

First Edition (March 1990)

This edition of the AIX Calls and Subroutines Reference for IBM RISC System/6000,
Volume 5, Kernel Reference, applies to Version 3.0 of the AiX IBM Base Operating System
and to all subsequent releases of this product until otherwise indicated in new releases or
technical newsletters.

The following paragraph does not apply to the United Kingdom or any country where
such provisions are inconsistent with local law: INTERNATIONAL BUSINESS
MACHINES CORPORATION PROVIDES THIS MANUAL “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, -BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warranties in certain transactions; therefore, this statement may not apply to you.

Example device driver and device method source code can be found in the
/usr/lpp/bos/samples directory once the Base Development Libraries and Include Files
component of the Base Application Development Toolkit licensed program has been
installed. These source code examples are only intended to assist in the development of a
working sortware program. These examples do not function as written: ADDITIONAL CODE
IS REQUIRED. In addition, the source code examples may not compile and/or bind
successfully as written.

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THE SOURCE
CODE EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE GROUPS, "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE SOURCE CODE EXAMPLES, BOTH INDIVIDUALLY AND AS
ONE OR MORE GROUPS, IS WITH YOU. SHOULD ANY PART OF THE SOURCE CODE
EXAMPLES PROVE DEFECTIVE, YOU (AND NOT IBM OR AN AUTHORIZED RISC
System/6000 WORKSTATION DEALER) ASSUME THE ENTIRE COST OF ALL
NECESSARY SERVICING, REPAIR, OR CORRECTION.

IBM does not warrant that the contents of the source code examples, whether individually or
as on;e or more groups, will meet your requirements or that the source code examples are
error-free. ‘

The source code examples are subject exclusively to the terms set forth in the Notice to the
Users that is displayed when the examples are installed.

This publication could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country. Any
reference to an IBM licensed program in this publication is not intended to state or imply that
you ca:jn use only IBM's licensed program. You can use any functionally equivalent program
instead.

Requests for copies of this publication and for technical information about IBM products
should be made to your IBM Authorized Dealer or your IBM Marketing Representative.

A reader’s comment form is provided at the back of this publication. If the form has been
removed, address comments to IBM Corporation, Department 997, 11400 Burnet Road,
Austin, Texas 78758-3493. |BM may use or distribute whatever information you supply in
any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1987, 1990. All rights reserved.

Notice to U.S. Government Users — Documentation Related to Restricted Rights — Use,
duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract
with I1BM Corporation.

Trademarks and Acknowledgements

The following trademarks and acknowledgements apply to this book:

AlX is a trademark of International Business Machines Corporation.

BSC is a trademark of BusiSoft Corporation.

Hayes is a registered trademark of Hayes Microcomputer Products, Inc.

IBM is a registered trademark of International Business Machines Corporation.
Micro Channel is a trademark of International Business Machines Corporation.
POSIX is a trademark of the Institute of Electrical and Electronic Engineers (IEEE).
RISC System/6000 is a trademark of International Business Machines Corporation.
Smartmodem 2400 is a trademark of Hayes Microcomputer Products, Inc.

UNIX was developed and licensed by AT&T and is a registered trademark of AT&T
Corporation.

Trademarks i

iV Kernel Reference

—

About This Book

AlIX Calls and Subroutines Reference for IBM RISC System/6000, SC23-2198, is divided
into the following four major sections:

o Volumes 1 and 2, Calls and Subroutines Reference: Base Operating System, contains
reference information about the system calls, subroutines, functions, macros, and
statements associated with AIX base operating system runtime services, communications
services, and device services.

e Volumes 3 and 4, Calls and Subroutines Reference: User Interface, contain reference
information about the AlXwindows widget classes, subroutines, and resource sets; the
AlXwindows Desktop resource sets; the Enhanced X—Windows subroutines, macros,
protocols, extensions, and events; the X-Window toolkit subroutines and macros; and the
curses and extended curses subroutine libraries.

o Volume 5, Calls and Subroutines Reference: Kernel Reference, contains reference
information about kernel services, device driver operations, file system operations,
subroutines, the configuration subsystem, the communications subsystem, the high
function terminal (HFT) subsystem, the logical volume subsystem, the printer subsystem,
and the SCSI subsystem.

¢ Volume 6, Calls and Subroutines Reference: Graphics, contains reference information
and example programs for the Graphics Library (GL) and the AlXwindows Graphics
Support Library (XGSL) subroutines.

This volume, Calls and Subroutines Reference: Kernel Reference, is a technical reference
detailing all system services available for writing kernel extensions. In particular, this
reference describes existing kernel services and the interfaces needed for programming
kernel extensions. Possible types of kernel extensions include device drivers, system calls,
kernel services or virtual file systems.

This book has a companion volume, Kernel Extensions and Device Support Programming
Concepts, that provides a conceptual introduction to the kernel programming environment
and how to extend it.

Who Should Use This Book

This book is intended for systems programmers wishing to extend the AlX kernel. Readers
should be familiar with operating system concepts and kernel programming. Those wishing a
review of this background should see Kernel Extensions and Device Support Programming
Concepts for an overview.

About This Book V

How to Use This Book

Overview of Contents
The Kernel Reference contains two parts. Part 1 contains information needed to write kernel
extensions. This includes:

The kernel services provided in the AIX kernel, in alphabetical order.

Interface requirements for writing device drivers. Extended descriptions of device driver
routines and related data structures are discussed here.

Interface requirements for writing virtual file systems. Extended descriptions of virtual file
system routines are provided.

Part 2 details the interface requirements for AiX subsystem programming. This information
describes individual device drivers and the use of the device-related subroutines (open,
close, read, write, ioctl) that control them. The AlX subsystems include:

The communications I/O subsystem. This chapter contains information about features
common to all communications device drivers, as well as details about specific adapters.
These include the Ethernet, Token-Ring, X.25, and MPQP adapters.

The configuration subsystem. This chapter includes a description of the configuration
databases, requirements for writing configuration methods, and a description of existing
configuration routines.

The high function terminal (HFT) subsystem. This chapter describes the use of
subroutines and structures needed to control the high function terminal.

The logical volume manager subsystem. This chapter describes the logical volume device
driver and how it accesses the underlying physical devices.

The printer addition management subsystem. This chapter describes routines needed for
adding a new type of printer to the system.

The SCSI subsystem. This chapter describes the SCSI tape, disk, and CD-ROM device
drivers.

Highlighting
The following highlighting conventions are used in this book:
Bold Identifies commands, keywords, files, directories, and other items whose
~ names are predefined by the system.
Italics Identifies parameters whose actual names or values are to be supplied by
the user.

vi

Monospace ldentifies examples of specific data values, examples of text similar to what

you might see displayed, examples of portions of program code similar to
what you might write as a programmer, messages from the system, or
information you should actually type.

Kernel Reference

Related Publications

The following books contain information about or related to device drivers and other kernel
extensions.

AIX Files Reference for IBM RISC System/6000, Order Number SC23-2200.

AIX General Programming Concepts for IBM RISC System/6000, Order Number
SC23-2205.

AIX Kernel Extensions and Device Support Programming Concepts for IBM RISC
System/6000, Order Number SC23-2207.

IBM RISC System/6000 Hardware Technical Reference — 7012 POWERstation and
POWERserver, Order Number SA23-2660.

IBM RISC System/6000 Hardware Technical Reference — 7013 and 7016 POWERstation
and POWERserver, Order Number SA23-2644.

IBM RISC System/6000 Hardware Technical Reference — 7015 POWERserver, Order
Number SA23-2645.

IBM RISC System/6000 POWERstation and POWERserver Hardware Technical
Reference — General Information, Order Number SA23-2643.

IBM RISC System/6000 POWERstation and POWERserver Hardware Technical
Reference — Options and Devices, Order Number SA23-2646.

IBM RISC System/6000 Problem Solving Guide, Order Number SC23-2204.

Ordering Additional Copies of This Book

To order additional copies of this book, use Order Number SC23-2198-00.

About This Book Vii

viii Kernel Reference

Table of Contents

Part 1. Programming in the Kernel Environment

Chapter1. Kernel Servicescciiiiriiiinnrnrnenancannnens
ackque Kernel Serviceciiiiiii it e
add_arp_iftype Kernel Service i
add_domain_atKernel Service i e
add_input_type KernelServicet i
add_netisrKernel Servicecoiii i i e e
add_netoptMacro ...t e e e
as_attKernel Service it e e e e
as detKernel Service iii it i e e e e
attach-device Queue ManagementRoutine
attchg Kernel Serviceiiiiiir ittt ettt it et
audit_svcbcopy Kernel Servicet it it e
audit_svcfinis Kernel Service ettt
audit_svestartKernel Servicecii it e
bawrite Kernel Servicec.i it i e
bdwrite Kernel Service it i e
bflush Kernel Service i e
binval Kernel Servicet i i e e e
blkflush Kernel Servicet it it i iia e
bread Kernel Serviceciiiiiiiiiii it
breadaKernel Servicec. it e e
brelse Kernel Servicecuiiiiitii it i it
bwrite Kernel Service i i e
cancel-queue-element Queue ManagementRoutine
canclgKernel Service it e e e e
cignadd Kernel Servicecoii ittt i ettt ittt e
cfgneb Configuration Notification Control Block,
cfgndel Kernel Servicec.coiiiiiiriiiii ittt ittt
check-parameters Queue Management Routine
cirbuf Kernel Service i e e
cijmpx Kernel Service i e
copyinKernel Servicettt e e
copyinstrKernel Service i e e
copyout Kernel Service i e e et et e e e
creatd Kernel Service ...t i e e
creatpKernel Service ...t e
creatgKernel Service i i e
curtime Kernel Serviceottt i i i
d clearKernel ServiCeooivitiiiii ittt ittt ineennnaens
d_complete Kernel ServiCecco ittt e e e e
d_initKernel Servicettt i i e i e e e
d_maskKernel Serviceiiiiii i i e e e

Table of Contents

1-1
1-2
1-4
1-6
1-8

1-10

1-11

1-12

1-14

1-16

1-17

1-20

1-21

1-22

1-24

1-25

1-26

1-27

1-28

1-29

1-30

1-32

1-33

1-34

1-35

1-36

1-37

1-39

1-40

1-42

1-43

1-44

1-45

1-46

1-47

1-49

1-50

1-52

1-54

1-55

1-57

1-59

ix

X

d_masterKernel Serviceo e e e
d moveKernel Servicecciviii it i e e e e e e
d_slave Kernel Servicec.iiiiiii i e e e e
d_unmask Kernel Servicecciiiii ittt iiinnaaanen
del_arp_iftype Kernel Service ittt
del_domain_af Kernel Serviceottt
del_input_type Kernei Service i i
del_netisrKernel Serviceciiiiiiin ittt ittt i e
del_netoptMacro ...t e e
delay Kernel Servicettt it e et teeeeeaeea
deque Kernel Servicettt e e
detach-device Queue ManagementRoutine
detchg Kernel Servicet i e i
devdump Kernel Service e e s
devstrat Kernel Serviceot i it e et
devswadd Kernel Service i e
devswdel Kernel Service ottt ittt i e
devswqry Kermel Service iii i i e
dmp_add Kernel Servicettt i e e e
dmp_del Kernel Servicet
dstryd Kernel Serviceot i e e e e e
dstryg Kernel Servicet e e
DTOM Macro for mbuf Kernel Services
e _postKernel Servicet e e
e_sleepKernel ServiCe ...t i e e e
e_sleeplKernel Serviceiiii i i e
e waitKernel Service i i e e e e
e_wakeup Kernel Service i e
enqgue Kernel ServiCe ..ottt i it e et it e e
errsave Kernel Service e e e
find_arp_iftype Kernel Service it
find_input_type Kernel Service ...ttt
fp_access Kernel Serviceottt e e e e
fp_closeKernel Serviceottt e e e
fp_fstat Kernel Service i i i e
fp_getdevno Kernel Service it i
fo_getfKernel Service i i i e e
fp_hold Kernel Serviceo e
fp_ioctl Kernel Service it e e e
fp_lseek Kernel Serviceottt i e
fp_openKernel Servicet e e
fp_opendevKernel Service ..ot e et
fo_pollKernel Servicec.o it i it ittt
fp_read Kernel Servicecoviiiiii it i ettt it
fp_readvKernel ServiCec.o.oeiiiinii it e e
fo_rwuioKernel Servicecciiiiiiii i i e e e
fp_selectKernel Serviceccooiiiiiiiii i i i et i i
fo_write Kernel Serviceccoiiii it e e e e
fp_writev Kernel Service ...t i it e e
fubyte Kernel Servicecoiiiiiiinii it ittt et iiinnns
fuword Kernel Servicettt i i it e i e

Kernel Reference

1-60
1-63
1-65
1-67
1-68
1-69
1-70
1-71
1-72
1-73
1-74
1-77
1-78
1-80
1-82
1-84
1-86
1-88
1-90
1-92
1-93
1-94
1-95
1-96
1-97
1-99
1-101
1-103
1~104
1-106
1-107
1-109
1-111
1-112
1-113
1-114
1-115
1-116
1-117
1-118
1-119
1-121
1-124
1-126
1-128
1-130

1-131

1-135
1-137
1-139
1-140

P

getadsp Kerne!l Servicet e e e e 1-141

getblk Kernel Service et 1-142
getcKernel Service i e e e e e e 1-143
getch Kernel Semvice oo e e e e 1-144
getcbpKernel Servicet e e e 1-145
getcf Kernel ServiCet i i e e 1-146
getexX Kernel ServiCeot i e e e e e 1-147
geteblk Kernel Service e 1-148
geterror Kernel Servicet i e e e 1-149
getexcept Kernel Servicettt it i i e 1-150
getpid Kernel Service ...ttt i i i e et e 1-151
getuerror Kernel Service vt e i e e e 1-152
ofsadd Kernel Serviceo i e e 1-1563
gfsdel Kernel Servicet ittt e i i 1-155
iclearKernel ServiCet it e e e e e e 1-156
i_disable Kernel Serviceciiiiiii ittt it i e e 1-157
i_enable Kernel Servicecuuiiiiiii it e e e 1-159
LinitKernel Service ...t i e i e e e e 1-160
i_maskKernel Service e e 1-162
iresetKernel Service e e e 1-163
i_schedKernel Serviceiiiiiiiiiirii it it inaianneannn 1-164
i_unmask Kernel Servicec..iiiiiiiiiiiit i it e 1-166
if_attachKernelServiceciiiii it i, 1-167
if_detachKernelService it it iienn, 1-168
if_down Kernel Servicettt e i e e 1-169
if_nostatKernel Servicec it i e e 1-170
ifa_ifwithaddr Kernel Service it 1-171
ifa_ifwithdstaddr Kernel Service i, 1-172
ifa_ifwithnet Kernel Service i i e e 1-173
ifunit Kernel Serviceo i i e 1-174
init_heapKernel Service ...ttt it it e e 1-175
initp Kernel Service i e e 1-176
io_attKernel Servicet i e e e e 1-178
jo_detKernel Servicec. .. ittt e e 1-179
iodone Kernel Servicettt it i e e e 1-180
iostadd Kernel Servicecoiiiiiiiiiiiiii ittt it 1-182
jostdel Kernel Servicettt i i ettt e e 1-185
fowait Kernel Servicec..ciiiiiiiii i i i e e 1-186
kgethostname Kernel Servicettt it i, 1-187
kmod_entrypt Kernel Servicecouiiiiiiii i, 1-188
kmod_load Kernel Servicecc.iiiiiiii ittt ittt 1-189
kmod_unload Kernel Serviceccciiiiiiiiiiiiiii it 1-193
kmsgetl Kernel Servicet e e 1-195
kmsggetKernel Serviceottt i i 1-197
kmsgrev Kernel Service it e e 1-199
kmsgsnd Kernel Serviceccoiiiiii i i i i it 1-202
lockl Kernel Servicecciiiiiiiiiiiii ittt et ieiiaannannn 1-204
loifpKernel Service i e e e 1-206
longjmpx Kernel Servicecoiiiiiiiii ittt it i i e e e 1-207
lookupvp Kernel Servicecoiiiiiiiii i e e e 1-208
looutput Kernel Serviceccv it et i et et et 1-210

Table of Contents Xi

X

m_adjKernel Serviceiiiiiii i e e e e
m_cat Kernel ServiCeottt in ittt it
m_clgetKernel Service
m_clgetx Kernel Servicettt it et
m_collapse Kernel Servicec.cciiiiiiiiiiiiiiiiinennanns e
mM_copy Kernel Serviceouiiiiiiii ittt iie et e inaenens
m_copydata Kernel Service e
m_dereg Kernel Service ittt
m_freeKernel Service i e e e e e,
m_freemKernel Semviceouiiii it e e
m_getKernel Service it e e
m_getclr Kernel Serviceo ittt
m_getclust Kernel Service i e
M_HASCL Macro for mbuf Kernel Services i,
m_pullup Kernel Serviceot e e
m_reg Kernel ServiCettt i e e
mbreq Structure for mbuf Kernel Services i,
mbstat Structure for mbuf Kernel Services i,
mincnt Routine for the uphysio Kernel Service
MTOCL Macro for mbuf Kernel Services,
MTOD Macro for mbuf Kernel Services,
net_attach Kernel Service o it eaa
net_detach Kernel Servicec.ciiiiiiiiiii it i,
net_errorKernel Servicet e e e
net_sleep Kernel Serviceoiiiiitiii it i
net_start Kernel Service i i e
net_start_doneKernelServicet
net_wakeup Kernel Servicet e e
net_xmit Kernel Service ...ttt ittt e e
notify Routine for the fp_select Kernel Service
paniCKernel ServiCeoiii it e e e e
peekgKernel Service i e e e i
pictinput Kernel Servicet i i
pfiindproto Kernel Service i it it it e e
pgsignal Kernel Serviceoiiiiiiiiiiii i ittt
pidsig Kernel Service it e e
PiINKernel ServiCe i i et e
pincfKernel Service it it e e e
pincode Kernel Servicec.oiiiiiiiiiii ittty
pinuKernel Servicet i e e
pio_assistKernel Servicec i i e s
Process State-Change Notification Routine
prochadd Kernel SemviCecuuiiii ittt it enienenenaens
prochdel Kernel Servicec.ciiiiiiiiiiiiiit ittt enennans
purblk Kernel Servicettt it et e e
PUtC Kernel ServiCettt it i it i e e
putcb Kernel Servicet i e e e
putcbp Kernel Service viviiiii it i i i e et e
putcf Kernel Serviceciiiiiiii ittt it i i it
putcfiKernel Service ..o i i it e e
PULCX Kernel SemvICeottt i e e s e e e

