

First Edition (March 1990)

This edition of the A/X Calls and Subroutines Reference for IBM RISC System/6000 applies to IBM AIX
Version 3 for RISC System/6000, Version 3 of IBM AlXwindows Environment/6000, IBM AIX System
Network Architecture Services/6000, IBM AlX 3270 Host Connection Program/6000, IBM AlX 3278/79
Emulation/6000, IBM AIX Network Management/6000, and IBM AiIX Personal Computer Simulator/6000 and
to all subsequent releases of these products until otherwise indicated in new releases or technical
newsletters.

The following paragraph does not apply to the United Kingdom or any country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS MANUAL “AS I1S” WITHOUT WARRANTY ‘OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warranties in certain transactions; therefore, this statement may not apply to you.

IBM does not warrant that the contents of this publication or the accompanying source code examples,
whether individually or as one or more groups, will meet your requirements or that the publication or the
accompanying source code examples are error-free.

This publication could include technical inaccuracies or typographlcal errors.-Changes are periodically made
to the information herein; these changes will be incorporated.in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines
and programs), programming, or services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce such IBM products, programming,
or services in your country. Any reference to an IBM licensed program in this publication is not intended to
state or imply that you can use only IBM's licensed program You can use any functionally equivalent
program instead.

Requests for copies of this publication and for technical information about IBM products should be made to
your IBM Authorized Dealer or your IBM Marketing Representatlve

A reader’s comment form is provided at the back of this publication. If the form has been removed, address
comments to IBM Corporation, Department 997, 11400 Burnet Road, Austin, Texas 78758-3493. IBM may
use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you. '

® Copyright Adobe Syétems, Inc., 1984, i987

® Copyright» X/Open Company Limited, 1988. All Rights Reserved.

© Copyright IXI Limited, 1989. All rights reserved. |

©® Copyright AT&T, 1984, 1985, 1986, 1987, 1988, 1989. All rlghts reserved.
® Silicon Graphics, Inc., 1988. All rights reserved. ‘

Use, duplication or disclosure of the SOFTWARE by the Government is subject to restrictions as set
forth in FAR 52.227-19(c)(2) or subparagraph (c)(1)(li) of the Rights in Technical Data-and Computer
SOFTWARE clause at SFARS 252.227-7013, and/or in similar or successor clauses in the FAR, or
the DOD or NASA FAR Supplement. Unpublished rights reserved under the Copyright Laws of the
United States. Contractor/manufacturer is SILICON GRAPHICS, INC., 2011 N. Shoreline Bivd.,
Mountain View, CA 94039-7311.

© Copyright Carnegie Mellon, 1988. All rights reserved.
@ Copyright Stanford University, 1988. All rights reserved.

Permission to use, copy, modify, and distribute this program for any purpose and without fee is
hereby granted, provided that this copyright and permission notice appear on all copies and
supporting documentation, the name of Carnegie Mellon and Stanford University not be used in
advertising or publicity pertaining to distribution of the program without specific prior permission, and
notice be given in supporting documentation that copying and distribution is by permission of
Carnegie Mellon and Stanford University. Carnegie Mellon and Stanford University make no
representations about the suitability of this software for any purpose. It is provided “as is” without
express or implied warranty.

©® Copyright Sun Microsystems, Inc., 1985, 1986, 1987, 1988. All rights reserved.
The Network File System (NFS) was developed by Sun Microsystems, Inc.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license
from The Regents of the University of California. We acknowledge the following institutions for their role in its
development: the Electrical Engineering and Computer Sciences Department at the Berkeley Campus.

The Rand MH Message Handling System was developed by the Rand Corporation and the University of
California.

Portion of the code and documentation described in this book were derived from code and documentation
developed under the auspices of the Regents of the University of California and have been acquired and
modified under the provisions that the following copyright notice and permission notice appear:

® Copyright Regents of the University of California, 1986, 1987. All rights reserved.

Redistribution and use in source and binary forms are permitted provided that this notice is
preserved and that due credit is given to the University of California at Berkeley. The name of the
University may not be used to endorse or promote products derived from this software without
specific prior written permission. This software is provided “as is” without express or implied
warranty.

Portions of the code and documentation described in this book were derived from code and documentation
developed by Massachusetts Institute of Technology, Cambridge, Massachusetts, and Digital Equipment
Corporation, Maynard, Massachusetts, and have been acquired and modified under the provision that the
following copyright notice and permission notice appear:

@ Copyright Digital Equipment Corporation, 1985, 1988. All rights reserved.
® Copyright 1985, 1986, 1987, 1988 Massachusetts Institute of Technology. All rights reserved.

Permission to use, copy, modify, and distribute this program and its documentation for any purpose
and without fee is hereby granted, provided that this copyright, permission, and disclaimer notice
appear on all copies and supporting documentation; the name of M.I.T. or Digital not be used in
advertising or publicity pertaining to distribution of the program without specific prior permission.
M.LT. and Digital makes no representations about the suitability of this software for any purpose. It is
provided “as is” without express or implied warranty.

© Copyright INTERACTIVE Systems Corporation 1984. All rights reserved.

© Copyright 1989, Open Software Foundation, Inc. All rights reserved.

® Copyright 1987, 1988, 1989, Hewlett—Packard Company. All rights reserved.

® Copyright 1988 Microsoft Corporation. All rights reserved.

©® Copyright Graphic Software Systems Incorporated, 1984, 1990. All rights reserved.
©® Copyright Micro Focus, Ltd., 1987, 1990. All rights reserved.

© Copyright Paul Milazzo, 1984, 1985. All rights reserved. ;

© Copyright EG Pup User Process, Paul Kirton, and 1S, 1984. All righis reserved.

® Copyright Apollo Computer, Inc., 1987. All rights reserved.
® Copyright TITN, Inc., 1984, 1989. All rights reserved.

This software is derived in part from the ISO Development Environment (ISODE). IBM acknowledges source
author Marshall Rose and the following institutions for their role in its development: The Northrup
Corporation and The Wollongong Group.

However, the following copyright notice protects this documentation under the Copyright laws of the United

States and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying,
and making derivative works.

® Copyright International Business Machines Corporation 1987, 1990. All rights reserved.

Notice to U.S. Government Users — Documentation Related to Restricted Rights — Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

Trademarks and Acknowledgements

The following trademarks and acknowledgements apply to this information:

AlX is a trademark of International Business Machines Corporation.

AlXwindows is a trademark of International Business Machines Corporation.
Apollo is a trademark of Apollo Computer, Inc.

IBM is a registered trademark of International Business Machines Corporation.
NCK is a trademark of Apollo Computer, Inc.

NCS is a trademark of Apollo Computer, Inc.

Network Computing Kernel is a trademark of Apollo Computer, Inc.

Network Computing System is a trademark of Apollo Computer, Inc.

Network File System and NFS are trademarks of Sun Microsystems, Inc.

POSIX is a trademark of the Institute of Electrical and Electronic Engineers (IEEE).
RISC System/6000 is a trademark of International Business Machines Corporation.
SNA 3270 is a trademark of International Business Machines Corporation.

UNIX was developed and licensed by AT&T and is a registered trademark of AT&T
Corporation.

X/OPEN is a trademark of XOPEN Company Limited.

Note to Users
The term “network information services (NIS)” is now used to refer to the service formerly
known as “Yellow Pages.” The functionality remains the same; only the name has changed.
The name “Yellow Pages” is a registered trademark in the United Kingdom of British
Telecommunications plc, and may not be used without permission.

Legal Notice to Users Issued by Sun Microsystems, Inc.
“Yellow Pages” is a registered trademark in the United Kingdom of British
Telecommunications plc, and may also be a trademark of various telephone companies
around the world. Sun will be revising future versions of software and documentation to
remove references to “Yellow Pages.”

Trademarks

vi Base Operating System Reference

About This Book

This book, Calls and Subroutines Reference: Base Operating System, provides information
on application programming interfaces to the Advanced Interactive Executive Operating
System (referred to in this text as AlX) for use on the IBM RISC System/6000 System. This
book is part of AIX Calls and Subroutines Reference for IBM RISC System/6000,
SC23-2198, which is divided into the following four major sections:

Volumes 1 and 2, Calls and Subroutines Reference: Base Operating System, contains
reference information about the system calls, subroutines, functions, macros, and
statements associated with AlX base operating system runtime services, communications
services, and devices services.

Volumes 3 and 4, Calls and Subroutines Reference: User Interface, contain reference
information about the AlXwindows widget classes, subroutines, and resource sets; the
AlXwindows Desktop resource sets; the Enhanced X-Windows subroutines, macros,
protocols, extensions, and events; the X—Window toolkit subroutines and macros; and the
curses and extended curses subroutine libraries.

Volume 5, Calls and Subroutines Reference: Kernel Reference, contains reference
information about kernel services, device driver operations, file system operations
subroutines, the configuration subsystem, the communications subsystem, the high
function terminal (HFT) subsystem, the logical volume subsystem, the printer subsystem,
and the SCSI subsystem.

Volumes 6, Calls and Subroutines Reference: Graphics, contains reference information
and example programs for the Graphics Library (GL) and the AiXwindows Graphics
Support Library (XGSL) subroutines.

Who Should Use This Book
This book is intended for experienced C programmers. To use this book effectively, you
should be familiar with AIX or UNIX System V commands, system calls, subroutines, file
formats, and special files. If you are not already familiar with the AIX operating system or the
UNIX System V operating system, see AIX General Concepts and Procedures.

How to Use This Book

Overview of Contents
This book contains. the following alphabetically arranged sections consisting of system calls,
subroutines, functions, macros and statements. In this book all system calls are described
as subroutines.

Base Operating System Runtime (BOS) Services
Communications Services

SNA Services

AIX 3270 Host Connection Program (HCON)
Remote Procedure Calls (RPC)

Sockets

Simple Network Management Protocol (SNMP)
Network Computing System (NCS)

About This Book Vi

— Data Link Controls
~ X.25 Application

Devices Services

Highlighting
The following highlighting conventions are used in this book:
Bold Identifies commands, keywords, files, directories, and other items whose
names are predefined by the system.
Italics Identifies parameters whose actual names or values are to be supplied by
the user.

Monospace ldentifies examples of specific data values, examples of text similar to what

you might see displayed, examples of portions of program code similar to
what you might write as a programmer, messages from the system, or
information you should actually type.

Related Publications
The following books contain information about or related to application programming
interfaces:

AIX General Programming Concepts for IBM RISC System/6000, Order Number
SC23-2205.

AlX Communication Programming Concepts for IBM RISC System/6000, Order Number
SC23-2206.

AlX Kernel Extensions and Device Support Programming Concepts for IBM RISC
System/6000, Order Number SC23-2207.

AlX Files Reference for IBM RISC System/6000, Order Number SC23-2200.
IBM RISC System/6000 Problem Solving Guide, Order Number SC23-2204.

XL C Language Reference for IBM AlX Version 3 for RISC System/6000, Order Number
SC09-1260.

XL C User’s Guide for IBM AlX Version 3 for RISC System/6000, Order Number
SC09-1259.

Ordering Additional Copies of This Book
To order additional copies of this book, use Order Number SC23-2198.

viii Base Operating System Reference

Contents

Base Operating System (BOS) Runtime Services

SUbIrOUtINES A — Z . .. e 1-1
FORTRAN Basic Linear Algebra Subroutines (BLAS) 1-823
Communications Services

AIX 3270 Host Connection Program (HCON) 2-1
Data Link Controls e 3-1
Network Computing System (NCS) i 4-1
Remote Procedure Calls (RPC)o i 5-1
Simple Network Management Protocol (SNMP) 6-1
SN A S IVICES . ..ttt e e 7-1
SOCKEES . . e e e 8-1
X.25 Application e 9-1
Devices Services e 10-1
Appendix A: Base Operating System ErrorCodes A-1
Appendix B: ODMErrorCodes it iiinininnnnnnn. B-1
Appendix C: X.25 ApplicationErrorCodes C-1
INdeX . X-1

Contents ix

Base Operating System Reference

Base Operating System (BOS) Runtime Services

Base Operating System Runtime 11

1-2 Base Operating System Reference

ab4l,...

a64l or I164a Subroutine

Purpose
Converts between long integers and base-64 ASCIi strings.
Library
Standard C Library (libc.a)
Syntax
long a64l (String)
char *String;
char *164a (Longlinteger)
long Longinteger;
Description
The a64l and 164a subroutines maintain numbers stored in base-64 ASCII characters. This
is a notation in which long integers are represented by up to 6 characters, each character
representing a digit in a base-64 notation.
The following characters are used to represent digits:
. represents 0
/ represents 1
0-9 represent 2-11
A-Z represent 12-37
a-z represent 38-63
Parameters
String Specifies the address of a null-terminated character string.
Longlinteger Specifies a long value to convert.

Return Values

The a64l subroutine takes a pointer to a null-terminated character string containing a value
in base-64 representation and returns the corresponding long value. If the string pointed to
by the String parameter contains more than 6 characters, the aé4l subroutine uses only the
first 6.

Conversely, the 164a subroutine takes a long parameter and returns a pointer to the
corresponding base-64 representation. If the Longinteger parameter is a value of 0, the 164a
subroutine returns a pointer to a null string.

