to by the MultibyteString
parameter from the multibyte character string.

MultibyteString Pointer to a multibyte character string.

Return Values
The mbstoint subroutine returns the code point of the multibyte character pointed to by the
MultibyteString parameter. If an invalid multibyte character is encountered a 0 is returned.

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

Related Information
The mbsrchr subroutine, mbtowc subroutine, mbstowcs subroutine.

National Language Support Overview in General Programming Concepts.

1-412 Base Operating System Reference

mbstowcs

mbstowcs Subroutine

Purpose

Library

Syntax

Converts a multibyte (single-byte or double-byte) character string to a wide-character
string.

Standard C Library (libc.a)

#include <stdlib.h>

size_t mbstowcs(WcString, String, Numbery

wchar_t *WcString;
char * String;
size_t Number,

Description
The mbstowcs subroutine converts the sequence of multibyte characters pointed to by The
String parameter to wide-characters and places the result in the buffer pointed to by the
WcString parameter. The multibyte characters are converted up to the null character or until
the value of the Number parameter or (Number-1) in wide-characters have been
processed.

Parameters
WcString

String

Number

Return Values

Pointer to the area where result of the conversion is stored.

Pointer to a multibyte character string.

Number of wide-characters to be converted.

The mbstowcs subroutine returns the number of wide-characters converted, not including a
null terminator, if any. If an invalid multibyte character is encountered a -1 is returned.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The mbtowc subroutine, wcstombs subroutine, wctomb subroutine.

National Language Support Overview in General Programming Concepts.

Base Operating System Runtime 1-413

mbtowc

mbtowc Subroutine

Purpose

Library

Syntax

Converts a multibyte character to a wide-character.

Standard C Library (libc.a)

#include <stdlib.h>

int mbtowc (WideCharacter, String, Numbet1
wchar _t * WideCharacter,
char * String;
size_t Number,

Description
The mbtowc subroutine converts a multibyte character to a wide-character and returns the
number of bytes of the multibyte character.

The mbtowc subroutine determines the number of bytes that comprise the multibyte
character pointed to by the String parameter, then converts that character to the
corresponding wide-character and places it in the location pointed to by the WideCharacter
paramter. If WideCharacter is NULL, the multibyte character is not converted. The number
of bytes comprising the multibyte character is returned.

The mbtowc subroutine is similar to the NCdecode subroutine except NCdecode does not
accept a length argument.

Parameters
Wide Character

String

Number

Pointer to location where wide-character is to be placed.

Pointer to multibyte.character.

Number of bytes of the multibyte character.

Return Values
The mbtowc subroutine returns a 0 if the String parameter is a NULL pointer or if String
points to a null character (the null is converted to a wide-character nUll). It returns a -1 if
the bytes pointed to by String do not form a valid multibyte character within the value of the
Number parameter or fewer bytes. Otherwise, the number of bytes comprising the multibyte
character is returned.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-414

The NLchar subroutines, mbstowcs subroutine, wctomb subroutine, wcstombs
subroutine.

National Language Support Overview in General Programming Concepts.

Base Operating System Reference

memccpy, ...

memccpy, memchr, memcmp, memcpy, memset or memmove
Subroutine

Purpose

Library

Syntax

Performs memory operations.

Standard C Library (libc.a)

#include <memory.h>

void *memccpy (Target, Source, C, tV)
void * Target, * Source;
int C;
size_t N;

void *memchr (S, C, tv)
void *S;
int C;
size_t N;

int memcmp (Target, Source, tv)
void * Target, * Source;
size_t N;

void *memcpy (Target, Source, tv)
void * Target, * Source;
size_t N;

void *memset (S, C, tV)
void *S;
int C;
size_t N;

void *memmove (Target, Source, tv)
void * Source, * Target;
size_t N;

The memory subroutines operate on memory areas. A memory area is an array of
characters bounded by a count, and not ended by a null character. The memory subroutines
do not check for the overflow of any receiving memory area. All of the memory subroutines
are declared in the memory.h header file.

The memccpy subroutine copies characters from the memory area specified by the Source
parameter into the memory area specified by the Target parameter. The memccpy
subroutine stops after the first character specified by the C parameter is copied, or after N
characters are been.copied, whichever comes first.

The memcmp subroutine lexicographically compares the first N characters in memory area
Target to the first N characters in memory area Source. The memcmp subroutine uses
native character comparison, which may be signed on some machines.

The memcpy subroutine copies N characters from memory area Source to area Target and
returns Target.

Base Operating System Runtime 1-415

memccpy, ...

The memset subroutine sets the first N characters in memory area S to the value of
character C and returns S.

Like the memcpy subroutine, the memmove subroutine copies N characters from memory
area Source to area Target. However, if the Source and Target areas overlap, the move is
perlomed non-destructively, proceeding from right to left.

Parameters
Target Points to the start of a memory area.

Points to the start of a memory area. Source

C

N

S

Specifies a character for which to search.

Specifies the number of characters to search.

Points to the start of a memory area.

Return Values
The memccpy subroutine returns a pointer to the character after C is copied into Target, or
a NULL pointer if C is not found in the first N characters of Source.

The memchr subroutine returns a pointer to the first occurrence of character C in the firstN
characters of memory area S, or a NULL pointer if C does not occur.

The memcmp subroutine returns the following values:

Less than 0

Equal to 0

Greater than 0

If the Target parameter is less than the Source parameter

If Target is equal to Source

If Target is greater than Source.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

The memccpy subroutine is not in the ANSI C library.

Related Information
The swab subroutine, string subroutine.

1-416 Base Operating System Reference

mkdir

mkdir Subroutine

Purpose

Library

Syntax

Creates a directory.

Standard C Library (libc.a)

#include <sys/mode.h>

int mkdir (Path, Mode)
char *Path;
int Mode;

Description
The mkdir subroutine creates a new directory.

The new directory has the following:

• Owner 10 set to the process effective user 10.

• Group 10 set to the group 10 of its parent directory.

• Permission and attribute bits set according to the value of the Mode parameter, with the
following modifications:

- All bits set in the process file mode creation mask are cleared.

- The SetFileUserlO, SetFile Gro up 10, and Sticky (S_ISVTX) attributes are cleared.

Parameters
Path The name of the new directory. If Network File System is installed on your

system, this path can cross into another node. In this case, the new
directory is created at that node.

To execute the mkdir subroutine, a process must have search permission to
get to the parent directory of the Path parameter and write permission in the
parent directory of the Path parameter.

Mode The mask for the read, write, and execute (RWX) flags for owner, group,
and others. The Mode parameter specifies the directory permissions and
attributes. This parameter is constructed by logically ORing values
described in the sys/mode.h header file.

Return Values
Upon successful completion, the mkdir subroutine returns a value of O. Otherwise, a value
of -1 is returned, and the global variable errno is set to indicate the error.

Base Operating System Runtime 1-417

mkdir

Error Codes
The mkdir subroutine fails and the directory is not created if one or more of the following are
true:

EACCES

EEXIST

EROFS

ENOSPC

EOQUOT

Creating the requested directory requires writing in a directory
with a mode that denies write permission.

The named file already exists.

The named file resides on a read-only file system.

The file system does not contain enough space to hold the
contents of the new directory or to extend the parent directory of
the new directory.

The directory in which the entry for the new link is being placed
cannot be extended because the user's quota of disk blocks or
i-nodes on the file system containing the directory is exhausted.

The mkdir subroutine can also fail if additional errors on page A-1 occur.

If Network File System is installed on the system, the mkdir subroutine can also fail if the
following is true:

ETIMEOOUT The connection timed out.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The chmod subroutine, mknod subroutine, rmdir subroutine, umask subroutine.

The chmod command, mkdir command, mknod command.

1-418 Base Operating System Reference

mknod, ...

mknod or mkfifo Subroutine

Purpose

Library

Syntax

Creates an ordinary file, directory, FIFO, or special file.

Standard C Library (libc.a)

#include <sys/mode.h>

int mknod (Path, Mode, Device)
char *Path;
int Mode;
dev_t Device;

int mkfifo(Path, Mode)
char *Path;
int Mode;

Description
The mknod subroutine creates a new regular file, special file or FIFO. Using the rnknod
subroutine to create file types other than FIFO special requires root user authority.

For the mknod subroutine to complete successfully, a process must have search permission
and write permission in the parent directory of the Path parameter.

The mkfifo subroutine is an interface to the mknod subroutine, where the new file to be
created is a FIFO special file. No special system privileges are required.

The new file has the following characteristics:

• File type as specified by the Mode parameter

• Owner 10 set to the process effective user 10

• Group 10 set to the group 10 of the parent directory

• Permission and attribute bits set according to the value of the Mode parameter. All bits set
in the process file mode creation mask are cleared.

If the new file is a character special file with the S_IMPX attribute (multiplexed character
special file), when the file is used, additional path name components can appear after the
path name as if it were a directory. The additional part of the path name is available to the
device driver of the file for interpretation. This provides a multiplexed interface to the device
driver. The hft device driver uses this feature.

Parameters
Path Names the new file. If Network File System is installed on your system, this

path can cross into another node.

Mode Specifies the file type, attributes, and access permissions. This parameter is
constructed by logically ORing values described in the sys/mode.h header
file.

Base Operating System Runtime 1-419

mknod, ...

Device The Device parameter is configuration-ciependent and is used only if the
Mode parameter specifies a block or character special file. The 10 of the
device is Device, and it corresponds to the st_rdev member of the structure
returned by the statx subroutine. If the file you specify is a remote file, the
value of the Device parameter must be meaningful on the node where the
file resides.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and the global variable errno is set to indicate the error.

Error Codes
The mknod subroutine fails and the new file is not created if one or more of the following
are true:

EPERM

EEXIST

EROFS

ENOSPC

EDQUOT

The Mode parameter specifies a file type other than S_IFIFO and
the calling process does not have root user authority.

The named file exists.

The directory in which the file is to be created is located on a
read-only file system.

The directory that would contain the new file cannot be extended or
the file system is out of file allocation resources.

The directory in which the entry for the new link is being pl~ced
cannot be extended because the user's quota of disk blocks or
inodes on the file system is exhausted.

The mknod subroutine can also fail if additional errors on page A-1 occur.

If Network File System is installed on the system, the mknod subroutine can also fail if the
following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-420

The chmod subroutine, mkdir subroutine, open subroutine, umask subroutine, statx
subroutine.

The chmod command, mkdir command, mknod command.

The mode.h header file, types.h header file.

Base Operating System Reference

mktemp, ...

mktemp or mkstemp Subroutine

Purpose

Library

Syntax

Constructs a unique file name.

Standard C Library (libc.a), Berkeley Compatibility Library (libbsd.a)

char *mktemp (Template)
char * Template;

char *mkstemp (Template)
char * Template;

Description

Parameter

The mktemp subroutine replaces the contents of the string pointed to by the Template
parameter with a unique file name.

Template Points to a string to be replaced with a unique file name. The string in the
Template parameter must be a file name with six trailing Xs. The mktemp
subroutine replaces the Xs with a randomly generated character sequence.

Return Values
Upon successful completion, the mktemp subroutine returns the address of the string
pointed to by the Template parameter.

If the string pointed to by the Template parameter contains no Xs, or if the mktemp
subroutine is unable to construct a unique file name, the first character of the Template
parameter string is replaced with a null character, and a NULL pointer is returned.

Upon successful completion, the mkstemp subroutine returns an open file descriptor. If the
mkstemp subroutine fails, it returns a value of -1.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

To get the BSD version of this subroutine, compile with Berkeley Compatibility Library
(libbsd.a).

The mkstemp subroutine performs the same substitution to the template name and also
opens the file for reading and writing.

In BSD systems, the mkstemp subroutine was intended to avoid a race condition between
generating a temporary name and creating the file. Because the name generation in the AIX
Version 3 operating system is more random, this race condition is less likely.

Base Operating System Runtime 1-421

mktemp, ...

The behavior in the case of a failure on different systems includes:

AIX2.2

AT&T System V

eso

Replaces the first character of the template with a null character.

Returns a NULL pointer.

Returns a file name of I.

Former implementations created a unique name by replacing Xs with the process 10 and a
unique letter.

AIX Version 3 operating system is compatible-with the AIX 2.2 and AT&T System V
operating systems.

Related Information
The tmpfile subroutine, tmpnam, tempnam subroutine.

The getpid subroutine.

1-422 Base Operating System Reference

mntctl

mntctl Subroutine

Purpose

Syntax

Returns information about the mount status of the system.

#include <sys/mntctl.h>
#include <sys/vmount.h>

int mntctl (Command, Size, Buffer?
int Command;
int Size;
char * Buffer,

Description
The mntctl subroutine is used to query the status of virtual file systems (also known as
mountedfile systems).

Each virtual file system is described by a vmount structure; this structure is supplied when
the virtual file system is created by the vmount subroutine. The vmount structure is
defined in the sys/vmount.h header file.

Parameters
Command

Buffer

Size

Return Values

Specifies the operation to be performed. Valid commands are defined in the
sys/vmount.h header file; at present, the only command is:

Query mount information.

Points to a data area that will contain an array of vmount structures. This
will hold the information returned by the query command. Since the vmount
structure is variable length, it is necessary to reference the vmt_length field
of each structure to determine where in the Buffer area the next structure
begins.

Specifies the length, in bytes, of the buffer pOinted to by the Buffer
parameter.

If the mntctl subroutine is successful, the number of vmount structures copied into the
Buffer parameter is returned. If the Size parameter indicates the supplied buffer is too small
to hold the vmount structures for all the current virtual file systems, the mntctl subroutine
sets the first word of the Buffer parameter to the required size (in bytes) and returns the
value o. If the mntctl system call otherwise fails, a value of -1 is returned, and the global
variable errno is set to indicate the error.

Error Codes
The mntctl subroutine fails and the requested operation is not performed if one or both of
the following are true:

EINVAL The Command parameter is not MCTL_QUERV, or the Size parameter is
not a positive value.

Base Operating System Runtime 1-423

mntctl

EFAULT The Buffer parameter points to a location outside of the allocated address
space of the process.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The vmount, mount subroutines,uvmount, umount subroutines.

1-424 Base Operating System Reference

moncontrol

moncontrol Subroutine

Purpose

Library

Syntax

Starts and stops execution profiling, after monitor initialization.

Standard C Library (libc.a)

#include <mon.h>

int moncontrol(Mode)

int Mode;

Description

Parameter

The moncontrol routine starts and stops profiling, after it has been initialized by the
monitor subroutine. It may be used with either -p or -pg profiling. When moncontrol stops
profiling no output data file is produced. When profiling has been started by the monitor
function, then when exit is called, or when monitor is called with a first parameter of 0 then
profiling is stopped and an output file is produced regardless of the state of profiling as set
by moncontrol.

The moncontrol subroutine examines global and parameter data in the following order:

1. When the global variable _mondata.prof_type is not -1 (-p profiling defined), and is not
+ 1 (-pg profiling defined), no action is performed, 0 is returned, and, the function is
considered complete.

The global variable is set to -1 in mcrtO.o and to + 1 in gcrtO.o and defaults to 0 when
crtO.o is used.

2. When Mode is 0:

profiling is stopped, otherwise profiling is started.

The following global variables are used in a call to the profil subroutine:

_mondata.ProfBuf I*buffer address*/

_mondata.ProfBufSiz /*buffer size/multi range flag*/

_mondata.ProfLoPC I*pc offset for hist buffer - 10 limit*/

_mondata.ProfScale I*pc scale/compute scale flag*/

These variables are initialized by the monitor subroutine each time it is called to start
profiling.

Mode Specifies whether to start (resume) or stop profiling.

Base Operating System Runtime 1-425

moncontrol

Return Values
The moncontrol subroutine returns the previous state of profiling. When the previous state
was STOPPED it returns O. When the previous state was STARTED it returns 1.

Error Code
When the moncontrol subroutine detects an error from the call to profil, a -1 is returned.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The monstartup subroutine, monitor subroutine, profil subroutine.

1-426 Base Operating System Reference

monitor

monitor Subroutine

Purpose

Library

Syntax

Starts and stops execution profiling using data areas defined in the function parameters.

Standard C Library (libc.a)

#include <mon.h>

int monitor(LowProgramCounter, High Program Counter, Buffer, BufferSize, NFunction)

-or-

int monitor(NotZeroA, DoNotCareA, Buffer, -1, NFunction)

-or-

int monitor«caddr_t)O)

caddr_t LowProgramCounter;
caddr _t HighProgramCounter;
HISTCOUNTER * Buffer;
int BufferSize;
int NFunction;

caddr _t NotZeroA;
caddr_t DoNotCareA;

Description
The monitor subroutine initializes the buffer area and starts profiling, or stops profiling and
writes out the accumulated profiling data. Profiling, when started, causes periodic sampling
and recording of the program location within the program address range(s) specified, and
accumulation of function call count data for functions that have been compiled with the -p or
-pg option.

Executable programs created with cc -p or cc -pg automatically include calls to the
monitor subroutine (via monstartup and exit) to profile the complete user program
including system libraries. In this case, you do not need to call the monitor subroutine.

The monitor subroutine is called by the monstartup subroutine to begin profiling and by
the exit subroutine to end profiling. The monitor subroutine requires a global data variable
to define whether -p or -pg profiling is to be in effect. monitor initializes four global
variables that are used as parameters to profil by moncontrol. The monitor subroutine
calls the moncontrol subroutine to start the profiling data gathering. moncontrol calls
profil to start the system timer driven program address sampling.

The prof command is used to process the data file produced by -p profiling. The gprof
command is used to process the data file produced by -pg profiling.

Base Operating System Runtime 1-427

monitor

The monitor subroutine examines the global data and parameter data in this order:

1. When the global variable _mondata.prof_type is not equal to -1 (-p profiling defined)
and not equal to + 1 (-pg profiling defined), an error return is made, and the function is
considered complete.

The global variable is set to -1 in mcrtO.o and to + 1 in gcrtO.o and defaults to 0 when
crtO.o is used.

2. When the first parameter to monitor is 0:

profiling is stopped and the data file is written out.

If -p profiling has been in effect then the file is named mon.out. Otherwise -pg profiling
has been effect and the file is named gmon.out. The function is complete.

3. When the first parameter to monitor is not 0:

the monitor parameters and the profiling global variable _mondata.prof_type are
examined to determine how to start profiling.

4. When BufferSize is not -1 :

a single program address range is defined for profiling, and,

the first monitor definition in the syntax is used to define the single program range.

5. When BufferSize parameter is -1:

multiple program address ranges are defined for profiling, and,

the second monitor definition in the syntax is used to define the multiple ranges. In this
case Pro file Buffer is the address of an array of prof structures. The size of the prof array
is denoted by a zero value for the HighProgramCounter (p_high) field of the last element
of the array. Each element in the array except the last defines one programming address
range to be profiled. Programming ranges must be ordered in ascending order of the
program addresses with ascending order of the prof array index. Program ranges may
not overlap.

The buffer space defined by the p_buff and p_bufsize fields of all of the prof entries
must define a single contiguous buffer area. Space for the function count data is included
in the first range buffer. Its size is defined by the NFunction parameter. The p_scale
entry in the prof structure is ignored. The prof structure is defined in the mon.h header
file. It contains the fields shown below:

caddr_t p_low;
caddr_t p_high;
HISTCOUNTER *p_buff;
int p_bufsize;
uint p_scale;

I*low sampling address*/
I*high sampling address*/
I*address of sampling buffer*/
I*buffer size - monitor/HISTCOUNTERs, profil/bytes*/
I*scale factor*/

Parameters

1-428

LowProgramCounter (prof name: p_low)

Defines the lowest execution time program address in the range to be
profiled. The value of the LowProgramCounter parameter cannot be 0 when
using the monitor subroutine to begin profiling.

Base Operating System Reference

monitor

HighProgramCounter (prof name: p_high)

Defines the next address after the highest execution time program address
in the range to be profiled.

The program address parameters may be defined by function names or
address expressions. If defined by a function name then a function name
expression must be used to de-reference the function pointer to get the
address of the first instruction in the function. This is required because the
function reference in this context produces the address of the function
descriptor. The first field of the descriptor is the address of the function
code. See the examples for typical expressions to use.

Buffer (prof name: p_buff)

Defines the beginning address of an array of BufferSize HISTCOUNTERs to
be used for data collection. This buffer includes the space for the program
address sampling counters and the function count data areas. In the case of
a multiple range specification, the space for the function count data area is
included at the beginning of the first range BufferSize specification.

BufferSize (prof name: p_bufsize)

NFunction

Defines the size of buffer in number of HISTCOUNTERs. Each counter is of
type HISTCOUNTER (defined as short in mon.h). When the buffer includes
space for the function count data area (single range specification and first
range of a mUlti-range specification) the NFunction parameter defines the
space to be used for the function count data, and the remainder is used for
program address sampling counters for the range defined. The scale for the
profil call is calculated from the number of counters available for program
address sample counting and the address range defined by the
LowProgramCounter and the High Program Counter parameters. See
mon.h.

Defines the size of the space to to be used for the function count data area.
The space is included as part of the first (or only) range buffer.

When -p profiling is defined, the NFunction parameter defines the
maximum number of functions to be counted. The space required for each
function is defined to be:

sizeof(struct poutcnt)

poutcnt is defined in the mon.h header file. The total function count space
required is:

NFunction * sizeof(struct poutcnt)

Base Operating System Runtime 1-429

monitor

NotZeroA

DoNotCareA

When -pg profiling is defined, the NFunction parameter defines the size of
the space (in bytes) available for the function count data structures. The
size required is defined by the following:

range = HighProgramCounter - LowProgramCounteri
tonum = TO_NUM_ELEMENTS(range)~

if (tonum < MINARCS) tonum = MINARCSi
if (tonum > TO MAX-I) tonum = TO MAX-Ii
tosizeo= tonum * sizeof(struct to;truct);
fromsize = FROM_STG_SIZE(range)i
rangesize = tosize + fromsize + sizeof(struct gfctl)i

computed and summed for all of the defined ranges. The functions and
variables in this expression that are in capital letters, and the structures are
defined in mon.h.

Specifies a value of parameter 1, which is any value except zero. Ignored
when it is not zero.

Specifies a value of parameter 2, of any value, which is ignored.

Return Values
The monitor subroutine returns 0 upon successful completion.

Error Codes

Examples

If an error is found, the monitor subroutine outputs an error message to stderr and returns
-1.

1. This example shows how to profile the main load module of a program with -p profiling:

#include <sys/types.h>

#include <mon.h>

mainO

extern caddr_t etext; I*system end of main module text symbol"'/

extern int startO; I*first function in main program"'/

extern struct monglobal _mondata;

struct desc {

caddr_t begin;

caddr_t toc;

caddr _t env;

I*profiling global variables'" /

I*function descriptor fields"'/

I*initial code address"'/

I*table of contents address"'/

I*environment pointer"'/

1-430 Base Operating System Reference

monitor

} ;

struct desc *fd;

int rc;

int range;

int numfunc;

I*function descriptor structure*/

I*pointer to function descriptor*/

I*monitor return code*/

I*program address range for profiling*/

I*number of functions*/

HISTCOUNTER *buffer; I*buffer address*/

int numtics; I*number of program address sample counters*/

int BufferSize; I*total buffer size in numbers of HISTCOUNTERs*/

fd = (struct desc*)start;

numfunc = 300;

range = etext - fd->begin;

I*init descriptor pointer to start function*/

I*arbitrary number for example*/

I*compute program address range*/

numtics = NUM_HIST _COUNTERS(range);
I*one counter for each 4 byte inst*/

BufferSize = numtics + (numfunc*sizeof (struct poutcnt) / HIST _COUNTER_SIZE);
I*allocate buffer space* /

buffer = (HISTCOUNTER *) malloc (BufferSize * HIST _COUNTER_SIZE);

if (buffer == NULL) /*didn't get space - do error recovery here*/ ;

retu rn (-1);

_mondata.prof_type = _PROF _ TYPE_IS_P;
I*define -p profiling*/

rc = monitor(fd->begin, (caddr_t)etext, buffer, BufferSize, numfunc);
I*start*/

if (rc != 0)

return (-1);

I*other code for analysis .. .* /

rc = monitor((caddr_t)O);

I*profiling did not start - do error recovery here* /

I*stop profiling and write data file mon.out*/

. if (rc 1= 0) I*did not stop correctly - do error recovery here*/

return (-1);

Base Operating System Runtime 1-431

monitor

1-432

2. This example profiles the main program and the shared library libc;a with -p profiling.
Assume that the range of addresses for the shared libc.a has been determined to be:
low = d0300000
high = d0312244

These two values can be determined from the loadquery subroutine at execution time,
or by using a debugger to view the loaded programs' execution addresses and the loader
map.

#include <sys/types.h>

#include <mon.h>

mainO

extern caddr_t etext; I*system end of text symbol*/

extern int startO; I*first function in main program*/

extern struct monglobal _mondata;
I*profiling global variables*/

struct prof pb[3]; /*prof array of 3 to define 2 ranges*/

int rc; /*monitor return code*/

int range;

int numfunc;

/*program address range for profiling*/

int numtics;

int num4fcnt;

int BufferSize1 ;

int BufferSize2;

/*number of functions to count (max)*/

I*number of sample counters*/

I*number of HISTCOUNTERs used for fun cnt space*/

I*first range BufferSize*/

I*second range BufferSize*/

caddr_t liblo=Oxd0300000; I*lib low address (example only)*/

caddr_t Iibhi=Oxd0312244; I*lib high address (example only)*/

numfunc = 400; I*arbitrary number for example*/

I*compute first range buffer size*/

range = etext - *(uint *) start;
I*init range*/

numtics = NUM_HIST _COUNTERS(range);
I*one counter for each 4 byte inst*/

num4fcnt = numfunc*sizeof(struct poutcnt)/HIST _COUNTER_SIZE;

BufferSize1 = numtics + num4fcnt;

I*compute second range buffer size*/

Base Operating System Reference

monitor

range = libhi-liblo;

BufferSize2 = range / 12; I*counter for every 12 inst bytes - for a change*/

I*allocate buffer space - note: must be single contiguous buffer*/

pb[O].p_buff =
(HISTCOUNTER *)malloc((BufferSize1 + BufferSize2)*HIST _COUNTER_SIZE);

if (pb[O].p_buff == NULL)
here*/ ;

I*didn't get space - do error recovery

return (-1);

I*set up the first range values* /

pb[O].pJow = *(uint*)start; I*start of main module*/

pb[O].p_high = (caddr_t)etext; I*end of main module*/

pb[O].p_BufferSize = BufferSize1 ;

I*set up the second range values*/

/*prog addr cnt space + func cnt space*/

pb[1].pJow = liblo;

pb[1].p_high = libhi;

I*libc.a low address*/

/*Iibc.a high address*/

pb[1].p_buff = pb[O].p_buff + BufferSize1 ;
I*buffer point for second range*/

pb[1].p_BufferSize = BufferSize2;

I*set up last element marker* /

_mondata.prof_type = _PROF _ TYPE_IS_P;
I*define -p profiling* /

rc = monitor((caddr_t)1 , (caddr_t)1 , pb, -1, numfunc);
/*start*/

if (rc != 0)

return (-1);

I*other code for analysis ... * /

I*profiling did not start - do error recovery here*/

I*stop profiling and write data file mon.out*/ rc = monitor((caddr_t)O);

if (rc != 0) I*did not stop correctly - do error recovery here*/

return (-1);

Base Operating System Runtime 1-433

monitor

1-434

3. This example shows how to profile contiguously loaded functions beginning at zit up to
but not including zot with -pg profiling:

#include <sys/types.h>
#include <sys/limits.h>
#include <mon.h>

mainO
{

extern zitO;
extern zotO;

I*first function to profile*/
I*upper bound function*/

extern struct monglobal _mondata;

int rc;

int range;

int numfunc;

HISTCOUNTER *buffer;

int numtics;

int funcspace;

int BufferSize;

int tonum;

int tosize;

int fromsize;

numfunc = 300;

I*profiling global variables*/

I*monitor return code*/

I*program address range for profiling*/

I*number of functions*/

I*buffer address*/

I*number of program address sample counters* /

I*bytes needed for function call data*/

I*total buffer size in number of HISTCOUNTERs*/

I*num to elements - tmp storage calc*/

I*to num bytes - tmp storage calc*/

I*from num bytes - tmp storage calc*/

I*arbitrary number for example*/

range = *(uint *)zot - *(uint *)zit;
I*compute program address range*/

numtics = NUM_HIST_COUNTERS(range);
I*one counter for each 4 byte inst*/

I*compute function space required*/

tonum = TO_NUM_ELEMENTS(range);

if (tonum < MINARCS) tonum = MINARCS;

if (tonum > TO_MAX-1) tonum = TO_MAX-1;

tosize = tonum*sizeof(struct tostruct);

fromsize = FROM_STG_SIZE(range);

funcspace = tosize + fromsize + sizeof(struct gfctl);

Base Operating System Reference

Files

BufferSize = numtics + (funcspace / HIST _COUNTER_SIZE);

I*allocate buffer space*/
buffer = (HISTCOUNTER *)malloc(BufferSize*HIST _COUNTER_SIZE);

if (buffer == NULL) I*didn't get space - do error recovery here*/ ;

return (-1);

_mondata.prof_type = _PROF _ TYPE_IS_PG;
I*define -pg profiling*/

rc = monitor(*(uint *)zit,*(uint *)zot, buffer, 8ufferSize, numfunc);
I*start*/

monitor

if (rc 1= 0)

retu rn (-1);

I*profiling did not start - do error recovery here*/

I*other code for analysis ... * /

rc = monitor((caddr_t)O); I*stop profiling and write data file mon.out* /

if (rc 1= 0)

return (-1);

mon.out

gmon.out

mon.h

I*did not stop correctly - do error recovery here*/

Defines _mondata.prof_type in the monglobal data structure, the prof
structure, and the functions referred to in the examples.

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

Related Information
The monstartup subroutine, moncontrol subroutine, profil subroutine.

The end, etext identifiers.

The prof command, gprof command.

Base Operating System Runtime 1-435

monstartup

monstartup Subroutine

Purpose
Starts and stops execution profiling using default sized data areas.

Library
Standard C Library (Iibc.a)

Syntax
#include <mon.h>

int monstartup (LowProgramCounter, HighProgramCountel)

-or-

int monstartup(caddr_t)-1), (caddr_t)FragBuffer)

-or-

int monstartup«caddr_t)-1, (caddr_t)O)

caddr_t LowProgramCounter,

caddr_t High Program Co unter,

Description

1-436

The monstartup subroutine allocates data areas of default size and starts profiling. Profiling
causes periodic sampling and recording of the program location within the program address
ranges specified, and accumulation of function call count data for functions that have been
compiled with the -p or -pg option.

Executable programs created with cc -p or cc -pg automatically include a call to
monstartup to profile the complete user program including system libraries. In this case,
you do not need to call monstartup.

The monstartup subroutine is called by mcrtO.o (-p) or gcrtO.o (-pg) to begin profiling.
monstartup requires a global data variable to define whether -p or -pg profiling is to be in
effect. monstartup calls monitor to initialize the data areas and to start profiling.

The prot command is used to process the data file produced by -p profiling. The gprof
command is used to process the data file produced by -pg profiling.

The monstartup subroutine examines the global and parameter data in the following order:

1. When the global variable _mondata.prot_type is not equal to -1 (-p profiling defined)
and not equal to + 1 (-pg profiling defined), an error return is made, and the function is
considered complete.

The global variable is set to -1 in mcrtO.o and to + 1 in gcrtO.o and defaults to 0 when
crtO.o is used.

2. When LowProgramCounteris not -1:

a single program address range is defined for profiling, and,
the first monstartup definition in the syntax is used to define the program range.

Base Operating System Reference

3. When LowProgramCounter is -1 and High Progra m Counter is not 0:

multiple program address ranges are defined for profiling, and,

monstartup

the second monstartup definition in the syntax is used to define multiple ranges.
HighProgramCounter, in this case, is the address of a frag structure array. The frag
array size is denoted by a zero value for the HighProgramCounter (p_high) field of the
last element of the array. Each array element except the last defines one programming
address range to be profiled. Programming ranges must be in ascending order of the
program addresses with ascending order of the prof array index. Program ranges may
not overlap.

4. When LowProgramCounteris -1 and HighProgramCounteris 0:

the whole program is defined for profiling and,
the third monstartup definition in the syntax is used. The program ranges are
determined by monstartup and may be single range or multi-range.

Parameters

Examples

LowProgramCounter (frag name: p_low)

Defines the lowest execution time program address in the range to be
profiled.

HighProgramCounter(frag name: p_high)

FragBuffer

. Defines the next address after the highest execution time program address
in the range to be profiled.

The program address parameters may be defined by function names or
address expressions. If defined by a function name then a function name
expression must be used to de-reference the function pointer to get the
address of the first instruction in the function. This is required because the
function reference in this context produces the address of the function
descriptor. The first field of the descriptor is the address of the function
code. See the examples for typical expressions to use.

Specifies the address of a frag structure array.

1. This example shows how to profile the main load module of a program with -p profiling:

#include <sys/types.h>
#include <mon.h>

mainO
{

extern caddr_t etext; I*system end of text symbol*/

extern int startO; I*first function in main program*/

extern struct monglobal _mondata; /*profiling global variables*/

struct desc {

caddr_t begin;

caddr _t toc;

I*function descriptor fields*/

I*initial code address*/

I*table of contents address* /

Base Operating System Runtime 1-437

monstartup

1-438

} ;

struct desc *fd;

int rc;

fd = (struct desc *)start;

/*environment pointer*/

/*function descriptor structure*/

/*pointer to function descriptor*/

/*monstartup return code*/

/*init descriptor pointer to start function* /

_mondata.prof_type = _PROF _ TYPE_IS_P;
/*define -p profiling* /

rc = monstartup(fd->begin, (caddr_t) &etext);
/*start* /

if (rc != 0)

retu rn (-1);

/*profiling did not start - do error recovery here*/

rother code for analysis ... */

return(O); /*stop profiling and write data file mon.out*/

2. This example shows how to profile the complete program with -p profiling:

#include <sys/types.h>
#include <mon.h>

mainO
{

extern struct monglobal _mondata;
/*profiling global variables*/

int rc; /*monstartup return code*/

_mondata.prof_type = _PROF _TYPE_IS_P;
/*define -p profiling* /

rc = monstartup((caddr_t)-1, (caddr_t)O);
/*start* /

if (rc != 0)

return (-1);

rother code for analysis ... */

/*profiling did not start - do error recovery here*/

return(O); /*stop profiling and write data file mon.out*/

Base Operating System Reference

monstartup

3. This example shows how to profile contiguously loaded functions beginning at zit up to
but not including zot with -pg profiling:

Return Value

#include <sys/types.h>
#include <mon.h>

mainO
{

extern zitO;

extern zotO;

I*first function to profile*/

/*upper bound function*/

extern struct monglobal _mondata;
I*profiling global variables* /

int rc; /*monstartup return code*/

_mondata.prof_type = _PROF _ TYPE_IS_PG;
I*define -pg profiling*/

I*Note cast used to obtain function code addresses*/

rc = monstartup(*(uint *)zit,*(uint *)zot);
I*start*/

if (rc != 0)

return(-1);

I*other code for analysis ... * /

exit{O);

/*profiling did not start - do error recovery here*/

/*stop profiling and write data file gmon.out* /

The monstartup subroutine returns 0 upon successful completion.

Error Codes
If an error is found, the monstartup subroutine outputs an error message to stderr and
returns -1.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The monitor subroutine, moncontrol subroutine, profil subroutine.

The end, etext identifiers.

The prof command, gprof command.

Base Operating System Runtime 1-439

msgctl

msgctl Subroutine

Purpose

Library

Syntax

Provides message control operations.

Standard C Library (Iibc.a)

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl (MessageQueueID, Command, Buffery
int MessageQueuelD, Command;
struct msqid_ds *Buffer,

Description
The msgctl subroutine provides a variety of message control operations as specified by the
Command parameter.

Parameters

1-440

MessageQueuelD Specifies the message queue identifier.

Buffer Points to a structure of type msquid_ds. The msqid_ds structure is
defined in the sys/msg.h header file, and it contains the following
members:

struct ipc_perm *msg_perm;/*Operation permission structure*/

unsigned short msg_cbytes;/*Current number of bytes on queue*/

unsigned short msg_qnum;/*Number of messages on queue*/

unsigned short msg_qbytes;/*Maximum number of bytes on queue*/

pid_t msg_Ispid;/*ID of last process to call msgsnd*/

pid_t msg_Irpid;/*ID of last process to call msgrcv*/

time t msg_ stime;/*Time of last msgsnd call*/

time t msg_rtime;/*Time of last msgrcv call*/

time t msg_ctime;/*Time of the last change to this structure -

with a msgctl call*/

Command The following values for the Command parameter are available:

I PC_STAT Stores the current value of the above members of the

data structure associated with the MessageQueuelD

parameter into the msqid_ds structure pointed to by the

Buffer parameter.

Base Operating System Reference

Return Values

msgctl

The current process must have read permission in order
to perform this operation.

IPC_SET Sets the value of the following members of the data
structure associated with the MessageQueuelD
parameter to the corresponding values found in the
structure pointed to by the Buffer parameter:

rnsg_perrn.uid
rnsg_perrn.gid
rnsg_perrn.rnode/*Only the low-order

nine bits*/

The effective user 10 of the current process must have
root user authority or its process 10 must be equal to the
value of msg_perm.uid or msg_perm.cuid in the data
structure associated with MessageQueuelD in order to
perform this operation. To raise the value of msg_qbytes,
the effective user 10 of the current process must have
root user authority.

IPC_RMID Removes the message queue identifier specif,ied by the
MessageQueuelD parameter from the system and
destroys the message queue and data structure
associated with it. The effective user 10 of the current
process must have root user authority or be equal to the
value of msg_perm.uid or msg_perm.cuid in the data
structure associated with the MessageQueuelD
parameter in order to perform this operation.

Upon successful completion, the msgctl subroutine returns a value of O. Otherwise, a value
of -1 is returned and the global variable errno is set to indicate the error.

Error Codes
The msgctl subroutine fails if one or more of the following are true:

EINVAL

EACCES

EPERM

EPERM

EFAULT

The Command or MessageQueuelD parameter is not valid.

The Command parameter is equal to IPC_STAT and read permission is
denied to the calling process.

Either the Command parameter is equal to IPC_RMID and the effective user
10 of the calling process does not have root user authority, or Command is
equal to IPC_SET and the effective user 10 of the calling process is not
equal to the value of msg_perm.uid or msg_perm.cuid in the data structure
associated with the MessageQueuelD parameter.

The Command parameter is equal to IPC_SET, an attempt is being made to
increase the value of msg_qbytes, and the effective user 10 of the calling
process does not have root user authority.

The Buffer parameter pOints outside of the process address space.

Base Operating System Runtime 1-441

msgctl

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The msgget subroutine, msgrcv subroutine, msgsnd subroutine, msgxrcv subroutine.

1-442 Base Operating System Reference

msgget

msgget Subroutine

Purpose

Library

Syntax

Gets a message queue identifier.

Standard C Library (libc.a)

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (Key, MessageFlag)
key_t Key;
int MessageFlag;

Description
The msgget subroutine returns the message queue identifier associated with the specified
Key parameter.

A message queue identifier and associated message queue and data structure are created
for the value of the Key parameter if one of the following is true:

• The Key parameter is equal to IPC_PRIVATE.

• The Key parameter does not already have a message queue identifier associated with it,
and IPC_CREAT is set.

Upon creation, the data structure associated with the new message queue identifier is
initialized as follows:

• msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid are set equal to the
effective user 10 and effective group 10, respectively, of the calling process.

• The low..;..order 9 bits of msg_perm.mode are set equal to the low-order 9 bits of the
MessageFlag parameter.

• msg_qnum, msg_lspid, msgJrpid, msg_stime, and msg_rtime are set equal to O.

• msg_ctime is set equal to the current time.

• mS9_qbytes is set equal to the system limit.

The msgget subroutine performs the following actions:

1. The msgget subroutine either finds or creates (depending on the value of MessageFlag)
a queue with the Key parameter.

2. The msgget subroutine returns the 10 of the queue header to its caller.

Parameters
Key Specifies either the value IPC_PRIVATE or an IPC key constructed by

the ftok subroutine (or by a similar algorithm).

Base Operating System Runtime 1-443

msgget

MessageFlag Constructed by logically ORing one or more of the following values:

IPC_CREAT Creates the data structure if it does not already exist.

IPC_EXCL Causes the msgget subroutine to fail if IPC_CREAT is
also set and the data structure already exists.

S_IRUSR Permits the process that owns the data structure to read
it.

S_IWUSR Permits the process that owns the data structure to
modify it.

S_IRGRP Permits the group associated with the data structure to
read it.

S_IWGRP Permits the group associated with the data structure to
modify it.

S_IROTH Permits others to read the data structure.

S_IWOTH Permits others to modify the data structure.

The values that begin with S_I are defined in the sys/mode.h header file
and are a subset of the access permissions that apply to files.

Return Values
Upon successful completion, the msgget subroutine returns a message queue identifier.
Otherwise, a value of -1 is returned and the global variable errno is set to indicate the error.

Error Codes
The msgget subroutine fails if one or more of the following are true:

EACCES

ENOENT

ENOSPC

EEXIST

A message queue identifier exists for the Key parameter but operation
permission as specified by the low-order 9 bits of the MessageFlag
parameter would not be granted.

A message queue identifier does not exist for the Key parameter and the
IPC_CREAT value is not set.

A message queue identifier is to be created but the system imposed limit on
the maximum number of allowed message queue identifiers systemwide
would be exceeded.

A message queue identifier exists for the Key parameter, and both
IPC_CREAT and IPC_EXCL are set.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

1-444

The msgctl subroutine, msgrcv subroutine, msgsnd subroutine, msgxrcv subroutine, ftok
subroutine.

Base Operating System Reference

msgrcv

msgrcv Subroutine

Purpose

Library

Syntax

Reads a message from a queue.

Standard C Library (libc.a)

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgrcv (MessageQueueID,MessagePointer,
MessageSize, Message Type, MessageFlag)

int MessageQueuelD;
void * MessagePointer,
int MessageSize;
long Message Type;
int MessageFlag;

Description
The msgrcv subroutine reads a message from the queue specified by the MessageQueuelD
parameter and stores it into the structure pointed to by the MessagePointer parameter. The
current process must have read permission in order to perform this operation.

Parameters
MessageQueuelD

MessagePointer

MessageSize

Message Type

Specifies the message queue identifier.

Points to a msgbuf structure containing the message. The msgbuf
structure is defined in the sys/msg.h header file, and it contains the
following members:

long
char

mtype;
mtext [1] ;

/* Message type */
/* Beginning of

message text */

The mtype field contains the type of the received message as
specified by the sending process. The mtext field is the text of the
message.

Specifies the size of mtext in bytes. The received message is
truncated to the size specified by the MessageSize parameter if it is
longer than the size specified by the MessageSize parameter and if
MSG_NOERROR is set in the MessageFlag parameter. The
truncated part of the message is lost and no indication of the
truncation is given to the calling process.

Specifies the type of message requested as follows:

• If equal to 0, the first message on the queue is received.

Base Operating System Runtime 1-445

msgrcv

Message Flag

• If greater than 0, the first message of the type specified by the
MessageType parameter is received.

• If less than 0, the first message of the lowest type that is less
than or equal to the absolute value of the MessageType
parameter is received.

Is either 0, or is constructed by logically GRing one or more of the
following values:

Truncates the message if it is longer than
MessageSize bytes.

Specifies the action to take if a message of
the desired type is not on the queue:

• If IPC_NOWAIT is set, the calling
process returns a value of -1 and sets
the global variable errno to ENOMSG.

• If IPC_NOWAIT is not set, the calling
process suspends execution until one of
the following occurs:

- A message of the desired type is
placed on the queue.

- The message queue identifier
specified by the MessageQueuelD
parameter is removed from the
system. When this occurs, errno is
set to EIDRM, and a value of -1 is
returned.

- The calling process receives a signal
that is to be caught. In this case, a
message is not received and the
calling process resumes in the
manner described in the sigaction
subroutine.

Return Values

1-446

Upon successful completion, msgrcv returns a value equal to the number of bytes actually
stored into mtext and the following actions are taken with respect to the data structure
associated with the MessageQueuelD parameter:

• mSQ_qnum is decremented by 1.

• msg_lrpid is set equal to the processlD of the calling process.

• mSQ_rtime is set equal to the current time.

If the msgrcv subroutine fails, a value of -1 is returned and the global variable errno is set
to indicate the error.

Base Operating System Reference

msgrcv

Error Codes
The msgrcv subroutine fails if one or more of the following are true:

EINVAL

EACCES

EINVAL

E2BIG

ENOMSG

EFAULT

EINTR

EIDRM

The MessageQueuelD parameter is not a valid message queue identifier.

Operation permission is denied to the calling process.

The MessageSize parameter is less than O.

mtext is greater than MessageSize and MSG_NOERROR is not set.

The queue does not contain a message of the desired type and
IPC_NOWAIT is set.

The MessagePointer parameter points outside of the allocated address
space of the process.

The function msgrcv was interrupted by a signal.

The message queue identifier specified by MessageQueuelD has been
removed from the system.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The msgctl subroutine, msgget subroutine, msgsnd subroutine, msgxrcv subroutine,
sigaction subroutine.

Base Operating System Runtime 1-447

msgsnd

msgsnd Subroutine

Purpose

Library

Syntax

Sends a message.

Standard C Library (libc.a)

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (MessageQueueID,MessagePointer,MessageSize,MessageFlag)
int MessageQueuelD;
void * MessagePointer,
size_t MessageSize;
int MessageFlag;

Description

1-448

The msgsnd subroutine sends a message to the queue specified by the MessageQueuelD
parameter. The current process must have write permission in order to perform this
operation. The MessagePointerparameter pOints to a msgbuf structure containing the
message. The msgbuf structure is defined in the sys/msg.h header file, and it contains the
following members:

long rntype;
char rntext[l];

/* Message type */
/* Beginning of message text */

The mtype field is a positive integer that is used by the receiving process for message
selection. The mtext field is any text of the length in bytes specified by the MessageSize
parameter. The MessageSize parameter can range from 0 to a system-imposed maximum.

The MessageFlag parameter specifies the action to be taken if the message cannot be sent
for one of the following reasons:

• The number of bytes already on the queue is equal to msg_qbytes.

• The total number of messages on the queue is equal to a system-imposed limit.

These actions are as follows:

• If MessageFlag is set to IPC_NOWAIT, the message is not sent, and msgsnd returns a
value of -1 and sets the global variable errno to EAGAIN.

• If MessageFfag is 0, the calling process suspends execution until one of the following
occurs:

• The condition responsible for the suspension no longer exists, in which case the message
is sent.

• MessageQueuelD is removed from the system. (For information on how to remove
Message Queue ID, see the msgctl system call.) When this occurs, errno is set equal to
EIDRM, and a value of -1 is returned.

• The calling process receives a signal that is to be caught. In this case the message is not
sent and the calling process resumes execution in the manner prescribed in sigaction.

Base Operating System Reference

msgsnd

Parameters
MessageQueue/D Specifies the queue to which the message is sent.

MessagePointer

MessageSize

Points to a msgbuf structure containing the message.

Specifies the length, in bytes, of the message text.

MessageF/ag Specifies the action to be taken if the message cannot be sent.

Return Values
Upon successful completion, a value of 0 is returned and the following actions are taken with
respect to the data structure associated with the MessageQueue/D parameter:

• msg_qnum is incremented by 1.

• msgJspid is set equal to the process 10 of the calling process.

• msg_stime is set equal to the current time.

If the msgsnd subroutine fails, a value of -1 is returned and the global variable errno is set
to indicate the error.

Error Codes
The msgsnd subroutine fails and no message is sent if one or more of the following are
true:

EINVAL

EACCES

EINVAL

EAGAIN

EINVAL

EFAULT

EINTR

EIDRM

The MessageQueue/D parameter is not a valid message queue identifier.

Operation permission is denied to the calling process.

mtype is less than 1 .

The message cannot be sent for one of the reasons stated previously, and
MessageF/ag is set to IPC_NOWAIT.

The MessageSize parameter is less than 0 or greater than the
system-imposed limit.

The MessagePointer parameter points outside of the process' address
space.

msgsnd received a signal.

The message queue identifier specified by MessageQueue/D has been
removed from the system.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The msgctl subroutine, msgget subroutine, msgrcv subroutine, msgxrcv subroutine,
sigaction subroutine.

Base Operating System Runtime 1-449

msgxrcv

msgxrcv Subroutine

Purpose

Library

Syntax

Receives an extended message.

Standard C Library (Iibe.a)

#inelude <sys/types.h>
#inelude <sys/ipe.h>
#inelude <sys/msg.h>
int· msgxrev(MessageQueueID,MessagePointer, MessageSize,

Message Type, MessageFlag)
int MessageQueuelD;
struet msgxbuf * MessagePointer,
int MessageSize;
long MessageType;
int MessageFlag;

Description
The msgxrcv subroutine reads a message from the queue specified by the
MessageQueuelD parameter and stores it into the extended message receive buffer pointed
to by the MessagePointer parameter. The current process must have read permission in
order to perform this operation. The msgxbuf structure is defined in the sys/msg.h header
file, and it contains the following members:

time t - mtime; /* Time and date message was sent */
uid t muid; /* Sender's effective user ID */
gid_t mgid; /* Sender's effective group ID */
pid_t mpid; /* Sender's process ID */
mtyp_t mtype; /* Message type */
char mtext[l]/* Beginning of message text */

Parameters

1-450

MessageQueuelD Specifies the message queue identifier.

MessagePointer Specifies a pointer to an extended message receive buffer where a
message is stored.

MessageSize Specifies the size of mtext in bytes. The receive message is truncated
to the size specified by the MessageSize parameter if it is larger than
the MessageSize parameter and MSG_NOERROR is true. The
truncated part of the message is lost and no indication of the truncation
is given to the calling process. If the message is longer than the number
of bytes specified by the MessageSize parameter and MSG_NOERROR
is not set, the msgrcv subroutine fails and sets the global variable
errno to E2BIG.

Message Type Specifies the type of message requested as follows:

• If the MessageType parameter is equal to 0, the first message on the
queue is received.

Base Operating System Reference

Message Flag

Return Values

msgxrcv

• If the MessageType parameter is greater than 0, the first message of
the type specified by the MessageType parameter is received .

• If the MessageType parameter is less than 0, the first message of the
lowest type that is less than or equal to the absolute value of the
MessageType parameter is received.

Either 0, or is constructed by logically ~Ring one or more of the
following values:

MSG_NOERROR Truncates the message if it is longer than the
number of bytes specified by the MessageSize
parameter.

Specifies the action to take if a message of the
desired type is not on the queue:

• If IPC_NOWAll is set, the calling process
returns a value of -1 and sets errno to
ENOMSG.

• If IPC_NOWAll is not set, the calling process
suspends execution until one of the following
occurs:

• A message of the desired type is placed on the
queue.

• The message queue identifier specified by the
MessageQueuelD parameter is removed from
the system. When this occurs, errno is set to
EIDRM, and a value of -1 is returned.

• The calling process receives a signal that is to be
caught. In this case, a message is not received
and the calling process resumes in the manner
prescribed in the sigaction subroutine.

Upon successful completion, the msgxrcv subroutine returns a value equal to the number of
bytes actually stored into mtext, and the following actions are taken with respect to the data
structure associated with the MessageQueuelD parameter:

• msg_qnum is decremented by 1.

• msgJrpid is set equal to the process 10 of the calling process.

• msg_rtime is set equal to the current time.

If the msgxrcv subroutine fails, a value of -1 is returned and the global variable errno is set
to indicate the error.

Error Codes
The msgxrcv subroutine fails if one or more of the following are true:

EINVAL

EACCES

The MessageQueuelD parameter is not a valid message queue identifier.

Operation permission is denied to the calling process.

Base Operating System Runtime 1-451

msgxrcv

EINVAL

E2BIG

ENOMSG

EFAULT

EINTR

EIDRM

MessageSize is less than O.

mtext is greater than the MessageSize parameter and MSG_NOERROR is
not set.

The queue does not contain a message of the desired type and
IPC_NOWAIT is set.

The MessagePointerparameter points outside of the process address
space.

The msgxrcv subroutine was interrupted by a signal.

The message queue identifier specified by MessageQueuelD is removed
from the system.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The msgctl subroutine, msgget subroutine, msgrcv subroutine.

1-452 Base Operating System Reference

NCctype

NCctype Subroutines

Purpose

Library

Syntax

Classifies characters for national language support environments.

Standard C Library (libc.a)

#include <NLctype.h>

int NCisNLchar (Xcharactef?
int Xcharacter;

int NCisalpha (Xcharactef?
int Xcharacter;

int NCisupper (Xcharactef?
int Xcharacter;

int NCislower (Xcharactef?
int Xcharacter;

int NCisdigit (Xcharactef?
int Xcharacter;

int NCisxdigit (Xcharactef?
int Xcharacter;

int NCisalnum (Xcharactef?
int Xcharacter;

int NCisspace (Xcharactef?
int Xcharacter;

int NCispunct (Xcharactef?
int Xcharacter;

int NCisprint (Xcharactef?
int Xcharacter;

int NCisgraph (Xcharactef?
int XCharacter;

int NCiscntrl (Xcharactef?
int XCharacter;

Description
Character classification is user-configurable per process through the locale indicated by the
LC_COLLATE environment variable.

These subroutines classify character-coded integer values using information specified by
the current LC_COLLATE configuration. The Xcharacter parameter is tested as an NLchar

Base Operating System Runtime 1-453

NCctype

Parameter

(an extended character); each subroutine is a predicate form returning 0 for FALSE, and a
nonzero value for TRUE. The value of Xcharacteris in the domain of any legal NLchar, in a
value range from 0 to NLCHARMAX -1, inclusive. It can also have a special value of -1. If
the value of Xcharacter is not in the domain of the routine, the result is undefined.

Japanese Language Support Information

When running AIX with Japanese Language Support, the value range is 0 to NLCOLMAX.

Xcharacter Character to be classified.

Return Values

1-454

The NCisNLchar macro is defined on all valid integer values, whereas the other macros are
defined only where NCisNLchar is true, and on the special value of -1 (end of file).

When a nonzero value is returned for Xcharacter.

NCisNLchar

NCisalpha

NCisupper

NCislower

NCisdigit

NCisxdigit

NCisalnum

NCisspace

NCispunct

NCisprint

NCisgraph

NCiscntrl

Xcharacter is a valid NLchar with a value between 0 and
NLCHARMAX-1, inclusive. (The NCisNLchar subroutine is not
available when running AIX with Japanese Language Support on your
system.)

Xcharacter is an alphabetic character applicable to isalpha and
isjalpha.

Xcharacter is an uppercase alphabetic character applicable to isupper
and isjupper.

Xcharacter is a lowercase letter applicable to islower and isjlower.

Xcharacter is a decimal digit (0-9) applicable to isdigit and isjdigit.

Xcharacter is a hexadecimal digit (0-9, A-F, or a-f) applicable to
isxdigit and isjxdigit.

Xcharacter is an alphanumeric character or digit applicable to
isalnum, isjdigit, and isjalpha.

Xcharacter is a space, tab, carriage return, neW-line, vertical tab, or
form-feed character applicable to isspace and isjspace.

Xcharacter is a punctuation character (neither a control character nor
an alphanumeric character) applicable to ispunct and isjpunct.

Xcharacter is a printing character (including the space character)
applicable to isprint and isjprint.

Xcharacteris a printing character (excluding the space character)
applicable to isgraph and isjgraph.

Xcharacteris an ASCII delete character (0177) or an ordinary ASCII
control character other than the 4 single-shift characters. This
subroutine is applicable only to ASCII characters; it does not apply to
kanji characters.

Base Operating System Reference

NCctype

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The getc, fgetc, getchar, getw subroutines, ctype subroutines NLchar subroutines.

National Language Support Overview in General Programming Concepts.

Base Operating System Runtime 1-455

NCstring

NCstring Subroutines

Purpose

Library

Syntax

1-456

Performs operations on strings of type NLchar.

Standard C Library (libc.a)

#include <NLchar.h>
NLchar *NCstrcat (Xstring1, Xstring2)
N Lchar * Xstring 1, * Xstring2;

NLchar *NCstrncat (Xstring1, Xstring2, Numbet)
NLchar * Xstring1, * Xstring2;
int Number;

int NCstrcmp (Xstring1, Xstring2)
NLchar * Xstring1, * Xstring2;

int NCstrncmp (Xstring1, Xstring2, Numbet)
N Lchar * Xstring 1, * Xstring2;
int Number;

NLchar *NCstrcpy (Xstring1, Xstring2)
NLchar * Xstring1, *Xstring2;

NLchar *NCstrncpy (Xstring1, Xstring2, Numbet)
NLchar * Xstring1, * Xstring2;
int Number;

int NCstrlen (Xstring)
NLchar * Xstring;

NLchar *NCstrchr (Xstring, Charactet)
NLchar * Xstring, Character,

NLchar *NCstrrchr (Xstring, Charactet)
NLchar *Xstring, Character,

NLchar *NCstrpbrk (Xstring1, String2)
NLchar * Xstring1;
char * String2;

int NCstrspn (Xstring 1, String2)
NLchar * Xstring1;
char * String2;

int NCstrcspn (Xstring 1, String2)
NLchar * Xstring1;
char * String2;

NLchar *NCstrtok (X string 1 , String2)
NLchar * Xstring1;

Base Operating System Reference

char * String2;

NLchar *NCstrdup (Xstring1)
NLchar *Xstring1;

Description

NCstring

The NCstring subroutines copy, compare, and append strings in memory, and determine
such things as location, size, and existence of strings in memory. For these subroutines, a
string is an array of NLchars, terminated by a null character. The NCstring subroutines
parallel the string subroutines, but operate on strings of type NLchar rather than on type
char, except as specifically noted below.

These subroutines require their parameters (except the String2 parameter) to be explicitly
converted to type NLchar, so they should be used on input that is to be scanned many times
for each time it is converted. Where this performance concern does not apply, the NLstring
subroutines are easier to use. •

The String2 parameter is a string of type char containing code point representations of
ASCII characters or extended characters for international character support. This supports
the use of a double-quoted string for this parameter in calling programs.

The parameters Xstring1, Xstring2 and Xstring point to strings of type NLchar (arrays of
NLchars terminated by a null character). The String2 parameter points to strings of type
char.

The subroutines NCstrcat, NCstrncat, NCstrcpy, and NCstrncpy all alter Xstring1. They
do not check for overflow of the array pointed to by Xstring1. All string movement is
performed character by character and starts at the left. Overlapping moves toward the left
work as expected, but overlapping moves to the right may give unexpected results. All of
these subroutines are declared in the NLchar.h header file.

The NCstrcat subroutine appends a copy of the string pOinted to by the Xstring2 parameter
to the end of the string pointed to by the Xstring1 parameter. The NCstrcat subroutine
returns a pointer to the null-terminated result.

The NCstrncat subroutine copies at most Number NLchars of Xstring2 to the end of the
string pointed to by the Xstring1 parameter. Copying stops before Number NLchars if a null
character is encountered in the Xstring2 string. The NCstrncat subroutine returns a pOinter
to the null-terminated result.

The NCstrcmp subroutine lexicographically compares the string pointed to by the Xstring1
parameter to the string pointed to by the Xstring2 parameter. The NCstrcmp subroutine
returns a value that is:

• Less than 0 if Xstring 1 is less than Xstring2

• Equal to 0 if Xstring 1 is equal to Xstring2

• Greater than 0 if Xstring1 is greater than Xstring2.

The NCstrncmp subroutine makes the same comparison as NCstrcmp, but it compares at
most Number pairs of NLchars. Both NCstrcmp and NCstrncmp use the environment
variables LC_COLLATE, LC_CTVPE, and LANG to determine the collating sequence for
performing comparisons. Unless a true collating relationship is to be tested, the strcmp and
strncmp subroutines can instead be used for equality comparisons. The bytes will match
regardless of the NLchars in the string.

Base Operating System Runtime 1-457

NCstring

The NCstrcpy subroutine copies the string pointed to by the Xstring2 parameter to the
character array painted to by the Xstring1 parameter. Copying stops when the null character
is copied. The NCstrcpy subroutine returns the value of the Xstring1 parameter.

The NCstrncpy subroutine copies Number NLchars from the string pointed to by the
Xstring2 parameter to the character array pointed to by the Xstring1 parameter. If Xstring2 is
less than Number NLchars long, then NCstrncpy pads Xstring1 with trailing null characters
to fill Number NLchars. If Xstring2 is Number or more NLchars long, then only the first
Number NLchars are copied; the result is not terminated with a null character. The
NCstrncpy subroutine returns the value of the Xstring1 parameter.

The NCstrlen subroutine returns the number of NLchars in the string pointed to by the
Xstring parameter, not including the terminating null character.

The NCstrchr subroutine returns a pointer to the first occurrence of the NLchar specified by
the Character parameter in the string pointeq to by the Xstring parameter. A NULL pointer is
returned if the NLchar does not occur in the string. The null character that terminates a
string is considered to be part of the string.

The NCstrrchr subroutine returns a pointer to the last occurrence of the NLchar specified
by the Character parameter in the string pointed to by the Xstring parameter. A NULL
pointer is returned if the NLchar does not occur in the string. The null character that
terminates a string is considered to be part of the string.

The NCstrpbrk subroutine returns a pointer to the first occurrence in the string pointed to by
the Xstring1 parameter of any code point from the string painted to by the String2 parameter.
A NULL pointer is returned if no character matches.

The NCstrspn subroutine returns the length of the initial segment of the string pointed to by
the Xstring1 parameter that consists entirely of code points from the string pointed to by the
String2 parameter.

The NCstrcspn subroutine returns the length of the initial segment of the string pointed to
by the Xstring 1 parameter that consists entirely of code points not from the string pointed to
by the String2 parameter.

The NCstrtok subroutine returns a pointer to an occurrence of a text token in the string
pointed to by the Xstring1 parameter. The String2 parameter specifies a set of code points
as token delimiters. If the Xstring1 parameter is anything other than NULL, then the
NCstrtok subroutine reads the string painted to by the Xstring1 parameter until it finds one
of the delimiter code points specified by the String2 parameter. It then stores a null character
into the string, replacing the delimiter code point, and returns a pointer to the first NLchar of
the text token. The NCstrtok subroutine keeps track of its position in the string so that
subsequent calls with a NULL Xstring1 parameter step through the string. The delimiters
specified by the String2 parameter can be changed for subsequent calls to NCstrtok. When
no tokens remain in the string pointed to by the Xstring1 parameter, the NCstrtok subroutine
returns a NULL pointer.

The NCstrdup subroutine returns a pointer to an NLchar string that is a duplicate of the
NLchar string to which the Xstring1 parameter points. Space for the new string is allocated
using the malloc subroutine. When a new string cannot be created, a NULL pointer is
returned.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

1-458 Base Operating System Reference

NCstring

Related Information
The NLchar subroutines, NLstring subroutines, NLstrtime subroutines, wstring
subroutines, string subroutines.

National Language Support Overview in General Programming Concepts.

Base Operating System Runtime 1-459

newpass

newpass Subroutine

Purpose

Library

Syntax

Generates a new password fora user.

Security Library (libs.a)

#include <usersec.h>
char *newpass(Password)
struct userpw * Password;

Description

Parameter

The. newpass subroutine will generate a new password for the user specified by the
Password parameter. The new password will be checked to insure that it meets the
password rules on the system unless the user is exempted from these restrictions, which are
defined in the pw_restrictions stanza of the login.cfg configuration file and are described
in the passwd command.

Passwords can contain almost any legal value for a character, but may not contain NLS
code points. Passwords may not be longer than MAX_PASS value of characters.

The newpass subroutine will authenticate the user prior to changing the password. If the
PW_ADMCHGflag is set in the upw_flags member of the Password parameter, the
supplied password is checked against the password for the user corresponding to the real
user ID of the process instead of the user specified by the upw_name member of the
Password parameter structure.

If a password is successfully generated, a pointer to a buffer containing the new password is
returned and the last update time is reset.

Password Specifies a user password structure. This structure is defined in the
userpw.h file and contains the following members:

A pointer to a character buffer containing the user name.

A pOinter to a character buffer containing the current
password.

upw_lastupdate The time the password was last changed, in seconds
since the EPOCH.

A bitmask containing zero or more of the following
values:

This bit indicates that new
passwords need not meet the
composition criteria for
passwords on the system.

1-460 Base Operating System Reference

Security
Policy: Authentication

newpass

This bit indicates that password
information for this user may
only be changed by the root
user.

This bit indicates that the
password is being changed by
an administrator and the
password will have to be
changed upon the next
successful login or su to this
account.

In order to change a password, the invoker must be
properly authenticated.

Note: Programs which invoke the newpass subroutine
should be especially conscious of the authentication
rules enforced by newpass. The PW _ADMCHG
flag should always be explicitly cleared unless the
invoker of the command is an administrator.

Return Values
If a new password is successfully generated, a pointer to the new encrypted password is
returned. If an error occurs, a NULL pointer is returned and errno is set to indicate the
error.

Error Codes
The newpass subroutine fails if one or more of the following are true:

EACCES

EINVAL

ESAD

EPERM

The password or password restrictions information cannot be read.

The structure passed into the newpass subroutine is invalid.

Security authentication is denied for the invoker.

The user is unable to change a password of a user that has the
PW _ADMCHG bit set and the real user id of the process is not the root
user.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The getpass subroutine, getuserpw subroutine.

The login command, passwd command, pwdadm command.

Base Operating System Runtime 1-461

NLcatgets

NLcatgets Subroutine

Purpose

Library

Syntax

Allows initial access to an opened catalog.

Standard C Library (libc.a)

#include <nLtypes>

char *NLcatgets(Cata/ogDescriptor, SetNumber, MessageNumber, String)
nl_catd Cata/ogDescriptor,
int SetNumber, MessageNumber,
char * String;

Description
The NLcatgets subroutine is used to access a catalog, after first using the NLcatopen
subroutine to prepare the message catalog for access.

If the NLcatgets subroutine finds the specified message, it loads the message into a
character string buffer, terminates the message string with a null character, and returns a
pointer to the buffer. The pointer is used to reference the buffer and display the message.
The message in the buffer is overwritten by the next call to the NLcatgets subroutine.

Parameters
Cata/ogDescriptor Specifies a catalog description that is returned from the

NLcatopen subroutine.

SetNumber

MessageNumber

String

Specifies the set 10.

Specifies the message 10. SetNumberand MessageNumber
specify a particular message in the catalog.

Specifies a message string.

Error Codes
If NLcatgets fails for any reason, it returns a pointer to the user-supplied default message
string pointed to by the String parameter.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The catgets subroutine, catgetmsg subroutine,NLgetamsg subroutine.

1-462 Base Operating System Reference

NLchar

NLchar Subroutines

Purpose

Library

Syntax

Handles data type NLchar

Standard C Library (libc.a)

#include <NLchar.h>
typedef unsigned short NLchar;

int NCdecode (Character, Xcharactet)
char * Character;
NLchar * Xcharacter;

int NCdecstr (Character, Xcharacter, Length)
char * Character;
NLchar * Xcharacter;
int Length;

int NCchrlen (Nlcharactet)
NLchar Nlcharacter;

int NCencode (Xcharacter, Charactet)
NLchar * Xcharacter;
char * Character;

int NCencstr (Xcharacter, Character, Length)
NLchar * Xcharacter;
char *Character;
int Length;

int NLisNLcp (Charactet)
char Character;

int NLchrlen (Charactet)
char * Character;

char *wstrtos (Character, Xcharactet)
char * Character;
wchar * Xcharacter;

wchar *strtows (Xcharacter, Charactet)
wchar * Xcharacter;
char *Character;

Description
Characters for national language support can be either 1 or 2 bytes long, while all ASCII
characters are 1 byte long. The NLchar data type, which is identical to the wchar_t data
type, represents both ASCII and extended characters as single units of storage. The NLchar
subroutines listed here convert between character types char and NLchar and provide
information about a given character of either type.

Base Operating System Runtime 1-463

NLchar

The NCdecode subroutine converts a character starting at Character into an NLchar at
Xcharacter, and returns the number of bytes read from Character. The NCencode
subroutine makes the inverse translation from type NLchar to type char and returns the
number of bytes written to Character.

The NCdecstr subroutine converts a string of characters from type char to type NLchar,
and the NCencstr does the reverse translation. 80th subroutines require the address of the
source and destination strings and the total number of elements available for the destination
string. The destination string terminates with a 0 element, which is not included in the string
length. The destination length should include space for the terminator. If insufficient space is
left for the destination string, a portion of it is not converted. The subroutines return the
length of the string in elements, not including the terminating O.

Japanese Language Support Information

The wstrtos and strtows subroutines are similar to the NCdecstr and NCencstr
subroutines. The wstrtos subroutines converts a wchar_t data type string, terminated by an
wchar nul character '\0' and pointed to by Xcharacter, to a character string pointed to by the
Character parameter. The strtows subroutine converts a character string, terminated by a
null character and pointed to by the Character parameter, to a wchar data type string, then
stores it in a wchar_t string pointed to by Xcharacter. Neither function checks for overflow of
the converted string.

The NCdechr subroutine is like the NCdecode subroutine except that NCdechr simply
returns the value of NLchar rather than writing the NLchar into memory.

The NLisNLcp, NCchrlen, and NLchrlen subroutines return information about a given
character. NLisNLcp returns a 0 if the character at the Character parameter is not an
extended character, but returns the length of the character if it is an extended character.
NCchrlen returns the length in bytes that an NLchar would have if it were converted into an
extended or an ASCII character by NCencode. NLchrlen returns the length in bytes of the
extended or ASCII character starting at Character.

Parameters
Character A pointer to a character string.

Xcharacter A pointer to an NLchar or NLchar string.

Length The total number of elements available for the destination string.

Nlcharacter An extended character.

Implementation Specifics
These subroutines are part of AIX Base Operating System (80S) Runtime.

Related Information
The conv subroutines, ctype subroutines and NCctype subroutines.

National Language Support Overview in General Programming Concepts.

1-464 Base Operating System Reference

NLcplen

NLcplen Subroutine

Purpose
Returns the number of code points in a string.

Library
Standard C Library (libc.a)

Japanese Language Support Syntax
When running AIX with Japanese Language Support on your system, the following
subroutine, stored in Iibc.a, is provided:

#include <string.h>
int NLcplen (String)
char *S;

Description
The NLcplen subroutine returns the number of code points in the string pointed to by the
String parameter, not including the terminating null character.

Parameter
String Pointer to a string.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
NLstring subroutines.

National Language Support Overview in General Programming Concepts.

Base Operating System Runtime 1-465

NLescstr, ...

NLescstr, NLunescstr or NLflatstr Subroutine

Purpose

Library

Syntax

Translates strings of characters.

Standard C Library (libc.a)

#include <ctype.h>

int NLescstr (Source, Destination, Length)
char * Source, * Destination;
int Length;

int NLflatstr (Source, Destination, Length)
char *Source, * Destination;
int Length

int NLunescstr(Source, Destination, Length)
char * Source, *Destination;
int Length;

Description

1-466

These subroutines convert an entire string of type char, perhaps containing extended
characters, into a string of pure ASCII bytes. Each of these subroutines require three
parameters: the Source parameter contains the address of the source string, the
Destination parameter contains the address of the string, and the Length parameter, gives
the total number of bytes available in the destination string. Each writes a result string
terminated by a null character and returns its length in bytes. The Length parameter should
include space for the null character. If the Destination parameter is too short to contain the
entire output string, not all of the Source parameter is translated.

The NLescstr subroutine translates each ASCII or extended character in Source to pure
ASCII. Each extended character encountered is translated to a printable ASCII escape
sequence that uniquely identifies the extended character. The display symbol facility
contains a list of these escape sequences.

The NLunescstr subroutine performs the inverse translation by translating each ASCII byte
of the Source parameter into the Destination parameter, and translate each ASCII escape
sequence back into the extended character it represents.

The NLflatstr subroutine translates each character, ASCII or extended, in the Source
parameter to a single ASCII byte in the Destination parameter. The Destination parameter
can have fewer bytas than the Source parameter, but the number of logical characters, or
the display length, is the same.

Note: The NLflatstr subroutine is not available when running AIX with Japanese Language
Support.

Base Operating System Reference

Parameters
Source

Destination

Length

A pointer to the source string.

A pointer to the destination string.

The number of bytes available in the destination string.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information

NLescstr, ...

The ctype subroutines, getc, fgetc, getchar, getw subroutines, getwc , fgetwc, getwchar
subroutines, NCctype subroutine, NCstring subroutines, NLchar subroutines and NLstring
subroutines.

The display symbol file.

National Language Support Overview in General Programming Concepts.

Base Operating System Runtime 1-467

NLgetamsg

NLgetamsg Subroutine

Purpose

Library

Syntax

Opens a catalog, retrieves a specified message, and closes the catalog.

Standard C Library (libc.a)

char *NLgetamsg (CatalogName, SetNumber, MessageNumber, String)
char CatalogName;
int SetNumber, MessageNumber;
char *String;

Description
The NLgetamsg subroutine opens a catalog, retrieves the specified message, and closes
the catalog, all in one call. This is particularly useful for infrequent message display. If
NLgetamsg finds the specified message, it loads the message into a character string buffer,
ending the message string with a null character, and returns a pointer to the buffer.

Parameters
CatalogName Specifies the name of the message catalog file to be opened.

Specifies the set ID. SetNumber

MessageNumber

String

Specifies the message ID. SetNumber and MessageNumber specify
a particular message in the catalog.

Specifies the string character buffer.

Error Code
If NLgetamsg is unsuccessful, it returns a pOinter to the user-supplied default message
string pointed to by the String parameter.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The catgets subroutine, catgetmsg subroutine, NLcatgets subroutine.

1-468 Base Operating System Reference

nlist

nlist Subroutine

Purpose

Library

Syntax

Gets entries from a name list.

Standard C Library (libc.a), Berkeley Compatibility Library (libbsd.a)

#include <nlist.h>

int nlist(FileName, Nt)
char * FileName;
struct nlist * Nt;

Description
The nlist subroutine allows a program to examine thename list in the executable file named
by the FileName parameter. It selectively extracts a list of values and places them in the
arrayof nlist structures pointed to by the Nt parameter.

The name list specified by the Nt parameter consistsof an array of structures containing
names of variables, types, andvalues. The list is terminated with an element that has a null
stringin the name structure member. Each variable nameis looked up in the name list of the
file. If the name is found, thetype and value or the name are inserted in the next two
fields.The type field is set to 0 unless the file was compiled with the -g option. If the name is
not found, both the type andvalue entries are set to O.

All entries are set to 0 if the specified file cannot be reador if it does not contain a valid name
list.

You can use the nlist subroutine to examine the systemname list kept in the /unix file. By
examining this list,you can ensure that your programs obtain current system addresses.

The nlist.h header file is automatically included by a.out.h for compatibility. However, do not
include the a.out.hfile if you only need the information necessary to use the nlistsubroutine.
If you do include a.out.h, follow the #includestatement with the line:

#undef n_name

Parameters
FileName

Nt

Return Values

Specifies the name of the file containing aname list.

Points to the array of nlist structures.

Upon successful completion, a 0 is returned. In BSD, the numberof unfound namelist entries
is returned. If the file cannot be foundor if it is not a valid name list, a value of -1 is returned.

Compatibility Interfaces
To obtain the BSD-compatible version of the subroutine, compilewith libbsd.a.

Base Operating System Runtime 1-469

nlist

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

Related Information
The a.out file.

1-470 Base Operating System Reference

nl_langinfo Subroutine

Purpose

Library

Syntax

Returns information on language or cultural area in a program's locale.

Standard C Library (libc.a)

#include <nl_types.h>
#include <Ianginfo.h>

char *nl_langinfo (Item)
nl_item Item;

Description

Parameter

The nl_langinfo subroutine returns a pOinter to a string containing information relevant to
the particular language or cultural area defined in the program's locale corresponding to the
Item parameter. The active language or cultural area is determined by the default value of
the environment variables or the most recent call to the setlocale subroutine.

The values for the Item parameter are defined in the langinfo.h file.

Item Information needed from locale.

Return Values
In a locale where langinfo data is not defined, the nl_langinfo subroutine returns a pointer
to the corresponding string in the C locale. In all locales, nl_langinfo returns a pointer to an
empty string if the Item parameter contains an invalid setting.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The setlocale subroutine.

National Language Support Overview in General Programming Concepts

Base Operating System Runtime 1-471

NLstring

NLstring Subroutines

Purpose

Library

Syntax

1-472

Perform operations on strings containing code pOints.

Standard C Library (libc.a)

#include <NLchar.h>
char *NLstrcat (String1, String2)
char * String 1, * String2;

char *NLstrncat (String1, String2, Number)
char * String 1, * String2;
int Number,

int NLstrcmp (String1, String2)
char * String 1, * String2;

int NLstrncmp (String 1, String2, Number)
char * String 1, *String2;
int Number,

char *NLstrcpy (String1, String2)
char * String 1, * String2;

char *NLstrncpy (String1, String2, Number)
char * String 1, * String2;
int Number,

int NLstrlen (String)
char * String;

int NLstrdlen (String)
char * String;

char *NLstrchr (String, Character)
char * String, Character,

char *NLstrrchr (String, Character)
char * S, Character,

char *NLstrpbrk (String1, String2)
char * String 1, * String2;
int NLstrspn (String1, String2)
char * String 1, * String2;

int NLstrcspn (String1, String2)
char * String 1, * String2;

char *NLstrtok (String1, String2)
char * String 1, * String2;

Base Operating System Reference

NLstring

Description
The NLstring subroutines copy, compare, and append strings in memory, and determine
such values as location, size, and existence of strings in memory. A string is an array of
code points terminated by a null character. The NLstring subroutines parallel the string
subroutines and NLstrcat, NLstrncat, NLstrcpy, NLstrncpy, and NLstrlen are identical in
function to their string counterparts.

The subroutines NLstrcat, NLstrncat, NLstrcpy, and NLstrncpy all alter the String1
parameter. They do not check for overflow of the array pointed to by String 1. All string
movement is performed character by character and starts at the left. Overlapping moves
toward the left work as expected, but overlapping moves to the right can give unexpected
results. All of these subroutines are declared in the NLchar.h header file.

The NLstrcat subroutine appends a copy of the string pointed to by the String2 parameter to
the end of the string pointed to by the String1 parameter. The string is at most Number
bytes; this can represent fewer than Number code points. The NLstrcat subroutine returns a
pointer to the null-terminated result.

The NLstrncat subroutine copies at most Number characters of String2 to the end of the
string pointed to by the String1 parameter. Copying stops before Number characters if a null
character is encountered in the String2 string. The NLstrncat subroutine returns a pointer
to the null-terminated result.

The NLstrcmp subroutine lexicographically compares the string pointed to by the String 1
parameter to the string pointed to by the String2 parameter. The NLstrcmp subroutine
returns a value that is:

Less than 0 if String 1 is less than String2

Equal to 0 if String 1 is equal to String2

Greater than 0 if String1 is greater than String2.

The NLstrncmp subroutine makes the same comparison as NLstrcmp, but it compares at
most Number bytes. Characters that have 2-byte representations can cause NLstrncmp to
return 0 for unequal strings. If Number divides a 2-byte character, then the last byte
comparison is skipped. If the only difference in the two strings is in that last byte, an
incorrect true is returned.

Both the NLstrcmp and NLstrncmp subroutines use the locale specific data based on the
LC_COLLATE category. Unless a true collating relationship is to be tested, the strcmp and
strncmp subroutines should be used

The NLstrcpy subroutine the string pointed to by the String2 parameter to the character
array pointed to by the String1 parameter. Copying stops when the null character is copied.
The NLstrcpy subroutine returns the pointer to the beginning of the String1 parameter.

The NLstrncpy subroutine copies the string pointed to by the String2 parameter to the
character array pointed to by the String 1 parameter, copying at most Number bytes. If
String2 is shorter than Number, a null character is added to String1. If the length in bytes of
String2 is greater than Number, the result is not null-terminated. If byte Number is the first
byte of an extended code, byte Number is not copied; String1 is Number-1 in length. The
NLstrncpy subroutine returns the pointer to the beginning of the String 1 parameter.

The NLstrlen subroutine returns the number of bytes in the string pointed to by the String
parameter, not including the terminating null character.

Base Operating System Runtime 1-473

NLstring

The NLstrdlen subroutine returns the number of code points in the string pointed to by
String, not including the terminating null character.

Japanese Language Support Information: When running AIX with Japanese Language
Support the NLstrdlen subroutine returns the number of bytes (equal to the number of
display columns).

The NLstrchr subroutine returns a pointer to the first occurrence of the code point
corresponding to the NLchar specified by the Character parameter in the string pointed to
by the String parameter. A NULL pointer is returned if the code point does not occur in the
string. The null character that terminates a string is considered to be part of the string.

The NLstrrchr subroutine returns a pointer to the last occurrence of the code point
corresponding to the NLchar specified by the Character parameter in the string pointed to
by the String parameter. A NULL pointer is returned if the code point does not occur in the
string. The null character that terminates a string is considered to be part of the string.

The NLstrpbrk subroutine returns a pointer to the first occurrence in the string pointed to by
the String1 parameter of any code point from the string pointed to by the String2 parameter.
A NULL pointer is returned if no character matches.

The NLstrspn subroutine returns the length of the initial segment of the string pointed to by
the String 1 parameter that consists entirely of code points from the string pointed to by the
String2 parameter.

The NLstrcspn subroutine returns the length of the initial segment of the string pointed to by
the String1 parameter that consists entirely of code points not from the string pointed to by
the String2 parameter.

The NLstrtok subroutine returns a pointer to an occurrence of text tokens in the string
pointed to by the String1 parameter. The String2 parameter specifies a set of code points as
token delimiters. If the String1 parameter is anything other than NULL, then the NLstrtok
subroutine reads the string pointed to by the String1 parameter until it finds one of the
delimiter code points specified by the String2 parameter. It then stores a null character into
the string, replacing the delimiter code pOint, and returns a pointer to the first code point of
the text token. The NLstrtok subroutine keeps track of its position in the string so that
subsequent calls with a NULL String1 parameter step through the string. The delimiters
specified by the String2 parameter can be changed for subsequent calls to NLstrtok. When
no tokens remain in the string pOinted to by the String1 parameter, the NLstrtok subroutine
returns a NULL pointer.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The NCstring subroutines, NLchar subroutines, and string subroutines.

National Language Support Overview in General Programming Concepts.

1-474 Base Operating System Reference

NLstrtime, ...

NLstrtime or strftime Subroutine

Purpose

Library

Syntax

Formats time and date.

Standard C Library (libc.a)

include <time.h>

char* NLstrtime (String, Length,
Format, Tmdate)

char *String, * Format;
int Length;
struct tm *Tmdate;

size_t strftime(String, Length, Format, Tmdate)
char * String, * Format;
size_t Length;
struc tm * Tmdate;

Description
The NLstrtime and strftime subroutines converts the internal time and date specification of
the tm structure, which is pointed to by the Tmdate parameter into a character string pointed
to by the String parameter under the direction of the format string pointed to by the Format
parameter. The tm structure values may be assigned by the user or generated by the
localtime or gmtime subroutine. The resulting string is similar to the result of the printf
Format parameter, and is placed in the memory location addressed by the String parameter.
It has a maximum length of Length and terminates with a NULL character.

Many conversion speCifications are the same as those used by the date command. The
interpretation of some conversion specifications is affected by the values of environment
variables for national language support.

The Format parameter is a character string containing two types of objects: plain characters
that are simply placed in the output string, and conversion specifications that convert
information from Tmdate into readable form in the output string. Each conversion
specification is a sequence of this form:

%[[-]width][.precision]type

• A Ok (percent sign) introduces a conversion specification.

• An optional decimal digit string specifies a minimum field width. A converted value that
has fewer characters than the field width is padded with spaces to the right. If the decimal
digit string is preceded by a minus sign, padding with spaces occurs to the left of the
converted value.

If no width is given, for numeric fields the appropriate default width is used with the field
padded on the left with zeros as required. For strings, the output field is made exactly wide
enough to contain the string.

Base Operating System Runtime 1-475

NLstrtime, ...

• An optional precision value gives the maximum number of characters to be printed for
the conversion specification. The precision value is a decimal digit string preceded by a
period. If the value to be output is longer than the precision, it is truncated on the right.

• The type of conversion is specified by one or two conversion characters. The
characters and their meanings are:

m

h or b

Ih or B

c

d

w

a

la or A

y

Y

o

100rx

sO

H

sH orl

M

S

p

The month of the year is output as a number between 01 and 12.

The short month is output as a string established by the value of
NlSMONTH in the NLS database (Jan, for example).

The long month is output as a string established by the value of
NllMONTH in the NLS database (January, for example).

The date and time is output with the locale dependent date and time by
the value of the NlOATIM environment variable.

The day of the month is output as a number between 01 and 31.

The Julian day of the year is output as a number between 001 and
366.

The day of the week is output as a number between 0 (Sunday) and 6.

The short day of the week is output as a string according to the value
of NlDAY in the NLS database (Mon, for example).

The long day of the week is output according to the value of NllDAY
in the NLS database (Monday, for example).

The year is output as a number (without the century) between 00 and
99.

The year is output as a number (with the century) between 0000 and
9999.

The format is fixed to return °lom/olod/o/oy. (Example, 20 Jun 1990 will
return 06/20/90.)

The long date is output in the Format specified by the value of
NllOATE in the NLS database (Jul 04, 1986, for example).

The short date is output in the Format specified by the value of (long
date) NllDATE in the NLS database, but the year is omitted (July 7,
for example).

The hour of the day is output as a number between 00 and 23.

The hour of the day is output as a number between 01 and 12.

The minute is output as a number between 00 and 59.

The second is output as a number between 00 and 61.

The A.M. or P.M. indicator is output as a string specified by the value
of NlTMISC in the NLS database (am, for example).

1-476 Base Operating System Reference

NLstrtime, ...

z or Z The (standard or daylight-saving) time zone name is output as a string
from the environment variable TZ (COT, for example).

r The time is output as %1:%M:%S (11 :07:50 pm, for example).

X The time is output in the format specified by the value of NLTIME in
the NLS database (19:07:50, for example).

T The time is output as HH:MM:SS.

sT The time is output in the format specified by the value of NLTIME in
the NLS database, but omitting the seconds (19:07, for example).

n Only a new-line character is output.

t Only a tab character is output.

x Date as describted in the NL database.

0/0 The % (percent) character is output.

U The week number of the year (Sunday as the first day of the week).
Output format is a decimal number (OO, 53)

W The week number of the year (Monday as the first day of the week).
Output format is a decimal number (00, 53)

Js The name of the Era as specified by the value of NLYEAR in the NLS
database (SHOWA, for example)

Jy The year relative to the Era (counting from 1).

Parameters
String

Length

Format

Tmdate

Return Values

Pointer to the string to hold the formatted time.

Maximum length of string pointed to by the String parameter

Pointer to the format character string.

Pointer to the time structure that is to be converted.

The NLstrtime subroutine returns a pointer to the String parameter. The strftime subroutine
returns the length of the String parameter.

Implementation Specifics
These subroutines are part of AIX Base Operating System (80S) Runtime.

Related information
The gmtime, localtime subroutines, NLtmtime subroutine, printf, fprintf, sprintf,
NLprintf, NLfprintf and NLsprintf subroutines.

The date command.

Base Operating System Runtime 1-477

NLtmtime

NLtmtime Subroutine

Purpose

Library

Syntax

Sets a time structure from string data.

Standard C Library (libc.a)

#include (time.h)
int NLtmtime (String, Format, Ptm)
char *String, *Format,
struct tm *Ptm;

Description

1-478

The NLtmtime subroutine sets the fields in the time structure pointed to by the Ptm
parameter with information in the string pointed to by the String parameter that is parsed
according to the string pointed to by the Format parameter. For each field descriptor in the
Format parameter, data is read from the String parameter and placed into appropriate fields
of the time structure. The Format parameter is described by these rules:

• Each field descriptor begins with a % (percent) character.

• A mnemonic string of 1 or 2 characters follows the % (percent) character and indicates
the type of field or fields being read.

• A blank character (tab, space, or new-line character) anywhere in the Format string
causes all blank characters at the corresponding location in the String parameter to be
skipped.

• Any character in the Format parameter that appears in a field descriptor, other than the
blank character, must be matched exactly by the same character in the String parameter.
If a mismatch occurs, NLtmtime stops processing and any information following the
mismatch is ignored. The characters and their meanings are:

m

h

Ih

d

w

a

la

The month of the year is output as a number between 01 and 12.

The short month is output as a string established by the environment
variable NLSMONTH (Jan, for example).

The long month is output as a string established by the environment
variable NLLMONTH (January, for example).

The day of the month is output as a number between 01 and 31.

The Julian day of the year is output as a number between 001 and 366.

The day of the week is output as a number between 0 and 6.

The short day of the week is output as a string according to the
environment variable NLSDAY (Mon, for example).

The long day of the week is output according to the environment variable
NLLDAY (Monday, for example).

Base Operating System Reference

y

Y

o

10

sO

H

sH

M

S

p

z

r

T

sT

NLtmtime

The year is output as a number between 00 and 99.

The year is output as a number between 0000 and 9999.

The date is output in the format specified by the environment variable
NLDATE (05/05/86, for example).

The long date is output in the format specified by the environment
variable NLLDATE (Jul 04, 1986, for example).

The short date is output in the format specified by the (long date)
environment variable NLLDATE, but the year is omitted (July 7, for
example).

The hour of the day is output as a number between 00 and 23.

The hour of the day is output as a number between 01 and 12.

The minute is output as a number between 00 and 59.

The second is output as a number between 00 and 59.

The AM or PM indicator is output as a string specified by environmental
variable NLTMISC (am, for example).

The (standard or daylight-saving) time zone name is output as a string
from the environment variable TZ (COT, for example).

The time is output in the format specified by the environment variable
NLTIME, but using a 12-hour clock (7:07:50 pm, for example).

The time is output in the format specified by the environment variable
NLTIME (19:07:50, for example).

The time is output in the format specified by the environment variable
NLTIME, but omitting the seconds (19:07, for example).

Japanese Language Support

Js Specifies the particular Era (as specified by the NLYEAR environment
variable) that is to be used for a following %Jy. A Js specification is
required if there is more than one Era in the NLYEAR string, and the Js
specification must preceed the Jy.

Jy The year is output relative to the Era defined via Js.

The field descriptors are the same as those used by the NLstrtime subroutine except for
those that do not specify information.

Parameters
String

Format

Ptm

Pointer to a text string to parse.

Pointer to a format string which describes how to parse the string pointed to
by the ~tring parameter.

Pointer to a time structure to set with the values obtained by parsing the
string pointed to by the String parameter.

Base Operating System Runtime 1-479

NLtmtime

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-480

The ctime, localtime, mktime, difftime, asctime, tzset subroutines, NLstrtime subroutine,
scanf, NLscanf, NLfscanf, and NLsscanf subroutines.

The date command.

Base Operating System Reference

NLvprintf, ...

NLvprintf, NLvfprintf, or NLvsprintf Subroutine

Purpose

Library

Syntax

Prints formatted output.

Standard C Library (libc.a)

#include <stdio.h>
#include <stdarg.h>

int NLvprintf (Format, PrintArgumenf)
char * Format;
va_list PrintArgument;

int NLvfprintf (Stream, Format, PrintArgument)
FILE *Stream;
char * Format;
va_list PrintArgument;

int NLvsprintf (String, Format, PrintArgument)
char * String, * Format;
va_list PrintArgument;

Description
The NLvprintf, NLvfprintf, and NLvsprintf subroutines format and print parameter lists in
the same way that the vprintf, vfprintf, and vsprintf subroutines perform these operations.

The NLvprintf, NLvfprintf, and NLvsprintf subroutines are the same as the printf, fprintf,
and sprintf subroutines, respectively, except that the Japanese Language Support
subroutines are not called with a variable number of parameters. Instead, they are called
with a parameter list pointer as defined by the varargs macros.

Parameters
Format Specifies a character string that contains two types of objects:

• Plain characters, which are copied to the output stream

• Conversion specifications, each of which causes 0 or more items to

PrintArgument

Stream

String

be fetched from the parameter lists.

Specifies arguments to be printed.

Specifies the output stream.

Specifies the buffer to which output is printed.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The vprintf, vfprintf, vsprintf subroutines, printf, fprintf, sprintf, NLprintf, NLfprintf,
NLsprintf subroutines.

The varargs macros.

Base Operating System Runtime 1-481

NLxin, ...

NLxin or NLxin Subroutine

Purpose

Library

Syntax

Perform EBCDIC-to-AIX translation.

Standard C Library (libc.a)

#include <NLxio.h>

int NLxin (String1, String2, Number)
char * String 1, * String2;
int Number,

int _NLxin(Character)
int Character,

Description
The NLxin subroutine and the _NLxin macro perform EBCDIC-to-AIX translation based on
the translation table named by the environment variable NUN. If the NUN environment
variable is not defined or is invalid, the NLxin subroutine will use the default universal
EBCDIC-to-AIX translation table.

The byte values from the array pointed to by the String2 parameter are used to index into
the translation table to obtain the AIX byte that is placed into the character array pointed to
by the String 1 parameter. The translation proceeds on a byte-by-byte basis until a null-byte
is encountered in the array pointed to by the String2 parameter or the number of bytes
specified by the Number parameter have been placed in the array pointed to by the String1
parameter.

The _NLxin macro has a restricted domain. The _NLxin macro requires a value specified by
the Character parameter in the range of 0 to 255 decimal expressed as an integer.
Arguments outside of the defined domain cause undefined results.

Parameters
String 1

String2

Number

Character

Pointer to an output buffer that is used to store the translated AIX data.

Pointer to the null-terminated EBCDIC character data that is to be
translated.

The count of the number of bytes available in the String1 parameter.

Specifies value of the restricted domain.

Return Values

1-482

The NLxin subroutine returns the number of bytes placed in the String1 parameter. The
_NLxin macro returns the translation table value that corresponds to the Character
parameter as an integer.

Base Operating System Reference

NLxin, ...

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The NLxstart subroutine, NLxout subroutine.

National Language Support Overview in General Programming Concepts.

Base Operating System Runtime 1-483

NLxout, ...

NLxout or NLxout Subroutine

Purpose

Library

Syntax

Performs AIX to EBCDIC translation.

Standard C Library (libc.a)

#include <NLxio.h>

int NLxout{String1, String2, Number)
char * String 1, *String2;
int Number,

int _NLxout{ Character)
int Character,

Description
The NLxout subroutine and the _NLxout macro perform AIX-to-EBCDIC translation based
on the translation table named by the environment variable NLOUT. If NLOUT is not
defined or is invalid, the NLxout subroutine will use the default universal AIX-to-EBCDIC
translation table.

The NLxout subroutine uses the value of the environment variable NLOUT as a pathname
to the AIX-to-EBCDIC translation table. Subsequent calls to the NLxout subroutine from
the same process will use the translation table obtained at the first call.

The _NLxout macro has a restricted domain. The _NLxout macro requires a value of the
Character parameter in the range of 0 to 255 decimal expressed as an integer. Arguments
outside of the defined domain cause undefined results.

Parameters
String 1

String2

Number

Character

Pointer to an output buffer that is used to store the translated EBCDIC data.

Pointer to the null-terminated ASCII character data that is to be translated.

The count of the number of bytes available in String1.

An integer value in the restricted domain of the _NLxout macro.

Return Values
The NLxout subroutine returns the number of bytes placed in the String1 parameter. The
_NLxout macro returns the translation table value that corresponds to the Character
parameter as an integer.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The NLxstart subroutine, NLxin subroutine.

National Language Support Overview in General Programming Concepts.

1-484 Base Operating System Reference

NLxstart

NLxstart Subroutine

Purpose
Performs translation table initialization.

Library
Standard C Library (libc.a)

Syntax
#include <NLxio.h>

void NLxstart()

Description
The NLxstart subroutine performs translation table initialization based on the translation
tables named by the environment variables NLOUT and NLiN. If the respective
environment variable is not defined or is invalid, the NLxstart subroutine will use the
respective default universal translation table. The NLxstart subroutine must be called prior
to the invocation of the _NLxout or _NLxin macros.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The NLxin subroutine, NLxout subroutine.

National Language Support Overview in General Programming Concepts.

Base Operating System Runtime 1-485

NLyesno

NLyesno Subroutine

Purpose

Library

Syntax

Determines forms of affirmative and negative responses.

Standard C Library (libc.a)

int NLyesno (String)
char * String;

Description

Parameter

The NLyesno subroutine determines whether the String parameter represents an affirmative
response, a negative response, or neither

The NLyesno subroutine performs this function by comparing the string in the String
parameter with currently allowed affirmative and negative responses.

The currently allowed affirmative and negative responses are determined by the setting of
the LANG and LC_MESSAGES variables, and are locale dependent.

String Pointer to a string.

Return Values
The NLyesno subroutine returns a value of 1 if the String parameter represents an
affirmative response. NLyesno returns a 0 if the String parameter represents a negative
response. Otherwise, the NLyesno subroutine returns -1 , which generally means the calling
code should prompt again for a proper response.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
National Language Support Overview in General Programming Concepts.

1-486 Base Operating System Reference

nsleep, ...

nsleep, usleep or sleep Subroutine

Purpose

Library

Syntax

Suspends a current process from execution.

Standard C Library (libc.a)

#include <sys/time.h>

int nsleep (Rqtp, Rmtp)
timestruc_t *Rqtp, *Rmtp;

int usleep (Useconds)
unsigned int Useconds;

int sleep (Seconds)
unsigned int Seconds;

Description
The nsleep subroutine is an extended form of the sleep subroutine. The current process
shall be suspended from execution until either the time interval specified by the Rqtp
parameter has elapsed, or a signal is delivered to the calling process and its action is to
invoke a signal-catching function or to terminate the process, or the process is notified of an
event via an event notification function. The suspension time may be longer than requested
due to the scheduling of other activity by the system. Upon return, the location specified by
the Rmtp parameter shall be updated to contain the amount of time remaining in the interval,
or 0 if the full interval has elapsed.

Parameters
Rqtp

Rmtp

Seconds

Useconds

Time interval specified for suspension of execution.

Specifies the location of the process.

Specifies time interval in seconds.

Specifies time interval in microseconds.

Compatibility Interface
The sleep and usleep subroutines are provided to ensure compatibility with older versions
of AIX, AT&T System V and BSD systems. They are implemented simply as front-ends to
the nsleep subroutine. Programs linking with the libbsd library get a BSD compatible
version of the sleep subroutine. The return value from the BSD compatible sleep subroutine
has no significance and should be ignored.

Return Values
The nsleep, sleep, and usleep subroutines return a 0 if the requested time has elapsed.

Base Operating System Runtime 1-487

nsleep, ...

If the nsleep subroutine returns a -1 ,the notification of a signal or event was received and
the Rmtp parameter is updated to the unslept amount (the requested time minus the time
actually slept), and errno is set.

If the sleep subroutine returns because of a premature arousal due to delivery of a signal,
the return value will be the unslept amount (the requested time minus the time actually slept)
in seconds.

Error Codes
If the nsleep subroutine fails, -1 is returned and errno is set to one of the following error
codes.