Kernel Reference

1-211
1-212
1-213
1-214
1-216
1-217
1-218
1-219
1-220
1-221
1-222
1-223
1-224
1—225
1-226
1-227
1-228
1-229
1-230
1-231
1-232
1-233
1-234
1-235
1-236
1-237
1-238
1-239
1-240
1-241
1-243
1-244
1-246
1-247
1-248
1-249
1-250
1-262
1-253
1-254
1-256
1-259
1-260
1-262
1-263
1-264
1-265
1-266
1-267
1-268
1-269

qryds Kerel ServiCecoivii it i i e e e e e e 1-270

queryd Kernel ServiCe covii it i i i e e e e e e 1-272
queryiKernel Serviceiiiiiiiti i e e e 1-273
querypKernel Serviceo e e 1-274
raw_input Kernel ServiCeiuiiiiiit it i it e 1-275
raw_usrreg Kernel Service ittt i e e 1-276
readg Kernel Servicettt e e 1-278
rgc Kernel Service e 1-279
rqd Kerel Serviceco it i it e 1-281
ragetw Kernel Service o i e e 1-282
rgputw Kernel Service i i e e e 1-283
ralloc Kernel Service i e e 1-284
tfree Kernel Service ...t e e e e 1-285
rinitKernel Servicet e 1-286
riredirect Kernel Service i e 1-287
rtrequestKernel Service it i i 1-288
schednetisrKernel Servicettt e 1-290
selnotify Kernel Service i i 1-291
setimpx Kernel Service i e e 1-293
setpinit Kernel Service i i i e e 1-294
setuerror Kernel Service o ittt it i 1-295
sig_chkKernel Servicettt ittt 1-296
sleepKernel Service i e i e 1-298
subyte Kernel Serviceooiiiii i i e e e 1-300
suserKernel ServiCet e e e 1-301
suword Kernel ServiCecciiiiiiiiiiii ittt i e 1-302
tallocKernel Servicet i e et 1-303
tiree Kernel Serviceiiiiiiiiiii ittt ittt 1-304
timeoutKernel Servicei ittt i e e 1-305
timeoutctf Kernel Subroutine ittt i e 1-307
tregenk Kernel Servicet e e e 1-309
tregenkt Kernel Service i e e 1-310
tstartKernel Service it i e e e 1-311
tstopKernel Servicet e 1-313
uexadd Kernel Serviceoiiiiiiiii it et 1-314
uexblock Kernel Serviceciiiiiiiiii i it 1-315
uexclearKernel Serviceciiiitiiiiii ittt e e 1-316
uexdel Kernel Servicettt it e e e e 1-317
uiomove Kermel Servicecoviiiiiii ittt et it e 1-318
unlockl Kernel Servicecoiiiiiiiiiiii ittt 1-320
unpinKernel Serviceoitit it i i i e e e 1-322
unpincode Kernel Service ettt e, 1-323
UNPINU Kernel Servicecoviit ittt i ittt ettt 1-324
untimeout Kernel Service e et ettt e 1-326
UPhYSIO Kernel ServiCecooiiiiie ittt it ettt e et 1-327
UreadC Kere! ServiCe oo vttt i et e i e e e 1-331
User-Mode Exception Handler for the uexadd Kernel Service 1-333
UWriteC Kermel ServiCecoiiriiii it ittt c et e e 1-335
vec_clearKernel Serviceciiiimiiiniiiiii it i 1-337
vec_initKernel Servicecciiii i e e e 1-338
visrele Kernel Serviceottt i it i i i e 1-340

Table of Contents Xiii

virtual-interrupt-handler Queue Management Routine
vm_attKernel Service i e e e e
vm_cflushKernel Service ittt
vm_detKernel Service i e e
vm_handle Kernel Servicettt
vm_makep Kernel Serviceco ittt
vm_mountKernel Servicettt e i e e
vm_move Kernel Servicec..ciuiiiniirin e
vm_protectp Kernel Service it
vm_gmodify Kernel Service i e e e,
vm_release Kernel Service it e
vm_releasep Kernel Service i e e
vm_umount Kernel Service i e e
vm_write Kernel ServiCeovv i e
vm_writep Kernel Service i
vms_create Kernel Service ...ttt et
vms_delete Kernel Servicet e i
vms_jowaitKernel Service i e e
vn_free Kernel Service ...t e e
vn_getKernelService ... i e
w_clear Kemel Servicettt i e e e
W_initKernel Service i e e e e
w_start Kernel Serviceoiiiiiiiii it i e e e
w_stop Kernel Serviceiiiiiiii i e e e
waitcfree Kernel Service i e
waitgKernel Service i e e e
wakeup Kernel Service i e e
Watchdog Timer Function i i eeenn
xmalloc Kernel Servicec.iii it e e
xmattach Kernel Service i it i
xmdetach Kernel Service ittt
xmemdma Kernel Service ...ttt e e e
xmeminKernel Service i e e
xmemout Kernel Service i e e e e e
xmfree Kernel Service e i e e

Chapter 2. Device Driver Operationscociiiiirinrnrnennns
Guide to Writing Device Driver Entry Points
Character and Block Device Driver Entry Points: Overview
Standard Parameters to Device Driver Entry Points
buf Structure et
Character ListsStructure ...ttt i,
Device Dependent Structure (DDS)ciiiiiiriiii it iiienennennn
UID SHUCIUNE . . .ot i i e e e e e e e
ddclose Device DriverEntry Point i
ddconfig Device Driver Entry Point.

CFG_INIT Command Parameter to the ddconfig Routine

CFG_QVPD Command Parameter to the ddconfig Routine

CFG_TERM Command Parameter to the ddconfig Routine

Xiv Kernel Reference

1-341
1-342
1-343
1-344
1-345
1-346
1-347
1-348
1-350
1-352
1-353
1-355
1-357
1-358
1-360
1-361
1-363
1-364
1-365
1-366
1-368
1-369
1-370
1-371
1-372
1-373
1-375
1-376
1-377
1-379
1-381
1-382
1-384
1-386
1-388

2-1

2-3
2-5
2-6
2-8
2-10
2-12
2-15
2-17
2-19
2-20
2-21

dddump Device Driver Entry Point i

Device Driver System Dump Support: Values for the dddump cmd Parameter .
ddioctl Device Driver Entry Point i
ddmpx Device Driver Entry Pointttt

ddopen Device Driver
ddread Device Driver

Entry Pointot i e
Entry Point

Select/Poli Logic for the ddread Routine
ddrevoke Device Driver Entry Point i i,
ddselect Device Driver Entry Point i i
ddstrategy Device Driver Entry Point i,

ddwrite Device Driver

EntryPoint

Select/Poll Logic for the ddwrite Routine

Chapter 3. File SystemOperationscciiiiiiininiinens.

vis_cntl Subroutine .
vfs_init Subroutine .

..

..

vis_mount Subroutine e e e

vis_root Subroutine .
vis_statfs Subroutine
vis_sync Subroutine

..

viS_UMOUNt SUDIOULINEottt e it e e e

vis_vget Subroutine

..

VN_acCess SUbroutine i e e e e

vn_close Subroutine
vn_create Subroutine
vn_fclear Subroutine
vn_fid Subroutine ..
vn_fsync Subroutine
vn_ftrunc Subroutine
vn_getacl Subroutine
vn_getattr Subroutine
vn_hold Subroutine .
vn_ioctl Subroutine .
vn_link Subroutine .
vn_locketl Subroutine
vn_lookup Subroutine
vn_map Subroutine .
vn_mkdir Subroutine

..

...

..

..

...

..

..

v_mKnod SUbroutinet e e e et e

vn_open Subroutine
vn_rdwr Subroutine .

..

vN_readdir SUDIOUtINGt i it i e e e et e

vn_readlink Subroutin
vn_rele Subroutine .

L T

..

VN_remove SUDrOUtINEot i i e e
vn_rename Subroutine it i it i e
VN_revoke SUBroutine i i i e et e e

vn_rmdir Subroutine

vn_select Subroutine
vn_setacl Subroutine
vn_setattr Subroutine

..
...
...

..

Table of Contents

2-22
2-24
2-26
2-28
2-30
2-32
2-34
2-35
2-37
2-40
2-42
2-44

3-1
3-2
3-3

37

3-9
3-10
3-12
3-14
3-16
3-17
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-30
3-32
3-34
3-35
3-36
3-37
3-39
3-40
3-41

3-43
3-45
3-46
3-47
3-48
3-49

XV

vn_strategy Subroutine
vn_symlink Subroutine
vn_unmap Subroutine

................................

................................

3-51
3-52
3-53

Part 2. Extending Device Subsystems

xvi

Chapter 4. Configuration Subsystem .
Machine Device Driver

Device Configuration Commands

bootlist Device Configuration Command .
nvload Device Configuration Command .
restbase Device Configuration Command

................................

................................

savebase Device ConfigurationCommand

Device Configuration Subroutines
attrval Device Configuration Subroutine .

genmajor Device Configuration Subroutine
genminor Device Configuration Subroutine

genseq Device Configuration Subroutine

getattr Device Configuration Subroutine .
getminor Device Configuration Subroutine
loadext Device Configuration Subroutine

putattr Device Configuration Subroutine .
reldevno Device Configuration Subroutine
relmajor Device Configuration Subroutine
relseq Device Configuration Subroutine .

...............................

................................

...............................

................................

................................

ODM Device Configuration Object Classes
ODM Device Configuration ObjectClassesc.ccivuiena...

Config_Rules Object Class (Configuration
CuAt Object Class (Customized Attribute)

Rules) it

...............................

CuDep Obiject Class (Customized Dependency)cccvevreriennnnnn.

CuDv Object Class (Customized Devices)

CuDvDr Object Class (Customized Device Driver)ccovunn.

CuVPD Object Class (Customized VPD)
PdAt Object Class (Predefined Attribute)

Adapter-Specific Considerations for the PdAt ObjectClass
PdCn Object Class (Predefined Connection)cccvien....

Predefined Devices (PdDv) Object Class

Adapter-Specific Considerations for the PdDv ObjectClass

Writing Device Methods

Guide to Writing Device Methods
How Device Methods Return Errors
Loading a Device Driver

................................

................................

Device Methods for Adapter Cards: Guidelines

Writing a Change Method
Writing a Configure Method
Writing a Define Method
Writing an Unconfigure Method
Writing an Undefine Method
Writing Optional Start and Stop Methods

Kerne! Reference

................................

................................

4-1
4-2

4-7
4-11
4-13
4-14

4-15
4-16
4-17
4-19
4-20
4-22
4-24
4-26
4-27
4-28
4-29

4-30
4-31
4-33
4-35
4-36
4-40
4-42
4-43
4-47
4-50
4-51
4-56

4-57
4-58
4-59
4-60
4-61
4-64
4-69
4-73
4-76
4-78

Chapter 5. Communications Subsystemccc0nent. 5-1
Communications Physical Device Handler Entry Points

ddclose Communications PDHEntry Point 5-2
ddioctl (CIO_GET_STAT) Communications PDH Entry Point 5-3
Status Blocks for Communications Device Handlers 5-5
CIO_START_DONE StatusBlock ccoiiiiiiiiann.. 5-5
CIO_HALT_DONE Status BIoCcKoiii ittt i et i 5-5
CIO_TX_DONEStatusBlockttt 5-6
CIO_NULL BLKStatusBlockcciiiiiiiiiiiiiiiiiinannn. 5-6
CIO_LOST_STATUS StatusBlockc.ciiiiiiniiiiinnan.. 5-6
CIO_ASYNC_STATUS StatusBlockccooiiiiinnnnn, 5-6
ddioctl (CIO_HALT) Communications PDH Entry Point 5-7
ddioctl (CIO_START) Communications PDH Entry Point 5-9
ddioctl (CIO_QUERY) Communications PDH Entry Point 5-11
ddopen (Kernel Mode) Communications PDH Entry Point 5-13
ddopen (User Mode) Communications PDH Entry Point 5-16
ddread Communications PDH Entry Point 5-18
ddselect Communications PDH Entry Point, 5-20
ddwrite Communications PDHEntry Point 5-22
Ethernet Device Handier Entry Points
entclose Ethernet Device Handler Entry Point 5-24
entcontfig Ethernet Device Handler Entry Point 5-25
entioct! Ethernet Device HandlerEntry Point 5-27
CCC_GET_VPD entioctl Operation (Query Vital ProductData) 5-29
CIO_GET_STAT entioctl Operation (GetStatus) 5-30
Status Blocks for the Ethernet Device Handler 5-30
CIO_START_DONE StatusBlockcciiiiieninnn. 5-31
CIO_HALT_DONE StatusBlockc.ciiiiiiiennnn.. 5-31
CIO_HALT entioctl Operation (Halt Device)cccoieien... 5-32
CIO_QUERY entiocti Operation (Query Statistics) 5-33
CIO_START entioctl Operation (Start Device) 5-34
ENT_SET_MULTI entioctl Operation (Set Multicast Address) 5-36
IOCINFO entioctl Operation (Describe Device) 5-37
entmpx Ethernet Device Handler Entry Pointo iiin... 5-38
entopen Ethernet Device Handler Entry Point 540
entread Ethernet Device Handler Entry Point 5-42
entselect Ethernet Device HandlerEntry Point 5-44
entwrite Ethernet Device Handler Entry Point 5-46
Multiprotocol (MPQP) Device Handler Entry Points
mpclose Multiprotocol (MPQP) Device Handler Entry Point 5-48
mpconfig Muitiprotocol (MPQP) Device Handler Entry Point 5-50
mpioctl Multiprotocol (MPQP) Device Handler Entry Point 5-51
CIO_GET_STAT mpioctl Operation (GetStatus) 5-53
Status Blocks for the Multiprotocol Device Handler 5-53
CIO_START_DONE StatusBlockc..ccoviriiiiinenen.. 5-53
CIO_HALT_DONE StatusBIoCKcvireiininneinnnnnnn. 5-54
CIO_TX DONEStatusBlockcoviiiiiii i e ie s 5-54
CIO_ASYNC_STATUS StatusBlockccovvieiinennnnn.. 5-55

Table of Contents XVii

MP_RDY_FOR_MAN_DIAL Status Block .

MP_END_OF_AUTO_RESP Status Block .

MP_THRESH_EXC Status Block
CIO_HALT mpioctl Operation (Halt Device MPQP

........................
........................

)

CIO_QUERY mpioctl Operation (Query Statistics)

CIO_START mpioctl Operation (Start Device) ..

MP_CHG_PARMS mpioctl Operation (Change Parameters)
MP_START_AR and MP_STOP_AR mpioctl Operations (Autoresponse)

mpmpx Multiprotocol (MPQP) Device Handler Entry

Point...................

mpopen Multiprotocol (MPQP) Device Handler Entry Point

mpread Multiprotocol (MPQP) Device Handler Entry

Point...................

mpselect Multiprotocol (MPQP) Device Handler Entry Point
mpwrite Multiprotocol (MPQP) Device Handler Entry Point

Token-Ring Device Handler Entry Points
tokclose Token-Ring Device Handler Entry Point . .
tokconfig Token-Ring Device Handler Entry Point . .
tokioct! Token-Ring Device Handler Entry Point ...
CIO_GET_STAT tokiocti Operation (Get Status)

........................

Status Blocks for the Token-Ring Device Handler

CIO_START_DONE Status Block
CIO_HALT_DONE Status Block
CIO_TX_DONE StatusBlock
CIO_ASYNC_STATUS Status Block
CIO_HALT tokioctl Operation (Halt Device)
CIO_QUERY tokioctl Operation (Query Statistics)
CIO_START (Start Device tokioct! Operation) . .
IOCINFO tokioctl Operation (Describe Device) .

........................

........................

........................

TOK_FUNC_ADDR tokioctl Operation (Set Functional Address)
TOK_GRP_ADDR tokioctl Operation (Set Group Address)
TOK_QVPD tokioctl Operation (Query Vital ProductData)

TOK_RING_INFO tokioctl Operation (Query Toke
tokmpx Token-Ring Device Handler Entry Point . . .
tokopen Token-Ring Device Handler Entry Point ..
tokread Token-Ring Device Handler Entry Point . . .
tokselect Token-Ring Device Handler Entry Point . .
tokwrite Token-Ring Device Handler Entry Point . . .