The value returned by the 164a subroutine is a pointer into a static buffer, the contents of
which are overwritten by each call.

Implementation Specifics

These subroutines are part of AlX Base Operating System (BOS) Runtime.

Base Operating System Runtime 1-3

abort

abort Subroutine

Purpose
Generates a SIGIOT signal to end the current process.
Library
Standard C Library (libc.a)
Syntax
int abort ()
Description

The abort subroutine causes a SIGIOT signal to be sent to the current process. This usually
terminates the process and produces a memory dump.

It is possible for the abort subroutine to return control if the SIGIOT signal is caught or
ignored. In this case, the abort subroutine returns the value returned by the kill subroutine.

If the SIGIOT signal is neither caught nor ignored, and if the current directory is writable, the
system produces a memory dump in the core file in the current directory. The shell then
displays the following message:

abort — core dumped
Note: The SIGABRT signal is defined to be the same as the SIGIOT signal.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The exit, atexit, _exit subroutine, kill, killpg subroutines, sigaction, sigvec, signal
subroutines.

The dbx command.

14 Base Operating System Reference

abs,...

abs, div, labs, Idiv, imul_dbl, or umul_dbl Subroutine

Purpose
Library

Syntax

Computes absolute value, division, and double precision multiplication of integers.

Standard C Library (libc.a)

int abs (/)
int j;

long labs (/)
long /;

div_t div (Numerator, Denominator)
int Numerator, Denominator;

void imul_dbl (i, j, Result)
long /, j;
long *Result;

Idiv_t \div (Numerator, Denominator)
long Numerator, Denominator;

void umul_dbil (i, j, Result)
unsigned long /, j;
unsigned long *Result;

Description

The abs subroutine returns the absolute value of its integer operand.

Note: A two's-complement integer can hold a negative number whose absolute value is too
large for the integer to hold. When given this largest negative value, the abs
subroutine returns the same value.

The div subroutine computes the quotient and remainder of the division of the number
represented by the Numerator parameter by that specified by the Denominator parameter. If
the division is inexact, the sign of the resulting quotient is that of the algebraic quotient, and
the magnitude of the resulting quotient is the largest integer less than the magnitude of the
algebraic quotient. If the result cannot be represented (for example if the denominator is
zero), the behavior is undefined.

The labs subroutine and ldiv subroutine are included for compatibility with the ANSI C
library, and accept long integers as parameters, rather than as integers. However, on all
systems supported by AIX for RISC System/6000, there is no difference between an integer
and a long integer.

The imul_dbl subroutine computes the product of two signed longs i and j, and stores the
double long product into an array of two signed longs pointed to by the Result parameter.

The umul_dbl subroutine computes the product of two unsigned longs 7and j, and stores
the double unsigned long product into an array of two unsigned longs pointed to by the
Result parameter.

Base Operating System Runtime 1-5

abs,...

Parameters

i Specifies, for abs, some integer; for labs and imul_dbl, some long
integer; for umul_dbl, some unsigned long integer.

Numerator Specifies, for div, some integer; for Idiv, some long integer.

Ji Specifies, for imul_dbl, some long integer; for umul_dbl, some unsigned
long integer.

Denominator Specifies, for div, some integer; for Idiv, some long integer.

Result Specifies, for imul_dbl, some long integer; for umul_dbl, some unsigned
long integer.

Return Values .
The abs and labs subroutines return the absolute value. The imul_dbl and umul_dbl
subroutines have no return values. The div subroutine returns a structure of type div_t. The
Idiv subroutine returns a structure of type Idiv_t, comprising the quotient and the remainder.
The structure is displayed as:

struct idiv_t {
int quot; /* quotient */
int rem; /* remainder */

|5

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

The imul_dbl subroutine and umul_dbl subroutine are not included in the ANS! C Library.

Related information
The floor, ceil, nearest, trunc, itrunc, uitrunc, fmod, fabs subroutines.

1-6 Base Operating System Reference

access

access Subroutine

Determines the accessibility of a file.

int access (Path, AccessMode)

The access subroutine checks the accessibility of the file, using the path name.

Points to the full path name. If the Path parameter refers to a symbolic
link, the access subroutine returns information about the file pointed to
by the symbolic link.

Access permission to all components of the Path parameter is
determined using the real user ID instead of the effective user ID, the
group access list (including the real group ID) instead of the effective
group ID, and the inherited privilege setinstead of the effective privilege
set.

Purpose
Library
Standard C Library (libc.a)
Syntax
#include <sys/access.h>
char *Path;
int AccessMode;
Description
Parameters
Path
AccessMode

Return Values

Specifies the type of access. The bit pattern contained in the
AccessMode parameter is constructed by logically ORing the following
values:

R_ACC Checks read permission.

W_ACC Checks write permission.

X_ACC Checks execute (search) permission.
E_ACC Checks to see if the file exists.

If the requested access is permitted, the access subroutine returns a value of 0. If the
requested access is denied, it returns a value of —1 and sets the global variable errno to

indentify the error.

Error Codes

Access to the file is denied if one or more of the following are true:

ENOENT

The named file does not exist.

Base Operating System Runtime 1-7

access

EACCES ~ Permission bits of the file mode do not permit the requested
access. :
EROFS Write access is requested for a file on a read-only file system.

The access subroutine can also fail if additional errors on page A—1 occur.

If Network File System is installed on the system, the access subroutine can also fail if the
following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The chmod, fchmod subroutines, statx subroutine.

1-8 Base Operating System Reference

acct

acct Subroutine

Purpose
Enables and disables process accounting.

Library
Standard C Library (libc.a)

Syntax

int acct (Path)
char *Path;

Description
The acct subroutine enables the accounting routine when the Path parameter specifies the
path name of the file to which an accounting record is written for each process that
terminates. When the Path parameter is a 0 or NULL value, the acct subroutine disables the
accounting routine.

If the Path parameter refers to a symbolic link, the acct subroutine causes records to be
written to the file pointed to by the symbolic link.

If Network File System is installed on your system, the accounting file can reside on another
node.

Warning: To ensure accurate accounting, each node must have its own accounting file,
which can be located on any node in the network.

The calling process must have root user authority to use the acct subroutine.

Parameter
Path Specifies a pointer to the path name of the file or a NULL pointer.

Return Values
Upon successful completion, the acct subroutine returns a value of 0. Otherwise, a value of
-1 is returned and the global variable errno is set to indicate the error.

Error Codes
The acct subroutine fails if one or more of the following are true:

EPERM The calling process does not have root user authority.

ENOENT The file named by the Path parameter does not exist.

EACCES The file named by the Path parameter is not an ordinary file.

EACCES Write permission is denied for the named accounting file.

EBUSY An attempt is made to enable accounting when it is already
enabled.

EROFS The named file resides on a read—-only file system.

Base Operating System Runtime 1-9

acct

The acct subroutine can also fail if additional errors on page A-1 occur.

If Network File System is installed on the system, the acct subroutine can also fail if the
following is true:

ETIMEDOUT The connection timed out.
Implementation Specifics
This subroutine is part of AlX Base Operating System (BOS) Runtime.

The BSD acet subroutine can be used to switch an accounting file; this is not the case with
the AIX Version 3 Operating System acct subroutine.

Related Information
The _exit, exit, atexit subroutines, raise subroutine, sigaction, signal, sigvec subroutines.
The acct file.

1-10 Base Operating System Reference

acl_chg,...

acl_chg or acl_fchg Subroutine

Purpose
Changes the access control information on a file.
Library
Security Library (libs.a)
Syntax
#include <sys/access/h>
int acl_chg (Path, How, Mode, Who)
char *Path;
int How,
int Mode;
int Who;
int acl_fchg (FileDescriptor, How, Mode, Who)
int FileDescriptor;
int How;
int Mode;
int Who;
Description
The acl_chg and acl_fchg subroutines modify the access control information of a specified
file.
Parameters
FileDescriptor Specifies the file descriptor of an open file.
How Specifies how the permissions are to be altered for the affected entries of
the ACL. This parameter must be one of:
ACC_PERMIT Allow the types of access included in the Mode
parameter.
ACC_DENY Deny the types of access included in the Mode
parameter.

ACC_SPECIFY Grants the access modes included in the Mode
parameter and restricts the access modes not

included in the Mode parameter.

Mode Specifies the access modes to be changed. The Mode parameter is a bit

mask containing zero or more of the foliowing values:
R_ACC Allows read permission.

W_ACC Allows write permission.

X_ACC Allows execute or search permission.

Path Specifies a pointer to the path name of a file.

Base Operating System Runtime 1-11

acl_chg,...

Who ; Specifies which entries in the ACL are affected. This parameter must be
one of:
ACC_OBJ_OWNER Changes the owner entry in the base ACL.
ACC_OBJ_GROUP Changes the group entry in the base ACL.
ACC_OTHERS Changes all entries in the ACL except the

base entry for the owner.

ACC_ALL Changes all entries in the ACL.

Return Values

On successful completion, the acl_chg and acl_fchg subroutines return a value of 0.
Otherwise, a value of -1 is returned and the global variable errno is set to indicate the error.

Error Codes

The acl_chg subroutine fails and the access control information for a file remains
unchanged if one or more of the following are true:

ENOTDIR A component of the Path prefix is not a directory.

ENOENT A component of the Path does not exist or has the disalliow truncation
attribute (see the ulimit subroutine).

ENOENT The Path parameter was null.

EACCESS Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address
space of the process.

ESTALE The process'’s root or current directory is located in a virtual file system that
has been unmounted.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENOENT A symbblic link was named, but the file to which it refers does not exist.

ENAMETOOLONG

A component of the Path parameter exceeded 255 characters or the entire
Path parameter exceeded 1023 characters.

The acl_fchg subroutine fails and the file permissions remain unchanged if the following is
true:

EBADF The file descriptor FileDescriptor is not valid.

The acl_chg or acl_fchg subroutine fails and the access control information for a file
remains unchanged if one or more of the following are true:

EROFS The named file resides on a read—only file system.
EINVAL The How parameter is not one of ACC_PERMIT, ACC_DENY, or
ACC_SPECIFY.

1-12 Base Operating System Reference

acl_chg,...

EINVAL The Mode parameter contained values other than R_ACC, W_ACC, or
X_ACC.
EINVAL The Who parameter is not one of ACC_OWNER, ACC_GROUP,

ACC_OTHERS, or ACC_ALL.

The acl_chg or acl_fchg subroutine fails and the access control information for a file
remains unchanged if one or more of the following are true:

EIO An 1/O error occurred during the operation.

EPERM The effective user ID does not match the ID of the owner of the file and the
invoker does not have root user authority.

If NFS is installed on your system, the acl_chg and acl_fchg subroutines can also fail if the
following is true:

ETIMEDOUT
The connection timed out.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The chacl subroutine, statacl subroutine, chmod subroutine, stat subroutine.
The acl_get subroutine, acl_put subroutine, acl_set subroutine

The acl_get command, acl_put command, chmod command.

Base Operating System Runtime 1-13

acl_get,...

acl_get or acl_fget Subroutine

Purpose
Gets the access control information of a file.
Library
Security Library (libs.a)
Syntax
#include <sys/access.h>
char *acl_get (Path)
char *Path;
char *acl_fget (FileDescriptor)
int FileDescriptor;
Description ,
The acl_get and acl_fget subroutines retrieve the access control information for a file
system object. This information is returned in a buffer pointed to by the return value. The
structure of the data in this buffer is unspecified. The value returned by these subroutines
should be used only as an argument to the acl_put or acl_fput subroutines to copy or
restore the access control information.
Parameters ;
Path Specifies the pathname of the file.
FileDescriptor Specifies the file descriptor of an open file.

Return Values
On successful completion, the acl_get and acl_fget subroutines return a pointer to the

buffer containing the access control information. Otherwise, a NULL pointer is returned and
the global variable errno is set to indicate the error.

Error Codes
The acl_get subroutine fails if one or more of the following are true:

ENOTDIR A component of the Path prefixvis not a directory.

ENOENT A component of the Path does not exist or the process has the disallow
truncation attribute (see the ulimit subroutine).

ENOENT The Path parameter was riull.
EACCESS Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address
space of the process.

ESTALE The brocess’s root or current directory is located in a virtual file system that
has been unmounted.

1-14 Base Operating System Reference

Security

acl_get,...

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENAMETOOLONG

A component of the Path parameter exceeded 255 characters or the entire
Path parameter exceeded 1023 characters.

The acl_fget subroutine fails if the following is true:

EBADF The FileDescriptor parameter is not a valid file descriptor.
The acl_get or acl_fget subroutine fails if the following is true:

EIO An I/O error occurred during the operation.

If NFS is installed on your system, the acl_get and acl_fget subroutines can also fail if the
following is true:

ETIMEDOUT
The connection timed out.
Access Control The invoker must have search permission for all components of
the Path prefix.
Auditable Events None.

Implementation Specifics

These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

The chacl subroutine, statacl subroutine, chmod subroutine, stat subroutine.

The acl_chg, acl_fchg subroutines, acl_put, acl_fput subroutines, acl_set, acl_fset
subroutines.

The acl_get command, ac!_put command, chmod command.