EINTR

EINVAL

A signal was caught by the calling process and control has been returned
from the signal-catching routine, or the process has been notified on an
event via an event notification function.

The Rqtp parameter specified a nanosecond value less than zero or greater
than or equal to one 1000 million.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

1-488 Base Operating System Reference

odm_add_obj Subroutine

Purpose

Syntax

Adds a new object into an object class.

#include <odmi.h>

int odm_add_obj (ClassSymbol, DataStructure)
CLASS_SYMBOL C/assSymbo/;
struct ClassName * DataStructure;

Description
The odm_add_obj subroutine takes as input the class symbol that identifies the object class
to add to and a pointer to the data structure that contains the object to be added.

The odm_add_obj subroutine opens and closes the object class around the add if the
object class was not previously opened. If the object class was previously opened, the
subroutine leaves the object class open when it returns.

Parameters
ClassSymbol

DataStructure

Return Values

A class symbol identifier returned from an odm_open_class subroutine.
If the odm_open_class subroutine has not been called, then this is the
structure ClassName_CLASS that was created by the odmcreate
command.

Pointer to an instance of the C language structure corresponding to the
object class referenced by the ClassSymbol parameter. The structure is
declared in the .h file created by the odmcreate command and has the
same name as the object class.

Upon successful completion, an identifier for the object that was added is returned. If the
odm_add_obj subroutine fails, a value of -1 is returned and the odmerrno variable is set
to an error code.

Error Codes
Failure of the odm_add_obj subroutine sets the odmerrno variable to one of the following
error codes:

ODMI_CLASS_DNE, ODMI_CLASS_PERMS, ODMI_INVALlD_CLXN,
ODMLINVALlD_PATH, ODMLMAGICNO_ERR, ODMI_OPEN_ERR,
ODMI_PARAMS, ODMI_READ_ONLY, ODMI_TOOMANYCLASSES

See OOM Error Codes on page 8-1 for explanations of the ODM error codes.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Base Operating System Runtime 1-489

Related Information

1-490

The odm_create_class subroutine, odm_rm_obj subroutine.

The odmcreate command.

OOM Example Code and Output in General Programming Concepts for an example of a .h
file.

Object Data Manager Overview (OOM) in General Programming Concepts.

Base Operating System Reference

odm_change_obj

odm_change_obj Subroutine

Purpose

Syntax

Changes an object in the object class.

#include <odmi.h>

int odm_change_obj (ClassSymbol, DataStructure)
CLASS_SYMBOL Class Symbol;
struct ClassName * DataStructure;

Description
The odm_change_obj subroutine takes as input the class symbol that identifies the object
class to change and a pointer to the data structure that contains the object to be changed.
The application program must first retrieve the object with an odm_get_obj subroutine call,
change the data values in the returned structure, and then pass that structure to the
odm_change_obj subroutine.

The odm_change_obj subroutine opens and closes the object class around the change if
the object class was not previously opened. If the object class was previously opened, then
the subroutine leaves the object class open when it returns.

Parameters
Class Symbol A class symbol identifier returned from an odm_open_class subroutine.

If the odm_open_class subroutine has not been called, then this is the
structure ClassName_CLASS which is created by the odmcreate
command.

DataStructure Pointer to an instance of the C language structure corresponding to the
object class referenced by the Class Symbol parameter. The structure is
declared in the .h file created by the odmcreate command and has the
same name as the object class.

Return Values
Upon successful completion, a value of 0 is returned. If the odm_change_obj subroutine
fails, a value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_change_obj subroutine sets the odmerrno variable to one of the
following error codes:

ODMLCLASS_DNE, ODMLCLASS_PERMS, ODMIJNVALlD_CLXN,
ODMLINVALlD_PATH, ODMI_MAGICNO_ERR, ODMI_NO_OBJECT,
ODMI_OPEN_ERR, ODMI_PARAMS, ODMI_READ_ONLY,
ODMI_ TOOMANYCLASSES

See OOM Error Codes on page 8-1 for explanations of the OOM error codes.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Base Operating System Runtime 1-491

Related Information

1-492

The odm_get_obj subroutine.

The odmcreate command.

ODM Example Code and Output in General Programming Concepts for an example of a .h
file.

Object Data Manager Overview (ODM) in General Programming Concepts.

Base Operating System Reference

odm_close_class

odm_close_class Subroutine

Purpose

Syntax

Closes an OOM object class.

#include <odmi.h>

int odm_close_class (ClassSymbo~
CLASS_SYMBOL ClassSymbol;

Description

Parameter

The odm_close_class subroutine closes the specified object class.

Class Symbol A class symbol identifier returned from an odm_open_class subroutine.
If the odm_open_class subroutine has not been called, then this is the
structure ClassName_CLASS that was created by the odmcreate
command.

Return Values
Upon successful completion, a value of 0 is returned. If the odm_close_class subroutine
fails, a value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_close_class subroutine sets the odmerrno variable to one of the
following error codes:

ODMI_CLASS_DNE, ODMI_CLASS_PERMS, ODMI_INVALlD_CLXN,
ODMLINVALlD_PATH, ODMI_MAGICNO_ERR, ODMI_OPEN_ERR,
ODMI_ TOOMANYCLASSES

See OOM Error Codes on page 8-1 for explanations of the OOM error codes.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The odm_open_class subroutine.

Object Data Manager Overview (OOM) in General Programming Concepts.

Base Operating System Runtime 1-493

odm_create_class

odm_create_class Subroutine

Purpose

Syntax

Creates an object class.

#include <odmi.h>

int odm_create_class (ClassSymbo~
CLASS_SYMBOL ClassSymbol;

Description

Parameter

The odm_create_class subroutine creates an object class. However, the .c and .h files
generated by the odmcreate command are required to be part of the application.

ClassSymbol A class symbol of the form ClassName_CLASS which is declared in the
.h file created by the odmcreate command.

Return Values
Upon successful completion, a value of 0 is returned. If the odm_create_class subroutine

fails, a value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_create_class subroutine sets the odmerrno variable to one of the
following error codes:

ODM,-CLASS_EXISTS, ODM,-CLASS_PERMS, ODMI_INVALlD_CLXN,
ODMI_INVALlD_PATH, ODM'-MAGICNO_ERR, ODMI_OPEN_ERR

See OOM Error Codes on page 8-1 for explanations of the OOM error codes.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-494

The odm_mount_class subroutine.

The odmcreate command.

OOM Example Code and Output in General Programming Concepts for an example of a .h
file.

Object Data Manager Overview (OOM) in General Programming Concepts.

Base OperB:ting System Reference

odm_err_msg Subroutine

Purpose

Syntax

Returns an error message string.

#include <odmLh>

int odm_err_msg (ODMErrno, MessageString)
long ODMErrno;
char ** MessageString;

Description
The odm_err_msg subroutine takes as input an ODMErrno and an address in which to put
the string pointer of the message string that corresponds to the input ODMErrno. If no
corresponding message is found for the input ODMErrno, a null string is returned and the
subroutine fails.

Parameters
ODMErrno The error code for which the message string is retrieved.

MessageString The address of a string pointer that will point to the returned error
message string.

Return Values

Example

Upon successful completion, a value of 0 is returned. If the odm_err_msg subroutine fails, a
value of -1 is returned, and the MessageString returned is a null string.

#include <odmi.h>
char *error_message;

/* */
/*ODMErrno was returned from a previous ODM subroutine call.*/
/* */
returnstatus = odm_err_msg (odmerrno, &error_message);

if (returnstatus < 0)
printf (URetrieval of error message failed\n");

else
printf (error_message);

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
OOM Error Codes on page B-1 for descriptions of error codes.

Object Data Manager Overview (OOM) in General Programming Concepts.

Base Operating System Runtime 1-495

odm_free_list Subroutine

Purpose

Syntax

Frees memory previously allocated for an odm_get_list subroutine.

#include <odmi.h>

int odm_free_list (ReturnData, Datalnfo)
struct ClassName * ReturnData;
struct listinfo * Data Info;

Description
The odm_free_list subroutine recursively frees up a tree of memory object lists that were
allocated for an odm_get_list subroutine.

Parameters
ReturnData Points to the array of ClassName structures returned from the

odm_get_list subroutine.

Data Info Points to the listinfo structure that was returned from the odm_get_list
subroutine. The listinfo structure has the following form:

struct listinfo {
char ClassName[16]; /* class name used for query */
char criteria[256]; /* query criteria */
int num; /* number of matches found */
int valid; /* for OOM use */
CLASS_SYMBOL class; /* symbol for queried class */
};

Return Values
Upon successful completion, a value of 0 is returned. If the odm_free_list subroutine fails, a

value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_free_list subroutine sets the odmerrno variable to one of the following
error codes:

ODMI_MAGICNO_ERR,ODMLPARAMS

See OOM Error Codes on page 8-1 for explanations of the OOM error codes.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The odm_getJist subroutine.

Object Data Manager Overview (OOM) in General Programming Concepts.

1-496 Base Operating System Reference

odm_get_by_id Subroutine

Purpose

Syntax

Retrieves an object from an OOM object class by its 10.

#include <odmi.h>

struct ClassName *odm_get_by_id(ClassSymbo/, Object/O, ReturnOata)
CLASS_SYMBOL ClassSymbol;
int Object/O;
struct ClassName * ReturnOata;

Description
The odm_get_by_id subroutine retrieves an object from an object class. The object to be
retrieved is specified by passing its Object/O parameter from its corresponding ClassName
structure.

Parameters
Class Symbol

Object/O

ReturnOata

Return Values

A class symbol of the form ClassName_CLASS which is
declared in the .h file created by the odmcreate command.

An identifier retrieved from the corresponding ClassName
structure of the object class.

A pointer to an instance of the C language structure
corresponding to the object class referenced by the ClassSymbol
parameter. The structure is declared in the .h file created by the
odmcreate command and has the same name as the object
class.

Upon successful completion, a pointer to the ClassName structure containing the object is
returned. If the odm_get_by_id subroutine fails, a value of -1 is returned and the

odmerrno variable is set to an error code.

Error Codes
Failure of the odm_get_by_id subroutine sets the odmerrno variable to one of the following
error codes:

ODMI_CLASS_DNE, ODMI_CLASS_PERMS, ODMI_INVALlD_CLXN,
ODMI_INVALlD_PATH, ODMI_MAGICNO_ERR, ODMI_MALLOC_ERR,
ODMI_NO_OBJECT, ODMI_OPEN_ERR, ODMI_PARAMS,
ODMLTOOMANYCLASSES

See OOM Error Codes on page 8-1 for explanations of the OOM error codes.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Base Operating System Runtime 1-497

Related Information

1-498

The odm_get_obj, odm_get_first, or odm_get_next subroutine.

The odmcreate command.

ODM Example Code and Output in General Programming Concepts for an example of a .h
file.

Object Data Manager Overview (ODM) in General Programming Concepts.

Base Operating System Reference

adm_get_list Subroutine

Purpose

Syntax

Retrieves all objects in an object class that match the specified criteria.

#include <odmi.h>

struct ClassName *odm_get_list{ClassSymbol, Criteria, Listlnfo, MaxReturn, Link Depth}
struct ClassName_ CLASS ClassSymbol;
char * Criteria;
struct listinfo * Lis tin fo;
int MaxReturn;
int Link Depth;

Description
The odm_get_list subroutine takes an object class and criteria as input, and returns a list of
objects that satisfy the input criteria. The subroutine opens and closes the object class
around the get if the object class was not previously opened. If the object class was
previously opened, the subroutine leaves the object class open when it returns.

Parameters
ClassSymbol

Criteria

Listlnfo

MaxReturn

LinkDepth

A class symbol identifier returned from an odm_open_class subroutine.
If the odm_open_class subroutine has not been called, then this is the
structure ClassName_CLASS that was created by the odmcreate
command.

A string that contains the qualifying criteria for selecting the objects to

remove. For information on qualifying criteria, see Understanding OOM

Object Searches in General Programming Concepts.

A structure containing·information about the retrieval of the objects. The
listinfo structure has the following form:

struct listinfo {
char ClassName[16]; /* class name used for query */
char criteria[256]; /* query criteria */
int num; /* number of matches found */
int valid; /* for ODM use */
CLASS_SYMBOL class; /* symbol for queried class */
};

The expected number of objects to be returned. This is used to control
the increments in which storage for structures is allocated, to reduce the
realloc subroutine copy overhead.

The number of levels to recurse for objects with ODM_L1NK descriptors.
A setting of 1 indicates only the top level is retrieved; 2 indicates
ODM_L1NKs will be followed from the top/first level only; 3 indicates
ODM_L1NKs will be followed at the first and second level, and so on.

Base Operating System Runtime 1-499

Return Values
Upon successful completion, a pointer to an array of C language structures containing the
objects is returned. This structure matches that described in the .h file that is returned from
the odmcreate command. If no match is found, NULL is returned. If the odm_get_list
subroutine fails, a value of -1 is returned and the odmerrno variable is set to an error
code.

Error Codes
Failure of the odm_get_list subroutine sets the odmerrno variable to one of the following
error codes:

ODMI_BAD_CRIT, ODMI_CLASS_DNE, ODMI_CLASS_PERMS,
ODMI_INTERNAL_ERR, ODMI_INVALlD_CLXN, ODMI_'NVALlD_PATH,
ODMLLlNK_NOT _FOUND, ODMI_MAGICNO_ERR, ODMLMALLOC_ERR,
ODMI_OPEN_ERR, ODMI_PARAMS, ODMI_TOOMANVCLASSES

See OOM Error Codes on page B-1 for explanations of the ODM error codes.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

1-500

The odm_get_by_id, odm_get_obj, or odm_tree_list subroutine.

The odmcreate command.

OOM Example Code and Output in General Programming Concepts for an example of a .h
file.

Object Data Manager Overview (OOM) in General Programming Concepts.

Base Operating System Reference

odm_get_obj, odm_get_first, or odm_get_next Subroutine

Purpose

Syntax

Retrieves objects, one object at a time, from an OOM object class.

#include <odmi.h>

struct ClassName *odm_get_obj (ClassSymbol, Criteria, ReturnData, FIRST_NEX1)
struct ClassName *odm_get_first (ClassSymbo/, Criteria, ReturnData)
struct ClassName *odm_get_next (ClassSymbol, ReturnData)

CLASS_SYMBOL ClassSymbol;
char * Criteria;
struct ClassName * ReturnData;
int FIRST_NEXT;

Description
The odm_get_obj, odm_get_first, and odm_get_next subroutines retrieve objects from
OOM object classes and return the objects into C language structures defined by the .h file
produced by the odmcreate command.

The odm_get_obj , odm_get_first, and odm_get_next subroutines open and close the
specified object class if the object class was not previously opened. If the object class was
previously opened,- then the subroutines leave the object class open upon return.

Parameters
ClassSymbol

Criteria

ReturnData

A class symbol identifier returned from an odm_open_class subroutine.
If the odm_open_class subroutine has not been called, then this is the
structure ClassName_CLASS that was created by the odmcreate
command.

The string that contains the qualifying criteria for retrieval of the objects.

For more information about qualifying criteria, see Understanding OOM

Object Searches in General Programming Concepts.

The pointer to the data structure in the .h file created by the odmcreate

command. The name of the structure in the .h file is ClassName. If the

ReturnData parameter is NULL (ReturnData == NULL), space is
allocated for the parameter and the calling application is responsible for
freeing this space at a later time.

Specifies whether to get the first object that matches the criteria, or to get
the next object. Valid values are:

FIRST

NEXT

Retrieve the first object that matches the search criteria.

Retrieve the next object that matches the search criteria.
The Criteria parameter is ignored if the FIRST_NEXT
parameter is set to NEXT.

Base Operating System Runtime 1-501

Return Value
Upon successful completion, a pOinter to the retrieved object is returned. If no match is
found, NULL is returned. If an odm_get_obj, odm_get_first, or odm_get_next subroutine
fails, a value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_get_obj, odm_get_first or odm_get_next subroutine sets the
odmerrno variable to one of the following error codes:

ODMI_BAD_CRIT, ODMI_CLASS_DNE, ODMI_CLASS_PERMS,
ODMI_INTERNAL_ERR, ODMI_INVALlD_CLXN, ODMI_INVALlD_PATH,
ODMI_MAGICNO_ERR, ODMI_MALLOC_ERR, ODMLOPEN_ERR,
ODML TOOMANVCLASSES

See OOM Error Codes on page B-1 for explanations of the OOM error codes.

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

Related Information

1-502

The odm_get_list, odm_rm_obj, or odm_rm_by_id subroutine.

The odmcreate command.

OOM Example Code and Output in General Programming Concepts for an example of a .h
file.

Object Data Manager Overview (OOM) in General Programming Concepts.

Base Operating System Reference

odm_initialize

adm_initialize Subroutine

Purpose

Syntax

Prepares OOM for use by an application.

#include <odmin.h>
int odm_initialize()

Description
The odm_initialize subroutine starts OOM for use with an application prograr.,. This
subroutine must be called before any other OOM subroutine calls.

Return Value
Upon successful completion, a value of 0 is returned. If the odm_initialize subroutine fails,
a value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_initialize subroutine sets the odmerrno variable to one of the following
error codes:

ODMI_INVALlD_PATH,ODMI_MALLOC_ERR

See OOM Error Codes on page 8-1 for explanations of the OOM error codes.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The odm_terminate subroutine.

Object Data Manager Overview (OOM) in General Programming Concepts.

Base Operating System Runtime 1-503

odm lock Subroutine

Purpose

Syntax

Puts an exclusive lock on the requested path name.

#include <odmLh>

int odm_lock (LockPath, TimeOut)
char * LockPath;
int TimeOut;

Description
The odm_lock subroutine is used by an application to prevent other applications or methods
from accessing an object class or group of object classes. A lock on a directory path name
does not prevent another application from acquiring a lock on a subdirectory or object class
within that directory.

Note: Coordination of locking is the responsibility of the application accessing the object
classes.

The odm_lock subroutine returns a lock identifier that is used to call the odm_unlock
subroutine.

Parameters
LockPath A string containing the path name in the file system in which to locate object

classes to lock or the path name to an object class to lock.

TimeOut The amount of time, in seconds, to wait if another application or method
holds a lock on the requested object class or classes.

TimeOut = ODM_NOWAIT
The odmlock subroutine fails if the lock cannot be granted
immediately.

TimeOut = Integer
The odmlock subroutine waits the specified amount of
seconds to retry a failed lock request.

TimeOut = ODM_WAIT
The odmlock subroutine waits until the locked path name
is freed from its current lock, then locks it.

Return Values
Upon successful completion a lock identifier is returned. If the odm_lock subroutine fails, a

value of -1 is returned and the odmerrno variable is set to an error code.

1.-.504 Base Operating System Reference

odm lock

Error Codes
Failure of the odm_lock subroutine sets the odmerrno variable to one of the following error
codes:

ODMI_BAD_LOCK, ODMI_BAD_TIMEOUT, ODMI_BAD_TOKEN,
ODMI_LOCK_BLOCKED, ODMI_LOCK_ENV, ODMI_MALLOC_ERR,
ODMI_UNLOCK

See ODM Error Codes on page 8-1 for explanations of the OOM error codes.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The odm_unlock subroutine.

Object Data Manager Overview (OOM) in General Programming Concepts.

Base Operating System Runtime 1-505

odm_mount_class Subroutine

Purpose

Syntax

Retrieves the class symbol structure for the specified object class name.

#include <odmi.h>

CLASS_SYMBOL odm_mount_class (ClassName)
char * ClassName;

Description

Parameter

The odm_mount_class subroutine retrieves the class symbol structure for a specified
object class. The subroutine can be called by applications (for example, the OOM Editor)
that have no previous knowledge of the structure of an object class before trying to access
that class. The odm_mount_class subroutine determines the class description from the
object class header information and creates a CLASS_SYMBOL that is returned to the
caller.

The object class is not opened by the odm_mount_class subroutine. Calling the subroutine
subsequent times for an object class that is already open or mounted returns the same
CLASS_SYMBOL.

Mounting a class that links to another object class recursively mounts to the linked class.

However, if the recursive mount fails, the original odm_mount_class subroutine does not
fail; the CLASS_SYMBOL is set up with a NULL link.

ClassName The name of an object class from which to retrieve the class description.

Return Values
Upon successful completion, a CLASS_SYMBOL is returned. If the odm_mount_class
subroutine fails, a value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_mount_class subroutine sets the odmerrno variable to one of the
following error codes:

ODMI_BAD_CLASSNAME, ODMI_BAD_CLXNNAME, ODMI_CLASS_DNE,
ODMI_CLASS_PERMS, ODMI_CLXNMAGICNO_ERR, ODMI_'NVALlD_CLASS,
ODMI_INVALlD_CLXN, ODMI_MAGICNO_ERR, ODMI_MALLOC_ERR,
ODMI_OPEN_ERR, ODMI_PARAMS, ODMI_ TOOMANYCLASSES

See OOM Error Codes on page B-1 for explanations of the OOM error codes.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The odm_create_class subroutine.

Object Data Manager Overview (OOM) in General Programming Concepts.

1-506 Base Operating System Reference

odm_open_class Subroutine

Purpose

Syntax

Opens an OOM object class.

#include <odmi.h>

CLASS_SYMBOL odm_open_class (ClassSymbo~
CLASS_SYMBOL ClassSymbol;

Description

Parameter

The odm_open_class subroutine can be called to open an object class. Most subroutines
implicitly open a class if the class is not already open. However, an application may find it
useful to perform an explicit open if, for example, several operations must be done on one
object class before closing the class.

ClassSymbol Class symbol of the form ClassName_CLASS that is declared in the .h
file created by the odmcreate command.

Return Values
Upon successful completion, a ClassSymbol for the object class is returned. If the
odm_open_class subroutine fails, a value of -1 is returned and the odmerrno variable is
set to an error code.

Error Codes
Failure of the odm_open_class subroutine sets the odmerrno variable to one of the
following error codes:

ODMI_CLASS_DNE, ODMI_CLASS_PERMS, ODMI_INVALID_PATH,
ODMI_MAGICNO_ERR, ODMI_OPEN_ERR, ODMI_TOOMANYCLASSES

See OOM Error Codes on page 8-1 for explanations of the OOM error codes.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The odm_close_class subroutine.

The odmcreate command.

OOM Example Code and Output in General Programming Concepts for an example of a .h
file.

Object Data Manager Overview (ODM) in General Programming Concepts.

Base Operating System Runtime 1-507

odm_rm_by_id Subroutine

Purpose

Syntax

Removes objects specified by their IDs from an ODM object class.

#include <odmi.h>

int odm_rm_by_id(ClassSymbol, Object/D)
CLASS_SYMBOL ClassSymbol;
int ObjectlD;

Description
The odm_rm_by_id subroutine is called to delete an object from an object class. The object
to be deleted is specified by passing its object ID from its corresponding ClassName
structure.

Parameters
ClassSymbol A class symbol identifier returned from an odm_open_class subroutine.

If the odm_open_class subroutine has not been called, then this is the
structure ClassName_ CLASS that was created by the odmcreate
command.

ObjectlD Identifier retrieved from the corresponding ClassName structure of the
object class.

Return Values
Upon successful completion, a value of 0 is returned. If the odm_rm_by _id subroutine fails,
a value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_rm_by _id subroutine sets the odmerrno variable to one of the following
error codes:

ODMI_CLASS_DNE, ODMI_CLASS_PERMS, ODMI_FORK,
ODMIJNVALlD_CLXN, ODMI_INVALlD_PATH, ODMLMAGICNO_ERR,
ODMLMALLOC_ERR, ODMI_NO_OBJECT, ODMI_OPEN_ERR,
ODMI_OPEN_PIPE, ODMI_PARAMS, ODMI_READ_ONLY, ODMI_READ_PIPE,
ODMI_ TOOMANYCLASSES

See OOM Error Codes on page B-1 for explanations of the OOM error codes.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The odm_get_obj subroutine.

Object Data Manager Overview (OOM) in General Programming Concepts.

1-508 Base Operating System Reference

odm_rm_class Subroutine

Purpose

Syntax

Removes an object class from the file system.

#include <odmi.h>

int odm_rm_class (ClassSymbo~
CLASS_SYMBOL ClassSymbol;

Description

Parameter

The odm_rm_class subroutine removes an object class from the file system. All objects in
the specified class are deleted.

ClassSymbol A class symbol identifier returned from the odm_open_class subroutine.
If the odm_open_class subroutine has not been called, then this is the
ClassName_CLASS structure that was created by the odmcreate
command.

Return Values
Upon successful completion, a value of 0 is returned. If the odm_rm_class subroutine fails,

a value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_rm_class subroutine sets the odmerrno variable to one of the following
error codes:

ODMI_CLASS_DNE, ODMI_CLASS_PERMS, ODMI_INVALlD_CLXN,
ODMI_INVALlD_PATH, ODMI_MAGICNO_ERR, ODMI_OPEN_ERR,
ODMe TOOMANYCLASSES, ODMI_UNLINKCLASS_ERR,
ODMI_UNLINKCLXN_ERR

See OOM Error Codes on page B-1 for explanations of the OOM error codes.

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

Related Information
The odm_open_class subroutine.

The odmcreate command.

Object Data Manager Overview (ODM) in General Programming Concepts.

Base Operating System Runtime 1-509

odm_rm_obj Subroutine

Purpose

Syntax

Removes objects from an OOM object class.

#include <odmi.h>

int odm_rm_obj (C/assSymbo/, Criteria)
CLASS_SYMBOL C/assSymbo/;
char * Criteria;

Description
The odm_rm_obj subroutine deletes objects from an object class.

Parameters
ClassSymbo/ A class symbol identifier returned from an odm_open_class subroutine.

If the odm_open_class subroutine has not been called, then this is the
structure ClassName_ CLASS that was created by the odmcreate
command.

Criteria A string that contains the qualifying criteria for selecting the objects to

remove. For information on qualifying criteria, see Understanding OOM

Object Searches in General Programming Concepts.

Return Values
Upon successful completion, the number of objects deleted is returned. If the odm_rm_obj
subroutine fails, a value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_rm_obj subroutine sets the odmerrno variable to one of the following
error codes:

ODMI_BAD_CRIT, ODMI_CLASS_DNE, ODMI_CLASS_PERMS, ODMI_FORK,
ODMI_INTERNAL_ERR, ODMI_'NVALlD_CLXN, ODMI_INVALlD_PATH,
ODMI_MAGICNO_ERR, ODMI_MALLOC_ERR, ODMI_OPEN_ERR,
ODMI_OPEN_PIPE, ODMI_PARAMS, ODMI_READ_ONLY, ODMI_READ_PIPE,
ODMI_ TOOMANYCLASSES

See OOM Error Codes on page 8-1 for explanations of the OOM error codes.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The odm_open_class subroutine.

The odmcreate command.

Object Data Manager Overview (OOM) in General Programming Concepts.

1-510 Base Operating System Reference

odm_run_method Subroutine

Purpose

Syntax

Runs a specified method.

#include <odmi.h>

int odm_run_method(MethodName, MethodParameters, NewStdOut,NewStdError'j
char * Me tho dNa me;
char * MethodParameters;
char ** NewStdOut;
char ** NewStdError,

Description
The odm_run_method subroutine takes as input the name of the method to run, any
parameters for the method, and addresses of locations for the odm_run_method
subroutine to store pointers to the stdout (standard output) and stderr (standard error
output) buffers. The application uses the pointers to access the stdout and stderr
information generated by the method.

Parameters
MethodName The method to execute. The method can already be known by the

applications, or can be retrieved as part of an odm_get_obj subroutine
call.

Me thodParameters

NewStdOut

NewStdError

Return Value

A list of parameters for the specified method.

The address of a pointer to the memory where the standard output of the
method will be stored. If the NewStdOut parameter points to a NULL
value (*NewStdOut == NULL), standard output is not captured.

The address of a pointer to the memory where the standard error output
of the method will be stored. If the NewStdError parameter points to a
NULL value (*NewStdError == NULL), standard error output is not
captured.

Upon successful completion, a value of 0 is returned. If the odm_run_method subroutine
fails, a value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_run_method subroutine sets the odmerrno variable to one of the
following error codes:

ODMI_FORK, ODMI_MALLOC_ERR, ODMI_OPEN_PIPE, ODMI_PARAMS,
ODMI_READ_PIPE

See ODM Error Codes on page 8-1 for explanations of the ODM error codes.

Base Operating System Runtime 1-511

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The odm_get_obj subroutine.

Object Data Manager Overview (ODM) in General Programming Concepts.

1-512 Base Operating System Reference

odm_set_path Subroutine

Purpose

Syntax

Sets the default path for locating object classes.

#include <odmi.h>

char *odm_set_path (NewPath)
char * NewPath;

Description

Parameter

The odm_set_path subroutine is used to set the default path for locating object classes.

NewPath A string containing the path name in the file system in which to locate object
classes.

Return Values
Upon successful completion, a string pointing to the previous default path is returned. If the
odm_set_path subroutine fails, a value of -1 is returned and the odmerrno variable is set
to an error code.

Error Codes
Failure of the odm_set_path subroutine sets the odmerrno variable to one of the following
error codes:

ODMI_INVALlD_PATH, ODMI_MALLOC_ERR

See OOM Error Codes on page B-1 for explanations of the OOM error codes.

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

Base Operating System Runtime 1-513

odm_set_perms Subroutine

Purpose

Syntax

Sets the default permissions for an ODM object class at creation time.

#include <odmi.h>

int odm_set_perms (NewPermissions)
int NewPermissions;

Description

Parameter

The odm_set_perms subroutine defines the default permissions to assign to object
classes at creation.

NewPermissions An integer specifying the new default permissions.

Return Values
Upon successful completion, the current default permissions are returned. If the
odm_set_perms subroutine fails, a value of -1 is returned.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

1-514 Base Operating System Reference

odm_terminate

odm terminate Subroutine

Purpose
Terminates an OOM session.

Syntax
#include <odmi.h>

int odm_terminate (

Description
The odm_terminate subroutine performs the cleanup necessary to terminate an OOM
session. After running an odm_terminate subroutine, an application must issue an
odm_initialize subroutine to resume OOM operations.

Return Values
Upon successful completion, a value of 0 is returned. If the odm_terminate subroutine fails,
a value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_terminate subroutine sets the odmerrno variable to one of the following
error codes:

ODMLCLASS_DNE, ODMI_CLASS_PERMS, ODMI_INVALlD_CLXN,
ODMI_INVALlD_PATH, ODMI_LOCK_ID, ODMI_MAGICNO_ERR,

ODMLOPEN_ERR, ODMI_TOOMANYCLASSES, ODMI_UNLOCK

See OOM Error Codes on page 8-1 for explanations of the OOM error codes.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The odm_initialize subroutine.

Object Data Manager Overview (OOM) in General Programming Concepts.

Base Operating System Runtime 1-515

odm unlock Subroutine

Purpose

Syntax

Releases a lock put on a path name.

#include <odmi.h>

int odm_unlock (LockID)
int LocklD;

Description

Parameter

The odm_unlock subroutine releases a previously granted lock on a path name. This path
name can be a directory containing subdirectories and object classes.

LocklD The lock identifier returned from the odm_lock subroutine.

Return Values
Upon successful completion a value of 0 is returned. If the odm_unlock subroutine fails, a
value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes
Failure of the odm_unlock subroutine sets the odmerrno variable to one of the following
error codes:

ODMI_LOCK_ID, ODMI_UNLOCK

See OOM Error Codes on page 8-1 for explanations of the ODM error codes.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The adm_lock subroutine.

Object Data Manager Overview (OOM) in General Programming Concepts.

1-516 Base Operating System Reference

open, ...

open, openx, or creat Subroutine

Purpose

Syntax

Opens a file for reading or writing.

#include <fcntl.h>
#include <sys/mode.h>

int open (Path, Of/ag[, Mode])
char *Path;
int Of/ag;
int Mode;

openx(Path, OFlag,Mode, Extension)
char * Path;
int OFlag;
int Mode;
int Extension;

int creat(Path[, Mode])
char *Path;
int Mode;

Description
The open, openx and creat subroutines establish a connection between the file named by
the Path parameter and a file descriptor. The opened file descriptor is used by subsequent
I/O subroutines, such as read and write, to access that file.

The openx subroutine is the same as open, with the addition of an Extension parameter,
which is provided for device driver use. The creat subroutine is equivalent to an open with
the O_WRONLY, O_CREAT, and O_TRUNC flags set.

The returned file descriptor is the lowest file descriptor not previously open for that process.
No process can have more than OPEN_MAX file descriptors open simultaneously.

The file offset, marking the current position within the file, is set to the beginning of the file.
The new file descriptor is set to remain open across exec subroutines.

Parameters
Path

Mode

Extension

Specifies the file to be opened.

Specifies the read, write, and execute permissions of the file to be created
(requested by the O_CREAT flag). If the file already exists, this parameter is
ignored. This parameter is constructed by logically ORing together values
described in the sys/mode.h header file.

Provides communication with character device drivers that require additional
information or return additional status. Each driver interprets the Extension
parameter in a device-dependent way, either as a value or as a pointer to a
communication area. Drivers must apply reasonable defaults when the
Extension parameter value is O.

Base Operating System Runtime 1-517

open, ...

Oflag Specifies the type of access, special open processing, the type of update,
and the initial state of the open file. The parameter value is constructed by
logically ~Ring special open processing flags. These flags are defined in
the fcntl.h header file and are described below.

Of lag Parameter Flag Values that Specify Type of Access
O_RDONLY The file is opened for reading only.

O_WRONLY The file is opened for writing only.

O_RDWR The file is opened for both reading and writing.
Note: Exactly one of the file access values must be specified. Do not use O_RDONLY,

O_WRONLY, or O_RDWR together. If none is set, O_RDONLY is assumed.

Oflag Parameter Flag Values that Specify Special Open Processing

1-518

O_CREAT If the file exists, this flag has no effect, except as noted under O_EXCL. If
the file does not exist, a regular file is created with the following
characteristics:
• The owner ID of the file is set to the effective user ID of the process.

• The group ID of the file is set to the group ID of the parent directory.

• The file permission and attribute bits are set to the value of the Mode
parameter, modified as follows:

- All bits set in the process file mode creation mask are cleared. (The file
creation mask is described in the umask subroutine.)

- The SetUserlD attribute (S_ISUID bit) is cleared.

- The SetGrouplD attribute (S_ISGID bit) is cleared.

- The S_'SVTX attribute bit is cleared.

O_EXCL If O_EXCL and O_CREAT are set, the open fails if the file exists.

O_NSHARE Assures that no process has this file open and precludes subsequent opens.
If the file is already open, this open will fail and return immediately unless
the Oflag parameter also specifies O_DELAY.

O_RSHARE Assures that no process has this file open for writing and precludes
subsequent opens for writing. The calling process can request write access.
If the file is open for writing or open with O_NSHARE, this open fails and
return immediately unless the Oflag parameter also specifies O_DELAY.

O_DEFER The file is opened for deferred update. Changes to the file are not reflected
on permanent storage until an fsync() is performed. If no fsync() is
performed, the changes are discarded when the file is closed.

O_NOCTTY This flag specifies that the controlling terminal should not be assigned
during this open.

0_ TRUNC If the file does not exist, this flag has no effect. If the file exists and is a
regular file, and if the file is successfully opened O_RDWR or O_WRONLY:
• The length of the file is truncated to 0

• The owner and group of the file are unchanged

• The SetUserlD attribute of the file mode is cleared

• The SetUserlD attribute of the file is cleared.

Base Operating System Reference

open, ...

The open subroutine fails if any of the following conditions are true:

• The file supports enforced record locks and another process has locked a
portion of the file

• The file is already open with O_RSHARE or O_NSHARE

• The file does not allow write access.

• The file is already opened for deferred update.

Of lag Parameter Flag Values that Specify Type of Update
A program can request some control over when updates should be made permanent for a
regular file opened for write access. The following Oflag parameter flag values specify the
type of update performed:

If set, updates to regular files and writes to block devices that are
synchronous updates. File update is performed by the following subroutines:

• fclear

• ftruncate

• open with O_TRUNC

• write

On return from a subroutine that performs a synchronous update (any of the
preceding subroutines, when O_SYNC is set), the program is assured that
all data for the file has been written to the permanent storage, even if the file
is also open for deferred update.

Oflag Parameter Flag Values that Define the Initial State of the Open File
O_APPEND The file pointer sets to the end of the file prior to each write operation.

Specifies that if the open could not succeed due to an inability to grant
the required O_RSHARE or O_NSHARE access, the process blocks
instead of being returned ETXTBSY.

O_NDELAY

O_NONBLOCK

Opens with no delay.

Specifies that the open should not block.

The O_NDELAY and O_NONBLOCK flags are identical except for the value returned by the
read and write subroutines. These flags mean the process does not block on the state of an
object, but does block on input or output to a regular file or block device.

The O_DELAY flag is relevant only when used with the O_NSHARE or O_RSHARE flags. It
is unrelated to the O_NDELAY and O_NONBLOCK flags.

General Notes on Oflag Parameter Flag Values
The effect of O_CREAT is immediate, even if the file is opened with O_DEFER.

When opening a file with O_NSHARE or O_RSHARE, if the file is already open with
conflicting access:

• If O_DELAY is clear (the default), the open fails immediately.

• If O_DELAY is set, the open blocks until there is no conflicting open. There is no
deadlock detection for processes using O_DELAY.

Base Operating System Runtime 1-519

open, ...

When opening a file that has already been opened with O_NSHARE:

• If O_DELAY is clear (the default), the open fails immediately.

• If O_DELAY is set, the open blocks until there is no conflicting open.

When opening a file with O_RDWR, O_WRONLY, or O_TRUNC, and the file is already open
with O_RSHARE:

• If O_DELAY is clear (the default), the open fails immediately.

• If O_DELAY is set, the open blocks until there is no conflicting open.

When opening a FIFO with O_RDONLY:

• If O_NDELAY and O_NONBLOCK are clear, the open blocks until a process opens the
file for writing. If the file is already open for writing (even by the calling process), the open
subroutine returns without delay.

• If O_NDELAY or O_NONBLOCK is set, the open succeeds immediately even if no
process has the FIFO open for writing.

When opening a FIFO with O_WRONLY:

• If O_NDELAY and O_NONBLOCK are clear (the default), the open blocks until a
process opens the file for reading. If the file is already open for writing (even by the calling
process), the open subroutine returns without delay.

• If O_NDELAY or O_NONBLOCK is set, the open subroutine returns an error if no
process currently has the file open for reading.

When opening a block special or character special file that supports non-blocking opens,
such as a terminal device:

• If O_NDELAY and O_NONBLOCK are clear (the default), the open blocks until the
device is ready or available.

• If O_NDELAY or O_NONBLOCK is set, the open subroutine returns without waiting for
the device to be ready or available. Subsequent behavior of the device is device-specific.

Any additional information on the effect, if any of O_NDELAY, O_RSHARE, O_NSHARE
and O_DELAY on a specific device is documented in the description of the special file
related to the device type.

Return Values
Upon successful completion, the file descriptor, a non-negative integer, is returned.
Otherwise, a value of -1 is returned and the global variable errno is set to indicate the error.

Error Codes

1-520

The open, openx and creat subroutines fail and the named file is not opened if one or more
of the following are true:

ENOENT

EACCES

EISDIR

O_CREAT is not set and the named file does not exist.

Type of access specified by the Oflag parameter is denied for the named
file.

Named file is a directory and write access is required.

Base Operating System Reference

EMFILE

ENFILE

ENXIO

ENXIO

ENXIO

ETXTBSY

ETXTBSY

EEXIST

EAGAIN

EINTR

EROFS

ENOSPC

EDaUOT

open, ...

The system limit for open file descriptors per process has already been
reached (OPEN_MAX).

The system file table is full.

Named file is a character special or block special file, and the device
associated with this special file does not exist.

Named file is a multiplexed special file and either the channel number is
outside of the valid range or no more channels are available.

O_DELAY or O_NONBLOCK is set, the named file is a FIFO, O_WRONLY
is set, and no process has the file open for reading.

File is already open in a manner (O_RSHARE or O_NSHARE) that
precludes this open.

O_NSHARE or O_RSHARE was requested with O_NDELAY set, and there
is a conflicting open.

O_CREAT and O_EXCL are set and the named file exists.

O_TRUNC is set and the named file contains a record lock owned by
another process.

A signal was caught during the open subroutine.

Named file resides on a read-only file system and write access is required.

Directory that would contain the new file cannot be extended.

Directory in which the entry for the new link is being placed cannot be
extended because the quota of disk blocks or i-nodes defined for the user
on the file system containing the directory has been exhausted.

The open, openx and creat subroutines can also fail if additional errors on page A-1 occur.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The chmod subroutine, close subroutine, fcntl subroutine, ioctl subroutine, lockfx
subroutine, Iseek subroutine, read subroutine, stat subroutine, umask subroutine, write
subroutine.

The fcntl.h header file, sys/mode.h header file.

Base Operating System Runtime 1-521

opendir, ...

opendir, readdir, telldir, seekdir, rewinddir, or closedir
Subroutine

Purpose

Library

Syntax

Performs operations on directories.

Standard C Library (libc.a)

#include <sys/types.h>
#include <dirent.h>

DIR *opendir (DirectoryName)
char * DirectoryName;

struct dirent *readdir (DirectoryPointery
DIR * DirectoryPointer;

long telldir (DirectoryPointery
DIR * DirectoryPointer;

void seekdir (DirectoryPointer, Location)
DIR * DirectoryPointer;
long Location;

void rewinddir (DirectoryPointery
DIR * DirectoryPointer;

void closedir (DirectoryPointery
DIR * DirectoryPointer;

Description

1-522

The opendir subroutine opens the directory designated by the DirectoryName parameter
and associates a directory stream with it.

Note: An open directory must always be closed with the closedir subroutine to ensure that
the next attempt to open that directory is successful.

The opendir subroutine also returns a pointer to identify the directory stream in subsequent
operations. The NULL pointer is returned when the directory named by the DirectoryName
parameter cannot be accessed or when not enough memory is available to hold the entire
stream.

The readdir subroutine returns a pointer to the next directory entry. The readdir subroutine
returns entries for. and .. , if present, but never returns an invalid entry (with dJno set to 0).
When it reaches the end of the directory, or when it detects an invalid seekdir operation, the
readdir subroutine returns the NULL value.

The telldir subroutine returns the current location associated with the specified directory
stream.

The seekdir subroutine sets the position of the next readdir subroutine operation on the
directory stream. An attempt to seek to an invalid location causes the readdir subroutine to
return the NULL value the next time it is called. The position should be that returned by a
previous telldir subroutine call.

Base Operating System Reference

opendir, ...

The rewinddir subroutine resets the position of the specified directory stream to the
beginning of the directory.

The closedir subroutine closes a directory stream and frees the structure associated with
the DirectoryPointer parameter.

Parameters
DirectoryName

DirectoryPointer

Location

Return Values

Names the directory.

Points to the DIR structure of an open directory.

Specifies the offset of an entry relative to the start of the directory.

On successful completion, the opendir subroutine returns a pOinter to an object of type DIA.
Otherwise, a value of NULL is returned and the global variable errno is set to indicate the
error.

On successful completion, the readdir subroutine returns a pointer to an object of type
struct dirent. Otherwise, a value of NULL is returned and the global variable errno is set to
indicate the error. When the end of the directory is encountered, a value of NULL is returned
and the global variable errno is not changed by this function call.

On successful completion, the closedir subroutine returns a value of O. Otherwise, a value
of -1 is returned and the global variable errno is set to indicate the error.

Error Codes
If the opendir subroutine fails, a value of NULL is returned and errno is set to the one of the
following values:

EACCES

ENAMETOOLONG

ENOENT

ENOTDIR

EMFILE

ENFILE

Search permission is denied for any component of DirectoryName
or read permission is denied for DirectoryName.

The length of the DirectoryName argument exceeds PATH_MAX or
a path name component is longer than NAME_MAX while
POSIX_NO_ TRUNC is in effect.

The named directory does not exist.

A component of DirectoryName is not a directory.

Too many file descriptors are currently open for the process.

Too many file descriptors are currently open in the system.

If the readdir subroutine fails, a value of NULL is returned and errno is set to the following
value:

EBADF The DirectoryPointer argument does not refer to an open directory
stream.

If the closedir subroutine fails, a value of -1 is returned and errno is set to the following
value:

EBADF The DirectoryPointer argument does not refer to an open directory
stream.

Base Operating System Runtime 1-523

opendir, ...

Example
1. To search a directory for the entry name:

len = strlen(name);
DirectoryPointer = opendir(".");
for (dp = readdir(DirectoryPointer); dp != NULLi dp =
readdir(DirectoryPointer))

if (dp->d_namlen == len && !strcmp(dp->d_name, name)) {
closedir(DirectoryPointer)i
return FOUND;

}
closedir(DirectoryPointer)i
return NOT_FOUND;

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

1-524

The close subroutine, Iseek subroutine, openx, open, creat subroutines, read, readv,
readx, readvx subroutines.

The scandir, alphasort subroutines.

Base Operating System Reference

pathconf, ...

pathconf or fpathconf Subroutine

Purpose

Library

Syntax

Retrieves file implementation characteristics.

Standard C Library (libc.a)

long pathconf(Path, Name)
char "Path;
int Name;

long fpathconf(Fi/eDescriptor, Name)
int FileDescriptor;
int Name;

Description
The pathconf subroutine allows an application to determine the characteristics of operations
supported by the file system underlying the file named by the Path parameter. Read, write,
or execute permission of the named file is not required, but all directories in the path leading
to the file must be searchable.

The fpathconf subroutine allows an application to retrieve the same information for an open
file.

Parameters
Path

Fi/eDescriptor

Name

Attribute·

_PC_LlNK_MAX

_PC_MAX_CANON

Specifies the path name.

Specifies an open file descriptor.

Specifies the configuration attribute to be queried. If this
attribute is not applicable to the file specified by Path or
FileDescriptor, pathconf returns an error. Symbolic
values for the Name parameter are defined in the
unistd.h header file:

Meaning

The maximum number of links to the file.

The maximum number of bytes in a canonical input line.
This is applicable only to terminal devices.

The maximum number of bytes allowed in an input
queue. This is applicable only to terminal devices.

Maximum number of bytes in a file name (not including a
terminating NULL). This may be as small as 14, but is
never larger than 255. This is applicable only to a
directory file.

Base Operating System Runtime 1-525

pathconf, ...

Maximum number of bytes in a path name (not including
a terminating NULL).

Maximum number of bytes guaranteed to be written
atomically. This is applicable only to a FIFO.

Returns 0 if the use of the chownO function is restricted
to a process with appropriate privileges,.and to changing
the group ID of a file only to the effective group ID of the
process or to one of its supplementary group IDs.

Returns 0 if long component names are truncated. This
is applicable only to a directory file.

This is always 0; no disabling character is defined. This
is applicable only to a terminal device.

Return Values
If the pathconf or fpathconf subroutine is successful, the specified parameter is returned.
Otherwise, a value of -1 is returned and the global variable errno is set to indicate the error.

Error Codes
The pathconf and fpathconf subroutines fail if the following is true:

EINVAL The name parameter specifies an unknown or inapplicable
characteristic.

The pathconf subroutine can also fail if any of the following errors occur:

EACCES Search permission is denied for a component of the path prefix.

EINVAL The implementation does not support an association of the variable
Name with the specified file.

ENAMETOOLONG The length of the Path string exceeds PATH_MAX.

ENOENT

ENOTDIR

The named file does not exist or the Path parameter points to an
empty string.

A component of the path prefix is not a directory.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The limits.h file, unistd.h file.

1-526 Base Operating System Reference

pause

pause Subroutine

Purpose
Suspends a process until a signal is received.

Library
Standard C Library (libc.a)

Syntax
int pause ()

Description
The pause subroutine suspends the calling process until it receives a signal. The signal
must not be one that is ignored by the calling process. The pause subroutine does not affect
the action taken upon the receipt of a signal.

Return Values
If the signal received causes the calling process to end, the pause subroutine does not
return a value.

If the signal is caught by the calling process and control is returned from the signal-catching
function, the calling process resumes execution from the point of suspension; the pause
subroutine returns a value of -1 and sets the global variable errno to EINTR.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The incinterval, alarm, settimer subroutines, kill, killpg subroutines, sigaction, signal,
sigvec subroutines, wait, waitpid, wait3 subroutines.

Base Operating System Runtime 1-527

pclose

pclose Subroutine

Purpose

Library

Syntax

Closes a pipe to a process.

Standard C Library (libc.a)

#include <stdio.h>
int pclose (Stream)
FILE *Stream;

Description

Parameter

The pclose subroutine closes a pipe between the calling program and a shell command to
be executed. Use the pclose subroutine to close any stream you have opened with the
popen subroutine. The pclose subroutine waits for the associated process to end, and then
returns the exit status of the command.

Warning: If the original processes and the process started with popen concurrently reading
or writing a common file, neither the popen subroutine nor the pc lose subroutine should
use buffered 1/0. If they do, the results are unpredictable.

Some problems with an output filter can be prevented by taking care to flush the buffer with
the fflush subroutine.

Stream Specifies the FILE pointer of an opened pipe.

Return Values
The pclose subroutine returns a value of -1 if the Stream parameter is not associated with a
popen command.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-528

The fclose, fflush subroutines, fopen, freopen, fdopen subroutines, pipe subroutine,
popen subroutine, wait, waitvm, wait3 subroutines.

Base Operating System Reference

perror

perror Subroutine

Purpose

Library

Syntax

Writes a message explaining a subroutine error.

Standard C Library (libc.a)

#include <errno.h>
void perror (String)
char * String;

extern int errno;
extern char *sys_errlist[];
extern int sys_nerr;

Description

Parameter

The perror subroutine writes a message on the standard error output that describes the last
error encountered by a system call or library subroutine. The error message includes the
String parameter string followed by a : (colon), a blank, the message, and a new-line
character. The String parameter string should include the name of the program that caused
the error. The error number is taken from the global variable errno, which is set when an
error occurs, but is not cleared when a successful call is made.

To simplify various message formats, an array of message strings is provided in sys_errlist.

Use the global variable errno as an index into this table to get the message string without
the new-line character. The largest message number provided in the table is sys_nerr. 8e
sure to check sys_nerr because new error codes can be added to the system before they
are added to the table.

String Specifies a parameter string that contains the name of the program that
caused the error. The ensuing printed message contains this string, a colon,
and an explanation of the error.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The printf subroutine, strerror subroutine.

Base Operating System Runtime 1-529

pipe

pipe Subroutine

Purpose

Library

Syntax

Creates an interprocess channel.

Standard C Library (libc.a)

int pipe (FileDescripto/)
int FileDescripto!f2];

Descri ption

Parameter

The pipe subroutine creates an interprocess channel called a pipe and returns two file
descriptors, FileDescriptor{O] and FileDescriptor{1]. FileDescriptor{O] is opened for reading
and FileDescriptor{1] is opened for writing.

A read on file descriptor FileDescriptor{O] accesses the data written to FileDescriptor{1] on a
first-in, first-out (FIFO) basis.

When writing, at least PIPE_BUF bytes of data are buffered by the pipe before the writing

process is blocked. In addition, any write to PIPE_BUF is guaranteed to be atomic; that is, it

is guaranteed that the data will not be interleaved with data written by other processes.

File Descrip tor Specifies the address of an array of two integers into which the new file
descriptors are placed.

Return Values
Upon successful completion, a value of ° is returned. If the pipe subroutine fails, a value of
-1 is returned and the global variable errno is set to identify the error.

Error Codes
The pipe subroutine fails if one or more the following are true:

EFAULT

EMFILE

ENFILE

The FileDescriptor parameter points to a location outside of the allocated
address space of the process.

OPEN_MAX-1 or OPEN_MAX file descriptors are already open.

The system file table is full, or the device containing pipes has no free
inodes.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The read subroutine, select subroutine, write subroutine.

The ksh command, sh command.

1-530 Base Operating System Reference

plock

plock Subroutine

Purpose

Library

Syntax

Locks the process, text, or data in memory.

Standard C Library (libc.a)

#include <sys/lock.h>

int plock (Operation)
int Operation;

Description

Parameter

The plock subroutine allows the calling process to lock or unlock its text segment (text lock),
its process private segment (data lock), or both its text and process private segments
(process lock) into memory. This subroutine does not lock the shared text segment or any
shared data segments. Locked segments are pinned in memory and are immune to all
routine paging. Memory locked by a parent process is not inherited by the children after a
forkO call. Likewise, locked memory is unlocked if a process executes one of the execO
subroutines. The calling process must have the root user authority to use this subroutine.

A real time process can use this subroutine to ensure that its code, data, and stack are
always resident in memory.

Note: Before calling plock, the user application must lower the maximum stack limit value
using the ulimit subroutine.

Operation Specifies one of the following operations:

PROClOCK

TXTlOCK

OATlOCK

UNLOCK

Locks the text and data segments into memory (process
lock).

Locks the text segment into memory (text lock).

Locks the data segment into memory (data lock).

Removes locks.

Return Values
Upon successful completion, a value of 0 is returned to the calling process. Otherwise, a
value of -1 is returned and the global variable errno is set to indicate the error.

Base Operating System Runtime 1-531

plock

Error Codes
The plock subroutine fails if one or more of the following are true:

EPERM

EINVAL

EINVAL

EINVAL

EINVAL

EINVAL

The effective user 10 of the calling process does not have the root user
authority.

The Operation parameter has a value other than PROCLOCK, TXTLOCK,
OATLOCK, or UNLOCK.

The Operation parameter is equal to PROCLOCK and a process lock, a text
lock, or a data lock already exists on the calling process.

The Operation parameter is equal to TXTLOCK and a text lock or a process
lock already exists on the calling process.

The Operation parameter is equal to OATLOCK and data lock or a process
lock already exists on the calling process.

The Operation parameter is equal to UNLOCK and no type of lock exists on
the calling process.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The exec subroutines, _exit, exit, atexit subroutines, fork subroutine.

1-532 Base Operating System Reference

plot

plot Subroutine Family

Purpose

Libraries

Syntax

Performs graphic output.

Graphics Libraries libplot.a, libprint.a, and Iib300.a

void openpl ()

void erase ()

void label (5)
char *5;

void line (x1, y1, x2, y2)
int x1, y1, x2, y2;

void circle (x, y, ry
int x, y, r;
void arc (x, y, xO, yO, x1, y1)
int x, y, xO, yO, x1, y1;

void move (x, y)
int x,y;

void cont (x, y)
int x, y;

void point (x, y)
int x, y;

void linemod (5)
char *5;

void space (xO, yO, x1, y1)
int xO, yO, x1, y1;

void closepl ()

Description
The plot subroutine family generates graphic output with little dependence on devices. The
space subroutine must be used before any of these functions to declare the amount of
space necessary. The openpl subroutine must be used before any of the others to open the
device for writing. The closepl subroutine flushes the output.

The circle subroutine draws a circle of radius (with the center at the point (x, y).

The arc subroutine draws an arc of a circle with the center at the point (x, y) between the
pOints (xO, yO) and (x1, y1).

String parameters to the label and linemod subroutines are terminated by null characters
and must not contain new-line characters.

The plot subroutines appear in several separate libraries. The routines in the libplot.a
library generate device-independent output. The tplot command interprets this output for a
specific device.

Base Operating System Runtime 1-533

plot

The other versions of these routines each generate output for a specific device. You should
normally redirect the output of the libprint.a library to the printer. The tplot commands alfow
you to save the output of the libprint.a library in a regular file and print it later.

On an IBM Graphics Printer, the horizontal distance between points is not the same as the
vertical distance between points. This means that arcs and circles are drawn as ellipses. A
square or rectangle is drawn with four calls to the line subroutine. To adjust for this, call the
space subroutine with appropriate scaling factors.

Implementation Specifics

Files

The plot subroutines are part of AIX Base Operating System (BaS) Runtime.

plot file

lusr/lib/libplot.a library

lusrllib/libprint.a library

lusr/libllib300.a library

lusr/libllib300s.a library

lusr/lib/lib300S.a library

lusr/libllib450.a library

lusr/libllib4014.a library

Provides the graphics interface.

Produces output for tplot filters.

For an IBM PC Graphics Printer.

For DASI 300.

For DASI 300s.

For DASI 300S.

For DASI 450.

For Tektronix 4014.

Related Information
Thegraph command and tplot command.

1-534 Base Operating System Reference

poll

poll Subroutine

Purpose

Library

Syntax

Checks the liD status of multiple file descriptors and message queues.

Standard C Library (libc.a)

#include <sys/poll.h>
#include <sys/select.h>
#include <sys/types.h>

int poll(ListPointer, Nfdsmsgs, Timeout)
void *struct pollfd * ListPointer,
unsigned long Nfdsmsgs;
long Timeout;

Description
The poll subroutine checks the specified file descriptors and message queues to see if they
are ready for reading (receiving) or writing (sending), or to see if they have an exceptional
condition pending.

Note: The poll subroutine applies only to character devices, pipes, message queues, and
sockets. Not all character device drivers support it. See the descriptions of individual
character devices for information about whether and how specific device drivers
support the poll and select subroutines.

Parameters
Lis tPointer

Nfdsmsgs

Timeout

Return Values

A pointer to an array of pollfd structures, pollmsg structures, or to a pollist
structure. Each structure specifies a file descriptor or message queue 10
and the events of interest for this file or message queue. The pollfd,
pollmsg, and pollist structures are defined in the Isys/poILh> header file.

The number of file descriptors and the number of message queues to
check. The low-order 16 bits give the number of elements present in the
array of pollfd structures, while the high-order 16 bits give the number of
elements present in the array of pollmsg structures. If either half of the
Nfdsmsgs parameter is equal to a value of 0, the corresponding array is
assumed not to be present.

Specifies the maximum length of time (in milliseconds) to wait for at least
one of the specified events to occur. If the Timeout parameter is a value of
-1, the poll subroutine does not return until at least one of the specified
events has occurred. If the value of the Timeout parameter is 0, the poll
subroutine does not wait for an event to occur but returns immediately, even
if none of the specified events have occurred.

On successful completion, the poll subroutine returns a value that indicates the total number
of file descriptors and message queues that satisfy the selection criteria. The return value is
similar to the Nfdsmsgs parameter in that the low-order 16 bits give the number of file

Base Operating System Runtime 1-535

poll

,descriptors, and the high-order 16 bits give the number of message queue identifiers that
had nonzero revents values. The NFDS and NMSGS macros, found in the /sys/select.h
header file, can be used to separate these two values from the return value. If rc contains
the value returned from the poll subroutine, then NFDS(rc) is the number of files reporting
some event or error, and NMSGS(rc) is the number of message queues reporting some
event or error.

A value of 0 indicates that the poll subroutine timed out and that none of the specified files
or message queues indicated the presence of an event (all revents fields were values of 0).

Upon failure, a value of -1 is returned and the global variable errno is set to indicate the
error.

Error Codes
The poll subroutine fails if one or more of the following are true:

EAGAIN

EINTR

EINVAL

EFAULT

Allocation of internal data structures failed.

A signal was caught during the poll system call and the signal handler was
installed with an indication that subroutines are not to be restarted.

The number of pollfd structures specifed by the Nfdsmsgs parameter is
greater than the maximum number of open files, OPEN_MAX. This error is
also returned if the number of pollmsg structures specified by the
Nfdsmsgs parameter is greater than the maximum number of allowable
message queues.

The ListPointer parameter in conjunction with the Nfdsmsgs parameter
addresses a location outside of the allocated address space of the process.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

For compatibility with previous releases of the AIX Operating System and 8SD systems, the
select subroutine is also supported.

Related Information
The select subroutine.

1-536 Base Operating System Reference

popen

popen Subroutine

Purpose

Library

Syntax

Initiates a pipe to a process.

Standard C Library (libc.a)
(

#include <stdio.h>

FILE *popen (Command, Type)
char *Command, * Type;

Description
The popen subroutine creates a pipe between the calling program and a shell command to
be executed.

The popen subroutine returns a pointer to a FILE structure for the stream.

Warning: If the original processes and the process started with the popen subroutine
concurrently read or write a common file, neither should use buffered I/O. If they do, the
results are unpredictable.

Some problems with an output filter can be prevented by taking care to flush the buffer with
the fflush subroutine.

Parameters
Command

Type

Return Value

Points to a null-terminated string containing a shell command line.

Points to a null-terminated string containing an I/O mode. If the Type
parameter is the value r, you can read from the standard output of the
command by reading from the file Stream. If the Type parameter is the value
w, you can write to the standard input of the command by writing to the file
Stream.

Because open files are shared, a type r command can be used as an input
filter and a type w command as an output filter.

The popen subroutine returns a NU,LL pointer if files or processes cannot be created, or if
the shell cannot be accessed.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The fclose, fflush subroutines, fopen, freopen, fdopen subroutines, pclose subroutine,
pipe subroutine, wait, waitpid, wait3 subroutines.

Base Operating System Runtime 1-537

printf, ...

printf, fprintf, sprintf, NLprintf, NLfprintf, or NLsprintf
Subroutine

Purpose

Library

Syntax

Prints formatted output.

Standard C Library (libc.a)

#include <stdio.h>

int printf (Format [, Value, ... J)
char * Format;

int fprintf (Stream, Format [, Value, ... J)
FILE *Stream;
char * Format;

int sprintf (String, Format [, Value, ... J)
char * String, * Format;

int NLprintf (Format [, Value, ... J)
char * Format;

int NLfprintf (Stream, Format [, Value, ... J)
FILE * Stream;
char * Format;

int NLsprintf (String, Format [, Value, ... J)
char * String, * Format;

Description

1-538

The printf subroutine converts, formats, and writes its Value parameters, under control of
the Format parameter, to the standard output stream stdout. This subroutine provides
conversion types to handle code points and NLchars. The printf and NLprintf subroutines
are identical.

The fprintf subroutine converts, formats, and writes its Value parameters, under control of
the Format parameter, to the output stream specified by its Stream parameter. This
subroutine provides conversion types to handle code points and NLchars. The fprintf and
NLfprintf subroutines are identical. .

The sprintf subroutine converts, formats, and stores its Value parameters, under control of
the Format parameter, into consecutive bytes starting at the address specified by the String
parameter. The sprintf subroutine places a '\0' (null character) at the end. It is your
responsibility to ensure that enough storage space is available to contain the formatted
string. This subroutine provides conversion types to handle code points and NLchars. The
sprintf and NLsprintf subroutines are identical.

All these subroutines work by calling the _doprnt subroutine, using variable-length
argument facilities of the varargs macros.

Base Operating System Reference

printf , ...

Parameters
The Format parameter is a character string that contains two types of objects:

• Plain characters, which are copied to the output stream.

• Conversion specifications, each of which causes zero or more items to be fetched from
the Value parameter list.

If there are not enough items for Format in the Value parameter list, the results are
unpredictable. If more Values remain after the entire Format has been processed, they are
ignored.

Each conversion specification in the Format parameter has the following syntax:

1. A % (percent) sign.

2. Zero or more options, which modify the meaning of the conversion specification. The
option characters and their meanings are:

+

blank

B

N

o

Left align within the field the result of the conversion.

Begin the result of a signed conversion with a sign (+ or -).

Prefix a blank to the result if the first character of a signed conversion is
not a sign. If both the blank and + options appear, the blank option is
ignored.

Convert the value to an alternate form. For c, d, S, and u conversions,
the option has no effect. For 0 conversion, it increases the precision to
force the first digit of the result to be a O. For x and X conversions, a
nonzero result has Ox or OX prefixed to it. For e, E, f, g, and G
conversions, the result always contains a decimal point, even if no digits
follow it. For 9 and G conversions, trailing zeros are not removed from
the result.

Give field width and precision in bytes, rather than in code points, for
conversions using the S or S conversion characters.

Convert each international character support code point in the
converted string converts into a printable ASCII escape sequence that
uniquely identifies the code point. This option affects the sand S
conversion characters.

Pad to field width using leading zeros (following any indication of sign or
base) for d, i, 0, u, x, X, e, E, f, g, and G conversions; no space
padding is performed. If the 0 and - flags both appear, the 0 flag will be
ignored. For d, i, 0 u, x, and X conversions, if a precision is specified,
the 0 flag is also ignored. For other conversions, the behavior is
undefined.

Base Operating System Runtime 1-539

printf, ...

1-540

For Japanese Language Support:

J This option can be used with all conversion characters
that take an int, long, double, or float Value as an
argument. The J flag, appearing with any of these
numeric conversion, indicates that output such as
characters, digits, signs, or padding blanks will be 2-byte
codes and two columns wide. The J flag can also be
used with the %c, %s, and %S conversion characters to
indicate that padding should use double-width spaces.

• An optional decimal digit string that specifies the minimum field width. If the converted
value has fewer characters than the field width, the field is padded on the left to the length
specified by the field width. If the left-adjustment option is specified, the field is padded
on the right.

• An optional precision. The precision is a . (dot) followed by a decimal digit string. If no
precision is given, it is treated as O. The precision specifies:

- The minimum number of digits to appear for the d, U, 0, x, or X conversions

- The number of digits to appear after the decimal point for the e and f conversions

- The maximum number of significant digits for the g conversion

- The maximum number of characters to be printed from a string in the s conversion

• An optional I (the letter I), h, or L specifying that a following d, U, 0, x, or X conversion
character applies to, respectively, a long integer Value, a short integer Value, or a
double integer Value.

• A character that indicates the type of conversion to be applied:

%

d, i

u

Performs no conversion. Prints 0/0.

Accepts an integer Value and converts it to signed decimal notation.
The precision specifies the minimum number of digits to appear. If the
value being converted can be represented in fewer digits, it is expanded
with leading zeros. The default precision is 1. The result of converting a
zero value with a precision of zero is a null string. Specifying a field
width with a zero as a leading character causes the field width value to
be padded with leading zeros.

Accepts an integer Value and converts it to unsigned decimal notation.
The precision specifies the minimum number of digits to appear. If the
value being converted can be represented in fewer digits, it is expanded
with leading zeros. The default precision is 1. The result of converting a
zero value with a precision of zero is a null string. Specifying a field
width with a zero as a leading character causes the field width value to
be padded with leading zeros.

Base Operating System Reference

o

x,X

f

e,E

g,G

e

C

Ie

we

s

printf '"""

Accepts an integer Value and converts it to unsigned octal notation. The
precision specifies the minimum number of digits to appear. If the value
being converted can be represented in fewer digits, it is expanded with
leading zeros. The default precision is 1. The result of converting a zero
value with a precision of zero is a null string. Specifying a field width
with a zero as a leading character causes the field width value to be
padded with leading zeros. An octal value for field width is not implied.

Accepts an integer Value and converts it to unsigned hexadecimal
notation. The letters "abcdef" are used for the x conversion and the
letters "ABCDEF" are used for the X conversion. The precision specifies
the minimum number of digits to appear. If the value being converted
can be represented in fewer digits, it is expanded with leading zeros.
The default precision is 1. The result of converting a zero value with a
precision of zero is a null string. Specifying a field width with a zero as a
leading character causes the field width value to be padded with leading
zeros.

Accepts a float or double Value and converts it to decimal notation in the
format [-]ddd.ddd. The number of digits after the decimal point is equal
to the precision specification. If no precision is specified, six digits are
output. If the precision is zero, no decimal point appears.

Accepts a float or double Value and converts it to the exponential form
[-]d.ddde+l-dd. There is one digit before the decimal point and the
number of digits after the decimal point is equal to the precision
specification. If no precision is specified, six digits are output. If the
precision is zero, no decimal point appears. The E conversion character
produces a number with E instead of e before the exponent. The
exponent always contains at least two digits.

Accepts a float or double Value and converts it in the style of the e, E, or
f conversion characters, with the precision specifying the number of
significant digits. Trailing zeros are removed from the result. A decimal
point appears only if it is followed by a digit. The style used depends on
the value converted. Style e (E, if G is the flag used) results only if the
exponent resulting from the conversion is less than -4, or if it is greater
or equal to the precision.

Accepts and prints a char Value.

Accepts and prints an NLchar Value.

Accepts and prints an NLchar Value.

Accepts and prints an NLehar Value.

Accepts a Value as a string (character pointer), and characters from the
string are printed until a '\0' (null character) is encountered or the
number of characters indicated by the precision is reached. If no
precision is specified, all characters up to the first null character are
printed. If the string pointer Value has a value of 0 or NULL, the results
are undefined.

Base Operating System Runtime 1-541

· printf, ...

1-542

s

Is

ws

p

n

The corresponding Value is taken to be a pointer to a string of the type
NLchar. Characters from the string are printed until a '\0' (null
character) is encountered or the number of characters indicated by the
precision is reached. If no precision is specified, all characters up to the
first null character are printed. If the string pointer Value has a value of 0
or NULL, the results are undefined.

The corresponding Value is taken to be a pointer to a string of the type
NLchar. Characters from the string are printed until a '\0' (null
character) is encountered or the number of characters indicated by the
precision is reached. If no precision is specified, all characters up to the
first null character are printed. If the string pointer Value has a value of 0
or NULL, the results are undefined.

The corresponding Value is taken to be a pointer to a string of the type
NLchar. Characters from the string are printed until a '\0' (null
character) is encountered or the number of characters indicated by the
precision is reached. If no precision is specified, all characters up to the
first null character are printed. If the string pointer Value has a value of 0
or NULL, the results are undefined.

Accepts a pointer to void. The value of the pointer is converted to a
sequence of printable characters, the same as unsigned hexadecimal
(x).

Accepts a pointer to an integer into which is written the number of
characters written to the output stream so far by this call. No argument
is converted.

A field width or precision can be indicated by an * (asterisk) instead of a digit string. In this
case, an integer Value parameter supplies the field width or precision. The Value parameter
converted for output is not fetched until the conversion letter is reached, so the parameters
specifying field width or precision must appear before the value (if any) to be converted.

If the result of a conversion is wider than the field width, the field is expanded to contain the
converted result. No truncation occurs. However, a small precision can cause truncation on
the right.

The e, E, f, and 9 formats represent the special floating-point values as follows:

Quiet NaN

Signalling NaN

+/-INF

+/-0

+NaNQ or -NaNQ

+NaNS or -NaNS

+INF or-INF

+Oor-O

The representation of the plus sign depends on whether the + or blank formatting option is
specified.

The printf and the NLS extensions to the printf subroutines can handle a format string that
enables the system to process elements of the argument list in variable order. In such a
case, the normal conversion character 010 (percent sign) is replaced by lI%"digit"$", where
digit is a decimal number. Conversions are then applied to arguments in the list with ordinal
digits, rather than to the next unused argument.

Base Operating System Reference

printf , ...

The following restrictions apply:

• The format passed to the NLS extensions can contain either the format of the conversion
or the explicit or implicit argument number. These forms cannot be mixed within a single
format string.

• The * (asterisk) specification for field width or precision is not permitted with the variable
order %digit$ format.

The following interface is provided:

#include <varargs.h>
_doprnt (Format, Arguments, Stream)
char * Format;
va_list * Arguments;
FILE *Stream;

Return Values
Upon successful completion, each of these subroutines returns the number of display
characters in the output string rather than the number of bytes in the string. The value
returned by sprintf and wsprintf do not include the final '\0' character. (The NLprintf,
NLfprintf and NLsprintf subroutines use strings that can contain 2-byte NLchars.) The
value returned by the NLsprintf and NLprintf subroutines does not include the final '\0'
character. If an output error occurs, a negative value is returned.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The cony subroutine, ecvt, fcvt, gcvt subroutines, putc, putchar, fputc, putw, putwc,
putwchar, fputwc subroutines, scanf, fscanf, sscanf, NLscanf, NLfscanf, NLsscanf
subroutines, wsprintf subroutine.

National Language Support Overview in General Programming Concepts

Base Operating System Runtime 1-543

profil

profil Subroutine

Purpose

Library

Syntax

Starts and stops program address sampling for execution profiling.

Standard C Library (libc.a)

#include <mon.h>

void profil(ShortBuffer, BufferSize, Offset, Scale)
or

void profil(ProfBuffer, -1, 0, 0)

short * ShortBuffer,
struct prof * Prof Buffer,
unsigned int BufferSize, Offset, Scale;

Description

1-544

The profil subroutine arranges to record a histogram of periodically sampled values of the
calling process' program counter.

If BufferSize is not -1 :

• The parameters to the profil subroutine are interpreted as shown in the first syntax
definition.

• After this call, the process' program counter (pc) is examined each clock tick if the
process is the currently active process. The value of the Offset parameter is subtracted
from the pc and the result is multiplied by the value of the Scale parameter, shifted right
16 bits, and rounded up to the next-half word aligned value. If the resulting number is less
than the BufferSize parameter / sizeof{short), the corresponding short inside the
ShortBuffer parameter is incremented.

• The least significant 16 bits of the Scale parameter are interpreted as an unsigned,
fixed-point fraction with a binary point at the left. The most significant 16 bits of the Scale
parameter are ignored. For example:

Octal

0177777

077777

02

01

00

Hex

OxFFFF

Ox7FFF

Ox0002

Ox0001

OxOOOO

Base Operating System Reference

Meaning

Maps approximately each
pair of bytes in the instruction
space to a unique short in the
ShortBuffer parameter.

Maps approximately every four
bytes to a short in the ShortBuffer
parameter.

Maps all instructions to the same location,
producing a noninterrupting core clock.

Turns profiling off.

Turns profiling off.

profil

Mapping each byte of the instruction space to an individual short in the ShortBuffer
parameter is not possible.

• Profiling, using the first syntax definition, is rendered ineffective by giving a value of 0 for
the BufferSize parameter.

If BufferSize is -1 :

• The parameters to the profil subroutine are interpreted as shown in the second syntax
definition. In this case, the Offset and Scale parameters are ignored, and the Prof Buffer
parameter pOints to an array of prof structures. The prof structure is defined in the
mon.h header file, and it contains the following members:

caddr_t
caddr_t
HISTCOUNTER
int
uint

p_low;
p_high;
*p_buff;
p_bufsize;
p_scale;

If the p_scale member has the value of -1 , a value for it is computed based on p_low,
p_high, and p_bufsize; otherwise p_scale is interpreted like the scale argument in the first
synopsis. The p_high members in successive structures must be in ascending sequence.
The array of structures is ended with a structure containing a p_high member set to 0; all
other fields in this last structure are ignored.

The p_buff buffer pointers in the array of prof structures must point into a single
contiguous buffer space.

• Profiling, using the second syntax definition, is turned off by giving a Prof Buffer argument
such that the p_high element of the first structure is equal to O.

I n every case:

• Profiling remains on in both the child process and the parent process after a fork
subroutine.

• Profiling is turned off when an exec subroutine is run.

• A call to profilO is ineffective if profiling has been previously turned on using one syntax
definition, and an attempt is made to turn profiling off using the other syntax definition.

• A call to profilO is ineffective if the call is attempting to turn on profiling when profiling is
already turned on, or if the call is attempting to turn off profiling when profiling is already
turned off.

Parameters
ShortBuffer

BufferSize

Offset

Points to an area of memory in the user address space. Its length (in bytes)
is given by the BufferSize parameter.

Specifies the length (in bytes) of the buffer.

Specifies the delta of program counter start and buffer; for example, a 0
Offset implies that text begins at O. If the user wants to use the entry point of
a routine for the Offset parameter, the syntax of the parameter is as follows:

*(int *)RoutineName

Base Operating System Runtime 1-545

profil

Scale

Prof Buffer

Specifies the mapping factor between the program counter and ShortBuffer.

Points to an array of prof structures.

Return Value
The profil subroutine always returns a value of O. Otherwise, the global variable errno is set
to indicate the error.

Error Codes
The profil subroutine fails if one or both of the following are true:

EFAULT

EINVAL

The address specified by the ShortBuffer or Prof Buffer parameters is not
valid, or the address specified by a p_buff field is not valid.

The p_high fields in the prof structure specified by the Prof Buffer parameter
are not in ascending order.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The exec subroutines, fork subroutine, monitor, monstartup, moncontrol subroutines.

The prof command.

1-546 Base Operating System Reference

psdanger

psdanger Subroutine

Purpose

Syntax

Defines the amount of free paging space available.

#include <signal.h>
int psdanger (Signa~;

Description
The psdanger subroutine returns the difference between the current number of free paging
space blocks and the paging space thresholds of the system.

Parameters
Signal

Return Values

Defines the signal.

If Signal is SIGKILL then the return value is the difference between the current number of
free paging space blocks and the paging space kill threshold.

If the number of free paging space blocks is less than a specific threshold, the return value is
negative. If Signal is -1, the return value is the number of free paging space blocks available
in the system.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The swapon subroutine, swapqry subroutine.

The chps command, Isps command, mkps command, rmps command, swapon
command.

Base Operating System Runtime 1-547

psignal, ...

psignal Subroutine or sys_siglist Vector

Purpose

Library

Syntax

Prints system signal messages.

Berkeley Compatibility Library (libbsd.a)

psignal (Signal, String)
unsigned Signal;
char *String;

char *sys_siglist(];

Description
The psignal subroutine produces a short message on the standard error file describing the
indicated signal. First the String parameter is printed, then the name of the signal and a
newline.

To simplify variant formatting of signal names, the vector of message strings sys_siglist is
provided; the signal number can be used as an index in this table to get the signal name
without the newline. The define NSIG defined in the signal.h is the number of messages
provided for in the table; it should be checked because new signals may be added to the
system before they are added to the table.

Parameters
Signal Specifies the signal. The signal number should be among those found in the

signal.h header file.

String Specifies a string that is printed. Most usefully, the String parameter is the
name of the program which incurred the signal.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The sigvec subroutine, perror subroutine.

1-548 Base Operating System Reference

ptrace

ptrace Subroutine

Purpose

Library

Syntax

Traces the execution of another process.

Standard C Library (libc.a)

#include <sys/reg.h>
#include <sys/ptrace.h>

int ptrace(Request, Process,Address,
Data, Buffer,

int Request, Process, * Address, Data, * Buffer;

Description
The ptrace subroutine allows a process to control the execution of another process. The
ptrace subroutine is primarily used by utility programs to implement breakpoint debugging.
The dbx command is such a debugging utility.

The debugged process behaves normally until it encounters a signal, at which time it enters
a stopped state and its debugging process is notified with the wait subroutine. When the
process is in the stopped state, the debugger can examine and modify its memory image
using the ptrace subroutine. Also, the process can cause the process to either terminate or
continue, with the possibility of ignoring the signal that caused it to stop.

As a security measure, the ptrace subroutine inhibits the set-user-ID facility on subsequent
exec subroutines.

If a traced process initiates an exec subroutine, it stops before executing the first instruction
of the new image and shows the signal SIGTRAP.

Parameters
Request Determines the action to be taken by the ptrace subroutine and is one of

the following values:

PT_TRACE_ME
This request must be issued by the debugged process that is
to be traced. This request sets the process trace flag that
causes the process to be left in a stopped state upon receipt of
a signal, rather than the action specified by the sigaction
subroutine. The Process, Address, and Data parameters are
ignored, and the return value is not defined for this request. Do
not issue this request if the parent process does not expect to
trace the debugged process.

Note: The remainder of the requests can only be used by the debugger. For
each request, the Process parameter is the process 10 of the child
process. The child process must be in a stopped state before these
requests are made.

Base Operating System Runtime 1-549

ptrace

1-550

PT _LDINFO This request returns the loader information that allows the
debugger to determine what object modules are loaded.

This request allows a debugging process to attach a process
that is already running and place it into trace mode for
debugging. This request cannot be used if the target process
is already being traced.

To debug another process, at least one of the following must
be true:

• Either the real or the effective user ID of the debugging
process matches the real or effective user ID of the process
to be traced .

• The effective user 10 of the debugging process has root
user authority.

This request fails if the calling process does not meet these
permission requirements, returning an error code of EPERM.

This request allows a debugged process, specified by the
Process parameter, to exit trace mode. The process then
continues running, as if it had received the signal whose
number is contained in the data parameter. The process is no
longer traced and does not process any further ptrace calls.

PT _MULTI This request turns on and off multiprocess debugging mode, to
allow debugging to continue across fork and exec
subroutines. A 0 value for the data parameter turns
multiprocess debugging mode off, while all other values turn it
on. When multiprocess debugging mode is in effect, any fork
subroutine causes both the traced process and its newly
created process to trap on the next instruction. If a traced
process initiated an exec subroutine, it stops before executing
the first instruction of the new image and shows the signal
SIGTRAP.

Base Operating System Reference

Also, when multiprocess debugging mode is enabled, the
following new values will be returned from a wait subroutine:

W_SEWTED

W_SFWTED

Process stopped during exec.

Process stopped during fork.

ptrace

As a security measure, the ptrace subroutine inhibits the
set-user-ID facility on subsequent exec subroutines, as shown
in the following example:

if(childpid = fork()) == 0)
{ /* child process */

ptrace(PT_TRACE_ME,O,O,O,O);
execlp()/* your favorite exec*/

else
{ /* parent */

/* wait for child to stop */
rc = wait(status)

This request writes the contents of all 16 general purpose
registers to the area pointed to by the Address parameter. This
area should be at least 64 bytes. The request fails if the
Address parameter points to a location outside of the allocated
address space of the process, and returns a value of -1,
setting the value of errno to EINVAL.

PT_REATTACH
This request allows a new debugger, with the proper
permissions, to trace a process that was already traced by
another debugger. This request fails if the calling process does
not meet the permission requirements, returning an error code
of EPERM.

PT_READ_lorPT_READ_D
These requests return the int in the debugged process
address space at the location pointed to by the Address
parameter. Since on all machines currently supported by the
AIX Version 3 Operating System instruction and data request
PT_READ_I or request PT_READ_D can be used with equal
results, the data parameter is ignored. These requests fail if
the value of the Address parameter is not in the address space
of the debugged process, in which case a value of -1 is
returned, and the debugging process errno is set to EIO.

This request returns the int from the debugged process user
area of the system's address space that is located at the offset
given by the Address parameter. (For information about the
user area, see the sys/user.h header file.) The value of the
Address parameter must be in the range 0 to sizeof(struct
user). The data parameter is ignored. This request fails if the
Address parameter is outside the user area, in which case a
value of -1 is returned to the debugged process and the
debugging process errno is set to EIO.

PT:.WRITE_I or PT _ WRITE_D
These requests write the value of the data parameter into the
address space of the debugged process at the int pointed to
by the Address parameter. Since on all machines currently
supported by the AIX Version 3 Operating System instruction
and data address spaces are not separated, either request

Base Operating System Runtime 1-551

ptrace

1-552

PT _WRITE_lor request PT _ WRITE_D can be used with
equal results. Upon successful completion, the value written
into the address space of the debugged process is returned to
the debugging process. These requests fail if the Address
parameter points to a location in a pure procedure space and
a copy cannot be made. They also fail if the Address
parameter is out of range. Upon failure, a value of -1 is
returned to the debugging process and the debugging process
errno is set to EIO.

PT_WRITE_U
This request writes the value of the data parameter into the
debugged process user area of the system's address space at
the int specified by the Address parameter. The value of the
Address parameter is rounded down to the next int(word)
boundary. The following values for the Address parameter are
defined in the sys/reg.h header file, and they identify the only
entries that can be modified. The contents of this file vary for
different machine types.

PT_CONTINUE
This request causes the process to resume execution. If the
Data parameter is 0, all pending signals, including the one that
caused the process to stop, are concealed before the process
resumes execution. If the data parameter is a valid signal
number, the process resumes execution as if it had received
that signal. Any other pending signals are canceled. If the
Address parameter equals 1, the execution continues from
where it stopped. If the Address parameter is not 1, it is
assumed to be the address at which the process should
resume execution. Upon successful completion, the value of
the Data parameter is returned to the debugging process. This
request fails if the data parameter is not 0 or a valid signal
number, in which case a value of -1 is returned to the
debugging process and the debugging process errno is set to
EIO.

This request causes the process to terminate the same way it
would with an exit subroutine.

PT_READ_GPR

Base Operating System Reference

This request returns the contents of one of the
general-purpose or special-purpose registers of the debugged
process. The Address parameter specifies which of the
registers is to be returned. The Data and Buffer parameters
are ignored. This request fails if the value of the Address
parameter is not defined in the sys/reg.h file for the machine
type on which the process is executing. In this case, the
ptrace subroutine returns the value -1 and sets the debugging
process errno to EIO.

ptrace

PT_READ_FPR
This request stores the value of a floating-point register into
the location pointed to by the Address parameter. The data
parameter specifies which floating-point register, as defined in
the sys/reg.h file for the machine type the process is running
on.

Note: Depending on hardware configuration, there may not
be any floating-point registers.

PT_WRITE_GPR
This request stores the value of the data parameter in one of
the process general-purpose or special-purpose registers. The
Address parameter specifies the register to be modified. The
Buffer parameter is ignored. Upon successful completion, the
value of data is returned to the debugging process. This
request fails if the value of the Address parameter is not
between 0 and 15 inclusive. In this case, the ptrace
subroutine returns the value -1 and sets the debugging
process errno to EIO.

PT_WRITE_FPR
This request sets the floating-point register specified by the
Data parameter to the value pointed to by the Address
parameter.

PT_READ_BLOCK
This request reads a block of data from the debugged process
address space. The Address parameter points to the block of
data in the process address space and the Data parameter
gives its length in bytes. The value of the Data parameter must
not be greater than 1024. The Buffer parameter points to the
location in the debugging process address space into which
the data is to be copied. Upon successful completion, the
ptrace subroutine returns the value of the data parameter. If
an error occurs, the ptrace subroutine returns -1 and sets the
debugging process errno to indicate the error. This request
fails when one or more of the following are true:

EINVAL

EIO

EFAULT

PT_WRITE_BLOCK

The Data parameter is less than 1 or greater
than 1024.

The Address parameter is not a valid pointer
into the debugged process address space.

The Buffer parameter does not point to a
writable location in the debugging process
address space.

This request writes a block of data into the debugged process
address space. The Address parameter points to the location
in the process address space to be written into. The Data
parameter gives the length of the block in bytes, and it must
no be greater than 1024. The Buffer parameter pOints to the
data in the debugging process address space to be copied.

Base Operating System Runtime 1-553

ptrace

Process

Address

Data

Buffer

Upon successful completion, the value of data is returned to
the debugging process. If an error occurs, the ptrace
subroutine returns -1 and sets the debugging process errno
to indicate the error. This request fails when one or more of
the following are true:

EINVAL

EIO

EFAULT

Specifies the process 10.

The Data parameter is less than 1 or greater
than 1024.

The Address parameter is not a valid pointer
into the debugged process address space.

The Buffer parameter does not point to a
readable location in the debugging process
address space.

Determined by the value of the Request parameter.

Determined by the value of the Request parameter.

Determined by the value of the Request parameter.

Error Codes
In general, the ptrace subroutine fails if one or more of the following are true:

EIO

EIO

ESRCH

The Request parameter is not one of the values listed.

The Request parameter is not valid for the machine type the process is
executing on.

The Process parameter identifies a process that does not exist, has not
executed a ptrace call with the Request parameter PT_TRACE_ME, or a
process that is not stopped.

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

Related Information

1-554

The exec subroutines, load subroutine, sigaction subroutine, unload subroutine, wait,
waitpid, wait3 subroutines.

The dbx command.

Base Operating System Reference

putc, ...

putc, putchar, fputc, or putw Subroutine

Purpose

Library

Syntax

Writes a character or a word to a stream.

Standard liD Package (libe.a)

#inelude <stdio.h>
int pute(Character, Stream)
char Character;
FILE *Stream;

int putehar(Charactery
char Character;

int fpute(Character, Stream)
char Character;
FILE * Stream;

int putw(Word, Stream)
int Word;
FILE * Stream;

Description
The pute macro writes the character Character to the output specified by the Stream
parameter. The character is written at the position at which the file pointer is currently
pointing, if defined.

The putehar macro is the same as the pute macro except that putehar writes to the
standard output.

The fpute subroutine works the same as the pute macro, but fpute is a true subroutine
rather than a macro. It runs more slowly than pute, but takes less space per invocation.

Because pute is implemented as a macro, it incorrectly treats a Stream parameter with side
effects, such as pute(C, *f++). For such cases, use the fpute subroutine instead. Also, use
fpute whenever you need to pass a pointer to this subroutine as a parameter to another
subroutine.

The pute and putehar macros have also been implemented as subroutines for ANSI
compatibility. To access the subroutines instead of the macros, insert #undef pute or
#undef putehar at the beginning of the source file.

The putw subroutine writes the word (int) specified by the Word parameter to the output
specified by the Stream parameter. The word is written at the position at which the file
pointer, if defined, is pointing. The size of a word is the size of an integer and varies from
machine to machine. The putw subroutine does not assume or cause special alignment of
the data in the file.

Because of possible differences in word length and byte ordering, files written using the
putw subroutine are machine-dependent, and may not be readable using the getw
subroutine on a different processor.

Base Operating System Runtime 1-555

putc, ...

With the exception of stderr, output streams are, by default, buffered if they refer to files, or
line-buffered if they refer to terminals. The standard error output stream, stderr, is
unbuffered by default, but using the freopen subroutine causes it to become buffered or
line-buffered. Use the setbuf subroutine to change the stream buffering strategy.

When an output stream is unbuffered, information is queued for writing on the destination file
or terminal as soon as it is written. When an output stream is buffered, many characters are
saved and written as a block. When an output stream is line-buffered, each line of output is
queued for writing on the destination terminal as soon as the line is completed (that is, as
soon as a new-line character is written or terminal input is requested).

Parameters
Stream Pointer to the file structure of an open file.

Character

Word

A character to be written.

A word to be written (non-portable because word length and byte-ordering
are machine dependent).

Return Values
Upon successful completion, these functions each return the value written. If these functions
fail, they return the constant EOF. They fail if the Stream parameter is not open for writing,
or if the output file size cannot be increased. Because the EOF value is a valid integer, you
should use the ferror subroutine to detect putw errors.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

1-556

The fclose, fflush subroutine, feof, ferror, cleareer, fileno subroutines, fopen, freopen,
fdopen subroutines, fread, fwrite subroutines, getc, fgetc, getchar, getw subroutines,
getwc, fgetwc, getwchar subroutines, printf, fprintf, sprintf, NLprintf, NLfprintf,
NLsprintf, wsprintf subroutines, putwc, fputwc, putwchar subroutines, puts, fputs
subroutines, setbuf subroutine.

Base Operating System Reference

putenv

putenv Subroutine

Purpose

Library

Syntax

Sets an environment variable.

Standard C Library (Iibe.a)

int putenv (String)
ehar * String;

Description

Parameter

The putenv subroutine sets the value of an environment variable by altering an existing
variable or by creating a new one. The String parameter points to a string of the form
Name: Value, where Name is the environment variable and Value is the new value for it.

The memory space pointed to by the String parameter becomes part of the environment, so
that altering the string effectively changes part of the environment. The space is no longer
used after the value of the environment variable is changed by calling the putenv subroutine
again. Also, after the putenv subroutine is called, environment variables are not necessarily
in alphabetical order.

The putenv subroutine manipulates the environ external variable and can be used in
conjunction with the getenv subroutine. However, EnvironmentPointer, the third parameter
to the main subroutine, is not changed.

The putenv subroutine uses the malloe subroutine to enlarge the environment.

Warning: Unpredictable results can occur if a subroutine passes the putenv subroutine a
pointer to an automatic variable and then returns while the variable is still part of the
environment.

String A pointer to the Name= Value string.

Return Values
Upon successful completion, a value of 0 is returned. If the malloe subroutine is unable to
obtain sufficient space to expand the environment, then the putenv subroutine returns a
nonzero value. '

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The exee subroutine, getenv or NLgetenv subroutine, malloe subroutine.

Base Operating System Runtime 1-557

puts, ...

puts or fputs Subroutine

Purpose

Library

Syntax

Writes a string to a stream.

Standard I/O Library (libc.a)

#include <stdio.h>

int puts (String)
char * String;

int fputs (String, Stream)
char * String;
FILE *Stream;

Description
The puts subroutine writes the string pOinted to by the String parameter to the standard
output stream, stdout and appends a newline character to the output.

The fputs subroutine writes the null-terminated string pointed to by the String parameter to
the output stream specified by the Stream parameter. The fputs subroutine does not append
a new-line character.

Neither subroutine writes the terminating null character.

Parameters
String Pointer to a string to be written to output.

Pointer to the FILE structure of an open file. Stream

Return Values
Upon successful completion, the puts and fputs subroutines return the number of
characters written. 80th subroutines return EOF on an error. This happens if the routines try
to write on a file that has not been opened for writing.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-558

The ferror, feof, clearerr, fileno macros, fopen, freopen, fdopen subroutines, fread,
fwrite subroutines, gets, fgets subroutines, getws, fgetws subroutines, printf, fprintf,
sprintf, NLprintf, NLfprintf, NLsprintf subroutines, putws, fputws subroutines, putc,
putchar, fputc, putw subroutines, putwc, putwchar, fputwc subroutines.

Base Operating System Reference

putwc, ...

putwc, putwchar, or fputwc Subroutine

Purpose

Library

Syntax

Writes a character or a word to a stream.

Standard 1/0 Library (libc.a)

#include <stdio.h>
int putwc(Character, Stream)
int Character,
FILE *Stream;

int putwchar(Charactery
int Character,

int fputwc(Character, Stream)
int Character;

Description
With the exception of stderr, output streams are, by default, buffered if they refer to files, or
line-buffered if they refer to terminals. The standard error output stream, stderr, is
unbuffered by default, but using the freopen subroutine causes it to become buffered or
line-buffered. Use the setbuf subroutine to change the stream's buffering strategy.

The putwc subroutine writes the wchar _t specified by the Character parameter to the
output Stream as 1 or 2 bytes.

The putwchar macro works like the putwc subroutine, except that putwchar writes the
specified wchar_t to the standard output.

The fputwc subroutine works the same as putwc.

Parameters
Character

Stream

Return Values

wchar_t to be written.

Output data.

Upon successful completion, these functions each return the value written. If these functions
fail, they return the constant EOF. They fail if the Stream is not open for writing, or if the
output file size cannot be increased.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Base Operating System Runtime 1-559

putwc, ...

Related Information

1-560

The felose, fflush subroutines, fopen, freopen, fdopen subroutines, feof, ferror, eleareer,
fileno subroutines, fread, fwrite subroutines, gete, fgete, getehar, getw subroutines,
getwe, fgetwe, getwehar subroutines, printf, fprintf, sprintf, NLprintf, NLfprintf,
NLsprintf, wsprintf subroutines, pute, putehar, fpute, putw subroutines, puts, fputs
subroutines, setbuf subroutine.

National Language Support Overview in General Programming Concepts.

Base Operating System Reference

putws,. ..

putws or fputws Subroutine

Purpose
Writes a string to a stream.

Library
Standard I/O Library (Iibe.a)

Japanese Language Support Syntax
When running AIX with Japanese Language Support on your system, the following
subroutines, stored in libe.a, are provided:

#inelude <stdio.h>
#inelude <NLehar.h>

int putws (String)
NLehar * String;

int fputws (String, Stream)
NLehar *String;
FILE *Stream;

Description
The putws subroutine writes the NLehar string pointed to by the String parameter to the
standard output stream, stdout. In this case, each element of the String parameter produces
either 1 or 2 bytes of output, according to the size required for its encoding. In all other
respects, putws functions like puts.

The fputws subroutine writes the NLehar string pOinted to by the String parameter to the
output stream. Again, each element of the String parameter produces either 1 or 2 bytes of
output, according to the size required for its encoding. In all other respects, fputws functions
like fputs.

Parameters
String Pointer to a string to be writen to output.

Stream Pointer to the FILE structure of an open file.

Return Values
Upon successful completion, the putws and fputws subroutines return the number of
characters written. 80th subroutines return EOF on an error. This happens if the routines try
to write on a file that has not been opened for writing.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The ferror, feof, elearerr, fileno macros, fopen, freopen, fdopen subroutines, fread,
fwrite subroutines, gets, fgets subroutines, getws, fgetws subroutines, puts, fputs
subroutines, printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf subroutines, pute,
putehar, fpute, putw subroutines, putwe, putwchar, fputwe subroutines.

National Language Support Overview in General Programming Concepts.

Base Operating System Runtime 1-561

qsort

qsort Subroutine

Purpose

Library

Syntax

Sorts a table of data in place.

Standard C Library (libc.a)

void qsort (Base, NumberOfElements, Size, ComparisonPointery

void *Base
size_t NumberOfElements, Size;
int (*ComparisonPointery (void *, void *));

Description
The qsort subroutine sorts a table of data in place. It uses the quicker-sort algorithm.

Parameters
Base Points to the element at the base of the table.

NumberOfElements

Size

Comparison Pointer

Specifies the number of elements in the table.

Specifies the size of each element.

Points to the comparison function, which is passed two
parameters that point to the objects being compared.

Return Values
The comparison function must compare its parameters and return a value as follows:

• If the first parameter is less than the second parameter, the ComparisonPointer
parameter returns a value less than O.

• If the first parameter is equal to the second parameter, the Comparison Pointer parameter
returns O.

• If the first parameter is greater than the second parameter, the Comparison Pointer
parameter returns a value greater than O.

The comparison function need not compare every byte, so arbitrary data can be
contained in the elements in addition to the values being compared.

Note: If two items are the same when compared, their order in the output of this
subroutine is unpredictable.

The pointer to the base of the table should be of type pointer-to-element, and cast to type
pointer-to-character.

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

Related Information
The bsearch subroutine, Isearch subroutine.

1-562 Base Operating System Reference

raise Subroutine

Purpose

Library

Syntax

Sends a signal to the executing program.

Standard C Library (libc.a)

#include <sys/signal.h>

int raise(Signa~
int Signal;

Description

raise

The raise subroutine sends the signal specified by the Signal parameter to the executing
program. It is equivalent to the following:

ProcessID = getpid();
error = kill(ProcessID, Signal);

Parameter
Signal Specifies a signal number.

Return Values
Upon successful completion of the raise subroutine, a value of 0 is returned. Otherwise, a
nonzero value is returned and the global variable errno is set to indicate the error.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The _exit subroutine, kill subroutine, sigaction subroutine.

Base Operating System Runtime 1-563

rand, ...

rand or srand Subroutine

Purpose

Library

Syntax

Generates pseudo-random numbers.

Standard C Library (libc.a)
Berkeley Compatibility Library (libbsd.a)

#include <stdlib.h>

int rand ()

void srand (Seed)
unsigned int Seed;

Description

Parameter

The rand subroutine generates a random number using a multiplicative congruential
algorithm. The random-number generator has a period of 2**31, and it returns successive
pseudo-random numbers in the range from 0 to 2**15 -1.

The srand subroutine resets the random-number generator to a random starting point. The
generator is initially seeded with a value of 1.

Note: The rand subroutine is a simple random-number generator. Its spectral properties,
the mathematical measurement of how random the number sequence is, are
somewhat limited. See the drand48 subroutine or the random subroutine for more
elaborate random-number generators that have better spectral properties.

Seed Specifies an initial seed value.

Implementation Specifics

1-564

These subroutines are part of AIX Base Operating System (BOS) Runtime.

The BSD version of the rand subroutine returns a number in the range 0 to 2**31 -1, rather
than 0 to 2**15 -1 , and can be used by compiling with the Berkeley Compatibility Library
(libbsd.a).

There are better random number generators, as noted above; however, the rand and srand
subroutines are the interfaces defined for the ANSI C library.

Base Operating System Reference

rand, ...