X.25 Device Handler Entry Points

x25sclose X.25 Device Handler Entry Point
x25sioctl X.25 Device Handler Entry Point
CIO_DNLD x25sioctl (Download Task) Operation
CIO_GET_STAT x25sioctl Operation (Get Status)
Status Blocks for the X.25 Device Handler . . .
CIO_START_DONE Status Block
CIO_HALT_DONE Status Block
CIO_TX_DONE StatusBlock
CIO_NULL_BLK StatusBlock

X25_ REJECT_DONE Status Block
CIO_HALT x25sioctl Operation (Halt Session) . .
CIO_QUERY x25sioctl Operation (Query Device)

CIO_START x25sioctl Operation (Start Session)

XViii Kernel Reference

n-Ring)

........................
........................

........................
........................

.......................
........................
........................
........................
........................
........................
........................

........................

5-55
5-55
5-56
5-57
5-59
5-61
5-68
5-69
5-71
5-72
5-74
5-76
5-77

5-79
5-80
5-82
5-84
5-84
5-84
5-85
5-85
5-86
5-89
5-90
5-91
5-93
5-94
5-95
5-96
5-97
5-98

5-100

5-102

5-104

5-106

5-108
5-110
5-112
5-113
5-113
5-113
5-114
5-114
5-114
5-115
5-116
5-118
5-120

IOCINFO x25sioctl Operation (Identify Device) . .

X25_ADD_ROUTER_ID x25sioctl Operation (Add RouteriD)
X25_COUNTER_GET x25sioctl Operation (Get Counter)
X25_COUNTER_READ x25sioctl Operation (Read Counter)
X25_COUNTER_REMOVE x25sioctl Operation (Remove Counter)
X25_COUNTER_WAIT x25sioctl Operation (WaitCounter)
X25_DELETE_ROUTER_ID x25sioctl Operation (Delete Router ID)
X25_DIAG_IO_READ x25sioctl Operation (Read Register)
X25_DIAG_IO_WRITE x25sioctl Operation (Write to Register)
X25_DIAG_MEM_READ x25sioctl Operation (Read Memory)
X25_DIAG_MEM_WRITE x25sioctl Operation (Write Memory)
X25_DIAG_RESET x25sioctl Operation (Reset Adapter)
X25_DIAG_TASK x25sioctl Operation (Download Diagnostics)
X25_LINK_CONNECT x25sioctl Operation (ConnectLink)
X25_LINK_DISCONNECT x25sioctl Operation (Disconnect Link)
X25_LINK_STATUS x25sioctl Operation (Link Status)
X25_LOCAL_BUSY x25sioctl Operation (LocalBusy)
X25_QUERY_ROUTER_ID x25sioctl Operation (Query RouterID)
X25_QUERY_SESSION x25sioctl Operation (Query Session)

X25_REJECT x25sioctl Operation (Reject Call) . .
x25smpx X.25 Device Handler Entry Point
x25sopen X.25 Device Handler Entry Point
x25sread X.25 Device Handler Entry Point
x25sselect X.25 Device Handler Entry Point
x25swrite X.25 Device Handler Entry Point

.......................

Chapter 6. High Function Terminal (HFT) Subsystem

ioctl Operations

HFCHGLOC ioctl Operation (Change Locator)
HFCMON ioctl Operation (Exit Monitor Mode)
HFDSOUND iocti Operation (Disable Sound Signal)
HFESOUND ioctl Operation (Enable Sound Signal) .

.......................

.......................

HFESWKBD ioctl Operation (Enable Software Keyboard)

HFQERROR ioctl Operation (Query I/O Error)
HFQUERY ioctl Operation (Query)
HFQUERY ioctl Option: Query Dials
HFQUERY ioctl Option: Query HFT Device
HFQUERY ioct! Option: Query Keyboard Status .

.......................

.......................

HFQUERY ioctl Option: Query Lighted Programmable Function Keys

HFQUERY ioctl Options: Query Mouse and Query
HFQUERY ioctl Option: Query Physical Device . .

Tablet

HFQUERY ioctl Option: Query Physical Display IDs
HFQUERY ioctl Option: Query PresentationSpace

HFQUERY ioctl Option: Query Retract Device ID

HFQUERY ioctl Option: Query Software Keyboard
HFSJKBD ioctl Operation (Set Japanese Keyboard)
HFSKBD ioct! Operation (Set Keyboard Map)
HFSMON ioctl Operation (Enter Monitor Mode)

.......................

.......................

HFTCSMGR ioctl Operation (Control Screen Manager)

HFTGETID ioctl Operation (Get Virtual Terminal ID)

Table of Contents

5-125
5~-127
5-129
5-130
5-131
5-132
5-133
5-134
5-135
5-136
5-137
5-138
5-139
5~140
5-141
5-142
5-143
5-144
5-145
5-147
5-149
5-151
5-155
5-158
5-160

6-1

6-2
6-3

6-5

6-7
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-24
6-25
6-26
6-27

Xix

XX

HFTQDEV ioctl Operation (Query Device)coiiiiiiniiniennn..

HFTQSMGR ioctl
HFTSBREAK ioctl

Operation (Query ScreenManager)
Operation (SetBreakMap)coiiiiieon..

HFTSECHO ioctl Operation (SetEchoMap) oiiiiat.

read/write Operations

Input Device Reportread Operationo iiiiiiiiinn.n.
Untranslated Key Control read Operation oiiiiiin...
Cancel Sound write Operation0 ittt

Change Font Pale

tte write Operationot

Change Physical Display write Operation e
Redefine Cursor Representation write Operation
Screen Release write Operation i iiiin..
Screen Requestwrite Operation 0 it iinnn..

Send Sound write

Operationcoiiiii i i e e e

Set Dial Granularities write Operationcv ittt innenn.
Set Keyboard LEDs write Operationt

Set KSR Color Pal

lettewrite Operation i ..

Set LPFKswrite Operationciiiiiiiiiiii ittt innnnnnn
Set Protocol Modes write Operation

Miscellaneous Operations

Accented Charactersttt e e i e
Echo and Break Map Structure ittt
Requesting Screen Control and Specifying an Input Ring Buffer
RequestingScreen Releasecoiiiiiii it
Valid Multibyte Control Codes for Clearing and Setting Tab Controls
Valid Multibyte Control Codes for Controlling Cursor Movement
Valid Multibyte Control Codes for Erasing Areas, Displays, Lines, and Fields
Valid Multibyte Control Codes for Inserting and Deleting Lines and Characters . . .
Valid Multibyte Control Codes for Performing Miscellaneous Tasks
Valid Multibyte Control Codes for Scrolling cccoiiiiiioon.,

Chapter 7. Logical Volume Subsystemcciiiiiiiiiannnn.

Physical Volumes

and the Logical Volume Device Driver

The Logical Volume Device Driverc. ittt iiiniinanens
Logical VolumesandBadBlockscciiiiiiiiiiiniinan..,

Chapter 8. Printer Subsystemc.iiiieiinenereniieernnanens
Understanding Embedded References in Printer Attribute Strings
initialize Subroutine e

lineout Subroutine

..

passthru Subroutine i e e

piocmdout Subrou
pioexit Subroutine
piogetopt Subrouti

(121~ Y

L

piogetstr Subroutine e e
piogetvals Subroutine i e
piomsgout SUDrOUtiNgt e i e e
restore Subrouting e e i

setup Subroutine

Kernel Reference

...

6-33
6-34
6-35
6-36
6-37
6-38
6-39
6—40
6—41
6—42
6-43
6—44
6—-45
6-46

6-47
6-50
6-52
6-54
6-55
6-57
6-60
6-62
6-64
6-69

7-1
7-2
7-6
7-10

8-1
8-2
8-3
84
8-6
8-7
8-8
8-9
8-11
8-12
8-14
8-15
8-16

Chapter 9. SCSISubsystemciiiiiiiiiiiiriiiinnnnnn 9-1

CD-ROM SCSIDeviceDriverot eee, 9-2
rmt SCSIDevice Driver e 9-10
scdisk SCSI Device Driver i e 9-19
SCSI Adapter Device Driver i e 9-29
Managing DUMPS e 9-37
SCIODIAG ioctl Operationoviiiii ittt i ieinenennn 9-38
SCIODNLD iocti Operationttt i e ie e 9-40
SCIOHALT ioctl Operationttt 9-42
SCIOINQU ioctl Operationoiuiiieir it it iaen e 9-43
SCIORESET ioctl Operation ittt 9-45
SCIOSTART ioctl Operationccviiiiii it 9-47
SCIOSTOP ioctl Operationot i e iie e 9-48
SCIOSTUNIT ioctiOperationc.c.uiriiiiniiiiintnnnnennn 9-49
SCIOTRAMiocti Operationoiiiiniiiiiiiniiiinnenanen 9-51
SCIOTURocti Operationttt it 9-52
g T = X-1

Table of Contents XXi

xxii

Kernel Reference

e

Part 1. Programming in the Kernel Environment

Programming in the Kernel Environment

Kernel Reference

TN

Chapter 1. Kernel Services

Kernel Services 1-—1

ackque

ackque Kernel Service

Purpose
Sends an acknowledge device queue element.

Syntax ,
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>

int ackque (qge, flags, results)
struct ack_ge *qe;

int flags;

int results;

Parameters
qe Specifies the address of the acknowledgment queue element.

flags Specifies the operation options.

results Specifies the operation results for a synchronous request or an interrupt on
error request.

Description ‘
The ackque kernel service is not part of the base kernel but provided by the Device Queue
Management kernel extension. This queue management kernel extension must be loaded
into the kernel once before the loading of any kernel extensions referencing these services.

The ackque service is called by a device queue server (typically a kernel process) to send
an acknowledgment. The operation option flags and the path type control the sending of an
acknowledgment. Depending on the type of acknowledgment requested, different amounts
of status information are returned.

The acknowledgment is only sent if both the path type and the operation options indicate
that an acknowledgment is to be sent. The deque kernel service has more detailed
information.

There are two types of acknowledgments: solicited acknowledgment and unsolicited
acknowledgment. A solicited acknowledgment is sent in response to a request that was
dequeued with the suppress option. All other acknowledgments are considered unsolicited.

If the suppress option is used with the deque service, the device queue’s server is
responsible for explicitly generating the acknowledgment by calling the ackque server. The
original request queue element is unavailable in this case. This is overcome by the server
remembering the operation options and passing them as the flags parameter.

A path to a device queue may be destroyed before the active queue element is totally
processed. If this happens, no acknowledgment is generated when the ackque service is
called. Instead, the queue element is discarded with no error reported.

1-2 Kernel Reference

ackque

Use of Virtual Interrupt Handlers
For compatibility purposes, when an acknowledgment is sent through a path that was set up
with an acknowledgment type of interrupt (INTR_ACK), a registered virtual interrupt handler
is called. The ackque service determines which virtual interrupt handler to call by
determining the sublevel associated with the acknowledge queue element. If the
qe->data[5] field in the acknowledgment queue element is positive (that is, the most
significant bit is a 0), then the sublevel specified when the path was created is used.
Otherwise, the value in the field is used as the sublevel for calling the correct virtual interrupt

handler.

ACKNOWLEDGE TYPE VALUE PARAMETER ONE PARAMETER TWO

None NO_ACK n/a n/a

Short SHORT_ACK Event mask n/a

Long LONG_ACK Acknowledge device queue Queue element priority
identifier

Interrupt INTR_ACK n/a Interrupt level and

sublevel

Virtual interrupt handlers are registered by using the vec_init service. The virtual interrupt
handler is directly called by the ackque service and executes in the process environment of
the caller.

Execution Environment
The ackque kernel service can be called from the process environment only.

Return Value
RC_GOOD Indicates successful completion.
No error is reported if the queue element is discarded.

Implementation Specifics
This kernel service is part of the Device Queue Management AIX kernel extension.

Related Information
The deque kernel service, vec_init kernel service.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-3

add_arp_iftype

add_arp_iftype Kernel Service

Purpose
Adds an interface type to the Network ARP Switch Table Interface (NASTI).
Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <net/if.h>
int add_arp_iftype(if_type, af, ioctl, resolve, whohas, arptfree)
u_short if type, af;
int (*ioctiX);
int (*resolve)();
int (*whohas)(); /
it (arptiree)); | K
Parameters
if_type Uniquely identifies the type of a network interface (for example, Ethernet or
token ring). Interface types are defined in the /usr/include/sys/devinfo.h
file.
af Specifies the address family that the specified ARP routines are able to
handle. ,
ioct! Specifies the ARP ioctl handler. '
resolve Specifies the ARP resolve handler.
whohas Specifies a function for transmitting ARP request packets.
arptfree Specifies a function that frees ARP entries and reclaims resources.
Description
The add_arp_iftype kernel service adds an interface type to the Network ARP Switch Table
Interface (NASTI). (
\
Example

Return Values
0

The add_arp_iftype kernel service is invoked by:
add_arp_iftype(DD_EN, AF_INET, arpioctl, arpresolve);

Indicates a successful operation.

EEXIST Indicates that the type specified by the if_type parameter for the specified
» address afhad already been added to the table.

ENOSPC Indicates that no free slots were left in NASTI.

EINVAL Indicates an error in the input parameters.

1—4 Kernel Reference

add_arp_iftype

Execution Environment
The add_arp_iftype kernel service can be called from either the process or interrupt
environment. The functions specified by the ioctl, resolve, whohas, and arptfree parameters
are can also be called in either the process or interrupt environments.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-5

add_domain_af

add_domain_af Kernel Service

Purpose
Adds an address family to the Address Family domain switch table.
Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/domain.h>
int add_domain_af (domain, af_netmatch, af_hash)
struct domain *domain;
int (*af_netmatch);
int (*af_hash);
Parameters
domain Specifies the domain of the address family.
af_netmatch Specifies a function that the generic routing code calls to determine if two
addresses are on the same network. The function should be of the form:
int af_netmatch (s1, s2)
struct sockaddr s1;
struct sockaddr s2;
The af_netmatch parameter should return 1 if the two addresses are on the
same network. Otherwise, it should return a 0 (zero).
af_hash Specifies a function that the generic routing code calls to determine routing
hash values. The function should be of the form:
" af_hash (sa, hp)
struct sockaddr *sa
struct afhash *hp;
Description

The add_domain_af kernel service adds an address family domain to the Address Family
domain switch table.

Return Values

0 Indicates that the address family was successfully added.
EEXIST Indicates that the address family was already added.
EINVAL Indicates that the address family number to be added is out of range.

Execution Environment
The add_domain_af kernel service can be called from either the process or interrupt
environment.

Example
1. To add an address family to the Address Family domain switch table, invoke the
add_domain_af kernel service as follows:

add_domain_af (&inetdomain, inet_netmatch, inet_hash);

In this example, the family to be added is inetdomain.

1-6 Kernel Reference

add_domain_af

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The del_domain_af kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepits.

Kernel Services 1=7

add_input_type

add_input_type Kernel Service

Purpose
Adds a new input type to the Network Input table.
Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <net/if.h>
#include <net/netisr.h>
int add_input_type (type, service_level, isr, ifq, af)
u_short type;
u_short service_level; p
int (*isn) (); \
struct ifqueue *ifg;
u_short af;
Parameters
lype Specifies which type of protocol a packet contains. A value of x'FFFF’
indicates that this input type is a wildcard type and matches all input
packets.
service_level Determines the processing level at which the protocol input handler is
called. If the service_level parameter is set to a value of NET_OFF_LEVEL, (
the input handler specified by the isr parameter is called directly. Setting the
service_level parameter to a value of NET_KPROC causes a network
dispatch process to be scheduled. This dispatch process calls the
subroutine identified by the isr parameter.
isr Identifies the routine that is to serve as the input handler for an input packet
type.
ifq Specifies an input queue for holding input buffers. If this parameter has a
non-NULL value, an input buffer (mbuf) is enqueued. This parameter must /
be specified if the processing level specified by the service_level parameter \
is a value of NET_KPROC. Specifying NULL for this parameter generates a
call to the input handler specified by the isr parameter, as in the foliowing:
(*isn(CommonPortion,Buffer);
In this example, CommonPortion points to the network common portion
(struct arpcom) of a network interface and Buffer is a pointer to a buffer
(mbuf) containing an input packet.
af Specifies the address family of the calling protocol. The af parameter must
be specified if the ifq parameter is not NULL.
Description

To enable the reception of packets, an address family calls the add_input_type kernel
service to register a packet type in the Network Input table. Multiple packet types require
multiple calls to the add_input_type kernel service.

1-8 Kernel Reference

add_input_type

Execution Environment
The add_input_type kernel service can be called from either the process or interrupt
environment.

Return Values

0 Indicates that the type was successfully added.

EEXIST Indicates that the type was previously added to the Network Input table.
ENOSPC Indicates that no free slots are left in the table.

EINVAL Indicates that an error occurred in the input parameters.

Examples
1. To register an Internet packet type (TYPE_IP), invoke the add_input_type service as
follows:

add_input_type(TYPE_IP, NET_KPROC, ipintr, ipintrq, AF_INET);

This packet is processed through the network kproc. The input handleris ipintr. The
input queue is ipintrq.