Base Operating System Runtime 1-15

acl_put,...

acl_put or acl_fput Subroutine

Purpose ~
Sets the access control information of a file.
Library
Security Library (libs.a)
Syntax
#include <sys/access.h>
int acl_put (Path, Access, Free)
char *Path;
char *Access;
int Free;
int acl_fput (FileDescriptor, Access, Free)
int FileDescriptor;
char *Access;
int Free;
Description , : ,
The acl_put and acl_fput subroutines set the access control information of a file system
object. This information is contained in a buffer returned by a call to the acl_get or acl_fget
subroutines. The structure of the data in this buffer is unspecified. .
Parameters
Path Specifies the pathname of a file.
FileDescriptor

Specifies the file descriptor of an open file.

Access Specifies a pointer to the buffer containing the access control information.

Free Specifies whether the buffer space is to be deallocated. The following
values are valid: ,
e 0 Means the space is not deallocated.
o 1 Means the space is deallocated.

Return Values
On successful completion, the acl_put and acl_fput subroutines return a value of 0.
Otherwise, -1 is returned and the global variable errno is set to indicate the error.

Error Codes

The acl_put subroutine fails and the access control information for a file remains unchanged
if one or more of the following are true:

ENOTDIR A component of the Path prefix is not a directory. -

ENOENT A component of the Path does not exist or has the disallow truncation
attribute (see the ulimit subroutine).

1-16 Base Operating System Reference

Security

acl_put,...

ENOENT The Path parameter was null.

EACCESS Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address
space of the process.

ESTALE The process’s root or current directory is located in a virtual file system that
has been unmounted.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENAMETOOLONG

A component of the Path parameter exceeded 255 characters or the entire
Path parameter exceeded 1023 characters.

The acl_fput subroutine fails and the file permissions remain unchanged if the foliowing is
true:

EBADF The FileDescriptor parameter is not a valid file descriptor.

The acl_put or acl_fput subroutine fails and the access control information for a file
remains unchanged if one or more of the following are true:

EROFS The named file resides on a read—only file system.

EINVAL The Access parameter does not point to a valid access control buffer.
EINVAL The Free parameter is not 0 or 1.

EIO An /O error occurred during the operation.

If NFS is installed on your system, the acl_put and acl_fput subroutines can also fail if the
following is true:

ETIMEDOUT
The connection timed out.

Access Control The invoker must have search permission for all components of
the Path prefix.

Auditable Events

Event Name Tail Information
chacl Path
fchacl » FileDescriptor

Implementation Specifics

These subroutines are part of AIX Base Operating System (BOS) Runtime.

Base Operating System Runtime 1-17

acl_put,...

Related Information
The chacl subroutine, statacl subroutine, chmod subroutine, stat subroutine.

The acl_chg subroutine, acl_get subroutine, acl_set subroutine.

The acl_get command, acl_put command, chmod command.

1-18 Base Operating System Reference

acl_set,...

acl_set or acl_fset Subroutine

Purpose
Sets the access control information of a file.
Library
Security Library (libs.a)
Syntax
#include <sys/access.h>
int acl_set (Path, OwnerMode, GroupMode, DefaultMode)
char *Path;
int OwnerMode;
int GroupMode;
int DefaultMode;
int acl_fset (FileDescriptor, OwnerMode, GroupMode, DefaultMode)
int *FileDescriptor,;
int OwnerMode;
int GroupMode;
int DefaultMode;
Description
The acl_set and acl_fset subroutines set the base entries of the Access Control List of the
file. All other entries are discarded. Other access control attributes are left unchanged.
Parameters
DefaultMode Specifies the access permissions for the default class.
FileDescriptor Specifies the file descriptor of an open file.
GroupMode Specifies the access permissions for the group of the file.
OwnerMode Specifies the access permissions for the owner of the file.
Path Specifies a pointer to the path name of a file.

The mode parameters specify the access permissions in a bitmask containing zero or more
of the following values:

R_ACC Authorize read permission.
W_ACC Authorize write permission.
X_ACC Authorize execute or search permission.

Return Values

Upon successful completion, the acl_set and acl_fset subroutines return the value 0.
Otherwise, the value —1 is returned and the global variable errno is set to indicate the error.

Base Operating System Runtime 1-19

acl_set,...

Error Codes

1-20

The acl_set subroutine fails and the access contro! information for a file remains unchanged
if one or more of the following are true:

ENOTDIR A component of the Path prefix is not a directory.

ENOENT A component of the Path does not exist or has the disallow truncation
attribute (see the ulimit subroutine).

ENOENT The Path parameter was null.

EACCESS Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of thé allocated address
space of the process.

ESTALE The process’s root or current directory is located in a virtual file system that
has been unmounted.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENAMETOOLONG

A component of the Path parameter exceeded 255 characters or the entire
Path parameter exceeded 1023 characters.

The acl_fset subroutine fails and the file permissions remain unchanged if the following is
true:

EBADF The file descriptor FileDescriptor is not valid.

The acl_set or acl_fset subroutine fails and the access control information for a file remains
unchanged if one or more of the following are true:

EROFS The named file resides on a read—only file system.

EINVAL One of the Mode parameters contained values other than R_ACC, W_ACC,
or X_ACC.

EIO An 1/O error occurred during the operation.

EPERM The effective user ID does not match the ID of the owner of the file and the

invoker does not have root user authority.

If NFS is installed on your system, the acl_set and acl_fset subroutines can also fail if the
following is true:

ETIMEDOUT The connection timed out.

Base Operating System Reference

acl_set,...

Security

Access Control The invoker must have search permission for all components of
the Path prefix.

Auditable Events

Event Name Tail Information
chacl Path
fchacl FileDescriptor

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The chacl subroutine, statacl subroutine, chmod subroutine, stat subroutine.
The acl_get subroutine, acl_put subroutine, acl_chg subroutine.

The acl_get command, acl_put command, chmod command.

Base Operating System Runtime 1-21

addssys

addssys Subroutine

Purpose
Adds the SRCsubsys record to the subsystem object class.
Library
System Resource Controlier Library (libsrc.a)
Syntax
#include <sys/srcobj.h>
#include <sys/spc.h>
int addssys(SRCSubsystem)
struct SRCsubsys *SRCSubsystem;
Description
The addssys subroutine adds a record to the subsystem object class. You must call
defssys to initialize the SRCSubsystem buffer before your application program uses the
SRCsubsys structure. The SRCsubsys structure is defined in the sys/srcobj.h header file.
The executable running with this subroutine must be running with the group system.
Parameter

SRCSubsystern A pointer to the SRCsubsys structure.

Return Values
‘ Upon successful completion, the addssys subroutine returns a value of 0. Otherwise, it

returns a value of -1 and odmerrno is set to indicate the error, or an SRC error code is
returned.

Error Codes
The addssys subroutine fails if one or more of the following are true:

SRC_NONAME No subsystem name specified.

SRC_NOPATH No subsystem path specified.

SRC_BADNSIG Invalid stop normal signal.

SRC_BADFSIG Invalid stop force signal.

SRC_NOCONTACT' Contact not signal, sockets, or message queue
SRC_SUBEXIST New subsystem name already on file.
SRC_SYNEXIST New subsystem synonym name already on file.

SRC_SUBSYS2BIG Subsystem name too long.
SRC_SYN2BIG Synonym name too long.
SRC_CMDARG2BIG Command arguments too long.

1-22 Base Operating System Reference

addssys

SRC_PATH2BIG Subsystem path too long.
SRC_STDIN2BIG stdin path too long.
SRC_STDOUT2BIG stdout path too long.
SRC_STDERR2BIG stderr path too long.
SRC_GRPNAM2BIG Group name too long.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

File

/etc/objrepos/SRCsubsys SRC Subsystem Configuration object class.

Related Information
The chssys subroutine, delssys subroutine, defssys subroutine.

The mkssys command, chssys command, rmssys command.

The System Resource Controller Overview in General Programming Concepts.

Base Operating System Runtime 1-23

adjtime

adjtime Subroutine

Purpose
Corrects the time to allow synchronization of the system clock.

Library
Standard C Library (libc.a)

Syntax
#include <sys/time.h>
int adjtime (Delfa, Olddelta)
struct timeval *Delta;
struct timeval *Olddelta;

Description
The adjtime subroutine makes small adjustments to the system time, as returned by the
gettimeofday subroutine, advancing or retarding it by the time specified by the Delta
parameter of the timeval structure. If Delta is negative, the clock is slowed down by
incrementing it more slowly than normal until the correction is complete. If Delta is positive, a
larger increment than normal is used. The skew used to perform the correction is generally a
fraction of one percent. Thus, the time is always a monotonically increasing function. A time
correction from an earlier call to adjtime may not be finished when adjtime is called again. If
the Olddelta parameter is non—zero, then the structure pointed to will contain, upon return,
the number of microseconds still to be corrected from the earlier call.
This call may be used by time servers that synchronize the clocks of computers in a local
area network. Such time servers would slow down the clocks of some machines and speed
up the clocks of others to bring them to the average network time.
The adjtime subroutine is restricted to the users with root user authority.

Parameters
Delta Specifies the amount of time to be altered.
Olddelta Contains the number of microseconds still to be corrected from an earlier

call.

Return Values
A return value of 0 indicates that the adjtime subroutine succeeded. A return value of —1
indicates than an error occurred, and errno is set to indicate he error.

Error Codes
The adjtime subroutine fails if the following is true:

EFAULT An argument address referenced invalid memory

EPERM The process’s effective user ID does not have root user authority.

1-24 Base Operating System Reference

adjtime

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The gettimeofday, settimeofday, ftime subroutines, gettimer subroutine.

Base Operating System Runtime 1-25

asinh,...

asinh, acosh, or atanh Subroutine

Purpose
Computes inverse hyperbolic functions.

Library
IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

Syntax

#include <math.h>

double asinh (x)
double x;

double acosh (x)
double x;

doubie atanh (x)
double x;

Description
The asinh subroutine, acosh subroutine, and atanh subroutine compute the inverse
hyperbolic functions.

The asinh subroutine returns the hyperbolic arc sine of x, in the range -HUGE_VAL to
+HUGE_VAL. The acosh subroutine returns the hyperbolic arc cosine of x, in the range 1 to
+HUGE_VAL. The atanh subroutine returns the hyperbolic arc tangent of x, in the range
~HUGE_VAL to +HUGE_VAL.

Note: Compile any routine that uses subroutines from the libm.a library with the —=Im flag.
To compile the asinh.c file, for example:

cc asinh.c —=1lm

Parameters
X Specifies some double-precision floating-point value.

Error Codes
The acosh subroutine returns a NaNQ if x < 1.
The atanh subroutine returns a NaNQ if |x] > 1.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

The exp, expm1, log, log10, pow subroutines, sinh, cosh, tanh subroutines, copysign,
nextafter, scalb, logb, ilogb subroutines.

1-26 Base Operating System Reference

assert

assert Macro

Purpose

Library

Syntax

Verifies a program assertion.

Standard C Library (libc.a)

#include <assert.h>

void assert (Expression)
int Expression;

Description

Parameter

The assert macro puts error messages into a program. If the Expression is false, the assert
macro writes the following message to standard error and stops the program:

Assertion failed: Expression, file FileName, line LineNumber

In the error message, FileName is the name of the source file and LineNumber is the source
line number of the assert statement.

For Japanese Language Support, the error message is taken from the standard C library
message catalog.

If you compile a program with the preprocessor option —-DNDEBUG, or with the preprocessor
control statement #define NDEBUG before the #include <assert.h> statement, assertions
will not be compiled into the program.

Expression Specifies an expression that can be evaluated as TRUE or FALSE.

This expression is evaluated in the same manner as the C language
“if” statement.

Implementation Specifics

This macro is part of AIX Base Operating System (BOS) Runtime.

The assert macro uses the _assert() library routine.

Related Information

The abort subroutine.

The cpp command.

Base Operating System Runtime 1-27

atof,...

atof, strtod, atoff, or strtof Subroutine

Purpose
Converts an ASCII string to a float or double floating-point number.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

double atof (NumberPointer)
char *NumberPointer;

double strtod (NumberPointer, EndPointen
char *NumberPointer, * *EndPointer;

float atoff (NumberPointer)
char *NumberPointer;

float strtot (NumberPointer, EndPointer)
char *NumberPointer, **EndPointer

Description
The atof subroutine and strtod subroutine convert a character string, pointed to by the
NumberPointer parameter, to a double-precision floating-point number. The atoff subroutine
and strtof subroutine convert a character string, pointed to by the NumberPointer

parameter, to a single-precision floating-point number. The first unrecognized character ends
the conversion.

These subroutines recognize a character string when the characters appear in one of the
two following orders:

o An optional string of white-space characters

e An optional sign

* A non-empty string of digits optionally containing a radix character
* An optional e or E followed by an optionally signed integer.

Or....

¢ An optional string of white-space characters

¢ An optional sign

¢ One of the strings: “INF”, “infinity”, “NaNQ", or “NaNS” (case insensitive).

Parameters
NumberPointer Specifies a character string to convert.

EndPointer A pointer to the character that ended the scan or a NULL value.

1-28 Base Operating System Reference

atof,...

Error Codes
If the string is empty or begins with an unrecognized character, +0.0 is returned.