The following functions define the semantics of the rand and srand subroutines, and are
included here to facilitate porting applications from different implementations:

static unsigned int next = 1 ;

int rand()
{

next = next x 1103515245 + 12345;

return ((next »16) & 32767);

void srand (Seed)
int Seed;
{

next = Seed;

Related Information
The drand48, erand48, Irand48, nrand48, mrand48, jrand48, srand48, seed48,
Icong48 subroutines, random, srandom, initstate, setstate subroutines.

Base Operating System Runtime 1-565

random, ...

random, srandom, initstate, or setstate Subroutine

Purpose

Library

Syntax

Generates "better" pseudo-random numbers.

Standard C Library (libc.a)

long random ()

srandom (Seed)
int Seed;

char *initstate (Seed, State, Numben
unsigned Seed;
char *State;
int Number,

char *setstate (State)
char * State;

Description

1-566

The random subroutine and srandom subroutine have almost the same calling sequence
and initialization properties as the rand subroutine and srand subroutine. The difference is
that the rand subroutine produces a much less random sequence; in fact, the low dozen bits
generated by the rand subroutine go through a cyclic pattern. All the bits generated by the
random subroutine are usable. For example, "random()&01" produces a random binary
value.

The srandom subroutine, unlike the srand subroutine, does not return the old seed
because the amount of state information used is more than a single word. The initstate
subroutine and sets tate subroutine handle restarting and changing random-number
generators. Like the rand subroutine, however, the random subroutine by default produces
a sequence of numbers that can be duplicated by calling the srandom subroutine with 1 as
the seed.

The initstate subroutine allows a state array, passed in as an argument, to be initialized for
future use. The size of the state array (in bytes) is used by the initstate subtroutine, to
decide how sophisticated a random-number generator it should use; the larger the state
array, the more random the numbers are. Values for the amount of state information are: 8,
32, 64, 128, and 256 bytes. Amounts less than 8 bytes generate an error, while other
amounts are rounded down to the nearest known value. The Seed parameter specifies a
starting pOint for the random-number sequence and provides for restarting at the same point.
The initstate subroutine returns a pointer to the previous state information array.

Once a state has been initialized, the setstate subroutine allows rapid switching between
states. The array defined by State parameter is used for further random-number generation
until the initstate subroutine is called or the sets tate subroutine is called again. The
setstate subroutine returns a pointer to the previous state array.

Base Operating System Reference

random, ...

After initialization, a state array can be restarted at a different pOint in one of two ways:

• The initstate subroutine can be used, with the desired seed, state array, and size of the
array, or

• The setstate subroutine, with the desired state, can be used, followed by the srandom
subroutine with the desired seed. The advantage of using both of these subroutines is
that the size of the state array does not have to be saved once it is initialized.

Parameters
Seed

State

Number

Error Codes

Specifies an initial seed value.

Points to the array of state information.

Specifies the size of the state information array.

If the initstate subroutine is called with less than 8 bytes of state information, or if the
setstate subroutine detects that the state information has been damaged, error messages
are sent to the standard output.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

The random subroutine uses a non-linear additive feedback random number generator
employing a default state array size of 31 long integers to return successive pseudo-random
number in the range from 0 to 2**31-1. The period of this random number generator is very
large, approximately 16 * (2**31-1). The size of the state array determines the period of the
random number generator. Increasing the state array size increases the period.

With a full 256 bytes of state information, the period of the random-number generator is
greater than 2**69, which should be sufficient for most purposes.

Related Information
The drand48, erand48, jrand48, Icong48, Irand48, mrand48, nrand48, seed48, srand48
subroutines, rand, srand subroutines.

Base Operating System Runtime 1-567

re_comp, ...

re_comp or re_exec Subroutine

Purpose

Library

Syntax

Regular expression handlers.

Berkeley Compatibility Library (libbsd.a)

char re_comp(String)
char * String;

re _ exec(String)
char * String;

Description

Parameter

The re_comp subroutine compiles a string into an internal form suitable for pattern
matching. The re_exec subroutine checks the argument String against the last string passed
to re_comp.

The strings passed to both re_comp and re_exec may have trailing or embedded newline
characters; they are terminated by nulls. The regular expressions recognized are described
in the manual entry for ed, given the above difference.

String Specifies the string to be compiled by re_comp and checked by re_exec.

Return Values

1-568

The re_comp subroutine returns 0 if the string pointed to by the String parameter was
compiled successfully; otherwise a string containing an error message is returned. If
re_comp is passed 0 or a null string, it returns without changing the currently compiled
regular expression.

The re_exec subroutine returns 1 if the string pointed to by the String parameter matches
the last compiled regular expression, 0 if the String parameter failed to match the last
compiled regular expression, and -1 if the compiled regular expression is not valid
(indicating an internal error).

The re_exec subroutine returns -1 for an internal error.

If an error occurs, the re_comp subroutine returns one of the following strings:

• No previous regular expression

• Regular expression too long

• Unmatched \(

• Too many \(\0 pairs

• Missing]

• Unmatched \)

Base Operating System Reference

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The ed command, egrep command, fgrep command, grep command.

Base Operating System Runtime 1-569

read, ...

read, readx, readv, or readvx Subroutine

Purpose

Syntax

Reads from a file.

int read (FileDescriptor, Buffer, NBytes)
int FileDescriptor,
char * Buffer,
unsigned int NBytes;

int readx(FileDescriptor, Buffer, NBytes, Extension)
int FileDescriptor, Extension;
char * Buffer,
unsigned int NBytes;
int Extension;

#include <sys/types.h>
#include <sys/uio.h>

int readv(FileDescriptor, iov, iovCounf)
int FileDescriptor,
struct iovec * iov;
int iovCount;

i nt readvx(FileDescriptor,iov,iovCount, Extension)
int FileDescriptor,
struct iovec *iov;
int iovCount;
int Extension;

Description

1-570

The read subroutine attempts to read NBytes of data from the file associated with the
FileDescriptor parameter into the buffer pointed to by the the Buffer parameter.

The ready subroutine performs the same action but scatters the input data into the iovCount
buffers specified by the array of iovec structures pointed to by the iov parameter. Each
iovec entry specifies the base address and length of an area in memory where data should
be placed. ready always fills an area completely before proceeding to the next.

readx and readvx are the same as read and readv, respectively, with the addition of an
Extension parameter, which is needed when reading from some device drivers and when
reading directories. While directories can be read directly, it is recommended that the
opendir and readdir calls be used instead, as this is a more portable interface.

On regular files and devices capable of seeking, the read starts at a position in the file given
by the file pOinter associated with the FileDescriptor parameter. Upon return from the read
subroutine, the file pointer is incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position. The value of a
file pointer associated with such a file is undefined.

Base Operating System Reference

read, ...

On directories, the readvx subroutine starts at the position specified by the file pointer
associated with the FileDescriptor parameter. The value of this file pointer must be either 0
or a value which the file pointer had immediately after a previous call to the readvx
subroutine on this directory. Upon return from the readvx subroutine, the file pointer is
incremented by a number that may not correspond to the number of bytes copied into the
buffers

When attempting to read from an empty pipe (or FIFO):

• If no process has the pipe open for writing, the read returns 0 to indicate end-of-file.

• If some process has the pipe open for writing:

- If O_NDELAY and O_NONBLOCK are clear (the default), the read will block until
some data is written or the pipe is closed by all processes that had opened the pipe for
writing.

- If O_NDELAY is set, the read subroutine returns a value of O.

- If O_NONBLOCK is set, the read subroutine returns a value of -1 and set the global
variable errno to EAGAIN.

When attempting to read from a character special file that supports non-blocking reads,
such as a terminal, and no data is currently available:

• If O_NDELAY and O_NONBLOCK are clear (the default), the read subroutine blocks
until data becomes available.

• If O_NDELAY is set, the read subroutine returns O.

• If O_NONBLOCK is set, the readvx subroutine returns -1 and sets the global variable
errno to EAGAIN if no data is available.

When attempting to read a regular file that supports enforcement mode record locks, and all
or part of the region to be read is currently locked by another process:

• If O_NDELAY and O_NONBLOCK are clear, the read blocks the calling process until the
lock is released.

• If O_NDELAY or O_NONBLOCK is set, the read returns -1 and sets the global variable
errno to EAGAIN.

The behavior of an interrupted read subroutine depends on how the handler for the arriving
signal was installed.

Note: A read from a regular file is not interruptible. Only reads from objects that may block
indefinitely, such as FIFOs, sockets, and some devices, are generally interruptible.

If the handler was installed with an indication that subroutines should not be restarted, the
read subroutine returns a value of -1 and the global variable errno is set to EINTR (even if
some data was already consumed).

If the handler was installed with an indication that subroutines should be restarted:

• If no data had been read when the interrupt was handled, this read will not return a value
(it is restarted).

• If data had been read when the interrupt was handled, this read subroutine returns the
amount of data consumed.

Base Operating System Runtime 1-571

read, ...

Parameters
FileDescriptor A file descriptor identifying the object to be read.

Extension

iov

iovCount

Buffer

NBytes

Provides communication with character device drivers that require
additional information or return additional status. Each driver interprets
the Extension parameter in a device-dependent way, either as a value or
as a pointerto a communication area. Drivers must apply reasonable
defaults when the value of the Extension parameter is 0.

For directories, the Extension parameter determines the format in which
directory entries should be returned:

• If the value of the Extension parameter is 0, the format in which
directory entries are returned depends on the value of the real
directory read flag (described in ulimit subroutine).

• If the calling process does not have the real directory read flag set,
the buffers are filled with an array of directory entries truncated to fit
the format of the System V directory structure. This provides
compatibility with programs written for UNIX System V.

• If the calling process has the real directory read flag set (see the
ulimit subroutine), the buffers are filled with an image of the
underlying implementation of the directory.

• If the value of the Extension parameter is 1, the buffers are filled with
consecutive directory entries in the format of a dirent structure. This is
logically equivalent to the readdir subroutine.

• Other values of the Extension parameter are reserved.

Points to an array of iovec structures that identifies the buffers into which
the data is to be placed. The iovec structure is defined in the sys/uio.h
header file and contains the following members:

caddr t iov_base;
int iov_len;

Specifies the number of iovec structures pointed to by the iov parameter.

Points to the buffer.

Specifies the number of bytes read from the file associated with the
FileDescriptor parameter.

Return Values

1-572

Upon successful completion, the read, readx, ready and readvx subroutines return the
number of bytes actually read and placed into buffers. The system guarantees to read the
number of bytes requested if the descriptor references a normal file that has the same
number of bytes left before the end-of-file, but in no other case.

A value of ° is returned when the end of the file has been reached. (For information about
communication files, see the ioctl and termio files.)

Otherwise, a value of -1 is returned and the global variable errno is set to identify the error.

Base Operating System Reference

read, ...

Error Codes
The read, readx, ready and readvx subroutines fail if one or more of the following are true:

EBADF

EINVAL

EINVAL

EINVAL

EAGAIN

EFAULT

EDEADLK

EINTR

EIO

The FileDescriptor parameter is not a valid file descriptor open for
reading.

The file position pointer associated with the FileDescriptor
parameter was negative.

The sum of the iovJen values in the iov array was negative or
overflowed a 32-bit integer.

The value of the iovCount parameter was not between 1 and 16,
inclusive.

The file was marked for non-blocking 110, and no data was ready to
be read.

The Buffer or part of the iov points to a location outside of the
allocated address space of the process.

A deadlock would occur if the calling process were to sleep until the
region to be read was unlocked.

A read was interrupted by a signal before any data arrived, and the
Signal handler was installed with an indication that subroutines are
not to be restarted.

An I/O error occurred while reading from the file system.

If Network File System is installed on the system, the read system call can also fail if the
following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The fcntl subroutine, ioctl subroutine, lockfx subroutine, Iseek subroutine, open
subroutine, pipe subroutine, poll subroutine, socket subroutine, socketpair subroutine.

The opendir, readdir, seekdir subroutines.

Base Operating System Runtime 1-573

readlink

readlink Subroutine

Purpose

Library

Syntax

Reads the contents of a symbolic link.

Standard C Library (libc.a)

int readlink (Path, Buffer, BufferSize)
char *Path;
char *Buffer;
int BufferSize;

Description
The readlink subroutine places the contents of the symbolic link named by the Path
parameter in the buffer Buffer, which has size BufferSize.

Parameters
Path The path name of the destination file or directory.

Buffer

BufferSize

A pOinter to the user's buffer. The buffer should be at least as large as the
BufferSize parameter.

The size of the buffer. The contents of the link are not NULL terminated. A
symbolic link cannot have more than MAXLINKLEN bytes including the
NULL, so MAXLINKLEN is an appropriate buffer size.

Return Values
Upon successful completion, the readlink subroutine returns a count of the number of
characters placed in the buffer. Otherwise, a value of -1 is returned and the global variable
errno is set to indicate the error.

Error Codes

1-574

The readlink subroutine fails if one or both of the following are true:

ENOENT

EINVAL

The file named by the Path parameter does not exist.

The file named by the Path parameter is not a symbolic link.

The readlink subroutine can also fail if additional errors on page A-1 occur.

If Network File System is installed on the system, the readlink subroutine can also fail if the
following is true:

ETIMEDOUT The connection timed out.

Base Operating System Reference

readlink

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

Related Information
The link subroutine, statx, fstatx subroutines, symlink subroutine, unlink subroutine.

The In command.

Base Operating System Runtime 1-575

reboot

reboot Subroutine

Purpose

Library

Syntax

Restarts the system.

Standard C Library (libe.a)

#inelude <sys/reboot.h>

void reboot (HowTo, Argumenn
int HowTo;
void *Argument;

Description
The reboot subroutine restarts (re-IPLs) the system. The startup is automatic and brings up
lunix in the normal, non maintenance mode.

The calling process must have root user authority in order to run this subroutine
successfully.

Warning: Users of the reboot subroutine are not portable. The reboot subroutine is
intended for use only by the halt, reboot, and shutdown commands.

Parameters
HowTo Specifies one of the following values:

Argument

RB_SOFTIPL

RB_HALT

RB_POWIPL

Soft IPL.

Halt operator, power off.

Halt operator, power off, wait a specified length of
time, then power on.

The programmed power off and programmed power on are supported by the
Model 930 system.

Specifies the amount of time to wait between power off and power on.

Return Value

1-576

Upon successful completion, the reboot subroutine does not return a value. If the reboot
subroutine fails, a value of -1 is returned and the global variable errno is set to indicate the
error.

Base Operating System Reference

Error Codes
The reboot subroutine fails if one or more of the following are true:

EPERM

EINVAL

EFAULT

The calling process does not have root user authority.

The HowTo argument is not valid.

The Argument argument is not a valid address.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The halt command, reboot command, shutdown command.

Base Operating System Runtime

reboot

1-577

regcmp, ...

regcmp or regex Subroutine

Purpose

Library

Syntax

Compiles and matches regular-expression patterns.

Programmers Workbench Library (libpw.a)

char *regcmp (String [, String, ...], (char *) 0)
char * String, * String, ... ;
char *regex (Pattern, Subject [, ret, ...])
char * Pattern, * Subject, * ret, ... ;
extern char *_'oc1;

Description

1-578

The regcmp subroutine compiles a regular expression (or Pattern) and returns a pointer to
the compiled form. If more than one String parameter is given, then regcmp treats them as
if they were concatenated together. It returns a NULL pointer if it encounters an incorrect
parameter.

You can use the regcmp command to compile regular expressions into your C program,
frequently eliminating the need to call the regcmp subroutine at run time.

The regex subroutine compares a compiled Pattern to the Subject string. Additional
parameters are used to receive values. Upon successful completion, the regex subroutine
returns a pointer to the next unmatched character. If the regex subroutine fails, a NULL
pointer is returned. A global character pOinter, _'oc1 , points to where the match began.

The regcmp and regex subroutines are borrowed from the ed command; however, the
syntax and semantics have been changed slightly. You can use the following symbols with
the regcmp and regex subroutines:

$

+

These symbols have the same meaning as they do in the ed command.

The minus sign (or hyphen) within brackets used with regex means
"through," according to the current collating sequence. For example, [a-z]
can be equivalent to [abcd ... xyz] or [aBbCc ... xYyZz1 or even
[aaaabc ... xyz] . You can use the - by itself if the - is the last or first
character. For example, the character class expression [1 -1 matches the]
(right bracket) and - (minus) characters.

The regcmp subroutine does not use the current collating sequence, and
the minus character in brackets controls only a direct ASCII sequence. For
example, [a-z] always means [abc ... xyz] and [A-Z] always means
[ABC ... XYZ] . If you need to control the specific characters in a range
using regcmp, you must list them explicitly rather than using the minus in
the character class expression.

Matches the end of the string. Use \n to match a new-line character.

A regular expression followed by + (plus sign) means one or more times.
For example, (0-9] + is equivalent to [0-9] [0-9] *.

Base Operating System Reference

regcmp, ...

[m] [m,] [m, u]

(...)$n

(...)

Integer values enclosed in [] (braces) indicate the number of times to apply
the preceding regular expression. m is the minimum number and u is the
maximum number. u must be less than 256. If you specify only m, it
indicates the exact number of times to apply the regular expression. [m,] is
equivalent to [m,u.] and matches m or more occurrences of the expression.
The plus + (plus) and * (asterisk) operations are equivalent to [1,] and [0,] ,
respectively.

This stores the value matched by the enclosed regular expression in the
{n+ 1)th ret parameter. Ten enclosed regular expressions are allowed. reg ex
makes the assignments unconditionally.

Parentheses group subexpressions. An operator, such as *, +, or [].]
works on a single character or on a regular expression enclosed in
parentheses. For example, (a*(cb+)*)$O.

All of the preceding defined symbols are special. You must precede them with a \
(backslash) if you want to match the special symbol itself. For example, \$ matches a dollar
sign.

Note: The regemp subroutine uses the malloe subroutine to make the space for the
vector. Always free the vectors that are not required. If you do not free the unrequired
vectors, you can run out of memory if regemp is called repeatedly. Use the following
as a replacement for malloe to reuse the same vector, thus saving time and space:

/* Your Program. .. *j

malloc(n)
int n;

static int rebuf[2S6] ;
return «n <= sizeof(rebuf» ? rebuf NULL) ;

Using the Minus Symbol in Japanese Language Support

The [-] symbol (minus or hyphen within brackets) functions somewhat differently in
Japanese Language Support.

The regemp subroutine produces code values that the regex subroutine can interpret as the
regular expression. For instance, [a-z] indicates a range expression which the regcmp
subroutine compiles into a string containing the two end points (a and z).

The regex subroutine interprets the range statement according to the current collating
sequence. The expression [a-z] can be equivalent either to [abcd ... xyz] , or to [
aBbCcDd ... xXyYzZ] , as long as the character preceding the minus sign has a lower
collating value than the character following the minus sign.

The behavior of a range expression is dependent on the collation sequence. If you want to
match a specific set of characters, you should list each one. For example, to select letters a,
b, or c, use [abc] rather than [a-c] .

Base Operating System Runtime 1-579

regcmp, ...

1-580

Notes:

1. No assumptions are made at compile time about the actual characters contained
in the range.

2. You can mix ASCII and SJIS characters in the expression.

3. You can use the] (right bracket) itself within a pair of brackets if it immediately
follows the leading [(left bracket) or [1\ (a left bracket followed immediately by a
circumflex).

4. You can also use the minus sign (or hyphen) if it is the first or last character in the
expression. For example, the expression [] -0] matches either the right bracket (
]), or the characters - through O.

Matching a Character Class in Japanese Language Support

A common use of the range expression is matching a character class. For example, [0-9]
represents all digits, and [a-z, A-Z] represents all letters. This form may produce
unexpected results when ranges are interpreted according to the current collating sequence.

Instead of the range expression shown above, use a character class expression within
brackets to match characters. The system interprets this type of expression according to the
current character class definition. However, you cannot use character class expressions in
range expressions.

The following exemplifies the syntax of a character class expression:

[: charclass:]

a left bracket, followed by a colon, followed by the name of the character class, followed by
another colon and a right bracket.

Japanese Language Support supports the following character classes:

[:upper:]

[:Iower:]

[:alpha:]

[:digit:]

[:alnum:]

[:xdigit:]

[:punct:]

[:space:]

[:print:]

[:jalpha:]

[:jdigit:]

[:jxdigit:]

ASCII uppercase letters.

ASCII lowercase letters.

ASCII uppercase and lowercase letters.

ASCII digits.

ASCII uppercase and lowercase letters, and digits.

ASCII hexadecimal digits.

ASCII punctuation character (neither a control character nor an
alphanumeric character).

ASCII space, tab, carriage return, neW-line, vertical tab, or form feed
character.

ASCII printing characters.

SJIS Roman characters.

SJIS Arabic digits.

SJIS hexadecimal digits.

Base Operating System Reference

regcmp, ...

[:jparen:]

[:jpunct:]

[:jspace:]

[:jprint:]

[:ikanji:]

[:jhira:]

[:jkana:]

SJIS bracketing characters.

SJIS punctuation characters.

SJIS space, tab, carriage return, neW-line, vertical tab, or form feed
characters.

SJIS printing characters.

Kanji characters.

Full-width hiragana characters.

Half-width and full-width katakana characters.

The brackets are part of the character class definition. To match any uppercase ASCII letter
or ASCII digit, use the following regular expression:

[[:upper:] [:digit:]]

Do not use the expression [A-ZO-9] .

Parameters
Subject

String

Pattern

ret

Specifies a comparison string.

Specifies the Pattern to be compiled.

Specifies the expression to be compared.

Points to an address at which to store comparison data.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The ctype subroutine, NCcol\ate, NCcoluniq, NCeqvmap, _NLXcol subroutine, rcompile,
step, advance subroutine, malloc, free, realloc, calloc, mallopt, mallinfo, alloca
subroutine.

The ed command, regcmp command.

Base Operating System Runtime 1-581

reltimerid

reltimerid Subroutine

Purpose

Library

Syntax

Releases a previously allocated interval timer.

Standard C Library (libc.a)

#include <sys/time.h>
#include <sys/events.h>

int reltimerid(Timerid)
timer_t Timerid;

Description
The reltimerid subroutine is used to release a previously allocated interval timer, which is
returned by the gettimerid subroutine. Any pending timer event generated by this interval
timer is cancelled when the call returns.

Parameters
Timerid The id of the interval timer being released.

Return Values
The reltimerid subroutine returns a 0 if it is successful. If an error occurs, the value -1 is
returned and errno is set.

Error Codes
If the reltimerid subroutine fails a -1 is returned and errno is set with the following error
code:

EINVAL The timer ID specified by the Timerid parameter is not a valid timer 10.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The gettimerid subroutine.

1-582 Base Operating System Reference

remove

remove Subroutine

Purpose

Library

Syntax

Removes a file.

Standard C Library (libc.a)

#include <stdio.h>

int remove(FileName)
char * FileName;

Description

Parameter

The remove subroutine causes a file whose name is the string pointed to by FileName to be
no longer accessible by that name. A subsequent attempt to open that file using that name
will fail, unless it is created anew. If the file is open, the operation will fail.

If the file operated upon by the remove subroutine has multiple links, the link count in the
other files is decremented.

FileName Specifies the file name.

Return Values
Upon successful completion, the remove subroutine returns a value of 0; otherwise it
returns a non-O value.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The link subroutine, rename subroutine.

The link, unlink commands.

Base Operating System Runtime 1-583

rename

rename Subroutine

Purpose

Library

Syntax

Renames a directory or a file within a file system.

Standard C Library (libc.a)

int rename (FromPath, ToPath)
char * FromPath, * ToPath;

Description

1-584

The rename subroutine renames a directory or a file within a file system.

For rename to complete successfully, the calling process must have write and search
permission to the parent directories of both FromPath and ToPath. If FromPath is a directory
and the parent directories of FromPath and ToPath are different, then the calling process
must have write and search permission to FromPath as well.

If FromPath and ToPath both refer to the same existing file, the rename subroutine returns
successfully and perform no other action.

Both FromPath and ToPath must be of the same type (that is, both directories or both
non-directories) and must reside on the same file system. If ToPath already exists, it is first
removed. In this case it is guaranteed that a link named ToPath will exist throughout the
operation. This link refers to the file named by either ToPath or FromPath before the
operation began.

If the final component of FromPath is a symbolic link, the symbolic link (not the file or
directory to which it points) is renamed.

If the parent directory of the FromPath parameter has the Sticky attribute (described in the
sys/mode.h header file), the calling process must have an effective user ID equal to the
owner ID of the FromPath parameter, or to the owner 10 of the parent directory of FromPath.

For a user who is not the owner of the file or directory to perform the rename, the user must
have root user authority.

If the FromPath and ToPath parameters name directories, the following must be true:

• FromPath is not an ancestor of ToPath. For example, the FromPath pathname must not
contain a path prefix that names ToPath.

• FromPath is well-formed; for example, the. entry in From Pa th, if it exists, refers to the
same directory as From Path, exactly one directory has a link to FromPath (excluding the
self-referential.), and the ., entry in From Pa th, if it exists, refers to the directory that
contains an entry for FromPath.

• ToPath, if it exists, must be well-formed (as defined previously).

Base Operating System Reference

Parameters
From Pa th

To Pa th

Return Values

rename

Identifies the file or directory to be renamed.

Identifies the new pathname of the file or directory to be renamed. If Tis
an existing file or empty directory, it is replaced by FromPath. If ToPath is
not an empty directory, the rename subroutine exits with an error.

Upon successful completion, the rename subroutine returns a value of O. Otherwise, a value
of -1 is returned, and the global variable errno is set to indicate the error.

Error Codes
The rename subroutine fails and the file or directory name remains unchanged if one or
more of the following are true:

ENOTDIR

EISDIR

ENOENT

EACCES

EXDEV

EeUSY

EINVAL

EINVAL

EINVAL

EROFS

EEXIST

ENOSPC

EDQUOT

FromPath names a directory and ToPath names a non-directory.

The ToPath parameter names a directory and the FromPath
parameter names a nondirectory.

A component of either path does not exist or the file named by
FromPath does not exist.

Creating the requested link requires writing in a directory with a
mode that denies write permission.

The link named by ToPath and the file named by FromPath are on
different file systems.

The directory named by the FromPath or ToPath parameter is
currently in use by the system.

Either FromPath or the ToPath is not a well-formed directory.

An attempt is made to rename. or ...

FromPath is an ancestor of ToPath.

The requested operation requires writing in a directory on a
read-only file system.

The ToPath parameter is an existing non-empty directory.

The directory that would contain ToPath cannot be extended
because the file system is out of space.

The directory that would contain ToPath cannot be extended
because the user's quota of disk blocks on the file system
containing the directory is exhausted.

The rename subroutine can also fail if additional errOfS on page A-1 occur.

If Network File System is installed on the system, the rename system call can also fail if the
following is true:

ETIMEDOUT The connection timed out.

Base Operating System Runtime 1-585

rename

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-586

The chmod subroutine, link subroutine, mkdir subroutine, rmdir subroutine, unlink
subroutine.

The chmod command, mkdir command, mv command, mvdir command.

Base Operating System Reference

revoke

revoke Subroutine

Purpose

Library

Syntax

Revokes access to a file.

Standard C Library (Iibe.a)

int revoke(Path)
ehar *Path;

Description

Parameter

The revoke subroutine revokes access to a file by all processes.

All accesses to the file are revoked. Subsequent attempts to access the file using a file
descriptor established before the revoke subroutine fail and cause the process to be killed.

A process can revoke access to a file only if its effective user 10 is the same as the file
owner 10, or if the calling process is privileged.

Note: The revoke subroutine has no affect on subsequent attempts to open the file. To
assure exclusive access to the file, the caller should change the mode of the file
before issuing the revoke subroutine. Currently the revoke subroutine works only on
terminal devices.

Path Path name of the file for which access IS to be revoked.

Return Values
Upon successful completion, the revoke subroutine returns a value of O.

If the revoke subroutine fails, a value of -1 returns and the global variable errno is set to
indicate the error.

Error Codes
The revoke subroutine fails if any of the following are true:

ENOTDIR

EACCES

ENOENT

ENOENT

ENOENT

ESTALE

EFAULT

A component of the path prefix is not a directory.

Search permission is denied on a component of the path prefix.

A component of the path prefix does not exist, or the process has the
disallow truncation attribute (see the ulimit subroutine).

The path name is null.

A symbolic link was named, but the file to which it refers does not exist.

The process's root or current directory is located in a virtual file system that
has been unmounted.

The Path parameter pOints outside of the process's address space.

Base Operating System Runtime 1-587

revoke

ELOOP Too many symbolic links were encountered in translating the path name.

ENAMETOOLONG

EIO

EPERM

EINVAL

A component of a path name exceeds five characters, or an entire path
name exceeds 1023 characters.

An I/O error occurred during the operation.

The effective user 10 of the calling process is not the same as the file's
owner 10.

Access rights revocation is not implemented for this file.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The frevoke subroutine.

1-588 Base Operating System Reference

rmdir

rmdir Subroutine

Purpose

Library

Syntax

Removes a directory file.

Standard C Library (Jibc.a)

int rmdir (Path)
char *Path;

Description

Parameter

The rmdir subroutine removes the directory specified by the Path parameter. If Network File
System is installed on your system, this path can cross into another node.

For the rmdir subroutine to execute successfully, the calling process must have write access
to the parent directory of the Path parameter.

In addition, if the parent directory of Path has the Sticky attribute (described in the
sys/mode.h header file), the calling process must have an effective user 10 equal to the
directory to be removed, or have an effective user 10 equal to the owner 10 of the parent
directory of Path, or have root user authority.

Path Specifies the directory path name. The directory you specify must be:

Empty The directory contains no entries other than. and ...

Well-formed If the. entry in the Path parameter exists, it must refer to
the same directory as Path. Exactly one directory has a link
to the Path parameter (excluding the self-referential.). If the
.. entry in Path exists, it must refer to the directory that
contains an entry for Path.

Return Values
Upon successful completion, the rmdir subroutine returns a value of O. Otherwise, a value of
-1 is returned, and the global variable errno is set to indicate the error.

Error Codes
The rmdir subroutine fails and the directory is not deleted if the following errors occur:

EBUSV

EEXIST

ENOENT

EINVAL

EROFS

The directory is in use as a mount point.

The directory named by the Path parameter is not empty.

The directory named by the Path parameter does not exist.

The directory named by the Path parameter is not well formed.

The directory named by the Path parameter resides on a read-only
file system.

Base Operating System Runtime 1-589

rmdir

The rmdir subroutine can also fail if additional errors on page A-1 occur.

If Network File System is installed on the system, the rmdir subroutine can also fail if the
following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

1-590

The chmod, fchmod subroutines, mkdir subroutine, rename subroutine, umask
subroutine.

The rm command, rmdir command.

Base Operating System Reference

scandir, ...

scandir or alphasort Subroutine

Purpose

Library

Syntax

Scans or sorts directory contents.

Standard C Library (Iibe.a)

#inelude <sys/types.h>
#inelude <sys/dir.h>

int seandir (DirectoryName, Na me List, Select, Compare)
ehar * DirectoryName;
struet dirent * (*[NameList]);
i nt (* Select) ();
int (* Compare) ();

int alphasort (Directory1, Directory2)
struet dirent ** Directory 1 , ** Directory2;

Description
The seandir subroutine reads the directory pointed to by the DirectoryName parameter, and
then uses the malloe subroutine to create an array of pointers to directory entries. The
seandir subroutine returns the number of entries in the array and, through the NameList
parameter, a pointer to the array.

The Select parameter points to a user-supplied subroutine that is called by the seandir
subroutine to select which entries to include in the array. The selection routine is passed a
pointer to a directory entry and should return a nonzero value for a directory entry that is
included in the array. If the Select parameter is a NULL value, all directory entries are
included.

The Compare parameter points to a user-supplied subroutine. This routine is passed to the
qsort subroutine to sort the completed array. If the Compare parameter is a NULL value, the
array is not sorted. The alphasort subroutine provides comparison functions for sorting
alphabetically.

The memory allocated to the array can be de-allocated by freeing each pointer in the array,
and the array itself, with the free subroutine.

The alphasort subroutine alphabetically compares the two dirent structures pOinted to the
the Directory1 and Directory2 parameters. This subroutine can be passed as the Compare
parameter to either the seandir subroutine or the qsort subroutine, or a user-supplied
subroutine can be used.

Parameters
DirectoryName

NameList

Select

Points to the directory name.

Points to the array of pointers to directory entries.

Points to a user-supplied subroutine that is called by the
seandir subroutine to select which entries to include in the
array.

Base Operating System Runtime 1-591

scandir, ...

Compare

Directory 1 , Directory2

Points to a user-supplied subroutine that sorts the completed
array.

Point to dirent structures.

Return Values
The seandir subroutine returns the value -1 if the directory cannot be opened for reading or
if the malloe subroutine cannot allocate enough memory to hold all the data structures. If
successful, the seandir subroutine returns the number of entries found.

The alphasort subroutine returns the following values:

Less than 0

o

Greater than 0

The dirent structure pointed to by the Directory1 parameter is lexically
less than the dirent structure pointed to by the Directory2 parameter.

The dirent structures pointed to by the Directory1 parameter and the
Directory2 parameter are equal.

The dirent structure pointed to by the Directory1 parameter is lexically
greater than the dirent structure pointed to by the Directory2
parameter.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-592

The opendir, readdir, telldir, seekdir, rewinddir, elosedir subroutines, malloe subroutine,
free subroutine, qsort subroutine.

Base Operating System Reference

scanf, ...

scanf, fscanf, sscanf, NLscanf, NLfscanf, or NLsscanf
Subroutine

Purpose

Library

Syntax

Converts formatted input.

Standard C Library (libc.a)

#include <stdio.h>

int scanf (Format [, Pointer, ...])
char * Format;

int fscanf (Stream,Format [, Pointer, ...])
FILE *Stream;
char * Format;

int sscanf (String, Format [, Pointer, ...])
char * String, * Format;

int NLscanf (Format [, Pointer, ...])
char * Format;

int NLfscanf (Stream, Format[, Pointer, ...])
FILE *Stream;
char * Format;

int NLsscanf (String, Format [, POinter, ...])
char * String, * Format;

Description
The scanf subroutine, fscanf subroutine, and sscanf subroutine read character data,
interpret it according to a format, and store the converted results into specified memory
locations. If there are insufficient arguments for the format, the behavior is undefined. If the
format is exhausted while arguments remain, the excess arguments are evaluated but
otherwise ignored.

These subroutines read their input from the following sources:

scanf, NLscanf Read from standard input (stdin).

Read from the Stream parameter. fscanf, NLfscanf

sscanf, NLsscanf Read from the character string specified by the String parameter.

Parameters
Stream

String

Pointer

Specifies the input stream

Specifies input to be read.

Specifies where to store the interpreted data.

Base Operating System Runtime 1-593

scanf, ...

1-594

Format Contains conversion specifications used to interpret the input. If there are
insufficient arguments for the Format, the behavior is undefined. If the
Format is exhausted while arguments remain, the excess arguments are
evaluated as always but are otherwise ignored.

The Format parameter can contain the following:

• White space characters (blanks, tabs, new-line, or form feed) that, except in the following
two cases, read the input up to the next nonwhite space character. Unless there is a
match in the control string, trailing white space (including a new-line character) is not
read.

• Any character except % (percent), which must match the next character of the input
stream.

• A conversion specification that directs the conversion of the next input field. It consists of
the following:

1. The character % (percent)

2. The optional assignment suppression character * (asterisk)

3. An optional numeric maximum field width

4. An optional character that sets the size of the receiving variable as for some flags, as
follows:

L

h

Signed long integer rather than an int when preceding the d, u, 0, or x
conversion codes.

A double rather than a float, when preceding the e, f, or 9 conversion
codes.

Signed short integer (half int) rather than an int when preceding the d,
u, 0, or x conversion codes.

5. A conversion code.

The conversion specification takes the form:

%[*][width][size]convcode

The results from the conversion are placed in * Pointer unless you specify assignment
suppression with *. Assignment suppression provides a way to describe an input field
that is to be skipped. The input field is a string of nonwhite space characters. It extends
to the next inappropriate character or until the field width, if specified, is exhausted.

The conversion code indicates how to interpret the input field. The corresponding
Pointer must usually be of a restricted type. You should not specify the Pointer
parameter for a suppressed field. You can use the following conversion codes:

%

d, i

U

°

Accepts a single % input at this point; no assignment is done.

Accepts a decimal integer; the Pointer pointer should be an integer
pointer.

Accepts an unsigned decimal integer; the Pointer parameter should be
an unsigned integer pointer.

Accepts an octal integer; the Pointer parameter should be an integer
pointer.

Base Operating System Reference

x

e, f, 9

scanf, ...

Accepts a hexadecimal integer; the Pointer parameter should be an
integer pointer.

Accepts a floating-point number. The next field is converted
accordingly and stored through the corresponding parameter, which
should be a pointer to a float. The input format for floating-point
numbers is a string of digits, with some optional characteristics:

• It can be a signed value.

• It can be an exponential value, containing a decimal point followed
by an exponent field, which consists of an E or an e followed by an
(optionally signed) integer.

• It can be one of the special values INF, NaNQ, or NaNS. This value
is translated into the ANSI/IEEE value for infinity, quiet NaN, or
signaling NaN, respectively.

For Japanese Language Support, the conversion codes recognize double-width
versions of digits as equivalent to the single-width versions of those digits.

p

n

s

s

Is

ws

N

B

Matches an unsigned hexadecimal integer, the same as the &p
conversion of the printf subroutine. The corresponding argument is a
pointer to a pointer to void.

No input is consumed. The corresponding argument is a pointer to an
integer into which is written the number of characters read from the
input stream so far by this function. The assignment count returned at
the completion of this function is not incremented.

Accepts a string of chars. The Pointer parameter should be a
character pointer that points to an array of characters large enough to
accept the string and ending with \0. The \0 is added automatically.
The input field ends with a white space character. A string of char
values is output.

Accepts an NLchar string. The Pointer parameter points to an array of
characters large enough to accept the string and ending with \0. The \0
is added automatically. The input field ends with a white space
character. A string of NLchar values is output.

Accepts an NLchar string. The Pointer parameter points to an array of
characters large enough to accept the string and ending with \0. The \0
is added automatically. The input field ends with a white space
character. A string of NLchar values is output.

Accepts an NLchar string. The Pointer parameter points to an array of
characters large enough to accept the string and ending with \0. The \0
is added automatically. The input field ends with a white space
character. A string of NLchar values is output.

Accepts an ASCII string, possibly containing extended character
information in the form of escape sequences used by the NLescstr
and NLunescstr subroutines. The output is in the form of NLchars.

Returns the length of the string in bytes, rather than the display length
of the string.

Base Operating System Runtime 1-595

scanf, ...

1-596

c

c
Ic

wc

[seansetl

A char value is expected. The Pointer parameter should be a char
pointer. The normal skip over white space is suppressed. Use %s to
read the next nonwhite space character. If a field width is given,
Pointer refers to a character array; and the indicated number of char
values is read.

Accepts and prints an NLchar Value.

Accepts and prints an NLchar Value.

Accepts and prints an NLchar Value.

Accepts as input the characters included in the seanset. The seanset
explicitly defines the characters that are accepted in the string data as those
enclosed within square brackets. The normal skip over leading white space
is suppressed. Inseanset in the form of [I\seanse~ of an exclusive seanset,
the 1\ (circumflex) serves as a complement operator and the following
characters in the seanset are not accepted as input. Conventions used in
the construction of the seanset follow:

• You can represent a range of characters by the construct First-Last.
Thus, you can express [0123456789] as [0-9]. The First parameter must
be lexically less than or equal to Last, or else the - (hyphen) stands for
itself. The - also stands for itself whenever it is the first or the last
character in the seanset.

• You can include the] (right bracket) as an element of the seanset if it is
the first character of the seanset. In this case it is not interpreted as the
bracket that closes the seanset. If the seanset is an exclusive seanset,
the] is preceded by the 1\ (circumflex) to make the] an element of the
seanset. The corresponding Pointer parameter must point to a character
array large enough to hold the data field and that ends with '\0'. The '\0' is
added automatically.

A scanf or NLscanf conversion ends at the end of the file, the end of the control string, or
when an input character conflicts with the control string. If it ends with an input character
conflict, the conflicting character is not read from the input stream.

Unless there is a match in the control string, trailing white space (including a new-line
character) is not read.

The success of literal matches and suppressed assignments is not directly determinable.

The NLS extensions to the scanf subroutines can handle a format string that enables the
system to process elements of the argument list in variable order. The normal conversion
character % is replaced by %digit$, where digit is a decimal number. Conversions are then
applied to arguments in the list with ordinal digits, rather than to the next unused argument.

Base Operating System Reference

scanf , ...

The following restrictions apply:

• The format passed to the NLS extensions can contain one of the following forms, but not
both:

- The format of the conversion

- The explicit or implicit argument number.

These forms cannot be mixed within a single format string .

• The * (asterisk) specification for field width or precision is not permitted with the variable
order %digit$ format.

Return Values
Each of these subroutines returns the display length of the string it outputs, which is the
number of the display characters in the string, rather than the number of bytes. These
subroutines return EOF on the end of input and on a short count for missing or invalid data
items.

The seanf and NLseanf subroutines return the number of successfully matched and
assigned input items. This number can be 0 is there was an early conflict between an input
character and the control string. If the input ends before the first conflict or conversion, only
EOF is returned.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The atof, atoff, strtod, strtof subroutines, gete, getehar, getw, getwe, fgetwe, getwehar
subroutines, printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf subroutines, strtol,
strtoul, atol, atoi subroutines, wsseanf subroutine.

National Language Support Overview in General Programming Concepts

Base Operating System Runtime 1-597

select

select Subroutine

Purpose

Library

Syntax

Checks the I/O status of multiple file descriptors and message queues.

Standard C Library (libc.a)

#include <sys/select.h>
#include <sys/types.h>

int select (Nfdsmsgs, ReadUst, WriteUst, ExceptList, TimeOut)
int Nfdsmsgs;
struct sellist * ReadUst, * WriteUst, * ExceptList;
struct timeval * TimeOut;

Description
The select subroutine checks the specified file descriptors and message queues to see if
they are ready for reading (receiving) or writing (sending), or if they have an exceptional
condition pending.

Parameters
Nfdsmsgs Specifies the number of file descriptors and the number of message queues

to check. The low-order 16 bits give the length of a bit mask that specifies
which file descriptors to check; the high-order 16 bits give the size of an
array that contains message queue identifiers. If either half of the Nfdsmsgs
parameter is equal to a value of 0, the corresponding bit mask or array is
assumed not to be present.

1-598

ReadList, WriteUst, ExceptUst
Specify what to check for reading, writing, and exceptions, respectively.
Together, they specify the selection criteria. Each of these parameters
points to a sellist structure, which can specify both file descriptors and
message queues. Your program must define the sellist structure in the
following form:

struct sellist
{
int fdsmask[F]; /* file descriptor bit mask */
int msgids[M]; /* message queue identifiers */
} ;

The fdsmask array is treated as a bit string in which each bit corresponds
to a file descriptor. File descriptor n is represented by the bit (1 « n) in the
array element fdsmask[n / BITS(int)]. (The BITS macro is defined in the
values.h header file.) Each bit that is set to 1 indicates that the status of the
corresponding file descriptor is to be checked. Note that the low-order 16
bits of the Nfdsmsgs parameter specify the number of bits (not elements) in
the fdsmask array that make up the file descriptor mask. If only part of the
last int is included in the mask, the appropriate number of low-order bits are
used, and the remaining high-order bits are ignored.

Base Operating System Reference

TimeOut

Return Values

select

If you set the low-order 16 bits of the Nfdsmsgs parameter to 0, you must
not define an fdsmask array in the sellist structure.

Each int of the msgids array specifies a message queue identifier whose
status is to be checked. Elements with a value of -1 are ignored. The
high-order 16 bits of the Nfdsmsgs parameter specify the number of
elements in the msgids array. If you set the high-order 16 bits of the
Nfdsmsgs parameter to 0, you must not define a msgids array in the sellist
structure.

Note: The arrays specified by the Rea dUs t, WriteUst, and ExcepfLisf
parameters are the same size because each of these parameters
points to the same sellist structure type. However, you need not
specify the same number of file descriptors or message queues in
each. Set the file descriptor bits that are not of interest to 0, and set
the extra elements of the msgids array to -1.

You can use the SELLIST macro defined in the sys/select.h header file to
define the sellist structure. The format of this macro is:

SELLlST(f, m) dec/arator ... ;

where f specifies the size of the fdsmask array, m specifies the size of the
msgids array, and each declarator is the name of a variable to be declared
as having this type.

Specifies either a NULL pointer or a pointer to a timeval structure that
specifies the maximum length of time to wait for at least one of the selection
criteria to be met. The timeval structure is defined in the Isys/time.h
header file and it contains the following members:

struct timeval {
int tv_sec; /* seconds */
int tv_usec; /* microseconds */

} ;

The number of microseconds specified in TimeOut.tv_usec, a value from °
to 999999, is set to one millisecond by the AIX Version 3 Operating System
if the process does not have root user authority and the value is less than
one millisecond.

If the TimeOut parameter is a NULL pointer, the select subroutine waits
indefinitely, until at least one of the selection criteria is met. If the TimeOut
parameter points to a timeval structure that contains zeros, the file and
message queue status is polled, and the select subroutine returns
immediately.

Upon successful completion, the select subroutine returns a value that indicates the total
number of file descriptors and message queues that satisfy the selection criteria. The
fdsmask bit masks are modified so that bits set to 1 indicate file descriptors that meet the
criteria. The msgids arrays are altered so that message queue identifiers that do not meet
the criteria are replaced with a value of -1.

The return value is similar to the Nfdsmsgs parameter in that the low-order 16 bits give the
number of file descriptors, and the high-order 16 bits give the number of message queue
identifiers. These values indicate the sum total that meet each of the read, write, and

Base Operating System Runtime 1-599

select

exception criteria. Therefore, the same file descriptor or message queue can be counted up
to three times. You can use the NFDS and NMSGS macros found in the /sys/select.h
header file to separate out these two values from the return value. For example, if rc
contains the value returned from the select subroutine, NFDS(rc) is the number of files
selected, and NMSGS(rc) is the number of message queues selected.

If the time limit specified by the TimeOut parameter expires, the select subroutine returns a
value of O.

If the select subroutine fails, it returns a value of -1 and sets the global variable errno to
indicate the error. In this case, the contents of the structures pointed to by the ReadUst,
WriteUst, and ExceptUst parameters are unpredictable.

Error Codes
The select subroutine fails if one or more of the following are true:

EBADF

EAGAIN

EINTR

EINVAL

EFAULT

An invalid file descriptor or message queue identifier was specified.

Allocation of internal data structures failed.

A signal was caught during the select subroutine and the signal handler
was installed with an indication that subroutines are not to be restarted.

One of the parameters to the select subroutine contained an invalid value.

The ReadUst, WriteUst, ExceptUst, or TimeOut parameter points to a
location outside of the address space of the process.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

The select subroutine is supported for compatibility with previous releases of the AIX
Operating System and 8SD systems.

Related Information
The poll subroutine.

1-600 Base Operating System Reference

semctl

semctl Subroutine

Purpose

Library

Syntax

Controls semaphore operations.

Standard C Library (libe.a)

#inelude <sys/types.h>
#inelude <sys/ipe.h>
#inelude <sys/sem.h>

int semetl (SemaphoreID,SemaphoreNumber,Command, Value)
or
int semetl (SemaphoreID,SemaphoreNumber,Command,Buffery
or
int semetl (SemaphoreID,SemaphoreNumber,Command,Array)

int SemaphorelD;
int SemaphoreNumber;
int Command;
int Value;
struet semid_ds * Buffer;
unsigned short Array(];

Description
The semetl subroutine performs a variety of semaphore control operations as specified by
the Command parameter. The data type of the last parameter depends on the value of the
Command parameter. It is referred to as the Value, Buffer, or Array parameter to indicate
one of the definitions given in the preceding syntax section.

Parameters
SemaphorelD

SemaphoreNumber

Value

Buffer

Array

Specifies the semaphore identifier.

Specifies the semaphore nu mber.

Specifies the data type of the Command parameter.

Specifies the data type of the Command parameter.

Specifies the data type of the Command parameter.

Base Operating System Runtime 1-601

semctl

1-602

Command Specifies semaphore control operations.The first seven values of
the Command parameter get and set the values of a sem structure,
which is defined in the sys/sem.h header file.

The following Command parameter values are executed with
respect to the semaphore specified by the SemaphorelD and
SemaphoreNumber parameters.

GETVAL

SETVAL

GETPID

GETNCNT

GETZCNT

Returns the value of semval, if the current process
has read permission.

Sets the value of semval to the value specified by
the Value parameter, if the current process has
write permission. When this Command parameter is
successfully executed, the semadj value
corresponding to the specified semaphore is
cleared in all processes.

Returns the value of sempid, if the current process
has read permission.

Returns the value of semncnt, if the current process
has read permission.

Returns the value of semzcnt, if the current process
has read permission.

The following Command parameter values return and set every
semval in the set of semaphores.

GETALL

SETALL

Stores semvals into the array pointed to by the
Array parameter, if the current process has read
permission.

Sets semvals according to the array pointed to by
the Array parameter, if the current process has
write permission. When this Command is
successfully executed, the semadj value
corresponding to each specified semaphore is
cleared in all processes.

The following Commands get and set the values of a semid_ds
structure, defined in the sys/sem.h header file.

This command obtains status information about the
semaphore identified by the SemaphorelD
parameter. This information is stored in the area
pointed to by the Buffer parameter.

These two commands set the owning user and
group I Ds, and the access permissions for the set
of semaphores associated with the SemaphorelD
parameter. The IPC_SET command uses as input
the values found in the Buffer parameter structure.

Base Operating System Reference

Return Values

semetl

IPC_SET sets the following fields:

sem_perm.uid
sem_perm.gid
sem_perm.mode

Owning user 10
Owning group 10
Permission bits only

IPC_SET can only be executed by a process that
has root user authority or an effective user 10 equal
to the value of the sem_perm.uid field in the data
structure associated with the SemaphorelD
parameter.

Removes the semaphore identifier specified by the
SemaphorelD parameter from the system and
destroys the set of semaphores and data structures
associated with it. This Command can only be
executed by a process that has root user authority
or an effective user 10 equal to the value of
sem_perm.uid in the data structure associated with
the SemaphorelD parameter.

Upon successful completion, the value returned depends on the Command parameter as
follows:

Command Return Value

GETVAL Returns the value of semval.

GETPID Returns the value of sempid.

GETNCNT Returns the value of semncnt.

GETZCNT Returns the value of semzcnt.

all others Return a value of O.

If the semctl subroutine fails, a value of -1 is returned and the global variable errno is set to
indicate the error.

Error Codes
The semctl subroutine fails if one or more of the following are true:

EINVAL

EINVAL

EINVAL

EACCES

ERANGE

The SemaphorelD parameter is not a valid semaphore identifier.

The SemaphoreNumber parameter is less than 0 or greater than
sem_nsems.

The Command parameter is not a valid command.

Operation permission is denied to the calling process.

The Command parameter is SETVAL or SETALL and the value to which
semval is to be set is greater than the system-imposed maximum.

Base Operating System Runtime 1-603

semctl

EPERM

EFAULT

ENOMEM

The Command parameter is equal to IPC_RMID or IPC_SET and the
calling process does not have root user authority or an effective user 10
equal to the value of the sem_perm.uid field in the data structure associated
with the SemaphorelD parameter.

The Buffer or Array parameter points outside of the allocated address space
of the process.

The system does not have enough memory to complete the subroutine.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The semget subroutine, semop subroutine.

1-604 Base Operating System Reference

semget

semget Subroutine

Purpose

Library

Syntax

Gets a set of semaphores.

Standard C Library (Iibe.a)

#inelude <sys/types.h>
#inelude <sys/ipe.h>
#inelude <sys/sem.h>

int semget (Key, NumberOfSemaphores, SemaphoreFlag)
key_t Key;
int NumberOfSemaphores, Semaphore Flag;

Description
The semget subroutine returns the semaphore identifier associated with the specified Key.

The semget subroutine creates a data structure for the semaphore ID and an array
containing the NumberOfSemaphores parameter semaphores if one of the following is true:

• The Key parameter is equal to IPC_PRIVATE.

• The Key parameter does not already have a semaphore identifier associated with it, and
IPC_CREAT is set.

Upon creation, the data structure associated with the new semaphore identifier is initialized
as follows:

• sem_perm.cuid and sem_perm.uid are set equal to the effective user ID of the calling
process.

• sem_perm.cgid and sem_perm.gid are set equal to the effective group 10 of the calling
process.

• The low-order 9 bits of sem_perm.mode are set equal to the low-order 9 bits of the
Semaphore Flag parameter.

• sem_nsems is set equal to the value of the NumberOfSemaphores parameter.

• sem_otime is set equal to ° and sem_ctime is set equal to the current time.

If the Key parameter is not IPC_PRIVATE, IPC_EXCL is not set, and a semaphore identifier
already exists for the specified Key parameter, the value of the NumberOfSemaphores
parameter specifies the number of semaphores that the current process needs. If the
NumberOfSemaphores parameter is a value of 0, any number of semaphores is acceptable.
If the NumberOfSemaphores parameter is not a value of 0, the semget subroutine fails if the
set contains fewer than NumberOfSemaphores semaphores.

Base Operating System Runtime 1-605

semget

Parameters
Key Specifies either the value IPC_PRIVATE or an IPC key constructed by the

ftok subroutine (or by a similar algorithm).

NumberOfSemaphores
Specifies the number of semaphores in the set.

SemaphoreFlagConstructed by logically ORing one or more of the following values:

IPC_CREAT Creates the data structure if it does not already exist.

IPC_EXCL Causes the semget subroutine to fail if IPC_CREAT is also
set and the data structure already exists.

S_'RUSR Permits the process that owns the data structure to read it.

S_'WUSR Permits the process that owns the data structure to modify
it.

S_'RGRP Permits the group associated with the data structure to read
it.

S_'WGRP Permits the group associated with the data structure to
modify it.

S_'ROTH Permits others to read the data structure.

S_'WOTH Permits others to modify the data structure.

The values that begin with the S_' prefix are defined in the sys/mode.h
header file and are a subset of the access permissions that apply to files.

Return Values
Upon successful completion, the semget subroutine returns a semaphore identifier.
Otherwise, a value of -1 is returned and the global variable errno is set to indicate the error.

Error Codes

1-606

The semget subroutine fails if one or more of the following are true:

EINVAL

EACCES

EINVAL

ENOENT

ENOSPC

The NumberOfSemaphores parameter is less than a value of 0, equal to a
value of 0, or greater than the system-imposed limit.

A semaphore identifier exists for the Key parameter but operation
permission, as specified by the low-order 9 bits of the SemaphoreFlag
parameter, is not granted.

A semaphore identifier exists for the Key parameter, but the number of
semaphores in the set associated with it is less than the value of the
NumberOfSemaphores parameter and the NumberOfSemaphores
parameter is not equal to 0.

A semaphore identifier does flot exist for the Key parameter and
IPC_CREAT is not set.

A semaphore identifier is to be created, but doing so would exceed the
maximum number of identifiers allowed systemwide.

Base Operating System Reference

semget

EEXIST A semaphore identifier exists for the Key parameter, and both IPC_CREAT
and IPC_EXCL are set.

ENOMEM There is not enough memory to complete the operation.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The semctl subroutine, semop subroutine.

The ftok subroutine.

Base Operating System Runtime 1-607

semop

semop Subroutine

Purpose

Library

Syntax

Performs semaphore operations.

Standard C Library (libc.a)

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semop (Semaphore/D, Semaphore Operations, NumberOfSemaphoreOperations)
int Semaphore/D;
struct sembuf * Semaphore Operations;
unsigned NumberOfSemaphoreOperations;

Description
The semop subroutine performs operations on the set of semaphores associated with the
semaphore identifier specified by the Semaphore/D parameter. The sembuf structure is
defined in the sys/sem.h header file.

Parameters
Semaphore/D Specifies the semaphore identifier.

Semaphore Operations

NumberOfSemaphoreOperations

Points to an array of structures, each of which
specifies a semaphore operation.

Specifies the number of structures in the array.

Return Values

1-608

Upon successful completion, the semop subroutine returns a value of O. Also, the
Semahore/D parameter value for each semaphore that is operated upon is set to the
process 10 of the calling process.

If the semop subroutine fails, a value of -1 is returned and the global variable errno is set to
indicate the error. If SEM_ ORDER was set in the sem_flg for the first semaphore operation
in the Semaphore Operations array, the SEM_ERR value is set in the sem_flg for the failing
operation.

Base Operating System Reference

semop

Error Codes
The semop subroutine fails if one or more of the following are true for any of the semaphore
operations specified by the SemaphoreOperations parameter. If the operations were
performed individually, then see the preceding discussion of SEM_ORDER for more
information about error situations.

EINVAL

EFBIG

E2BIG

EACCES

EAGAIN

ENOSPC

EINVAL

ERANGE

ERANGE

EFAULT

EINTR

EIDRM

The SemaphorelD parameter is not a valid semaphore identifier.

sem_num is less than 0 or it is greater than or equal to the number of
semaphores in the set associated with the SemaphorelD parameter.

The NumberOfSemaphoreOperations parameter is greater than the
system-imposed maximum.

Operation permission is denied to the calling process.

The operation would result in suspension of the calling process, but
IPC_NOWAIT is set in sem_flg.

The limit on the number of individual processes requesting a SEM_UNDO
would be exceeded.

The number of individual semaphores for which the calling process requests
a SEM_UNDO would exceed the limit.

An operation would cause a semval to overflow the system-imposed limit.

An operation would cause a semadj value to overflow the system-imposed
limit.

The SemaphoreOperations parameter points outside of the address space
of the process.

The semop subroutine received a signal.

The semaphore identifier SemaphorelD parameter has been removed from
the system.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The exee subroutine, exit subroutine, fork subroutine, semetl subroutine, semget
subroutine.

Base Operating System Runtime 1-609

setbuf, ...

setbuf, setvbuf, setbuffer, or setlinebuf Subroutine

Purpose

Library

Syntax

Assigns buffering to a stream.

Standard C Library (libc.a)

#include <stdio.h>

void setbuf (Stream, Buffet)
FI LE * Stream;
char * Buffer,

i nt setvb uf (Stream, Buffer, Mode, Size)
FILE *Stream;
char * Buffer,
int Mode;
size_t Size;

void setbuffer (Stream, Buffer, Size)
FILE *Stream;
char * Buffer,
size_t Size;

void setlinebuf (Stream)
FILE *Stream;

Description

1-610

The setbuf subroutine causes the character array pointed to by the Buffer parameter to be
used instead of an automatically allocated buffer. Use the setbuf subroutine after a stream
has been opened, but before it is read or written.

If the Buffer parameter is a null character pOinter, input/output is completely unbuffered.

A constant, BUFSIZ, defined in the stdio.h header file, tells how large an array is needed:

char buf[BUFSIZ];

For the setvbuf subroutine, the Mode parameter determines how the Stream parameter is
buffered:

Causes input/output to be fully buffered.

Causes output to be line-buffered. The buffer is flushed when a new line is
written, the buffer is full, or input is requested.

Causes input/output to be completely unbuffered.

Base Operating System Reference

setbuf '"""

If the Buffer parameter is not a null character pointer, the array it points to is used for
buffering instead of an automatically allocated buffer. The Size parameter specifies the size
of the buffer to be used. The constant BUFSIZ in the stdio.h header file is one buffer size. If
input/output is unbuffered, the Buffer and Size parameters are ignored. The setbuffer
subroutine, an alternate form of the setbuf subroutine, is used after Stream has been
opened, but before it is read or written. The character array Buffer, whose size is determined
by the Size parameter, is used instead of an automatically allocated buffer. If the Buffer
parameter is a null character pointer, input/output is completely unbuffered.

The setbuffer subroutine is not needed under normal circumstances since the default file
I/O buffer size is optimal.

The setlinebuf subroutine is used to change STOOUT or STDERR from block buffered or
unbuffered to line-buffered. Unlike the setbuf and setbuffer subroutines, the setlinebuf
subroutine can be used any time the file descriptor is active.

A buffer is normally obtained from the malloc subroutine at the time of the first getc
subroutine or putc subroutine on the file, except that the standard error stream, STOERR, is
normally not buffered.

Output streams directed to terminals are always either line-buffered or unbuffered.

Note: A common source of error is allocating buffer space as an automatic variable in a
code block, and then failing to close the stream in the same block.

Parameters
Stream

Buffer

Mode

Size

Specifies the input/output stream.

Points to a character array.

Determines how the Stream parameter is buffered.

Specifies the size of the buffer to be used.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

The setbuffer and setlinebuf subroutines are included for compatibility with BSD.

Related Information
The fopen, freopen, fdopen subroutines, fread subroutine, getc, fgetc, getchar, getw,
getwc, fgetwc, getwchar subroutines, malloc, free, realloc, calloc, malinfo, mallopt,
alloca subroutines, putc, putchar, fputc, putw subroutines, putwc, putwchar, fputwc
subroutines.

Base Operating System Runtime 1-611

setgid, ...

setgid, setrgid, setegid or setregid Subroutine

Purpose

Library

Syntax

Sets the process group IDs.

Standard C Library (Iibe.a)

#inelude <sys/types.h>

int setgid (GID)
gid_t GID;

int setrgid (RGID)
gid_t RGID;

int setegid (EGID)
gid_t EGID;

int setregid (RGID, EGID)
gid_t RGID;
gid_t EGID

Description

1-612

These subroutines set the group IDs of the calling process. The following semantics are
supported:

setgid

setegid

setrgid

setregid

If the invoker is the root user, the process's real, effective, and saved group
IDs are set to the value of the GID parameter. Otherwise, the process's
effective group 10 is reset if GID is equal to either the current real or saved
group IDs.

The process's effective group 10 is reset if EGID is equal to either the
current real or saved group IDs.

EPERM is always returned.

There are two cases:

RGID!= EGID

RGID: = EGID

If EGID is equal to either the process's real or saved group
IDs, the process's effective group lOis set to EGID;
else EPERM is returned.

If the invoker is the root user, the process's real, effective,
and saved group IDs are set to EGID; else if EGID is equal
to the process's real or saved group IDs, the process's
effective group 10 is set to EGID;
else EPERM is returned.

These functions are provided as compatibility interfaces to setgidx; this subroutine should
be called directly by all new programs. The current semantics of these functions is only
supported insofar as they do not conflict With the 10 setting policy of setgidx.

Base Operating System Reference

setgid, ...

Parameters
GID Specifies the value of the group I D to be set.

RGID Specifies the value of the real group ID to be set.

EGID Specifies the value of the effective group I D to be set.

Return Values
Upon successful completion, the setgid subroutines return a value of O. If the setgid
subroutine fails, a value of -1 is returned and the global variable errno is set to indicate the
error.

Error Codes
The setgid and setegid subroutines fail if:

EPERM The GID or EGID parameter is not equal to either the real or saved group
IDs of the process.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The getgroups subroutine, getuidx subroutine, setgidx subroutine, setgroups subroutine,
setuidx subroutine.

The setgroups command.

Base Operating System Runtime 1-613

setgidx

setgidx Subroutine

Purpose

Library

Syntax

Sets the process group IDs.

Standard C Library (Jibc.a)

#include <sys/id.h>

uid_t setgidx (Which, GID)
int Which;
gid_t GID

Description
The setgidx subroutine sets the specified group IDs of the current process.

Parameters
Which Specifies which group 10 to return. This parameter is a bitmask and may

include one or more of the following, which are defined in sys/id.h:

Sets the effective group 10 of the process.

Sets the real group 10 of the process.

Sets the saved group 10 of the process.

GID Specifies the value of the group 10 to be set.

Return Values
Upon successful completion, the setgidx subroutine returns O. If the setgidx subroutine
fails, a value of -1 is returned and the global variable errno is set to indicate the error.

Error Codes

Security

1-614

The setgidx subroutine fails if:

EINVAL

DAC PoJicy

The Which parameter does not contain a valid combination of IDs to be
changed.

The following policies are enforced:

The real and saved IDs can only be changed by the root user.

If the real 10 is changed, the effective 10 must be changed to the same
value (Le. Which = ID_EFFECTIVE/ID_REAL) (Le. Which =
ID_EFFECTIVE/ID_REALlID_SAVED). If the saved 10 is changed, the
real and effective 10 must be changed to the same values.

The effective 10 may be changed only to the current real or saved IDs.

Base Operating System Reference

setgidx

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The getgroups subroutine, getgidx subroutine, setgroups subroutine, setuidx subroutine.

The setgroups command.

Base Operating System Runtime 1-615

setgroups

setgroups Subroutine

Purpose

Library

Syntax

Sets the concurrent group set of the current process.

Standard C Library (Iibc.a)

#include <grp.h>

int setgroups (NumberGroups, GrouplDSet)
int NumberGroups;
gid_t *GroupIDSet,

Description
The setgroups subroutine sets the concurrent group set of the process. The setgroups
subroutine cannot set more than NGROUPS_MAX groups in the group set.
(NGROUPS_MAX is a constant defined in the limits.h header file)

Parameters
GrouplDSet Pointer to the array of group IDs to be established.

NumberGroups Indicates the number of entries in the GrouplDSet parameter.

Return Values
Upon successful completion, the setgroups subroutine returns a value of O. If setgroups
fails, then a value of -1 is returned and errno is set to indicate the error.

Error Codes

Security

The setgroups subroutine fails if the following is true:

EFAULT

EINVAL

EPERM

The NumberGroups and GrouplDSet parameters specify an array that is
partially or completely outside of the process's allocated address space.

The NumberGroups parameter is greater than the NGROUPS_MAX value.

A group 10 in the GrouplDSet parameter is not presently in the concurrent
group set and the invoker does not have root user authority.

Auditing Events:

Event

PROC_SetGroups

Information

NumberGroups, GrouplDSet

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

Related Information

1-616

The getgid subroutine, getgidx subroutine, getgroups subroutine, initgroups subroutine,
setgid subroutine, setgidx subroutine.

Base Operating System Reference

setjmp, ...

setjmp or longjmp Subroutine

Purpose

Library

Syntax

Saves and restores the current execution context.

Standard C Library

#include <setjmp.h>

int setjmp (Context)
jmp_buf Context;

void longjmp (Context, Value)
jmp_buf Context;
int Value;

int _setjmp (Context)
jmp_buf Context;

void _Iongjmp (Context, Value)
jmp_buf Context;
int Value;

Description
The setjmp subroutine and the longjmp subroutine are useful when handling errors and
interrupts encountered in low-level subroutines of a program.

The setjmp subroutine saves the current stack context and signal mask in the buffer
specified by the Context parameter.

The longjmp subroutine restores the stack context and signal mask that were saved by the
setjmp subroutine in the corresponding Context buffer. After the longjmp subroutine runs,
program execution continues as if the corresponding call to the setjmp subroutine had just
returned the value of the Value parameter. The subroutine that called the setjmp subroutine
must not have returned before the completion of the longjmp subroutine. The setjmp and
longjmp subroutines save and restore the signal mask sigmask (2), while _setjmp and
_Iongjmp manipulate only the stack context.

Parameters
Context

Value

Return Values

An address for a jmp_buf structure.

Any integer value.

The setjmp subroutine returns a value of 0, unless the return is from a call to the longjmp
function, in which case setjmp returns a non-zero value.

The longjmp subroutine cannot return 0 to the previous context. The value 0 is reserved to
indicate the actual return from the setjmp subroutine when first called by the program.The
longjmp subroutine does not return from where it was called, but rather, program execution
continues as if the corresponding call to setjmp was returned with a returned value of Value.

Base Operating System Runtime 1-617

setjmp, ...

If the longjmp subroutine is passed a Value parameter of 0, then execution continues as if
the corresponding call to the setjmp subroutine had returned a value of 1. All accessible
data have values as of the time the longjmp subroutine is called.

Warning: If the longjmp subroutine is called with a Context parameter that was not
previously set by the setjmp subroutine, or if the subroutine that made the corresponding
call to the setjmp subroutine has already returned, then the results of the longjmp
subroutine are undefined. If the longjmp subroutine detects such a condition, it calls the
longjmperror routine. If longjmperror returns, the program is aborted. The default version
of longjmperror prints the message "Iongjmp or siglongjmp used outside of saved context"
to standard error and returns. Users wishing to exit in another manner can write their own
version of the longjmperror program.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

If a process is using the AT & T System V sigset interface, then the setjmp and longjmp
subroutines do not save and restore the signal mask. In such a case, their actions are
identical to those of the _setjmp and _'ongjmp subroutines.

Related Information
The _setjmp library routine and _'ongjmp library routine.

The sigsetjmp, siglongjmp subroutine.

1-618 Base Operating System Reference

setlocale

setlocale Subroutine

Purpose

Library

Syntax

Changes or queries the program's entire current locale or portions thereof.

Standard C Library (libc.a)

#include <Iocale.h>

char *setlocale (Category, Locale)
int Category;
char * Locale;

Description
The setlocale subroutine selects the appropriate portion of the program's locale as specified
by the Category and Locale parameters. The setlocale subroutine can be used to change
or query the program's entire current locale or portions thereof. The LC_ALL value for the
Category parameter names the entire locale (all the categories); the other values name only
a portion of the program locale. LC_COLLATE affects the behavior of the strcoll and
strxfrm subroutines. LC_CTYPE affects the behavior of the character handling functions
and the multibyte functions. LC_MONETARY affects the monetary formatting information
returned by the localeconv subroutine. LC_NUMERIC affects the decimal-point character
for the formatted input/output subroutines and the string conversion subroutines, as well as
the non-monetary formatting information returned by the localeconv subroutine. LC_ TIME
affects the behavior of the strftime subroutine.

A value of "C" for the Locale parameter specifies locale; a value of " " specifies the
implementation-defined environment. Other implementation-defined strings may be passed
in Locale.

At program startup, the equivalent of

setlocale (LC_ALL, "C");

is executed.

Parameters
Category A value from the locale.h header file that names the program's entire locale

or a portion thereof.

Locale A string defining the locale.

Return Values
If a pOinter to a string is given for the Locale parameter and the selection can be honored,
the setlocale subroutine returns the string associated with the specified Category parameter
for the new locale. If the selection cannot be honored, a NULL pointer is returned and the
program locale is unchanged.

Base Operating System Runtime 1-619

setlocale

The string returned by the setlocale subroutine is such that a subsequent call with that
string and its associated category restores that part of the program locale. The string
returned is not modified by the program, but can be overwritten by a subsequent call to the
setlocale subroutine.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

1-620

The localeconv subroutine, ctype subroutines, Japanese ctype subroutines, string
subroutines.

National Language Support Overview in General Programming Concepts.

Base Operating System Reference

setpcred

setpcred Subroutine

Purpose

Library

Syntax

Sets the current process credentials

Security Library (libs.a)

#include <usersec.h>

int setpcred (User, Credentials)
char ** Credentials
char * User ;

Description
The setpcred subroutine will set a process's credentials according to the Credentials
parameter. If the User parameter is specified, the credentials defined for the user in the user
database are used. If the Credentials parameter is specified, the credentials in this string are
used. If both the User and Credentials parameters are specified, both the user's and the
supplied credentials will be used, but the supplied credentials of the Credentials parameter
will override those of the user. At least one parameter must be specified.

Parameters
User

Credentials

Specifies the user for whom credentials are being established.

Specifies specific credentials to be established. This parameter points to
an array of NULL terminated character strings which may contain the
following. The last character string must be a NULL.

LOGIN_USER = %s

REAL_USER = %s

REAL_GROUP = %s

GROUPS = %s

The login user name.

The real user name.

The real group name.

The concurrent group set.

AUDIT_CLASSES = %s The audit classes.

RLlMIT_CPU = %d

RLlMIT_FSIZE = %d

RLlMIT_DATA = %d

RLlMIT_STACK = %d

RLlMIT_CORE = %d

RLiMIT _RSS = %d

UMASK = 0/00

The process CPU limit.

The process maximum file size.

The process maximum data segment size.

The process maximum stack segment size.

The process maximum core file size.

The process maximum resident set size.

The process umask.

Base Operating System Runtime 1-621

setpcred

Return Values
Upon successful return, the setpcred subroutine returns a value of O. If setpcred fails, a
value of -1 is returned and errno is set to indicate the error.

Error Codes
The setpcred subroutine fails if one or more of the following are true:

EINVAL The Credentials parameter contains invalid credentials specifications.

EINVAL The User parameter is NULL and the Credentials parameter is either NULL or
points to an empty string.

EACCES The User parameter is specified and the calling process is unable to access
the user credentials.

Other errors may be set by any subroutines invoked by the setpcred subroutine.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BaS) Runtime.

Related Information

1-622

The ckuseracct subroutine, ckuserlD subroutine, getpcred subroutine, getpenv
subroutine, setpenv subroutine.

Base Operating System Reference

setpenv

setpenv Subroutine

Purpose

Library

Syntax

Sets the current process environment

Security Library (libs.a)

#include <usersec.h>
int setpenv(User, Mode, Environment, Command)
char *User;
int Mode;
char **Environment;
char *Command;

Description
The setpenv subroutine will set the environment of the current process according to its
parameter values, set the working directory, and run the specified command. The
environment consists of both user-state and system-state environment variables.

The setpenv subroutine will perform the following steps:

setting the process environment
This step involves changing the user and system state environment. Since
this is dependent on the values of the Mode and Environment parameters,
this step is described below in the parameter description for the Mode
parameter.

setting the process current working directory
After the user and system state environment is reset as required, the
working directory of the process is changed. If the PWD environment value
is defined, the current working directory is set to this value. If PWD is not
defined, the HOME environment value is used instead (and PWD is
initialized to HOME). In either case, this subroutine will fail if the change of
the working directory fails. If HOME is not defined then "I" the root directory
is used.

executing the initial program
After the working directory is reset, the initial program (usually the shell
interpreter) is executed. If the Command parameter is NULL, the shell
from the user data base is used, if not defined then the shell from the user
state environment is used, if it is not defined the Command parameter
defaults to the Ibin/sh file. if the Command parameter is not NULL, this
string is used as the command to be executed. if the Mode parameter
contains the PENV _ARGV value, the Command parameter is assumed is
be in argv format and is simply passed to the execve subroutine. The first
string is used as the Path parameter of execve. If Mode does not contain
PENV _ARGV, the Command parameter is parsed into an argv structure
and executed. If the Command parameter contains the string $SHELL,
substitution is done prior to execution.

Base Operating System Runtime 1-623

setpenv

Parameters
Command

Environment

Mode

Note: This step will fail if the Command parameter contains the $SHELL
value and the user state environment does not contain the SHELL
value.

Specifies the command to be executed. If the Mode parameter contains
PENV _ARGV, then Command is assumed to be a valid argument vector
for the execv subroutine.

Specifies the value of user state and system state environment variables
in the same format returned by the getpenv subroutine. The user state
variables are prefaced by the string "USRENVIRON:" and the system
state variables are prefaced by the string "SYSENVIRON:". Each
variable is defined by. a string of the form var=value, which is an array of
character pointers NULL terminated.

Specifies how the setpenv subroutine is to set the environment and run
the command. This parameter is a bit mask and must contain only one of
the following values, which are defined in the usersec.h file:

The user-state environment is initialized as follows:

TERM

SHELL

HOME

LOG NAME

PATH

TERM is retained from the current
environment. If TERM is not present,
it is defaulted to an IBM6155.

SHEll is set from the initial program
defined for the real user 10 of the
current process. If no program is
defined, then /bin/sh is used as the
default.

HOME is set from the home directory
defined for the real user 10 of the
current process. If no home directory
is defined, the default is /usr/guest.

LOGNAME is set to the environment
variable LOGNAME.

PATH is set initially to the value for
PATH in the fete/environment file. If
it is not set, it is destructively replaced
by the default value of
PATH=/usr/bin:$HOME:. (the period
at the end meaning the current
working directory). The PATH variable
is, again, destructively replaced by the
usrenv attribute for this user in the
/etc/security/environ file if a value
exists.

1-624 Base Operating System Reference

setpenv

The following files are read for additional environment
variables.

/etc/environment The variables defined in
/etc/environment are added to the
environment.

/etc/security/environ
The environment variables defined for
the user are added to the user state
environment.

The user state variables in the Environment parameter
are added to the user-state environment. These are
preceded by the USRENVIRON: keyword.

The system-state environment is initialized as follows:

LOGIN

LOGNAME

NAME

TTY

LOGIN is set to the current LOGIN
value in the protected user
environment, if not found it is not set.
The LOGIN (tsm) command will pass
this value to the setpenv subroutine
to ensure correctness.

LOGNAME is set to the current
LOGIN value in the protected user
environment, if not found it is not set.
The LOGIN (tsm) command will pass
this value to the setpenv subroutine
to ensure correctness.

NAME is set to the login name
corresponding to the real user ID.

TTY is set to the tty name
corresponding to standard input.

The following file is read for additional environment
variables.

/etc/security/environ
The system state environment
variables defined for the user are
added. The system-state variables in
the Environment parameter are
added. These are preceded by the
SYSENVIRON keyword.

PENV _DELTA The existing user and system state environment
variables are preserved and the variables defined in the
Environment parameter are added.

PENV _RESET The existing environment is cleared and totally replaced
by the content of the Environment parameter.

Base Operating System Runtime 1-625

setpenv

PENV _KLEEN All the open file descriptors will be closed before
executing the command. This value must be ORed with
PENV_DELTA, PENV_RESET, or PENV_INIT. It cannot
be used alone.

For both system state and user state environment, variable substitution is
performed.

The Mode parameter may also contain:

PENV _ARGV Specifies that the Command parameter is already in
argv format and need not be parsed. This value must be
ORed with PENV_DELTA, PENV_RESET, or
PENV _'N'T. It cannot be used alone.

Return Values
If the environment was successfully established, this function does not return. If the setpenv
subroutine fails, a value of -1 is returned and errno is set to indicate the error.

Error Codes
The setpenv subroutine fails if one or more of the following are true:

EINVAL

EINVAL

EINVAL

The Mode parameter contains values other than PENV _'NIT,
PENV_DELTA, PENV_RESET, or PENV_ARGV.

The Mode parameter contains more than one of PENV _INIT,
PENV_DELTA, or PENV_RESET.

The Environment parameter in not NULL or empty and does not contain a
valid environment string.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The execv subroutine, getpenv subroutine.

The su command, login command.

1-626 Base Operating System Reference

setpgid, ...

setpgid or setpgrp Subroutine

Purpose

Libraries

Syntax

Sets the process group ID.

setpgid: Standard C Library (libc.a)

setpgrp: Standard C Library (libc.a); Berkeley Compatibility Library (libbsd.a)

#include <sys/types.h>

int setpgid (ProcessIO,ProcessGroupIO)
pid_t ProcesslO, ProcessGrouplO;

int setpgrp ()

Description
The setpgid subroutine is used either to join an existing process group or to create a new
process group within the session of the calling process. The process group ID of a session
leader will not change. Upon return, the process group 10 of the process with a process 10
that matches ProcesslO is set to ProcessGrouplO. As a special case, if ProcesslO is 0, the
process 10 of t~e calling process is used. If ProcessGrouplO is 0, the process 10 of the
indicated process is used.

This function is implemented to support job control.

The setpgrp subroutine in libc.a supports a subset of the function of the setpgid
subroutine. It has no parameters. It sets the process group 10 of the calling process to be
the same as its process ID and returns the new value.

Parameters
Process 10 Specifies the process whose process group 10 is to be changed.

ProcessGrouplO Specifies the new value of calling process group 10.

Return Values
Upon successful completion, a value of ° is returned. Otherwise, a value of -1 is returned
and the global variable errno is set to indicate the error.

Error Codes
The setpgid subroutine fails If one or more of the following are true:

EACCES

EINVAL

ENOSVS

The value of the ProcesslO parameter matches the process 10 of a child
process of the calling process and the child process has successfully
executed one of the exec subroutines.

The value of the ProcessGrouplO parameter is less than 0, or is not a valid
value.

The setpgid subroutine is not supported by this implementation.

Base Operating System Runtime 1-627

setpgid, ...

EPERM

EPERM

EPERM

ESRCH

The process indicated by the value of the Process/D parameter is a session
leader.

The value of Process/D parameter matches the process 10 of a child
process of the calling process and the child process is not in the same
session as the calling process.

The value of ProcessGroup/D parameter is valid but does not match the
process 10 of the process indicated by the Process/D parameter and there
is no process with a process group 10 that matches the value of the
ProcessGroup/D parameter in the same session as the calling process.

The value of Process/D parameter does not match the process 10 of the
calling process of a child process of the calling process.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

In BSO systems, the setpgrp subroutine is defined with two parameters, as follows:

int setpgrp (Process/D, ProcessGroup)
int Process/O, Process Group;

BSO systems set the process group to the value specified by the Process Group parameter.
If the Process/O parameter has a value of 0, the call applies to the current process. In the
AIX Version 3 Operating System, this version of the setpgrp subroutine can be used by
compiling with the Berkeley Compatibility Library (Iibbsd.a) and is implemented as a call to
the setpgid subroutine. The restrictions that apply to the setpgid subroutine also apply to
the setpgrp subroutine.

Related Information
The getpid subroutine.

1-628 Base Operating System Reference

setpri

setpri Subroutine

Purpose

Library

Syntax

Sets a process scheduling priority to a constant value.

Standard C Library (libc.a)

#include <sys/sched.h>

int setpri (Process/D, Priority)
pid_t pid;
int pri;

Description
The setpri subroutine sets the scheduling priority of a process to be a constant. A process
nice value and cpu usage will no longer be used to determine the process scheduling
priority. Only processes that have root user authority may set a process scheduling priority to
a constant.

Parameters
Process/D

Priority

Return Values

Specifies the process 10. If this value is zero then the current process
scheduling priority is set to a constant.

Specifies the scheduling priority for the process. Priority must be in the
range PRIORITY_MIN < pri < PRIORITY _MAX. (See the sys/sched.h
header file.)

Upon successful completion, the setpri subroutine returns the former scheduling priority of
the process just changed. Otherwise, a value of -1 is returned and the global variable errno
is set to indicate the error.

Error Codes
The setpri subroutine fails if one or more of the following are true:

EINVAL

EPERM

ESRCH

The priority specified by the Priority parameter is outside the range of
acceptable priorities.

The process executing the setpri system call does not have root user
authority.

No process can be found corresponding to that specified by the Process/D
parameter.

Base Operating System Runtime 1-629

setpri

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The getpri subroutine.

1-630 Base Operating System Reference

setpwdb, ...

setpwdb or endpwdb Subroutine

Purpose

Library

Syntax

Opens and closes the authentication database.

Security Library (Iibs.a)

#include <usersec.h>

int setpwdb(Mode)
int Mode;

int endpwdb()

Description

Parameter

These functions may be used to open and close access to the authentication database.
Programs which call either the getuserpw or setuserpw subroutine should call setpwdb to
open the database and endpwdb to close the database.

The setpwdb subroutine will open the authentication database in the specified mode, if it is
not already open. The open count is incremented by one.

The endpwdb subroutine will decrement the open count by one and close the authentication
database when this count goes to zero. Any uncommitted changed data is lost.

Mode Specifies the mode of the open. This parameter may contain one or more of
the following values, defined in the usersec.h file:

Specifies read access

Specifies update access. If the process has previously opened
the database for read access and then attempts to open the
database for write access, the open may fail.

"Return Values
The setpwdb and endpwdb subroutines return 0 to indicate success. Otherwise, -1 is
returned and the global variable errno is set to indicate the error.

Error Codes
The setpwdb and endpwdb subroutines fail if the following is true:

EACCESS Access permission is denied for the data request.

Both of these functions will return errors from other subroutines.

Base Operating System Runtime 1-631

setpwdb, ...

Security
file access The calling process must have access to the authentication data. This

includes:

modes

rw

rw

file

/etc/security/passwd

/etc/passwd

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-632

The getgroupattr subroutine, getuserattr subroutine, getuserpw subroutine, setuserdb
subroutine.

Base Operating System Reference

setsid

setsid Subroutine

Purpose

Library

Syntax

Creates a session and sets the process group 10.

Standard C Library (libc.a)

#include <sys/types.h>

int setsid()

Description
The setsid subroutine creates a new session, if the calling process is not a process group
leader. Upon return, the calling process is the session leader of this new session, the
process group leader of a new process group, and has no controlling terminal. The process
group 10 of the calling process is set equal to its process 10. The calling process will be the
only process in the new process group and the only process in the new session.

Return Values
Upon successful completion, the value of the new process group 10 is returned. Otherwise,
(pid_t) -1 is returned and the global variable errno is set to indicate the error.

Error Code
The setsid subroutine fails if the following is true:

EPERM The calling process is already a process group leader, or the process group
10 of a process other than the calling process matches the process 10 of the
calling process.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The getpid, getpgrp, getppid subroutines, fork subroutine, setpgid subroutine, setpgrp
subroutine.

Base Operating System Runtime 1-633

setuid, ...

setuid, setruid, seteuid, or setreuid Subroutine

Purpose

Library

Syntax

Sets the process user IDs.

Standard C Library (libc.a)

#include <sys/id.h>
#include <sys/types.h>

int setuid(UIO)
uid_t UIO;

int setruid(RUIO)
uid_t RUfO;

int seteuid(EUIO)
uid_t EUIO;

int setreuid(RUIO, EUIO)
uid_t RUIO;
uid_t EUIO;

Description

1-634

These subroutines reset the process's user IDs as follows:

setuid

seteuid

setruid

setreuid

If the invoker is the root user, the process's real, effective, and saved user
IDs are set to the value of the UIO parameter. Otherwise, the process's
effective user 10 is reset if UIO is equal to either the current real or saved
user IDs.

The process's effective user 10 is reset if UfO is equal to either the current
real or saved user IDs.

EPERM is always returned. Processes cannot reset only their real user IDs.

There are two cases:

RUIO!= EUIO

RUID: = EUIO

If EUID is equal to either the process's real or saved user
IDs, the process's effective user 10 is set to EUIO;
else EPERM is returned.

If the invoker is the root user, the process's real, effective,
and saved user IDs are set to EUIO; else EPERM is
returned.

Base Operating System Reference

setuid, ...

Parameters
UfO Specifies the user 10 to set.

EUfO Specifies the effective user 10 to set.

RUfO Specifies the real user 10 to set.

Return Values
Upon successful completion, the setuid, seteuid, and setreuid subroutines return a value
of O. Otherwise, a value of -1 is returned and the global variable errno is set to indicate the
error.

Error Codes
The setuid, seteuid, and setreuid subroutines fail if:

EPERM The UfO or EUfD parameters are not equal to either the real or saved user
lOs of the process.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The getuidx subroutine, setuidx subroutine.

The getuid subroutine.

Base Operating System Runtime 1-635

setuidx

setuidx Subroutine

Purpose

Library

Syntax

Sets the process user IDs.

Standard C Library (libc.a)

#include <sys/id.h>
#include <sys/types.h>

uid_t setuidx (Which, UfO)
int Which;
uid_t UfO

Description
The setuidx subroutine sets the specified user IDs of the current process.

Parameters
Which Specifies which user ID to return. This parameter is a bitmask and may include

one or more of the following, which are defined in sys/id.h:

IO_EFFECTIVE

IO_REAL

IO_SAVEO

10_LOGIN

Sets the effective user ID of the process.

Sets the real user ID of the process.

Sets the saved user ID of the process.

Sets the login user ID of the process.

UfO Specifies the value of the user ID to be set.

Return Values
Upon successful completion, the setuidx subroutine returns O. If the setuidx subroutine
fails, a value of -1 is returned and the global variable errno is set to indicate the error.

Error Codes

1-636

The setuidx subroutine fails if:

EPERM

EINVAL

Which = ID_EFFECTIVE and the UfO parameter are not equal to either the
real or saved user IDs of the process, or the invoker is not the root user and
ID_REAL and/or ID_SAVED were specified.

The Which parameter does not contain a valid combination of IDs to be
changed.

Base Operating System Reference

Security
CAe Policy

setuidx

The following policies are enforced

Only the root user can change the real or saved user IDs

If the real 10 is changed, the effective 10 must be changed to the same
value. If the saved 10 is changed, the real and effective 10 must be
changed to the same values.

The effective 10 may be changed only to the current real or saved IDs.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The getuidx subroutine, setuid subroutine.

The getuid subroutine.

Base Operating System Runtime 1-637

setuserdb, ...

setuserdb or enduserdb Subroutine

Purpose

Library

Syntax

Opens and closes the user database.

Security Library (Iibs.a)

#include <usersec.h>

int setuserdb(Mode)
int Mode;

int enduserdb()

Description

Parameter

These functions may be used to open and close access to the user database. Programs
which call either the getuserattr or getgroupattr subroutine should use these functions.

The setuserdb subroutine will open the user database in the specified mode, if it is not
already open. The open count is incremented by one.

The endpwdb subroutine will decrement the open count by one and close the user
database when this count goes to zero. Any uncommitted changed data is lost.

Mode Specifies the mode of the open. This parameter may contain one or more of
the following values, defined in the usersec.h file:

Specifies read access

Specifies update access. If the process has previously opened
the database for read access and then attempts to open the
database for write access, the open may fail.

Return Values
The setuserdb and enduserdb subroutines return 0 to indicate success. Otherwise, -1 is
returned and the global variable errno is set to indicate the error.

Error Codes
The setuserdb subroutine fails if the following is true:

EACCESS Access permission is denied for the data request.

Both of these functions will return errors from other subroutines.

1-638 Base Operating System Reference

Security
file access

setuserdb, ...

The calling process must have access to the user data. Depending on the
actual attributes accessed, this may include:

modes file

rw /etc/passwd

rw /etc/group

rw /etc/security/user

rw /etc/security/limits

rw /etc/security/audit/audit.config

rw /etc/security/group

rw /etc/security/environ

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The getgroupattr subroutine, getuserattr subroutine, getuserpw subroutine, setpwdb
subroutine.

Base Operating System Runtime 1-639

sgetl, ...

sgetl or sputl Subroutine

Purpose

Library

Syntax

Accesses long numeric data in a machine-independent fashion.

Object File Access Routine Library (Iibld.a)

long sgetl (Buffet)
char * Buffer,

void sputl (Value, Buffer?
long Value;
char * Buffer,

Description
The sgetl subroutine retrieves four bytes from memory starting at the location pointed to by
the Buffer parameter. It then returns the bytes as a long Value with the byte ordering of the
host machine.

The sputl subroutine stores the four bytes of the Value parameter into memory starting at
the location pointed to by the Buffer parameter. The order of the bytes is the same across all
machines.

Using the sputl and sgetl subroutines together provides a machine-independent way of
storing long numeric data in an ASCII file. For example, the numeric data stored in the
portable archive file format is accessed with the sputl and sgetl subroutines.

Parameters
Value Specifies a 4-byte value to store into memory.

Buffer Points to a location in memory.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The ar command, dump command.

The ar file format, a.out file format.

1-640 Base Operating System Reference

shmat

shmat Subroutine

Purpose

Syntax

Attaches a shared memory segment or a mapped file to the current process.

#include <sys/shm.h>
#include <sys/types.h>
#include <sys/ipc.h>

char *shmat (SharedMemoryID, SharedMemoryAddress, SharedMemoryFlag)
int SharedMemorylD;
char * SharedMemoryAddress;
int SharedMemoryFlag;

Description
The shmat subroutine attaches the shared memory segment or mapped file associated with
the SharedMemoryldentifier (returned by the shmget subroutine), or FileDescriptor
(returned by the openx subroutine) specified by the SharedMemorylD parameter to the
address space of the calling process.

Parameters
SharedMemorylD

SharedMemory Address

Specifies an identifier for the shared memory segment.

Identifies the segment or file attached at the address
specified by the SharedMemoryAddress parameter as
follows:

• If the SharedMemoryAddress parameter is equal to 0,
the segment or file is attached at the first available
address as selected by the system.

• If the SharedMemoryAddress parameter is not equal
to 0, and the SHM_RND value is set in the
SharedMemoryFlag parameter, the segment or file is
attached at the next lower segment boundary. This
address is given by (SharedMemoryAddress
-(SharedMemoryAddress modulo SHMLBA)).

• If the SharedMemoryAddress parameter is not equal
to ° and the SHM_RND value is not set in the
SharedMemoryFlag parameter, the segment or file is
attached at the address given by the
SharedMemoryAddress parameter. If this address
does not point to a segment boundary, the shmat
subroutine returns the value -1 and sets the global
variable errno to EINVAL.

Base Operating System Runtime 1-641

shmat

1-642

SharedMemoryFlag The SharedMemoryFlag parameter specifies several
options. Its value is either 0, or is constructed by logically
~Ring one or more of the following values:

SHM_COPY Changes an open file to deferred update
(see the openx system call). Included
only for compatibility with previous AIX
versions.

Maps a file onto the address space
instead of a shared memory segment.
The SharedMemorylD must specify an
open file descriptor in this case.

SHM_RDONLV Specifies read-only mode instead of the
default read-write mode. .

Rounds the address given by the
SharedMemoryAddress parameter to the
next lower segment boundary, if
necessary.

The shmat program makes a shared memory segment addressable by the current process.
The segment is attached for reading if SHM_RDONLY is set with SharedMemoryFlag and if
the current process has read permission. If SHM_RDONL Y is not set and the current
process has both read and write permission, it is attached for reading and writing.

If SHM_MAP is set in SharedMemoryFlag, file mapping takes place. In this case, the shmat
subroutine maps the file open on the file descriptor specified by the SharedMemorylD onto a
segment. The file must be a regular file. The segment is then mapped into the address
space of the process. Any size file can be mapped if there is enough space in the user
address space.

When file mapping is requested, the SharedMemoryFlag parameter specifies how the file is
to be mapped. If SHM_RDONLY is set, the file is mapped read-only. To map read-write, the
file must have been opened for writing.

All processes that map the same file read-only or read-write map to the same segment. This
segment remains mapped until the last process mapping the file closes it.

If the file that was mapped is opened with the O_DEFER update, the mapped file also has
deferred update. Changes to the shared segment do not affect the contents of the file
resident in the file system until an fsync subroutine is issued to the file descriptor for which
the mapping was requested. Setting the SHM_COPY flag causes the file to be changed to
the deferred state. It remains in this state until all processes close the file. The SHM_COPY
flag is only for AIX Version 2 compatibility. New programs should use the open flag
O_DEFER.

A file descriptor can be used to map the corresponding file only once. A file can be mapped
several times by using multiple file descriptors.

When a file is mapped onto a segment, the file is referenced by accessing the segment. The
memory paging system automatically takes care of the physical 1/0. References beyond the
end of the file cause the file to be extended in page-sized increments.

Base Operating System Reference

shmat

Return Values
Upon successful completion, the segment start address of the attached shared memory
segment or mapped file is returned.

Error Codes
If the shmat subroutine is unsuccessful, a value of -1 is returned and the global variable
errno is set to indicate the error. The shmat subroutine is unsuccessful and the shared
memory segment or mapped file is not attached if one or more of the following are true:

EACCES

EACCES

EACCES

EBADF

EEXIST

EINVAL

EINVAL

EINVAL

EINVAL

EMFILE

ENOMEM

ENOMEM

Implementation Specifics

Operation permission is denied to the calling process.

The file to be mapped has enforced locking enabled and the file is
currently locked.

The SHM_RDONLY and SHM_COPY flags are both set.

A file descriptor to map does not refer to an open regular file.

The file to be mapped has already been mapped.

The SharedMemorylD parameter is not a valid shared memory
identifier.

The SharedMemoryAddress parameter is not equal to a, and the
value of (SharedMemoryAddress - (SharedMemoryAddress modulo
SHML8A)) points outside the address space of the process.

The SharedMemoryAddress parameter is not equal to 0, SHM_RND
is not set in SharedMemoryFlag, and the SharedMemoryAddress
parameter points to a location outside of the address space of the
process.

The SharedMemoryAddress parameter is not equal to 0, SHM_RND
is not set in SharedMemoryFlag, and the SharedMemoryAddress
parameter does not point to a segment boundary.

The number of shared memory segments attached to the calling
process exceeds the system-imposed limit.

The available data space in memory is not large enough to hold the
shared memory segment.

The available data space in memory is not large enough to hold the
mapped file data structure.

This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The exec subroutine, exit subroutine, fclear subroutine,fork subroutine, fsync subroutine,
truncate subroutine, readvx subroutine, shmctl subroutine, shmdt subroutine, shmget
subroutine, writevx subroutine.

Base Operating System Runtime 1-643

shmctl

shmctl Subroutine

Purpose

Syntax

Controls shared memory operations.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (SharedMemoryID, Command, Buffer)
int SharedMemorylD, Command;
struct shmid_ds * Buffer;

Description
The shmctl subroutine performs a variety of shared memory control operations as specified
by the Command parameter.

Parameters
SharedMemorylD Specifies an identifier returned by the shmget subroutine.

1-644

Buffer

Command

Pointer to shmid_ds struct.

The following commands are available:

This command obtains status information about the
shared memory segment identified by the
SharedMemorylD parameter. This information is
stored in the area pointed to by the Buffer
parameter. The calling process must have read
permission to run this command. The shmid_ds
structure is defined in the sys/shm.h header file,
and it contains the following members:

Base Operating System Reference

IPC_SET

shmctl

struct ipc_perm shm_perm;
/* Operation permissions struct*/
int shm_segsz;
/* Segment size*/
pid_t shm_Ipid;
/* ID of last process to call shmop*/
pid_t shm_cpid;
/* ID of process that created this

SharedMemoryID*/
unsigned short shm_nattch;
/* Current number of processes

attached */
/* No. of in-memory processes

attached */
time_t shm_atime;
/* Time of last shmat call */
time_t shm_dtime;
/* Time of last shmdt call */
time_t shm_ctime;
/* Time of the last change to this */

Set the owning user and group IDs, and the access
permissions for the shared memory segment
associated with the SharedMemorylD parameter.
Sets the following fields:

shm_perm.uid
shm_perm.gid
shm_perm.mode
*/

/* owning user ID*/
/* owning group ID*/
/* permission bits only

You must have an effective user 10 equal to root or
to the value of shm_perm.cuid or shm_perm.uid.

Removes the shared memory identifier specified by
the SharedMemorylD parameter from the system
and erases the shared memory segment and data
structure associated with it. This command can only
be run to the value of shm_perm.uid or
shm_perm.cuid in the data structure associated
with the SharedMemorylD parameter, or by a
process that has an effective root user 10.

Sets the size of the shared memory segment to the
value specified by Buffer->shm_segsz. This value
can be larger or smaller than the current size; the
limit is the hardware segment size. This command
can only be run to the value of shm_perm.uid or
shm_perm.cuid in the data structure associated
with the SharedMemorylD parameter, or by a
process that has an effective root user 10.

Base Operating System Runtime 1-645

shmctl

Return Value
Upon successful completion, a value of 0 is returned.

Error Codes
If the shmctl subroutine is unsuccessful, a value of -1 is returned and the global variable
errno is set to indicate the error. The shmctl subroutine is unsuccessful if one or more of
the following are true:

EACCES

EFAULT

EINVAL

EINVAL

EINVAL

ENOMEM

EPERM

The Command parameter is equal to the IPC_STAT value and read
permission is denied to the calling process.

The Buffer parameter points to a location outside the allocated address
space of the process.

The SharedMemorylD parameter is not a valid shared memory identifier.