2. To specify the input handler for ARP packets, invoke the add_input_type service as
follows:

add_input_type(TYPE_ARP, NET OFF_LEVEL, arpinput, NULL, NULL);
Packets are not queued and the arpinput subroutine is called directly.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The del_input_type kernel service, find_input_type kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-9

add_netisr

add_netisr Kernel Service

Purpose
Adds a network software interrupt service to the Network Interrupt table.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <net/netisr.h>

int add_netisr (soft_intr_level, service_level, isr)
u_short soft_intr_level,
u_short service_level;

int (*isn)();

Parameters
soft_intr_level Specifies the software interrupt level to add. This parameter must be greater
than or equal to 0 (zero) and less than a value of NETISR_MAX.

service_level Specifies the processing level of the network software interrupt.

isr Specifies the interrupt service routine to add.

Description
The add_netisr kernel service adds the software-interrupt level specified by the
soft_intr_level parameter to the Network Software Interrupt table.

The processing level of a network software interrupt is specified by the service_level
parameter. If the interrupt level specified by the service_level parameter equals a value of
NET_KPROC, a network interrupt scheduler calls the function specified by the isr parameter.
If you set the service_level parameter to a value of NET_OFF_LEVEL, the add_netisr
service calls the interrupt service routine directly.

Execution Environment
The add_netisr kernel service can be called from either the process or interrupt
environment.

Return Values ,
0 Indicates that the interrupt service routine was successfully added.

EEXIST Indicates that the interrupt service routine was previously added to the table.

EINVAL Indicates that the value specified for the soft_intr_level parameter is out of
range or at an invalid service level.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The del_netisr kernel service.

1-10 Kernel Reference

—

add_netopt

add_netopt Macro

Purpose
Adds a network option structure to the list of network options.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <net/netopt.h>

add_netopt (option_name_symbol, print_formaf)
option_name_symbol,
char *print_format;

Parameters
option_name_symbol Specifies the symbol name used to construct the netopt
structure and default names.

print_format Specifies the string representing the print format for the network
option.

Description
The add_netopt macro adds a network option to the linked list of network options. The no
command can then be used to show or alter the variable's value.

The add_netopt macro has no return values.

Execution Environment
The add_netopt macro can be called from either the process or interrupt environment.

Implementation Specifics
This macro is part of AIX Base Operating System (BOS) Runtime.

Related Information
The del_netopt macro.
The no command.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-11

as_att

as_att Kernel Service

Purpose

Syntax

Selects, allocates, and maps a region in the specified address space for the specified virtual
memory object.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>
#include <sys/addspace.h>

caddr_t as_att (adspacep, vmhandle, offsef)
adspace_t *adspacep;

vmhandle_t vmhandle;

caddr_t offset;

Parameters

adspacep Points to the address space structure that defines the address space where
the region for the virtual memory object is to be allocated. This pointer can
be obtained by using the getadsp kernel service.

vmhandle Describes the virtual memory object that is being made addressable within a
region of the specified address space.

offset Specifies the offset in the virtual memory object and region that is being
mapped. On the RISC System/6000, the upper 4 bits of this offset are
ignored.

Description

The as_att kernel service:

o Selects an unallocated region within the address space specified by the adspacep
parameter.

o Aliocates the region.

» Maps the virtual memory object selected by the vmhandle parameter with the access
permission specified in the handle.

o Constructs the address of the offset specified by the offset parameter in the specified
address space.

If the specified address space is the current address space, the region becomes immediately
addressable. Otherwise, it becomes addressable when the specified address space next
becomes the active address space.

Kernel extensions use the as_att kernel service to manage virtual memory object
addressability within a region of a particular address space. They are also used by base
operating system subroutines such as the shmat and shmdt subroutines.

1-12 Kernel Reference

TN

as_att

Subroutines executed by a kernel extension may be executing under a process, with a
process address space, or executing under a kernel process, entirely in the current address
space. (The as_att service never switches to a user-mode address space.) The getadsp
kernel service should be used to get the correct address space structure pointer in either
case.

The as_att kernel service assumes an address space model of fixed-size virtual memory
objects and address space regions.

Execution Environment

The as_att kernel service can be called from the process environment only.

Return Values

If successful, the as_att service returns the address of the offset (specified by the offset
parameter) within the region in the specified address space where the virtual memory object
was made addressable.

If there are no more free regions within the specified address space, the as_att service will
not allocate a region and returns a NULL address.

Implementation Specifics

This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information

The getadsp kernel service, as_det kernel service.

Memory Kernel Services, Understanding Virtual Memory Manager Interfaces in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-13

as_det

as_det Kernel Service

Purpose
Unmaps and deallocates a region in the specified address space that was mapped with the
as_att kernel service.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>
#include <sys/addspace.h>

int as_det (adspacep, eaddr)
adspace_t *adspacep;
caddr_t eaddr;

Parameters

adspacep Paints to the address space structure that defines the address space where
the region for the virtual memory object is defined. For the current process,
this pointer can be obtained with the getadsp kernel service.

eaddr Specifies the effective address within the region to be deallocated in the
specified address space.

Description
The as_det kernel service unmaps the virtual memory object from the region containing the
specified effective address (specified by the eaddr parameter) and deallocates the region
from the address space specified by the adspacep parameter. This region is added to the
free list for the specified address space.

The as_det kernel service assumes an address space model of fixed-size virtual memory
objects and address space regions.

This service should not be used to deallocate a base kernel region, process text, process
private or unallocated region: an EINVAL return code will result. For the RISC System/6000,
the upper 4 bits of the eaddr effective address parameter must never be 0, 1, 2, OxE, or
specify an unallocated region.

Execution Environment
The as_det kernel service can be called from the process environment only.

Return Values
0 The region was successfully unmapped and deallocated.

EINVAL An attempt was made to deallocate a region that should not have been

deallocated (that is, a base kernel region, process text region, process
private region or unallocated region).

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

1-14 Kernel Reference

=N

as_det

Related Information
The as_att kernel service, getadsp kernel service.

Memory Kernel Services, Understanding Virtual Memory Manager Interfaces in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-15

attach-device

attach-device Queue Management Routine

Purpose
Provides a means for performing device-specific processing when the attchq kernel service
is called.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>

int attach (dev_parms, path_id)
caddr_t dev_parms;
cba_id path_id;

Parameters
dev_parms Passed to the creatd kernel service when the attach routine is defined.

path_id Specifies the path identifier for the queue that is being attached to.

Description
Each device queue can have an attach routine. This routine is optional and must be
specified when the device queue is defined with the creatd kernel service. The attchq
service calls the attach routine each time a new path is created to the owning device queue.
The processing performed by this routine is dependent on the server function.

The attach routine executes under the process under which the attchq kernel service is
called. The kernel does not serialize the execution of this service with the execution of any of
the other server routines.

Execution Environment
The attach-device routine can be called from the process environment only.

Return Values
RC_GOOD Indicates a successful completion.

RC_NONE Indicates that resources such as pinned memory are unavailable.
RC_MAX Indicates that the server already has the maximum number of users that it
supports.

Greater than or equal to RC_DEVICE
Indicates device-specific errors.

Implementation Specifics
This kernel service is part of the Device Queue Management AIX kernel extension.

Related Information

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

1-16 Kernel Reference

attchq

attchq Kernel Service

Purpose

Syntax

Creates a path to a device queue.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>

int attchq (from_id, to_id, path_id, ptn)
cba_id from_id;

cba_id to_id;

cba_id *path_id;

struct attchq *ptr;

Parameters

from_id Specifies the identifier of the requestor.
to_id Specifies the identifier of the server.
path_id Specifies the address of the returned path identifier.

ptr Specifies the address of the acknowledge parameter structure.

Description

The attchq kernel service is not part of the base kernel but provided by the Device Queue
Management kernel extension. This queue management kernel extension must be loaded
into the kernel once before the loading of any kernel extensions referencing these services.

The attchq service establishes how a requestor and a server communicate with each other.
For a discussion of the device queue requestor and server model, see Understanding
Device Queues. The from_id and to_id parameters give the identifiers of the requestor and
the server of the device queue, respectively. These identifiers can be a queue identifier, a
device identifier, or a process identifier. Neither identifier needs to be associated with the
caller of the attchq service.

If a process identifier is specified, a path is established to the oldest device queue served by
the process. If a device identifier is specified, a path is established to the device queue
associated with the device identifier. If a queue identifier is used, then a path is established
to that queue.

The server’s attach-device routine is called if an attach-device routine is associated with
the device queue and the to_id parameter is a device identifier.

The Acknowledgment Parameter Structure

The acknowledgment parameter structure consists of four fields: acknowledge-type,
acknowledge depth-counter, and two other parameters. The latter two (Parameter One and
Parameter Two) contain data whose meaning depends on the acknowledge type.

Kernel Services 1-17

attchq

The Acknowledgment Type and How It Is Used
The acknowledge-type field specifies acknowledgment information returned when the
processing of a queue element is completed. The four type options are:

NO_ACK

SHORT_ACK

LONG_ACK

INTR_ACK

No acknowledgment is to be sent. Parameters One and Two have no
meaning.

Completion is to be acknowledged by posting an event. A short
acknowledgement notifies the requestor by sending it an event
notification using the e_post kernel service. Parameter One contains an
event mask to be used as the events parameter for the attchq service.
Parameter Two has no meaning.

Completion is to be acknowledged by sending a queue element. A long
acknowledgment notifies the requestor by sending the requestor a queue
element. Parameter One contains an acknowledge device queue
identifier specifying the device queue to which the acknowledgment
gueue element is to be sent. If this identifier is NULL_CBA, an
acknowledgement is sent to the first device queue associated with the
from_id parameter. Parameter Two contains the queue element priority,
which is a number from QE_BEST_PRTY to QE_WORST_PRTY. This
priority is described in more detail with the enque service.

Completion is to be acknowledged by sending a virtual interrupt. A virtual
interrupt acknowledgment notifies the requestor by calling its registered
virtual interrupt handler with the acknowledge queue element. The
requestor can use the vec_init service to define a virtual interrupt
handler to receive the virtual interrupt queue element.

For this acknowledge type, the virtual interrupt level and sublevel occupy
the last 16 bits of Parameter Two. Of these 16 bits, the first 8 (high-order
byte) are the virtual interrupt level (0 to 7) and the next 8 bits (low-order
byte) are the virtual interrupt sublevel (0 to 255). The virtual interrupt
level is ignored. Virtual interrupts should be used for compatibility
purposes only. Parameter One has no meaning.

The Acknowledgment Depth Counter

Another part of the acknowledgment parameter structure is the acknowledgment depth
counter. This counter places a limit on the number of acknowledgment queue elements that
can be outstanding at any given time. Use of this counter prevents runaway consumption of
queue elements in error situations. If the count is exceeded, the acknowledgment overrun
count is increased. If zero is specified for the counter, it defaults to a value of one. The
largest valid acknowledgment depth count is MAX_ACK_DEPTH.

Note: The kernel may or may not enforce the restriction on the size of the acknowledgment
depth count.

In addition to the return code, the path identifier is also returned in the memory indicated by
the path_id parameter. The path identifier is used by other device queue management
services such as the enque kernel service.

Execution Environment
The attchq kernel service can be called from the process environment only.

1-18 Kerel Reference

TN

attchq

Return Values
RC_GOOD Indicates a successful operation.

RC_NONE Indicates that resources were unavailable. The path was not created.
RC_MAX Indicates that the maximum number of paths was exceeded. The path was
not created.

All other error values represent errors detected by the server’s attach-device routine.

Implementation Specifics
This kernel service is part of the Device Queue Management AlX kernel extension.

Related Information
The enque kernel service, vec_init kernel service, e_post kernel service.
The attach—device queue management routine.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-19

audit_svcbcopy

audit_svcbcopy Kernel Service

Purpose
Appends event information to the current audit event buffer.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
int audit_svcbcopy (buf, len)
char *buf;
int len;

Parameters ,
buf Specifies the information to append to the current audit event record buffer. \
len Specifies the number of bytes in the buffer.

Description

The audit_svcbcopy kernel service appends the specified buffer to the event-specific
information for the current SVC. System calls should initialize auditing with the
audit_svcstart kernel service, which creates a record buffer for the named event.

The audit_svcbcopy kernel service can then be used to add additional information to that :
buffer. This information usually consists of system call parameters that are passed by
reference.

After the record buffer is complete and if auditing is enabled, the information is written by the
audit_svcfinis kernel service.

Execution Environment
The audit_svcbcopy kernel service can be called from the process environment only.

Return Values
0

TN

Indicates a successful operation.

ENOSPC Indicates that the kernel service is unable to allocate space for the new
buffer.
EINVAL Indicates that no valid audit record buffer exists.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The audit_svcstart kernel service, audit_svcfinis kernel service.

Security Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-20 Kernel Reference

audit_svcfinis

audit_svcfinis Kernel Service

Purpose
Writes an audit record for a kernel service.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/audit.h>

int audit_svcfinis ()
int;

Description
The audit_svcfinis kernel service completes an audit record begun earlier by the
audit_svcstart kernel service and writes it to the kernel audit logger. Any space allocated
for the record and associated buffers is freed.

If the system call terminates without calling the audit_svcfinis service, the SVC handler exit
routine writes the records. This exit routine calls the audit_svcfinis kernel service to
complete the records.

The result code is computed from the current errno value.

Execution Environment
The audit_svcfinis kernel service can be called from the process environment only.

Return Value
The audit_svcfinis kernel service always returns a value of 0.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The audit_svcbcopy kernel service, audit_svcstart kernel service.

Security Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1—21

audit_svcstart

audit_svcstart Kernel Service

Purpose
Initiates an audit record for a system call.
Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/audit.h>
int audit_svcstart (eventnam, eventnum, numargs, arg1, arg2 ...)
char *eventnam;
int *eventnum;
int numargs;
int arg1;
int arg2;
Parameters
eventnam Specifies the name of the event. In the current implementation, event
names must be less than 17 characters, including the trailing NULL.
Longer names are truncated.
eventnum Specifies the number of the event. This is an internal table index
meaningful only to the kernel audit logger. The system call should
initialize this parameter to 0. The first time that the audit_svcstart kernel
service is called, this parameter is set to the actual table index. The
system call should not reset it. It should be declared as a static.
numargs Specifies the number of parameters to be included in the buffer for this
record. These parameters are normally 0 or more of the system call
parameters, although this is not a requirement.
arg1, arg2, ... Specifies the parameters to be included in the buffer.
Description

The audit_svestart kernel service initiates auditing for a system call event. It dynamically
allocates a buffer to contain event information. The arguments to the system call (which
should be specified as parameters to this kernel service) are automatically added to the
buffer, as is the internal number of the event. You can use the audit_svcbcopy service to
add additional information that cannot be passed by value.

The system call commits this record with the audit_svcfinis kernel service. The system call
should call the audit_svcfinis kernel service before calling another system call.

1-22 Kernel Reference

audit_svcstart

Example
1. You can invoke the audit_svcstart service with the following:

svcfoobar(int x, int y, int z)

{

static int eventnum;

if (audit_svcstart(”fubared”, &eventnum, 2, x, y)) {
audit_svcfinis();

}

body of svcfoobar

}

This allocates an audit event record buffer for the event fubared and copies the first and
second arguments into it. The third argument is unnecessary and is not copied.

Execution Environment
The audit_svcstart kernel service can be called from the process environment only.

Return Values
Nonzero Indicates that auditing is on for this routine.

0 Indicates that auditing is off for this routine.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The audit_svcbcopy kernel service, audit_svcfinis kernel service.

Security Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-23

,bawrite

(/
.] \
bawrite Kernel Service
Purpose
Writes the specified buffer’s data without waiting for I/O to complete.
Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>
int bawrite (bp)
struct buf *bp;
Parameter /
bp Specifies the address of the buffer structure for the buffer to be written. \
Description
The bawrite kernel service sets the asynchronous flag in the specified buffer and then calls
the bwrite kernel service to write the buffer.
The article entitled Using the Buffer Cache write Services briefly describes how the three
buffer cache write routines work.
Execution Environment (
The bawrite kernel service can be called from the process environment only.
Return Values
0 Indicates successful completion.
Errno global variable Indicates that an I/O error has occurred.
Implementation Specifics | p
This kernel service is part of AIX Base Operating System (BOS) Runtime. \

Related Information
The bwrite kernel service.

Block I/O Buffer Cache Services: Overview, I/O Kernel Services in Kernel Extensions and
Device Support Programming Concepits.

1-24 Kernel Reference

bdwrite

bdwrite Kernel Service

Purpose

Releases the specified buffer after marking it for delayed write.
Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/buf.h>

void bdwrite (bp)

struct buf *bp;
Parameter

bp Specities the address of the buffer structure for the buffer to be written.
Description

The bdwrite kernel service marks the specified buffer so that the block is written to the
device when the buffer is stolen. The bdwrite service marks the specified buffer as delayed
write and then releases it (that is, puts the buffer on the free list). When this buffer is
reassigned or reclaimed, it is written to the device.

The bdwrite service has no return values.
Using the Buffer Cache write Services briefly describes how the three buffer cache write
routines work.

Execution Environment
The bdwrite kernel service can be called from the process environment only.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The brelse kernel service.

Block I/0 Buffer Cache Services: Overview, I/O Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-25

bflush

bflush Kernel Service

Purpose

Flushes all write-behind blocks on the specified device from the buffer cache.
Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/buf.h>

void bflush (dev)

dev_t dev;
Parameter

dev Specifies which device to flush. A value of NODEVICE flushes all devices.
Description

The bflush kernel service runs the free list of buffers. It marks as busy or writing any dirty
buffer whose block is on the specified device. When NODEVICE is specified, the bflush
service flushes all write-behind blocks for all devices. The bflush service has no return
values.