For the strtod or strtof subroutines, if the value of EndPointer is not:
(char**) NULL

then a pointer to the character that terminated the scan is stored in *EndPointer. If a
floating-point value cannot be formed, *EndPointer is set to NumberPointer.

The atof (NumberPointer) subroutine call is equivalent to:
strtod (NumberPointer, (char **) NULL).

The atoff (NumberPointer) subroutine call is equivalent to:
strtof (NumberPointer, (char **) NULL).

If the correct return value overflows, a properly signed HUGE_VAL is returned. On
underflow, a properly signed zero is returned.

Note: The setlocale function may affect the radix character used in the conversion.

The atoff and strtof subroutines have only one rounding error. (lf the atof or strtod

subroutines are used to create a double and then that double is converted to a float, two
rounding errors could occur.)

If the correct value would cause overflow, +/- HUGE is returned (according to the sign of the
value), and errno is set to ERANGE.

If the correct value would cause underflow, zero is returned and errno is set to ERANGE.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

The atoff and strtof subroutines are not part of the ANSI C Library. The accuracy of these
routines is at least as accurate as required by the IEEE Standard for Binary Floating-Point
Arithmetic. The atof and strtod subroutines accept at least 17 significant decimal digits. The
atoff and strtof subroutines accept at least nine leading zeroes. Leading zeroes are not
counted as significant digits.

Related Information

The scanf subroutine, strtol, strtoul, atol, atoi subroutines, wstrtol, watol, watoi
subroutines.

Base Operating System Runtime 1-29

audit

audit Subroutine

Purpose
Enables and disables system auditing.
Library
Standard C Library (libc.a)
Syntax
#include <sys/audit.h>
nt audit (Command, Argument)
int Command;
int Argument,
Description
The audit subroutine enables or disables system auditing.
When auditing is enabled, audit records are created for security—relevant events. These
records can be collected through the auditbin subroutine, or through the /dev/audit special
file interface.
Parameters

Command Defined in the sys/audit.h header file, can be one of the following values:

AUDIT_QUERY

AUDIT_ON

AUDIT_PANIC

AUDIT_OFF

AUDIT_RESET

1-30 Base Operating System Reference

Returns a mask indicating the state of the auditing
subsystem. The mask is a logical ORing of the
AUDIT_ON, AUDIT_OFF, AUDIT_PANIC, and
AUDIT_NOPANIC flags. The Argument parameter
is ignored.

Enables auditing. If auditing is already enabled,
only the failure mode behavior will change. The
Argument parameter is used to specify recovery
behavior in the presence of failure and may include
one or more of the following values, defined in
sys/audit.h:

The operating system will shutdown if an audit
record cannot be written to a bin. Note that
binmode auditing must be enabled prior to invoking
this call if AUDIT_PANIC is specified.

Disables the auditing system if auditing is enabled.
If the auditing system is disabled, the audit
subroutine does nothing. The Argument parameter
is ignored.

Disables the auditing system (as for AUDIT_OFF)
and resets the auditing system. If auditing is
already disabled, only the system configuration is
reset. Resetting the audit configuration involves
clearing the audit events and audited objects table

audit

and terminating bin and stream auditing. The
Argument parameter is ignored.

Argument Specifies the behavior when a bin write fails.

Return Values
For a Command value of AUDIT_QUERY, the audit subroutine returns, upon successful
completion, a mask indicating the state of the auditing subsystem. The mask is a logical
ORing of the AUDIT_ON, AUDIT_OFF, AUDIT_PANIC, and AUDIT_NOPANIC flags. For
any other Command value, the audit subroutine returns 0 on successful completion.

If the audit subroutine fails, a value of —1 is returned and errno is set to indicate the error.

Error Codes
The audit subroutine fails if either of the following is true:

EINVAL The Command parameter is not one of AUDIT_ON, AUDIT_OFF,
AUDIT_RESET, or AUDIT_QUERY.

EINVAL The Command parameter is AUDIT_ON and the Argument parameter
includes values other than AUDIT_PANIC.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The auditbin subroutine, auditlog subroutine, auditproc subroutine, auditevents
subroutine, auditobj subroutine.

The audit command.

Base Operating System Runtime 1-31

auditbin

auditbin Subroutine

Purpose
Defines files to contain audit records

Library
Standard C Library (libc.a)

Syntax
#include <sys/audit.h>
int auditbin (Command, Current, Next, Threshold)
int Command;
int Current;
int Next;
int Threshold,

Description
The auditbin subroutine establishes an audit bin file into which the kernel writes audit
records. Optionally, it may be used to establish an overflow bin into which records are written
when the current bin reaches the size specified by the Threshold parameter.

Parameters
Command If nonzero, may specify:

AUDIT_EXCL If the file specified by Current is not the kernel's
current bin file, the auditbin subroutine fails
immediately with errno set to EBUSY.

AUDIT_WAIT The auditbin subroutine should not return until:

bin full The kernel writes the number of
bytes specified by the Threshold
parameter to the file descriptor
specified by the Current parameter.
Upon successful completion,
auditbin returns a 0. The kernel
writes subsequent audit records to
the file descriptor specified by the
Next parameter.

bin failure An attempt to write an audit record
to the file specified by the Current
parameter fails. If this occurs,
auditbin fails with errno set to the
return code from the auditwrite
subroutine.

bin contention
Another process had already
issued a successful auditbin
subroutine. If this occurs, audtbin
fails with errno set to EBUSY.

1-32 Base Operating System Reference

Current

Next

Threshold

Return Values

auditbin

system shutdown

‘ The auditing system was
shutdown, If this occurs, auditibin
fails with errno set to EINTR.

A file descriptor for a file to which the kernel should immediately write audit
records.

Specifies the file descriptor which will be used as the current audit bin if the
value of the Threshold parameter is exceeded or if a write to the current bin
should fail. If this value is —1, no switch will occur.

Specifies the maximum size of the current bin. If 0, the auditing subsystem
will not switch bins. If it is non—zero, the kernel will begin writing records to
the file specified by the Next parameter if writing a record to the file
specified by the Cur parameter would cause the size of this file to exceed
Threshold bytes. If no next bin is defined and AUDIT_PANIC was specified
when the auditing subsystem was enabled, the system will be shutdown. If
the size of the Threshold parameter was too small to contain a bin header
and a bin tail, then the auditbin subroutine will fail and an errno of EINVAL
will be set.

If the auditbin subroutine is successful, a value of 0 returns.

If the auditbin subroutine fails, a value of— 1 returns and errno is set to indicate the error. If
this occurs, the result of the call does not indicate whether any records were written to the

bin.

Error Codes

The auditbin subroutine fails if any of the following are true:

EBADF

EINVAL

EINVAL

EBUSY

EBUSY

EINTR

The Current parameter is not a file descriptor for a regular file open for
writing, or the Next parameter is neither —1 nor a file descriptor for a regular
file open for writing.

The Command parameter specifies a nonzero value other than
AUDIT_EXCL or AUDIT_WAIT.

The Threshold parameter value is less than the size of a bin header and
trailer.

The Command parameter specifies AUDIT_EXCL and the kernel is not
writing audit records to the file specified by Current.

The Command parameter specifies AUDIT_WAIT and another process has
already registered a bin.

The auditing subsystem is shutdown.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Base Operating System Runtime 1-33

auditbin

Related Information
The audit subroutine, auditevents subroutine, auditlog subroutine, auditproc subroutine,
auditobj subroutine.

The audit command.

The audit.h file.

1-34 Base Operating System Reference

auditevents

auditevents Subroutine

Purpose
Gets or sets the status of system event auditing.
Syntax
#include <sys/audit.h>
int auditevents (Command, Classes, Nclasses)
int Command;
struct audit_class *Classes;
int Nclasses;
Description
The auditevents subroutine reads or writes the audit class definitions which control event
auditing in the kernel. Each audit class is a set of one or more audit events.
System auditing need not be enabled to set or query the event lists. The audit subroutine
can be directed to clear all event lists with the AUDIT_RESET command.
Parameters

Command Specifies whether the event lists are to be read or written. The values for
the Command parameter, defined in sys/audit.h, are:

AUDIT_SET Sets the lists of audited events.
AUDIT_GET Queries the lists of audited events.
AUDIT_LOCK Queries the lists of audited events. This also blocks

any other process attempting to set the list of audit
events. The lock is released when the process
holding the lock dies or calls auditevents with the
Command parameter set to AUDIT_SET.

Classes The base array of a_event structures for the AUDIT_SET operation, or after
and AUDIT_GET or AUDIT_LOCK operation. The audit_class structure is
defined in sys/audit.h and contains the following members:

Note: Event and class names are limited to 15 significant characters.
ae_name A pointer to the name of the audit class.

ae_list A pointer to a list of null-terminated audit event names for
this audit class. The list is ended by a null name (a leading
null byte, or two consecutive null bytes). .

ae_len The length of the event list in ae_list. This length includes
the terminating null bytes. On an AUDIT_SET operation,
the caller must set this field to indicate the actual length of
the list (in bytes) pointed to by ae_list. On an AUDIT_GET
or AUDIT_LOCK operation, auditevents sets this field to
indicate the actual size of the list.

Base Operating System Runtime 1-35

auditevents

Security

Nclasses

Serves a dual purpose. For AUDIT_SET, Nclasses specifies the number of
elements in the events array. For AUDIT_GET and AUDIT_LOCK,
Nclasses specifies the size of the buffer pointed to by the Classes
parameter.

Warning: Only 32 audit classes are supported. One class is implicitly defined by the system
to include all audit events (ALL). The administrator of the system should not attempt to
define more than 31 audit classes.

The calling process must have the AUDIT_CONFIG kernel privilege in order to use the
auditevents subroutine.

Return Codes
If the auditevents subroutine completes successfully, the number of audit classes is
returned if the Command parameter is AUDIT_GET or AUDIT_LOCK; a value of 0 is
returned if the Command parameter is AUDIT_SET. If this call fails, a value of -1 is

returned and errno is set to indicate the error.

Error Codes |
The auditevents subroutine fails if any one of the following is true:

EPERM
EINVAL
EINVAL

EINVAL
ENOSPC

EFAULT
EFAULT

EFAULT

The calling process does not have the AUDIT_CONFIG kernel privilege.
The value of Command is not AUDIT_SET, AUDIT_GET, or AUDIT_LOCK.

The Command parameter is AUDIT_SET and the values of the Nclasses
parameter is greater than or equal to 32.

A class name or event name is longer than 15 significant characters.

The value of Command is AUDIT_GET or AUDIT_LOCK and the size of the
buffer as specified by Nc/asses is not large enough to hold the list of event
structures and names. If this occurs, the first word of the buffer is set to the
required buffer size.

The Classes parameter points outside of the process’ address space.

The ae_list field of one or more audit_class structures passed for an
AUDIT_SET operation points outside of the process’ address space.

The Commandis AUDIT_GET or AUDIT_LOCK and the size of the
Classes buffer is not large enough to hold an integer.

Implementation Specifications
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

1-36

The audit subroutine, auditbin subroutine, auditlog subroutine, auditobj subroutine,
auditproc subroutine.

The auditread subroutine, auditwrite subroutine.

The audit command.

Base Operating System Reference

auditiog

auditlog Subroutine

Purpose
Appends an audit record to the audit trail file.
Library
Standard C Library (libc.a)
Syntax
#include <sys/audit.h>
int auditlog (Event, Result, Buffer, BufferSize)
char *Event,;
int Result;
char *Buffer;
int Buffersize;
Description
The auditlog subroutine generates an audit record. The kernel audit logging component will
append a record for the specified Eventif system auditing is enabled, process auditing is not
suspended and the Event parameter is in one or more of the audit classes for the current
process.
The audit logger generates the audit record by adding the Event and Result parameters to
the audit header and including the information in the Buffer parameter as the audit tail.
Parameters
Event The name of the audit event to be generated. This parameter should be the
name of an audit event. Audit event names are truncated to 15 characters
plus NULL.
Result Describes the result of this event. Valid values are defined in sys/audit.h and

include the following:
AUDIT_OK The event was successful.
AUDIT_FAIL The event failed.

AUDIT_FAIL_ACCESS
The event failed because of any access control denial.

AUDIT_FAIL_DAC

The event failed because of a discretionary access control
denial.

AUDIT_FAIL_PRIV
The event failed because of a privilege control denial.

AUDIT_FAIL_AUTH
The event failed because of an authentication denial.

Other non-zero values of the Result parameter will be converted into
AUDIT_FAIL.

Base Operating System Runtime 1-37

auditlog

Buffer Points to a buffer containing the tail of the audit record. The format of the
information in this buffer depends on the event name.

BufferSize
Specifies the size of the Buffer parameter including the terminating NULL
character.

Return Values
Upon successful completion, the auditlog subroutine returns a value of 0. If auditiog fails, a
value of -1 is returned and errno is set to indicate the error.

The auditiog subroutine does not return any indication of a failure to write the record due to
the auditing subsystem configuration.

Error Codes
The auditlog subroutine fails if any of the following are true:

EFAULT The Event or Buffer parameter points outside of the process’ address
space.

EINVAL The auditing system is either interrupted or not initialized.