The Command parameter is not a valid command.

The Command parameter is equal to the SHM_SIZE value and
Buffer->shm_segsz is greater than the value of the hardware segment
size limit.

The Command parameter is equal to SHM_SIZE and the attempt to
change the segment size is unsuccessful because the system does not
have enough memory.

The Command parameter is equal to the IPC_RMID or SHM_SIZE value
and the effective user 10 of the calling process is not equal to the value of
shm_perm.uid or shm_perm.cuid in the data structure associated with
the SharedMemorylD parameter. The effective user ID of the calling
process is not the root user ID.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The disclaim subroutine, shmat subroutine, shmdt subroutine, shmget subroutine.

1-646 Base Operating System Reference

shmdt

shmdt Subroutine

Purpose

Syntax

Detaches a shared memory segment.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmdt (SharedMemoryAddress)
char * SharedMemoryAddress;

Description

Parameter

The shmdt subroutine detaches, from the data segment of the calling process, the shared
memory segment located at the address specified by the SharedMemoryAddress parameter.

Mapped file segments are automatically detached when the mapped file is closed. However,
you can use the shmdt subroutine to explicitly release the segment register used to map a
file. Shared memory segments must be explicitly detached with the shmdt subroutine.

If the file was mapped for writing, the shmdt system call updates the mtime and ctime time
stamps.

SharedMemoryAddress Specifies the data segment start address of a shared
memory segment.

Return Value
Upon successful completion, a value of 0 is returned.

Error Code
If the shmdt subroutine is unsuccessful, a value of -1 is returned and the global variable
errno is set to indicate the error. The shmdt subroutine is unsuccessful and the shared
memory segment is not detached if the following is true:

EINVAL The SharedMemoryAddress parameter is not the data segment start
address of a shared memory segment.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The exec subroutine, fork subroutine, fsync subroutine, shmat subroutine, shmctl
subroutine, shmget subroutine, exit subroutine.

Base Operating System Runtime 1-647

shmget

shmget Subroutine

Purpose

Syntax

Gets shared memory segments.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (Key, Size, SharedMemoryFlag)
key_t Key;
int Size, SharedMemoryFlag;

Description
The shmget subroutine returns the shared memory identifier associated with the specified
Key parameter.

Parameters

1-648

Key Either the value IPC_PRIVATE or an IPC key constructed by the ftok
subroutine (or by a similar algorithm).

Size The number of bytes of shared memory required.

SharedMemoryFlag

Constructed by logically GRing one or more of the following values:

Creates the data structure if it does not already
exist.

Causes the shmget subroutine to be unsuccessful
if IPC_CREAT is also set and the data structure
already exists.

Permits the process that owns the data structure to
read it.

Permits the process that owns the data structure to
modify it.

Permits the group associated with the data
structure to read it.

Permits the group associated with the data
structure to modify it.

Permits others to read the data structure.

Permits others to modify the data structure.

The values that begin with the S_I- prefix are defined in the sys/mode.h header file and are
a subset of the access permissions that apply to files.

Base Operating System Reference

shmget

A shared memory identifier, its associated data structure, and a shared memory segment
equal in number of bytes to the value of the Size parameter are created for the Key
parameter if one of the following is true:

• The Key parameter is equal to the IPC_PRIVATE value.

• The Key parameter does not already have a shared memory identifier associated with it,
and the IPC_CREAT value is set.

Upon creation, the data structure associated with the new shared memory identifier is
initialized as follows:

• shm.perm.cuid and shm.perm.uid are set equal to the effective user ID of the calling
process.

• shm.perm.cgid and shm.perm.gid are set equal to the effective group 10 of the calling
process.

• The low-order 9 bits of shm.perm.mode are set equal to the low-order 9 bits of the
SharedMemoryFlag parameter.

• shm.segsz is set equal to the value of the Size parameter.

• shm.lpid, shm.nattch, shm.atime, and shm.dtime are set equal to O.

• shm.ctime is set equal to the current time.

Return Values
Upon successful completion, a shared memory identifier is returned.

Error Codes
If the shmget subroutine is unsuccessful, a value of -1 is returned and the global variable
errno is set to indicate the error. The shmget subroutine is unsuccessful if one or more of
the following are true:

EACCES

EEXIST

EINVAL

EINVAL

ENOENT

A shared memory identifier exists for the Key parameter but
operation permission as specified by the low-order 9 bits of the
SharedMemoryFlag parameter is not granted.

A shared memory identifier exists for the Key parameter, and both
IPC_CREAT and IPC_EXCL are set.

The Size parameter is less than the system-imposed minimum or
'greater than the system-imposed maximum.

A shared memory identifier exists for the Key parameter, but the
size of the segment associated with it is less than the Size
parameter and the Size parameter is not equal to O.

A shared memory identifier does not exist for the Key parameter
and IPC_CREAT not set.

Base Operating System Runtime 1-649

shmget

ENOMEM

ENOSPC

A shared memory identifier and associated shared memory
segment are to be created but the amount of available physical
memory is not sufficient to fill the request.

A shared memory identifier is to be created but the system-imposed
limit on the maximum number of allowed, shared memory identifiers
system-wide will be exceeded.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The shmat subroutine, shmctl subroutine, shmdt subroutine, ftok subroutine.

1-650 Base Operating System Reference

sigaction, ...

sigaction, sigvec or signal Subroutine

Libraries

Purpose

Syntax

sigaction: Standard C Library (libc.a)

signal, sigvec: Standard C Library (libc.a); Berkeley Compatibility Library (libbsd.a)

Specifies the action to take upon delivery of a signal.

#include <signal.h>

int sigaction (Signal, Action, OAction)
int Signal;
struct sigaction *Action, *OAction;

int sigvec(Signal, Invec, Outvec)
int Signal;
struct sigvec *Invec, *Outvec;

void (*signal(Signal, Action»()
int Signal;
void (* Action)();

Description
The sigaction subroutine allows the calling process to examine and/or change the action to
be taken when a specific Signal is delivered to the process issuing this subroutine.

The Signal parameter specifies the signal. If the Action parameter is not NULL, it points to a
sigaction structure that describes the action to be taken on receipt of the Signal parameter
signal. If the OAction parameter is not NULL, it points to a sigaction structure in which the
signal action data in effect at the time of the sigaction call is returned. If the Action
parameter is NULL, signal handling is unchanged; thus, the call can be used to inquire
about the current handling of a given signal.

The sigaction structure has the following members:

void
sigset_t
int

(*sa_handler)();
sa_mask;
sa_flags;

The sa_handler field can have the SIG_DFL or SIG_IGN value, or it can be a pointer to a
function. A SIG_DFL value requests default action to be taken when the signal is delivered.
A value of SIG_IGN requests that the signal have no effect on the receiving process. A
pointer to a function requests that the signal be caught; that is, the signal should cause the
function to be called. These actions are more fully described following the list of supported
signal values.

The sa_mask field can be used to specify that individual signals, in addition to those in the
process signal mask, be blocked from being delivered while the signal handler function
specified in the sa_handler is executing. The sa_flags field can have the SA_ONSTACK,
SA_ OLDSTYLE, or SA_NOCLDSTOP bits set to specify further control over the actions
taken on delivery of a signal.

Base Operating System Runtime 1-651

sigaction, ...

1-652

If the SA_ONSTACK bit is set, the system runs the signal-catching function on the signal
stack specified by the sigstack subroutine. If this bit is not set, the function runs on the stack
of the process to which the signal is delivered.

If the SA_OLDSTYLE bit is set, the signal action is set to SIG_DFL prior to calling the
signal-catching function. This is supported for compatibility with old applications, and is not
recommended since the same signal can recur before the signal-catching routine is able to
reset the signal action and the default action (normally termination) is taken in that case.

If a signal for which a signal-catching function exists is sent to a process while that process
is executing certain subroutines, the call can be restarted if the SA_RESTART bit is set for
each signal. The only affected subroutines are the following:

• read, readx, readv, readvx

• write, writex, writev, writevx

• ioctl, ioctlx

• fcntl, lockf, flock

• wait, wait3, waitpid.

Other subroutines do not restart and return EINTR, independent of the setting of
SA_RESTART.

The Signal parameter can be anyone of the following signal values except SIGKILL. Each
of the names shown in the following list is defined in the signal.h header file with the value
of the corresponding signal number.

SIGHUP Hangup.

SIGINT 2 Interrupt.

SIGQUIT 3* Quit.

SIGILL 4* Invalid instruction (not reset when caught).

SIGTRAP 5* Trace trap (not reset when caught).

SIGIOT 6* End process (see the abort subroutine).

SIGEMT 7* EMT instruction.

SIGFPE 8* Arithmetic exception, integer divide by 0,
or floating-point exception.

SIGKILL 9 Kill (cannot be caught or ignored).

SIGBUS 10* Specification exception.

SIGSEGV 11* Segmentation violation.

SIGSYS 12* Invalid parameter to subroutine.

SIGPIPE 13 Write on a pipe when there is no process to read it.

SIGALRM 14 Alarm clock.

SIGTERM 15 Software termination signal.

Base Operating System Reference

sigaction, ...

SIGURG 16+ Urgent condition on I/O channel.

SIGSTOP 17@ Stop (cannot be caught or ignored).

SIGTSTP 18@ Interactive stop.

SIGCONT 19! Continue if stopped.

SIGCHLD 20+ To parent on child stop or exit.

SIGTTIN 21@ Background read attempted from control terminal.

SIGTTOU 22@ Background write attempted from control terminal.

SIGIO 23+ Input/Output possible or completed.

SIGXCPU 24 CPU time limit exceeded (see setrlimit).

SIGXFSZ 25 File size limit exceeded (see setrlimit).

reserved 26

SIGMSG 27# Input data has been stored into the HFT monitor mode ring
buffer.

SIGWINCH 28+ Window size change.

SIGPWR 29+ Power-fail restart.

SIGUSR1 30 User-defined signal 1.

SI~USR2 31 User-defined signal 2.

SIGPROF 32 Profiling time alarm (see setitimer).

SIGDANGER 33+ System crash imminent.

SIGVTALRM 34 Virtual time alarm (see setitimer).

SIGMIGRATE 35 Migrate process.

SIGPRE 36 Programming exception (user defined).

reserved 37-58

SIGGRANT 60# HFT monitor access wanted.

SIGRETRACTION 61# HFT monitor access should be relinquished.

SIGSOUND 62# An HFT sound control has completed execution.

SIGSAK 63 Secure attention key.

The symbols in the preceding table have the following meaning:

* Default action includes creating a core dump file.

@ Default action is to stop the process receiving these signals.

Default action is to restart or continue the process receiving these signals.

Base Operating System Runtime 1-653

sigaction, ...

1-654

+

Default action is to ignore these signals.

The most likely cause for this signal is a shortage of paging space.

For more information on the use of these signals, see Terminal
Programming.

The three types of actions that can be associated with a signal: SIG_DFL, SIG_IGN, or a
pointer to a function are described as follows:

SIG_DFL Default action: signal-specific default action.

Except for those signal numbers marked with a +, @, or !, the default action for a signal
is to end the receiving process with all of the consequences described in the _exit
subroutine. In addition, a memory image file is created in the current directory of the
receiving process if the Signal parameter is one for which an asterisk appears in the
preceding list and the following conditions are met:

• The effective user ID and the real user 10 of the receiving process are equal

• An ordinary file named core exists in the current directory and is writable, or it can
be created. If the file must be created, it will have the following properties:

- The access permission code 0666 (Ox1 86), modified by the file creation mask
(see the umask subroutine)

- A file owner 10 that is the same as the effective user 10 of the receiving process

- A file group 10 that is the same as the effective group 10 of the receiving process.

For signal numbers marked with a !, the default action is to restart the receiving process
if it is stopped, or to continue execution of the receiving process.

For signal numbers marked with a @, the default action is to stop the execution of the
receiving process temporarily. When a process stops, a SIGCHLD signal is sent to its
parent process, unless the parent process has set the SA_NOCLDSTOP bit. While a
process is stopped, any additional signals that are sent to the process are not delivered
until the process is continued. An exception to this is SIGKILL, which always
terminates the receiving process. Another exception is SIGCONT, which always causes
the receiving process to restart or continue running. A process whose parent has ended
shall be sent a SIGKILL signal if the SIGTSTP, SIGTTIN, or SIGTTOU signals are
generated for that process.

For signal numbers marked with a +, the default action is to ignore the signal. In this
case, delivery of the signal has no effect on the receiving process.

If a signal action is set to SIG_DFL while the signal is pending, the signal remains
pending.

SIG_IGN Ignore signal.

Delivery of the signal has no effect on the receiving process. If a signal action is set to
SIG_IGN while the signal is pending, the pending signal is discarded.

Base Operating System Reference

sigaction, ...

An exception to this is the SIGCHLD signal whose SIG_DFL action is to ignore the
signal. If SIGCHLD is set to SIG_IGN, it means that the process does not want to
receive the SIGCHLD signal when one of its child processes dies, and does not want to
have its wait calls return because a child process is dead (just when no more child
processes exist, and on stopped child processes).

Note: The SIGKILL and SIGSTOP signals cannot be ignored.

pointer to a function Catch signal.

Upon delivery of the signal, the receiving process is to run the signal-catching function
specified by the pointer to function. The signal-handler subroutine can be declared as
follows:

handler(Signal, Code, SCP)
int Signal, Code;
struct sigcontext *SCP;

The Signal parameter is the signal number. The Code parameter is provided only for
compatibility with other UNIX compatible systems, and its value is always O. The SCP
parameter points to the sigcontext structure that is later used to restore the previous
execution context of the process. The sigcontext structure is defined in the signal.h
header file.

A new signal mask is calculated and installed for the duration of the signal-catching
function (or until sigprocmask or sigsuspend subroutines are made). This mask is
formed by taking the union of the process signal mask, the mask associated with the
action for the signal being delivered, and a mask corresponding to the signal being
delivered. The mask associated with the signal-catching function is not allowed to block
those signals that cannot be ignored. This is enforced by the kernel without causing an
error to be indicated. If and when the signal-catching function returns, the original signal
mask is restored (modified by any sigprocmask calls that were made since the
signal-catching function was called) and the receiving process resumes execution at the
point it was interrupted.

The signal-catching function can cause the process to resume in a different context by
calling the longjmp subroutine. When the longjmp subroutine is called, the process
leaves the signal stack, if it is currently on it, and restores the process signal mask to the
state when the corresponding setjmp call was made.

Once an action is installed for a specific signal, it remains installed until another action is
explicitly requested (by another call to the sigaction subroutine), or until one of the exec
subroutines is called. An exception to this is when the SA_OLDSTYLE is set in which
case the action of a caught signal gets set to SIG_DFL prior to calling the
signal-catching function for that signal.

If a signal action is set to a pointer to a function while the signal is pending, the signal
remains pending.

Base Operating System Runtime 1-655

sigaction , ...

When signal-catching functions are invoked asynchronously with process execution, the
behavior of some of the functions defined by this standard is unspecified if they are called
from a signal-catching function. The following set of functions are reentrant with respect
to signals (that is, applications can invoke them, without restriction, from signal-catching
fu nctions):

_exit(}, access(}, alarm(}, chdir(), chmodO, chownO, close(}, creatO, dup2(}, dupO,
execO, fcntlO, f~rkO, fstat{), getegidO, geteuid{), getgid{), getgroups(}, getpgrp(),
getpid(}, getppid(), getuidO, kill () , linkO, IseekO, mkdirO, mkfifoO, open{), pauseO,
pipeO, readx(), rename(}, rmdir(), setgidO, setpgrpO, setuidO, sigactionO,
sigaddsetO, sigdelsetO, sigfillsetO, sigismemberO, signal(}, sigpending(},
sigprocmask(}, sigsuspendO, sleep(}, statxO, tcdrainO, tcflow(}, tcflush(),
tcgetattrO, tcgetprgpO, tcsendbreak(), tcsetattr{), tcsetpgrp{), time(), times(},
umask(), uname(), unlinkO, ustatO, utimeO, wait20, waitO, writeO.

All other subroutines should not be called from signal-catching functions since their
behavior is undefined.

Parameters
Signal Defines the signal.

Action

OAction

Invec

Outvec

Action

Points to a sigaction structure that describes the action to be taken upon
receipt of the Signal parameter signal.

Points to a sigaction structure in which the signal action data in effect at
the time of the sigaction call is returned.

Points to a sigvec structure that describes the action to be taken upon
receipt of the Signal parameter signal.

Points to a sigvec structure in which the signal action data in effect at the
time of the sigvec call is returned.

Specifies the action associated with a signal.

Return Values
Upon successful completion, the sigaction subroutine returns a value of O. Otherwise, a
value of -1 is returned and the global variable errno is set to indicate the error.

Error Codes

1-656

The sigaction subroutine fails and no new signal handler is installed if one of the following
occurs:

EFAULT

EINVAL

EINVAL

The Action or OAction parameter points to a location outside of the
allocated address space of the process.

The Signal parameter is not a valid signal number.

An attempt was made to ignore or supply a handler for the SIGKILL,
SIGSTOP, and SIGCONT signals.

Base Operating System Reference

sigaction, ...

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

The sigvec and signal subroutines are provided for compatibility to older UNIX and AIX
systems; their function is a subset of that available with sigaction.

sigvec uses the sigvec structure is used instead of the sigaction structure. The sigvec
structure specifies a mask as an int instead of a sigselt. The mask for sigvec is
constructed by setting the i-th bit in the mask if signal i is to be blocked. Therefore, sigvec
only allows signals of value 1-31 to be blocked when a signal-handling function is called.
The other signals will not be blocked by the signal-handler mask.

The sigvec structure has the following members:

int *sv_handler()();
int sv_mask;
int sv_flags;

/* signal handler */
/* signal mask */

/* flags */

sigvecO in libbsd.a interprets the SV _INTERRUPT flag and inverts it to the SA_RESTART
flag of the sigactionO. sigvecO in libc.a always sets the SV _INTERRUPT flag regardless of
what was passed in the sigvec structure.

The signalO in libc.a allows an action to be associated with a signal. The Action parameter
can have the same values that are described for the sv _handler field in the sigaction
structure of the sigaction subroutine. However, no signal handler mask or flags can be
specified; the signal subroutine implicitly sets the signal handler mask to additional signals,
and the flags to be SA_OLDSTYLE.

Upon successful completion of a signal call, the value of the previous signal action is
returned. If the call fails, a value of -1 is returned and the global variable errno is set to
indicate the error as in the sigaction call.

The signal{) in libc.a does not set SA_RESTART. It sets the signal mask to the signal
whose action is being specified, and sets flags to SA_OLDSTYLE. The BSD version of
signalO sets SA_RESTART and preserves the current settings of the signal mask and flags.
The BSD version can be used by compiling with the Berkeley Compatibility Library
(libbsd.a).

Related Information
The acct subroutine, _exit, exit, atexit subroutines, kill subroutine, longjmp subroutine,
pause subroutine, ptrace subroutine, setjmp subroutine, sigpause, sigsuspend
subroutines, sigstack subroutine, sigprocmask, sigsetmask, sigblock subroutines,
umask subroutine, wait, waitpid, wait3 subroutines.

The kill command.

The core file.

Base Operating System Runtime 1-657

sigemptyset, ...

sigemptyset, sigfillset, sigaddset, sigdelset or sigismember
Subroutine

Purpose

Library

Syntax

Creates and manipulates signal masks.

Standard C Library (libc.a)

#include <signal.h>

int sigemptyset (Set)
sigset_t *Set;

int sigfillset (Set)
sigset_t * Set;

int sigaddset (Set, Signa/Numbery
sigset_t * Set;
int Signa/Number,

int sigdelset (Set, Signa/Number)
sigset_t * Set;
int Signa/Number,

int sigismember (Set, Signa/Number)
sigset_t * Set;
int Signa/Number,

Description
The sigemptyset, sigfillset, sigaddset, sigdelset, and sigismember subroutines
manipulate sets of signals. These functions operate on data objects addressable by the
application, not on any set of signals known to the system, such as the set blocked from
delivery to a process or the set pending for a process.

The sigemptyset subroutine initializes the signal set pOinted to by the parameter Set such
that all signals are excluded. The sigfillset subroutine initializes the signal set pointed to by
the Set parameter such that all signals are included. A call to either the sigfillset or
sigemptyset subroutine must be made at least once for each object of the type sigset_t
prior to any other use of that object.

The sigaddset and sigdelset subroutines respectively add and delete the individual signal
specified by the Signa/Number parameter from the signal set specified by the Set parameter.
The sigismember subroutine tests whether the Signa/Number parameter is a member of
the signal set pointed to by the Set parameter.

Parameters
Set Specifies the signal set.

Signa/Number Specifies the individual signal.

1-658 Base Operating System Reference

Example

sigemptyset, ...

To generate and use a signal mask that blocks only the SIGINT signal from delivery, enter:

#include <signal.h>

int return_value;
sigset_t newset;
sigset_t *newset_p;

newset_p = &newset;
sigemptyset(newset);
sigaddset(newset, SIGINT);
return_value = sigprocmask (SIG_SETMASK, newset_p, NULL);

Return Values
Upon successful completion, the sigismember subroutine returns a value of one if the
specified signal is a member of the specified set, or the value of 0 ·if not. Upon successful
completion, the other subroutines return a value of O. For all the preceding subroutines, if an
error is detected, a value of -1 is returned and the global variable errno is set to indicate the
error.

Error Code
The sigfillset, sigdelset, sigismember, and sigaddset subroutines fail if the following is
true:

EINVAL The value of the Signa/Number parameter is not a valid signal number.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The sigprocmask subroutine, sigsuspend subroutine. sigaction, signal, sigvec
subroutines.

Base Operating System Runtime 1-659

siginterrupt

siginterrupt Subroutine

Purpose

Library

Syntax

Sets restart behavior with respect to signals and subroutines.

Standard C Library (Iibe.a)

siginterrupt(Signal, Flag);
int Signal, Flag;

Description
The siginterrupt subroutine is used to change the subroutine restart behavior when a
subroutine is interrupted by the specified signal. If the flag is true (1), subroutines are
restarted if they are interrupted by the specified signal and no data has been transferred yet.

If the flag is false (0), the restarting of subroutines is disabled. If a subroutine is interrupted
by the specified signal and no data has been transferred, the subroutine will return a value of
-1 with the global variable errno set to EINTR. Interrupted subroutines that have started
transferring data will return the amount of data actually transferred. Subroutine interrupt is
the signal behavior found on 4.1 BSD and AT&T System V UNIX systems.

Note that the new 4.2 BSD signal handling semantics are not altered in any other way. Most
notably, signal handlers always remain installed until explicitly changed by a subsequent
sigaetion or sigvee call, and the signal mask operates as documented in the sigaetion
subroutine. Programs can switch between restartable and interruptible subroutine operation
as often as desired in the execution of a program.

Issuing a siginterrupt call during the execution of a signal handler causes the new action to
take place on the next signal to be caught.

Restart will not occur unless it is explicitly specified with the sigaetion subroutine or the
sigvee subroutine in Jibe.a.

Parameters
Signal Indicates the signal.

Indicates true or false. Flag

Return Values
A value of 0 indicates that the call succeeded. A value of -1 indicates that the supplied
signal number is not valid.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

This subroutine uses an extension of the sigvee subroutine that is not available in the 4.2
BSD; hence it should not be used if backward compatibility is needed.

Related Information

1-660

The sigaetion, sigvee subroutines, sigpause subroutine, sigsetmask, sigbloek
subroutines.

Base Operating System Reference

sigpending Subroutine

Purpose

Library

Syntax

Returns the set of signals that are blocked from delivery.

Standard C Library (libc.a)

#include <signal.h>

int sigpending (Set)
sigset_t * Set;

Description

sigpending

The sigpending subroutine stores the set of signals that are blocked from delivery and
pending for the calling process, in the space pointed to by the argument Set.

Parameter
Set Specifies the set of signals.

Return Values
Upon successful completion, the sigpending subroutine returns a value of O. Otherwise, a
value of -1 is returned and the global variable errno is set to indicate the error.

Error Code
The sigpending subroutine fails if the following is true:

EINVAL The input parameter is outside the user's address space.

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

Related Information
The sigprocmask subroutine.

Base Operating System Runtime 1-661

sigprocmask, ...

sigprocmask, sigsetmask, or sigblock Subroutine

Purpose

Library

Syntax

Sets the current signal mask.

Standard C Library (libc.a)

int sigprocmask{How, Set, OSet)
int HoW;
sigset_t *Set, *OSet;

int sigsetmask (Signa/Mask)
int Signa/Mask;

int sigblock (Signa/Mask)
int Signa/Mask;

Description
The sigprocmask subroutine is used to examine or change the calling process signal mask.

Typically, you would use the sigprocmask(SIG_BLOCK) subroutine to block signals during
a critical section of code, and then use the sigprocmask{SIG_SETMASK) subroutine to
restore the mask to the previous value returned by the sigprocmask{SIG_BLOCK)
subroutine.

If there are any pending unblocked signals after the call to the sigprocmask subroutine, at
least one of those signals will be delivered before the sigprocmask subroutine returns.

The sigprocmask subroutine does not allow the SIGKILL or SIGSTOP signals to be
blocked. If a program attempts to block one of these signals, the sigprocmask subroutine
gives no indication of the error.

Parameters

1-662

How Indicates the manner in which the set is changed; it can have one of the
following values:

Set

The resulting set is the union of the current set and
the signal set pointed to by the Set parameter.

The resulting set is the intersection of the current set
and the complement of the signal set pointed to by the
Set parameter.

The resulting set is the signal set pointed to by the Set
parameter.

Specifies the signal set. If the value of the Set parameter is not nUll, it points
to a set of signals to be used to change the currently blocked set. If the
value of the Set parameter is nUll, the value of the How parameter is not
significant and the process signal mask is unchanged; thus, the call can be
used to inquire about currently blocked signals.

Base Operating System Reference

OSet

Signa/Mask

sigprocmask, ...

If the OSet parameter is not the NULL value, the signal mask in effect at the
time of the call is stored in the spaced pointed to by the OSet parameter.

Specifies the signal mask of the process.

Compatibility Interfaces
The sigsetmask subroutine allows changing the process signal mask for Signal values 1 to
31. This same function can be accomplished for all values with the
sigprocmask(SIG_SETMASK} subroutine. The signal of value i will be blocked if the i-th bit
of Signa/Mask parameter is set.

Upon successful completion, the sigsetmask subroutine returns the value of the previous
signal mask. If the subroutine fails, a value of -1 is returned and the global variable errno is
set to indicate the error as in the sigprocmask subroutine.

The sigblock subroutine allows signals with values 1 to 31 to be ORed into the current
process signal mask. This same function can be accomplished for all values with the
sigprocmask(SIG_BLOCK} subroutine. The signal of value i will be blocked, in addition to

.. those currently blocked, if the i-th bit of the Signa/Mask parameter is set.
'-

It is not possible to block SIGKILL or SIGSTOP signals using sigblock or sigsetmask

subroutines. This restriction is silently imposed by the system without causing an error to be

indicated.

Upon successful completion, the sigblock subroutine returns the value of the previous
signal mask. If the subroutine fails, a value of -1 is returned and the global variable errno is
set to indicate the error as in the sigprocmask subroutine.

Return Values
Upon completion, a value of a is returned. If the sigprocmask subroutine fails, the signal
mask of the process is unchanged, a value of -1 is returned, and the global variable errno is
set to indicate the error.

Error Code

Example

The sigprocmask subroutine fails if the following is true:

EINVAL The value of the How parameter is not equal to one of the defined values.

To set the signal mask to block only the SIGINT signal from delivery, enter:

#include <signal.h>

int return_value;
sigset_t newset;
sigset_t *newset_p;

newset_p = &newset;
sigem ptyset(newset_p) ;
sigaddset(newset_p, SIGINT);
return_value = sigprocmask (SIG_SETMASK, newset_p, NULL);

Base Operating System Runtime 1-663

sigprocmask, ...

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The kill, killpg subroutines, sigaction, sigvec, signal subroutine, sigsuspend subroutine.

The sigpause subroutine.

1-664 Base Operating System Reference

sigset, ...

sigset, sighold, sigrelse, or sigignore Subroutine

Purpose

Library

Syntax

Enhance the signal facility and provide signal management.

Standard C Library (Iibe.a)

#include<signal.h>

void (*sigset(Signal, Function))O
int Signal;
void (* Function) 0 ;

int sighold(Signa~
int Signal;

int sigrelse(Signa~
int Signal;

int sigignore(Signa~
int Signal;

Description
The sigset, sighold, sigrelse, and sigignore subroutines enhance the signal facility and
provide signal management for application processes.

The sigset subroutine specifes the system signal action to be taken upon receipt of Signal.

The sighld and sigrelse subroutines establish critical regions of code. A call to the sighold
subroutine is analogous to raising the priority level and deferring or holding a signal until the
priority is lowered by sigrelse. The sigrelse subroutine restores the system signal action to
the action that was previously specified by sigset.

The sigignore subroutine sets the action for Signal to SIG_IGN.

The other signal management routine, signal, should not be used in conjunction with these
routines for a particular signal type.

Parameters
Signal Specifies the signal. The Signal parameter can be assigned anyone of the

following signals:

SIGHUP

SIGINT

SIGQUIT

SIGILL

SIGTRAP

Hangup

Interrupt

Quit*

Illegal instruction (not reset when caught)*

Trace trap (not reset when caught)*

Base Operating System Runtime 1-665

sigset, ...

1-666

SIGABRT Abort*

SIGFPE Floating pOint exception*

SIGSYS Bad argument to routine*

SIGPIPE Write on a pipe with no one to read it

SIGALRM Alarm clock

SIGTERM Software termination signal

SIGUSR1 User-defined signal 1

SIGUSR2 User-defined signal 2

* The default action for these signals is an abnotermination termination.

For portability, application programs should use or catch only the signals listed above; other
signals are hardware and implementation dependent and may have very different meanings
or results across systems. (For example, the System V signals SIGEMT, SIGBUS,
SIGSEGV, and SIGIOT are implementation dependent and are not listed above.) Specific
implementations may have other implementation dependent signals.

Function Specifies the choice. The Function parameter is assigned one of four
values: SIG_DFL, S'G_'GN, SIG_HOLD, or an address of a
signal-catching function. The Function parameter is declared as type
pointer to a function returning void. The following actions are prescribed by
these values:

address

Terminate process upon receipt of a signal.

Upon receipt of the signal specified by the Signal
parameter, the receiving process is to be terminated with all
of the consequences outlined in exit. In addition, if Signal is
one of the signals marked with an asterisk above,
implementation-dependent abnormal process termination
routines, such as a core dump, may be invoked.

Ignore signal.

Any pending signal specified by the Signal parameter is
discarded. A pending signal is a signal that has occurred
but for which no action has been taken. The system signal
action is set to ignore future occurrences of this signal type.

Hold signal.

The signal specified by the Signal parameter is to be held.
Any pending signal of this type remains held. Only one
signal of each type is held.

Catch signal.

Upon receipt of the signal specified by the Signal
parameter, the receiving process is to execute the signal
catching function pointed to by Function. Pending signal of
this type is released. This address is retained across calls

Base Operating System Reference

Return Values

sigset, ...

to the other signal management functions, sighold and
sigrelse. The signal number Signal will be passed as the
only argument to the signal-catching function. Before
entering the signal-catching function, the value of Function
for the caught signal will be set to SIG_HOLD. During
normal return from the signal-catching handler, the system
signal action is restored to Function and any held signal of
this type is released. If a non-local goto (see setjmp) is
taken, the sigrelse subroutine must be invoked to restore
the system signal action and to release any held signal of
this type.

Upon return from the signal-catching function, the receiving
process will resume execution at the point at which it was
interrupted, except for implementation defined signals
where this may not be true.

When a signal to be caught occurs during a non-atomic
operation such as a call to the read, write, open, or ioetl
subroutine on a slow device (such as a terminal); or occurs
during a pause subroutine; or occurs during a wait
subroutine that does not return immediately, the
signal-catching function will be executed and then the
interrupted routine may return a value of -1 to the calling
process with errno set to EINTR.

Upon successful completion, the sigset subroutine returns the previous value of the system
signal action for the specified Signal. Otherwise, it returns SIG_ERR and the global variable
errno is set to indicate the error.

For the sighold, sigrelse, and sigignore subroutines, a value of 0 is returned upon
success. Otherwise, a value of -1 is returned and the global variable errno is set to indicate
the error.

Error Code
The sigset, sighold, sigrelse, or sigignore subroutine fails if the following is true:

EINVAL Signal is an either an illegal signal number or SIGKILL, or the default
handling of Signal cannot be changed.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The kill subroutine, setjmp subroutine, signal subroutine, wait subroutine.

Base Operating System Runtime 1-667

sigsetjmp, ...

sigsetjmp or siglongjmp Subroutine

Purpose

Library

Syntax

Saves or restores stack context and signal mask.

Standard C Library (libc.a)

#include <setjmp.h>

int sigsetjmp (Environment,SaveMask)
sigjmp_buf Environment;
int SaveMask;

void siglongjmp (Environment, Value)
sigjmp_buf Environment;
int Value;

Description
The sigsetjmp subroutine saves the current stack context, and if the value of the SaveMask
parameter is not 0, the sigsetjmp subroutine also saves the current signal mask of the
process as part of the calling environment.

The siglongjmp subroutine restores the saved signal mask if and only if the Environment
parameter was initialized by a call to the sigsetjmp subroutine with a non-zero SaveMask
parameter argument.

Parameters
Environment Specifies an address for a sigjmp_buf structure.

SaveMask Specifies the flag used to determine if the signal mask is to be saved.

Value Specifies the return value from siglongjmp.

Return Values
The sigsetjmp subroutine returns a value of O. The siglongjmp subroutine returns a
non-zero value.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-668

The setjmp, longjmp subroutines, sigaction subroutine, sigprocmask subroutine,
sigsuspend subroutine.

Base Operating System Reference

sigstack

sigstack Subroutine

Purpose

Library

Syntax

Sets and gets signal stack context.

Standard C Library (Iibc.a)

#include <signal.h>

int sigstack (Instack, Outstack)
struct sigstack * Ins tack, * Outstack;

Description
The sigstack subroutine defines an alternate stack on which signals are to be processed.

When a signal occurs and its handler is to run on the signal stack, the system checks to see
if the process is already running on that stack. If so, it continues to do so even after the
handler returns. If not, the signal handler runs on the signal stack, and the original stack is
restored when the handler returns.

Use the sigvec or sigaction subroutine to specify whether a given signal handler routine is
to run on the signal stack.

Warning: A signal stack does not automatically increase in size as a normal stack does. If
the stack overflows, unpredictable results can occur.

Parameters
Instack

Outstack

Specifies the stack pointer of the new signal stack.

If the value of the Instack parameter is nonzero, it points to a sigstack
structure, which has the following members:

caddr_t ss_sp;
int ss_onstack;

The value of Instack->ss_sp specifies the stack pointer of the new signal
stack. Since stacks grow from numerically greater addresses to lower ones,
the stack pointer passed to the sigstack subroutine should point to the
numerically high end of the stack area to be used. Instack->ss_onstack
should be set to a value of 1 if the process is currently running on that stack;
otherwise, it should be a value of O.

If the value of the Instack parameter is 0 (that is, a NULL pointer), the signal
stack state is not set.

Points to structure where current signal stack state is stored.

If the value of the Outstack parameter is nonzero, it points to a sigstack
structure into which the sigstack subroutine stores the current signal stack
state.

Base Operating System Runtime 1-669

sigstack

If the value of the Outstack parameter is 0, the previous signal stack state is
not reported.

Return Values
Upon successful completion, the sigstack subroutine returns a value of O. Otherwise, a
value of -1 is returned and the global variable errno is set to indicate the error.

Error Code
The sigstack subroutine fails and the signal stack context remains unchanged if the
following is true:

EFAULT The Instack or Outstack parameter points outside of the address space of
the process.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The sigaction, signal, sigvec subroutines, setjmp subroutine, longjmp subroutine.

1-670 Base Operating System Reference

sigsuspend, ...

sigsuspend or sigpause Subroutine

Purpose

Library

Syntax

Atomically changes the set of blocked signals and waits for a signal.

Standard C Library (libc.a)

#include <signal.h>

int sigsuspend (Signa/Mask)
sigset_t * Signa/Mask;

int sigpause (Signa/Mask)
int Signa/Mask;

Description

Parameter

The sigsuspend subroutine replaces the signal mask of the process with the set of signals
pointed to by the Signa/Mask parameter, and then suspends execution of the process until
delivery of a signal whose action is either to execute a signal-catching function or to
terminate the process. The sigsuspend subroutine does not allow the SIGKILL or
SIGSTOP signals to be blocked. If a program attempts to block one of these signals, the
sigsuspend subroutine gives no indication of the error.

If delivery of a signal causes the process to end, the sigsuspend subroutine does not
return. If delivery of a signal causes a signal-catching function to execute, the sigsuspend
subroutine returns after the signal-catching function returns, with the signal mask restored to
the set that existed prior to the sigsuspend subroutine.

The sigsuspend subroutine sets the signal mask and waits for an unblocked signal as one

atomic operation. This means that signals cannot occur between the operations of setting

the mask and waiting for a signal. If a program invokes sigprocmask(SIG_SETMASK) and

pause separately, a signal that occurs between these subroutines might not be noticed by

pause.

In normal usage, a signal is blocked by using the sigprocmask(SIG_BLOCK, ...) subroutine
at the beginning of a critical section. The process then determines whether there is work for
it to do. If no work is to be done, the process waits for work by calling sigsuspend with the
mask previously returned by the sigprocmask subroutine.

The sigpause subroutine call uses sigsuspend to block the signals specified by the
Signa/Mask parameter, and then suspends execution of the process until delivery of a signal
whose action is either to execute a signal-catching function or to end the process. Signal of
value i is blocked if the j-th bit of the mask is set. Only signals with values 1 to 31 can be
blocked with the sigpause subroutine.

Signa/Mask Points to a set of Signals.

Base Operating System Runtime 1-671

sigsuspend, ...

Return Values
If a signal is caught by the calling process and control is returned from the signal handler,
the calling process resumes execution after sigsuspend or sigpause, which always return
a value of -1 and set the global variable errno to EINTR.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

The sigpause subroutine is provided for compatibility with older UNIX systems; its function
is a subset of the sigsuspend subroutine.

Related Information
The pause subroutine, sigprocmask subroutine, sigaction, sigvec, signal subroutine.

The sigsetmask, sigblock subroutines.

1-672 Base Operating System Reference

sin, ...

sin, cos, tan, asin, acos, atan, or atan2 Subroutine

Purpose

Library

Syntax

Computes the trigonometric and inverse trigonometric functions.

IEEE Math Library (\ibm.a)
or System V Math Library (libmsaa.a)

#inelude <math.h>

double sin (x)
double x;

double cos (x)
double x;

double tan (x)
double x;

double asin (x)
double x;

double aeos (x)
double x;

double atan (x)
double x;

double atan2 (y, x)
double 1, x;

Description
The sin subroutine, cos subroutine, and tan subroutine return the sine, cosine, and tangent,
respectively, of their parameters, which are in radians.

The asin subroutine returns the principal value of the arc sine of x, in the range [-pi/2, pi/21.

The aeos subroutine returns the principal value of the arc cosine of x, in the range [0, pi1.

The atan subroutine returns the principal value of the arc tangent of x, in the range [-pi/2,
pi/2].

The atan2 subroutine returns the principal value of the arc tangent of ylx, using the signs of
both parameters to determine the quadrant of the return value. The return values are in the
range [-pi, pi].

Parameters
x Specifies some double-precision floating-point value.

y Specifies some double-precision floating-point value.

Base Operating System Runtime 1-673

sin, ...

Error Codes
When using libm.a (-1m):

asin, acos Return a NaNQ and set errno to EDaM if the absolute value of the
parameter is greater than 1.

When using libmsaa.a (-Imsaa):

asin, acos, atan2 If the absolute value of the parameter of asin or acos is greater
than 1, or if both parameters of atan2 are 0, then 0 is returned and
errno is set to EDaM. In addition, a message indicating DOMAIN
error is printed on the standard output.

The sin, cos, and tan subroutines lose accuracy when passed a large value for the x
parameter. In the sin subroutine, for example, values of x that are greater than pi are
argument-reduced by first dividing them by the machine value for 2 * pi , and then using the
IEEE remainder of this division in place of x. Since the machine value of pi can only
approximate the infinitely precise value of pi, the remainder of x/(2 * pi) becomes less
accurate as x becomes larger. Similar loss of accuracy occurs for the cos and tan
subroutines during argument reduction of large arguments.

sin, cos When the parameter x is extremely large, these functions return 0
when there would be a complete loss of significance. In this case, a
message indicating TLOSS error is printed on the standard error
output. For less extreme values causing partial loss of significance,
a PLOSS error is generated but no message is printed. In both
cases, errno is set to ERANGE.

These error-handling procedures may be changed with the matherr subroutine when using
libmsaa.a (-Imsaa).

Implementation Specifics
These subroutines are part of AIX Base Operating System (BaS) Runtime.

Related Information
The sinh, cosh, tanh subroutines, matherr subroutine.

1-674 Base Operating System Reference

sinh, ...

sinh, cosh, or tanh Subroutine

Purpose

Library

Syntax

Computes hyperbolic functions.

IEEE Math Library (Iibm.a)
or System V Math Library (Iibmsaa.a)

#include <math.h>

double sinh (x)
double x;

double cosh (x)
double x;

double tanh (x)
double x;

Description

Parameter

The sinh subroutine, cosh subroutine, and tanh subroutine compute the hyperbolic
trigonometric functions of their parameters.

Note: Compile any routine that uses subroutines from the Iibm.a library with the -1m flag.
To compile the tanh.c file, for example:

cc tanh.c -1m

x Specifies some double-precision floating-point value.

Error Codes
If the correct value overflows, the sinh and cosh subroutines return a correctly signed
HUGE_VAL, and the global variable errno is set to ERANGE.

These error-handling procedures may be changed with the matherr subroutine when using
Iibmsaa.a (-Imsaa).

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The sin, cos, tan, asin, acos, atan, atan2 subroutines, matherr subroutine.

Base Operating System Runtime 1-675

sqrt, ...

sqrt or cbrt Subroutine

Purpose

Library

Syntax

Computes square root and cube root functions.

IEEE Math Library (Iibm.a)
or System V Math Library (Iibmsaa.a)

#include <math.h>

double sqrt (x)
double x;

double cbrt (x)
double x;

Description

Parameter

The sqrt subroutine and cbrt subroutine compute the square root and cube root,
respectively, of their parameters.

Note: Compile any routine that uses subroutines from the libm.a library with the -1m flag.
To compile the sqrt.c file, for example:

cc sqrt.c -1m

x Specifies some double-precision floating-point value.

Return Values
The sqrt (-0.0) = -0.0.

Error Codes
When using libm.a (-1m):

For the sqrt subroutine, if the value of x is negative, a NaNQ is returned and errno is set to
EDOM.

When using libmsaa.a (-Imsaa):

For sqrt, if the value of x is negative, a 0 is returned and errno is set to EDOM. A message
indicating DOMAIN error is printed on the standard error output.

These error-handling procedures may be changed with the matherr subroutine when using
libmsaa.a (-Imsaa).

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

The cbrt subroutine is not part of the ANSI C Library.

Related Information
The exp, expm1, log, log10, log1 p, pow subroutines.

1-676 Base Operating System Reference

src_err_msg Subroutine

Purpose

Library

Syntax

Retrieves an SRC error message.

System Resource Controller Library (Iibsrc.a)

int src_err_msg (errno, ErrorText)
int errno;
char ** ErrorText;

Description
The src_err_msg subroutine retrieves a System Resource Controller error message.

Parameters
errno Specifies the SRC error code

ErrorText Points to a character pOinter to place the SRC error message.

Return Values
Upon successful completion, the src_err_msg subroutine returns a value of O. Otherwise, a
value of -1 is returned. An error message is not returned.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
srcsbuf subroutine, srcsrpy subroutine, srcsrqt subroutine, srcrrqs subroutine, srcstat
subroutine, srcstathdr subroutine, srcstattxt subroutine, srcstop subroutine, srcstrt
subroutine, addssys subroutine, chssys subroutine, delssys subroutine, defssys
subroutine, getsubsvr subroutine, getssys subroutine.

The System Resource Controller Overview in General Programming Concepts.

Base Operating System Runtime 1-677

srcrrqs

srcrrqs Subroutine

Purpose

Library

Syntax

Gets subsystem reply information from the SRC request received.

System Resource Controller Library (libsrc.a)

#include <spc.h>

struct srchdr *srcrrqs (Packet)
char * Packet,

Descri ption

Parameter

The srcrrqs subroutine saves the srchdr information that is contained in the packet the
subsystem received from the System Resource Controller. The srchdr structure is defined in
the spc.h header file. This routine must be called by the subsystem to complete the
reception process of any packet received from the SRC. The subsystem requires this
information to reply to any request that the subsystem receives from the SRC.

Note: The saved srchdr information is over-written the next time this subroutine is called.

Packet Points to the SRC request packet received by the subsystem. If the
subsystem received the packet on a message queue, the Packet
parameter must point past the message type of the packet to the start of
the request information. If the subsystem received the information on a
socket, the Packet parameter points to the start of packet received on the
socket.

Return Value

Example

1-678

The srcrrqs subroutine returns a pointer to the static srchdr structure that contains the
return address for the subsystem response.

int rc;
struct sockaddr addr;
int addrsz;
struct srcreq packet;

/* wait to receive packet from SRC daemon */
rc=recvfrom(O, &packet, sizeof(packet) , 0, &addr, &addrsz);
/* grab the reply information from the SRC packet */
if (rc>O)

srchdr=srcrrqs (&packet);

Base Operating System Reference

srcrrqs

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

Related Information
srcsbuf subroutine, srcsrpy subroutine, srcsrqt subroutine, srcstat subroutine, srcstathdr
subroutine, srcstattxt subroutine, srcstop subroutine, srcstrt subroutine.

The System Resource Controller Overview in General Programming Concepts.

Base Operating System Runtime 1-679

srcsbuf

srcsbuf Subroutine

Purpose

Library

Syntax

Gets status for a subserver or a subsystem and returns status text to be printed.

System Resource Controller Library (Iibsrc.a)

#include <sys/spc.h>

int srcsbuf(Host, Type, SubsystemName, SubserverObject, SubsystemPID,
StatusType, StatusFrom, StatusText, Continued)

char *Host;
short Type;
char *SubsystemName;
char *SubserverObject;
int SubsystemPID;
short Status Type;
int StatusFrom;
char **StatusText;
int * Continued;

Description
The srcsbuf subroutine gets the status of a subserver or subsystem and returns printable
text for the status in the address pointed to by the Status Text parameter.

When the StatusType parameter is SHORTSTAT and the Type parameter is SUBSYSTEM,
the srcstat subroutine is called to get the status of one or more subsystems. When the
Status Type parameter is LONGSTAT and the Type parameter is SUBSYSTEM, the srcrsqt
subroutine is called to get the long status of one subsystem. When the Type parameter is
not SUBSYSTEM, the srcsrqt subroutine is called to get the long or short status of a
subserver.

Parameters
Host Specifies the foreign host on which this status action is requested. If

the host is null, the status request is sent to the System Resource
Controller on the local host.

1-680

Type

SubsystemName

Specifies whether the status request applies to the subsystem or
subserver. If the Type parameter is set to SUBSYSTEM, the status
request is for a subsystem. If not, the status request is for a
subserver and the Type parameter is a subserver code point.

Specifies the name of the subsystem on which to get status. To get
the status of all subsystems, use the constant SRCALLSUBSYS.
To get the status of a group of subsystems, the SubsystemName
parameter must start with the constant SRCGROUP, followed by
the name of the group for which you want status appended. If you
specify a null SubsystemName parameter, you must specify a
SubsystemPID parameter.

Base Operating System Reference

SubserverObject

SubsystemPID

Status Type

StatusFrom

Status Text

Continued

Return Value

srcsbuf

Specifies a subserver object. The SubserverObject parameter
modifies the Type parameter. The SubserverObject parameter is
ignored if the Type parameter is set to SUBSYSTEM. The use of
the SubserverObject parameter is determined by the subsystem
and the caller. This parameter will be placed in the objname field of
the subreq structure that is passed to the subsystem.

Specifies the PIO of the subsystem on which to get status, as
returned by the srcstrt subroutine. You must specify the
SubsystemPID parameter if multiple instances of the subsystem are
active and you request a long subsystem status or subserver status.
If you specify a null SubsystemPIO parameter, you must specify a
Subsystem Name parameter.

Specifies LONGSTAT for long status or SHORTSTAT for short
status.

Specifies whether status errors and messages are to be printed to
standard output or just returned to the caller. When the StatusFrom
parameter is SSHELL, the errors are printed to standard output.

Allocates memory for the printable text and sets StatusTextto point
to this memory. It is the responsibility of the calling process to free
the memory allocated for this buffer after the calling process prints
the text.

Specifies whether this call to the srcsbuf subroutine is a
continuation of a status request. If the Continued parameter is set to
NEWREQUEST, a request for status is sent and the srcsbuf
subroutine then waits for another. On return from the srcsbuf
subroutine is updated to the new continuation indicator from the
reply packet. On return, the Continued parameter will be sent to
END or STATCONTINUED by the subsystem. If the Continued
parameter is set to something other than END, this field must
remain equal to that value; otherwise, this function will not be able
to receive any more packets for the original status request. The
calling process should not set the value of the Continued parameter
to a value other than NEWREQUEST. Continued should not be
changed while more responses are expected.

If the srcsbuf subroutine succeeds, it returns the size (in bytes) of printable text pointed to
by the Status Text parameter.

Error Codes
The srcsbuf subroutine fails if one or more of the following are true:

The request could not be passed to the subsystem
because of some socket failure.

The subsystem uses signals. The request cannot
complete.

The SRC daemon is not active.

Base Operating System Runtime 1-681

srcsbuf

Examples

SRC_INET JNVALlD_HOST

SRC_INVALlD_USER

SRC_MMRY

SRC_NOCONTINUE

SRC_NORPLY

SRC_NSVR

SRC_SOCK

SRC_UHOST

SRC_WICH

1. To get the status of a subsystem:

char *status;
int continued=NEWREQUEST;
int rc;

do {

The local host is not in the remote /etc/hosts.equiv
file.

On the remote host, the local host is not known.

The user is not root or group system.

An SRC component could not allocate the memory
it needs.

Continued was not set to NEWREQUEST and no
continuation is currently active.

The request timed out waiting for a response.

The subsystem is not active.

There is a problem with SRC socket
communications.

The request was not passed to the subsystem. The
subsystem is stopping.

The SRC port is not defined in the /etc/services
file.

The foreign host is not known.

There are multiple instances of the subsystem
active.

rc=srcsbuf(UMaryCU, SUBSYSTEM, usrctest U, UU, 0,
SHORTSTAT, SSHELL, &status, continued);

if (status!=O)
{

}

printf(status);
free(status);
status=O;

} while (rc>O);

This gets short status of the srctest subsystem on the MaryC machine and prints the
formatted status to standard output.

1-682 Base Operating System Reference

2. To get the status of a subserver:

char *status;
int continued=NEWREQUESTi
int rc;

do {
rc=srcsbuf("", 12345, " srctest", /I", 0,

LONGSTAT, SSHELL, &status, continued);
if (status!=O)

{

}

printf(status);
free(status);
status=O;

} while (rc>O);

srcsbuf

This gets long status of the tester subserver on the local machine and prints the
formatted status to standard output.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

File
/etc/services Defines sockets and protocols used for Internet services.

Related Information
srcrrqs subroutine, srcsrpy subroutine, srcsrqt subroutine, srcstat subroutine, srcstathdr
subroutine, srcstattxt subroutine, srcstop subroutine, srcstrt subroutine.

The System Resource Controller Overview in General Programming Concepts.

Base Operating System Runtime 1-683

srcsrpy

srcsrpy Subroutine

Purpose

Library

Syntax

Sends a reply to a request from the SRC back to the client process.

System Resource Controller Library (libsrc.a)

#include <spc.h>

int srcsrpy (SRChdr,PPacket,PPacketSize,Continued)
struct srchdr *SRChdr,
char *PPacket,
int PPacketSize;
ushort Continued;

Description
The srcsrpy subroutine returns a subsystem reply to an SRC subsystem request. The
format and content of the reply are determined by the subsystem and the requester but must
start with a srchdr structure. The subsystem must reply with an already defined specific
format and content for the following requests: START, STOP, STATUS, REFRESH, and
TRACE. The START, STOP, REFRESH, and TRACE requests must be answered with a
srcrep structure. The STATUS request must be answered with a reply in the form of a
statbuf structure.

Note: The srcsrpy subroutine creates its own socket to send the subsystem reply packets.

Sending a Subsystem Reply Packet

1-684

Your subsystem should use the srcsrpy subroutine to return a packet to the requester. The
packet that your system sends should be in the form of a srcrep structure as defined in the
spc.h header file. The svrreply structure that is part of the srcrep structure contains the
subsystem reply. The svrreply structure immediately follows the srchdr structure in
memory.

struct srcrep
{

} ;

struct srchdr
struct srvreply

struct svrreply
{

} ;

short rtncode;
short objtype;
char objtext [65];
char objname [30];
char rtnmsg[256];

Fill in the rtncode field with the SRC error code that applies. Use SRC_SUBMSG as rtncode
to return a subsystem-specific NLS message.

Fill in the objtype field with SUBSYSTEM to indicate that this reply is for a subsystem or
subserver code point to indicate that this is a subserver.

Base Operating System Reference

srcsrpy

Fill in the objname field with the subsystem name, subserver type, or subserver object to
which this reply applies.

Fill in the rtnmsg field with a subsystem-specific NLS message.

The last packet from the subsystem must always have END specified in the Continued
parameter to the srcsrpy subroutine.

When responding from the subsystem, there are two types of continuation packets. The first
type of continuation packet is an informative message. This packet is not passed back to the
client but is simply printed to the client's standard output. This message must be NLS text
with message tokens filled in by the sending subsystem. To send this type of continuation
message, specify CONTINUED in the Continued parameter to the srcsrpy subroutine. The
STOP subsystem action does not allow any continuation; all other action requests received
by the subsystem from the SRC can be sent this type of reply message.

The second type of continuation packet is a reply packet and is passed back to the client for
the client to process. This type of continuation must be agreed upon by the subsystem and
the requester. Status requests sent to the subsystem use the second type of continuation.
To respond to subsystem status, specify STATCONTINUED in the Continued parameter to
the srcsrpy subroutine. For the status packet to be passed back to the client, the subsystem
must return packets with STATCONTINUED as the Continued parameter to the srcsrpy
subroutine. After all status or all subsystem-defined request reply packets are sent, an end
packet must be sent. The end packet is passed back to the client.

Sending Error Packets
When returning an SRC error, the reply packet should be the srcrep structure with
svrreply.objname filled in with the subsystem name, the subserver type, or the subserver
object in error. You may send a short int as a reply packet. Your subsystem can only return a
short as a packet when you are returning an SRC error number with an NLS message that
does not include any tokens.

When returning a non-SRC error, the reply packet should be the srcrep structure, with
svrreply.rtncode set to the constant SRC_SUBMSG and svrreply.rtnmsg set to a subsystem
specific NLS message. The rtnmsg field is printed on the client's standard output.

Sending Subsystem Status
To return status from the subsystem (short or long), allocate an array of statcode structures
plus a srchdr structure. The srchdr structure must start the buffer that you are sending in
response to the status request. The statcode structure is defined in the spc.h header file.

struct statcode
{

} ;

short objtype;
short status;
char objtext[65];
char objname[30];

Fill in the statcode.objtype field with the constant SUBSYSTEM to indicate that this is status
for a subsystem, or with a subserver code point to indicate that this is the status for a
subserver.

Fill the statcode.status field with one of the SRC status constants defined in the spc.h
header file.

Fill in the statcode.objtext field with the NLS text that you wish displayed as status.

Base Operating System Runtime 1-685

srcsrpy

Fill in the statcode.objname field with the name of the subsystem or subserver for which the
objtext applies.

Note: The subsystem and the requester can agree to send other subsystem-defined
information back to the requester.

Parameters
SRChdr Points to the reply address buffer as returned by the srcrrqs subroutine.

PPacket Points to the reply packet. The first element of the reply packet is a srchdr
structure, the cont element of the PPackel->srchdr structure is modified on
returning from the srcsrpy subroutine. The second element of the reply
packet should be a svrreply structure, an array of statcode structures, or
another format upon which the subsystem and the requester have agreed.

PPacketSize Specifies the number of bytes in the reply packet pOinted to by the PPacket
parameter. The PPacketSize parameter may be the size of a short, or it may
be between the size of a srchdr structure and SRCPKTMAX, which is
defined in the spc.h file.

Continued Indicates whether this reply is to be continued. If the Continued parameter is
set to the constant END, no more reply packets are sent for this request. If
the Continued parameter is set to CONTINUED, the second element of
what is indicated by the PPacket parameter must be a svrreply structure,
since the rtnmsg element of the svrreply structure is printed to standard
output. For a status reply, the Continued parameter is set to
STATCONTINUED, and the second element of what is pointed to by the
PPacket parameter must be an array of statcode structures. If a STOP
subsystem request is received, only one reply packet can be sent and the
Continued parameter must be set to END. Other continuation, as
determined by the subsystem and the requester, must be defined using
positive values for the Continued parameter other than the following:

o

2

END

CONTINUED

STATCONTINUED

Return Value
If the srcsrpy subroutine succeeds, it returns the value SRC_OK.

Error Code

1-686

The srcsrpy subroutine fails if one or both of the following are true:

SRC_SOCK

SRC_REPLVSZ

There is a problem with SRC socket communications.

SRC reply size is invalid.

Base Operating System Reference

Examples
1. To send a STOP subsystem reply:

struct srcrep return_packet;
struct srchdr *srchdr;

bzero(&return_packet,sizeof(return_packet))i
return_packet.svrreply.rtncode=SRC_OKi
strcpy(return_packet.svrreply,Usrctest")i

srcsrpy(srchdr,return_packet,sizeof(return_packet) ,END)i

This sends a message that the subsystem srctest is stopping successfully.

2. To send a START subserver reply:

struct srcrep return_packeti
struct srchdr *srchdri

bzero(&return_packet,sizeof(return_packet));
return_packet.svrreply.rtncode=SRC_SUBMSGi
strcpy(return_packet.svrreply,objname,lI rnys ubserver")i

srcsrpy

strcpy (return_packet. svrreply, objtext, uThe subserver, rnysubserver,
has been started");

srcsrpy(srchdr,return_packet,sizeof(return_packet) ,END);

This sends a message that the start subserver request was successful.

Base Operating System Runtime 1-687

srcsrpy

3. To send a status reply:

int rc;
struct sockaddr addr;
int addrsz;
struct srcreq packed;
struct
{

struct srchdr srchdr;
struct statcode statcode[lO];

} status;
struct srchdr *srchdr;
struct srcreq packet;

/* grab the reply information fron the SRC packet */
srchdr=srcrrqs(&packet);
bzero(&status.statcode[O].objname,

/* get SRC status header */
srcstathdr(status.statcode[O].objname,

status.statcode[O].objtext);

/* send status packet(s) */
srcsrpy(srchdr,&status,sizeof(status),STATCONTINUED);

srcsrpy(srchdr,&status,sizeof(status),STATCONTINUED);

/* send final packet */
srcsrpy(srchdr,&status,sizeof(struct srchdr),END);

This sends several status packets.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-688

srcrrqs subroutine, srcsbuf subroutine, srcsrqt subroutine, srcstat subroutine, srcstathdr
subroutine, srcstattxt subroutine, srcstop subroutine, srcstrt subroutine.

The System Resource Controller Overview in General Programming Concepts.

Base Operating System Reference

srcsrqt

srcsrqt Subroutine

Purpose

Library

Syntax

Sends a request to a subsystem.

System Resource Controller Library (Iibsrc.a)

#include <sys/spc.h>

srcsrqt(Host,SubsystemName,SubsystemP/D,RequestLength,
Subsystem Request, Rep/yLength, Rep/yBuffer, Start/tA/so, Continued)

char *Host;
char *SubsystemName;
int SubsystemP/D,;
short RequestLength;
char * Subsystem Request;
short *Rep/yLength;
char *ReplyBuffer,
int StartltAlso;
int * Continued;

Description
The srcsrqt subroutine sends a request to a subsystem and returns one or more replies to
the caller. The format of the request and the reply is determined by the caller and the
subsystem.

Note: The srcsrqt subroutine creates its own socket to send a request to the subsystem.
The socket that this function opens remains open until an error or an end packet is
received.

Two types of continuation are returned by the srcsrqt subroutine:

No continuation

Reply continuation

Parameters
SubsystemPID

Host

SubsystemName

RequestLength

ReplyBuffer->srchdr.continued is set to the constant END.

ReplyBuffer->srchdr.continued is not set to the constant END but
to an agreed upon positive value between the calling process and
the subsystem, and the packet is returned to the caller.

The process 10 of the subsystem.

Specifies the foreign host on which this subsystem request is to
be sent. If the host is null, the request is sent to the subsystem
on the local host.

Specifies the name of the subsystem to which this request is to
be sent. You must specify a SubsystemName if you do not
specify a SubsystemPID.

Specifies the length, in bytes, of the request to be sent to the
subsystem.

Base Operating System Runtime 1-689

srcsrqt

Subsystem Request

Rep/yLength

Rep/yBuffer

Start/tA/so

Continued

Points to the subsystem request packet.

Specifies the maximum length, in bytes, of the reply to be
received from the subsystem. On return from the srcsrqt
subroutine, the Rep/yLength parameter is set to the actual length
of the subsystem reply packet.

Points to a buffer for the receipt of the reply packet from the
subsystem.

Specifies whether the subsystem should be started if it is
non-active. When nonzero, the System Resource Controller
attempts to start a non-active subsystem, and then passes the
request to the subsystem.

Specifies whether this call to the srcsrqt subroutine is a
continuation of a previous request. If the Continued parameter is
set to NEWREQUEST, a request for it is sent to the subsystem
and waits for another response. The calling process should never
set Continuedto any value other than NEWREQUEST. The last
response from the subsystem will set Continued to END.

Return Value
If the srcsrqt subroutine is successful, the value SRC_OK is returned.

Error Codes

1-690

The srcsrqt subroutine fails if one or more of the following are true:

SRC_DMNA

SRC_INET _AUTHORIZED_HOST

SRC_INET _INVALID_HOST

SRC_INVALID _USER

SRC_MMRY

SRC_NOCONTINUE

SRC_NORPLY

SRC_NSVR

SRC_REQLEN2BIG

Base Operating System Reference

The request could not be passed to the
subsystem because of a socket failure.

The subsystem uses signals. The request cannot
complete.

The SRC daemon is not active.

The local host is not in the remote
letc/hosts.equiv file.

On the remote host, the local host is not known.

The user is not root or group system.

An SRC component could not allocate the
memory it needs.

Continued was not set to NEWREQUEST and no
continuation is currently active

The request timed out waiting for a response.

The subsystem is not active.

The RequestLength is greater than 2000 bytes.
(Only 2000 bytes are allowed.)

Examples

There is a problem with SRC socket
communications.

srcsrqt

The request was not passed to the subsystem.
The subsystem is stopping.

The SRC port is not defined in the /etc/services
file.

1. To request long subsystem status:

int rc
short reqlen
short reqlen
struct
{

struct srchdr srchdr;

The foreign host is not known.

struct statcode statcode[20];
} statbuf;
struct subreq subreq;

subreq.action=STATUS
subreq.object=SUBSYSTEM
subreq.parrn1=LONGSTAT;
strcpy(subreq.objnarne,usrctest");
statbuf.srchdr.cont=NEWREQUEST;
reqlen=sizeof(statbuf);
reqlen=sizeof(subreq);
rc=srcsrqt(UMaryC", usrctest", 0, reqlen,

&subreq, &reqlen, &statbuf, SRC_NO);

This gets long status of the subsystem srctest on the MaryC machine. The subsystem
keeps sending status packets until statbuf.srchdr.cont=END.

2. To start a subserver:

int rc
short reqlen
short reqlen
struct
{

struct srchdr srchdr;
struct statcode statcode[20];

} statbuf;
struct subreq subreq;

subreq.action=START
subreq.object=1234
statbuf.srchdr.cont=NEWREQUEST;
reqlen=sizeof(statbuf);
reqlen=sizeof(subreq);
rc=srcsrqt(U", un, 987, reqlen, &subreq,

&reqlen, &statbuf, SRC_NO);

This starts the subserver with the code point of 1234, but only if the subsystem is already
active.

Base Operating System Runtime 1-691

srcsrqt

3. To start a subserver and a subsystem:

int rc
short reqlen
short reqlen
struct
{

struct srchdr srchdr;
struct statcode statcode[20]i

} statbufi
struct subreq subreq~

subreq.action=START
subreq.object=1234
statbuf.srchdr.cont=NEWREQUEST~

reqlen=sizeof(statbuf)i
reqlen=sizeof(subreq)i
rc=srcsrqt("U, "U, 987, reqlen, &subreq,

&replen, &statbuf, SRC_YES)i

This starts the subserver with the code point of 1234 and if the subsystem to which this
subserver belongs is not active, the subsystem is started.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

File
/etc/services Defines sockets and protocols used for Internet services.

Related Information

1-692

srcrrqs subroutine, srcsbuf subroutine, srcsrpy subroutine, srcstat subroutine, srcstathdr
subroutine, srcstattxt subroutine, srcstop subroutine, srcstrt subroutine.

The System Resource Controller Overview in General Programming Concepts.

Base Operating System Reference

srcstat

srcstat Subroutine

Purpose

Library

Syntax

Gets short status on a subsystem.

System Resource Controller Library (Iibsrc.a)

#include <spc.h>

int srcstat(Host, SubsystemPID, SubsystemName, ReplyLength,
Status Reply, Continued)

char *Host;
char *SubsystemName;
int SubsystemPID;
short *ReplyLength;
struct statrep *StatusReply;
int * Continued;

Description
The srcstat subroutine sends a short status request to the System Resource Controller and
returns status on one or more subsystems to the caller.

Parameters
Host

SubsystemName

SubsystemPID

ReplyLength

Sta tus Reply

Specifies the foreign host on which this status action is requested. If
the host is null, the status request is sent to the System Resource
Controller on the local host.

Specifies the name of the subsystem on which to get short status. To
get status of all subsystems, use the constant SRCALLSUBSYS. To
get status of a group of subsystems, the SubsystemName parameter
must start with the constant SRCGROUP, followed by the name of the
group for which you want status appended. If you specify a null
SubsystemName, you must specify a SubsystemPID parameter.

Specifies the PIO of the subsystem on which to get status as returned
by the srcstat subroutine. You must specify the SubsystemPID
parameter if multiple instances of the subsystem are active and you
request a long subsystem status or subserver status. If you specify a
null SubsystemPID parameter, you must specify a SubsystemName
parameter.

Specifies size of a srchdr structure plus the number of statcode
structures times the size of one statcode structure. On return from the
the srcstat subroutine, this value is updated.

Specifies a pointer to an array of statcode structures to receive the
status reply for the requested subsystem.The first element of the
statcode array returned contains the status title line. The statcode
structure is defined in the spc.h include file.

Base Operating System Runtime 1-693

srcstat

Continued Specifies whether this call to the srcstat subroutine is a continuation
of a previous status request. If the Continued parameter is set to
NEWREQUEST, a request for short subsystem status is sent to the
System Resource Controller and srcstat waits for the first status
response. The calling process should never set Continued to a value
other than NEWREQUEST. The last response for the System
Resource Controller sets Continuedto END.

Return Value
If the srcstat subroutine succeeds, it returns the size of the statcode buffer, which is a
multiple of the statcode structure size.

Error Codes

Examples

The srcstat subroutine fails if one or more of the following are true:

SRC_DMNA

SRC _INET _AUTHORIZED_HOST

SRC_INET JNVALID _HOST

SRC_INVALlD_USER

SRC_MMRV

SRC_NOCONTINUE

SRC_NORPLV

SRC_SOCK

1. To request the status of a subsystem:

The SRC daemon is not active.

The local host is not in the remote
letc/hosts.equiv file.

On the remote host, the local host is not known.

The user is not root or group system.

An SRC component could not allocate the
memory it needs.

Continued was not set to NEWREQUEST and no
continuation is currently active.

The request timed out waiting for a response.

There is a problem with SRC socket
communications.

The SRC port is not defined in the /etc/services
file.

The foreign host is not known.

struct statcode statcode[20];
short replen=sizeof(statcode);

srcstat(nMaryC",nsrctest",O,&replen,statcode);

This requests short status of all instances of the subsystem request on the MaryC
machine.

1-694 Base Operating System Reference

2. To request the status of all subsystems:

struct statcode statcode[20];
short replen=sizeof(statcode);

srcstat(H",SRCALLSUBSYS,O,&replen,statcode);

This requests short status of all subsystems on the local machine.

3. To request the status for a group of subsystems, enter:

struct statcode statcode[20];
short replen=sizeof(statcode);
char subsysname[30];

strcpy(subsysname,SRCGROUP);
strcpy(subsysname,Htcpip");
srcstat(H",subsysname,O,&replen,statcode);

srcstat

This requests short status of all members of the subsystem group tcpip on the local
J machine.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

File
/etc/services Defines the sockets and protocols used for Internet services.

Related Information
srcrrqs subroutine, srcsbuf subroutine, srcsrpy subroutine, srcsrqt subroutine, srcstathdr
subroutine, srcstattxt subroutine, srcstop subroutine, srcstrt subroutine.

The System Resource Controller Overview in General Programming Concepts.

Base Operating System Runtime 1-695

srcstathdr

srcstathdr Subroutine

Purpose

Library

Syntax

Gets the SRC status text title line.

System Resource Controller Library (Iibsrc.a)

void srcstathdr(Title 1, Title2)
char *Title 1;
char * Title2;

Description
The srcstathdr subroutine returns the SRC line header for status.

Parameters
Title 1 Specifies the objname field of a statcode structure. The subsystem name

title will be placed in the Title 1 parameter.

Title2 Specifies the objtext field of a statcode structure. The remaining titles will
be placed in the Title2 parameter.

Return Values
The subsystem name title is returned in the Title 1 parameter. The remaining titles are
returned in the Title2 parameter.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-696

srcrrqs subroutine, srcsbuf subroutine, srcsrpy subroutine, srcsrqt subroutine, srcstat
subroutine, srcstattxt subroutine, srcstop subroutine, srcstrt subroutine.

The System Resource Controller Overview in General Programming Concepts.

Base Operating System Reference

srcstattxt

srcstattxt Subroutine

Purpose

Library

Syntax

Gets the SRC status text representation for a status code.

System Resource Controller Library (libsrc.a)

char *srcstatxt (StatusCode)
short StatusCode;

Description

Parameter

The srcstattxt subroutine, given an SRC status code, gets the text representation and
returns a pointer to this text.

StatusCode Specifies an SRC status code to be translated into meaningful text.

Return Value
The srcstattxt subroutine returns a pointer to the text representation of a status code.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The srcsbuf subroutine, srcrrqs subroutine, srcsrpy subroutine, srcsqrt subroutine,
srcstat subroutine, srcstathdr subroutine, srcstop subroutine, srcstrt subroutine.

The System Resource Controller Overview in General Programming Concepts.

Base Operating System Runtime 1-697

srcstop

srcstop Subroutine

Purpose

Library

Syntax

Stops a subsystem.

System Resource Controller Library (libsrc.a)

#include <sys/spc.h>

srcstop(Host,SubsystemName, SubsystemPID, Stop Type, Reply Length,
ServerReply, StopFrom)

char *Host;
char *SubsystemName;
int SubsystemPID;
short Stop Type;
short *ReplyLength;
struct srcrep * ServerReply;
int StopFrom;

Description
The srcstop subroutine sends a stop subsystem request to a subsystem and waits for a
stop reply from the SRC or the subsystem. The srcstop subroutine can only stop a
subsystem that was started by the System Resource Controller.

Parameters
Host Specifies the foreign host on which this stop action is requested. If

the host is the NULL value, the request is sent to the System
Resource Controller on the local host.

1-698

SubsystemName

SubsystemPID

Stop Type

Specifies the name of the subsystem to stop.

Specifies the process 10 of the system to stop as returned by the
srcstrt subroutine. If you specify a null SubsystemPID parameter,
you must specify a SubsystemName parameter.

Specifies the type of stop requested of the subsystem. If this
parameter is null, a normal stop is assumed. The Stop Type
parameter must be one of the following values:

CANCEL

FORCE

Requires a quick stop of the subsystem. The
subsystem is sent a SIGTERM signal, and after the
wait time defined in the subsystem object, the
System Resource Controller issues a SIGKILL to
the subsystem. This waiting period allows the
subsystem to clean up all its resources and
terminate. The stop reply is returned by the SRC.

Requests a quick stop of the subsystem and all its
subservers. The stop reply is returned by the SRC
for subsystems that use signals and by the
subsystem for other communication types.

Base Operating System Reference

ReplyLength

ServerReply

Stop Fro m

Return Values

NORMAL

srcstop

Requests the subsystem to terminate after all
current subsystem activity has completed. The stop
reply is returned by the SRC for subsystems that
use signals and by the subsystem for other
communication types.

Specifies the maximum length, in bytes, of the stop reply. On return
from the srcstop subroutine will be set to the actual length of the
subsystem reply packet received.

Points to an svrreply structure that will receive the subsystem stop
reply.

Specifies whether the srcstop is to display stop results to standard
output. If the StopFrom parameter is set to SSHELL, the stop
results are displayed to standard output and the srcstop subroutine
always returns successfully. If the StopFrom parameter is set to
SDAEMON, the stop results are not displayed to standard output,
but are passed back to the caller.

Upon successful completion, the srcstop subroutine returns SRC_OK or SRC_STPOK.

Error Codes
The srcstop subroutine fails if one or more of the following are true:

SRC_BADFSIG

SRC_BADNSIG

SRC_BADSOCK

SRC_DMNA

SRC_INET _AUTHORIZED_HOST

SRC_INET _INVALID _HOST

SRC_INVALlD_USER

SRC_MMRY

SRC_NORPLV

SRC_NOTROOT

SRC_SOCK

The stop force signal is an invalid signal.

The stop normal signal is an invalid signal.

The stop request could not be passed to the
subsystem on its communication socket.

The SRC daemon is not active.

The local host is not in the remote
letc/hosts.equiv file.

On the remote host, the local host is not known.

The user is not root or group system.

An SRC component could not allocate the
memory it needs.

The request timed out waiting for a response.

The SRC daemon is not running as root.

There is a problem with SRC socket
communications.

The request was not passed to the subsystem.
The subsystem is stopping.

The subsystem is unknown to the SRC daemon.

Base Operating System Runtime 1-699

srcstop

Examples

SRC_UHOST

SRC_PARM

1. To stop all instances of a subsystem:

int rc~

The remote SRC port is not defined in the
/etc/services file.

The foreign host is not known.

Invalid parameter passed.

struct svrreply svrreply~
short replen=sizeof(svrreply);

rc=srcstop(UMaryCU,usrctestU,O,FORCE,&replen,&svrreply,SDAEMON);

This will request a stop subsystem with a stop type of force for all instances of the
subsystem srctest on the MaryC machine and does not print a message to standard
output about the status of the stop.

2. To stop a single instance of a subsystem:

struct svrreply svrreply;
short replen=sizeof(svrreply);

rc=srcstop(uu,un,999,CANCEL,&replen,&svrreply,SSHELL)~

This will request a stop subsystem with a stop type of cancel, with the PID of 999 on the
local machine and prints a message to standard output about the status of the stop.

Implementation Specifics
This subroutine is part of AIX Base Operating System (80S) Runtime.

File
/etc/services Defines sockets and protocols used for Internet services.

Related Information

1-700

The srcrrqs subroutine, srcsbuf subroutine, srcsrpy subroutine, srcsrqt subroutine,
srcstat subroutine, srcstathdr subroutine, srcstattxt subroutine, srcstrt subroutine.

The System Resource Controller Overview in General Programming Concepts.

Base Operating System Reference

srcstrt

srcstrt Subroutine

Purpose

Library

Syntax

Starts a subsystem.

System Resource Controller Library (libsrc.a)

#include <sys/spc.h>

srcstrt(Host, Subsystem Name, En vironment, A rguments, Restart, StartFrom)
char *Host;
char *SubsystemName;
char *Environment;
char * Arguments;
unsigned int Restart;
int StartFrom;

Description
The srcstrt subroutine sends a start subsystem request packet and waits for a reply from
the SRC.

Parameters
Host

Subsystem Name

Environment

Arguments

Specifies the foreign host on which this start subsystem action is
requested. If the host is null, the request is sent to the System
Resource Controller on the local host.

Specifies the name of the subsystem to start.

Specifies a string that is placed in the subsystem environment when
the subsystem is executed. A maximum of 2400 characters is
permitted between Environment and Arguments. The srcstrt
subroutine fails if more than 2400 characters are specified. The
environmental string is parsed by the SRC according to the same
rules that are used by the shell; for example, quoted strings are
assigned to a single Environment variable and blanks outside a
quoted string delimit each environmental variable.

Specifies a string that is passed to the subsystem when the
subsystem is executed. The string is parsed from the command line
and appended to the command line arguments from the subsystem
object class. A maximum of 2400 characters is permitted between
Environment and Arguments. The srcstrt subroutine fails if more
than 2400 characters are specified. The command argument is
parsed by the SRC according to the same rules that are used by the
shell; for example, quoted strings are passed as a single argument
and blanks outside a quoted string delimit arguments.

Base Operating System Runtime 1-701

srcstrt

Restart

StartFrom

Specifies override on subsystem restart. If the Restart parameter is
set to SRC_NO, the subsystem's restart definition from the
subsystem object class is used. If the Restart parameter is set to
SRC_ YES, the restart of a subsystem is not attempted if it
terminates abnormally.

Specifies whether the srcstrt subroutine is to display start results to
standard output. If the StartFrom parameter is set to SSHELL, the
start results are displayed to standard output, and the srcstrt
subroutine always returns successfully. If the StartFrom parameter
is set to SDAEMON, the start results are not displayed to standard
output but are passed back to the caller.

Return Values
When StartFrom is equal to SSHELL, the srcstrt subroutine returns the value SRC_OK.
Otherwise, it returns the subsystem PID.

Error Codes

1-702

The srcstart subroutine fails if any of the following are true:

SRC_AUDITID

SRC_DMNA

SRC_FEXE

SRC _IN ET _AUTHORIZED_HOST

SRC_INET_INVALlD_HOST

SRC_INVALlD_USER

SRC_INPT

SRC_NORPLY

SRC_OUT

Base Operating System Reference

The audit user ID is invalid.

The SAC daemon is not active.

The subsystem could not be forked and execed.

The local host is not in the remote
letc/hosts.equiv file.

On the remote host, the local host is not known.

The user is not root or group system.

The subsystem standard input file could not be
established.

An SAC component could not allocate the
memory it needs.

The subsystem message queue could not be
created.

Multiple instance of the subsystem are not
allowed.

The request timed out waiting for a response.

The subsystem standard output file could not be
established.

A pipe could not be established for the
subsystem.

The subsystem standard error file could not be
established.

Examples

SRC_SUBSYSID

SRC_SOCK

srcstrt

The subsystem communication socket could not
be created.

The system user 10 is invalid.

There is a problem with SRC socket
communications.

The subsystem is unknown to the SRC daemon.

The SRC port is not defined in the /etc/services
header file.

The foreign host is not known.

1. To start a subsystem passing the Environment and Arguments parameters:

rc=srcstrt(nn,nsrctest","HOME=/tmp TERM=ibm6155",
n_z \nthe z flag argument\"",SRC_YES,SSHELL);

This starts the srctest subsystem on the local host placing HOME=/tmp,
TERM=ibm6155 in the environment and -z and the z flag argument as two
arguments to the subsystem. This also displays the results of the start command to
standard output and allows the SRC to restart the subsystem should it end abnormally.

2. To start a subsystem on a foreign host:

This starts the srctest subsystem on the MaryC machine. This does not display the
results of the start command to standard output and does not allow the SRC to restart the
subsystem should it end abnormally.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

File
/etc/services Defines sockets and protocols used for Internet services.

Related Information
The srcrrqs subroutine, srcsbuf subroutine, srcsrqt subroutine, srcsrpy subroutine,
srcstat subroutine, srcstathdr subroutine, srcstattxt subroutine, srcstop subroutine.

The System Resource Controller Overview in General Programming Concepts.

Base Operating System Runtime 1-703

ssignal, ...

ssignal or gsignal Subroutine

Purpose

Library

Syntax

Implements a software signal facility.

Standard C Library (libc.a)

#include <signal,h>

void (*ssignal (Signal, Action))()
int Signal;
void (* A ction) ();

int gsignal (Signa~
int Signal;

Description

1-704

The ssignal and gSignal subroutines implement a software facility similar to that of the
signal subroutine and the kill subroutine. However, there is no connection between the two
facilities. User programs can use the ssignal and gsignal subroutines to handle exceptional
processing within an application. The signal subroutine and related subroutines handle
system-defined exceptions.

The software signals available are associated with integers in the range 1 through 16. Other
values are reserved for use by the C library and should not be used.

The ssignal subroutine associates the procedure specified by the Action parameter with the
software signal specified by the Signal parameter. The gsignal subroutine raises the Signal,
causing the procedure specified by the Action parameter to be taken.

The Action parameter is either a pointer to a user-defined subroutine, or one of the
constants SIG_DFL (default action) and S'G_'GN (ignore signal). The ssignal subroutine
returns the procedure that was previously established for that signal. If no procedure was
established before, or if the signal number is i"egal, then ssginal returns the value
SIG_DFL.

The gsignal subroutine raises the signal specified by the Signal parameter by doing the
following:

• If the procedure for Signal is SIG_DFL, the gsignal subroutine returns a value of 0 and
takes no other action.

• If the procedure for Signal is SIG_IGN, the gsignal subroutine returns a value of 1 and
takes no other action.

• If the procedure for Signal is a subroutine, the Action value is reset to SIG_DFL and the
subroutine is called with Signal passed as its parameter. The gsignal subroutine returns
a value of 2.

• If the procedure for Signal is i"egal or if no procedure is specified for that signal, gsignal
returns a value of 0 and takes no other action.

Base Operating System Reference

Parameters
Signal

Action

Specifies a signal.

Specifies a procedure.

Implementation Specifics

ssignal, ...

These subroutines are part of AIX Base Operating System (80S) Runtime.

Related Information
The signal subroutine.

The kill, killpg system calls.

Base Operating System Runtime 1-705

statacl, ...

statacl or fstatacl Subroutine

Purpose

Library

Syntax

Retrieves the access control information for a file.

Standard C Library (libc.a)

#include <sys/acl.h>
#include <sys/stat.h>

int statacl (Path, Command, ACL, ACLSize)
char *Path;
int Command;
struct acl * ACL;
int ACLSize;

int fstatacl (FileDescriptor, Command, ACL, ACLSize)
int FileDescriptor,
int Command;
struct acl *ACL;
int ACLSize;

Description
The statacl and fstatacl subroutines return the access control information for a file system
object.

Parameters
Path Specifies a pointer to the path name of a file.

1-706

File Descrip tor

Command

ACL

Specifies the file descriptor of an open file.

Specifies the mode of the path interpretation for Path, specifically
whether to retrieve information about a symbolic link or mount paint. Valid
values for Command are defined in the stat.h file and include:

STX_LlNK, STX_MOUNT, or STX_NORMAL

Specifies a pointer to a buffer to contain the Access Control List of the file
system object. The format of an ACL is defined in the sys/acl.h file and
includes the following members:

the size of the Access Control List

the file mode

the access permissions for the file owner

the access permissions for the file group

the access permissions for default class others

an array of the extended entries for this access control
list

Base Operating System Reference

ACLSize

Return Values

statacl, ...

The valid values for the acl_mode parameter are defined in sys/mode.h.

The fields for the base ACL, owner, group, and others, may contain the
following bits which are defined in sys/access.h:

Allows read permission.

Allows write permission.

Allows execute or search permission.

Specifies the size of the buffer to contain the Access Control List. If this
value is too small, the first word of the ACL is set to the size of the buffer
needed.

On successful completion, the statacl and fstatacl subroutines return a value of O.
Otherwise, a value of -1 is returned and the global variable errno is set to indicate the error.

Error Codes
The statacl subroutine fails if one or more of the following are true:

ENOTDIR

ENOENT

ENOENT

EACCESS

EFAULT

ESTALE

ELOOP

ENOENT

A component of the Path prefix is not a directory.

A component of the Path does not exist or has the disallow truncation
attribute (see the ulimit subroutine).

The Path parameter was null.

Search permission is denied on a component of the Path prefix.

The Path parameter pOints to a location outside of the allocated address
space of the process.

The process's root or current directory is located in a virtual file system that
has been unmounted.

Too many symbolic links were encountered in translating the Path
parameter.

A symbolic link was named, but the file to which it refers does not exist.

ENAMETOOLONG
A component of the Path parameter exceeded 255 characters or the entire
Path parameter exceeded 1023 characters.

The fstatacl subroutine fails if the following is true:

EBADF The file descriptor FileDescriptor is not valid.

The statacl or fstatacl subroutine fails if one or more of the following are true:

EFAULT

EINVAL

The ACL parameter points to a location outside of the allocated address
space of the process.

The Command parameter is not one of the valid values, STX_LlNK,
STX_MOUNT, STX_NORMAL.

Base Operating System Runtime 1-707

statacl, ...

ENOSPC

EIO

The ACLSize parameter indicates the buffer at ACL is too small to hold the
Access Control List. In this case,the first word of the buffer is set to the size
of the buffer required.

An 1/0 error occurred during the operation.

If NFS is installed on your system, the statacl and fstatacl subroutines can also fail if the
following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-708

The chacl subroutine, statacl subroutine, stat subroutine.

The acl_get subroutine, acl_put subroutine, acl_set subroutine, acl_chg subroutine.

The acl_get command, acl_put command, chmod command.

Base Operating System Reference

statfs, ...

statfs, fstatfs, or ustat Subroutine

Purpose

Syntax

Gets file system statistics.

#include <sys/statfs.h>

int statfs{Path, StatusBuffet}
char *Path;
struct statfs * StatusBuffer,

int fstatfs{FileDescriptor, StatusBuffet}
int FileDescriptor,
struct statfs * StatusBuffer,

#include <sys/types.h>
#include <ustat.h>

int ustat(Device, Buffet}
dev_t Device;
struct ustat * Buffer;

Description
The statfs and fstatfs subroutines return information about a mounted file system that
contains the file described by Path or File Descrip tor. The returned information is in the
format of a statfs structure, described in the sys/statfs.h header file.

The ustat subroutine also returns information about a mounted file system identified by
Device. This device identifier is for any given file and can be determined by examining the
st_dev field of the stat structure defined in the sys/stat.h header file. The returned
information is in the format of a ustat structure, described in the ustat.h header file. This
subroutine is superseded by statfs and fstatfs, and it is recommended that one of these
latter subroutines be used instead.

Parameters
Path

File Des crip tor

StatusBuffer

Device

Buffer

Return Values

The path name of any file within the mounted file system.

A file descriptor obtained by a successful open or fcntl subroutine.

A pointer to a statfs buffer to hold the returned information from statfs or
fstatfs.

The ID of the device. It corresponds to the st_rdev member of the
structure returned by the stat subroutine. The stat subroutine and the
sys/stat.h header file provide more information about the device driver.

A pointer to a ustat buffer to hold the returned information.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned,
and the global variable errno is set to indicate the error.

Base Operating System Runtime 1-709

statfs, ...

Error Codes
The statfs, fstatfs, and ustat subroutines fail if the following is true:

EFAULT The Buffer parameter pOints to a location outside of the allocated address
space of the process.

The fstatfs subroutine fails if the following is true:

EBADF

EIO

The FileDescriptor parameter is not a valid file descriptor.

An I/O error occurred while reading from the file system.

The statfs subroutine can also fail if additional errors on page A-1 occur.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The stat subroutine.

The statfs.h file, ustat.h file.

1-710 Base Operating System Reference

statx, ...

statx, stat, fstatx, fstat, fullstat, or ffullstat Subroutine

Purpose

Library

Syntax

Provides information about a file.

Standard C Library (libc.a)

#include <sys/stat.h>

stat(Path, Buffer)
char *Path;
struct stat * Buffer,

Istat(Path, Buffet}
char *Path;
struct stat * Buffer,

fstat(File Descriptor, Buffery
int FileDescriptor,
struct stat * Buffer,

int statx(Path, Buffer, Length, Command)
char *Path;
struct stat * Buffer,
int Length;
int Command;

int fstatx(FileDescriptor, Buffer, Length, Command)
int FileDescriptor,
struct stat * Buffer,
int Length;
int Command;

#include <sys/fullstat.h>

fulistat(Path, Command, Buffet}
struct fullstat *Buffer,
char *Path;
int Command;

ffulistat(FileDescriptor, Command, Buffery
struct fullstat *Buffer,
int FileDescriptor,
int Command;

Description
The stat subroutine obtains information about the file named by Path. Read, write, or
execute permission for the named file is not required, but all directories listed in the path
name leading to the file must be searchable. The file information, which is a subset of the
stat structure, is written to the area specified by the Buffer parameter.

The Istat subroutine is like stat except in the case where the named file is a symbolic link, in
which case Istat returns information about the link, while stat returns information about the
file the link references.

Base Operating System Runtime 1-711

statx, ...

The fstat subroutine is like stat except that the information obtained is about an open file
referenced by the FileDescriptor parameter.

The statx subroutine is an extension of stat. It can obtain a greater set of file information,
and the Path parameter can be processed differently, depending on the contents of the
Command parameter. The Command parameter provides the ability to collect information
about symbolic links, as in Istat, as well as information about mount points and hidden
directories. The statx subroutine returns only as much information as is specified by the
Length parameter.

The fstatx subroutine is like statx except that the information obtained is about an open file
referenced by the FileDescriptor parameter, as in fstat.

The fullstat and ffullstat subroutines are interfaces that are maintained for backward
compatibility. The fullstat structure is identical to the stat structure with the exception of
some field names.

Parameters
Path The path name identifying the file. This name can be interpreted

differently depending on the interface used.

1~712

FileDescriptor

Buffer

Length

Command

The file descriptor identifying the open file.

A pointer to the stat structure in which information is returned. The
stat structure is described in the sys/stat.h header file.

Indicates the amount of information, in bytes, to be returned. Any value
between 0 and STATXSIZE may be specified. The following macros
may be used:

STATSIZE

FULLSTATSIZE

STATSIZE

The subset of the stat structure that is normally
returned for a stat call.

The subset of the stat (fullstat) structure that is
normally returned for a fullstat call.

The complete stat structure. A Length of 0 is
equivalent to STATXSIZE.

Specifies processing options.

For statx, the Command parameter determines how to interpret the
provided path name; specifically, whether to retrieve information about
a symbolic link, hidden directory or mount point. Options can be
combined by logically DRing them together.

If the Command parameter specifies STX_LlNK
and the Path parameter is a path name that
refers to a symboliclink,statx returns
information about the symbolic link. If STX_LlNK
is not specified, statx returns information about
the file to which the link refers.

If Command specifies STX_LlNK and Path
refers to a symbolic link, the st_mode field of the
returned stat structure indicates the file is a
symbolic link.

Base Operating System Reference

Return Values

STX_NORMAL

statx, ...

If Command specifies STX_HIDDEN and Path is
a path name that refers to a hidden directory,
stat x returns information about the hidden
directory. If STX_HIDDEN is not specified, statx
returns information about a subdirectory of the
hidden directory.

If Command specifies STX_HIDDEN and Path
refers to a hidden directory, the st_mode field of
the returned stat structure indicates this is a
hidden directory.

If Command specifies STX_MOUNT and Path is
the name of a file or directory which has been
mounted over, statx returns information about
the mounted-over file. If STX_MOUNT is not
specified, statx returns information about the
mounted file or directory (the root of a virtual file
system).

If Command specifies STX_MOUNT, the
FS_MOUNT bit in the st_flag field of the returned
stat structure is set if (and only if) this file is
mounted over.

If Command does not specify STX_MOUNT, the
FS_MOUNT bit in the st_flag field of the returned
stat structure is set if (and only if) this file is the
root of a virtual file system.

If Command specifies STX_NORMAL, then no
special processing is performed on the Path. It
should be used w,hen STX_L1NK, STX_HIDDEN,
and STX_MOUNT options are not desired.

For fstatx, there are currently no special processing options. The only
valid value for Command is STX_NORMAL.

For fullstat and ffullstat, Command may be FL_STAT, which is
equivalent to STX_NORMAl, or Fl_NOFOllOW, which is equivalent
to STX_L1NK.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and the global variable errno is set to indicate the error.

Error Codes
The stat, Istat, statx, and fullstat subroutines fail if one or more of the following are true:

EFAULT

EFAULT

ENOENT

The file named by Path does not exist.

Either the Path parameter or the Buffer parameter pOints to a
location outside of the allocated address space of the process.

The file named by Path does not exist.

Base Operating System Runtime 1-713

statx, ...

The stat, Istat, statx, and fullstat subroutines also fail if additional errors on page A-1
occur.

The fstat, fstatx, and ffullstat subroutines fail if one or more of the following are true:

EBADF

EFAULT

EIO

FileDescriptor is not a valid file descriptor.

The Buffer parameter points to a location outside of the allocated
address space of the process.

An I/O error occurred while reading from the file system.

The statx and fstatx subroutines fail if one or more of the following are true:

EINVAL

EINVAL

Length is not a value between 0 and STATSIZE.

An illegal value was provided for the Command parameter.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-714

The chmod subroutine, chown subroutine, link subroutine, mknod subroutine, mount
subroutine, open subroutine, pipe subroutine, symlink subroutine, vtimes subroutine.

The stat.h file, fullstat.h file, mode.h file.

Base Operating System Reference

strerror Subroutine

Purpose

Library

Syntax

Maps an error number to an error message string.

Standard C Library (libc.a)

#include <string.h>

char *strerror(ErrorNumbery;
int ErrorNumber,

Description

strerror

The strerror subroutine maps the error number in ErrorNumberto the error message string.

Parameter
ErrorNumber Specifies the error number to be associated with the error message.

Return Values
The strerror subroutine returns a pointer to the error message.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The feof, ferror, clearerr, fileno macros, perror subroutine.

Base Operating System Runtime 1-715

string

string Subroutines

Purpose

Library

Syntax

1-716

Perform operations on strings.

Standard C Library (Iibc.a)

#include <string.h>
char *strcat (String1, String2)
char * String 1, * String2;

char *strncat (String1, String2, Numbery
char * String 1, * String2;
size_t Number,

int strcmp (String 1, String2)
char * String 1, * String2;

int strncmp (String1, String2, Numbery
char * String 1, * String2;
size_t Number,

int strcoll (String1, String2)
char * String 1, * String2;

size_t strxfrm (String1, String2, Numbery
char * String 1, * String2;
size_t Number,

char *strcpy (String 1, String2)
char * String 1, * String2;

char *strncpy (String 1, String2, Numbery
char * String 1, * String2;
size_t Number,

size_t strlen (String)
char * String;

char *strchr (String, Charactery
char * String, Character,

char *strrchr (String, Charactery
char * String, Character,

char *strpbrk (String 1, String2)
char * String 1, * String2;

size_t strspn (String1, String2)
char * String 1, * String2;

size_t strcspn (String1, String2)
char * String 1, * String2;

Base Operating System Reference

char *strstr (String 1, String2)
char * String 1, String2;

char *strtok (String1, String2)
char * String 1 , * String2;

char *strdup(String1)
char * String 1;

char *index (String, Charactery
char * String, Character,

char *rindex (String, Charactery
char * String, Character,

Description

string

The string subroutines copy, compare, and append strings in memory, and they determine
such values as location, size, and the existence of strings in memory.

The parameters String 1, String2 and String point to strings. A string is an array of characters
terminated by a null character. The subroutines strcat, strncat, strcpy, and strncpy all alter
the string in the String 1 parameter. They do not check for overflow of the array to which
String1 points. All string movement is performed character by character and starts at the left.
Overlapping moves toward the left work as expected, but overlapping moves to the right
may give unexpected results. All of these subroutines are declared in the string.h header
file.

The strcat subroutine adds a copy of the string pointed to by the String2 parameter to the
end of the string pointed to by the String1 parameter. The strcat subroutine returns a pointer
to the null-terminated result.

The strncat subroutine copies at most Number bytes of String2 to the end of the string
pointed to by the String 1 parameter. Copying stops before Number bytes if a. null character
is encountered in the String2 string. The strncat subroutine returns a pointer to the
null-terminated result.

The strcmp subroutine lexicographically compares the string pointed toby the String1
parameter to the string pointed to by the String2 parameter. The strcmp subroutine uses
native character comparison, which may be signed or unsigned. The strcmp subroutine
returns a value that is:

• Less than 0 if String 1 is less than String2

• Equal to 0 if String 1 is equal to String2

• Greater than 0 if String1 is greater than String2.

The strncmp subroutine makes the same comparison as strcmp, but it compares at most
Number pairs of characters.

The strcoll subroutine works the same as strcmp, except that the comparison is based on a
collating sequence affected by the setlocale subroutine.

Base Operating System Runtime 1-717

string

1-718

The strxfrm subroutine transforms the string pointed to by String2 and places it in the array
pointed to by String 1, such that if strcmp is used on transformed strings it returns the same
result as strcoll would for the corresponding untransformed strings. No more than Number
characters are transformed. The strxfrm subroutine returns the length of the transformed
string, not including the terminating null character. If the Number parameter is zero; strxfrm
returns the length required to store the transformed string; not including the terminating null
character.

The strcpy subroutine copies the string pointed to by the String2 parameter to the character
array pointed to by the String1 parameter. Copying stops when the null character is copied.
The strcpy subroutine returns the value of the String1 parameter.

The strncpy subroutine copies Number bytes from the string pointed to by the String2
parameter to the character array pointed to by the String1 parameter. If String2 is less than
Numbercharacters long, then strncpy pads String1 with trailing null characters to fill
Number bytes. If String2 is Number or more characters long, then only the first Number
characters are copied and the result is not terminated with a null character. The strncpy
subroutine returns the value of the String 1 parameter.

The strlen subroutine returns the number of characters in the string pointed to by the String
parameter, not including the terminating null character.

The strchr subroutine returns a pointer to the first occurrence of the character specified by
the Character parameter in the string pointed to by the String parameter. A NULL pointer is
returned if the character does not occur in the string. The null character that terminates a
string is considered to be part of the string.

The strrchr subroutine returns a pointer to the last occurrence of the character specified by
the Character parameter in the string pointed to by the String parameter. A NULL pointer is
returned if the character does not occur in the string. The null character that terminates a
string is considered to be part of the string.

The strpbrk subroutine returns a pointer to the first occurrence in the string pointed to by the
String1 parameter of any character from the string pointed to by the String2 parameter. A
NULL pointer is returned if no character matches.

The strspn subroutine returns the length of the initial segment of the string pointed to by the
String1 parameter that consists entirely of characters from the string pointed to by the
String2 parameter.

The strcspn subroutine returns the length of the initial segment of the string pointed to by
the String1 parameter that consists entirely of characters not from the string pointed to by
the String2 parameter.