Execution Environment

The bflush kernel service can be called from the process environment only.

Implementation Specifics

This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information

The bwrite kernel service.

Block 1/0 Buffer Cache Services: Overview, I/O Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

1-26 Kernel Reference

TN

binval

binval Kernel Service

Purpose

Invalidates all of the specified device's blocks in the buffer cache.
Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/buf.h>

void binval (dev)

dev_t dev;
Parameter

dev Specifies the device to be purged.
Description

The binval kernel service invalidates, or makes nonreclaimable, all of the specified device’s
blocks in the buffer cache. Before removing the device from the system, the binval service
should be called to remove all of a device's blocks from the buffer cache.

All of the device’s blocks should have been flushed before calling the binval service.
Typically, these blocks are flushed after the last close of the device.

The binval service has no return values.

Execution Environment
The binval kernel service can be called from the process environment only.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The bflush kernel service, blkflush kernel service.

Biock I/0 Buffer Cache Services: Overview, /O Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-27

blkflush

blkflush Kernel Service

Purpose
Flushes the specified block if it is in the buffer cache.

Syntax
#include <sys/types.h>

#include <sys/errno.h>
#include <sys/buf.h>

int blkflush (dev, blkno)
dev_t dev;
daddr_t blkno;

Parameters
dev Specifies the device containing the block to be flushed.

blkno Specifies the block to be flushed.

Description
The blkflush kernel service checks to see if the specified buffer is in the buffer cache. If the
buffer is not in the cache, then the blkflush service returns a value of 0. If the buffer is in
the cache but is busy, then the blkflush service calls the e_sleep service to wait until the
buffer is no longer in use. Upon waking, the blkflush service tries again to access the buffer.

If the buffer is in the cache and is not busy but is dirty, then it is removed from the free list.
The buffer is then marked as busy and synchronously written to the device. If the buffer is in
the cache and is neither busy nor dirty (that is, the buffer is already clean and therefore does
not need to be flushed), the blkflush service returns a value of 0.

Execution Environment
The blkflush kernel service can be called from the process environment only.

Return Values
1 Indicates that the block was successfully flushed.

0 Iindicates that the block was not flushed. The specified buffer is either not in
the buffer cache or is in the buffer cache but neither busy nor dirty.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The bwrite kernel service.

Block I/O Buffer Cache Services: Overview, /0 Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

1-28 Kernel Reference

T

bread

bread Kernel Service

Purpose
Reads the specified block’s data into a buffer.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

struct buf *bread (dev, blkno)
dev_t dev;
daddr_t blkno;

Parameters .
dev Specifies the device containing the block to be read.

blkno Specifies the block to be read.

Description
The bread kernel service assigns a buffer to the given block. If the specified block is
already in the buffer cache, then the block’s buffer header is returned. Otherwise, a free
bufter is assigned to the specified block and the block’s data is read into the buffer. The
bread service waits for I/O to complete and then returns the buffer header.

The buffer is allocated to the caller and marked as busy.

Managing the Buffer Cache briefly describes how the buffer cache services manage the
block I/O buffer cache mechanism.

Execution Environment
The bread kernel service can be called from the process environment only.

Return Value
The bread service returns the address of the selected buffer's header.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The getblk kernel service, iowait kernel service.

Block I/0 Buffer Cache Services: Overview, I/0O Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-29

breada

breada Kernel Service

Purpose

Syntax

Parameters

Reads in the specified block and then starts i/O on the read-ahead block.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

struct buf *breada (dev, blkno, rablkno)
dev_t dey;

daddr_t blkno;

daddr_t rablkno;

—

dev Specifies the device containing the block to be read.
blkno Specifies the block to be read.
rablkno Specifies the read-ahead block to be read.

Description

The breada kernel service assigns a buffer to the given block. If the specified block is
already in the buffer cache, then the bread service is called to:

» Obtain the block
o Return the buffer header.

Otherwise, the getblk service is called to assign a free buffer to the specified block and to
read the block’s data into the buffer. The breada service waits for I/0O to complete and then
returns the buffer header.

I/0 is also started on the specified read-ahead block if the free list is not empty and the block
is not already in the cache. However, the breada service does not wait for I/O to complete
on this read-ahead block. g

Managing the Buffer Cache summarizes how the getblk, bread, breada, and brelse
services uniquely manage the block 1/0 buffer cache.

Execution Environment

The breada kernel service can be called from the process environment only.

Return Value

The breada service returns the address of the selected buffer’s header.

Implementation Specifics

This kernel service is part of AIX Base Operating System (BOS) Runtime.

1-30 Kernel Reference

breada

Related Information
The bread kernel service, iowait kernel service.

The ddstrategy routine.

Block I/0 Buffer Cache Services: Overview, 1/O Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-31

brelse

brelse Kernel Service

Purpose

Frees the specified buffer.
Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/buf.h>

void brelse (bp)

struct buf *bp;
Parameter

bp Specifies the address of the buf structure to be freed.
Description

The brelse kernel service frees the buffer to which the bp parameter points.

The brelse kernel service awakens any processes waiting for this buffer or for another free
buffer. The buffer is then put on the list of available buffers. The buffer is also marked as not
busy so that it can either be reclaimed or reallocated.

The brelse service has no return values.

Execution Environment
The brelse kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The geteblk kernel service.
The buf structure.

Block I/0 Buffer Cache Kernel Services: Overview, I/0 Kernel Services, The buf Structure in
Kernel Extensions and Device Support Programming Conceplts.

1-32 Kernel Reference

PN

PSRN

bwrite

bwrite Kernel Service

Purpose
Writes the specified buffer’s data.
Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>
int bwrite (bp)
struct buf *bp;
Parameter
bp Specifies the address of the buffer structure for the buffer to be written.
Description

The bwrite kernel service writes the specified buffer's data. If this is a synchronous request,
the bwrite service waits for the I/O to complete.

The article entitied Using the Buffer Cache write Services briefly describes how the three
buffer cache write routines work.

Return Values
0 Indicates a successful operation.
Errno global variable Indicates that an I/O error has occurred.

Execution Environment
The bwrite kernel service can be called from the process environment only.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The brelse kernel service, iowait kernel service.

Block I/0 Buffer Cache Services: Overview, /O Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-33

cancel-queue-element

cancel-queue-element Queue Management Routine

Purpose
Provides a means for performing cleanup of queue element-related resources when a
pending queue element is eliminated from the queue.

Syntax
#include <sys/types.h>

#include <sys/errno.h>
#include <sys/deviceq.h>

void cancel (ptr)
struct req_ge *pin;

Parameter \
ptr Specifies the address of the queue element.

Description
Each device queue can have a cancel-queue-element routine. This routine is optional and
must be specified when the device queue is created with the creatq service.

The cancel-queue-element routine is called by the kernel to clean up resources associated

with a queue element. It is calied when a pending queue element is eliminated from the

queue. This occurs when the path is destroyed or when the canclq service is called. The !
device manager should unpin any data and detach any cross-memory descriptor.

Any operations started as a result of examining the queue with the peekq service should be
aborted.

The cancel-queue-element routine is also called when a queue is destroyed to get rid of
any pending or active queue elements.

Execution Environment
The cancel-queue-element routine can be called from the process environment only. (

Related Information
The creatq kernel service, canclq kernel service, peekq kernel service.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

1-34 Kernel Reference

canclq

canclq Kernel Service

Purpose

Deletes pending queue elements from a device queue.
Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/deviceq.h>

int canclq (path_id)

cba_id path_id;
Parameter

path_id Specifies the path identifier.
Description

The canclq kernel service is not part of the base kernel but provided by the Device Queue
Management kernel extension. This queue management kernel extension must be loaded
into the kernel once before the loading of any kernel extensions referencing these services.

The canclq service is intended for abnormal termination conditions. It allows a process to

discard all pending queue elements on the specified path. The active queue element cannot
be canceled. o

Control-type queue elements are posted, and the server's cancel-queue-element queue
management routine is called for each queue element canceled. This allows the server to
abort any preprocessing of the request that the server initiated on a previous peek (using the
peekq service) into the queue. It also allows the server to unpin memory associated with
the request or to detach any cross-memory descriptors as appropriate. For a discussion of
the device queue server and client model, see Understanding Device Queues.

Execution Environment
The canclq kernel service can be called from the process environment only.

Return Value
The canclq service returns the number of canceled queue elements.

Implementation Specifics
This kernel service is part of the Device Queue Management AIX kernel extension.

Related Information
The peekq kernel service. v
The cancel-queue-element queue management routine.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-35

cfgnadd

cfgnadd Kernel Service

Purpose
Registers a notification routine to be called when system-configurable variables are
changed.
Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/sysconfig.h>
void cfgnadd (cbp)
struct cfgncb *cbp;
Parameter \
cbp Points to a cfgncb config notification control block.
Description
The cfgnadd kernel service adds a cfgncb control block to the list of cfgneb structures
maintained by the kernel. A cfgneb control block contains the address of a notification
routine (in its cfgneb.func field) to be called when a configurable variable is being changed.
The SYS_SETPARMS sysconfig operation allows a user with sufficient authority to change
the values of configurable system parameters. The cfgnadd service allows kernel routines (
and extensions to register the notification routine that is called whenever these configurable
system variables have been changed.
This notification routine is called in a two-pass process. The first pass performs validity
checks on the proposed changes to the system parameters. During the second pass
invocation, the notification routine performs whatever processing is needed to effect the
changes to the parameters. This two-pass procedure ensures that variables used by more
than one kernel extension are correctly handled.
To use the cfgnadd service, the caller must define a efgncb control block using the C
structure found in the <sys/sysconfig.h> file.
The cfgncb.func notification routine is only called in a process environment.
Execution Environment

The ctgnadd kernel service can be called from the process environment only.

Implementation Specifics

This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information

The sysconfig subroutine.
The cfgndel kernel service.
The cfgneb configuration notification control biock. {

Kernel Program/Device Driver Management Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

1-36 Kernel Reference

cfgncb

cfgncb Configuration Notification Control Block

Purpose
Contains the address of a notification routine that is invoked each time the sysconfig
subroutine is called with the SYS_SETPARMS command.

Description

The configuration notification control block contains the address of a notification routine.
This structure is intended to be used as a list element in a list of similar control blocks
maintained by the kernel. Each control block has the following definition:

struct cfgncb {

struct cfgncb *cbnext; /* next control block on chain*/
struct cfgncb *cbprev; /* prev control block on chain*/
int (*func) () /* notification function */
}i

The cfgndel or cfgnadd kernel services can be used to add or delete a efgncb control
block from the cfgncb list. To use either of these kernel services, the calling routine must
define the cfgncb control block. This definition can be done using the <sys/sysconfig.h>
file.

Notification Routine Calling Syntax
The cfgncb.func notification routine should be declared as follows:

int func (cmd, cur, new)
int cmd;

struct var *cur;

struct var *new;

Notification Routine Parameters
cmd Indicates the current operation type. Possible values are CFGV_PREPARE
and CFGV_COMMIT, as defined in the <sys/sysconfig.h> file.

cur Points to a var structure representing the current values of
system-configurable variables.

new Points to a var structure representing the new or proposed values of
system-configurable variables.

The cur and new var structures are both in the system address space.

Notification Routine Processing
Every time a SYS_SETPARMS sysconfig command is issued, the sysconfig subroutine
iterates through the kernel's list of cfgneb blocks, invoking each notification routine with a
CFGV_PREPARE command. This call represents the first pass of what is for the notification
routine a two-pass process.

On a CFGV_PREPARE command, the cfgncb.func notification routine should determine if
any values of interest have changed. If any of these values have changed, they should be
checked for validity. If the values are valid, a return code of 0 should be returned.
Otherwise, a return value indicating the byte offset of the first field in error in the new var
structure should be returned.

Kernel Services 1-37

cfgncb

If all registered notification routines return with a return code of 0, then no value errors have
been detected during validity checking. In this case, the sysconfig subroutine issues its
second pass call to the efgncb.fune routine, sending the same parameters, except that the
cmd parameter contains a value of CFGV_COMMIT. This indicates that the new values are
to go into effect at the earliest opportunity.

An example of notification routine processing might be the following. Suppose the user
wishes to increase the size of the block 1/O buffer cache. On a CFGV_PREPARE command,
the block I/O notification routine verifies that the proposed new size for the cache is legal.
On a CFGV_COMMIT command, the naotification routine then makes the additional buffers
available to the user (by chaining more buffers onto the existing list of buffers).

Related Information :
The cfgndel kernel service, cfgnadd kernel service.
The SYS_SETPARMS sysconfig Operation.

Kernel Program/Device Driver Management Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

1-38 Kernel Reference

cfgndel

cfgndel Kernel Service

Purpose

Syntax

Parameter

Removes a notification routine for receiving broadcasts of changes to system-configurable
variables.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/sysconfig.h>

void cfgndel (cbp)
struct cfgncb; *cbp

cbp Points to a cfgncb configuration notification control block.

Description

The cfgndel kernel service removes a previously registered cfgncb control block from the
list of cfgncb structures maintained by the kernel. This service thus allows kernel routines
and extensions to remove their notification routines from the list of those called when a
configurable system variable has been changed.

The address of the cfgncb structure passed to the cfgndel kernel service must be the same
address used to call the cfgnadd service when the structure was originally added to the list.
The sys/sysconfig.h file contains a definition of the cfgncb structure.

The cfgndel service has no return values.

Execution Environment

The cfgndel kernel service can be called from the process environment only.

Implementation Specifics

This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information

The sysconfig subroutine.
The cfgnadd kernel service.
The cfgneb configuration notification control block.

Kernel Program/Device Driver Management Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-39

check-parameters

check-parameters Queue Management Routine

Purpose
Provides a means for performing device-specific validity checking for parameters included in
request queue elements.
Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>
int check (type, ptr, length)
int type;
struct req_qe *ptr;
int length;
Parameters
lype Specifies the type of call. The following values are used when the kernel
calls the check-parameters routine:
CHECK_PARMS + SEND_CMD Send command queue
element.
CHECK_PARMS + START_IO Start I/0 CCB queue element.
CHECK_PARMS + GEN_PURPOSE General purpose queue
element.
ptr Specifies the address of the queue element.
length Specifies the length of the queue element.
Description

Each device queue can have a check-parameters routine. This routine is optional and must
be specified when the device queue is created with the creatq service. The enque service
calls the check-parameters routine before a request queue element is put on the device
queue. The kernel uses the routine’s return value to determine whether to put the queue
element on the device queue or to abort the request.

The kernel does not call the check-parameters routine when an acknowledgment or control
queue element is sent. Therefore, the check-parameters routine is called only while
executing within a process.

The address of the actual queue element is passed to this routine. In the
check-parameters routine, take care to alter only the fields that were meant to be altered.

This routine typically does not need to be serialized with the rest of the server’s routines,
since it is just checking the parameters in the queue element.

The check-parameters routine can check the request before the request's queue element is
placed on the device queue. The advantage of using this routine is that you can filter out
unacceptable commands before they are put on the device queue.

1-40 Kemnel Reference

~

check-parameters

The routine looks at the queue element and returns RC_GOOD if the request is acceptable.

If the return code is not RC_GOOD, the kernel does not place the queue element in a device
queue.

Execution Environment

The check-parameters routine executes under the process environment of the requestor.
Therefore, access to data areas must be handled as if the routine were in an interrupt

handler environment. There is, however, no requirement to pin the code and data as in a
normal interrupt handler environment.

Return Values
RC_GOOD Indicates successful completion.
Ali other return values are device specific.
Related Information

The creatq kernel service, enque kernel service.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-41

cirbuf

clrbuf Kernel Service

Purpose
Sets the memory for the specified buffer structure’s buffer to all zeros.
Syntax
#include <sys/types.h>
#include <sys/errno.h>
void cirbuf (bp)
struct buf *bp;
Parameter
bp Specifies the address of the buffer structure for the buffer to be cleared.
Description

The clirbuf kernel service clears the buffer associated with the specified buffer structure. The
cirbuf service does this by setting to zeros the memory for the specified buffer structure’s
buffer.

The clrbuf service has no return values.

Execution Environment
The cirbuf kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information

Block I/0 Buffer Cache Services: Overview, /0 Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

1-42 Kernel Reference

~

PN

clrjmpx

cirjmpx Kernel Service

Purpose
Removes a saved context by popping the most recently saved jump buffer from the list of
saved contexts.
Syntax
#include <sys/types.h>
#include <sys/errno.h>
void clrjmpx (jump_buffer)
label_t *jump_buffer;
Parameter
jump_buffer Specifies the address of the caller-supplied jump buffer that was specified
on the call to the setjmpx service.
Description

The clrjmpx kernel service pops the most recent context saved by a call to the setjmpx
kernel service. Since each longjmpx call automatically pops the jump buffer for the context
to be resumed, the clrjmpx kernel service should be called only following:

¢ A normal return from the setjmpx service when the saved context is no longer needed.
¢ Any code to be run that requires the saved context to be correct.

The cirjmpx service takes the address of the jump buffer passed in the corresponding the
setjmpx service.

The cirjmpx service has no return values.

Execution Environment
The clrjmpx kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The setjmpx kernel service, longjmpx kernel service.

Exception Processing, Implementing Exception Handlers, Process and Exception

Management Kernel Services in Kernel Extensions and Device Support Programming
Concepts.