EINVAL The length of the audit record is greater than 32 kilobytes.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The audit subroutine, auditbin subroutine, auditevents subroutine, auditobj subroutine,
auditproc subroutine, auditwrite subroutine.

1-38 Base Operating System Reference

auditobj

auditobj Subroutine

Purpose
Library

Syntax

Gets or sets the auditing mode of a system data object.

Standard C Library (libc.a)

#include <sys/audit.h>

int auditobj (Command, Obj_Events, Objsize)
int Command,

struct o_event *Obj_Events;

int ObjSize;

Description
The auditobj subroutine reads or writes the audit events to be generated by accessing
selected objects. For each object in the file system name space, it is possible to specify the
event generated per access mode. This call allows an administrator to define new audit
events in the system that correspond to accesses to the specified objects. These events are

not treated differently than the system—defined events.

System auditing need not be enabled to set or query the object audit events. The audit
subroutine can be directed to clear the object audit event definitions with the AUDIT_RESET

command.

Parameters
Command Specifies whether the object audit event lists are to be read or written. The
valid values for the Command parameter, defined in sys/audit.h are:

Obj_Events

AUDIT_SET
AUDIT_GET
AUDIT_LOCK

Sets the list of object audit events.
Queries the list of object audit events.

Queries the list of object audit events. This also
blocks any other process attempting to set or lock the
list of audit events. The lock is released when the
process holding the lock dies or calls auditobj with
the Command parameter set to AUDIT_SET.

Specifies a buffer that contains AUDIT_SET, or will contain AUDIT_GET or
AUDIT_LOCK as the list of object audit events. This buffer is an array of
o_event structures. The o_event structure is defined in sys/audit.h and

contains the following members.

o_type Specifies the type of the object, in terms of naming space.
Currently, only one object naming space is supported:

AUDIT_FILE Denotes the file system naming space.

0_hame Specifies the name of the object.

Base Operating System Runtime

1-39

auditobj

o_event Specifies any array of event names to be generated when
the object is accessed. Note that event names in AlX are
currently limited to 16 bytes, including the trailing NULL.
The index of an event name in this array corresponds to an
access mode. Valid indices are defined in the audit.h file
and include the following:

« AUDIT_READ
 AUDIT_WRITE
« AUDIT_EXEC

ObjSize For an AUDIT_SET operation, the ObjSize parameter specifies the number
of object audit event definitions in the array pointed to by the Obj_Events
parameter. For an AUDIT_GET or AUDIT_LOCK operation, the ObjSize
parameter specifies the size of the buffer pointed to by the Obj_Events
parameter.

Return Values
If the auditobj subroutine completes successfully, the number of object audit event
definitions is returned if the Command parameter is AUDIT_GET or AUDIT_LOCK; a value
of 0 is returned if the Command parameter is AUDIT_SET. If this call fails, a value of -1 is
returned and errno is set to indicate the error.

Error Codes
The auditobj subroutine fails if any of the following are true;

EINVAL The value of the Command parameter is not AUDIT_SET, AUDIT_GET or
AUDIT_LOCK.
EINVAL The Command parameter is AUDIT_SET and either the value of one or

more of the o_type fields is not AUDIT_FILE.
EINVAL An event name was longer than 15 significant characters.

ENOENT The Command parameter is AUDIT_SET and the parent directory of one of
the file system objects does not exist.

ENOSPC The value of the Command parameter is AUDIT_GET or AUDIT_LOCK and
the size of the buffer as specified by the ObjSize parameter is not large
enough to hold the list of event structures and names. If this occurs, the
first word of the buffer is set to the required buffer size.

EFAULT The Obj_Events parameter points outside the address space of the process.

EFAULT The Command parameter is AUDIT_SET and one or more of the o_name
fields points outside the address space of the process.

EFAULT The Command parameter is AUDIT_GET or AUDIT_LOCK and the buffer

size of the Obj_Events parameter is not large enough to hold the integer.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

1-40 Base Operating System Reference

auditobj

Related Information
The audit subroutine, auditbin subroutine, auditevents subroutine, auditlog subroutine,
auditproc subroutine.

The audit command.

The audit.h file

Base Operating System Runtime 1-41

auditpack

auditpack Subroutine

Purpose
Compresses and uncompresses audit bins.
Library
Security Library (libs.a)
Syntax
#include <sys/audit.h>
#include <stdio.h>
char *auditpack (Expand, Buffer)
int Expand;
char */buf;
Description
The auditpack subroutine can be used to compress or uncompress bins of audit records.
Parameters
Expand Specifies the operation. Valid values, which are defined in the sys/audit.h
header file, are one of the following:
AUDIT_PACK Performs standard compression on the audit bin.
AUDIT_UNPACK Unpacks the compressed audit bin.
Buffer Specifies the buffer containing the bin to be compressed or uncompressed.

This buffer must contain a standard bin as described in the audit. h file.

Return Values
If the auditpack subroutine is successful, a pointer to a buffer containing the processed

audit bin is returned. [If unsuccessful, a NULL pointer is returned and errno is set {o indicate
the error.

Error Codes
The auditpack subroutine fails if one or more of the following values is true:

EINVAL The Expand parameter is not one of the valid values (AUDIT_PACK or
AUDIT_UNPACK).

EINVAL The Buffer parameter does not point to a valid buffer.

EINVAL The Expand parameter is AUDIT_PACK and the bin in the Buffer parameter

is already compressed on the Expand parameter is AUDIT_UNPACK and
the bin in the Buffer parameter is already unpacked.

ENOSPC The function is unable to allocate space for a new buffer.

1-42 Base Operating System Reference

auditpack

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The auditread subroutine.

The auditcat command.

Base Operating System Runtime 1-43

auditproc

auditproc Subroutine

Purpose
Gets or sets the audit state of a process.

Library
Standard C Library (libc.a)

Syntax
#inciude <sys/audit.h>
int auditproc (Processid, Command, Argument, Length)
int Processid;
int Command;
int Argument;
int Length,

Description
The auditproc subroutine queries or sets the auditing state of a process. There are two
parts to the auditing state of a process:

» The list of administrative events to be audited for this process. Administrative events are
defined by the auditevents subroutine. Each class includes a set of audit events. When a
process causes an audit event, that event may be logged in the audit trail, if it is included
in one or more of the audit classes of the process.

¢ The audit status of the process. Auditing for a process may be suspended or resumed.
Functions that generate an audit record can first check to see whether auditing is
suspended. If process auditing is suspended, no audit events are logged for a process.
This is described the auditlog subroutine documentation.

Parameters

Processid The process ID of the process to be affected. If Processid is 0, the
auditproc subroutine affects the current process.

Command Specifies the action to be taken. Defined in the audit.h file, valid values for
the are as follows:

AUDIT_QEVENTS Returns the list of audit classes defined for the
current process. The Argument parameter is a
pointer to a character buffer. The Length parameter
is the size of this buffer. On return, this buffer
contains a list of null-terminated audit class names.
A null name terminates the list.

AUDIT_EVENTS Sets the list of audit classes to be audited for the

process. The Argument parameter is a pointer to a
list of null-terminated audit class names. The
Length parameter is the length of this list.

AUDIT_QSTATUS Returns the audit status of the current process. You

can only check the status of the current process. If
the Processid parameter is nonzero, —1 returns and

1-44 Base Operating System Reference

Argument

Length

Return Values

auditproc

errno is set to EINVAL. The Length and Argument
parameters are ignored. A return value of

AUDIT_SUSPEND indicates auditing is suspended.

A return value of AUDIT_RESUME indicates
normal auditing for this process.

AUDIT_STATUS Sets the audit status of the current process. The
Length parameter is ignored, and the Processid
parameter must be zero. If Argument is
AUDIT_SUSPEND, the audit status is set to
suspend event auditing for this process. If the
Argument parameter is AUDIT_RESUME, the audit
status is set to resume event auditing for this
process.

Specifies a character pointer for the audit class buffer for an AUDIT_EVENT

or an AUDIT_QEVENTS value of the Command parameter or an integer
defining the audit status to be set for an AUDIT_STATUS operation.

Size of the audit class character buffer.

The auditproc subroutine returns the foliowing values upon successful completion:

e The previous audit status (AUDIT_SUSPEND or AUDIT_RESUME), if the call queried or
set the audit status (the Command parameter was AUDIT_QSTATUS or
AUDIT_STATUS).

e The value 0 if the call queried or set audit events (the Command parameter was
AUDIT_QEVENTS or AUDIT_EVENTS).

Error Codes

If the auditproc subroutine fails if one or more of the following are true:

EINVAL
EINVAL

EINVAL

ENOSPC

EFAULT

An invalid value was specified for the Command parameter.

The Command parameter is set to AUDIT_QSTATUS or AUDIT_STATUS
value and the pid value is nonzero.

The Command parameter is set to AUDIT_STATUS value and the
Argument parameter is not set to AUDIT_SUSPEND or AUDIT_RESUME.

The Command parameter is AUDIT_QEVENTS and the buffer size is

insufficient. In this case, the return value is the required buffer size, in
bytes.

The Command parameter is AUDIT_QEVENTS or AUDIT_EVENTS and

the Argument parameter points to a location outside of the process'’s
allocated address space.

Base Operating System Runtime 1-45

auditproc

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The audit subroutine, auditbin subroutine, auditevents subroutine, auditiog subroutine,
auditobj subroutine, auditwrite subroutine.

1-46 Base Operating System Reference

auditread

auditread Subroutine

Purpose
Reads an audit record.

Library
Security Library (libs.a)

Syntax
#include <sys/audit.h>
#include <stdio.h>

char *auditread (FilePointer, AuditRecord)
FILE *FilePointer;
struct aud_rec *AuditRecord;

Description
The auditread subroutine will read the next audit record from the specified file descriptor.
Bins on this input stream will be unpacked and uncompressed if necessary.

Parameters
FilePointer Specifies the file descriptor from which to read.

AuditRecord Specifies the buffer to contain the header. The first short in this buffer
must contain a valid number for the header.

Return Values
If the auditread subroutine completes successfully, a pointer to a buffer containing the tail of
the audit record is returned. The length of this buffer is returned in the ah_length field of the
header file. If it is unsuccessful, a NULL pointer is returned and errno is set to indicate the
error. '

Error Codes
The auditread subroutine fails if one or more of the following is true:

EINVAL The ah_magic field in the header does not contain a valid number.
EBADF The FilePointer parameter is not valid.
ENOSPC The auditread subroutine is unable to allocate space for the tail buffer.

Other error codes are returned by the read subroutine.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The auditpack subroutine.

Base Operating System Runtime 1-47

auditwrite

auditwrite Subroutine

Purpose
Writes an audit record.

Library
Security Library (libs.a)

Syntax

#include <sys/audit.h>
#include <stdio.h>

int auditwrite (Event, Result,
Buffer1, Length1, Buffer2, Length2...)
char *Event,
int Result;
char *Buffer1, *Buffer2 ...;
int Length1, Length2 ...;

Description
The auditwrite subroutine will build the tail of an audit record and then write it with the

auditlog subroutine. The tail is built by gathering the specified buffers. The last butfer
pointer must be a NULL.

Parameters ‘
Event Specifies the name of the event to be logged.

Result Specifies the audit status of the event. Valid values are defined in the
' sys/audit.h file and are listed in the auditlog subroutine.

Buffer1, Buffer2 Specifies the character buffers containing audit tail information. Note

that numerical values must be passed by reference. The correct size
can be computed with the sizeof C function.

Length1, Length2 Specifies the lengths of the corresponding buffers.

Return Values

If the auditwrite subroutine completes successfully, a value of 0 is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

Error Codes :
The auditwrite subroutine fails if one or more of the following is true:

ENOSPC The auditwrite subroutine is unable to allocate space for the tail buffer.

Other error codes are returned by the auditlog subroutine.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The auditlog subroutine.

1-48 Base Operating System Reference

bcopy,...

bcopy, becmp, bzero or ffs Subroutine

Purpose
Performs bit and byte string operations.

Library
Standard C Library (libc.a)

Syntax

void bcopy (Source, Destination, Length)
char *Source, *Destination;
int Length;

int bemp (String1, String2, Length)
char *String1, *String2;
int Length;

void bzero (String, Length)
char *String;
int Length;

int ffs (/ndex)
int /ndex;

Description
The bcopy, bemp, and bzero subroutines operate on variable length strings of bytes. They
do not check for null bytes as do the string routines.

The bcopy subroutine copies the value of the Length parameter in bytes from the string in
the Source parameter to the string in the Destination parameter.

The bemp subroutine compares byte string in the String? parameter against byte string of
the String2 parameter, returning a zero value if the two strings are identical and a nonzero
value otherwise. Both strings are assumed to be Length bytes long.

The bzero subroutine zeroes out the string in the String parameter for the value of the
Length parameter in bytes.

The ffs subroutine finds the first bit set in the Index parameter passed to it and returns the
index of that bit. Bits are numbered starting at 1. A return value of 0 indicates that the value
passed is 0.

Warning: The bcopy subroutine takes parameters backwards from the strepy subroutine.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

The memcmp, memccpy, memchr, memcpy, memmove, memset subroutines, string
subroutines, NCstring subroutines, NLstring subroutines, swab subroutine.