The strstr subroutine finds the first occurrence in the String1 string of the sequence of
characters in the String2 string (excluding the terminating null character). It returns a pointer
to the found string in String1. It returns a NULL pointer if the string was not found. If String2
points to a zero length string, the function returns String1.

The strtok subroutine returns a pointer to an occurrence of a text token in the string pointed
to by the String1 parameter. The String2 parameter specifies a set of token delimiters. If the
String1 parameter is anything other than NULL, then the strtok subroutine reads the string
pointed to by the String1 parameter until it finds one of the delimiter characters specified by
the String2 parameter. It then stores a null character into the string, replacing the delimiter,
and returns a pointer to the first character of the text token. The strtok subroutine keeps
track of its position in the string so that subsequent calls with a NULL String1 parameter
step through the string. The delimiters specified by the String2 parameter can be changed

Base Operating System Reference

string

for subsequent calls to strtok. When no tokens remain in the string pOinted to by the String1
parameter, the strtok subroutine returns a NULL pointer.

The strdup subroutine returns a pointer to a new string, which is a duplicate of the string
pointed to by the String 1 parameter. Space for the new string is obtained by using the malloc
subroutine. A NULL pointer is returned if the new string cannot be created.

Compatibility Interface
The index and rindex subroutines are included for compatibility with BSD and are not part
of the ANSI C Library. The index subroutine is implemented as a call to the strchr
subroutine. The rindex subroutine is implemented as a call to the strrchr subroutine.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The memccpy, memchr, memcmp, memcpy, memmove subroutines, NCstring
subroutines, NLstring subroutines, setlocale subroutine, and swab subroutine.

Base Operating System Runtime 1-719

strncollen

strncollen Subroutine

Purpose

Library

Syntax

Returns the number of collation values for a given string.

Standard C Library (libc.a)

include <string.h>

int strncollen (String, Numbery
const char * String;
const int Number;

Description
The strncollen subroutine returns the number of collation values for a given string pOinted
to by the String parameter. The count of collation values is terminated when either a null
character is encountered or when the number of bytes indicated by the Number parameter
have been examined.

The collation values are set by the setlocale subroutine for the LC_COLLATE category. For
example, if the locale is set to Sp_SP (Spanish spoken Spain) for the LC_COLLATE
category, where 'ch' has one collation value, then (strncollen ('abchd', 5) returns 4.

In German, there is the B (double s) character, which has two collation values so that:
strncollen ('straBa', 6) returns 7.

If a character has no collation value, then its collation length is O.

Parameters
Number The number of bytes in a string to be examined.

String Pointer to a string to be examined for collation value.

Return Values
Upon successful completion, the strncollen subroutine returns the collation value for a
given string, pointed to by the String parameter.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The NCstring subroutines, setlocale subroutine, string subroutines.

National Language Support Overview in General Programming Concepts.

1-720 Base Operating System Reference

strtol, ...

strtol, strtoul, atol, or atoi Subroutine

Purpose

Library

Syntax

Converts a string to an integer.

Standard C Library (libc.a)

long strtol (String, Pointer, Base)
char * String, * *Pointer;
int Base;

long atol (String)
char * String;

unsigned long strtoul (String, Painter, Base)
char * String, * *Pointer;
int Base;

int atoi (String)
char * String;

Description
The strtol subroutine returns a long integer whose value is represented by the character
string, String. The strtol subroutine scans the string up to the first character that is
inconsistent with the Base parameter. Leading white-space characters are ignored, and an
optional sign may precede the digits.

The strtoul subroutine differs in that it does not accept a leading sign character and returns
an unsigned long integer.

The atol (String) subroutine is equivalent to strtol (String, (char **) NULL, 10).

The atoi (String) subroutine is equivalent to (int) strtol (String, (char **) NULL, 10).

The atoi and atol subroutines do not actually call the strtol subroutine.

Parameters
String

Pointer

Base

Return Values

Specifies a character string.

Specifies a pointer to a character string.

Specifies the base to use for the conversion.

If the value of the Pointer parameter is not (char **) NULL, then a pointer to the character
that terminated the scan is stored in * Pointer. If an integer cannot be formed, * Pointer is set
to String, and a is returned.

If the Base parameter is positive and not greater than 36, then it is used as the base for
conversion. After an optional leading sign, leading zeros are ignored. "Ox" or "OX" is ignored
if Base is 16.

Base Operating System Runtime 1-721

strtol, ...

If the Base parameter is 0, the string determines the base. Thus, after an optional leading
sign, a leading 0 indicates octal conversion, and a leading "Ox" or "OX" indicates
hexadecimal conversion. The default is to use decimal conversion.

The strtol, atol, and atoi subroutines perform conversions to integers. See the strtod
subroutine for information on conversions to floating-point numbers.

Note: The setlocale function may affect the conversion in certain situations: for example, in
programs using the radix character and the thousands separator.

Error Codes
On error, the global variable errno is set to:

EBADF The correct value of the converted number causes underflow or overflow.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-722

The scanf, fscanf, sscanf, NLscanf, NLfscanf, NLsscanf subroutines, atof, atoff, strtod,
strtof subroutines, wstrtol, watol, watoi subroutines, wstrtod, watof subroutines,
setlocale subroutine.

Base Operating System Reference

stty, ...

stty or gtty Subroutine

Purpose

Library

Syntax

Sets or gets terminal state.

Standard C Library (libc.a)

#include <sgtty.h>

stty(FileDescriptor, Buffet)
int FileDescriptor,
struct sgttyb * Buffer,

gtty(Fi/eDescriptor, Buffet)
int Fi/eDescriptor,
struct sgttyb * Buffer,

Description
This interface is made obsolete by the ioctl subroutine.

The stty subroutine sets the state of the terminal associated with the FileDescriptor
parameter. The gtty subroutine retrieves the state of the terminal associated with
File Descriptor. To set the state of a terminal, the calling process must have write permission.

The stty subroutine is actually ioctl(Fi/eDescriptor, TIOSETP, Buffet), while the gtty
subroutine is actually ioctl(FileDescriptor, TIOGETP, Buffery.

Parameters
FileDescriptor

Buffer

Return Values

Specifies an open file descriptor.

Specifies the buffer.

If the stty or gtty subroutine is successful, a value of 0 is returned. Otherwise, a value of-1
is returned and the global variable errno is set to indicate the error.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The ioctl subroutine.

Base Operating System Runtime 1-723

swab

swab Subroutine

Purpose

Library

Syntax

Copies bytes.

Standard C Library (libc.a)

void swab (From, To, NumberOfBytes)
char * From, * To;
int NumberOfBytes;

Description
The swab subroutine copies the number of bytes pOinted to by the NumberOfBytes
parameter from the location pointed to by the From parameter to the array pointed to by the
To parameter, exchanging adjacent even and odd bytes.

The NumberOfBytes parameter should be even and non-negative. If the NumberOfBytes
parameter is odd and positive, the swab subroutine uses NumberOfBytes -1 instead. If the
NumberOfBytes parameter is negative, the swab subroutine does nothing.

Parameters
From Points to the location of data to be copied.

To Points to the array to which the data is to be copied.

NumberOfBytes Specifies the number of even and non-negative bytes to be copied.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The memccpy, memchr, memcmp, memmove, memset subroutines, string subroutines.

1-724 Base Operating System Reference

swapon

swapon Subroutine

Purpose

Syntax

Activates paging or swapping to a designated block device.

int swapon (PathName);
char ""PathName;

Description
The swapon subroutine makes the designated block device available to the system for
allocation for paging and swapping.

The specified block device must be a logical volume on a disk device. The paging space size
is determined from the current size of the logical volume.

Parameters
PathName

Error Codes

Specifies the full path name of the block device.

If an error occurs, errno is set to indicate the error:

EACCES A component of the PathName prefix does not denies search permission, or
permission is denied for the named file.

EINTR Signal was received while processing request.

EINVAL Invalid argument (size of device is invalid).

Device does not exist.

The PathName file does not exist.

ENODEV

ENOENT

ENOMEM The maximum number of paging space devices (16) are already defined or
no memory is available.

Block device required. ENOTBLK

ENOTDIR

ENXIO

A component of the Path Name prefix is not a directory.

No such device address.

Other errors are from calls to the device driver's open subroutine or ioctl subroutine.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The swapqry subroutine.

The swapon command.

Base Operating System Runtime 1-725

swapqry

swapqry Subroutine

Purpose

Syntax

Returns paging device status.

#include <sys/vminfo.h>
int swapqry (PathName, Buffery
char PathName;
struct pginfo * Buffer;

Description
The swapqry subroutine returns information to a user-designated buffer about active paging
and swap devices.

Parameters
PathName Specifies the full path name of the block device.

Buffer Points to the buffer into which the status is stored.

Return Values
The swapqry subroutine returns 0 if PathName is an active paging device; if Bufferis
non-null, it also returns status information.

Error Codes

1-726

If an error occurs, the subroutine returns -1 and errno is set to indicate the error as follows:

EACCES

EFAULT

EINVAL

EINTR

ENODEV

ENODEV

ENOENT

ENOTBLK

ENOTDIR

ENXIO

A component of the PathName prefix denies search permission, or
permission is denied for the named file.

Buffer pointer is invalid.

Invalid argument.

Signal was received while processing request.

Device is not an active paging device.

Device does not exist.

The PathName file does not exist.

Block device required.

A component of the PathName prefix is not a directory.

No such device address.

Base Operating System Reference

swapqry

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The swapon subroutine.

The swapon command.

Base Operating System Runtime 1-727

symlink

symlink Subroutine

Purpose

Library

Syntax

Makes a symbolic link to a file.

Standard C Library (Iibc.a)

int symlink (Path 1, Path2)
char *Path 1;
char *Path2;

Description

1-728

The symlink subroutine creates a symbolic link with the file named by the Path2 parameter
which refers to the file named by the Path 1 parameter.

Like a hard link (described in the link subroutine), a symbolic link allows a file to have
multiple names. The presence of a hard link guarantees the existence of a file, even after
the original name has been removed. A symbolic link provides no such assurance; in fact,
the file named by the Path 1 parameter need not exist when the link is created. In addition, a
symbolic link can cross file system boundaries.

When a component of a path name refers to a symbolic link rather than a directory, the path
name contained in the symbolic link is resolved. If the path name in the symbolic link starts
with / (slash), the symbolic link path name is resolved relative to the process root directory. If
the path name in the symbolic link does not start with / (slash), the symbolic link path name
is resolved relative to the directory that contains the symbolic link.

If the symbolic link is not the last component of the original path name, remaining
components of the original path name are resolved from there.

If the last component of the path name supplied to a subroutine refers to a symbolic link, the
symbolic link path name mayor may not be traversed. Most subroutines always traverse the
link; for example, chmod, link, and open. The statx subroutine takes an argument that
determines whether the link is to be traversed.

Other subroutines refer only to the symbolic link itself, rather than to the object to which the
link refers. These subroutines are:

chown

mkdir

mknod

This call changes the owner and/or group of the symlink itself.

Note: chmod does follow the link. This behavior is consistent with 4.3
BSD.

This call will fail with EEXIST if the target is a symbolic link.

It is an error if a symbolic link exists with the same name as the file to be
created (the Path parameter in mknod and mkfifo). The call will fail with
EEXIST if the target is a symbolic link.

Base Operating System Reference

open

readlink

rename

rmdir

symlink

unlink

symlink

When O_CREAT and O_EXCL are specified and a symbolic link exists for
the name, the open call will fail with EEXIST.

This call applies only to symbolic links.

If the file to be renamed (the FromPath parameter in rename) is a symbolic
link, the symbolic link is renamed. If the new name (the ToPath parameter
in rename) refers to an existing symbolic link, the symbolic link is destroyed.

The call will fail with ENOTDIR if the target is a symbolic link.

Running this subroutine causes an error if a symbolic link named by the
Path2 parameter already exists. A symbolic link can be created that refers
to another symbolic link; that is, the Path 1 parameter can refer to a symbolic
link.

This call removes the symbolic link.

Since the mode of a symbolic link cannot be changed, its mode is ignored during the lookup
process. Any files and directories referenced by a symbolic link are checked for access
normally.

Parameters
Path 1 Specifies the contents of the Path2 symbolic link. It is a null-terminated

string representing the object to which the symbolic link will pOint. Path 1
cannot be the NULL value and cannot be more than MAXLINKLEN
characters long.

Path2 Names the symbolic link to be created.

Return Values
Upon successful completion, the symlink subroutine returns a value of O. If the symlink
subroutine fails, a value of -1 is returned and the global variable errno is set to indicate the
error.

Error Codes
The symlink subroutine fails if one or more of the following are true:

EEXIST

EACCESS

EROFS

ENOSPC

EDQUOT

Path2 already exists.

The requested operation requires writing in a directory with a mode that
denies write permission.

The requested operation requires writing in a directory on a read-only file
system.

The directory in which the entry for the symbolic link is being placed cannot
be extended because there is no space left on the file system containing the
directory.

The directory in which the entry for the symbolic link is being placed cannot
be extended because the user's quota of disk blocks on the file system
containing the directory has been exhausted.

The symlink subroutine can also fail if additional errors on page A-1 occur.

Base Operating System Runtime 1-729

symlink

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The link subroutine, readlink subroutine, statx subroutine, unlink subroutine.

The In command.

1-730 Base Operating System Reference

sync

sync Subroutine

Purpose
Updates all file systems.

Library
Standard C Library (libc.a)

Syntax
void sync ()

Description
The sync subroutine causes all information in memory that should be on disk to be written
out. The writing, although scheduled, is not necessarily complete upon return from the sync
system call. Types of information to be written include modified superblocks, i-nodes, data
blocks, and indirect blocks.

The sync subroutine should be used by programs that examine a file system, such as the df
command and the fsck command.

If Network File System is installed on your system, information in memory relating to remote
files is scheduled to be sent to the remote node.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The fsync subroutine.

The sync command.

Base Operating System Runtime 1-731

sysconf

sysconf Subroutine

Purpose

Library

Syntax

Provides a method to determine the current value of a specified system limit or option.

Standard C Library <libc.a>

#include <unistd.h>
long sysconf (Name)
int Name;

Description

Parameter

The sysconf subroutine allows an application to determine the current setting of certain
system parameters, limits, or options.

Name Specifies which system variable's setting should be returned. The valid
values for the Name parameter are defined in the unistd.h header file and
are described below:

_SC_ARG_MAX The maximum byte length of the arguments for one of
the exec functions, including environment data.

_SC_CHILD_MAX The number of simultaneous processes per real user
10.

_SC_CLK_TCK The clock tick increment as defined by CLK_TCK in
the time.h header file.

_SC_NGROUPS_MAX
The maximum number of simultaneous supplementary
group IDs per process.

_SC_OPEN_MAX The maximum number of files that one process can
have open at anyone time.

_SC_PASS_MAX The maximum number of significant characters in a
password (not including the terminating null
character).

_SC_JOB_CONTROL

If this symbol is defined (does not return a -1) then job
control is supported.

_SC_SAVED_IDS If this symbol is defined (does not return a -1) then
each process has a savedset-user 10 and set-group
10.

1-732 Base Operating System Reference

Return Values

sysconf

The version or revision number of the POSIX standard
implemented to indicate the 4-digit year and 2-digit
month that the standard was approved by the IEEE
Standards Board. This value is currently the long
integer 198808.

The values returned for the above variables supported
by AIX for RiSe System/6000 will not change during
the lifetime of the process making the call.

If the sysconf subroutine is successful, the value of the kernel variable or limit specified by
Name is returned.

Error Codes
If the name parameter is invalid, a -1 is returned and errno is set to EINVAL. If the name
parameter is valid but is a variable not supported by AIX for RiSe System/6000, a value of
-1 is returned but the value of errno is not changed.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Base Operating System Runtime 1-733

syslog, ...

syslog, openlog, closelog, or setlogmask Subroutine

Purpose

Library

Syntax

Controls the system log.

Standard C Library (libc.a)

#include <syslog.h>

int openlog (ID, LogOption, Facility)
char *ID;
int LogOption, Facility;

int syslog (Priority, Message, Value ...)
int Priority,
char Message:

int closelog ()

int setlogmask(MaskPriority)
int MaskPriority;

Descri ption

1-734

The syslog subroutine writes messages onto the system log maintained by the syslogd
command.

The message is similar to the printf fmt string, with the difference that °lom is replaced by
the current error message obtained from the errno global variable. A trailing new-line can be
added to the message if needed.

Messages are read by the syslogd command and written to the system console or log file,
or forwarded to the syslogd on the appropriate host.

If special processing is required, the openlog subroutine can be used to initialize the log file.

Messages are tagged with codes indicating the type of Priority for each. A Priority is
encoded as a Facility, which describes the part of the system generating the message, and
as a level, which indicates the severity of the message.

If syslog cannot pass the message to syslogd, it writes the message on Idev/console,
provided the LOG_CONS option is set.

The close log subroutine closes the log file.

The setlogmask subroutine uses the bit mask in MaskPriority to set the new log priority
mask and returns the previous mask.

The LOG_MASK and LOG_UPTO macros in the sys/syslog.h file are used to create the
priority mask. Calls to syslog with a priority mask that does not allow logging of that
particular level of message cause the subroutine to return without logging the message.

Base Operating System Reference

Parameters
ID

LogOption

Facility

syslog, ...

Contains a string that is attached to the beginning of every message. The
Facility parameter encodes a default facility from the previous list to be
assigned to messages that do not have an explicit facility encoded.

Specifies a bit field that indicates logging options. The values of LogOption
are:

Sends messages to the console if unable to send
them to syslogd. This option is useful in daemon
processes that have no controlling terminal.

Opens the connection to syslogd immediately,
instead of when the first message is logged. This
option is useful for programs that need to manage the
order in which file descriptors are allocated.

Logs messages to the console without waiting for
forked children. Use this option for processes that
enable notification of child termination through
SIGCHLD; otherwise, syslog may block, waiting for a
child whose exit status has already been collected.

Delays opening until syslog is called.

Logs the process 10 with each message. This option is
useful for identiifying daemons.

Specifies which of the following generated the message:

LOG_DAEMON

LOG_KERN

LOG_LPR

LOG_LOCALO

through].

LOG_LOCAL7

LOG_MAIL

LOG_NEWS

LOG_RFS

LOG_UUCP

LOG_USER

The security authorization system: login, SU, and so
on.

System daemons.

Messages generated by the kernel. These cannot be
generated by any user processes.

The line printer spooling system.

] .

Reserved for local use.

The mail system.

The news sub-system.

Remote file systems (Andrew File System and RVO).

UUCP sub-system.

Messages generated by user processes. This is the
default facility when none is specified.

Base Operating System Runtime 1-735

syslog, ...

Examples

Priority Specifies the part of the system generating the message, and as a level,
indicates the severity of the message. The level of severity is selected from
the following list:

LOG_CRIT

LOG_DEBUG

LOG_ERR

LOG_INFO

LOG_NOTICE

A condition that should be corrected immediately; for
example, a corrupted database.

Critical conditions; for example, hard device errors.

Messages containing information useful to debug a
program.

A panic condition reported to all users; system is
unusable.

Error conditions.

General information messages.

Not an error condition, but a condition requiring
special handling.

Warning messages.

MaskPriority Enables logging for the levels indicated by the bits in the mask that are set
and disabled where the bits are not set. The default mask allows all
priorities to be logged.

Message Specifies the number of the message as listed in the message log.

Value Specifies the values given in the Value parameters of the printf subroutine.

1. To log an error message concerning a possible security breach, such as the following,
enter:

syslog (LOG_ALERT, "who:internal error 23");

2. To initialize the log file, set the log priority mask, and log an error message, enter:

openlog ("ftpd", LOG_PID, LOG_DAEMON);
setlogmask (LOG_UPTO (LOG_ERR));
syslog (LOG_INFO)

3. To log an error message from the system, enter:

syslog (LOG_INFO LOG_LOCAL2, "foobar error: im");

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The profil subroutine, end, etext identifiers.

The cc command, prof command.

1-736 Base Operating System Reference

system

system Subroutine

Purpose

Library

Syntax

Runs a shell command.

Standard C Library (libc.a)

#include <stdio.h>

int system (String)
char * String;

Description

Parameter

The system subroutine passes the String parameter to the sh command as input. Then the
sh command interprets String as a command and runs it.

The system subroutine invokes the fork subroutine to create a child process that in turn
uses the exec subroutine to run Ibin/sh, which interprets the shell command contained in
the String parameter. If the system subroutine is invoked on the Trusted Path, it runs the
Trusted Path shell (/bin/tsh). The current process waits until the shell has completed, then
returns the exit status of the shell.

String A valid sh shell command.

Note: The system subroutine runs only sh shell commands. The results are
unpredictable if the String parameter is not a valid sh shell command.

Return Values
Upon successful completion, the system subroutine returns the exit status of the shell.

If the fork subroutine fails, then the system subroutine returns a value of -1. If the exec
subroutine fails, then the system subroutine returns 127. In either case, errno is set to
indicate the error.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The exec subroutine, exit subroutine, fork subroutine, and wait subroutine.

The sh command.

Base Operating System Runtime 1-737

tcb

tcb Subroutine

Purpose

Library

Syntax

Alters the Trusted Computing Base status of a file.

Security Library (libs.a)

#include <sys/tcb.h>

int tcb (Path, Flag)
char *Path;
int Flag;

Description
The tcb subroutine provides a mechanism to query or set the Trusted Computing Base
attributes of a file.

Parameters
Path Specifies the path name of the file whose Trusted Computing Base status is to

be changed.

Flag Specifies the function which is to be performed. Valid values are defined in the
sys/tcb.h file and include the following:

Enables the Trusted Computing Base attribute of a file.

Disables the Trusted Process and Trusted Computing Base
attributes of a file.

TCB_QUERY Queries the Trusted Computing Base status of a file. This
function will return one of the above values.

Return Values
Upon successful completion, the tcb subroutine returns a value of 0 if the Flags parameter is
either TCB_ON or TCB_OFF; or if the Flags parameter is TCB_QUERY, the current status
is returned. If the tcb subroutine fails, a value of -1 is returned and errno is set to indicate
the error

Error Codes

Security

1-738

The tcb subroutine fails if one or more of the following are true:

EINVAL The Flags parameter is not one of TCB_ON, TCB_OFF, or TCB_QUERY.

Additional error codes are returned by the stax and chmod subroutines.

Access Control: The calling process must have search permission for the object named by
the Path parameter.

Base Operating System Reference

tcb

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The statx subroutine, chmod subroutine.

The chmod command.

Base Operating System Runtime 1-739

tcdrain

tcdrain Subroutine

Purpose

Library

Syntax

Waits for output to complete.

Standard C Library (libc.a)

#include <termios.h>

int tcdrain(FileDescriptot)
int FileDescriptor,

Description

Parameter

The tcdrain subroutine waits until all output written to the object referred to by the
FileDescriptor parameter has been transmitted.

FileDescriptor Specifies an open file descriptor.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and the global variable errno is set to indicate the error.

Error Codes

Example

The tcdrain subroutine can fail if one or more of the following are true:

EBADF

EINTR

ENOTTV

The FileDescriptor parameter does not specify a valid file descriptor.

A signal interrupted the tcdrain subroutine.

The file associated with the FileDescriptor parameter is not a terminal.

1. To wait until all output has been transmitted, enter:

rc = tcdrain(stdout)~

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The tcflow subroutine, tcflush subroutine, tcsendbreak subroutine.

The termios.h header file.

1-740 Base Operating System Reference

tcflow

tcflow Subroutine

Purpose

Library

Syntax

Performs flow control functions.

Standard C Library (Iibe.a)

#inelude <termios.h>

int teflow(FileDescriptor, Action)
int FileDescriptor,
int Action;

Description
The teflow subroutine suspends transmission or reception of data on the object referred to
by the FileDescriptor parameter, depending on the value of the Action parameter.

Parameters
FileDescriptor Specifies an open file descriptor.

Specifies one of the following: Action

TCOOFF

TCOON

TCIOFF

TelON

Suspend output.

Restart suspended output.

Transmit a STOP character, which is intended to cause
the terminal device to stop transmitting data to the
system. (See the description of IXOFF in the Input
Modes section of the termios.h header file.)

Transmit a START character, which is intended to cause
the terminal device to start transmitting data to the
system. (See the description of IXOFF in the Input
Modes section of the termios.h header file.)

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and the global variable errno is set to indicate the error.

Example
To restart output from a terminal device, enter:

rc = tcflow(stdout, TerON);

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The tedrain subroutine, tcflush subroutine, tcsendbreak subroutine.

The termios.h header file.

Base Operating System Runtime 1-741

tcflush

tcflush Subroutine

Purpose

Library

Syntax

Discards data from the specified queue.

Standard C Library (libc.a)

#include <termios.h>

int tcflush(FileOescriptor, OueueSelectory
int FileOescriptor,
int OueueSelector;

Description
The tcflush subroutine discards any data written to the object referred to by the
FileOescriptor parameter, or data received but not read by the object referred to by
File Oescrip tor, depending on the value of the QueueSelector parameter.

Parameters
FileOescriptor Specifies an open file descriptor.

OueueSelector Specifies one of the following:

TCIFLUSH

TCOFLUSH

TCIOFLUSH

Flush data received but not read.

Flush data written but not transmitted.

Flush both of the following:

• data received but not read

• data written but not transmitted.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and the global variable errno is set to indicate the error.

Error Codes

Example

1-742

The tcflush subroutine fails if one or more of the following are true:

EBADF

EINVAL

ENOTTY

The FileDescriptor parameter does not specify a valid file descriptor.

The OueueSelector parameter does not specify a proper value.

The file associated with the FileDescriptor parameter is not a terminal.

To flush the output queue, enter:

rc = tcflush(2, TCOFLUSH)i

Base Operating System Reference

tcflush

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The tcdrain subroutine, tcflow subroutine, tcsendbreak subroutine.

The termios.h header file.

Base Operating System Runtime 1-743

tcgetattr

tcgetattr Subroutine

Purpose

Library

Syntax

Gets terminal state.

Standard C Library (libc.a)

#include <termios.h>

int tcgetattr (FileDescriptor, TermiosPointery
int FileDescriptor,
struct termios * TermiosPointer,

Description
The tcgetattr subroutine gets the parameters associated with the object referred to by the
FileDescriptor parameter and stores them in the termios structure referenced by the
TermiosPointer parameter. This subroutine is allowed from a background process; however,
the terminal attributes may subsequently be changed by a foreground process.

Whether or not the terminal device supports having the input and output baud rates differ,
the baud rates stored in the termios structure returned by the tcgetattr subroutine reflect
the actual baud rates, even if they are equal. Returning the number zero as the input baud
rate if differing baud rates are not supported is obsolete.

Parameters
File Descriptor Specifies an open file descriptor.

TermiosPointer Points to a termios structure.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and the global variable errno is set to indicate the error.

Error Codes

Example

The tcgetattr subroutine fails if one or more of the following are true:

EBADF

ENOTTV

The FileDescriptor parameter does not specify a valid file descriptor.

The file associated with the FileDescriptor parameter is not a terminal.

To get the current terminal state information, enter:

rc = tcgetattr(stdout, &my_termios);

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The tcsetattr subroutine.

The termios.h file.

1--744 Base Operating System Reference

tcgetpgrp

tcgetpgrp Subroutine

Purpose

Library

Syntax

Gets foreground process group 10.

Standard C Library (libc.a)

#include <termios.h>

pid_t tcgetpgrp(FileDescriptory
i nt FileDescriptor,

Description

Parameter

The tcgetpgrp subroutine returns the value of the process group 10 of the foreground
process group associated with the terminal. The function can be called from a background
process; however the information may be subsequently changed by the foreground process.

The baud rates stored in the termios structure returned by the tcgetattr subroutine reflects
the actual baud rates, even if they are equal, whether or not the terminal device supports
different input and output baud rates.

Note: Returning 0 as the input baud rate if differing baud rates are not supported is
obsolete.

FileDescriptor Indicates the open file descriptor for the terminal special file.

Return Values
Upon successful completion, the process group 10 of the foreground process is returned.
Otherwise, a value of -1 is returned and the global variable errno is set to indicate the error.

Error Codes
The tcgetpgrp subroutine fails if one or more of the following are true:

EBADF

EINVAL

ENOTTV

The FileDescriptor argument is not a valid file descriptor.

The function is not appropriate for the file associated with the FileDescriptor
argument.

The calling process does not have a controlling terminal or the file is not the
controlling terminal.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The tcsetpgrp subroutine.

Base Operating System Runtime 1-745

tcsendbreak

tcsendbreak Subroutine

Purpose

Library

Syntax

Sends a break on an asynchronous serial data line.

Standard C Library (libc.a)

#include <termios.h>

int tcsendbreak(FileDescriptor,Duration)
int FileDescriptor;
int Duration;

Description
If the terminal is using asynchronous serial data transmission, the tcsendbreak subroutine
causes transmission of a continuous stream of zero-valued bits for a specific duration.

If the terminal is not using asynchronous serial data transmission, the tcsendbreak
subroutine returns without taking any action.

Parameters
FileDescriptor Specifies an open file descriptor.

Duration Specifies the number of milliseconds that zero-valued bits are
transmitted. If the value of the Duration parameter is 0, it causes
transmission of zero-valued bits for 25 milliseconds. If Duration is not 0,
it sends zero-valued bits for Duration milliseconds.

Return Values

Examples

Upon successful completion, a value of a is returned. Otherwise, a value of -1 is returned
and the global variable errno is set to indicate the error.

1. To send a break condition for 500 milliseconds:

rc = tcsendbreak(stdout, 500);

2. To send a break condition for 25 milliseconds:

rc = tcsendbreak(l, 25);

This could also be performed using the default Duration:

rc = tcsendbreak(l, 0);

Error Codes
The tcsendbreak subroutine fails if one or both of the following are true:

EBADF The FileDescriptor parameter does not specify a valid open file descriptor.

ENOTTV The file associated with the FileDescriptor parameter is not a terminal.

1-746 Base Operating System Reference

tcsendbreak

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Pseudo terminals and HFTs do not generate a break condition. They return without taking
any action.

Related Information
The tcdrain subroutine, tcflush subroutine, tcflow subroutine.

The termios.h header file.

Base Operating System Runtime 1-747

tcsetattr

tcsetattr Subroutine

Purpose

Library

Syntax

Sets terminal state.

Standard C Library (libc.a)

#include <termios.h>

int tcsetattr(File Descriptor, OptionalActions, TermiosPointery
int FileDescriptor, OptionalActions;
struct termios * TermiosPointer,

Description

1-748

The tcsetattr subroutine sets the parameters associated with the object referred to by the
FileDescriptor parameter (unless support required from the underlying hardware is
unavailable), from the termios structure referenced by the TermiosPointer parameter.

The value of the OptionalActions parameter determines how the tcsetattr subroutine is
handled.

The 0 baud rate (80) is used to terminate the connection. If 80 is specified as the output
baud rate when the tcsetattr subroutine is called, the modem control lines are no longer
asserted. Norma"y, this will disconnect the line.

Using 0 as the input baud rate in the termios structure to cause tcsetattr to change the
input baud rate to the same value as that specified by the value of the output baud rate, is
obsolete.

If an attempt is made using the tcsetattr subroutine to set:

• an unsupported baud rate,

• baud rates where the input and output baud rates differ and the hardware does dot
support that combination,

• other features not supported by the hardware,

but it is able to perform some of the requested actions, it returns successfully, having set all
the attributes that the implementation supports as requested, and leaving a" the attributes
not supported by the hardware unchanged.

If no part of the request can be honored, the tcsetattr subroutine returns a value of -1 and
the global variable errno is set to EINVAL.

If the input and output baud rates differ and are a combination that is not supported, neither
baud rate is changed. A subsequent call to the tcgetattr subroutine returns the actual state
of the terminal device (reflecting both the changes made and not made in the previous
tcsetattr call). The tcsetattr subroutine does not change the values in the termios structure
whether of not it actually accepts them.

Base Operating System Reference

tcsetattr

Parameters
File Descrip tor

OptionalActions

TermiosPointer

Specifies an open file descriptor.

Specifies one of the following values:

TCSANOW The change occurs immediately.

TCSADRAIN The change occurs after all output written to the object
referred to by FileDescriptor has been transmitted.
This function should be used when changing
parameters that affect output.

TCSAFLUSH The change occurs after all output written to the object
referred to by FileDescriptor has been transmitted. All
input that has been received but not read is discarded
before the change is made.

Points to a termios structure.

Return Values
Upon successful completion, a value of a is returned. Otherwise, a value of -1 is returned
and the global variable errno is set to indicate the error.

Error Codes

Example

The tcsetattr subroutine fails if one or more of the following are true:

EBADF

EINVAL

ENOTTY

The FileDescriptor parameter does not specify a valid file descriptor.

The OptionalActions argument is not a proper value, or an attempt was
made to change an attribute represented in the termios structure to an
unsupported value.

The file associated with the FileDescriptor parameter is not a terminal.

To set the terminal state after the current output completes, enter:

rc = tcsetattr(stdout, TCSADRAIN, &my_termios);

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The tcgetattr subroutine.

The termios.h file.

Base Operating System Runtime 1-749

tcsetpgrp

tcsetpgrp Subroutine

Purpose

Library

Syntax

Sets foreground process group ID.

Standard C Library (libc.a)

#include <termios.h>

int tcsetpgrp(File Descriptor, ProcessGrouplD)
int FileDescriptor,
pid_t Process Group 10;

Description
If the process has a controlling terminal, the tcsetpgrp subroutine sets the foreground
process group 10 associated with the terminal to the value of the ProcessGrouplD
parameter. The file associated with the FileDescriptor parameter must be the controlling
terminal of the calling process, and the controlling terminal must be currently associated with
the session of the calling process. The value of the ProcessGrouplD parameter must match
a process group 10 of a process in the same session as the calling process.

Parameters
File Descrip tor

ProcessGrouplD

Specifies an open file descriptor.

Specifies the process group identifier.

Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and the global variable errno is set to indicate the error.

Error Codes
This function can fail for the following reasons:

EBADF

EINVAL

EINVAL

ENOTTY

EPERM

The FileDescriptor parameter is not a valid file descriptor.

The function is not appropriate for the file associated with the FileDescriptor
parameter.

The Process Group 10 parameter is invalid.

The calling process does not have a controlling terminal or the file is not the
controlling terminal.

The ProcessGrouplD parameter is valid, but matches a process 10 or
process group ID of a process in another session.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The tcgetpgrp subroutine.

1-750 Base Operating System Reference

termdef

termdef Subroutine

Purpose

Library

Syntax

Queries terminal characteristics.

Standard C Library (libe.a)

ehar *termdef (FileDescriptor, Characteristic)
int Fi/eDescriptor;
ehar Characteristic;

Description
The termdef subroutine returns a pointer to a null-terminated static character string that
identifies a characteristic of the terminal that is open on the file descriptor specified by the
FileDescriptor parameter.

Parameters
FileDescriptor

Characteristic

Specifies an open file descriptor.

Specifies the characteristic that is to be queried. The following values can
be specified:

c This causes termdef to query for the number of "columns" for the
terminal. This is determined by performing the following actions:

1. It requests a copy of the terminal's winsize structure by
issuing the TIOCGWINSZ ioetl. If ws_col is not 0 (zero), the
ws_col value is used.

2. If the TIOCGWINSZ ioetl fails or if ws_col is 0 (zero), termdef
queries the terminal device using the Query HFT Deviee
command. If the HFT query is successful, termdef uses the
value returned by the query.

3. If the Query HFT Device command fails, termdef attempts to
use the value of the COLUMNS environment valuable.

4. If the COLUMNS environment variable is not set, termdef
returns a pointer to a NULL string.

This causes termdef to query for the number of "lines" (or rows)
for the terminal. This is determined by performing the following
actions:

1. It requests a copy of the terminal's winsize structure by
issuing the TIOCGWINSZ ioet!. If ws_row is not 0 (zero), the
ws_row value is used.

2. If the TIOCGWINSZ ioctl fails or if ws_row is 0 (zero),
termdef queries the terminal device using the Query HFT

Base Operating System Runtime 1-751

termdef

Examples

Device command. If the HFT query is successful, termdef
uses the value returned by the q~ery.

3. If the Query HFT Device command fails, termdef attempts to
use the value of the LINES environment valuable.

4. If the LINES environment variable is not set, termdef returns a
pointer to a NULL string.

Any other character (besides c or I)
This causes termdef to query for the "terminal type" of the
terminal. This is determined by performing the following actions:

1. It queries the terminal device, using the Query HFT Device
command.

2. If the Query HFT Device command fails, termdef attempts to
use the value of the TERM environment variable.

3. If the TERM environment variable is not set, termdef returns a
pointer to string set to "dumb".

1. To display the terminal type of the standard input device:

printf("%s\n", termdef(O, 't'))~

2. To display the current lines and columns of the standard output device:

printf("Iines\tcolumns\n%s\t%s\n", termdef(2, '1'),
termdef (2, ' c')) ;

Note: If termdef is unable to determine a value for lines or columns, it returns pointers to
NULL strings.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

When FileDeseriptor identifies an asynchronous terminal, the Query HFT Device command
always fails and the environment variable is always checked. Shell profiles usually set the
TERM variable each time you log in. the stty command allows you to change the lines and
columns (by using the lines and eols options). This is preferred over changing the LINES
and COLUMNS environment variables, since termdef examines the environment variables
last. You may wish to set lines and columns if:

• You are using an asynchronous terminal and want to override the lines and eols setting in
the terminfo data base, or

• Your asynchronous terminal has an unusual number of lines or columns and you are
running an application that uses termdef, but not terminfo.

This is true because the terminfo initialization subroutine, setupterm, calls termdef to
determine the number of lines and columns on the display. If termdef cannot supply this
information, setupterm uses the values in the terminfo data base.

Related Information
The Query HFT Device command, stty command.

1-752 Base Operating System Reference

tmpfile

tmpfile Subroutine

Purpose
Creates a temporary file.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>

FILE *tmpfile ()

Description
The tmpfile subroutine creates a temporary file and returns its FILE pointer. The file is
opened for update. The temporary file is automatically deleted when the process using it
terminates.

Return Values
If the file cannot be opened, the tmpfile subroutine writes an error message to the standard
error output and returns a NULL pointer.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The unlink subroutine, fopen, freopen, fdopen subroutines, mktemp subroutine, tmpnam,
tempnam subroutines.

Base Operating System Runtime 1-753

tmpnam, ...

tmpnam or tempnam Subroutine

Purpose

Library

Syntax

Constructs the name for a temporary file.

Standard C Library (libc.a)

#include <stdio.h>

char *tmpnam (String)
char * String;

char *tempnam (Directory, FileXPointetj
char * Directory, * FileXPointer,

Descri ption
The tmpnam subroutine and tempnam subroutine generate file names for temporary files.

The tmpnam subroutine generates a file name using the path name defined as P _tmpdir in
the stdio.h header file.

Warning: The tmpnam subroutine generates a different file name each time it is called. If it
is called more than 16,384 times by a single process, it starts recycling previously used
names.

Files created using this subroutine reside in a directory intended for temporary use, and their
names are unique. It is the user's responsibility to use the unlink subroutine to remove the
file when no longer needed.

Between the time a file name is created and the file is opened, it is possible for some other
process to create a file with the same name. This should not happen if that other process
uses these subroutines or the mktemp subroutine, and if the file names are chosen to make
duplication by other means unlikely.

Parameters

1-754

String The address of an array of at least the number of bytes specified by
L_tmpnam, a constant defined in the stdio.h header file.

Directory

If the String parameter is NULL, the tmpnam subroutine places its result
into an internal static area and returns a pointer to that area. The next call to
this subroutine destroys the contents of the area.

If the String parameter is not NULL, it is assumed to be the address of an
array of at least the number of bytes specified by L_tmpnam. L_tmpnam is a
constant defined in stdio.h. The tmpnam subroutine places its results into
that array and returns the value of the String parameter.

A pointer to the path name of the directory in which the file is to created.

The tempnam subroutine allows you to control the choice of a directory. If
the Directory parameter is NULL or points to a string that is not a path name

Base Operating System Reference

tmpnam, ...

for an appropriate directory, the path name defined as P _tmpdir in the
stdio.h header file is used. If that path name is not accessible, Itmp is
used. You can bypass the selection of a path name by providing an
environment variable, TMPDIR, in the user's environment. The value of the
TMPDIR variable is a path name for the desired temporary file directory.

FileXPointer A pointer to an initial character sequence with which the file name begins.

The FileXPointer parameter can be NULL, or it can point to a string of

characters to be used as the first characters of the temporary file name. The

number of characters allowed is file system dependent, but five is the

minimum allowed.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The openx, open, ereat subroutines, unlink subroutine, fopen, freopen, fdopen
subroutines.

Themalloe.free.realloe.ealloe.mallopt.mallinfo.alloea subroutines, mktemp
subroutine, mkstemp subroutine, tmpfile subroutine.

The environment facility.

Base Operating System Runtime 1-755

trcgen, ...

trcgen, trcgent Subroutines

Purpose

Syntax

Records a trace event for a generic trace channel.

#include <sys/trchkid.h>

void trcgen(Channel, HkWord, Data Word, Length, Buffe~
unsigned int Channel, HkWord, Data Word, Length;
char * Buffer

void trcgent(Channel, HkWord, DataWord, Length, Buffe~
unsigned int Channel, HkWord, DataWord, Length;
char * Buffer

Description
The trcgen subroutine records a trace event for a generic trace entry consisting of a hook
word, a data word, and a variable number of bytes of trace data.

The trcgent subroutine records a trace event for a generic trace entry consisting of a hook
word, a data word, a variable number of bytes of trace data, and a time stamp.

The trcgen subroutine and trcgent subroutine are located in pinned kernel memory.

Parameters
Buffer Pointer to a buffer of trace data.

1-756

Channel

Data Word

HkWord

Channel number for the trace session, obtained from the trcstart
subroutine.

A word of user-defined data.

An integer conSisting of two bytes of user-defined data (Data), a hook 10
(HkID), and a hook type (HkType).

Data Two bytes of user-defined data.

HklD A hook identifier which consists of a major hook 10 and a minor
hook 10. For user programs, the major hook 10 value ranges from
Ox01 to OxOF. The minor hook 10 value ranges from OxO to OxF.
There are no reserved values. For each major hook 10, there are
16 possible HkIDs.

HkType A 4-bit hook type.

A unique hook type value is recorded by each trace subroutine.
The valid hook type values are the following:

value recorded by

0 trchk subroutine

1 trchkt subroutine

2 trchkl subroutine

3 trchklt subroutine

Base Operating System Reference

trcgen, ...

4 trchkg subroutine

5 trchkgt subroutine

6 trcgen subroutine

7 trcgent subroutine

Length Length in bytes of the Buffer parameter.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

File
sys/trchkid.h Trace Hookword Header file.

Related Information
The trace daemon.

The trcgenk kernel service, trcgenkt kernel service.

The trchk subroutine, trcon subroutine, trcoff subroutine, trcstart subroutine, trcstop
subroutine.

Base Operating System Runtime 1-757

trchk, ...

trchk, trchkt, trchkl, trchklt, trchkg, trchkgt Subroutines

Purpose

Syntax

Records a trace event.

#include <sys/trchkid.h>

void trchk{HkWoro)
unsigned int HkWord

void trchkt{HkWoro)
unsigned int HkWord

void trchkl{HkWord, HkOata)
unsigned int HkWord, HkOata

void trchklt{HkWord, HkOata)
unsigned int HkWord, HkOata

void trchkg{HkWord, 01, 02, 03, 04, 05)
unsigned int HkWord, 01, 02, 03, 04, 05

void trchkgt{HkWord, 01, 02, 03, 04, 05)
unsigned int HkWord, 01, 02, 03, 04, 05

Description
The trchk subroutine, in all its forms records a trace event if a trace session is active. The
trchk subroutines are located in pinned kernel memory.

The trchk subroutine records a HkWord.

The trchkt subroutine records a HkWord and a time stamp.

The trchkl subroutine records a HkWord and a data word (HkOata).

The trchklt subroutine records a HkWord and a data word (HkOata) , and a time stamp.

The trchkg subroutine records a trace entry consisting of a HkWord, 5 words of
user-defined data.

The trchkgt subroutine records a trace entry consisting of a HkWord, 5 words of
user-defined data, and a time stamp.

Parameters

1-758

01, 02, 03,04,05 User-defined data words.

HkOata

HkWord

A word of user-defined data.

An integer consisting of two bytes of user-defined data (Data), a hook
10 (HkIO), and a hook type (HkType).

Data Two bytes of user-defined data.

HklO A hook identifier which consists of a major hook 10 and a
minor hook ID. For user programs, the major hook 10 value

Base Operating System Reference

trchk, ...

ranges from Ox01 to OxOF. The minor hook 10 value ranges
from OxO to OxF. There are no reserved values. For each
major hook 10, there are 16 possible HkIDs.

HkType A 4-bit hook type.

A unique hook type value is recorded by each trace
subroutine. The valid hook type values are the following:

value recorded by

0 trchk subroutine

1 trchkt subroutine

2 trchkl subroutine

3 trchklt subroutine

4 trchkg subroutine

5 trchkgt subroutine

6 trcgen subroutine

7 trcgent subroutine

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

File
sys/trchkid.h Trace Hookword Header file.

Related Information
The trace daemon.

The trcgenk kernel service, trcgenkt kernel service.

The trcgen subroutine, trcgent subroutine trcon subroutine, trcoff subroutine, trcstart
subroutine, trcstop subroutine.

Base Operating System Runtime 1-759

trcoff

treoff Subroutine

Purpose

Syntax

Halts the collection of trace data from within a process.

int treoff(channe~
int channel

Description
The treoff subroutine issues an ioetl subroutine to the trace device driver to stop trace data
collection for a particular trace channel. The trace session must have already been started
using the trace command or the trestart subroutine.

Return Values
If the ioetl subroutine is successful, a value of 0 is returned and trace data collection is
stopped. If the ioetl fails, a value of -1 is returned.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-760

The trace daemon.

The trcgenk kernel service, tregenkt kernel service.

The trchk subroutine, trcgen subroutine, trcstart subroutine, treon subroutine, trestop
subroutine.

Base Operating System Reference

trcon

treon Subroutine

Purpose

Library

Syntax

Starts the collection trace data.

Run-time Services Library.

int trcon(Channe~

int Channel

Description

Parameter

The trcon subroutine issues an ioctl subroutine to the trace device driver to start trace data
collection for a particular trace channel. A trace session must have already been started for
the trace channel using the trace command or the trc_start subroutine.

Channel Specifies one of 8 trace channels. Channel number 0 always refers to the
Event/Performance trace. Channel numbers 1 - 7 specify generic trace
channels.

Return Values
If the ioctl subroutine is successful, a value of 0 is returned and trace data collection is
started. If the ioctl fails, a value of -1 is returned.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

File
librts.a Run-time Services Library.

Related Information
The trace daemon.

The trcgenk kernel service, trcgenkt kernel service.

The ioctl subroutine, trcgen subroutine, trchk subroutine, trcoff subroutine, trcstart
subroutine, trcstop subroutine.

Base Operating System Runtime 1-761

trcstart

trcstart Subroutine

Purpose

Library

Syntax

Starts a trace session.

Run-time Services Library.

int (Argumen~.
char * Argument

Description
The trcstart subroutine starts a trace session. The Argument parameter points to a
character string containing the flags that are invoked with the trace daemon. To specify that
a generic trace session is to be started, include the -g flag.

Return Values
If trace is started successfully, the channel number is returned. Channel number 0 is
returned if a generic trace was not requested. If trace is not started successfully, a value of
-1 is returned.

Implementation Specifics

Files

This subroutine is part of AIX Base Operating System (BOS) Runtime.

librts.a

/dev/trace

Run-time Services Library.

Trace Special File.

Related Information
The trace daemon.

The trcon subroutine.

1-762 Base Operating System Reference

trcstop

trcstop Subroutine

Purpose

Library

Syntax

Stops a trace session.

Run-time Services Library.

int trcstop(Channe~
int (Channe~

Description
The trcstop subroutine stops a trace session for a particular trace channel.

Parameter
Channel Specifies one of 8 trace channels. Channel number 0 always refers to the

Event/Performance trace. Channel numbers 1 - 7 specify generic trace
channels.

Return Values
If successful, a value of 0 is returned. If not successful, a value of -1 is returned.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

File
librts.a Run-time Services Library.

Related Information
The trace daemon.

The trcgenk kernel service, trcgenkt kernel service.

The ioctl subroutine, trchk subroutine, trcgen subroutine, trcoff subroutine, treon
subroutine, trcstart subroutine.

Base Operating System Runtime 1-763

truncate, ...

truncate or ftruncate Subroutine

Purpose

Library

Syntax

Makes a file shorter.

Standard C Library (libc.a)

int truncate (Path, Length)
char *Path;
off_t Length;

int ftruncate (FileDescriptor, Length)
int FileDescriptor,
off_t Length;

Description
The truncate and ftruncate subroutines remove all data beyond the Length parameter
bytes from the beginning of the specified file.

Full blocks are returned to the file system so that they can be used again, and the file size is
changed to the lesser of the value of the Length parameter or the current length of the file.

These subroutines do not modify the seek pOinter of the file.

These subroutines cannot be applied to a file that a process has open with O_DEFER.

Successful completion of the ftruncate or truncate subroutines clears the SetUserlD and
SetGrouplD attributes of the file unless the caller has root user authority.

Parameters
Path Specifies the name of a file that is opened, truncated, and then closed.

FileDescriptor Specifies the descriptor of a file that must be open for writing.

Length Specifies the number of bytes in the truncated file.

Return Values
Upon successful completion, a value of 0 is returned. If the truncate or ftruncate subroutine
is unsuccessful, a value of -1 is returned, and the global variable errno is set to indicate the
error.

Error Codes

1-764

The truncate subroutine fails if the following is true:

EROF An attempt was made to truncate a file that resides on a read-only file
system.

The truncate subroutine can also fail if additional errors on page A-1 occur.

Note: In addition, the truncate subroutine can return the same errors as the open
subroutine if there is a problem opening the file.

Base Operating System Reference

truncate, ...

The truncate and ftruncate subroutines fail if one or more of the following are true:

EINVAL

EMFILE

EAGAIN

The file is not a regular file.

The file is open with O_DEFER by one or more processes.

The write operation failed due to an enforced write lock on the file.

The ftruncate subroutine fails if the following is true:

EBADF The FileDescriptor parameter is not a valid file descriptor open for writing.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The fclear subroutine, open subroutine.

Base Operating System Runtime 1-765

tsearch, ...

tsearch, tdelete, or twalk Subroutine

Purpose

Library

Syntax

Manages binary search trees.

Standard C Library (Iibc.a)

#include <search.h>

void *tsearch (Key, RootPointer, Comparison Pointe!)
int (*ComparisonPointe!) ();

void *tdelete (Key, RootPointer, ComparisonPointe!)
int (*ComparisonPointe!) ();

void twalk (Root, Action)
void (* Action) ();

Description

1-766

The tsearch subroutine performs a binary tree search.

The algorithm returns a pointer into a tree indicating where the data specified by the Key
parameter can be found. If the data specified by the Key parameter is not found, the data is
added to the tree in the correct place. If there is not enough space available to create a new
node, a NULL pointer is returned. The RootPointer parameter points to a variable that paints
to the root of the tree. If the RootPointer parameter is the NULL value, the variable is set to
point to the root of a new tree. If the RootPointer parameter is the NULL value on entry, then
a NULL pointer is returned.

The tdelete subroutine deletes the data specified by the Key parameter. The RootPointer
and Comparison Pointer parameters perform the same function as they do for the tsearch
subroutine. The variable pointed to by the RootPointer parameter is changed if the deleted
node is the root of the binary tree. The tdelete subroutine returns a pointer to the parent
node of the deleted node. If the data is not found, a NULL pointer is returned. If the
RootPointer parameter is NULL on entry, then a NULL pointer is returned.

The twalk subroutine steps through the binary search tree whose root is pointed to by the
RootPointer parameter. (Any node in a tree can be used as the root to step through the tree
below that node.) The Action parameter is the name of a routine to be invoked at each
node. The routine specified by the Action parameter is called with three parameters. The first
parameter is the address of the node currently being pointed to. The second parameter is a
value from an enumeration data type:

typedef enurn [preorder, postorder, endorder, leaf] VISIT;

(This data type is defined in the search.h header file.) The actual value of the second
parameter depends on whether this is the first, second, or third time that the node has been
visited during a depth-first, left-to-right traversal of the tree, or whether the node is a leaf. A
leafis a node that is not the parent of another node. The third parameter is the level of the
node in the tree, with the root node being level zero.

Base Operating System Reference

tsearch, ...

Although declared as type pointer-to-void, the pointers to the key and the root of the tree
should be of type pointer-to-element and cast to type pointer-to-character. Although declared
as type pOinter-to-character, the value returned should be cast into type pointer-to-element.

Parameters
Key

Comparison Pointer

RootPointer

Action

Root

Return Values

Points to the data to be located.

Points to the comparison function, which is called with two
parameters that point to the elements being compared.

Points to a variable that points to the root of the tree.

Names a routine to be invoked at each node.

Points to the roots of a binary search node.

The comparison function compares its parameters and return a value as follows:

• If the first parameter is less than the second parameter, the Comparison Pointer
parameter returns a value less than O.

• If the first parameter is equal to the second parameter, the Comparison Pointer parameter
returns a value of O.

• If the first parameter is greater than the second parameter, the Comparison Pointer
parameter returns a value greater than O.

The comparison function need not compare every byte, so arbitrary data can be contained in
the elements in addition to the values being compared.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The bsearch subroutine, hsearch subroutine, Isearch subroutine.

Donald E. Knuth's The Art of Computer Programming, Volume 3, 6.2.2, Algorithm T. This
book was published in Reading, Massachusetts by Addison-Wesley in 1981.

Base Operating System Runtime 1-767

ttylock, ...

ttylock, ttywait, ttyunlock, or ttylocked Subroutine

Purpose

Library

Syntax

Controls tty locking functions.

Standard C Library (libc.a)

int ttylock (DeviceName)
char * DeviceName;

int ttywait (Dev;ceName)
char * DeviceName;

int ttyunlock (Dev;ceName)
char * Dev;ceName;

int ttylocked (Dev;ceName)
char * DeviceName;

Description

Parameter

The ttylock subroutine creates a file, LCK .. DeviceName in /etc/locks directory and writes
the process ID of the calling process in that file. If LCK .. DeviceName exists and the process
whose ID is contained in this file is active, ttylock returns an error

There are programs like uucp, connect, etc., that create tty locks in /etc/locks. The
convention followed by these programs is to call ttylock with an argument of DeviceName
for locking /dev/ Dev;ceName. This convention must be followed by all callers of ttylock to
make the locking mechanism work.

The ttywait subroutine blocks the calling process until the lock file associated with
DeviceName, /etcllocks/LCK .. DeviceName, is removed.

The ttyunlock subroutine removes the lock file, letc/locks/LCK .. Dev;ceName, if it is held by
the current process.

The ttyunlocked subroutine checks to see if the lock file, letc/locks/LCK .. DeviceName,
exists and the process that created the lock file is still active. If the process is no longer
active, the lock file is removed ..

DeviceName Specifies the name of the device.

Return Values

1-768

Upon successful completion, the ttylock subroutine returns a value of O. Otherwise, a value
of -1 is returned.

The ttylocked subroutine returns a value of 0 if no process has a lock on device. Otherwise,
a value of -1 is returned.

Base Operating System Reference

Examples
1. To create a lock for /dev/ttyO:

rc = ttylock("ttyO");

2. To lock /dev/ttyO device and wait for lock to be cleared if it exists:

if (ttylock("ttyO"))
ttywait("ttyO");

rc = ttylock("ttyO");

ttylock, ...

3. To remove the lock file for device /dev/ttyO created by a previous call to ttylock:

ttyunlock("ttyO);

4. To check for a lock on /dev/ttyO:

rc = ttylocked("ttyO");

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Base Operating System Runtime 1-769

ttyname, ...

ttyname or isatty Subroutine

Purpose

Library

Syntax

Gets the name of a terminal or determines if the device is a terminal.

Standard C Library (libc.a)

char *ttyname(FileDescripto~
int FileDescriptor,

int isatty(FileDescripto~
int FileDescriptor,

Description

Parameter

The ttyname subroutine gets the name of a terminal.

The isatty subroutine determines if the device associated with the file descriptor specified by
the FileDescriptor parameter is a terminal.

FileDescriptor Specifies an open file descriptor.

Return Values
The ttyname subroutine returns a pointer to a string containing the null-terminated path
name of the terminal device associated with the file descriptor specified by the FileDescriptor
parameter. A NULL pOinter is returned if the file descriptor does not describe a terminal
device in the /dev directory.

The return value of the ttyname subroutine pOints to static data whose contents are
overwritten by each call.

If the specified file descriptor is associated with a terminal, the isatty subroutine returns a
value of O. If the file descriptor is not associated with a terminal, a value of -1 is returned
and the global variable errno is set to indicate the error.

Error Code
The isatty subroutine fails if the following is true:

ENOTTY The file associated with the FileDescriptor parameter is not a terminal.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

File
/dev/* Terminal device.

Related Information
The ttyslot subroutine.

1-770 Base Operating System Reference

ttyslot

ttyslot Subroutine

Purpose
Finds the slot in the utmp file for the current user.

Library
Standard C Library (libc.a)

Syntax
int ttyslot ()

Description

Files

The ttyslot subroutine returns the index of the current user's entry in the letc/utmp file. The
ttyslot subroutine scans the letc/utmp file for the name of the terminal associated with the
standard input, the standard output, or the error output file descriptors (0, 1, or 2).

The ttyslot subroutine returns -1 if an error is encountered while searching for the terminal

name, or if none of the first three file descriptors (0, 1, and 2) is associated with a terminal

device.

letc/inittab

letc/utmp

The path to the inittab file, which controls the initialization process.

The path to the utmp file, which contains a record of users logged into the
system.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The getutent subroutine, ttyname, isatty subroutines.

Base Operating System Runtime 1-771

ulimit

ulimit Subroutine

Purpose

Library

Syntax

Sets and gets user limits.

Standard C Library (libc.a)

#include <ulimit.h>

off_t ulimit (Command, NewLimit)
int Command;
off_t NewLimit;

Description
The ulimit subroutine controls process limits.

With remote files, the ulimit subroutine values of the client node or local node are used.

Parameters
Command Specifies the form of control. The Command parameter values follow:

1-772

GET _FSIZE (1) Returns the process file size limit. The limit is in units of
UBSIZE blocks (see the sys/param.h file) and is inherited
by child processes. Files of any size can be read.

SET _FSIZE (2) Sets the process file size limit to the value of the NewLimit
parameter. Any process can decrease this limit, but only a
process with root user authority can increase the limit.

GET _DATALIM (3)
Returns the maximum possible break value (described in
the brk and sbrk subroutines).

SET _DATALIM (1004)

Sets the maximum possible break value (described in the
brk and sbrk subroutines). Returns the new maximum
break value, which is the NewLimit parameter rounded up

. to the nearest page boundary.

GET _STACKLIM (1005)
Returns the lowest valid stack address. (Note that stacks
grow from high addresses to low addresses.)

SET _STACKLIM (1006)
Sets the lowest valid stack address. Returns the new
minimum valid stack address, which is the NewLimit
parameter rounded down to the nearest page boundary.

GET_REALDIR (1007)

Returns the current value of the real directory read flag. If

Base Operating System Reference

Example

NewLimit

ulimit

this flag is a value of 0, a read system call (or read x with
Extension parameter value of 0) against a directory returns
fixed-format entries compatible with the System V UNIX
operating system. Otherwise, a read (or readx with
Extension parameter value of 0) against a directory returns '
the underlying physical format.

SET _REALDIR (1008)
Set the value of the real directory read flag. If the NewLimit
parameter is a value of 0, this flag is cleared; otherwise, it is
set. The old value of the real directory read flag is returned.

Specifies the new limit. The value of the NewLimit parameter depends on
the Command parameter value that is used.

To increase the size of the stack by 4096 bytes (use 4096 or PAGESIZE), and set the rc to
the new lowest valid stack address, enter:

rc = ulirnit(SET_STACKLIM, ulirnit(GET_STACKLIM, 0) - 4096);

Return Values
Upon successful completion, a non-negative value is returned. Otherwise, a value of -1 is
returned and the global variable errno is set to indicate the error.

Error Codes
The ulimit subroutine fails and the limit remains unchanged if one or both of the following
are true:

EPERM

EINVAL

A process without root user authority attempts to increase the file size limit.

The Command parameter is a value other than GET_FSIZE, SET_FSIZE,
GET_DATALlM, SET_DATALlM, GET_STACKLlM, SET_STACKLlM,
GET _REALDIR, or SET _REALDIR.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The brk subroutine, sbrk subroutine, getrlimit, setrlimit subroutines, pathconf subroutine,
vlimit subroutine, write subroutine.

The param.h file.

Base Operating System Runtime 1-773

umask

umask Subroutine

Purpose

Library

Syntax

Sets and gets the value of the file creation mask.

Standard C Library (libc.a)

mode_t umask (CreationMask)
mode_t Creation Mask;

Description

Parameter

The umask subroutine sets the file mode creation mask of the process to the value of the
CreationMask parameter and returns the previous value of the mask.

Whenever a file is created (by the open, mkdir, or mknod subroutine), all file permission
bits set in the file mode creation mask are cleared in the mode of the created file. This
clearing allows users to restrict the default access to their files.

The mask is inherited by child processes.

CreationMask Specifies the value of the file mode creation mask. The CreationMask
parameter is constructed by logically ORing file permission bits defined
in the sys/mode.h header file. Nine bits of the CreationMask
parameter are significant.

Return Value
Upon successful completion, the previous value of the file mode creation mask is returned.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The chmod subroutine, mknod subroutine, open subroutine, stat subroutine.

The sh command, ksh command.

The sys/mode.h header file.

1-774 Base Operating System Reference

umount, ...

umount or uvmount Subroutine

Purpose

Library

Syntax

Removes a virtual file system from the file tree.

Standard C Library (Iibc.a)

int umount(Device)
char * Device;

#include <sys/vmount.h>

int uvmount(VirtualFileSystemlD, Flag)
int VirtualFileSystemlD;
int Flag;

Description
The umount and uvmount subroutines remove a virtual file system from the file tree.

The umount subroutine unmounts only file systems mounted from a block device (special
file that is identified by the path to the block device).

In addition to local devices, the uvmount subroutine unmounts local or remote directories,
identified by the VirtualFileSystemlD parameter.

Only a calling process with root user authority can unmount a device mount. Either a
process with root user authority or a user that has write access to the mounted-over file or
directory can unmount file and directory mounts.

Parameters
Device

VirtualFileSystem I D

Flag

Return Values

The path name of the block device to be unmounted for the
umount subroutine.

The unique identifier of the virtual file system to be unmounted
for the uvmount subroutine. This value is returned when a virtual
file system is created by the vmount subroutine and may
subsequently be obtained by the mntctl subroutine. The
VirtualFileSystemlD is also reported via the stat subroutine in the
st_vfs field.

Specifies special action for the uvmount system call. Currently
only one value is defined:

Force the unmount. This flag is ignored
for device mounts.

Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned,
and the global variable errno is set to indicate the error.

Base Operating System Runtime 1-775

umount, ...

Error Codes
The uvmount subroutine fails if one or more of the following are true:

EPERM

EINVAL

EBUSV

The calling process does not have write permission to the root of the virtual
file system, or the mounted object is a device or remote and the calling
process does not have root user authority.

There is no virtual file system with the specified VirtualFileSystemlD.

A device that is still in use is being unmounted.

The umount subroutine fails if one or more of the following are true:

EPERM

ENOENT

ENOBLK

EINVAL

EINVAL

EBUSV

The calling process does not have root user authority.

The Device parameter does not exist.

The Device parameter is not a block device.

The Device parameter is not mounted.

The Device parameter is not local.

A process is holding a reference to a file located on the file system.

The umount sytem call can also fail if additional errors on page A-1 occur.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BaS) Runtime.

Related Information
The mount subroutine.

The mount command, umount command.

1-776 Base Operating System Reference

uname, ...

uname or unamex Subroutine

Purpose

Library

Syntax

Gets the name of the current AIX system.

Standard C Library (libc.a)

#include <sys/utsname.h>

int uname (Name)
struct utsname * Name;

int unamex (Name)
struct xutsname * Name;

Description

Parameter

The uname subroutine stores information identifying the current system in the structure
pointed to by the Name parameter.

The uname subroutine uses the utsname structure, which is defined in the sys/utsname.h
file, and it contains the following members:

char sysname[SYS_NMLN];
char nodename[SYS_NMLN];
char release[SYS_NMLN];
char version[SYS_NMLN];
char machine[SYS_NMLN];

The uname subroutine returns a null-terminated character string naming the current system
in the sysname character array. The nodename array contains the name that the system is
known by on a communications network. The release and version arrays further identify the
system. The machine array identifies the system unit hardware being used.

The unamex subroutine uses the xutsname structure, which is defined in the
sys/utsname.h file, and it contains the following members:

unsigned long nidi
long reserved[3];

The xutsname.nid field is the binary form of the utsname.machine field. For local area
networks in which a binary node name is appropriate, xutsname.nid contains such a name.

Name A pointer to the utsname or xutsname structure.

Return Values
Upon successful completion, the uname or unamex subroutines return a non-negative
value. Otherwise, a value of -1 is returned and the global variable errno is set to indicate
the error.

Base Operating System Runtime 1-777

uname, ...

Error Code
The uname and unamex subroutines fail if the following is true:

EFAULT The Name parameter points outside of the process address space.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The uname command.

1-778 Base Operating System Reference

ungetc, ...

ungetc or ungetwc Subroutine

Purpose

Library

Syntax

Pushes a character back into the input stream.

Standard C Library (libc.a)

#include <stdio.h>

int ungetc (Character, Stream)
int Character,
FILE *Stream;

Description
The ungetc subroutine inserts the character specified by the Character parameter into the
buffer associated with the input stream specified by the Stream parameter. This causes the
next call to the getc subroutine to return Character. The ungetc subroutine returns
Character, and leaves the Stream parameter file unchanged.

If the Character parameter is EOF, the ungetc subroutine does not place anything in the
buffer and a value of EOF is returned.

You can always push one character back onto a stream, provided that something has been
read from the stream or the setbuf subroutine has been called. The fseek subroutine erases
all memory of inserted characters.

The ungetc subroutine returns a value of EOF if it cannot insert the character.

For Japanese Language Support:

When running AIX with Japanese Language Support, the following subroutine,
stored in libc.a, is provided:

#include <stdio.h>

int ungetwc (Character, Stream)
int Character,
FILE * Stream;

The ungetwc subroutine inserts the NLchar specified by the Character parameter
into the buffer associated with the input stream. This causes the next call to the
getwc subroutine to return the value of the Character parameter.

Parameters
Character Specifies a character.

Specifies the input stream. Stream

Return Value
The ungetwc subroutine returns a value of EOF if the character cannot be inserted.

Base Operating System Runtime 1-779

ungetc, ...

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-780

The fseek, rewind, ftell, fgetpos, fsetpos subroutines, gete, fgete, getehar, getw,
getwe, fgetwe, getwehar subroutines, setbuf, setvbuf, setbuffer, setlinebuf subroutines.

The National Language Support Overview in General Programming Concepts.

Base Operating System Reference

unlink

unlink Subroutine

Purpose

Library

Syntax

Removes a directory entry.

Standard C Library (libe.a)

int unlink (Path)
ehar *Path;

Description

Parameter

The unlink subroutine removes the directory entry specified by the Path parameter. If
Network File System is installed on your system, this path can cross into another node.

Removing a link to a directory requires root user authority. Unlinking of directories is strongly
discouraged since erroneous directory structures can result. The rmdir subroutine should be
used to remove empty directories.

When all links to a file are removed and no process has the file open, all resources
associated with the file are reclaimed, and the file is no longer accessible. If one or more
processes have the file open when the last link is removed, the directory entry disappears,
but the removal of the file contents is postponed until all references to the file are closed.

If the parent directory of Path has the sticky attribute (described in the mode.h header file),
the calling process must have an effective user 10 equal to the owner 10 of Path or the
owner 10 of the parent directory of Path, or the calling process must have root user authority.

Path Specifies the directory entry to be removed.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned,
and the global variable errno is set to indicate the error.

Error Codes
The unlink subroutine fails and the named file is not unlinked if one or more of the following
are true:

ENOENT

EACCES

EPERM

EBUSV

EROFS

The named file does not exist.

Write permission is denied on the directory containing the link to be
removed.

The named file is a directory, and the calling process does not have root
user authority.

The entry to be. unlinked is the mount point for a mounted file system.

The entry to be unlinked is part of a read-only file system.

Base Operating System Runtime 1-781

unlink

The unlink subroutine can also fail if additional errors on page A-1 occur.

If Network File System is installed on the system, the unlink system call can also fail if the
following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The close subroutine, link subroutine, open subroutine, rmdir subroutine.

The rm command.

1-782 Base Operating System Reference

unload

unload Subroutine

Purpose

Syntax

Unloads a program.

int unload(FunctionPointer)
int (* FunctionPointer)();

Description

Parameter

The unload subroutine unloads the object file and any imported object files that were
automatically loaded with it. The pointer to the function returned by the load subroutine is
passed to the unload subroutine as FunctionPointer.

The unload subroutine frees the storage used by the specified object file only if the object
file is no longer in use. An object file is in use as long as any other object file that is in use
imports symbols from it.

Fun ction Po in ter Specifies the name of the function returned by the load subroutine.

Return Value
Upon successful completion, the unload subroutine returns a value of O.

Error Codes
If the unload subroutine fails, a value of -1 is returned, the program is not unloaded, and
errno is set to indicate the error.The unload subroutine returns the following error code:

EINVAL The FunctionPointer parameter does not correspond to a program loaded
by the load subroutine.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The load subroutine, loadquery subroutine, loadbind subroutine.

The Id command.

Base Operating System Runtime 1-783

usrinfo

usrinfo Subroutine

Purpose

Library

Syntax

Gets and sets user information about the owner of the current process.

Standard C Library (libc.a)

#include <uinfo.h>

int usrinfo (Command, Buffer, Count)
int Command;
char * Buffer,
int Count,

Description
The usrinfo subroutine gets and sets information about the owner of the current process.
The information is a sequence of null-terminated name=value strings. The last string in the
sequence is terminated by two successive null characters. A child process inherits the user
information of the parent process.

Parameters
Command If the Command parameter is one of the following constants:

1-784

Buffer

Count

GETUINFO

SETUINFO

Copies up to the number of bytes specified by the Count
parameter of user information into the buffer pointed to by
the Buffer parameter.

Sets the user information for the process to the first number
of bytes specified by the Count parameter in the buffer
pointed to by the Buffer parameter. The calling process
must have root user authority to set the user information.

The user information should at minimum consist of four
strings that are typically set by the login program. These
four strings are:

NAME= UserName

LOGIN=LoginName

LOGNAME=LoginName

TTV=ttyName

If the process has no terminal, the ttyName parameter
should be null.

A pointer to a user buffer. This buffer is usually UINFOSIZ bytes long.

The number of bytes of user information to be copied from or to the user
buffer.

Base Operating System Reference

usrinfo

Return Values
Upon successful completion, the usrinfo subroutine returns a non-negative integer giving
the number of bytes transferred. Otherwise, a value of -1 is returned and the global variable
errno is set to indicate the error.

Error Codes
The usrinfo subroutine fails if one or more of the following are true:

EPERM

EINVAL

EINVAL

EFAULT

The Command parameter is set to SETUINFO and the calling process does
not have root user authority.

The Command parameter is not set to SETUINFO or GETUINFO.

The Command parameter is set to SETUINFO and the Count parameter is
larger than UINFOSIZ.

The Buffer parameter points outside of the address space of the process.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The getuinfo subroutine, setpenv subroutine.

The login command.

Base Operating System Runtime 1-785

utimes, ...

utimes or utime Subroutine

Purpose

Library

Syntax

Sets file access and modification times.

Standard C Library (libc.a)

#include <sys/time.h>

int utimes (Path, Times)
char *Path;
struct timeval Times[2];

#include <utime.h>

int uti me (Path, Times)
char *Path;
struct utimbuf * Times;

Description
The utimes subroutine sets the access and modification times of the file pointed to by the
Path parameter to the value of the Times parameter.

The utime call also sets file access and modification times; however, each time is contained
in a single integer and is accurate only to the nearest second. The utimes subroutine allows
time specifications accurate to the microsecond.

Parameters
Path Points to the file.

1-786

Times For utimes, this is an array of timeval structures, as defined in the
sys/time.h header file. The first array element represents the date and time
of last access, and the second element represents the date and time of last
modification. The times in the timeval structure are measured in seconds
and microseconds since the epoch (00:00:00 GMT, January 1, 1970),
although rounding towards the nearest second may occur.

For utime, this parameter is a pOinter to a utimbuf structure, defined in the
utime.h header file. The first structure member represents the date and
time of last access, and the second member represents the date and time of
last modification. The times in the utimbuf structure are measured in
seconds since the epoch.

If the Times parameter is NULL, the access and modification times of the
file are set to the current time. If the file is a remote file, the current time at
the remote node, rather than the local node, is used. To use the call this
way, the effective user ID of the process must be the same as the owner of
the file, or must have root user authority, or the process must have write
permission to the file.

Base Operating System Reference

Return Values

utimes, ...

If the Times parameter is not the NULL value, the access and modification
times are set to the values contained in the designated structure, regardless
of whether those times correlate with the current time. Only the owner of the
file or a user with root user authority can use the call this way.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned
and the global variable errno is set to indicate the error.

Error Codes
The utimes or utime subroutine fails if one or more of the following are true:

ENOENT

EPERM

EACCES

EROFS

The named file does not exist.

The Times parameter is not the NULL value and the calling process
neither owns the file nor has root user authority.

The Times parameter is NULL, effective user ID is neither the
owner of the file nor has root user authority, and write access is
denied.

The file system that contains the file is mounted read-only.

The utimes subroutine can also fail if additional errors on page A-1 occur.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Microsecond time stamps are not implemented, even though utimes provides a way to
specify them.

Related Information
The stat subroutine.

The sys/time.h header file, utime.h header file.

Base Operating, System Runtime 1-787

varargs

varargs Macros

Purpose

Library

Syntax

Handles a variable-length parameter list.

Standard C Library (libc.a)

#include <stdargs.h>

type va_arg (Argp, Type)
va_list Argp;

void va_start (Argp, ParmN)
va_list Argp;

void va_end (Argp)
va_list Argp;

Description
The varargs set of macros allows you to write portable subroutines that accept a variable
number of parameters. Subroutines that have variable-length parameter lists (such as the
printf subroutine), but that do not use the varargs macros, are inherently non portable
because different systems use different parameter-passing conventions.

Defines the type of the variable used to traverse the list.

Initializes Argp to pOint to the beginning of the list. The optional parameter
ParmN is the identifier of the rightmost parameter in the function definition.
For compatiblity with older programs, it defaults to the address of the first
parameter on the parameter list. The va_start macro wi" be invoked before
any access to the unnamed arguments.

A variable that the varargs macros use to keep track of the current location
in the parameter list. Do not modify this variable.

Returns the next parameter in the list pointed to by Argp.

Cleans up at the end.

Your subroutine can traverse, or scan, the parameter list more than once. Start each
traversal with a call to va_start and end it with va_end.

Note: The calling routine is responsible for specifying the number of parameters because it
is not always possible to determine this from the stack frame. For example, execl is
passed a NULL pointer to signal the end of the list. The printf subroutine determines
the number of parameters from its Format parameter.

Parameters

1-788

Argp Specifies a variable that the varargs macros use to keep track of the
current location in the parameter list. Do not modify this variable.

Type Specifies the type to which the expected argument wi" be converted when
passed as an argument. InC, arguments that are char or short should be
accessed as int; unsigned char or short are converted to unsigned int, and

Base Operating System Reference

Example

varargs

float arguments are converted to double. Different types can be mixed, but it
is up to the routine to know what type of argument is expected, since it
cannot be determined at runtime.

ParmN Specifies an optional parameter that is the identifier of the rightmost
parameter in the function definition.

The following example is a possible implementation of the execl system call:

\#include \<varargs.h>
\#define MAXargS 100
/*
** execl is called by
** execl(file, argl, arg2, ... , (char *) 0);
*/
execl(va_alist)

va dcl
{ va_list ap;

char *file;
char *args[MAXargS];
int argno = 0;
va_start(ap);
file = va_arg(ap, char *);
while «args[argno++] = va_arg(ap, char *)) != (char *) 0)

/* Empty loop body */
va_end(ap);
return (execv(file, args));

}

Implementation Specifics
These macros are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The printf subroutine, NLvprintf subroutine.

The exec subroutines.

Base Operating System Runtime 1-789

vmount, ...

vmount or mount Subroutine

Purpose

Library

Syntax

Makes a file system available for use.

Standard C Library (libc.a)

#include <sys/vmount.h>

int vmount (VMount, Size)
struct vmount * VMount;
int Size;

int mount (Device, Path, Flags)
char * Device;
char * Path;
int Flags;

Description
The vmount subroutine mounts a file system, thereby making the file in it available for use.
The vmount subroutine effectively creates what is known as a virtual file system. After a file
system is mounted, references to the path name that is to be mounted over refers to the root
directory on the mounted file system.

The vmount subroutine provides the following types of mounts:

• A local file over a local or remote file

• A local directory over a local or remote directory

• A remote file over a local or remote file

• A remote directory over a local or remote directory.

A directory can only be mounted over a directory, and a file can only be mounted over a file.

A mount to a directory or a file can be issued if the user has both of the following:

• Search permission to the directory or file to mount

• Search and write permission to the directory or file to mount over.

In order to mount a block device, remote file, or remote directory, the calling process must
also have root user authority.

The mount subroutine only allows mounts of a block device over a local directory with the
default file system type. mount searches letc/filesystems to find a corresponding stanza for
the desired file system. The mount interface is provided only for compatibility with previous
releases of AIX. The use of mount is strongly discouraged by normal application programs.

Parameters
Device A path name identifying the block device (also called a special file) that

contains the physical file system.

1-790 Base Operating System Reference

vmount, ...

Path A path name identifying the directory on which the file system is to be
mounted.

Flags Values that define characteristics of the object to be mounted. Currently one
value is defined in the syslvmount.h header file:

VMount

Indicates that the object to be mounted is
read-only and that write access is not allowed. If
this value is not specified, writing is permitted
according to individual file accessibility.

A pointer to a variable length vmount structure. The vmount structure is
defined in the sys/vmount.h header file.

The following fields of the VMount parameter must be initialized before the
call to the vmount subroutine:

The revision code in effect when the program that
created this virtual file system was compiled. This is
the value VMT _REVISION.

The total length of the structure with all its data. This
must be a multiple of the word size (4 bytes) and
correspond with the Size parameter.

Contains the general mount characteristics. The
following values may be specified:

MNT_READONLY A read-only virtual file system is
to be created.

The type of the generic file system underlying the
VMT_OBJECT. Values for this field are defined in the
syslvmount.h header file and include:

MNT_NFS

MNT_CDROM

The AIX Version 3 Operating
System native file system.

A Network File System client.

The CD-ROM file system.

An array of structures that describe variable length
data associated with the vmount structure. The
structure consists of the following fields:

The offset of the data from the
beginning of the vmount
structure.

The size, in bytes, of the data.

The array consists of the following elements:

vmt_data[VMT _OBJECT]
The name of the device, directory, or file that is to be
mounted.

Base Operating System Runtime 1-791

vmount, ...

Size

vmt_data[VMT _STUB]
The name of the device, directory, or file that is to be
mounted over.

vmt_ data[VMT _HOST]
The short (binary) name of the host that owns the
mounted object. This need not be specified if
VMT_OBJECT is local (has the same vmt_gfstype as
I, the root of all file systems).

vmt_data[VMT _HOSTNAME]
The long (character) name of the host that owns the
mounted object. This need not be specified if
VMT_OBJECT is local.

vmt_data[VMT _INFO]
Binary information to be passed to the generic file
system implementation tbat supports VMT _OBJECT;
the interpretation of this field is specific to the
gfs_type.

vmt_data[VMT _ARGS]
A character string representation of VMT _'NFO.

On return from the vmount subroutine, the following additional fields of the
VMount parameter are initialized:

vmt_vfsnumber

The two-word file system identifier; the interpretation
of this identifier depends on the gfs_type.

The unique identifier of the virtual file system. Virtual
file systems do not survive the IPL; neither does this
identifier.

The time at which the virtual file system was created.

The size, in bytes, of the supplied data area.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned,
and the global variable errno is set to indicate the error.

Error Codes

1-792

The mount and vmount subroutines fail and the virtual file system is not created if one or
more of the following are true:

EACCES

EBUSV

EFAULT

EFBIG

The calling process does not have write permission on the stub directory
(the directory to be mounted over).

VMT _OBJECT specifies a device that is already mounted or an object that
is open for writing, or the kernel's mount table is full.

The VMount parameter points to a location outside of the allocated address
space of the process.

The size of the file system is too big.

Base Operating System Reference

EFORMAT

EINVAL

ENOSYS

ENOTBLK

ENOTDIR

EPERM

EROFS

vmount, ...

An internal inconsistency has ben detected in the file system.

The contents of the VMount parameter are unintelligible (for example, the
vmLgfsfype is unrecognizable, or the file system implementation does not
understand the VMT_INFO provided).

The file system type requested has not been configured.

The object to be mounted is not a file, directory, or device.

The types of VMT_OBJECT and VMT_STUB are incompatible.

VMT_OBJECT specifies a block device and the calling process does not
have root user authority.

An attempt has been made to mount a file system for read/write when the
file system cannot support writing.

The mount and vmount subroutines can also fail if additional errors on page A-1 occur.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The umount subroutine, mntctl subroutine.

The mount command, umount command.

Base Operating System Runtime 1-793

vprintf, ...

vprintf, vfprintf, orvsprintf Subroutine

Purpose

Library

Syntax

Formats a varargs parameter list for output.

Standard C Library (libc.a)

#include <stdio.h>
#include <stdarg.h>

int vprintf (Format, PrintArgument)
char * Format;
va_list PrintArgument;

int vfprintf (Stream, Format, PrintArgument)
FILE *Stream;
char * Format;
va_list PrintArgument;

int vsprintf (String, Format, PrintArgument)
char * String, * Format;
va_list PrintArgument;

Description
The vprintf, vfprintf, and vsprintf subroutines format and write varargs parameter lists.

These subroutines are the same as the printf, fprintf, and sprintf subroutines, respectively,
except that they are not called with a variable number of parameters. Instead, they are
called with a parameter list pointer as defined by varargs.

Parameters
Format Specifies a character string that contains two types of objects:

1-794

PrintArgumenf

Stream

String

• Plain characters, which are copied to the output stream

• Conversion specifications, each of which causes zero or more items
to be fetched from the varargs parameter lists.

Specifies the arguments to be printed.

Specifies the output stream.

Specifies the buffer to which output is printed.

Base Operating System Reference

Example

vprintf, ...

The following example demonstrates how the vfprintf subroutine can be used to write an
error routine:

#include <stdio.h>
#include <stdarg.h>

/* error should be called with the
syntax: */

/* error(routine_name, Format
[, value, ...]); */

/*VARARGSO*/

void error(char *fmt, ...);
/* ** Note that the function name and

Format arguments cannot be **
separately declared because of the **
definition of varargs. */ {

va_list args;

va_start(args, fmt);
/*
** Display the name of the function

that called error */
fprintf(stderr, "ERROR in %s: ",

va_arg(args, char *)); /*
** Display the remainder of the message
*/
fmt = va_arg(args, char *);
vfprintf(fmt, args);
va_end (args) ;
abort () ; }

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The NLvprintf, NLvfprinU, NLvsprinU subroutines, prinU, fprintf, sprintf, NLprintf,
NLfprinU, NLsprintf subroutines.

Base Operating System Runtime 1-795

wait, ...

wait, waitpid, or wait3 Subroutine

Purpose

Library

Syntax

Waits for a child process to stop or terminate.

Standard C Library (libc.a)

#include <sys/wait.h>

pid_t wait (StatusLocation)
int * StatusLocation;

pid_t wait (void *) 0)

#include <sys/wait.h>

pid_t waitpid (Process/D, StatusLocation, Options)
int *StatusLocation;
pid_t Process/D;
int Options;

#include <sys/time.h>
#include <sys/resource.h>
#include <sys/wait.h>

pid_t wait3 (StatusLocation, Options, ResourceUsage)
int * StatusLocation;
int Options;
struct rusage * Resource Usage;

Description

1-796

The wait subroutine suspends the calling process until it receives a signal that is not blocked
or ignored, or until anyone of the calling process child processes stops or terminates. The
wait subroutine returns without waiting if the child process that has not been waited for has
already stopped or terminated prior to the call.

Note: The effect of the wait system call can be modified by the setting of the SIGCHLD
signal. See the sigaction subroutine for details.

The waitpid subroutine includes a Process/D parameter that allows the calling process to
gather status from a specific set of child processes, according to the following rules:

• If the Process/D parameter is equal to a value of -1 , status is requested for any child
process. In this respect, the waitpid subroutine is equivalent to the wait subroutine.

• If the Process/D parameter is greater than 0, it specifies the process ID of a single child
process for which status is requested.

Base Operating System Reference

wait, ...

• If the ProcesslO parameter is equal to 0, status is requested for any child process whose
process group 10 is equal to that of the calling process.

• If the ProcesslO parameter is less than 0, status is requested for any child process whose
process group 10 is equal to the absolute value of the ProcesslO parameter.

The waitpid and wait3 subroutine variants provide an Options parameter that can modify
the behavior of the subroutine. Two values are defined, WNOHANG and WUNTRACED,
which can be combined by specifying their bitwise-inclusive OR. The WNOHANG option
prevents the calling process from being suspended even if there are child processes to wait
for. In this case, a value of 0 is returned indicating that there are no child processes that
have stopped or terminated. If the WUNTRACED option is set, the call should also return
information when children of the current process are stopped because they received a
SIGTTIN, SIGTTOU, SIGSSTP, or SIGTSTOP signal.

When multiprocess debugging mode is enabled, the following new values are returned from

a wait subroutine:

W _SEWTED Process stopped during exec.

W_SFWTED Process stopped during fork.

W_SLWTED Process stopped during load or unload subroutine.

Note: W_SLWTED is also returned when multiprocess debugging is disabled.

Parameters
StatusLocation Points to structure that is filled in with the child process termination

status, as defined in the sys/wait.h header file.

Process 10

Options

ResourceUsage

Return Values

Specifies the child process.

Modifies behavior of subroutine.

Specifies the location of a structure to be filled in with resource
utilization information for terminated children.

If the wait subroutine returns due to a stopped or terminated child process, the process 10 of
the child is returned to the calling process. If the wait subroutine fails, a value of -1 is
returned and the global variable errno is set to indicate the error. In addition, the waitpid
and wait3 subroutines will return a value of ° if there are no stopped or exited children, and
the WNOHANG option was specified.

Error Codes
The wait, waitpid, and wait3 subroutines fail if one or more of the following are true:

ECHILD

EINTR

EFAULT

The calling process has no existing unwaited-for child processes.

This subroutine was terminated by receipt of a signal.

The StatusLocation or ResourceUsage parameter points to a location
outside of the address space of the process.

Base Operating System Runtime 1-797

wait, ...

The waitpid subroutine fails if the following is true:

ECHILD The process or process group 10 specified by the ProcesslD parameter
does not exist or is not a child process of the calling process.

The waitpid and wait3 subroutines fail if the following is true:

EINVAL The value of the Options parameter is not valid.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-798

The exec subroutines, _exit, exit, atexit subroutines, fork subroutine, pause subroutine,
ptrace subroutine, getrusage subroutine, sigaction subroutine.

Base Operating System Reference

wcscat, ...

wcscat, wcschr, wcscmp, wcscPY ,or wcscspn Subroutine

Purpose

Library

Syntax

Performs operations on wide-character strings.

Standard C Library (libc.a)

#include <wcstr.h>

wchar_t *wcscat(WcString1, WcString2)
wchar_t *WcString1, *WcString2;

wchar _t *wcschr(WcString, WideCharactery
wchar_t * WcString, WideCharacter;

wchar_t *wcscmp (WcString1, WcString2)
wchar_t * WcString1, * WcString2;

wchar_t *wcscpy(WcString1, WcString2)
wchar_t * WcString1, * WcString2;

size_t wcscspn(WcString 1, WcString2)
wchar _t * WcString 1, * WcString2;

Description
The wcscat, wcschr, wcscmp, wcscpy and wcscspn subroutines operate on null
terminated wchar_t strings. The string arguments to these subroutines are expected to
contain a wchar_t null character marking the end of the string. Boundary checking is not
done when a copy or concatenation operation is performed.

The wcscat subroutine appends a copy of the string pointed to by the WcString2 parameter
to the end of the string pointed to by the WcString1 parameter and returns the value of
WcString1.

The wcschr subroutine returns a pOinter to the first occurrence of the WideCharacter
parameter in the WcString parameter. The character value may be a wchar_t null
character (\0); the wchar_t null character at the end of the string is included in the search.
If the character is not found, a NULL pointer is returned.

The wcscmp subroutine compares two wchar_t strings. It returns an integer greater than
zero if the WcString1 parameter is greater than the WcString2 parameter. It returns zero if
the two strings are equivalent. It returns a number less than zero if WcString1 is less than
WcString2.

The wcscpy subroutine copies the contents of the WcString2 parameter (including the
ending wchar_t null character) into the WcString1 parameter and returns the value of
WcString1.

The wcscspn subroutine computes the number of wchar_t characters in the initial segment
of the string pointed to by the WcString 1 parameter that do not appear in the string pointed
to by the WcString2 parameter. The wcscspn subroutine returns the number of wchar_t
characters in the segment.

Base Operating System Runtime 1-799

wcscat, ...

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information
The mbscat, mbscmp, mbscpy subroutines, wcsncat, wcsncmp, wcsncpy subroutines.

National Language Support Overview in General Programming Concepts.

1-800 Base Operating System Reference

wcslen

weslen Subroutine

Purpose

Library

Syntax

Determines the number of characters in a wide-character string.

Standard C Library

#include <wcstr.h>

size_t wcslen(Wcstring)
wchar _t * Wcstring;

Description
The wcslen subroutine computes the number of wchar_t characters in the string pointed to
by the Wcstring parameter.

Parameter
Wcstring A wide character string.

Return Value
The wcslen subroutine returns the number of wchar_t characters that precede the
terminating wchar _t null character.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The mbslen subroutine.

National Language Support Overview in General Programming Concepts.

Base Operating System Runtime 1-801

wcsncat, ...

wcsncat, wcsncmp, or wcsncpy Subroutine

Purpose

Library

Syntax

Performs operations on a specified number of wide-characters from one string to another.

Standard C Library (libc.a)

#include <wcstr.h>

wchar_t *wcsncat{WcString1, WcString2, Number)
wchar_t *WcString1, *WcString2;
size_t Number;

wchar_t *wcsncmp(WcString1, WcString2, Number)
wchar _ t * WcString 1, * WcString2;
size_t Number;

wchar_t *wcsncpy(WcString1, WcString2, Number)
wchar_t *WcString1, *WcString2;
size_t Number;

Description
The wcsncat, wcsncmp and wcsncpy subroutines operate on null terminated
wide-character strings.

The wcsncat subroutine appends up to the value of the Number parameter in characters
from the WcString2 parameter to the end of the WcString1 parameter, appends a wchar_t
null to the result, and returns WcString1.

The wcsncmp subroutine compares up to the value of the Number parameter in
wide-characters in the WcString 1 parameter to the WcString2 parameter and returns an
integer greater than zero if WcString 1 is greater than WcString2; zero if the strings are
equivalent; and an integer less than zero if WcString1 is less than WcString2.

The wcsncpy subroutine copies up to the value of the Number parameter in
wide-characters from the WcString2 parameter to the WcString1 parameter and returns
WcString1. If WcString2 is shorter than Numbercharacters, WcString1 is padded out to
Number characters with wchar_t null characters

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-802

The mbsncat, mbsncmp, mbsncpy subroutines, wcscat, wcschr, wcscmp, wcscpy,
wcscspn subroutines.

National Language Support Overview in General Programming Concepts.

Base Operating System Reference

wcspbrk Subroutine

Purpose

Library

Syntax

Locates the first occurrence of characters in a string.

Standard C Library (libc.a)

#include <wcstr.h>

wchar_t *wcspbrk(Wcs1, Wcs2)
wchar_t *Wcs1, Wcs2;

Description

wcspbrk

The wcspbrk subroutine locates the first occurrence in the string pointed to by the Wcs1
parameter of any character from the string pointed to by the Wcs2 parameter.

Parameters
Wcs 1 Pointer to a string being searched.

Wcs2 Pointer to a set of characters string.

Return Values
The wcspbrk subroutine returns a pointer to the character, or NULL if no wchar_t from the
Wcs2 parameter occurs in the Wcs1 parameter.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The mbspbrk subroutine, wcswcs subroutine.

National Language Support Overview in General Programming Concepts.

Base Operating System Runtime 1-803

wcsrchr

wcsrchr Subroutine

Purpose

Library

Syntax

Locates a wchar_t character in a wide-character string.

Standard C Library (Iibc.a)

#include <wcstr.h>

wchar_t *wcsrchr(WcString, WideCharactery
wchar _t * WcString, WideCharacter,

Description
The wcsrchr subroutine locates the last occurrence of the WideCharacter parameter in the
string pointed to by the WcString parameter. The terminating wchar_t null character is
considered to be part of the string.

Parameters
WcString Pointer to a string.

Wide Character A wchar_t character.

Return Values
The wcsrchr subroutine returns a pointer to the Wide Character parameter, or a NULL
pointer if WideCharacter does not occur in the string.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The mbschr subroutines, mbsrchr subroutine.

National Language Support Overview in General Programming Concepts.

1-804 Base Operating System Reference

wcsspn Subroutine

Purpose

Library

Syntax

Returns the number of wide-characters in the initial segment of a string.

Standard C Library (libc.a)

#include <wcstr.h>

size _ t wcsspn(WcString 1, WcString2)
whcar_t *WcString1, *WcString2;

Description

wcsspn

The wcsspn subroutine computes the number of wchar_t characters in the initial segment
of the string pointed to by the WcString1 parameter. The WcString1 parameter consists
entirely of wchar_t characters from the string painted to by the WcString2 parameter.

Parameters
WcString1

WcString2

Return Values

Pointer to the initial segment of a string.

Pointer to a set of characters string.

The wcsspn subroutine returns the number of wchar _t characters in the segment.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Base Operating System Runtime 1-805

wcstombs

wcstombs Subroutine

Purpose

Library

Syntax

Converts a sequence of wide-characters into a sequence of multibyte characters

Standard C Library (libc.a)

#include <stdlib.h>

size_t wcstombs(String, WcString, Number}
char * String;
wchar_t * WcString;
size_t Number;

Description
The wcstombs subroutine converts the sequence of wide-characters pointed to by the
WcString parameter to a sequence of corresponding multibyte characters and places the
results in the area pointed to by the String parameter. The conversion is terminated when
the wide-character null is encountered or when the value of the Number parameter (or
Number-1) in bytes have been placed in the area pointed to by the String parameter. If the
amount of space available in the area pointed to by String would cause a malformed (partial)
multibyte character to be stored, only Number-1 bytes would be used because only valid
(complete) multibyte characters are allowed.

Parameters
String Pointer to area where result of conversion is stored.

WcString Pointer to a wide-character string.

Number Number of bytes to be converted.

Return Values
The wcstombs subroutine returns the number of bytes modified. If an invalid
wide-character is encountered a -1 is returned.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The wctomb subroutine, mbtowc subroutine, mbstowcs subroutine.

National Language Support Overview in General Programming Concepts.

1-806 Base Operating System Reference

wcswcs Subroutine

Purpose

Library

Syntax

Locates first occurrence of a wide-character in a string.

Standard C Library (Iibc.a)

#include <wcstr.h>

wchar _t *wcswcs(WcString 1, WcString2)
wchar_t *WcString1, *WcString2;

Description

wcswcs

The wcswcs subroutine locates the first occurrence in the string pointed to by the WcString1
parameter of the sequence of wchar_t characters (excluding the terminating wchar_t null
character) in the string pointed to by the WcString2 parameter.

Parameters
WcString1

WcString2

Return Values

Pointer to a wide character string being searched.

Pointer to a wide character string, which is source string.

The wcswcs subroutine returns a pointer to the located string or NULL if the string is not
found. If the WcString2 parameter points to a string with zero length, the function returns
the WcString 1 parameter.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The mbspbrk subroutine, wcspbrk subroutine.

National Language Support Overview in General Programming Concepts

Base Operating System Runtime 1-807

wctomb

wctomb Subroutine

Purpose

Library

Syntax

Converts a wide-character into a multibyte character.

Standard C Library (libc.a)

#include <stdlib.h>

size_t wctomb(Storage, WideCharactery
char * Storage;
wchar _t Wide Character,

Descri ption
The wctomb subroutine determines the number of bytes required to represent the
wide-character whose value is the WideCharacter parameter as the corresponding multibyte
character and converts WideCharacterto a multibyte character and stores the results in the
area pointed by the StoraQe parameter.

Parameters
Storage Pointer to an area where result of conversion is stored.

WideCharacter A wide character value.

Return Values
The wctomb subroutine returns a 0 if the Storage parameter is a NULL pointer. If the
WideCharacter parameter does not correspond to a valid multibyte character a -1 is
returned. Otherwise, the number of bytes that comprise the multibyte character is returned.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The wcstombs subroutine, mbstowcs subroutine, mbtowc subroutine.

National Language Support Overview in General Programming Concepts.

1-808
\

Base Operating System Reference

write, ...

write, writex, writev, or writevx Subroutine

Purpose

Syntax

Writes to a file.

int write(FileDescriptor, Buffer, NBytes)
int FileDescriptor,
char * Buffer,
unsigned int NBytes;

int writex(FileDescriptor, Buffer, NBytes, Extension)
int FileDescriptor,
char *Buffer,
unsigned int NBytes;
int Extension;

#include <sys/types.h>
#include <sys/uio.h>

int writev(FileDescriptor, iov, iovCount)
int FileDescriptor,
struct iovec * iov;
int iovCount;

int writevx (FileDescriptor, iov,iovCount, Extension)
int FileDescriptor,
struct iovec * iov;
int iovCount;
int Extension;

Description
The write subroutine attempts to write NBytes of data to the file associated with the
FileDescriptor parameter from the buffer pointed to by the Buffer parameter.

The writev subroutine performs the same action but gathers the output data from the
iovCount buffers specified by the array of iovec structures pointed to by the iov parameter.
Each iovec entry specifies the base address and length of an area in memory from which
data should be written. The writev subroutine always writes a complete area before
proceeding to the next.

The writex and writevx subroutines are the same as write and writev, respectively, with the
addition of an Extension parameter, which is used when writing to some device drivers.

With regular files and devices capable of seeking, the actual writing of data proceeds from
the position in the file indicated by the file pointer. Upon return from the write subroutine, the
file pointer increments by the number of bytes actually written.

With devices incapable of seeking, writing always takes place starting at the current position.
The value of a file pointer associated with such a device is undefined.