Kernel Services 1-43

copyin

copyin Kernel Service

Purpose
Copies data between user and kernel memory.
Syntax
#include <sys/types.h>
#include <sys/errno.h>
int copyin (kaddr, uaddr, count)
char *vaddr,
char *kaddr;
int count;
Parameters
kaddr Specifies the address of kernel data.
vaddr Specifies the address of user data.
count Specifies the number of bytes to copy.
Description

The copyin kernel service copies the specified number of bytes from user memory to kernel
memory. This service is provided so that system calls and device driver top halves can
safely access user data. The copyin service ensures that the user has the appropriate
authority to access the data. It also provides recovery from paging I/O errors that would
otherwise cause the system to crash.

The copyin service should be called only while executing in kernel mode in the user
process.

Execution Environment
The copyin kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.

EIO Indicates that a permanent I/O error occurred while referencing data.
ENOSPC Indicates insufficient file system or paging space.

EFAULT Indicates that the user has insufficient authority to access the data or the

address specified in the uaddr parameter is invalid.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The copyout kernel service, copyinstr kernel service.

Accessing User-Mode Data While in Kernel Mode, Memory Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

1-44 Kernel Reference

copyinstr

copyinstr Kernel Service

Purpose
Copies a character string (including the terminating NULL character) from user to kernel
space.
Syntax
#include <sys/types.h>
#include <sys/errno.h>
int copyinstr (from, to, max, actual)
caddt_t from;
caddt_t to;
uint max;
uint actual;
Parameters
from Specities the address of the character string to copy.
to Specifies the address to which the character string is to be copied.
max Specifies the number of characters to be copied.
actual A parameter, passed by reference, that is updated by the copyinstr service
with the actual number of characters copied.
Description

The copyinstr kernel service permits a user to copy character data from one location to
another. The source location must be in user space or can be in kernel space if the caller is
a kernel process. The destination is in kernel space.

Execution Environment
The copyinstr kernel service can be called from the process environment only.

Return Values
0 Indicates a successful operation.

E2BIG Indicates insufficient space to complete the copy.

EIO Indicates that a permanent I/O error occurred while referencing data.
ENOSPC Indicates insufficient file system or paging space.

EFAULT Indicates that the user has insufficient authority to access the data or the

address specified in the uvaddr parameter is invalid.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Accessing User-Mode Data While in Kernel Mode, Memory Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-45

copyout

copyout Kernel Service

Purpose
Copies data between user and kernel memory.
Syntax
#include <sys/types.h>
#include <sys/errno.h>
int copyout (kaddr, uaddr, count)
char *vaddr;
char *kaddr,
int count,
Parameters
uadar Specifies the address of user data.
kaddr Specifies the address of kernel data.
count Specifies the number of bytes to copy.
Description

The copyout service copies the specified number of bytes from kernel memory to user
memory. It is provided so that system calls and device driver top halves can safely access
user data. The copyout service ensures that the user has the appropriate authority to
access the data. This service also provides recovery from paging I/O errors that would
otherwise cause the system to crash.

The copyout service should be called only while executing in kernel mode in the user
process.

Execution Environment
The copyout kernel service can be called from the process environment only.

Return Values

0 indicates a successful operation. ,

EIO Indicates that a permanent I/O error occurred while referencing data.
ENOSPC Indicates insufficient file system or paging space.

EFAULT Indicates that the user has insufficient authority to access the data or that

the address specified in the uaddr parameter is invalid.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The copyin kernel service, copyinstr kernel service.

Accessing User-Mode Data While in Kernel Mode, Memory Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

1-46 Kernel Reference

N

LN

creatd

creatd Kernel Service

Purpose
Assigns a global name to a device queue.

Syntax
#include <sys/types.h>

#include <sys/errno.h>
#include <sys/deviceq.h>

cba_id creatd (iodn, queue_id, attach, detach, ptr, count, dev_parms)
ushort jodn;

cba_id queue_id;

int (*attach)();

int (*detach)();

caddr_t ptr;

int count;

caddr_t dev_parms;

Parameters
iodn Specifies the predetermined global name for the device queue. A value of

DEFIND_PRIVATE indicates that no global name is required and the
queryd service cannot be used to query the device identifier.

queue_id Specifies the queue identifier of the device queue.

attach Specifies the function pointer of the server’s attach-device routine. The
attchq service calls this routine when a new path to the device queue is
created. This routine can have a NULL value if there is no device
queue-specific processing to perform.

detach Specifies the function pointer of the server’s detach-device routine. The
detchq service calls this routine when a path to the device queue is
invalidated. This routine can have a NULL value if there is no device
queue-specific processing to perform.

ptr Specifies the address of the device-dependent information. The kernel
enforces no format on this structure. The only purpose of this parameter is
so that the qryds service can return a copy of this data to its caller. A NULL
value indicates that there is no device-dependent information. If the count
parameter is NULL, then this parameter must be 0 (zero)

count Specifies the length of the device-dependent information. If the ptr
parameter is NULL, then the count parameter must be 0.

dev_parms Parameter passed to the device driver’s device management routines.

Kernel Services 1-47

creatd

Description
The creatd kernel service is not part of the base kernel but is provided by the Device Queue
Management kernel extension. This queue management kernel extension must be loaded
into the kernel once before loading any kernel extensions that reference these services.

£

The creatd service provides a means of associating a predefined global name (specified by
the iodn parameter) with a device queue. The queue identifier and device identifier cannot
be used for this purpose because their values cannot be predetermined. Additionally, device
queue functions such as the automatic sending of a detach queue element are only
performed if the requestor specified a device identifier when creating the path to the device
queue.

The returned device identifier can be used to query information about the device using the
qryds service. It can also be used to create a path to the associated device queue.

Note: The device being defined is associated with the process that is the server of the
queue specified by the queue_id parameter. /

The device queue host and client model is described in Understanding Device Queues.

Execution Environment
The creatd kernel service can be called from the process environment only.

Return Values
Upon successful completion, the creatd service returns the new device identifier. This
device identifier can be used when creating a path to the device queue. A value of
NULL_CBA is returned in the following error cases: (

o The value in the iodn parameter is already bound to a device queue.

The queue identifier specified by the queue_id parameter is invalid.

A control block could not be allocated.

An error occurred during the cross-memory attach operation.
e The process was in the midst of termination.

Implementation Specifics Q
This kernel service is part of the Device Queue Management AIX kernel extension.

Related Information
The queryd kernel service, attchq kernel service, detchq kernel service, qryds kernel
service.

The attach-device queue management routine, detach-device queue management routine.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

1-48 Kernel Reference

creatp

creatp Kernel Service

Purpose
Creates a new kernel process.
Syntax
#include <sys/types.h>
#include <sys/errno.h>
pid_t creatp()
Description

The creatp kernel service creates a kernel process. It also allocates and initializes a
process block for the new process. Initialization involves these three tasks:

¢ Assigning the kernel process an identifier.
o Setting the process state to idle.
e Initializing its parent, child, and sibling relationships.

Kernel Process Creation, Execution, and Termination has a more detailed discussion of how
the creatp kerne! service creates and initializes kernel processes.

The process calling the creatp service must subsequently call the initp kernel service to
complete the process initialization. The initp service also makes the newly created process
runnable.

Execution Environment
The creatp kernel service can be called from the process environment only.

Return Values
Process Identifier - Indicates a successful operation.

-1 Indicates an error.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The initp kernel service.

Introduction to Kernel Processes, Process and Exception Management Kernel Services in
Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-49

creatq

creatq Kernel Service

Purpose
Creates a device queue.
Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>
cba_id creatq (server_id, worst_prty, max_path, max_gqe, check, cancel)
pid_t server_id;
uchar worst_prty;
uint max_path;
uint max_gqe;
int (*check)();
void (*cancel)();
Parameters
server_id Specifies the process identifier (PID) of the process that acts as server for
this device queue.
worst_prty Specifies the least favored queue element priority. The range of valid
values is from QE_BEST_PRTY to QE_WORST_PRTY.
max_path Specifies the maximum number of paths the device queue supports. The
value must be in the range from 0 to MAX_QUEUE_PATH. A value of 1
indicates that only one process at a time can attach to the device queue. A
value of 0 implies that there is no limit. Typically, this parameter is 1 for
serially reusable devices and 0 otherwise, although other values can be
specified.
max_qe Specifies the maximum number of queue elements the device queue
supports. This is the largest number of queue elements that can be waiting
for service at any point in time. The value must be in the range from 0 to
MAX_QE_DEPTH.
check Specifies the function pointer to the server’s check-parameters routine.
This routine is called before a request queue element is placed on the
device queue. A NULL value indicates that the server does not have a
check-parameters routine.
cancel Specifies the function pointer to the server’s cancel-queue-element
routine. This routine is called before a queue element is canceled. A NULL
value indicates that the server does not have a cancel routine.
Description

The creatq kernel service is not part of the base kernel but is provided by the Device Queue
Management kernel extension. This queue management kernel extension must be loaded
into the kernel once before the loading of any kernel extensions referencing these services.

The creatq service can be used by any process to create a device queue. The new device
queue can be served by the creating process or another process.

1-50 Kernel Reference

~—

creatq

Each device queue served by a process has an event bit associated with it. This event bit is
used to notify the process that the device queue is not empty. A unique event bit is assigned
when a device queue served by a process is created. A queue’s event bit cannot be used
for any other purpose. The e_post service provides a description of event bit allocation.
The event bit for a device queue can be determined by calling the queryi service.

There are two ways to determine if a device queue is not empty:

* The e_wait service can be called with one or more event bits, thus allowing a process to
wait for input from one of multiple device queues.

¢ The waitq service can be called with a queue identifier.

Execution Environment
The creatq kernel service can be called from the process environment only.

Return Values :
Upon successful completion, the creatq service returns the device queue’s identifier. The
queue identifier is used as input to other services, such as the deque kernel service, to
identify the device queue. If the device queue cannot be successfully created, a value of
NULL_CBA is returned rather than the queue identifier.

Implementation Specifics
This kernel service is part of the Device Queue Management AIX kernel extension.

Related Information
The e_post kernel service, e_wait kernel service, queryi kernel service, waitq kernel
service. ’

The check-parameters queue management routine, cancel-queue-element queue
management routine.

Understanding Device Queues, Device Queue Management Kerne! Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-51

curtime

curtime Kernel Service

Purpose
Reads the current time into a time structure.

Syntax
#include <sys/types.h>

#include <sys/errno.h>
#include <sys/time.h>

void curtime (timestruct)
struct timestruc_t *timestruct;

Parameter

timestruct Points to a timestruc_t time structure defined in the <sys/time.h> file. The

curtime kernel service updates the fields in this structure with the current
time.

Description
The curtime kernel service reads the current time into a time structure defined in the
<sys/time.hs> file. This service updates the tv_sec and tv_nsec fields in the time structure,
pointed to by the timestruct parameter, from the hardware real-time clock. The kernel also

maintains and updates a memory-mapped time tod structure. This structure is updated with
each clock tick.

The kernel also maintains two other in-memory time values: the Ibolt value and time value.
The three in-memory time values that the kernel maintains (the tod value, Ibolt value, and
time value) are available to kernel extensions. The Ibolt in-memory time value is the
number of timer ticks that have occurred since the system was booted. This value is updated
once per timer tick. The time in-memory time value is the number of seconds since Epoch.
The kernel updates it once per second.

Note: POSIX 1003.1 defines “seconds since Epoch” as a “value interpreted as the number
of seconds between a specified time and the Epoch”. It further specifies that a
“Coordinated Universal Time name specified in terms of seconds (tm_sec), minutes
(tm_min) , hours (tm_hour), and days since January 1 of the year (tm_yday), and
calendar year minus 1900 (tm_year) is related to a time represented as seconds
since the Epoch according to the following expression: tm_sec + tm_min* 60
tm_hour*3600 + tm_yday * 86400 + (tm_year— 70) * 31536000 ((tm_year—69) / 4) *
86400 if the year is greater than or equal to 1970, otherwise it is undefined.”

The curtime kernel service does not page-fault if a pinned stack and input time structure are
used. Also, accessing the Ibolt, time, and tod in-memory time values does not cause a
page fault since they are in pinned memory.

The curtime kernel service has no return values.

1-52 Kernel Reference

£\

curtime

Execution Environment
The curtime kernel service can be called from either the process or interrupt environment.

The tod, time, and Ibolt memory-mapped time values can also be read from the process or
interrupt handler environment. The timestruct parameter and the stack must be pinned when
the curtime service is called in an interrupt handler environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information

Timer and Time-of-Day Kernel Services in Kernel Extensions and Device Support
Programming Concepts.

Kernel Services 1-53

d_clear

d_clear Kernel Service

Purpose

Frees a Direct Memory Access (DMA) channel.
Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/dma.h>

void d_clear (channel_id)

int channel_id;
Parameter

channel_id DMA channel identifier returned by the d_init service.
Description

The d_clear kernel service cleans up a DMA channel. Cleaning up the DMA channel entails:
1. Marking the DMA channel specified by the channel_id parameter as free.
2. Resetting the DMA channel.

The d_clear service is typically called by a device driver in its close routine. It has no return
values.

Warning: The d_clear service, as with all DMA services, should not be called unless the
DMA channel has been successfully allocated with the d_init service. The d_complete
service must have been called to clean up after any DMA transfers. Otherwise, data will be
lost and system integrity compromised.

Execution Environment
The d_clear kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The d_complete kernel service, d_init kernel service.

Direct Memory Access (DMA), I/0 Kernel Services in Kernel Extensions and Device Support
Programming Concepts.

1-54 Kernel Reference

P

d_complete

d_complete Kernel Service

Purpose
Cleans up after a Direct Memory Access (DMA) transfer.
Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/dma.h>
#include <sys/xmem.h>
int d_complete (channel_id, flags, baddr, count, dp, daddr)
int channel_id,
int flags;
caddr_t baddr;
size_t count;
struct xmem *dp;
caddr_t daddr;
Parameters
channel_id Specifies the DMA channel identifier returned by the d_init service.
flags Describes the DMA transfer. The dma.h header file describes these flags.
baddr Designates the address of the memory buffer.
count Specifies the length of the transfer in bytes.
do Specifies the address of the cross-memory descriptor.
daddr Designates the address used to program the DMA master. A value of NULL
is specified for DMA slaves.
Description

The d_complete kernel service completes the processing of a DMA transfer. It also
indicates any DMA error detected by the system hardware. The d_complete service must
be called after each DMA transfer.

The d_complete service performs machine-dependent processing, which entails:
¢ Flushing system DMA buffers.
¢ Making the DMA buffer accessible to the processor.

Note: When calling the d_master service several times for one or more of the same pages
of memory, the corresponding number of d_complete calls must be made to
successfully unhide the page or pages involved in the DMA transfers. Pages are not
hidden from the processor during the DMA mapping if the DMA_WRITE_ONLY flag
is specified on the call to the d_master service.

DMA Transfer Modes and Block DMA Transfers further describe DMA transfers.

Kernel Services 1-55

d_complete

Execution Environment
The d_complete kernel service can be called from either the process or interrupt
environment.

Return Values

DMA_SUCC Indicates a successful completion.

DMA_INVALID Indicates an operation that is not valid. A load or store that was not valid

was performed to the I/0 bus.

DMA_LIMIT Indicates a limit check. A load or store to the I/O bus occurred that was not

sufficiently authorized to access the 1/0O bus address.

DMA_NO_RESPONSE

Indicates no response. No device responded to the I/0 bus access.

DMA_CONFLICT

Indicates an address conflict. A daddr parameter was specified to the
d_master service for a system memory transfer, where this transfer
conflicts with the bus memory address of an I/O bus device.

DMA_AUTHORITY

Indicates an authority error. A protection exception occurred while accessing
an 1/0 bus memory address.

DMA_PAGE_FAULT

Indicates a page fault. A reference was made to a page not currently
located in system memory.

DMA_BAD_ADDR

Indicates an address that is not valid. An invalid or unsupported bus
address was used. An invalid daddr parameter was specified to the
d_master service.

DMA_CHECK Indicates a channel check. A channel check was generated during the bus

cycle. This typically occurs when a device detects a data parity error.

DMA_DATA Indicates a data parity error. The system detected a data parity error.
DMA_ADDRESS

Indicates an address parity error. The system detected an address parity
error.

DMA_EXTRA Indicates an extra request. This typically occurs when the count parameter

was specified incorrectly to the d_slave service.

DMA_SYSTEM Indicates a system error. The system detected an internal error in system

hardware. This is typically a parity error on an internal bus or register.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The d_master kernel service, d_slave kernel service, d_init kernel service.

Direct Memory Access (DMA), I/O Kernel Services in Kernel Extensions and Device Support
Programming Concepts.

1-56 Kernel Reference

T

d_init Kernel Service

Purpose
Initializes a Direct Memory Access (DMA) channel.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/dma.h>
#include <sys/adspace.h>

int d_init (channel, flags, bus_id)
int channel,

int flags;

vmhandle_t bus_id;

Parameters
channel Specifies the DMA channel number.

flags Specifies the flags that describe how the DMA channel is used. These flags
are described in the <sys/dma.h> file.

bus_id Identifies the I/O bus that the channel is to be allocated on. This parameter

is normally passed to the device driver in the Device Dependent Structure
(DDS) at driver initialization time.

Description
The d_init kernel service initializes a DMA channel. A device driver must call this service
before using the DMA channel. Initializing the DMA channel consists of:

» Designating the DMA channel specified by the channel parameter as allocated.
o Personalizing the DMA channel as specified by the flags parameter.

The d_init service is typically called by a device driver in its open routine when the device is
not already in the opened state. A device driver must call the d_init service before using the
DMA channel.