Base Operating System Runtime 1-49

bessel

bessel: j0, j1, jn, y0, y1, or yn Subroutine

Purpose
Computes Bessel functions.
Library
IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)
Syntax
#include <math.h>
double jO (x)
double x;
double j1 (x)
double x;
double jn (n, x)
int n:
double x;
double y0 (x)
double x;
double y1 (x)
double x;
double yn (n, x)
int n;
double x;
Description
Bessel functions are used to compute wave variables, primarily in the field of
communications.
The jO subroutine and j1 subroutine return Bessel functions of x of the first kind, of orders 0
and 1, respectively. The jn subroutine returns the Bessel function of x of the first kind of
order n.
The y0 subroutine and y1 subroutine return the Bessel functions of x of the second kind, of
orders 0 and 1, respectively. The yn subroutine returns the Bessel function of x of the
second kind of order n. The value of x must be positive.
Note: Compile any routine that uses subroutines from the libm.a library with the —-Im flag.
To compile the j0.c file, for example:
cc jO0.c —=1m
Parameters
X Specifies some double-precision floating-point value.
n Specifies some integer value.

1-50 Base Operating System Reference

bessel

Error Codes
When using libm.a (-Im):

Non-positive values cause y0, y1, and yn to return the value NaNQ.
When using libmsaa.a (-Imsaa):

Values too large in magnitude cause the functions j0, j1, y0, and y1 to return 0 and to set
errno to ERANGE. In addition, a message indicating TLOSS error is printed on the standard
error output.

Non-positive values cause y0, y1, and yn to return the value -HUGE and to set errno to
EDOM. in addition, a message indicating argument DOMAIN error is printed on the standard
error output.

These error-handling procedures may be changed with the matherr subroutine when using
libmsaa.a (-Imsaa).

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The matherr subroutine.

Base Operating System Runtime 1-51

brk,...

brk or sbrk Subroutine

Purpose
Changes data segment space allocation.

Syntax
int brk (EndDataSegment)
char *EndDataSegment;
char *sbrk (/Increment)
int Increment;

Description
The brk subroutine and the sbrk subroutine dynamically change the amount of space
allocated for the data segment of the calling process. (For information about segments, see
the exec subroutine. For information about the maximum amount of space that can be
allocated, see the ulimit and getrlimit system calls.)
The change is made by resetting the break value of the process, which determines the
maximum space that can be allocated. The break value is the address of the first location
beyond the current end of the data area in the process private segment. The amount of
available space increases as the break value increases. The available space is initialized to
a value of 0 at the time it is used. The break value can be automatically rounded up to a size
appropriate for the memory management architecture.
The brk subroutine sets the break value to the value of the EndDataSegment parameter and
changes the amount of available space accordingly.
The sbrk subroutine adds to the break value the number of bytes contained in the Increment
parameter and changes the amount of available space accordingly. The Increment
parameter can be a negative number, in which case the amount of available space is
decreased.

Parameters
EndDataSegment Specifies the effective address of the maximum available data.
Increment Specifies any integer.

Return Values

Upon successful completion, the brk subroutine returns a value of 0, and the sbrk
subroutine returns the old break value. If either subroutine is unsuccessful, a value of -1 is
returned and the global variable errno is set to indicate the error.

Error Codes

1-52

The brk subroutine and the sbrk subroutine are unsuccessful and the allocated space
remains unchanged if one or more of the following are true:

ENOMEM The requested change allocates more space than is allowed by a

system-imposed maximum. (For information on the system-imposed
maximum on memory space, see the ulimit system call.)

Base Operating System Reference

brk,...

ENOMEM The requested change sets the break value to a value greater than

or equal to the start address of any attached shared memory

segment. (For information on shared memory operations, see the
shmat subroutine.)

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

The exec subroutine, shmat subroutine, getrlimit subroutine, shmdt subroutine, ulimit
subroutine.

The _end, _etext, _edata identifier.

Base Operating System Runtime 1-53

bsearch

bsearch Subroutine

Purpose
Performs a binary search.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>
void *bsearch (Key, Base, NumberOfElements, Size, ComparisonPointer)
void *Key, *Base;
Size_t Size, NumberOfElements;
int (*ComparisonPointer) (void *, void *);

Description
The bsearch subroutine is a binary search routine.
The bsearch subroutine searches an array of NumberOfElements objects, the initial
member of which is pointed to by the Base parameter, for a member that matches the object
pointed to by the Key parameter. The size of each member in the array is specified by the
Size parameter.
The array must already be sorted in increasing order according to the provided comparison
function ComparisonPointer parameter.

Parameters
Key Paoints to the object to be sought in the array.
Base Points to the element at the base of the table.
NumberOfElements Specifies the number of elements in the array.
ComparisonPointer Points to the comparison function, which is called with two

arguments that point to the Key parameter object and to an
array member, in that order.

Size Specifies the size of each member in the array.

Return Values

1-54

For the Key parameter: If the Key parameter value is found in the table, the bsearch
subroutine returns a pointer to the element found.

If the Key parameter value is not found in the table, the bsearch subroutine returns the
NULL value. If two members compare as equal, the matching member is unspecified.

For the ComparisonPointer parameter. The comparison function compares its parameters
and returns a value as follows:

« If the first parameter is less than the second parameter, the ComparisonPointer
parameter returns a value less than 0.

Base Operating System Reference

bsearch

¢ If the first parameter is equal to the second parameter, the ComparisonPointer parameter
returns a value of 0.

o If the first parameter is greater than the second parameter, the ComparisonPointer
parameter returns a value greater than 0.

The comparison function need not compare every byte, so arbitrary data can be contained in
the elements in addition to the values being compared.

The Key and Base parameters should be of type pointer-to-element, and cast to type
pointer-to-character. Although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The hsearch subroutine, Isearch subroutine, gsort subroutine.

Donald E. Knuth’s The Art of Computer Programming, Volume 3, 6.2.1, Algorithm B. This
book was published in Reading, Massachusetts by Addison-Wesley, 1981.

Base Operating System Runtime 1-55

catclose

catclose Subroutine

Purpose

Closes a specified message catalog.
Library

Standard C Library (libc.a)
Syntax

#include <nl_types.h>

int catclose (CatalogDescriptor)
nl_catd CatalogDescriptor;

Description
The catclose subroutine closes a specified message catalog. If your program accesses
several message catalogs you may reach the NL_MAXOPEN number of opened catalogs,
and you must close some before opening more. Before exiting, programs should close any
catalog they have opened.

The catclose subroutine will close a message catalog only when the number of calls to
catclose matches the combined number of calls to catopen and NLcatopen in an
application.

Parameter

CatalogDescriptor Points to the message catalog that is returned from a call to
the catopen or NLcatopen subroutine.

Return Values
The catclose subroutine returns a value of 0 if it closes the catalog successfully, or if the
number of calls to catclose is fewer than the number of calls to catopen and NLcatopen.

Error Codes
The catclose subroutine returns a value of -1 if it does not succeed in closing the catalog.
The catclose subroutine fails if the number of calls to catclose is greater than the number
of calls to catopen and NLcatopen, or if the CatalogDescriptor parameter value is not valid.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The catopen, NLcatopen subroutine.

1-56 Base Operating System Reference

catgetmsg

catgetmsg Subroutine

Purpose
Copies a message from a catalog into a user-defined character string buffer.

Library
Standard C Library (libc.a)

Syntax

#include <nl_types>

char *catgetmsg (CatalogDescriptor, SetNumber, MessageNumber, Buffer, BufferLength)
nl_catd CatalogDescriptor;

int SetNumber, MessageNumber, BufferLength;

char *Buffer,

Description
The catgetmsg subroutine retrieves a message from a catalog after a successful call to the
catopen subroutine. As with the catgets subroutine, you specify a catalog with the
CatalogDescriptor parameter returned by the catopen subroutine.

If the message is found, the catgetmsg subroutine returns the Buffer pointer that points to
the message.

The catgetmsg subroutine copies up to BufferLength—1 bytes of the message into the buffer
specified by the Buffer parameter. The catgetmsg subroutine does not split a 2-byte
character (an extended character).

Parameters

CatalogDescriptor Specities a catalog description that is returned by the catopen
subroutine.

SetNumber Specifies the set ID.

MessageNumber Specifies the message ID. SetNumber and MessageNumber
specify a particular message in the catalog to retrieve.

Buffer Points to the buffer in which the retrieved message is placed.
BufferLength Specifies the length of the buffer.

Error Codes
If the catgetmsg subroutine fails, the Buffer parameter points to an empty string.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

The catgetmsg subroutine has been withdrawn from X/Open.

Related Information
The catgets subroutine, NLcatgets subroutine, NLgetamsg subroutine.

Base Operating System Runtime 1-57

catgets

catgets Subroutine

Purpose
Retrieves a message from a catalog.

Library
Standard C Library (libc.a)

Syntax
#include <nl_types>
char *catgets (CatalogDescriptor, SetNumber, MessageNumber, String)
nl_catd CatalogDescriptor;
int SetNumber, MessageNumber;
char *String;

Description
The catgets subroutine retrieves a message from a catalog after a successful cail to the
catopen or NLcatopen subroutine. If the catgets subroutine finds the specified message, it
loads that message into a character string buffer, ends the message string with a null
character, and returns the pointer to the buffer.
The pointer is used to reference the buffer and display the message; use the printf or
NLprintf subroutine with either the %s or %n$s conversion specification. The message in
the buffer is overwritten by the next call to the catgets subroutine.
The catgets and catgetmsg subroutines retrieve messages from an open catalog. The AIX
operating system includes two functions for getting messages that are not defined by
X/Open: the NLcatgets and the NLgetamsg subroutines.

Parameters
CatalogDescriptor Specifies a catalog description that is returned by the catopen or

NLcatopen subroutine.

SetNumber ; Specifies the set ID.
MessageNumber Specifies the message ID. SetNumber and MessageNumber

specify a particular message in the catalog to retrieve.

String Specifies the character string buffer.

Error Codes

If the catgets subroutine fails for any reason, it returns the user-supplied default message
string, String.

Implementation Specifics

This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

1-58

The catgetmsg subroutine, NLcatgets subroutine, NLgetamsg subroutine.

Base Operating System Reference

catopen,...

catopen or NLcatopen Subroutine

Purpose
Library

Syntax

Opens a specified message catalog.

Standard C Library (libc.a)

include <limits.h>
include <ni_types.h>

nl_catd catopen (CatalogName, Parameter)
char *CatalogName;
int Parameter;

ni_catd NLcatopen (CatalogName, Parameter)
char *CatalogName;
int Parameter;

Description

The catopen subroutine opens a specified message catalog and returns a catalog
descriptor that you use to retrieve messages from the catalog.

The NLcatopen subroutine prepares a catalog to be opened. To avoid unnecessary opening
of files, NLcatopen does not actually open the catalog until a message is needed.

The special ni_catd data type is used for catalog descriptors. Since this data type is defined
in the ni_types.h header file, include this file in your application program.

If the catalog file name referred to by the CatalogName parameter begins with a /, it is
assumed to be an absolute path name. If the catalog file name is not an absolute path
name, the user environment determines the directory paths to search.

The environment variable NLSPATH defines the directory search path. You can use two
special variables, %N and %L, in the environment variable NLSPATH.

The variable %N will be replaced by the catalog name referred to by the call that opens the
message catalog. The variable %L will be replaced by the value of the LANG environment
variable.

You can use the LANG environment variable to refer to message catalogs that are separated
into directories based on natural languages. For example, if the catopen subroutine
specifies a catalog with the name mycmd, and the environment variables are set as follows:

NLSPATH=../%N:./%N:/system/nls/%L/%N:/system/nls/%N
LANG=Fr_FR

then the application searches for the catalog in the following order:

. . /mycmd

. /mycmd
/system/nls/Fr_FR/mycmd
/system/nls/mycmd

Base Operating System Runtime 1-59

catopen,...

If you omit the variable %N in a directory specification within the environment variable
NLSPATH, the application assumes that the path defines a directory and searches for the
catalog in that directory before searching the next specified path.

Parameters
CatalogName Specifies the catalog file to open.
Parameter Included for compatibility'with X/Open, but is not used by the AIX

operating system. Takes the value of 0.

Error Codes
The catopen and NLcatopen subroutines return a value of —1 if they cannot find the file or if

the number of catalogs already open is equal to the NL_MAXOPEN limit defined in the
mesg.h header file.

implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The catclose subroutine.

1-60 Base Operating System Reference

cfgetospeed,...

cfgetospeed, cfsetospeed, cfgetispeed, or cfsetispeed
Subroutine

Purpose

Library

Syntax

Get and set input and output baud rates.

Standard C Library (libc.a)

#include <termios.h>

speed_t cfgetospeed (TermiosPointer)
struct termios *TermiosPointer,;

int ctsetospeed (TermiosPointer, Speed)
struct termios *TermiosPointer;
speed_t Speed,

speed_t cfgetispeed (TermiosPointer)
struct termios *TermiosPointer;

int cfsetispeed (TermiosPointer, Speed)
struct termios *TermiosPointer;
speed_t Speed;

Description

The baud rate subroutines are provided for getting and setting the values of the input and
output baud rates in the termios structure. The effects on the terminal device described
below do not become effective and not all errors are detected until the tcsetattr function is
successfully called.