Fewer bytes can be written than requested if there is not enough room to satisfy the
request. In this case the number of bytes written is returned. The next attempt to write a
nonzero number of bytes fails (except as noted in the following text). The limit reached can
be either the ulimit or the end of the physical medium.

Base Operating System Runtime 1-809

write, ...

1-810

Successful completion of a write subroutine clears the SetUserlD and SetGrouplD attributes

unless the calling process has root user authority.

If the O_APPEND flag of the file status is set, the file offset is set to the end of the file prior
to each write.

If the FileDescriptor parameter refers to a regular file whose file status flags specify
O_SYNC, this is a synchronous update (as described in the open subroutine).

If the FileDescriptor parameter refers to a regular file that some process has opened with
O_DEFER, the data and file size is not updated on permanent storage until some process
issues an fsyne subroutine or performs a synchronous update. If all processes that have the
file open with O_DEFER close the file before any process issues an fsyne subroutine or
performs a synchronous update, the data and file size is not updated on permanent storage.

Write requests to a pipe (or FIFO) are handled the same as a regular file with the following
exceptions:

• There is no file offset associated with a pipe; hence each write request appends to the
end of the pipe.

• If the size of the write request is less than or equal to the value of the PIPE_BUF system
variable (described in the patheonf routine), the write subroutine is guaranteed to be
atomic. The data is not interleaved with data from other processes doing writes on the
same pipe. Writes of greater than PIPE_BUF bytes can have data interleaved, on
arbitrary boundaries, with writes by other processes, whether or not O_DELAY or
O_NONBLOCK are set.

• If O_NDELAV and O_NONBLOCK are clear (the default), a write request to a full pipe
causes the process to block until enough space becomes available to handle the entire
request.

• If O_NDELAV is set, a write to a full pipe returns zero.

• If O_NONBLOCK is set, a write to a full pipe returns a value of -1 and sets the global
variable errno to EAGAIN.

When attempting to write to a regular file that supports enforcement mode record locks, and
all or part of the region to be written is currently locked by another process:

• If O_NDELAY and O_NONBLOCK are clear (the default), the calling process blocks until
the lock is released.

• If O_NDELAY or O_NONBLOCK is set, then the write subroutine returns a value of-1
and sets the global variable errno to EAGAIN.

The fentl subroutine provides more information about record locks.

The behavior of an interrupted write subroutine depends on how the handler for the arriving
signal was installed:

Note: A write to a regular file is not interruptible. Only writes to objects that may block

indefinitely, such as FIFOs, sockets, and some devices, are generally interruptible.

• If the handler was installed with an indication that subroutines should not be restarted, the
write subroutine returns a value of -1 and set the global variable errno to EINTR (even if
some data was already written).

Base Operating System Reference

write, ...

• If the handler was installed with an indication that subroutines should be restarted:

- if no data had been written when the interrupt was handled, the write subroutine will
not return a value (it is restarted).

- if data had been written when the interrupt was handled, this write subroutine returns
the amount of data already written.

Parameters
FileDescriptor

Buffer

NBytes

iov

iovCount

Extension

Return Values

Identifies the object to which the data is to be written.

Identifies the buffer containing the data to be written.

Specifies the number of bytes to write.

Points to an array of iovec structures, which identifies the buffers
containing the data to be written. The iovec structure is defined in the
sys/uio.h header file and contains the following members:

caddr t iov_base;
int iov_len;

Specifies the number of iovec structures pointed to by the iov parameter.

Provides communication with character device drivers that require
additional information or return additional status. Each driver interprets
the Extension parameter in a device-dependent way, either as a value or
as a pointer to a communication area. Drivers must apply reasonable
defaults when the Extension parameter value is O.

Upon successful completion, the write, writex, writev, and writevx subroutines return the
number of bytes that were actually written. Otherwise, the value -1 is returned and the
global variable errno is set to indicate the error.

Error Codes
The write, writex, writev, and writevx subroutines fail when one or more of the following
are true:

EBADF

EINVAL

EINVAL

EINVAL

EFAULT

EPIPE

The FileDescriptor parameter does not specify a valid file descriptor open
for writing.

The file position pointer associated with the FileDescriptor parameter was
negative. '

The iovCount parameter value was not between 1 and 16, inclusive.

One of the iov_len values in the iov array was negative or the sum
overflowed a 32-bit integer.

The Buffer parameter or part of the iov parameter points to a location
outside of the allocated address space of the process.

An attempt was made to write to a file that is not opened for reading by any
process, or to a socket or type SOCK_STREAM that is not connected to a
peer socket.

Base Operating System Runtime 1-811

write, ...

EAGAIN

EAGAIN

EFBIG

ENOSPC

EINTR

EIO

The O_NONBLOCK flag is set on this file and the process would be
delayed in the write operation.

An enforcement mode record lock is outstanding in the portion of the file
that is to be written.

An attempt was made to write a file that exceeds the maximum file size.

No free space is left on the file system containing the file.

A signal was caught during the write operation, and the signal handler was
installed with an indication that subroutines are not to be restarted.

An 1/0 error occurred while writing to the file system.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

1-812

The fentl subroutine, ioetl subroutine, loekfx subroutine, Iseek subroutine, open
subroutine, pipe subroutine, poll subroutine, select subroutine.

The fentl.h header file, sys/uio.h header file.

Base Operating System Reference

wsprintf

wsprintf Subroutine

Purpose

Library

Syntax

Prints formatted output.

Standard C Library (Iibc.a)

#include <stdio.h>

int wsprintf (String, Format[, Value, ...])
wchar_t *String;
char * Format;

Description
The wsprintf subroutine converts, formats, and stores its Value parameters, under control of
the Format parameter, into consecutive wchar _t characters starting at the address specified
by the String parameter. The wsprintf subroutine places a '\0' (null character) at the end. It
is your responsibility to ensure that enough storage space is available to contain the
formatted string. The field width unit is specified as the number of wchar_t characters.

The wsprintf subroutine is the same as the sprintf subroutine, except that wsprintf uses a

wchar _t string String.

Parameters
String

Format

Value

Return Values

Specifies a wchar_t string.

Specifies a character string that contains plain characters, which are copied
to the output stream, and conversion specifications, each of which causes
zero or more items to be fetched from the Value parameter list. If there are
not enough items for Format in the Value parameter list, the results are
unpredictable. If more Values remain after the entire Format has been
processed, they are ignored.

Specifies the input to the Format parameter.

Upon successful completion, the wsprintf subroutine returns the number of display
characters in the output string rather than the number of bytes in the string. The wsprintf
subroutine uses strings that can contain 2-byte wchars. The value returned by wsprintf
does not include the final '\0' character. If an output error occurs, a negative value is
returned.

Implementation Specifics·
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Base Operating System Runtime 1-813

wsprintf

Related Information

1-814

The eonv subroutine, eevt, fevt, gevt subroutines, printf, fprintf, sprintf, NLprintf,
NLfprintf, NLsprintf subroutines, pute, putehar, fpute, putw, putwe, putwehar, fputwe
subroutines, seanf, fseanf, sseanf, NLseanf, NLfseanf, NLsseanf subroutines.

National Language Support Overview in General Programming Concepts.

, Base Operating System Reference

wsscanf

wsscanf Subroutine

Purpose

Library

Syntax

Converts formatted input.

Standard C Library (libc.a)

#include <stdio.h>

int wsscanf (String, Format [, Pointer ...])
wchar _t * String;
char * Format;

Description
The wsscanf subroutine reads character data, interprets it according to a format, and stores
the converted results into specified memory locations. If there are insufficient arguments for
the format, the behavior is undefined. If the format is exhausted while arguments remain, the
excess arguments are evaluated but otherwise ignored.

This subroutine is the same as the scanf subroutine, except that the wsscanf subroutine
reads its input from the wchar_t string String.

Parameters
String

Pointer

Format

Return Values

Specifies a wchar_t string.

Specifies where to store the interpreted data.

Contains conversion specifications used to interpret the input. If there are
insufficient arguments for the Format, the behavior is undefined. If the
Format is exhausted while arguments remain, the excess arguments are
evaluated as always but are otherwise ignored.

The wsscanf subroutine returns the number of successfully matched and assigned input
items. This number can be 0 if there was an early conflict between an input character and
the control string. If the input ends before the first conflict or conversion, only EOF is
returned.

Implementation Specifics
This subroutine is part of AIX 8ase Operating System (80S) Runtime.

Related Information
The atof, atoff, strtod, strtof subroutines, getc, getchar, getw, getwc, fgetwc, getwchar
subroutines, printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf subroutines, scant,
fscanf, sscanf, NLscant, NLfscanf, NLsscanf subroutines, strtol, strtoul, atol, atoi
subroutines.

National Language Support Overview in General Programming Concepts.

Base Operating System Runtime 1-815

wstring

wstring Subroutines

Purpose

Library

Syntax

1-816

Perform operations on wide character strings.

Standard C Library (libc.a)

#include <wstring.h>
wchar _ t *wstrcat (Xstring 1, Xstring2)
wchar_t * Xstring1, * Xstring2;

wchar_t *wstrncat (Xstring1, Xstring2, Numbery
wchar_t *Xstring1, *Xstring2;
int Number;

int wstrcmp (Xstring1, Xstring2)
wchar_t *Xstring1, *Xstring2;

int wstrncmp (Xstring1, Xstring2, Number)
wchar_t * Xstring1, * Xstring2;
int Number;

wchar_t *wstrcpy (Xstring1, Xstring2)
wchar_t * Xstring1, * Xstring2;

wchar_t *wstrncpy (Xstring1, Xstring2, Numbery
wchar_t *Xstring1, *Xstring2;
int Number;

int wstrlen (Xstring)
wchar _t * Xstring;

wchar _t *wstrchr (Xstring, Numbery
wchar_t * Xstring;
int Number,

wchar_t *wstrrchr (Xstring, Numbery
wchar_t * Xstring;
int Number,

wchar_t *wstrpbrk (Xstring1, Xstring2)
wchar _ t * Xstring 1, Xstring2;

int wstrspn (Xstring1, Xstring2)
wchar_t * Xstring1, Xstring2;

int wstrcspn (Xstring 1, Xstring2)
wchar_t * Xstring1, Xstring2;

wchar_t *wstrtok (Xstring1, Xstring2)
wchar_t * Xstring1, Xstring2;

Base Operating System Reference

wchar_t *wstrdup (Xstring1)
wchar_t *Xstring1;

Description

wstring

The wstring subroutines copy, compare, and append strings in memory, and determine
location, size, and existence of strings in memory. For these subroutines, a string is an array
of wchar_ts, terminated by a null character. The wstring subroutines parallel the string
subroutines, but operate on strings of type wchar_t rather than on type char, except as
specifically noted below.

The parameters Xstring1, Xstring2 and Xstring pOint to strings of type wchar_t (arrays of
wchars terminated by a wchar_t null character).

The subroutines wstrcat, wstrncat, wstrcpy, and wstrncpy all alter the Xstring1
parameter. They do not check for overflow of the array pointed to by Xstring 1. All string
movement is performed wide character by wide character. Overlapping moves toward the
left work as expected, but overlapping moves to the right may give unexpected results. All of
these subroutines are declared in the wstring.h header file.

The wstrcat subroutine appends a copy of the wchar_t string pointed to by the Xstring2
parameter to the end of the wchar_t string pointed to by the Xstring1 parameter. The
wstrcat subroutine returns a pointer to the null-terminated result.

The wstrncat subroutine copies, at most, the value of the Number parameter of wChar_ts in
the Xstring2 parameter to the end of the wchar_t string pointed to by the Xstring1
parameter. Copying stops before Number wchar _ts if a null character is encountered in the
string pointed to by the Xstring2 parameter. The wstrncat subroutine returns a pointer to the
null-terminated result.

The wstrcmp subroutine lexicographically compares the wchar _t string pointed to by the
Xstring1 parameter to the wchar_t string pointed to by the Xstring2 parameter. The
wstrcmp subroutine returns a value that is:

Less than 0 if Xstring 1 is less than Xstring2

Equal to 0 if Xstring 1 is equal to Xstring2

Greater than 0 if Xstring1 is greater than Xstring2.

The wstrncmp subroutine makes the same comparison as wstrcmp, but it compares, at
most, the value of the Number parameter of pairs of wchars. The comparisons are based on
collation values as determined by the locale category LC_COLLATE and the LANG
variable.

The wstrcpy subroutine copies the string pointed to by the Xstring2 parameter to the array
pointed to by the Xstring1 parameter. Copying stops when the wchar_t nul is copied. The
wstrcpy subroutine returns the value of the Xstring1 parameter.

The wstrncpy subroutine copies the value of the Number parameter of wchar_ts from the
string pointed to by the Xstring2 parameter to the wchar_t array pointed to by the Xstring1
parameter. If Xstring2 is less than Number wchar_ts long, then wstrncpy pads Xstring1
with trailing null characters to fill Numberwchar_ts. If Xstring2 is Number or more wchar_ts
long, then only the first Numberwchar_ts are copied; the result is not terminated with a null
character. The wstrncpy subroutine returns the value of the Xstring1 parameter.

The wstrlen subroutine returns the number of wchar_ts in the string pointed to by the
Xstring parameter, not including the terminating wchar_t nul.

Base Operating System Runtime 1-817

wstring

The wstrchr subroutine returns a pointer to the first occurrence of the wchar_t specified by
the Number parameter in the wchar_t string pointed to by the Xstring parameter. A NULL
pointer is returned if the wchar_t does not occur in the wchar_t string. The wchar_t nul that
terminates a string is considered to be part of the wchar_t string.

The wstrrchr subroutine returns a pointer to the last occurrence of the character specified
by the Number parameter in the wchar_t string pointed to by the Xsfring parameter. A NULL
pointer is returned if the wchar_t does not occur in the wchar_t string. The wchar_t null
that terminates a string is considered to be part of the wchar_t string.

The wstrpbrk subroutine returns a pointer to the first occurrence in the wchar _t string
pointed to by the Xsfring1 parameter of any code point from the string pointed to by the
Xstring2 parameter. A NULL pointer is returned if no character matches.

The wstrspn subroutine returns the length of the initial segment of the string pointed to by
the Xstring1 parameter that consists entirely of code points from the wchar_t string pointed
to by the Xstring2 parameter.

The wstrcspn subroutine returns the length of the initial segment of the wchar_t string
pointed to by the Xstring 1 parameter that consists entirely of code points not from the
wchar_t string pointed to by the Xstring2 parameter.

The wstrtok subroutine returns a pointer to an occurrence of a text token in the string
pOinted to by the Xstring 1 parameter. The Xstring2 parameter specifies a set of code points
as token delimiters. If the Xstring1 parameter is anything other than NULL, then the wstrtok
subroutine reads the string pointed to by the Xstring 1 parameter until it finds one of the
delimiter code points specified by the Xstring2 parameter. It then stores a wchar_t null into
the wchar_t string, replacing the delimiter code pOint, and returns a pointer to the first
wchar_t of the text token. The wstrtok subroutine keeps track of its position in the wchar_t
string so that subsequent calls with a NULL Xstring1 parameter step through the wchar_t
string. The delimiters specified by the Xstring2 parameter can be changed for subsequent
calls to wstrtok. When no tokens remain in the wchar_t string pointed to by the Xstring1
parameter, the wstrtok subroutine returns a NULL pointer.

The wstrdup subroutine returns a pointer to a wchar_t string that is a duplicate of the
wchar_t string to which the Xstring1 parameter points. Space for the new string is allocated
using the malloc subroutine. When a new string cannot be created, a NULL pointer is
returned.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

1-818

The NCchar subroutines, NLstring subroutines, NLstrtime subroutines, NCstring
subroutines, malloc subroutine and string subroutines.

National Language Support Overview in General Programming Concepts.

Base Operating System Reference

wstrtod, ...

wstrtod or watof Subroutine

Purpose

Library

Converts an NLchar string to a double-precision floating-point in Japanese Language
Support.

Standard C Library

Japanese Language Support Syntax
#include <wstring.h>

double wstrtod(String, Pointe!}
NLchar *String, **Pointer,

double watof(String)
NLchar *String

Description
The wstrtod subroutine recognizes a string that starts with any number of white-space
characters (defined by the ctype subroutine isspace), followed by an optional sign, a string
of decimal digits that may include a decimal point, e or E, an optional sign or space, and an
integer. You can use either ASCII characters or SJIS kanji characters, but you cannot mix
them in the same string.

When the value of Pointer is not (NLchar **) NULL, a pointer to the search terminating
character is returned to the address indicated by Pointer. When the resulting number cannot
be created, *Pointer is set to String and 0 is returned.

The watof (String) subroutine functions like the
wstrtod (String (NLchar **) NULL).

Parameters
String Specifies the address of the string to scan.

Pointer Specifies the address at which the pointer to the terminating character is
stored.

For Japanese Language Support
When Japanese Language Support is installed on your system, the wstrtod subroutine
returns a double-precision floating-point number that is converted from an NLchar string
pointed to by the String parameter. The system searches the String until it finds the first
unrecognized character. You can use either ASCII characters or SJIS kanji characters, but
you cannot mix them in the same string.

Error Codes
When the value causes overflow, HUGE_VAL (defined in the math.h file) is returned with the
appropriate sign, and the global variable errno is set to ERANGE. When the value causes
underflow, 0 is returned and the global variable errno is set to ERANGE.

Base Operating System Runtime 1-819

wstrtod, ...

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-820

The scanf, fscanf, sscanf, NLscanf, NLfscanf, NLsscanf subroutines, atof, atoff, strtod,
strtof subroutines, strtol, strtoul, atol, atoi subroutines, wstrtol, watol, watoi
subroutines.

Base Operating System Reference

wstrtol, ...

wstrtol, watol, or watoi Subroutine

Purpose

Library

Syntax

Converts an NLchar string to an integer in Japanese Language Support.

Standard C Library (libc.a)

#include <wstring.h>

long wstrtol(String, Pointer, Base)
NLchar * String, ** POinter,
int Base;

long watol(String)
NLchar * String;

int watoi(String)
NLchar * String;

Description
When Japanese Language Support is installed on your system, the wstrtol subroutine
returns a long integer that is converted from the string pointed to by the String parameter.
The string is searched until a character is found that is inconsistent with Base. Leading
white-space characters defined by the ctype subroutine isspace are ignored.

You can use either ASCII characters or SJIS kanji characters, but you cannot mix them in
the same string.

When the value of Pointer is not (NLchar **) NULL, a pointer to the terminating character is
returned to the address indicated by Pointer. When an integer cannot be created, the
address indicated by Pointer is set to String, and 0 is returned.

When the value of Base is positive and not greater than 36, that value is used as the base
during conversion. Leading zeros that follow an optional leading sign are ignored. When the
value of Base is 16, Ox and OX are ignored.

When the value of Base is 0, the system chooses an appropriate base after examining the
actual string. An optional sign followed by a leading zero signifies octal, and a leading Ox or
OX signifies hexadecimal. In all other cases, the subroutines assume a decimal base.

Truncation from long to int occurs by assignment, and also by explicit casting.

The watol(String) subroutine functions like wstrtol(String, (NLchar **) NULL, 10).

The watoi(String) subroutine functions like (int) wstrtol (String, (NLchar **) NULL, 10).

Note: Even if overflow occurs, it is ignored.

Parameters
String

Pointer

Specifies the address of the string to scan.

Specifies the address at which the pointer to the terminating character is
stored.

Base Operating System Runtime 1-821

wstrtol, ...

Base Specifies an integer value used as the base during conversion.

Implementation Specifics
These subroutines are part of AIX 8ase Operating System (80S) Runtime.

Related Information

1-822

The scanf, fscanf, sscanf, NLscanf, NLfscanf, NLsscanf subroutines, at of, atoff,
strtod, strtof subroutines, strtol, strtoul, atol, atoi subroutines, wstrtod, watof
subroutines.

Base Operating System Reference

FORTRAN Basic Linear Algebra Subroutines (BLAS)

Base Operating System Runtime 1-823

1-824 Base Operating System Reference

Level 1: vector-vector operations

SOOT or OOOT Function

Purpose
Returns the dot product of two vectors.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
REAL FUNCTION
INTEGER
REAL

DOUBLE PRECISION FUNCTION
INTEGER
DOUBLE PRECISION

SDOT(N,X,INCX, Y,INCy)
INCX,INCY,N
X(*), Y(*)

DDOT(N,X,INCX, Y,INCy)
INCX,INCY,N
X(*), Y(*)

Description
The SOOT or DDOT function returns the dot product of vectors X and Y.

Parameters
N On entry, N specifies the number of elements in X and Y. Unchanged on

exit.

X Vector of dimension at least (1 + (N-1) * abs(lNCX)). Unchanged on exit.

INCX On entry, INCX specifies the increment for the elements of X. Unchanged
on exit.

Y Vector of dimension at least (1 + (N-1) * abs(lNCy)). Unchanged on exit.

INCY On entry, INCY specifies the increment for the elements of Y. Unchanged
on exit.

Error Codes
For values of N <= 0, a value of 0 is returned.

COOTC or ZOOTC Function

Purpose
Returns the complex dot product of two vectors, conjugating the first.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
COMPLEX FUNCTION
INTEGER
COMPLEX

CDOTC(N,X,INCX, Y,INCy)
INCX,INCY,N
X(*), Y(*)

Base Operating System Runtime 1-825

Level 1 : vector-vector operations

DOUBLE COMPLEX FUNCTION
INTEGER
COMPLEX*16

ZDOTC(N,X,INCX, Y,INCy}
INCX,INCY,N
X(*), Y(*)

Description
The CDOTC or ZDOTC function returns the complex dot product of two vectors, conjugating
the first.

Parameters
N On entry, N specifies the number of elements in X and Y. Unchanged on

exit.

X Vector of dimension at least (1 + (N-1) * abs(lNCX)). Unchanged on exit.

INCX On entry, INCX specifies the increment for the elements of X. Unchanged
on exit.

Y Vector of dimension at least (1 + (N-1) * abs(lNCy)). Unchanged on exit.

INCY On entry, INCY specifies the increment for the elements of Y. Unchanged
on exit.

Error Codes
For values of N <= 0, a value of 0 is returned.

CDOTU or ZDOTU Function

Purpose
Returns the complex dot product of two vectors.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
COMPLEX FUNCTION
INTEGER
COMPLEX

DOUBLE COMPLEX FUNCTION
INTEGER
COMPLEX*16

CDOTU(N,X,INCX, Y,INCy}
INCX,INCY,N
X(*), Y(*)

ZDOTU(N,X,INCX, Y,INCy}
INCX,INCY,N
X(*), Y(*)

Description
The CDOTU or ZDOTU function returns the complex dot product of two vectors.

Parameters
N

X

On entry, N specifies the number of elements in X and Y. Unchanged on
exit.

Vector of dimension at least (1 + (N-1) * abs(lNCX)). Unchanged on exit.

1-826 Base Operating System Reference

Level 1 : vector-vector operations

INCX On entry, INCX specifies the increment for the elements of X. Unchanged
on exit.

Y Vector of dimension at least (1 + (N-1) * abs(lNCY)). Unchanged on exit.

INCY On entry, INCY specifies the increment for the elements of Y. Unchanged
on exit.

Error Codes
For values of N <= 0, a value of ° is returned.

SAXPY, DAXPY, CAXPY or ZAXPY Subroutine

Purpose
Computes a constant times a vector plus a vector.

Library
BLAS Library (libblas.a) .

FORTRAN Syntax
SUBROUTINE
INTEGER
REAL
REAL

SUBROUTINE
INTEGER
DOUBLE PRECISION
DOUBLE PRECISION

SUBROUTINE
INTEGER
COMPLEX
COMPLEX

SUBROUTINE
INTEGER
COMPLEX*16
COMPLEX*16

Description

SAXPV(N,A,X,INGX, Y,INCy)
INCX,INCY,N
A
X (*), Y(*)

DAXPV(N,A,X,INCX, Y,INCy)
INCX,INGY,N
A
X (*), Y(*)

CAXPV(N,A,X,INGX, Y,INCy)
INGX,INGY,N
A
X (*), Y(*)

ZAXPV(N,A,X, INGX, Y,INCy)
INGX,INCY,N
A
X (*), Y(*)

The SAXPY, DAXPY, CAXPV or ZAXPY subroutine computes a constant times a vector
plus a vector:

Parameters
N

A

Y=A*X+Y

On entry, N specifies the number of elements in X and Y. Unchanged on
exit.

On entry, A contains a constant to be multiplied by the X vector. Unchanged
on exit.

Base Operating System Runtime 1-827

Level 1: vector-vector operations

X Vector of dimension at least (1 + (N-1) * abs(lNCX)). Unchanged on exit.

INCX On entry, INCX specifies the increment for the elements of X. Unchanged
on exit.

Y Vector of dimension at least (1 + (N-1) * abs(lNCy)). The result is returned
in vector Y.

INCY On entry, INCY specifies the increment for the elements of Y. Unchanged
on exit.

Error Codes
If SA = 0 or N <= 0, the subroutine returns immediately.

SROTG, DROTG, CROTG or ZROTG Subroutine

Purpose
Constructs Givens plane rotation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE
REAL

SUBROUTINE
DOUBLE PRECISION

SUBROUTINE
REAL
COMPLEX

SUBROUTINE
DOUBLE PRECISION
COMPLEX*16

Description

SROTG{A,B,C,S)
A,B,C,S

DROTG{A,B,C,S)
A,B,C,S

CROTG{A,B,C,S)
C
A,B,S

ZROTG{A,B, C,S)
C
A,B,S

Given vectors A and B, the SROTG, DROTG, CROTG or ZROTG subroutine computes:

A B
a = , b =

IAI + IBI IAI + IBI
2 2 1/2

roe = { a if IAI > IBI } r = roe a + b) ,
{ b if IBI >= IAI }

c = { Air if r not = O} S = { B/r if r not 0 }
{ 1 if r = 0 } { 0 if r = 0 }

The numbers C, S, and rthen satisfy the matrix equation:

1-828 Base Operating System Reference

Level 1 : vector-vector operations

I C 8 A

I
I -8 C B

The subroutines also compute:

{8 if IAI > IBI,

r

o

z = { lie if IBI >= IAI and e not = 0,
{l if C = o.

The subroutines return r overwriting A and z overwriting B, as well as returning C and S.

Parameters
A On entry, contains a scalar constant. On exit, contains the value r.

B On entry, contains a scalar constant. On exit, contains the value z.

C

S

Can contain any value on entry. Value of C returned on exit.

Can contain any value on entry. Value of S returned on exit.

SROT, DROT, CSROT or ZDROT Subroutine

Purpose
Applies a plane rotation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE
INTEGER
REAL
REAL

SUBROUTINE
INTEGER
DOUBLE PRECISION
DOUBLE PRECISION

SUBROUTINE
INTEGER
REAL
COMPLEX

SUBROUTINE
INTEGER
DOUBLE PRECISION
COMPLEX*16

Description

SROT(N,X,INCX, Y,INCY,C,S)
INCX,/NCY,N
C,S
X(*), Y(*)

DROT(N,X,INCX, Y,INCY,C,S)
INCX,INCY,N
C,S
X(*), Y(*)

SROT(N,X,INCX, Y,INCY,C,S)
INCX,/NCY,N
C,S
X(*), Y(*)

ZDROT(N,X,INCX, Y,INCY,C,S)
INCX,INCY,N
C,S
X(*), Y(*)

The SROT, DROT, CSROT or ZDROT subroutine computes:

Base Operating System Runtime 1-829

Level 1 : vector-vector operations

x C 8 x
i i

:= for i 1, ..• , N.
y y

i -8 C i

The subroutines return the modified X and Y.

Parameters
N On entry, N specifies the number of elements in X and Y. Unchanged on

exit.

X Vector of dimension at least (1 + (N-1) * abs (lNCX)). Unchanged on exit.

INCX On entry, INCX specifies the increment for the elements of X. Unchanged
on exit.

Y Vector of dimension at least (1 + (N-1) * abs(lNCY)). Modified on exit.

INCY On entry, INCY specifies the increment for the elements of Y. Unchanged
on exit.

C

S

Scalar constant. Unchanged on exit.

Scalar constant. Unchanged on exit.

Error Codes
If N <= 0, or if C = 1 and S = 0, the subroutines return immediately.

SCOPY, DCOPY, CCOPY or ZCOPY Subroutine

Purpose
Copies vector Xto Y.

Library
BLAS Library (Iibblas.a)

FORTRAN Syntax
SUBROUTINE
INTEGER
REAL

1-830

SUBROUTINE
INTEGER
DOUBLE PRECISION

SUBROUTINE
INTEGER
COMPLEX

Base Operating System Reference

SCOPV(N,X,INCX, Y,INCy)
INCX,INCY,N
X(*), Y(*)

DCOPV(N,X,INCX, Y,INCy)
INCX,INCY,N
X(*), Y(*)

CCOPV(N,X,INCX, Y,INCy)
INCX,INCY,N
X(*), Y(*)

Level 1: vector-vector operations

SUBROUTINE
INTEGER
COMPLEX*16

Description

ZCOPY(N,X,INCX, Y,INCy)
INCX,INCY,N
X(*), Y(*)

The SCOPY, DCOPY, CCOPY or ZCOPY subroutine copies vector Xto vector Y.

Parameters
N On entry, N specifies the number of elements in X and Y. Unchanged on

exit.

X Vector of dimension at least (1 + (N-1) * abs(/NCX)). Unchanged on exit.

INCX On entry, INCX specifies the increment for the elements of X. Unchanged
on exit.

Y Vector of dimension at least (1 + (N-1) * abs(/NCY)) or greater. Can
contain any values on entry. On exit, contains the same values as X.

INCY On entry, INCY specifies the increment for the elements of Y. Unchanged
on exit.

Error Codes
For values of N <= 0, the subroutines return immediately.

SSWAP, DSWAP, CSWAP or ZSWAP Subroutine

Purpose
Interchanges vectors X and Y.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE
INTEGER
REAL

SUBROUTINE
INTEGER
DOUBLE PRECISION

SUBROUTINE
INTEGER
COMPLEX

SUBROUTINE
INTEGER
COMPLEX*16

Description

SSWAP(N,X, INCX, Y,INCy)
INCX,INCY,N
X(*), Y(*)

DSWAP(N,X,INCX, Y,INCy)
INCX,INCY,N
X(*), Y(*)

CSWAP(N,X,INCX, Y,INCy)
INCX,INCY,N
X(*), Y(*)

ZSWAP(N,X,INCX, Y,INCy)
INCX,INCY,N
X(*), Y(*)

The SSWAP, DSWAP, CSWAP or ZSWAP subroutine interchanges vector X and vector Y.

Base Operating System Runtime 1-831

Level 1 : vector-vector operations

Parameters
N On entry, N specifies the number of elements in X and Y. Unchanged on

exit.

X Vector of dimension at least (1 + (N-1) * abs(INCX)). On exit, contains the

elements of vector Y.

INCX On entry, INCX specifies the increment for the elements of X. Unchanged
on exit.

Y Vector of dimension at least (1 + (N-1) *abs(lNCY)). On exit, contains the

elements of vector X.

INCY On entry, INCY specifies the increment for the elements of Y. Unchanged
on exit.

Error Codes
For values of N <= 0, the subroutines return immediately.

SNRM2, DNRM2, SCNRM2 or DZNRM2 Function

Purpose
Computes the Euclidean length of the N-vector stored in XO with storage increment INCX.

Library
BLAS Library (Iibblas.a)

FORTRAN Syntax
REAL FUNCTION
INTEGER
REAL

DOUBLE PRECISION FUNCTION
INTEGER
DOUBLE PRECISION

REAL FUNCTION
INTEGER
COMPLEX

DOUBLE PRECISION FUNCTION
INTEGER
COMPLEX*16

SNRM2(N,X,INCX)
INCX,N
X(*)

DNRM2(N,X,INCX)
INGX,N
X(*)

SCNRM2(N,X,INCX)
INCX,N
X(*)

DZNRM2(N,X,INCX)
INCX,N
X(*)

Description
The SNRM2, DNRM2, SCNRM2 or DZNRM2 function returns the Euclidean norm of the
N-vector stored in XO with storage increment INCX.

Parameters
N On entry, N specifies the number of elements in X and Y. Unchanged on

exit.

1-832 Base Operating System Reference

Level 1 : vector-vector operations

X Vector of dimension at least (1 + (N-1) * abs(lNCX)). Unchanged on exit.

INCX On entry, INCX specifies the increment for the elements of X. INCX must be
greater than zero. Unchanged on exit.

Error Codes
For values of N <= 0, a value of 0 is returned.

SASUM, DASUM, SCASUM or DZASUM Function

Purpose
Returns the sum of absolute values of vector components.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
REAL FUNCTION
INTEGER
REAL

DOUBLE PRECISION FUNCTION
INTEGER
DOUBLE PRECISION

REAL FUNCTION
INTEGER
COMPLEX

DOUBLE PRECISION FUNCTION
INTEGER
COMPLEX*16

Descri ption

SASUM{N,X,INCX)
INCX,N
X(*)

DASUM(N,X,INCX)
INCX,N
X(*)

SCASUM(N,X,INCX)
INCX,N
X(*)

DZASUM(N,X,INCX)
INCX,N
X(*)

The SASUM, DASUM, SCASUM or DZASUM function returns the sum of absolute values of
vector components.

Parameters
N On entry, N specifies the number of elements in X and Y. Unchanged on

exit.

X Vector of dimension at least (1 + (N-1) * abs(lNCX)). Unchanged on exit.

INCX On entry, INCX specifies the increment for the elements of X. INCX must be
greater than zero. Unchanged on exit.

Error Codes
For values of N <= 0, a value of 0 is returned.

Base Operating System Runtime 1-833

Level 1: vector-vector operations

SSCAL,DSCAL,CSSCAL,CSCAL,ZDSCALorZSCAL
Subroutine
Purpose

Scales a vector by a constant.

Library
BlAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE
INTEGER
REAL
REAL

SUBROUTINE
INTEGER
DOUBLE PRECISION
DOUBLE PRECISION

SUBROUTINE
INTEGER
REAL
COMPLEX

SUBROUTINE
INTEGER
COMPLEX
COMPLEX

SUBROUTINE
INTEGER
DOUBLE PRECISION
COMPLEX*16

SUBROUTINE
INTEGER
COMPLEX*16
COMPLEX*16

Description

SSCAL(N,A,X,INCX)
INCX,N
A
X(*)

DSCAL(N,A,X,INCX)
INCX,N
A
X(*)

CSSCAL(N,A,X, INCX)
INCX,N
A
X(*)

CSCAL
INCX,N
A
X(*)

ZDSCAL
INCX,N
A
X(*)

ZSCAL(
INCX,N
A
X(*)

The SSCAL, DSCAL, CSSCAL, CSCAL, ZDSCAL or ZSCAL subroutine scales a vector
by a constant:

X := X * A

Parameters
N

A

X

On entry, N specifies the number of elements in X and Y. Unchanged on
exit.

Scaling constant. Unchanged on exit.

Vector of dimension at least (1 + (N-1) * abs(lNCX)). On exit, contains the
scaled vector.

1-834 Base Operating System Reference

Level 1: vector-vector operations

INCX On entry, INCX specifies the increment for the elements of X. INCX must be
greater than zero. Unchanged on exit.

Error Codes
For values of N <= 0, the subroutines return immediately.

ISAMAX, IDAMAX, ICAMAX or IZAMAX Function

Purpose
Finds the index of element having maximum absolute value.

Library
SLAS Library (libblas.a)

FORTRAN Syntax
INTEGER FUNCTION
INTEGER
REAL

INTEGER FUNCTION
INTEGER
DOUBLE PRECISION

INTEGER FUNCTION
INTEGER
COMPLEX

INTEGER FUNCTION
INTEGER
COMPLEX*16

Description

ISAMAX(N,X,INCX)
INCX,N
X(*)

IDAMAX(N,X,INCX)
INCX,N
X(*)

ICAMAX(N,X,INCX)
INCX,N
X(*)

IZAMAX(N,X,INCX)
INCX,N
X(*)

The ISAMAX, IDAMAX, ICAMAX or IZAMAX function returns the index of element having
maximum absolute value.

Parameters
N On entry, N specifies the number of elements in X and Y Unchanged on

exit.

X Vector of dimension at least (1 + (N-1) * abs(lNCX)). Unchanged on exit.

INCX On entry, INCX specifies the increment for the elements of X. INCX must be
greater than zero. Unchanged on exit.

Error Codes
For values of N <= 0, a value of ° is returned.

Base Operating System Runtime 1-835

Level 1 : vector-vector operations

SDSDOT Function

Purpose
Returns the dot product of two vectors plus a constant.

Library
BLAS Library (Iibblas.a)

FORTRAN Syntax
REAL FUNCTION
INTEGER
REAL

SDSDOT(N,B,X,INCX, Y,INCy)
N,INCX,INCY
B,X(*), Y(*)

Description
The SDSDOT function computes the sum of constant B and dot product of vectors X and Y.

Parameters
N On entry, N specifies the number of elements in X and Y. Unchanged on

exit.

B Scalar. Unchanged on exit.

X Vector of dimension at least (1 + (N-1) * abs(lNCX)). Unchanged on exit.

INCX On entry, INCX specifies the increment for the elements of X. INCX must be
greater than zero. Unchanged on exit.

Y Vector of dimension at least (1 + (N-1) ". abs(lNCy)). Unchanged on exit.

INCY On entry, INCY specifies the increment for the elements of Y. INCY must be
greater than zero. Unchanged on exit.

Error Codes
For values of N <= 0, the subroutine returns immediately.

Implementation Specifics
Computation is performed in double precision.

SROTM or DROTM Subroutine

Purpose
Applies the modified Givens transformation.

Library
BLAS Library (Iibblas.a)

1-836 Base Operating System Reference

Level 1 : vector-vector operations

FORTRAN Syntax
SUBROUTINE
INTEGER

SROTM(N,X,INCX, Y,INCY,PARAfv1)
N,INCX,INCY

REAL X(*), Y(*),PARAM(5)

SUBROUTINE
INTEGER '
DOUBLE PRECISION

DROTM(N,X,INCX, Y,INCY,PARAfv1)
N,INCX,INCY
X(*), Y(*),PARAM(5)

Description
Let H denote the modified Givens transformation defined by the parameter array PARAM.
The SROTM or DROTM subroutine computes:

x x
:= H *

y y

where H is is a 2 x 2 matrix with the components defined by the elements of the array
PARAM as follows:

if PARAM(1) == 0.0
H(1 ,1) = H(2,2) = 1.0
H(2,1) = PARAM(3)
H(1 ,2) = PARAM(4)

if PARAM(1) == 1.0

H(1,2) = H(2,1) = -1.0
H(1,1) = PARAM(2)
H(2,2) = PARAM(5)

if PARAM(1) == -1.0

Parameters
N

X

INCX

Y

INCY

PARAM

H(1 ,1) = PARAM(2)
H(2,1) = PARAM(3)
H(1 ,2) = PARAM(4)
H(2,2) = PARAM(5)

On entry, N specifies the number of elements in X and Y. Unchanged on
exit.

Vector of dimension at least (1 + (N-1) * abs(lNCX)). On exit, modified as
described above.

On entry, INCX specifies the increment for the elements of X. INCX must be
greater than zero. Unchanged on exit.

Vector of dimension at least (1 + (N-1) * abs(lNCY)). On exit, modified as

described above.

On entry, INCY specifies the increment for the elements of Y. INCY must be
greater than zero. Unchanged on exit.

Vector of dimension (5). On entry, must be set as described above.
Specifically, PARAM(1) is a flag and must have value of either 0.0, -1.0, 1.0,
or 2.0. Unchaged on exit.

Base Operating System Runtime 1-837

Level 1 : vector-vector operations

Implementation Specifics
If N <= 0 or H is an identity matrix, the subroutines return immediately.

Related information
The SROTMG or DROTMG subroutine builds the PARAM array prior to use by the SROTM
or DROTM subroutine.

SROTMG or DROTMG Subroutine

Purpose
Constructs a modified Givens transformation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SROTMG(D 1 ,D2,X1 ,X2,PARAIvf)

D1,D2,X1,X2,PARAM(5) REAL

SUBROUTINE
DOUBLE PRECISION

DROTMG(D1,D2,X1,X2,PARAIvf)
D1 ,D2,X1 ,X2,PARAM(5)

Description

1-838

The SROTMG or DROTMG subroutine constructs a modified Givens transformation. The
input quantities D1, D2, X1, and X2define a 2-vector in partitioned form:

a1 sqrt (D1) 0 I Xl
I

a2 o sqrt(D2) I X2

The subroutines determine the modified Givens rotation matrix H that transforms X2, and
thus a2, to zero. A representation of this matrix is stored in the array PARAM as follows.
Locations in PARAM not listed are left unchanged.

Case 1: PARAM(1) = 1.0
PARAM(2) = H(1, 1)
PARAM(5) = H(2,2)

Case 2: PARAM(1) = 0.0
PARAM(3) = H(2,1)
PARAM(4) = H(1 ,2)

Case 3: PARAM(1) = 1.0
H(1,1) = PARAM(2)
H(2,1) = PARAM(3)
H(1,2) = PARAM(4)
H(2,2) = PARAM(5)

Case 4: PARAM(1) = -2.0
H = I (Identity matrix)

Base Operating System Reference

Parameters
D1

D2

X1

X2

PARAM

Related Information

Level 1: vector-vector operations

Non-negative scalar. Modified on exit to reflect the results of the
transformation.

Scalar. Can be negative on entry. Modified on exit to reflect the results of
the transformation.

Scalar. Modified on exit to reflect the results of the transformation.

Scalar. Unchanged on exit.

Vector of dimension (5). Values on entry are unused. Modified on exit as
described above.

The SROTM and DROTM subroutines apply the Modified Givens Transformation.

Base Operating System Runtime 1-839

Level 2: matrix-vector operations

SGEMV, DGEMV, CGEMV or ZGEMV Subroutine

Purpose
Performs matrix-vector operation with general matrices.

Library
BLAS Library (Iibblas.a)

FORTRAN Syntax
SUBROUTINE SGEMV(TRANS, M,N,ALPHA,A,LDA,X, INCX,BETA, Y, INCy)

ALPHA,BETA REAL
INTEGER
CHARACTER*1
REAL

SUBROUTINE
DOUBLE PRECISION
INTEGER
CHARACTER*1
DOUBLE PRECISION

SUBROUTINE
COMPLEX
INTEGER
CHARACTER*1
COMPLEX

SUBROUTINE
COMPLEX*16
INTEGER
CHARACTER*1
COMPLEX*16

INCX,INCY,LDA,M,N
TRANS
A(LDA,*),X(*), Y(*)

DGEMV(TRANS, M,N,ALPHA,A,LDA,X, INCX,BETA, Y, INCy)
ALPHA,BETA
INCX,INCY,LDA,M,N
TRANS
A(LDA,*),X(*), Y(*)

CGEMV(TRANS, M, N,ALPHA,A, LDA,X, INCX,BETA, Y, INCy)
ALPHA, BETA
INCX,INCY,LDA,M,N
TRANS
A(LDA,*),X(*), Y(*)

ZG EMV(TRANS, M, N,ALPHA,A,LDA,X, INCX,BETA, Y, INCy)
ALPHA,BETA
INCX,INCY,LDA,M,N
TRANS
A(LDA,*),X(*), Y(*)

Description
The SGEMV, DGEMV, CGEMV or ZGEMV subroutine performs one of the matrix-vector
operations:

y := alpha * A * x + beta * y

or

y := alpha * A' * x + beta * y

where alpha and beta are scalars, x and yare vectors and A is an M by N matrix.

Parameters
TRANS On entry, TRANS specifies the operation to be performed as follows:

TRANS = 'N' or 'n'
y := alpha * A * x + beta * y

TRANS = 'T' or 't'
y := alpha * A' * x + beta * y

1-840 Base Operating System Reference

M

N

ALPHA

A

LOA

x

INCX

BETA

Y

INCY

Level 2: matrix-vector operations

TRANS = 'C' or 'c'
y := alpha * A' * x + beta * y

Unchanged on exit.

On entry, M specifies the number of rows of the matrix A. M must be at least
zero. Unchanged on exit.

On entry, N specifies the number of columns of the matrix A. N must be at
least zero. Unchanged on exit.

On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

An array of dimension (LOA, N). On entry, the leading M by N part of the

array A must contain the matrix of coefficients. Unchanged on exit.

On entry, LOA specifies the first dimension of A as declared in the calling
(sub) program. LOA must be at least max(1, M). Unchanged on exit.

A vector of dimension at least (1 + (N-1) * abs(INCX)) when TRANS = 'N'
or 'n' and at least (1 + (M-1) * abs(INCX)) otherwise. On entry, the
incremented array X must contain the vector x. Unchanged on exit.

On entry, INCX specifies the increment for the elements of X. INCX must
not be zero. Unchanged on exit.

On entry, BETA specifies the scalar beta. When BETA is supplied as zero
then Y need not be set on input. Unchanged on exit.

A vector of dimension at least 1 + (M-1) * abs(INCY)) when TRANS = 'N'
or 'n' and at least (1 + (N-1) * abs(INCY)) otherwise. On entry, with BETA
nonzero, the incremented array Y must contain the vector y. On exit, Vis
overwritten by the updated vector y.

On entry, INCY specifies the increment for the elements of Y. INCY must
not be zero. Unchanged on exit.

SGBMV, DGBMV, CGBMV or ZGBMV Subroutine

Purpose
Performs matrix-vector operations with general banded matrices.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE

REAL
INTEGER
CHARACTER*1
REAL

SGBMV(TRANS,M,N,KL,KU,ALPHA,A,LOA,X,INCX,BETA,
Y,INCy)
ALPHA,BETA
INCX,INCY,KL,KU,LOA,M,N
TRANS
A(LOA,*),X(*), Y(*)

Base Operating System Runtime 1-841

Level 2: matrix-vector operations

SUBROUTINE

DOUBLE PRECISION
INTEGER
CHARACTER*1
DOUBLE PRECISION

SUBROUTINE

COMPLEX
INTEGER
CHARACTER*1
COMPLEX

SUBROUTINE

COMPLEX*16
INTEGER
CHARACTER*1
COMPLEX*16

DGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,
Y,INCy)
ALPHA,BETA
INCX, INC Y,KL, KU,LDA,M,N
TRANS
A(LDA,*),X(*), Y(*)

CGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,
Y,INCy)
ALPHA,BETA
INCX, INC Y, KL, KU, LDA,M,N
TRANS
A(LDA,*),X(*), Y(*)

ZGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,
Y,INCy)
ALPHA,BETA
INCX, INC Y,KL, KU,LDA,M,N
TRANS
A(LDA,*),X(*), Y(*)

Description
The SGBMV, DGBMV, CGBMV or ZGBMV subroutine performs one of the matrix-vector
operations:

y := alpha * A * x + beta * y

or

y := alpha * A' * x + beta * y

where alpha and beta are scalars, x and yare vectors and A is an M by N band matrix, with
KL sub-diagonals and KU super-diagonals.

Parameters
TRANS On entry, TRANS specifies the operation to be performed as follows:

1-842

M

N

KL

TRANS = 'N' or 'n'
y := alpha * A * x + beta * y

TRANS = 'T' or 't'
y := alpha * A' * x + beta * y

TRANS = 'e' or 'c'
y := alpha * A' * x + beta * y

Unchanged on exit.

On entry, M specifies the number of rows of the matrix A. M must be at least
zero. Unchanged on exit.

On entry, N specifies the number of columns of the matrix A. N must be at
least zero. Unchanged on exit.

On entry, KL specifies the number of sub-diagonals of the matrix A. KL
must satisfy 0 .Ie. KL. Unchanged on exit.

Base Operating System Reference

KU

ALPHA

A

Level 2: matrix-vector operations

On entry, KU specifies the number of super-diagonals of the matrix A. KU
must satisfy 0 .Ie. KU. Unchanged on exit.

On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

A vector of dimension (LOA, N). On entry, the leading (KL + KU + 1) by n
part of the array A must contain the matrix of coefficients, supplied column
by column, with the leading diagonal of the matrix in row (KU + 1) of the
array, the first super-diagonal starting at position 2 in row KU, the first
sub-diagonal starting at position 1 in row (KU + 2), and so on. Elements in
the array A that do not correspond to elements in the band matrix (such as
the top left KU by KUtriangle) are not referenced. The following program
segment will transfer a band matrix from conventional full matrix storage to
band storage:

DO 20, J = 1, N
K = KU + 1 - J
DO 10, I = MAX (1, J - KU), MIN(M, J + KL)

A(K + I, J) = matrix(I, J)
10 CONTINUE
20 CONTINUE

Unchanged on exit.

LOA On entry, LOA specifies the first dimension of A as declared in the calling
(sub) program. LOA must be at least (KL + KU + 1). Unchanged on exit.

X A vector of dimension at least (1 + (N-1) * abs(INCX)) when TRANS = 'N'
or 'n' and at least (1 + (M-1) * abs(INCX)) otherwise. On entry, the
incremented array X must contain the vector x. Unchanged on exit.

INCX On entry, INCX specifies the increment for the elements of X. INCX must
not be zero. Unchanged on exit.

BETA On entry, BETA specifies the scalar beta. When BETA is supplied as zero
then Y need not be set on input. Unchanged on exit.

Y A vector of dimension at least (1 + (M-1) * abs(INCY)) when TRANS =
'N' or 'n' and at least (1 + (N-1) * abs(INCY)) otherwise. On entry, the
incremented array Y must contain the vector y. On exit, Y is overwritten by
the updated vector y.

INCY On entry, INCY specifies the increment for the elements of Y. INCY must
not be zero. Unchanged on exit.

CHEMV or ZHEMV Subroutine

Purpose
Performs matrix-vector operations using hermitian matrices.

Library
BLAS Library (libblas.a)

Base Operating System Runtime 1-843

Level 2: matrix-vector operations

FORTRAN Syntax
SUBROUTINE
COMPLEX
INTEGER
CHARACTER*1
COMPLEX

SUBROUTINE

COMPLEX*16
INTEGER
CHARACTER*1
COMPLEX*16

Description

CHEMV(UPLO,N,ALPHA,A, LOA,X, INCX, BETA, Y,INCy)
ALPHA,BETA
INCX,INCY,LOA,N
UPLO
A(LOA,*),X(*), Y(*)

ZHEMV(UPLO, N, ALPHA, A, LOA, X, INCX, BETA, Y,
INCy)
ALPHA, BETA
INCX,INCY,LOA,N
UPLO
A(LOA,*),X(*), Y(*)

The CHEMV or ZHEMV subroutine performs the matrix-vector operation:

y := alpha * A .. x + beta * y

where alpha and beta are scalars, x and yare N element vectors and A is an N by N
hermitian matrix.

Parameters

1-844

UPLO On entry, UPLO specifies whether the upper or lower triangular part of the
array A is to be referenced as follows:

N

ALPHA

A

LOA

X

INCX

UPLO = 'U' or 'u'
Only the upper triangular part of A is to be referenced.

UPLO = 'L' or 'I'
Only the lower triangular part of A is to be referenced.

Unchanged on exit.

On entry, N specifies the order of the matrix A. N must be at least zero.
Unchanged on exit.

On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

An array of dimension (LOA, N). On entry with UPLO = 'U' or 'u', the
leading N by N upper triangular part of the array A must contain the upper
triangular part of the hermitian matrix and the strictly lower triangular part of
A is not referenced. On entry with UPLO = 'L' or 'I', the leading N by N lower
triangular part of the array A must contain the lower triangular part of the
hermitian matrix and the strictly upper triangular part of A is not referenced.
Note that the imaginary parts of the diagonal elements need not be set and
are assumed to be zero. Unchanged on exit.

On entry, LOA specifies the first dimension of A as declared in the calling
(sub) program. LOA must be at least max(1, N). Unchanged on exit.

A vector of dimension at least (1 + (N-1) * abs(INCX)). On entry, the
incremented array X must contain the N element vector x. Unchanged on
exit.

On entry, INCX specifies the increment for the elements of X. INCX must
not be zero. Unchanged on exit.

Base Operating System Reference

Level 2: matrix-vector operations

BETA On entry, BETA specifies the scalar beta. When BETA is supplied as zero
then Y need not be set on input. Unchanged on exit.

Y A vector of dimension at least (1 + (N-1) * abs(INCY)). On entry, the
incremented array Y must contain the N element vector y. On exit, Y is
overwritten by the updated vector y.

INCY On entry, INCYspecifies the increment for the elements of Y.INCYmust
not be zero. Unchanged on exit.

CHBMV or ZHBMV Subroutine

Purpose
Performs matrix-vector operations using a hermitian band matrix.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE
COMPLEX
INTEGER
CHARACTER*1
COMPLEX

CHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA, Y,INCy)
ALPHA,BETA
INCX,INCY,K,LOA,N
UPLO
A(LOA,*),X(*), Y(*)

SUBROUTINE
COMPLEX*16
INTEGER
CHARACTER*1
COMPLEX*16

ZHBMV(UPLO,N,K,ALPHA,A,LOA,X,INCX,BETA, Y,INCy)
ALPHA, BETA

Description

INCX, INC Y, K, LOA, N
UPLO
A(LOA,*),X(*), Y(*)

The CHBMV or ZHBMV subroutine performs the matrix-vector operation:

y := alpha * A * x + beta * y

where alpha and beta are scalars, x and yare N element vectors and A is an N by N
hermitian band matrix, with K super-diagonals.

Parameters
UPLO On entry, UPLO specifies whether the upper or lower triangular part of the

band matrix A is being supplied as follows:

UPLO = 'U' or 'u'
The upper triangular part of A is being supplied.

UPLO = 'L' or 'I'
The lower triangular part of A is being supplied.

Unchanged on exit.

N On entry, N specifies the order of the matrix A. N must be at least zero.
Unchanged on exit.

Base Operating System Runtime 1-845

Level 2: matrix-vector operations

1-846

K

ALPHA

A

LOA

x

INCX

BETA

Y

INCY

On entry, K specifies the number of super-diagonals of the matrix A. K must
satisfy 0 .Ie. K. Unchanged on exit.

On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

An array of dimension (LOA, N). On entry with UPLO = 'U' or 'u', the

leading (K + 1) by N part of the array A must contain the upper triangular
band part of the hermitian matrix, supplied column by column, with the
leading diagonal of the matrix in row (K + 1) of the array, the first
super-diagonal starting at position 2 in row K, and so on. The top left K by K
triangle of the array A is not referenced. The following program segment will
transfer the upper triangular part of a hermitian band matrix from
conventional full matrix storage to band storage:

DO 20, J = 1, N
M = K + 1 - J
DO 10, I = MAX (1, J - K), J

A(M + I, J) = matrix{ I, J)
10 CONTINUE
20 CONTINUE

On entry with UPLO = 'L' or '1', the leading (K + 1) by N part of the array A
must contain the lower triangular band part of the hermitian matrix, supplied
column by column, with the leading diagonal of the matrix in row 1 of the
array, the first sub-diagonal starting at position 1 in row 2, and so on. The
bottom right Kby Ktriangle of the array A is not referenced. The following
program segment will transfer the lower triangular part of a hermitian band
matrix from conventional full matrix storage to band storage:

DO 20, J = 1, N
M = 1 - J
DO 10, I J, MIN(N, J + K)

A(M + I, J) = matrix{ I, J)
10 CONTINUE
20 CONTINUE

Note that the imaginary parts of the diagonal elements need not be set and
are assumed to be zero. Unchanged on exit.

On entry, LOA specifies the first dimension of A as declared in the calling
(sub) program. LOA must be at least (K + 1). Unchanged on exit.

A vector of dimension at least (1 + (N-1) * abs(INCX)). On entry, the
incremented array X must contain the vector x. Unchanged on exit.

On entry, INCX specifies the increment for the elements of X. INCX must
not be zero. Unchanged on exit.

On entry, BETA specifies the scalar beta. Unchanged on exit.

A vector of dimension at least (1 + (N-1) * abs(INCY)). On entry, the
incremented array Y must contain the vector y. On exit, Vis overwritten by
the updated vector y.

On entry, INCY specifies the increment for the elements of Y. INCY must
not be zero. Unchanged on exit.

Base Operating System Reference

Level 2: matrix-vector operations

CHPMV or ZHPMV Subroutine

Purpose
Performs matrix-vector operations using a packed hermitian matrix.

Library
BlAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE
COMPLEX
INTEGER
CHARACTER*1
COMPLEX

SUBROUTINE
COMPLEX*16
INTEGER
CHARACTER*1
COMPLEX*16

Description

CHPMV(UPLO,N,ALPHA,Ap,X,INCX,BETA, Y,INCy)
ALPHA, BETA
INCX,INCY,N
UPLO
AP(*),X(*), Y(*)

ZHPMV
ALPHA, BETA
INCX,INCY,N
UPLO
AP(*),X(*), Y(*)

The CHPMV or ZHPMV subroutine performs the matrix-vector operation:

y := alpha * A * x + beta * y

where alpha and beta are scalars, x and yare N element vectors and A is an N by N
hermitian matrix, supplied in packed form.

Parameters
UPLO On entry, UPLO specifies whether the upper or lower triangular part of the

matrix A is supplied in the packed array AP as follows:

N

ALPHA

AP

UPLO = 'U' or 'u'
The upper triangular part of A is supplied in AP.

UPLO = 'l' or'!'
The lower triangular part of A is supplied in AP.

Unchanged on exit.

On entry, N specifies the order of the matrix A. N must be at least zero.
Unchanged on exit.

On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

A vector of dimension at least ((N * (N+ 1))/2). On entry with UPLO = 'U'
or 'u', the array AP must contain the upper triangular part of the hermitian
matrix packed sequentially, column by column, so that AP(1) contains
A(1,1), AP(2) and AP(3) contain A(1 ,2) and A(2,2) respectively, and so on.
On entry with UPLO = 'l' or '1', the array AP must contain the lower
triangular part of the hermitian matrix packed sequentially, column by
column, so that AP(1) contains A(1, 1), AP(2) and AP(3) contain A(2,1) and

Base Operating System Runtime 1-847

Level 2: matrix-vector operations

A(3,1) respectively, and so on. Note that the imaginary parts of the diagonal
elements need not be set and are assumed to be zero. Unchanged on exit.

X A vector of dimension at least (1 + (N-1) * abs(INCX)). On entry, the
incremented array X must contain the N element vector x. Unchanged on
exit.

INCX On entry, INCX specifies the increment for the elements of X. INCX must
not be zero. Unchanged on exit.

BETA On entry, BETA specifies the scalar beta. When BETA is supplied as zero
then Y need not be set on input. Unchanged on exit.

Y A vector of dimension at least (1 + (N-1) * abs(INCY)). On entry, the
incremented array Y must contain the N element vector y. On exit, Yis
overwritten by the updated vector y.

INCY On entry, INCY specifies the increment for the elements of Y. INCY must
not be zero. Unchanged on exit.

SSYMV or DSYMV Subroutine

Purpose
Performs matrix-vector operations using a symmetric matrix.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE
REAL
INTEGER
CHARACTER*1
REAL

SSYMV(UPLO,N,ALPHA,A,LDA,X, INCX,BETA, Y,INCy)
ALPHA, BETA
INCX,INCY,LDA,N
UPLO
A(LDA,*),X(*), Y(*)

SUBROUTINE
DOUBLE PRECISION
INTEGER
CHARACTER*1
DOUBLE PRECISION

DSYMV(UPLO, N,ALPHA,A, LDA,X, INCX, BETA, Y, INCy)
ALPHA, BETA
INCX,INCY,LDA,N
UPLO
A(LDA,*),X(*), Y(*)

Description

1-848

The SSYMV or DSYMV subroutine performs the matrix-vector operation:

y := alpha * A * x + beta * y

where alpha and beta are scalars, x and yare N element vectors and A is an N by N
symmetric matrix.

Base Operating System Reference

Parameters
UPLO

N

ALPHA

A

LOA

x

INCX

BETA

Y

INCY

Level 2: matrix-vector operations

On entry, UPLO specifies whether the upper or lower triangular part of the
array A is to be referenced as follows:

UPLO = 'U' or 'u'
Only the upper triangular part of A is to be referenced.

UPLO = 'L' or 'I'
Only the lower triangular part of A is to be referenced.

Unchanged on exit.

On entry, N specifies the order of the matrix A. N must be at least zero.
Unchanged on exit.

On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

An array of dimension (LOA, N). On entry with UPLO = 'U' or 'u', the
leading N by N upper triangular part of the array A must contain the upper
triangular part of the symmetric matrix and the strictly lower triangular part
of A is not referenced. On entry with UPLO = 'L' or '1', the leading N by N
lower triangular part of the array A must contain the lower triangular part of
the symmetric matrix and the strictly upper triangular part of A is not
referenced. Unchanged on exit.

On entry, LOA specifies the first dimension of A as declared in the calling
(sub) program. LOA must be at least max(1, N). Unchanged on exit.

A vector of dimension at least (1 + (N-1) * abs(INCX)). On entry, the
incremented array X must contain the N element vector x. Unchanged on
exit.

On entry, INCX specifies the increment for the elements of X. INCX must
not be zero. Unchanged on exit.

On entry, BETA specifies the scalar beta. When BETA is supplied as zero
then Y need not be set on input. Unchanged on exit.

A vector of dimension at least (1 + (N-1) * abs(INCY)). On entry, the
incremented array Y must contain the N element vector y. On exit, Y is
overwritten by the updated vector y.

On entry, INCY specifies the increment for the elements of Y. INCY must
not be zero. Unchanged on exit.

SSBMV or DSBMV Subroutine

Purpose
Performs matrix-vector operations using symmetric band matrix.

Library
BLAS Library (libblas.a)

Base Operating System Runtime 1-849

Level 2: matrix-vector operations

FORTRAN Syntax
SUBROUTINE SSBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA, Y,INCy)

ALPHA, BETA REAL
INTEGER
CHARACTER*1
REAL

SUBROUTINE
DOUBLE PRECISION
INTEGER
CHARACTER*1
DOUBLE PRECISION

INCX,INCY,K,LDA,N
UPLO
A(LDA,*),X(*), Y(*)

DSBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA, Y,INCy)
ALPHA, BETA
INCX,INCY,K,LDA,N
UPLO
A(LDA,*),X(*), Y(*)

Description
The SSBMV or DSBMV subroutine performs the matrix-vector operation:

y := alpha * A * x + beta * y

where alpha and beta are scalars, x and yare N element vectors and A is an N by N
symmetric band matrix, with K super-diagonals.

Parameters

1-850

UPLO On entry, UPLO specifies whether the upper or lower triangular part of the
band matrix A is being supplied as follows:

N

K

ALPHA

A

UPLO = 'U' or 'u'
The upper triangular part of A is being supplied.

UPLO = 'L' or 'I'
The lower triangular part of A is being supplied.

Unchanged on exit.

On entry, N specifies the order of the matrix A. N must be at least zero.
Unchanged on exit.

On entry, K specifies the number of super-diagonals of the matrix A. K must
satisfy 0 .Ie. K. Unchanged on exit.

On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

An array of dimension (LDA, N). On entry with UPLO = 'U' or 'u', the
leading (K + 1) by N part of the array A must contain the upper triangular
band part of the symmetric matrix, supplied column by column, with the
leading diagonal of the matrix in row (K + 1) of the array, the first
super-diagonal starting at position 2 in row K, and so on. The top left K by K
triangle of the array A is not referenced. The following program segment will
transfer the upper triangular part of a symmetric band matrix from
conventional full matrix storage to band storage:

DO 20, J = 1, N
M = K + 1 - J
DO 10, I = MAX (1, J - K), J

10 CONTINUE
20 CONTINUE

A(M + I, J) = rnatrix(I, J)

Base Operating System Reference

Level 2: matrix-vector operations

On entry with UPLO = 'L' or '1', the leading (K + 1) by N part of the array A
must contain the lower triangular band part of the symmetric matrix,
supplied column by column, with the leading diagonal of the matrix in row 1
of the array, the first sub-diagonal starting at position 1 in row 2, and so on.
The bottom right K by K triangle of the array A is not referenced. The
following program segment will transfer the lower triangular part of a
symmetric band matrix from conventional full matrix storage to band
storage:

DO 20, J = 1, N
M = 1 - J
DO 10, I = J, MIN(N, J + K)

A(M + I, J) = matrix(I, J)
10 CONTINUE
20 CONTINUE

Unchanged on exit.

LOA On entry, LOA specifies the first dimension of A as declared in the calling
(sub) program. LOA must be at least (K + 1). Unchanged on exit.

X A vector of dimension at least (1 + (N-1) * abs(INCX)). On entry, the
incremented array X must contain the vector x. Unchanged on exit.

INCX On entry, INCX specifies the increment for the elements of X. INCX must
not be zero. Unchanged on exit.

BETA On entry, BETA specifies the scalar beta. Unchanged on exit.

Y A vector of dimension at least (1 + (N-1) * abs(INCY)). On entry, the
incremented array Ymust contain the vector y. On exit, Vis overwritten by
the updated vector y.

INCY On entry, INCY specifies the increment for the elements of Y. INCY must
not be zero. Unchanged on exit.

SSPMV or DSPMV Subroutine

Purpose
Performs matrix-vector operations using a packed symmetric matrix.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE
REAL
INTEGER
CHARACTER*1
REAL

SUBROUTINE
DOUBLE PRECISION
INTEGER

SSPMV(UPLO, N,ALPHA,Ap,X, INCX,BETA, Y,INCy)
ALPHA,BETA
INCX,INCY,N
UPLO
AP(*),X(*), Y(*)

DSPMV(UPLO, N,ALPHA,Ap,X, INCX,BETA, Y,INCy)
ALPHA,BETA
INCX,INCY,N

Base Operating System Runtime 1-851

Level 2: matrix-vector operations

CHARACTER*1
DOUBLE PRECISION

UPLO
AP(*),X(*), Y(*)

Description
The SSPMV or DSPMV subroutine performs the matrix-vector operation:

y := alpha * A * x + beta * y

where alpha and beta are scalars, x and yare N element vectors and A is an N by N
symmetric matrix, supplied in packed form.

Parameters
UPLO On entry, UPLO specifies whether the upper or lower triangular part of the

matrix A is supplied in the packed array AP as follows:

1-852

N

ALPHA

AP

x

INCX

BETA

Y

INCY

UPLO = 'U' or 'u'
The upper triangular part of A is supplied in AP.

UPLO = 'L' or 'I'
The lower triangular part of A is supplied in AP.

Unchanged on exit.

On entry, N specifies the order of the matrix A. N must be at least zero.
Unchanged on exit.

On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

A vector of dimension at least ((N * (N+ 1))/2). On entry with UPLO = 'U'
or 'u', the array AP must contain the upper triangular part of the symmetric
matrix packed sequentially, column by column, so that AP(1) contains
A(1 ,1), AP(2) and AP(3) contain A(1 ,2) and A(2,2) respectively, and so on.
On entry with UPLO = 'L' or '1', the array AP must contain the lower
triangular part of the symmetric matrix packed sequentially, column by
column, so that AP(1) contains A(1 ,1), AP(2) and AP(3) contain A(2,1) and
A(3,1) respectively, and so on. Unchanged on exit.

A vector of dimension at least (1 + (N-1) * abs(INCX)). On entry, the
incremented array X must contain the N element vector x. Unchanged on
exit.

On entry, INCX specifies the increment for the elements of X. INCX must
not be zero. Unchanged on exit.

On entry, BETA specifies the scalar beta. When BETA is supplied as zero
then Y need not be set on input. Unchanged on exit.

A vector of dimension at least (1 + (N-1) * abs(INCY)). On entry, the
incremented array Y must contain the N element vector y. On exit, Y is
overwritten by the updated vector y.

On entry, INCY specifies the increment for the elements of Y. INCY must
not be zero. Unchanged on exit.

Base Operating System Reference

Level 2: matrix-vector. operations

STRMV, DTRMV, CTRMV or ZTRMV Subroutine

Purpose
Performs matrix-vector operations using a triangular matrix.

Library
BLAS Library (Iibblas.a)

FORTRAN Syntax
SUBROUTINE
INTEGER
CHARACTER*1
REAL

SUBROUTINE
INTEGER
CHARACTER*1
DOUBLE PRECISION

SUBROUTINE
INTEGER
CHARACTER*1
COMPLEX

SUBROUTINE
INTEGER
CHARACTER*1
COMPLEX*16

Description

STRMV(UPLO, TRANS,OIAG,N,A,LOA,X, INCX)
INCX,LOA,N
OIAG, TRANS, UPLO
A(LOA, *) ,X(*)

DTRMV(UPLO, TRANS,OIAG,N,A,LOA,X,INCX)
INCX,LOA,N
OIAG, TRANS,UPLO
A(LOA,*),X(*)

CTRMV(UPLO, TRANS,OIAG,N,A, LOA,X, INCX)
INCX, LOA,N
OIAG, TRANS, UPLO
A(LOA,*),X(*)

ZTRMV(UPLO, TRANS, OIAG,N,A, LOA,X, INCX)
INCX,LOA,N
OIAG, TRANS, UPLO
A(LOA,*),X(*)

The STRMV, DTRMV, CTRMV or ZTRMV subroutine performs one of the matrix-vector
operations:

x := A * x

or

x := A' * x

where x is an N element vector and A is an N by N unit, or non-unit, upper or lower
triangular matrix.

Parameters
UPLO On entry, UPLO specifies whether the matrix is an upper or lower triangular

matrix as follows:

UPLO = 'U' or 'u'
A is an upper triangular matrix.

UPLO = 'L' or 'I'
A is a lower triangular matrix.

Unchanged on exit.

TRANS On entry, TRANS specifies the operation to be performed as follows:

Base Operating System Runtime 1-853

Level 2: matrix-vector operations

TRANS = 'N' or 'n'
x := A * x

TRANS = 'T' or 't'
x := A' * x

TRANS = 'C' or 'c'
x := A' * x

Unchanged on exit.

OIAG On entry, OIAG specifies whether or not A is unit triangular as follows:

OIAG = 'U' or 'u'
A is assumed to be unit triangular.

OIAG = 'N' or 'n'
A is not assumed to be unit triangular.

Unchanged on exit.

N On entry, N specifies the order of the matrix A. N must be at least zero.
Unchanged on exit.

A An array of dimension (LOA, N). On entry with UPLO = 'u' or 'u', the
leading N by N upper triangular part of the array A must contain the upper
triangular matrix and the strictly lower triangular part of A is not referenced.
On entry with UPLO = 'L' or '1', the leading N by N lower triangular part of
the array A must contain the lower triangular matrix and the strictly upper
triangular part of A is not referenced. Note that when OIAG = 'u' or 'u', the
diagonal elements of A are not referenced, but are assumed to be unity.
Unchanged on exit.

LOA On entry, LOA specifies the first dimension of A as declared in the calling
(sub) program. LOA must be at least max(1, N). Unchanged on exit.

X A vector of dimension at least (1 + (~1) * abs(INCX)). On entry, the
incremented array X must contain the N element vector x. On exit, X is
overwritten with the tranformed vector x.

INCX On entry, INCX specifies the increment for the elements of X. INCX must
not be zero. Unchanged on exit.

STBMV, DTBMV, CTBMV or ZTBMV Subroutine

Purpose
Performs matrix-vector operations using a triangular band matrix.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE
INTEGER

1-854 Base Operating System Reference

STBMV(UPLO, TRANS,OIAG,N,K,A,LOA,X,INCX)
INCX,K,LOA,N

Level 2: matrix-vector operations

CHARACTER*1
REAL

SUBROUTINE
INTEGER
CHARACTER*1
DOUBLE PRECISION

SUBROUTINE
INTEGER
CHARACTER*1
COMPLEX

SUBROUTINE
INTEGER
CHARACTER*1
COMPLEX*16

Description

DIAG, TRANS,UPLO
A(LDA,*),X(*)

DTBMV(UPLO, TRANS,DIAG,N,K,A,LDA,X,INCX)
INGX,K,LDA,N
DIAG, TRANS,UPLO
A(LDA,*),X(*)

CTBMV(UPLO, TRANS, DIAG,N,K,A,LDA,X, INCX)
INGX,K,LDA,N
DIAG, TRANS, UPLO
A(LDA,*),X(*)

ZTBMV(UPLO, TRANS,DIAG,N,K,A,LDA,X,INCX)
INGX,K,LDA,N
DIAG, TRANS,UPLO
A(LDA,*),X(*)

The STBMV, DTBMV, CTBMV or ZTBMV subroutine performs one of the matrix-vector
operations:

x := A * x

or

x := A' * x

where x is an N element vector and A is an N by N unit, or non-unit, upper or lower
triangular band matrix, with (K + 1) diagonals.

Parameters
UPLO On entry, UPLO specifies whether the matrix is an upper or lower triangular

matrix as follows:

UPLO = 'U' or 'u'
A is an upper triangular matrix.

UPLO = 'L' or 'I'
A is a lower triangular matrix.

Unchanged on exit.

TRANS On entry, TRANS specifies the operation to be performed as follows:

TRANS = 'N' or 'n'
x := A * x

TRANS = 'T' or 't'
x := A' * x

TRANS = 'e' or 'c'
x := A' * x

Unchanged on exit.

DIAG On entry, DIAG specifies whether or not A is unit triangular as follows:

Base Operating System Runtime 1-855

Level 2: matrix-vector operations

1-856

N

K

A

LOA

X

OIAG = 'U' or 'u'
A is assumed to be unit triangular.

OIAG = 'N' or 'n'
A is not assumed to be unit triangular.

Unchanged on exit.

On entry, N specifies the order of the matrix A. N must be at least zero.
Unchanged on exit.

On entry with UPLO = 'u' or 'u', K specifies the number of super-diagonals
of the matrix A. On entry with UPLO = 'L' or 'I', Kspecifies the number of
sub-diagonals of the matrix A. K must satisfy 0 .Ie. K. Unchanged on exit.

An array of dimension (LOA, N). On entry with UPLO = 'u' or 'u', the
leading (K + 1) by N part of the array A must contain the upper triangular
band part of the matrix of coefficients, supplied column by column, with the
leading diagonal of the matrix in row (K + 1) of the array, the first
super-diagonal starting at position 2 in row K, and so on. The top left K by K
triangle of the array A is not referenced. The following program segment will
transfer an upper triangular band matrix from conventional full matrix
storage to band storage:

DO 20, J = 1, N
M = K + 1 - J
DO 10, I MAX (1, J - K), J

10 CONTINUE
20 CONTINUE

A(M + I, J) = matrix(I, J)

On entry with UPLO = 'L' or '1', the leading (K + 1) by N part of the array A
must contain the lower triangular band part of the matrix of coefficients,
supplied column by column, with the leading diagonal of the matrix in row 1
of the array, the first sub-diagonal starting at position 1 in row 2, and so on.
The bottom right K by Ktriangle of the array A is not referenced. The
following program segment will transfer a lower triangular band matrix from
conventional full matrix storage to band storage:

DO 20, J = 1, N
M = 1 - J
DO 10, I = J, MIN(N, J + K)

10 CONTINUE
20 CONTINUE

A(M + I, J) = matrix(I, J)

Note that when OIAG = 'u' or 'u' the elements of the array A corresponding
to the diagonal elements of the matrix are not referenced, but are assumed
to be unity. Unchanged on exit.

On entry, LOA specifies the first dimension of A as declared in the calling
(sub) program. LOA must be at least (K + 1). Unchanged on exit.

A vector of dimension at least (1 + (N-1) * abs(INCX)). On entry, the
incremented array X must contain the N element vector x. On exit, X is
overwritten with the tranformed vector x.

Base Operating System Reference

Level 2: matrix-vector operations

INCX On entry, INCX specifies the increment for the elements of X. INCX must
not be zero. Unchanged on exit.

STPMV, DTPMV, CTPVM or ZTPMV Subroutine

Purpose
Performs matrix-vector operations on a packed triangular matrix.

Library
BlAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE
INTEGER
CHARACTER*1
REAL

SUBROUTINE
INTEGER
CHARACTER*1
DOUBLE PRECISION

SUBROUTINE
INTEGER
CHARACTER*1
COMPLEX

SUBROUTINE
INTEGER
CHARACTER*1
COMPLEX*16

Description

STPMV(UPLO, TRANS, DIAG,N,Ap,X, INCX)
INCX,N
DIAG, TRANS,UPLO
AP(*),X(*)

DTPMV(UPLO, TRANS, DIAG, N,Ap,X, INCX)
INCX,N
DIAG, TRANS,UPLO
AP(*),X(*)

CTPMV(UPLO, TRANS, DIAG,N,Ap,X, INCX)
INCX,N
DIAG, TRANS,UPLO
AP(*),X(*)

ZTPMV(UPLO, TRANS,DIAG,N,AP,X,INCX)
INCX,N
DIAG, TRANS,UPLO
AP(*),X(*)

The STPMV, DTPMV, CTPMV or ZTPMV subroutine performs one of the matrix-vector
operations:

x := A * x

or

x := A' * x

where x is an N element vector and A is an Nby N unit, or non-unit, upper or lower
triangular matrix, supplied in packed form.

Parameters
UPLO On entry, UPLO specifies whether the matrix is an upper or lower triangular

matrix as follows:

UPLO = 'U' or 'u'
A is an upper triangular matrix.

UPLO = 'l' or 'I'
A is a lower triangular matrix.

Base Operating System Runtime 1-857

Level 2: matrix-vector operations

1-858

Unchanged on exit.

TRANS On entry, TRANS specifies the operation to be performed as follows:

TRANS = 'N' or 'n'
x := A * x

TRANS = 'T' or 't'
x := A' * x

TRANS = 'e' or 'c'
x := A' * x

Unchanged on exit.

DIAG On entry, DIAG specifies whether or not A is unit triangular as follows:

DIAG = 'U' or 'u'
A is assumed to be unit triangular.

DIAG = 'N' or 'n'
A is not assumed to be unit triangular.

Unchanged on exit.

N On entry, N specifies the order of the matrix A. N must be at least zero.
Unchanged on exit.

AP A vector of dimension at least ((N * (N+ 1))/2). On entry with UPLO = 'U'
or 'u', the array AP must contain the upper triangular matrix packed
sequentially, column by column, so that AP(1) contains A(1, 1), AP(2) and
AP(3) contain A(1 ,2) and A(2,2) respectively, and so on. On entry with
UPLO = 'L' or '1', the array AP must contain the lower triangular matrix
packed sequentially, column by column, so that AP(1) contains A(1, 1),
AP(2) and AP(3) contain A(2,1) and A(3,1) respectively, and so on. Note
that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced,
but are assumed to be unity. Unchanged on exit.

X A vector of dimension at least (1 + (N-1) * abs(INCX)). On entry, the
incremented array X must contain the N element vector x. On exit, X is
overwritten with the tranformed vector x.

INCX On entry, INCX specifies the increment for the elements of X. INCX must
not be zero. Unchanged on exit.

Base Operating System Reference

Level 2: matrix-vector operations

STRSV, DTRSV, CTRSV or ZTRSV Subroutine

Purpose
Solves system of equations.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE
INTEGER
CHARACTER*1
REAL

SUBROUTINE
INTEGER
CHARACTER*1
DOUBLE PRECISION

SUBROUTINE
INTEGER
CHARACTER*1
COMPLEX

SUBROUTINE
INTEGER
CHARACTER*1
COMPLEX*16

Description

STRSV(UPLO, TRANS,DIAG,N,A,LDA,X, INCX}
INCX,LDA,N
DIAG, TRANS,UPLO
A(LDA,*),X(*)

DTRSV(UPLO, TRANS, DIAG,N,A, LDA,X, INCX}
INCX,LDA,N
DIAG, TRANS, UPLO
A(LDA,*),X(*)

CTRSV(UPLO, TRANS, DIAG,N,A, LDA,X, INCX}
INCX,LDA,N
DIAG, TRANS, UPLO
A(LDA, *),X(*)

ZTRSV(UPLO, TRANS,DIAG,N,A, LDA,X, INCX}
INCX,LDA,N
DIAG, TRANS,UPLO
A(LDA, *),X(*)

The STRSV, DTRSV, CTRSV or ZTRSV subroutine solves one of the systems of equations:

A * x = b

or

A' * x = b

where b and x are N element vectors and A is an N by N unit, or non-unit, upper or lower
triangular matrix.

Parameters
UPLO On entry, UPLO specifies whether the matrix is an upper or lower triangular

matrix as follows:

UPLO = 'U' or 'u'
A is an upper triangular matrix.

UPLO = 'L' or 'I'
A is a lower triangular matrix.

Unchanged on exit.

TRANS On entry, TRANS specifies the equations to be solved as follows:

Base Operating System Runtime 1-859

Level 2: matrix-vector operations

TRANS = 'N' or 'n'
A * x = b

TRANS = 'T' or 't'
A' * x = b

TRANS = 'C' or 'c'
A' * x = b

Unchanged on exit.

OIAG On entry, OIAG specifies whether or not A is unit triangular as follows:

OIAG = 'U' or 'u'
A is assumed to be unit triangular.

OIAG = 'N' or 'n'
A is not assumed to be unit triangular.

Unchanged on exit.

N On entry, N specifies the order of the matrix A. N must be at least zero.
Unchanged on exit.

A An array of dimension (LOA, N). On entry with UPLO = 'U' or 'u', the
leading N by N upper triangular part of the array A must contain the upper
triangular matrix and the strictly lower triangular part of A is not referenced.
On entry with UPLO = 'L' or '1', the leading N by N lower triangular part of
the array A must contain the lower triangular matrix and the strictly upper
triangular part of A is not referenced. Note that when OIAG = 'U' or 'u', the
diagonal elements of A are not referenced, but are assumed to be unity.
Unchanged on exit.

LOA On entry, LOA specifies the first dimension of A as declared in the calling
(sub) program. LOA must be at least max(1, N). Unchanged on exit.

X A vector of dimension at least (1 + (N-1) * abs(lNCX)). On entry, the
incremented array X must contain the N element right-hand side vector b.
On exit, X is overwritten with the solution vector x.

INCX On entry, INCX specifies the increment for the elements of X. INCX must
not be zero. Unchanged on exit.

Implementation Specifics
No test for singularity or near-singularity is included in this routine. Such tests must be
performed before calling this routine.

STBSV, DTBSV, CTBSV or ZTBSV Subroutine

Purpose
Solves system of equations.

Library
BLAS Library (libblas.a)

1-860 Base Operating System Reference

Level 2: matrix-vector operations

FORTRAN Syntax
SUBROUTINE
INTEGER
CHARACTER*1
REAL

SUBROUTINE
INTEGER
CHARACTER*1
DOUBLE PRECISION

SUBROUTINE
INTEGER
CHARACTER*1
COMPLEX

SUBROUTINE
INTEGER
CHARACTER*1
COMPLEX*16

Description

STBSV(UPLO, TRANS, DIAG,N,K,A,LDA,X,INCX}
INCX,K,LDA,N
DIAG, TRANS,UPLO
A(LDA,*),X(*)

DTBSV(UPLO, TRANS, DIAG,N,K,A,LDA,X,INCX}
INCX,K,LDA,N
DIAG, TRANS,UPLO
A(LDA,*),X(*)

CTBSV(UPLO, TRANS,DIAG,N,K,A,LDA,X,INCX}
INCX,K,LDA,N
DIAG, TRANS,UPLO
A(LDA,*),X(*)

ZTBSV(UPLO, TRANS, DIAG,N,K,A,LDA,X, INCX}
INCX,K,LDA,N
DIAG, TRANS,UPLO
A(LDA,*),X(*)

The STBSV, DTBSV, CTBSV or ZTBSV subroutine solves one of the systems of equations:

A * x = b

or

A' 1< X = b

where b and x are N element vectors and A is an N by N unit, or non-unit, upper or lower
triangular band matrix, with (K + 1) diagonals.

Parameters
UPLO On entry, UPLO specifies whether the matrix is an upper or lower triangular

matrix as follows:

TRANS

UPLO = 'U' or 'u'
A is an upper triangular matrix.

UPLO = 'l' or 'I'
A is a lower triangular matrix.

Unchanged on exit.

On entry, TRANS specifies the equations to be solved as follows:

TRANS = 'N' or 'n'
A * x = b

TRANS = 'T' or 't'
A' 1< X = b

TRANS = 'C' or 'c'
A'1< X = b

Unchanged on exit.

DIAG On entry, DIAG specifies whether A is unit triangular as follows:

Base Operating System Runtime 1-861

Level 2: matrix-vector operations

1-862

N

K

A

LOA

X

OIAG = 'U' or 'u'
A is assumed to be unit triangular.

OIAG = 'N' or 'n'
A is not assumed to be unit triangular.

Unchanged on exit.

On entry, N specifies the order of the matrix A. N must be at least zero.
Unchanged on exit.

On entry with UPLO = 'U' or 'u', Kspecifies the number of super-diagonals
of the matrix A. On entry with UPLO = 'L' or 'I', K specifies the number of
sub-diagonals of the matrix A. K must satisfy 0 .Ie. K. Unchanged on exit.

An array of dimension (LOA, N). On entry with UPLO = 'U' or 'u', the
leading (K + 1) by N part of the array A must contain the upper triangular
band part of the matrix of coefficients, supplied column by column, with the
leading diagonal of the matrix in row (K + 1) of the array, the first
super-diagonal starting at position 2 in row K, and so on. The top left K by K
triangle of the array A is not referenced. The following program segment will
transfer an upper triangular band matrix from conventional full matrix
storage to band storage:

DO 20, J = 1, N
M = K + 1 - J
DO 10, I MAX (1, J - K), J

10 CONTINUE
20 CONTINUE

A(M + I, J) = matrix (I, J)

On entry with UPLO = 'L' or 'I', the leading (K + 1) by N part of the array A
must contain the lower triangular band part of the matrix of coefficients,
supplied column by column, with the leading diagonal of the matrix in row 1
of the array, the first sub-diagonal starting at position 1 in row 2, and so on.
The bottom right K by K triangle of the array A is not referenced. The
following program segment will transfer a lower triangular band matrix from
conventional full matrix storage to band storage:

DO 20, J = 1, N
M = 1 - J
DO 10, I J, MIN(N, J + K)

10 CONTINUE
20 CONTINUE

A(M + I, J) = matrix (I, J)

Note that when OIAG = 'U' or 'u' the elements of the array A corresponding
to the diagonal elements of the matrix are not referenced, but are assumed
to be unity. Unchanged on exit.

On entry, LOA specifies the first dimension of A as declared in the calling
(sub) program. LOA must be at least (K + 1). Unchanged on exit.

A vector of dimension at least (1 + (N-1) * abs(INCX)). On entry, the
incremented array X must contain the N element right-hand side vector b.
On exit, X is overwritten with the solution vector x.

Base Operating System Reference

Level 2: matrix-vector operations

INCX On entry, INCX specifies the increment for the elements of X. INCX must
not be zero. Unchanged on exit.

Implementation Specifics
No test for singularity or near-singularity is included in this routine. Such tests must be
performed before calling this routine.

STPSV, DTPSV, CTPSV or ZTPSV Subroutine

Purpose
Solves systems of equations.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE
INTEGER
CHARACTER*1
REAL

SUBROUTINE
INTEGER
CHARACTER*1
DOUBLE PRECISION

SUBROUTINE
INTEGER
CHARACTER*1
COMPLEX

SUBROUTINE
INTEGER
CHARACTER*1
COMPLEX*16

Description

STPSV(UPLO, TRANS, DIAG,N,Ap,X, INCX)
INCX,N
DIAG, TRANS,UPLO
AP(*),X(*)

DTPSV(UPLO, TRANS, DIAG,N,Ap,X, INCX)
INCX,N
DIAG, TRANS,UPLO
AP(*),X(*)

CTPSV(UPLO, TRANS, DIAG,N,AP,X, INCX)
INCX,N
DIAG, TRANS,UPLO
AP(*),X(*)

ZTPSV(UPLO, TRANS,DIAG,N,AP,X,INCX)
INCX,N
DIAG, TRANS,UPLO
AP(*),X(*)

The STPSV, DTPSV, DTPSV or ZTPSV subroutine solves one of the systems of equations:

A * x = b

or

A' * x = b

where b and x are N element vectors and A is an N by N unit, or non-unit, upper or lower
triangular matrix, supplied in packed form.

Parameters
UPLO On entry, UPLO specifies whether the matrix is an upper or lower triangular

matrix as follows:

Base Operating System Runtime 1-863

Level 2: matrix-vector operations

TRANS

UPLO = 'U' or 'u'
A is an upper triangular matrix.

UPLO = 'L' or 'I'
A is a lower triangular matrix.

Unchanged on exit.

On entry, TRANS specifies the equations to be solved as follows:

TRANS = 'N' or 'n'
A * x = b

TRANS = 'T' or 't'
A'* x = b

TRANS = 'e' or 'c'
A' * x = b

Unchanged on exit.

DIAG On entry, DIAG specifies whether or not A is unit triangular as follows:

DIAG = 'u' or 'u'
A is assumed to be unit triangular.

DIAG = 'N' or 'n'
A is not assumed to be unit triangular.

Unchanged on exit.

N On entry, N specifies the order of the matrix A. N must be at least zero.
Unchanged on exit.

AP A vector of dimension at least ((N * (N+ 1))/2). On entry with UPLO = 'u'
or 'u', the array AP must contain the upper triangular matrix packed
sequentially, column by column, so that AP(1) contains A(1, 1), AP(2) and
AP(3) contain A(1 ,2) and A(2,2) respectively, and so on. Before entry with
UPLO = 'L' or 'I', the array AP must contain the lower triangular matrix
packed sequentially, column by column, so that AP(1) contains A(1 ,1),
AP(2) and AP(3) contain A(2,1) and A(3,1) respectively, and so on. Note
that when DIAG = 'u' or 'u', the diagonal elements of A are not referenced,
but are assumed to be unity. Unchanged on exit.

X A vector of dimension at least (1 + (N-1) * abs(lNCX)). On entry, the
incremented array X must contain the N element right-hand side vector b.
On exit, X is overwritten with the solution vector x.

INCX On entry, INCX specifies the increment for the elements of X. INCX must
not be zero. Unchanged on exit.

Implementation Specifics

1-864

No test for singularity or near-singularity is included in this routine. Such tests must be
performed before calling this routine.

Base Operating System Reference

Level 2: matrix-vector operations

SGER or DGER Subroutine

Purpose
Performs the rank 1 operation.

Library
BlAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SGER(M,N,ALPHA,X,INCX, Y,INCY,A,LOA)

ALPHA REAL
INTEGER INCX,INCY,LOA,M,N
REAL A(LOA,*),X(*), Y(*)

SUBROUTINE
DOUBLE PRECISION
INTEGER

DGER(M,N,ALPHA,X,INCX, Y,INCY,A,LOA)
ALPHA
INCX,INCY,LOA,M,N

DOUBLE PRECISION A(LOA,*),X(*), Y(*)

Description
The SGER or DGER subroutine performs the rank 1 operation:

A := alpha * x * y' + A

where alpha is a scalar, x is an M element vector, y is an N element vector and A is an M by
N matrix.

Parameters
M

N

ALPHA

x

INCX

Y

INCY

A

On entry, M specifies the number of rows of the matrix A. M must be at least
zero. Unchanged on exit.

On entry, N specifies the number of columns of the matrix A. N must be at
least zero. Unchanged on exit.

On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

A vector of dimension at least (1 + (M-1) * abs(lNCX)). On entry, the
incremented array X must contain the M element vector x. Unchanged on
exit.

On entry, INCX specifies the increment for the elements of X. INCX must
not be zero. Unchanged on exit.

A vector of dimension at least (1 + (N-1) * abs(/NCy)). On entry, the
incremented array Y must contain the N element vector y. Unchanged on
exit.

On entry, INCY specifies the increment for the elements of Y. INCY must
not be zero. Unchanged on exit.

An array of dimension (LOA, N). On entry, the leading M by N part of the
array A must contain the matrix of coefficients. On exit, A is overwritten by
the updated matrix.

Base Operating System Runtime 1-865

Level 2: matrix-vector operations

LOA On entry, LOA specifies the first dimension of A as declared in the calling
(sub) program. LOA must be at least max(1, M). Unchanged on exit.

CGERU or ZGERU Subroutine

Purpose
Performs the rank 1 operation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE
COMPLEX
INTEGER
COMPLEX

SUBROUTINE
COMPLEX*16
INTEGER
COMPLEX*16

Description

CGERU(M,N,ALPHA,X,INGX, Y, INCY,A,LOA)
ALPHA
INCX,INGY,LOA,M,N
A(LOA,*),X(*), Y(*)

ZGERU
ALPHA
INGX,INGY, LOA, M,N
A(LOA,*),X(*), Y(*)

The CGERU or ZGERU subroutine performs the rank 1 operation:

A := alpha * x * y' + A

where alpha is a scalar, x is an M element vector, y is an N element vector and A is an M by
N matrix.

Parameters
M On entry, M specifies the number of rows of the matrix A. M must be at least

zero. Unchanged on exit.

1-866

N

ALPHA

X

INGX

Y

INCY

On entry, N specifies the number of columns of the matrix A. N must be at
least zero. Unchanged on exit.

On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

A vector of dimension at least (1 + (M-1) * abs(lNCX)). On entry, the
incremented array X must contain the M element vector x. Unchanged on
exit.

On entry, INCX specifies the increment for the elements of X INCX must
not be zero. Unchanged on exit.

A vector of dimension at least (1 + (N-1) * abs(lNCY)). On entry, the
incremented array Y must contain the N element vector y. Unchanged on
exit.

On entry, INCY specifies the increment for the elements of Y. INCY must
not be zero. Unchanged on exit.

Base Operating System Reference

Level 2: matrix-vector operations

A An array of dimension (LOA, N). On entry, the leading M by N part of the
array A must contain the matrix of coefficients. On exit, A is overwritten by
the updated matrix.

LOA On entry, LOA specifies the first dimension of A as declared in the calling
(sub) program. LOA must be at least max(1, M). Unchanged on exit.

CGERC or ZGERC Subroutine

Purpose
Performs the rank 1 operation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE
COMPLEX
INTEGER
COMPLEX

SUBROUTINE
COMPLEX*16
INTEGER
COMPLEX*16

Description

CGERC(M,N,ALPHA,X, INCX, Y, INC Y,A,LOA)
ALPHA
INCX,INCY,LOA,M,N
A(LOA,*),X(*), Y(*)

ZGERC
ALPHA
INCX, INCY, LOA, M, N
A(LOA,*),X(*), Y(*)

The CGERC or ZGERC subroutine performs the rank 1 operation:

A := alpha * x * conjg(y') + A

where alpha is a scalar, x is an M element vector, y is an N element vector and A is an M by
N matrix.

Parameters
M

N

ALPHA

x

INCX

Y

On entry, M specifies the number of rows of the matrix A. M must be at least
zero. Unchanged on exit.

On entry, N specifies the number of columns of the matrix A. N must be at
least zero. Unchanged on exit.

On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

A vector of dimension at least (1 + (M-1) * abs(lNCX)). On entry, the
incremented array X must contain the M element vector x. Unchanged on
exit.

On entry, INCX specifies the increment for the elements of X. INCX must
not be zero. Unchanged on exit.

A vector of dimension at least (1 + (N-1) * abs(lNCY)). On entry, the
incremented array Y must contain the N element vector y. Unchanged on
exit.

Base Operating System Runtime 1-867

Level 2: matrix-vector operations

INCY On entry, INCY specifies the increment for the elements of Y. INCY must
not be zero. Unchanged on exit.

A An array of dimension (LOA, N). On entry, the leading M by N part of the
array A must contain the matrix of coefficients. On exit, A is overwritten by
the updated matrix.

LOA On entry, LOA specifies the first dimension of A as declared in the calling
(sub) program. LOA must be at least max(1, M). Unchanged on exit.

CHER or ZHER Subroutine

Purpose
Performs the hermitian rank 1 operation.

Library
BlAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE CHER(UPLO,N,ALPHA,X, INCX, A, LOA)

ALPHA REAL
INTEGER
CHARACTER*1
COMPLEX

SUBROUTINE
DOUBLE PRECISION
INTEGER
CHARACTER*1
COMPLEX*16

INGX,LOA,N
UPLO
A(LOA,*),X(*)

ZHER(UPLO,N,ALPHA,X,INCX,A,LOA)
ALPHA
INCX, LOA,N
UPLO
A(~OA,*),X(*)

Description
The CHER or ZHER subroutine performs the hermitian rank 1 operation:

A := alpha * x * conjg(x') + A

where alpha is a real scalar, x is an N element vector and A is an N by N hermitian matrix.

Parameters

1-868

UPLO On entry, UPLO specifies whether the upper or lower triangular part of the
array A is to be referenced as follows:

N

ALPHA

UPLO = 'U' or 'u'
Only the upper triangular part of A is to be referenced.

UPLO = 'l' or 'I'
Only the lower triangular part of A is to be referenced.

Unchanged on exit.

On entry, N specifies the order of the matrix A. N must be at least zero.
Unchanged on exit.

On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

Base Operating System Reference

Level 2: matrix-vector operations

X A vector of dimension at least (1 + (N-1) * abs(lNCX)). On entry, the
incremented array X must contain the N element vector x. Unchanged on
exit.

INCX On entry, INCX specifies the increment for the elements of X. INCX must
not be zero. Unchanged on exit.

A An array of dimension (LOA, N). On entry with UPLO = 'u' or 'u', the
leading N by N upper triangular part of the array A must contain the upper
triangular part of the hermitian matrix and the strictly lower triangular part of
A is not referenced. On exit, the upper triangular part of the array A is
overwritten by the upper triangular part of the updated matrix. On entry with
UPLO = 'L' or 'I', the leading N by N lower triangular part of the array A must
contain the lower triangular part of the hermitian matrix and the strictly
upper triangular part of A is not referenced. On exit, the lower triangular part
of the array A is overwritten by the lower triangular part of the updated
matrix. Note that the imaginary parts of the diagonal elements need not be
set, they are assumed to be zero, and on exit they are set to zero.

LOA On entry, LOA specifies the first dimension of A as declared in the calling
(sub) program. LOA must be at least max(1, N). Unchanged on exit.

CHPR or ZHPR Subroutine

Purpose
Performs the hermitian rank 1 operation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE
REAL
INTEGER
CHARACTER*1
COMPLEX

SUBROUTINE
DOUBLE PRECISION
INTEGER
CHARACTER*1
COMPLEX*16

Description

CHPR(UPLO,N,ALPHA,X,INCX,AF')
ALPHA
INCX,N
UPLO
AP(*),X(*)

ZH PR(UPLO, N,ALPHA,X, INCX,AF')
ALPHA
INCX,N
UPLO
AP(*),X(*)

The CHPR or ZHPR subroutine performs the hermitian rank 1 operation:

A := alpha * x * conjg(x') + A

where alpha is a real scalar, x is an N element vector and A is an N by N hermitian matrix,
supplied in packed form.

Base Operating System Runtime 1-869

Level 2: matrix-vector operations

Parameters
UPLO On entry, UPLO specifies whether the upper or lower triangular part of the

matrix A is supplied in the packed array AP as follows:

N

ALPHA

x

INCX

AP

UPLO = 'U' or 'u'
The upper triangular part of A is supplied in AP.

UPLO = 'L' or 'I'
The lower triangular part of A is supplied in AP.

Unchanged on exit.

On entry, N specifies the order of the matrix A. N must be at least zero.
Unchanged on exit.