Execution Environment
The d_init kernel service can be called from either the process or interrupt environment.

Return Values

channel_id Indicates a successful operation. This value is used as an input parameter
to the other DMA routines.

DMA_FAIL Indicates that the DMA channel is not available because it is currently
allocated.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Kernel Services 1-57

d_init

Related Information
The d_clear kernel service.

Direct Memory Access (DMA), I/0 Kernel Services in Kernel Extensions and Device Support
Programming Concepits.

1-58 Kernel Reference

d_mask

d_mask Kernel Service

Purpose
Disables a Direct Memory Access (DMA) channel.

Syntax
#include <sys/types.h>

#include <sys/errno.h>
#include <sys/dma.h>

void d_mask (channel_id)
int channel_id,

Parameter
channel_id DMA channel identifier returned by the d_init service.

Description
The d_mask kernel service disables the DMA channel specified by the channel_id
parameter.

The d_mask kernel! service is typically called by a device driver deallocating the resources
associated with its device. Some devices require it to be used during normal device
operation to control DMA requests and avoid spurious DMA operations.

The d_mask service has no return values.
Note: The d_mask service, like all DMA services, should not be called unless the DMA
channel has been allocated with the d_init service.

Execution Environment
The d_mask kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The d_init kernel service, d_unmask kernel service.

Direct Memory Access (DMA), I/O Kernel Services in Kernel Extensions and Device Support
Programming Concepts.

Kernel Services 1-59

d_master

d_master Kernel Service

Purpose

Initializes a block-mode Direct Memory Access (DMA) transfer for a DMA master.
Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/dma.h>

#include <sys/xmem.h>

void d_master (channel_id, flags, baddr, count, dp, daddn

int channel_id;

int flags;

caddr_t baddr;

size_t count;

struct xmem *dp;

caddr_t daddr;
Parameters

channel_id Specifies the DMA channel identifier returned by the d_init service.

flags Specifies the flags that control the DMA transfer. These flags are described

in the <sys/dma.h> file.

baddr Designates the address of the memory buffer.

count Indicates the length of the transfer in bytes.

dp Specifies the address of the cross-memory descriptor.

daddr Specifies the address used to program the DMA master.
Description

The d_master kernel service sets up the DMA channel specified by the channel_id
parameter to perform a block-mode DMA transfer for a DMA master. The flags parameter
controls the operation of the d_master service. Types of DMA Devices describes DMA
slaves and masters.

The d_master service does not initiate the DMA transter. The device initiates all DMA
memory references. The d_master service makes the specified system memory buffer
available to the DMA device. The d_unmask service may need to be called before the DMA
transfer is initiated. The d_master service does not enable or disable the specified DMA
channel.

1-60 Kernel Reference

£

d_master

The d_master service supports three different buffer locations:

1. A transfer between a buffer in user memory and the device. With this type of transfer, the
dp parameter specifies the cross-memory descriptor used with the xmattach service to
attach to the user buffer. The baddr and count parameters must be the same values as
the uaddr and count parameters specified to the xmattach service.

2. Atransfer between a global kernel memory buffer and the device. With this type of
transfer, the dp—>aspace_id variable has an XMEM_GLOBAL value.

3. Atransfer between I/O bus memory and the device. The BUS_DMA flag distinguishes
this type of transfer from the other two types. The dp parameter is ignored with this type
of transfer and should be set to NULL.

The DMA transfer starts at the daddr parameter bus address. The device driver should
allocate only a bus address in the window associated with its DMA channel. The size and
location of the window are assigned to the device during the configuration process.

The d_master service performs any required machine-dependent processing, including the
following tasks:

e Managing processor memory cache
¢ Updating the referenced and changed bits of memory pages involved in the transfer
e Making the DMA buffer in memory inaccessible to the processor.

If the DMA_WRITE_ONLY flag is set in the flags parameter, the pages involved in the DMA
transfer can be read by the device but cannot be written. In addition, the pages involved in
the transfer are not hidden from the processor and remain accessible while the pages are a
source for DMA.

If the DMA_WRITE_ONLY flag is not set, the pages mapped for the DMA transfer are
hidden from the processor and remain inaccessible to the processor until the corresponding
d_complete service has been issued once the pages are no longer required for DMA
processing.

Note: When calling the d_master service several times for one or more of the same pages
of memory, the corresponding number of d_complete calls must be made to '
successfully unhide the page or pages involved in the DMA transfers. Pages are not
hidden from the processor during the DMA mapping if the DMA_WRITE_ONLY flag
is specified on the call to the d_master service.

Note: The memory buffer must remain pinned once the d_master service is called until the
DMA transfer is completed and the d_complete service is called.

Note: The device driver must not access the buffer once the d_master service is called
until the DMA transfer is completed and the d_complete service is called.

Note: The d_master service, as with all DMA services, should not be called unless the
DMA channel has been allocated with the d_init service.

The d_master service has no return values.

Execution Environment
The d_master kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operatlng System (BOS) Runtime.

Kernel Services 1—61

d_master

Related Information
The d_complete kernel service, d_init kernel service, d_unmask kernel service, xmattach
kernel service.

Direct Memory Access (DMA), I/O Kernel Services in Kernel Extensions and Device Support
Programming Concepts.

1-62 Kernel Reference

£

d_move

d_move Kernel Service

Purpose
Provides consistent access to system memory that is accessed asynchronously by a device
and by the processor on a RISC System/6000.
Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/dma.h>
int d_move (channel_id, flags, baddr, count, dp, daddr)
int channel_id;
int flags;
void *baddr;
size_t count;
struct xmem *dp;
void *daddr;
Parameters
channel_id Specifies the DMA channel ID returned by the d_init service.
flags Specifies the flags that designate the direction of the move. The flags
parameter should be set to 0 (zero) if the move is to be a write into system
memory shared by a bus master device. The flags parameter should be set
to DMA_READ if the move is to be a read from system memory shared by a
bus master device. These flag values are defined in the <sys/dma.h> file.
baddr Specifies the address of the nonshared buffer. This buffer is either the
source buffer for a move to the shared buffer or the destination buffer for a
move from the shared buffer. This buffer area must have an associated
cross-memory descriptor attached, which is specified by the dp parameter.
count Specifies the length of the transfer in bytes.
dp Specifies the address of the cross-memory descriptor associated with the
buffer that is not shared by a device. This buffer is the source butfer for a
move to the shared buffer and is the destination buffer for a move from the
shared buffer.
dadadr Specifies the address of the system memory buffer that is shared with the
bus master device. A bus address region containing this address (which
consists of the address specified by the daddr parameter plus at least the
number of byles specified by the count parameter) must have been mapped
for DMA by using the d_master service.
Description

Device handlers can use the d_move kernel service to access a data area in system
memory that is also being accessed by a DMA master. The d_move service uses the same
I/0 controller data buffers that the DMA master does when accessing data from the shared
data area in system memory. Using the same buffer keeps the processor data accesses
and device data access consistent. On the RISC System/6000 platform, this is necessary
since the I/O controller provides buffer caching of data accessed by bus master devices.

Kernel Services 1—63

d_move

A cross-memory descriptor, obtained by using the xmattach service, and a buffer address i
must be provided for the nonshared buffer involved in the data transfer. The d_move

service moves the data from the nonshared buffer to the shared buffer when the flags

parameter is set to 0 (zero). A move of the data from the shared buffer to the nonshared

bufter is effected if the flags parameter is specified with a value of DMA_READ. Once the

d_move service has returned, a call to the d_complete service with the specified

channel_id parameter ensures that the d_move service has successfully moved the data.

Execution Environment
The d_move kernel service can be called from either the process or interrupt environment.

Return Values
XMEM_SUCC Indicates successful completion.

XMEM_FAIL A Indicates one of these six errors:

» The caller does not have appropriate access authority for the
nonshared buffer.

e The nonshared buffer is located in an address range that is not valid.

o The memory region containing the nonshared buffer has been deleted.
o The cross-memory descriptor is not valid.

e A paging I/O error occurred while accessing the nonshared buffer.

o An error can also occur when the d_move kernel service executes on
an interrupt level if the nonshared buffer is not in memory.

TN

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

The d_move kernel service is available only on the RISC System/6000 product platform.
Related Information

The d_init kernel service, d_complete kernel service, d_master kernel service, xmattach
kernel service.

£

Direct Memory Access (DMA), I/0O Kernel Services in Kernel Extensions and Device Support
Programming Concepts.

1-64 Kemel Reference

d_slave

d_slave Kernel Service

Purpose
Initializes a block-mode Direct Memory Access (DMA) transfer for a DMA slave.

Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/dma.h>
#include <sys/xmem.h>

void d_slave (channel_id, flags, baddr, count, dp)
int channel_id;

int flags;

caddr_t baddr;

size_t count;

struct xmem *dp;

Parameters
channel_id Specifies the DMA channel identifier returned by the d_init service.

flags Control the DMA transfer. The <sys/dma.h> file contains valid values for
these flags.

badadr Designates the address of the memory buffer.
count Specifies the iength of the transfer in bytes.
dp Designates the address of the cross-memory descriptor.

Description
The d_slave kernel service sets up the DMA channel specified by the channel_id parameter
to perform a block-mode DMA transfer for a DMA slave. The flags parameter controls the
operation of the d_slave service. Types of DMA Devices describes DMA slaves and
masters.

The d_slave service does not initiate the DMA transfer. The device initiates all DMA memory
references. The d_slave service sets up the system address-generation hardware to
indicate the specified buffer.

The d_slave service supports three different buffer locations:

1. Atransfer between a buffer in user memory and the device. With this type of transfer, the
dp parameter specifies the cross memory descriptor used with the xmattach service to
attach to the kernel buffer. The baddrand count parameters must be the same values as
the vadadr and count parameters specified to the xmattach service.

2. A transfer between a giobal kernel memory buffer and the device. With this type of
transfer, the dp—>aspace_id variable has an XMEM_GLOBAL value.

3. Atransfer between I/O bus memory and the device. The BUS_DMA flag distinguishes
this type of transfer from the other two types. The dp parameter is ignored with this type
of transfer and should be set to NULL.

Kernel Services 1-65

d_slave

The d_unmask and d_mask services typically do not need to be called for the DMA slave Q‘r
transters. The DMA channel is automatically enabled by the d_slave service and
automatically disabled by the hardware when the last byte specified by the count parameter
is transferred.
The d_slave service performs machine-dependent processing, including the following tasks:
¢ Flushing the processor cache
¢ Updating the referenced and changed bits of memory pages involved in the transfer
¢ Making the buffer inaccessible to the processor.
Notes:
1. The memory buffer must remain pinned from the time the d_slave service is
called until the DMA transfer is completed and the d_complete service is called.
2. The device driver or device handler must not access the buffer once the d_slave
service is called until the DMA transfer is completed and the d_complete service {
is called.
3. The d_slave service, as with all DMA services, should not be called unless the
DMA channel has been allocated with the d_init service.
The d_slave service has no return values.
Execution Environment
The d_slave kernel service can be called from either the process or interrupt environment.
(
Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.
Related Information
The d_complete kernel service, d_init kernel service, xmattach kernel service,
d_unmask kernel service, d_mask kernel service. ‘
Direct Memory Access (DMA), I/O Kernel Services in Kernel Extensions and Device Supporl
Programming Concepts. <

1-66 Kernel Reference

d_unmask

d_unmask Kernel Service

Purpose
Enables a Direct Memory Access (DMA) channel.
Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/dma.h>
void d_unmask (channel_id)
int channel_id
Parameter
channel_id The DMA channel identifier returned by the d_init service.
Description
The d_unmask service enables the DMA channel specified by the channel_id parameter. A
DMA channel must be enabled before a DMA transfer can occur.
The d_unmask kernel service is typicaily called by a device driver when allocating the
resources associated with its device. Some devices require it to be used during normal
device operation.
The d_unmask service has no return values.
Note: The d_unmask service, as with all DMA services, should not be called unless the
DMA channel has been successtully allocated with the d_init service. '
Execution Environment

The d_unmask kernel service can be called from either the process or interrupt
environment.

Implementation Specifics

This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information

The d_complete kernel service, d_init kernel service, d_mask kernel service.

Direct Memory Access (DMA), I/O Kernel Services in Kernel Extensions and Device Support
Programming Concepts.

Kernel Services 1-67

del_arp_iftype

del_arp_iftype Kernel Service

Purpose

Deletes an interface type from the Network ARP Switch Table Interface (NAST!).

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <net/if.h>

int del_arp_iftype(if_type, af
u_short if type, af;

Parameters

if_type Identifies the type of a network interface (for example, Ethernet or Token
Ring). Interface types are defined in the <sys/devinfo.h> file.

af Specifies the address family of the ARP routines being deleted.

Description

The del_arp_iftype kernel service deletes an interface type from the Network ARP Switch
Table Interface (NASTI).

Example

1. The del_arp_iftype kernel service is invoked as follows:
del_arp_iftype(DD_EN, AF_INET);

Return Values

0 Indicates that the interface was successfully deleted.
ENOENT Indicates that the network type was not found for the specified address
family.

Execution Environment

The del_arp_iftype kernel service can be called from either the process or interrupt
environment.

Implementation Specifics

This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information

1-68

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Reference

del_af_domain

del_domain_af Kernel Service

Purpose

Deletes an address family from the Address Family domain switch table.
Syntax

#include <sys/types.h>

#tinclude <sys/errno.h>

#include <sys/domain.h>

int del_domain_at (domain)

struct domain *domain;
Parameter

domain Specifies the address family.
Description

The del_domain_af kernel service deletes the address family specified by the domain
parameter from the Address Family domain switch table.

Execution Environment

The del_domain_af kernel service can be called from either the process or interrupt
environment.

Return Value

EINVAL Indicates that the specified address is not found in the Address Family
domain switch table.

Example
1. To delete an address family from the Address Family domain switch table, invoke the
del_domain_af kernel service as follows:

del _domain_af(&inetdomain);

In this example, the family to be deleted is inetdomain.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The add_domain_af kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-69

del_input_type

del_input_type Kernel Service

Purpose
Deletes an input type from the Network Input table.
Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <net/if.h>
int del_input_type (type)
u_short type;
Parameter
type Specifies which type of protocol the packet contains. This parameter is a
field in a packet.
Description

The del_input_type kernel service deletes an input type from the Network Input table to
disable the reception of the specified packet type.

Execution Environment

The del_input_type kernel service can be called from either the process or interrupt
environment.

Return Values

Examples

0 Indicates that the type was successfully deleted.

ENOENT Indicates that the del_input_type service could not find the type in the
Network Input table.

1. To delete an input type from the Network Input table, invoke the del_input_type kernel
service as follows:

del_input_type(ETHERTYPE_IP);

In this example, ETHERTYPE_IP specifies that Ethernet IP packets should no longer be
processed.

2. To delete an input type from the Network Input table, invoke the del_input_type kernel
service as follows:

del_input_type (ETHERTYPE_ ARP);

In this example, ETHERTYPE_ARP specifies that Ethernet ARP packets should no longer
be processed.

Implementation Specifics

This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information

The add_input_type kernel service, find_input_type kernel service.
Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-70 Kernel Reference

PN

£\

~—

del_netisr

del_netisr Kernel Service

Purpose
Deletes a network software interrupt service routine from the Network Interrupt table.
Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <net/netisr.h>
int del_netisr (soft_intr_level)
u_short soft_intr_level,
Parameter
soft_intr_level Specifies the software interrupt service to delete. The value of
soft_intr_level should be greater than or equal to 0 (zero) and less
than a value of NETISR_MAX.
Description

The del_netisr kernel service deletes the network software interrupt service routine
specified by the soft_intr_level parameter from the Network Software Interrupt table.

Execution Environment
The del_netisr kernel service can be called from either the process or interrupt
environment.

Return Values

0 Indicates that the software interrupt service was successfully
deleted.
ENOENT Indicates that the software interrupt service was not found in the

Network Software Interrupt table.

Example
_ 1. To delete a software interrupt service from the Network Software Interrupt table, invoke
the kernel service as follows:

del_netisr(NETISR_IP);

In this example, the software interrupt routine to be deleted is NETISR_IP.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The add_netisr kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1—-71

del_netopt

del_netopt Macro

Purpose ,

Deletes a network option structure from the list of network options.
Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <net/netopt.h>

del_netopt (option_name_symbol)

option_name_symbol;
Parameter

option_name_symbol Specifies the symbol name used to construct the netopt

structure and default names.

Description

The del_netopt macro deletes a network option from the linked list of network options. After
the del_netopt service is called, the option is no longer available to the no command.

The del_netopt macro has no return values.

Execution Environment
The del_netopt macro can be called from either the process or interrupt environment.

Implementation Specifics
This macro is part of AIX Base Operating System (BOS) Runtime.

Related Information
The add_netopt macro.

The no command.

Network Kernel Services in Kernel Extensions and Device Support Programming Conceplts.

1-72 Kernel Reference

Do

PSRN

~—

delay

delay Kernel Service

Purpose

Suspends the calling process for the specified number of timer ticks.
Syntax

#include <sys/types.h>

#include <sys/errno.h>

void delay (ticks)

int ticks;
Parameter

ticks Specifies the number of timer ticks that must occur before the process is

reactivated. Many timer ticks can occur per second.

Description

The delay kernel service suspends the calling process for the number of timer ticks
specified by the ticks parameter.

The HZ value in the param.h file can be used to determine the number of ticks per second.
The delay service has no return values.