The input and output baud rates are stored in the termios structure. The values shown
below are supported. The name symbols in this table are defined in the termios.h file.

The type speed_t is defined in the termios.h file as an unsigned integral type.

The cfgetospeed subroutine returns the output baud rate stored in the termios structure
pointed to by the TermiosPointer parameter.

The cfsetospeed subroutine sets the output baud rate stored in the termios structure
pointed to by the TermiosPointer parameter to the value specified by the Speed parameter.

The cfgetispeed subroutine returns the input baud rate stored in the termios structure
pointed to by the TermiosPointer parameter.

The cfsetispeed subroutine sets the input baud rate stored in the termios structure pointed
to by the TermiosPointer parameter to the value specified by the Speed parameter.

Certain values for speeds have special meanings when set in the termios structure and
passed to the tcsetattr function. These are discussed in the tcsetattr subroutine.

Base Operating System Runtime 1-61

cfgetospeed.,...

Baud Rate Values

Name
BO
B50
B75
B110
B134
B150
B200
B300

Parameters
TermiosPointer

Speed

Return Values

Description
Hang up

50 baud

75 baud

110 baud
134 baud
150 baud
200 baud
300 baud

Name
B600
B1200
B1800
B2400
B4800
B9600
B19200
B38400

Points to a termios structure.

Specifies the baud rate.

Description
600 baud
1200 baud
1800 baud
2400 baud
4800 baud
9600 baud
19200 baud
38400 baud

The cfgetospeed and cfgetispeed subroutines return exactly the value found in the
termios data structure, without interpretation.

Both the cfsetospeed and cfsetispeed subroutines return a value of zero if successful and
-1 to indicate an error.

Example

To set the output baud rate to zero to force modem control lines to no longer be asserted,

enter:

cfsetospeed (&my_termios, BO);
tcsetattr (stdout, TCSADRAIN, &my_ termios);

Implementation Specifics
These subroutines are part of AlIX Base Operating System (BOS) Runtime.

Related Information

The tcsetattr subroutine.

The termios.h header file.

1-62 Base Operating System Reference

chacil,...

chacl or fchacl Subroutine

Purpose

Changes the permissions on a file.

Library

Standard C Library (libc.a)

Syntax

#include <sys/acl.h>
#include <sys/mode.h>

int chacl (Path, ACL, ACLSize)

char *Path;

struct acl *ACL;

int ACLSize;

int fchacl (FileDescriptor, ACL, ACLSize)
int FileDescriptor;
struct acl *ACL;

int ACLSize;

Description

The chacl and fchacl subroutines set the access control attributes of a file according to the
Access Control List structure pointed to by the ACL parameter. This structure is defined in
the sys/acl.h file and contains the following members:

acl_len

acl_mode
u_access
g_access
0_access

acl_ext[]

The size of the ACL (Access Control List) in bytes, including the base
entries.

The file mode.

The access permissions for the file owner.

The access permissions for the file group.

The access permissions for the default class others.

An array of the extended entries for this access control list.

The following bits in the acl_mode field are defined in the sys/mode.h file and are
significant for this subroutine:

S_ISUID
S_ISGID

S_ISVTX
S_IXACL

Enables the setuid attribute on an executable file.

Enables the setgid attribute on an executable file. Enables the group
inheritance attribute on a directory.

Enables linking restrictions on a directory.

Enables extended ACL entry processing. If this attribute is not set, only the
base entries (owner, group, and default) are used for access authorization
checks.

Other bits in the mode are ignored.

Base Operating System Runtime 1-63

chacl,...

The fields for the base ACL — owner, group, and others — may contain the following bits
which are defined in the sys/access.h file:

R_ACC Allows read permission.

W_ACC Allows write permission.

X_ACC Allows execute or search permiséion.
Parameters :

Path Specifies the path name of the file.

FileDescriptor

Specifies the file descriptor of an open file.

ACL Specifies the Access Control List to be established on the file. The format of an
ACL is defined in the sys/acl.h header file.

ACLSize Specifies the size of the buffer containing the ACL.
Return Values

Upon successful completion, the chacl and fchacl subroutines return a value of 0. If the

chacl or fchacl subroutine fails, a value of —1 is returned, and the global variable errno is
set to indicate the error.

Error Codes
The chacl subroutine fails and the access control information for a file remains unchanged if
one or more of the following are true:

ENOTDIR A component of the Path prefix is not a directory.

ENOENT A component of the Path does not exist or has the disallow truncation
attribute (see the ulimit system call).

ENOENT The Path parameter was null.

EACCESS Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location ou‘t’side of the allocated address
space of the process.

ESTALE The process’s root or current directory is located in a virtual file system that
has been unmounted.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENAMETOOLONG

A component of the Path parameter exceeded 255 characters or the entire
Path parameter exceeded 1023 characters.

1-64 Base Operating System Reference

Security

chacl,...

The chacl or felacl subroutine fails and the access control information for a file remains
unchanged if one or more of the following are true:

EROFS The named file resides on a read-only file system.

EFAULT The ACL parameter points to a location outside of the allocated address
space of the process.

EINVAL The ACL parameter does not point to a valid Access Control List.

EINVAL The ACL_Len field in the ACL is not valid.

ElO An /O error occurred during the operation.

EPERM The effective user ID does not match the ID of the owner of the file and the

invoker does not have root user authority.

The fchacl subroutine fails and the fite permissions remain unchanged if the following is
true:

EBADF The file descriptor FileDescriptor is not valid.

If NFS is installed on your system, the chacl and fchacl subroutines can also fail if the
following is true: '

ETIMEDOUT The connection timed out.

Access Control

The invoker must have search permission for all components of the Path
prefix.

Auditable Events

Event Name Tail Information
chacl Path
fchacl FileDescriptor

Implementation Specifics

These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

The statacl subroutine, chmod subroutine, stat subroutine.
The acl_get subroutine, acl_put subroutine, acl_set subroutine, acl_chg subroutine.

The acl_get command, acl_put command.

Base Operating System Runtime 1-65

chdir

chdir Subroutine

Purpose
Changes the current directory.
Library
Standard C Library (libc.a)
Syntax
int chdir (Path)
char *Path;
Description
The chdir subroutine changes the current directory to the directory indicated by the Path
parameter.
Parameter

Path A pointer to the path name of the directory. If the Path parameter refers to a
symbolic link, the chdir subroutine sets the current directory to the directory
pointed to by the symbolic link. If Network File System is installed on the
system, this path can cross into another node.

The current directory, also called the current working directory, is the
starting point of searches for path names that do not begin with a / (slash).
The calling process must have search access to the directory specified by
the Path parameter.

Return Values

Upon successfut completion, the chdir subroutine returns a value of 0. Otherwise, a value of
—1 is returned and the global variable errno is set to identify the error.

Error Codes

The chdir subroutine fails and the current directory remains unchanged if one or more of the
following are true:

EACCES Search access is denied for the named directory.
ENOENT The named directory does not exist.
ENOTDIR The path name is not a directory.

The chdir subroutine can also fail if additional errors on page A-1 occur.

If Network File System is installed on the system, the chdir system call can also fail if the
following is true:

ETIMEDOUT The connection timed out.

1-66 Base Operating System Reference

chdir

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The chroot subroutine.

The cd command.

Base Operating System Runtime 1-67

chmod,...

chmod or fchmod Subroutine

Purpose
Changes file access permissions.

Library
Standard C Library (libc.a)

Syntax

#include <sys/stat.h>

int chmod (Path, Mode)
char *Path;
int Mode;

int fchmod (FileDescriptor, Mode)
char *FileDescriptor,
int Mode;

Description
The chmod subroutine sets the access permissions of the file specified by the Path

parameter. If Network File System is installed on your system, this path can cross into
another node.

~ Use the fchmod subroutine to set the access permissions of an open file pointed to by the
FileDescriptor parameter.

The access control information is set according to the Mode parameter. The use of these
subroutines will implicitly disable extended ACL entries and is therefore discouraged.

Parameters
FileDescriptor
Specifies the file descriptor of an open file.

Mode Specifies the bit pattern which determines the access permissions. The Mode
parameter is constructed by logically ORing one or more of the following
values, which are defined in the sys/mode.h header file:

S_ISUID Enables the setuid attribute for an executable file. A process

executing this program acquires the access rights of the owner
of the file.

S_ISGID Enables the setgid attribute for an executable file. A process
executing this program acquires the access rights of the group
of the file.

Enables the group inheritance attribute for a directory. Files
created in this directory will have a group equal to the group of
the directory.

S_ISVTX Enables the link/unlink attribute for a directory. Files may not
be linked to in this directory and files may only be unlinked if
the requesting process has write permission for the directory
and is either the owner of the file or the owner of the directory.

1-68 Base Operating System Reference

chmod,...

S_ISVTX Enables the link/unlink attribute for a direcsave text attribute
for an executable file. The program is not unmapped after
usage.

S_ENFMT Enables enforcement—-mode record locking for a regular file.
File locks requested with the lockf() subroutine are enforced.

S_IRUSR Permits the file's owner to read it.

S_IWUSR Permits the file’'s owner to write to it.

S_IXUSR Permits the file's owner to execute it (or to search the
directory).

S_IRGRP Permits the file's group to read it.

S_IWGRP Permits the file’s group to write to it.

S_IXGRP Permits the file’s group to execute it (or to search the
directory).
S_IROTH Permits others to read the file.

S_IWOTH Permits others to write to the file.

S_IXOTH Permits others to execute the file (or to search the directory).

Other mode values exist that can be set with the mknod subroutine, but not
with the chmod subroutine.

Path Specifies the full path name of the file.
Return Values
Upon successful completion, the chmod subroutine and fchmod subroutine return a value

of 0. If the chmod subroutine or fchmod subroutine fails, a value of -1 is returned, and the
global variable errno is set to identify the error.

Error Codes
The chmod subroutine fails and the file permissions remain unchanged if one or more of the
following are true: '

ENOTDIR A component of the Path prefix is not a directory.

EACCESS Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address
space of the process.

ESTALE The process’s root or current directory is located in a virtual file system that
has been unmounted.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

Base Operating System Runtime 1-69

chmod,...

Security

ENOENT A component of the Path does not exist or has the disallow truncation
attribute (see the ulimit subroutine).

ENOENT The Path parameter was nuil.

ENOENT The named file does not exist.

ENAMETOOLONG

A component of the Path parameter exceeded 255 characters or the entire
Path parameter exceeded 1023 characters.

The fchmod subroutine fails and the file permissions remain unchanged if the following is
true:

EBADF The file descriptor FileDescriptor is not valid.

The chmod or fchmod subroutine fails and the access control information for a file remains
unchanged if one or more of the following are true:

EROFS The named file resides on a read—only file system.
EIO An /O error occurred during the operation.
EBUSY The value of the Mode parameter would change the enforced lov=cking

attribute of an open file.

If NFS is installed on your system, the acl_chg and acl_fchg subroutines can also fail if the
following is true:

ETIMEDOUT
The connection timed out.

Access Control

The invoker must have search permission for all components of the Path
prefix.

Implementation Specifics

These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

1-70

The chacl subroutine, statacl subroutine, stat subroutine.
The acl_get subroutine, acl_put subroutine, acl_set subroutine, acl_chg subroutine.

The acl_get command, acl_put command, chmod command.

Base Operating System Reference

chown,...

chown, fchown, chownx, or fchownx Subroutine

Purpose

Syntax

Changes file ownership.

#include <sys.chownx.h>

int chown (Path, Owner, Group)
char *Path;

uid_t Ownern;

gid_t Group;

int fchown (FileDescriptor, Owner, Group)
int FileDescriptor;

uid_t Owner;

gid_t Group;

int chownx (Path, Owner, Group, Flags)
char *Path;

uid_t Owner;

gid_t Group;

int Flags;

int fchownx (FileDescriptor, Owner, Group, Flags)

int FileDescriptor;
uid_t Owner;
gid_t Group;

int Flags;

Description
The chown, chownx, fchown, and fchownx subroutines set the file owner and group 1Ds
of the specified file system object. Root user authority is required to change the owner of a

file.

The new owner or group will inherit the access control permissions in the base Access
Control List. All other permissions are unchanged by this function.

Parameters

FileDescriptor

Flags

Specifies the file descriptor of an open file.

Specifies whether each of the file owner ID and group 1D is to be

changed. This parameter is constructed by logically ORing the

following values:

T OWNER_AS_IS

T_GROUP_AS_IS

Base Operating System Runtime

Ignores the value specified in the Owner
parameter and leaves the owner ID of the
file unaltered.

Ignores the value specified in the Group
parameter and leaves the group 1D of the
file unaltered.

1-71

chown,...

Group Specifies the new group of the file. If this value is ~1, the group will not
be changed.
Owner o Specifies the new owner of the file. If this value is -1, the owner will

not be changed.

Path Specifies the full path name of the file. If Path resolves to a symbolic
link, the ownership of the symbolic link is changed.

Return Values
Upon successful completion, the chown, chownx, fchown, and fchownx subroutines
return a value of 0. If the chown, chownx, fchown, or fchownx subroutines fail, a value of
—1 is returned and errno is set to indicate the error.

Error Codes
The chown or chownx subroutines fail and the owner and group of a file remain unchanged
if one or the following are true:

ENOTDIR A component of the path prefix is not a directory.