On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

A vector of dimension at least (1 + (N-1) * abs(lNCX)). On entry, the
incremented array X must contain the N element vector x. Unchanged on
exit.

On entry, INCX specifies the increment for the elements of X. INCX must

not be zero. Unchanged on exit.

A vector of dimension at least ((N * (N+ 1))/2). On entry with UPLO = 'U'

or 'u', the array AP must contain the upper triangular part of the hermitian
matrix packed sequentially, column by column, so that AP(1) contains
A(1 ,1), AP(2) and AP(3) contain A(1 ,2) and A(2,2) respectively, and so on.
On exit, the array AP is overwritten by the upper triangular part of the
updated matrix. On entry with UPLO = 'L' or 'I', the array AP must contain
the lower triangular part of the hermitian matrix packed sequentially, column
by column, so that AP(1) contains A(1 ,1), AP(2) and AP(3) contain A(2,1)
and A(3,1) respectively, and so on. On exit, the array AP is overwritten by
the lower triangular part of the updated matrix. Note that the imaginary parts
of the diagonal elements need not be set, they are assumed to be zero, and
on exit they are set to zero.

CHER2 or ZHER2 Subroutine

Purpose
Performs the hermitian rank 2 operation.

Library
BLAS Library (Iibblas.a)

FORTRAN Syntax
SUBROUTINE
COMPLEX
INTEGER
CHARACTER*1
COMPLEX

CHER2(UPLO,N,ALPHA,X,INCX, Y,INCY,A,LOA)
ALPHA
INCX, INCY, LOA, N
UPLO
A(LOA,*),X(*), Y(*)

1-870 Base Operating System Reference

SUBROUTINE
COMPLEX*16
INTEGER
CHARACTER*1
COMPLEX*16

Description

Level 2: matrix-vector operations

ZHER2(UPLO,N,ALPHA,X, INCX, Y,INCY,A,LOA)

ALPHA

INCX,INCY,LOA,N

UPLO

A(LOA,*),X(*), Y(*)

The CHER2 or ZHER2 subroutine performs the hermitian rank 2 operation:

A := alpha * x * conjg(y') + conjg(alpha) * y * conjy(x') + A

where alpha is a scalar, x and yare N element vectors and A is an N by N hermitian matrix.

Parameters
UPLO

N

ALPHA

X

INCX

Y

INCY

A

On entry, UPLO specifies whether the upper or lower triangular part of the
array A is to be referenced as follows:

UPLO = 'u' or 'u'
Only the upper triangular part of A is to be referenced.

UPLO = 'L' or 'I'
Only the lower triangular part of A is to be referenced.

Unchanged on exit.

On entry, N specifies the order of the matrix A. N must be at least zero.
Unchanged on exit.

On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

A vector of dimension at least (1 + (N-1) * abs(lNCX)). On entry, the
incremented vector X must contain the N element vector x. Unchanged on
exit.

On entry, INCX specifies the increment for the elements of X. INCX must

not be zero. Unchanged on exit.

A vector of dimension at least (1 + (N-1) * abs(lNCY)). On entry, the
incremented vector Y must contain the N element vector y. Unchanged on
exit.

On entry, INCY specifies the increment for the elements of Y. INCY must

not be zero. Unchanged on exit.

An array of dimension (LOA, N). On entry with UPLO = 'U' or 'u', the
leading N by N upper triangular part of the array A must contain the upper
triangular part of the hermitian matrix and the strictly lower triangular part of
A is not referenced. On exit, the upper triangular part of the array A is
overwritten by the upper triangular part of the updated matrix. On entry with
UPLO = 'L' or '1', the leading N by N lower triangular part of the array A must
contain the lower triangular part of the hermitian matrix and the strictly
upper triangular part of A is not referenced. On exit, the lower triangular part
of the array A is overwritten by the lower triangular part of the updated
matrix. Note that the imaginary parts of the diagonal elements need not be
set; they are assumed to be zero, and on exit they are set to zero.

8ase Operating System Runtime 1-871

Level 2 : matrix-vector operations

LOA On entry, LOA specifies the first dimension of A as declared in the calling
(sub) program. LOA must be at least max(1, N). Unchanged on exit.

CHPR2 or ZHPR2 Subroutine

Purpose
Performs the hermitian rank 2 operation.

Library
BlAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE
COMPLEX
INTEGER
CHARACTER*1
COMPLEX

CHPR2 (UPLO,N,ALPHA,X,INCX, Y,INCY,Ap)
ALPHA
INCX,INCY,N
UPLO
AP(*),X(*), Y(*)

SUBROUTINE
COMPLEX*16
INTEGER
CHARACTER*1
COMPLEX*16

ZHPR2
ALPHA
INCX,INCY,N
UPLO
AP(*),X(*), Y(*)

Description
The CHPR2 or ZHPR2 subroutine performs the hermitian rank 2 operation:

A := alpha * x * conjg(y') + conjg(alpha) * y * conjg(x') + A

where alpha is a scalar, x and yare N element vectors and A is an N by N hermitian matrix,
supplied in packed form.

Parameters

1-872

UPLO On entry, UPLO specifies whether the upper or lower triangular part of the

matrix A is supplied in the packed array AP as follows:

N

ALPHA

X

UPLO = 'U' or 'u'
The upper triangular part of A is supplied in AP.

UPLO = 'L' or 'I'
The lower triangular part of A is supplied in AP.

Unchanged on exit.

On entry, N specifies the order of the matrix A. N must be at least zero.
Unchanged on exit.

On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

A vector of dimension at least (1 + (N-1) * abs(lNCX)). On entry, the

incremented array X must contain the N element vector x. Unchanged on
exit.

Base Operating System Reference

Level 2: matrix-vector operations

INCX On entry, INCX specifies the increment for the elements of X INCX must
not be zero. Unchanged on exit.

Y A vector of dimension at least (1 + (N-1) * abs(INCY)). On entry, the
incremented array Ymust contain the N element vector y. Unchanged on
exit.

INCY On entry, INCY specifies the increment for the elements of Y. INCY must
not be zero. Unchanged on exit.

AP A vector of dimension at least ((N * (N+ 1))/2). On entry with UPLO = 'U'
or 'U', the array AP must contain the upper triangular part of the hermitian
matrix packed sequentially, column by column, so that AP(1) contains
A(1,1), AP(2) and AP(3) contain A(1 ,2) and A(2,2) respectively, and so on.
On exit, the array AP is overwritten by the upper triangular part of the
updated matrix. On entry with UPLO = 'L' or 'I', the array AP must contain
the lower triangular part of the hermitian matrix packed sequentially, column
by column, so that AP(1) contains A(1 ,1), AP(2) and AP(3) contain A(2,1)
and A(3,1) respectively, and so on. On exit, the array AP is overwritten by
the lower triangular part of the updated matrix. Note that the imaginary parts
of the diagonal elements need not be set, they are assumed to be zero, and
on exit they are set to zero.

SSYR or DSYR Subroutine

Purpose
Performs the symmetric rank 1 opertation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE
REAL
INTEGER
CHARACTER*1
REAL

SUBROUTINE
DOUBLE PRECISION
INTEGER
CHARACTER*1
DOUBLE PRECISION

Description

SSVR(UPLO,N,ALPHA,X, INGX, A, LOA)
ALPHA
INGX,LOA,N
UPLO
A(LOA,*),X(*)

DSVR(UPLO,N,ALPHA,X, INGX,A,LOA)
ALPHA
INCX,LOA,N
UPLO
A(LOA, *),X(*)

The SSVR or DSVR subroutine performs the symmetric rank 1 operation:

A := alpha * x * x' + A

where alpha is a real scalar, x is an N element vector and A is an N by N symmetric matrix.

Base Operating System Runtime 1-873

Level 2: matrix-vector operations

Parameters
UPLO On entry, UPLO specifies whether the upper or lower triangular part of the

array A is to be referenced as follows:

N

ALPHA

X

INCX

A

LOA

UPLO = 'U' or 'u'
Only the upper triangular part of A is to be referenced.

UPLO = 'l' or 'I'
Only the lower triangular part of A is to be referenced.

Unchanged on exit.

On entry, N specifies the order of the matrix A. N must be at least zero.
Unchanged on exit.

On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

A vector of dimension at least (1 + (N-1) * abs(INCX)). On entry, the
incremented array X must contain the N element vector x. Unchanged on
exit.

On entry, INCX specifies the increment for the elements of X. INCX must
not be zero. Unchanged on exit.

An array of dimension (LOA, N). On entry with UPLO = 'U' or 'u', the
leading N by N upper triangular part of the array A must contain the upper
triangular part of the symmetric matrix and the strictly lower triangular part
of A is not referenced. On exit, the upper triangular part of the array A is
overwritten by the upper triangular part of the updated matrix. On entry with
UPLO = 'l' or'!', the leading N by N lower triangular part of the array A must
contain the lower triangular part of the symmetric matrix and the strictly
upper triangular part of A is not referenced. On exit, the lower triangular part
of the array A is overwritten by the lower triangular part of the updated
matrix.

On entry, LOA specifies the first dimension of A as declared in the calling
(sub) program. LOA must be at least max(1, N). Unchanged on exit.

SSPR or DSPR Subroutine

Purpose
Performs the symmetric rank 1 operation.

Library
BlAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE
REAL
INTEGER
CHARACTER*1
REAL

1-874 Base Operating System Reference

SSPR(UPLO, N,ALPHA,X, INCX,APJ
ALPHA
INCX,N
UPLO
AP(*),X(*)

SUBROUTINE
DOUBLE PRECISION
INTEGER
CHARACTER*1
DOUBLE PRECISION

Level 2: matrix-vector operations

DSPR(UPLO, N,ALPHA,X, INCX,Ap}
ALPHA
INCX,N
UPLO
AP(*),X(*)

Description
The SSPR or DSPR subroutine performs the symmetric rank 1 operation:

A := alpha * x * x' + A

where alpha is a real scalar, x is an N element vector and A is an N by N symmetric matrix,
supplied in packed form.

Parameters
UPLO On entry, UPLO specifies whether the upper or lower triangular part of the

matrix A is supplied in the packed array AP as follows:

N

ALPHA

X

INCX

AP

UPLO = 'U' or 'u'
The upper triangular part of A is supplied in AP.

UPLO = 'L' or 'I'
The lower triangular part of A is supplied in AP.

Unchanged on exit.

On entry, N specifies the order of the matrix A. N must be at least zero.
Unchanged on exit.

On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

A vector of dimension at least (1 + (N-1) * abs(lNCX)). On entry, the
incremented array X must contain the N element vector x. Unchanged on
exit.

On entry, INCX specifies the increment for the elements of X. INCX must
not be zero. Unchanged on exit.

A vector of dimension at least ((N * (N+ 1))/2). On entry with UPLO = 'U'
or 'u', the array AP must contain the upper triangular part of the symmetric
matrix packed sequentially, column by column, so that AP(1) contains
A(1 ,1), AP(2) and AP(3) contain A(1,2) and A(2,2) respectively, and so on.
On exit, the array AP is overwritten by the upper triangular part of the
updated matrix. On entry with UPLO = 'L' or 'I', the array AP must contain
the lower triangular part of the symmetric matrix packed sequentially,
column by column, so that AP(1) contains A(1,1), AP(2) and AP(3) contain
A(2,1) and A(3,1) respectively, and so on. On exit, the array AP is
overwritten by the lower triangular part of the updated matrix.

SSYR2 or DSYR2 Subroutine

Purpose
Performs the symmetric rank 2 operation.

Base Operating System Runtime 1-875

Level·2: matrix-vector operations

Library
BlAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SSYR2(UPLO, N,ALPHA,X, INCX, Y, INC Y,A, LOA)

ALPHA REAL
INTEGER
CHARACTER*1
REAL

SUBROUTINE
DOUBLE PRECISION
INTEGER
CHARACTER*1
DOUBLE PRECISION

INCX,INCY,LOA,N
UPLO
A(LOA,*),X(*), Y(*)

DSYR2(UPLO,N,ALPHA,X,INCX, Y, INC Y,A, LOA)
ALPHA
INCX,INCY,LOA,N
UPLO
A(LOA,*),X(*), Y(*)

Description
The SSVR2 or DSYR2 subroutine performs the symmetric rank 2 operation:

A := alpha * x * y' + alpha * y * x' + A

where alpha is a scalar, x and yare N element vectors and A is an N by N symmetric matrix.

Parameters

1-876

UPLO On entry, UPLO specifies whether the upper or lower triangular part of the
array A is to be referenced as follows:

N

ALPHA

x

INCX

Y

INCY

A

UPLO = 'U' or 'u'
Only the upper triangular part of A is to be referenced.

UPLO = 'l' or 'I'
Only the lower triangular part of A is to be referenced.

Unchanged on exit.

On entry, N specifies the order of the matrix A. N must be at least zero.
Unchanged on exit.

On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

A vector of dimension at least (1 + (N-1) * abs(lNCX)). On entry, the
incremented array X must contain the N element vector x. Unchanged on
exit.

On entry, INCX specifies the increment for the elements of X. INCX must
not be zero. Unchanged on exit.

A vector of dimension at least (1 + (N-1) * abs(lNCY)). On entry, the
incremented array Y must contain the N element vector y. Unchanged on
exit.

On entry, INCY specifies the increment for the elements of Y. INCY must
not be zero. Unchanged on exit.

An array of dimension (LOA, N). On entry with UPLO = 'U' or 'u', the
leading N by N upper triangular part of the array A must contain the upper

Base Operating System Reference

Level 2: matrix-vector operations

triangular part of the symmetric matrix and the strictly lower triangular part
of A is not referenced. On exit, the upper triangular part of the array A is
overwritten by the upper triangular part of the updated matrix. On entry with
UPLO = 'L' or 'I', the leading N by N lower triangular part of the array A must
contain the lower triangular part of the symmetric matrix and the strictly
upper triangular part of A is not referenced. On exit, the lower triangular part
of the array A is overwritten by the lower triangular part of the updated
matrix.

LOA On entry, LOA specifies the first dimension of A as declared in the calling
(sub) program. LOA must be at least max(1, N). Unchanged on exit.

SSPR2 or DSPR2 Subroutine

Purpose
Performs the symmetric rank 2 operation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE
REAL
INTEGER
CHARACTER*1
REAL

SUBROUTINE
DOUBLE PRECISION
INTEGER
CHARACTER*1
DOUBLE PRECISION

Description

SSPR2(UPLO, N,ALPHA,X, INCX, Y, INCY,Ap)
ALPHA
INCX,INCY,N
UPLO
AP(*),X(*), Y(*)

DSPR2(UPLO,N,ALPHA,X,INCX, Y,INCY,Ap)
ALPHA
INCX,INCY,N
UPLO
AP(*),X(*), Y(*)

The SSPR2 or DSPR2 subroutine performs the symmetric rank 2 operation:

A := alpha * x * y' + alpha * y * x' + A

where alpha is a scalar, x and yare N element vectors and A is an N by N symmetric matrix,
supplied in packed form.

Parameters
UPLO On entry, UPLO specifies whether the upper or lower triangular part of the

matrix A is supplied in the packed array AP as follows:

UPLO = 'U' or 'u'
The upper triangular part of A is supplied in AP.

UPLO = 'L' or 'I'
The lower triangular part of A is supplied in AP.

Unchanged on exit.

Base Operating System Runtime 1-877

Level 2: matrix-vector operations

1-878

N

ALPHA

X

INCX

Y

INCY

AP

On entry, N specifies the order of the matrix A. N must be at least zero.
Unchanged on exit.

On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

A vector of dimension at least (1 + (~1-) * abs(lNCX)). On entry, the
incremented array X must contain the N element vector x. Unchanged on
exit.

On entry, INCX specifies the increment for the elements of X. INCX must
not be zero. Unchanged on exit.

A vector of dimension at least (1 + (~1) * abs(lNCY)). On entry, the
incremented array Y must contain the N element vector y. Unchanged on
exit.

On entry, INCY specifies the increment for the elements of Y. INCY must
not be zero. Unchanged on exit.

A vector of dimension at least ((N * (N+ 1))/2). On entry with UPLO = 'U'
or 'u', the array AP must contain the upper triangular part of the symmetric
matrix packed sequentially, column by column, so that AP(1) contains
A(1,1), AP(2) and AP(3) contain A(1 ,2) and A(2,2) respectively, and so on.
On exit, the array AP is overwritten by the upper triangular part of the
updated matrix. On entry with UPLO = 'L' or 'I', the array AP must contain
the lower triangular part of the symmetric matrix packed sequentially,
column by column, so that AP(1) contains A(1, 1), AP(2) and AP(3) contain
A(2,1) and A(3,1) respectively, and so on. On exit, the array AP is
overwritten by the lower triangular part of the updated matrix.

Base Operating System Reference

Level 3: matrix-matrix operations

SGEMM, DGEMM, CGEMM or ZGEMM Subroutine

Purpose
Performs matrix-matrix operations on general matrices.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SGEMM(TRANSA, TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,

BETA,C,LDC)
CHARACTER*1
INTEGER
REAL
REAL

SUBROUTINE

CHARACTER*1
INTEGER
DOUBLE PRECISION
DOUBLE PRECISION

SUBROUTINE

CHARACTER*1
INTEGER
COMPLEX
COMPLEX

SUBROUTINE

CHARACTER*1
INTEGER
COMPLEX*16
COMPLEX*16

Description

TRANSA, TRANSB
M, N, K, LOA, LOB, LDC
ALPHA,BETA
A(LDA,*),B(LDB,*),C(LDC,*)

DG EMM(TRANSA, TRANSB,M, N, K,ALPHA,A, LOA, B, LOB,
BETA,C,LDC)
TRANSA, TRANS8
M,N,K,LDA,LDB,LDC
ALPHA,BETA
A(LDA,*),8(LDB,*),C(LDC,*)

CG EM M(TRANSA, TRANSB, M,N, K,ALPHA,A,LDA, B, LOB,
BETA,C,LDC)
TRANSA, TRANSB
M,N,K,LDA,LDB,LDC
ALPHA,BETA
A(LDA,*),B(LDB,*),C(LDC,*)

ZG EMM(TRANSA, TRANSB, M,N,K,ALPHA,A, LDA,B, LOB,
BETA,C,LDC)
TRANSA, TRANSB
M,N,K,LDA,LDB,LDC
ALPHA, BETA
A(LDA,*),B(LDB,*),C(LDC,*)

The SGEMM, DGEMM, CGEMM or ZGEMM subroutine performs one of the matrix-matrix
operations:

C := alpha * op(A) * op(B) + beta * C

where op(X) is one of op(X) = X or op(X) = X' ,alpha and beta are scalars, and A, Band
C are matrices, with op(A) an M by K matrix, op(B) a K by N matrix and C an M by N
matrix.

Parameters
TRANSA On entry, TRANSA specifies the form of op(A) to be used in the matrix

multiplication as follows:

TRANSA = 'N' or 'n'
op(A) = A

Base Operating System Runtime 1-879

Level 3: matrix-matrix operations

1-880

TRANSB

M

N

K

ALPHA

A

LOA

B

LOB

BETA

c

TRANSA =. 'T' or 't'
op(A) = A'

TRANSA = 'e' or 'c'
op(A) = A'

Unchanged on exit.

On entry, TRANSB specifies the form of op(B) to be used in the matrix
multiplication as follows:

TRANSB = 'N' or 'n'
op(B) = B

TRANSB = 'T' or 't'
op(B) = B'

TRANSB = 'e' or 'c'
op(B) = 8

Unchanged on exit.

On entry, M specifies the number of rows of the matrix op(A) and of the
matrix C. M must be at least zero. Unchanged on exit.

On entry, N specifies the number of columns of the matrix op(B) and the
number of columns of the matrix C. N must be at least zero. Unchanged on
exit.

On entry, K specifies the number of columns of the matrix op(A) and the
number of rows of the matrix op(B). K must be at least zero. Unchanged
on exit.

On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

An array of dimension (LOA, KA), where KA is Kwhen TRANSA = 'N' or
'n', and is Motherwise. On entry with TRANSA = 'N' or 'n', the leading Mby
Kpart of the array A must contain the matrix A, otherwise the leading Kby
M part of the array A must contain the matrix A. Unchanged on exit.

On entry, LOA specifies the first dimension of A as declared in the calling
(sub) program. When TRANSA = 'N' or 'n' then LOA must be at least max(
1, M), otherwise LOA must be at least max(1, K). Unchanged on exit.

An array of dimension (LOB, KB) where KB is N when TRANSB = 'N' or
'n', and is Kotherwise. On entry with TRANSB= 'N' or 'n', the leading Kby
N part of the array B must contain the matrix B, otherwise the leading N by
K part of the array B must contain the matrix B. Unchanged on exit.

On entry, LOB specifies the first dimension of B as declared in the calling
(sub) program. When TRANSB = 'N' or 'n' then LOB must be at least max(
1, K), otherwise LOB must be at least max(1, N). Unchanged on exit.

On entry, BETA specifies the scalar beta. When BETA is supplied as zero
then C need not be set on input. Unchanged on exit.

An array of dimension (LOC, N). On entry, the leading M by N part of the
array C must contain the matrix C, except when beta is zero, in which case

Base Operating System Reference

Level 3: matrix-matrix operations

G need not be set on entry. On exit, the array C is overwritten by the M by N
matrix (alpha * op(A) * op(B) + beta * C).

LOC On entry, LOG specifies the first dimension of C as declared in the calling
(sub) program. LOG must be at least max(1, M). Unchanged on exit.

SSYMM, DSYMM, CSYMM or ZSYMM Subroutine

Purpose
Performs matrix-matrix matrix operations on symmertric matrices.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SSYMM(SIOE,UPLO,M,N,ALPHA,A,LOA,B,LOB,BETA,C,

LOC)
CHARACTER*1
INTEGER
REAL
REAL

SUBROUTINE

CHARACTER*1
INTEGER
DOUBLE PRECISION
DOUBLE PRECISION

SUBROUTINE

CHARACTER*1
INTEGER
COMPLEX
COMPLEX

SUBROUTINE

CHARACTER*1
INTEGER
COMPLEX*16
COMPLEX*16

Description

SIOE,UPLO
M,N,LOA,LOB,LOG
ALPHA,BETA
A(LOA,*),B(LOB,*),C(LOC,*)

DSYMM(SI DE, U PLO, M, N,ALPHA,A, LOA, B, LOB, BETA, C,
LOC)
SIOE,UPLO
M,N,LOA,LOB,LOG
ALPHA,BETA
A(LOA,*),B(LOB,*),C(LOC,*)

CSYMM(SIOE,UPLO,M,N,ALPHA,A,LOA,B,LOB,BETA,C,
LOC)
SIOE,UPLO
M,N,LOA,LOB,LOG
ALPHA,BETA
A(LOA,*),B(LOB,*),C(LOC,*)

ZSYMM(SIOE,UPLO,M,N,ALPHA,A,LOA,B,LOB,BETA,C,
LOC)
SIOE,UPLO
M, N, LOA, LOB, LOG
ALPHA,BETA
A(LOA,*),B(LOB,*),C(LOC,*)

The SSYMM, DSYMM, CSYMM or ZSYMM subroutine performs one of the matrix-matrix
operations:

C := alpha * A * B + beta * C

or

C := alpha * B * A + beta * C

where alpha and beta are scalars, A is a symmetric matrix and Band Care M by N
matrices.

Base Operating System Runtime 1-881

Level 3: matrix-matrix operations

Parameters

1-882

SIDE On entry, SIDE specifies whether the symmetric matrix A appears on the left
or right in the operation as follows:

UPLO

M

N

ALPHA

A

LOA

B

SIDE = 'L' or 'I'
C := alpha * A ... B + beta * C

SIDE = 'R' or 'r'
C := alpha ... B ... A + beta It C

Unchanged on exit.

On entry, UPLO specifies whether the upper or lower triangular part of the
symmetric matrix A is to be referenced as follows:

UPLO = 'U' or 'u'
Only the upper triangular part of the symmetric matrix is
to be referenced.

UPLO = 'L' or 'I'
Only the lower triangular part of the symmetric matrix is
to be referenced.

Unchanged on exit.

On entry, M specifies the number of rows of the matrix C. M must be at least
zero. Unchanged on exit.

On entry, N specifies the number of columns of the matrix C. N must be at
least zero. Unchanged on exit.

On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

An array of dimension (LOA, KA), where KA is M when SIDE = 'L' or 'I' and
is N otherwise. On entry with SIDE = 'L' or 'I', the M by M part of the array A
must contain the symmetric matrix, such that when UPLO = 'U' or 'u', the
leading M by M upper triangular part of the array A must contain the upper
triangular part of the symmetric matrix and the strictly lower triangular part
of A is not referenced, and when UPLO = 'L' or 'I', the leading M by M lower
triangular part of the array A must contain the lower triangular part of the
symmetric matrix and the strictly upper triangular part of A is not referenced.
On entry with SIDE = 'R' or 'r', the N by N part of the array A must contain
the symmetric matrix, such that when UPLO = 'U' or 'u', the leading N by N
upper triangular part of the array A must contain the upper triangular part of
the symmetric matrix and the strictly lower triangular part of A is not
referenced, and when UPLO = 'L' or 'I', the leading N by N lower triangular
part of the array A must contain the lower triangular part of the symmetric
matrix and the strictly upper triangular part of A is not referenced.
Unchanged on exit.

On entry, LOA specifies the first dimension of A as declared in the calling
(sub) program. When SIDE = 'L' or 'I' then LOA must be at least max(1, M),
otherwise LOA must be at least max(1, N). Unchanged on exit.

An array of dimension (LOB, N). On entry, the leading M by N part of the

array B must contain the matrix B. Unchanged on exit.

Base Operating System Reference

Level 3: matrix-matrix operations

LOB On entry, LOB specifies the first dimension of B as declared in the calling
(sub) program. LOB must be at least max(1, M). Unchanged on exit.

BETA On entry, BETA specifies the scalar beta. When BETA is supplied as zero
then C need not be set on input. Unchanged on exit.

C An array of dimension (LOC, N). On entry, the leading M by N part of the
array C must contain the matrix C, except when beta is zero, in which case
C need not be set on entry. On exit, the array C is overwritten by the M by N
updated matrix.

LOC On entry, LOC specifies the first dimension of C as declared in the calling
(sub) program. LOC must be at least max(1, M). Unchanged on exit.

CHEMM or ZHEMM Subroutine

Purpose
Performs matrix-matrix operations on hermitian matrices.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE
CHARACTER*1
INTEGER
COMPLEX
COMPLEX

Purpose

SUBROUTINE
CHARACTER*1
INTEGER
COMPLEX*16
COMPLEX*16

CHEMM(SIOE,UPLO,M,N,ALPHA,A,LOA,B,LOB,BETA,C,LDC)
SIOE,UPLO
M,N,LOA,LOB,LOC
ALPHA,BETA
A(LOA, *), B(LOB, *), C(LOC, *)

ZHEMM(SIOE,UPLO,M,N,ALPHA,A,LOA,B,LOB,BETA,C,LOC)
SIOE,UPLO
M,N,LOA,LOB,LOC
ALPHA,BETA
A(LOA,*),B(LOB,*),C(LOC,*)

The CHEMM or ZHEMM subroutine performs one of the matrix-matrix operations:

C := alpha * A * B + beta * C

or

C := alpha * B * A + beta * C

where alpha and beta are scalars, A is an hermitian matrix, and Band Care M by N
matrices.

Parameters
SIDE On entry, SIDE specifies whether the hermitian matrix A appears on the left

or right in the operation as follows:

SIDE = 'L' or 'I'
C := alpha .. A .. B + beta * C

Base Operating System Runtime 1-883

Level 3: matrix-matrix operations

1-884

UPLO

M

N

ALPHA

A

LOA

B

LOB

BETA

SIDE = 'R' or 'r'
C := alpha * B * A + beta * C

Unchanged on exit.

On entry, UPLO specifies whether the upper or lower triangular part of the
hermitian matrix A is to be referenced as follows:

UPLO = 'U' or 'u'
Only the upper triangular part of the hermitian matrix is to
be referenced.

UPLO = 'L' or 'I'
Only the lower triangular part of the hermitian matrix is to
be referenced.

Unchanged on exit.

On entry, M specifies the number of rows of the matrix C. M must be at least
zero. Unchanged on exit.

On entry, N specifies the number of columns of the matrix C. N must be at
least zero. Unchanged on exit.

On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

An array of dimension (LOA, KA), where KA is M when SIDE = 'L' or 'I' and
is N otherwise. On entry with SIDE = 'L' or 'I', the M by M part of the array A
must contain the hermitian matrix, such that when UPLO = 'U' or 'u', the
leading M by M upper triangular part of the array A must contain the upper
triangular part of the hermitian matrix and the strictly lower triangular part of
A is not referenced, and when UPLO = 'L' or 'I', the leading M by M lower
triangular part of the array A must contain the lower triangular part of the
hermitian matrix and the strictly upper triangular part of A is not referenced.
On entry with SIDE = 'R' or 'r', the N by N part of the array A must contain
the hermitian matrix, such that when UPLO = 'U' or 'u', the leading N by N
upper triangular part of the array A must contain the upper triangular part of
the hermitian matrix and the strictly lower triangular part of A is not
referenced, and when UPLO = 'L' or 'I', the leading N by N lower triangular
part of the array A must contain the lower triangular part of the hermitian
matrix and the strictly upper triangular part of A is not referenced. Note that
the imaginary parts of the diagonal elements need not be set, they are
assumed to be zero. Unchanged on exit.

On entry, LOA specifies the first dimension of A as declared in the calling
(sub) program. When SIDE = 'L' or 'I' then LOA must be at least max(1, M),
otherwise LOA must be at least max(1, N). Unchanged on exit.

An array of dimension (LOB, N). On entry, the leading M by N part of the
array B must contain the matrix B. Unchanged on exit.

On entry, LOB specifies the first dimension of B as declared in the calling
(sub) program. LOB must be at least max(1, M). Unchanged on exit.

On entry, BETA specifies the scalar beta. When BETA is supplied as zero
then C need not be set on input. Unchanged on exit.

Base Operating System Reference

Level 3: matrix--matrix operations

C An array of dimension (LDC, N). On entry, the leading M by N part of the
array C must contain the matrix C, except when beta is zero, in which case
C need not be set on entry. On exit, the array C is overwritten by the M by N
updated matrix.

LDC On entry, LDC specifies the first dimension of C as declared in the calling
(sub) program. LDC must be at least max(1, M). Unchanged on exit.

SSYRK, DSYRK, CSYRK or ZSYRK Subroutine

Purpose
Perform symmetric rank k operations.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE
CHARACTER*1
INTEGER
REAL

SSYRK(UPLO, TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
UPLO,TRANS
N,K,LDA,LDC
ALPHA,BETA

REAL

SUBROUTINE
CHARACTER*1
INTEGER
DOUBLE PRECISION
DOUBLE PRECISION

SUBROUTINE
CHARACTER*1
INTEGER
COMPLEX
COMPLEX

SUBROUTINE
CHARACTER*1
INTEGER
COMPLEX*16
COMPLEX*16

Description

A(LDA,*),C(LDC,*)

DSYRK(UPLO, TRANS, N, K,ALPHA,A, LDA, BETA, C, LDC)
UPLO,TRANS
N,K,LDA,LDC
ALPHA,BETA
A(LDA,*),C(LDC,*)

CSYRK(UPLO, TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
UPLO,TRANS
N,K,LDA,LDC
ALPHA,BETA
A(LDA,*),C(LDC,*)

ZSYRK(UPLO, TRANS, N,K,ALPHA,A,LDA, BETA, C,LDC)
UPLO,TRANS
N,K,LDA,LDC
ALPHA,BETA
A(LDA,*),C(LDC,*)

The SSYRK, DSYRK, CSYRK or ZSYRK subroutine performs one of the symmetric rank k
operations:

C := alpha * A * A' + beta * C

or

C := alpha * A' * A + beta * C

where alpha and beta are scalars, C is an N by N symmetric matrix, and A is an N by K
matrix in the first case and a K by N matrix in the second case.

Base Operating System Runtime 1-885

Level 3: matrix-matrix operations

Parameters
UPLO

TRANS

N

K

ALPHA

A

LOA

BETA

C

LDC

On entry, UPLO specifies whether the upper or lower triangular part of the
array C is to be referenced as follows:

UPLO = 'u' or 'u'
Only the upper triangular part of C is to be referenced.

UPLO = 'L' or 'I'
Only the lower triangular part of C is to be referenced.

Unchanged on exit.

On entry, TRANS specifies the operation to be performed as follows:

TRANS = 'N' or 'n'
C := alpha * A * A' + beta * C

TRANS = 'T' or 't'
C := alpha * A' * A + beta * C

TRANS = 'C' or 'c'
C := alpha * A' * A + beta * C

Unchanged on exit.

On entry, N specifies the order of the matrix C. N must be at least zero.

Unchanged on exit.

On entry with TRANS = 'N' or 'n', Kspecifies the number of columns of the
matrix A, and on entry with TRANS = 'T' or 't' or 'C' or 'c', K specifies the
number of rows of the matrix A. K must be at least zero. Unchanged on exit.

On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

An array of dimension (LOA, KA), where KA is Kwhen TRANS = 'N' or 'n',

and is N otherwise. On entry with TRANS = 'N' or 'n', the leading N by K
part of the array A must contain the matrix A, otherwise the leading Kby N
part of the array A must contain the matrix A. Unchanged on exit.

On entry, LOA specifies the first dimension of A as declared in the calling

(sub) program. When TRANS = 'N' or 'n', LOA must be at least max(1, N);
otherwise LOA must be at least max(1, K). Unchanged on exit.

On entry, BETA specifies the scalar beta. Unchanged on exit.

An array of dimension (LDC, N). On entry with UPLO = 'u' or 'u', the
leading N by N upper triangular part of the array C must contain the upper
triangular part of the symmetric matrix and the strictly lower triangular part
of C is not referenced. On exit, the upper triangular part of the array Cis
overwritten by the upper triangular part of the updated matrix. On entry with
UPLO = 'L' or 'I', the leading N by N lower triangular part of the array C must
contain the lower triangular part of the symmetric matrix and the strictly
upper triangular part of C is not referenced. On exit, the lower triangular part
of the array C is overwritten by the lower triangular part of the updated
matrix.

On entry, LDC specifies the first dimension of C as declared in the calling
(sub) program. LDC must be at least max(1, N). Unchanged on exit.

1-886 Base Operating System Reference

Level 3: matrix-matrix operations

CHERK or ZHERK Subroutine

Purpose
Performs hermitian rank k operations.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE
CHARACTER*1
INTEGER
REAL
COMPLEX

CHERK(UPLO, TRANS,N,K,ALPHA,A,LDA,BETA, G,LDG)
UPLO,TRANS
N,K,LDA,LDG
ALPHA,BETA
A(LDA,*),C(LDC,*)

SUBROUTINE
CHARACTER*1
INTEGER

ZHERK(UPLO, TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
UPLO,TRANS

DOUBLE PRECISION
COMPLEX*16

Description

N,K,LDA,LDC
ALPHA,BETA
A(LDA,*),C(LDC,*)

The CHERK or ZHERK subroutine performs one of the hermitian rank k operations:

C := alpha * A * conjg(A') + beta * C

or

C := alpha * conjg(A') * A + beta * C

where alpha and beta are real scalars, C is an N by N hermitian matrix, and A is an N by K
matrix in the first case and a K by N matrix in the second case.

Parameters
UPLO On entry, UPLO specifies whether the upper or lower triangular part of the

array C is to be referenced as follows:

UPLO = 'U' or 'u'
Only the upper triangular part of G is to be referenced.

UPLO = 'L' or 'I'
Only the lower triangular part of C is to be referenced.

Unchanged on exit.

TRANS On entry, TRANS specifies the operation to be performed as follows:

TRANS = 'N' or 'n'
C := alpha * A * conjg(A') + beta * C

TRANS = 'e' or 'c'
C:= alpha * conjg(A') * A + beta * C

Unchanged on exit.

Base Operating System Runtime 1-887

Level 3: matrix-matrix operations

N

K

ALPHA

A

LOA

BETA

C

LOC

On entry, N specifies the order of the matrix C. N must be at least zero.
Unchanged on exit.

On entry with TRANS = 'N' or 'n', K specifies the number of columns of the
matrix A, and on entry with TRANS = 'C' or 'c', Kspecifies the number of
rows of the matrix A. K must be at least zero. Unchanged on exit.

On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

An array of dimension (LOA, KA), where KA is Kwhen TRANS = 'N' or 'n',
and is N otherwise. On entry with TRANS = 'N' or 'n', the leading N by K
part of the array A must contain the matrix A, otherwise the leading Kby N
part of the array A must contain the matrix A. Unchanged on exit.

On entry, LOA specifies the first dimension of A as declared in the calling
(sub) program. When TRANS = 'N' or 'n', LOA must be at least max(1, N),
otherwise LOA must be at least max(1, K). Unchanged on exit.

On entry, BETA specifies the scalar beta. Unchanged on exit.

An array of dimension (LOC, N). On entry with UPLO = 'U' or 'u', the
leading N by N upper triangular part of the array C must contain the upper
triangular part of the hermitian matrix and the strictly lower triangular part of
C is not referenced. On exit, the upper triangular part of the array Cis
overwritten by the upper triangular part of the updated matrix. On entry with
UPLO = 'L' or '1', the leading N by N lower triangular part of the array C must
contain the lower triangular part of the hermitian matrix and the strictly
upper triangular part of C is not referenced. On exit, the lower triangular part
of the array C is overwritten by the lower triangular part of the updated
matrix. Note that the imaginary parts of the diagonal elements need not be
set, they are assumed to be zero, and on exit they are set to zero.

On entry, LOC specifies the first dimension of C as declared in the calling
(sub) program. LOC must be at least max(1, N). Unchanged on exit.

SSYR2K, DSYR2K, CSYR2K or ZSYR2K Subroutine

Purpose
Performs symmetric rank 2k operations.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE

1-888

CHARACTER*1
INTEGER
REAL
REAL

SUBROUTINE

Base Operating System Reference

SSVR2K(UPLO, TRANS,N,K,ALPHA,A, LDA,B,LDB, BETA,
C,LOC)
UPLO,TRANS
N,K,LOA,LOB,LOC
ALPHA,BETA
A(LOA, *),B(LOB, *), C(LOC, *)

DSVR2K(UPLO, TRANS, N, K,ALPHA,A, LDA,B, LOB, BETA,
C,LOC)

CHARACTER*1
INTEGER

Level 3: matrix-matrix operations

DOUBLE PRECISION
DOUBLE PRECISION

UPLO,TRANS
N,K,LOA,LOB,LOC
ALPHA,BETA
A(LOA,*),B(LOB,*),C(LOC,*)

SUBROUTINE

CHARACTER*1
INTEGER
COMPLEX
COMPLEX

SUBROUTINE

CHARACTER*1
INTEGER
COMPLEX*16
COMPLEX*16

Description

CSYR2K(UPLO, TRANS, N, K,ALPHA,A, LOA, B, LOB, BETA,
C,LOC)
UPLO,TRANS
N,K,LOA,LOB,LOC
ALPHA,BETA
A(LOA, *), B(LOB, *), C(LOC, *)

ZSYR2K(UPLO, TRANS,N,K,ALPHA,A, LOA,B, LOB,BETA,
C,LOC)
UPLO,TRANS
N,K,LOA,LOB,LOC
ALPHA,BETA
A(LOA,*),B(LOB,*),C(LOC,*)

The SSYR2K, DSYR2K, CSYR2K or ZSYR2K subroutine performs one of the symmetric
rank 2k operations:

C := alpha * A * 8 + alpha * B * A' + beta * C

or

C := alpha * A' * B + alpha * 8 * A + beta * C

where alpha and beta are scalars, C is an N by N symmetric matrix, and A and Bare N by K
matrices in the first case and K by N matrices in the second case.

Parameters
UPLO On entry, UPLO specifies whether the upper or lower triangular part of the

array C is to be referenced as follows:

TRANS

N

K

UPLO = 'U' or 'u'
Only the upper triangular part of C is to be referenced.

UPLO = 'L' or 'I'
Only the lower triangular part of C is to be referenced.

Unchanged on exit.

On entry, TRANS specifies the operation to be performed as follows:

TRANS = 'N' or 'n'
C := alpha * A * 8 + alpha * B * A' + beta * C

TRANS = 'T' or 't'
C := alpha * A' * B + alpha * 8 * A + beta * C

Unchanged on exit.

On entry, N specifies the order of the matrix C. N must be at least zero.
Unchanged on exit.

On entry with TRANS = 'N' or 'n', K specifies the number of columns of the
matrices A and B, and on entry with TRANS = 'T' or 't', K specifies the

Base Operating System Runtime 1-889

Level 3: matrix-matrix operations

ALPHA

A

LOA

B

LOB

BETA

C

LOC

number of rows of the matrices A and B. K must be at least zero.
Unchanged on exit.

On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

An array of dimension (LOA, KA), where KA is Kwhen TRANS = 'N' or 'n',
and is N otherwise. On entry with TRANS = 'N' or 'n', the leading N by K
part of the array A must contain the matrix A, otherwise the leading Kby N
part of the array A must contain the matrix A. Unchanged on exit.

On entry, LOA specifies the first dimension of A as declared in the calling
(sub) program. When TRANS = 'N' or 'n', LOA must be at least max(1, N);
otherwise LOA must be at least max(1, K). Unchanged on exit.

An array of dimension (LOB, KB), where KB is Kwhen TRANS = 'N' or 'n',
and is N otherwise. On entry with TRANS = 'N' or 'n', the leading N by K
part of the array B must contain the matrix B, otherwise the leading K by N
part of the array B must contain the matrix B. Unchanged on exit.

On entry, LOB specifies the first dimension of B as declared in the calling
(sub) program. When TRANS = 'N' or 'n', LOB must be at least max(1, N);
otherwise LOB must be at least max(1, K). Unchanged on exit.

On entry, BETA specifies the scalar beta. Unchanged on exit.

An array of dimension (LDC, N). On entry with UPLO = 'U' or 'u', the
leading N by N upper triangular part of the array C must contain the upper
triangular part of the symmetric matrix and the strictly lower triangular part
of C is not referenced. On exit, the upper triangular part of the array Cis
overwritten by the upper triangular part of the updated matrix. On entry with
UPLO = 'L' or 'I', the leading N by N lower triangular part of the array C must
contain the lower triangular part of the symmetric matrix and the strictly
upper triangular part of C is not referenced. On exit, the lower triangular part
of the array C is overwritten by the lower triangular part of the updated
matrix.

On entry, LOC specifies the first dimension of C as declared in the calling
(sub) program. LDC must be at least max(1, N). Unchanged on exit.

CHER2K or ZHER2K Subroutine

Purpose
Performs hermitian rank 2k operations.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE
CHARACTER*1
INTEGER
REAL

1-890 Base Operating System Reference

CHER2K(UPLO, TRANS,N,K,ALPHA,A,LDA,B,LDB,C,LDC)
UPLO,TRANS
N,K,LDA,LDB,LDC
BETA

COMPLEX
COMPLEX

SUBROUTINE
CHARACTER*1
INTEGER

Level 3: matrix-matrix operations

ALPHA ,
A(LOA,*),B(LOB,*),C(LOC,*)

ZH ER2K(UPLO, TRANS, N, K,ALPHA,A, LOA, B, LOB, C, LOG)
UPLO,TRANS
N, K, LOA, LOB, LOC

DOUBLE PRECISION
COMPLEX*16
COMPLEX*16

BETA
ALPHA
A(LOA,*),B(LOB,*),C(LDC,*)

Description
The CHER2K or ZHER2K subroutine performs one of the hermitian rank 2k operations:

C := alpha * A * conjg(8) + conjg(alpha) * B * conjg(A') + beta * C

or

C := alpha * conjg(A') * B + conjg(alpha) * conjg(8) * A + beta * C

where alpha and beta are scalars with beta real, C is an N by N hermitian matrix, and A and
Bare N by K matrices in the first case and K by N matrices in the second case.

Parameters
UPLO On entry, UPLO specifies whether the upper or lower triangular part of the

array C is to be referenced as follows:

TRANS

N

K

ALPHA

A

UPLO = 'U' or 'u'
Only the upper triangular part of C is to be referenced.

UPLO = 'L' or 'I'
Only the lower triangular part of C is to be referenced.

Unchanged on exit.

On entry, TRANS specifies the operation to be performed as follows:

TRANS = 'N' or 'n'
C := alpha * A * conjg(8) + conjg(alpha) * B * conjg(A') + beta *
C

TRANS = 'C' or 'c'
C := alpha * conjg(A') * B + conjg(alpha) * conjg(8) * A + beta *
C

Unchanged on exit.

On entry, N specifies the order of the matrix C. N must be at least zero.
Unchanged on exit.

On entry with TRANS = 'N' or 'n', K specifies the number of columns of the
matrices A and B, and on entry with TRANS = 'C' or 'c', K specifies the
number of rows of the matrices A and B. K must be at least zero.
Unchanged on exit.

On entry, ALPHA specifies the scalar alpha. Unchanged on exit.

An array of dimension (LOA, KA), where KA is Kwhen TRANS = 'N' or 'n',
and is N otherwise. On entry with TRANS = 'N' or 'n', the leading N by K

Base Operating System Runtime 1-891

Level 3: matrix-matrix operations

part of the array A must contain the matrix A, otherwise the leading K by N
part of the array A must contain the matrix A. Unchanged on exit.

LOA On entry, LOA specifies the first dimension of A as declared in the calling
(sub) program. When TRANS = 'N' or 'n', LOA must be at least max(1, N);
otherwise LOA must be at least max(1, K). Unchanged on exit.

B An array of dimension (LOB, KB), where KB is Kwhen TRANS = 'N' or 'n',
and is N otherwise. On entry with TRANS = 'N' or 'n', the leading N by K
part of the array B must contain the matrix B, otherwise the leading K by N
part of the array B must contain the matrix B. Unchanged on exit.

LOB On entry, LOB specifies the first dimension of B as declared in the calling
(sub) program. When TRANS = 'N' or 'n', LOB must be at least max(1, N);
otherwise LOB must be at least max(1, K). Unchanged on exit.

BETA On entry, BETA specifies the scalar beta. Unchanged on exit.

C An array of dimension (LDC, N). On entry with UPLO = 'U' or 'u', the
leading N by N upper triangular part of the array C must contain the upper
triangular part of the hermitian matrix and the strictly lower triangular part of
C is not referenced. On exit, the upper triangular part of the array Cis
overwritten by the upper triangular part of the updated matrix. On entry with
UPLO = 'l' or '1', the leading N by N lower triangular part of the array C must
contain the lower triangular part of the hermitian matrix and the strictly
upper triangular part of C is not referenced. On exit, the lower triangular part
of the array C is overwritten by the lower triangular part of the updated
matrix. Note that the imaginary parts of the diagonal elements need not be
set, they are assumed to be zero, and on exit they are set to zero.

LDC On entry, LDC specifies the first dimension of C as declared in the calling
(sub) program. LDC must be at least max(1, N). Unchanged on exit.

STRMM, DTRMM, CTRMM or ZTRMM Subroutine

Purpose
Performs matrix-matrix operations on triangular matrixes.

Library
BlAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE

1-892

CHARACTER*1
INTEGER
REAL
REAL

SUBROUTINE

CHARACTER*1
INTEGER

Base Operating System Reference

STRMM(SIDE,UPLO, TRANSA,DIAG,M,N,ALPHA,A,LDA,B,
LOB)
SIDE,UPLO, TRANSA,OIAG
M,N,LOA,LOB
ALPHA
A(LOA,*),B(LOB,*)

DTRMM(SIOE,UPLO, TRANSA,OIAG,M,N,ALPHA,A,LOA,B,
LOB)
SIOE,UPLO, TRANSA,OIAG
M,N,LOA,LOB

Level 3: matrix-matrix operations

DOUBLE PRECISION
DOUBLE PRECISION

ALPHA
A(LoA,*),B(LoB,*)

SUBROUTINE CTRMM(SIDE, U PLO, TRANSA, olAG, M,N,ALPHA,A, LOA, B,
LOB)

CHARACTER*1
INTEGER
COMPLEX
COMPLEX

SIDE, UPLO, TRANSA,olAG
M, N, LOA, LOB
ALPHA
A(LoA,*),B(LoB,*)

SUBROUTINE ZTRMM(SIDE, U PLO, TRANSA, olAG,M,N,ALPHA,A, LOA,B,
LOB)

CHARACTER*1
INTEGER
COMPLEX*16
COMPLEX*16

Description

SIDE, UPLO, TRANSA,olAG
M,N,LoA,LoB
ALPHA
A(LoA,*),B(LoB,*)

The STRMM, DTRMM, CTRMM or ZTRMM subroutine performs one of the matrix-matrix
operations:

B := alpha * op(A) * B

or

B := alpha * B * op(A)

where alpha is a scalar, B is an M by N matrix, A is a unit, or non-unit, upper or lower
triangular matrix, and op(A) is either op(A) = A or op(A) = A'.

Parameters
SIDE On entry, SIDE specifies whether op(A) multiplies B from the left or right as

follows:

SIDE = 'L' or 'I'
B := alpha * op(A) * B

SIDE = 'R' or 'r'
B := alpha * B * op(A)

Unchanged on exit.

UPLO On entry, UPLO specifies whether the matrix A is an upper or lower
triangular matrix as follows:

UPLO = 'U' or 'u'
A is an upper triangular matrix.

UPLO = 'L' or 'I'
A is a lower triangular matrix.

Unchanged on exit.

TRANSA On entry, TRANSA specifies the form of op(A) to be used in the matrix

multiplication as follows:

TRANSA = 'N' or 'n'
op(A) = A

Base Operating System Runtime 1-893

Level 3: matrix-matrix operations

TRANSA = 'T' or 't'
op(A) = A'

TRANSA = 'C' or 'c'
op(A) = A'

Unchanged on exit.

DIAG On entry, DIAG specifies whether or not A is unit triangular as follows:

M

N

ALPHA

A

LDA

B

LDB

DIAG = 'u' or 'u'
A is assumed to be unit triangular.

DIAG = 'N' or 'n'
A is not assumed to be unit triangular.

Unchanged on exit.

On entry, M specifies the number of rows of B. M must be at least zero.
Unchanged on exit.

On entry, N specifies the number of columns of B. N must be at least zero.
Unchanged on exit.

On entry, ALPHA specifies the scalar alpha. When alpha is zero then A is
not referenced and B need not be set before entry. Unchanged on exit.

An array of dimension (LDA, k), where k is M when SIDE = 'L' or 'I' and is
Nwhen SIDE = 'R' or 'r'. On entry with UPLO= 'u' or 'u', the leading k by k
upper triangular part of the array A must contain the upper triangular matrix
and the strictly lower triangular part of A is not referenced. On entry with
UPLO = 'L' or 'I', the leading k by k lower triangular part of the array A must
contain the lower triangular matrix and the strictly upper triangular part of A
is not referenced. Note that when DIAG = 'u' or 'u', the diagonal elements of
A are not referenced either, but are assumed to be unity. Unchanged on
exit.

On entry, LDA specifies the first dimension of A as declared in the calling
(sub) program. When SIDE = 'L' or 'I' then LDA must be at least max(1, M),
when SIDE = 'R' or 'r' then LDA must be at least max{ 1, N). Unchanged on
exit.

An array of dimension (LDB, N). On entry, the leading M by N part of the
array B must contain the matrix B, and on exit is overwritten by the
transformed matrix.

On entry, LDB specifies the first dimension of B as declared in the calling
(sub) program. LDB must be at least max(1, M). Unchanged on exit.

STRSM, DTRSM, CTRSM or ZTRSM Subroutine

Purpose
Solves certain matrix equations.

1-894 Base Operating System Reference

Level 3: matrix-matrix operations

Library
BlAS Library (Iibblas.a)

FORTRAN Syntax
SUBROUTINE STRSM(SIOE, UPLO, TRANSA, OIAG,M,N,ALPHA,A,LOA,B,

LOB)
CHARACTER*1
INTEGER
REAL
REAL

SUBROUTINE

CHARACTER*1
INTEGER
DOUBLE PRECISION
DOUBLE PRECISION

SUBROUTINE

CHARACTER*1
INTEGER
COMPLEX
COMPLEX

SUBROUTINE

CHARACTER*1
INTEGER
COMPLEX*16
COMPLEX*16

Description

SIDE, UPLO, TRANSA,OIAG
M,N,LOA,LOB
ALPHA
A(LOA,*),B(LOB,*)

DTRSM(SIOE,UPLO, TRANSA,OIAG,M,N,ALPHA,A, LOA,B,
LOB)
SIDE, UPLO, TRANSA,OIAG
M,N,LOA,LOB
ALPHA
A(LOA, *),8(LOB, *)

CTRSM(SIOE,UPLO, TRANSA,OIAG,M,N,ALPHA,A,LOA,B,
LOB)
SIOE,UPLO, TRANSA,OIAG
M,N,LOA,LOB
ALPHA
A(LOA,*),B(LOB,*)

ZTRSM(SIDE, UPLO, TRANSA,OIAG,M,N,ALPHA,A,LOA,B,
LOB)
SIOE,UPLO, TRANSA,OIAG
M,N,LOA,LOB
ALPHA
A(LOA,*),B(LOB,*)

The STRSM, DTRSM, CTRSM or ZTRSM subroutine solves one of the matrix equations:

op(A) * X = alpha * B

or

X * op(A) = alpha * B

where alpha is a scalar, X and Bare M by N matrices, A is a unit, or non-unit, upper or lower
triangular matrix, and op(A) is either op(A) = A or op(A) = A'. The matrix X is overwritten
on B.

Parameters
SIDE On entry, SIDE specifies whether op(A) appears on the left or right of X as

follows:

SIDE = 'l' or 'I'
op(A) * X = alpha * B

SIDE = 'R' or 'r'
X * op(A) = alpha * B

Unchanged on exit.

Base Operating System Runtime 1-895

Level 3: matrix-matrix operations

1-896

UPLO

TRANSA

On entry, UPLO specifies whether the matrix A is an upper or lower
triangular matrix as follows:

UPLO = 'u' or 'u'
A is an upper triangular matrix.

UPLO = 'L' or 'I'
A is a lower triangular matrix.

Unchanged on exit.

On entry, TRANSA specifies the form of op(A) to be used in the matrix
multiplication as follows:

TRANSA = 'N' or 'n'
op(A) = A

TRANSA = 'T' or 't'
op(A) = A'

TRANSA = 'e' or 'c'
op(A) = A'

Unchanged on exit.

OIAG On entry, OIAG specifies whether or not A is unit triangular as follows:

M

N

ALPHA

A

LOA

OIAG = 'u' or 'u'
A is assumed to be unit triangular.

OIAG = 'N' or 'n'
A is not assumed to be unit triangular.

Unchanged on exit.

On entry, M specifies the number of rows of B. M must be at least zero.
Unchanged on exit.

On entry, N specifies the number of columns of B. N must be at least zero.
Unchanged on exit.

. On entry, ALPHA specifies the scalar alpha. When alpha is zero then A is
not referenced and B need not be set before entry. Unchanged on exit.

An array of dimension (LOA, k), where k is Mwhen SIDE = 'L' or 'I' and is
N when SIDE = 'R' or 'r'. On entry with UPLO = 'u' or 'u', the leading k by k
upper triangular part of the array A must contain the upper triangular matrix
and the strictly lower triangular part of A is not referenced. On entry with
UPLO = 'L' or 'I', the leading k by k lower triangular part of the array A must
contain the lower triangular matrix and the strictly upper triangular part of A
is not referenced. Note that when OIAG = 'u' or 'u', the diagonal elements of
A are not referenced, but are assumed to be unity. Unchanged on exit.

On entry, LOA specifies the first dimension of A as declared in the calling
(sub) program. When SIDE = 'L' or '1', LOA must be at least max(1, M);
when SIDE = 'R' or 'r', LOA must be at least max(1, N). Unchanged on
exit.

Base Operating System Reference

Level 3: matrix-matrix operations

B An array of dimension (LOB, N). On entry, the leading M by N part of the
array B must contain the right-hand side matrix B, and on exit is overwritten
by the solution matrix X.

LOB On entry, LOB specifies the first dimension of B as declared in the calling
(sub) program. LOB must be at least max(1, M). Unchanged on exit.

Base Operating System Runtime 1-897

Level 3: matrix-matrix operations

1-898 Base Operating System Reference

Base Operating System Error Codes

Appendix A. Base Operating System Error Codes for
Services That Require Path Name Resolution

The following errors apply to any service that requires path name resolution:

EACCES

EFAULT

ELOOP

ENAMETOOLONG

ENOENT

ENOENT

ENOENT

ENOTDIR

ESTALE

EIO

Search permission is denied on a component of the path prefix.

The Path parameter points outside of the allocated address
space of the process.

Too many symbolic links were encountered in translating the
Path parameter.

A component of a path name exceeded 255 characters and the
process has the OisallowTruncation attribute (see the ulimit
subroutine), or an entire path name exceeded 1023 characters.

A component of the path prefix does not exist.

A symbolic link was named, but the file to which it refers does not
exist.

The path name is null.

A component of the path prefix is not a directory.

The root or current directory of the process is located in a virtual
file system that is unmounted.

An lID error occurred during the operation.

Base Operating System Error Codes A-1

A-2 Base Operating System Reference

OOM Error Codes

Appendix B. OOM Error Codes

When an ODM subroutine fails, a value of -1 is returned and the odmerrno variable is set to
one of the following values:

ODMI_BAD_CLASSNAME
The specified object class name does not match the object class name in
the file. Check path name and permissions.

ODMI_BAD_CLXNNAME
The specified collection name does not match the collection name in the file.

ODMI_BAD_CRIT
The specified search criteria is incorrectly formed. Make sure the criteria
contains only valid descriptor names and the search values are correct. For
information on qualifying criteria, see Understanding ODM Object

Searches in General Programming Concepts.

ODMI_BAD_LOCK
Cannot set a lock on the file. Check path name and permissions.

ODMI_BAD_TIMEOUT
The timeout value was not valid. It must be a positive integer.

ODMI_BAD_ TOKEN
Cannot create or open the lock file. Check path name and permissions.

ODMI_CLASS_DNE
The specified object class does not exist. Check path name and
permissions.

ODMI_CLASS_EXISTS

The specified object class already exists. An object class must not exist
when it is created.

ODMI_CLASS_PERMS
The object class cannot be opened because of the file permissions.

ODMI_CLXNMAGICNO_ERR
The specified collection is not a valid object class collection.

Cannot fork the child process. Make sure the child process is executable
and try again.

ODMI_INTERNAL_ERR

An internal consistency problem occurred. Make sure the object class is
valid or contact the person responsible for the system.

ODMI_INVALlD_CLASS
The specified file is not an object class.

ODM Error Codes B-1

OOM Error Codes

ODMI_INVALlD_CLXN
Either the specified collection is not a valid object class collection or the
collection does not contain consistent data.

ODMLINVALlD_PATH
The specified path does not exist on the file system. Make sure the path is
accessible.

ODMI_LlNK_NOT _FOUND
The object class that is linked to could not be opened. Make sure the linked
object class is accessible.

ODMI_LOCK_BLOCKED
Cannot grant the lock. Another process already has the lock.

ODMI_LOCK_ENV
Cannot retrieve or set the lock environment variable. Remove some
environment variables and try again.

ODMI_LOCKJD
The lock identifier does not refer to a valid lock. The lock identifier must be
the same as what was returned from the odm_lock subroutine.

ODMI_MAGICNO_ERR
The class symbol does not identify a valid object class.

ODMI_MALLOC_ERR
Cannot allocate sufficent storage. Try again later or contact the person
responsible for the system.

ODMI_NO_OBJECT
The specified object identifier did not refer to a valid object.

ODMI_OPEN_ERR
Cannot open the object class. Check path name and permissions.

ODMI_OPEN_PIPE
Cannot open a pipe to a child process. Make sure the child process is
executable and try again.

ODMI_PARAMS
The parameters passed to the subroutine were not correct. Make sure there
are the correct number of parameters and that they are valid.

ODMI_READ_ONLY
The specified object class is opened as read-only and cannot be modified.

ODMI_READ_PIPE
Cannot read from the pipe of the child. Make sure the child process is
executable and try again.

ODMI_ TOOMANYCLASSES
Too many object classes have been accessed. An application can only
access less than 1024 object classes.

8-2 Base Operating System Reference

OOM Error Codes

Cannot remove the object class from the file system. Check path name and
permissions.

ODMI_UNLINKCLXN_ERR
Cannot remove the object class collection from the file system. Check path
name and permissions.

ODMI_UNLOCK
Cannot unlock the lock file. Make sure the lock file exists .

•

OOM Error Codes B-3

OOM Error Codes

8-4 Base Operating System Reference

X.25 Application Error Codes

Appendix C. List of X.2S API Error Codes

List of X.2S-Specific Error Codes
For X.2S-specific error conditions, x25_errno is set to one of the following values:

X25ACKREQ

X25AUTH

X25AUTHCTR

X25AUTHLISTEN

X25BADCONNID

X25BADDEVICE

X25BADID

X25BADLISTENID

X25CALLED

X25CALLING

X25CTRUSE

X251NIT

X251NVCTR

X251NVFAC

X251NVMON

X25L1NKUP

X25L1NKUSE

X25LONG

One or more packets require acknowledgement. Issue x25_ack
before continuing.

The calling application does not have system permission to
control the status of the link.

The application does not have permission to remove this counter
because it is not the application that issued the corresponding
x25_ctr_get.

The application cannot listen to this name, because the
corresponding entry in the routing list has a user name that
excludes the user running the application. Use another routing
list name, or change the user name in the routing list entry.

The connection identifier is invalid.

The X.2S port name is invalid.

The connection identifier or listen identifier is invalid.

The listen identifier is invalid.

The called address is invalid. Check that the address is correct
and is a NULL-terminated string.

The calling address is invalid. Check that the address is correct
and is a NULL-terminated string.

The counter has a non-zero value.

X.25 is already initialized for this X.25 port, so cannot be
initialized again.

The specified counter does not exist. (In the case of
x25_ctr_wait, the counter is one of an array of counters.)

An optional facility requested is invalid. Check cb_fac_struct.

The monitoring mode is invalid.

The X.2S port is already connected.

The X.2S port still has virtual circuits established; it may still be in
use. Either free all virtual circuits or disconnect the port using the
override.

The parameter is too long. Check each of the parameters for this
subroutine.

X.25 Application Error Codes C-1

X.25 Application Error Codes

X25MAXDEVICE

X25MONITOR

X25NAMEUSED

X25NOACKREQ

X25NOCARD

X25NOCTRS

X25NODATA

X25NODEVICE

X25NOLINK

X25NONAME

X25NOSUCHLINK

X25NOTINIT

X25NOTPVC

X25PROTOCOL

X25PVCUSED

X25RESETCLEAR

X25SVSERR

X25TABLE

X25TIMEOUT

X25TOOMANVVCS

Attempts have been made to connect more X.2S ports than are
available. Check the smit configuration to see how many ports
are available.

X.2S traffic on this X.2S port is already being monitored by
another application. The other application must stop monitoring
before any other application can start it.

Calls for this name are already being listened for.

No packets currently require acknowledgement.

The X.2S adapter is either not installed or not functioning.

No counters are available.

No data is has arrived for this connection identifier. Issue
x25_ctr_wait to be notified when data arrives.

The X.2S device driver is either not installed or not functioning.

The X.2S port is not connected. Issue x25_link_connect, or use
xmanage to connect it.

The name is not in the routing list. Add the name or use one that
is already in the list.

The X.2S port does not exist. Check the smit configuration.

The application has not initialized X.2S communications. Issue
x25_init.

This is not defined as a permanent virtual circuit (PVC). Check
the smit configuration.

An X.2S protocol error occurred.

This permanent virtual circuit (PVC) is already allocated to
another application. The other application must free the PVC
before it can be used.

The call was reset or cleared during processing. Issue
x25_receive to obtain the reset-indication or clear-indication
packet. Then issue x25_reset_confirm or x25_clear_confirm,
as necessary.

An error occurred that was not an X.2S error. Check the value of
errno.

The routing list cannot be updated because xroute is using it. Try
again after xroute has completed.

A timeout problem occurred.

No virtual circuits are free on the listed X.2S ports.

C-2 Base Operating System Reference

X25TRUNCTX

X.2S Application Error Codes

The packet size is too big for internal buffers, so data cannot be
sent.

List of System Error Codes
For non-X.25-specific error conditions, x25_errno is set to X25SYSERR and errno is set to
one of the following values:

EFAULT

EINTR

EIO

ENOMEM

ENOSPC

EPERM

Bad address pointer.

A signal was caught during the call.

An 1/0 error occurred.

Could not allocate memory for device information.

There are no buffers available in the pool.

Calling application does not have sufficient authorization.

X.25 Application Error Codes C-3

Index

Special Characters
_atojis macro, 1-285
_exit subroutine, 1-127-1-128
jistoa macro, 1-285
_NLxout subroutine, 1-484
_tojlower macro, 1-285
_tojupper macro, 1-285

A
a641 subroutine, 1-3
abort subroutine, 1-4
abs subroutine, 1-5-1-6
absinterval subroutine, 1-190-1-192
accept a connection on a socket, Sockets, 8-3
accept subroutine, Sockets, 8-3
access control information

changing
using acLchg subroutine, 1-11-1-13,

1-706-1-708
using acl_fchg subroutine, 1-11-1-13

getting, using acl_get subroutine, 1-14-1-15
setting

using acl_fset subroutine, 1-19-1-21
using acLset subroutine, 1-19-1-21

access data stored under a key, fetch, 5-44
access data stored under key, dbm_fetch, 5-36
access subroutine, 1-7-1-8
acct subroutine, 1-9-1-10
acl_chg subroutine, 1-11-1-13
acl_fchg subroutine, 1-11-1-13
acl_get subroutine, 1-14-1-15
acLput subroutine, 1-16-1-18
acl_set subroutine, 1-19-1-21
acos subroutine, 1-673-1-674
acosh subroutine, 1-26
add group or multicast receive address, OLC, 3-57
addresses, define program, 1-117
addssys subroutine, 1-22-1-23
adjtime subroutine, 1-24-1-25
advance subroutine, 1-87-1-90
AIX API application, HCON programming

receiving message from, 2-62
sending message to, 2-78
starting interaction with, 2-15

AIX Input Method, notifying input auxiliary area,
using IMProcess Auxiliary subroutine,
1-271-1-272

aix_exec function, xgmon, 6-3
alarm subroutine, 1-190-1-192
alloc function, xgmon, 6-4
alloca subroutine, 1-399-1-402

allow command execution on a remote host,
Sockets, 8-98

allow execution of commands on a remote host,
Sockets, 8-82

allow servers to authenticate clients, Sockets, 8-102
allow VGM to change current display element mask,

xgmon, 6-71
allow VGM to issue system command, xgmon, 6-16
allow VGM to start execution of library command in

other VGM, xgmon, 6-16
alphasort subroutine, 1-591-1-592
alter a link station's configuration parameters, OLC,

3-42
alter normally defaulted parameters, OLC, 3-61
API for X.25

initializing, using x25jnit subroutine, 9-19
terminating for a specified X.25 port, using

x25_term subroutine, 9-38
array, allocating space, using imcalloc subroutine,

1-256
ascii function, xgmon, 6-5
asctime subroutine, 1-101-1-103
asin subroutine, 1-673-1-674
asinh subroutine, 1-26
assert macro, 1-27
asynchronous event call, OLC, 3-64
atan subroutine, 1-673-1-674
atan2 subroutine, 1-673-1-674
atanh subroutine, 1-26
atexit subroutine, 1-127-1-128
atof subroutine, 1-28-1-29
atoff subroutine, 1-28-1-29
atoi subroutine, 1-721-1-722
atojis subroutine, 1-285
atol subroutine, 1-721-1-722
attach to session with extended open capabilities,

HCON programming, 2-55
attach to session, HCON programming, 2-49
audit

generating an audit record, using auditlog
subroutine, 1-37-1-38

reading a record, using auditread subroutine,
1-47

writing a record, using auditwrite subroutine,
1-48

audit bins, compressing and uncompressing, using
auditpack subroutine, 1-42-1-43

audit subroutine, 1-30-1-31
auditbin subroutine, 1-32-1-34

Index X-1

auditevents subroutine, 1-35-1-36
auditing

defining a file, using auditbin subroutine,
1-32-1-34

disabling, using audit subroutine, 1-30-1-31
enabling, using audit subroutine, 1-30-1-31
getting system event status, using auditevents

subroutine, 1-35-1-36
setting mode of system data object, using

auditobject subroutine, 1-39-1-41
setting system event status, using auditevents

subroutine, 1-35-1-36
auditlog subroutine, 1-37-1-38
auditobj subroutine, , 1-40
auditobject subroutine, 1-39-1-41
auditpack subroutine, 1-42-1-43
auditproc subroutine, 1-44-1-46
auditread subroutine, 1-47
auditwrite subroutine, 1-48
auth_destroy macro, RPC, 5-6
authdes create subroutine, RPC, 5-3
authdes:=getucred subroutine, RPC, 5-5
authentication

closing the database, using endpwdb
subroutine, 1-631-1-632

opening the database, using setpwdb
subroutine, 1-631-1-632

authnone create subroutine, RPC, 5-7
authunix_create subroutine, RPC, 5-8
authunix_create_default subroutine, RPC, 5-9
auxiliary area, hiding, using IMAuxHide subroutine,

1-254

B
base_type function, xgmon, 6-6
Baud Rates Subroutines

cfgetispeed subroutine, 1-61-1-62
cfgetospeed subroutine, 1-61-1-62
cfsetispeed subroutine, 1-61-1-62
cfsetospeed subroutine, 1-61-1-62

bcmp subroutine, 1-49
bcopy subroutine, 1-49
begin LAF script, HCON programming, 2-94
Berkeley Compatibility Library

a"oca subroutine, 1-399--1-402
ca"oc subroutine, 1-399-1-402
fmin subroutine, 1-396-1-398
fmout subroutine, 1-396-1-398
free subroutine, 1-399-1-402
ftime subroutine, 1-218-1-219
gcd subroutine, 1-396-1-398
invert subroutine, 1-396-1-398
itom subroutine, 1-396-1-398
m_in subroutine, 1-396-1-398
m_out subroutine, 1-396-1-398
madd subroutine, 1-396-1-398
ma"info subroutine, 1-399-1-402
ma"oc subroutine, 1-399-1-402

X-2 Base Operating System Reference

mallopt subroutine, 1-399-1-402
mcmp subroutine, 1-396-1-398
mdiv subroutine, 1-396-1-398
min subroutine, 1-396-1-398
mkstemp subroutine, 1-421
mout subroutine, 1-396-1-398
move subroutine, 1-396-1-398
msqrt subroutine, 1-396-1-398
msub subroutine, 1-396-1-398
mult subroutine, 1-396-1-398
nice subroutine, 1-204-1-205
nlist subroutine, 1-469-1-470
omin subroutine, 1-396-1-398
om out subroutine, 1-396-1-398
pow subroutine, 1-396-1-398
psignal subroutine, 1-548
rand subroutine, 1-564-1-565
re_comp subroutine, 1-568
re_exec subroutine, 1-568
realloc subroutine, 1-399-1-402
rpow subroutine, 1-396-1-398
sdiv subroutine, 1-396-1-398
signal subroutine, 1-651
sigvec subroutine, 1-651
srand subroutine, 1-564-1-565
sys_siglist vector, 1-548
vfork subroutine, 1-147
vtimes subroutine, 1-211-1-213

bind a name to a socket, Sockets, 8-5
bind subroutine, Sockets, 8-5
binding handles

clearing, 4-29
clearing server bindings, 4-30
freeing, 4-32
socket address representation, 4-33

BREAK LAF statement, HCON programming, 2-3
brk subroutine, 1-52-1-53
bsearch subroutine, 1-54
bytes, copy, using swab subroutine, 1-724
bzero subroutine, 1-49

C
cabs subroutine, 1-248-1-249
call for X.25

accepting an incoming, using x25_calLaccept
subroutine, 9-6

clearing, using x25_ca"_clear subroutine,
9-7-9-8

making, using x25_ca" subroutine, 9-4-9-5
starting listening for incoming, using x25_listen

subroutine, 9-30
turning off listening for, using x25_deafen

subroutine, 9-16
calling process

returning parent process group 10, using
getppid subroutine, 1-202

returning process 10, using getpid subroutine,
1-202

returning the process group 10, using getpgrp
subroutine, 1-202

suspending, using pause subroutine, 1-527
calloc subroutine, 1-399-1-402
callrpc subroutine, RPC, 5-10
catclose subroutine, 1-56
catgetmsg subroutine, 1-57
catgets subroutine, 1-58
catopen subroutine, 1-59-1-60
cbrt subroutine, 1-676
ceil subroutine, 1-141-1-143
cfxfer function, HCON programming, 2-4
chacl subroutine, 1-63-1-65
change configuration parameters, OLC, 3-22, 3-28
change current primary address of host, xgmon,

6-54
change NIS map, yp_update, 5-144
change relative location of display element, xgmon,

6-52
change remote address/name result extension, DLC,

3-56
character

classifying
using ctype subroutines, 1-104-1-105
using Japanese ctype subroutines,

1-287-1-291
using NCctype subroutines, 1-453-1-455

determining the length of multipbyte character,
using mblen subroutine, 1-405

locating first occurence in a string, using
wcspbrk subroutine, 1-803

translating
Japanese conv subroutine, 1-285-1-286
using conv subroutines, 1-91-1-93

character data
read and interpret according to a format, using

wsscanf subroutine, 1-815
read and interpret according to format,
1-593-1-597

chdir subroutine, 1-66-1-67
check file descriptor readiness, OLC, 3-73
check I/O status, file descriptors and message

queues, using select subroutine, 1-598-1-600
check the status of the programmatic file transfer,

HCON programming, 2-4
chmod subroutine, 1-68-1-70
chown subroutine, 1-71-1-73
chownx subroutine, 1-71-1-73
chroot subroutine, 1-74-1-75
chssys subroutine, 1-76-1-77
cjistosj subroutine, 1-292-1-293
ckuseracct subroutine, 1-80-1-81
ckuserlO subroutine, 1-78-1-79
class subroutine, 1-82-1-83
clearerr macro, 1-140
clnt_broadcast subroutine, RPC, 5-12
clnt_call macro, RPC, 5-14
clnt_control macro, RPC, 5-16
clnt_create subroutine, RPC, 5-18

Clnt_destroy macro, RPC, 5-19
clnt_freeres macro, RPC, 5-20
clnt_geterr macro, RPC, 5-21
clnt_pcreateerror subroutine, RPC, 5-22
clnt_perrno subroutine, RPC, 5-23
clnt_perror subroutine, RPC, 5-24
clnt_spcreateerror subroutine, RPC, 5-25
clnt_sperrno subroutine, RPC, 5-26
clnt_sperror subroutine, RPC, 5-28
clntraw_create subroutine, RPC, 5-29
clnttcp_create subroutine, RPC, 5-30
clntudp_create subroutine, RPC, 5-32
clock, system, correcting time for synchronization,

using adjtime subroutine, 1-24-1-25
clock subroutine, 1-84
close a file, 1-85-1-86
close function, xgmon, 6-7
close open file, xgmon, 6-7
close subroutine, 1-85-1-86

OLC, 3-3
close subroutine for generic SNA, SNA, 7-5
close subroutine for SNA Services/6000, SNA, 7-3
close the /etc/service file entry, Sockets, 8-22
closedir subroutine, 1-522-1-524
closelog subroutine, 1-734
closes a database, dbmclose, 5-41
closes the /etc/protocols file, Sockets, 8-21
closes the database, dbm_close, 5-34
closes the networks file, Sockets, 8-20
code points, returning the number, using NCcplen

suboutine, 1-465
compare and swap data, 1-98-1-99
compile and match patterns, 1-578
compile subroutine, 1-87-1-90
compress a domain name, Sockets, 8-11
connect subroutine, Sockets, 8-8
connect two sockets, Sockets, 8-8
contact a remote station for a link station, OLC, 3-41
control garbage collection by VGM, xgmon, 6-63
control open file descriptors, 1-336-1-338
control operations, using IMloctl subroutine,

1-266-1-267
controlling terminal, generate path name for, using

ctermid subroutine, 1-100
conversion

date and time to string representation
using asctime subroutine, 1-101-1-103
using ctime subroutine, 1-101-1-103
using difftime subroutine, 1-101-1-103
using gmtime subroutine, 1-101-1-103
using localtime subroutine, 1-101-1-103
using mktime subroutine, 1-101-1-103
using strftime subroutine, 1-101-1-103
using timezone subroutine, 1-101-1-103
using tzset subroutine, 1-101-1-103

multibyte character string to wide-character
string, using mbstowcs subroutine, 1-413

multipbyte character to wide character, using
mbtowc subroutine, 1-414

Index X-3

wide-character sequence to multibyte
character sequence, 1-806

wide-character to multibyte character, wctomb
subroutine, 1-808

convert an Internet address to ASCII, Sockets, 8-72
convert Internet addresses to Internet numbers,

Sockets, 8-62
convert Internet dot notation addresses to Internet

numbers, Sockets, 8-70
convert long integer from host order to I nternet order,

Sockets, 8-60
convert long integer from network byte order to host

byte order, Sockets, 8-76
convert short integer from host order to Internet

order, Sockets, 8-61
convert short integer from network byte order to host

byte order, Sockets, 8-77
converting character strings to UUIOs, 4-47
converting host names to socket addresses, 4-36
converting UUIOs to character strings, 4-48
copysign subroutine, 1-94-1-95
cos subroutine, 1-673-1-674
cosh subroutine, 1-675
counter for X.25

getting a, using x25_ctr_get subroutine, 9-11
removing, using x25_ctr_remove subroutine,

9-12
returning the current value of, using

x25_ctr_test subroutine, 9-13
waiting for changes in value, using

x25_ctr_wait subroutine, 9-14-9-15
creat subroutine, 1-517
create a pair of connected sockets, Sockets, 8-129
create a socket and return a descriptor, Sockets,

8-126
create link between hosts, xgmon, 6-48
create node or host, xgmon, 6-47
create UOP socket to communicate with SNMP

agent, SNMP, 6-8
create_SNMP _port subroutine, 6-8
crypt subroutine, 1-96-1-97
cs subroutine, 1-98-1-99
csjtojis subroutine, 1-292-1-293
csjtouj subroutine, 1-292-1-293
ctermid subroutine, 1-100
ctime function, xgmon, 6-9
ctime subroutine, 1-101-1-103
cujtojis subroutine, 1-292-1-293
cujtosj subroutine, 1-292-1-293
cuserid subroutine, 1-106

D
data packet for X.25

acknowledging with the O-bit set, using
x25_ack subroutine, 9-3

sending a, using x25_send subroutine, 9-37
datagram data received routine, OLC, 3-63
datagram packet received call, OLC, 3-63

X-4 Base Operating System Reference

date

OBM

formatting, using NLstrtime subroutine,
1-475-1-477

getting, using gettimeofday subroutine,
1-218-1-219

setting, using settimeofday subroutine,
1-218-1-219

dbmclose subroutine, 5-41
dbminit subroutine, 5-42
delete subroutine, 5-43
fetch subroutine, 5-44
firstkey subroutine, 5-45
nextkey subroutine, 5-55
store subroutine, 5-65

dbm_close subroutine, 5-34
dbm delete subroutine, 5-35
dbm~)etch subroutine, 5-36
dbm_first subroutine, 5-37
dbm_nextkey subroutine, 5-38
dbm_open subroutine, 5-39
dbm_store subroutine, 5-40
dbmclose subroutine, 5-41
dbminit subroutine, 5-42
debug LAF script, HCON programming

disabling, 2-86
enabling messages, 2-7

OEBUG LAF statement, HCON programming, 2-7
decode device handler name, OLC, 3-10
decode SNMP packet, SNMP, 6-56
decode special functions commands, OLC, 3-8
default domain of NIS node, 5-137
defssys subroutine, 1-107-1-108
delete key and associated contents, dbm_delete,

5-35
delete key and associated contents, delete, 5-43
delete subroutine, 5-43
delssys subroutine, 1-109
dep_info function, xgmon, 6-10
descriptor table, getting the size, 1-177
detach AIX API from session, HCON programming,

2-21
dfftime subroutine, 1-101-1-103
directory

changing, using chdir subroutine, 1-66-1-67
creating, using mkdir subroutine,

1-417-1-418
gets path name, using getwd subroutine, 1-243
gets the path name, using getcwd subroutine,

1-176
perform operations on directories,

1-522-1-524
removing an entry, using unlink subroutine,

1-781-1-782
renaming, using rename subroutine,

1-584-1-586
disable a GOLC channel, 3-4, 3-21
disable a GOLC channel" 3-3

disable a service access pOint, OLC, 3-35
disable debugging in LAF script, HCON

programming, 2-86
disclaim subroutine, 1-110
dispatching remote procedure calls, 4-35
div subroutine, 1-5-1-6
OLC entry points

dlcclose, 3-4
dlcconfig, 3-6
dlcioctl, 3-8
dlcmpx, 3-10
dlcopen, 3-12
dlcread,3-14
dlcselect, 3-16
dlcwrite, 3-18

DLC ioctl operations, 3-30
dlc_add_grp, 3-57
dlc_alter, 3-42
dlc_contact, 3-41
dlc_disable_sap, 3-35
dlc_enable_sap, 3-32
dlc_enter_lbusy, 3-50
dlc_enter_shold, 3-51
dlc_exitJbusy, 3-50
dlc_exit_shold, 3-52
dlc_get_excep, 3-52
dlc_haltJs, 3-39
dlc_query Js, 3-48
dlc_query_sap, 3-47
dlc_start_ls, 3-36
dlc_test, 3-41
dlc_trace, 3-40
iocinfo, 3-57

DLC kernel services
fp_close, 3-21
fpJoctl, 3-22
fp_open, 3-24
fp_write, 3-26

DLC result extensions
dlc_radd_res - remote address/name change,

3-56
dlc_sape_res - sap enabled, 3-55
dlc_stah_res -link station halted, 3-56
dlc_stas_res - link station started, 3-55

DLC routines
datagram data received, 3-63
exception condition, 3-64
I-frame data received, 3-65
network data received, 3-66
xid data received, 3-67

DLC subroutines
close, 3-3
ioctl, 3-28
open,3-59

extended parameters for, 3-61
read, extended parameters for, 3-68
readx, 3-71
select, 3-73
write, extended parameters for, 3-75

writex, 3-77
dlc_add_grp ioctl operation, 3-57
dlc_alter ioctl operation, 3-42
dlc_contact ioctl operation, 3-41
dlc_disable_sap ioctl operation, 3-35
dlc_enable_sap ioctl operation, 3-32
dlc_enterJbusy ioctl operation, 3-50
dlc_enter_shold ioctl operation, 3-51
dlc_exit_lbusy ioctl operation, 3-50
dlc_exit_shold ioctl operation, 3-52
dlc_get_excep ioctl operation, 3-52
dlc_haltJs ioctl operation, 3-39
dlc_query_ls ioctl operation, 3-48
dlc_query_sap ioctl operation, 3-47
dlc_startJs ioctl operation, 3-36
dlc_test ioctl operation, 3-41
dlc_trace ioctl operation, 3-40
dlcclose entry point, 3-4
dlcconfig entry point, 3-6
dlcioctl entry point, 3-8
dlcmpx entry point, 3-10
dlcopen entry point, 3-12
dlcread entry point, 3-14
dlcselect entry point, 3-16
dlcwrite entry point, 3-18
dn_comp subroutine, Sockets, 8-11
dn_expand subroutine, Sockets, 8-13
dn find subroutine, Sockets, 8-15
dn=skipname subroutine, Sockets, 8-17
DO-END LAF statement, HCON programming, 2-8
dotaddr function, xgmon, 6-12
drand 48 subroutine, 1-111-1-113
draw a line, xgmon, 6-13
draw_line function, xgmon, 6-13
draw_string function, xgmon, 6-14
drem subroutine, 1-114
dup subroutine, 1-135-1-139
dup2 subroutine, 1-135-1-139

E
ecvt subroutine, 1-115-1-116
edata identifier, 1-117
enable a service access point, OLC, 3-32
enable debugging messages in LAF script, HCON

programming, 2-7
enable display of formatted output in color, xgmon,

6-14
enable formatted arguments, xgmon, 6-77
encode SNMP request, SNMP, 6-49
encrypt subroutine, 1-96-1-97
end identifier, 1-117
end interaction with a host application, HCON

programming, 2-24
end LAF script, HCON programming, 2-10
end retrieval of network host entries, Sockets, 8-19
end-of-file character, inquire about, using feof

macro, 1-140
endfsent subroutine, 1-179

Index X-5

endgrent subroutine, 1-182-1-183
endhostent subroutine, Sockets, 8-19
endnetent subroutine, Sockets, 8-20
endprotoent subroutine, Sockets, 8-21
endpwdb subroutine, 1-631-1-632
endpwent subroutine, 1-206-1-207
endservent subroutine, Sockets, 8-22
endttyent subroutine, 1-224-1-225
endutent subroutine, 1-237-1-239
endvfsent subroutine, 1-240-1-241
enter local busy mode on a link station, OLC, 3-50
enter short hold mode on a link station, OLC, 3-51
enuserdb subroutine, 1-638-1-639
erand48 subroutine, 1-111-1-113
erf subroutine, 1-118
erfc subroutine, 1-118
errlog subroutine, 1-119
error codes, base operating system, for services

requiring path name resolution, A-1
error codes for X.25, non-X.25 specific, list of, C-3
error handling

controlling the system error log, 1-734
including error messages, 1-27
numbering an error message string, 1-715
writing error messages, 1-529

error information from load or exec subroutines,
1-331-1-332

errors, writing to the error log device driver, using
errlog subroutine, 1-119

etext identifier, 1-117
exception condition routine, OLC, 3-64
exchange identification packet received call, OLC,

3-67
exec function, xgmon, 6-16
execl subroutine, 1-120-1-126
execle subroutine, 1-120-1-126
execlp subroutine, 1-120-1-126
execute AIX programs and commands from within

VGM, xgmon, 6-3
execute LAF script subject statement, HCON

programming, 2-97
execute subject statment until tested condition is

true, HCON programming, 2-90
execution profiling

start and stop after monitor initialization,
1-425-1-426

start and stop using data areas defined in
parameters, 1-427-1-435

start and stop using default sized data areas,
1-436-1-439

execv subroutine, 1-120-1-126
execve subroutine, 1-120-1-126
execvp subroutine, 1-120-1-126
EXIT LAF statement, HCON programming, 2-9
exit local busy mode on a link station, OLC, 3-50
exit short hold mode on a link station, OLC, 3-52
exit subroutine, 1-127-1-128
exp subroutine; 1-129-1-131

X-6 Base Operating System Reference

expands a compressed domain name, Sockets,
8-13

expm1 subroutine, 1-129-1-131
extract a substring at left, xgmon, 6-41
extract a substring at right, xgmon, 6-64
extract a substring from within string, xgmon, 6-51
extract value of specified MIB instance 10 for host,

xgmon, 6-34
extract variable name portion of instance 10, SNMP,

6-17
extracCSNMP _name subroutine, 6-17

F
fabs subroutine, 1-141-1-143
fchmod subroutine, 1-68-1-70
fchown subroutine, 1-71-1-73
fchownx subroutine, 1-71-1-73
felacl subroutine, 1-65
felear subroutine, 1-132-1-133
felose subroutine, 1-134
fcntl subroutine, 1-135-1-139
fcvt subroutine, 1-115-1-116
fdopen subroutine, 1-144-1-146
feof macro, 1-140
ferror macro, 1-140
fetch subroutine, 5-44
fflush subroutine, 1-134
ffs subroutine, 1-49
ffullstat subroutine, 1-711-1-714
fgetc subroutine, 1-174-1-175
fgetpos subroutine, 1-167-1-168
fgets subroutine, 1-214
fgetwc subroutine, 1-242
fgetws subroutine, 1-244-1-245
file

accessing utmp file entries, 1-237-1-239
changing access permissions

using chmod subroutine, 1-68-1-70
using fchmod subroutine, 1-68-1-70

changing the access control
using ac'-chg subroutine, 1-11-1-13
using ac,-fchg subroutine, 1-11-1-13

changing the protection, using chael
subroutine, 1-63-1-65

constructing a unique name, 1-421
creating file or directory, using mknod, mkfifo

subroutines, 1-419-1-420
creating temporary, using tmpfile subroutine,

1-753
determining accessibility, using access

subroutine, 1-7-1-8
get vfs file entry, 1-240-1-241
making a hole in, 1-132-1-133
making a symbolic link, using symlink

subroutine, 1-728-1-730
moving read/write pointer, using Iseek

su broutine, 1-341-1-342

open for reading or writing, 1-517-1-521
perform controlling operations, 1-135-1-139
reading, 1-570-1-573
removing, using remove subroutine, 1-583
renaming, using rename subroutine,

1-584-1-586
retrieving access control information, using

acLchg subroutine, 1-706-1-708
retrieving implementation characteristics,

1-525-1-526
revoking access, using revoke subroutine,

1-587-1-588
set and get value of file creation mask, using

umask subroutine, 1-774
setting access control information, using

acl_put subroutine, 1-16-1-18
setting the access control information

using aCI_fset subroutine, 1-19-1-21
using acl_set subroutine, 1-19-1-21

writing changes to permanent storage, using
fsync subroutine, 1-169

writing to, 1-809-1-812
file descriptors, checking I/O status, using poll

subroutine, 1-535-1-536
file ownership, changing

using chown subroutine, 1-71-1-73
using chownx subroutine, 1-71-1-73
using fchown subroutine, 1-71-1-73
using fchownx subroutine, 1-71-1-73

file pOinter, repositioning, using fseek subroutine,
1-167-1-168

file system
getting information about, 1-179
make file system available, 1-790

file transfer, HCON programming
initiating within program executing in AIX, 2-11
invoking API, 2-29

fileno macro, 1-140
find set of all MIS variable names containing prefix,

xgmon, 6-25
find set of variable names containing prefix, SNMP,

6-44
FINISH LAF statement, HCON programming, 2-10
finite subroutine, 1-82-1-83
firstkey subroutine, 5-45
flag letters, get from an argument vector,

1-194-1-195
flock subroutine, 1-336
floor subroutine, 1-141-1-143
flush the current trap, xgmon, 6-18
flush_trap function, xgmon, 6-18
fmin subroutine, 1-396
fmod subroutine, 1-141-1-143
fmout subroutine, 1-396
font_height function, xgmon, 6-19
font_width function, xgmon, 6-20
fopen function, xgmon, 6-21
fopen subroutine, 1-144-1-146
fork subroutine, 1-147-1-149

fp_any_enable subroutine, 1-150-1-151
fp_any_xcp subroutine, 1-155
fp_close kernel service, OLC, 3-21
fp_clr_flag subroutine, 1-152-1-154
fp_disable subroutine, 1-150
fp_disable_all subroutine, 1-150
fp_divbyzero subroutine, 1-155-1-156
fp_enable subroutine, 1-150-1-151
fp_enable_all subroutine, 1-150-1-151
fp_inexact subroutine, 1-155
fp_invalid_op subroutine, 1-155-1-156
fp_ioctl kernel service, OLC, 3-22
fp_iopjnfdinf subroutine, 1-155
fp_iop_infmzr subroutine, 1-155
fp_iop_infsinf subroutine, 1-155
fp_iop_invcmp subroutine, 1-155
fp_iop_snan subroutine, 1-155
fp_iop_zrdzr subroutine, 1-155
fp_is_enabled subroutine, 1-150-1-151
fp_open kernel service, OLC, 3-24
fp_overflow subroutine, 1-155
fp_read_flag subroutine, 1-152-1-154
fp_read_rnd subroutine, 1-157-1-158
fp_set_flag subroutine, 1-152-1-154
fp_swap_flag subroutine, 1-152-1-154
fp_swap_rnd subroutine, 1-157-1-158
fp_underflow subroutine, 1-155
fp_write kernel service, OLC, 3-26
fpathconf subroutine, 1-525-1-526
fprintf subroutine, 1-538-1-543
fputc subroutine, 1-555-1-556
fputs subroutine, 1-558
fputwc subroutine, 1-559-1-560
fputws subroutine, 1-561
fread subroutine, 1-159-1-160
freopen subroutine, 1-144-1-146
frevoke subroutine, 1-161-1-162
frexp subroutine, 1-163-1-164
fscanf subroutine, 1-593-1-597
fseek subroutine, 1-167-1-168
fsetpos subroutine, 1-167-1-168
fsstatfs system cll, 1-709-1-710
fstat subroutine, 1-711-1-714
fstatacl subroutine, 1-706-1-708
fstatx subroutine, 1-711-1-714
fsync subroutine, 1-169
ftell subroutine, 1-167-1-168
ftime subroutine, 1-218-1-219
ftok subroutine, 1-170-1-171
ftruncate subroutine, 1-764-1-765
ftw subroutine, 1-172
fullstat subroutine, 1-711-1-714
fwrite subroutine, 1-159-1-160
fxfer function, HCON programming, 2-11

G
g32_alloc function, HCON programming, 2-17
g32_close function, HCON programming, 2-21

Index X-7

g32_dealloc function, HCON programming, 2-24
g32_fxfer function, HCON programming, 2-29
g32_get_cursor function, HCON programming, 2-37
g32_get_data function, HCON programming, 2-40
g32_get_status function, HCON programming, 2-43
g32_notify function, HCON programming, 2-46
g32_open function, HCON programming, 2-49
g32_openx function, HCON programming, 2-55
g32_read function, HCON programming, 2-65
g32_search function, HCON programming, 2-69
g32_send_keys function, HCON programming, 2-74
g32_write function, HCON programming, 2-80
G32ALLOC function, HCON programming, 2-15
G32DLLOC function, HCON programming, 2-27
G32WRITE function, HCON programming, 2-78
gamma subroutine, 1-322-1-323
gcd subroutine, 1-396
gcvt subroutine, 1-115-1-116
GDLC ioctl command opertions, 3-30
generate text string corresponding to integer

expression of time, xgmon, 6-9
genprof command, HCON programming, 2-62
get a protocol entry by name, Sockets, 8-40
get a protocol entry by number, Sockets, 8-42
get a protocol entry, Sockets, 8-44
get default domain of node, yp_get_default_domain,

5-137
get file system statistics, 1-709-1-710
get network entry by address, Sockets, 8-33
get network entry by name, Sockets, 8-35
get network entry, Sockets, 8-37
get network host entry by name, Socekts, 8-26
get network hsot entry by address, Sockets, 8-24
get options on sockets, Sockets, 8-56
get service entry by name, Sockets, 8-46
get service entry by port, Sockets, 8-48
get service file entry, Sockets, 8-50, 8-119
get socket name, Sockets, 8-54
get the name of the current domain, Sockets, 8-23
get the name of the peer socket, Sockets, 8-38
get tty description file entry, 1-224
get unique identifies of current host, Sockets, 8-29
get_deps function, xgmon, 6-23
get_MIB_base_type subroutine, 6-24
get_MIB_group function, xgmon, 6-25
get_MIB_name subroutine, 6-27
get_MIB_variable_type subroutine, 6-28
get_myaddress subroutine, RPC, 5-46
get_primary function, xgmon, 6-30
getc subroutine, 1-174-1-175
getchar subroutine, 1-174-1-175
getcwd subroutine, 1-176
getdomainname subroutine, Sockets, 8-23
getdtablesize subroutine, 1-177
getegid subroutine, 1-180
getenv function, xgmon, 6-31
getenv subroutine, 1-178
geteuid subroutine, 1-226
getfsenct subroutine, 1-179

x-a Base Operating System Reference

getfsspec subroutine, 1-179
getfstype subroutine, 1-179
getgid subroutine, 1-180
getgidx subroutine, 1-181
getgrent subroutine, 1-182-1-183
getgrgid subroutine, 1-182-1-183
getgrnam subroutine, 1-182-1-183
getgroupattr subroutine, 1-184-1-187
getgroups subroutine, 1-188-1-189
gethostbyaddr subroutine, Sockets, 8-24
gethostbyname subroutine, Sockets, 8-26
gethostent subroutine, Sockets, 8-28
gethostid subroutine, Sockets, 8-29
gethostname subroutine, Sockets, 8-30
getinterval subroutine, 1-190-1-192
getitimer subroutine, 1-190-1-192
getlogin subroutine, 1-193
_getlong subroutine, Sockets, 8-31
getnetbyaddr subroutine, Sockets, 8-33
getnetbyname subroutine, Sockets, 8-35
getnetent subroutine, Sockets, 8-37
getnetname subroutine, RPC, 5-47
getopt subroutine, 1-194-1-195
getpagesize subroutine, 1-196
get pass subroutine, 1-197
getpcred subroutine, 1-198-1-199
getpeername subroutine, Sockets, 8-38
getpenv subroutine, 1-200-1-201
getpgrp subroutine, 1-202
getpid subroutine, 1-202
getppid subroutine, 1-202
getpri subroutine, 1-203
getpriority subroutine, 1-204-1-205
getprotobyname subroutine, Sockets, 8-40
getprotobynumber subroutine, Sockets, 8-42
getprotoent subroutine, Sockets, 8-44
getpwent subroutine, 1-206-1-207
getpwnam subroutine, 1-206-1-207
getpwuid subroutine, 1-206-1-207
getrlimit subroutine, 1-208-1-210
getrusage subroutine, 1-211-1-213
gets subroutine, 1-214
gets the name of the local host, Sockets, 8-30
getservbyname subroutine, Sockets, 8-46
getservbyport subroutine, Sockets, 8-48
getservent subroutine, Sockets, 8-50
getsfile subroutine, 1-179
_getshort subroutine, Sockets, 8-52
getsockname subroutine, Sockets, 8-54
getsockopt subroutine, Sockets, 8-56
getssys subroutine, 1-215
getsubsvr subroutine, 1-216-1-217
gettimeofday subroutine, 1-218-1-219
gettimer subroutine, 1-220-1-221
gettimerid subroutine, 1-222-1-223
gettyent subroutine, 1-224-1-225
gettynam subroutine, 1-224-1-225
getuid subroutine, 1-226
getuidx subroutine, 1-227

getuinfo subroutine, 1-228
getuserattr subroutine, 1-229-1-234
getuserpw subroutine, 1-235-1-236
getutent subroutine, 1-237-1-239
getutid subroutine, 1-237-1-239
getutline subroutine, 1-237-1-239
getvfsbyname subroutine, 1-240-1-241
getvfsbytype subroutine, 1-240-1-241
getvfsent subroutine, 1-240-1-241
getw subroutine, 1-174-1-175
getwc subroutine, 1-242
getwchar subroutine, 1-242
getwd subroutine, 1-243
getws subroutine, 1-244-1-245
Global Location Broker

looking up information, 4-5
looking up interlace information, 4-3
looking up type information, 4-12

gmtime subroutine, 1-101-1-103
group access list

getting, using getgroups subroutine,
1-188-1-189

initializing, using initgroups subroutine, 1-281
group file, accessing

using endgrent subroutine, 1-182-1-183
using getgrent subroutine, 1-182-1-183
using getgrgid subroutine, 1-182-1-183
using getgrnam subroutine, 1-182-1-183
using putgrent subroutine, 1-182-1-183
using setgrent subroutine, 1-182-1-183

group LAF statements, HCON programming, 2-8
group_dep function, xgmon, 6-32
gsignal subroutine, 1-704-1-705
gtty subroutine, 1-723
gw_var function, xgmon, 6-34