Execution Environment
The delay kernel service can be called from the process environment only.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information

Timer and Time-of-Day Kernel Services in Kernel Extensions and Device Support
Programming Concepts.

Kernel Services 1-73

deque

deque Kernel Service

Purpose
Performs completion processing for the active device queue element.
Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>
int deque (queue_id, options, qe, results)
cba_id queue_id,
int options;
struct ack_qe *ge;
int results;
Parameters
queue_id Specifies the identifier of the device queue from which to remove the active
queue element.
options Controls generation of the acknowledgment. The following values are
possible:
SUPPRESS_ACK Suppress acknowledgment.
OVERRIDE_VINTR Override the virtual interrupt sublevel specified
when the path was created.
qQe Specifies the address of the acknowledgment queue element or NULL.
results Specifies the operation results for a synchronous request or an interrupt on
error request.
Description

The deque kernel service is not part of the base kernel but provided by the Device Queue
Management kernel extension. This queue management kernel extension must be loaded
into the kernel once before the loading of any kernel extensions referencing these services.

The deque service is called by a device queue server to tell the kernel that processing for
the active queue element is complete. This service removes the active queue element from
the device queue and conditionally sends an acknowledgment.

The deque service can automatically send an acknowledgment to the requestor if one was
requested when the device queue was attached. Depending on the type of acknowledgment
requested, different amounts of status information are returned. For simple interprocess
communication, the acknowledgment functions are probably not necessary.

To generate an acknowiedgment, the server of the device queue provides data in an
acknowledgment queue element. The kernel then uses this data to send the
acknowledgment to the requestor. The only time the acknowledgment queue element can be
omitted is if the path type for the queue element is NO_ACK or SHORT_ACK or the
suppress option SUPPRESS_ACK is selected.

1-74 Kernel Reference

£

IR

deque

The operation options field in the active queue element is examined to determine what
operation the deque service should perform:

SYNC_REQUEST
Indicates that the operation is synchronous. On a SYNC_REQUEST, the
enque routine enqueues the request and then sleeps, waiting for
completion. When the deque service is called, it wakes up the enque
routine and passes the results directly back. The enque service then
passes the results to the caller.

ACK_COMPLETE
Indicates that an acknowledgment should be generated. If
ACK_COMPLETE is specified, then an acknowledgment is sent each time a
queue element is completed (dequeued) independent of the results.

ACK_ERRORS Indicates that an acknowledgment should be generated only if there has
been an error (the results parameter is not equal to RC_GOOD). If
ACK_ERRORS is specified, the deque service only sends an
acknowledgement on completed queue elements that have a result other
than RC_GOOD.

These three operation flags are mutually exclusive. Therefore, only one should be specified.

If the suppress option is selected, the kernel does not return any information to the sender of
the request. The device queue’s server is responsible for explicitly generating the
acknowledgment using the ackque service.

A path to a device queue may be destroyed before the active queue element is totally
processed. If this happens, no acknowledgment is generated when the deque service is
called. Instead, the queue element is discarded with no error reported.

Use of Virtual interrupt Handlers
When an acknowledgment is sent through a path that was set up with an acknowledgment
type of interrupt (INTR_ACK), then the deque service calls a registered virtual interrupt
handler. This service uses the qe->data[5] field in the acknowledgment queue element to
provide a subleve! specifying which virtual interrupt handler to call. The sublevel specified
when the path was created is used unless the OVERRIDE_VINTR value is specified in the
options parameter to the deque service. Otherwise, the value in the acknowledgment
queue element is used.

Virtual interrupt handlers can be registered by using the vec_init device queue management
service. This interrupt handler is called in the process environment of the caller of the
deque service. Virtual interrupts should be used for compatibility purposes only.

Execution Environment
The deque kernel service can be called from the process environment only.

Return Values
RC_GOOD Indicates successful completion.

RC_OBJ Indicates that there is no active queue element on the specified device
queue.

Implementation Specifics
This kernel service is part of the Device Queue Management AlX kernel extension.

Kernel Services 1-75

deque

Related Information
The ackque kernel service, vec_init kernel service, enque kernel service.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

1-76 Kernel Reference

~ale

detach-device

detach-device Queue Management Routine

Purpose

Syntax

Provides a means for performing device-specific processing when the detchq kernel service
is called.

#include <sys/types.h>
#include <sys/errno.h>
#tinclude <sys/deviceq.h>

int detach(dev_parms, path_id)
caddr_t dev_parms;
cba_id path_id;

Parameters

dev_parms Passed to creatd service when the detach routine is defined.

path_id Specifies the path identifier for the queue that is being detached from.

Description

Each device queue can have a detach routine. This routine is optional and must be
specified when the device queue is defined with the creatd service. The detach routine is
called by the detchq service each time a path to the device queue is removed.

To ensure that the detach routine is not called while a queue element from this client is still
in the device queue, the kernel puts a detach control queue element at the end of the device
queue. The server knows by convention that a detach control queue element signifies
completion of all pending queue elements for that path. The kernel calls the detach routine
after the detach control queue element is processed.

The detach routine executes under the process under which the detchq service is called.
The kernel does not serialize the execution of this service with the execution of any of the
other server routines.

Execution Environment

The detach-device routine can be called from the process environment only.

Return Values

RC_GOOD Indicates successful completion.

A return value other than RC_GOOD indicates a fatal condition and-causes the system to
panic.

Related Information

The creatd kernel service, detchq kernel service.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1=77

detchq

detchq Kernel Service

Purpose
\ Invalidates the path to a device queue.
Syntax
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>
int detchq (path_id)
cba_id path_id;
Parameter
path_id Path identifier of the path to be invalidated.
Description

The detchq device queue kernel service is not part of the base kernel but is provided by the
Device Queue Management kernel extension. This queue management kernel extension
must be loaded into the kernel once before the loading of any kernel extensions referencing
these services.

The detchq service invalidates the specified path.

If the to_id field in the path being invalidated is a device identifier, a detach queue element
is placed in the device queue. The detchq service does not continue until the device queue
server calls the deque service for this queue element. At this time, no other queue elements
can be sent using this path. This serializes completion of all pending request for that path
before invalidating the path.

However, this wait can also cause excessive delay for the caller of the detchq service if
lengthy requests have yet to be processed. Device queue interfaces should be designed so
that all I/0 activity is finished before the detchq service is called. In addition, device queue
servers must recognize detach queue elements. These detach queue elements are control
queue elements sent by the kernel to detach a server from a path.

The server’s detach-device queue routine is called if one is associated with the device
queue. This occurs after the server calls the deque service for the detach queue element
and executes under the caller of detchq process.

For device queues with multiple paths, a detach queue element is sent each time a path is
invalidated.

Execution Environment

The detchq kernel service can be called from the process environment only.

Return Values

RC_GOOD Indicates successful completion.

RC_ID Indicates that the path identifier is not valid.

1-78 Kernel Reference

AN

£

detchq

Implementation Specifics
This kernel service is part of the Device Queue Management AlX kernel extension.

Related Information
The detach-device queue management routine.

The deque kernel service.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-79

devdump

devdump Kernel Service

Purpose
Calls a device driver dump-to-device routine.
Syntax
#include <sys/types.h>
#include <sys/errno.h>
int devdump (devno, uiop, cmd, arg, exf)
dev_t devno;
struct uio *uiop;
int emd, arg, ext;
Parameters
devno Specifies the major and minor device numbers.
uiop Points to the uio structure containing write parameters.
cmd Specifies which dump command to perform.
arg A parameter or address to a parameter block for the specified command.
ext The extended system call parameter
Description

The kernel or kernel extension calls the devdump kernel service to initiate a memory dump
to a device when writing dump data and then to terminate the dump to the target device.

The devdump service calls the device driver’'s dddump routine, which is found in the device
switch table for the device driver associated with the specified device number. If the device
number (specified by the devno parameter) is not valid or if the associated device driver
does not have a dddump routine, an ENODEYV error code is returned.

If the device number is valid and the specified device driver has a dddump routine, the
routine is called.

If the device driver’s dddump routine is successfully called, the return code for the
devdump service is set to the return code provided by the device's dddump routine.

Execution Environment

The devdump kernel service can be called in either the process or interrupt environment, as
described under the conditions described in the dddump routine.

Return Values

0 Indicates a successful operation.

ENODEV Indicates that the device number is not valid or that no dddump routine is
registered for this device.

dddump return codes
Return codes provided by the dddump device driver routine.

1-80 Kernel Reference

N

devdump

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Device Switch Table.
The dddump Device Driver Entry Point.

Device Switch Table, Kernel Program/Device Driver Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-81

devstrat

devstrat Kernel Service

Purpose
Calls a block device driver’s strategy routine.
Syntax
#include <sys/types.h>
#include <sys/errno.h>
int devstrat (bp)
struct buf *bp;
Parameter
bp Paoints to the buf structure specifying the block transfer parameters.
Description

The kernel or kernel extension calls the devstrat kernel service to request a block data
transfer to or from the device with the specified device number. This device number is found
in the buf structure. The devstrat service can only be used for the block class of device
drivers.

The devstrat service calls the device driver's ddstrategy routine. This routine is found in
the device switch table for the device driver associated with the specified device number
found in the b_dev field. The b_dev field is found in the buf structure pointed to by the bp
parameter. The caller of the devstrat service must have an iodone routine specified in the
b_iodone field of the buf structure. Following the return from the device driver's ddstrategy
routine, the devstrat service returns without waiting for the 1/0 to be performed.

If the device major number is not valid or the specified device is not a block device driver,
the devstrat service returns the ENODEYV return code. If the device number is valid, the
device driver’s ddstrategy routine is called with the pointer to the buf structure (specified by
the bp parameter).

Execution Environment
The devstrat kernel service can be called from either the process or interrupt environment.

Return Values
0 Indicates a successful operation.

ENODEV Indicates the device number is not valid or that no ddstrategy routine
registered. This value is also returned when the specified device is not a
block device driver. If this error occurs, the devstrat service can cause a
page fault.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

1-82 Kernel Reference

—

)

devstrat

Related Information
The iodone kernel service.

The ddstategy routine.

Device Switch Table, The buf Structure, Kernel Program/Device Driver Management Kernel
Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-83

devswadd

devswadd Kernel Service

Purpose

Syntax

Adds a device entry to the device switch table.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/device.h>

int devswadd (devno, dswptr)
dev_t devno;
struct devsw *dswptr;

Parameters

devno Specifies the major and minor device numbers to be associated with the
specified entry in the device switch table.

dswplr Points to the device switch structure to be added to the device switch table.

Description

The devswadd kernel service is typically called by a device driver's ddconfig routine to add
or replace the device driver’s entry points in the device switch table. The device switch table
is a table of devsw (device switch) structures indexed by the device driver’s major device
number. This table of structures is used by the device driver interface services in the kernel
to facilitate calling device driver routines.

The major device number portion of the devno parameter is used to specify the index in the
device switch table where the devswadd service must place the specified device switch
entry. Before the device switch structure is copied into the device switch table, the existing
entry is checked to determine if any opened device is using it. If an opened device is
currently occupying the entry to be replaced, the devswadd service does not perform the
update. Instead, it returns an EEXIST error code. If the update is successful, a value of 0
(zero) is returned.

Entry points in the device switch structure that are not supported by the device driver must
be handled in one of two ways. If a call to an unsupported entry point should result in the
return of an error code, then the entry point must be set to the nodev routine in the
structure. As a result, any call to this entry point automatically invokes the nodev routine
that returns an ENODEYV error code. The kernel provides the nodev routine.

Otherwise, a call to an unsupported entry point should be treated as a no-operation function,
then the corresponding entry point should be set to the nulldev routine. The routine, which
is also provided by the kernel, performs no operation if called and returns a 0 return code.

All other fields within the structure that are not used should be set to 0 (zero). Some fields in
the structure are for kernel use and are not copied into the device switch table by the
devswadd service. These fields are documented in the <sys/device.h> file.

Execution Environment

The devswadd kernel service can be called from the process environment only.

1-84 Kernel Reference

s

devswadd

) Return Values

0 Indicates a successful operation.

EEXIST Indicates that the specified device switch entry is in use and cannot be
replaced.

ENOMEM Indicates that the entry cannot be pinned due to insufficient real memory.

EINVAL Indicates that the major device number portion of the devno parameter

exceeds the maximum permitted number of device switch entries.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The devswdel kernel service, devswqry kernel service.
The ddconfig Device Driver Entry Point.

Device Switch Table, Kernel Program/Device Driver Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-85

devswdel

devswdel Kernel Service

Purpose

Syntax

Parameter

Deletes a device driver entry from the device switch table.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/device.h>

int devswdel (devno)
dev_t devno;

devno Specifies the major and minor device numbers of the device to be deleted.

Description

Execution

The devswdel kernel service is typically called by a device driver’s ddconfig routine on
termination to remove the device driver’s entry points from the device switch table. The
device switch table is a table of device switch (devsw) structures indexed by the device
driver's major device number. This table of structures is used by the device driver interface
services in the kernel to facilitate calling device driver routines.

The major device number portion of the devno parameter is used to specify the index into
the device switch table for the entry to be removed. Before the device switch structure is
removed, the existing entry is checked to determine if any opened device is using it.

If an opened device is currently occupying the entry to be removed, the devswdel service
does not perform the update. Instead, it returns an EEXIST return code. If the removal is
successful, a return code of 0 (zero) is set.

The devswdel service removes a device switch structure entry from the table by marking
the entry as undefined and setting all of the entry point fields within the structure to nodev.
As a result, any callers of the removed device driver return an ENODEV error code. If the

specified entry is already marked undefined, the devswdel service returns an ENODEV
error code.

Environment
The devswdel kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.

EEXIST Indicates that the specified device switch entry is in use and cannot be
removed.

ENODEV Indicates that the specified device switch entry is not defined.

EINVAL Indicates that the major device number portion of the devno parameter

exceeds the maximum permitted number of device switch entries.

1-86 Kernel Reference

P

£

)

devswdel

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The devswadd kernel service, devswqry kernel service.

Device Switch Table, Kernel Program/Device Driver Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-87

devswqry

devswqry Kernel Service

Purpose

Syntax

Checks the status of a device switch entry in the device switch table.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/device.h>

int devswaqry (devno, status, dsdptn
dev_t devno;

uint *status;

caddr_t *dsdptr;

Parameters

devno Specifies the major and minor device numbers of the device to be queried.

status Points to the status of the specified device entry in the device switch table.
This parameter is passed by reference.

dsadptr Points to device-dependent information for the specified device entry in the
device switch table. This parameter is passed by reference.

Description

The devswaqry kernel service returns the status of a specified device entry in the device
switch table. The entry in the table to query is determined by the major portion of the device
number specified in the devno parameter. The status of the entry is returned in the status
parameter that is passed by reference on the call. If this pointer is NULL on entry to the
devswary service, then the status is not returned to the caller.

The devswqry service also returns the address of device-dependent information for the
specified device entry in the device switch table. This address is taken from the d_dsdptr
field for the entry and returned in the dsdptr parameter, which is passed by reference. If this
pointer is NULL on entry to the devswqry service, then the address from the d_dsdptr field
is not returned to the caller.

The status Parameter Flags

The status parameter comprises a set of flags that can indicate the following conditions:

DSW_UNDEFINED Device switch entry is not defined.

DSW_DEFINED Device switch entry is defined.

DSW_CREAD Device driver in this device switch entry is providing a routine for
character reads or raw input. This flag is set when the device driver
has a ddread entry point.

DSW_CWRITE Device driver in this device switch entry is providing a routine for

character writes or raw output. This flag is set when the device
driver has a ddwrite entry point.

1-88 Kernel Reference

“~

PN

devswqry

DSW_BLOCK Device switch entry is defined by a block device driver. This flag is
set when the device driver has a ddstrategy entry point.

DSW_MPX Device switch entry is defined by a multiplexed device driver. This
flag is set when the device driver has a ddmpx entry point.

DSW_TTY Device switch entry is in use by a tty device driver. This flag is set
when the pointer to the d_ttys structure is not NULL.

DSW_SELECT Device driver in this device switch entry is providing a routine for
handling the select or poll subroutines. This flag is set when the
device driver has provided a ddselect entry point.

DSW_DUMP Device driver defined by this device switch entry provides the
capability to support one or more of its devices as targets for a
kernel dump. This flag is set when the device driver has provided a
~ dddump entry point.

DSW_TCPATH Device driver in this device switch entry supports devices that are
considered to be in the trusted computing path and provide support
for the revoke function. This flag is set when the device driver has
provided a ddrevoke entry point.

DSW_OPENED Device switch entry is in use and device has outstanding opens.
This flag is set when the device driver has at least one outstanding
open.

The status parameter is set to the DSW_UNDEFINED flag when a device switch entry is not
in use. This is the case if either of the following are true:

e The entry has never been used (no previous call to the devswadd service was made).

o The entry has been used but was later deleted (a call to the devswadd service was
issued, followed by a call to the devswdel service).

No other flags are set when the DSW_UNDEFINED flag is set.

Execution Environment
The devswaqry kernel service can be called from either the process or interrupt environment.

Return Values
0 Indicates a successful operation.
EINVAL Indicates that the major device number portion of the devno parameter

exceeds the maximum permitted number of device switch entries.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The devswadd kernel service, devswdel kernel service.

Device Switch Table, Kernel Program/Device Driver Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-89

dmp_add

dmp_add Kernel Service

Purpose
Specifies data to be included in a system dump by adding an entry to the master dump
ta<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>