EACCESS Search permission is denied on a component of the Path parameter.

EFAULT The Path parameter points to a location outside of the allocated address
space of the process.

ESTALE The process’s root or current directory is located in a virtual file system that
has been unmounted.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENOENT A component of the Path parameter does not exist or the process has the
disallow truncation attribute set.

ENOENT The Path parameter was null.

ENAMETOOLONG

A component of the Path parameter exceeded 255 characters of the entire
Path parameter exceeded 1023 characters.

The fchown or fchownx subroutines fail and the file owner and group remain unchanged if
the following is true:

EBADF The named file resides on a read-only file system.

EIO An /O error occurred during the operation.

1-72 Base Operating System Reference

chown,...

Security
Access Control

The invoker must have search permission for all components of the Path
parameter.

Auditing Events

Event Information
FILE_SetOwner object descriptor, owner, group

Implementation Specifics
These subroutines are part of AlX Base Operating System (BOS) Runtime.

Related Information
The chmod subroutine.

Base Operating System Runtime 1-73

chroot

chroot Subroutine

Purpose
Library

Syntax

Changes the effective root directory.

Standard C Library (libc.a)

int chroot (Path)
char *Path;

Description

Parameter

The chroot subroutine causes the directory named by the Path parameter to become the
effective root directory. If the Path parameter refers to a symbolic link, the chroot subroutine
sets the effective root directory to the directory pointed to by the symbolic link. If Network
File System is installed on your system, this path can cross into another node.

The effective root directory is the starting point when searching for a file’s path name that
begins with / (slash). The current directory is not affected by the chroot subroutine.

The calling process must have root user authority in order to change the effective root

directory. The calling process must also have search access to the new effective root
directory.

The .. (dot dot) entry in the effective root directory is interpreted to mean the effective root

directory itself. Thus, .. (dot dot) cannot be used to access files outside the subtree rooted at
the effective root directory.

Path A pointer to the new effective root directory.

Retur'n Values

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned
and the global variable errno is set to indicate the error.

Error Codes

1-74

The chroot subroutine fails and the effective root directory remains unchanged if one or
more of the following are true:

ENOENT The named directory does not exist.
EACCES The named directory denies search access.
EPERM The process does not have root user authority.

The chroot subroutine can also fail if additional errors on page A—1 occur.

If Network File System is installed on the system the chroot subroutine can also fail if the
following is true:

ETIMEDOUT The connection timed out.

Base Operating System Reference

chroot

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The chdir subroutine.

The chroot command.

Base Operating System Runtime 1-75

chssys

chssys Subroutine

Purpose
Modifies the subsystem objects associated with the SubsystemName parameter.
Library
System Resource Controller Library (libsrc.a)
Syntax
#include <sys/srcobj.h>
#include <sys/spc.h>
int chssys(SubsystemName,SRCSubsystem)
char *SubsystemName;
struct SRCsubsys *SRCSubsystem;
Description ,
The chssys subroutine modifies the subsystem objects associated with SubsystemName
with the values in the SRCsubsystem parameter. This will modify the objects associated with
subsystem in the following object classes: Subsystem object, Subserver object, Notify
object. The Subserver and Notify object classes will only be updated if the subsystem name
has been changed.
The SRCsubsys structure is defined in the sys/srcobj.h header file.
The executable running with this subroutine must be running with the group system.
Parameters
SRCSubsystem Points to the SRCsubsys structure.
SubsystemName Specifies the name of the subsystem.

Return Values
Upon successful completion, the chssys subroutine returns a value of 0. Otherwise, it
returns a value of —1 and odmerrno is set to indicate the error or an SRC error code is
returned.

Error Codes
The chssys subroutine is unsuccessful if one or more of the following are true:

SRC_NONAME No subsystem name is specified.
SRC_NOPATH No subsystem path is specified.
SRC_BADNSIG Invalid stop normal signal.
SRC_BADFSIG Invalid stop force signal.

~ SRC_NOCONTACT Contact not signal, sockets, or message queues.
SRC_SSME Subsystem name does not exist.
SRC_SUBEXIST - New subsystem name is already on file.

1-76 Base Operating System Reference

chssys

SRC_SYNEXIST New subsystem synonym name is already on file.
SRC_NOREC The specified SRCsubsys record does not exist.
SRC_SUBSYS2BIG Subsystem name is too long.

SRC_SYN2BIG Synonym name is too long.
SRC_CMDARG2BIG Command arguments are too long.
SRC_PATH2BIG Subsystem path is too long.

SRC_STDIN2BIG stdin path is too long.

SRC_STDOUT2BIG stdout path is too long.

SRC_STDERR2BIG stderr path is too Iong.

SRC_GRPNAM2BIG Group name is too long.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Files
letc/objrepos/SRCsubsys SRC Subsystem Configuration object class.
/etc/objrepos/SRCsubsvr SRC Subserver Configuration object class.
letc/objrepos/SRCnotify SRC Notify Method object class.

Related Information
The addssys subroutine, delssys subroutine.

The chssys command, mkssys command, rmssys command.

The System Resource Controller Overview in General Programming Concepts.

Base Operating System Runtime 1-77

ckuseriD

ckuserID Subroutine

Purpose

Authenticates the user
Library

Security Library (libs.a)
Syntax

#include<login.h>

int ckuserlD(User, Mode)

int Mode;

char *User;

Description
The ckuserID function will authenticate the account specified by the User parameter. The
mode of the authentication is given by the Mode parameter.

Parameters

User Specifies the name of the user to authenticated.

Mode Specifies the mode of authentication. This parameter is a bit mask and may
contain one or more of the following values, which are defined in the login.h
file:

S_PRIMARY The primary authentication methods defined for the
User parameter are checked. All primary
authentication checks must be passed.

S_SECONDARY The secondary authentication methods defined for the
User parameter are checked. Secondary
authentication checks need not be done successfully.

Primary and secondary authentication methods are set for each user in

lete/security/user by defining the AUTH1 and AUTH2 attributes. If no primary
methods are defined for a user, SYSTEM is assumed. If no secondary
methods are defined, there is no default.

Security

file access The calling process must have access to the account information in the user
data base and the authentication data. These include:

modes file

r /etc/passwd

r /etc/security/passwd
r /etc/security/user

r /etc/security/login.cfg

1-78 Base Operating System Reference

ckuserlD

Return Values
If the account is valid for the specified usage, the ckuserlD subroutine returns a value of 0.
Otherwise, a value of —1 is returned and errno is set to indicate the error.

Error Codes
The ckuserlD subroutine fails if one or more of the following are true:

ESAD Security authentication failed for the user.

EINVAL The Mode parameter is not one or more of S_PRIMARY or
S_SECONDARY.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The ckuseracct subroutine, getpcred subroutine, setpcred subroutine, getpenv
subroutine, setpenv subroutine.

The login command and su command.

Base Operating System Runtime 1-79

ckuseracct

ckuseracct Subroutine

Purpose |
Checks the validity of the user account
Library
Security Library (libs.a)
Syntax
#include <usersec.h>
int ckuseracct(Name, Mode, Tty)
char *Name;
int Mode;
char * Tty;
Description ,
The ckuseracct subroutine will check the validity of the account of the user specified by the
Name parameter. The mode of the account usage is given by the Mode parameter, while the
Tty parameter defines the terminal being used for the access.
The ckuseracct subroutine will check for the following conditions:
e account existence
e account expiration
Other Mode specific checks are made as described in the Mode parameter.
e S_LOGIN
e S__RLOGIN
e S_SU
e S DAEMON
Parameters
Name Specifies the login name of the user whose account is to be validated.
Mode Specifies the manner of usage. Valid values are defined in the usersec.h file
and are listed below. The Mode parameter must be one of these or zero.
S_LOGIN Verifies the local logins are permitted for this account.
S_SuU Verifies that the su command is permitted and that the

current process has a group ID which can invoke the su
command to switch to the account.

S_DAEMON Verifies the account can be used to invoke daemon or batch
programs via the src or cron subsystems.

S_RLOGIN Verifies the account can be used for remote logins via the
tlogind or telnetd programs.

1-80 Base Operating System Reference

ckuseracct

Tty Specifies the terminal of the originating activity. If this parameter is a NULL
pointer or a NULL string, no tty origin checking is done.
Security

File Access The calling process must have access to the account information in the user
data base. This includes:

modes file
r /etc/passwd
r /etc/security/user

Return Values

If the account is valid for the specified usage, the ckuseracct subroutine returns a value of
0. Otherwise, a value of —1 is returned and errno is set to the appropriate error code.

Error Codes
The ckuseracct subroutine fails if one or more of the following are true:

ENOENT The user specified in the Name parameter does not have an account.

ESTALE The user's account is expired.

EACCES The specified terminal does not have access to the specified account.

EACCES The Mode parameter is S_SU and the current process is not permitted to
user the su command to access the specified user.

EACCES Access to the account is not permitted in the specified Mode.

EINVAL The Mode parameter is not one of S_LOGIN, S_SU, S_DAEMON,
S_RLOGIN.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The ckuserlD subroutine, getpcred subroutine, setpcred subroutine, getpenv subroutine,
setpenv subroutine.

The login command, cron command, rlogin command, telnet command, su command.

Base Operating System Runtime 1-81

class,...

class, finite, isnan, or unordered Subroutines

Purpose
Determines classifications of floating-point numbers.

Library
IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

Syntax
#include<math.h>
#include<float.h>

int class(x)
double x;

int finite(x)
double x;

int isnan(x)
double x;

int unordered(x, y)
double x, y;

Description
The class subroutine, finite subroutine, isnan subroutine, and unordered subroutin
determine the classification of their floating-point value. The unordered subroutine
determines if a floating-point comparison involving x and y would generate the IEEE
floating-point unordered condition (such as whether x or yis a NaN).

The class subroutine returns an integer that represents the classification of the floating-point
x parameter. The values returned by the class subroutine are defined in the float.h header
file. The return values are the following:

FP_PLUS_NORM Positive normalized, nonzero x
FP_MINUS_NORM Negative normalized, nonzero x
FP_PLUS_DENORM Positive denormalized, nonzero x
FP_MINUS_DENORM Negative denormalized, nonzero x
FP_PLUS_ZERO x=+0.0

FP_MINUS_ZERO =-0.0

FP_PLUS_INF x = +INF

FP_MINUS_INF x=—INF

FP_NANS x = Signaling Not a Number (NaNS)
FP_NANQ x = Quiet Not a Number (NaNQ)

1-82 Base Operating System Reference

class,...

The finite subroutine returns a nonzero value if the x parameter is a finite number; that is, if
xis not £INF, NaNQ, or NaNS.

The isnan subroutine returns a nonzero value if the x parameter is an NaNS or a NaNQ.
Otherwise, it returns zero.

The unordered subroutine returns a nonzero value if a floating-point comparison between x
and y would be unordered. Otherwise, it returns zero.

Note: Compile any routine that uses subroutines from the libm.a library with the —Im flag.
To compile the class.c file, for example, enter:

cc class.c —1lm

Parameters
X Specifies some double-precision floating-point value.
y Specifies some double-precision floating-point value.

Error Codes
The finite, isnan, and unordered subroutines neither return errors nor set bits in the
floating-point exception status, even if a parameter is an NaNS.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

IEEE Standard for Binary Floating-Point Arithmetic (ANSV/IEEE Standards 754-1985 and
854-1987)

Base Operating System Runtime 1-83

clock

clock Subroutine

Purpose

Reports CPU time used.
Library

Standard C Library (libc.a)
Syntax

#include <time.h>

clock_t clock ();
Description

The clock subroutine reports the amount of CPU time used (in microseconds). The reported
- time is the sum of the CPU time of the calling process and its terminated child processes for
which it has executed wait, system or pclose subroutines.

Return Value

The clock subroutine returns the amount of CPU time used since the first call to the clock
subroutine.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The getrusage, times subroutine, wait, waitpid, wait3 subroutine.

The system subroutine, pclose subroutine, vtimes subroutine.

1-84 Base Operating System Reference

close

close Subroutine

Purpose

Syntax

Closes the file associated with a file descriptor.

close (FileDescriptor)
int FileDescriptor,

Description

Parameter

The close subroutine closes the file associated with the FileDescriptor parameter. If Network
File System is installed on your system, this file can reside on another node.

Ali file regions associated with the file specified by the FileDescriptor parameter that this
process has previously locked with the lockf or fcntl subroutine are unlocked. This occurs
even if the process still has the file open by another file descriptor.

If the FileDescriptor parameter resulted from an open subroutine that specified O_DEFER,
and this was the last file descriptor, all changes made to the file since the last fsync
subroutine are discarded.

It the FileDescriptor parameter is associated with a mapped file, it is unmapped. The shmat
subroutine provides more information about mapped files.

When all file descriptors associated with a pipe or FIFO special file have been closed, any
data remaining in the pipe or FIFO is discarded. If the link count of the file is 0 when all file
descriptors associated with the file have been closed, the space occupied by the file is freed,
and the file is no longer accessible.

Note: |f FileDescriptor refers to a device and the close subroutine actually results in a
device close, and the device close routine returns an error, the error is returned to
the application. However, th