H
halt a link station, DLC, 3-39
halt a link station's result extension, DLC, 3-56
handles

clearing binding, 4-32
copying, 4-31
determining objects, 4-34

HCON programming commands
genprof, 2-62
mtlaf, 2-86

HCON programming functions
cfxfer, 2-4
fxfer, 2-11
g32_alloc, 2-17
g32_close, 2-21
g32_dealloc, 2-24
g32_fxfer, 2-29
g32_get_cursor, 2-37
g32_get_data, 2-40
g32_get_status, 2-43
g32_notify, 2-46
g32_open, 2-49

g32_openx, 2-55
g32_read, 2-65
g32_search, 2-69
g32_send_keys, 2-74
g32_write, 2-80
G32ALLOC, 2-15
G32DLLOC, 2-27
G32WRITE, 2-78

HCON programming LAF statements
BREAK, 2-3
DEBUG,2-7
DO-END,2-8
EXIT, 2-9
FINISH, 2-10
IF-ELSE, 2-83
MATCH, 2-84
MATCHAT, 2-85
RECEIVE, 2-87
RECVAT, 2-89
REPEAT-UNTIL, 2-90
SELECT, 2-91
SEND,2-93
START,2-94
WAIT, 2-95
WHILE,2-97

hcreate subroutine, 1-246
hdestroy subroutine, 1-246
hexval function, xgmon, 6-36
highlight_dep function, xgmon, 6-37
host API application, HCON programming

end interaction with, 2-24
initiating interaction with. See G32DEALLOC

Function
host application, HCON programming, receive

message from, 2-65
host data, HCON programming

receiving and searching for pattern match in
presentation space, 2-87

receiving and searching for pattern match in
specified position of presentation space, 2-89

host2netname subroutine, RPC, 5-48
hostname function, xgmon, 6-39
hsearch subroutine, 1-246
htonl subroutine, Sockets, 8-60
htons subroutine, Sockets, 8-61
hypot subroutine, 1-248-1-249

I
I-frame data received routine, DLC, 3-65
1/0 errors, inquire about, using ferror macro, 1-140
10, getting the process group

using getegid subroutine, 1-180
using getgid subroutine, 1-180

IDtogroup subroutine, 1-184-1-187
IDtouser subroutine, 1-229-1-234
IEEE Math Library

acos subroutine, 1-673-1-674
acosh subroutine, 1-26

Index X-9

asin subroutine, 1-673-1-674
asinh subroutine, 1-26
atan subroutine, 1-673-1-674
atan2 subroutine, 1-673-1-674
atanh subroutine, 1-26
cabs subroutine, 1-248-1-249
cbrt subroutine, 1-676
ceil subroutine, 1-141-1-143
copysign subroutine, 1-94-1-95
cos subroutine, 1-673-1-674
cosh subroutine, 1-675
erf subroutine, 1-118
erfc subroutine, 1-118
exp subroutine, 1-129-1-131
expm1 subroutine, 1-129-1-131
fabs subroutine, 1-141-1-143
floor subroutine, 1-141-1-143
fmod subroutine, 1-141-1-143
gamma subroutine, 1-322-1-323
hypot subroutine, 1-248-1-249
ilogb subroutine, 1-94-1-95
Itrunc subroutine, 1-141-1-143
jO subroutine, 1-50-1-51
j1 subroutine, 1-50-1-51
jn subroutine, 1-50-1-51
Igamma subroutine, 1-322-1-323
log subroutine, 1-129-1-131
log10 subroutine, 1-129-1-131
log1 p subroutine, 1-129
10gb subroutine, 1-94-1-95
nearest subroutine, 1-141-1-143
nextafter subroutine, 1-94-1-95
pow subroutine, 1-129-1-131
rint subroutine, 1-141-1-143
scalb subroutine, 1-94-1-95
sin subroutine, 1-673-1-674
sinh subroutine, 1-675
sqrt subroutine, 1-676
tan subroutine, 1-673-1-674
tanh subroutine, 1-675
trunc subroutine, 1-141-1-143
uitrunc subroutine, 1-141-1-143
yO subroutine, 1-50-1-51
y1 subroutine, 1-50-1-51
yn subroutine, 1-50-1-51

IF-ELSE LAF statement, HCON programming, 2-83
ilogb subroutine, 1-94-1-95
IMAIXMapping subroutine, 1-250
IMAuxCreate subroutine, 1-251
IMAuxDestroy subroutine, 1-252
IMAuxDraw, drawing auxiliary area, using

IMAuxDraw subroutine, 1-253
IMAuxDraw Callback Function, 1-253
IMAuxHide Callback Function, 1-254
IMBeep subroutine, 1-255
imcalloc subroutine, 1-256
IMClose subroutine, 1-257
IMCreate subroutine, 1-258
IMDestroy subroutine, 1-259

X-10 Base Operating System Reference

IMFEP, clearing IMObject, using IMTextHide
subroutine, 1-279

imfree subroutine, 1-260
IMFreeKeymap subroutine, 1-261
IMlndicatorDraw subroutine, 1-262
IMlndicatorHide subroutine, 1-263
IMlnitialize subroutine, 1-264
IMlnitializeKeymap subroutine, 1-265
IMloct! subroutine, 1-266-1-267
immalloc subroutine, 1-268
IMObject, destroying, using IMDestroy subroutine,

1-259
IMObject pointer, creating, using IMCreate

subroutine, 1-258
IMProcess subroutine, 1-269-1-270
IMProcessAuxiliary subroutine, 1-271-1-272
IMQueryLanguage subroutine, 1-273
imrealloc subroutine, 1-274
IMRebindCode subroutine, 1-275
IMSimpleMapping subroutine, 1-276
IMTextCursor Callback Function, 1-277
IMTextDraw subroutine, 1-278
IMTextHide Subroutine, 1-279
IMTextStart subroutine, 1-280
imul_dbl subroutine, 1-5-1-6
incinterval subroutine, 1-190-1-192
index subroutine, 1-717
inet_addr subroutine, Sockets, 8-62
inet_lnaof subroutine, Sockets, 8-64
inet_makeaddr subroutine, Sockets, 8-66
inet_netof subroutine, Sockets, 8-68
inet network subroutine, Sockets, 8-70
ine(~ntoa subroutine, Sockets, 8-72
initgroups subroutine, 1-281
initialize GDLC device manager, 3-6
initiate file transfer within an executing AIX program,

HCON programming, 2-11
initiate interaction with host application, HCON

programming, 2-17
initstate subroutine, 1-566-1-567
input

assigning buffering, using setbuf subroutine,
1-610-1-611

binary, using fread subroutine, 1-159-1-160
getting a character

using fgetc subroutine, 1-174-1-175
usingfgetwc subroutine, 1-242
using getc subroutine, 1-174-1-175
using getchar subroutine, 1-174-1-175
using getw subroutine, 1-174-1-175
using getwc subroutine, 1-242
using getwchar subroutifle, 1-242

AIX Input Method, initializing the IMFepRec
structure, using IMlnitialize subroutine, 1-264

Input Method
Callback functions

IMAuxCreate, 1-251
IMAuxDestroy, 1-252
IMAuxDraw, 1-253

IMAuxHide, 1-254
1M Beep, 1-255
IMlndicatorDraw, 1-262
IMlndicatorHide, 1-263
IMTextCursor, 1-277
IMTextDraw, 1-278
IMTextHide, 1-279
IMTextStart, 1-280

closing, using IMClose subroutine, 1-257
Input Method Library

IMAIXMapping subroutine, 1-250
imcalloc subroutine, 1-256
IMClose subroutine, 1-257
IMCreate subroutine, 1-258
IMDestroy subroutine, 1-259
imfree subroutine, 1-260
IMFreeKeymap, 1-261
IMlnitialize subroutine, 1-264
IMlnitializeKeymap subroutine, 1-265
IMloctl subroutine, 1-266
immalloc subroutine, 1-268
IMProcess subroutine, 1-269
IMProcessAuxiliary subroutine, 1-271
IMQueryLanguage subroutine, 1-273
imrealloc subroutine, 1-274
IMRebindCode subroutine, 1-275
IMSimpleMapping subroutine, 1-276

input stream
check status

using clearerr macro, 1-140
using fileno macro, 1-140

getting a string
fgetws subroutine, 1-244-1-245
getws subroutine, 1-244-1-245

pushing a character back into, using ungetc,
ungetwc subroutines, 1-779-1-780

reading characters
fgets subroutine, 1-214
gets subroutine, 1-214

insque subroutine, 1-282
interfaces

looking up information in GLB, 4-3
registering with Location Broker, 4-14
unregistering, 4-42

interprocess channel, create, using pipe subroutine,
1-530

interrupt LAF script to wait until data receive from
host, HCON programming, 2-95

interrupt loop in LAF script, HCON programming,
2-3

interrupt packet for X.25, sending, using
x25_interrupt subroutine, 9-20

interval timer
allocating per-process, using gettimerid

subroutine, 1-222-1-223
manipulating the expiration time

using absinterval subroutine,
1-190-1-192

using alarm subroutine, 1-190-1-192

using getinterval subroutine,
1-190-1-192

using getitimer subroutine, 1-190-1-192
using incinterval subroutine, 1-190-1-192
using resabs subroutine, 1-190-1-192
using resinc subroutine, 1-190-1-192
using setitimer subroutine, 1-190-1-192
using ualarm subroutine, 1-190-1-192

releasing, using reltimerid subroutine, 1-582
intrinsic functions, xgmon

database' operations
base_type, 6-6
getenv, 6-31
get_MIB_group, 6-25
gw _ var, 6-34
reaLtype, 6-61
setenv, 6-73
snmp_var, 6-76

file 1/0
close, 6-7
fopen, 6-21
read,6-60

formatted output
num, 6-55
sprintf, 6-77

graphics functions
dep_info, 6-10
draw_line, 6-13
draw_string, 6-14
font_height, 6-19
font_width, 6-20
get_deps, 6-23
group_dep, 6-32
highlight_dep, 6-37
make_dep, 6-47
make_link, 6-48
move_dep, 6-52
new_deps, 6-53
raise_window, 6-59
rename_dep, 6-62
set_element_mask, 6-71
window_height, 6-82
window_width, 6-83

host information
dotaddr, 6-12
get_primary, 6-30
hostname, 6-39
ipaddr, 6-40
next_alternate, 6-54
password,6-57
ping, 6-58

string manipulation
ascii, 6-5
hexval, 6-36
left, 6-41
mid,6-51
right, 6-64
strlen, 6-78
substr, 6-79

Index X-11

val, 6-81
virtual G machine (VGM) control

aix_exec, 6-3
alloc, 6-4
ctime, 6-9
exec, 6-16
flush_trap, 6-18
reuse_mem, 6-63
time, 6-80
words_free, 6-84

invert subroutine, 1-396
invoke a file transfer, HCON programming, 2-29
iocinfo ioctl operation, OLC, 3-57
ioctl operations, OLC, parameter blocks, 3-32
ioctl operations, OLC, 3-30
ioctl subroutine, OLC, 3-28
ioctl subroutine for generic SNA, SNA, 7-15
ioctl subroutine for SNA Services/6000, SNA, 7-6
ioctl subroutines, 1-283
ioctlx subroutines, 1-283
ipaddr function, xgmon, 6-40
isalnum subroutine, 1-104
isalpha subroutine, 1-104
isascii subroutine, 1-104
isatty subroutine, 1-770
iscntrl subroutine, 1-104
isdigit subroutine, 1-104
isgraph subroutine, 1-104
isjalnum subroutine, 1-287
isjalpha subroutine, 1-287
isjdigit subroutine, 1-287
isjgraph subroutine, 1-287
isjhira subroutine, 1-288
isjis subroutine, 1-287
isjkanji subroutine, 1-288
isjkata subroutine, 1-288
isjlbytekana subroutine, 1-287
isjlower subroutine, 1-287
isjparen subroutine, 1-287
isjprint subroutine, 1-287
isjpunct subroutine, 1-287
isjspace subroutine, 1-287
isjupper subroutine, 1-287
isjxdigit subroutine, 1-287
islower subroutine, 1-104
isnan subroutine, 1-82-1-83
isparent subroutine, 1-287
isprint subroutine, 1-104
ispunct subroutine, 1-104
isspace su brouti ne, 1-1 04
isupper subroutine, 1-104
isxdigit subroutine, 1-104
itom subroutine, 1-396

J
jO subroutine, 1-50-1-51
j1 subroutine, 1-50-1-51
Japanese Language Support, varargs parameter list,

format and print, 1-481

X-12 Base Operating System Reference

jistoa subroutine, 1-285
jistosj subroutine, 1-292-1-293
jistouj subroutine, 1-292-1-293
jn subroutine, 1-50-1-51
jrand48 subroutine, 1-111-1-113

K
key_decryptsession subroutine, RPC, 5-49
key_encryptsession subroutine, RPC, 5-50
key_gendes subroutine, RPC, 5-51
key_setsecret subroutine, RPC, 5-52
keymap, intializing, using IMlnitializeKeymap

subroutine, 1-265
kill subroutine, 1-294-1-295
killpg subroutine, 1-294-1-295
kleenup subroutine, 1-296
knlist subroutine, 1-297-1-298
kutentojis subroutine, 1-285

L
13tol subroutine, 1-299
164a subroutine, 1-3
labs subroutine, 1-5-1-6
LAF script, HCON programming

ending, 2-10
executing subject statement in, 2-90
executing subject statements in, 2-97
grouping statements, 2-8
interrupt loop in, 2-3
interrupting to wait for host data, 2-95
sending key string to emulator and host, 2-93
starting, 2-94
terminating execution of, 2-9
testing for conditional execution (two-way),

2-83
testing for conditional execution of (multiple

alternative),2-91
language specific input processing, using the

IMProcess subroutine, 1-269
Ib_$lookupJnterface library routine, NCS, 4-3
Ib_$lookup_object library routine, NCS, 4-5
Ib_$lookup_object-,ocallibrary routine, NCS, 4-7
Ib_$lookup_range library routine, NCS, 4-9
Ib_$lookup_type library routine, NCS, 4-12
Ib_$register library routine, NCS, 4-14
Ib_$unregister library routine, NCS, 4-16
Icong48 subroutine, 1-111-1-113
Idaclose subroutine, 1-301
Idahread subroutine, 1-300
Idaopen subroutine, 1-311
Idclose subroutine, 1-301
Idexp subroutine, 1-163-1-164
Idfhread subroutine, 1-303
Idgetname subroutine, 1-304
Idiv subroutine, 1-5-1-6
Idlinit subroutine, 1-306
Idlitem subroutine, 1-306
Idlread subroutine, 1-306

Idlseek subroutine, 1-308
Idnlseek subroutine, 1-308
Idnrseek subroutine, 1-313
Idnshread subroutine, 1-315
Idnsseek subroutine, 1-317
Idohseek subroutine, 1-310
Idopen subroutine, 1-311
Idrseek subroutine, 1-313
Idshread subroutine, 1-315
Idsseek subroutine, 1-317
Idtbindex subroutine, 1-319
Idtbread subroutine, 1-320
Idtbseek subroutine, 1-321
left function, xgmon, 6-41
Ifind subroutine, 1-339
Igamma subroutine, 1-322-1-323
link, create additional, for existing file, 1-324-1-325
link subroutine, 1-324-1-325
listen for and limit socket connections, Sockets, 8-74
listen subroutine, Sockets, 8-74
load and bind object module, 1-326-1-328
load subroutine, 1-326-1-328
loadbind subroutine, 1-329-1-330
loadquery subroutine, 1-331
locale, changing, using the setlocale subroutine,

1-619-1-620
localeconv subroutine, 1-333-1-335
localtime subroutine, 1-101-1-103
Location Broker.

looking up information, 4-7
registering objects and interfaces, 4-14
removing entries from database, 4-16
routines. See Ib_$ library routines

lock, process, text, or data in memory, using plock
subroutine, 1-531-1-532

lockf subroutine, 1-336-1-338
lockfx subroutine, 1-336-1-338
log subroutine, 1-129-1-131
log10 subroutine, 1-129-1-131
log1p subroutine, 1-129-1-131
10gb subroutine, 1-94-1-95
logical path, HCON programming, returning status

information of, 2-43
logical volume

changing attributes, using Ivm_changelv
subroutine, 1-343-1-345

changing physical volume attributes, using
livm_changepv subroutine, 1-346-1-348

creating a new volume group, Ivm_createvg
subroutine, 1-352-1-354

creating empty volume, using Ivm_createlv
subroutine, 1-349-1-351

deleting a physical volume, using Ivm_deletepv
subroutine, 1-357-1-358

deleting from its volume group, using
Ivm_deletelv subroutine, 1-355-1-356

extending specified number of partitions, using
Ivm_extendlv subroutine, 1-359-1-362

installing physical volume, using Ivm_installpv
subroutine, 1-363-1-365

moving a physical partition, using
Ivm_migratepp, 1-366-1-367

querying for pertinent information, using
Ivm_querylv subroutine, 1-368-1-371

querying volume group, using Ivm_queryvg
subroutine, 1-375-1-377

querying volume groups for ids, using
Ivm_queryvgs subroutine, 1-378-1-379

reducing number of partitions, using
Ivm_reducelv subroutine, 1-380-1-382

synchronizing all physical partitions, using
Ivm_resynclp subroutine, 1-383-1-384

synchronizing physical copies of logical
partition, using Ivm_resynclv subroutine,
1-385-1-386

synchronizing physical partitions, using
Ivm_resyncpv subroutine, 1-387-1-388

varying a volume group on-line, using
Ivm_varyonvg subroutine, 1-391-1-395

varying volume group off-line, using
Ivm_varyoffvg subroutine, 1-389-1-390

Logical Volume Manager Library, 1-366-1-367
Ivm_changelv subroutine, 1-343-1-345
Ivm_changepv subroutine, 1-346-1-348
Ivm_createlv subroutine, 1-349-1-351
Ivm_createvg subroutine, 1-352-1-354
Ivm_deletelv subroutine, 1-355-1-356
Ivm_deletepv subroutine, 1-357-1-358
Ivm_extendlv subroutine, 1-359-1-362
Ivm_installpv subroutine, 1-363-1-365
Ivm_querylv subroutine, 1-368-1-371
Ivm_querypv subroutine, 1-372-1-374
Ivm_queryvg subroutine, 1-375-1-377
Ivm_queryvgs subroutine, 1-378-1-379
Ivm_reducelv subroutine, 1-380-1-382
Ivm_resynclp subroutine, 1-383-1-384
Ivm_resynclv subroutine, 1-385-1-386
Ivm_resyncpv subroutine, 1-387-1-388
Ivm_varyoffvg subroutine, 1-389-1-390
Ivm_varyonvg subroutine, 1-391-1-395

login name, getting, using getlogin subroutine, 1-193
longjmp subroutine, 1-617-1-618
lookup_addr subroutine, 6-42
lookup_host subroutine, 6-43
100kup_SNMP _group subroutine, 6-44
100kup_SNMP _name subroutine, 6-46
Irand48 subroutine, 1-111-1-113
Isearch subroutine, 1-339
Iseek subroutine, 1-341
Itol3 subroutine, 1-299
luOapi subroutine, SNA, 7-17
luOclosep subroutine, SNA, 7-20
luOcloses subroutine, SNA, 7-21
luOctlp subroutine, SNA, 7-22
luOctls subroutine, SNA, 7-24
luOopenp subroutine, SNA, 7-26

Index X-13

luOopens subroutine, SNA, 7-27
luOreadp subroutine, SNA, 7-28
luOreads subroutine, SNA, 7-29
luOwritep subroutine, SNA, 7-30
luOwrites subroutine, SNA, 7-32
Ivm_changelv subroutine, 1-343-1-345
Ivm_changepv subroutine, 1-346-1-348
Ivm_createlv subroutine, 1-349-1-351
Ivm_createvg subroutine, 1-352-1-354
Ivm_deletelv subroutine, 1-355-1-356
Ivm_deletepv subroutine, 1-357-1-358
Ivm_extendlv subroutine, 1-359-1-362
Ivm_installpv subroutine, 1-363-1-365
Ivm_migratepp subroutine, 1-366-1-367
Ivm_querylv subroutine, 1-368-1-371
Ivm_querypv subroutine, 1-372-1-374
Ivm_queryvg subroutine, 1-375-1-377
Ivm_queryvgs subroutine, 1-378-1-379
Ivm_reducelv subroutine, 1-380-1-382
Ivm_resynclp subroutine, 1-383-1-384
Ivm_resynclv subroutine, 1-385-1-386
Ivm_resyncpv subroutine, 1-387-1-388
Ivm_varyoffvg subroutine, 1-389-1-390
Ivm_varyonvg subroutine, 1-391-1-395

M
mjn subroutine, 1-396
m_out subroutine, 1-396
madd subroutine, 1-396
make an Internet address, 8-66
make query messages for name servers, Sockets,

8-93
make storage space available, xgmon, 6-4
make_dep function, xgmon, 6-47
make_link function, xgmon, 6-48
make_SNMP _request subroutine, 6-49
mallinfo subroutine, 1-399-1-402
malloc subroutine, 1-399-1-402
mallopt subroutine, 1-399-1-402
manage socket descriptors for processes,

yp_unbind,5-143
map node or host to topology display window,

xgmon, 6-32
MATCH LAF statement, HCON programming, 2-84
MATCHAT LAF statement, HCON programming,

2-85
Math Library

class subroutine, 1-82-1-83
drem subroutine, 1-114
finite subroutine, 1-82-1-83
isnan subroutine, 1-82-1-83
unordered subroutine, 1-82-1-83

matherr subroutine, 1-403
mblen subroutine, 1-405
mbscat subroutine, 1-406
mbschr subroutine, 1-407
mbscmp subroutine, 1-406
mbscpy subroutine, 1-406

X-14 Base Operating System Reference

mbslen subroutine, 1-408
mbsncat subroutine, 1-409
mbsncmp subroutine, 1-409
mbsncpy subroutine, 1-409
mbspbrk subroutine, 1-410
mbsrchr subroutine, 1-411
mbstoint subroutine, 1-412
mbstowcs subroutine, 1-413
mbtowc subroutine, 1-414
mcmp subroutine, 1-396
mdiv subroutine, 1-396
memccpy subroutine, 1-415-1-416
memchr subroutine, 1-415-1-416
memcmp subroutine, 1-415-1-416
memcpy subroutine, 1-415-1-416
memmove subroutine, 1-415-1-416
memory block

changing size, using imrealloc subroutine,
1-274

freeing, using imfree subroutine, 1-260
returning number of bytes, using immalloc

subroutine, 1-268
memory management

allocate memory, 1-399-1-402
attach mapped file, 1-641-1-643
attach shared memory segment,

1-641-1-643
change data segment allocation, 1-52-1-53
detach shared memory segment, 1-647
get paging device status, 1-726
get shared memory segments, 1-648-1-650
get system page size, 1-196
mark unneeded memory, 1-110
memory operations, 1-415
paging and swapping, 1-725
shared memory operations, 1-644-1-646

memset subroutine, 1-415-1-416
message

interprocess communication identifiers,
1-170-1-171

send to queue, using msgsnd subroutine,
1-448

message control, using msgctl subroutine,
1-440-1-442

message facility
close catalog, 1-56
copy message to buffer, 1-57
initial catalog access, 1-462
open catalog, 1-59-1-60
open catalog, get message, close catalog,

1-468
retrieve message, 1-58

message queue, reading a message, using msgrcv
subrouti ne, 1-445-1-447

message queue identifier, get, using msgget
subroutine, 1-443-1-444

message queues, checking I/O status, using poll
subroutine, 1-535-1-536

mid function, xgmon, 6-51
min subroutine, 1-396
mkdir subroutine, 1-417-1-418
mkfifo subroutine, 1-419-1-420
mknod subroutine, 1-419-1-420
mkstemp subroutine, 1-421-1-422
mktemp subroutine, 1-421-1-422
mktime subroutine, 1-101-1-103
mntctl subroutine, 1-423-1-424
modf subroutine, 1-163-1-164
moncontrol subroutine, 1-425-1-426
monitor subroutine, 1-427-1-435
monstartup subroutine, 1-436-1-439
mount a file system, using vmount subroutine, 1-790
mount subroutine, 1-790-1-793
mounted file system, get mount status, using mntctl

subroutine, 1-423
mout subroutine, 1-396
move subroutine, 1-396
move_dep function, xgmon, 6-52
mrand48 subroutine, 1-111-1-113
msgctl subroutine, 1-440-1-442
msgget subroutine, 1-443-1-444
msgrcv subroutine, 1-445-1-447
msgsnd subroutine, 1-448-1-449
msgxrcv subroutine, 1-450-1-452
msqrt subroutine, 1-396
msub subroutine, 1-396
mtlaf command, HCON programming, 2-86
mult subroutine, 1-396
multibyte character string

appending code points, using mbscat
subroutine, 1-406

comparing characters, using mbscmp
subroutine, 1-406

copying characters, using mbscpy subroutine,
1-406

determining code points, using mbslen
subroutine, 1-408

extracting multibyte character, using mbstoint
subroutine, 1-412

locating a code point, using mbsrchr
subroutine, 1-411

locating code point, using mbschr subroutine,
1-407

locating first code pOints, using mbspbrk
subroutine, 1-410

multibyte characters, null-terminated
appending value, using mbsncat subroutine,

1-409
comparing values, using mbsncmp subroutine,

1-409
copying values, using mbsncpy subroutine,

1-409
multiple alternative test for conditional execution of

LAF statements, HCON programming, 2-91

N
name list, get entries from, 1-469-1-470
national language, returning information on, using

nLlanginfor subroutine, 1-471
NCchrlen subroutine, 1-463
NCdecode subroutine, 1-463
NCdecstr subroutine, 1-463
NCencode subroutine, 1-463
NCencstr subroutine, 1-463
NCisalnum subroutine, 1-453
NCisalpha subroutine, 1-453
NCiscntrl subroutine, 1-453
NCisdigit subroutine, 1-453
NCisgraph subroutine, 1-453
NCislower subroutine, 1-453
NCisNLchar subroutine, 1-453
NCisprint subroutine, 1-453
NCispunct subroutine, 1-453
NCisspace subroutine, 1-453
NCisupper subroutine, 1-453
NCisxdigit subroutine, 1-453
NCS libra')' routines

Ib_$lookup_interface, 4-3
Ib_$lookup_object, 4-5
Ib_$lookup_object_local, 4-7
Ib_$lookup_range, 4-9
Ib_$lookup_type, 4-12
Ib_$register, 4-14
Ib_$unregister, 4-16
pfm_$cleanup, 4-17
pfm_$enable, 4-19
pfm_$enable_faults, 4-20
pfm_$inhibit, 4-21
pfm_$inhibit_faults, 4-22
pfm_$init, 4-23
pfm_$reset_cleanup, 4-24
pfm_$rls_cleanup, 4-25
pfm_$signal, 4-26
rpc_$alloc_handle, 4-27
rpc_$bind, 4-28
rpc_$clear_binding, 4-29
rpc_$clear_server_binding, 4-30
rpc_$dup_handle, 4-31
rpc_$free_handle, 4-32
rpc_$inq_binding, 4-33
rpc_$inq_object, 4-34
rpc_$listen, 4-35
rpc_$name_to_sockaddr, 4-36
rpc_$register, 4-38
rpc_$set_binding, 4-40
rpc_$sockaddr_to_name, 4-41
rpc_$unregister, 4-42
rpc_$use_family, 4-43
rpc_$use_family_wk, 4-45
uuid_$decode, 4-47

Index X-15

uuid_$encode, 4-48
uuid_$gen, 4-49

NCstrcat subroutine, 1-456
NCstrchr subroutine, 1-456
NCstrcpy subroutine, 1-456
NCstrcspn subroutine, 1-456
NCstrdup subroutine, 1-457
NCstrlen subroutine, 1-456
NCstrncat subroutine, 1-456
NCstrncmp subroutine, 1-456
NCstrncpy subroutine, 1-456
NCstrpbrk subroutine, 1-456
NCstrrchr subroutine, 1-456
NCstrspn subroutine, 1-456
NCstrtok subroutine, 1-456
NCwunesc subroutine, 1-285
NOBM

dbm_close subroutine, 5-34
dbm_delete subroutine, 5-35
dbm_fetch subroutine, 5-36
dbm_firstkey subroutine, 5-37
dbm_nextkey subroutine, 5-38
dbm_open subroutine, 5-39
dbm_store subroutine, 5-40

nearest subroutine, 1-141-1-143
netname2host subroutine, RPC, 5-53
netname2user subroutine, RPC, 5-54
network data received routine, OLC, 3-66
new_deps function, xgmon, 6-53
newpass subroutine, 1-460-1-461
next_alternate function, xgmon, 6-54
nextafter subroutine, 1-94-1-95
nextgroup subroutine, 1-184-1-187
nextkey subroutine, 5-55
nice subroutine, 1-204-1-205
NIS

yp_all subroutine, 5-131
yp_bind subroutine, 5-133
yp_first subroutine, 5-135
yp_get_default_domain subroutine, 5-137
yp_master subroutine, 5-138
yp_match subroutine, 5-139
yp_next subroutine, 5-140
yp_order subroutine, 5-142
yp_unbind subroutine, 5-143
yp_unpdate subroutine, 5-144
yperr _string subroutine, 5-146
ypprot_err subroutine, 5-147

nl_langinfo subroutine, 1-471
NLcatgets subroutine, 1-462
NLcatopen subroutine, 1-59-1-60
NLchar data type, handling using NLchar

subroutines, 1-463-1-464
NLchrlen subroutine, 1-463
NLcplen subroutine, 1-465
NLescstr subroutine, 1-466-1-467
NLflatstr subroutine, 1-466-1-467
NLfprintf subroutine, 1-538-1-543
NLfscanf subroutine, 1-593-1-597

X-16 Base Operating System Reference

NLgetamsg subroutine, 1-468
NLgetenv subroutine, 1-178
NLisNLcp subroutine, 1-463
nlist subroutine, 1-469-1-470
NLprintf subroutine, 1-538-1-543
NLscanf subroutine, 1-593-1-597
NLsprintf subroutine, 1-538-1-543
NLsscanf subroutine, 1-593-1-597
NLstrcat subroutine, 1-472, 1-473
NLstrchr subroutine, 1-472, 1-474
NLstrcmp subroutine, 1-456, 1-472, 1-473
NLstrcpy subroutine, 1-472, 1-473
NLstrcspn subroutine, 1-472, 1-474
NLstrdlen subroutine, 1-472, 1-474
NLstrien subroutine, 1-473
NLstrlen subroutine, 1-472
NLstrncat subroutine, 1-472, 1-473
NLstrncmp subroutine, 1-472, 1-473
NLstrncpy subroutine, 1-472, 1-473
NLstrpbrk subroutine, 1-472, 1-474
NLstrrchr subroutine, 1-472, 1-474
NLstrspn subroutine, 1-472, 1-474
NLstrtime subroutine, 1-475-1-477
NLstrtok subroutine, 1-472, 1-474
NLtmtime subroutine, 1-478-1-480
NLunescstr subroutine, 1-466-1-467
NLvfprintf subroutine, 1-481
NLvprintf subroutine, 1-481
NLvsprintf subroutine, 1-481
NLxin subroutine, 1-482-1-483
NLxout subroutine, 1-484
NLxstart subroutine, 1-485
NLyesno subroutine, 1-486
nm_close subroutine, SNA, 7-34
nm_open subroutine, SNA, 7-35
nm_receive subroutine, SNA, 7-36
nm_send subroutine, SNA, 7-38
nm_status subroutine, SNA, 7-40
normal sequenced data packet received call, OLC,

3-65
nrand48 subroutine, 1-111-1-113
nsleep subroutine, 1-487-1-488
ntohl subroutine, Sockets, 8-76
ntohs subroutine, Sockets, 8-77
num function, xgmon, 6-55
numeric data, machine-independent access, 1-640
numerical data, generating pseudo-random

numbers, 1-111-1-113
numerical data

absolute value, division, and double-precision
multiplication, 1-5-1-6

ASCII string to float or double floating-point
number, 1-28-1-29

Bessel functions, 1-50-1-51
binary floating-point arithmetic, 1-94-1-95
classification of floating-point numbers,

1-82-1-83
convert 3-byte integers and long integers,

1-299

o

convert floating-point number to string,
1-115-1-116

convert long integers and base-64 ASCII
strings, 1-3

convert NLchar string to double-precision
floating-point, 1-819-1-820

convert string to integer, 1-721-1-722
converting NLchar string to integer,

1-821-1-822
error and complementary error functions, 1-118
Euclidean distance function and complex

absolute value, 1-248-1-249
exponential, logarithm, and power functions,

1-129-1-131
floating-point absolute value, 1-141-1-143
generating better pseudo-random numbers,

1-566-1-567
generating pseudo-random numbers,

1-564-1-565
handling math errors, 1-403-1-404
hyperbolic functions, 1-675
IEEE floating-point rounding mode,
1-157-1-158

IEEE remainder, 1-114
inverse hyperbolic functions, 1-26
manipulating floating-point numbers,

1-163-1-164
modulo remainder, 1-141-1-143
multiple precision integer arithmetic, 1-396
natural logarithm of the gamma function,

1-322-1-323
operations on floating-point exception flags,

1-152-1-154
operations on floating-point trap control,

1-150-1-151
rounding floating-point numbers to integers,

1-141-1-143
square root and cube root functions, 1-676
testing for floating-point exceptions,

1-155-1-156
trigonometric and inverse trigonometric

functions, 1-673

object, setting locale dependent conventions,
localeconv subroutine, 1-333-1-335

Object Data Manager
adding a new object, using

odm_add_obLsubroutine, 1-489-1-490
changing an object, using odm_change_obj

subroutine, 1-491-1-492
closing an object class, using odm_close_class

subroutine, 1-493
creating an object class, using

odm_create_class subroutine, 1-494
freeing memory, using odm_freeJist

subroutine, 1-496

locking access to object class, using odm_lock
subroutine, 1-504-1-505

opening object class, using odm_open_class
subroutine, 1-507

preparing for application use, using
odmjnitialize subroutine, 1-503

releasing a lock on a path name, using
odm_unlock subroutine, 1-516

removing object class from the filesystem,
using odm_rm_class subroutine, 1-509

removing objects, using odm_rm_obj
subroutine, 1-510

removing objects specified by their ID, using
odm_rm_byjd subroutine, 1-508

retrieving objects
using odm_get_first subroutine,

1-501-1-502
using odm_get_next ssubroutine,

1-501-1-502
using odm_get_obj subroutine,

1-501-1-502
retrieving objects matching criteria, using

odm_get_list subroutine, 1-499
retrieving objects specified by their 10, using

odm_get_byjd subroutine, 1-497-1-498
retrieving the class symbol structure, using

odm_mount_class subroutine, 1-506
returning error message string, using

odm_err_msg subroutine, 1-495
running a method, using odm_run_method

subroutine, 1-511
setting default permissions for object class,

using odm_set_perms subroutine, 1-514
setting the object class location default path,

using odm_set_path subroutine, 1-513
terminating session, using odm_terminate

subroutine, 1-515
object file

close file, 1-301-1-302
compute symbol table entry index, 1-319
manipulate line number entries, 1-306-1-307
open file, 1-311-1-312
read archive header, 1-300
read file header, 1-303
read section header, 1-315-1-316
read symbol table entry, 1-320
retrieve symbol name, 1-304-1-305
seek to line number entries, 1-308-1-309
seek to optional file header, 1-310
seek to relocation entries, 1-313-1-314
seek to section, 1-317-1-318
seek to symbol table, 1-321

Object File Access Routine Library
Idaclose subroutine, 1-301
Idaopen subroutine, 1-311
Idclose subroutine, 1-301
Idfhread subroutine, 1-303

Index X-17

Idgetname subroutine, 1-304
Idlinit subroutine, 1-306
Idlitem subroutine, 1-306
Idlread subroutine, 1-306
Idlseek subroutine, 1-308
Idnlseek subroutine, 1-308
Idnrseek subroutine, 1-313
Idnshread subroutine, 1-315
Idnsseek subroutine, 1-317
Idohseek subroutine, 1-310
Idopen subroutine, 1-311
Idrseek subroutine, 1-313
Idshread subroutine, 1-315
Idsseek subroutine, 1-317
Idtbindex subroutine, 1-319
Idtbread subroutine, 1-320
Idtbseek subroutine, 1-321
sgetl subroutine, 1-640
sputl subroutine, 1-640

object file access routine library, Idahread
subroutine, 1-300

object files, list loaded for current process,
1-331-1-332

obtain current specified display data from the
presentation space, HCON programming, 2-40

obtain value of user-defined variable for host,
xgmon, 6-31

odm,_tree_list subroutine, 1-496
odm_add_obj subroutine, 1-489-1-490
odm_change_obj subroutine, 1-491-1-492
odm close class subroutine, 1-493
odm -create class subroutine, 1-494
odm=:err_msg subroutine, 1-495
odm_get_byjd subroutine, 1-497-1-498
odm_get_first subroutine, 1-501-1-502
odm_get-'ist subroutine, 1-499
odm_get_next subroutine, 1-501-1-502
odm_get_obj subroutine, 1-501-1-502
odm initialize subroutine, 1-503
odm -lock subroutine, 1-504-1-505
odm -mount class subroutine, 1-506
odm=:open_class subroutine, 1-507
odm_rm_by_id subroutine, 1-508
odm rm class subroutine, 1-509
odm=:rm=:obj subroutine, 1-510
odm run method subroutine, 1-511
odm=:set'=:-path subroutine, 1-513
odm_set_pers subroutine, 1-514
odm terminate subroutine, 1-515
odm -unlock subroutine, 1-516
omin-subroutine, 1-396
omout subroutine, 1-396
open a file for reading or writing, 1-517-1-521
open a GOLC device manager, 3-59
open a stream, 1-144-1-146
open and rewind the network file, Sockets, 8-117
open and rewind the protocols tile, Sockets, 8-118
open communications device handler, OLC, 3-12

X-18 Base Operating System Reference

open database for access, dbminit, 5-42
open file, xgmon, 6-21
open network host file, Sockets, 8-112
open subroutine, 1-517-1-521

OLC, 3-59
extended parameters for, OLC, 3-61

open subroutine for generic SNA, SNA, 7-43
open subroutine for SNA Services/6000, SNA, 7-41
opendir subroutine, 1-522-1-524
openlog subroutine, 1-734
opens database for access, dbm_open, 5-39
openx subroutine, 1-517-1-521
output, binary, using fwrite subroutine,

1-159-1-160
output stream

writing a string

p

using fputws subroutine, 1-561
using putws subroutine, 1-561

writing null-terminated string
using fputs subroutine, 1-558
using puts subroutine, 1-558

packet for X.25
indicating the type of, using x25_receive

subroutine, 9-33-9-34
receiving, using x25_receive subroutine,
9-33-9-34

paging space, find available, 1-547
parameter blocks by ioctl operation, OLC, 3-32
parameter list, variable-length parameter list, using

varargs macros, 1-788-1-789
parse_SNMP _packet subroutine, 6-56
password

generating, using newpass subroutine,
1-460-1-461

getting file entry
using endpwent subroutine, 1-206-1-207
using getpwent subroutine, 1-206-1-207
using getpwnam subroutine,

1-206-1-207
using getpwuid subroutine, 1-206-1-207
using setpwent subroutine, 1-206-1-207
using setpwfile subroutine, 1-206-1-207

reading, using getpass subroutine, 1-197
reading information, using getuserpw

subroutine, 1-235-1-236
writing information, using setuserpw

subroutine, 1-235-1-236
password function, xgmon, 6-57
passwords, encrypting

using crypt subroutine, 1-96-1-97
using encrypt subroutine, 1-96-1-97
using setkey subroutine, 1-96-1-97

pathconf subroutine, 1-525-1-526
pattern matching, compile a string into internal form,

using re_comp subroutine, 1-568

pause subroutine, 1-527
pbrunnableprogram, 1-300, 1-301,1-303,1-304,

1-306,1-308,1-310,1-311,1-313,1-315, :'
1-317,1-319,1-320,1-321

pclose subroutine, 1-528
permit VGM to temporarily highlight display element,

xgmon, 6-37
perror subroutine, 1-529
pfm_$cleanup library routine, NCS, 4-17
pfm_$enable library routine, NCS, 4-19
pfm_$enable_faults library routine, NCS, 4-20
pfm_$inhibit library routine, NCS, 4-21
pfm_$inhibit_faults library routine, NCS, 4-22
pfm_$init library routine, NCS, 4-23
pfm_$reset_cleanup library routine, NCS, 4-24
pfm_$rls_cleanup library routine, NCS, 4-25
pfm_$signallibrary routine, NCS, 4-26
phonic language, checking for support, using

IMQueryLanguage subroutine, 1-273
physical volume, querying for pertinent information,

using Ivm_querypv subroutine, 1-372-1-374
ping function, xgmon, 6-58
pipe subroutine, 1-530
place data under a key, dbm_store, 5-40
place data under a key, store, 5-65
place long byte quantities in the byte stream,

Sockets, 8-78
place short byte quantities into the byte stream,

Sockets, 8-80
plock subroutine, 1-531-1-532
plot subroutine family, 1-533
pmap_getmaps subroutine, RPC, 5-56
pmap_getport subroutine, RPC, 5-57
pmap_rmtcall subroutine, RPC, 5-58
pmap_set subroutine, RPC, 5-60
pmap_unset subroutine, RPC, 5-61
poll subroutine, 1-535-1-536
popen subroutine, 1-537
pow subroutine, 1-129-1-131, 1-396
presentation space, HCON programming

obtain current specified display data, 2-40
searching for character pattern in, 2-69
searching for pattern in specified position after

receiving host data, 2-89
searching for pattern match in after receiving

host data, 2-87
searching for patterns in. See MATCHAT

Statement
searching for patterns in specified positon. See

MATCH Statement
setting g32_api structure to current cursor

position in, 2-37
print formatted output

using printf subroutine, 1-538-1-543
using wsprintf subroutine, 1-813

printf subroutine, 1-538-1-543
process

cleaning up the run-time environment, using
kleenup subroutine, 1-296

close a pipe, using pclose subroutine, 1-528
control limits, using ulimit subroutine,

1-772-1-773
controlling system resources, 1-208-1-210
create a session and set group 10, using setsid

subroutine, 1-633
create new, using fork, vfork subroutines,

1-147-1-149
credentials, setting using setpcred subroutine,

1-621-1-622
execute a new program in the calling process,

using exec subroutines, 1-120-1-126
generate SIGIOT signal to terminate, using

abort subroutine, 1-4
get and set owner information, using usrinfo

subroutine, 1-784-1-785
getting alphanumeric user name, using cuserid

subroutine, 1-106
getting group IDs, using getgidx subroutine,

1-181
getting the audit state, using auditproc

subroutine, 1-44-1-46
initiate pipe, using popen subroutine, 1-537
nice value, get or set, 1-204
reading security credentials, using getpcred

subroutine, 1-198-1-199
return scheduling priority, with getpri

subroutine, 1-203
sending a signal to, using kill, killpg subroutine,

1-294-1-295
setting credentials, using getpenv subroutine,

1-200-1-201
setting group IDs

using setgid subroutine, 1-612-1-613
using setgidx subroutine, 1-614-1-615
using setrgid subroutine, 1-612-1-613

setting scheduling priority to a constant, using
setpri subroutine, 1-629-1-630

setting the audit state, using auditproc
subroutine, 1-44-1-46

setting the environment, using setpenv
subroutine, 1-623-1-626

suspend the calling process, 1-796-1-798
suspending

using nsleep subroutine, 1-487-1-488
using sleep subroutine, 1-487-1-488
using usleep subroutine, 1-487-1-488

tracing execution of another, using ptrace
subroutine, 1-549-1-554

process accounting, enable and disable, using acct
subroutine, 1-9-1-10

process group, setting 10
using setpgid subroutine, 1-627-1-628
using setpgrp subroutine, 1-627-1-628

processing keyboard event, using the IMProcess
subroutine, 1-269-1-270

processor, time used, reporting with clock
subroutine, 1-84

profil subroutine, 1-544-1-546

Index X-19

program address sampling, starting or stopping,
using profil subroutine, 1-544-1-546

Programmers Workbench Library
regcmp subroutine, 1-578
regex subroutine, 1-578

provide SAP and link station correlators, OLC, 3-75
psdanger subroutine, 1-547
psignal subroutine, 1-548
ptrace subroutine, 1-549-1-554
putc subroutine, 1-555-1-556
putchar subroutine, 1-5~5-1-556
putenv subroutine, 1-557
putgrent subroutine, 1-182-1-183
putgroupattr subroutine, 1-184-1-187
_putlong subroutine, Sockets, 8-78
putpwent subroutine, 1-206-1-207
puts subroutine, 1-558
_putshort subroutine, Sockets, 8-80
putuserattr subroutine, 1-229-1-234
putw subroutine, 1-555-1-556
putwc subroutine, 1-559-1-560
putwchar subroutine, 1-559-1-560
putws subroutine, 1-561
PVC for X.25

Q

allocating for use by application, using
x25_pvc_alloc subroutine, 9-31

freeing, using x25_pvc_free subroutine, 9-32

qsort subroutine, 1-562
query link station statistics, OLC, 3-48
query operations, using IMloctl subroutine,

1-266-1-267
query service access point statstics, OLC, 3-47
queue

R

insert or remove an element, 1-282
reading a message from, using msgxrcv

subroutine, 1-450-1-452

raise graphics window associated with VGM running
program, xgmon, 6-59

raise subroutine, 1-563
raise_window function, xgmon, 6-59
rand subroutine, 1-564-1-565
random subroutine, 1-566-1-567
rcmd subroutine, Sockets, 8-82
re_comp subroutine, 1-568-1-569
re_exec subroutine, 1-568-1-569
read from a file, 1-570-1-573
read function, xgmon, 6-60
read next line in open file, xgmon, 6-60
read pending data, OLC, 3-71
read subroutine, 1-570-1-573

extended parameters for, OLC, 3-68
read subroutine for generic SNA, SNA, 7-47
read subroutine for SNA Services/6000, SNA, 7-45
readdir subroutine, 1-522-1-524

X-20 Base Operating System Reference

readlink subroutine, 1-574-1-575
readv subroutine, 1-570-1-573
readvx subroutine, 1-570-1-573
readx subroutine, 1-570-1-573

OLC, 3-71
readx subroutine for SNA Services/6000, SNA, 7-49 .
real_type function, xgmon, 6-61
realloc subroutine, 1-399-1-402
reboot subroutine, 1-576-1-577
receive a message from any socket, Sockets, 8-89
receive host data, HCON programming

locating beginning of pattern match in
presentation space. See RECEIVE Statement

searching presentation space for pattern
match. See RECVAT Statement

RECEIVE LAF statement, HCON programming,
2-87

receive message from AIX API application, HCON
programming, 2-62

receive message from connected sockets, Sockets,
8-84

receive message from host application, HCON
programming, 2-65

receive message from sockets, Sockets, 8-86
receive network-specific data call, OLC, 3-66
recv subroutine, Sockets, 8-84
RECVAT LAF statement, HCON programming, 2-89
recvfrom subroutine, Sockets, 8-86
recvmsg subroutine, Sockets, 8-89
registering interfaces with servers, 4-38
registering objects and interfaces with Location

Broker, 4-14
registerrpc subroutine, RPC, 5-62
regular-expression pattern matching, performing

using advance subroutine, 1-87-1-90
using compile subroutine, 1-87-1-90
using NLregexp subroutine, 1-87-1-90
using regexp subroutine, 1-87-1-90
using step subroutine, 1-87-1-90

reltimerid subroutine, 1-582
remove a directory, 1-589-1-590
remove subroutine, 1-583
removing entries from Location Broker database,

4-16
remque subroutine, 1-282
rename display element, xgmon, 6-62
rename subroutine, 1-584-1-586
rename_dep function, xgmon, 6-62
REPEAT-UNTIL LAF statement, HCON

programming, 2-90
report NIS protocol error, ypprot_err, 5-147
res_init subroutine, Sockets, 8-91
res_mkquery subroutine, Sockets, 8-93
res_send subroutine, Sockets, 8-96
resabs subroutine, 1-190-1-192
reset-indication packet for X.25, confirming receipt

of, using x25_reset_confirm subroutine, 9-36
resinc subroutine, 1-190-1-192

resource, get utilization information, 1-211-1-213
resources, freeing, using IMFreeKeymap subroutine,

1-261
responses

affirmative, NLyesno subroutine, 1-486
negative, NLyesno subroutine, 1-486

restart system, using reboot subroutine,
1-576-1-577

restimer subroutine, 1-220-1-221
retrieve a socket with a priviledged address,

Sockets, 8-100
retrieves a network host entry, Sockets, 8-28
retrieves long byte quantities, Sockets, 8-31
retrieves short byte quantities, Sockets, 8-52
return a device descriptor structure, OLC, 3-57
return a pointer to an error string, yperr_string,

5-146
return asynchronous exception noticifications, OLC,

3-52
return current address of host, xgmon, 6-30
return current system time, xgmon, 6-80
return first key in database, firstkey, 5-45
return first key value pair, yp_first, 5-135
return font height in graphics window associated with

VGM, xgmon, 6-19
return font width in graphics window associated with

VGM, xgmon, 6-20
return height of graphics window associated with

VGM, xgmon, 6-82
return information about display element, xgmon,

6-10
return integer ASCII value of first character of string,

xgmon, 6-5
return integer value represented by text characters in

string, xgmon, 6-36, 6-81
return IP address of host, xgmon, 6-40
return length of string, xgmon, 6-78
return list of display elements grouped under node,

xgmon, 6-23
return machine name of NIS master server,

yp_master, 5-138
return MIS numeric-format variable name of MIS

text-format variable name, xgmon, 6-76
return name of MIS variable, SNMP, 6-46
return next key in database, nextkey, 5-55
return number indicating actual MIS type of MIS

variable name or instance 10, xgmon, 6-61
return number indicating base type of MIS variable

name or instance 10, xgmon, 6-6
return number of free words in data segment of

VGM, xgmon, 6-84
return of data and correlators structure, OLC, 3-68
return order number of NIS map, yp_order, 5-142
return pointer to array of strings representing display

element names, xgmon, 6-53
return receive data, OLC, 3-14
return SNMP community name of host, xgmon, 6-57
return status information of the logical path, HCON

programming, 2-43

return string of text characters representing decimal
value of integer, xgmon, 6-55

return string representing IP address, xgmon, 6-12
return text name of host, SNMP, 6-42
return text name of host, xgmon, 6-39
return text name of MIS variable, SNMP, 6-27
return the Inte.rnet address of host, SNMP, 6-43
return value indicating base type of MIS variable,

SNMP, 6-24
return value indicating variable type of MIS variable,

SNMP, 6-28
return values found in NIS map, 5-140
return width of graphics window associated with

VGM, xgmon, 6-83
returns first key in database, dbm_firstkey, 5-37
returns next key in database, dbm_next, 5-38
reuse_mem function, xgmon, 6-63
revoke subroutine, 1-587-1-588
revoking file access, using frevoke subroutine,

1-161-1-162
rewind subroutine, 1-167-1-168
rewinddir subroutine, 1-522-1-524
rexec subroutine, Sockets, 8-98
right function, xgmon, 6-64
rindex subroutine, 1-717
rint subroutine, 1-141-1-143
rmdir subroutine, 1-589-1-590
root directory, changing, using chroot subroutine,
1-74-1-75

RPC macros
auth_destroy, 5-6
clnt_call, 5-14
clnt_control, 5-16
clnt_destroy, 5-19
clnt_freeres, 5-20
clnCgeterr, 5-21
svc_destroy, 5-66
svc_freeargs, 5-67
svc_getargs, 5-68
svc_getcaller, 5-69

RPC subroutines
authdes_create, 5-3
authdes_getucred, 5-5
authnone_create, 5-7
authunix_create, 5-8
authunix_create_default, 5-9
callrpc, 5-10
clnt_broadcast, 5-12
clnCcreate, 5-18
clnt_pcreateerror, 5-22
clnt_perrno, 5-23
clnCperror, 5-24
clnCspcreateerror, 5-25
clnt_sperrno, 5-26
clnCsperror, 5-28
clntraw_create, 5-29
clnttcp_create, 5-30
clntudp_create, 5-32
get_myaddress, 5-46

Index X-21

getnetname, 5-47
host2netname, 5-48
key_decryptsession, 5-49
key_encryptsession, 5-50
key_gendes,5-51
key _setsecret, 5-52
netname2host, 5-53
netname2user, 5-54
pmap_getmaps, 5-56
pmap_getport, 5-57
pmap_rmtcall, 5-58
pmap_set, 5-60
pmap_unset, 5-61
registerrpc, 5-62
rtime, 5-64
svc_getreqset, 5-70
svc_register, 5-71
svc run, 5-73
svc=sendreply, 5-74
svc_unregister, 5-75
svcerr auth, 5-76
svcerr-decode, 5-77
svcerr=noproc, 5-78
svcerr_noprog, 5-79
svcerr_progvers, 5-80
svcerr _system err, 5-81
svcerr_weakauth, 5-82
svcfd_create, 5-83
svcraw_create, 5-84
svctcp_create, 5-85
svcudp_create, 5-86
user2netname, 5-87
xdr_accepted_reply, 5-88
xdr_authunix_parms, 5-90
xdr_callhdr, 5-92
xdr_callmsg, 5-93
xdr_opaque_auth, 5-105
xdr_pmap, 5-106
xdr_pmaplist, 5-107
xdr_rejected_reply, 5-110
xdr_replymsg, 5-111
xprt_register, 5-129
xprt_unregister, 5-130

rpc_$alloc_handle library routine, NeS, 4-27
rpc_$bind library routine, NeS, 4-28
rpc_$clear_binding library routine, NeS, 4-29
rpc_$clear_server_binding library routine, NeS,

4-30
rpc_$dup_handle library routine, NCS, 4-31
rpc_$free_handle library routine, NCS, 4-32
rpc_$inq_binding library routine, NCS, 4-33
rpc_$inq_object library routine, NCS, 4-34
rpc_$listen library routine, NCS, 4-35
rpc_$name_to_sockaddr library routine, NCS, 4-36
rpc_$register library routine, NCS, 4-38
rpc_$set_binding library routine, NeS, 4-40
rpc_$sockaddr_to_name library routine, NeS, 4-41
rpc_$unregister library routine, NCS, 4-42
rpc_$use_family library routine, NCS, 4-43

X-22 Base Operating System Reference

rpc_$use_family_wk library routine, NCS, 4-45
rpow subroutine, 1-396
rresvport subroutine, Sockets, 8-100
rtime subroutine, RPC, 5-64
Run-time Services Library

trcon subroutine, 1-761
trcstart subroutine, 1-762
trcstop subroutine, 1-763

runtime resolution of deferred symbols, 1-329
ruserok subroutine, Sockets, 8-102

S
SAP enable a result extension, OLC, 3-55
save and restore execution context, 1-617-1-618
save_SNMP _trap subroutine, 6-65
save SNMP var subroutine, 6-67
sbrk subroutine, 1-52-1-53
scalb subroutine, 1-94-1-95
scan directory contents, 1-591
scandir subroutine, 1-591-1-592
scanf subroutine, 1-593-1-597
sdiv subroutine, 1-396
search

binary search, 1-54
binary tree search, 1-766
linear search and update, 1-339
manage hash tables, 1-246
walk a file tree, 1-172

search for a default domain name and Internet
address, Sockets, 8-91

search for character pattern in presentation space,
HCON programming, 2-69

search for pattern match, HCON programming
in presentation space, 2-84
in specified position of presentation space,

2-85
search for value associated with key, yp_match,

5-139
search source string for substring, xgmon, 6-79
searches for an expanded domain name, Sockets,

8-15
Security Library

acl_chg subroutine, 1-11-1-13
acl_fchg subroutine, 1-11-1-13
acl_fget subroutine, 1-14-1-15
acl_fput subroutine, 1-16-1-18
acl fset subroutine, 1-19-1-21
acCget subroutine, 1-14-1-15
acl_put subroutine, 1-16-1-18
acl set subroutine, 1-19-1-21
auditpack subroutine, 1-42-1-43
auditread subroutine, 1-47
auditwrite subroutine, 1-48
ckuseracct subroutine, 1-80-1-81
ckuserlO subroutine, 1-78-1-79
endpwdb subroutine, 1-631-1-632
enduserdb subroutine, 1-638-1-639
getgroupattr subroutine, 1-184-1-187

getpcred subroutine, 1-198
getpenv Subroutine, 1-200
getuserattr subroutine, 1-229-1-234
getuserpw subroutine, 1-235-1-236
IOtogroup subroutine, 1-184-1-187
IOtouser subroutine, 1-229-1-234
newpass subroutine, 1-460-1-461
nextgroup subroutine, 1-184-1-187
nextuser subroutine, 1-229-1-234
putuser subroutine, 1-229-1-234
setpcred subroutine, 1-621
setpenv subroutine, 1-623
setpwdb subroutine, 1-631-1-632
setuserdb subroutine, 1-638-1-639
setuserpw subroutine, 1-235-1-236

seed48 subroutine, 1-111-1-113
seekdir subroutine, 1-522-1-524
SELECT LAF statement, HCON programming, 2-91
select receive data or exception conditions, OLC,

3-16
select subroutine, 1-598-1-600

OLC, 3-73
select subroutine for generic SNA, SNA, 7-56
select subroutine for SNA Services/6000, SNA, 7-53
semaphore, returning semaphore identifier, using

semget subroutine, 1-605-1-607
semaphore operations, controlling, using semctl

subroutine, 1-601-1-604
semapore operations, using semop subroutine,

1-608-1-609
semctl subroutine, 1-601-1-604
semget subroutine, 1-605-1-607
semop subroutine, 1-608-1-609
send a message to a host application, HCON

programming, 2-80
send a message using a socket message structure,

Sockets, 8-106
send a query to a name server, Sockets, 8-96
send an ICMP ECHO request to host, xgmon, 6-58
send application data, OLC, 3-77
send kernel data, OLC, 3-26
SEND LAF statement, HCON programming, 2-93
send message from a connected socket, Sockets,

8-104
send message to AIX API application, HCON

programming, 2-78
send messages through a socket, Sockets, 8-108
send query to and await response from SNMP agent,

SNMP, 6-69
send string of keys to emulator and host, HCON

programming, 2-93
send subroutine, Sockets, 8-104
send_recv_SNMP _packet subroutine, 6-69
sendmsg subroutine, Sockets, 8-106
sends key strokes to the terminal emulator, HCON

programming, 2-74
sendto subroutine, Sockets, 8-108
separate local Internet addresses, Sockets, 8-64

separate network Internet addresses into network
number and local address, Sockets, 8-68

servers
clearing handle bindings, 4-30
registering interfaces, 4-38

session, HCON programming
attach to, 2-49
attaching to (extended open), 2-55
detach AIX API program from, 2-21

set file access times, 1-786-1-787
set file modification times, 1-786-1-787
set g32_api structure to the current cursor position,

HCON programming, 2-37
set socket options, Sockets, 8-120
set the name of the current domain, Sockets, 8-111
set the name of the current host, Sockets, 8-115
set the unique identifier of the current host, Sockets,

8-114
set user-defined environment variable for host,

xgmon, 6-73
set_element_mask function, xgmon, 6-71
setbuf subroutrine, 1-610-1-611
setbuffer subroutine, 1-610-1-611
setdomainname subroutine, Sockets, 8-111
setegid subroutine, 1-612-1-613
setenv function, xgmon, 6-73
seteuid subroutine, 1-634-1-635
setgid subroutine, 1-612-1-613
setgidx subroutine, 1-614-1-615
setgrent subroutine, 1-182-1-183
setgroups subroutine, 1-616
sethostent subroutine, Sockets, 8-112
sethostid subroutine, Sockets, 8-114
sethostname subroutine, Sockets, 8-115
setitimer subroutine, 1-190-1-192
setjmp subroutine, 1-617-1-618
setkey subroutine, 1-96-1-97
setlinebuf subroutine, 1-610-1-611
set locale subroutine, 1-619-1-620
setlogmask subroutine, 1-734
setnetent subroutine, Sockets, 8-117
setpcred subroutine, 1-621-1-622
setpenv subroutine, 1-623-1-626
setpgid subroutine, 1-627-1-628
setpgrp Subroutine, 1-627-1-628
setpri subroutine, 1-629-1-630
setpriority subroutine, 1-204-1-205
setprotoent subroutine, Sockets, 8-118
setpwdb subroutine,1-631
setpwent subroutine, 1-206-1-207
setregid subroutine, 1-612-1-613
setreuid subroutine, 1-634-1-635
setrgid subroutine, 1-612-1-613
setrlimit subroutine, 1-208-1-210
setruid subroutine, 1-634-1-635
setservent subroutine, Sockets, 8-119
setsid subroutine, 1-633
setsockopt subroutine, Sockets, 8-120

Index X-23

setstate subroutine, 1-566-1-567
settimeofday subroutine, 1-218-1-219
settimer subroutine, 1-220-1-221
settyent subroutine, 1-224-1-225
setuid subroutine, 1-634-1-635
setuidx subroutine, 1-636-1-637
setuserdb subroutine, 1-638-1-639
setuserpw subroutine, 1-235-1-236
setutent subroutine, 1-237-1-239
setvbuf subroutine, 1-610-1-611
setvfsent subroutine, 1-240-1-241
setwdb subroutine, 1-631-1-632
sgetl subroutine, 1-640
shell command, running, using system subroutine,

1-737
shmat subroutine, 1-641-1-643
shmctl subroutine, 1-644-1-646
shmdt subroutine, 1-647
shmget subroutine, 1-648-1-650
shorten a file, using truncate, ftruncate subroutines,

1-764-1-765
shut down socket send and receive operations,

Sockets, 8-124
shutdown subroutine, Sockets, 8-124
sigaction subroutine, 1-651-1-657
sigaddset subroutine, 1-658-1-659
sigblock subroutine, 1-662-1-664
sigdelset subroutine, 1-658-1-659
sigemptyset subroutine, 1-658-1-659
sigfillset subroutine, 1-658-1-659
sighold subroutine, 1-665-1-667
sigignore subroutine, 1-665-1-667
siginterrupt subroutine, 1-660
sigismember subroutine, 1-658-1-659
siglongjmp subroutine, 1-668
signal

change restart behavior, using siginterrupt
subroutine, 1-660

enhance signal facility and provide signal
management, 1-665

get and set stack context, using the sigstack
subroutine, 1-669-1-670

print system signal messages, using psignal
subroutine, 1-548

restore saved signal mask, using siglongjmp
subroutine, 1-668

save current signal mask, using sigsetjmp
subroutine, 1-668

save current stack context, using sigsetjmp
subroutine, 1-668

send to the executing program, using raise
subroutine, 1-563

store set of signals blocked from delivery, using
sigpending subroutine, 1-661

signal facility, implementing
using gsignal subroutine, 1-704-1-705
using ssignal subroutine, 1-704-1-705

signal handling, specify action to be taken,
1-651-1-657

X-24 Base Operating System Reference

signal mask
examine or change, using sigprocmask

subroutine, 1-662
setting current, using sigprocmask subroutine,

1-662
signal masks, manipulating

using sigaddset subroutine, 1-658-1-659
using sigdelset subroutine, 1-658-1-659
using sigemptyset subroutine, 1-658-1-659
using sigfillset subroutine, 1-658-1-659
using sigismember subroutine, 1-658-1-659

signal subroutine, 1-651-1-657
signals

adding individual signal, using sigaddset
subroutine, 1-658

deleting individual signals, sigdelset subroutine,
1-658

initializing signal set
using sigemptyset, 1-658
using sigfillset, 1-658

specifying member of signal set, using
sigismember subroutine, 1-658

suspending execution of process, using
sigsuspend subroutine, 1-671

sigpause subroutine, 1-671-1-672
sigpending subroutine, 1-661
sigpromask subroutine, 1-662-1-664
sigrelse subroutine, 1-665-1-667
sigset subroutine, 1-665-1-667
sigsetjmp subroutine, 1-668
sigsetmask subroutine, 1-662-1-664
sigsuspend subroutine, 1-671-1-672
sigtack subroutine, 1-669-1-670
sigvec subroutine, 1-651-1-657
sin subroutine, 1-673-1-674
sinh subroutine, 1-675
sjtojis subroutine, 1-292-1-293
sjtouj subroutine, 1-292-1-293
skips over a compressed domain name, Sockets,

8-17
sleep subroutine, 1-487-1-488
SNA subroutines

generic
close, 7-5
ioctl, 7-15
open, 7-43
read,7-47
select, 7-56
write, 7-83

luOapi, 7-17
luOclosep, 7-20
luOcloses, 7-21
luOctlp, 7-22
luOctls, 7-24
luOopenp, 7-26
luOopens, 7-27
luOreadp, 7-28
luOreads, 7-29
luOwritep, 7-30

luOwrites, 7-32
nm_close, 7-34
nm_open, 7-35
nm_receive, 7-36
nm_send, 7-38
nm_status, 7-40
SNA Services/6000

close, 7-3
ioctl,7-6
open, 7-41
read,7-45
readx, 7-49
select, 7-53
write, 7-81
writex, 7-85

snaclse, 7-59
snactl, 7-60
snadeal, 7-67
snalloc, 7-70
snaopen, 7-73
snaread, 7-75
snawrit, 7-78

snaclse subroutine, SNA, 7-59
snactl subroutine, SNA, 7-60
snadeal subroutine, SNA, 7-67
snalloc subroutine, SNA, 7-70
snaopen subroutine, SNA, 7-73
snaread subroutine, SNA, 7-75
snawrit subroutine, SNA, 7~78
SNMP, SNMP Manager, intrinsic functions

database operations
base_type, 6-6
getenv, 6-31
get_MIS_group, 6-25
gw _ var, 6-34
reaLtype, 6-61
setenv, 6-73
snmp_var, 6-76

file I/O
close, 6-7
fopen, 6-21
read,6-60

formatted output
num, 6-55
sprintf, 6-77

graphics functions
dep_info, 6-10
draw_line, 6-13
draw_string, 6-14
font_height, 6-19
font_width,6-20
get_deps, 6-23
group_dep, 6-32
highlight_dep, 6-37
make_dep, 6-47
make_link, 6-48
move_dep, 6-52
new_deps, 6-53
raise_window, 6-59

rename_dep, 6-62
set_element_mask, 6-71
window_height, 6-82
window_width, 6-83

host information
dotaddr, 6-12
get_primary, 6-30
hostname, 6-39
ipaddr, 6-40
next_alternate, 6-54
password, 6-57
ping, 6-58

string manipulation
ascii, 6-5
hexval, 6-36
left, 6-41
mid,6-51
right, 6-64
strlen, 6-78
substr, 6-79
val, 6-81

virtual G machine (VGM) control
aix_exec, 6-3
alloc,6-4
ctime, 6-9
exec,6-16
flush_trap, 6-18
reuse_mem, 6-63
time, 6-80
words_free, 6-84

SNMP API
create_SNMP _port subroutine, 6-8
extract_SNMP _name subroutine, 6-17
get_MIS_base_type subroutine, 6-24
get_MIS_name subroutine, 6-27
get_MIS_variable_type subroutine, 6-28
lookup_addr subroutine, 6-42
lookup_host subroutine, 6-43
100kup_SNMP _group subroutine, 6-44
100kup_SNMP _name subroutine, 6-46
make_SNMP _request subroutine, 6-49
parse_SNMP _packet subroutine, 6-56
save_SNMP _trap subroutine, 6-65
save_SNMP _var subroutine, 6-67
send_recv_SNMP _packet subroutine, 6-69
SNMP _errormsg array, 6-75

SNMP _errormsg array, 6-75
snmp_var function, xgmon, 6-76
socket subroutine, Sockets, 8-126
socketpair subroutine, Sockets, 8-129
sockets

converting address to host name, 4-41
converting host name to address, 4-36
creating specific address family sockets, 4-43
creating with well-known port, 4-45

Sockets subroutines
accept, 8-3
bind,8-5
connect, 8-8

Index X-2S

dn_comp, 8-11
dn_expand,8-13
dn_find,8-15
dn_skipname, 8-17
endhostent, 8-19
endnetent, 8-20
endprotoent, 8-21
endservent, 8-22
getdomainname, 8-23
gethostbyaddr, 8-24
gethostbyname, 8-26
gethostent, 8-28
gethostid,8-29
gethostname, 8-30
_getlong, 8-31
getnetbyaddr, 8-33
getnetbyname, 8-35
getnetent, 8-37
getpeername, 8-38
getprotobyname, 8-40
getprotobynumber, 8-42
getprotoent, 8-44
getservbyname, 8-46
getservbyport, 8-48
getservent, 8-50
_getshort, 8-52
getsockname, 8-54
getsockopt, 8-56
htonl, 8-60
htons, 8-61
inet_addr, 8-62
inet_lnaof, 8-64
inet_makeaddr, 8-66
inet_netof, 8-68
inet_network, 8-70
inet_ntoa, 8-72
listen, 8-74
ntohl,8-76
ntohs, 8-77
_putlong, 8-78
_putshort, 8-80
rcmd,8-82
recv, 8-84
recvfrom,.8-86
recvmsg, 8-89
res_init, 8-91
res_mkquery, 8-93
res_send, 8-96
rexec, 8-98
rresvport, 8-100
ruserok, 8-102
send,8-104
sendmsg, 8-106
sendto, 8-108
setdomainname, 8-111
sethostent, 8-112
sethostid,8-114
sethostname, 8-115
setnetent, 8-117

X-26 Base Operating System Reference

setprotoent, 8-118
setservent, 8-119
setsockopt, 8-120
shutdown, 8-124
socket, 8-126
socketpair, 8-129

sort a table of data in place, 1-562
sort directory contents, 1-591
specify data sent, OLC, 3-18
specify special file names, DLC, 3-24
sprintf function, xgmon, 6-77
sprintf subroutine, 1-538-1-543
sputl subroutine, 1-640
sqrt subroutine, 1-676

error code listed, 1-676
srand subroutine, 1-564-1-565
srand48 subroutine, 1-111-1-113
srandom subroutine, 1-566-1-567
SRC error message, retrieve, using src_err_msg

subroutine, 1-677
SRC status, get line header, using srcstathdr

subroutine, 1-696
SRC status code, get text representation, using

srcstattxt subroutine, 1-697
SRC subsystem, replying to the client process, using

srcsrpy subroutine, 1-684-1-688
srcrrqs subroutine, 1-678-1-679
srcsbuf subroutine, 1-680-1-683
srcsrpy subroutine, 1-684-1-688
srcsrqt subroutine, 1-689-1-692
srcstat subroutine, 1-693-1-695
srcstathdr subroutine, 1-696
srcstattxt subroutine, 1-697
srcstop subroutine, 1-698-1-700
srcstrt subroutine, 1-701-1-703
sscanf subroutine, 1-593-1-597
ssignal subroutine, 1-704-1-705
Security Library, getgroupattr subroutine, 1-616
start a link station, DLC, 3-36
start a link station's result extension, OLC, 3-55
start interaction with AIX API, HCON programming,

2-15
START LAF statement, HCON programming, 2-94
stat subroutine, 1-711-1-714
statacl subroutine, 1-706-1-708
statts subroutine, 1-709-1-710
status, file, 1-711
statx subroutine, 1-711-1-714
step subroutine, 1-87-1-90
stime subroutine, 1-220-1-221
store retrieved SNMP data, SNMP, 6-67
store SNMP error messages, SNMP, 6-75
store SNMP trap data, SNMP, 6-65
store subroutine, 5-65
strcat subroutine, 1-716
strchr subroutine, 1-716
strcmp subroutine, 1-716
strcoll subroutine, 1-716
strcpy subroutine, 1-716

strcspn subroutine, 1-716
strdup subroutine, 1-717
stream

write buffered data and close, using fclose
subroutine, 1-134

write buffered data and leave open, using fflush
subroutine, 1-134

writing a character
using fput subroutine, 1-555-1-556
using fputwc subroutine, 1-559-1-560
using putc subroutine, 1-555-1-556
using putchar subroutine, 1-555-1-556
using putwc subroutine, 1-559-1-560
using putwchar subroutine, 1-559-1-560

writing a word, using putw subroutine,
1-555-1-556

strerror subroutine, 1-715
strftime subroutine, 1-475-1-477
string

checking the argument, using re_exec
subroutine, 1-568

collation value, using the strncollen subroutine,
1-720

converting on 8-bit processing codes,
1-292-1-293

locating first occurence of a character, using
wcspbrk subroutine, 1-803

performing operations on type wchar, using
wstring subroutines, 1-816-1-818

rebinding to specified KeySymbol and State
pair, using the IMRebindCode subroutine,
1-275

variable length

strings

comparing, bcmp subroutine, 1-49
copying values, bcopy subroutine, 1-49
returning index of bit, ffs subroutine, 1-49
zeroing out string, bzero subroutine, 1-49

containing code points, using NLstring
subroutines, 1-472

perform operations, using string subroutines,
1-716

performing operations on type NLchar, using
NCstring subroutines, 1-456-1-459

strlen function, xgmon, 6-78
strlen subroutine, 1-716
strncat subroutine, 1-716
strncmp subroutine, 1-716
strncollen subroutine, 1-720
strncpy subroutine, 1-716
strpbrk subroutine, 1-716
strrchr subroutine, 1-716
strspn subroutine, 1-716
strstr subroutine, 1-717
strtod subroutine, 1-28-1-29
strtof subroutine, 1-28-1-29
strtok subroutine, 1-717
strtol subroutine, 1-721-1-722
strtoul subroutine, 1-721-1-722

strtows subroutine, 1-463
strxfrm subroutine, 1-716
stty subroutine, 1-723
subroutine, semctl subroutine, 1-601-1-604
substr function, xgmon, 6-79
subsystem

adding a record to object class, using addssys
subroutine, 1-22-1-23

getting short status, using srcstat subroutine,
1-693-1-695

getting status, using srcsbuf subroutine,
1-680-1-683

initialize SRCsubsys structure, using defssys
subroutine, 1-107-1-108

read a record, using getsubsvr subroutine,
1-216-1-217

reading record, using chssys subroutine,
1-76-1-77

reading the record, using getssys subroutine,
1-215

removing subsystem objects, using delssys
subroutine, 1-109

sending a request to, using srcsrqt subroutine,
1-689-1-692

starting, using srcstrt subroutine,
1-701-1-703

stopping, using srcstop subroutine,
1-698-1-700

subsystem reply information, using srcrrqs
subroutine, 1-678-1-679

svc_destroy macro, RPC, 5-66
svc_freeargs macro, RPC, 5-67
svc_getargs macro, RPC, 5-68
svc_getcaller macro, RPC, 5-69
svc_getreqset subroutine, RPC, 5-70
svc_register subroutine, RPC, 5-71
svc_run subroutine, RPC, 5-73
svc_sendreply subroutine, RPC, 5-74
svc_unregister subroutine, RPC, 5-75
svcerr_auth subroutine, RPC, 5-76
svcerr_decode subroutine, RPC, 5-77
svcerr_noproc subroutine, RPC, 5-78
svcerr_noprog subroutine, RPC, 5-79
svcerr_progvers subroutine, RPC, 5-80
svcerr_systemerr subroutine, RPC, 5-81
svcerr_weakauth subroutine, RPC, 5-82
svcfd_create subroutine, RPC, 5-83
svcraw_create subroutine, RPC, 5-84
svctcp_create subroutine, RPC, 5-85
svcudp_create subroutine, RPC, 5-86
swab subroutine, 1-724
swapon command, 1-725
swapqry subroutine, 1-726
symbolic link, reading contents of, with readlink

subroutine, 1-574
symlink subroutine, 1-728
sync subroutine, 1-731
SYS_CFGDD operation, 10-3
SYS_CFGKMOD operation, 10-5

Index X-27

SYS_GETPARMS operation, 10-9
SYS_KLOAD operation, 10-10
SYS_KULOAD operation, 10-13
SYS_ODVSW operation, 10-15
SYS_OUERYLOAD operation, 10-18
SYS_SETPARMS operation, 10-20
sys_siglist vector, 1-548
SYS_SINGLELOAD operation, 10-22
sysconf subroutine, 1-732-1-733
sysconfig subroutine, 10-7

operations
SYS_CFGDD, 10-3
SYS_CFGKMOD, 10-5
SYS_GETPARMS, 10~9
SYS_KLOAD, 10-10
SYS_KULOAD, 10-13
SYS_ODVSW, 10-15
SYS_OUERYLOAD, 10-18
SYS_SETPARMS, 10-20
SYS_SINGLELOAD, 10-22

syslog subroutine, 1-734
system, getting the name, using the uname, unamex

subroutine, 1-777-1-778
system data object, setting the auditing mode,

1-39-1-41
system limit, find current value, 1-732-1-733
System Resource Controller Library

addssys subroutine, 1-22-1-23
chssys subroutine, 1-76-1-77
defssys subroutine, 1-107-1-108
delssys subroutine, 1-109
getssys subroutine, 1-215
getsubsvr subroutine, 1-216-1-217
src_err_msg subroutine, 1-677
srcrrqs subroutine, 1-678-1-679
srcsbuf subroutine, 1-680-1-683
srcsrpy subroutine, 1-684-1-688
srcsrqt subroutine, 1-689-1-692
srcstat subroutine, 1-693-1-695
srcstathdr subroutine, 1-696
srcstattxt subroutine, 1-697
srcstop subroutine, 1-698-1-700
srcstrt subroutine, 1-701-1-703

system subroutine, 1-737
System V Math Library

acos subroutine, 1-673-1-674
acosh subroutine, 1-26
asin subroutine, 1-673-1-674
asinh subroutine, 1-26
atan subroutine, 1-673-1-674
atan2 subroutine, 1-673-1-674
atanh subroutine, 1-26
cabs subroutine, 1-248-1-249
cbrt subroutine, 1-676
ceil subroutine, 1-141-1-143
class subroutine, 1-82
copysign subroutine, 1-94-1-95
cos subroutine, 1-673-1-674
cosh subroutine, 1-675

X-28 Base Operating System Reference

T

drem subroutine, 1-114
erf subroutine, 1-118
erfc subroutine, 1-118
exp subroutine, 1-129-1-131
expm1 subroutine, 1-129-1-131
fabs subroutine, 1-141-1-143
finite subroutine, 1-82
floor subroutine, 1-141-1-143
fmod subroutine, 1-141-1-143
gamma subroutine, 1-322-1-323
hypot subroutine, 1-248-1-249
ilogb subroutine, 1-94-1-95
isnan subroutine, 1-82
itrunc subroutine, 1-141-1-143
jO subroutine, 1-50-1-51
j1 subroutine, 1-50-1-51
jn subroutine, 1-50-1-51
Igamma subroutine, 1-322-1-323
log subroutine, 1-129-1-131
log10 subroutine, 1-129-1-131
log1 p subroutine, 1-129-1-131
10gb subroutine, 1-94-1-95
matherr subroutine, 1-403-1-404
nearest subroutine, 1-141-1-143
nextafter subroutine, 1-94-1-95
pow subroutine, 1-129-1-131
rint subroutine, 1-141-1-143
scalb subroutine, 1-94-1-95
sin subroutine, 1-673-1-674
sinh subroutine, 1-675
sqrt subroutine, 1-676
tan subroutine, 1-673-1-674
tanh subroutine, 1-675
trunc subroutine, 1-141-1-143
uitrunc subroutine, 1-141-1-143
unordered subroutine, 1-82
yO subroutine, 1-50-1-51
y1 subroutine, 1-50-1-51
yn subroutine, 1-50-1-51

tahn subroutine, 1-675
tan subroutine, 1-673-1-674
tcdrain subroutine, 1-740
tcflow subroutine, 1-741
tcflush subroutine, 1-742
tcgetattr subroutine, 1-744
tcgetpgrp subroutine, 1-745
tcsendbreak subroutine, 1-746
tcsetattr subroutine, 1-748-1-749
tcsetpgrp subroutine, 1-750
telldir subroutine, 1-522-1-524
tempnam subroutine, 1-754-1-755
temporary file, generate file name, 1-754-1-755
termdef subroutine, 1-751-1-752
terminal

determine if a device is a terminal, using isatty
subroutine, 1-770

getting foreground group 10, using tcgetpgrp
subroutine, 1-745

getting the name, using ttyname subroutine,
1-770

line control functions
using tcdrain subroutine, 1-740
using tcflow subroutine, 1-741
using tcflush subroutine, 1-742
using tcgetattr subroutine, 1-744
using tcsendbreak subroutine, 1-746
using tcsetattr subroutine, 1-748

query terminal characteristics, using termdef
subroutine, 1-751

setting foreground group 10, using tcsetpgrp
subroutine, 1-750

terminate a process, using exit, _exit, atexit
subroutines, 1-127-1-128

terminate execution of LAF script, HCON
programming, 2-9

terminate interaction with an AIX API, HCON
programming, 2-27

test a remote station link for a link station, OLC, 3-41
test fpr conditional execution of LAF script, HCON

programming, two-way alternative test, 2-83
time

formatting, using NLstrtime subroutine,
1-475-1-477

getting, using gettimeofday subroutine,
1-218-1-219

setting, using settimeofday subroutine,
1-218-1-219

time function, xgmon, 6-80
time structure, setting from string data, using

NUmtime subroutine, 1-478-1-480
time subroutine, 1-220-1-221
timer, system-wide

getting using gettimer subroutine,
1-220-1-221

obtaining resolution, using restimer subroutine,
1-220-1-221

setting using settimer subroutine,
1-220-1-221

times subroutine, 1-211-1-213
timezone subroutine, 1-101-1-103
tmpfile subroutine, 1-753
tmpnam subroutine, 1-754-1-755
tojhira subroutine, 1-285
tojkata subroutine, 1-285
tojlower subroutine, 1-285
tojupper subroutine, 1-285
toujis subroutine, 1-285
trace channel, stopping a trace session for, using

trcstop subroutine, 1-763
trace data

halting collection of, using trcoff subroutine,
1-760

starting the collection of, using trcon
subroutine, 1-761

trace link station activity, DLC, 3-40

trace session
recording 5 user-defined words, using trchkgt

subroutine, 1-758-1-759
recording a data word

using trcgen subroutine, 1-756
using trcgent subroutine, 1-756-1-757

recording a data word trace event, using trchklt
subroutine, 1-758-1-759

recording a hook word
using trcgen subroutine, 1-756-1-757
using trcgent subroutine, 1-756-1-757
using trchkgt subroutine, 1-758-1-759
using trchkl subroutine, 1-758-1-759
using trchklt subroutine, 1-758-1-759
using trchkt subroutine, 1-758

recording a hook word plus 5 words, using
trchkg subroutine, 1-758-1-759

recording a timestamp
using trcgent subroutine, 1-756-1-757
using trchkgt subroutine, 1-758-1-759
using trchklt subroutine, 1-758-1-759
using trchkt subroutine, 1-758

recording a variable number of bytes of trace
data

using trcgen subroutine, 1-756
using trcgent subroutine, 1-756-1-757

recording data word trace event, using trchkl
subroutine, 1-758-1-759

starting, using trcstart subroutine, 1-762
transfer key-value pair from server to client, yp_all,

5-131
translate names to addresses, using knlist

subroutine, 1-297-1-298
translation

AIX to EBCDIC, using NLxout subroutine,
1-484

character strings
NLescstr subroutine, 1-466-1-467
NUlatstr subroutine, 1-466-1-467
NLunescstr subroutine, 1-466-1-467

EBCDIC to AIX, using NLxin subroutine,
1-482-1-483

keysymbol to string, using IMAIXMapping
subroutine, 1-250

pair of keysymbol and state, using
IMSimpleMapping subroutine, 1-276

state to string, using IMAIXMapping subroutine,
1-250

translation table, initializing, using NLxstart
subroutine, 1-485

trcgen subroutine, 1-756-1-757
trcgent subroutine, 1-756-1-757
trchk subroutine, 1-758-1-759
trchkg subroutine, 1-758-1-759
trchkgt subroutine, 1-758-1-759
trchkl subroutine, 1-758-1-759
trchklt subroutine, 1-758-1-759
trchkt subroutine, 1-758
trcoff subroutine, 1-760

Index X-29

trcon subroutine, 1-761
trcstart subroutine, 1-762
trcstop subroutine, 1-763
trunc subroutine, 1-141-1-143
truncate subroutine, 1-764-1-765
tty locking functions, controlling, 1-768
ttylock subroutine, 1-768-1-769
ttylocked subroutine, 1-768-1-769
ttyname subroutine, 1-770
ttyslot subroutine, 1-771
ttyunlock subroutine, 1-768-1-769
ttywait subroutine, 1-768-1-769
turn data notification on or off, HCON programming,

2-46
tzset subroutine, 1-101-1-103

U
ualarm subroutine, 1-190-1-192
uitrunc subroutine, 1-141-1-143
ujtojis subroutine, 1-292-1-293
ujtosj subroutine, 1-292-1-293
ulimit subroutine, 1-772-1-773
umask subroutine, 1-774
umount subroutine, 1-775-1-776
umuLdbl subroutine, 1-5-1-6
uname subroutine, 1-777-1-778
unamex subroutine, 1-777-1-778
ungetc subroutine, 1-779-1-780
ungetwc subroutine, 1-779
unlink subroutine, 1-781-1-782
unload object file, 1-783
unload subroutine, 1-783
unordered subroutine, 1-82-1-83
update file systems, using sync subroutine, 1-731
update NIS map, yp_update, 5-144
user

accessing group information
using getgroupattr subroutine,

1-184-1-187
using 10togroup subroutine, 1-184-1-187
using nextgroup subroutine, 1-184-1-187
using putgroupattr subroutine,

1-184-1-187
authenticating, using ckuserlO subroutine,

1-78-1-79
checking account validity, using ckuseracct

subroutine, 1-80-1-81
closing the database, using enduserdb

subroutine, 1-638-1-639
gets process user 10, using getuidx subroutine,

1-227
getting effective 10, using geteuid subroutine,

1-226
getting real 10, using getuid subroutine, 1-226
opens the database, using setuserdb

subroutine, 1-638-1-639
returning information

using getuserattr subroutine,
1-229-1-234

X-30 Base Operating System Reference

using 10touser subroutine, 1-229-1-234
using nextuser subroutine, 1-229-1-234
using putuserattr subroutine,

1-229-1-234
accessing group information, using

putgroupattr subroutine, 1-616
sets process IDs, using setuidx subroutine,

1-636-1-637
setting process IDs

using seteuid subroutine, 1-634-1-635
using setreuid subroutine, 1-634-1-635
using setruid subroutine, 1-634-1-635
using setuid subroutine, 1-634-1-635

user information buffer, search, using getuinfo
subroutine, 1-228

user2netname subroutine, RPC, 5-87
usleep subroutine, 1-487-1-488
usrinfo subroutine, 1-784-1-785
ustat subroutine, 1-709-1-710
utime subroutine, 1-786-1-787
utimes subroutine, 1-786-1-787
utmp file, finding slot for current user, using ttyslot

subroutine, 1-771
utmpname subroutine, 1-237-1-239
uuid_$decode library routine, NCS, 4-47
uuid_$encode library routine, NCS, 4-48
uuid_$gen library routine, NCS, 4-49
uvmount subroutine, 1-775-1-776

V
val function, xgmon, 6-81
valloc subroutine, 1-399-1-402
varargs macros, 1-788-1-789
varargs parameter list

format and print, 1-481
formatting for output, 1-794-1-795

vfork subroutine, 1-147-1-149
vfprint subroutine, 1-794-1-795
virtual circuit for X.25

resynchronizing communications on, using
x25_reset subroutine, 9-35

returning configuration on a, using
x25_circuiCquery subroutine, 9-9-9-10

virtual file system
get mount status, using mntctl subroutine,

1-423-1-424
remove from file tree, 1-775

vlimit subroutine, 1-208-1-210
vmount subroutine, 1-790-1-793
vprint subroutine, 1-794-1-795
vsprint subroutine, 1-794-1-795
vtimes subroutine, 1-211-1-213

W
WAIT LAF statement, HCON programming, 2-95
wait subroutine, 1-796-1-798
wait3 subroutine, 1-796-1-798
waitpid subroutine, 1-796-1-798

watof subroutine, 1-819-1-820
watol subroutine, 1-821-1-822
wchar t character, locating in a wide-character

string, using wcsrchr subroutine, 1-804
wcscat subroutine, 1-799
wcschr subroutine, 1-799
wcscpm subroutine, 1-799
wcscpy subroutine, 1-799-1-800
wcslen subroutine, 1-801
wcsncat subroutine, 1-802
wcsncmp subroutine, 1-802
wcsncpy subroutine, 1-802
wcspbrk subroutine, 1-803
wcsrchr subroutine, 1-804
wcsspn subroutine, 1-805
wcstombs subroutine, 1-806
wcswcs subroutine, 1-807
wctomb subroutine, 1-808
WHILE LAF statement, HCON programming, 2-97
wide-character string, determining the number of

characters, using wcslen subroutine, 1-801
wide-characters

appending, using wcsncat subroutine, 1-802
appending copy, wcscat subroutine,

1-799-1-800
comparing, using wcsncmp subroutine, 1-802
comparing two wchar_t strings, wcscmp

subroutine, 1-799
computing number of wchar_t characters,

wcscspn subroutine, 1-799
copying, using wcsncpy subroutine, 1-802
copying contents of parameter, wcscpy

subroutine, 1-799
locating in a string, wcswcs subroutine, 1-807
returning a pointer, wcschr subroutine, 1-799
returning number, using wcsspn subroutine,

1-805
window_height function, xgmon, 6-82
window_width function, xgmon, 6-83
words_free function, xgmon, 6-84
write subroutine, 1-,s09-1-812

extended parameters for, OLC, 3-75
write subroutine for generic SNA, SNA, 7-83
write subroutine for SNA Services/6000, SNA, 7-81
write to a file, 1-809-1-812
writev subroutine, 1-809-1-812
writevx subroutine, 1-809-1-812
writex subroutine, 1-809-1-812

OLC, 3-77
writex subroutine for SNA Services/6000, SNA, 7-85
wsprintf subroutine, 1-813-1-814
wsscanf subroutine, 1-815
wstrcat subroutine, 1-816
wstrchr subroutine, 1-816
wstrcmp subroutine, 1-816
wstrcpy subroutine, 1-816
wstrcspn subroutine, 1-816
wstrdup subroutine, 1-817
wstrlen subroutine, 1-816

wstrncat subroutine, 1-816
wstrncmp subroutine, 1-816
wstrncpy subroutine, 1-816
wstrpbrk subroutine, 1-816
wstrrchr subroutine, 1-816
wstrspn subroutine, 1-816
wstrtod subroutine, 1-819-1-820
wstrtok subroutine, 1-816
wstrtol subroutine, 1-821-1-822
wstrtos subroutine, 1-463

X
X.25 adapter, returning configuration information on,

using x2S_device_query subroutine, 9-17-9-18
X.25 Communications Library .

x25 ack subroutine, 9-3
x25 -call subroutine, 9-4-9-5
x25=call_accept subroutine, 9-6
x25 call clear subroutine, 9-7
x25=circuit_query subroutine, 9-9-9-10
x25_ctr_get subroutine, 9-11
x25 ctr remove subroutine, 9-12
x25 - ctr-test subroutine, 9-13
x25 - ctr-wait subroutine, 9-14-9-15
x25-deafen subroutine, 9-16
x25=device_query subroutine, 9-17-9-18
x25 init subroutine, 9-19
x25=interrupt subroutine, 9-20
x25 link connect subroutine, 9-21
x25 -link-disconnect subroutine, 9-22-9-23
x25 -link-monitor subroutine, 9-24-9-25
x25=link:=query subroutine, 9-26-9-27
x25 link statistics subroutine, 9-28-9-29
x25 -listen subroutine, 9-30
x25=pvc_alloc subroutine, 9-31
x25_pvc_free subroutine, 9-32
x25 receive subroutine, 9-33-9-34
x25-reset subroutine, 9-35
x25 -reset confirm subroutine, 9-36
x25 -send subroutine, 9-37
x25=term subroutine, 9-38

X.25 port
connecting to the X.2S network, using

x25 link connect subroutine, 9-21
controllingthe monitoring of, using

x25 link monitor subroutine, 9-24-9-25
disconnecting, using x25_link_disconnect

subroutine, 9-22-9"";'23
requesting statistics for, using

x25 link statistics subroutine, 9-28-9-29
returning the current status of, using

x25Jink_query subroutine, 9-26-9-27
terminating the X.25 API for a, using x25_term

subroutine, 9-38
x25 ack subroutine for X.25, 9-3
x25 -call subroutine for X.25, 9-4-9-5
x25:=call_accept subroutine for X.2S, 9-6
x25_calLclear subroutine for X.25, 9-7-9-8

Index X-31

x25_circuit_query subroutine for X.25, 9-9-9-10
x25_ctr_get subroutine for X.25, 9-11
x25 ctr remove subroutine for X.25, 9-12
x25=ctr=test subroutine for X.25, 9-13
x25_ctr_wait subroutine for X.25, 9-14-9-15
x25_deafen subroutine for X.25, 9-16
x25_device_query subroutine for X.25, 9-17-9-18
x25_init subroutine for X.25, 9-19
x25jnterrupt subroutine for X.25, 9-20
x25_link_connect subroutine for X.25, 9-21
x25Jink_disconnect subroutine for X.25,

9-22-9-23
x25Jink_monitor subroutine for X.25, 9-24-9-25
x25Jink_query subroutine for X.25, 9-26-9-27
x25Jink_statistics subroutine for X.25, 9-28-9-29
x25_listen subroutine for X.25, 9-30
x25_pvc_alloc subroutine for X.25, 9-31
x25_pvc_free subroutine for X.25, 9-32
x25_receive subroutine for X.25, 9-33-9-34
x25_reset subroutine for X.25, 9-35
x25_reset_confirm subroutine for X.25, 9-36
x25 send subroutine for X.25, 9-37
x25=term subroutine for X.25, 9-38
XDR macros

xdr_destroy, 5-95
xdr_inline, 5-101
xdr_setpos, 5-112

XDR subroutines
xdr_array, 5-89
xdr_bytes, 5-91
xdr_char, 5-94
xdr_double, 5-96
xdr_enum, 5-97
xdr_float, 5-98
xd r_free , 5-99
xdrjnt, 5-102
xdr_long, 5-103
xdr_opaque, 5-104
xdr_pointer, 5-108
xdr_reference, 5-109
xdr_short, 5-113
xdr_string, 5-114
xdr_u_char, 5-115
xdr_u_int, 5-116
xdr_u_long, 5-117
xdr_u_short, 5-118
xdr_union, 5-119
xd r _vector, 5-120
xdr_void,5-121
xdr_wrapstring, 5-122
xdrmem_create, 5-123
xd rrec_create , 5-124
xdrrec_endofrecord,5-125
xdrrec_eof, 5-126
xdrrec_skiprecord,5-127
xdrstdio_create, 5-128

xdr_accepted_reply subroutine, RPe, 5-88
xdr_array subroutine, XDR, 5-89

X-32 Base Operating System Reference

xdr_authunix_parms subroutine, RPe, 5-90
xdr_bytes subroutine, XDR, 5-91
xdr_callhdr subroutine, RPe, 5-92
xdr_callmsg subroutine, RPe, 5-93
xdr_char subroutine, XDR, 5-94
xdr_destroy macro, XDR, 5-95
xdr_double subroutine, XDR, 5-96
xdr_enum subroutine, XDR, 5-97
xdr_float subroutine, XDR, 5-98
xdr_free subroutine, XDR, 5-99
xdrjnline macro, XDR, 5-101
xdr_int subroutine, XDR, 5-102
xdrJong subroutine, XDR, 5-103
xdr_opaque subroutine, XDR, 5-104
xdr_opaque_auth subroutine, RPe, 5-105
xdr_pmap subroutine, RPe, 5-106
xdr_pmaplist subroutine, RPe, 5-107
xdr_pointer subroutine, XDR, 5-108
xdr_reference subroutine, XDR, 5-109
xdr_rejected_reply subroutine, RPe, 5-110
xdr_replymsg subroutine, RPe, 5-111
xdr_setpos macro, XDR, 5-112
xdr_short subroutine, XDR, 5-113
xdr_string subroutine, XDR, 5-114
xdr_u_char subroutine, XDR, 5-115
xdr_ujnt subroutine, XDR, 5-116
xdr_u_long subroutine, XDR, 5-117
xdr_u_short subroutine, XDR, 5-118
xdr_union subroutine, XDR, 5-119
xdr_vector subroutine, XDR, 5-120
xdr_void subroutine, XDR, 5-121
xdr_wrapstring subroutine, XDR, 5-122
xdrmem_createsubroutine, XDR, 5-123
xdrrec_create subroutine, XDR, 5-124
xdrrec_endofrecord subroutine, XDR, 5-125
xdrrec_eof subroutine, XDR, 5-126
xdrrec_skiprecord subroutine, XDR, 5-127
xdrstdio_create subroutine, XDR, 5-128
xid data received routine, 3-67
xprt_register subroutine, RPe, 5-129
xprt_unregister subroutine, RPe, 5-130

y
yO subroutine, 1-50-1-51
y1 subroutine, 1-50-1-51
yn subroutine, 1-50-1-51
yp _master subroutine, 5-138
yp_all subroutine, 5-131
yp_bind subroutine, 5-133
yp_first subroutine, 5-135
yp_geCdefault_domain subroutine, 5-137
yp_match subroutine, 5-139
yp_next subroutine, 5-140
yp_order subroutine, 5-142
yp_unbind subroutine, 5-143
yp_update subroutine, 5-144
yperr_string subroutine, 5-146
ypprot_err subroutine, 5-147

Reader's Comment Form

AIX Calls and Subroutines Reference for IBM RISC System/60eO:
Volumes 1 and 2
SC23-2198-00

Please use this form only to identify publication errors or to request changes in
publications. Your comments assist us in improving our publications. Direct any requests for
additional publications, technical questions about IBM systems, changes in IBM programming
support, and so on, to your IBM representative or to your IBM-approved remarketer. You may
use this form to communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information you supply
in any way it believes appropriate without incurring any obligation to you.

D If your comment does not need a reply (for example, pointing out a typing error), check this
box and do not include your name and address below. If your comment is applicable, we
will include it in the next revision of the manual.

D If you would like a reply, check this box. Be sure to print your name and address below.

Page Comments

Please contact your IBM representative or your IBM-approved remarketer to request
additional publications.

Please print

Date -----
Your Name ------________________________________ __

Company Name ______________________________________ __

Maili ng Address ------________________________________ __

Phone No. ~--~~ ________________ _
Area Code

No postage necessary if mailed in the U.S.A

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 997
11400 Burnet Rd.
Austin, Texas 78758-3493

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

-r--
I PIO.:! PIO.:!

I
I
I
I
b
c

:.:J
OJ
c
o
<
"'0
"'0 u..
o
"5
o

I
I
I
I
I
I
I
I
I
I
I
I

-~---------------~--
I adel pue PIO.:! aldelS lON 00 aseald adel pue PIO.:!
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

---------- - ---- ---- - ---- - - -----------_ .-
@ IBM Corp. 1990

International Business Machines
Corporation
11400 Burnet Road
Austin, Texas 78758-3493

Printed in the
United States of America
All Rights Reserved

SC23-2198-00

5C23-2 198-00

